
An Educational Tool for Exploring
the Pumping Lemma Property for
Regular Languages

Josue N. Rivera and Haiping Xu

1 Introduction

The regular languages and finite automata are some of the most studied topics
in formal language theories [1]. The notion of finite automata, introduced by
McCulloch and Pitts in 1943, revolutionized the idea of what a computational
model looks like, which has brought significant contributions in computer science
and engineering [2]. These include but not limited to the ideas of perceptrons
(predecessors to neural networks) and logic design used in the development of
modern embedded systems [3]. The significant impact that finite automaton and
regular languages had made in modern civilization is well documented.

Despite thorough studies and many existing educational materials for regular
languages and finite automata, the pumping lemma for regular languages has been
a very difficult topic for students to understand in a theoretical computer science
course. Due to a lack of tool support, students usually have insufficient practice to
clearly understand the concept of pumping length and how to prove a language
is not regular using the pumping lemma. In this paper, we introduce an active
learning tool called MInimum PUmping length (MIPU) educational software to
explore the pumping lemma property for regular languages. The goal of MIPU is
to serve as an active learning tool for students to understand the pumping lemma

This material is based upon a project for honored course CIS 560: Theoretical Computer Science,
University of Massachusetts Dartmouth.

J. N. Rivera · H. Xu (�)
Computer and Information Science Department, University of Massachusetts Dartmouth,
Dartmouth, MA, USA
e-mail: josue.n.rivera@umassd.edu; hxu@umassd.edu

© Springer Nature Switzerland AG 2021
H. R. Arabnia et al. (eds.), Advances in Software Engineering, Education, and
e-Learning, Transactions on Computational Science and Computational
Intelligence, https://doi.org/10.1007/978-3-030-70873-3_11

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70873-3_11&domain=pdf
mailto:josue.n.rivera@umassd.edu
mailto:hxu@umassd.edu
https://doi.org/10.1007/978-3-030-70873-3_11

144 J. N. Rivera and H. Xu

property, which is an essential concept revealing the relationship between regular
languages and finite automata through its formal proof. Active learning has been
defined as a high-level learning process where students are the primary actors in
the process [4]. Unlike the traditional learning model where students learn new
concepts through a medium such as a textbook, active learning requires students
to perform hands-on tasks and learn by doing. The aim of active learning is to have
students learn from experience instead of being informed about the ideas with little
practical engagement. Hence, in recent years, active learning models have become
a focus of discussion for teaching students in the classroom. They have been found
to be effective in enhancing students’ retention, boosting higher-order thinking and
reasoning skills, and improving student performance in STEM courses [5].

As an intriguing property of regular languages, the pumping lemma allows one
to prove a language is not regular by showing the language does not satisfy the
pumping lemma property. Such a proof requires one to clearly understand the
concept of pumping length, how a string can be split into substrings in accordance
with the property, and how it can be pumped. With MIPU, we attempt to provide
three major features that contribute to the overall understanding of the pumping
lemma and the concept of minimum pumping length. First, the software assists in
verifying if a string belongs to a regular language described by a regular expression.
By converting a regular expression into a finite automaton, we can determine if a
string is a member of a given regular language. Second, the software can generate
a list of short strings of a regular language. As a regular expression defines the
pattern of a regular language, by generating the short strings, students can gain a
better understanding of the language. Lastly, this tool can automatically calculate
the minimum pumping length of a regular language and demonstrate how a given
string belonging to the regular language can be split into three substrings that satisfy
the pumping lemma property.

2 Related Work

With the advance of powerful personal computers and the Internet, access to
educational tools become much closer within reach than in any other time in
history. Gradually, educational tools have become widely available online that help
to explain many advanced topics in a variety of fields. With the rise, there has
been an increasing number of active learning applications that focus on aiding
STEM education – a critical subject to teach in our modern lives. Computer science
education is particularly crucial due to the numerous influential advancements that
have emerged from the field. Thus, no wonder that many of these applications
introduced are directed toward enhancing the experience of learning complex topics
in the areas of study.

It has been proven that active learning can strengthen the experience of STEM
students in the classroom [5]. A research performed by Kim and her colleagues

An Educational Tool for Exploring the Pumping Lemma Property for Regular. . . 145

in 2012 elaborated on and described the effects that active learning modules may
have in enhancing students’ critical thinking [6]. Their study had two goals: to
examine the levels of critical thinking exhibited in individual reports over the
semester and to explore the effect of active learning on undergraduate students’
critical thinking. With the goals in mind, they focused on designing appropriate
strategies to foster innovation in an undergraduate general science course. Their
team used the strategies to support students in engaging in hands-on practice by
providing the learning environments that required the use of scientific knowledge
in solving real-life problems. The designs included support of cognitive process
such as scaffolding strategies and tools for building a knowledge pool. The modules
presented to the students to evaluate critical thinking dealt with the understanding
of evacuation plans for hurricanes and authentic problems associated with global
warming. The study showed that the active learning strategies had been helpful
to promote students’ critical thinking. In recent years, there has been a push to
bring effective active learning tools and strategies into the classroom to enhance
the learning process of students. This trend has greatly motivated our research in
developing effective tools to support active learning in computer science.

The use of educational tools in computer science classrooms has seen a signifi-
cant emergence. Computer science is now an integral part in the society that we live
in for the role that it plays in many crucial aspects of it. In a recent paper, Wang from
the University of Toledo tackled the integration of educational tools in computer
science courses [7]. He presented multiple modern software tools to assist with
various subjects in a database course. He first introduced different components in a
typical database course, such as Entity Relation (ER) diagram and MySQL. Then he
introduced existing support tools that make the various component more interactive
and easier to learn. The result of implementing these strategies in his online database
course was an increase in the visual appeal of the taught contents along with a
significant jump in the average grade of the class in various subjects. While his
research was intended to be applied to online courses, the principles learned can be
easily transferred to an in-person setting. Wang’s work is an example of the shift in
computer science education that is attempting to make learning more interactive and
enable topics to be learned from experience rather than through passive learning.

There are currently many existing tools for experimenting with topics related
to formal languages and automata, such as deterministic finite automata (DFA),
nondeterministic finite automata (NFA), conversion from NFA to DFA, pushdown
automata (PDA), and multi-tape Turing machines. Among the existing tools, the
Java Formal Languages and Automata Package (JFLAP) is by far one of the most
popular educational tools. JFLAP is a collection of graphical tools that can be used
as an aid in learning the basic concepts of formal languages and automata theory [8]
[9]. The goal of the tool is to “enhance the formal languages course, changing it from
a traditional mathematics course into a ‘hands-on’ computer science course” [10]. In
JFLAP, the graphical interface allows one to build automata, run them with different
input strings, and see a snapshot of the automaton at any stage of the computation
along with the different configurations that lead to a final state. Despite being a
powerful tool, JFLAP lacks in some major areas of formal languages and finite

146 J. N. Rivera and H. Xu

automata theory, e.g., the tool support for calculation of minimum pumping length
and facilitating students to understand pumping lemma property. To the best of our
knowledge, there are no existing educational tools that support those features. As
such, our work is complementary to other research efforts, e.g., JFLAP, that use
software tools to support hands-on computer science education.

3 Tool Support for Pumping Lemma

Pumping lemma is a theoretical idea that cannot be easily presented to students
through a traditional visual medium or an intuitive explanation. Instead, it requires
students to go through a sufficient number of cases to build a mental model of the
concepts. Therefore, the design of an effective active learning tool for understanding
pumping lemma is crucial for a successful education in theoretical computer
science.

3.1 Pumping Lemma for Regular Languages

Aiding students in understanding pumping lemma is the core goal of MIPU.
Pumping lemma is a property that all regular languages have, which can be
demonstrated using a finite automaton. For this reason, it is important to understand
finite automata to learn how pumping lemma works. A regular language is defined
as a set of strings that can be accepted by some finite automaton. A finite automaton
is commonly seen as a computational model with a limited number of states that
contain transitions between states labeled by symbols from a finite alphabet. Some
or none of the states in a finite automaton are accept states and one of the states
is a start state. To compute an input string, an automaton reads each symbol in the
string in order and transitions to states according to the transition function. Once
all symbols in the string have been processed, if a current state of the automaton
is an accept state, the string is accepted; otherwise, the string is rejected. Two
types of finite automata are DFA and NFA, which are equivalent. The strength of
finite automata emerges from its ability to represent real-world computation using a
simple model. The act of switching on and off a light is one such example, but finite
automata can be used to model more complicated situations, e.g., representing the
states of characters in a game or performing pattern recognition on strings.

An intuitive way of distinguishing regular languages from non-regular languages
is to determine if the modeling machine needs to have an unbounded memory to
account for the unlimited number of possibilities. However, this intuitive approach
does not always work. For example, in the following two languages C and D, both
are seemingly non-regular, but surprisingly, one of them (language D) is in fact
regular [11].

An Educational Tool for Exploring the Pumping Lemma Property for Regular. . . 147

C = {w | w has an equal number of 0s and 1s}.
D = {w | w has an equal number of occurrences of 01 and 10 as substrings}.

We can formally prove language D is regular by designing a regular expression
that describes the language. However, one may try to design a regular expression
to describe language C, but still fail to find one. Can we conclude C is not regular
because no one is able to design a regular expression to describe C? The answer is
no, and thus, it is important to establish a formal approach to assisting in determining
the non-regularity of a language.

The pumping lemma for regular languages is a technique for proving non-
regularity. The pumping lemma states that all regular languages have a special
property, i.e., the pumping lemma property. Therefore, if a language does not
demonstrate the pumping lemma property, the language must be non-regular. The
pumping lemma ensures that any string in a regular language with at least a certain
length, i.e., the pumping length p, can be “pumped” and still belong to the language.
Pumping a string, in the context of the property, refers to repeating or eliminating a
section of a string and still maintaining its membership with the language.

The pumping lemma can be described as follows [11]: if A is a regular language,
then there is a positive number p (the pumping length) where if s is any string in
A with a length of at least p, then s can be divided into three substrings, s = xyz,
satisfying the following three conditions:

1. For each i ≥ 0, xyiz belongs to A.
2. |y| > 0.
3. |xy| ≤ p.

As demonstrated earlier, intuitively understanding the regularity and non-
regularity of a language might not be sufficient. Pumping lemma has played an
important role in helping to understand regularity and proving a language is not
regular by contradiction. However, a correct proof for non-regularity of a language
requires accurate understanding of the pumping lemma for regular languages. The
goal of MIPU is to aid in understanding the pumping lemma property, and based
on the conditions required to satisfy the pumping lemma property, the tool provides
three major functionalities: membership testing, generation of strings that belong
to a regular language, and calculation of the minimum pumping length needed to
demonstrate the existence of the property in a language if it is regular.

3.2 A Framework of the Active Learning Tool

To make MIPU easily customizable and flexible to optimize, it was built with an
object-oriented design (OOD) in mind. This would enable specific components of
the tool to be adjusted without affecting the overall functionality. The framework of
MIPU consists of four major components that represent the major concepts in formal
languages and automata. Figure 1 showcases their corresponding classes and their
interactions with each other.

148 J. N. Rivera and H. Xu

Fig. 1 A framework of
MIPU with four major
components

As shown in Fig. 1, the four components of MIPU are a regular expression
to NFA converter, an NFA simulator, a language’s strings generator (LSG), and
a minimum pumping length determiner. For membership testing, the regular
expression to NFA converter is used to transform a given regular expression into
an NFA instance that can be easily operated on. This NFA instance is bundled with
a “compute” function that is used to determine if a given string is a member of
the language. To generate short strings, the language’s strings generator is used to
generate a list of such strings that belong to the language described by the regular
expression. Lastly, the determination of the minimum pumping length of a regular
language uses all the components in MIPU as needed by the pumping lemma for
regular language. These functionalities are further discussed in Sect. 4.

Regular Expression to NFA Converter

The regular expression to NFA converter takes a regular expression in the form of
a string and decodes it into a tuple of five elements that comprise an NFA. These
elements include a finite set of states (Q), a finite set of the alphabet that forms
the language (

∑
), the transition function between states (δ), a start state (q0), and,

finally, a set of accept states (F). Algorithm 1 shows how to generate these elements
of 5-tuple. The algorithm first checks if the regular expression represents a base
case, which can be an empty set, an empty string, or a regular expression containing
only one symbol. Then the regular expression is parsed into a list of segments that
can be iterated through to form an NFA.

Algorithm 1 Convert a regular expression into an NFA

Input: regular expression regExp
Output: T as 5-tuple (states, alpha, transfun, startq, acceptq)
1: initialize states and alpha to empty sets
2: initialize transfun to an empty map with state and symbol as key and traversable
states as value
3: currq = 0
4: createNFA(regExp)
5: if regExp is an empty set

An Educational Tool for Exploring the Pumping Lemma Property for Regular. . . 149

6: return T with qcurrq as start state and no accept state
7: else if regExp is the empty string
8: return T with qcurrq as the start and accept state
9: else if regExp is of length 1
10: add transition between q(currq++) and q(currq++) with regExp as the
transition symbol
11: add q(currq – 1) and q(currq – 2) to the states set
12: add regExp to the alphabet set
13: return T with q(currq – 2) and q(currq – 1) as the start and accept state,
respectively
14: seg = parseSegments(regExp)
15: for each segment s in seg, where s is not an operation
16: T_seg = createNFA(s)
17: start_seg[s] = start state of T_seg
18: accept_seg[s] = accept state of T_seg
19: for each segment s in seg, where s is star
20: update currq and add new states to states set
21: add transitions starting with start state of the previous
segment and ending with q(currq + 2)
22: for each segment s in seg, where s is concatenation
23: update currq and start & accept states
24: add epsilon transition between the previous segment
and the next segment
25: for each segment s in seg, where s is union
26: update currq and add new states to states set
27: add transitions to connect the previous segment and
the next segment
28: return T with start and accept state of seg

For the symbol that represents the empty set, an NFA is returned with the current
state (currq) as the start state, and there is no accept state. For the empty string, an
NFA is returned with currq as both the start and accept state. Lastly, for a regular
expression that contains only one symbol other than a regular operation, two states
are created (currq++ and currq++), which are connected by a transition labeled
by the symbol. When the regular expression does not represent a base case, it is
parsed into a list of segments. The procedure utilized to parse the expression into
segments will later be discussed in Algorithm 2. The segments are iterated through
in four different for-loops. The first for-loop traverses all the elements that are not
an operation and perform recursive calls on Algorithm 1 for the individual segments
until the base cases are reached. The following three for-loops are ordered according
to the precedence of the regular operations, namely, star, union, and concatenation.
For each regular operation, the algorithm follows the standard regular expression to
NFA conversion techniques [11]. New states and transitions are added as needed to
the segment(s) that the operation is applied to; meanwhile, currq is also updated.
The start and accept state of the segments involved synchs to reflect in the newly

150 J. N. Rivera and H. Xu

Fig. 2 Conversion of regular expression to an NFA

created NFA. It must be highlighted that for union and star operations, the NFA is
adjusted to contain a single accept state. Figure 2 showcases these changes. After
all the segments are constructed, the 5-tuple representing an NFA is returned.

To make the conversion procedure from a regular expression into an NFA more
flexible and efficient, Algorithm 2 is used to section a regular expression into
segments while building the entire NFA.

Algorithm 2 Parse a regular expression into a segment list

Input: regular expression regExp
Output: expression segment list seg
1: parseSegments(regExp)
2: initialize count to 0 and temp to an empty string
3: initialize seg to an empty list of strings
4: for i = 1 toregExp.length
5: if regExp.charAt(i) == ‘(’
6: count++
7: if count == 1 continue
8: else if regExp.charAt(i) == ‘)’
9: count–
10: if count == 0
11: add temp to seg and reset temp to an empty string
12: if i < regExp.length-1
13: add concatenation operation “.” to seg if needed
14: continue
15: temp += regExp.charAt(i)
16: if count == 0 // temp is an operation or one symbol
17: add temp to seg and reset temp to an empty string
18: if i < regExp.length-1
19: add concatenation operation “.” to seg if needed
20: return seg

Algorithm 2’s role is to decipher a regular expression into a list of segments that
Algorithm 1 can easily convert into an NFA. The algorithm traverses each symbol

An Educational Tool for Exploring the Pumping Lemma Property for Regular. . . 151

of the regular expression while, at the same time, it keeps track of the appearance
of parenthesis (count), the segments of the expression (seg), and a temporary
buffer for the current segment (temp). For each character iterated, the character is
first processed to discern parentheses. This step is performed to determine if the
upcoming elements of the expression are isolated from the rest of the elements.
This is essential for operations like union that requires all the elements to the right
and left of the operation to be passed as inputs. If the current character is an opening
parenthesis, count is increased by one, and the procedure immediately moves on to
the next symbol. On the other hand, if the character is a closing parenthesis, count
is decreased by one, and the collected elements in temp is added into seg when
count becomes zero. In addition to the elements added thus far, a concatenation
operation is added as well if the next character is not a star or union operation. These
components ensure that isolation is secured. If the character is not a parenthesis, it
is added into temp. When count equals zero, temp must contain an operation or a
single symbol, which is added into seg. In this case, a concatenation operation is
added if needed. To better illustrate the functionality of Algorithm 2, a sample input
and its corresponding output are provided as follows:

Input = “a(caUac)c*cac”.
Output = [“a”, “.”, “caUac”, “.”, “c”, “*”, “.”, “c”, “.”, “a”, “.”, “c”].

One aspect of Algorithms 1 and 2 that must be highlighted is that they require
the omission of special characters as element in the NFA alphabet. The character
used to represent union, concatenation, star, empty language, and epsilon cannot be
elements in the alphabet. Due to this notion, the algorithms have default characters
that they treat as these special symbols. Union is represented by uppercase letter
“U”; concatenation is portrayed by the period “.”; and the star operation is
symbolized by the star character “*”. The empty language is equivalent to the
backslash (\), and lastly, the empty string epsilon is depicted by lowercase letter
“e”. Future improvement to MIPU will allow customized settings to overwrite the
default characters used.

Nondeterministic Finite Automaton (NFA)

The NFA class in the framework takes the 5-tuple generated by the regular
expression to the NFA converter and offers methods for managing the NFA. One
such method is to test membership of an input string. To compute the input string,
the states of the NFA are traversed based on the symbols in the input string, and
membership is determined if one of the possible paths leads to an accept state. This
NFA model is passed to the language’s strings generator and the minimum pumping
length determiner for each to serve their respective roles.

The membership testing of an input string results from three individual algo-
rithms that contribute to each other to decide if the current state ends is an accept
state after a string is computed. Algorithm 3 shows this process that iterates through
the character in an input string and transits to other states based on the character

152 J. N. Rivera and H. Xu

read. At the end of the iteration, this algorithm returns true or false depending on
whether or not the current is found to be an accept state.

Algorithm 4 performs the transition method used in Algorithm 3. The algorithm
searches for all possible states that the current list of states can traverse to. It will
then remove those states and update the list to reflect the most recent version of the
states that the current list of states has moved to. As the NFA may have multiples
states that it can traverse to from the current state and an input symbol, the transit
algorithm (Algorithm 4) is separated from Algorithm 3 for simplicity.

An intriguing property of the NFA is the use of a special transition called epsilon
transition. An epsilon transition allows for the finite automaton to traverse without
the need of an input symbol. The traversal of this type of transition is encapsulated
in Algorithm 5. The algorithm iterates a changing list that updates within the method
itself. The logic behind this approach is that if an epsilon transition is found, it is
possible that the destination state may also contain another epsilon transition leading
to another state. However, this method has a hidden issue: if a cycle of epsilon
transitions exists, this would lead to an infinite loop. The solution to this is to check
if a new traversed state already exists in the list before it is added into the current
list.

Algorithm 3 Compute a string

Input: inputStr, transitions
Output: membershipStatus
1: initialize current to an empty list
2: add start state to current
3: updateEpsilonTransitions(current, transitions) // Algorithm 5
4: for each symbol c in inputStr
5: transitState(c, current, transitions) // Algorithm 4
6: updateEpsilonTransitions(current, transitions) // Algorithm 5
8: if current state is an accept state
9: return true
10: else
11: return false

Algorithm 4 Transit between NFA states

Input: symbol, current, transitions
Output: current
1: transitState(symbol, current)
2: if symbol is epsilon
3: return current
4: size = the size of the current list
5: for i = 1 to size
6: if there is a transition for current state i and symbol
8: for each traversable state s from current state i

An Educational Tool for Exploring the Pumping Lemma Property for Regular. . . 153

9: if state s is not a member of current
10: add state s to current
11: remove state i from current
12: return current

Algorithm 5 Update epsilon transitions

Input: current, transitions
Output: current
1: updateEpsilonTransitions(current, transitions)
2: for each state i in current // current changes in the loop
3: if there is an epsilon transition from current state i
4: for each traversable state s from current state i
5: if state s is not a member of current
6: add state s to current
7: return current

The algorithms presented form the bases for the membership testing functionality
of MIPU. After traversing the NFA graph and tracking all possible paths, one can
determine the membership of a string by observing if one of the paths leads to an
accept state. The ability to detect the membership of a string is essential for the next
two components of the MIPU framework, namely, the language’s strings generator
and minimum pumping length determiner.

Language’s Strings Generator (LSG)

The language’s strings generator uses a given NFA instance to generate an
adjustable number of permutations from the alphabet. These permutations must be
strings that can be accepted by the finite automaton. Every so often, the generator
generates a new batch of strings and stores them in a buffer for future usage. To
improve the performance of the permutation process for strings, branches of a
permutation tree are tracked. If a path will not likely lead to a final state along
the way, that branch is removed. The fate of a future branch can be determined by
observing the current states that the NFA is tracking for the current segment of the
string that has been generated thus far.

Minimum Pumping Length Determiner

Finally, as one of the primary functionalities of MIPU, the minimum pumping
length determiner can calculate the minimum pumping length of a regular language
according to the definition of pumping lemma. The tool also retrieves one of the
shortest strings in the language that meet the conditions and partitions it into three

154 J. N. Rivera and H. Xu

segments x, y, and z described in pumping lemma. The method takes an NFA
instance and the strings generated by the LSG as inputs and tests the conditions
to derive how the pumping lemma property is satisfied. Since the strings are ordered
by their string lengths, we will be able to check strings starting from the shortest
one and determine the minimum pumping length that meets the pumping lemma
requirements.

4 Pumping Lemma for Regular Language

The pumping lemma presents a set of conditions that must be satisfied in order
to demonstrate the pumping lemma property. These conditions include testing the
membership of a “pumped” string, where the original string belongs to a regular
language and is of a size greater than or equal to the minimum pumping length. To
help with the correct understanding of the pumping lemma concept, MIPU offers
three main tools that are essential to determine the existence of the property in
regular language, which are membership testing, string generation, and automated
minimum pumping length determination, as illustrated in Fig. 3. Membership
testing function determines if an input string is a member of a given regular
language, which can be used to verify if a string still maintains its membership
with the language after being pumped. String generation is the retrieval of an
ordered list of strings that belong to the language. This functionality is critical
for validating that a significant number of strings in the language adhere to the
conditions set by the pumping lemma. Lastly, as the name suggests, the minimum

Fig. 3 Main menu of MIPU

An Educational Tool for Exploring the Pumping Lemma Property for Regular. . . 155

pumping length determiner automatically calculates the minimum pumping length
of a regular language described by a regular expression. It also, along with the
minimum pumping length, provides the short strings that meet the conditions of
the pumping lemma and the ways how the strings can be partitioned into three
appropriate substrings x, y and z. These are core concepts that encompass the tools
needed to determine the non-regularity of certain language using pumping lemma.

4.1 Membership Testing for Regular Languages

The membership testing module is composed of the regular expression to NFA
converter and the NFA class described in Sects. 3.2.1 and 3.2.2, respectively. The
core of the functionality is found in the “compute” method of the NFA class. The
method traverses a graph created during the conversion of the regular expression to
an NFA and observes if there is a path leading to an accept state.

As shown in Fig. 4, MIPU allows one to enter a regular expression and an input
string. Then it takes the regular expression and generates an NFA for it. While
computing membership, the input string is passed as a parameter to the NFA’s
“compute” function, which returns either “True” or “False,” indicating whether the
sting belongs to the language or not.

Figure 5 presents another example for membership testing, where the regular
expression is (1

⋃
0)*101(1

⋃
0)* and the input string is 1011. As the result shows,

the input string is determined to be a member of the language. The substring 101 of
the given string reflects the segment 101 of the regular expression, while the symbol

Fig. 4 Membership testing window after a string is tested

156 J. N. Rivera and H. Xu

Fig. 5 Another example for membership testing

“1” at the end of the input string is the one generated by the rightmost segment
(1

⋃
0)*. Due to the tool’s ability to track multiple paths of the NFA as it computes a

string, the only path that leads to an accept state for 1011 can be identified to accept
the string.

4.2 String Generation

String generation for a given a regular expression is the second tool offered by
MIPU. It is responsible for producing strings that are members of the regular
language. The resulting strings are ordered by the length of the strings from the
shortest to the longest. The generator can dynamically generate more strings as
requested. This functionality uses the following components: regular expression
to NFA converter, the NFA class, and the LSG. The LSG module uses the NFA
produced from the regular expression and generates the strings from permutations
of its alphabet that are members of the language. Various optimizations are used to
eliminate branches of a permutation that will not lead to a valid string.

The string generation tool allows a user to enter a regular expression in the
provided text field. After the regular expression is converted into an NFA, an
LSG instance is created to generate strings that are recognized by the NFA. The
LSG module dynamically calls a “generate” function that produces new strings as
requested. Figure 6 shows some resulting strings after the “Get Strings” button is
pressed. The generated strings belonging to the language are listed in a lexicographic

An Educational Tool for Exploring the Pumping Lemma Property for Regular. . . 157

Fig. 6 An example of generating short strings

Fig. 7 Another example for string generation

order, which is the same as the dictionary ordering except that shorter strings
precede longer ones.

Figure 7 shows another example for string generation. Note that the shortest
string “00” is generated first by ignoring the segments containing a star operation.
Then the following strings are generated by considering the segments containing a
star operation, e.g., the last “1*” segment.

158 J. N. Rivera and H. Xu

4.3 Determination of Minimum Pumping Length

The last function implemented in MIPU is to automatically calculate the minimum
pumping length of a regular language. All modules of the MIPU framework,
including conversion of a regular expression into an NFA and testing the various
pumping lemma conditions, are used to achieve this function. As shown in Fig. 8,
the minimum pumping length determination tool requires only a regular expression
as its input. Once a regular expression is put in, an instance of the minimum pumping
lemma determiner is created, which tests a significant number of strings belonging
to the language and then decides the minimum pumping length. The figure shows
that when the regular expression “10*1” is typed in and the “Get Min Pump” button
is pressed, the tool displays the minimum pumping length of the regular language
along with a string example “101” that helps explain a way of portioning of the
string that satisfies the pumping lemma conditions.

Figure 9 shows the minimum pumping length of the regular language 1*01*01.
In this scenario, the minimum pumping length is 3, and one of the minimum strings
that meet the conditions of the pumping lemma property is 001. A possible partition
of the string is also displayed. It should be noted that although 001 is selected,
other minimum strings also exist, e.g., 100 and 010. One aspect of the results
produced that should also be highlighted is the minimum string 001 given in Fig.
9 in comparison to the shortest string 00 shown in Fig. 7. In both scenarios, the
regular expressions are the same, but the shortest string generated in Fig. 7 cannot
be pumped; thus, it is not listed as a minimum string.

Fig. 8 Minimum pumping length determination

An Educational Tool for Exploring the Pumping Lemma Property for Regular. . . 159

Fig. 9 Another example of minimum pumping length

One last example of minimum pumping length, illustrated in Fig. 10, is the
regular expression aabUa*b*. The result is interesting because normally with a
union operation where the left segment of the union operation represents a finite
language and the right segment represents an infinite language, the minimum
pumping length would be larger than the length of the finite segment since the
string represented by the finite segment usually cannot be pumped. However, in this
particular example, because the left segment can be generated by the right segment,
the minimum pumping length of the regular expression equals to the minimum
pumping length of the right segment, which is 1.

For more examples, the MIPU as well as the source code can be downloaded
from the GitHub repository at https://github.com/JosueCom/MIPU.

5 Conclusions and Future Work

Finite automata and regular languages have brought humanity to a new age of
innovation. They have led to advancements in artificial intelligence, the design
of modern computers, and the representation of complex systems by a machine
with limited memory. Through the MIPU project as well as the forthcoming
improvements to enhance active learning, students will become more familiar with
the formal concept of pumping lemma and overcome the complex challenge of
understanding the concepts of regularity and non-regularity of languages. MIPU
creates an environment that enables students to be actors for developing higher-

https://github.com/JosueCom/MIPU

160 J. N. Rivera and H. Xu

Fig. 10 One more example of minimum pumping length

order thinking and has the potential to be an effective tool in aiding students to
better understand complex concepts.

For future work, we will improve MIPU to support visualization of the process
of creating an NFA from a regular expression. We will also provide a pumping
operation function that can retrieve a string that has been pumped for a given
number of times. Additionally, the tool will allow a user to configure settings
including redefining the restricted characters used to represent special symbols in a
regular expression. The performance of generating strings may also be improved by
designing a new generator that traverses the NFA graph when forming new strings
instead of creating a permutation tree. Finally, we will redesign the GUI for string
generation to allow dynamic generation of new strings when requested by users.

References

1. S. Yu, Regular languages, in Handbook of Formal Languages, Word, Language, Grammar, ed.
by G. Rozenberg, A. Salomaa, vol. 1, (Springer, 1997), p. 41

2. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 5, 115–133 (1943)

3. G. Piccinini, The first computational theory of mind and brain: A close look at Mcculloch
and Pitts’s ‘logical calculus of ideas immanent in nervous activity’. Synthese 141(2), 175–215
(2004)

4. M. Mani, N. Alkabour, D. Alao, Evaluating Effectiveness of Active Learning in Computer
Science Using Metacognition, in Proceedings of the 2014 IEEE Frontiers in Education Annual
Conference (FIE’14), (Madrid, 2014), pp. 1–8

5. W.B. Wood, Clickers: A teaching gimmick that works. Dev. Cell 7(6), 796–798 (2004)

An Educational Tool for Exploring the Pumping Lemma Property for Regular. . . 161

6. K. Kim, P. Sharma, S. Land, M. Furlong, Effects of active learning on enhancing student critical
thinking in an undergraduate general science course. Innov. High. Educ. 38(3), 223–235 (2013)

7. H. Wang, Integrating modern software tools into online database course, in Proceedings of
the International Conference on Frontiers in Education: Computer Science and Computer
Engineering (FECS’17), (Las Vegas, Nevada, 2017), pp. 100–103

8. S.H. Rodger, T.W. Finley, JFLAP – An Interactive Formal Languages and Automata Package
(Jones and Bartlett Publishers, 2006)

9. M. LoSacco, S.H. Rodger, FLAP: A tool for drawing and simulating automata, in ED-MEDIA
93, World Conference on Educational Multimedia and Hypermedia, (1993), pp. 310–317

10. M. Procopiuc, O. Procopiuc, S. Rodger, Visualization and interaction in the computer science
formal languages course with JFLAP, In Proceedings of the 1996 Frontiers in Education
Annual Conference (FIE’96), Salt Lake City, Utah, 6–9 Nov. 1996, pp. 121–125

11. M. Sipser, Introduction to the Theory of Computation (3rd Edition, Cengage Learning, 2013)

	An Educational Tool for Exploring the Pumping Lemma Property for Regular Languages
	1 Introduction
	2 Related Work
	3 Tool Support for Pumping Lemma
	3.1 Pumping Lemma for Regular Languages
	3.2 A Framework of the Active Learning Tool
	Regular Expression to NFA Converter
	Nondeterministic Finite Automaton (NFA)
	Language's Strings Generator (LSG)
	Minimum Pumping Length Determiner

	4 Pumping Lemma for Regular Language
	4.1 Membership Testing for Regular Languages
	4.2 String Generation
	4.3 Determination of Minimum Pumping Length

	5 Conclusions and Future Work
	References

