
Chapter 15
Artificial Spin Ice: Beyond Pyrochlores
and Magnetism

Gia-Wei Chern

Abstract Artificial spin ices [1–4] have raised considerable interest for its techno-
logical potentials, and as a tailorable medium to investigate collective phenomena in
a materials-by-design approach. These metamaterials are made of frustrated arrays
of interacting single-domain ferromagnetic nano-islands of about 100nm size [5].
Figure15.1 shows the two most representative artificial spin ices, the square [6] and
honeycomb [7, 8] arrays; both have been realized experimentally. In this chapter, we
review the thermodynamic behaviors and nonequilibrium dynamics of these mag-
netic nano-arrays from the theoretical point of view. A special focus is the novel
emergent phases and phenomena that originate from the magnetic charge degrees of
freedom in these metamaterials. Finally, we also discuss recent theoretical propos-
als of extending ice physics to other artificial systems such as colloidal particles in
optical trap arrays and cold atoms in optical lattices.

15.1 Artificial Spin Ice: Basic Energetics and Dynamics

Spin ice materials are essentially frustrated Ising magnets. While the Ising nature of
pyrochlore spin-ice compounds such as Dy2Ti2O7 and Ho2Ti2O7 is due to a strong
easy-axis spin anisotropy, the effective Ising variables in artificial spin ice result
from the largemagnetostatic shape anisotropy of the nano-islands. Themagnetostatic
energy is minimized when the moments align with the long axis of the islands, giving
rise to two equilibrium state specified by a Ising variable σ = ±1. The two Ising
states of a nano-island are separated by a large energy barrier. Consequently, each
Ising configuration {σi } represents a metastable local energy minimum of the array.
Transitions between different Ising configurations, on the other hand, are governed
by complex magnetization dynamics of individual islands; this process involves the
creation and subsequent annihilation of domain walls and other topological defects.
A complete description of the magnetic nano-array is given by the magnetization
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Fig. 15.1 Artificial spin ices as magnetic metamaterials. a square and b honeycomb arrays of
single-domain ferromagnetic islands. The centers of the nano-islands form a checkerboard and a
kagome lattices for arrays shown in (a) and (b), respectively. The arrows indicate themagnetizations
of individual islands. The configuration in a is a generic spin ice state in square array, in which
every four-leg vertex has two spins pointing in and two pointing out. A generic kagome ice-I state
is shown in b, where every vertex is either in a 2-in-1-out or a 1-in-2-out configurations

fieldmi (r, t) of each island or element. In some experimental realizations, the ends
of the islands are joined together, giving rise to a connected nano-wire network.

Let the magnetization of the i-th nano-island be mi (r), the Hamiltonian of the
magnetic array is

H = Aex

∑

i

∫

Ωi

|∇ mi |2 dr − μ0

2

∑

i, j

∫

Ωi

mi · h j dr, (15.1)

where Ωi is the domain of the i th island, and the demagnetizing field hi (r) is related
to the magnetization through Maxwell’s equations,

∇ × hi = 0, ∇ · (hi + mi ) = 0. (15.2)

The hi can be viewed as field generated by magnetic charge density ρi (r) =
−∇ · mi . The total magnetic field is given by H = ∑

i hi , and the total magneti-
zation M = ∑

i mi . The first term in (15.1) comes from the microscopic exchange
interaction, while the second term is the magnetostatic energy (μ0/2)

∫ |H|2dr =
−(μ0/2)

∫
M · H dr in the absence of external current [9]. Here we have neglected

magnetocrystalline anisotropy energy, which is a reasonable approximation for most
materials used in the nano-arrays.

The dominant energy in (15.1) is the self-coupling term (i = j) of the magne-
tostatic energy. This term favors magnetization pointing along the long axis of the
island:

mi (r) ≈ m0 σi êi , (15.3)
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wherem0 is the equilibriummagnetization, êi is a unit vector pointing along the long
axis of the island, and σi = ±1 is an Ising variable indicating the two possible orien-
tations. The uniform magnetization described in (15.3) also minimizes the exchange
interaction, the first term in (15.1). The magnetic state of the nano-array is then spec-
ified by a collection of Ising variables {σi }. The effective interactions between these
Ising variables is given by the magnetostatic couplings between neighboring islands,
the i �= j terms in (15.1).

Assuming uniform magnetization for each island, the demagnetizing field hi can
be approximated by a dipolar field, and the interaction energy of the magnetic array
becomes:

Hdipole = μ0m2
0 A

2

8π

∑

i �= j

∫ ∫
d�i d� j

(êi · ê j ) − 3(êi · r̂i j )(ê j · r̂i j )
|ri − r j |3 σi σ j , (15.4)

where A is the cross section of the island, �i measures the distance along the island,
ri = r(�i ) is the position of the line element d�i , and r̂i j = (ri − r j )/|ri − r j |. This
Ising model is used to investigate large-scale thermodynamic behaviors of artificial
spin ices, to be discussed below.

Magnetic charges as emergent degrees of freedom play an important role in
describing the static as well as dynamic properties of spin ice materials [10, 11].
For artificial spin-ice arrays, the magnetostatic energy can also be expressed as the
Coulomb interaction of magnetic charges with bulk density ρ = −∇ · M and sur-
face density ρs = M · n̂. The magnetostatic energy is minimized when there are
no magnetic charges and H = 0. This minimum charge condition leads to the ice
rules in artificial spin ice. For a nano-island with uniform magnetization, the surface
charges at the two ends of the island are the main source of magnetic charge. A uni-
formlymagnetized island can be approximated by a dumbbell with a pair ofmagnetic
monopoles with charge ±q located at its two ends [11]. Here q = ∫

ρs dS = m0A.
One can then assign a magnetic charge to each vertex as the sum of the monopole
charges joining at the vertex, i.e. Qα = ∑

i∈α qi for vertex α. For connected nano-
wire network [8], the vertex as junction of the nano-wires has an internal magne-
tization structure. Unlike isolated islands, most of the charge at these connected
junctions come from the bulk charge ρ = −∇ · M. Its total charge is the volume
integral Q = ∫

ρ dV = − ∮
M · n̂d A, which can be converted into surface integrals

over the island cross sections; its value again is quantized to multiples of q = m0A.
Examples of dumbbell representations for spin ice are shown in Fig. 15.11.

For a four-legged vertex in a square array, the total charge can be Q = 0, ±2q,
or ±4q; see Fig. 15.2a. The minimum charge Q = 0 condition leads to the two-in-
two-out ice rules. The vertices in a honeycomb lattice, Fig. 15.1b, have three legs and
always have a finite magnetic charge Q = ±q or ±3q. The condition of minimum
charge gives rise to a different set of two-in-one-out/one-in-two-out pseudo-ice rules.

The magnetic charge can also be expressed in terms of Ising variables. As both
square and honeycomb lattices are bipartite, we define the vector êi on each link as
pointing from sublattice B to A. The magnetic charge of vertex α is then given by
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Fig. 15.2 Types of vertices in artificial spin ices. a four-legged vertices have 16 possible moment
configurations, which are classified into four symmetry distinct types. The total magnetic charge
Q = 0 for type-I and II vertices (2-in-2-out), Q = ±2q for type-III (3-in-1-out or 1-in-3-out), and
Q = ±4q for type-IV (4-in or 4-out) b the 8 possible three-legged vertices separate into two types
of different symmetries. There is always a nonzero charge in a three-legged vertex: Q = ±q for
type-I’ (2-in-1-out or 1-in-2-out), and Q = ±3q for type-II’ (3-in or 3-out). c The four different
types of boxes with a height offset h between pairs of parallel moments

Qα = ±q
∑

i∈α σi , where + (−) sign is used for sublattices A (B). In the dumbbell
approximation, the magnetostatic energy becomes

Hdumbbell =
∑

α

Q2
α

2C
+ μ0

8π

∑

α �=β

QαQβ

|rα − rβ | , (15.5)

where C ∼ d/μ0 is an effective capacitance for the self-energy of individual vertex,
and d is the length scale of a vertex junction. The above Hamiltonian neglects higher-
order multipole interactions that are weak and fall off quickly with the distance;
these terms are responsible for the long-range ordering of magnetic moments at low
temperatures. Note that the dominant Q2

α term is equivalent to an antiferromagnetic
nearest-neighbor (NN) Ising ice model

Hice = J
∑

〈i j〉
σiσ j , (15.6)

on the checkerboard and kagome lattices for the two array geometries; here J = 1/C
is the effective exchange interaction. Minimization ofHice gives rise to the ice rules,
whereas the Coulomb interaction, second term in Hdumbbell, is the source of novel
emergent phenomena associated with magnetic charges to be discussed below.

In terms of the mesoscopic Ising degrees of freedom, the dynamics of artificial
spin ice is governed by flipping of the Ising variables σi → −σi . Microscopically,
magnetization reversal in a nano-island is a complex process involving the nucle-
ation of domain walls, and their subsequent propagation and annihilation [12, 13];
see Fig. 15.3 for the case of a connected honeycomb array. The process is usually
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Fig. 15.3 Magnetization reversal in artificial spin ice. a a domain wall carrying a magnetic charge
−2q is emitted at one end of the link, propagates along the field direction, and gets absorbed by
the vertex at the other end. b When the domain wall hits a vertex with like magnetic charge, it
creates a high-energy −3q vertex which quickly emits a new domain wall into an adjacent link. c
Micromagnetic simulation using the OOMMF [24] simulator of the reversal of a magnetic island
showing a propagating vortex-type head-to-head domain wall, reproduced from [23] by permission
of IOP Publishing. CC BY-NC-SA. © Deutsche Physikalische Gesellschaft

triggered when the total magnetic field at the nano-island, including external and
dipolar fields, exceeds a threshold. For connected nano-islands, the magnetization
reversal begins when a head-to-head domain wall is emitted at one of the nano-wire
vertices. This process conserves the magnetic charge: the emission of a domain wall
of charge ±2q converts the charge of the vertex from ±q to ∓q. The Zeeman force
fZ = ±2qμ0H then pushes the domain wall to the opposite end of the island; see
Figs. 15.3a, b. For disconnected arrays, the reversal process might start inside the
bulk of the island. For example, edge roughness of the island is known to influence
the coercive field by creating nucleation sites [14]. In that case, a pair of domain
walls enclosing an inverted domain is nucleated and then pulled away by the Zee-
man force. However, micromagnetic simulations show that the nucleation of domain
walls mostly starts at the ends of disconnected island; the nucleation is assisted by
the curling of magnetization at the ends [15].

Althoughdomainwalls aremesoscopic one-dimensional objects along awire [16],
microscopically they have complex internal structures. Depending on the width w
of the island, the domain wall has a “transverse” or “vortex” structure for small and
large w, respectively [17]. In fact, it is shown that domain walls in nanomagnets
are composed of elementary topological defects of coplanar spins [18, 19]. These
are the ordinary vortices in the bulk, and a novel type of edge defects carrying
half vorticity [18]. For connected honeycomb arrays, every Q = ±q vertex junction
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contains exactly one such half-vortex. Themagnetization dynamics of the nano array
can be understood and controlled by the interplay of topological defects bound to
domain walls and those innate to the array junctions [20].

A microscopic description of the magnetization process is given by the Landau-
Lifshitz-Gilbert (LLG) equation [21, 22]

∂mi (r, t)
∂t

= −γ mi ×
(

∂H

∂mi
+ Hext

)
+ α

m0
mi × ∂mi

∂t
, (15.7)

where γ = gμB/� is the gyromagnetic ratio, α is a damping coefficient, Heff is the
external magnetic field, and ∂H /∂mi withH given by (15.1) is an effective mag-
netic field originating from the local exchange interaction and the long-range demag-
netizing field. Figure15.3c shows the LLG simulations of magnetization reversal in
a honeycomb nanowire [23]. In this case, the reversal is triggered by a vortex-type
domain wall.

In micromagnetic simulations of the artificial ice arrays [15], a discretized LLG
equation is solved using either a finite-element or a finite-difference scheme [24,
25]. Because of the long-range magnetostatic interaction, such calculation is too
costly for large scale simulations and further simplifications are usually required.
One simplification is to assume that the magnetization is uniform in individual
island [26, 27], i.e. mi (r) = μi/V , where μi is the island magnetization, and V
is the volume. In this approach, the magnetostatic energy can be expressed as:
H = (μ0/8π)

∑
i, j μi · N i j · μ j , where N i j is the magnetometric tensor and is

given by the convolution of the shape-shape correlation function and the dipolar
interaction tensor [28]. The effects of island shape and finite size are included in the
magnetometric tensor. Approximating the islands as structureless needles, the mag-
netostatic energy reduces to the dipolar form similar to (15.4). Further simplification
is to approximate the shape anisotropy, the N i i term, by an effective single-spin
anisotropy −D1(μi · êi )2 + D2(μi · ẑ)2, where D1,2 ∼ −μ0/4πd3 originates from
magnetostatic energy [29, 30]. However, it is important to note that magnetization
reversal in this approach is through the rotation of the Heisenberg-like spin μi ,
which neglects the microscopic details such as domain wall nucleation and propa-
gation. On the other hand, they could be applied to simulating magnetic nano-arrays
consisting of circular islands, which have been experimentally realized as artificial
XY-magnets [31, 32].

Dynamics based on the Ising Hamiltonian (15.4) is very efficient for large-scale
simulations, but is mostly phenomenological. For example, single-spin dynamics
based on Metropolis or Glauber type updates is employed in the nonequillibrium
studies of pyrochlore spin ice [33]. Connections with microscopic properties, such
as transition rates, can be achieved through the kinetic Monte Carlo method [34, 35].
This approach not only introduces a time scale into the Monte Carlo simulations, but
also bridges the huge difference between the atomistic and mesoscopic time scales.
Kinetic Monte Carlo simulations have been applied to studying the in and out-of
equilibrium dynamics of artificial spin ices [36–40]. On the other hand, artificial
ice arrays far from equilibrium are governed by pure relaxation dynamics, in which
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the mesoscopic Ising variables always evolve toward a nearby local minimum in
energy landscape [13, 41]. Phenomenological vertex population dynamics are also
developed for pyrochlore [33] as well as for artificial spin ices [41].

15.2 Thermodynamic Behaviors

In earlier experimental realizations of artificial spin ice, thermal fluctuations are
virtually absent in the nano-arrays: reversing the magnetization of a nano-island
requires overcoming an energy barrier of a few million kelvins [6]. Most studies of
artificial spin ice treated it as a granular material activated by alternating magnetic
field [42, 43]. Such approaches have yielded frozen disordered states with only
short-range order. It has been shown that such athermal states can be described by an
effective temperature [44, 45]. An indirect attempt of producing thermalized artificial
spin ice is to anneal the nano-arrays as they are initially formed [46–49]. Recent
advances in fabrication and control of lithographically created arraysmake it possible
to realize thermally fluctuating artificial spin ice down to certain temperatures [50–
53]. In light of these recent experimental developments, we discuss the similarities
and differences in the thermodynamic behaviors of the square and honeycomb ice
arrays.

A full micromagnetic thermodynamic simulation of artificial spin ice can be
done using the stochastic LLG formulation [54], sometimes also called the Landau-
Lifshitz-Bloch (LLB) equation [55]. In this approach, several randomfields are incor-
porated into the LLG equation (15.7) to represent the effects of thermal fluctuations;
themethod can even be applied to simulate magnetic arrays that are close to the Curie
temperature [56]. The random fields are uncorrelated both spatially and temporally
and have standard deviations proportional to

√
T/V , where T is the temperature

and V is the island volume. This is consistent with the fact that the blocking tem-
perature of a super-paramagnetic nano-island is proportional to its volume [57]. The
LLB method has been used to investigate the growth of a square ice array containing
as many as 40 × 40 islands in [26]. For simplicity, the islands are assumed to be
uniformly magnetized with mi = μi/V , as discussed above, and the magnetomet-
ric tensors N i j are computed assuming ellipsoidal shaped islands [26]. Figure15.4a
shows that the dipolar energy of the annealed array is lowered with increasing thick-
ness, and the final state is dominated by type-I vertices. The simulations also find that
arrays with slow growth rates show the highest degrees of antiferromagnetic ordering
shown in Fig. 15.5a, which is the ground state of coplanar square ice, to be discussed
below. These results are consistent with the experimental observations [46]. A similar
approach has also been used to study the thermodynamic properties and hysteresis
in square ice model [27, 29, 30].

For large scale thermodynamic simulations of artificial spin ice, Monte Carlo
method based on the effective Ising Hamiltonian (15.4) is much more efficient,
while at the same time giving an accurate description of the low temperature ice and
ordered phases. We first discuss Monte Carlo studies on the thermodynamic behav-
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Fig. 15.4 LLB simulations of artificial spin ices. aDipolar energy of the square array as thickness d
increases from0.1nm to 5nmwith a growth rate 3.125×10−3 nm/ns. The inset shows the population
of the four types of vertices vs island thickness. b A snapshot of array magnetizations when d = 5
nm [26]. The two grey-shaded areas correspond to the two-fold degenerate antiferromagnetic ground
states shown in Fig. 15.5a; they are composed of type-I vertices. The colors of islands on the domain
boundaries indicate the dominant magnetization direction: yellow: +x , magenta: −x blue: +y, and
green: −y. Figures reprinted from [26] with permission from AIP Publishing

iors of square ice. One important question is whether there exists an ice regimewhere
configurations obeying the ice rules, or the minimum charge conditions, are over-
whelmingly presentwith approximately equalweights.Contrary to the 3Dpyrochlore
spin ice, this is not the case because the two types of zero charge vertex (I and II)
in the square array are inequivalent in symmetry and have different energies. This
inequivalence results from the fact that, unlike the case of a tetrahedron, the six bonds
between the four coplanar islands in a vertex are not all the same: the interaction J1,⊥
between orthogonal pairs is stronger than that J1,‖ between parallel pairs. However,
this can be remedied by introducing a height displacement h between the vertical
and horizontal islands [58]; see Fig. 15.2c.

The required displacement depends on the geometrical parameters such as length �

of the island and the lattice constant a. In the so-called point-dipole limit (�/a → 0),
the two interactions are equivalent J1,‖ = J1,⊥ when hc/a = √

(3/8)2/5 − 1/2 ≈
0.419. Taking into account the finite extension of the islands lowers the required
height offset. For h ≤ hc, we have J1,⊥ > J1,‖ and the ground state is an antifer-
romagnetic order with staggered arrangement of the two type-I vertices related by
time-reversal symmetry, shown in Fig. 15.5a. On the other hand, for large offset
h > hc, the type-II vertices have the lowest energy and the ground state is a ferro-
magnetic ordering of type-II vertices; see Fig. 15.5b. A macroscopic degeneracy can
then be realized when the height offset h = hc, as demonstrated by recent experi-
ment [59]. In this special point h = hc, the square array realizes a two-dimensional
Coulomb phase with deconfined magnetic monopoles.

Another interesting limit is when � → a. The required height offset hc/a ∼√
2ε → 0, where ε ≡ (1 − �/a). Moreover, since interactions beyond J1 vanish

identically in this limit [58], the low temperature phase of the array corresponds
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Fig. 15.5 Ordered states of artifical square ice. a Antiferromagnetic order consisting of staggered
type-I vertices. b Ferromagnetic order of type-II vertices. c Entropy density S and heat capacity
C as functions of temperature obtained from Monte Carlo simulations for square ice arrays [58].
The temperature is measured in units of J ≡ J1,⊥. The ideal Ising-ice limit corresponds to ε =
1 − �/a → 0, which is equivalent to the exactly solvable six-vertex model [60]. For parameter
�/a = 0.7, an intermediate ice regime exists for T < 0.42J . The critical height offset hc ≈ 0.207a.
A phase transition into a ordered phase occurs at T ≈ 0.1J ; the order is of antiferromagnetic
(ferromagnetic) type for h/a = 0.205 (0.207). Figures reprinted from [58] with permission from
the American Physical Society.

to an ideal Ising ice, or the symmetric six-vertex model [60, 61]. In this limit, there
exists an extensive ground-state degeneracy which manifests itself in the appear-
ance of a entropy-density plateau at Sice/kB = 3

4 ln
4
3 [60] as T → 0; see Fig. 15.5c.

However, it should be noted that in this ideal ε → 0 limit the effects of the island
internal structure and disorder will start to play a role. Numerical simulations, on the
other hand, show that a finite ice phase is possible even for finite ε. As demonstrated
in Fig. 15.5c for a square array with �/a = 0.7, an intermediate ice regime (blue
shaded area) is sandwiched between the high-temperature paramagnetic phase and
a low-T ordered phase [58]. A generic ice state with disordered spins is shown in
Fig. 15.1a. Experimentally, a quasi-ice regime has been observed both in athermal [6]
and equilibrated square arrays without height offset [50].

As discussed above, the appearance of an ordered phase at low T is caused by
the inequivalence between type-I and II vertices when h �= hc. Antiferromagnetic
ordering shown in Fig. 15.5a, which is the ground state when h < hc, has been
achieved in as-grown arrays [46] as well as the thermalized ones [50]. The selection
of the ground state, staggered type-I versus uniform type-II, is completely due to
the energetics of vertices, and is not affected by the long-range part of the dipolar
interactions. This implies that the nature of the ordering transition can be described
by a simplified vertex model, which includes only nearest-neighbor interactions.
Indeed, Monte Carlo simulations of a 16-vertex model (with four different types
of vertices) [62] agree well with the experimental result [47]. Extensive numerical
simulations further show that the ordering into the staggered type-I state is a second-
order phase transition [62].Although this ground state is described by a Z2 Ising order
parameter, the ordering transition in square ice seems to belong to a universality class
different from that of 2D Ising model [63]. The exact nature of the phase transition
remains to be clarified.
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Fig. 15.6 Multilayer construction of 3D artificial spin ice. a A three-dimensional network built
from the four types of rectangular boxes, or ‘vertices’ shown in Fig. 15.2c. The resultant spin
lattice is equivalent to the 3D pyrochlore spin ice. b Schematic diagram showing the arrangement
of magnetic nano-islands in the multilayer structure. Figures reprinted from [64] with permission
from AIP Publishing

Introduction of the height displacement h also provides an approach to design
a 3D magnetic nano-array which is topologically equivalent to the pyrochlore spin
ice [64]. The basic frustration unit in this multilayer construction is a rectangular
box containing four nano-islands as shown in Fig. 15.2c; these are the analogs of
tetrahedra in pyrochlore lattice. Arranging these boxes into a corner-sharing network
gives rise to a multilayer structure shown in Fig. 15.6a, which can be viewed as a
flattened pyrochlore structure. In each layer, parallel nano-islands form a rectangular
lattice with the long and short lattice constants being 2a and a, respectively; the
orientation of the islands are aligned with the short axis. The arrays are rotated
by 90◦ from one layer to the next. In addition, the arrays in every other layer are
shifted by a along the long axis. Interestingly, the projection of this 3D structure
onto the xy plane is exactly the same as a square ice. The approach of building
a 3D spin ice by stacking 2D arrays takes advantage of the well developed planar
nano-lithography technology. Similar to the square ice array, by properly choosing
the interlayer distance h, an extended ice regime at finite temperatures is realized in
this 3D structure [64].

We next turn to the thermodynamic phases of honeycomb arrays. As mentioned
above, such arrays are realizations of the kagome spin ice, as the centers of the
nano-islands form a kagome lattice. The kagome spin ice is first studied in [65] as a
frustrated statistical model. It is found that with only nearest-neighbor interactions,
kagome ice retains an extensive ground state degeneracy corresponding to an entropy
density SI/kB ≈ 0.501 [65]. In this so-called kagome ice-I manifold, each vertex has
either two spins coming in and one going out, or vice versa. The huge degeneracy
is lifted upon the introduction of further neighbor couplings [65, 66]. In magnetic
honeycomb arrays, the kagome ice rules correspond to theminimumcharge condition
Q = ±q at every vertex; a generic disordered ice-I state is shown in Fig. 15.1b. The
ice-I phase has been observed experimentally in athermal [7, 8] as well as fully
equilibrated kagome ice arrays [50].

The fact that there are uncompensatedmagnetic charges at every vertex of the hon-
eycomb array introduces new features that are absent in square ice. The Coulomb
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Fig. 15.7 Ordered phases of artificial honeycomb array. a An Ising microstate in the ice II phase
in which emergent magnetic charge degrees of freedom develop a NaCl-type order, while spins
remain disordered. The red and blue dots denote vertices with±q charge, respectively. bOne of the
six-fold degenerate ground states exhibiting the

√
3 × √

3 spin order. c Temperature dependence
of entropy density S and heat capacity C obtained from Monte Carlo simulations for honeycomb
arrays with parameter ε = 1 − �/a = 0.05. Figures reprinted from [67] with permission from the
American Physical Society

interaction (15.5) among these residual charges gives rise to a novel phase in which
the residual ±q charges crystalize into a NaCl-type order [67, 68]; see Fig. 15.7a.
This charge-ordered kagome ice, also called the ice-II phase, is closely related to
spins in the kagome plane of the pyrochlore spin ice when subjecting to a 〈111〉
magnetic field [69, 70]. While the ice-II phase is ordered in terms of charges, it is
still consistent with an exponentially large number of Ising configurations; the degen-
eracy of the ice-II manifold corresponds to an entropy density SII/kB ≈ 0.108 [71].
These charge-ordered ice states are exactly degenerate in the dumbbell model (15.5).
The degeneracy is lifted by higher-order corrections from the original dipolar inter-
actions (15.4). The ice-II phase is quite robust; charge ordering has been observed
experimentally even in non-thermal states generated by alternating field [72, 73].
Incipient crystallization of magnetic charges has been observed in thermalized hon-
eycomb arrays [50].

The above energy hierarchy suggests a sequence of thermodynamic phases
demonstrated in Fig. 15.7c. At high temperatures, uncorrelated Ising spins have an
entropy density S/kB → ln 2 = 0.693. As the array cools down from the paramag-
netic state, it gradually enters the ice-I phase; the entropy curve exhibits a plateau at
SI. At a lower temperature, the magnet undergoes a phase transition into the charge-
ordered ice-II phase. Since the order parameter of the staggered NaCl pattern has a
discrete Z2 symmetry, the transition belongs to the 2D Ising universality class [68].
The ice-II phase manifests itself in the appearance of a second entropy plateau at SII.
Finally, at an even lower temperature, another phase transition of the 2D Potts univer-
sality class [68] completely removes the residual entropy and selects a ground state
with

√
3 × √

3 spin order shown in Fig. 15.7b. Consistent with the fact that the most
favorable arrangement of a single hexagonal ring is for all island magnetizations to
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point head to tail [37, 43], the selected
√
3 × √

3 order maximizes the occurrence of
such motif. Thermal ordering of moments into the loop crystal in honeycomb arrays
remains an experimental challenge.

15.3 Disorder and Nonequilibrium Dynamics

Experimental realizations of artificial spin ice unavoidably introduce small variations
during the array fabrication process, leading to a statistical distribution of island
properties. Quenched disorder provides pinning and nucleation sites and strongly
affects the dissipative dynamics of themagnetic arrays. It is thus crucial to understand
the role of disorder in the nonequilibrium dynamics of artificial spin ice. A full
microscopic modeling of disorder based on the LLG equation is computationally too
expensive, and is infeasible for large-scale simulations. Models based on the Ising
Hamiltonian (15.4) again provide a practical approach to study disorder-induced
nonequilibrium phenomena in large lattices. In the relaxation dynamics formulation
of artificial ice arrays, mesoscopic Ising degrees of freedom move downhill in the
energy landscape until they come to rest at a local energy minimum.

As discussed above, each Ising configuration corresponds to a local minimum of
the spin-ice array. Different local minima are connected by flipping one ormore Ising
spins. Consequently, an important new energy scale for the dynamical process is the
energy barrier of magnetization reversal in individual islands. For effective Ising
model (15.4), this energy barrier is characterized by a coercive or switching field
Hc
i . More specifically, an Ising spin σi is flipped if the total local field, composed of

the external fieldHext and the dipolar field from all other islands, exceeds its coercive
field:

−
(
Hext +

∑

j �=i

h j

)
· êi > Hc

i . (15.8)

The energy released during the reversal is completely dissipated into the lattice. We
emphasize once again that flipping the Ising spin corresponds microscopically to the
nucleation, propagation, and subsequent absorption of domain walls as described in
Sect. 15.1. The quenched disorder manifests itself in the random distribution of the
coercive fields Hc

i . Although disorder is present also in the spin coupling constants,
its effect is usually smaller and, to some degree, can be absorbed into the disorder in
Hc [74, 78].

When the system is subject to a perturbing external field Hext, interesting dynam-
ical behaviors occur when Hext ∼ H̄ c, where H̄ c is the average switching field.
However, the nature of the magnetization dynamics, whether it is mostly single-
spin process or multi-spin collective behavior, depends on the relative scales of
ΔHc and Ed , where ΔHc is a characteristic width of the random distribution and
Ed = μ0m2

0V
2/4πa3 is the energy scale of dipolar interactions.
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An illuminating example of nonequilibrium dynamics is the rotating-field driven
relaxation of square spin ice [41, 74]. In this setup, a strong diagonal field first polar-
izes the system to the polarized state consisting entirely of one particular type-II ver-
tex. Thefield is then reduced to a hold value Hh and the sample is rotated in-plane [74].
The relaxation dynamics formulation (15.8) has been applied to study this nonequi-
librium process [41, 74]; the results agree well with the experiments. Figure15.8b,
c show the average fractional vertex populations versus the hold field Hh obtained
from experiments and simulations, respectively. For Hh smaller than a threshold, the
field does not affect the type-II state. Above this threshold, type-I vertices are gener-
ated by the field; its population shows a non-monotonic behavior with a maximum
at Hh ≈ 520 Oe experimentally. This non-monotonic behavior can be understood as
follows. For small field, chains of reversed moments are generated in a background
of polarized type-II vertices. These chains are similar to those observed in the mag-
netization reversal experiments driven by a dc field [76, 77], to be discussed below.
As Hh further increases, small domain of type-I ground states start to form. Near
the maximum of about 50 % type-I vertices, the net magnetization approaches zero
and all four type-II vertices have similar populations. Finally, further increasing Hh

rapidly suppresses the staggered type-I order. As the interaction is dominated by the
Zeeman coupling to the type-II dipoles, most of the spins simply rotate with the field.

The simulations shown in Fig. 15.8c assume an average H̄c = 11.25Hd and a
rather large standard deviation ΔHc ≈ 1.875Hd , where Hd = μ0m0V/4πa3 is a
characteristic dipolar field. The large ΔHc indicates that the system is in the strong
disorder regime [78], which also explains the irrelevance of the boundary effects [74].
For athermal artificial arrays driven by magneto-agitation, quenched disorder plays
a crucial role by increasing the dynamical pathways in phase space. In this sense,
the effects of quenched disorder is similar to thermal fluctuations in equilibrium
systems; both provide links between nearly degenerate spin configurations [79].
The effect of disorder on the connectedness of the configurational space can be
quantitatively investigated using the network approach [80]. For a given magneto-

Fig. 15.8 Relaxation dynamics driven by rotating field. a Schematic diagram of the experimental
setup. b The vertex population vs hold field Hh obtained from experiments [74]. c Numerical
simulations of the same process [41, 74]. Open and filled symbols represent data obtained from
arrays with open and closed edges, respectively. Figures reprinted from [74] with permission from
the American Physical Society



432 G.-W. Chern

agitation, the network is defined as a directed graph (or ‘adjacency matrix’) in the
configurational space whose dimension is 2N for an array of N islands. A directed
link from Ising state A to B is introduced to the network if A can evolve to B under the
driving field [81]. Compared with the perfect array, quenched disorder “rewires” the
network by significantly increasing the number of links. One important consequence
of the increased links is the reversibility of dynamics. This property is related to the
concept of strongly connected components in networks [80]. In a directed network,
if two configurations A and B are in the same strongly connected component, there
exists a path from A to B and vice versa. It is found that the presence of disorder
increases both the number and size of such components in the network [79]. The
increased links thus can help the system reach lower-energy states through field-
driven dynamics. Overall, the network picture provides a framework to understand
and control quenched disorder in artificial spin ices.

Quenched disorder also significantly affects the hysteresis curves and magneti-
zation reversal of artificial spin ice [82–86]. Micromagnetic simulations using the
LLG equation (15.7) is employed to study demagnetization process of a small-size
square array consisting of 144 islands [15]. The LLG simulation clearly identifies
that the magnetization reversal is assisted by the proliferation of type-III vertices, or
monopole defects to be discussed in the next section. This result is corroborated by
real-space observations in both square and honeycomb arrays [15, 76, 77, 84, 85].

A systematic study of the disorder effects onmagnetization reversal of the ice array
requires large-scale simulations, which can be achieved, again, using the relaxation
dynamics (15.8) for effective Ising models. In these simulations, a strong external
field initially polarizes the islands along the diagonal direction in square array, and
along one of the island long axis in the honeycomb case. The array is then subject
to a reverse field Hr in the opposite direction, with gradually increasing magnitude.
Extensive relaxation dynamics simulations on large lattices containing as many as
N ∼ 106 spins have been performed for the two representative spin-ice arrays [87]. It
is found that both square and kagome spin ices exhibit disorder-induced nonequilib-
rium phase transitions, with power-law avalanche distributions at the critical disorder
level [87, 88]. The phenomena of driven criticality far from equilibrium are observed
in many first-order transitions, such as the famous Barkhausen noise [89] in the hys-
teresis of magnetic materials. The random field Isingmodel [90] probably is the most
studied system in this regard.

In both random field Ising model and artificial spin ices, the reconfiguration of
the spin arrangements during magnetization reversal occurs in the form of avalanche
events in the vicinity of the critical switching field when Hr ∼ Hc (the average
coercive field). The avalanche dynamics exhibit three different behaviors depending
on the level of disorder. The weak disorder regime is dominated by large clusters
extending the whole system, while many subsystem size clusters occur in the strong
disorder regime; see Fig. 15.9. A critical disorder level separates these two regimes.
Interestingly, the square and honeycomb arrays exhibit rather different geometries
of the avalanche clusters, as demonstrated in Fig. 15.9: the avalanche clusters mostly
propagate along the diagonal direction in the square ice array, whereas the clusters
branch out and form fractal-like structures in kagome ice [87].
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Fig. 15.9 Snapshots of spin avalanches during magnetization reversal. The white (green) area
denotes the non-inverted (inverted) spins, while the blue area indicate instances of avalanche clus-
ters. The disorder strength is characterized by a dimensionless parameter r ≡ ΔHc/H̄c. The three
snapshots of the square ice correspond to a weak r = 0.012, b near critical r = 0.018, and c strong
disorder r = 0.023. Similarly for kagome ice, the disorder levels at the three distinct regimes are
r = d 0.06, e 0.10, and f 0.12. Figures from [87]

In square ice array, an avalanche event starts with the flip of a single spin at an
island of lowest coercive field. In the monopole picture to be discussed in Sect. 15.4,
this single spin flip corresponds to the creation ofmonopole pairs. The twomonopoles
carrying opposite charges are then pulled away by the Zeeman force until they are
stopped by links of large Hc. The twomonopoles are connected by aDirac string [75]
running roughly parallel to the diagonal direction. It is worth noting that Dirac strings
consisting of type-I vertices are locally stable object since they are ground states
of the dipolar interactions. Large-scale simulations find avalanche clusters consist-
ing of inverted domains with edges roughly parallel to the diagonal direction; see
Fig. 15.9a–c. This result indicates that a Dirac string (of inverted spins) tends to
induce neighboring strings, and the avalanche propagation is driven by the expan-
sion of domain walls.

The avalanche size distribution D(s) at varying level of disorder is shown in
Fig. 15.10c, here s is the size of the avalanche cluster. The parameter r ≡ ΔHc/H̄c

measures the level of quenched disorder in the array, and a Gaussian distribution of
the island switching field Hc

i is assumed in the simulations. The distribution shows
two distinct behaviors. For weak disorder, a peak in D(s) at the largest cluster sizes
indicates that the avalanches are dominated by large system-wide events, correspond-
ing to the so-called super-critical regime [90]. The resultant magnetization curves
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Fig. 15.10 Disorder induced criticality in artificial spin ice. a and b show the normalized magne-
tization versus applied field at various disorder strengths r for square and kagome ice, respectively.
The avalanche size distribution D(s) during magnetization reversal for the two types of ice arrays
are shown in c and d. For square ice, the different curves in c correspond to r = 0.011, 0.012,
0.013, 0.014, 0.015, 0.016, 0.022, and 0.030 (from top to bottom). For avalanches in kagome ice,
the difference curves in d correspond to r = 0.02, 0.03, 0.05, 0.07, 0.09, 0.1, 0.105, 0.115, and
0.135 (top to bottom). In both cases, the solid curves indicate super-critical regime of avalanches,
while the dotted curves belong to the sub-critical regime. The dashed lines indicate the power-law
behavior D(s) ∼ s−τ near the critical disorder. Figures from [87].

M(Hr ) shown in Fig. 15.10a are characterized by a pronounced jump in M . For
arrays with strong disorder, the large avalanches are cut off at a characteristic size sm
that decreases with increasing r . Close to a critical value of rc ≈ 0.0145, the distribu-
tion shows a power-law behavior D(s) ∼ s−τ , implying avalanches of all sizes occur
during the reversal. Interestingly, the numerically obtained exponent τ ≈ 1.31 and
further scaling analysis [87] are consistent with the scenario of propagating domain
walls separating two polarized states [91].

Avalanche clusters in kagome ice are also triggered by single-spin flip or the
creation of monopole pairs [84, 85, 92, 93]. In stark contrast to the square-ice case,
the propagation of the clusters is dominated bymany branching processes as shown in
Fig. 15.9d–f. Such tree-like avalanche clusters are also observed experimentally [93].
Moreover, while the Dirac string in square ice can propagate in both directions
along the diagonal, the tree-like cluster in kagome mainly propagates along one
direction. The high degree of branching and strong unidirectional growth of the
cluster suggest that avalanches in kagome ice belong to the universality class of
directed percolation [94]. The avalanche size distribution shown in Fig. 15.10d also
shows super- and sub-critical behaviors, similar to the square ice case, at weak and
strong disorders, respectively. Interestingly, avalanches in the super-critical regime
exhibits an unusual crossover behavior: the exponents of the power-law part s−τ
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of D(s) gradually changes from τ = 1.5 at very small r � 0.03 to τ = 2 at the
critical disorder rc ≈ 0.107. This crossover phenomenon might reflect the reduced
dimensionality (from 2D to quasi-2D) of avalanche clusters with increasing r . The
exponent τ = 2 agrees very well with the experimental result [93]; it is suggested
that the exponent τ = 2 is a result of super-universality for certain classes of time-
directed avalanches [95].

Experiments on kagome ice composed of disconnected islands find dimensional
reduction phenomenon in magnetization reversal [85, 96]. In this scenario, the prop-
agation of the avalanches is mainly through the (opposite) movements of monopole
pairs connected by a Dirac string, similar to some of the square ice clusters. One
important consequence of this quasi-1D process is that the avalanche size distribution
has a exponential decay D(s) ∼ exp(−s/s0) [85, 96]. On the other hand, significant
branching of avalanche clusters and power-law distribution were observed in con-
nected honeycomb nano-wire networks [93]. Although these two different behaviors
could be attributed to the boundary effects of the sample, or the misalignment of the
field in the experiments, one intriguing explanation might have something to do with
the chiral nature of monopoles in disconnected arrays, as observed in micromagnetic
simulations [97]. The spontaneous chiral-symmetry breaking at the ±3q vertices
might disfavor branching process, and cause the string to grow in one particular
direction.

15.4 Elementary Excitations: Monopoles

Magnetic charges in spin ice are not only a useful bookkeeping tool for computing
energies, but also true dynamical variables describing low-energy collective phenom-
ena [10, 11]. For example, the ordering of magnetic charges in the kagome ice-II
phase discussed in Sect. 15.2 shows that they are emergent degrees of freedom that
interact with each other through the Coulomb law. The fact that magnetic charges
precisely capture the leading-order interactions in spin ice is best illustrated by the
dumbbell picture introduced in Sect. 15.1. Since the lowest-energy vertices in the
ice-rule obeying states have minimum charges, excited vertices in this background
carry an extra charge and behave as magnetic monopoles. Indeed, these excited ver-
tices are particle-like objects that can be driven by an applied field [10]. These excited
vertices or monopoles are also topological defects as they violate the ice rules and
must be created and annihilated in pairs. Figure15.11 shows examples of emergent
monopoles in the dumbbell picture for various spin ice lattices. In this Section, we
will discuss the monopole excitations in square and honeycomb arrays. In particular,
we show that artificial spin ices with mixed lattice coordination numbers contain
composite quasi-particles which can be viewed as monopole polarons.

Associated with monopole excitations is another topological defects called Dirac
strings [11]. Since magnetic monopoles in spin ice are not fundamental elemen-
tary particles, their charges are not quantized and a Dirac string connecting a pair of
monopoles is a visible object [75]. In the ice-rule states, a single-spin flip corresponds
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Fig. 15.11 Monopoles in artificial spin ice. a A pair of magnetic monopoles connected by a Dirac
string in a square ice array with height offset h < hc. The ground state in this case is a staggered
type-I order shown in Fig. 15.5a. These monopoles are called Nambu monopoles [108] because
there is a finite tension of the Dirac string that consists of the higher energy type-II vertices. b
A pair of ±3q monopoles connected by a tension-less Dirac string in an artificial kagome ice.
c Two monopole ‘molecules’ in artificial pentagonal ice. In this lattice, there are both 4-legged and
3-legged vertices. Emergent monopoles (defect vertices) live on the 4-legged vertices and interact
with the residual charges on the 3-legged vertices [112]. d Distribution of magnetic charges around
a Q = 2q monopole at x = 0 for two different temperatures. The extended and oscillatory charge
correlation suggest a polaron picture for the composite quasi-particle [112]. Reprinted from [112]
with permission from EPL

to the creation of a monopole pair. When the two monopoles are subsequently sep-
arated, a path of inverted spins constitute the visible Dirac string. This process also
demonstrate the fractionalization of dipoles into monopoles in spin ice. However,
whether the separation of the monopole pair is allowed energetically depends on
the tension of the Dirac string. In pyrochlore spin ice, these strings are tensionless
and the separated monopoles only interact through a power-law decaying Coulomb
potential [11]. In square ice, the inequivalence of the six 2-in-2-out vertices leads to
a unique ground state, whose ordering pattern is determined by the height offset h;
see Fig. 15.5. But more importantly, the Dirac string acquires a finite tension because
of this inequivalence. For example, for coplanar square ice (h = 0), the ground state
is a staggered arrangement of type-I vertices, and two monopoles are connected by a
string of type-II vertices [109, 110]; see Fig. 15.11a. The tension of the Dirac string is
τ ∼ εII − εI. The monopoles in square ice share several features with the monopole
particles proposed by Nambu [107]: the Dirac string in both cases are energetic and
is oriented [108]. In Nambu’s original theory for hadrons, the monopoles correspond
to quarks and the finite string tension is used to describe their confinement [107].
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Although magnetic monopoles in square ice with h �= hc are not true quasi-
particles because of the energetic Dirac strings, it is argued that the string tension
might be compensated by its configurational entropy above a critical temperature, and
the monopoles become deconfined thermally [111]. Another approach is to modify
the string tension through the height offset h [110] as discussed in Sect. 15.2. Detailed
numerical calculation shows that the tension diminishes as the offset approaches the
critical hc from both sides and for different string paths. The vanishing string tension
also results in a dramatic increase of thermally excited strings at finite temperatures,
as observed in Monte Carlo simulations [38].

Magnetic monopoles in kagome ice, on the other hand, are connected by tension-
less strings because of the exact degeneracy of the six minimum energy vertices. As
discussed in Sect. 15.2, there are uncompensated ±q charges at every vertex in the
ice phases of kagome because of its odd coordination number. In the ice-I phase,
monopole excitations refer to the type-II’ vertices carrying ±3q charges; an exam-
ple is shown in Fig. 15.11b. A new type of charge excitations occurs in the ice-II
phase of kagome. Recall that in this phase the residual ±q charges crystallize into a
NaCl-type order on the honeycomb lattice, say +q (−q) charges in sublattice A (B).
A misplaced charge, e.g. a −q vertex in sublattice A, is energy costly and represents
elementary defects in the ice-II states. Relative to the background staggered charges
in a ice-II state, these defects also carry a relative charge ±2q, and are sometimes
also called monopoles. In magnetization reversal of kagome ice array, both types of
monopoles (±3q vertices and charge defects) were observed [84, 85, 116–118].

A new collective phenomenon associated with monopoles and magnetic charges
is the composite quasi-particles in spin ices with mixed lattice coordinations [112].
This is illustrated in the so-called pentagonal spin ice, shown in Fig. 15.11c. The
pentagonal lattice is probably the simplest structure that combines the elementary
four- and three-legged vertices shown in Fig. 15.2. In the ice phase of this lattice, there
is no charges at the four-legged vertices, whereas uncompensated±q charges exist at
the 3-legged vertices. Elementary excitations are emergent monopoles carrying Q =
±2q at the z = 4 sites. These monopoles then attract a cloud of net opposite charges
through magnetic Coulomb interaction, forming an entity similar to the electron
polaron in crystalline lattice [113]. The unusual charge-charge correlation around
such a polaron is demonstrated in Fig. 15.11d obtained fromMonte Carlo simulations
on the dipolar pentagonal spin-ice [112]. At low temperatures, the strong correlation
between the center±2q and the two∓q neighbor charges resembles aH2Omolecule.
Although the pentagonal ice array has yet to be realized in experiments, similar
magnetic charge screening phenomenon has been observed in the shakti lattice [114],
to be discussed in Sect. 15.6, and dice lattice [115], both of which have mixed
coordination vertices.
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15.5 Elementary Excitations: Magnons

In addition to the monopole excitations associated with the mesoscopic Ising degrees
of freedom, another elementary excitations in artificial spin ice are magnetic reso-
nances, or spin waves, that correspond to continuous magnetization fluctuations.
These two types of excitations also have rather different time scales. Movements
of topological defects involve magnetization inversion of individual islands, which
needs to overcome an energy barrier and occurs over times on the order of a few
nanoseconds. Basically, the system evolves from one local minimum to another; each
energy minimum corresponds to a Ising configuration. On the other hand, magnon
excitations are small amplitude fluctuations around a given Ising state, or a local min-
imum. The characteristic frequencies of magnons for typical permalloy materials are
on the order of a few GHz or higher.

The finite dimension of nano-islands introduce boundary effects on the spin wave
propagation, creating standing-wave modes as well as edge-localized modes [100,
101]. In particular, since the edge modes can extend significantly outside the island
and hybridize with similar modes from the neighbors, they play an important role in
the collective resonant dynamics that depend on the array geometry. Collective spin
wave modes have been extensively studied in 1D chains and 2D arrays [100–102],
although most of these studies consider rather simple structures such as square or
rectangular lattices. Moreover, the magnon resonance also depends on the magneti-
zations of individual elements for a given array. The engineering of collective spin
waves through design of lattice structure, magnetization pattern, the size and geom-
etry of the elements is an intriguing emergent field called magnonics [103–105].

In artificial spin ice, the spin wave spectrum is significantly modified by the
presence of topological defects [99]. Moreover, different topological excitations,
monopole pairs and Dirac strings, display distinct and localized features, both spa-
tially as well as in the frequency domain. These results suggest that artificial spin ice
can serve as promising reprogrammable spin-wavewaveguides ormagnonic crystals.
In this section, we will discuss the collective spin wave resonances in the artificial
square ice.

The calculation of spin wave eigenmodes in nanoscale magnetic particles is an
extremely complicatedproblemwhenboth exchange andmagnetostatic contributions
are taken into account [106]. Numerically, the magnetization resonant dynamics can
be investigated by exciting the artificial ice arraywith a shortmagnetic field pulse. The
time evolution of the array is simulated using the LLG equation (15.7); information
about the eigenmodes can be extracted with the aid of Fourier transform [119]. This
approach is applied to study the magnon spectra in an artificial square ice consisting
of 112 stadium-shaped nano-islands in [99]. The ferromagnetic state consisting of
uniform type-II vertices shown in Fig. 15.5b is used as a reference state. The magnon
spectrum of this uniform type-II order is shown in Fig. 15.12a as the gray filled
area. The largest peak at f ∼ 8 GHz (position ➅) corresponds to the ferromagnetic
resonance in which the oscillation is approximately uniform in the interior of the
islands. The many smaller peaks at lower frequencies are associated with various
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Fig. 15.12 Spin-wave spectra of artificial square ice. a Evolution of the spin-wave spectrum with
increasing string length and number of monopole pairs compared with the reference state. The
shaded labels correspond to the main, distinct signatures of topological defects. The magnetization
amplitude Δm of localized resonance mode associated with b monopole pairs G+G−, c Dirac
strings, and d doubly charged monopoles G∗+G∗− (all-in/all-out vertices). The splitting of the
ferromagnetic resonance peak in the presence of a Dirac string is shown in e. The numbers (1, 2, 3,
6) in the gray-filled circle indicate the corresponding features in the spectra [99]. Figures reprinted
from [99] with permission from the American Physical Society.
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kinds of edge modes of the array. For example, the modes at ∼ 2 GHz and 5GHz
(positions ➀ and ➃) correspond to fundamental and higher-order edge excitations,
respectively, at the array boundary.

The various curves in Fig. 15.12a depict the spectrum evolution when monopoles
and Dirac strings are inserted into the lattice. First, a new resonance whose ampli-
tude increases almost linearlywith the number ofmonopole pairs appear at frequency
f ∼ 2.2 GHz [99]. Although the frequency of this resonance is close to the edge
mode ➀ of the reference state, this mode is actually localized around the monopole
and antimonopole labeled as G+ and G−, respectively in Fig. 15.12b. The enhanced
peak around 5GHz, roughly at peak ➃ of the reference state, is also related to the
monopole-antimonopole pairs. Second, the new mode at f ∼ 3.5 GHz (position ➂)
is attributed to localizedmodes around the Q = ±4q monopole pairs (or type-IV ver-
tices). These doubly charged monopoles are labeled as G∗+ and G∗− in Fig. 15.12d.
The pronounced peak at position ➄ is also due to these topological defects. In both
cases, a similar linear relation between themode amplitude and the number of doubly-
charged monopole pairs is obtained in the numerical simulations [99].

The Dirac strings also leave distinct fingerprints on the magnon spectrum of
artificial ice array. A new mode at f ∼ 3 GHz (position ➁) corresponds to localized
oscillations around the Dirac string connecting the monopole-antimonopole pairs.
Since this mode is very localized at the type-I vertices that constitute the Dirac string
in a type-II background, as shown in Fig. 15.12c, its amplitude increases linearly with
the string length. The dominant ferromagnetic resonance at position ➅ is also split
and shifted by the Dirac strings. The spatial profile of these two modes, shown in
Fig. 15.12e, are obtained by projecting the magnetization along the [11] direction of
the string. The peak amplitude of the higher-frequency (8.33GHz) mode increases
with the string length at the expense of the lower-frequency resonance mode at
8.08GHz.

As the topological defects are mesoscopic objects extending over several islands,
their induced resonances are therefore dominated by the non-local magnetostatic
energy. However, the spectral features induced by monopoles and strings are quite
robust: reducing the lattice constants, hence increasing the magnetostatic interaction,
only blue-shifts the peaks while maintaing most of the characteristics of the induced
resonances. In summary, micromagnetic LLG simulations show that there is a one-
to-one correspondence between the topological defects and the magnon spectrum of
the artificial ice array. The fact that these modes are localized around the topological
objects implies that contributions from individual defects do not interfere much with
each other. Potential applications of artificial ice arrays as dynamical frequency filter
or sensor can be envisioned by locally creating and moving monopoles to modify
the resonant dynamics.
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Fig. 15.13 Emergent frustration in Shakti spin ice. a Building blocks for artificial spin ices. There
are four symmetry distinct types of four-leg vertices (type-I, II, III, IV), and three distinct types
of 3-leg vertices (I’, II’, and III’). b The magnetic nano-array for Shakti spin ice and a generic ice
state. The arrows indicate the island magnetizations. In this ice microstate, every 4-leg vertices are
of type-I configuration, half of the 3-leg vertices are in the ground-state type-I’, and the other half
are the higher-energy (frustrated) type-II’ state. The frustrated type-II’ vertices are mapped to a
defect configuration shown in (c), which is further mapped to a six-vertex configuration in (d).

15.6 Emergent Frustration by Design

Artificial spin ice is one particular class of nano-arrays that belong to a larger family
of magnetic metamaterials. One appealing feature of this metamaterial approach is
that the frustrated or competing interactions between the constituent nanomagnetic
elements can be engineered or designed through, e.g. the lattice geometries. In a
narrow sense, spin ices are frustrated magnets in which the spin configuration of ele-
mentary units (vertices, triangles, or tetrahedra) follows constraints that are similar to
theBernal-Fowler rules [128] dictating local proton ordering in solidwater ice. These
systems are exemplified by the square, honeycomb, and pentagonal arrays discussed
in previous sections. Broadly speaking, however, the term “artificial spin ice” is used
to refer to engineered frustrated Ising-like magnets. The advances in modern nano-
lithographic fabrication has significantly broaden the scope and applications of such
artificial spin systems. Other than the most studied square and honeycomb ices, var-
ious array geometries have been proposed. These include the triangular [120, 121],
brickwork [122], pentagonal [112] lattices, perpendicular nano-rods arrays [123],
three-dimensional structures [64], and quasi-crystals [124]; some of them have also
been fabricated.

Instead of building on geometries that have been realized by nature, a systematic
method of designing novel frustrated arrays is proposed in [125]. In this approach,
frustrated arrays are built from elementary vertices shown in Fig. 15.13a. Other than
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the conventional four types of 4-legged vertices, the building blocks include three
different types of 3-legged vertices with orthogonal islands. The square and brick-
work arrays are examples that can be built from these elementary vertices. Because
of the orthogonal geometry, the minimum Q = ±q vertices separate into two types:
the lower-energy type-I’ and excited type-II’. Importantly, there is no accidental
geometry-induced degeneracy in the lowest energy configurations (for both 3- and
4-legged vertices) other than the time-reversal symmetry. A consequence of this non-
degeneracy of lowest-energy vertex is that both the square and brickwork arrays are
not frustrated and have a well defined antiferromagnetic-type ground state.

However, it is possible to design lattices with extensive degeneracy based on the
building blocks shown in Fig. 15.13a. The frustration in these designed arrays is not
due to the many different ways of arranging the degenerate lowest-energy vertices
(triangles in kagome or tetrahedra in pyrochlore spin ice). Instead, the frustration
comes from the fact that not all vertices can reach their lowest-energy type-I or I’
configurations [125]. In practice, since the energy difference between type-I and
II vertices is larger than that between the 3-legged type-I’ and II’, all four-legged
vertices are in the lowest-energy type-I configuration. Frustration can be designed
such that some of the 3-legged vertices have to be in the higher energy type-II’
state [125].

One representative and intriguing example of this approach is the emergence of
a frustrated six-vertex phase in the so-called shakti spin ice [126, 127], shown in
Fig. 15.13b. The shakti lattice can be derived from the square lattice by alternatively
placing an additional vertical or horizontal island in each square plaquette. To see
how the frustration emerges in this array, we first restrict ourself to the vertex model,
and neglect dipolar interactions beyond the nearest neighbors. Numerical simulations
show that while all four-legged vertices are in the lowest-energy type-I state, only
half of the 3-legged vertices can reach the type-I’ state in the ground state [126].
Extensive degeneracy arises from the distribution of the unhappy type-II’ vertices;
a generic disordered ground state is shown in Fig. 15.13b. Characterization of this
degenerate manifold can be achieved by specifying the location of the unhappy type-
II’ vertices, as demonstrated in Fig. 15.13c. This mapping from spins into defects
on plaquettes is at least 2-to-1: each spin-ice state and its time-reversal partner are
mapped to the same defect configuration. Moreover, when both defects sit at the two
ends of the center long island, there is an additional Z2 degrees of freedom associated
with the magnetization of the center island; an example of this case is shown by the
red dashed line in Fig. 15.13c.

The positions of these type-II’ defects are highly correlated in the degenerate NN
ground states. In fact, the local defect configurations satisfy constraints which are
exactly equivalent to the Bernal-Fowler ice rules [128]. The mapping is simple: each
plaquette can be viewed as a water molecule H2O, with the center of the plaquette
being the oxygen and type-II’ defect being the hydrogen atom [126]. In the ground
states of the nearest-neighbor shakti array, the ice rules thendictate that eachplaquette
has exactly two defect vertices [126]; an example is shown in Fig. 15.13c. The shakti
spin ice thus provides the first realization of an extensively degenerate planar ice,
or six-vertex model. Figure15.13d shows the mapping of the defect configuration
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to the six-vertex state. The ice phase of shakti array in which local defect ordering
satisfies the Bernal-Fowler rules were also confirmed experimentally [114]. Taking
into account the additional Z2 degeneracy when two defects enclose a center long
island, the degenerate manifold actually maps to a special 6-vertex model, the F-
model, with a larger statistical weight for the symmetric vertices [126]. The notion
of frustration by design exemplified by the shakti ice opens avenue to engineer novel
collective behaviors in artificial spin ice.

15.7 Other Artificial Ices

The material-by-design approach can be extended beyond magnetic systems, and
several artificial systems are shown to exhibit emergent ice physics. Different real-
izations explore different aspects of the ice or the Coulomb phase that are related to
the specific physical features of the system. For example, adding particles into arti-
ficial colloidal ice introduces new types of defects that are absent in spin ices. This
artificial frustrated system consists of interacting colloidal particles confined in 2D
arrays of optical traps [129]; see Fig. 15.14a. Each trap has a double well potential,
and the colloidal particle can sit at one of the two minima. When the doping is such
that each optical trap has exactly one particle, the double-well trap behaves essentially
as an Ising spin. Antiferromagnetic coupling between the Ising variables, which is
essential for ice rules, comes from the repulsive interactions between colloidal parti-
cles [129]. In square arrays, the vertex where four traps meet corresponds to oxygen
atoms in water ice, while the colloidal particles act as protons. The Bernal-Fowler ice
rules then correspond to constraints that each vertex has exactly two colloidal parti-
cles. Brownian dynamics simulations of colloidal square ice find a finite ice regime at
moderate particle repulsion, and an ordered state at strong colloidal-colloidal inter-
actions [129]. Different lattice geometries such as kagome ice can also be realized in
a similar setup; a highly degenerate ice ground state is obtained in kagome colloidal
ice [130].

The same mechanism, namely repulsive interactions and double-well traps, can
be used to realize a novel vortex ice system in nanostructured superconductors [131].
In this setup, non-superconducting islands with the double-hump shape are placed
in a superconducting layer. These islands again serve as effective Ising spins when
trapping exactly one vortex. The repulsive vortex-vortex interaction then forces ice
rules at the junctions of the islands. Vortex ice phases have been observed experi-
mentally in nanostructured MoGe thin films [132]. In both colloidal and vortex ices,
the doping level can be easily controlled experimentally. For example increasing or
decreasing magnetic field controls the number of vortices. While empty traps are
equivalent to vacancy spins, a doubly-occupied trap corresponds to a double-arrow
spin, which has no counterpart in spin systems. It is found that adding colloidal
particles to the arrays produces dramatically different effects on square and kagome
colloidal ices [133]. We note in passing that a similar setup with vortex replaced by
magnetic skyrmion has also been proposed recently [134].
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Fig. 15.14 Artificial ice systems. a Artificial ices build on repulsive interactions between colloidal
particles or superconductor vortices. The dumbbell shaped double-well traps are arranged in a
square lattice. Each trap behaves as a giant Ising spin as the particle or vortex can be in one of the
two energy minima. b Rydberg cold atom realization of quantum square ice. c Orbital ice states
in p-orbital fermonic cold atoms on a diamond lattice. The blue arrays at the diamond-lattice sites
indicate the pseudo-vectors 〈λi 〉, while the red arrows specify the spins on the pyrochlore lattice.
Figure reprinted from [143] with permission from the American Physical Society.

Cold atoms in optical lattices provide another platform for engineering artificial
ice systems. Thanks to the high-degree of control over the atom dynamics and the
advances in creating complex optical lattices, cold-atom systems are used to realize
novel phases of matter and simulate complex many-body physics [135]. A recent
proposal of realizing quantum square ice in optical lattices [136] is based on the
well-established equivalence between hardcore Bose-Hubbard model and the XXZ
spin-1/2 Hamiltonian. In this mapping, the presence (absence) of boson corresponds
to spin up (down). These bosons are then placed at a checkerboard lattice, shown
in Fig. 15.14b. Recall that the Ising degrees of freedom of spin ice, e.g. center of
nano-islands in square ice array, form a checkerboard lattice; see Fig. 15.1. The
Bose-Hubbard Hamiltonian reads

HHB = −t
∑

〈i j〉
(b†i b j + h.c.) +

∑

i, j

Vi j ni n j , (15.9)

The density-density interaction, second term above, is mapped to the dominant Ising
interaction Vi jσ

z
i σ

z
j , that is essential for ice physics. However, the interaction poten-

tial has to be highly anisotropic and step-like such that Vi j is a constant for atoms
belonging to a square plaquette and zero otherwise; see (15.6) for the Ising ice
model. In particular, this requires the different couplings between nearest neigh-
bors in x and y directions: V x•• = V y◦◦ = V d•◦ �= 0, while V y•• = V x◦◦ ≈ 0, where V d•◦
denotes the coupling between the two sublattices along the diagonal directions; see
Fig. 15.14b. Thanks to the advances in Rydberg atom techniques, such complex inter-
actions can be engineered using the laser-excited Rydberg states [136]. For example,
the van derWaals forces are strongly anisotropic for Rubidium atoms excited to Ryd-
berg p states [137]. As in the colloidal ice case, doping is another control parameter
here and the square ice is realized at half-filling. The Rydberg atom ice offers the



15 Artificial Spin Ice: Beyond Pyrochlores and Magnetism 445

opportunity to investigate quantum fluctuations and dynamical emergent gauge field
in ice models [136].

While Rydberg quantum ice requires engineering of complex interactions, a novel
orbital ice phase occurs naturally in p-bandMott insulator in a diamond lattice [143].
Motivated by experimental advances on higher orbital bands of optical lattices [138–
140], cold atom systems have emerged as a new playground to investigate novel
many-body orbital physics [141]. A characteristic of orbital exchange is the strong
coupling between real and orbital spaces, giving rise to novel interactions such as
quantum compass and Kitaev models [142]. Here we consider a p-band Hubbard
modelwith spinless fermonic atoms on a diamond lattice. In theMott insulating phase
with two atoms per site, one fill the inert s band while the other occupies one of the
three p orbitals. The remaining local degrees of freedom are similar to 3-state Potts
variables, and they interact with each other through second-order exchange process.
The highly directional p-orbital hopping leads to a new quantum Hamiltonian on the
diamond lattice.

To describe the orbital exchange, we first define a pseudo-vector operator λ =
(λx , λy, λz) = (λ(6), λ(4), λ(1)) acting on the local px , py , and pz basis. Here the
components of λ are given by the three real-valued off-diagonal Gell-mann matrices;
they are the SU(3) analog of the Pauli σ x matrix. The operators have the following
non-zero elements: 〈py |λx |pz〉 = 〈pz|λy|px 〉 = 〈px |λz|py〉 = 1.Taking into account
only the dominant longitudinal hopping, the effective exchange Hamiltonian is given
by [143]

Htetrahedral = J
3∑

m=0

∑

〈i j〉‖n̂m

(
λi · n̂m

) (
λ j · n̂m

)
, (15.10)

where m = 0, 1, 2, 3 corresponds to the four different NN bonds; their orientations
are specified by unit vectors n̂0 = [111], n̂1 = [11̄1̄], n̂2 = [1̄11̄], and n̂3 = [1̄1̄1].
Because the anisotropic interactions involve the four n̂m of a tetrahedron, this Hamil-
tonian is called a quantum tetrahedral model [143]. The model is geometrically
frustrated in the sense that there is no way to minimize the NN interactions simul-
taneously. Monte Carlo simulations with variational product states of the form
|�〉 = ∏

i |ψi 〉 find extensively degenerate minimum energy states. Remarkably,
direct calculation shows that these product states are exact eigenstates of (15.10).
Huge degeneracy of the ground states is also obtained in exact diagonalization of
small clusters. Moreover, these product ground states are highly correlated; orbitals
in the degenerate manifold have to satisfy two constraints. (i) The expectation value
of the pseudo-vector only takes on six different values: 〈λi 〉 = ±x̂, ±ŷ, and ±ẑ.
(ii) Defining an Ising variable on each of the four bonds that attached to site-i :
σm
i ≡ √

3〈λi 〉 · n̂m = ±1, the NN pairs need to satisfy σm
i σm

j = −1.
It turns out these two constraints are equivalent to the ice rules [143]: the six

different 〈λi 〉 are mapped to the six distinct 2-in-2-out Ising spins, while constraint
(ii) ensures that consistent Ising spins can be assigned on the pyrochlore lattice.
Figure15.14c shows a generic disordered orbital ice state and the mapping to the
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spin-ice configuration on pyrochlore. The p-band Mott insulator in diamond lattice
thus provides an orbital analog of the ice phase. It is worth noting that, unlikemost ice
models with Ising degrees of freedom defined on a bi-simplex lattice (e.g. kagome or
pyrochlore), the fundamental variables in orbital ice are orbital triples on a bipartite
diamond lattice. The ice rules are emergent correlations in the ground state of the
quantum dynamics.

15.8 Conclusion and Outlook

To summarize, we have reviewed the fundamental theories and physical properties of
artificial spin ice, including the basic energetics and dynamics (Sect. 15.1), thermody-
namic phases (Sect. 15.2), effects of disorder, nonequilibrium dynamics (Sect. 15.3),
and elementary excitations (Sects. 15.4 and 15.5). Contrary to natural spin-ice com-
pounds, the artificial version of spin ice offers the opportunity for researchers to
tailor-design the many-body interactions and to directly probe the resultant dynam-
ics “microscopically” in real space. In particular, artificial spin ices provide a new
playground for scientists to explore the physics and technological applications of
emergent magnetic monopoles. This has inspired the study of a new field dubbed
magnetricity, which is the magnetic equivalent of electricity. An intriguing possibil-
ity is to use magnetic monopoles as binary mobile memory storages that also serve
as the information processing units. Taking advantage of the topological and collec-
tive nature of monopole excitations, artificial spin ice opens a new avenue to realize
massively parallel computation that goes beyond the conventional von Neumann
architecture [145].

While magnetic moments in natural spin-ice compounds are regarded as struc-
tureless entities, the Ising “spins” in artificial spin ices are themselves macroscopic
ferromagnets that exhibit complex textures and support spin-wave excitations. A
unique feature of artificial spin ice is thus the intriguing interplay between its two
basic elementary excitations: magnetic monopoles and magnons. As discussed in
Sect. 15.5, both the monopoles and the Dirac strings that connect them have unique
signatures in the spin-wave excitations of the nanomagnetic arrays. Several recent
studies along this line [146–148] have further established that artificial spin ices
can be viewed as reconfigurable and tunable magnonic crystals that can be used as
metamaterials for spin-wave-based applications at the nanoscale. This suggests the
fascinating possibility of dynamically controlling themagnon band structure through
the motion and configuration of magnetic monopoles.

Another new frontier is the study of electric charges flow through the nano-wires
in artificial spin ice. Recent experiments have demonstrated that connected artificial
ice arrays exhibit unusual and complex magneto-transport phenomena [98, 149–
151]. Remarkably, rather large Hall signals are observed in artificial kagome spin ice
even in the absence of external magnetic field [150]. Theoretical models based on the
anisotropicmagneto-resistance effect of permalloy show that significant contribution
to the Hall voltage comes from the vertex regions of the connected network [150,
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152]. Moreover, an effective circuit model has been developed to understand the
complex magneto-transport properties of artificial spin ice [152]. In this picture, the
system can be viewed as a resistor network driven by voltage sources that are located
at vertices of the spin-ice array. The differential voltages across different terminals of
these sources are related to the ice-rules that govern the local magnetization ordering.
The circuit model thus underscores the many-body origin of Hall signals in artificial
spin ice [152].

Artificial spin ice, originally designed to model the frustrated magnetic inter-
actions in pyrochlore spin-ice compounds, has now become a flourishing field of
research with rapid advances in several fronts. A central theme that drives this field
is the concept of frustration by design discussed in Sect. 15.6. Thanks to the impres-
sive progress in nano-fabrication and imaging technology, virtually any imaginable
lattice geometry can be fabricated and characterized in real space and real time. For
example, dedicated geometries have been proposed and realized to explore interest-
ing physics such as magnetic charge screening [114, 115], magnetic charge ice [144,
153], emergent dimensional reduction [154], topological lattice defects [155], and
nanoscale spin ratchet [156], to name but a few. The artificial spin array can be used
to dynamically imprint complex patterns of magnetic field on other interesting mate-
rials, e.g. superconductors, topological matters, and quantum heterostructures, thus
opening a new route to create multifunctional metamaterials and devices. Finally,
implementation of ice or frustrated systems in other setups as discussed in Sect. 15.7
introduces new dimensions, such as spin vacancy and quantum fluctuations, to the
already rich physics of spin ice materials.
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