
An Educational Guide to Creating Your
Own Cryptocurrency

Paul Medeiros and Leonidas Deligiannidis

1 Introduction

Over the course of the past decade, many online transactions often required what
is known as an “intermediary”—a third party that guarantees the secure exchange
of both the goods and information pertaining to the transaction. Additionally,
this means that all accountability for the transaction would fall into the hands
of the third-party intermediary. This type of security framework is known as
a “centralized” framework, as a central authority is responsible for executing a
safe data exchange within user transactions. Contrarily, a “decentralized” security
framework focuses on eliminating the intermediary, and instead using a “public
ledger”—a database of all transaction records shared with all users. This method
of transaction allows for the exchanged data between users to become immutable
and cryptographically sealed. Additionally, the use of “ledgers” eliminates the
chances of losing crucial information during a transaction, giving its users not only
immense privacy and security capabilities but also great transparency with all of the
transaction data. This type of decentralized security framework is what is used as the
foundation for blockchain technology as it is known today. The most common form
of blockchain technology, known as “cryptocurrency,” utilizes this framework by
making all transaction history available to all users while also making all of its data
immutable. Each time a series of new transactions is made within the blockchain,
a new block containing the new transaction data will be created and added to the
existing blockchain, further adding to the long list of immutable data. For this data
to be accepted by the blockchain, it must be validated by the blockchain users

P. Medeiros · L. Deligiannidis (�)
Department of Computer Science and Networking, Wentworth Institute of Technology, Boston,
MA, USA
e-mail: medeirosp@wit.edu; deligiannidisl@wit.edu

© Springer Nature Switzerland AG 2021
H. R. Arabnia et al. (eds.), Advances in Software Engineering, Education, and
e-Learning, Transactions on Computational Science and Computational
Intelligence, https://doi.org/10.1007/978-3-030-70873-3_12

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70873-3_12&domain=pdf
mailto:medeirosp@wit.edu
mailto:deligiannidisl@wit.edu
https://doi.org/10.1007/978-3-030-70873-3_12

164 P. Medeiros and L. Deligiannidis

themselves through the use of a “proof-of-work” (PoW) algorithm. Miners run
the PoW algorithm. This time-consuming process involves the solution to a hard
problem [1] involving the computation of hashes which are one-way mathematical
functions. While it is very hard to produce the correct hash for a block to be accepted
into the blockchain, it is very simple and easy to verify the validity of the hash by
any member of the blockchain community.

This report is primarily focused on the creation and deployment of a unique
cryptocurrency while utilizing an existing codebase. Unlike the early stages of cryp-
tocurrency that was still in its infancy, the information regarding its development
process, especially its use of blockchain technology, has been greatly elaborated
upon to make the deployment of a new cryptocurrency more streamlined. Producing
a strong blockchain requires several different constituencies such as software devel-
opers, miners, exchanges, merchant processing services, web wallet companies, and
user/consumers [2]. The process demonstrated here provides a streamlined approach
to achieve all the necessary steps in deploying a fresh blockchain without the need of
a large software developing team, or even large amounts of third-party software. The
primary tools that are utilized in this development process largely center around the
use of Bash, a Linux-based scripting language, and the Ubuntu operating system.
Additionally, a GitHub account will be especially useful for pushing and pulling
new builds of the cryptocurrency when needed.

2 A Working Codebase

We utilized a working cryptocurrency codebase to create our own new cryptocur-
rency. This codebase allows for anyone to utilize the binaries provided by it to
compile their own unique cryptocurrency build. More specifically, this codebase
gives developers the necessary tools needed to deploy their own cryptocurrency.
Of course, this codebase is not able to generate a new cryptocurrency by itself—
there are many necessary alterations of code and unique configuration parameters
that must be provided for a new cryptocurrency to be built properly using this
codebase. For this project, we used the Litecoin codebase, which is an open-source
peer-to-peer cryptocurrency project, and we utilized the public Litecoin GitHub
repository for its source code. To gain access to the “Litecoin” repository and fork
the necessary documents, a GitHub account needs to be created and then linked
to the Ubuntu operating system (which can be done via the Bash terminal setup in
Visual Studio Code). This connection with GitHub and Ubuntu is necessary, because
if data needs to be pulled and/or be updated from the new forked repository, it can
be done through the Ubuntu command line via bash scripting, without having to
access the GitHub website directly.

To get the working codebase, we first installed the Ubuntu subsystem on a
Windows 10 machine and forked the Litecoin repository from https://github.com/
litecoin-project/litecoin and then followed the instructions of the “build-unix” file
located in the document folder to install the dependencies.

https://github.com/litecoin-project/litecoin
https://github.com/litecoin-project/litecoin

An Educational Guide to Creating Your Own Cryptocurrency 165

3 Preliminary Code Modifications

Renaming assets in an existing codebase as a step toward creating a “unique
cryptocurrency” is not as questionable as it may seem. Many cryptocurrencies,
much like Litecoin itself, often merge their code with changes made from other
codebases. In many cases, Litecoin can be seen merging code from Bitcoin, a major
cryptocurrency. This can be viewed when going to the Litecoin repository page and
checking its commit history and changes. Unsurprisingly, both Bitcoin and Litecoin
share enough similarities in their source code to make merging code possible and
not very tedious. Practicing something similar to Litecoin, portions of the codebase
installed via the Bash terminal can be renamed to include the developer’s new
cryptocurrency name. Moving forward, it is important to note that there are other
aspects of the codebase that must be edited that stretch beyond simply renaming
things. The commands shown in Fig. 1 should be entered into the Bash terminal to
replace all areas of the code where Litecoin is mentioned.

An imaginary cryptocurrency named “CloudCoin” is used in this example to
demonstrate what should be edited in the respected fields. In Fig. 1, any instance
of “CloudCoin” should be replaced with the unique cryptocurrency name of the
developer’s liking. Additionally, the abbreviation of “CloudCoin,” which is “CLC,”
should also be changed to an abbreviation of the new cryptocurrency’s name.

Additionally, there are two more name changes that must be made. In Litecoin,
and other cryptocurrencies, there are monetary denominations used to represent
amounts of cryptocurrency that are smaller than a single coin. In Litecoin, these two
denominations are known as “lites” and “photons.” Figure 2 shows how to replace
these denominations with our own called “clouds” and “raindrops,” respectively.

Next, locate the file “chainparams.cpp.” This file is one of the major pieces
in creating a new blockchain and requires a variety of edits to make a successful

find ./ -type f -readable -writable -exec sed -i "s/Litecoin/Cloudcoin/g" {} \;

find ./ -type f -readable -writable -exec sed -i "s/LiteCoin/CloudCoin/g" {} \;

find ./ -type f -readable -writable -exec sed -i "s/LTC/CLC/g" {} \;

find ./ -type f -readable -writable -exec sed -i "s/litecoin/cloudcoin/g" {} \;

find ./ -type f -readable -writable -exec sed -i "s/litecoind/cloudcoind/g" {} \;

Fig. 1 The commands to replace any instances of the word “Litecoin” or its variations within the
source code. It is important to replace the examples of “CloudCoin” with the developer’s own
unique cryptocurrency names

find ./ -type f -readable -writable -exec sed -i "s/lites/clouds/g" {} \;

find ./ -type f -readable -writable -exec sed -i "s/photons/raindrops/g" {} \;

Fig. 2 The commands run via the Bash terminal to replace any instances of the words “lites” or
“photons”—the denominations used for Litecoin when the amount of currency is less than one
‘Litecoin”

166 P. Medeiros and L. Deligiannidis

pchMessageStart[0] = 0xfb;

pchMessageStart[1] = 0xc0;

pchMessageStart[2] = 0xb6;

pchMessageStart[3] = 0xdb;

Fig. 3 Four lines of code that represent the PCH Message Values that are present within the
“chainparams.cpp” file. The bytes associated with these lines of code must be changed to
unique values to ensure that the different networking protocols present in the blockchain can be
successfully handled

base58Prefixes[PUBKEY_ADDRESS] = std::vector<unsigned char>(1,48);

base58Prefixes[SECRET_KEY] = std::vector<unsigned char>(1,176);

base58Prefixes[EXT_PUBLIC_KEY] = {0x04, 0x88, 0xB2, 0x1E};

base58Prefixes[EXT_SECRET_KEY] = {0x04, 0x88, 0xAD, 0xE4};

Fig. 4 Four lines of code that represent the different public and secret keys that will be present
in the cryptocurrency blockchain. All of these values must be unique so that the blockchain can
receive accurate data from its users

build. Search in the file for several lines of code that start with the phrase “pchMes-
sageStart,” followed by a series of bytes. The bytes present and handle different
networking protocols being used to identify the clients of the blockchain. These
values must be changed to something unique, because if another cryptocurrency
uses the same PCH message values, it will create complications when attempting to
identify which cryptocurrency blockchain it is trying to access. The section of code
that should be edited should look like Fig. 3. Note that the bytes supplied in the
figure are the default values given by Litecoin and should not be used as input.

Like the previous step, the next section of code is also present within the
“chainparams.cpp” file but begins with the phrase “base58Prefixes.” The bytes
associated with these lines of code are used as prefixes for the addresses that
can receive data from the cryptocurrency blockchain users. These values must be
unique, since sharing these addresses with another cryptocurrency can confuse
which cryptocurrency blockchain the data will be sent to. The four lines in Fig.
4 hold the address data for the public key and secret key (as well as the external
public and secret keys). The values present within the figure should not be used as
input for the code and instead should serve as an example as to the possible values
that could be used.

4 Creating the Genesis Block

This is arguably the most important section of the development process, as the
following steps are used for creating the first block of the new cryptocurrency
blockchain. The first block of a new blockchain, otherwise known as the “genesis

An Educational Guide to Creating Your Own Cryptocurrency 167

block,” is essentially the “origin” of a new cryptocurrency’s blockchain. It plays
a crucial role not only in creating the new blockchain itself but also for allowing
successive blocks to be created and added in the chain. The data structure that exists
within each block of the chain is known as the “Merkle root” and must be created
alongside the genesis block. The Merkle root consists of what are called “chained
hashes.” Inside of the “chainparams.cpp” file, the developer can find examples of
the genesis block and Merkle root values.

Thankfully, a Python script exists that can help assemble these necessary pieces
of data to generate a successful genesis block for the developer. The script, known
as “GenesisH0,” can be found on GitHub and was utilized for the sake of creating a
unique genesis block. Figure 5 shows how to download and install GenesisH0.

In the install directory, there is a python script named “genesis.py,” which is the
script that will be calculating the nonce and assembling the additional information to
create the genesis block for the new blockchain. To use the script, enter the following
command shown in Fig. 6 into the terminal—substituting the placeholders with the
unique values for the article, public key, and timestamp obtained above (as well as
an arbitrary number for the nonce). Be sure to include quotations around certain
values as shown in Fig. 6.

It is important to note that this (mining) process can take a long time to complete,
as searching for a suitable nonce can be very difficult; we found one within 48 hours.
Sometimes, this process can take minutes, while other times, it can take several
hours to complete. If the developer finds that they cannot successfully obtain a
suitable nonce, either change the arbitrary value given to the nonce or allow the
script to run for a longer time.

When the developer sees the message indicating that the genesis hash is found,
copy down the nonce and genesis hash values that appear in their respective results.
Re-run the previous python script command in Fig. 6—using the new nonce value
as the nonce parameter for the script. Running this command should immediately
return a result that looks similar to Fig. 7. Values associated with data such as the
“Merkle hash,” “bits,” and other outputs will have unique values when run through
the developer’s terminal. It is crucial to take note of the values associated with all
outputs of the script. Pay close attention to the “Merkle hash,” “pubkey,” “time,”

git clone https://github.com/lhartikk/GenesisH0.git

sudo pip install scrypt construct==2.5.2

Fig. 5 Two commands run via the Bash terminal. The first installs the necessary Python script
associated with “GenesisH0,” while the second installs dependencies that allow the Python script
to run

python genesis.py -a scrypt -z "Insert Article Here" -p "Public Key" -t timestamp -n nonce

Fig. 6 A sample input command for the “genesis.py” script to find a suitable nonce. All
placeholders should be substituted for their real corresponding values

168 P. Medeiros and L. Deligiannidis

python genesis.py -a scrypt -z "Insert Article Here" -t timestamp -n nonce

algorithm: scrypt

merkle hash: merkle-hash-value

pszTimestamp: Article-Website Date Title

pubkey: public-key

time: unix-time-value

bits: bit-value

Searching for genesis hash..

genesis hash found!

nonce: nonce-value

genesis hash: genesis-hash-value

Fig. 7 The output of the “genesis.py” script when the new suitable nonce is used as the nonce
parameter for the command

“bits,” “nonce,” and “genesis hash” values. This information will aid in developing
the next step of the code development process.

5 Primary Code Modifications

Now that the data required to create a new genesis block has been obtained, we need
to navigate back to the “chainparams.cpp.” First, edit the value associated with the
variable “pszTimestamp,” and replace it with the name of the article the developer
used to create the previous genesis block data.

Scrolling further down the file, there should be a class called “CMainParams.”
Within it, there is a line of code that refers to creating a genesis block, as well
as two lines of code that begin with the word “assert,” followed by the words
“hashGenesisBlock” or “hashMerkleRoot.” The first line of code should include the
phrase “CreateGenesisBlock” that holds three genesis block values associated with
its Unix time, nonce, and bits. Modify these values with the new values generated
from the execution of the “genesisH0” script.

Below the “CreateGenesisBlock” line, the value associated with the line
“assert(consensus.hashGenesisBlock)” should be modified to include the genesis
hash value the developer obtained from the “genesisH0” script. Additionally, the
value associated with “assert(genesis.hashMerkleRoot)” should be modified to
include the new Merkle hash.

Cryptocurrencies are typically known to have what are called “decentralized
security frameworks.” This type of framework eliminates the need for “interme-
diaries,” which are responsible for guaranteeing a secure exchange of data (in this
case, money) between the users executing a transaction [3]. A “public ledger” is put

An Educational Guide to Creating Your Own Cryptocurrency 169

in place of the “intermediary,” which is an immutable, cryptographically secured
permanent record of all transactions among all users of the blockchain [3].

While this provides a secure alternative to intermediaries, its main strengths lie in
its ability to eliminate the chances of information loss, having powerful transaction
validation abilities, easy verification processes, and a strong focus on transaction
transparency [3]. Interestingly, Litecoin (as well as similar cryptocurrencies, such
as Bitcoin) references “dnsseeds” and “seednodes” in its source code, which means
that there are multiple active IP addresses that are running to support client
interactions with Litecoin (such as transactions). In a way, these could be seen
as a form of “intermediaries,” but they are in no way required to set up a fresh
cryptocurrency blockchain. It’s crucial to remove these unnecessary pieces of data,
as including them in the new blockchain will send clients of the new blockchain to
the addresses provided by the Litecoin source code.

To begin removing the “dnsseeds,” navigate back to the “chainparams.cpp” file.
Toward the bottom of the file, several lines of code that begin with the phrase
“vSeeds.emplace_back” should be present. The developer can either choose to
comment out these lines or delete them (doing either will disable these lines of
code). Within the same “src,” open the “chainparamsseeds.h” file. Edit the method
referred to as “pnSeed6_main” by commenting (or deleting) all its accompanying
data. The data present in this method is memory associated with the nodes used by
the Litecoin source code. Specifically, each line of this method contains data for a
unique IP address associated with Litecoin, alongside a port number used by the
accompanying address. Because nodes for the new blockchain have not been set up
yet (nor can they use the same values provided by Litecoin), these values must be
removed from the source code. Additionally, the developer should make sure that
the method below “pnSeed6_main,” named “pnSeed6_test,” is left alone.

6 Deploying the Nodes

Here, a peer-to-peer (P2P) network is used to establish the ability for clients to mine,
send, and receive cryptocurrency from the new blockchain. Using this P2P network,
the transactions and blocks made through the blockchain will be broadcasted by
the nodes and sent to their peers, which then relay further to flood the network
if they meet the relay policies [4]. In other words, the P2P network serves as a
component that protects its users from “Denial of Service” attacks (DoS) in addition
to supporting transactions through Simple Payment Verification (SPV) [4]. The tools
used to accomplish this goal were provided through the Microsoft Azure platform
and its ability to rapidly deploy multiple virtual machines.

Like Bitcoin, the users and/or computers that will be running one (or multiple) of
these nodes will have a direct and authoritative view of the blockchain, with a local
copy of all the transactions, independently validated by their own system [5]. This
means that if the developer chooses to use their own personal nodes instead of using
a service such as Microsoft Azure, then the developer can view the entire history

170 P. Medeiros and L. Deligiannidis

of the blockchain with other additional privileges. However, running personal nodes
will require a permanently connected system in which the system must have enough
resources to process all the blockchain transactions [5]. It should also be noted that
there may be situations in which two nodes may broadcast different versions of the
next block of data simultaneously—which will cause some nodes to receive one or
the other versions first [6]. This does not mean anything negative has occurred, but
the nodes will continue to compute the work they have been given until the block
with the largest amount of work (“largest branch,” “longest chain”) is identified—to
which the other nodes will switch to the branch with the largest amount of work
completed [6].

Once the developer has navigated to the Microsoft Azure portal, there are
many options that Microsoft provides to its users to deploy a variety of different
technologies. One such option is “virtual machines.” After selecting the “virtual
machines” option, select the “add” option on the page to bring up the setup process
for the first virtual machine (these virtual machines will be used as the nodes for the
new blockchain). It is recommended when setting up any of the virtual machines to
set the virtual machine operating system as Linux, as well as having it run version
16.04 of Ubuntu. After successfully deploying the first virtual machine, a second
one with the exact same parameters should also be deployed.

Once both virtual machines are deployed, selecting any of the virtual machines
should display information regarding its network protocol, as shown in Fig. 8. Each
line should be present in the “inbound port rules” section of the network protocol
of the virtual machine, except for the first line. The first line (the lined called
“Port_9444”) must be manually added to both the “inbound port rules” and the
“outbound port rules” of both virtual machines.

To do so, select the “add inbound port rule” option on the page, and change the
“destination port ranges” value to the default port number associated with the new
blockchain.

Additionally, the developer should change the priority value to 100, as well as
the “Name” of the security rule to the default port number. Figure 9 provides an
example of what the sample inputs should look like for both virtual machines. It

Fig. 8 An example demonstrating the correct input/output port rules associated with both of the
deployed virtual machines. The first rule, titled “Port_9444,” should be missing after initially
deploying both of the virtual machines and must be added manually

An Educational Guide to Creating Your Own Cryptocurrency 171

Fig. 9 A sample input for the
additional inbound/outbound
port rule that must be added
to both virtual machines

is also important to note that the “outbound port rules” should be identical to the
inbound port rules.

In order for clients of the blockchain to receive updates and submit transactions,
they must know the proper nodes and ports to connect to the blockchain. This can
easily be done by adding a “.conf” file to the root directory of the project (create
a “.conf” file in the “litecoin” directory, which should be the directory that holds
all of the files for the developer’s current build). The .conf file should be titled
whatever the name of the developer’s cryptocurrency is. Change the values for the
“addnode” section, and supply them with the correct information provided by the
Microsoft Azure portal. Typically, the format for the “addnode” values is the name
of the node (in this case, the virtual machine’s name), the node’s location, the phrase
“.cloudapp.azure.com:”, and the default port number. Additionally, the values for
“rcpuser” and “rcppassword” must be changed if the developer wishes to mine their
cryptocurrency on a local build of their blockchain. A problem we encountered is
the fact that there is no “.conf” file given by the Litecoin source code, meaning
there’s no file to edit, like the other examples. Thus, in Appendix A, we share our
own “.conf” file.

http://cloudapp.azure.com

172 P. Medeiros and L. Deligiannidis

7 Building the Wallet

Now that the nodes and “.conf” file have been successfully created, the source
code can finally be recompiled and built with wallet functionality. Enabling wallet
functionality will compile the source code with a functional user interface that will
allow the users of the cryptocurrency to both mine and exchange currency between
one another. When using the digital wallet that will be compiled by Litecoin’s
source code, each user (wallet) will receive a set of “keys” that will allow users to
interact with each other’s wallets. The user’s “private key” is to sign and protect the
information of the user’s wallet [7, 8]. If a user has the private key to an address
(wallet), then that user can use that key to access the currency associated with
that address from any Internet-connected computer [2, 7]. Litecoin’s source code
includes the tools necessary for wallet functionality through the use of “QT,” an
application designed for developing user interfaces. Compiling the new source code
with the QT application provided by Litecoin produces a new executable file that
will run the new cryptocurrency wallet. If the various user-interface assets are not
updated to reflect the new cryptocurrency, they may still refer to Litecoin on the user
interface. However, all transactions that take place in the executable file will still
use the new cryptocurrency, so changing the names of the assets is not necessary
for deployment. If the new cryptocurrency is intended for public use however, it’s
recommended that the assets are updated to reflect the names and abbreviation of
the new currency.

To build the wallet, run the “autogen.sh” and the “configure” scripts. This creates
an executable file named “Litecoin.qt.” This file should be run to access the user
interface of your wallet as shown in Fig. 10. It is also possible that the executable
filename may also be named after your cryptocurrency name—and it is also possible
that it could be misplaced in one of the source code subfolders upon compilation. If
you cannot find the “.qt” file, the code should be recompiled.

If the Litecoin QT application successfully connects to the nodes, it is possible
to locally mine the new cryptocurrency on the developer’s computer. Generating
currency can also allow the developer to test transactions between users once enough
currency has been generated. To begin mining currency, a simple executable file
needs to be created with the code shown in Fig. 11. The developer should change
the instance of “Litecoin” in the code to reflect the name of the new currency.

While there are no necessary steps left to take for producing a privately
distributed build for testing purposes, there are several additional steps online that
the developer may wish to follow to make managing the blockchain easier, as well as
prevent potential security breaches. It is recommended that the developer research
these additional steps if they wish to make their cryptocurrency available to the
public.

An Educational Guide to Creating Your Own Cryptocurrency 173

Fig. 10 Litecoin’s built-in QT wallet application. While all of the assets present in the user
interface were not changed (such as the logo used for Litecoin and the header of the executable file
saying “Litecoin Core”), the assets referring to the type of currency being used were updated to
reflect the new currency, as referenced by the “CLC” abbreviation next to the balance. Normally,
the abbreviation would be “LTC” to refer to Litecoin, whereas in this executable file, it was changed
to “CLC” to reflect “CloudCoin,” an imaginary currency used for the sake of this study

#!/bin/bash
echo “Generating currency! (CTRL+Z to stop)”
while :
do
litecoin-cli generate 1

done

Fig. 11 The code used to mine the newly compiled cryptocurrency

8 Results and Discussion

Scalability and security are two of the most important aspects of cryptocurrencies.
With public interest of cryptocurrency rising, the possibility of encountering
scalability issues has unfortunately become inevitable. In short, this problem refers
to the capability of a single node on a blockchain network to handle a growing
amount of transactions per second and thus be enlarged to accommodate that growth
[9]. While there have been various attempts to combat this issue such as decreasing
the block size or increasing the number of nodes operating with the blockchain,
many of the potential solutions are expensive and potentially cost-ineffective.

174 P. Medeiros and L. Deligiannidis

Because of scalability issues, many cryptocurrencies are often limited to how
many transactions they can handle at one time. There are several other factors that
contribute to this limitation as well. One of the other factors that could be considered
is the speed at which the transactions are completed and placed on the chain.
Typically, this is determined by the amount of network activity taking place on the
blockchain, alongside the transaction fees associated with the exchanging of the
currency itself. When comparing against similar cryptocurrencies such as Bitcoin,
Litecoin completes transactions around 4 times faster than Bitcoin. On average,
Litecoin takes approximately 2.5 minutes to complete a single exchange, while
Bitcoin takes approximately 10 minutes to complete the same task. Additionally,
Litecoin can handle about 56 transactions per second as opposed to Bitcoin, which
can only handle around 7 [10]. Litecoin is usually seen as a faster alternative to
Bitcoin when it comes to exchanges on the blockchain, so this report decided to
use the Litecoin codebase to provide an alternative solution for rapid development
and experimenting that can support larger numbers of transactions at a time than
Bitcoin.

Aside from transaction speed, the ability to provide a strong, secure method for
users to interact with the blockchain can also be considered an extremely important
aspect of development. In other words, the security of the blockchain is a major
concern—and typically involves the confidentiality, integrity, and availability of the
technology itself [9]. To satisfy these security concerns, both Bitcoin and Litecoin
utilize what are called “proof-of-work” (PoW) algorithms to cryptographically seal
the transactions in a block of the blockchain. In short, these algorithms prevent
others from tampering with information in a block, providing a secure way of storing
transactions in a block. While it is easy to verify the validity of the block or the
entire blockchain, it is infeasible to modify a transaction without rerunning the PoW
algorithm for each block in the chain!

While there are several different types of PoW algorithms that are used with
various cryptocurrencies, the most immediate example would be Bitcoin, with its
use of the SHA-256 hash algorithm. Litecoin’s source code holds many similarities
with Bitcoin. However, one of its key differences includes Litecoin’s decision to use
a PoW hash algorithm, scrypt, instead of SHA-256. Both algorithms aim to compute
hashes of data present on the blockchain, as well as authenticate the transaction data
that is stored in each block.

Both SHA-256 and scrypt hash functions are computationally inexpensive to
run. However, there is no known way of generating a specific hash value based
on some input. Miners try different combinations of nonce and rerun these hashing
algorithms, and when a desired hash value is computed, they are awarded, and the
block can be added in the blockchain. What makes it even harder is that scrypt is also
memory intensive because the generated hashes are stored in memory, and then they
need to be accessed before submitting a solution. This makes scrypt appealing since
miners cannot use Application-Specific Integrated Circuits (ASICs) to mine hashes
fast. Scrypt provides users with less-devoted hardware to be able to mine currency
from the blockchain, as opposed to SHA-256 which requires users to join “mining
pools” to cooperate in mining currency. This does not mean SHA-256’s methods

An Educational Guide to Creating Your Own Cryptocurrency 175

are completely safe, however. As stated by Chang, blockchain mining pools are
also vulnerable to attacks in which the miner in a compromised pool withholds and
delays blocks while submitting shares, effectively taking all of the rewards from the
mining pool [11]. A precise definition of this occurrence would be what is called
a “block withholding attack.” According to Kamhoua, these attacks are defined
as the situations in which a miner decreases the expected revenue of a mining
pool by withholding authenticated blocks—but also increases their own reward by
submitting as many shares as possible to the pool [12]. The choice to use Litecoin for
this study allows for a better testing environment upon initial deployment—but like
working with any codebase, it will require improvements to security protocol and
maintenance of several blockchain components if there are any attempts in making
the cryptocurrency commercially viable.

Appendix A

An example “.conf” file created for clients of the blockchain to know how and where
to receive updates and submit transactions. The file provides details concerning the
proper nodes and ports to connect to the blockchain. The “.conf” file should be
added to the root directory of the project.

#cloudcoin.conf configuration file.
Network-related settings:
Run on the test network instead of the real cloudcoin network.
#testnet=0
Connect via a socks4 proxy
#proxy=127.0.0.1:9050
Use addnode= settings to connect to specific peers
addnode=NODE1.eastus.cloudapp.azure.com:9444
addnode=NODE2.eastus.cloudapp.azure.com:9444
Use connect= settings as you like to connect ONLY to

specific peers:
#connect=localhost:9444
Do not use Internet Relay Chat (irc.lfnet.org #cloudcoin

channel) to find other peers.
#noirc=0
Maximum number of inbound+outbound connections.
#maxconnections=
JSON-RPC options (for controlling a running cloudcoin/

cloudcoind process)
server=1 tells cloudcoin-QT to accept JSON-RPC commands.
server=1
You must set rpcuser and rpcpassword to secure the JSON-RPC

api
rpcuser=username123
rpcpassword=password123
How many seconds cloudcoin will wait for a complete RPC HTTP

request after the
HTTP connection is established.

176 P. Medeiros and L. Deligiannidis

rpctimeout=30
By default, only RPC connections from localhost are allowed.

Specify as many rpcallowip= settings
as you like to allow connections from other hosts (and you may

use * as a wildcard character):
#examples: rpcallowip=10.1.1.34 rpcallowip=192.168.*.*

rpcallowip=1.2.3.4/255.255.255.0
rpcallowip=127.0.0.1
Listen for RPC connections on this TCP port:
#rpcport=9432
You can use cloudcoin or cloudcoind to send commands to

cloudcoin/cloudcoind
running on another host using this option:
#rpcconnect=192.168.2.29
Use Secure Sockets Layer (also known as TLS or HTTPS)

to communicate with
cloudcoin -server or cloudcoind
#rpcssl=1
OpenSSL settings used when rpcssl=1
#rpcsslciphers=TLSv1+HIGH:!SSLv2:!aNULL:!eNULL:!AH:!3DES:

@STRENGTH
#rpcsslcertificatechainfile=server.cert
#rpcsslprivatekeyfile=server.pem
Miscellaneous options. Set gen=1 to attempt to generate

cloudcoins
gen=1
Use SSE instructions to try to generate cloudcoins faster.
4way=1
Pre-generate this many public/private key pairs,

so wallet backups will be valid for both prior
transactions and several dozen future transactions.
#keypool=100
Pay an optional transaction fee every time you send

cloudcoins. Transactions with fees are more likely
than free transactions to be included in

generated blocks, so may be validated sooner.
paytxfee=0.001
Allow direct connections for the ’pay via IP address’ feature.
#allowreceivebyip=1
User interface options
Start cloudcoin minimized
#min=1
Minimize to the system tray
#minimizetotray=1
#THIS IS THE END OF THE FILE.

References

1. Bitcoin Wiki: Difficulty https://en.bitcoin.it/wiki/Difficulty. Retrieved 2 Feb 2020
2. M. Swan, Blockchain – Blueprint for a New Economy (O’Reilly Media Inc., 2015) ISBN-13:

978-1491920497

https://en.bitcoin.it/wiki/Difficulty

An Educational Guide to Creating Your Own Cryptocurrency 177

3. D. Puthal, N. Malik, S.P. Mohanty, E. Kougianos, C. Yang, The Blockchain as a Decentralized
Security Framework. IEEE Consumer Electronics Magazine, 18–21 (2018)

4. I. Giechaskiel, C. Cremers, K.B. Rasmussen, When the Crypto in Cryptocurrencies Breaks:
Bitcoin Security under Broken Primitives. IEEE Computer and Reliability Societies (2018)

5. A.M. Antonopoulos, Mastering Bitcoin, 2nd Edition”. ISBN: 9781491954386 (O’Reilly Media
Inc., 2017)

6. S. Nakamoto, Bitcoin: “A PeertoPeer Electronic Cash System”. https://bitcoin.org/bitcoin.pdf.
Retreaved 3 Feb 2020

7. K.A. Taher, T. Nahar, S.A. Hossain, Enhanced Cryptocurrency Security by Time-Based Token
Multi-Factor Authentication Algorithm. International Conference on Robotics, Electrical and
Signal Processing Techniques (ICREST) (2019)

8. J. Song, Programming Bitcoin. Learn How to Program Bitcoin from Scratch (O-Reilly Media
Inc., 2019) ISBN-13: 978-1492031499, 2017

9. G. Sargsyan, N. Castellon, R. Binnendijk, P. Cozijnsen, Blockchain Security by Design
Framework for Trust and Adoption in IoT Environment. IEEE World Congress on Services
(SERVICES) (2019)

10. Which Cryptocurrencies Have The Fastest Transaction Speeds? International Business
Times [U.S. ed.], 2018. Gale Academic OneFile, https://link.gale.com/apps/doc/A523776350/
AONE?u=wit_main&sid=AONE&xid=ea2a13f9

11. S-Y. Chang, Y. Park, Silent Timestamping for Blockchain Mining Pool Security. 2019
Workshop on Computing, Networking and Communications (CNC)

12. D.K. Tosh, S. Shetty, X. Liang, C.A. Kamhoua, K.A. Kwiat, L. Njilla, Security Implications of
Blockchain Cloud with Analysis of Block Withholding Attack. 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (2017)

https://bitcoin.org/bitcoin.pdf
https://link.gale.com/apps/doc/A523776350/AONE?u=wit_main&sid=AONE&xid=ea2a13f9

	An Educational Guide to Creating Your Own Cryptocurrency
	1 Introduction
	2 A Working Codebase
	3 Preliminary Code Modifications
	4 Creating the Genesis Block
	5 Primary Code Modifications
	6 Deploying the Nodes
	7 Building the Wallet
	8 Results and Discussion
	Appendix A
	References

