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Preface

Most of us discovered magnetism during our childhood, intrigued by this invisible
force between the red and blue parts of a coloured bar magnet. This attraction—in
every sense of the term—resonates with explorers of distant worlds and their
compass, with the fridge magnets of our daily life, tokens of summer memories and
even with the powers of superheroes. The mysterious charm of magnets has often
piqued our curiosity and must have attracted many kids into science, including
maybe some of you, esteemed readers. How many of us have wondered how to
separate the red and blue parts of a magnet, keeping the north and south poles in
different hands? In this book, we will endeavour to show how our child dream can
be realised in a crystal known as “spin ice”.

The term spin ice was introduced by Mark Harris, Steve Bramwell and
collaborators in 1997. First applied to the rare-earth oxide, Ho2Ti2O7, this term
quickly covered a broad range of compounds, Dy2Ti2O7, Ho2Sn2O7, more recently
CdEr2Se4... with magnetic ions lying on the so-called pyrochlore lattice. While
magnets traditionally order when cooled down, resulting in a vanishing entropy,
spin-ice compounds turned out to remain disordered down to unexpectedly low
temperatures. The reason for this magnetic disorder is the presence of a macro-
scopically degenerate ground state with a finite residual entropy. And the key point
of the discovery is that this degenerate manifold is analogue to the one predicted by
Linus Pauling for water ice back in 1935! The spin moments of the magnetic
system respect the same local (ice) rule than the position of protons in water ice.
This analogy gave its name to spin ice and initiated decades of research between
chemists, experimentalists and theorists to understand this fascinating system.

To begin with, this degenerate ground state challenges our intuition. As con-
densed matter physicists, we often see the world through the prism of
Landau-Ginzburg-Wilson (LGW) theory. However, LGW theory relies on the
existence of an order parameter, and thus of a broken symmetry, which is absent in
spin ice. A new approach is thence necessary. Climbing on the shoulders of another
giant of the twentieth century—Philip Warren Anderson—the solution is to apply
the principle that “More is different”. The local constraint imposed by the ice rule
on spins translates into a coarse-grained zero-divergence constraint on the
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magnetisation field. In other words, the spin-ice ground state is described by a
fluctuating Coulomb gauge field, i.e. respecting the equations of a magnetic field.
This gauge field is populated by a disordered assembly of magnetic lines which are
the new, extended, degrees of freedom of the system. When these magnetic lines
cross the lattice, they carry a winding number allowing for the definition of topo-
logical sectors. By definition here, the winding number is proportional to the
magnetisation. Spin ice thus offers a unique opportunity to manipulate topological
sectors, inducing topological phase transitions, with external probes such as a
magnetic field.

But the magic of spin ice is that this emergent gauge field differs in one crucial
aspect from the standard description of electromagnetism. Excitations out of the
ground state are point-like topological defects, always created and annihilated by
pairs, that break the local zero divergence. As such these quasi-particles are sources
and sinks of the magnetic field in the crystal and behave precisely like positive and
negative magnetic charges! The long-range Coulomb potential between them is
simply a rewriting of the magnetic dipolar interaction between spins. Besides,
thanks to the remarkable geometry of the pyrochlore lattice these magnetic charges
are deconfined; two magnetic monopoles created by one single spin flip. This is the
definition of fractionalisation, a common phenomenon in one dimension, but a
remarkable feature in our three-dimensional world.

In a nutshell, the north and south poles of a (tiny) magnet can be separated in a
spin-ice crystal, making our child dream come true!

Since these magnetic charges are mobile, they rearrange the magnetic lines along
their wake and are responsible for non-trivial dynamics both at and out-of equi-
librium. On many aspects, the wake left by two monopoles moving away from each
other is a classical analogue of the Dirac strings hypothesised by Paul Dirac in
1931. When quantum fluctuations are included, quantum dynamics of the effective
magnetic field induces an emergent electric field. The analogy to electromagnetism
is then fully established—enriched with magnetic charges—and emergent photon
excitations become possible at very low energy.

Research on spin ice has been a remarkable example of joint evolution between
experiment and theory, with exciting experimental results leading to a constant
improvement of the model and motivating new directions, and with theoretical
ideas directly tested in the lab. For example, the zero-temperature residual entropy
was measured via calorimetry early on. DC– and AC–SQUID magnetometers were
also readily available to measure the susceptibility and magnetic relaxation. In
particular, magnetic relaxation offered one of the early experimental signatures of
magnetic monopoles in spin ice. Spin ice also owes part of its fame to the
impressive work of chemists who managed to grow single crystals long of several
centimetres. This achievement was instrumental in many ways. Because of the
single-ion anisotropy, it allowed for a systematic analysis using an external mag-
netic field applied along different orientations. These orientations were as many
viewpoints helping to build a global picture of spin-ice physics. By using a [111]
field as an effective chemical potential for monopoles, a liquid-gas phase diagram
with a critical end point was observed. This confirmed the interacting, but

vi Preface



nonetheless deconfined, nature of the magnetic charges. Additionally, big single
crystals made neutron scattering, and in particular inelastic and polarised neutron
scattering, accessible in the full three-dimensional Fourier space. Neutron scattering
quickly became the microscopic probe of excellence for spin ice. Correlations of the
Coulomb gauge field appear as a characteristic singularity called “pinch points”,
while the overall scattering pattern, reminiscent of a hexagonal snow flake,
nowadays serves as an icon of spin-ice physics. Chemical pressure—i.e. substi-
tuting a non-magnetic ion by another one—also became a powerful tool to tune the
Hamiltonian while approximately keeping the nature of the magnetic ions intact.

Where does spin ice stand in the Physics family picture? One of our goal in this
book is to show that what makes spin ice truly unique is not its specificity but rather
its generality. A special model or material sometimes provides crucial insights into
the mechanisms underlying our world. The Ising model gives us an essential per-
ception about phase transitions and critical phenomena. Spin ice is one of these gift
systems which unveil key aspects of physics. The passage from the microscopic
spin system to the emergent gauge field and topological sectors, as well as the
presence of magnetic monopoles, is well understood. Spin ice has become a text-
book example for concepts beyond the Landau-Ginzburg-Wilson paradigm that are
at the heart of modern-day condensed matter physics: topology, emergent phe-
nomena, fractionalisation... Most importantly, spin ice embodies these concepts in
real materials.

The generality of spin ice makes contact with diverse areas of physics. Its
macroscopic degeneracy is just one step away from the notion of quantum super-
position and the possibility of long-range entanglement. The quest for quantum
spin-ice materials, in the broad sense, is an active field of research and the diversity
of directions to consider makes it a very promising path for exotic physics. With the
emergence of magnetic charges, spin ice also offers a new platform for the study of
electrolytes, or more precisely “magnetolytes”, enriched by the plethora of exper-
imental probes available to magnetic systems. Playing with chemical pressure and
temperature, different regimes are available from weakly to strongly correlated. In
parallel, the extended degrees of freedom populating the ground-state manifold
share fundamental properties with polymers, cosmic strings and even Stochastic
Loewner Evolutions (SLE) in mathematics.

Moving away from standard spin ice, the coupling to itinerant electrons opens
the door to a new field. Itinerant spin ice is one of the cradles of the phenomenon
called topological Hall effect. The inherent non-coplanar magnetic configurations
lead to a finite spin-scalar chirality, which gives non-trivial transport properties with
an anomalous velocity of the propagating electrons. Another ambitious direction is
the engineering of spin ice via nanotechnology. Many aspects of spin ice can be
reproduced by using an artificial network of permalloy nano-islands, or colloids.
Artificial spin ice has become a field of research on its own, with its own challenges
and a rich versatility of models that are often limited only by the imagination of the
physicist.
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How to use this book? After the introductory chapters I and II, the book is
divided into two main parts: “canonical spin ice” (Chaps. 3–8) and “beyond spin
ice” (Chaps. 9–16). It is recommended to read the book linearly. However, since the
chapters are to a good extent independent, it is also possible to jump directly to the
chapter of interest, where references to the necessary notions in the book are
referenced. For a given topic, theory chapters are generally followed by their
experimental counterpart.

The introductory chapters provide a general background to understand the
crystal structure, its relation to the physical model and the chemistry of spin ice.
Chapter 1 addresses the microscopic basis of spin ice, where the canonical spin
Hamiltonian is derived from the underlying electronic model. Chapter 2 treats the
material basis of spin ice, introducing the synthesis of pyrochlore materials.

The first part provides a detailed presentation of classical spin ice. Chapter 3
introduces the concept of magnetic monopoles after describing the ground-state
Coulomb phase. It covers the concepts of residual entropy, emergent electromag-
netism and fractionalisation. Chapter 4 gives the collection of experimental results
on the dynamics of spin ice. Chapter 5 addresses the effect of a magnetic field along
different orientations, with a special focus on the liquid-gas-type phase diagram.
Chapter 6 details the topological structure of the ground-state manifold and its
analogy to loop models. Chapter 7 models spin ice as an assembly of monopoles,
and accounts for the unusual equilibrium/non-equilibrium properties of spin ice.
Chapter 8 focuses on the experimental verification of the Coulomb phase and
monopole description of spin ice.

The second part explores new areas beyond canonical spin ice, including
quantum coherence, itinerant electrons and artificial lattices. Chapter 9 gives the
theoretical introduction to quantum spin ice, based on the gauge-mean-field theory.
Chapter 10 presents the evidence, especially numerical, for the realisation of
quantum spin ice in microscopic theoretical models. Chapter 11 details the ana-
lytical technique indispensable to spin ice and quantum spin ice. Chapter 12
summarises the experimental status for the realisation of quantum spin ice, in the
broad sense, in pyrochlore oxides. Chapter 13 addresses the basics of itinerant spin
ice and its application to a material. Chapter 14 gives an experimental summary of
itinerant spin ice. Chapter 15 gives the theoretical description of artificial spin ice.
The final chapter, Chap. 16, summarises the experimental status of the field of
artificial spin ice.

Tokyo, Japan Masafumi Udagawa
Bordeaux, France Ludovic Jaubert
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Chapter 1
Spin Ice: Microscopic Physics

M. J. P. Gingras, P. A. McClarty, and J. G. Rau

Abstract This chapter describes themicroscopic physics of the rare-earth pyrochlore
oxides, focussing on the lattice structure, the strong spin-orbit coupling, the crystal
electric field and the large magnetic moment. We explain each of these in turn and
how they are connected before examining the types of interaction that may arise in
rare-earth pyrochlores. Taking all these ingredients together, we arrive at a relatively
straightforward effective model that is known to capture, in quantitative detail, the
thermodynamics of the classical spin ice materials.

1.1 Introduction

The remarkable collective magnetic behaviour of spin ice materials at low temper-
ature rests on the confluence of various microscopic properties. Starting from the
atomic physics of the lanthanides and through a rapid tour of aspects of 20th century
magnetism, we explain how spin ice physics originates. At the end of this chapter, if
we have done our job well, the reader should appreciate how spin ice physics arises
in rare-earth magnets and why the existence of spin ices is a robust consequence of a
few fundamental microscopic ingredients: the crystal structure, quantum mechanics
and spin-orbit coupling.
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Fig. 1.1 Illustration of a
projection of a part of the
pyrochlore lattice

Spin ice physics arises in materials with magnetic ions residing on sites of the
pyrochlore lattice of corner-sharing tetrahedra depicted in Fig. 1.1. It is useful to view
the pyrochlore lattice as a face-centered cubic (FCC) Bravais lattice with a tetrahe-
dral basis. The pyrochlore lattice is one of a handful of regular three-dimensional lat-
tices of corner-sharing triangular or tetrahedral units. Examples of three-dimensional
corner-sharing triangular lattices include the garnet lattice which is the lattice occu-
pied by magnetic Gd3+ ions in Gd3Ga5O12 [1–3] and the hyperkagomé lattice occu-
pied by magnetic Ir4+ in Na4Ir3O8 [4]. The pyrochlore structure itself is known
to arise in various spinels with composition AB2O4 [5] where the magnetic B ions
live on the pyrochlore sites and in the pyrochlore form of FeF3 where the magnetic
Fe3+ ions occupy a regular pyrochlore lattice [6]. The family of compounds with
this lattice structure that have attracted the most interest over the past twenty-five
years or so are the “227” materials [7], A2B2O7, where both the A and B ions live
on the respective sites of two distinct but interpenetrating pyrochlore lattices. This
chapter focuses on the latter class of materials. Even among examples of this class,
there are cases with magnetic ions on the A sites alone (e.g. Tb2Ti2O7 [8]), only the
B sites (e.g. Y2Mo2O7 [9]) and both sites (e.g. Tb2Mo2O7 [10]). The known spin
ice materials are A site 227 materials, which originally counted Ho2Ti2O7 [11] and
Dy2Ti2O7 [12], but now also comprise Ho2Sn2O7 [13, 14], Dy2Sn2O7 [13, 15],
Ho2Ge2O7 [16] and Dy2Ge2O7 [16]. Spin ice behaviour has also been reported in
the CdEr2Se4 spinel, where Er3+ is the magnetic ion [17].

Before discussing the physical realization of spin ice physics in real materials,
we introduce what is perhaps the simplest pyrochlore spin ice model [18, 19]. We
consider magnetic moments on the sites of the pyrochlore lattice with a strong Ising
anisotropy. On each site i, we denote the angular moment as Ji. Due to the anisotropy,
this is an Ising variable and may be written as Ji = Jσi ẑi, where J is the magnitude
of the angular momentum, σi = ±1 and ẑi is the moment orientation relative to the
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lab frame and which is along the local cubic [111] direction. Now, suppose there is
a Heisenberg exchange coupling between nearest-neighbour moments of the form

H = −Jex

∑

〈ij〉
Ji · Jj = −Jex J2

∑

〈ij〉
(σiσj) ẑi · ẑj. (1.1)

Here we are using a convention where Jex > 0 represents ferromagnetic coupling
between the Ji while Jex < 0 is antiferromagnetic. Since these moments are con-
strained by the strong anisotropy to point along the local cubic [111] directions,
we have ẑi · ẑj = −1/3 for nearest neighbours. Thus, in the local frame, the model
with original ferromagnetic Jex > 0 becomes an effective antiferromagnetic Ising
model on the pyrochlore lattice with couplingJexJ2/3 [18, 19]. We may write the
Hamiltonian in the form

H = Jex
J2

3

∑

〈ij〉
σiσj = Jex

J2

3

1

2

∑

�

⎡

⎣
(

∑

i∈�
σi

)2

− 4

⎤

⎦ ,

where the sum
∑

� runs over all tetrahedra formed by the nearest-neighbour bonds.
It is clear that the ground state has all

∑
i∈� σi = 0; in other words, two spins are+1

and two spins are −1 on each tetrahedron. This local constraint is called the “ice
rule”.1 However, so far, there is nothing special about this constraint: it arises in any
antiferromagnetwith an evennumber of spins in a fully connected cluster out ofwhich
the lattice may be built. The remarkable feature of this model lies in the number of
ways the local constraint may be satisfied. On a bipartite lattice, say a cubic lattice for
which the elementary unit is a single cube, the lattice can be tiled in only two distinct
ways. On the pyrochlore lattice, the number of ground states scales exponentially in
the volume of the system [22]. One way of seeing this is as follows: we draw a curve
through each vertex of the A tetrahedra with one spin pointing into the tetrahedron.
In the ice state, each tetrahedron has two such vertices so such a curve must either
extend across the system or close up on itself. Conversely, each ice state can be
viewed as a tangle of loops such that a loop passes through every tetrahedron exactly
once. The set of ice states corresponds to the complete set of such loop coverings on
the lattice. Evidently, as the number of sites increases arithmetically, the number of
such configurations increases exponentially. A rough way of counting the number of
such states, due to Pauling who first performed the analogous calculation for water
ice [23], is to reweight the total number of spin configurations 2N by the number of ice
states per tetrahedron, which is 6 out of 16 states. We find 2N (6/16)N/2 states where
N/2 is the number of tetrahedra for a system with N spins. This gives the famous

1 Specifically, this is the second Bernal-Fowler ice rule which specifies that in common hexagonal
water ice, two protons must be “near” and two protons must be “far” from each oxygen O2− ion
[20, 21]. The first Bernal-Fowler ice rule, which is not relevant to spin ice, states that there must be
one and only one proton on each O2−–O2− bond.
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Pauling entropy [23] of (NkB/2)ln(3/2) which is an excellent approximation to the
exact entropy for this model.2

In summary, the pyrochlore lattice Ising model of (1.1) has an extensive ground
state degeneracy composed of all states satisfying the so-called ice rule. This is
quite different from most magnetic systems, Ising or not, which typically have a
subextensive ground state entropy. The remarkable consequences of the enormous
density of magnetic states and their unusual correlations will occupy much of the
rest of this volume. However, in the remainder of this chapter, we shall see how a
variant of (1.1) arises in real magnetic pyrochlore oxide materials. The outline of the
chapter is as follows. In the next section, we discuss the principal energy scales in
rare-earthmagnets and the nature of the atomicmoments. In Sect. 1.3,we describe the
crystal field and its consequences, and finally, in Sect. 1.4, we indicate how effective
magnetic couplings between the rare-earth ions arise from the microscopic physics.

1.2 Rare-Earth Magnetism

As discussed in the Introduction, known examples of spin ice physics occur in rare-
earth pyrochlore oxides [7]. In these materials, the magnetism originates from the
rare-earth (lanthanide) ions due to the presence of unpaired 4f electrons, with the low
energy physics deriving from a hierarchy of energy scales. The spin-orbit coupling
is a dominant magnetic energy scale - on the order of 1 eV and hence comparable
to other atomic energy scales. Also, the 4f orbitals are well-localized so that the
Hund’s coupling in these systems is large. Below this scale, at around 0.01 – 0.1 eV,
there is a crystal field and, finally, couplings between the moments are on the scale of
0.01 – 0.1 meV. This large separation of energy scales is central to the manifestation
of spin ice physics.

From the strong spin-orbit coupling, it follows that the atomic magnetic energy
levels are, to an excellent approximation, eigenstates of the total angular momentum
J ≡ L + S. Since the Hund’s coupling is large, Hund’s rules work well in this class
of magnets so the moment of the “would be free” rare-earth ions may be determined
straightforwardly from the electronic configuration. The rare-earths tend to form
tri-valent ions in the solid state, though Ce and Pr often adopt a tetravalent (4+)
valence state and Eu and Yb can be divalent (2+). To take the example of Ho3+
with configuration [Xe]4f 10, Hund’s rules imply that L = 6, S = 2 and J = 8. For
Dy3+, we have [Xe]4f 9 and so L = 5,S = 5/2 and J = 15/2.3 The combination of f
electron physics, with the associated strong spin-orbit coupling, can evidently cause

2 Within the Pauling approximation, the entropy for water ice and spin ice are the same. The small
corrections to Pauling’s value for water ice [24] and spin ice [25] have been computed. These
corrections are not exactly the same for the two systems since water ice is hexagonal while spin ice
is cubic.
3 Both Ho3+ and Dy3+ have more than a half-filled 4f shell and thus J = L + S is maximized as
opposed to being minimized (J = L − S) for a less than half-filled shell [26].
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the intrinsic magnetic moment to be large [26]. We shall return to this important
point later in the chapter.

Following the arguments above, an effective model for the magnetism in the rare-
earth pyrochlore oxides begins with well-defined moments of total angular momen-
tum J. Such a model takes the following schematic form

H = HCF + HInt + HME + HZ, (1.2)

where HCF is the single-ion crystal field which is discussed in the next section.
HInt contains the interactions between the rare-earth ions and
HZ = −gLμB

∑
i Ji · B is the Zeeman coupling of the moments to an external mag-

netic field B where gL is the Landé g-factor and μB is the Bohr magneton. The
spin-orbit coupling allows lattice and magnetic degrees of freedom to hybridize. The
magneto-elastic coupling, HME, includes terms coupling the single-ion moment to
the lattice as well as a coupling between the magnetic exchange and the structural
degrees of freedom. Such couplings have been shown to be significant in spin ice
materials through ultrasound measurements in a magnetic field [27], but they do not
appear to have a direct bearing on the static properties of these materials at temper-
atures below O(101)K. In the next section, we focus on HCF, which is the largest of
these pieces.

1.3 Single-Ion Physics

After spin-orbit coupling, Hund’s coupling and the Coulomb interaction, the next
most important energy scale in rare-earth magnets is the crystal field. This is the
electrostatic interaction between the electronic charge density at the magnetic ion
and its local anisotropic environment. Owing to the spin-orbit coupling, this splitting
of electrostatic origin lifts the 2J + 1-fold degeneracy of the atomic levels, in a way
that is partly constrained by the symmetry of the crystal at themagnetic sites [28–31],
thus generating magnetic anisotropy.

The fact that lattice symmetry plays an important role in determining the crystal-
field physics [28–31] gives us an opportunity to discuss the crystal structure of the
A2B2O7 pyrochlores, with A3+ a lanthanide rare-earth ion, in some more detail [7].
In spin ice materials, the lattice symmetries are characterized by the space group
Fd3̄m. The pyrochlore sites belong to the 16d Wyckoff sites for this space group,
the titanium sites occupy the 16c sites which, as mentioned in the Introduction, also
form a pyrochlore lattice. The oxygen ions occupy the 48f and 8b sites. These site
symmetries allow for a single free parameter, x, which controls the position of the
oxygen at the low symmetry 48f site. ForHo2Ti2O7,x ∼ 0.3285while x ∼ 0.3275 for
Dy2Ti2O7 [7]. For x = 3/8, the oxygen ions neighbouring each rare-earth magnetic
ion would form a perfect cube. For x �= 3/8, this cube becomes distorted along the
local crystallographic cubic [111] direction, forming a ditrigonal scalenohedron, so
that each magnetic ion has a local D3d point group symmetry which includes a three-
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Fig. 1.2 Illustration of the positions of the oxygen ions neighbouring each rare-earth ion (white
circle). The oxygen cage is a cube that has been elongated along the crystallographic [111] direction.
The central white ion linking the two tetrahedra is a rare-earth ion. The six black oxygen ions that
surround it occupy the 48f positions on a puckered hexagon while the two gray oxygen ions at the
center of the two tetrahedra occupy the 8b positions

fold rotation about the appropriate [111] direction [7]. The oxygen cage around each
rare-earth ion is illustrated in Fig. 1.2.

We now present a streamlined discussion of the theory of the crystal field interac-
tion. For further details we refer to [28–31]. Consider a single magnetic rare-earth
ion centered at the origin. The electrostatic potential V at the rare-earth ion due to
the neighbouring ions is given schematically by

HCF =
8∑

i=1

V(r − Ri) + · · · , (1.3)

where the ellipsis denotes ions beyond the neighbouring shell of the nearest eight
oxygen ions and

V(r − Ri) = eQ

4πε0

∫
d3r

ρ(r)
|r − Ri| , (1.4)

with ρ(r) the 4f electron density at r and Q is the effective (screened) charged of
the surrounding O2− ions. This Hamiltonian must be invariant under the elements
of the local rare-earth site symmetry group D3d. The Wigner-Eckart theorem tells
us that the matrix elements of the crystal-field Hamiltonian can be computed from a
Hamiltonian written in terms of effective operators which are polynomial in the total
angular momenta components Jα . Also, the crystal-field matrix elements involve
atomic 4f wavefunctions with orbital angular momentum L = 3. Since there is a
pair of such wavefunctions in the matrix element, the rules of addition of angular
momenta imply that the effective crystal-field Hamiltonian should contain operators
that are products of at most six Jα . A further constraint is that operators with odd
total angular momentum cannot arise due to time-reversal symmetry. The local D3d
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point group symmetry imposes a further considerable restriction on the form of the
Hamiltonian so that, in the end, the crystal-field Hamiltonian takes the form

HCF = B0
2Ô

0
2 + B0

4Ô
0
4 + B3

4Ô
3
4 + B0

6Ô
0
6 + B3

6Ô
3
6 + B6

6Ô
6
6, (1.5)

where Ôm
l are the so-called Stevens operators which transform like spherical har-

monics Ym
l under rotations [32]. The Stevens operators can be written in terms of

products of angular momentum operators. For example, Ô0
2 ≡ 3J2z − J(J + 1) and

Ô6
6 ≡ (1/2)(J6+ + J6−). In summary, the effect of the crystal field on the 2J + 1 mag-

netic levels is strongly constrained by the general considerations given above leaving
at most six free Bm

l parameters. We discuss below the experimental determination of
these parameters and hence the single-ion crystal-field level wavefunctions.

First, we describe the qualitative features of the crystal-field splitting produced by
(1.5). One should draw a distinction between half-odd integer (Kramers) or integer
(non-Kramers) total angular momentum, or equivalently having, respectively, an odd
or even number of electrons in the 4f shell. In the former case, time reversal symmetry
ensures that the degeneracy of the levels split by the crystal-field potential is an even
number. In the latter case, there is no such constraint and any degeneracy is protected
solely by the crystal symmetries. The overall scale of the crystal-field splitting is
about 0.1 eV (103 K) in the rare earths with typical inter-level splittings of order 101

to 102 Kelvin [7].
One important consequence of the crystal-field splitting is the generation of a

magnetic anisotropy at the single-ion level. Owing to the D3d site symmetry, this
anisotropy has one distinguished axis which is along the local ẑi ([111]) direction
for each magnetic sublattice. We consider those cases where the crystal-field ground
state is a doublet which is relevant to the spin ices [33]. If the doublet states are
denoted |+〉 and |−〉, the magnetic anisotropy is determined by the matrix elements
of J = (Jx, Jy, Jz) computed from these states where the components are naturally
taken to refer to a frame with ẑ axis along this local [111] direction.

More explicitly, the magnetic dipole moment μ is given by μ = gLμBJ where,
again, gL is the Landé g-factor. Defining pseudo-spin operators for the doublet as
S = 1

2

∑
αβ=± |α〉 〈β| σ αβ , where σ = σ xx̂ + σ yŷ + σ z ẑ with σμ the μ component

Pauli matrix, and where we define the g-tensor asμ ≡ μBg · S. In this local basis, the
g-tensor is diagonal and can be parameterized as g = (g⊥, g⊥, g‖). For non-Kramers
ions, the time reversal properties of the states ensure that one can choose a basis such
that the matrix elements of Jx and Jy vanish leaving only 〈+| Jz |+〉 = − 〈−| Jz |−〉.
Such a moment is Ising-like with g⊥ = 0, with this anisotropy being protected when
the scale of coupling between the moments is much smaller than the gap to the first
excited crystal-field level. This is the case for the Ho2(Ti,Sn,Ge)2O7 classical spin
ices, but not for Tb2(Ti,Sn,Ge)2O7 [7]. In Kramers ions, the local crystal symmetry
determines the crystal-fieldwavefunctions but not their ordering in energy. In general,
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both g⊥ and g‖ are nonzero. Strong single-ion Ising magnetism then corresponds to
the limit g⊥/g‖ → 0. This is the case for the Dy2(Ti,Sn,Ge)2O7 classical spin ices.4

Because crystal-field doublets in non-Kramers ions are protected only by the
crystal symmetry, time reversal invariant perturbations such as lattice distortionsmay
break the degeneracy. In Ho2Ti2O7 spin ice, no splitting of the ground state crystal-
field doublet has been detected and it is clear that the energy scale of interactions
between the moments is much greater than any such splitting. The reason for the
lack of a Jahn-Teller distortion is that the ground state doublets are predominantly
|J = 8,M = ±8〉 angular momentum states, which are not directly mixed by the
magneto-elastic coupling [33], so splittingwould involvemixingwith excited crystal-
field states [34]. In that case, the doublet is protected by the large crystal-field gap
� ∼ 280 K. We note, however, that a large gap is not a necessary condition for the
preservation of a magnetic doublet in non-Kramers magnets: the single-ion doublet
is seemingly not split in the non-Kramers pyrochlores Tb2Ti2O7 [35] and Pr2Zr2O7

[36], which have a gap, �, much smaller than Ho2Ti2O7. In these materials, any
splitting appears significantly smaller than the scale of the magnetic interactions.

Kramers crystal-field doublets are protected by time reversal symmetry— like the
atomic angular momentum J, they transform non-trivially under time-reversal. How-
ever, though it superficially resembles a spin-1/2, this doublet need not transform
like one under lattice symmetries. For example, in Dy3+ in Dy2Ti2O7 spin ice, most
of the weight of the ground state single-ion wavefunction is concentrated at large
M from which it follows that transverse matrix elements of the angular momentum
are small and the free ion has an Ising response to a magnetic field. Yet, the three
components of the pseudo-spin do not transform in the same way. In particular, one
of the transverse components transforms like a component of an octupole under lat-
tice symmetries while the other two components transform like a dipole [37]. The
transformation properties of the single-ion doublet in Ho2Ti2O7 and Dy2Ti2O7 con-
strain the form of the transverse part of magnetic exchange interactions between
the pseudo-spins in different ways [33]. While these interactions are known to be

4 As we are ultimately interested in the collective magnetic properties of these rare-earth pyrochlore
materials, it is useful here to comment on some aspects of time-reversal symmetry of the crystal-
field states for the rare-earth ions. For even electron systems, the action of the time reversal operator
	 is 	2 = 1 in contrast to the case of odd electron systems for which 	2 = −1. In general, for the
amplitude corresponding to total angular momentum and its projection onto the ẑ axis |J,M〉, time
reversal acts like 	cJM |J,M〉 = (−)J+M(cJM)
 |J,−M〉. Here, cJM are expansion coefficients in the
spectral decomposition of the crystal field doublet in terms of |J,M〉. For a non-Kramers doublet,
	|±〉 = |∓〉. The crystal-field Hamiltonian can be chosen to have real matrix elements in the basis
of J,M and likewise for the eigenstates. Now, consider matrix elements of transverse components
of the angular momentum between the two states of the crystal-field ground doublet.

〈+| J+ |−〉 = 〈+| 	†	J+	†	 |−〉 = − 〈−| J− |+〉 . (1.6)

Furthermore, 〈+|J+|−〉 = 〈−|J−|+〉
. It follows that the matrix element vanishes. No such con-
straint holds for matrix elements between identical states of the doublet. However, we may show
that

〈+| Jα |+〉 = 〈+| 	†	Jα	†	 |+〉 = − 〈−| Jα |−〉 . (1.7)

The doublet corresponds to an Ising degree of freedom if these matrix elements are nonvanishing.
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small [33], their small nonzero values may have implications for low temperature
dynamics of these two materials [38–41].

So far, we have discussed the properties of the crystal-field ground state in terms
of matrix elements of the angular momentum J. It is also worth mentioning that
operators polynomial inJ of higher degreed ≤ 2Jwill, in general, have nonvanishing
matrix elements between the states of the doublet. In other words, the doublet has
a series of multipole moments. We have focussed on the dipolar component for
the purposes of introducing the essential background to spin ice physics. However,
we return in the next section to the multipole components when we discuss the
interactions between the magnetic ions defined by HInt.

The crystal-field parameters Bm
l are commonly fitted using various spectroscopic

data. Crystal-field excitations in the rare-earth pyrochlore can be sharply resolved
using, for example, inelastic neutron scattering, electron spin resonance (ESR) and
Raman scattering. Several studies have been devoted to refining the crystal-field
parameters in spin ice materials Dy2Ti2O7 and Ho2Ti2O7 [42–48]. The data consists,
in each case, of transition energies and intensities. Since these can be computed
straightforwardly from (1.5), the data can be used to obtain the Bm

l parameters. In
such an analysis, at least for Ho2Ti2O7 and Dy2Ti2O7, one need not worry about
couplings between the moments because these lie at a much lower energy scale than
the crystal-field splitting. The situation for Tb2Ti2O7 is more complicated [49–51].
To our knowledge, the earliest such study of the crystal field in a spin ice material
(Ho2Ti2O7) was based on a fit to inelastic neutron data described in [42]. The crystal-
field level scheme obtained from that work consists of a ground state doublet with a
moment of about 10 μB followed by another state at about 20 meV. The ground state
wavefunction arising from the fit is predominantly |J = 8,M = ±8〉. These results
on Ho2Ti2O7 have been corroborated by other studies [46, 47]. The overall spectrum
spans an energy of about 80 meV which is typical in these materials. For Dy2Ti2O7,
susceptibility measurements allow a determination of the moment in the crystal-
field ground state of about 10 μB [43] and a Raman scattering study [45] suggests
a crystal-field gap of about 35 meV. In order to be compatible with the measured
moment, the ground state doublet of Dy2Ti2O7 must have its weight concentrated in
the |J = 15/2,M = ±15/2〉 states [33].

1.4 Microscopic Interactions in Insulating Rare Earth
Magnets with Application to the Spin Ices

With the single-ion properties well-established, we now can move on to describing
the interactions between the rare-earth ions. These will be most conveniently formu-
lated within the J-manifolds, a level of description lying part way between the bare
atomic rare-earth 4f electrons and the crystal-field ground state doublets. There are
many different microscopic mechanisms that contribute to such interactions, includ-
ing magneto- and electrostatic interactions, super-exchange, direct exchange and
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more [33]. Of these, the magnetostatic and super-exchange interactions are believed
to be most important in the canonical spin ices Dy2Ti2O7 and Ho2Ti2O7.

We first tackle the direct magnetostatic interaction. This magnetic dipole-dipole
interaction (MDD) is not only one of the simplest but, due to the large moment
μ = gLJμB ∼ 10μB of the free Dy3+ and Ho3+ ions, it is also the largest interaction
present both in Ho2Ti2O7 and Dy2Ti2O7. It can be written

HMDD = μ0

4π

∑

i<j

[
μi · μj

|rij|3 − 3
(
μi · r̂ij

) (
μj · r̂ij

)

|rij|3
]

, (1.8)

where rij = ri − rj is the vector from site i to site j and r̂ij ≡ rij/|rij|. The strength
of this interaction is known exactly without adjustable parameters, fixed by electro-
magnetic constants and the single-ion magnetic moment μi = gLμBJi. Projecting
into the ground doublet maps PJiP = 1

2g‖σ z
i ẑi and gives the dipolar Ising model

[52, 53]

HMDD = Dr3nn
∑

i<j

[
ẑi · ẑj
|rij|3 − 3

(
ẑi · r̂ij

) (
ẑj · r̂ij

)

|rij|3
]

σ z
i σ

z
j , (1.9)

whereD = 1
4g

2
‖μ

2
Bμ0/(4πr3nn) and rnn is the nearest-neighbour distance. This dipolar

coupling has often been presented through the value taken for nearest-neighbour sites,
Dnn ≡ 5D/3 ∼ 2.35 K for both Dy2Ti2O7 [52, 53] and Ho2Ti2O7 [58].

The derivation of the super-exchange interaction is significantly more involved,
thoughwewill see that, in the end, its consequences are rather simple. Fundamentally,
super-exchange arises through virtual processes that transfer charge between the rare-
earth ions. As the separation of the rare-earth ions is large compared to their size, this
charge hopping is expected to be mediated through the surrounding ligands. Even
proceeding through these ligands, these processes decay rapidly with distance and
thus can be considered to be limited to nearest neighbours to a good approximation.
The simplest setting in which to discuss super-exchange is perhaps the single-orbital
Hubbard model [29],

− t
∑

〈ij〉

(
c†iσ cjσ + h.c.

)
+U

∑

i

ni↑ni↓, (1.10)

where c†iσ creates an electron at site ri with spin σ =↑,↓ and t is the hopping
amplitude between nearest-neighbour sites. Super-exchange manifests itself in the
localized limit where U � t. Including the virtual charge transfer processes at 2nd
order in degenerate perturbation theory yields an effective antiferromagnetic spin-
spin interaction

2t2

U

∑

〈ij〉

∑

σσ ′

(
P1c

†
iσ ciσ ′P1

) (
P1c

†
jσ ′cjσP1

)
= 4t2

U

∑

〈ij〉
Si · Sj, (1.11)
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where P1 projects into singly occupied states, those which minimize the Hubbard
interactionU . In this simple case, the form of the exchange interaction is completely
dictated by spin rotation symmetry and the fact that for S = 1/2 the spin operators
Si form a complete basis at each site. This basic picture in fact carries over to
the multi-orbital case where the orbital angular momentum is quenched and the
moment is spin only. In this more general setting, though the spin moment can
have S > 1/2, the interactions remain predominantly Heisenberg-like, as in (1.11),
at lowest order in the virtual charge transfer processes. Terms that go beyond this,
such as a biquadratic coupling ∼ (

Si · Sj
)2
, only appear through higher order virtual

charge transfer processes [29]. This general fact can be understood by noting the two
electron hops in the 2nd order process can transfer at most 1/2 + 1/2 = 1 units of
(spin) angular momentum. If the on-site interactions preserve the total spin, then this
implies that only interactions between vector (rank-1) operators such as Si will be
generated at leading order.

After this short detour we are ready to confront the large J moments relevant for
Dy2Ti2O7 and Ho2Ti2O7. Due to the large spin-orbit coupling, these moments are
decidedly not spin only and have large contributions coming fromboth the orbital and
spin moments of the electrons. Following the argument above, we see that without
the quenched orbital moment the virtual processes will depend strongly on the orbital
content of the hoppings. The analogue to (1.10) is given by

−
∑

〈ij〉

∑

mm′

∑

σ

(
tmm

′
ij f †imσ fjm′σ + h.c.

)
+

∑

i

Hion(i), (1.12)

where f †imσ creates an f electron at ri with orbital quantum number m = 0,±1,±2,
±3 with spin σ =↑,↓. The single-ion Coulomb repulsion, spin-orbit coupling and
crystal field are encapsulated in the last term, Hion(i). The hopping interactions tmm

′
ij

can be generated by a variety of processes. For example, they can arise via the
intermediate oxygen ligands, where they would be of order ∼ t2pf /�pf , where tpf is
a measure of the f -p rare earth-oxygen atomic wavefunction overlap, and �pf is the
energy cost to create a hole on the oxygen site. Though important quantitatively, we
will not need to get into the details of the structure of these hoppings to understand
their implications for spin-ice physics.

As carrying out the relevant 2nd order perturbation theory with the full single-ion
interactions is quite complicated, for illustrative purposes we shall make the drastic
“charging-approximation” that nonetheless preserves all of the essential features of
the full result [33]. This approximation assumes that the energy to add or remove an
electron, E(f n±1) − E(f n) ∼ U , where n = 9 for Dy3+ and n = 10 for Ho3+, dom-
inates over the smaller splittings within each f n manifold. These smaller splittings
arise due to interactions such as Hund’s or spin-orbit coupling that depend on more
than simply the overall charge. As these are still much larger than the hoppings, the
interactions can then be projected into the final J-manifold as determined by Hund’s
rules. The smaller crystal-field terms will be treated at leading order in perturbation
theory along with the hoppings t. The derivation of the effective Hamiltonian then
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closely follows the textbook derivation of (1.11) and yieldsHeff = HSE + ∑
i HCF(i)

in which we have re-introduced the crystal-field interaction in HCF(i) as it appeared
in (1.5) and

HSE =
∑

〈ij〉

∑

mα,m′
α

∑

σα

2t
m1m′

1
ij t

m2m′
2

ij

U

(
PJ f

†
im1σ1

fim2σ2
PJ

) (
PJ f

†
jm′

2σ2
fjm′

1σ1
PJ

)
, (1.13)

where PJ projects into the J = 15/2 states for Dy3+ and the J = 8 states for Ho3+.
The structural similarity to the simple Heisenberg model shown in (1.11) is apparent.
The combinations ∼ PJ f

†
imσ fim′σ ′PJ are local to each site and thus can be expressed

via functions of the moment operators Ji. As discussed in the previous section these
J-manifolds carrymuchmore than just amagnetic dipolemoment, supporting awide
array of higher multipole moments. These multipole operators can be defined using
the same Stevens operators Ôq

k (Ji) that appear in the crystal-field potential with k
being the rank of the multipole which runs from 0 to 2J. The operators appearing in
the super-exchange interaction can thus be written in terms of these multipoles as

PJ f
†
imσ fim′σ ′PJ =

∑

kq

Amm′σσ ′
kq Ôq

k (Ji). (1.14)

Applying this to each part of (1.13), the super-exchange interactions can thus be
schematically written as

HSE =
∑

〈ij〉

∑

kk ′

∑

qq′
Mkk ′qq′

ij Ôq
k (Ji)Ô

q′
k (Jj), (1.15)

where the Mkk ′qq′
ij elements encode a very large number of possible interactions

constants built from the tmm
′

ij hoppings, the Coulomb repulsion U and the Amm′σσ ′
kq

constants.
Admittedly, the full complexity of the multipolar interactions described by (1.15)

is daunting. This is further compounded by the fact that this is in some sense the
simplest treatment of these interactions; forgoing the simplifying approximations we
exploited will further increase the complexity. Even projecting into the ground dou-
blet offers little helpwithout further information on the structure of these interactions.
This stands in stark contrast to the essentially parameter-free magnetic dipole-dipole
interaction we encountered earlier in (1.9). Thankfully, all is not lost: building on
the observation we used to constrain the spin-only case, we can prune these inter-
actions to a much more manageable level. Consider then the operators f †imσ fim′σ ′ and
the constraints on how the spin and orbital angular momentum can be transferred.
We see that this operator can transfer at most 1/2 + 1/2 = 1 units of spin angular
momentum, and at most 3 + 3 = 6 units of orbital angular momentum. Thus this
operator can carry at most 6 + 1 = 7 units of total angular momentum, or equiva-
lently can only be composed of multipole operators of rank-7 or smaller. This result
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holds true even if we lift some of the approximations made to arrive at (1.13), such as
the charging-approximation [33], strongly constraining the multipolar interactions
in (1.15). Note that even though the rank of the multipoles is constrained, the allowed
multipolar interactions strongly deviate from the purely Heisenberg or rank-1 inter-
actions onemight naïvely expect. Indeed, the Heisenberg interaction we used in (1.1)
was simply a convenient fiction; the true interactions in the J-manifold are highly
anisotropic and involve many multipolar couplings [33].

With these facts in hand, we are now ready to project into the ground doublets of
Dy3+ and Ho3+. Consider a multipole operator Ôq

k (Ji) with rank k ≤ 7. Since the
crystal-field doublet is almost perfectly of the form |±〉 ≈ |J,M = ±J〉 for these two
ions, only operators with q = 0 have diagonal matrix elements and only operators
with q = ±2J have off-diagonal matrix elements. Since for both Dy3+ and Ho3+
one has 2J > 7, the off-diagonal matrix elements of the super-exchange vanish for
all multipoles that are coupled via super-exchange. Explicitly, we therefore have for
these two ions

〈J,±J| Ôq
k (Ji) |J,±J〉 =

{±λkδq0, k odd
const., k even

, 〈J,±J| Ôq
k (Ji) |J,∓J〉 = 0 .

(1.16)
We thus see that all of the multipoles Ôq

k (Ji) originating from super-exchange project
into the Ising variable σ z

i or an irrelevant constant. The super-exchange interactions,
when projected into the ground state doublets, are thus reduced to

PHSEP = P
∑

〈ij〉

∑

kk ′

∑

qq′
Mkk ′qq′

ij Ôq
k (Ji)Ô

q′
k ′ (Jj)P = Jnn

∑

〈ij〉
σ z
i σ

z
j + const. (1.17)

The entire set of couplingsMkk ′qq′
ij has been encapsulated via the λk parameters into

a single parameter Jnn, a nearest-neighbour Ising interaction.
The final set of interactions between the ground doublets of Dy3+ and Ho3+ thus

include the magnetic dipole-dipole interactions and super-exchange contribution to
the nearest-neighbour term. This is the dipolar spin ice model (DSI) [52, 53]

HDSI = Jnn
∑

〈ij〉
σ z
i σ

z
j + 3Dnnr3nn

5

∑

i<j

[
ẑi · ẑj
|rij|3 − 3

(
ẑi · r̂ij

) (
ẑj · r̂ij

)

|rij|3
]

σ z
i σ

z
j . (1.18)

This model has one free parameter (Jnn) that can be determined by comparison with
experimental data. Fitting to the observed properties of Dy2Ti2O7 and Ho2Ti2O7,
one finds this nearest-neighbour part to be significant, with Jnn ≈ −1.1 K for
Dy2Ti2O7 [53–57] and Jnn ≈ −0.52 K in Ho2Ti2O7 [58]. A naive super-exchange
calculation also argues for a negative Jnn [33].

One key feature of this model is that it is purely classical, without any transverse
effective exchange between the two states of the ground doublets. It is most important
to realize this is not simply a consequence of the large J; such a semi-classical argu-
ment only holdswhen the rank of themultipolar interactions aremuch smaller than J.
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Nor is it a consequence of the Ising nature of the single-ion ground crystal-field dou-
blet alone (g⊥ ≈ 0). In our discussion we instead saw that this was a consequence of
the microscopic structure of the super-exchange interactions and the spectral |J,M〉
decomposition of the |±〉 doublet states. Specifically, the key ingredients were (a)
the rank-7 limit to the super-exchange interactions and (b) the strongly predominant
|J,M = ±J〉 composition of the ground doublets. A third implicit assumption was,
(c) due to the large crystal-field energy scale ∼ 300 K, we could project into ground
doublets and ignore further perturbation corrections from the excited states. Each of
these ingredients are approximate and a more complete treatment of the couplings
would introduce quantumeffects into the dipolar spin icemodel [59]. Such departures
from the Ising model are expected to be small enough [33] that most existing mea-
surements of the spin ice materials may be described to an excellent approximation
byHDSI, perhaps supplemented with further neighbour exchange couplings [54–57].
However, the precise magnitude of any small quantum interactions and their impor-
tance in describing Dy2Ti2O7 and Ho2Ti2O7 are still matters of active research [33].

The dipolar spin ice model of (1.18) looks quite different from the simplified
effective model for spin ice, (1.1), discussed at the beginning of this chapter. In
particular, (1.1) has only nearest-neighbour interactions. If (i)Dnn weremuch smaller
than Jnn and if (ii) Jnn were positive, then (1.18) would approximate (1.1) up to the
broken degeneracy of the ice states brought about by the long-range interaction
[60–62]. However the reality is more subtle; neither (i) nor (ii) is true, insteadDnn ∼
2.35 K, that is Dnn > |Jnn|, and Jnn < 0. First of all, the effective nearest-neighbour
interaction is Jeff ≡ Jnn + Dnn which is positive as required for spin ice physics to
arise at low energies in accordance with (1.1) and the discussion following it. In other
words, spin ice physics arises in Dy2Ti2O7 and Ho2Ti2O7 only because the dipolar
coupling is large. This need not be the case for systems such as Pr2(Sn,Zr)2O7

[36, 63] where the magnetic dipole moment is small and it appears that Jnn > 0.5

One may refer to such a system as an exchange-coupled spin ice, as opposed to
the (Dy,Ho)2(Ti,Sn,Ge)2O7 dipolar spin ice systems. But should one not worry that
the further neighbour part of the dipolar interaction might kill off the degeneracy
of the spin ice states [60–62]? This issue will be addressed in greater detail later in
this volume (e.g. see Chap. 3 by Moessner). For now, we simply remark that the
degeneracy-breaking caused by the dipolar interaction is anomalously weak because
the long-ranged part of the interaction is “self-screened” [60, 62]. This, in turn, is
a consequence of the matching of the magnetic correlations among the ice states

5 One also expects to find effective exchange terms coupling the transverse components of the
pseudo-spin S = 1/2 describing the ground doublet in these compounds [63, 64] as well as in
Tb2Ti2O7 [51] and in Yb2Ti2O7 [65, 66]. These introduce quantum fluctuations within the degen-
erate spin ice manifold and may give rise to a quantum spin ice state [67]. Three mechanisms
generating effective transverse exchange and quantum dynamics have been discussed in the litera-
ture: (i) virtual crystal field fluctuations [51] (e.g. in Tb2Ti2O7), (ii) sufficiently high-rankmultipolar
interactions in non-Kramers systems [63, 64] (e.g. in Pr2(Sn,Zr)2O7) and (iii) multipolar, including
dipolar, interactions in Kramers systems [65, 66, 68, 69] (e.g. in Yb2Ti2O7 and Er2Ti2O7) This
will be discussed in further detail in subsequent chapters (e.g. see Chap. 9 by Savary and Balents,
Chap. 10 by Shannon and Chap. 12 by Ross).

http://dx.doi.org/10.1007/978-3-030-70860-3_13
http://dx.doi.org/10.1007/978-3-030-70860-3_9
http://dx.doi.org/10.1007/978-3-030-70860-3_10
http://dx.doi.org/10.1007/978-3-030-70860-3_12
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and the correlations induced by the dipolar interaction [62]. The net result is that the
dipolar spin ice model, and the nearest-neighbour spin ice model lead to quite similar
physics [70]. One quantitative difference is the diffuse neutron scattering pattern of
the two systems in the spin ice regime [21, 55, 58], with scattering features in the
case of the dipolar spin ice model signaling the eventual development of long-range
order if thermal equilibrium can be maintained down to sufficiently low temperature.
In the spin ice regime, the presence of the long-range dipolar interaction has two
principal consequences. One is the presence of singular correlations arising purely
from the dipolar interaction [71] which is singular at reciprocal lattice points —
so-called “pinch points” [72] — and not due to the formation of the ice-rules at low-
temperature in the spin ice regime [73]. The second is the presence of an energetic
1/r magnetic Coulomb potential between quasiparticle excitations in spin ice — the
fractionalized magnetic monopoles [70, 74].

In summary, in this Chapterwe have discussed how the strong separation of energy
scales that exists between the various single-ion and ion-ion interaction terms in
Dy- and Ho-based insulating rare-earth oxides ultimately leads to the classical Ising
dipolar spin ice (DSI) model [52, 53]. We argued that quantum corrections arising as
effective exchange couplings between the transverse components of the pseudospins
describing the low-energy crystal field doublet are minimal. Other compounds in the
A2B2O7 family with different rare-earth ions, such as Pr, Gd, Tb, Er and Yb, would
not necessarily be described by such a classical Ising model. Most of the remainder
of this volume will discuss in more detail how spin ice physics manifests in real
materials, and how the DSI model captures many of the key aspects of their physics.
Additional chapters will address materials where the quantum corrections are non-
negligible and the exciting potential realizations of quantum spin ice [51, 63, 64, 66,
67].
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Chapter 2
Crystal Growth of Pyrochlore
Compounds

D. Prabhakaran

Abstract I will review some of the crystals in the pyrochlore family, which have
been grown by flux growth, optical floating-zone and other techniques. The presence
of defects in the crystals, such as: stuffing or sight mixing, mixed rare earth valency
states, disorder and oxygen non-stoichiometry can have a strong effect on the struc-
tural and magnetic properties of the crystal. I will discuss some of the crystal defects
using a few examples.

2.1 Introduction

Geometrically frustrated magnetic materials are fascinating due to their inter-
esting behaviours such as: spin-liquid, spin-glass and spin-ice. The general for-
mula for pyrochlore compound is A2B2O6O′, which comes from the mineral
NaCaNb2O6F [1]. The space group of this structure is Fd3m (No. 227) with eight
molecules per unit cell (z = 8). Here the atoms (A, B) which have a valency of either
(2+, 5+) or (3+, 4+) respectively, are called α-pyrochlore compounds. AOs2O6 type
compounds are calledβ pyrochlores [2]which crystallise in the non-centrosymmetric
F43m space group (Fig. 2.1). The most studied A sites are: Bi, Tl, lanthanides, In or
Sc, parallelly the B sites are: 3d, 4d or 5d elements. Either one, or both sub-lattices
can be magnetic or non magnetic for example: in the case of Dy2Ti2O7, Dy is mag-
netic, and in the case of Y2Ir2O7, Ir is magnetic. The majority of these oxides are
insulators however, a few classes of materials exhibit different properties such as:
colossal magnetoresistance evident in the Tl2Mn2O7 [3]; metal-insulator transition
in Nd2Ir2O7 [4]; ferromagnetism in Lu2V2O7 [5]; anti-ferromagnetism and super-
conductivity in Cd2Re2O7 [6]. Depending on the ionic radius ratio (rA+/rB+), the
stable phase can be prepared in atmospheric conditions (ratio between 1.46 to 1.8).

D. Prabhakaran (B)
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
e-mail: d.prabhakaran@physics.ox.ac.uk

© Springer Nature Switzerland AG 2021
M. Udagawa and L. Jaubert (eds.), Spin Ice, Springer Series in Solid-State Sciences 197,
https://doi.org/10.1007/978-3-030-70860-3_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70860-3_2&domain=pdf
mailto:d.prabhakaran@physics.ox.ac.uk
https://doi.org/10.1007/978-3-030-70860-3_2


20 D. Prabhakaran

Fig. 2.1 Crystal structure of A2B2O6O′, a α-pyrochlore and b β-pyrochlore along [110] direction

However, a few classes of materials need a high pressure synthesis route in order to
stabilise its oxidation state and pyrochlore structure of the B site atom (Mn, Ge, Pb).
Subramanian et al. [7] reviewed the structural and physical properties of a whole
range of oxide pyrochlore compounds in detail; Gardner et al. [8] discussed some of
the recent works on the magnetic pyrochlore compounds and, more details about the
single-ion theory of these materials have been discussed in Chap. 1.

In the A2B2O6O′ pyrochlore structure, the A site occupies the 16d location
(1/2, 1/2, 1/2) with 8 coordination (6O + 2O′) and the B site occupies the 16c loca-
tion (0,0,0) with 6 coordination (6O) forming two distinct interpenetrations of the
three-dimensional network of the corner-sharing tetrahedra. BothO (x, 1/8, 1/8) and
O′ (3/8, 3/8, 3/8) occupy the 48f and 8b sites, respectively. Here, x is the adjustable
position parameter for the O atom which can be measured from X-ray or neutron
structural analysis, with its possible values being between x = 0.3125 (perfect octa-
hedron of O atoms surrounding the B atoms) and x = 0.375 (perfect cube of O atoms
surrounding the A atoms), but the normal range would be 0.320–0.345.

Pyrochlore structural defects or disorders can occur due to the removal of the
oxygen atom from the weaker O′ site compared to that of O site [7, 9]. Moreover, in
the defective fluoride structure, the B-O-B bond angle will be around 110◦ whereas
in the stoichiometric pyrochlore structure it will be between 120◦ and 140◦. The
defectiveness increases [10] with large size B atoms like Zr and Hf, with the increase
of rare earth atomic number A atoms (Dy-Lu).

A wide range of growth techniques such as flux, optical floating-zone, Czochral-
ski, chemical vapour transport, Bridgman and high pressure were employed to grow
pyrochlore single crystals and some of them are listed in Table 2.1. Recently pulsed
laser deposition technique has been used to prepare epitaxial pyrochlore films on a
Y2Ti2O7 substrate to study the strain effect on the magnetic property of the film [11].
Among these, flux and optical floating-zone techniques have been most widely used
to prepare the majority of the pyrochlore family of materials, discussed further in
this chapter.

http://dx.doi.org/10.1007/978-3-030-70860-3_1
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Table 2.1 Some of the pyrochlore crystals grown by different techniques

Method Material Reference Method Material Reference

Flux RE2Ti2O7 [23] Floating-
zone

RE2Ti2O7 [13, 16],
[36]–[39],
[44]

RbCoCrF6 [33, 34] RE2Zr2O7 [51]

Y2Pt2O7 [26] RE2Mo2O7 [45, 46]

Pr2Ir2O7 [29] RE2V2O7 [53]

Tb2Sn2O7 [27] NaCaCo2F7 [40]

RE2Sn2O7 [27, 28] Pr2Hf2O7 [52]

Pb1.86Mg0.24Nb1.76O6.5 [24]

Pb2Sc0.5Ta1.5O6.5 [25]

Bi2Ru2O7 [30]

RbCoCrGF6 [33, 34]

Czochralski RE2Ti2O7 [55, 56] Chemical
Vapour
Transport

Cd2Re2O7 [6]

CsMnFeF6 [66] (CVT) Cd2Os2O7 [64]

Pr2Te2O7 [65]

2.2 Experimental

2.2.1 Material Synthesis

Most of the pyrochlore compounds such as titanates, stannates, zirconates, vanadates,
molybdates and iridates were prepared using the solid state reaction technique or
ceramic technology route. Rare earth oxide chemicals are very fine powders, so they
tend to absorb moisture or have a mixed valency state. Hence, it is important to heat-
treat the powder at around 1100 ◦C for 12h in air beforeweighing the chemicals.Knop
et al. [12] prepared a wide range of pyrochlore titanates and germanates and reported
the mixed valency state of Tb using thermal analysis. Polycrystalline samples were
prepared by mixing A site rare earth oxides (RE2O3), and B site transition metal
oxides (TiO2, SnO2, ZrO2, VO2, MoO2 or IrO2) according to their stoichiometric
molar ratio and sintering at different high temperatures (1000–1450 ◦C) in air, or
in a controlled atmosphere, for example, RE2Mo2O7 under a flow of Argon while
Nd2Ir2O7 under vacuum for several hours or days with intermediate grindings to
obtain the single phase compounds [4, 5, 12–17]. Other polycrystalline pyrochlores
such as magnate, lead and germanate are prepared using high pressure (>2GPa)
synthesis in order to stabilise the cubic phase, Pb4+ andMn4+ ionic states respectively
[3, 18].
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2.2.2 Flux Growth Technique

The flux growth technique is a high temperature solution growth process, wherein the
fluxmelts at high temperatures and acts as solvent. It is used to crystallise awide range
of materials which possess some of the following properties: incongruent melting
(decomposes before melting), high melting point, high vapour pressure, and phase
transition below the melting point. In a normal flux growth, first the constituents
of the target compound are dissolved at a high temperature in a flux, commonly an
oxide, molten salt, halide or metal, packed inside a platinum or refractory crucible
or evacuated quartz tube [19–21]. Referring to the relevant chemical phase diagram
is very important for selecting the flux ratios and growth temperature. A narrow
region of pyrochlore phase is shown in the Y2O3-TiO2 chemical phase diagram [22]
in Fig. 2.2a. Stoichiometric amounts of the starting chemicals and suitable flux are
mixed and packed into a platinum crucible and covered with a tight lid to prevent the
evaporation loss and loaded into a high temperature furnace. The growth temperature
varies between 750 ◦C and 1250 ◦C depending on the material, a controlled atmo-
sphere (Ar, N2), air or a vacuum have been used and the melt will be slowly cooled
down below themelting point of the flux at a rate of 1–5 ◦C/h and finally cool down to
room temperature at 50 ◦C/h. Spontaneous nucleationwill occurmostly at the bottom
or the walls of the crucible due to supersaturation, which will produce many crystals
of different sizes where the temperature gradient is high [19, 20]. After the growth,
the flux will be removed by using warm dilute acetic and nitric acid solutions, and

Fig. 2.2 aY2O3-TiO2 chemical phase diagram Figure no. 6024 reproduced from [22] with permis-
sion from the American Ceramic Society b diagram of O′ vacancies and the associated distortion
of the surrounding lattice with displacement from [9] with permission from Nature Materials c For-
mation of different stable A2B2O7 phases by varying the A and B cations; M-Monoclinic P-cubic
pyrochlore, D-disordered and F-fluorite
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octahedral shaped millimetre size crystals can be separated. In this technique there
are certain disadvantages: (i) the crystal size will be small; (ii) flux inclusion may be
present in the grown crystal.Most of the earlier pyrochlore crystals were grown using
Pb based flux compounds but now, due to health risks and environmental pollution,
there are severe restrictions for using the Pb based compounds in some laboratories.

The first pyrochlore RE2Ti2O7 octahedral crystal, of size 3mm was grown by
using PbF2 flux at 1230 ◦C for a week in a closed platinum crucible by Garton and
Wanklyn [23]. The combination of PbF2 and PbO2 did not produce any crystals.
However, oxygen deficient cubic Pb1.86Mg0.24Nb1.76O6.5 single crystals have been
grown using PbO flux. Here, Mg occupies the B site and the oxygen position param-
eter x = 0.3175 lies within the pyrochlore range but without any ordering of the Mg
ions [24]. Recent neutron scattering experiments suggest that by removing the oxy-
gen O′ atom (8b) the unit cell value increases due to the Coulomb repulsion between
the O′ vacancies and the A octahedral (Fig. 2.2b) [9]. The oxygen deficiency creates
a defect in the system and in order to compensate for the charge, a fraction of either
A or B atom valency has to decrease from 3+ to 2+ or 4+ to 3+, respectively. Com-
binations of PbO:PbF2:B2O3 fluxes have been used by Petrova et al. [25] to grow
Pb2Sc0.5Ta1.5O6.5 single crystals. By varying the A and B cations, several different
stable A2B2O7 polycrystalline phases has been synthesised; M-monoclinic, P-cubic,
D-disordered and F-fluorite as shown in Fig. 2.2c.

Metallic greenish RE2Pt2O7 crystals were grown by Ostorero and Makram [26]
using PbO-PbO2 mixed flux in a tightly covered platinum crucible under 12 bar
oxygen pressure and the melt was cooled from 1290 ◦C down to 940 ◦C following
which it was quenched in order to avoid the Pb2Pt2O7 crystallisation. Recently small
size RE2Sn2O7 single crystals have been grown using Na2B4O7-NaF flux through
spontaneous nucleation [27, 28]. Both the solute (RE2Sn2O7) ratio and slow cooling
rate (2 ◦C/day) are very important for inclusion free growth. In order to improve the
size, Guo et al. [27] introduced a Tb2Ti2O7 seed crystal (top seeded solution growth)
with a 20% solute percentage and yielded a 4mm size crystal. Since stanates have
an incongerant melting point, it can’t be grown using the melt technique. Moreover
Tin oxide has a huge vapour pessure which limits the floating zone growth.

The as grown Tb2Sn2O7 crystal is dark in colour because Tb3+ losses an electron
and becomes Tb4+ in a oxygen environment, especially in the cubic phase, however
by annealing the same crystal under vacuum it becomes a transparent yellow in
colour as shown in Figs. 2.3a, b. However, the colour of the Dy2Sn2O7 crystal did
not change after the heat treatment (Fig. 2.3c).

Rare earth iridates have different properties such as: insulator, (Y2Ir2O7); metal-
to-insulator, (Nd2Ir2O7) andmetallic (Bi2Ir2O7, Bi2Ru2O7). The crystals were grown
using rare earth chlorides, KF and Bi2O3 flux [29, 30], respectively. Mugavero
et al. [31] reviewed the crystal growth of rare earth oxides containing complex plat-
inum group metal oxide compounds using several hydroxide fluxes. Since IrO2 has
a high vapour pressure at high temperatures, it is almost impossible to grow the
crystal using the optical floating-zone technique. Small size iridate crystals can be
grown using flux or high pressure techniques and they are stable in air. Millican
et al. [29] grew octahedral shaped RE2Ir2O7 single crystals (Fig. 2.3d) using 1:200
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(a) (b)

(c) (d)

(e)

Fig. 2.3 a As grown Tb2Sn2O7 crystal and b annealed under vacuum from [27] c as grown
Dy2Sn2O7 flux crystal from [28] d flux grown octahedral shaped Pr2Ir2O7 crystal from [29]. e
Temperature dependence of the resistivity of three different Nd2Ir2O7 crystals from [32]. Reprinted
figures from [27–29] with permission from Elsevier and from [32] with permission from the Amer-
ican Physical Society

KF flux ratio molten at 1100 ◦C and slowly cooled down to 850 ◦C at 2–3 ◦C/h
rate and fast cooled to room temperature. After cleaning the flux, several crystals
were harvested and had their electrical andmagnetic properties checked individually.
Because, even a slight variation in the Ir/Nd ratio (1% or 2%) of the single crystal
will shift the metal-insulator (MI) transition temperature from 35K to 19K as shown
in Fig. 2.3e [32].

AM2+M3+F6 (A=K, Rb, Cs;M2+=Fe, Co, Ni, Zn;M3+=Al, V, Cr, Fe), pyrochlore
fluoride compounds have been grown using different flux compounds like, KCl,
NaCl, PbF2 or RbCl [33, 34]. Some of those growths were not successful due to the
presence of oxygen in the melt. The majority of these compounds are cubic with
Fd3m space group and antiferromagnetic nature without any long range magnetic
order.

2.2.3 Optical Floating-Zone Technique

For the optical floating-zone growth, first polycrystalline starting materials are pre-
pared by using solid state reaction technique as described in Sect. 2.2.1. The single
phase powder is then compressed in the form of cylindrical rods (6–12 mm diameter
and up to 12 cm length) and sintered at 1250–1450 ◦C for 12 h in air or a controlled
atmosphere. Single crystals were grown under different atmospheres (air, O2, Ar,
Ar+O2, Ar+H2, or CO+CO2) at a rate of 1–10 mm/h with both feed and seed rod
counter rotated at 10–30 rpm however, a slower growth rate would help to minimize
the defects in the crystal [13, 14, 16, 35–40]. As grown crystals are annealed under
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different conditions in order to remove the defects and are discussed in the following
section.

The first floating-zone techniquewas developed to grow silicon and ferrite crystals
using a carbon-arc or xenon-arc as a source and it was later replaced by the halogen
lamp as a heating source [41, 42]. In this technique, the optical light is focused to a
narrow region in order to melt the tip of a polycrystalline rod and also a single crystal
seed; then either the beam or polycrystalline and seed rods are simultaneously moved
upwards, allowing for a slow re-crystallization of the sample in a single crystal form.
In the last fifteen years, this technique has rapidly expanded both in research labora-
tories and industry to prepare large size and high quality single crystals. The grown
crystals are chemically very pure because the melt does not involve any contact with
the crucible during growth which reduces the cross contamination in the crystal.
There are a few commercial optical zone furnaces available now: single mirror (Rus-
sian design-ScIDre, Dresden), double mirror (Cannon-Japan, Cyperstar-France and
Quantum Design-USA) and four mirror (CSI-Japan) as shown in Fig. 2.4a. In all
these furnaces, either halogen or xenon lamps are used as a heating source, which
will go to very high temperatures; ∼ 2000 ◦C in the case of halogen, and ∼2800 ◦C
in the case of xenon, and can also apply high pressure up to 300 bar. This technique
has some disadvantages; (i) high vapour pressure materials can’t be grown because
it will reduce the light passing through the glass tube; (ii) steep temperature gra-
dients (∼50–100 ◦C/mm) may induce some thermal cracks in the growing crystal.
Currently, compact high power lasers have been developed as a source that can go up
to 2800 ◦C with a very narrow beam size. This will be advantageous when growing
highly volatile materials and can allow the use of solvents to grow incongruently
melting materials like BiFeO3 [43].

The first rare earth titanate single crystal was grown using optical floating-zone
technique to study its piezoelectric property by Kimura et al. [36]. Pyrochlore
titanates RE2Ti2O7 (RE = Sm-Lu) melt congruently at around 1850◦C and many
groups have successfully grown several centimetre cubic size high quality crystals
suitable for neutron scattering experiments using this technique [13, 14, 37–39]. Li
et al. [44] grew a whole range of rare earth titanates by optimizing the growth con-
ditions individually and studied their structure and physical parameters. Site mixing
and oxygen deficiency are the common issues in these family of materials which are
discussed in greater detail in Sect. 2.2.6.

Pyrochlore molybdate RE2Mo2O7 compounds exhibit ferromagnetism due to the
double-exchange mechanism between neighbouring Mo spins. A few groups have
grown different rare earthMo compounds under argon atmosphere using the floating-
zone technique [45, 46]. However, due to the volatility of MoO2, it is very difficult
to grow a large crystal. As grown crystals are oxygen deficient, which leads them
to assume a metallic state. So, after the growth the crystal has to be annealed under
oxygen atmosphere in order to improve the oxygen stoichiometry. Among the rare
earth molybdates, both Sm and Nd are metallic, others from Gd to Lu are ferromag-
netic insulators and their lattice constant decreases with an increase in rare earth
atomic number. Under high pressure or by substituting divalent Ca to the Gd site,
Gd2−xCaxMo2O7 become metallic [47].
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Fig. 2.4 (Left) Photograph of a four mirror Optical-floating zone furnace. (Right) As-grown
Pr2Zr2O7 crystal. Reprinted figure from [50] with permission from Elsevier

For the first time, a bismuth based pyrochloreBi1.89Fe1.16Nb0.95O6.95 single crystal
was grown byMiiller et al. [48], a slight site mixing of Fe atom on both A and B sites
are necessary in order to stabilise the cubic phase and a strong short-range disorder
appears due to the displacement of Bi3+ and O′ from their ideal position. In the
case of Tb2Nb2O7, both Tb and tetravalent Nb4+ (4d1 s = 1/2) are magnetic, but the
compound exhibits spin-glass behaviour due to the nearest-neighbour interaction and
Jana et al. [49] prepared the sample using Tb4O7, NbO2 and Nb chemicals under Ar
atmosphere in an image furnace. Recently, the fluorine based pyrochlore NaCaCo2F7
was grown using the optical floating-zone technique. Here the A site elements, both
Na and Ca are disordered, whereas the B site Co is fully ordered [40].

Some of the rare earth zirconates RE2Zr2O7 (RE = La-Gd) will crystalize in
cubic pyrochlore structures and their melting temperatures are well above 2400 ◦C,
so xenon lamps are necessary to achieve this very high temperature. In particular,
Pr2Zr2O7 has attracted much attention due to its quantum spin-liquid property at low
temperature. Matsuhira et al. [14] successfully grew dark green colour crystals under
oxygen flow atmosphere by taking out excess Pr in the starting material in order to
compensate for the evaporation loss and have grown a stoichiometric (Pr/Zr = 1.0)
crystal. To study the effect of Pr/Zr ratio in the crystal, Koohpayeh et, al.[50] prepared
different Pr compositions ( Pr2+xZr2−xO7−x/2,−0.02 ≤ x ≤ 0.02) and crystals were
grown with different rotation and pulling rates under 1 bar static high pure argon
atmosphere. They used an argon atmosphere both for sintering and growth which has
helped to reduce the Pr evaporation and also prevent the formation of Pr4+ inclusions
and has resulted in light green colour crystal as shown in Fig. 2.4b. Recently several
lanthanide zirconates and hafnates single crystals have been grown using different
growth conditions by Ciomaga Hatnean et al. [51, 52].

Ho2V2O7 and Lu2V2O7 are ferromagnetic Mott insulators and the spontaneous
magnetization appears below Tc = 70K. These pyrochlore vanadates are grown by
the floating-zone technique using an argon atmosphere at a very slow growth rate of
0.6-1mm/h; Onose et al. [53] experimentally observed the thermal Hall effect caused
by spin excitation in the Lu2V2O7.
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Fig. 2.5 Gd2Ti2O7 crystal grown a along [111] direction under 0.8 bar N2 pressure b along [100]
direction under 0.6 bar N2 pressure, c along [111] direction under 0.6 bar 98% N2 + 2% O2 crystal
pictures. Reprinted figure from [56] with permission from Elsevier

2.2.4 Czochralski Technique

Czochralski growth is a pulling technique from the melt using a single crystal
seed [54] and it has been recently used to grow Dy2Ti2O7 crystal along [111] direc-
tion with a pulling rate of 1.5 mm/h in an iridium crucible using a radio frequency
(RF) induction heating source. In order to reduce the colour centres, the grown crys-
tal was annealed at 700 ◦C for 48h in air [55]. GuO et al. [56] grew the Gd2Ti2O7

crystals under different atmospheres at a rate of 1–1.5 mm/h using both [111] and
[100] seed crystals respectively. The pure nitrogen atmosphere grown crystal was
light brown in colour (Fig. 2.5a, b) whereas 2% oxygen mixed gas grown crystal was
dark brown colour as shown in Fig. 2.5c. Though the excess oxygen has changed
the colour of the crystal, no change has been observed either in the powder x-ray or
XPS spectra of all three crystals.

2.2.5 Characterisation

Both polycrystalline powders as well as grown crystals were carefully checked with
powder x-ray diffraction to confirm the chemical phase purity and identify the crystal
structure. Thermogravimetry analysis (TGA) is also used to analyse the high temper-
ature reaction, oxidation, reduction and oxygen content estimation of the material.
Scanning electron microscopy (SEM) is used to study the surface morphology of
the grown crystals. Electron micro probe analysis (EMPA) and x-ray photo emission
spectroscopy (XPS) techniques are employed to analyse the chemical composition
and check the homogeneity across the length of the crystal. Single crystal x-ray
diffraction has been used to study the crystal structure even with small crystals of the
order of 10–50 micrometres. To identify the crystallographic orientations of a bulk
crystal, the x-ray Laue technique has been used. Small size crystals were cut along
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different crystallographic orientations and used to study their magnetic, transport
and thermal properties.

2.2.6 Defects in the Crystal

The as grown crystal colourwill varywith respect to the growth atmospheres, rotation
and cooling rates, however the dark colour will change into a light colour after the
post annealing heat treatment. This problem is common for all growth techniques
including, flux, optical floating-zone and Czochralski. The darker colour could be
due to the defects present in the crystal which will act as colour centres, either due to
mixed valency states of the A or B atom or oxygen deficiency or a slight disorder may
appear because of the high temperature gradient during the cooling process of the
crystal after the growth. It can be removed by annealing the crystal at 1000–1300 ◦C
for 12–72 h under the flow of different gas (O2, Ar, CO/CO2) or vacuum.

Many laboratories have successfully prepared the single phase stoichiometric
RE2Ti2O7 powder compounds by using the solid state reaction or sol-gel techniques
without any trace of impurity or disorder. However, it has been a real challenge to
prepare a well ordered single crystal that is vital for many of the crucial experiments
such as neutron scattering, muon and heat capacity measurements. Li et al. [44] have
applied a 4 bar oxygen pressure during the growth of Dy2Ti2O7 and the grown crystal
colour was dark brown and after the oxygen annealing treatment at 900 ◦C it became
a light colour. Contradictory to this report, Kang et al. [55], have grown the same
crystal under Ar atmosphere by Czochralski pulling method and it was annealed in
air at 700 ◦C for 48 h to remove the defects but the colour remained a dark brown. The
same piece of crystal was annealed again under the flow of ammonia with the same
temperature and it was found that the colour changed from brown to yellow. The
optical absorption loss in the wavelength range 380–580 nm of the oxygen annealed
crystal was twice as high as the ammonia annealed crystal and hence the oxygen
deficient crystal would be desirable for magneto-optical device fabrication. So, the
colour issue is not just an oxygen deficiency problem but also due to the disorder in
the system. To demonstrate this concept we initially grew a crystal under argon and
oxygen mixed gas flow and after the termination of the growth, the lamp power was
reduced down to around 1200 ◦C and the atmosphere was removed and the crystal
was annealed under vacuum for 12 h. As shown in Fig. 2.6a, the annealed top part of
the crystal became a light yellow (indicated by a vertical arrow) due to the reduction
in the disorder/colour centres. Similarly, the bottom part of the crystal (Fig. 2.6b)
was also annealed separately under vacuum and the colour changed from dark brown
to light yellow colour as shown in Fig. 2.6c. Most of the optical furnaces effective
hot zone range is around 2 cm and hence the sintering is effective in that part of
the crystal. Magnetization versus applied field data of the as grown Dy2Ti2O7 dark
brown crystal grown under argon flow and the same crystal annealed under oxygen
flow (light brown colour) measured along the [100] direction at 1.8 K is shown in
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Fig. 2.6 Dy2Ti2O7 crystal a grown under Ar/O2 and annealed under vacuum (vertical arrow), b
as-grown brown colour crystal and c the same crystal annealed under vacuum, d magnetisation
versus applied field of the as grown and oxygen annealed crystal measured at 1.8 K and e Y2Ti2O7
grown under O2 (transparent part), 5%H2/Ar (indicated by an arrow)

Fig. 2.6d. A slight increase in the saturation magnetic moment was observed on the
oxygen annealed crystal.

On the other hand, the Y2Ti2O7 growth started with an oxygen atmosphere and
in the later part of the growth its atmosphere was switched to 5%H2/Ar mixed gas.
Due to the reduced atmosphere in the later part of the growth, the colour changed
from transparent to dark blue (as pointed out by an arrow in Fig. 2.6e), due to the
presence of Ti3+. However, it became colourless after oxygen treatment.

To study the stability of the pyrochlore structure on the Dy2Ti2O7 system, we
have grown single crystals of Sc3+substituted to the Ti4+ site and the corresponding
oxygen cationwill also be reduced in order to compensate for the charge. The crystals
were zone melted twice; they were grown at a faster speed of 15 mm/h (premelting)
and then the same crystal was grown again at a slower rate of 1-3mm/h under static 2
bar oxygen atmosphere. All the Sc substituted as grown crystals colour were yellow
as shown in Fig. 2.7a, b (x = 0.5 and x = 1) and annealing had no effect. The
pyrochlore structure remains cubic for values of upto x = 0.67 and when x = 1
it becomes a disordered fluorite structure. The powder x-ray pattern of different x
values are shown in Fig. 2.7c and the pyrochlore characteristic peaks (111) and (331)
are present for up to x = 0.67 but for the x = 1 sample both these peaks vanish and
Fig. 2.7d shows the complete disappearance of the (331) peak.

Among the rare earth titanates,Yb2Ti2O7 is of special interest due to their quantum
spin liquid property. Some experiments suggest that it has a long range ferromagnetic
order at around 200 mK range [17], while other experiments did not show any long
range order [57]. This controversial report could be due to a very slight variation in
the chemical composition (as much as 1–2% stuffing (A to B site mixing)) or defects
present in the single crystal, but it was not realised earlier including the oxygen
deficiency [58]. These defects are more prone to be in single crystals compared to
powders. Heat capacity measurement on the powder sample shows a sharp peak
around 260mK as a first order phase transition (Fig. 2.8a) whereas, the single crystal
peak was several times smaller in amplitude and the transition temperature moved
down to below 200mK and in some crystals shows no peaks at all as shown in
Fig. 2.8b [17]. Recently, Arpino et al. [59] reported the highest heat capacity value for
a stochiometric single crystal, the likes of which have only been attributed to powder
data thus far and even 1–2% doping has shown to broaden the peak and decrease
the transition temperature as shown in Fig. 2.8c. Both stoichiometric and defect free
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Fig. 2.7 As grown crystals a Dy2Ti1.5Sc0.5O6.75 b Dy2TiScO6.5 c crystal powder x-ray pattern of
Dy2ScxTi2−xO7−x/2 d expanded part (331) of the x-ray spectrum (c)

Fig. 2.8 Heat capacity as a function of temperature of Yb2Ti2O7 a powder and single crystals from
[58] b three different single crystals from [17] and c stochiometric single crystal and sintered rods
of Yb2+xTi2−xO7−δ from [59]. Reprinted figures from [58, 59] with permission from the American
Physical Society and from [17] with permission from Nature Communications

crystals are necessary for the strong peak in the heat capacity measurement. Another
clear experimental evidence for the long range order was carried out by Chang
et al. [17] using polarized neutron scattering experiments on a slowly grown crystal
which showed a clear depolarization below 210 mK.

During crystal growth, stabilising the Yb2Ti2O7 molten zone for a long time
under an oxygen atmosphere is very difficult. To overcome this problem, we grew a
large size crystal as shown in Fig. 2.9a under an argon atmosphere at 1.5mm/h which
produced a black coloured crystal. Though Yb3+ is more stable than Yb2+, a fraction
of Yb2+ could be present in the as grown sample. This defect along with the oxygen
deficiency can be removed by annealing the crystal at 1200 ◦C under oxygen flow
for 48 h. This will transform the as-grown black crystal into an almost transparent
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Fig. 2.9 a As-grown Yb2Ti2O7 crystal grown under Ar atmosphere b same crystal after annealed
under oxygen atmosphere. c Crystal powder x-ray pattern of Yb2+xTi2−xO7−x/2 d Magnetisation
versus applied field curve for x = 0 and 0.2 crystals measured at 2K

colour as shown in Fig. 2.9b and as evident in the heat capacity data [60] at around
200 mK it shows a sharp peak similar to Chang et al. [17]. Li et al. [44] have grown
Yb2Ti2O7 crystal under 1 bar oxygen pressure at a growth rate of 3 mm/h, but the
colour of the crystal was brown and did not show any heat capacity peak around
200mK.

Stuffing has been studied on the polycrystalline Ho2±xTi2−xO7−x/2 system by
Lau et al. [61] and found that the magnetic Ho atom will randomly occupy the non-
magnetic Ti atom and for x = 0.67, and it becomes a fluorite crystal structure. It also
changes the magnetic interactions from ferromagnetic to antiferromagnetic due to
the changes in the dipole interaction. However, recent high resolution synchrotron
studies on the Ho2Ti2O7 system suggest that a slight stuffing could be present in
most of the melt grown rare earth titanates [62]. To explore the stuffing effect on
the Yb2±xTi2−xO7−x/2 (x = –0.2, –0.1, 0, 0.05, 0.1, 0.2 , 0.3 and 0.5) system, single
crystals were successfully grown for x ≥ 0, but the x = −0.1 and –0.2 growth was
not successful due to the presence of TiO2 second phase in themelt. Yb3+ substitution
to the Ti4+ site removed O′ atom to compensate for the charge in the Ti tetrahedra,
and hence the four neighbouring Yb3+ ions move away from the vacancy (Fig. 2.2b)
which increases the cell parameter value from 10.04Å to 10.159Å [62]. The crystal
powder XRD pattern of Yb2±xTi2−xO7−x/2 is shown in Fig. 2.9c, all the Yb stuffed
samples were cubic pyrochlore phase up to x = 0.5 which shows the (111) and (331)
a characteristic sign of ordered pyrochlore phase as explained by Klef et al. [10].
Magnetic hysteresis versus applied field for the x = 0 and x = 0.2 crystal measured
along [100] direction at 2 K (Fig. 2.9d) shows a slight variation.
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a b c d

e

(d)
(a)

Fig. 2.10 Tb2Ti2O7 crystal a as grown b annealed under vacuum c annealed under CO/CO2 d
grown under argon atmosphere e crystal powder x-ray pattern of oxygen and vacuum annealed
sample

Terbium has two valency state 3+ and 4+. Although 3+ is more stable, in high
temperature oxygen environment, a small percentage will convert into Tb4+. Most
of the Tb2Ti2O7 crystal have been grown under oxygen or argon atmosphere and
they are black or light yellow in colour due to the presence of Tb4+ inclusions
or oxygen vacancies. The as-grown black colour crystal (Fig. 2.10a) was annealed
under a vacuum at around 1200 ◦C for 12 h and it became a brown colour as shown in
Fig. 2.10b. Another black crystal was annealed under CO/CO2 (1:9) flow at 1200 ◦C
for 45h and the colour has changed to bright red as shown in Fig. 2.10c. Whereas,
re-growing a previously grown crystal under argon flow conditions causes a colour
change from brown to light yellow (Fig. 2.10d). A similar colour change was also
reported on the Tb2Sn2O7 solution grown crystal as shown in Fig. 2.3b [27]. The
black crystal powder was annealed under oxygen flow at 1200 ◦C and the powder
x-ray data showed additional peaks due to the presence of Tb4+, but the vacuum
annealed crystal powder pattern was very sharp without any additional peaks as
shown in Fig. 2.10e. Recently a large thermal Hall response has been reported on an
argon annealed transparent single crystal [63].

2.3 Conclusions

I have explained the most common crystal growth techniques that are used for
pyrochlore crystal growth. The thermodynamics of the material determines the
growth technique that is used. Electrical and magnetic properties are very sensi-
tive to any site mixing and oxygen deficiency in the crystals. Defect free crystals are
very important in understanding the structural and physical properties of the mate-
rial. In order to improve the quality of the crystal, more characterisation studies are
needed to truly understand the growth behaviours andmechanisms; subsequently this
new understanding will shed light on ideas to improve quality. Further exploration of
high pressure synthesis and the chemical vapour transport growth techniques could
lead to the discovery of new materials.
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Chapter 3
Spin Ice As a Coulomb Liquid: From
Emergent Gauge Fields to Magnetic
Monopoles

Roderich Moessner

Abstract This chapter provides an introduction to the Coulomb phase of spin ice.
After reviewing conventional notions of order and disorder, as well as the emergence
of quasiparticles, we show how spin ice is special in that it exhibits an emergent
gauge field with fractionalised excitations in the form of magnetic monopoles. This
is a property of a topological magnetic phase, a Coulomb phase of the corresponding
emergent gauge theory, which even harbours irrational magnetic charge and observ-
able ‘Dirac strings’. We provide a broad overview of unusual and novel phenomena
arising in spin ice, including the notion of residual entropy, the possibility of gen-
erating dimensional reduction to kagome ice via application of a magnetic field, the
role of disorder, magnetoelectric phenomena, and various unusual phase transitions.

3.1 Order and Disorder in Magnetism

In order to appreciate what is fundamentally new about the spin ice state, let us first
briefly summarise the notions of order and disorder in condensed matter physics.
Indeed, these notions have in large part been developed and studied in the context of
magnetism.

The simplest model which allows such a demonstration is provided by a model
which is, literally, the Ising model of magnetism. Its basic degrees of freedom are
Ising variables σ z

i = ±1. Their locations, i , are most simply chosen to reside on a
lattice �, e.g. a simple (hyper)cubic lattice in d dimensions hosting N sites.

The Ising degrees of freedom can interact. For an ordering transition in d ≥ 2, it
is sufficient to allow for an interaction between pairs of nearest neighbours on the
lattice, denoted by 〈i j〉, which allocates an energy +J if the spins are aligned, and
−J if they are antialigned:
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HIsing = J
∑

〈i j〉
σ z
i σ

z
j . (3.1)

Here, the exchange constant J is negative for ferromagnetic, and positive for antifer-
romagnetic, interactionswhich favour a pair of spins to be (anti)aligned. The partition
function of the Ising model at inverse temperature β = 1/T is then given in terms
of the Ising Hamiltonian HIsing as

ZIsing = Tr{σi } exp(−βHIsing) . (3.2)

Here, the Tr{σi } amounts to a sum over all possible spin configurations.

3.1.1 Symmetry Breaking

Let us for concreteness first consider the ferromagnet, for which in the limit of low
temperature, β → ∞, energy minimization is enforced, which means that each spin
is to be aligned with all of its neighbours. There are twoways of achieving this, either
for all spins to point up, or for all spins to point down. In fact, these two states have
exactly the same energy, as they are related by the global spin inversion symmetry
of the Ising model, σ z

i → −σ z
i ∀i .

The process bywhich either one or the other of these two states is chosen is known
as symmetry breaking; for an in-depth account of this remarkable phenomenon,
we refer to appropriate textbooks such as [1]. In brief, symmetry breaking can be
diagnosed by the local order parameterm, given by the expectation value of the total
spin σ z

tot = ∑
k σ z

k

mIsing = 1

N
lim
h→0

lim
N→∞Tr{σi }σ

z
tot exp(−βHIsing − βhσ z

tot)/Z , (3.3)

where the infinitesimal symmetry-breaking field h needs to vanish after the thermo-
dynamic limit N → ∞ is taken.

By contrast, in the limit of high temperature, β → 0, all configurations have the
sameweight in the partition function, andmIsing vanishes. This disordered state is just
a simple paramagnet, distinguished sharply by the absence of symmetry breaking,
in contrast to the ordered ferromagnet.

A local order parameter arising as a consequence of the breaking of a global sym-
metry are the basic ingredients for our understanding of conventional ordered phases.
These themes can be embellished considerably. Most importantly, different systems
are distinguished by the symmetry of the Hamiltonian, which can be much larger
than just simple Ising inversion. In the much-studied case of a classical Heisenberg
model, the degrees of freedom can be taken to be classical three-component unit
vectors Si, interacting via
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HH′berg = J
∑

〈i j〉
Si · Sj . (3.4)

Here, a ferromagnet will therefore reduce the continuous symmetry group of the
Hamiltonian, when a direction of the magnetisation is chosen.

3.1.2 Emergence of New Degrees of Freedom

Such phase transitions go along with the emergence of new natural degrees of free-
dom. For example, in an ordered Ising ferromagnet at low temperatures, it is more
efficient to specify where the domain walls between oppositely oriented ordered
domains lie, as these are much sparser on account of their suppressed weight due to
their energetic cost, rather than the spins themselves. For the Heisenberg case, the
breaking of the continuous spin-rotation symmetry in turn leads to the appearance of
spin waves, which correspond to continuous twists in real space of the spin direction.
In the limit of the twist being slow, the energetic cost for introducing a spin wave
vanishes–this is a general feature of so-called Goldstone modes accompanying the
breaking of a continuous symmetry.

3.1.3 Landau–Ginzburg–Wilson Theory

As the distinction between a symmetry being either intact or broken is a sharp one
(going along with non-analyticities in behaviour of observables such as the mag-
netisation defined above), this implies that there must be a well-defined transition
point separating ordered and disordered phases. The final ingredient in our present
understanding is that of universality—namely that apparently rather different micro-
scopic Hamiltonians give rise to transitions identical in many respects provided that
the symmetry breaking involved is the same.

For instance, if the model we had considered had been an antiferromagnet rather
than a ferromagnet on a hypercubic lattice, the breaking of the Ising symmetry
would proceed in exactly the same way, en route to reaching the doubly degenerate
ground state of the antiferromagnet. This degeneracy follows from the fact that the
hypercubic lattice is bipartite: this means that the lattice can be separated into two
sublattices so that each site only has neighbours on the opposite sublattice. This
can be seen directly by assigning to each site at coordinate (x1, . . . , xd) a parity
(−1)

∑d
i=1 xi , so that even parity sites adjacent only to odd parity sites and vice versa.

It is thus possible to define precisely two states where each spin is antialigned with
all its neighbours, namely those with spins pointing up on one sublattice, and down
on the other, or vice versa.
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Piecing together this understanding of order, disorder and phase transitions is a
grand achievement, and befitting it, the community has settled on a grand name for
it, namely that of the Landau–Ginzburg–Wilson paradigm.

3.2 Magnetism Beyond the Landau–Ginzburg–Wilson
Paradigm

The main attraction of spin ice is that it is different from both conventional disor-
dered magnets and from conventional ordered magnets. Whether or not such uncon-
ventional systems—which are not covered by the classification of phases outlined
above—do at all exist was first asked byWegner in his original work on lattice gauge
theories [2], and formulated concretely and pursued with perseverance by Ander-
son starting in the 1970s [3, 4]. While Anderson himself had already identified some
aspects of the special behaviour of magnets on the pyrochlore lattice in the 1950s [5],
it nonetheless took almost another half century until the special role of spin ice was
fully appreciated. The remainder of this chapter, and indeed most of this book, is
devoted to an exposition of these unusual features. With the quantum chemical ori-
gins presented in Chap. 1, we take simple model Hamiltonians abstracted from these
as the starting point of our presentation.

3.3 The Minimal Model for the Coulomb Liquid:
Nearest-Neighbour Spin Ice

Many of the special features of spin ice can already be gleaned by analysing a simple
Ising model on the pyrochlore lattice composed of N spins (Fig. 3.1):

HIsing = J
∑

〈i j〉
σ z
i σ

z
j = J

2

∑

α

τ 2
α + cst. (3.5)

Here τα is the sum of the Ising spins residing on one of the N/2 tetrahedra labelled
by α:

τα =
∑

i∈α

σ z
i . (3.6)

The physics of a ferromagnetic J < 0 is pretty much the same as for an Ising
ferromagnet on a cubic lattice: a high-temperature paramagnet gives way to a ferro-
magnet in a standard Ising transition. The global ground state of this Hamiltonian is
doubly degenerate, with all spins pointing up, or all spins pointing down.

Things change quite dramatically for the antiferromagnet, J > 0: instead of hav-
ing two degenerate ground states, as described above for the hypercubic lattice, we
find there are many more such states–each state in which every tetrahedron has

http://dx.doi.org/10.1007/978-3-030-70860-3_1
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Fig. 3.1 Top left: the pyrochlore lattice of spin ice, embedded in a cube showing the principal
directions. This lattice consists of tetrahedra sharing corners. Top right: The centrepoints of the
tetrahedra of the pyrochlore lattice (thin lines) define a diamond lattice (thick lines). The spins, site
variables on the former, become link variables (arrows) on the bonds of the latter. Bottom left: the
ground state condition, (3.7), stipulates that two spins point ‘up’ (into the tetrahedron), and two
point ’down’ (out of the tetrahedron). Bottom centre: represented as link variables on the diamond
lattice, the spins can be thought of as a lattice flux B (brown arrows). This lattice flux exhibits
an emergent conservation law: states obeying the ground state condition have ∇ · B = 0 for each
tetrahedron, i.e. the total amount of flux coming into the tetrahedron equals the total flux going
out. This is known as the ice rule from a similarity to the local physics of hydrogen and oxygen
ions in solid water: the four-fold coordinated O2− ions (blue circles) are hydrogen bonded, with
the H+ ions (i.e. protons) (red circles) located not symmetrically on the bond. Each O2− ion has
two protons close, and two further away. By pointing the brown arrows towards the protons, the ice
rules for spin ice emerge from those for water ice. Bottom right: a set of spins (encircled in green)
arranged head-to-tail on a loop may be inverted to produce another ground state configuration. Such
a loop has zero net magnetisation

τα = 0 (3.7)

is a ground state. This can already be seen for a single tetrahedron, where there
are two ferromagnetic ground states as per usual, but six antiferromagnetic ones:
to obtain τ = 0, one needs to choose two of the four spins to point up: there are(
4
2

)
= 6 different such choices, and hence six ground states out of the 24 = 16

spin configurations of a single tetrahedron. We note on the side that these six states
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are all symmetry-equivalent: a tetrahedron has six symmetry-equivalent bonds, and
choosing a ground state amounts to choosing which of these six bonds has two spins
pointing up at its ends.

This argument does not tell us how many states fulfill (3.7). It turns out that the
number of ground states scales exponentiallywith the number of tetrahedra in the sys-
tem. Since the number of symmetries does not, this means that most ground states are
not symmetry-related—this is a situation characteristic of systems known as ‘highly
frustrated’. The scaling of the number of ground states with N has been computed
exactly in d = 2 by Lieb using the Bethe ansatz, and estimated approximately in
d = 3:

N2d =
(
4

3

) 3N
4

(3.8)

N3d =
(
3

2

) N
2

. (3.9)

N3d was obtained by Pauling using the following simple estimate: a system with
N spins has 2N configurations; with each of N/2 tetrahedra permitting only a
fraction of 6/16 of configurations, so that N3d = 2N (6/16)N/2. This estimate is
independent of dimensionality, and it obviously does not agree exactly with the
value for d = 2. In d = 3, the best theoretical estimate was provided by Nagle to be
1
N logN3d = 0.20501(5) [6], while aMonte Carlo simulation obtained 1

N logN3d =
0.2051(1) [7].

This number can in fact be measured directly, as an exponentially large number
of states W goes along with a nonvanishing entropy, according to the formula S =
k logW immortalised on Boltzmann’s tombstone bearing the equation involving his
constant k [8]. By measuring the specific heat, C, in a spin ice material, between a
high temperature Tp and a low temperature in the spin ice regime Ti , one can use

the formula for the change in entropy, ΔS = ∫ Tp

Ti
C
T dT . At high temperature, the

paramagnet has entropy log 2 per spin, as in a perfect paramagnet, each spin has two
possible states it can be in with equal probability. Such an entropy measurement was
carried out on a series of rare earth titanates by Blöte [9], and later in a direct search
for the Pauling entropy by Ramirez [10]. This latter data, shown in Fig. 3.2, provided
decisive support for the identification of the rare earth magnet Dy2Ti2O7 as a spin
ice material.

Fundamentally unlike the cases of the hypercubic magnets discussed above, we
here need to investigate the statistical mechanics of an exponentially large number
of ground states. It turns out that this exponential degeneracy underpins the special
behaviour of the spin ice compounds, and is therefore key to the newphysics observed
there.
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Fig. 3.2 Left: the entropy of spin ice DTO as a function of temperature. Upon cooling, a residual
entropy well-approximated by Pauling’s estimate Sp = 1

N logN3d = 1
2 log

3
2 remains, adapted

from [10]with permission fromNature. Right: low-temperature values of the entropy for diluted spin
ice Dy2−xYxTi2O7 and Ho2−xYxTi2O7, compared with theoretical results from a simple Pauling
approximation which treats all tetrahedra as independent, adapted from [76] with permission from
the American Physical Society

3.3.1 Coarse-Graining and Emergent Gauge Field

The above considerations in themselves do not tell us what the long-distance corre-
lations present in the ensemble of spin ice configurations are. In fact, from known
solutions of two-dimensional Ising models with exponentially large degeneracies,
it is well-known that there can be exponentially decaying correlations, such as in
the kagome Ising magnet [11]; or algebraically decaying correlations, such as in the
triangular Ising antiferromagnet [12]; or even long-ranged correlations, such as on
the fully frustrated model whose ground states map onto the dimer model on the
square-octagon lattice. The ordering therefore appears to be a question of ‘detail’,
and the challenge is to identify the different universal behaviours—i.e., the set of
generic outcomes obtained when considering different lattice models.

For conventionally ordered systems, a successful way of approaching this ques-
tion is presented by the renormalisation group, which can be pictorially encoded by
block-spin transformations. For example, on a square lattice Ising magnet, grouping
spins into 3×3 blocks, one can introduce a majority rule: a new coarse-grained spin
is assigned to point in the direction of the majority of the 9 spins in the block. Appro-
priately iterating this procedure, one finds as a function of coupling strength one of
three scale-free fixed points: either a perfect paramagnet with vanishing correlations,
a perfectly ordered ferromagnet, or a critical point separating these two.

Here, we address how to do the coarse-graining for spin ice. One ‘boring’ outcome
is that—as turns out to be the case in the example of the kagome Ising antiferromag-
net [11]—all there is to do is to notice that the ground state is continuously connected
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to the perfect paramagnet. Thus, the old block-spin prescription leads to the conven-
tional result.

However, the situation in spin ice has some additional structure: it turns out that
here (as in the abovementioned example of the triangular lattice Ising antiferromag-
net), one can define an emergent conservation law, which is most easily visualised by
transforming the spin system on the pyrochlore lattice into a model of link variables
on the diamond lattice. This proceeds as follows, see Fig. 3.1.

This diamond lattice is formed by themidpoints of the tetrahedra of the pyrochlore
lattice; the pyrochlore sites in turn are located at the midpoints of the diamond lattice
bonds (‘links’). (The pyrochlore lattice is hence known as the medial lattice of the
diamond lattice.)

The link variables are next defined as follows. Given the diamond lattice is bipar-
tite, one can orient each link to point from one of its sublattices (labelled A) to the
other (labelled B); and the link variable is defined to point from sublattice A to B if
the Ising variable on the pyrochlore site corresponding to the link is +1; and if it is
−1, the link variable points from sublattice B to A.

It now follows that for a system obeying the ice rule, each diamond lattice site
has two link variables pointing towards it, and two away. Thus, defining each link to
carry a unit of flux, B, the direction of which is given by the link variable, it follows
that this flux has vanishing (lattice) divergence.

Such a vanishing divergence implies a conservation law, just as the conservation
of charge leads to Kirchhoff’s current law stating that the total amount of current
flowing into a node of a network of resistors must equal the current flowing out.
In spin ice, however, the conservation law is not of such fundamental origin, but
rather, it is emergent: it only appears when the ground state condition of the Ising
Hamiltonian, (3.7), is enforced.

How to coarse-grain such a conservation law is a priori not obvious. In a block-spin
transformation, for instance, having no net flux into a group of 9 nodes is much less
constraining than demanding no net flux for each node individually. The resolution
in the case of spin ice is to define a field which is in itself divergence-free, and to
effect the coarse-graining on this. How to do this is in itself not difficult—we already
know from the context of Maxwell’s equations that

∇ · B = 0 =⇒ B = ∇ × A (3.10)

This in turn defines the emergent gauge field A. So far, all we have done is to
redefine variables from Ising spins to an emergent gauge field, and we have not
resolved any of the issues regarding the long-distance correlations. However, we are
in a much better position to guess now—as we know that broken symmetries and
conservation laws are what determines long-distance correlations even in conven-
tional systems. Assuming, somewhat optimistically, that spin ice is something novel
which makes do without breaking any symmetries, the question then is: what is the
simplest ansatz for the behaviour of the action in terms of the emergent gauge field
A under coarse-graining.
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Let us try a form which is analytic and of the lowest allowed power, as one might
intuit based on an analogy to Maxwell’s magnetostatics, namely

S = K

2

∫
ddr(∇ × A)2 = K

2

∫
ddr B2 , (3.11)

where for spin ice, the integral is over d = 3-dimensional real space.K is a stiffness
constant taking the place of the permittivity/permeability of space.

Such an ansatz can be physically motivated, again see Fig. 3.1. If one can identify
a set of spins arranged head-to-tail on a closed loop, it is possible to invert all of these
simultaneously to obtain another state obeying the ice rules. Since such a loop has
zero total magnetisation, one sees that upon coarse-graining on a lengthscale given
by the size of the loop, two configurations contribute to the partition function, the
original one, and that with the spins on the loop flipped. (In passing, we note that the
statistical properties of such loops are of great interest in their own right, see [13]).
In terms of the coarse-grained field, there should thence be a weighting in favour of
a vanishing field, which is just what is achieved by the form of (3.11).

This, being a quadratic action, can now be solved analytically. A helpful insight is
that the conservation law in (3.10) in Fourier space reads q · B = 0: the ‘longitudinal’
part of B must vanish. This can be written in form of a longitudinal projector, PL ,
which has eigenvalues 1 for the longitudinal components, and 0 for those transverse
to it, so that we need to demand PLB = (q̂ · B)q̂ = 0, where the hat denotes that q̂
is a unit vector to ensure that P2

L = PL . Its complement is the transverse projector
PT = I − PL . Equation 3.11, can thus be written as

S = K

2

∫
ddr

[
1

λ
(PLB)2 + (PT B)2

]
, (3.12)

with λ → 0 in order to enforce the transverseness condition on B. The (matrix)
inverse of this expression is now readily found, using the fact that the projectors
square to themselves, and that PTPL = 0.

One thus finds that the spin correlations of the field B have a simple form dictated
by the transverse projector PT :

〈Bi (q)Bj (q)〉 ∼ 1

K

{
δi j − qiq j

q2

}
. (3.13)

Transformed back into real space, this implies that the correlations decay alge-
braically, like (3 cos2 θ − 1)/r3, the dipolar form familiar from Maxwell magneto-
statics.

All themappings thatwe have done along theway only introduce some staggering,
as well as geometric, factors relating spins to the field A—for details, see [14, 15]—
but the resulting correlations remain of this algebraic r−3 form. Also, the magnitude
of K is not determined by the above considerations, and it therefore needs to be
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Fig. 3.3 Correlations of spin ice in reciprocal space. Dark (bright) areas denote low (high) corre-
lations. Top left: schematic form of predicted pinch-point in the spin structure factor of spin ice,
following from the ansatz (3.11). Numerical simulations exhibit this form in detail [14]. Top right:
Pinchpoints are also visible in neutron scattering experiment [16, 17], but with some smearing
due to defects resulting from thermal or disorder effects, as well as finite instrument resolution.
Reprinted from [16] with permission from Science. Bottom left: numerical simulations of the spin
correlations in kagome ice, i.e. spin ice with a field applied in the [111] direction, see Sect. 3.6.
Besides the pinch points, visible are: (i) Bragg peaks (e.g. at [–220]) due to a net ordered moment
and (ii) logarithmic peaks (e.g. at the corners of the Brioullin zones marked in green) indicating
dimensional reduction to an effectively two-dimensional emergent gauge field. Reprinted from [18]
with permission from the American Physical Society. Bottom right: logarithmic peaks as seen in
experiment [19], reprinted from [19] with permission from the Journal of the Physical Society of
Japan

obtained separately. In practise, determining it in an approximation based on a large
number of spin components has turned out to work well [14].

Neutron scattering experiments measure spin correlations in reciprocal space, and
the form of (3.13) immediately suggests an unusual and characteristic fingerprint: the
correlators are neither smooth (as in a paramgnet with only short-range correlations),
nor divergent like in a Bragg peak diverging with system size. Rather, the correlators
are non-analytic, but only in that they are non-differentiable: there exist so-called
pinch-points where lines of low and high scattering intensity cross, as illustrated in
Fig. 3.3. The pinch-points are the manifestation of the new state of magnetic matter,
the spin ice state.
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3.3.2 Fractionalisation with Strings Attached

New states of matter go along with new excitations—be it the transverse phonons
which appearwhen a gas crystallises, or themagnonswhenHeisenbergmagnets enter
a ferromagnetic state. In this respect, spin ice does not disappoint—there emerge
a set of fractionalised excitations quite unlike what is known from conventional
magnetic systems. To see how these come about, consider the cartoon of spin ice
in Fig. 3.4, which focuses on the divergence-free nature of the spin arrangements
by denoting each link variable as an arrow pointing between tetrahedra, with the
tetrahedra themselves no longer shown. Spin ice corresponds to a soup of such
arrows, all pointing head-to-tail.

Flipping one spin, and hence reversing such an arrow, breaks ice rule in the two
tetrahedra it belongs to. This, however, turns out not to be an elementary excitation—
flipping a string of further spins separates the two defect tetrahedra, without incurring
any further cost in energy. These two defect tetrahedra can therefore move indepen-
dently, and separate arbitrarily far. They are fractionalised, deconfined excitations:
fractionalised because a single spin flip generates two such excitations; and decon-
fined because the energy cost of separating them infinitely far remains finite.

Even though the two defects canmove independently, they can only be introduced
pairwise, in the same way that there is electron-positron creation only in charge-
neutral pairs, even though these two particles can then move around independently.
In the same sense, the defects in spin ice also carry a charge: if one labels the endpoints
with + and − depending on whether the tetrahedron has an excess of link variables
pointing in or out, a spin flip corresponds to charge-neutral pair creation.

Each defect is a source/sink of flux B, depending on its sign. The flux between the
two defects, as they are separated, is carried by the flipped string of spins. Thus, for
any surface enclosing a volume of spin ice, one can count the difference between the
number of strings pointing in and out, and thereby determine the net emergent gauge
charge inside; this is the appropriate form of Gauss’ law for the emergent gauge
field. As one finds a conserved charge taking on integer values just like in Maxwell
electromagnetism, one identifies the spin ice state as the deconfined Coulomb phase
of a U(1) gauge theory. Spin ice is the first three-dimensional spin model known to
exhibit such an emergent gauge structure.

3.4 Dipolar Spin Ice and Projective Equivalence

We have so far used a simple Ising model with antiferromagnetic nearest-neighbour
interactions in order to discuss the basic features of the statistical mechanics of
spin ice. The microscopic Hamiltonian, however, turns out to be considerably more
complex than HIsing (3.1). Indeed, it was pointed out in a seminalwork bySiddharthan
et al. [20] that in spin ice, dipolar interactions are stronger than superexchange ones,
so that the Hamiltonian to be considered, now known as the dipolar spin ice model,
looks much more complex:
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Fig. 3.4 Flipping a spin in a spin ice ground state configuration (top left) generates two defect
tetrahedra, which host oppositely charged defects (top right). These can be separated by flipping
further spins arranged head-to-tail along a string (bottom left). Once the string connects the top
and the bottom boundary (bottom right), another ground state configuration is obtained, whose
magnetisation differs from the original one. In this plot, the starting state is fully polarised along
the [100] direction, as would be selected by a strong applied field in that direction. When the field
strength is lowered, such strings play an important role in the Kastelyn transition: in the absence of
magnetic monopoles, the fully polarised state has no local degrees of freedom, so that the lowest-
energy excitations are such infinitely long strings, which are completely suppressed above the
critical field. The resulting transition looks like a first-order transition on the high-field side, while
it is continuous on the low-field side, see Sect. 3.6.1

Hdip = −J
∑

〈i, j〉
Si · Si + Dr3nn

∑

i> j

Si · Si

|Ri j |3 − 3(Si · Ri j )(S j · Ri j )

|Ri j |5 . (3.14)

The insights going into the derivation of thisHamiltonian are described in the opening
chapter of this book, Chap. 1.

This naturally leads to the question how on earth aHamiltonian as complex as Hdip

can manage to mimick the behaviour of the much simpler HIsing: the Pauling entropy
was measured for a material described by the former, but derived theoretically for
the latter!

http://dx.doi.org/10.1007/978-3-030-70860-3_1
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Self-screening of the dipolar interactions and projective equivalence
The appearance of the Pauling entropy even in dipolar spin ice is well-established
numerically by Monte Carlo simulation [21]. An important hint of how this happens
is provided by a mean-field theory analysis of den Hertog and Gingras [22]. They
considered the Fourier transform of the dipolar interaction Hamiltonian, which can
be evaluated numerically. The spectrum of Hdip has four bands, as there are four
effectively scalar degrees of freedom in the unit cell containing four spins. Crucially,
the band lowest in energy is almost entirely flat. This is a signature of frustration
and the resulting degeneracy: any two configurations which can be constructed out
of this band alone will be effectively degenerate.

In fact, the entire mode spectrum of Hdip looks very similar indeed to that of
HIsing—the main difference being the appearance of a gap in the spectrum of Hdip

between the two nearly flat and the two dispersive bands (with a feature at the zone
centre reflecting in turn a topological property of the band touching point involving
eigenmodes of the Hamiltonian wrapping around the periodic boundaries of the torus
used for the Fourier transformation, see [23]). It therefore seems that the dipolar
interaction manages to screen itself, mimicking the nearest-neighbour interaction as
a result.

This picture turned out to be largely correct—itwas found that not only the flatness
of the lowest band, but also the concomitant eigenfunctions are almost identical
between Hdip and HIsing [24]. In other words, the operation of projecting the spins
onto the ground states of either Hdip or HIsing are essentially identical. This feature,
which is mathematically somewhat intricate, was termed projective equivalence.

Quite generally, this suggests a way of deforming Hamiltonians (spin or even
hopping problems1) to yield high degeneracies: after finding its eigensystem, keep
the eigenvectors of the lowest band as they are, but replace its non-trivial dispersion
by a flat one. This can be Fourier-transformed back to obtain a new, more degenerate
Hamiltonian in real space, which will differ from the original one by longer-range
terms decaying exponentially if the original spectrum above the flat bandwas gapped,
and only algebraically otherwise. For spin systems, where the hard spin constraint is
not implemented in such mean-field theories, this works best if there exists already
for the original Hamiltonian a large low-energy sector of spin configurations made
up of eigenvectors of the lowest band exclusively.

3.5 Magnetic Monopoles

In order to derive the existence of the fractionalised excitations mentioned above, we
never had to refer to themagnetic moment of the spins underlying the dipolar spin ice
Hamiltonian in Sect. 3.4. However, adding the magnetic moment gives additional

1 As an aside, we note that projective equivalence has effectively also been used in the study of
fractional Chern insulators [25–27] to obtain dispersionless bands with nonzero Chern number in
which interacting electrons at appropriate filling then exhibit a fractional quantum Hall effect.
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Fig. 3.5 Left: a magnetic dipole of strength μ can be replaced by a pair of magnetic charges
separated by a distance rd . Flipping a ‘Dirac string’ of spins (encirceld in yellow) starting from
a spin ice ground state configuration leaves behind two sites with equal and opposite nonzero net
magnetic charges (encircled red and blue), while the other sites are charge neutral (encircled in
green). Upon coarse-graining, the neutral sites are replaced by an effective medium mediating
entropic interactions between the charged sites, which also experience a net magnetic Coulomb
interaction between their charges of size ±2μ/rd

meaning to the charges at either end. The easiest way to see this pictorially is to
replace the dipole moment by two equal and opposite magnetic charges, ±μ/rd ,
where rd is the lattice constant of the diamond lattice (see Fig. 3.4). This dumbbell
of charges then by construction has the magnetic dipole moment μ of a spin in the
spin ice material. Note that, with this choice of variables, the ice rule (and hence
the divergence-free nature of the diamond lattice nodes) amounts to the demand that
each diamond lattice site be charge-neutral: each in-pointing link variable contributes
a pair of charges opposite in sign to those corresponding to the out-pointing link
variables.

Reversing string of spins as in Sect. 3.3.2 thus yields pair of opposite charges
of size ±2μ/rd at the ends of the string, as illustrated in Fig. 3.4 This is a remark-
able result—spin ice manages to fractionalise magnetic dipoles into independently
mobile magnetic charges. This is one of the reasons these fractionalised particles
were christened magnetic monopoles [28].

Indeed, to make a connection to standard magnetostatics, it is instructive to do an
elementary computation to show how these fractionalised particles come to exhibit
magnetic Coulomb interactions. This proceeds by writing down the potential set
up by a string of dipoles, which amounts to a continuum approximation, where the
flipped string of spins is assigned a dipole moment density of 2μ/rd . Using the fact
that the potential of a dipole is just the ∇ 1

|r−r ′| , the expression for the potential at site
r is given by a line integral along the string � parametrised by r ′:

V (r) = 2|µ|
rd

∫

�

dr′ · ∇ 1

|r − r ′| = qm

(
1

|r − ra| − 1

|r − rb|
)

. (3.15)

Here the equality simply follows from the fundamental theorem of calculus, that the
line integral of the gradient of a function is given by the function evaluated at the
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endpoints of the line, denoted by ra,b. This in particular shows why the details of the
shape and length of the flipped strings are immaterial for the magnetostatic potential
set up by the monopoles at its ends.

The natural description of the Coulomb phase of spin ice is therefore in terms
of an emergent gauge field, A, and pointlike excitations gauge-charged under it, the
magnetic monopoles. As usual, having identified the natural variables, some known
results can be summarised and understood more succinctly, and new phenomena can
be more crisply identified and described. To these we turn next.

3.5.1 Self-Screening and Residual Ordering Tendency

The first mystery that is immediately explained is the projective equivalence noted
above, which manifested itself in the Pauling entropy being measured for dipolar
spin ice. As the ground states are locally charge neutral by force of the ice rules
(associated already with the nearest-neighbour Hamiltonian) alone, the long-range
nature of the interactions no longer plays a role. This is the self-screeningmechanism.

Of course, the dumbbell model is only an approximation. However, it suggests
to do a multipole expansion not for the spins, but for the tetrahedra, with a vanish-
ing monopole moment being enforced by the ice rules. It then becomes apparent
that this is an unstable procedure—the tetrahedral multipoles compete with, say, fur-
ther neighbour or more complex spin interactions which may be both present and
unknown. As is often the case for frustrated magnets, many instabilities compete.
However, the multipole expansion makes a clear prediction of the ordering tendency.
To this day, no ordering in the canonical spin ice compounds {Ho,Dy}2Ti2O7 has
been experimentally established, even though a possible precursor of ordering at very
long timescales has been seen in [29], and Chap. 4.

3.5.2 Irrational Charge and Emergent Versus Intrinsic
Gauge Charges

The fractionalised particles carry a magnetic charge derived above, qm = 2μ/rd .
This charge is in general irrational, since the magnetic moment μ can be tuned con-
tinuously, e.g. by applying hydrostatic pressure to the sample [30]. Indeed, there is a
priori no reasonwhy the charge in question should not be irrational, as already noticed
in the seminal “unit model” of Nagle for water ice [31], where an irrational electric
charge arose quite naturally. Indeed, irrational charge already exists in chemistry,
where its topological origin was perhaps not noted as the concepts were not crisply
available at the time of its discovery; and because irrational charge is not uncom-
monly used when describing chemical bonding. However, the important point here is
that the deconfined fractional charge is not just redistributed in a given molecule, or

http://dx.doi.org/10.1007/978-3-030-70860-3_4
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between two sublattices of a chemically bonded lattice system. Rather the irrational
charges can move independently (in the form of ionic or Bjerrum defects) through
the system.

The monopole charge defined in Sect. 3.3.2, independently of the magnetic
moment of the monopole, however, does not change alongside this continuously
variable magnetic charge. The defect tetrahedra are therefore doubly gauge charged:
with the intrinsic magnetic charge attached to the magnetic dipole moment on one
hand; and the emergent gauge charge attached to the flux B defined in Sect. 3.3.2 on
the other. The former is not constitutive to the emergent Coulomb phase, as it derives
from the preexisting Maxwell gauge theory; in particular, if the basic degrees of
freedom had been electric dipoles, the resulting fractionalised particles would carry
an irrational electric charge, as is actually the case in water ice [31]. Rather, it is the
emergent gauge charge which is fundamentally associated with the spin ice phase.
The reason this duplication of charges was overlooked for a long time is that the
mathematical structures are identical—their contributions to the overall Coulomb
interaction between defect tetrahedra are simply additive, albeit with a different tem-
perature dependence. This is an accident, which can be removed in an interesting
way explained in Sect. 3.6.2.

3.5.3 ‘Dirac Strings’

The alert reader may now feel uncomfortable—surely, it is not possible to have con-
tinuously variable magnetic charge; after all, Dirac introduced magnetic monopoles
because their existence led to the mutual quantisation of electric and magnetic
charges [32]. His line of argument runs as follows. If a magnetic monopole exists,
and one wants to keep the divergence-free nature of the magnetic field, the magnetic
flux emanating from the monopole must be supplied in an unobservable way. The
trick to achieve this was provided by the Dirac string: an infinitely thin (and hence
invisible) tube throughwhich the flux is transported to themonopole. However, quan-
tum mechanics can detect magnetic fluxes without seeing the tube, as it will lead to
an Aharonov Bohm effect for electron interference experiments with paths passing
either side of the Dirac string. In order to pick up only trivial relative phases between
such paths, Dirac was led to posit that the corresponding Aharonov-Bohm phase
must be a multiple of 2π , and that therefore, the product of magnetic and electric
charge needs to be quantised.

The way spin ice avoids coming in conflict with this line of argument is that its
‘Dirac strings’ are observable. These are just the flipped strings of link variables used
in establishing fractionalisation in the first place, Sect. 3.3.2, and they are observable!
The physics of Dirac strings in itself is a rich and interesting subject. They present
an unusual type of extended degree of freedom, which exhibits intriguing statistical
properties. These are striking enough that a separate chapter of this book, written by
one of its editors, is devoted to them (see Chap. 6).

http://dx.doi.org/10.1007/978-3-030-70860-3_6
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Fig. 3.6 The electric dipole
moment associated with a
magnetic monopole due to
magnetostriction is shown in
the tetrahedron on the
bottom left. The indicated
magnetic monopole crystal
can arise when the energy
cost of monopole creation is
surmounted by the gain from
their interaction, e.g. due to
their electric dipole moments

3.5.4 Magnetolyte Physics and Magnetricity

Given magnetic monopoles interact via a Coulomb interaction suggests that their
collective physics should be that of a Coulomb liquid. The fact that the interaction is
magnetic rather than electric does not greatly matter here—the equations do not care
about the provenance of prefactors in a ‘magnetolyte’ as opposed to an electrolyte
usually described by Coulomb liquid physics.

Such an analogy was in fact already invoked when explaining hitherto puzzling
experiments about spin ice in a field [7, 28, 33], described in Sect. 3.6. It has since
been greatly extended to study thermodynamics and dynamics of spin ice, with ideas
ranging from Debye screening [34–36] all the way to an analysis of the nonlinear
nonequilibrium response of spin ice in terms of the venerableWien effect discovered
in electrolytes in the 1930s [37–39]. These items are also covered in Chaps. 7 and 8.

3.5.5 Electric Properties of Magnetic Monopoles

It is a priori not natural for a magnetic monopole in spin ice also to carry electric
charge, as magnetic and electric dipole moments have different transformation prop-
erties under time reversal: while the direction of the magnetic moment changes (as
can be seen by representing it as an angular momentum, which is odd under time
reversal), the electric dipole moment remains unchanged.

Restricting to the case of electrically neutral magnetic dipoles as underlying
degrees of freedom, it is more natural for the magnetic monopole in turn to exhibit

http://dx.doi.org/10.1007/978-3-030-70860-3_7
http://dx.doi.org/10.1007/978-3-030-70860-3_8
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an electric dipole moment. This follows already from a toy model of spin ice incor-
porating spin-lattice coupling leading to magnetostriction [40]. Assuming for con-
creteness that satisfied bonds shorten, while frustrated bonds lengthen, this leads to
a distortion of the crystal lattice around a magnetic monopole. Of course, it is not
necessarily the pyrochlore lattice ofmagnetic ions which needs to be deformed. Elec-
tric polarisation can also be a consequence of the displacement of the intervening
oxygen anions following the Goodenough-Kanamori-Anderson rules [40], or of the
spin-current model of multiferroics because of the non-colinearity of neighbouring
spins [41–44]. At any rate, based on symmetry arguments illustrated in Fig. 3.6,
electric dipoles are only allowed on singly-charged magnetic monopoles. Since the
electric field is protected by time-reversal invariance, it is independent of the mag-
netic charge. Its direction does, however, depend on the spin configuration and has
been shown to be parallel to the minority spin—the one pointing “in” for a 3 out
–1 in state, and vice-versa. Where to observe these electric degrees-of-freedom?
Since monopoles are a necessary ingredient, the liquid-gas transition in a field—see
the next section and Chap. 5—is one natural place to look at: there, the density of
monopoles jumps, from being small to nearly saturated at low temperatures.

Beyond influencing the electric properties of the material, the cooperative conse-
quences of the presence of electric interactions are also worth noting. The magnetic
Coulomb potential in spin ice is relatively weak, especially compared to the energy
scale characteristic of elementary electric charges separated by the same distance.
Hence, the electric dipolar interaction between monopoles might be able to stabilise
novel long-range ordered structures of magnetic charges, paving the way for an
emergent “magnetic crystallography”.

To analyse such phenomena, it is necessary to consider the strength of symmetry-
allowed effective magneto-electric coupling in detail. This will depend on the chem-
istry of the material. Tb2Ti2O7 is in this context a promising candidate, with notice-
ably strong spin-phonon coupling [45–49], spins described by an Ising-like dou-
blet [50, 51] and a possible Coulomb phase at low temperatures [52, 53]. Monte
Carlo simulations have shown that electric dipoles carried by monopoles order the
spin-ice model into a double-layer structure of magnetic charges (see Fig. 3.6) [54].
This order bears a macroscopic magnetic moment along the [110] direction and is
thus stabilised by a [110] external magnetic field. The fact that such order has been
observed in Tb2Ti2O7 under a strong [110] field [55, 56] indicates the possibility
for the importance of electric dipole moments carried by magnetic monopoles [54].
More generally, this exotic property of spin ice indicates the need for the exploration
of structured ’internal’ degrees-of-freedom buried inside quasi-particle excitations
in correlated magnets.

3.6 The Coulomb Phase in a Magnetic Field

The experimentally relevant feature of the topological magnetism of spin ice lies in
the fact that there exists a regime of finite width in which a description in terms of

http://dx.doi.org/10.1007/978-3-030-70860-3_5
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an emergent gauge field is simple and efficient. There exists always a nonvanishing
density of thermally activated defects; beyond the lengthscale set by their density,
the behaviour of spin ice crosses over to that of a normal paramagnet—it is only in
the limit of T → 0 that a mathematically well-defined Coulomb phase emerges. In
practise, as the temperature is lowered, the crossover into the spin iceCoulomb regime
takes place as the Boltzmann factor for exciting a monopole becomes considerably
less than 1. This roughly happens when cooling below the peak in the specific heat
known as the Schottky anomaly.

The Coulomb regime is then stable to further perturbations provided their strength
is lower than the thermal fluctuations at a given energy. In the limit of T → 0, an
arbitrarily weak perturbation—such as some further-neighbour interactions—will
lead to an ordering transition. This situation is shared with many other frustrated
magnets, where a generic spin liquid regime exists in a temperature window defined
by the strength of perturbations to an idealised model Hamiltonian on one hand, and
the energy scale of that model Hamiltonian on the other.

Among all possible perturbations, some are perhaps more interesting than others.
We reserve particular attention to an applied magnetic field for a number of reasons.
Firstly, it is straightforwardly available in laboratories. Secondly, in the case of spin
ice, it couples directly to a topological quantity: amagnetic field drives themonopoles
across the system [57], thereby winding up Dirac strings until the sample is fully
magnetised.

A crucial property of the Ising spins in spin ice is that their moments point in
different directions according towhich of the four sublattices of the pyrochlore lattice
they reside on. These local easy axes are defined by the line joining the centres of
the tetrahedra that share the spin in question; these are just the four bond directions
of the diamond lattice, Fig. 3.1, which correspond to the four different sites of a
tetrahedron, or the dashed lines in Fig. 3.7.

This fact endows the applied field with a particular versatility, as its orientation
with respect to the quartet of local easy axes can induce qualitatively remarkably
varied behaviour. This is the subject of this section, which will cover an unusual
topological transition in three dimensions known as Kasteleyn transition to a uni-
formly inert state via a mechanism involving one-dimensional extended strings; a
two-dimensional kagome ice regime, where the emergent gauge field undergoes
dimensional reduction; as well as to a set of orthogonal chains only half of which
are fully pinned. This interesting physics will be discussed in detail in the following
chapters (see Chaps. 5 and 6). Here, we consider only the first two items on this list,
and in particular focus our discussion less on the rich and varied phenomenology of
the resulting magnetisation processes, and more on their explanation in terms of the
physics of emergent gauge fields and its manipulation.
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3.6.1 Kasteleyn Transition

Applying a field in the crystallographic [001] direction (Fig. 3.1) is particularly
simple: in this case, the Zeeman energy is the same for spins on all four sublattices
with different easy axes. Secondly, there exists a fully polarised state which both
minimises the Zeeman energy and satisfies both the ground state condition τα = 0.

This fully polarised state is non-degenerate—flipping any spin costs Zeeman
energy. Therefore, there will be at least two regimes, one for weak fields where the
entropy of the spin ice manifold dominates; and another at high fields, where the
Zeeman energy dominates.

In Ising magnets, there need not be a phase transition between these two regimes,
as the external field acts as a symmetry-breaking perturbation, so that a continuous
crossover to the unique fully polarised state is possible. Indeed, this is what happens
at any finite strength of the magnetic-interaction energy scale.

However, if the ground state condition τα = 0 is strictly enforced, a new and
highly unusual phase transition does appear [58]. It results from a special feature of
the fully polarised state, namely that it is dynamically very inert: since spin flips can
only appear in strings of spins arranged head-to-tail, for a fully polarised state, these
strings have to span the entire system (Fig. 3.4).

The Zeeman cost involved thence grows with the linear system size L , as flipping
each spin incurs a Zeeman energy penalty of EZ . However, this cost can be counter-
balanced by the entropics of such strings, as their path is not predetermined: at each
step, there is a choice through which of the two in-pointing spins of a tetrahedron to
exit, amounting to an entropic contribution to the free energy of T log 2 per flipped
spin. The free energy of a single string is thus

Fs = −L(T ln 2 − EZ ) , (3.16)

where EZ = 2h/
√
3 is the Zeeman energy cost of anti-aligning a spin with the

field of strength h. When Fs > 0 at low T , the corresponding Boltzmann factor,
exp(−Fs/T ) ∼ exp[L(ln 2 − EZ/T )] is exponentially small in L , and hence strings
are completely suppressed—the fully polarised state permits no fluctuations.

By contrast, when Fs < 0, strings will be present. Details of how they appear
depend on their effective interactions. In the absence of further perturbations, there
is an entropic repulsion between the strings—when two strings pass through the
same tetrahedron, there is no choice to be made which spins to flip. The density of
strings therefore increases continuously from zero. The corresponding transition is
known as a Kasteleyn transition, and it is unusual in that on one side, it looks like an
ordinary second-order phase transition; while on the other, the complete suppression
of fluctuations lends air of an extreme first-order transition.

The entropic repulsion of the strings can be counteracted by an energetic attraction,
which may e.g. be achieved via spin-phonon coupling by straining the crystal [59]
or by further neighbour couplings [60]. When the strings are effectively attractive,
the Kasteleyn transition is replaced by a first-order jump in the magnetisation. Right
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in between those two, there is a possibility of an ‘infinite-order’ transition, in which
an extensive number of levels are exactly degenerate at the transition [59].

These features are all manifestations of the unusual string-like nature of the exci-
tations in spin ice. Theories to account for those therefore invoke extended degrees of
freedom. A particularly elegant description is to identify the strings in d dimensions
with world lines of bosons in d − 1 dimensions [58, 61]. Thence, the Kasteleyn
transition becomes the transition of the dilute Bose gas, which is the same as the
commensurate-incommensurate transition [62].

In an actual experiment, the ice rule will not be perfectly enforced, due to the
finite energy cost of magnetic monopoles, the presence of which allows strings to
terminate. A detailed scaling analysis of the resulting critical behaviour has been
carried out in [63].

3.6.2 Kagome Ice

An additional convenient feature of the magnetic field in spin ice is provided by its
interplay with the non-collinear easy axes of the four sublattices. By choosing a field
direction which has unequal projection on these axes, one can selectively distinguish
between the axes, and therefore use a uniform field in the laboratory to emulate a
staggered field as far as the sublattices are concerned [64].

A field in the crystallographic [111] direction has a projection onto one easy axis
three times the size of that onto the three others. This one sublattice will therefore
be pinned first. The spins on this sublattice form triangular lattices stacked along the
field direction, to which they are perpendicular (Fig. 3.7).

These triangular lattices alternate with kagome lattices hosting the spins of the
other three sublattices. Each triangle of this kagome lattice needs to have one spin
antialigned with the field in order to satisfy the condition τα = 0. Denoting this
spin by a dimer connecting the midpoints of the two triangles it belongs to yields
a mapping of spin ice ground states onto dimer coverings of stacked honeycomb
lattices (Fig. 3.7) [5, 7, 33, 65].

The statistical mechanics of the corresponding dimer models is well-understood.
In particular, the residual entropy of this state, known as kagome ice, is still extensive,
and indeed exactly known to beSkagome = 0.0808kB/spin [66].

Dimensional reduction of gauge field
What’s particularly intriguing about this state, however, is the fact that the emergent
gauge field is now restricted to inhabit the two dimensions of the kagome/honeycomb
lattice only: it has undergone dimensional reduction! Gauge fields in two dimensions
have only one component, and are known as height fields. They no longer come with
a local gauge invariance, a fact which is reflected in a richer operator content of
the coarse-grained field theories. These additional operators in turn go along with
new features in the structure factor directly diagnosing the dimensional reduction.
This is nicely revealed in changes in the spin correlations, depicted from numerical
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Fig. 3.7 Left: a tetrahedron inscribed in a unit cell, showing the local easy axes (dashed lines) in
the [111] directions along which the magnetic moments are constrained to point. Middle: a slab of
the pyrochlore lattice cut perpendicular to the [111] axis, reprinted from [33]. Layers of kagome
lattices (purple) alternate with triangular layers. All spins on the latter are polarised swiftly as their
projection onto a field in the [111] direction is large. The kagome layers then host kagome ice, a
two-dimensional version of spin ice with an emergent two-dimensional gauge field and concomitant
logarithmic Coulomb interactions. Right: In kagome ice, two out of three spins of each triangle point
along the field; the third one can be denoted by a dimer joining the centres of the triangles it belongs
to, so that the ground states of kagome ice map onto hardcore dimer coverings of the honeycomb
lattice formedby the centres of the triangles.Reprinted from [65]with permission from theAmerican
Physical Society

simulations [67] in Fig. 3.3. These show a pair of new features. The first is related
to the appearance of a finite net moment induced by the field [18], which shows up
as Bragg peaks at the centres of the Brioullin zone of the structural unit cell. The
second is due to the presence of these additional operators. These reflect algebraically
decaying correlations with a tripled unit cell, and they grow logarithmically with
system size [65].

Other consequences involve a change in the effective interaction of monopoles
in this regime. With the emergent U(1) gauge field restricted to two dimensions, the
corresponding entropic Coulomb interaction no longer decays inversely with separa-
tion between a pair of charges as it does in d = 3. Instead, the distance dependence is
logarithmic, as behooves a Coulomb interaction in d = 2—this is just the interaction
which features in Kosterlitz’ RG treatment of the Coulomb gas. At the same time,
the intrinsic magnetostatic Coulomb interaction continues to have the conventional
d = 3 behaviour.

As in the case of the [001] field, there is a weak-field regime in which the d = 3
spin ice behaviour persists. From the kagome ice regime, this is reached via string
defects involving flipping spins in successive triangular layers. Unlike in the [001]
case, the strings can flip any number of spins in the kagome layers, so that their
entropy is sufficiently large to ensure a non-vanishing string density regardless of
the ratio of Zeeman to magnetic energy, so that there is a simple crossover between
the spin- and kagome-ice regimes. It is only upon tilting the field away from the [111]
direction so that the string meandering in the kagome plane also incurs a Zeeman
energy cost that a Kasteleyn transition arises [65].
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Tuning the Plasma Parameter: Liquid-Gas Transition
In the case of kagome ice, there is a separate transition to a high-field saturated
state, on account of the competition between Zeeman and magnetic energies: for
sufficiently strong fields, the spins antialigned with the field will flip to gain the
former at the expense of the latter [33]. In the language of the dimer model, these
correspond to monomers—triangles not hosting a spin antialigned with the field.
Indeed, fractionalisation in d = 2 follows immediately in this picture: by removing
a dimer, two monomers on its endpoints are left behind, which can then be separated
subject to an entropic Coulomb attraction. These monomers are of course just the
monopoles restricted to two dimensions, and it is in this context that their presence
was first noted in spin ice [65].

Thismapping to amonomer-dimermodel leads to a profound prediction: there is a
theorem byHeilmann and Liebwhich says that no phase transition can appear in such
a model away from vanishing monomer density, the only option being continuous
crossovers. This prediction applies to the nearest-neighbour model for kagome ice
in a field.

This prediction, in turn, is at variance with experimental facts: spin ice in a [111]
magnetic field exhibits a well-developed first-order phase transition with a criti-
cal endpoint, as was noted well before the existence and properties of magnetic
monopoles were properly understood [33, 68]. The origin of the apparent viola-
tion of the Heilmann-Lieb theorem lies in the omission of the magnetic (intrin-
sic) Coulomb interactions, which retain in their three-dimensional form even in the
kagome ice regime as the field lines of the intrinsic magnetic field are not restricted to
the kagome planes. Like this, the monopoles are magnetostatically coupled in d = 3
to monopoles in other kagome planes [28].

Since the creation cost of the monopoles can be lowered by applying a field—all
the way to a negative value in the saturated state—this brings forth another important
feature of field control of spin ice: it allows a tuning of the plasma parameter Γ , the
ratio of a typical Coulomb energy to temperature

Γ = μ0q2
m

4π〈r〉T , (3.17)

where 〈r〉 ∼ ρ−1/3 ≈ exp[Δ/3T ] is the field-dependent typical monopole separa-
tion, set by their density ρ, which in turn follows from an (appropriately renor-
malised) monopole creation cost Δ. In zero field, Γ therefore vanishes at low T on
account of the exponentially small monopole density, as well as at inevitably high
T as 〈r〉 ≥ rd . It turns out that the maximum in between is not sufficient to exhibit
collective physics beyond screening of the Coulomb interaction. However, in a field,
the lowering of 〈r〉 is sufficient to push the Coulomb system in a more strongly
interacting regime, where there does exist a first-order cooperative phase transition
into a high-density regime for the monopoles.

In fact, the phase diagram of spin ice is identical to that of a Coulomb liquid, which
has been studied extensively due to the intrinsic interest of the critical endpoint of
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the line of first-order phase transitions separating the two regimes mentioned above.
Spin ice, in fact, has provided an interesting model system for studying the critical
properties of this endpoint in much detail (see Chap. 7).

3.7 Disorder in a Coulomb Phase—Diluted Spin Ice

In materials science, there are plenty of sources of disorder. So, it is not surprising
that in spin ice, disorder takes on many forms. Disorder can as a matter of principle
not be avoided, and unfortunately, it is not always clear what kinds of disorder are
present; and how to quantify low levels of disorder. As different types of disorder
have different impact on the properties of the system—often in themselves not easy
to understand—this makes analysing experimental data quite tricky. A beautiful case
in point is the study of the effects of small amounts of oxygen non-stoichiometry on
the slow dynamics of the DTO spin ices [69].

Indeed, in the context of frustrated magnets, the effect of disorder, and its possible
role in promoting the appearance of glassy behaviour, is a subject dating back to the
very beginning. The highly frustrated magnetic material SCGO [70], which kicked
off much of the interest in frustrated magnets around the year 1990, does exhibit not
an ordering but a freezing transition terminating the cooperative paramagnetic phase
at the lowest temperatures [71]. Detailed studies of the local properties of SCGO
have since been undertaken [72], and concomitant theoretical work has demonstrated
that while adding disorder to a topological magnet gives rise to a very interesting
phenomenology, the assumptions about either nature or level of disorder present in
SCGO were likely erring on the optimistic side. For an overview of this fascinating
subject, we refer the reader to a publication by Canals and Cepas [73], who list
compounds and settings in which disorder and glassiness have been investigated.

A different take on the situation is to move away from the limit of small and
unknown disorder, towards a setting in which disorder is introduced intentionally.
By investigating howvarious physical quantities scalewith the level of disorder, it can
then become possible to develop a more detailed theory of the effects of disorder.
In this vein, experimental studies have been undertaken of changing the ratios of
the constituent atoms in a material. This can lead, for instance, to an occupancy of
normally non-magnetic siteswithmagnetic ions (‘stuffing’) [74–76]. Conversely, one
can replace some magnetic ions with non-magnetic ones (‘dilution’) [77–79]. The
latter is relatively straightforwardly achieved for rare earth magnets, whose chemical
behaviour is not sensitively linked to the magnetic properties, so that quantities like
ionic radii change little when replacing, say, Dy3+ ions and their huge magnetic
moments with non-magnetic Y3+ ions.

A particular motivation for considering dilution with non-magnetic ions lies in
the fact that this facilitates access to the gauge-charged sector of the emergent gauge
theory. Following such a strategy is promising in all kinds of topological condensed
matter systems. The reason is that, basically, one can think of the dilution as leading
to a hole in the system. For example, in two dimensions, a hole is a topological

http://dx.doi.org/10.1007/978-3-030-70860-3_7
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Fig. 3.8 Genesis of ghost spins and their effective interactions. Removing a spin leaves behind a pair
of tetrahedra with nonzero net charge. Deleting those tetrahedra which are satisfied (as in Fig. 3.5)
leaves behind dipole moments opposite to those which have been removed. These interact like
ordinary dipole moments, but with an additional entropic contribution due to their emergent gauge
charge. Flipping a string of spins between the two ghost dipoles in turn generates a pair of ghost
monopoles (right panel), a gauge-charged excitation of the missing spins without a counterpart in
conventional spin glasses. Reprinted figure from [82] with permission from the American Physical
Society

object in the sense that paths around it are non-contractible—a hole turns a disk
into an annulus. One can then have a flux going through the hole. Of course, a hole
generated by a single non-magnetic site in the lattice is still microscopic in size, so
that the flux can interact strongly with the remaining lattice degrees of freedom, but
nonetheless it is a natural location to nucleate or bind excitations such as a monopole.

3.7.1 Thermodynamics of Diluted Spin Ice

Already the thermodynamics within the Coulomb phase of diluted spin ice, at least in
the nearest-neighbour model HIsing, holds a surprise: the zero-point entropy changes
non-monotonically with the amount of dilution. This follows from the fact that the
level of underconstraint for tetrahedrawithm spinsmissing is non-monotonicwithm.
For tetrahedra,m = 0, a fraction of f4 = 6/16 = 0.375 of configurations are ground
states; for triangles, m = 1, f3 = 6/8 = 0.75 > f4, while for a dimer, f2 = 1/2 =
0.5 and a single spin of course has f1 = 2/2 = 1. Using the Pauling mean-field
estimate, the zero-point entropy thence changes non-monotonically as the prevalent
value of m decreases upon dilution, as displayed in Fig. 3.2.

Indeed, this is not at all the end of the story. A detailed numerical analysis for Hdip,
in agreement with a set of experiments [80, 81], found that, as the temperature is
lowered further and further, the ‘zero-point entropy’ is gradually released, indicating
residual interactions beyond those captured by HIsing. This follows naturally from
the monopole picture: in dipolar spin ice, configurations with different monopole
locations need not be degenerate, unlike in the case of HIsing. As diluted tetrahedra
with odd m contain monopoles in the ground state, these will therefore interact, and
lift the degeneracy automatically, in an instance of the visibility of the intrinsic gauge
charge carried by ‘excitations’ nucleated at disorder sites.
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These findings raise the question: is there a simple effective Hamiltonian which
allows us to describe the physics of diluted spin ice?Todetermine such aHamiltonian,
one needs to identify both the effective low-energy degrees of freedom and the
interactions between them.

3.7.2 Ghost Spins

The nature of the low-energy degrees of freedom is both surprising and simple: these
are dipoles at the location of the missing spins [82]. This is easy to see pictorially,
Fig. 3.8: at low temperature, the ice rules enforce charge neutrality of each tetrahe-
dron. However, for tetrahedra with one missing spin, it is not possible to have charge
neutrality, as the number of charges is odd. As a missing spin creates a pair of neigh-
bouring defective tetrahedra, their lowest-energy configuration is to be oppositely
charged–they therefore have a dipole moment equal in size to that of the missing
spin.

Replacing the missing spin would cancel the moment of the ghost spin to yield an
allowed spin ice state. Therefore, the dipole moment of the ghost spins is opposite
to that of the missing spin. This is analogous to the properties of a missing electron
in a filled band in a solid—what is left behind is a hole with a charge of the same
size of the electron, but an opposite sign.

From this analogy, the effective interaction between the ghost spins can be imme-
diately read off—the sign change is immaterial for an interation between a pair of
ghost spins, so that we obtain a standard dipolar Hamiltonian for the ghost spins as
effective low-energy description of the diluted system. In fact, the dipolar interaction
strength is enhanced as the couplings of the intrinsic magnetic moments of the ghost
spins is supplemented by that due to the emergent gauge field, which takes on the
same dipolar form, to give an effective interaction constant [82]

Deff = D + 3T√
2π

(3.18)

3.7.3 Topological Spin Glass

The resultant effective Hamiltonian presents a huge simplification over the micro-
scopic ones in terms of the original spins. Instead of treating a dense system of spins,
the degrees of freedom are the much sparser ghost spins. The low-temperature prop-
erties of such a disordered dipolar system are themselves not well-known, in large
part due to the difficulty of simulating disordered long-range interacting systems,
and the notorious difficulty in identifying spin glass transitions.

However, it does turn out to be possible to demonstrate that the ghost spin Hamil-
tonian does undergo a standard spin glass transition [82]. One particular feature of
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this transition is that its critical coupling is proportional to the level of dilution,
Tx ∼ x . This follows directly from the fact that dipolar interactions scale as 1/r3.
As the density is given by the inverse cube of a typical separation scale of the impu-
rities, x ∼ 1/ρ3, one finds that typical terms appearing in the Hamiltonian scale as
1/r3typ ∼ 1/ρ3 ∼ x . Simulations indicate that it is the typical terms in theHamiltonian
which set the scale of the phase transition, and hence Tx ∼ x .

3.7.4 Ghost Monopoles, Hydrogenic and Continuum States

Thanks to their origin in a topological phase, the ghost spins turn out to have some
additional structure beyond that of a simple missing dipole. Most immediately, they
can be ’ionised’ by emitting a monopole into the bulk, which creates a ‘ghost
monopole’ at the impurity (see Fig. 3.8) [83]. This can be achieved by flipping a
string of spins terminating in one of the tetrahedra which share the ghost spin.

This is an instance of the possibility mentioned above of an impurity nucleating
a gauge-charged object. While the ghost spins map onto a conventional dipolar spin
glass,with only a renormalised transition temperature due to the entropic contribution
to their mutual interactions, they also betray their origin as collective degrees of
freedom in a topological spin liquid by exhibiting behaviour—such as their capacity
to be ionised—entirely absent from a conventional dipolar spin glass.

While monopoles are present neither in the spin glass nor in the undiluted ground
state of spin ice, their creation energy is nonetheless lowered for the spin glass
compared to that of a bulk monopole. This is a consequence of the fact that no
energy has to be invested in violating the ground-state condition on the two defect
tetrahedra. In the limit of low temperatures, these cheaper ghost monopoles will
therefore dominate in number over the bulk monopoles. The crossover appears when
exp(−Δ/T ) ∼ x exp(−Δg/T ), where Δ and Δg are the respective bulk and ghost
monopole excitation energies.

Themonopole emitted in the ionisation process can disappear into the bulk (where
it may recombine with a ghost monopole at another impurity site), but given its
charge is equal and opposite to that of the ghost monopole, it might also be bound
to the impurity site. This is analogous to the situation of a donor impurity in a
semiconductor, which may either give up its electron completely, or have it form a
hydrogenic bound state centered on the impurity.

Either of these states can be used to further probe the nature of the spin ice
state. Purely classically, the energies of a stationary monopole bound to an impurity
monopole are discrete, reflecting the discreteness of the Coulomb interaction energy
sampled at discrete locations. In particular, the discrete energy spectrum is due to
the presence of the intrinsic magnetic charge of the monopoles—in the pure nearest-
neighbour model, the energy of a monopole is independent of its distance from the
ionised impurity.

Quantum mechanically, there are bound states where the monopole is not station-
ary. When the binding energy of the monopole is weak, and the bound state large,
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this in principle maps onto the standard problem of a hydrogenic state [83]; however,
details depend on whether the spin background is endowed with an autonomous
quantum dynamics, or whether spins only flip as a result of the monopole itself
hopping past them.

Moving beyond bound states, the monopoles in the presence of quantum dynam-
ics acquire a dispersion. The bandwith of the dispersion is given by the size of the
hopping matrix element, i.e. the spin flip terms in the Hamiltonian. It is important
to note that this bandwidth of the single-monopole manifold of states is consid-
erably larger than, say, the quantum mechanical splitting of the spin ice manifold
itself, as—in the absence of ring-exchange terms in the microscopic Hamiltonian—
the effective dynamics of the latter proceeds via virtual excited states comprising
monopole excitations; the corresponding matrix elements are therefore suppressed.
It will be interesting to follow experimental progress along these lines, with a couple
promising studies already undertaken in recent times [84, 85].

3.8 What About Water Ice?

With all these developments concerning spin ice, it is natural to ask whether any
insights can be fed back into our understanding of water ice. Of course, plenty
of work has been devoted to research on water ice; for readers interested in an
introduction to the physics of water ice, a suitable starting point is the book by
Petrenko and Whitworth [86]. Indeed, water ice has been around for an awfully long
time, presumably many of our cave-dwelling ancestors have had occasion to ponder
its peculiar properties. In the age of modern science, Linus Pauling formulated the
ice rules early on [87], and their role for the genesis of pinchpoints [88] were noted
in the course of time.

Nonetheless, spin ice has provided a distinct and often complementary perspec-
tive, both from the point of view of questions asked, and as regards the methods
employed. We illustrate this with a simple piece of work on the proton correlations
in water ice. Common water ice, the phase known as hexagonal ice Ih , itself is some-
what more complex than spin ice, in the sense that its lattice structure is not as simple
as that of cubic ice Ic corresponding to spin ice. In the latter, the oxygen atoms reside
on a diamond lattice, while in the former, they form a wurtzite structure with a unit
cell of eight atoms.

The correlations are therefore not straigthforward to determine, and while much
modelling has been undertaken to describe them, a simple analytic understanding has
been missing. It turns out that one method which has been used successfully for spin
ice can plug this gap. We apply a self-consistent Gaussian approximation introduced
to Heisenberg frustrated magnets in [89], which has been employed extensively for
the study of spin ice[14].With this method, we consider the correlations in reciprocal
space—where the pinchpoints were identified in spin ice.

Figure 3.9 shows these correlations in a direct comparison of theory [90] and
experiment [91]. The attraction of the self-consistent Gaussian approximation is that
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Fig. 3.9 Left: wurtzite structure formed by the oxygen ions in hexagonal water ice Ih . Middle
(theory) and right (experiment): diffuse neutron scattering structure factor for hexagonal water
ice Ih in one plane of reciprocal space. Reprinted figures (middle and left panels) from [90] with
permission from the American Physical Society and (right panel) from [91] with permission from
Taylor & Francis Ltd

it has no free parameters, and is analytically tractable, providing a mathematical
expression in closed form. This, however, also implies that it will not be able to fully
model the experimental results, as it does not include information on any aspects
such as disorder or the detailed proton-proton interaction. As the figure shows, it
nonetheless provides a simple starting point for understanding which elements of
the experimental results are directly due to the ice rules, and which require more
detailed study. In particular, many gross features of high and low intensities, along
with location and orientation of the pinch points, follow directly from this analytical
study.

3.9 Summary and Outlook

Spin ice is a remarkable material in that it realises a fractionalised magnetic phase
in three dimensions, the first material to achieve such a feat. Given the properties
of this Coulomb liquid can be rather easily understood, this makes spin ice into a
poster child of topological condensed matter physics. It is perhaps one of the best
settings in which to learn about the phenomenology of fractionalised and topological
phases, and to provide an introduction to the physical and mathematical concepts
for their description. This we have attempted to do in providing the complete line of
arguments leading from a microscopic Hamiltonian via coarse-graining to an effec-
tive low-energy description involving the emergent gauge field and its excitations,
the magnetic monopoles, whose properties naturally lead us to understand even the
collective physics of spin ice at low temperature.

The salient point we have encountered centre on the emergent gauge field and
the excitations charged under it. This is the new physics beyond Landau–Ginzburg–
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Wilson, many aspect of which are only now being studied, and which a good portion
of this book is about.

TheCoulombphase physics presented so far knowsmany extensions. First of all, it
is not restricted to Ising spins, but instead appears as well for continuous spinmodels,
in particular the Heisenberg pyrochlore antiferromagnet [14, 92]. The Heisenberg
version of the ice rules states that the total spin of each tetrahedron needs to vanish.
Unlike the Ising case, however, infinitesimal displacements of spins out of such
ground states are possible, so that there are excitations at arbitrarily small energies,
and also, there is thence no concept of a fixed charge of a magnetic monopole. By
appropriately generalising ideas frommagnetolyte physics incorporating these ideas
[93], much of the framework presented here can, however, be carried over.

More ambitiously, the nature of the constraint can also be modified, in order
to obtain a broader range of projectors, and concomitant more complex forms of
emergent gauge structures. For the example of Heisenberg spins with only nearest-
neighbour interactions, a broader range of behaviour can thus be accessed provided
one allows for a generalised set of anisotropic interactions, which even includes pinch
lines (rather than pinch points) in the dynamical structure factor for one particular
choice of parameters [94].

In addition, the Coulomb phase physics generalises under the addition of quantum
fluctuations, as already noted in early works on the subject [15, 95]. Here, one finds
electric charges on top of the magnetic ones discussed above. We mention to the
reader the caveat that the nomenclature is sometimes reversed, a choice somewhat
more natural for the nearest-neighbour model where the intrinsic magnetic Coulomb
charge is absent; however, since there is a duality between magnetic and electric
degrees of freedom in 3 + 1 dimensions, this is purely a matter of convention.

Spin ice is not the only place in physics where magnetic monopoles have been
invoked. In condensed matter physics alone, several sightings have been proposed
or reported. In a family of micromagnetic systems collectively termed artificial spin
ice, monopole crystals have been posited, and much of the physics of kagome ice
is realised there in two-dimensional micromagnetic arrays; for a review, see [96].
Monopoles in reciprocal space have also become prominent, e.g. in the context
of Weyl semimetals [97] but there the notions of deconfinement, and of intrinsic
magnetic charge, are absent entirely. In the study of Skyrmion lattice physics in
systems such as MnSi [98], the concept of a monopole appears when considering
the dynamics of the (dis)appearance of Skyrmions in non-equilibrium settings [99].
Finally, near the surface of a topological insulator, an electric charge induces an
image which carries both (intrinsic) magnetic and electric charges. In the effective
theory of such a system, this is due to the presence of a term coupling the electric and
magnetic fields, of the form E · B, which leads to a contribution to the constitutive
equations allowing a divergence-free B field to go along with a source of magnetic
field H. In this setting, such an image monopole is not a freely mobile quasiparticle,
but rather, it is attached to the external electric charge.

In high-energy physics, the search for a ‘proper’ elementary monopole continues.
Its major difference to the magnetic monopoles in spin ice is that it is supposed to
come with a Dirac string that is unobservable. At present, its main disadvantage is
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that it has never been observed. However, given the fact that magnetic monoples
have been invoked over almost a century and in various guises and complexities,
surely it can only be a matter of time until the progress promised by the advances in
experimental high-energy physics lead to a discovery of a magnetic monopole as an
elementary particle.

Acknowledgements I am very grateful to my numerous collaborators in the work discussed here.
It is almost impossible to single out any individuals here, but it was with Claudio Castelnovo, Sergei
Isakov and Shivaji Sondhi that much of the conceptual framework presented here was developed. I
am also grateful to the editors of this volume, Ludovic Jaubert and Masafumi Udagawa, for much
encouragement, support and patience. I also thank the former, along with Peter Holdsworth, for
help with the figures, and Maximilian Schulz for comments on the manuscript.

References

1. P.M. Chaikin, T.C. Lubensky, J. Stat. Phys. 83, 1263 (1996). https://doi.org/10.1007/
BF02179565

2. F. Wegner, J. Math. Phys. 12, 2259 (1971). https://doi.org/10.1063/1.1665530
3. P.W. Anderson, Science 177, 393 (1972). https://doi.org/10.1126/science.177.4047.393
4. P.W. Anderson, Mater. Res. Bull. 8, 153–160 (1973). https://doi.org/10.1016/0025-

5408(73)90167-0
5. P.W. Anderson, Phys. Rev. 102, 1008–1013 (1956). https://doi.org/10.1103/PhysRev.102.1008
6. J.F. Nagle, J. Math. Phys. 7, 1484 (1966). https://doi.org/10.1063/1.1705058
7. S.V. Isakov, K.S. Raman, R. Moessner, S.L. Sondhi, Phy. Rev. B 70, 104418 (2004). https://

doi.org/10.1103/PhysRevB.70.104418
8. https://en.wikipedia.org/wiki/Boltzmann’s_entropy_formula
9. H.W.J. Blote, R.F. Wielinga, W.J. Huiskamp, Physica 43, 549 (1969). https://doi.org/10.1016/

0031-8914(69)90187-6
10. A.P.Ramirez,A.Hayashi,R.J.Cava,R. Siddharthan,B.S. Shastry,Nature 399, 333–335 (1999).

https://doi.org/10.1038/20619
11. M.B. Geilikman, Zh. Eksp. Teor. Fiz. 66, 1166 (1974); or Sov. Phys. J. Exp. Theor. Phys. 39,

570 (1974). http://www.jetp.ac.ru/cgi-bin/e/index/e/39/3/p570?a=list
12. J. Stephenson, J. Math. Phys. 11, 420 (1970). https://doi.org/10.1063/1.1665155
13. L.D.C. Jaubert, M. Haque, R. Moessner, Phys. Rev. Lett. 107, 177202 (2011). https://doi.org/

10.1103/PhysRevLett.107.177202
14. S.V. Isakov, K. Gregor, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 93, 167204 (2004). https://

doi.org/10.1103/PhysRevLett.93.167204
15. M. Hermele, M.P.A. Fisher, L. Balents, Phys. Rev. B 69, 064404 (2004). https://doi.org/10.

1103/PhysRevB.69.064404
16. D.J.P. Morris, D.A. Tennant, S.A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czter-

nasty, M. Meissner, K.C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, R.S.
Perry, Science 326, 411 (2009). https://doi.org/10.1126/science.1178868

17. T. Fennell, P.P. Deen, A.R. Wildes, K. Schmalzl, D. Prabhakaran, A.T. Boothroyd, R.J. Aldus,
D.F. McMorrow, S.T. Bramwell, Science 326, 415 (2009). https://doi.org/10.1126/science.
1177582

18. M. Brooks-Bartlett, S.T. Banks, L.D.C. Jaubert, A. Harman-Clarke, P.C.W. Holdsworth, Phys.
Rev. X 4, 011007 (2014). https://doi.org/10.1103/PhysRevX.4.011007

19. H. Kadowaki, N. Doi, Y. Aoki, Y. Tabata, T.J. Sato, J.W. Lynn, K. Matsuhira, Z. Hiroi, J. Phys.
Soc. Jpn. 78, 103706 (2009). https://doi.org/10.1143/JPSJ.78.103706

https://doi.org/10.1007/BF02179565
https://doi.org/10.1007/BF02179565
https://doi.org/10.1063/1.1665530
https://doi.org/10.1126/science.177.4047.393
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1103/PhysRev.102.1008
https://doi.org/10.1063/1.1705058
https://doi.org/10.1103/PhysRevB.70.104418
https://doi.org/10.1103/PhysRevB.70.104418
https://en.wikipedia.org/wiki/Boltzmann's_entropy_formula
https://doi.org/10.1016/0031-8914(69)90187-6
https://doi.org/10.1016/0031-8914(69)90187-6
https://doi.org/10.1038/20619
http://www.jetp.ac.ru/cgi-bin/e/index/e/39/3/p570?a=list
https://doi.org/10.1063/1.1665155
https://doi.org/10.1103/PhysRevLett.107.177202
https://doi.org/10.1103/PhysRevLett.107.177202
https://doi.org/10.1103/PhysRevLett.93.167204
https://doi.org/10.1103/PhysRevLett.93.167204
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1126/science.1178868
https://doi.org/10.1126/science.1177582
https://doi.org/10.1126/science.1177582
https://doi.org/10.1103/PhysRevX.4.011007
https://doi.org/10.1143/JPSJ.78.103706


68 R. Moessner

20. R. Siddharthan, B.S. Shastry, A.P. Ramirez, A. Hayashi, R.J. Cava, S. Rosenkranz, Phys. Rev.
Lett. 83, 1854 (1999). https://doi.org/10.1103/PhysRevLett.83.1854

21. B.C. den Hertog, M.J.P. Gingras, Phys. Rev. Lett. 84, 3430 (2000). https://doi.org/10.1103/
PhysRevLett.84.3430

22. M.J.P. Gingras, B.C. den Hertog, Can. J. Phys. 79, 1339 (2001). https://doi.org/10.1139/p01-
099

23. D.L. Bergman, C. Wu, L. Balents, Phys. Rev. B 78, 125104 (2008). https://doi.org/10.1103/
PhysRevB.78.125104

24. S.V. Isakov, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 95, 217201 (2005). https://doi.org/10.
1103/PhysRevLett.95.217201

25. T. Neupert, L. Santos, C. Chamon, C. Mudry, Phys. Rev. Lett. 106, 236804 (2011). https://doi.
org/10.1103/PhysRevLett.106.236804

26. E. Tang, J.-W. Mei, X.-G. Wen, Phys. Rev. Lett. 106, 236802 (2011). https://doi.org/10.1103/
PhysRevLett.106.236802

27. K. Sun, Z. Gu, H. Katsura, S. Das Sarma, Phys. Rev. Lett. 106, 236803 (2011). https://doi.org/
10.1103/PhysRevLett.106.236803

28. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008). https://doi.org/10.1038/
nature06433

29. D. Pomaranski, L.R. Yaraskavitch, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D.
Gaulin, J.B. Kycia, Nat. Phys. 9, 353 (2013). https://doi.org/10.1038/NPHYS2591

30. R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 105, 166401 (2010). https://doi.org/10.1103/
PhysRevLett.105.166401

31. J.F. Nagle, Chem. Phys. 43, 317 (1979). https://doi.org/10.1016/0301-0104(79)85200-3
32. P.A.M. Dirac, Proc. R. Soc. Lond. A 133, 60–72 (1931). https://doi.org/10.1098/rspa.1931.

0130
33. K. Matsuhira, Z. Hiroi, T. Tayama, S. Takagi, T. Sakakibara, J. Phys.: Condens. Matter 14,

L559–L565 (2002). https://doi.org/10.1088/0953-8984/14/29/101
34. L.D.C. Jaubert, P.C.W. Holdsworth, Nat. Phys. 5, 258 (2009). https://doi.org/10.1038/

NPHYS1227
35. C. Castelnovo, R. Moessner, S.L. Sondhi, Phys. Rev. B 84, 144435 (2011). https://doi.org/10.

1103/PhysRevB.84.144435
36. S.T. Bramwell, J. Phys.: Condens. Matter 23, 112201 (2011). https://doi.org/10.1088/0953-

8984/23/11/112201
37. L. Onsager, J. Chem. Phys. 2, 599–615 (1934). https://doi.org/10.1063/1.1749541
38. S.T. Bramwell, S.R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, T. Fennell, Nature 461, 956

(2009). https://doi.org/10.1038/nature08500
39. V. Kaiser, S.T. Bramwell, P.C.W. Holdsworth, R. Moessner, Phys. Rev. Lett. 115, 037201

(2015). https://doi.org/10.1103/PhysRevLett.115.037201
40. D.I. Khomskii, Nat. Commun. 3, 904 (2012). https://doi.org/10.1038/ncomms1904
41. H. Katsura, N. Nagaosa, A.V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005). https://doi.org/10.

1103/PhysRevLett.95.057205
42. I.A. Sergienko, E. Dagotto, Phys. Rev. B 73, 094434 (2006). https://doi.org/10.1103/

PhysRevB.73.094434
43. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006). https://doi.org/10.1103/PhysRevLett.96.

067601
44. A. Sarkar, S. Mukhopadhyay, Phys. Rev. B 90, 165129 (2014). https://doi.org/10.1103/

PhysRevB.90.165129
45. I.V. Aleksandrov, B.V. Lidsky, L.G. Mamsurova, M.G. Neigauz, K.S. Pigal’skii, K.K. Pukhov,

N.G. Trusevich, L.G. Shcherbakova, J. Exp. Theor. Phys. 62, 1287 (1985). https://www.jetp.
ac.ru/cgi-bin/e/index/e/62/6/p1287?a=list

46. L.G. Mamsurova, K.S. Pigal’skii, K.K. Pukhov, J. Exp. Theor. Phys. Lett. 43, 755 (1986).
https://www.jetpletters.ac.ru/ps/1413/article_21511.shtml

47. J.P.C. Ruff, Z. Islam, J.P. Clancy, K.A. Ross, H. Nojiri, Y.H. Matsuda, H.A. Dabkowska,
A.D. Dabkowski, B.D. Gaulin, Phys. Rev. Lett. 105, 077203 (2010). https://doi.org/10.1103/
PhysRevLett.105.077203

https://doi.org/10.1103/PhysRevLett.83.1854
https://doi.org/10.1103/PhysRevLett.84.3430
https://doi.org/10.1103/PhysRevLett.84.3430
https://doi.org/10.1139/p01-099
https://doi.org/10.1139/p01-099
https://doi.org/10.1103/PhysRevB.78.125104
https://doi.org/10.1103/PhysRevB.78.125104
https://doi.org/10.1103/PhysRevLett.95.217201
https://doi.org/10.1103/PhysRevLett.95.217201
https://doi.org/10.1103/PhysRevLett.106.236804
https://doi.org/10.1103/PhysRevLett.106.236804
https://doi.org/10.1103/PhysRevLett.106.236802
https://doi.org/10.1103/PhysRevLett.106.236802
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1038/nature06433
https://doi.org/10.1038/nature06433
https://doi.org/10.1038/NPHYS2591
https://doi.org/10.1103/PhysRevLett.105.166401
https://doi.org/10.1103/PhysRevLett.105.166401
https://doi.org/10.1016/0301-0104(79)85200-3
https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1088/0953-8984/14/29/101
https://doi.org/10.1038/NPHYS1227
https://doi.org/10.1038/NPHYS1227
https://doi.org/10.1103/PhysRevB.84.144435
https://doi.org/10.1103/PhysRevB.84.144435
https://doi.org/10.1088/0953-8984/23/11/112201
https://doi.org/10.1088/0953-8984/23/11/112201
https://doi.org/10.1063/1.1749541
https://doi.org/10.1038/nature08500
https://doi.org/10.1103/PhysRevLett.115.037201
https://doi.org/10.1038/ncomms1904
https://doi.org/10.1103/PhysRevLett.95.057205
https://doi.org/10.1103/PhysRevLett.95.057205
https://doi.org/10.1103/PhysRevB.73.094434
https://doi.org/10.1103/PhysRevB.73.094434
https://doi.org/10.1103/PhysRevLett.96.067601
https://doi.org/10.1103/PhysRevLett.96.067601
https://doi.org/10.1103/PhysRevB.90.165129
https://doi.org/10.1103/PhysRevB.90.165129
https://www.jetp.ac.ru/cgi-bin/e/index/e/62/6/p1287?a=list
https://www.jetp.ac.ru/cgi-bin/e/index/e/62/6/p1287?a=list
https://www.jetpletters.ac.ru/ps/1413/article_21511.shtml
https://doi.org/10.1103/PhysRevLett.105.077203
https://doi.org/10.1103/PhysRevLett.105.077203


3 Spin Ice As a Coulomb Liquid … 69

48. T. Fennell,M.Kenzelmann, B. Roessli, H.Mutka, J. Ollivier,M. Ruminy, U. Stuhr, O. Zaharko,
L. Bovo, A. Cervellino, M.K. Haas, R.J. Cava, Phys. Rev. Lett. 112, 017203 (2014). https://
doi.org/10.1103/PhysRevLett.112.017203

49. P. Bonville, A. Gukasov, I. Mirebeau, S. Petit, Phys. Rev. B 89, 085115 (2014). https://doi.org/
10.1103/PhysRevB

50. M.J.P. Gingras, B.C. den Hertog, M. Faucher, J.S. Gardner, S.R. Dunsiger, L.J. Chang, B.D.
Gaulin, N.P. Raju, J.E. Greedan, Phys. Rev. B 62, 6496 (2000). https://doi.org/10.1103/
PhysRevB.89.085115

51. H. Cao, A. Gukasov, I. Mirebeau, P. Bonville, C. Decorse, G. Dhalenne, Phys. Rev. Lett. 103,
056402 (2009). https://doi.org/10.1103/PhysRevLett.103.056402

52. T. Fennell, M. Kenzelmann, B. Roessli, M.K. Haas, R.J. Cava, Phys. Rev. Lett. 109, 017201
(2012). https://doi.org/10.1103/PhysRevLett.109.017201

53. S. Petit, P. Bonville, J. Robert, C. Decorse, I.Mirebeau, Phys. Rev. B 86, 174403 (2012). https://
doi.org/10.1103/PhysRevB.86.174403

54. L.D.C. Jaubert, R. Moessner, Phys. Rev. B 91, 214422 (2015). https://doi.org/10.1103/
PhysRevB.91.214422

55. J.P.C. Ruff, B.D. Gaulin, K.C. Rule, J.S. Gardner, Phys. Rev. B 82, 100401 (2010). https://doi.
org/10.1103/PhysRevB.82.100401

56. A.P. Sazonov, A. Gukasov, I. Mirebeau, P. Bonville, Phys. Rev. B 85, 214420 (2012). https://
doi.org/10.1103/PhysRevB.85.214420

57. I.A. Ryzhkin, J. Exp. Theor. Phys. 101, 481–486 (2005). https://doi.org/10.1134/1.2103216
58. L.D.C. Jaubert, J.T. Chalker, P.C.W. Holdsworth, R. Moessner, Phys. Rev. Lett. 100, 067207

(2008). https://doi.org/10.1103/PhysRevLett.100.067207
59. L.D.C. Jaubert, J.T. Chalker, P.C.W. Holdsworth, R. Moessner, Phys. Rev. Lett. 105, 087201

(2010). https://doi.org/10.1103/PhysRevLett.105.087201
60. Y.-Z. Chou, Y.-J. Kao, Phys. Rev. B 82, 132403 (2010). https://doi.org/10.1103/PhysRevB.82.

132403
61. S. Powell, J.T. Chalker, Phys. Rev. B 78, 024422 (2008). https://doi.org/10.1103/PhysRevB.

78.024422
62. C.S.O. Yokoi, J.F. Nagle, S.R. Salinas, J. Stat. Phys. 44, 729 (1986). https://doi.org/10.1007/

BF01011905
63. S. Powell, Phys. Rev. B 87, 064414 (2013). https://doi.org/10.1103/PhysRevB.87.064414
64. R. Moessner, Phys. Rev. B 57, R5587 (1998). https://doi.org/10.1103/PhysRevB.57.R5587
65. R.Moessner, S.L. Sondhi, Phys. Rev. B 68, 064411 (2003). https://doi.org/10.1103/PhysRevB.

68.064411
66. M. Udagawa, M. Ogata, Z. Hiroi, J. Phys. Soc. Jpn. 71, 2365–2368 (2002). https://doi.org/10.

1143/JPSJ.71.2365
67. A. Harman-Clarke, Ph.D. thesis, University College London and Ecole Normale Supérieure

de Lyon (2011)
68. T. Sakakibara, T. Tayama, Z.Hiroi, K.Matsuhira, S. Takagi, Phys. Rev. Lett. 90, 207205 (2003).

https://doi.org/10.1103/PhysRevLett.90.207205
69. G. Sala,M.J. Gutmann, D. Prabhakaran, D. Pomaranski, C.Mitchelitis, J.B. Kycia, D.G. Porter,

C. Castelnovo, J.P. Goff, Nat. Mater. 13, 488–493 (2014). https://doi.org/10.1038/NMAT3924
70. X. Obradors, A. Labarta, A. Isalgué, J. Tejada, Solid State Comm. 65, 189 (1988). https://doi.

org/10.1016/0038-1098(88)90885-X
71. A.P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994). https://doi.org/10.1146/annurev.ms.24.

080194.002321
72. L. Limot, P. Mendels, G. Collin, C. Mondelli, B. Ouladdiaf, H. Mutka, N. Blanchard, M.

Mekata, Phys. Rev. B 65, 144447 (2002). https://doi.org/10.1103/PhysRevB.65.144447
73. O. Cépas, B. Canals, Phys. Rev. B 86, 024434 (2012). https://doi.org/10.1103/PhysRevB.86.

024434
74. G.C. Lau, R.S. Freitas, B.G. Ueland, B.D. Muegge, E.L. Duncan, P. Schiffer, R.J. Cava, Nat.

Phys. 2, 249 (2006). https://doi.org/10.1038/nphys270

https://doi.org/10.1103/PhysRevLett.112.017203
https://doi.org/10.1103/PhysRevLett.112.017203
https://doi.org/10.1103/PhysRevB
https://doi.org/10.1103/PhysRevB
https://doi.org/10.1103/PhysRevB.89.085115
https://doi.org/10.1103/PhysRevB.89.085115
https://doi.org/10.1103/PhysRevLett.103.056402
https://doi.org/10.1103/PhysRevLett.109.017201
https://doi.org/10.1103/PhysRevB.86.174403
https://doi.org/10.1103/PhysRevB.86.174403
https://doi.org/10.1103/PhysRevB.91.214422
https://doi.org/10.1103/PhysRevB.91.214422
https://doi.org/10.1103/PhysRevB.82.100401
https://doi.org/10.1103/PhysRevB.82.100401
https://doi.org/10.1103/PhysRevB.85.214420
https://doi.org/10.1103/PhysRevB.85.214420
https://doi.org/10.1134/1.2103216
https://doi.org/10.1103/PhysRevLett.100.067207
https://doi.org/10.1103/PhysRevLett.105.087201
https://doi.org/10.1103/PhysRevB.82.132403
https://doi.org/10.1103/PhysRevB.82.132403
https://doi.org/10.1103/PhysRevB.78.024422
https://doi.org/10.1103/PhysRevB.78.024422
https://doi.org/10.1007/BF01011905
https://doi.org/10.1007/BF01011905
https://doi.org/10.1103/PhysRevB.87.064414
https://doi.org/10.1103/PhysRevB.57.R5587
https://doi.org/10.1103/PhysRevB.68.064411
https://doi.org/10.1103/PhysRevB.68.064411
https://doi.org/10.1143/JPSJ.71.2365
https://doi.org/10.1143/JPSJ.71.2365
https://doi.org/10.1103/PhysRevLett.90.207205
https://doi.org/10.1038/NMAT3924
https://doi.org/10.1016/0038-1098(88)90885-X
https://doi.org/10.1016/0038-1098(88)90885-X
https://doi.org/10.1146/annurev.ms.24.080194.002321
https://doi.org/10.1146/annurev.ms.24.080194.002321
https://doi.org/10.1103/PhysRevB.65.144447
https://doi.org/10.1103/PhysRevB.86.024434
https://doi.org/10.1103/PhysRevB.86.024434
https://doi.org/10.1038/nphys270


70 R. Moessner

75. H.D. Zhou, C.R. Wiebe, Y.J. Jo, L. Balicas, Y. Qiu, J.R.D. Copley, G. Ehlers, P. Fouquet, J.S.
Gardner, J. Phys.: Condens. Matter 19, 342201 (2007). https://doi.org/10.1088/0953-8984/19/
34/342201

76. X. Ke, R.S. Freitas, B.G. Ueland, G.C. Lau,M.L. Dahlberg, R.J. Cava, R.Moessner, P. Schiffer,
Phys. Rev. Lett. 99, 137203 (2007). https://doi.org/10.1103/PhysRevLett.99.137203

77. J. Snyder, J.S. Slusky, R.J. Cava, P. Schiffer, Phys. Rev. B 66, 064432 (2002). https://doi.org/
10.1103/PhysRevB.66.064432

78. M. Kajnaková, M. Orendác, A. Orendácová, A. Vlcek, T. Fennell, S.T. Bramwell, J. Magn.
Magn. Mater. 272–276, e989–991 (2004). https://doi.org/10.1016/j.jmmm.2003.12.702

79. G. Ehlers, J.S. Gardner, C.H. Booth, M. Daniel, K.C. Kam, A.K. Cheetham, D. Antonio, H.E.
Brooks, A.L. Cornelius, S.T. Bramwell, J. Lago, W. Häussler, N. Rosov, Phys. Rev. B 73,
174429 (2006). https://doi.org/10.1103/PhysRevB.73.174429

80. T. Lin, X. Ke, M. Thesberg, P. Schiffer, R.G. Melko, M.J.P. Gingras, Phys. Rev. B 90, 214433
(2014). https://doi.org/10.1103/PhysRevB.90.214433

81. S. Scharffe, O. Breunig, V. Cho, P. Laschitzky, M. Valldor, J.F. Welter, T. Lorenz, Phys. Rev.
B 92, 180405(R) (2015). https://doi.org/10.1103/PhysRevB.92.180405

82. A. Sen, R. Moessner, Phys. Rev. Lett. 114, 247207 (2015). https://doi.org/10.1103/
PhysRevLett.114.247207

83. O. Petrova, R. Moessner, S.L. Sondhi, Phys. Rev. B 92, 100401(R) (2015). https://doi.org/10.
1103/PhysRevB.92.100401

84. K. Kimura, S. Nakatsuji, J.-J. Wen, C. Broholm, M.B. Stone, E. Nishibori, H. Sawa, Nat.
Commun. 4, 1934 (2013). https://doi.org/10.1038/ncomms2914

85. L. Pan, N.J. Laurita, K.A. Ross, B.D. Gaulin, N.P. Armitage, Nat. Phys. 12, 361 (2015). https://
doi.org/10.1038/nphys3608

86. V.F. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University Press, Oxford, 1999). ISBN
9780198518945

87. L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935). https://doi.org/10.1021/ja01315a102
88. R. Youngblood, J.D. Axe, B.M.McCoy, Phys. Rev. B 21, 5212 (1980). https://doi.org/10.1103/

PhysRevB.21.5212
89. D.A. Garanin, Benjamin Canals. Phys. Rev. B 59, 443 (1999). https://doi.org/10.1103/

PhysRevB.59.443
90. S.V. Isakov, R. Moessner, S.L. Sondhi, D.A. Tennant, Phys. Rev. B 91, 245152 (2015). https://

doi.org/10.1103/PhysRevB.91.245152
91. J.C. Li, V.M. Nield, D.K. Ross, R.W. Whitworth, C.C. Wilson, D.A. Keen, Philos. Mag. B 69,

1173 (1994). https://doi.org/10.1080/01418639408240187
92. R. Moessner, J.T. Chalker, Phys. Rev. B 58, 12049 (1998). https://doi.org/10.1103/PhysRevB.

58.12049
93. A. Sen, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 110, 107202 (2013). https://doi.org/10.

1103/PhysRevLett.110.107202
94. O. Benton, L.D.C. Jaubert, H. Yan, N. Shannon, Nat. Commun. 7, 11572 (2016). https://doi.

org/10.1038/ncomms11572
95. R.Moessner, S.L. Sondhi, Phys. Rev. B 68, 184512 (2003). https://doi.org/10.1103/PhysRevB.

68.184512
96. C. Nisoli, R. Moessner, P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013). https://doi.org/10.1103/

RevModPhys.85.1473
97. X. Wan, A. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011). https://doi.

org/10.1103/PhysRevB.83.205101
98. U.K. Rößler, A.N. Bogdanov, C. Pfleiderer, Nature 442, 797–801 (2006). https://doi.org/10.

1038/nature05056
99. P. Milde, D. Köhler, J. Seidel, L.M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. Mühlbauer,

C. Pfleiderer, S. Buhrandt, C. Schütte, A. Rosch, Science 340, 1076 (2013). https://doi.org/10.
1126/science.1234657

https://doi.org/10.1088/0953-8984/19/34/342201
https://doi.org/10.1088/0953-8984/19/34/342201
https://doi.org/10.1103/PhysRevLett.99.137203
https://doi.org/10.1103/PhysRevB.66.064432
https://doi.org/10.1103/PhysRevB.66.064432
https://doi.org/10.1016/j.jmmm.2003.12.702
https://doi.org/10.1103/PhysRevB.73.174429
https://doi.org/10.1103/PhysRevB.90.214433
https://doi.org/10.1103/PhysRevB.92.180405
https://doi.org/10.1103/PhysRevLett.114.247207
https://doi.org/10.1103/PhysRevLett.114.247207
https://doi.org/10.1103/PhysRevB.92.100401
https://doi.org/10.1103/PhysRevB.92.100401
https://doi.org/10.1038/ncomms2914
https://doi.org/10.1038/nphys3608
https://doi.org/10.1038/nphys3608
https://doi.org/10.1021/ja01315a102
https://doi.org/10.1103/PhysRevB.21.5212
https://doi.org/10.1103/PhysRevB.21.5212
https://doi.org/10.1103/PhysRevB.59.443
https://doi.org/10.1103/PhysRevB.59.443
https://doi.org/10.1103/PhysRevB.91.245152
https://doi.org/10.1103/PhysRevB.91.245152
https://doi.org/10.1080/01418639408240187
https://doi.org/10.1103/PhysRevB.58.12049
https://doi.org/10.1103/PhysRevB.58.12049
https://doi.org/10.1103/PhysRevLett.110.107202
https://doi.org/10.1103/PhysRevLett.110.107202
https://doi.org/10.1038/ncomms11572
https://doi.org/10.1038/ncomms11572
https://doi.org/10.1103/PhysRevB.68.184512
https://doi.org/10.1103/PhysRevB.68.184512
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1038/nature05056
https://doi.org/10.1038/nature05056
https://doi.org/10.1126/science.1234657
https://doi.org/10.1126/science.1234657


Chapter 4
Dynamics

K. Matsuhira

Abstract The dynamics of typical spin ice compound Dy2Ti2O7 investigated by
mainly AC susceptibility and DCmagnetization are represented. In addition, consid-
ering the results of μSR and neutron scattering measurements, the common features
in spin dynamics are discussed in comparison with the other spin in ice compounds.
The spin dynamics of spin ice show a quite unique behavior. The temperature depen-
dence of relaxation time τ(T ) can be roughly described by three regimes. (I) Above
10K, the temperature dependence of the relaxation time τ(T ) is effectively explained
on the basis of the Arrhenius law with an energy barrier EB = 200–300 K. (II) In the
temperature range of 2–10K, τ(T ) is almost constant. (III) Below2K, τ(T ) increases
again, and reaches ∼1 s at ∼0.7 K. Spin ice state is formed. The dynamics above
10 K is due to single ion process and mixing with excited states; EB corresponds
to the energy of the excited CEF levels which results in the Ising-like anisotropy.
At low temperature below 10 K, the dynamics comes from the creation or annihi-
lation of magnetic monopoles, and their diffusion. In the narrow temperature range
∼0.5–1 K, the thermal activated dynamics is observed; the energy barrier of ∼9 K
is obtained for Dy2Ti2O7. The results indicate that a description taking into account
the long range Coulomb interaction between the monopoles is needed to explain the
dynamics below 1 K. Below 0.5 K, τ(T ) show a clear deviation from the thermal
activated dynamics toward temperature independent relaxation. Furthermore, recent
topics on the very slow spin dynamics at very low temperature are also represented.
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4.1 Spin Dynamics of Spin Ice Compounds to Spin Ice State

Spin ice compounds do not show a long ranged ordering (LRO) at least down to
80 mK [1]. It is important to investigate “How spin ice state is formed on cooling”.
Various measurements such as AC magnetization, NMR, μSR, neutron scattering
are known to investigate the spin dynamics. Among them, the easiest method is AC
magnetic susceptibility. In the AC magnetic susceptibility, the response of magne-
tization is observed when AC magnetic field with the field frequency f is applied
to the sample. For AC magnetic field H = H0exp(iωt), where ω is the angular fre-
quency (ω = 2π f ), the induced AC magnetization with some delay is described
by M = M∗(ω)exp(iωt) where only the response from the same field frequency is
considered for simplicity. Then, the AC magnetic susceptibility χAC = (M/H) is
described by

χAC = χ ′ − iχ ′′ (4.1)

where χ ′ is the real part and χ ′′ is the imaginary part. In the case of ω = 0, χAC

is equal to DC magnetic susceptibility χ0; then, χ ′′ = 0. As the AC field frequency
of 1–10 kHz is commonly used, the dynamics in the range of time scale from 1 s
to 10−4 s can be measured; using SQUID magnetometer, very slow dynamics up to
100 s can be investigated as it is possible to measure the AC magnetic susceptibility
down to 1 mHz.

Next, let’s introduce the analysis method of ACmagnetic susceptibility data using
empirical form. Now we consider that spin obeys the relaxation process with single
relaxation time τ ; the response function is�(t) = exp(−t/τ). This is called “Debye
formula” [2]. Then, χAC of Debye formula is described by the following equation

χAC(ω, T )

χ0
= 1

1 + iωτ(T )
(4.2)

Then, the real and imaginary parts are derived as follows:

χAC(ω, T )

χ0
= 1

1 + (ωτ)2
− i

ωτ

1 + (ωτ)2
(4.3)

χ ′

χ0
= 1

1 + (ωτ)2
(4.4)

χ ′′

χ0
= ωτ

1 + (ωτ)2
(4.5)

Figure 4.1 shows the real and imaginary parts of Debye formula (black curves).
The real part χ ′ has a constant value of χ0 when ωτ goes to zero. When ωτ �
1, χ ′ is nearly zero; if the relaxation time of spin is much larger than the time
scale in the AC field frequency 1/(2π f ), the spin can not response during the time
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Fig. 4.1 Real (left) and imaginary (right) parts of Debye, Cole-Cole [α = 0.2], and Davidson-Cole
[β = 0.5] formulas

scale. The imaginary part χ ′′ is a symmetric function in logarithmic scale with a
maximum at ω = 2π f = 1/τ . Therefore, from the maximum frequency fm derived
in the frequency scan of χ ′′, the magnetic relaxation time τ = 1/(2π fm) is obtained.

In general system, it is often observed than the relaxation time is not single.
Instead, the relaxation time has a wide distribution. The relaxation can be interpreted
as the summation of Debye formula with many different τ . Defining a distribution
function of the relaxation time F(τ/τ0) in the interval dln(τ/τ0), the expression
becomes

χAC(ω, T )

χ0
=

∞∫

−∞

F(τ/τ0)

1 + iωτ
dln(τ/τ0). (4.6)

Acctually, it iswell known that the experimental result is described by some empirical
formulas. In this typical case, Cole-Cole formula is well known as follows:

χAC(ω, T )

χ0
= 1

1 + [iωτ0(T )]1−α
(4.7)

χ ′

χ0
= 1 + (ωτ0)

1−αsin απ
2

1 + 2(ωτ0)1−αsin απ
2 + (ωτ0)2(1−α)

= 1

2

(
1 − sinhx

coshx + sin απ
2

)
(4.8)

χ ′′

χ0
= (ωτ0)

1−αcos απ
2

1 + 2(ωτ0)1−αsin απ
2 + (ωτ0)2(1−α)

= 1

2

cos απ
2

coshx + sin απ
2

(4.9)

where x ≡ (1 − α)ln(ωτ0) [3]. The parameter α that has a value between 0 and
1 describes a measure of distribution; when α = 0, this formula reduces to Debye
formula with a single relaxation time. As is shown in Fig. 4.1, although the imaginary
part χ ′′ is a symmetric function in logarithmic scale with a maximum at ω = 2π f =
1/τ0, in comparison with Debye formula, the maximum value is smaller and the
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width is wider. Cole-Cole formula is characterized by the existence of the long-tail
to short and long τ0 in the distribution. It is known that the magnetic relaxation in
spin glass system is well described by Cole-Cole formula [4].

For the other empirical formula, Davidson-Cole formula is also known as follows;

χAC(ω, T )

χ0
= 1

(1 + iωτc)β
(4.10)

χ ′

χ0
= (cosφ)βcosβφ (4.11)

χ ′′

χ0
= (cosφ)βsinβφ (4.12)

where ωτc = tanφ and τc is cutoff of the distribution in relaxation time [5]. The
parameter β that has a value between 0 and 1 describes a measure of distribution.
When β = 1, this formula reduces to Debye formula with a single relaxation time. τc
is the maximum value in the distribution of relaxation time. As is shown in Fig. 4.1,
the imaginary part χ ′′ is an asymmetric function in logarithmic scale. The maximum
value is smaller and the shape of χ ′′ is lifted up at highω side (or short τ0). Davidson-
Cole formula is characterized by themaximumcutoff time τc and the long-tail to short
τ0 exist in the distribution of relaxation time. The dielectric relaxation in glycerine is
described by Davidson-Cole formula [5]. As is shown later, the magnetic relaxation
in spin ice is characterized by Davidson-Cole formula.

Figure 4.1 shows the real and imaginary parts of Cole-Cole [α = 0.2] (red curve)
and Davidson-Cole [β = 0.5] (green curve) formulas, respectively. The imaginary
part χ ′′ in Cole-Cole formula is a symmetric function in logarithmic scale with a
maximumatω = 2π f = 1/τ0.On the other hand, the imaginary partχ ′′ inDavidson-
Cole formula is an asymmetric function in logarithmic scale; it does not show a
maximum at ω = 2π f = 1/τ0. Consequently, from the shape of χ ′′( f ), we can
easily estimate the appropriate fitting formula. When the shape of χ ′′( f ) is close
to the Debye formula, it is useful to estimate the typical relaxation time τt using
τt = 1/(2π fm).

In addition, as another way to investigate the type of dynamics, χ ′′ − χ ′ plot
(so-called “Cole-Cole plot”) is well known. Figure 4.2 shows the χ ′′ − χ ′ plot of
Debye, Cole-Cole [α = 0.2], and Davidson-Cole [β = 0.5] formulas. In this plot,
Debye formula shows a semicircle. Cole-Cole formula shows a circular arc. In the
case of Davidson-Cole formula, the slope against χ ′/χ0 has a characteristic feature.
At χ ′/χ0 = 1 (in the low frequency limit or DC time scale), the angle of π/2 is the
same as Debye formula. This is responsible for the existence ofmaximum cutoff time
τc. At χ ′/χ0 = 0 (in the high frequency limit or short τ0 limit), the curve intersect
at a smaller angle, which is similar to Cole-Cole formula. This is responsible for the
existence of short long-tail of distribution in relaxation time. This way is also useful
to know the dynamics.
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Fig. 4.2 χ ′′ − χ ′ plot of
Debye, Cole-Cole [α = 0.2],
and Davidson-Cole [β = 0.5]
formulas. In the high
frequency limit, χ ′/χ0 goes
to 0. In the low frequency
limit (or DC time scale)
χ ′/χ0 goes to 1

Fig. 4.3 AC magnetic
susceptibility of Dy2Ti2O7
above 1.8 K, reprinted from
[6] with permission from the
Institute of Physics
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Fig. 4.4 χ ′′( f ) of
Dy2Ti2O7 at various
temperature (T ≥1.8 K),
which is normalized by DC
magnetic susceptibility χ0,
reprinted from [6] with
permission from the Institute
of Physics

Let’s move on to the ACmagnetic susceptibility χAC of spin ice. Figure 4.3 shows
the χAC of typical spin ice compound Dy2Ti2O7 above 1.8 K [6]; the same data is
also reported in [7]. On cooling, χ ′ at 10 Hzmonotonically increases at least down to
1.8 K. χ ′′ at 10 Hz begins to increase below 10 K and indicates an upturn below 2 K.
As the AC field frequency increases, the increase of χ ′ is suppressed and χ ′′ begins
to increase. At 10 kHz, both χ ′ and χ ′′ show the anomalies at 18 K and 2 K. On
the other hand, DC magnetic susceptibility has no anomaly. Therefore, this anomaly
observed in χAC does not come from a static origin but characteristic dynamics of
spin ice.

In order to see the temperature dependence of relaxation time, χ ′′( f ) at vari-
ous temperature, which is normalized by DC magnetic susceptibility χ0, are shown
in Fig. 4.4 [6]. χ ′′( f ) shows a single broad peak. On cooling, the peak position,
which is defined by the maximum frequency fm, shifts to lower frequency side. The
shape of χ ′′( f ) at 1.8 K is a nearly symmetric function of log f . The curves show a
small shoulder on their high frequency sides. The characteristic is in agreement with
Davidson-Cole formula. The shape becomes broader with increasing temperature
up to 10 K; the peak height becomes smaller. Furthermore, above 10 K, the shape
becomes shaper as temperature increases. The results mean that the distribution of
becomes wider down to 10 K and sharper below 10 K on cooling. Next, χ ′′ − χ ′ plot
at various temperature are in Fig. 4.5 [6]. The deviation from semi-circle indicates the
distribution of τ . The curves above 14 K are well fitted by Davidson-Cole formula.
As the parameter β decreases on cooling, the distribution certainly becomes wider
down to 10 K. Below 14 K, although the good fitting is not obtained using a simple
empirical model, the curves has a characteristic Davidson-Cole shape (maximum
cutoff time and short long-tail in distribution of τ ). This is a first observation of the
magnetic relaxation characterized by Davidson-Cole formula.
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Fig. 4.5 χ ′′ − χ ′ plot of
Dy2Ti2O7 at various
temperature (T ≥1.8 K).
Data is made by the
correction of
demagnetization effect. Inset
shows the fitting by
Davidson-Cole formula,
reprinted from [6] with
permission from the Institute
of Physics

Next, the temperature dependence of relaxation time τ(T ) is shown in Fig. 4.6.
It should be noted that the typical relaxation time is estimated using τ = 1/(2π fm),
which is derived in Fig. 4.4, as the relaxation time has a distribution. In addition,
the typical relaxation time is estimated in a similar manner (τ = 1/(2π fm)) using
the maximum position (TH

m ) in d(Tχ ′)/dT in order to get the relaxation time in the
higher temperature range (above 14 K). We can confirm that the similar value can be
estimated. Above 15 K, τ(T ) obeys the Arrhenius law τ(T ) = τ0exp(EB/T ) with
EB = 220 K; τ0 is estimated to be 5 × 10−11 s. On cooling, τ becomes long and
reaches to 0.1 ms at 13 K. Below 13 K, τ(T ) is flattened in the temperature range of
3–10 K. Below 3 K, τ(T ) becomes faster again. As is discussed in the next section,
the dynamics below 3 K is a consequence of the formation of spin ice state.

The spin dynamics in Dy2Ti2O7 above 2 K is microscopically investigated by
muon spin relaxation (μSR) [5]; μSR measurement probes the dynamics of local
fields in the sample [8]. As the spin dynamics of Dy2Ti2O7 becomes slow on cool-
ing, in μSR measurement, it is observed that the depolarization of the muon beam
becomes faster with decreasing temperature. The data above 70 K are well fit-
ted to a power exponential function Pz(t) = a0exp(−λt)β + bk where a0 is the
total relaxing asymmetry, λ is muon depolarization rate and bk is a background
term. The exponent β change from 1 at 300 K to 0.60 at 70 K. The tempera-
ture dependence of λ shows thermal activated type with the activation energy of
210 K. This value is consistent with that derived by AC magnetic susceptibility.
Below 60 K, the depolarization is well fitted by the phenomenological function
Pz(t) = (a0/3)[(1 − C)exp(−λdynt) + C] + bk where C accounts for non-relaxing
fraction on cooling and λdyn = 2ν/3 is the dynamical muon spin depolarization rate
for the damping of the 1/3-tail. The τ(T ) forDy2Ti2O7 probed byμSRmeasurements
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Fig. 4.6 Temperature
dependence of relaxation
time τ(T ) of Dy2Ti2O7
(T ≥1.8 K), reprinted from
[6] with permission from the
Institute of Physics

Fig. 4.7 Thermal evolution
of the derived relaxation time
for Dy2Ti2O7 probed by
μSR measurements,
reproduced from [8] with
permission from © IOP
Publishing—All rights
reserved

is shown in Fig. 4.7. This relaxation time is obtained by τ = 1/ν. The flattening of
τ(T ) in the range of 3–10 K is also observed. The upturn of τ(T ) below 3 K is
related to the formation of spin ice states. However, we can notice that there are
a large difference (∼103) of τ between the AC magnetic susceptibility (∼ms) and
μSR measurements (∼μs). The time window in these measurements is different.
Although the same temperature dependence of τ(T ) is observed, it is suggested that
a different relaxation process is sensed in these experiments.

The characteristic τ(T ) observed in Dy2Ti2O7 is also observed even in another
typical spin ice compoundHo2Ti2O7; these are common feature in spin ice. The τ(T )
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Fig. 4.8 Normalized
relaxation function
S(q, t)/S(q, 0) measured for
a polycrystalline sample of
Ho2Ti2O7 by using NSE
technique, reproduced from
[9] with permission from
© IOP Publishing—All
rights reserved

of Ho2Ti2O7 up to high temperature range is investigated by using neutron spin echo
(NSE) technique [9]. NSE technique directly establishes the dynamic correlation
function S(Q, t). The quantity of S(Q, t)/S(Q, 0) represents the relaxationofFourier
components of the magnetization. The dynamic range of NSE is τ ∼ 10−14 − 10−7s.
Figure 4.8 shows the S(q, t)/S(q, 0) for a polycrystalline sample of Ho2Ti2O7;
in all over the temperature range, the observed relaxation can be well fitted by a
simple exponential function F(Q, t) = (1 − B)exp[−�t]. The �(T ) is fitted to an
Arrhenius law �(T ) = 2�hexp[−EB/T ] with the activation energy EB = 29312 K
and attempt frequency �h = 1.1 ± 0.2 × 1011 Hz. The observed activation energy
(290 K) of Ho2Ti2O7 is in agreement with that (210–220 K) of Dy2Ti2O7. These
energy value are close to the splitting energy of first excited crystalline electric field
(CEF) levels from the ground state doublet. Furthermore, the observed S(Q, t) are
Q-independent. Therefore, the dynamics of spin ice compounds at high temperature,
which obey Arrhenius law with EB = 200–300 K, are caused by a strong Ising spin
character due to the single-ion CEF states.

Next, let’s discuss the time scale τ0 in the flattening of τ(T ); this is another
feature in dynamics of spin ice. The value of τ0 in Dy2Ti2O7 is much larger than
in Ho2Ti2O7; τ0 in Ho2Ti2O7 is too small to observe using χAC measurements.
The τ0 in Ho2Ti2O7 is derived by very high resolution inelastic neutron scattering
measurements [10]. Figure 4.9 shows the τ(T ) of Ho2Ti2O7. In the backscattering
energy scan measurements, a temperature dependence of energy width is observed
at peak of magnetic diffuse scattering. From the value of full width at half maximum
(FWHM) of the scattering, the relaxation time (lifetime) is derived [10]. Above 40
K, the observed τ(T ) is fitted by Arrhenius law activation energy EB = 123 K; this
is in qualitative agreement with the result of NSE. The flattening of τ(T ) is clearly
observed in the temperature range of 3-30 K. We should note the large difference
(∼104) of time scale between Dy2Ti2O7 (∼0.2 ms) and Ho2Ti2O7 (∼10 ns) in the
region flattening of τ(T ). It is considered that this difference in time scale may be
due to the fact that Dy3+ is a Kramers ion while Ho3+ is not.
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Fig. 4.9 Temperature
dependence of the relaxation
time of Ho2Ti2O7 obtained
by backscattering
measurements in very
high-resolution neutron
inelastic scattering
experiment, adapted from
[10] with permission from
the American Physical
Society

Fig. 4.10 Temperature
dependence of τ of
Dy2Sn2O7, reprinted
from [11]

Next, Fig. 4.10 shows the temperature dependence of τ of another Dy spin
ice compound Dy2Sn2O7 [11]. The τ(T ) data is derived from the maximum fre-
quency fm in χ ′′( f ) using τ = 1/(2π fm); the observed χ ′′( f ) is close to Davidson-
Cole formula. The lattice parameter of Dy2Sn2O7 (10.399 Å) is larger than that of
Dy2Ti2O7 (10.124 Å) [12]. Therefore, the main nearest neighbor dipolar interaction
of Dy2Sn2O7 becomes 10% smaller. The feature of τ(T ) in Dy2Sn2O7 is similar to
that in Dy2Ti2O7. The τ(T ) above 20 K obeys Arrhenius law with EB = 246 K. The
derived EB is comparable with Dy2Ti2O7. However, the value of τ of Dy2Sn2O7 is
10-100 times larger in the region of flattening. It should be noted that the dynamics
of Dy2Sn2O7 is much slower than those of Dy2Ti2O7.
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4.2 Spin Dynamics of Typical Spin Ice Compound
Dy2Ti2O7 at Low Temperature

The pyrochlore oxide Dy2Ti2O7 is considered to be a typical example of spin ice
compound. As is discussed in the previous section, after the flattening of τ(T ) in the
temperature range of 3–10 K, τ(T ) increases again below 2 K. Recent theoretical
studies reveal that the excitations from the ground state can be described by the
creation of magnetic monopoles [13]. Violating the ice rules by making a spin flip
on the ground state configuration leads to a pair of point-like defects. Therefore, at
low temperature below 10 K, the dynamics comes from the creation or annihilation
of magnetic monopoles, and their diffusion. According to the “magnetic monopole
picture”, as the monopole density is high in the region of flatten τ(T ), it is interpreted
that there are few double defects [14].

Figure 4.11 shows τ(T ) of polycrystalline Dy2Ti2O7 down to 0.82 K which is
obtained by data of χ ′′( f ) [14, 15]. The observed τ(T ) in the restricted temperature
range between 2.5 and 5K iswell fitted by anArrhenius law τ(T ) = τ0exp(Ep/T ) =
τ0exp(2Jeff/T ) where Jeff= 1.1 K. Below 2 K, τ(T ) becomes slower than the
expected Arrhenius law with Ep = 2.2 K; τ(T ) in the temperature range between
0.82 and 2K can be fitted by an Arrhenius lawwith Ep = 6Jeff . The analysis result of
diffusive motion of magnetic monopoles by classical Monte Calro (MC) simulation
well reproduces the experimental result at least down to 0.82 K.

On cooling, the spin dynamics below 2 K becomes very slow. The tempera-
ture dependence of DC magnetization of single crystal Dy2Ti2O7 measured under
field-cooled (FC) and zero-field-cooled (ZFC) conditions is shown in Fig. 4.12. DC
magnetization curves clearly show a thermal hysteresis below 0.65 K. This means
that the τ(T ) reaches the typical time scale of DC magnetization (1-10 s). The
similar difference between ZFC and FC DC magnetization is observed in the other
spin ice compounds [15, 16]. From the viewpoints of AC magnetic susceptibility,
χ ′(T ) rapidly goes to zero, which is similar to the ZFC curve of DC magnetization,

Fig. 4.11 The experimental
and MC simulation results of
relaxation time for
Dy2Ti2O7 down to 0.82
K [14, 15]. Red curve shows
the Arrhenius law with
Ep = 2Jeff . Reprinted figure
from [14] with permission
from Nature Physics
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Fig. 4.12 The temperature
dependence of DC
magnetization of single
crystal Dy2Ti2O7 measured
under FC and ZFC
conditions; the measurement
is performed by a capacitive
Faraday force
magnetometer [17, 18]

and then χ ′′(T ) shows a broad peak as τ(T ) is much larger than the time scale in
the AC field frequency 1/(2π f ); the spin can not response during the time scale
[6, 7, 11, 16].

The χ ′′( f ) of single crystal Dy2Ti2O7 in the temperature range from 0.5 to 1.9 K
is shown in Fig. 4.13 [19]. The AC field is applied along [111] direction. The data
are in qualitative agreement with a previous study done on a polycrystalline samples
between 0.8 and 1.8 K [15]. The shape of χ ′′( f ) curve is very close to a Lorentzian
symmetric function. The maximum frequency in χ ′′( f ) shifts to lower frequency on
cooling. However, χ ′′( f ) show a small but clearly discernible shoulder on their high
frequency sides, indicating the existence of a second relaxation time. As is shown
in Fig. 4.13, τ(T ) below 0.50 K goes beyond the time window in the present AC
magnetic susceptibility measurement. In order to evaluate τ(T ) below 0.50 K, the
relaxation of the magnetization M(T ) is measured by using the protocol as follows;
(i) a weak DC magnetic field of 10 or 5 Oe is applied. (ii) the sample is warmed up
to 0.90 K for a wait period of 30 s. (iii) the heater power was cut, and the sample
was subsequently rapidly cooled down, dropping below 0.4 K in less than 10 s and
settling down to below 0.1 K after 600 s. (iv) the heater power was restored and
regulated and stabilized at the target temperature for an additional 600 s. (v) Finally
the applied field is cut (in a time t ≤ 0.1 s). Figure 4.14 shows the relaxation of the
magnetization M(t). The relaxation time becomes very slow on cooling. At 0.08 K,
M(t) decreases by only 0.35% after 105 s ∼16.7 h! The very slow relaxation still
occurs at 0.08 K. The LRO, which is expected in the numerical calculation [20, 21],
is prevented by the very slow dynamics in the range of time scale in our daily life.

To account for the whole set of measurements (χ ′′( f ) between 0.50 and 1.9 K
and M(t) below 0.60 K), the data is well fitted by 2-τ Debye model as follows:

χ ′′( f ) = χL
2π f τL

1 + (2π f τL)2
+ χS

2π f τS
1 + (2π f τS)2

, (4.13)
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Fig. 4.13 χ ′′( f ) of single
crystal Dy2Ti2O7 at 0.50,
0.55, 0.60, 0.70, 0.80, 0.90,
1.0, 1.1, 1.2, 1.3, 1.5, 1.7 and
1.9 K, reprinted from [19]
with permission from the
Journal of the Physical
Society of Japan

Fig. 4.14 Relaxation of
magnetization of single
crystal Dy2Ti2O7 due to field
quench after FC at a 0.60,
0.55, 0.50, 0.45, 0.40, 0.35,
0.30, 0.25 K and b 0.20,
0.15, and 0.08 K, reprinted
from [19] with permission
from the Journal of the
Physical Society of Japan

M(t) = MLexp

(
− t

τL

)
+ MSexp

(
− t

τS

)
+ M0, (4.14)

where χL, χS, MS, ML, and M0 are fitting parameters, and τL and τS are the short
and long relaxation times [19]. The fits are rather good over a large frequency or
time range although they are not perfect and small differences can be seen at higher
frequency and at very short or very long times. However, the fitting results show
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Fig. 4.15 Temperature
dependence of relaxation
time (τL, τS and τAV) of
single crystal Dy2Ti2O7.
Solid line show the
Arrhenius law with Ep = 9.2
K, reprinted from [19] with
permission from the Journal
of the Physical Society of
Japan

that the bulk of the relaxation can be reasonably described by two relaxation times.
Below0.25K, the average relaxation time τAV is estimated using a simple exponential
relaxation because the relaxation of the magnetization is so slow that the data cannot
be fitted within the 2-τ model.

Figure 4.15 shows the temperature dependence of relaxation time (τL, τS and τAV)
of single crystalDy2Ti2O7.Assuming theArrhenius law in the temperature range0.5–
1 K, the energy barrier Ep of 9.2 K (8–9 Jeff ) is obtained. This Arrhenius fit describes
only a narrow temperature range. A description taking into account the long range
Coulomb interaction between themonopoles is needed to explain the dynamics below
1 K. Below 0.5 K, τ(T ) show a clear deviation from the thermal activated dynamics
toward temperature independent relaxation. Assuming the Arrhenius law for τAV
below0.2K, a value of EP ∼0.5K is derived. This value is smaller than a single defect
value 2Jeff(∼ 2.2K ) expected in the low temperature limit. Therefore, it is very hard
to understand the dynamics at least below 0.2 K by the Arrhenius law. As the possible
origin quantum dynamics (QD) effect between two spins is considered. This effect
results from the anisotropic super-exchange coupling between neighboring Kramers
doublets [22]. The QD come from the spin-flip exchange interaction may suppress
the increasing of τ(T ) in the low temperature limit. Although this effect is expected
to be smaller in the Dy2Ti2O7 because of the large spin and the strong anisotropy, a
quantum mechanical treatment of the spins will be necessary to clarifying the spin
dynamics of spin ice at very low temperature.

The similar field-quench measurements by applying a small magnetic field of 5
mOe are performed up to 1.1 K; M(t) is obtained from 0.475 K up to 1.1 K [23].
Analyzing the data using Monte Carlo simulations of magnetic monopole gas gov-
erned by Metoropolis dynamics, the important points on dynamics are revealed.
The observed decay is not simple exponential function (exp(−t/τ)), but rather a
stretched exponential function (exp[−(t/τ)β]) with β ∼0.7–0.8; the data is quali-
tatively consistent with the results shown in Fig. 4.14a. This stretched exponential
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Fig. 4.16 Temperature
dependence of τ(T ) of single
crystal Ho2Ti2O7 which is
derived by AC magnetic
susceptibility, reprinted from
[25] with permission from
the American Physical
Society. τ(T ) is obtained by
using τ = 1/(2π fm). Solid
line shows the Arrhenius law
with Ep = 10.7 K

decay is reproduced by the calculation under open boundary condition instead of
periodic boundary condition. This is caused by a surface effect. Next, the observed
stretched exponential decay is followed by a very slow long-tail relaxation. In the
pyrochlore oxides, site exchange often occurs [24]. From the results of calculation
on the magnetic monopoles in the vicinity of the extra spins, this long-tail behavior is
caused by a very small percentage (0.30%) of extra (stuffed) spins. Even in the clean
sample used in these measurements, a very low level of stuffed spins are expected.
This means the magnetic monopoles in the vicinity of the stuffed spins has a long
life time; the monopole density becomes higher.

Finally, let’s compare the low temperature dynamics of another typical spin ice
Ho2Ti2O7 with that of Dy2Ti2O7. Similar shape of χAC data in spin ice Ho2Ti2O7 is
obtained in the temperature range of 0.5–1.3K [25]. Although the similar asymmetric
feature of χ ′′( f ) is observed, as is shown in Fig. 4.13, the careful analysis reveals
that the spectra can not be perfectly fitted using simple empirical forms (Cole-Cole,
Davidson-Cole, etc.) described in the previous section. Figure 4.16 indicates the
temperature dependence of τ(T ) of single crystal Ho2Ti2O7 which is derived by
assuming τ = 1/(2π fm) where fm is maximum frequency in χ ′′( f ). The obtained
τ (∼1.2 ms) at 1.2 K is similar to that of Dy2Ti2O7. On cooling, the obtained τ

reaches to the time scale of DCmagnetization measurement (∼1 s) at∼0.7 K; this is
slightly higher than 0.65 K for Dy2Ti2O7. Therefore, the spin dynamics of Ho2Ti2O7

becomes slower below 1 K. Assuming the Arrhenius law in the temperature range
0.5–1 K, the energy barrier Ep of 10.7 K ∼ 6Jeff (Jeff = 1.83 K for Ho2Ti2O7) is
obtained; the value of Ep is the similar value to 9.2 K for Dy2Ti2O7. However, in
comparison with the Ep scaled by Jeff , the value of 6Jeff for Ho2Ti2O7 is smaller
than 8–9Jeff for Dy2Ti2O7. It is speculated that this difference of Ep is caused by the
interaction between magnetic monopoles. This is one of the future problems in spin
dynamics of spin ice.
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Finally, let’s remark the important points of dynamics of spin ice. First, the dynam-
ics of spin ice has a characteristic slow dynamics which is quite different from dis-
ordered systems such as spin glass. Under thermal equilibrium state, the density of
magnetic monopoles becomes very low at low temperature. Next, the magnetization
measurements can not detect the dynamics between the states with M = 0. In order
to detect such dynamics, the microscopic probe such as nuclear quadrupole reso-
nance and μSR is useful to detect a fluctuation of local field. The future progress is
expected.

4.3 Topics on Slow Dynamics of Dy2Ti2O7 at Very Low
Temperature

Let’s present recent two topics on slow spin dynamics of typical spin ice compound
Dy2Ti2O7. One is the controlled creation of non-equilibrium population of magnetic
monopoles using the “magnetothermal avalanche quench” technique [26]. Another is
the specific heat behavior in thermally equilibrium state carefully measured during a
very long time thermal relaxation [28]. These topics are related to very slowdynamics
of spin ice below 0.5 K as is described in the previous section.

The relaxation time to thermal equilibrium state becomes very long at low tem-
perature; the relaxation time reaches 107s ∼ 10 days at 100 mK. Furthermore, the
density of magnetic monopoles becomes very small at low temperature. However, in
order to study the dynamics of magnetic monopoles at low temperature, it is neces-
sary and desirable to create more magnetic monopoles. Recently, a method to create
more magnetic monopoles in the non-equilibrium state has been developed using
the “magnetothermal avalanche quench (AQ)” technique. Furthermore, the AQ tech-
nique can also control the monopole. Figure 4.17 shows the procedure to produce
magnetic monopoles in the non-equilibrium state using AQ technique for Dy2Ti2O7.
The sample is connected to a cold thermal bath (mixing chamber in a 3He-4He
dilution refrigerator) by the Cu sample holder; the temperature of mixing chamber
Tmix is normally 75 mK. Figure 4.17a shows the time dependence of Tmix compared
with that of the applied field H(t) and the measured sample magnetization M(t).
Applying a magnetic field, the magnetic work on the sample is abruptly converted
into internal heat, which causes a sudden increase in temperature inside the sample
(Tint); Tint is raised to approximately 900 mK in this . While Tmix remains below 200
mK. Figure 4.17b–g shows the behavior of the sample in this procedure (Fig. 4.17a).
Before the procedure, the sample at 75 mK is first magnetized to −2.5μB/Dy in a
magnetic field of −0.2 T (Fig. 4.17b). At time t = 0, the magnetic field is rapidly
reversed from −0.2 to +0.2 T at a rate of 0.55 T/s. The magnetization follows with
some delay. The magnetic Zeeman energy released from the spins rapidly heats the
interior of the sample to Tint ∼ 900 mK, and the heat then leaks out of the sample to
the mixing chamber as seen as a spike in Tmix (Fig. 4.17c). As Tmix remains below
200 mK, the sample is cooled very quickly at the cooling rate ∼0.07 K/s at 500 mK
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Fig. 4.17 The procedure to produce magnetic monopoles in the non-equilibrium state using AQ
technique for Dy2Ti2O7, reprinted from [26] with permission from Nature Physics. Through the
application ofmagnetic fields H , the internal sample temperature Tint is raised to approximately 900
mK and then rapidly quenched, while the temperature of the cold cryostat mixing chamber Tmix,
which is thermally linked to the Cu sample holder, remains below 200 mK. a The time dependence
of Tmix compared with that of the applied field H(t) and the measured sample magnetization M(t).
b–g The Illustrations showing the behavior of the sample in this procedure. The detail is described
in the text
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Fig. 4.18 Relaxation of magnetization M(t) of Dy2Ti2O7 at fixed temperatures from 600 to 200
mK when a magnetic field of 5 mT is applied at t = 0 after conventional zero field cooling (blue) or
AQ technique (red), reprinted from [26] with permission from Nature Physics

(Fig. 4.17d). At t = 8 s, themagnetic field is then removed, and the sample avalanches
again with less energy. Tint approaches 900 mK again (Fig. 4.17e). The heat is again
swiftly evacuated to the mixing chamber and M(t) approaches zero (Fig. 4.17f). The
result of the fast magnetothermal quench leads to non-equilibrium states with a very
large density of monopoles (defects) (Fig. 4.17g).

Figure 4.18 shows the relaxation of magnetization M(t) when a magnetic field of
5 mT is applied at t = 0 after conventional zero field cooling (blue) or AQ technique
(red) [26]. Clearly the relaxation curves of AQ technique response faster than the
conventional ZFC. The difference between the two protocols becomes more obvious
below 300 mK. According to the model discussed in [27], J = ∂M(t)/∂t means
the magnetic monopole current density. Therefore, AQ technique allows to flow a
larger magnetic monopole current in non-equilibrium state. It is expected that this
AQ technique develops the study of magnetic monopole current in spin ice.

Next another topics is the specific heat behavior in thermally equilibrium state
carefully measured during a very long time thermal relaxation. As the relaxation
time becomes very long at low temperature, it takes very long time to get thermal
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Fig. 4.19 Normalized thermal relaxation�T (t)/�T (t = 0) at various temperature for single crys-
tal Dy2Ti2O7, reprinted from [28] with permission from Nature Physics

equilibrium state; the relaxation time of Dy2Ti2O7 is beyond 100 s below ∼500
mK. The time scale of specific heat measurement is of the order of 10-100 s in a
relaxation method of recent commercial system and a standard quasi-adiabatic heat
pulse method; the time scale in first report on residual entropy of Dy2Ti2O7 is 15 s
[29]. Therefore, in order to get the specific heat of thermal equilibrium state below
0.5K, it is necessary to carefullymeasure the relaxation for a longer time. Figure 4.19
shows the thermal relaxation at various temperature where the time dependence of
temperature�T (t) is normalized by the value at t = 0 s [28]. In general, the relaxation
becomes faster as the specific heat of sample is smaller. Viewing the �T (t) curves
in the initial 103 s, the relaxation becomes faster on cooling; the integral of �T (t)
which is proportional to specific heat C(T ) decreases with decreasing temperature.
However, extending the time scale beyond 104 s, the relaxation becomes slower on
cooling below 419mK. The obtained relaxation time is in qualitative agreement with
that in the magnetization measurements;as shown in Fig. 4.15, the deviation from the
Arrhenius law for τ(T ) is also observed below 0.5K. Thismeans thatC(T ) increases
with decreasing temperature below ∼0.5 K. Therefore, this results reveals that the
total specific heat below ∼0.5 K is underestimated in previous measurements [29].
The specific heat for single crystal Dy2Ti2O7 obtained in thermally equilibrium state
is shown in Fig. 4.20 [28]. The result above 0.6 K is consistent with the previous
results. Below 0.6 K, the difference appears and below 0.5 K, C/T turn to increase
on cooling. The residual entropy reported in previous measurements is partially
released. Furthermore, in the numerical calculation on dipolar spin ice model, a first
order transition to a LRO with Q=(0,0,2π/a) is found at Tc ∼ 0.18 K. The result
suggests the existence of LRO at lower temperature. The essential question “What
is the true ground state of spin ice compound Dy2Ti2O7?” is still open [21]. Further
study for this essential problem is desirable.
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Fig. 4.20 The specific heat for single crystal Dy2Ti2O7 obtained in thermally equilibrium state
down to 0.34 K, reprinted from [28] with permission from Nature Physics
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Chapter 5
Magnetic Field as an External Probe
of Spin Ice Anisotropy

Toshiro Sakakibara and Zenji Hiroi

Abstract A variety of interesting aspects of the spin ice physics are revealed in the
characteristic responses to magnetic fields of varied magnitudes and directions. The
residual entropy of the spin ice state at H = 0 is removed when magnetic field is
applied along the [100] or [110] direction, while, upon increasing H along [111],
it is transformed first into the kagomé ice state with a reduced degeneracy and then
to a nondegenerate state via a first-order, liquid-gas type transition by breaking the
ice rule. Effects of inclining magnetic field away from [111] and [112] are investi-
gated by magnetization measurements and compared with a theoretical prediction.
A Kasteleyn transition predicted for the former case is not observed in actual com-
pounds probably due to the slow spin dynamics, while a ferromagnetic transition of
sublattice spins are found for magnetic fields between [111] and [112].

5.1 A System Composed of Isolated Tetrahedra

To discuss the magnetic field effect on a spin ice, it would be instructive to start
with a system composed of isolated tetrahedra. Whereas this simple system remains
paramagnetic down to T = 0, it helps understand the basic features of the magnetic
anisotropy that the spin-ice system would exhibit.

A classical Ising Hamiltonian of a single tetrahedron can be written as

H = J
∑

〈i, j〉
σ
zi
i σ

z j
j − H

4∑

i=1

σ i , (5.1)
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Fig. 5.1 One of the 2-in
2-out spin configurations, the
ψx state, in which the total
moment is parallel to the x
direction; x , y and z axes are
defined parallel to [100],
[010] and [001], respectively.
The ψy (ψz) state is obtained
by flipping spin 3 (4)
outward and the other two
spins in the basal triangle
inward with keeping spin 1
outward

where the first summation is over the 6 pairs, H is a magnetic field, and σ i (=
ziσ

zi
i , σ

zi
i = ±1) denotes the spin on the i th site having its own Ising axis zi along

the local 〈111〉 direction. The 24 = 16 spin configurations split into three levels at
H = 0: a sixfold state

∑
i σ

zi
i = 0 with two spins pointing inward and two spins

pointing outward (2-in 2-out), an eightfold state
∑

i σ
zi
i = ±2 with three (one) spins

in and one (three) spin(s) out (3-in 1-out/1-in 3-out), and a doubly degenerate state∑
i σ

zi
i = ±4 with all spins in or all spins out (all-in all-out). When J > 0, the

2-in 2-out (all-in all-out) state has the lowest (highest) energy. Each of these 16
configurations can be labeled by the direction of the total moment

m =
4∑

i=1

σ i . (5.2)

One can easily find that m of the 2-in 2-out state is parallel to one of the 〈100〉
directions (m=4/

√
3). We can thus represent the sixfold 2-in 2-out state as

{ψx , ψy, ψz, ψ−x , ψ−y, ψ−z}, whose definitions are self evident. Figure 5.1 shows
the ψx state as an example. Likewise, the eightfold 3-in 1-out/1-in 3-out state has
its m parallel to one of the 〈111〉 directions (m=2), and can be represented as
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Fig. 5.2 Zeeman splitting of the energy levels described byHamiltonian (5.1) for the three principal
directions. The energy per spin of each level represented by a horizontal stroke is shown on the left
or right, and the degeneracy is given in the parenthesis above. Configurations ψα of some relevant
states are also given. Note that ψx and ψx,y are always the ground states for H ‖ [100] and [110],
respectively, while ψ111 takes the place of ψx,y,z at large fields for H ‖ [111]

{ψ111, ψ1̄1̄1, ψ11̄1̄, . . . }. The twofold all-in all-out state has m = 0 and we write this
state as ψ0±.

5.1.1 Zeeman Effect and Magnetization

When a magnetic field is switched on, each of the 2-in 2-out states exhibits a Zeeman
shift depending on the field direction. When H is applied along [100], ψx becomes
the lowest energy state, leaving no degeneracy. For H ‖ [110], the ground state is
doubly degenerate {ψx , ψy}. When a not too strong H is applied along [111], a triply
degenerate state {ψx , ψy, ψz} remains in the ground state. The full level schemes for
the Zeeman splitting of the 16 states are shown in Fig. 5.2 for the three principal field
directions.

Field and temperature dependences of the magnetization M can be given by

M = T
∂

∂H
ln

(
∑

α

e−Eα/T

)
, (5.3)

where the summation is over all the 16 configurations, and Eα denotes their energy.
Figure 5.3a shows the calculated results of the magnetic moment per spin for the
three directions at T/J = 1.6. Substantial anisotropy develops in high fields, and the
moment saturates to the values 1/

√
3, 1/2 and 1/

√
6 for the [100], [111] and [110]
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Fig. 5.3 Calculated magnetizations per spin for an isolated tetrahedron. The three principal field
directions are compared at T/J = 1.6 in (a) and the temperature dependences are shown for H ‖
[111] in (b)

directions, respectively. Note that the magnetization is isotropic in a low-field limit,
because of global tetrahedral symmetry of the system in zero field. Moreover, to be
focused in the next paragraph is the slower saturation for the [111] direction than the
other two directions.

5.1.2 Spin-Flip Crossover in H Near the [111] Direction

For H ‖ [111], the Zeeman shift of the ψ111 excited state is larger than that of the
ground state {ψx , ψy, ψz} (Fig. 5.2). Hence, a level crossing from a triply degenerate
2-in 2-out state to a non-degenerate 3-in 1-out state occurs at

Hc = 3J. (5.4)

Figure 5.3b shows the evolution of calculated magnetization curves for H ‖ [111]
upon cooling. Since a small magnetic field lifts the degeneracy of the 2-in 2-out state
and stabilizes the triply degenerate ψx,y,z state, a magnetization plateau at 1/3 of the
full moment appears at low magnetic fields. Then, a sudden rise in magnetization is
observed at H = Hc. The differential susceptibility dM/dH at Hc is proportional
to T−1 and diverges at T = 0, so that the rise becomes a jump at T = 0. This
magnetization jump is caused by flipping one spin in the 2-in 2-out state. For instance,
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Fig. 5.4 Ground state
configurations for an isolated
tetrahedron. Spin-flip
crossovers occur from ψz
and {ψx , ψy} to ψ111 for
θ > 0 to [112] and < 0 to
[110], respectively, as shown
by the thick lines. Inset:
definition of the angle θ

spin 2 of the ψx state (Fig. 5.1) has a component antiparallel to H and undergoes
a flip at H = Hc. Note that this spin flip is not a phase transition but a crossover,
because the system under consideration is composed of independent tetrahedra.

When H is tilted from [111] in the (11̄0) plane, threefold symmetry is broken
and the ground-state degeneracy is (partially) lifted. We define the angle θ between
H and the [111] direction as shown in Fig. 5.4. For θ > 0 (< 0), the ground state
becomes the non-degenerate ψz (doubly degenerate {ψx , ψy}) state. The spin-flip
crossover still occurs in a finite angular range. Expressing the magnetic field as

H = H(e111 cos θ + e1̄1̄2 sin θ), (5.5)

where e111 and e1̄1̄2 denote unit vectors along [111] and [1̄1̄2], respectively, the
crossover field can be obtained as

Hc = 3J
cos θ−2

√
2 sin θ

, (θ > 0)

Hc = 3J
cos θ+√

2 sin θ
, (θ < 0). (5.6)

Angular variation of Hc is shown in Fig. 5.4 by a thick solid line. Hc diverges at
H ‖ [112] (θ ≈ 19.5◦) and H ‖ [110] (θ ≈ −35.3◦).



98 T. Sakakibara and Z. Hiroi

5.2 Spin Ice in Magnetic Fields

5.2.1 Magnetization Anisotropy: Overview

In the spin-ice compounds Dy2Ti2O7 (DTO) and Ho2Ti2O7 (HTO), magnetic ions
form a pyrochlore lattice: a network of corner-linked tetrahedra. A minimal model
describing the spin ice compounds assumes the nearest-neighbor interaction

H = Jeff
∑

〈i, j〉
σ
zi
i σ

z j
j − μH

∑

i

σ i , (5.7)

where the first summation is now over all the nearest-neighbor pairs, and μ is a
parameter defining the magnitude of the magnetic moment of the rare-earth ions
(μ = 10 and 10.6 μB/ion for DTO [1] and HTO [2], respectively). Jeff is an effec-
tive nearest-neighbor interaction consisting of an antiferromagnetic exchange and
a ferromagnetic dipolar interaction, and is estimated to be ferromagnetic in total:
Jeff �1.1 [3] and �1.8 K [4] for DTO and HTO, respectively. Within this model,
the ground state at H = 0 is a macroscopically degenerate 2-in 2-out state, in which
all the six configurations {ψx , ψy, ψz, ψ−x , ψ−y, ψ−z} are randomly distributed over
the system under the constraint of the ice rule. Note that each magnetic ion is shared
by two tetrahedra, and hence the energy of the 2-in 2-out ground state becomes
−Jeff per spin, a factor of two different from that for the isolated tetrahedron model
discussed in the previous section. Accordingly, the spin-flip critical field in a [111]
magnetic field at T = 0 is given by

Hc = 6Jeff/μ (5.8)

which yields Hc �0.98 and �1.52 T for DTO and HTO, respectively.
With these inmind, one can compare themagnetization of a spin icewith that of the

isolated tetrahedron model. Figure 5.5 shows the magnetization of (a) DTO [1] and
(b) HTO [2] measured at 1.8 and 1.6 K, respectively, for H along the three principal
directions [100], [110] and [111]. It is observed that the simple model (Fig. 5.3a)
can reproduce the observed magnetization anisotropy reasonably well: whereas the
magnetization is isotropic at low fields, a strong anisotropy develops with increasing
H , and the saturation moment, in particular for DTO, is in good agreement with the
predicted anisotropy ratio

M100 : M111 : M110 = 1√
3

: 1
2

: 1√
6
. (5.9)

A magnetization plateau and a subsequent jump have been expected to occur for
H ‖ [111] (Fig. 5.3b). However, they are not well resolved in these data in Fig. 5.5
obtained at relatively high temperatures T � Jeff .
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Fig. 5.5 Magnetizations of a Dy2Ti2O7 (T = 1.8 K) [1] and b Ho2Ti2O7 (T = 1.6 K) [2] in
magnetic fields parallel to [100], [110] and [111]. Reprinted figures from [1, 2] with permission
from the American Physical Society

It has been predicted by numerical calculations that a long-range part of the
dipolar interaction completely lifts the ground-state degeneracy at H = 0 and selects
a unique ordered state (“q = (0, 0, 2π/a)” phase) [5]. In reality, however, the long-
range ordering is inhibited by the extremely slow dynamics of the system at low
temperatures, and the system remains in a spin-ice state. Therefore, the nearest-
neighbor spin-ice (NNSI) model (5.7) is practically useful in describing the spin ice
anisotropy. Later in this section, nevertheless, we will see that the long-range part
of the dipolar interaction does play an essential role in the magnetization along and
near the [111] direction. In what follows, we discuss the response of the spin ice to
a magnetic field in more detail.

5.2.2 Response to a Magnetic Field: H ‖ [100]

For this field direction, the ground state of a unit tetrahedron isψx . We can fill all the
tetrahedra in the pyrochlore lattice with the ψx configuration under the ice rule, and
this uniform state (“q = 0” state) obviously becomes the ground state. Figure 5.6a
shows the spin arrangement in a [100] field. The pyrochlore lattice can be viewed as
an ABC stacking of triangular and kagomé planes along a 〈111〉 direction; a single
kagomé plane and two adjacent triangular planes projected on a (111) plane are
shown in Fig. 5.6 for simplicity.

Figure 5.7 shows the M(H) curves of DTO in a [100] magnetic field, measured
at T = 0.08, 0.57 and 0.87 K. For T � 0.6 K, the M(H) curve in a low field region
exhibits a large hysteresis due to a slow relaxation associated with a spin rearrange-
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Fig. 5.6 Possible spin arrangements for H ‖ [100] (a) and [110] (b). A slab of the pyrochlore
lattice viewed along the [111] direction is depicted, which consists of a single kagomé plane and
two adjacent triangular planes above and below. White (shaded) triangles indicate tetrahedra facing
out of (into) the paper. The large arrows represent the field directions projected on the (111) plane.
Note that all the spins on the triangular planes (dots) are all directed along [111] (out of the paper),
so that it is enough to consider only spins in the kagomé planes. Solid arrows with a large (small)
arrow head represent spins having a positive (negative) [111] component in the kagomé plane.
Shown in (a) for H ‖ [100] is the q = 0 state in a [100] magnetic field, in which all the tetrahedra
are in the ψx configuration. One example of the stable states for H ‖ [110] is given in (b). Thick
solid (dashed) lines indicate β (α) chains running perpendicular (parallel) to H

Fig. 5.7 Magnetization of Dy2Ti2O7 for H ‖ [100], measured at T = 0.08, 0.57 and 0.87 K. Each
plot is vertically shifted by 5 μB/Dy for clarity. Clear hystereses between field-increasing and
decreasing (marked by arrows) curves are observed at 0.57 and 0.08 K
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Fig. 5.8 Evolutions of magnetic heat capacity Cm of DTO measured with increasing magnetic
fields along the three directions: a [100], b [110], and c [111] [7, 8]. A lattice contribution of αT 3

with α = 4.85 × 10−4 J K−4 mol-Dy−1 has been subtracted from the raw data. Reprinted figures
from [7, 8] with permission from the Journal of the Physical Society of Japan

ment from the fully-disordered spin ice to the q = 0 state. Above ∼0.5 T, the q = 0
state is attained and theM(H) is fully saturated, and nothing happens at higher fields.

Magnetic heat capacity Cm of DTO shows a broad peak at around 1 K in zero
field (Fig. 5.8), indicating the spin ice freezing; the residual entropy Sr estimated
is 1.66 J K−1 mol-Dy−1, which is in good agreement with the Pauling entropy of
1.68 J K−1 mol-Dy−1 [6]. When a magnetic field of 0.5 T is applied along the
[100] direction, the peak shifts to a higher temperature and is significantly enhanced
(Fig. 5.8a), suggesting a loss in Sr. In fact, as shown in Fig. 5.9, Sr becomes almost
zero near H = 0.5 T [7]. On further increasing field, the peak just moves to higher
temperatures. Thus, bothM andCm indicate that the q = 0 state has been thoroughly
selected at H > 0.5 T.

5.2.3 Response to a Magnetic Field: H ‖ [110]

For H ‖ [110], the doubly degenerate {ψx , ψy} state of a unit tetrahedron does not
give rise to macroscopic degeneracy in the pyrochlore lattice, because either of the
two states can be arranged in a consistent way to form a unique long-range order. Oth-
erwise, the two states can bemixed in the pyrochlore lattice to give a not macroscopic
but certain degeneracy. An example of the spin arrangements in a [110] magnetic
field is shown in Fig. 5.6b. In this field configuration, it is convenient to view the
pyrochlore lattice as composed of mutually orthogonal linear chains [9]: “α chains”
running parallel to H , and “β chains” perpendicular to H [8]. Note that spins on the
α chains are forced to align by H , while those on the β chains should be independent
of H . Assume that tetrahedron 1 is in the ψx state. Then, those tetrahedra (2∼5)
having spins on the same β chain all take the ψx state to satisfy the ice rule. Accord-
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Fig. 5.9 Field dependences of the residual entropy Sr in the three field directions [7, 8]. The
dotted, broken and solid lines are guides to the eyes for H ‖ [100], [110] and [111], respectively.
A background coming from an experimental error in determining magnetic entropy particularly at
high temperatures has been subtracted from the raw data [7]. The Sr data for H ‖ [111] near 1 T
overestimates actual values because of proximity to the liquid-gas transition, and must be close to
zero

ingly, spins on this β chain ferromagnetically align in the [11̄0] direction. Within
the NNSI model, the configuration of tetrahedra 6∼10 sharing the adjacent β chains
has two possibilities: ψx or ψy . Figure 5.6b shows the latter case, in which the β

chain belonging to tetrahedra 6∼10 has a ferromagnetic component along the [1̄10]
direction. Note that all the α chains are ferromagnetically aligned parallel to H , while
the β chains always have two possibilities. Degeneracy thus remains with respect
to the direction of the ferromagnetic component of the β chains, whose entropy is,
however, not macroscopically large.

According to the numerical calculations [10], the long-range dipole interaction
stabilizes the ordered structure shown in Fig. 5.6b, in which the ferromagnetic β

chains are antiferromagnetically coupled to each other (“q = X” order). This long-
range ordered state, however, is again dynamically inhibited from being accessed
experimentally, and the system remains in a partially-ordered state [9].

Figure 5.8b shows an evolution of the heat capacity of DTO with increasing mag-
netic field along the [110] direction, which is quite different from that at H ‖ [100].
At H = 0.5 T, where the Sr has been removed almost completely (Fig. 5.9), the peak
inCm remains at nearly the same temperature as for H = 0with a shoulder appearing
at a higher temperature.With further increasing field, the first peak still remains at the
same temperature and the second peak moves to higher temperatures. The first peak
is assigned to a spin freezing on the β chain, which is independent of field, while the
second Schottky-type peak is from the spin freezing on the α chain. Interestingly,
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Fig. 5.10 a An example of the kagomé ice states in a [111] magnetic field. White arrows indicate
spins having a component antiparallel to H . If the minority spin on each triangle is replaced by a
dimer (as shown by solid oval), the spin configuration can be mapped to dimer configuration, which
covers the entire lattice without overlap. b Example of local dimer arrangements on the kagomé
plane. The shaded triangle at the center forms a dimer with one of the three white triangles 1–3,
and a ψx dimer state with the triangle 1 is shown as an example (solid oval). In this situation, the
triangles 2 (3) cannot take a ψz (ψy) dimer state. Thus, we expect 3 × 22 ways for this cluster

however, Cm of the β chain cannot be reproduced within the ferromagnetic Ising
spin chain model taking into account long-range dipole interactions [8].

5.2.4 Response to a Magnetic Field: H ‖ [111]

5.2.4.1 Kagomé Ice State

When a weak field is applied along [111], the triply degenerate state {ψx , ψy, ψz}
of a unit tetrahedron results in macroscopic degeneracy in the kagomé planes of the
pyrochlore lattice (“kagomé ice” state), as first revealed by a heat capacity experi-
ment [11]1. Figure 5.10a shows an example of the spin arrangements of the kagomé
ice (KI) state. In this field region, all the spins on the triangular lattices (dots) are
forced to align along [111] by the magnetic field, while the 2-in 2-out rule is still
satisfied by all the tetrahedra. This leads to amodified ice rule on the kagomé lattices;
2-in 1-out (1-in 2-out) configuration is satisfied on white (shaded) triangles in the
kagomé plane. The modified ice rule leads to a macroscopic residual entropy, which
indeed has been observed by heat capacity measurements in a [111] field [7, 11, 13].

1 Wills and coworkers [12] theoretically found a similarmacroscopic degeneracy on the pure kagomé
lattice and called it “kagomé spin ice”.



104 T. Sakakibara and Z. Hiroi

Cm of DTO at H ‖ [111] behaves very differently from those at other field direc-
tions, as shown in Fig. 5.8c. The single peak at H = 0 splits into two peaks with
increasing H , typically shown for H = 0.75 T in the figure. The one at a low tem-
perature corresponds to a spin freezing on the kagomé net, while the other at a high
temperature is ascribed to a spin freezing on the triangular site. Then, the former peak
turns into a sharp and intense peak at around 0.5 K in a narrow field range around
1 T, which is related to the liquid-gas transition between the KI state and the 3-in
1-out/1-in 3-out state as discussed next. With further increasing field, the sharp peak
becomes again broad and shifts to higher temperatures. The variation of Sr exhibits
a “plateau” at 0.65 J K−1 mol-Dy−1 at H ∼ 0.5 T (Fig. 5.9), which corresponds to
the residual entropy of the KI state [7].

Under the constraint of the modified ice rule, it can be easily shown that each
configuration {ψx , ψy, ψz} always appears as a dimer (Fig. 5.10a). The residual
entropy of the KI state can thus be estimated by counting the number of ways of
the dimer covering, applying Pauling’s method [7]. Assume that the number of the
tetrahedra facing out of the paper (white triangles in Fig. 5.10a) is N . Since each
triangle can take any of the three dimer states {ψx , ψy, ψz}, the number of ways for
whole system is 3N if we completely ignore correlations among white triangles. Not
all of these states are, however, allowed because of correlations in dimer occupations.
Figure 5.10b shows a local arrangement of dimers on a kagomé plane. The shaded
triangle at the center forms a dimer with one of the three white triangles 1–3, and
a dimer with the triangle 1 (ψx dimer) is shown as an example. In this situation,
triangles 2 and 3 can take only two dimer states each because of a ψx dimer on the
triangle 1. Thus, we approximately have 3 × 22 ways out of 33 states for this cluster.
Therefore, the total entropy is calculated by

Sr � kB ln

(
3N

(
3 × 22

33

)N
)

= NkB ln

(
4

3

)
, (5.10)

which amounts to 0.598 J K−1 mol-Dy−1. The estimated Sr of the KI state is in good
agreement with the experimentally observed value of 0.65 J K−1 mol-Dy−1 as shown
in Fig. 5.9 [7]. The exact Sr of the KI state has been determined to be 0.671 J K−1

mol-Dy−1 by rigorously treating the dimer covering problem [14].

5.2.4.2 Magnetization Plateau and A Liquid-Gas Transition

In the KI state, the magnetization exhibits a plateau with 1/3 of the full moment as
expected from the isolated tetrahedron model shown in Fig. 5.3b. Figure 5.11 shows
the M(H) curves of DTO for H ‖ [111] obtained at low temperatures [15]. A clear
plateau with the moment value 3.2 − 3.3μB/Dy develops on cooling below 1 K. The
large hysteresis seen in the low-field region below 0.3 T at T = 0.35 K is due to the
slow relaxation of the magnetization associated with a spin rearrangement from the
zero-field spin-ice to the KI state, like the case for H ‖ [100] (Fig. 5.7).
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Fig. 5.11 Magnetizations and the differential susceptibility of DTO for magnetic fields parallel
to the [111] direction [15]. a Magnetizations obtained at several temperatures above 0.35 K are
shown in the main panel, and those at T = 0.19 and 0.05 K near the spin-flip field are shown in the
inset. b Temperature evolution of dM/dH near Hc is shown in the main panel, and the temperature
variation of the inverse of the dM/dH at Hc is shown in the inset. Reprinted figures from [15] with
permission from the American Physical Society

Near H = 0.9 T, a clear magnetization jump can be seen in theM(H) in Fig. 5.11.
This is the ice-rule breaking spin flip into the 3-in 1-out/1-in 3-out state in which a
ψ111 configuration is uniformly aligned. Spins responsible for this spin-flip process
are those having antiparallel components to the field, indicated by white arrows in
Fig. 5.10a; each of these spins undergoes a flip at Hc at which the Zeeman energy
overcomes its interaction energy. Directions of all the other spins remain unchanged
across themagnetization jump.Within theNNSImodel (5.7), Hc at T = 0 is given by
(5.8).Making use of the Hc value of� 0.9T fromFig. 5.11a,we obtain Jeff � 1.01K,
which can be compared with the value Jeff � 1.11 K estimated from the analysis of
the zero-field specific heat [3]. Note that there is no appreciable hysteresis in the
magnetization jump at Hc even at a low temperature of 0.35 K, in contrast to the
large hysteresis at low fields. This difference in hysteresis may be related to the
dynamics of spin flip. The first jump at low fields involves a ring-exchange process
composed of more than three spin flipping from one 2-in 2-out to another 2-in 2-out
configuration, whereas the second jump at 0.9 T is governed by a single-spin flipping
process from a 2-in 2-out to 3-in 1-out/1-in 3-out configuration; the latter must be
much faster than the former. A tiny hysteresis is eventually observed at 0.86–0.9 T
below T = 0.19 K as shown in the inset of Fig. 5.11a, which is probably due to a
phase transition mentioned below.

We have to remember that the spin flip in the NNSI model does not cause a phase
transition. This is because spins undergoing the flip at Hc are not interacting with
each other, so that no cooperative phenomenon is expected; the spin flip predicted by
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this model is essentially the same as that of the isolated tetrahedron model discussed
in Sect. 5.1. Interestingly enough, this is not the case in real spin-ice systems. Let
us focus on the temperature evolution of the sharpness of the magnetization jump in
DTO. As shown in Fig. 5.11b, the differential susceptibility dM/dH makes a local
maximum at Hc. The peak height in dM/dH is therefore a good measure of the
sharpness of the magnetization jump. The inset to Fig. 5.11b shows the temperature
variation of the inverse of the peak height, (dM/dH)−1

peak. On cooling below 1.5 K,

(dM/dH)−1
peak almost linearly decreases and tends to vanish at Tcr � 0.4 K [15]. This

clearly evidences the existence of a phase transition, contrary to the expectation of
the NNSImodel. In addition, below Tcr, a small but clear hysteresis appears inM(H)

as shown in the inset of Fig. 5.11a, indicating that the spin flip at Hc becomes a first-
order transition at lower temperatures. This first-order transition is of a liquid-gas
type, terminating at the critical endpoint Tcr, and must be driven by a long-range part
of the dipolar interaction as discussed in Chaps. 1 and 3.

The residual entropy Sr of the KI state is discontinuously released upon the first-
order phase transition into the non-degenerate 3-in 1-out/1-in 3-out state. Indeed,
Sr estimated by the heat capacity measurements vanishes above Hc as shown in
Fig. 5.9 [7]. At a temperature above Tcr, however, the magnetic field variation of
the entropy S(H) is predicted to exhibit a giant peak at Hc [16]. This is because the
2-in 2-out configurations {ψx , ψy, ψz} degenerate with a ψ111 configuration of the
3-in 1-out/1-in 3-out state at H = Hc. Analysis based on the Bethe approximation
indicates that the entropy peak amounts to 2.44 J K−1 mol-Dy−1 [16]. This giant
peak in S(H) has been observed by a magnetocaloric effect (MCE) experiment on
DTO [17]. The MCE measurements make use of the thermodynamic relation

(
∂S

∂H

)

T

= −C

T

(
∂T

∂H

)

S

. (5.11)

The quantity (∂T/∂H)S on the right side can be obtained quasicontinuously by
measuring a change of the sample temperature when H is slightly increased in
a semiadiabatic condition. Integration of (5.11) by H in the range μ0H ≥ 0.4 T
gives the entropy change 	S = S(H) − S(0.4 T) as shown in Fig. 5.12 [17] for
temperatures 0.35, 0.4 and 0.5 K. At these temperatures, S(0.4 T) should be nearly
equal to the Sr of the KI state. The entropy peak at T = 0.5 K is therefore estimated
to be 1.67 J K−1 mol-Dy−1. Presence of the entropy peak of similar magnitude has
also been reported by the heat capacity measurements [7].

The plot for T = 350 mK in Fig. 5.12 shows that the entropy peak is strongly
suppressed and 	S abruptly decreases at Hc. This behavior is due to the occurrence
of the first-order transition. Interestingly, the entropy release can still be seen at 1.4 T,
well beyond the critical field of 0.9 T. The slow approach to the fully polarized state
is also evidenced by the magnetization data for T = 50 mK in Fig. 5.11; whereas
the onset of the magnetization jump at ∼ 0.9 T is very sharp, M(H) does not reach
full saturation immediately above Hc and a gradual increase can still be seen at
1 T. The true origin of this asymmetric behavior of the first-order transition is not

http://dx.doi.org/10.1007/978-3-030-70860-3_1
http://dx.doi.org/10.1007/978-3-030-70860-3_1
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Fig. 5.12 Entropy change
	S in DTO by application of
H along the [111] direction.
The data were obtained from
magnetocaloric effect
measurements, reprinted
from [17] with permission
from the Journal of the
Physical Society of Japan

Fig. 5.13 Phase diagram of
DTO for H parallel to the
[111] direction, obtained by
the heat capacity [7] and the
magnetization [15]
measurements. Solid line
indicates the first-order
liquid-gas transition line. KI
and SI denote the regions of
the kagomé ice and the spin
ice, respectively. 2I2O and
3I1O represent the 2-in 1-out
and 3-in 1-out/1-in 3-out
states, respectively. Tp1, Tp2
and Tp3 indicate the
temperatures of peaks
observed in the heat capacity

clear at present. In this regard, the measurements of the field dependences of the
heat capacity [18] and the ac susceptibility [19] of DTO suggest the existence of an
intermediate state between the KI and fully polarized states in magnetic fields close
to the [111] direction. Further studies will be needed to clarify these points.

Figure 5.13 summarizes the phase diagram of DTO for H parallel to the [111]
direction, obtained by the heat capacity [7] and themagnetization [15]measurements.
The solid line indicates the first-order liquid-gas transition line determined from the
M(H)measurements, which terminates at Tcr � 0.4 K and Hc � 0.9 T. Interestingly,
the transition line seems to reach the field axis with a finite slope [15]. This indicates
that there is a change in entropy even atT → 0.This outstanding feature distinguishes
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the transition from others. Open symbols in the phase diagram show the temperatures
Tp1, Tp2 and Tp3 at which peaks are observed in the temperature variation of the heat
capacity. Tp1 is a crossover temperature to the spin ice state, whereas Tp2 and Tp3
correspond to freezings of single spins having different Zeeman energies; Tp2 is the
freezing temperature of apical spins in the triangular planes which have the Ising
axis parallel to H , whereas Tp3 is ascribed to freezing of spins on the kagomé plane
into the 3-in 1-out/1-in 3-out state [7].

5.2.5 Effect of Tilting H from [111]

5.2.5.1 Kasteleyn Transition

When a weak magnetic field is slightly tilted away from [111], the threefold sym-
metry is broken and the three configurations ψx , ψy and ψz in the KI state become
nonequivalent. Consider that H acquires an increased component along the [001]
direction. Apparently, the ground state of the NNSI model (5.7) for any small tilting
angle of H becomes the q = 0 state with the ψz configuration, whose spin struc-
ture is given by a clockwise rotation of the lattice in Fig. 5.6a by 120◦. One might
therefore wonder how fragile the KI state is against a tiny misalignment of H from
[111]. At a finite temperature, however, a gain in entropy should compete with a loss
in energy, and maintains a disordered state in a finite range of the field orientation
near [111]. The disordered state is terminated by a phase transition called “Kasteleyn
transition” [20, 21].

Fig. 5.14 Schematic phase
diagram for the Kasteleyn
transition at a finite
temperature, indicating four
phases. 
x , 
y and 
z are
the q = 0 ordered phases
with ψx , ψy and ψz
configurations, respectively.
The triangle region at the
center is a disordered state.
The arrow indicates a
trajectory when H is tilted
from [111] towards [001]
direction (θ > 0)
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Figure 5.14 shows the schematic phase diagram for the Kasteleyn transition [20],
where 
α(α = x, y, z) denotes the q = 0 ordered phase of the ψα configuration,
and the triangle region at the center is a disordered phase including the KI state. zα

represents the statistical weight defined by the Zeeman energy of the configuration
ψα as

zα = exp[μmαH/(kBT )], (5.12)

where mα is a magnetic moment per tetrahedron given by (5.2) and is now parallel
to x, y or z direction. In this triangular phase diagram, the distance of a point to the
axis zα is proportional to zα . It has been shown that a phase transition to the ordered
state 
α occurs when the criterion

zα = zα′ + zα′′ . (5.13)

is satisfied [20, 21]. This gives the phase boundaries shown by the dashed lines in
Fig. 5.14.

Assume that the magnetic field is expressed by (5.5) (Fig. 5.4). Increasing the
angle θ then results in an enhancement of zz keeping zx = zy as indicated by an
arrow in Fig. 5.14, and induces a phase transition into the 
z state at zz = zx + zy .
The critical angle θc for the transition is then given by

kBT = (2
√
2/ ln 2)μH sin θc. (5.14)

The Kasteleyn transition exhibits quite unusual properties. As θ increases towards
the critical value θc from the disordered side, the entropy vanishes as

S ∝ (θc − θ)1/2. (5.15)

The expectation value of mz , the z component of the magnetization, approaches its
saturation value msat

z = 4/
√
3 as

msat
z − 〈mz〉 ∝ (θc − θ)1/2. (5.16)

In the ordered state 
z , therefore, S = 0 and 〈mz〉 is fully saturated; there are no
thermal fluctuations.

Experimental detection of the Kasteleyn transition, in particular by thermody-
namic measurements, has not been successful so far, probably because of slow
dynamics of the system. Possible evidence for the Kasteleyn transition has been
reported in a neutron scattering experiment on HTO in a tilted magnetic field [22].
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Fig. 5.15 a Angular variation of the spin-flip transition in DTO, obtained by magnetization mea-
surements at T = 0.3 K [23]. Symbols are the experimental data points for Hc and solid lines
represent the angular variation of the model (5.17) with Jeff = 1.01 K. b dM/dH data for θ = 0, 5
and 7 degrees [23]. A two-peak structure is observed in dM/dH for θ = 5 and 7 degrees, resulting
in the two branches of Hc(θ) in the angular interval of 5 ≤ θ ≤ 10 degrees in (a). Adapted figures
from [23] with permission from the Institute of Physics

5.2.5.2 Angular Variation of Hc

When H is rotated in the (11̄0) plane away from [111], the angular variation of the
spin flip critical field Hc of the NNSI model for T = 0 should vary as expected by
the isolated tetrahedron model (5.6) (Fig. 5.4) by replacing J with 2Jeff

Hc = 6Jeff
cos θ−2

√
2 sin θ

, (θ > 0)

Hc = 6Jeff
cos θ+√

2 sin θ
, (θ < 0). (5.17)

Here, the ground state is a
z state for θ > 0 and amixture of {ψx , ψy} configurations
for θ < 0 2. Figure 5.15a shows the angular variation of Hc of DTO at T = 0.3 K
determined from the magnetization measurements [23]. Overall, the NNSI model
explains the observed Hc(θ) remarkably well.

However, it is evident that a positive departure from the simple model exists near
θ = 0. This discrepancy is ascribed to the entropy-releasing liquid-gas transition that
cannot be derived from the NNSI model. The positive departure of the experimental
Hc is partly due to a finite-temperature effect of the first-order transition. According
to the thermodynamic Clausius-Clapeyron relation

2 At a finite temperature, the Hc(θ) diagram for the NNSI model might become complicated at
a finite θ due to a coexistence of ψz and {ψx , ψy} configurations. Note that ψz and {ψx , ψy}
configurations have locally different Hc for θ �= 0 in the NNSI model.
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dHc

dT
= − 	S

	M
, (5.18)

where	X denotes themagnitude of a discontinuity in a quantity X across afirst-order
phase transition, the critical field Hc of an entropy-releasing first-order transition
(	S < 0) should increase with temperature (dHc/dT > 0). For DTO, μ0dHc/dT
for the [111] direction is estimated to be 0.08 T/K from the experimental values of
	M ≈ 1 μB/Dy and 	S ≈ −0.5 J K−1 mol-Dy−1 [15]. This effect increases Hc

by 0.024 T at T = 0.3 K. As H is tilted towards [110] direction (θ < 0) at a finite
temperature, the residual entropy of the initial 2-in 2-out state continuously decreases
because of a continuous reduction of the statistical weight zz (Fig. 5.14), and hence
|	S| becomes progressively small, resulting in a disappearance of the thermal shift
of Hc on decreasing θ towards [110].

Another interesting feature of Hc(θ) can be seen in the region 5 ≤ θ ≤ 10 degrees.
As shown in Fig. 5.15b, the dM/dH data in this angle range has a two-peak structure.
Accordingly, the peak positions in dM/dH fall on two distinct branches in the Hc vs.
θ plot in Fig. 5.15a [23]. The data points of the upper branch closely follow the angular
dependence of (5.17), and can be ascribed to a spin-flip from the q = 0 ordered state
(
z state). As we discuss in the next subsection, this spin flip is associated with
a ferromagnetic ordering on an fcc sublattice, and becomes a first order transition
at low temperatures. Those of the lower branch, on the other hand, connects with
the liquid-gas transition at θ = 0 and exhibit much weaker angular variation, fading
away with increasing θ . It appears that the disordered KI state is coexisting with the

z state in a finite range of θ . Note that such a bifurcation of Hc(θ) is not observed
for θ < 0 [23].

The bifurcation of the spin-flip critical field for θ > 0 suggests a discontinuous
change in the ground-state configuration as a function of θ , and might be related to
the Kasteleyn transition predicted in this angular region at a finite H (Fig. 5.14). The
observed behavior of the magnetization, however, appears to be at odds with the dis-
cussion in the preceding subsection, according towhich a continuous phase transition
from the KI state to the
z state should occur. Experimentally, no clear phase bound-
ary has been observed so far. A sharp phase transition might be hindered by slow
dynamics of spins. We note that a similar two-peak structure has also been reported
in the field dependences of the heat capacity [18] and the ac susceptibility [19] of
DTO in magnetic fields close to the [111] direction.

5.2.5.3 Ferromagnetic Order on an fcc Sublattice

The spin-flip transition of the spin ice for H near the [112] direction (θ > 10 degrees
region in Fig. 5.15a) is expected to take place from the fully-ordered 
z state into
the 3-in 1-out/1-in 3-out state of a ψ111 configuration, accompanying no change in
the entropy. It has been demonstrated that this transition also becomes of first order
at low temperatures [24–26].
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Fig. 5.16 Spin configuration in a magnetic field tilted away from [111] towards [112] direction.
Shown in (a) is the local ψz configuration. The angle τ (0 < τ < 19.5◦) is measured between H
and the [112] direction. Spin 2 has a component antiparallel to H and undergoes a flip at Hc(θ).
Other spins 1, 3-7 are strongly pinned by H and exert an internal field Hi along the [1̄1̄1] direction
on spin 2. In the pyrochlore lattice, spin 2’s form an fcc sublattice and are ferromagnetically aligned
at low temperatures as shown by solid arrows in (b)

Figure 5.16 shows the localψz configuration of a spin ice in a magnetic field tilted
away from [111] towards the [112] direction. Whereas spins 1, 3-7 on (1̄1̄1) kagomé
planes are pinned by H , spin 2 has a component antiparallel to H and undergoes
a flip at high fields. Note that spin 2’s are third neighbors in the pyrochlore lattice,
comprising an fcc sublattice, and are forced to uniformly align under the ice rule,
i.e., by an internal field Hi from the neighboring spins on the kagomé planes.

Consider that a strong field is applied along the [112] direction in Fig. 5.16. Spin
2 is then perpendicular to H and remains inert. As H is tilted back towards the [111]
direction, a field component antiparallel to Hi appears, given by H sin τ where τ is
the angle between H and the [112] direction. At a certain critical angle τc, a condition

H sin τc + Hi = 0 (5.19)

is satisfied and the internal field on spin 2 is just compensated. This is what happens
on the Hc(θ) line at θ > 0 in Fig. 5.15a. A question is whether spin 2 becomes free
(paramagnetic) on the Hc(θ > 0) line. The answer is no, if the long-range dipolar
interaction is taken into account. Indeed, the dipolar interaction produces a ferro-
magnetic coupling among spin 2’s [24]. Thus, spin 2’s are ferromagnetically ordered
on the Hc(θ > 0) line at T = 0. The spin flip transition at Hc(θ > 0) is then iden-
tical to a moment inversion of an Ising ferromagnet, which is of first order below a
critical temperature Tc. For DTO, Tc has been obtained to be 0.28 K and 0.26 K by
ac susceptibility [25] and dc magnetization [26] measurements, respectively.
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Fig. 5.17 Dependence of the real part of the ac susceptibility χ ′ on the field strength along the
[111̄] direction, measured under another strong magnetic field μ0H112 = ±4 T applied along the
[112] direction, reprinted from [25] with permission from the American Physical Society

Figure 5.17 shows the result of the ac susceptibility (χac)measurements performed
using a vector magnet [25]. In this experiment, a strong magnetic field H112 of 4 T
was applied along the [112] direction to pin the spins on the kagomé planes. A small
field H111̄ was then swept along the [111̄] direction, perpendicular to H112, and χac

was measured with an ac field applied parallel to H111̄. χac thus directly probes the
longitudinal susceptibility of the fcc sublattice moment. A giant peak is observed
in χac at H111̄ near 0.2 T, indicating that the compensation (5.19) occurs at this
field. Switching H112 to −4 T reverses all the spins, and hence Hi changes its sign.
Accordingly, the compensation field moves to H111̄ ∼ −0.2 T as shown in Fig. 5.17.
With a careful correction for themisalignment of H112, the correct compensation field
is estimated to be H111̄ = 0.25 ± 0.01 T [25]. This corresponds to Jeff = 0.84 K.

Figure 5.18a shows the angular variation of the dcmagnetizationMH ofDTOwith
H near the [112] direction,measured by rotating amagnetic fieldH in the (11̄0) plane
at various temperatures [26]. Here MH is defined as MH = MH/H , a component
of the total magnetization parallel to H . The total magnetization can be written as
M = MK + MF, where MK and MF denote the magnetic moment of the spins on
the (1̄1̄1) kagomé planes and that of the fcc sublattice, respectively. Note thatMF is
parallel to [1̄1̄1], and MK is almost field independent at low temperatures because
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Fig. 5.18 a Angular variation of the magnetization of DTO measured in a magnetic field of 2 T
rotated in the (11̄0) plane, reprinted from [26] with permission from the Institute of Physics.
Dashed (dotted) line indicates the angular dependence of the magnetization of 3-in 1-out/1-in
3-out (2-in 2-out 
z) state. b Temperature variation of the inverse longitudinal susceptibility
χ−1
long = [dM/d(H sin τ)]−1 of the fcc sublattice magnetization, adapted from [26] with permission

from the Institute of Physics

spins on the kagomé planes are strongly pinned by H. One can then extract MF

from the experimental data in Fig. 5.18a, as a function of the longitudinal magnetic
field H sin τ . Figure 5.18(b) shows the temperature variation of the reciprocal of
the longitudinal susceptibility χ−1

long for MF. It can be seen that χ−1
long diverges near

0.26 K [26], evidencing a ferromagnetic transition in the fcc sublattice. The observed
critical temperature Tc � 0.26 K indicates the presence of a small antiferromagnetic
third nearest-neighbor interaction J3 � −0.03 K, in addition to the ferromagnetic
dipolar interaction [24].

5.2.5.4 Summary

In this article, we discussed the response of the classical spin ice compoundDy2Ti2O7

(DTO) to magnetic fields of various orientations. The macroscopic entropy of the
2-in 2-out spin ice state at H = 0 is removed by a magnetic field in an anisotropic
manner, whose overall behavior can be understood by a simple nearest-neighbor
spin-ice model. In a not-too-strong [111] magnetic field, for instance, the spin-ice
state transforms into a kagomé ice state with a partially reduced entropy.

When the magnetic field is further increased along the [111] direction, an ice-
rule-breaking first-order transition is observed at low temperatures from the kagomé
ice state into a fully-polarized 3-in 1-out/1-in 3-out state. This first-order transition,
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which is of liquid-gas type, cannot result from the simple nearest-neighbor spin-ice
model, and provides evidence for a crucial role of the long-range dipolar interaction.
This first-order transition was later understood in terms of a condensation of interact-
ing magnetic monopoles that emerge from the dipolar spin-ice model. The observed
first-order transition in DTO is however quite asymmetric near the critical field, and
the magnetization exhibits a slow approach to full saturation. This behavior is not
well understood yet and thus call for further investigations.

When the magnetic field is tilted from the [111] to the [112] direction, the kagomé
ice state is predicted to undergo a continuous phase transition, called Kasteleyn tran-
sition, into the q = 0 ordered state. In this q = 0 state, the ice-rule breaking spin
flip becomes a first-order transition that is explained by an inversion of the spins
ferromagnetically-aligned on an fcc sublattice. In reality, however, some inhomo-
geneity occurs between the kagomé ice and the q = 0 states in DTO, and no ther-
modynamic evidence for the sharp Kasteleyn transition is obtained. Future work is
needed to understand the phase transitions in a magnetic field slightly tilted off the
[111] direction.
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Chapter 6
Topology of the Vacuum

L. D. C. Jaubert

Abstract Before being known for the emergence of monopoles, spin ice draw the
attention of the community for its extensively degenerate ground state. We have seen
in previous chapters how a Coulomb gauge field emerges from the coarse-graining
of this ground state. It is the goal of this chapter to connect this field-theory picture
with its topological nature. In this context, spin ice is a three-dimensional vertex
model, divided into topological sectors. Topological sectors are connected between
each other via string updates. These strings may become the intrinsic excitations of
exotic phase transitions when the degeneracy of the Coulomb phase is lifted, and
can be mapped onto world lines for bosons in the corresponding quantum problem
in (2+1) dimensions. As an alternative point of view, we will also discuss how the
spin-ice ground state is equivalent to a fully packed loop model, whose statistics is
reminiscent of critical percolation and Brownian motion in two and three dimensions
respectively.

6.1 The Vacuum is Not Empty

6.1.1 A 6-Vertex Model

We know from the previous chapters that spin ice is modelled by Ising spins on the
pyrochlore lattice, made of corner-sharing tetrahedra. It means there are 24 = 16
possible configurations per tetrahedron, as illustrated in Fig. 6.1. Ferromagnetic
nearest-neighbour coupling favours the six “2 in - 2 out” states forming the extensive
ground-state ensemble of spin ice [1, 2].
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Fig. 6.1 Top: the 16 spin-ice configurations with six vacuum ground states (grey), eight first
excited states with charge ±1 (light blue/red) and two highly excited states with charge ±2
(blue/red). The blue/red colours correspond to the positive/negative sign of magnetic charges. This
chapter will mostly focus on the six “2 in - 2 out” states (grey), paired by time-reversal symmetry
{εx , εy, εz}. The latter pair is split into up and down in anticipation of Sect. 6.3. The magenta spins
correspond to the strings as defined in Fig. 6.2. The vertical axis on the right is the energy per
tetrahedron due to the nearest-neighbour ferromagnetic coupling J . The cubic axes are given in the
top left corner. Bottom: the two-dimensional 6-vertex model.

Each 2 in - 2 out state can be seen as a vertex, sitting at the centre of the tetrahedron,
with two arrows pointing inwards and two arrows pointing outwards. The spin-ice
ground state is thus the three-dimensional (3D) version of the venerable 6-vertex
model. Historically, the 6-vertex model was motivated by the work of Slater on
the ferroelectric KH2PO4 [3]. It was later brought into two dimensions (2D) where
analytical methods are possible beyond mean field. It has been solved exactly in 2D
in a series of paper by Lieb [4, 5] and Sutherland [6, 7]. For an overview of the
problem, we refer to Baxter’s famous textbook [8].

Moving back from two to three dimensions has qualitative consequences. For
example, the six vertices are paired by time-reversal symmetry (Fig. 6.1). In 3D,
each vertex carries a finite magnetisation along the x, y or z cubic axis. However,
in absence of a third dimension, one of the pair of the 2D 6-vertex model becomes
antiferromagnetic, and thus inequivalent to the other two (see the central pair at the
bottom of Fig. 6.1). As explained in Chaps. 15 and 16, this difference has important
consequences for two-dimensional realisations of spin ice, in artificial lattices [9, 10].
There, long-range dipolar interactions lift the 2 in - 2 out degeneracy in favour of
these two antiferromagnetic vertices. Extensive degeneracy is recovered by an offset

http://dx.doi.org/10.1007/978-3-030-70860-3_15
http://dx.doi.org/10.1007/978-3-030-70860-3_16
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in height between the vertical and horizontal lines of nano-islands [10, 11] or by
using intervening nano-disks as interaction modifiers [12]. In 3D, the degeneracy of
the Coulomb phase is only weakly lifted by magnetic dipolar interactions, thanks to
projective equivalence (see Chap. 3 and [13]). This is why in this chapter, long-range
interactions will be mostly ignored.

Some of the fundamental differences between the statistical properties of the
Coulomb phase in two and three dimensions will be discussed in details in Sect. 6.2.
But before that, a few definitions are necessary. In particular, what do we mean by
topology in spin ice?

6.1.2 Stochastic Worm Dynamics

What kind of dynamics is allowed in the Coulomb phase? A single spin flip is
forbidden as it would break the local ice rule . But a closed chain of spins pointing
alternatively “in - out - in - out ...” can beflippedwithout creating any excitations. This
move is called a worm. The smallest worm on the pyrochlore lattice is illustrated
by the orange dashed hexagon in Fig. 6.2. The left/right panels of the figure are
interchangeable by flipping the six spins of the worm, at no energy cost.

The name “worm” comes from the eponymous algorithm using this dynamics to
decorrelate ice models in Monte Carlo simulations [14]. The worm algorithm has
been introduced in the context of spin ice in [15, 16]. In practice, a worm is initiated

Fig. 6.2 Worms and strings are made of a chain of spins pointing alternatively “in - out - in - out
...” such that flipping them does not break the ice rules. The dashed orange hexagon is an example
of the smallest worm on the pyrochlore lattice. The line of magenta spins represents a portion of
a string, made of spins pointing down, and going through the entire system from top to bottom.
The hexagonal worm flip corresponds to a fluctuation of the string. While the number of strings in
a configuration defines its topological sector, non-winding worms allow for fluctuations within a
given topological sector

http://dx.doi.org/10.1007/978-3-030-70860-3_3
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by choosing a spin at random on the lattice, which necessarily points inside a given
tetrahedron. The worm then propagates by exiting this tetrahedron through one of
the two outward spins with probability p. Again, this second spin necessarily points
inside a second tetrahedron. The process is then repeated until, eventually, the worm
closes on itself. If it closes on the initial spin, then it is called a long worm. If it
closes on an intermediate spin, with the dangling part being erased from the worm,
then it is called a short worm. A worm is thus inherently stochastic; at each step, it
has to choose between two possibilities in order to move from one tetrahedron to
the next. For the nearest-neighbour spin-ice model, in absence of any perturbations,
the probability p is equal to 1/2 and is the same for all steps. In presence of a
perturbation, the six vertices are not equivalent anymore, and p will take a different
value depending on the local spin environment [14, 17, 18]. This way, the Monte-
Carlo condition of detailed balance can be imposed at each step. The algorithm is
thus (mostly) rejection free, and is called a directed worm algorithm. In the ordered
phases of topological phase transitions (see Sect. 6.3), detailed balance often requires
the additional possibility of backtracking, i.e. to be able to go back to the tetrahedron
visited at the previous step. This backtracking is an algorithmic consequence of the
absence of string excitations, in the thermodynamic limit, below the critical point of
certain transitions.

In the literature, the worm algorithm is also commonly referred to as a loop
algorithm. In this chapter, we will be careful not to mix the two terms—worms and
loops—because the notion of loops will be reserved to a different kind of degrees
of freedom, presented in Sect. 6.2. The concept of directed worm algorithms is also
used in Quantum Monte Carlo, allowing for efficient simulations across parameter
space (see e.g. [19] and Chap. 10).

Beyond their numerical aspects, worms can be seen as a vector field of the mag-
netisation. Because they are always closed in the ground state of spin ice, they respect
the condition of zero-divergence, supporting the emergence of a Coulomb gauge field
theory (see Chap. 3 and [20]).

To make connection with topology, one needs to make a distinction between
winding and non-winding worms. These terms are properly defined for a system
with periodic boundary conditions (Fig. 6.3a, b). A non-winding worm is a one-
dimensional object that can be continuously deformed into something vanishingly
small in all dimensions. The hexagon of Fig. 6.2 is a simple example, but more com-
plicated, non-winding worms are possible. A non-winding worm may pass through
a boundary of the system, as long as it “comes back”. In other words, if we copy
enough images of the system via the periodic boundary conditions, a non-winding
worm will always eventually close on itself and has a finite size. A winding worm
on the other hand shall never close and will extend to infinity. This is where the
topology makes an apparition, since we have the possibility to define objects that
are preserved under continuous deformations. However, worms are stochastic. They
can be studied as emergent one-dimensional degrees of freedom, but the arbitrari-
ness of their construction makes it difficult to use them as a property of a given spin
configuration. To solve this problem, we will need to introduce a more deterministic
variant of the worms: the strings.

http://dx.doi.org/10.1007/978-3-030-70860-3_10
http://dx.doi.org/10.1007/978-3-030-70860-3_3
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Fig. 6.3 (a) Winding and (b) non-winding one-dimensional degrees of freedom. Two examples
are given per box (thin solid lines), with the images due to periodic boundary conditions represented
by dashed lines out of the boxes. The definition of “(non-)winding” is valid for worms and loops.
(c) In a strong [001] magnetic field h, all spins point up. In this set up, a Dirac string is a portion
of a regular string ending on two topological charges. The two charges are confined because the
Zeeman energy cost of the Dirac string is proportional to its length

6.1.3 Topological Sectors Made of Fluctuating Strings

The best way to understand the topological sectors in spin ice is probably by starting
with a fully magnetised state. Let’s say that all spins point up, along the [001] axis,
i.e. all vertices correspond to ε

↑
z in Fig. 6.1. If we define mz as the magnetic order

parameter along the [001] axis, thenwe have a saturated configurationwithmz = +1.
Starting from this configuration, it is easy to see that the only move respecting the
ice rule is a worm crossing the entire system from top to bottom. The winding lines
of Fig. 6.3b are schematic examples of this kind of non-local move, which we shall
call a string. Within our convention, a string is made of spins pointing down. The
fact that the string scales linearly with the system size makes the fully magnetised
state a topological sector by itself, corresponding to a vacuum of strings.

Topological sectors in spin ice are defined by their winding number, wz , i.e. the
number of strings they contain along the z direction. It is important to understand
that a string is a deterministic object. For any given spin configuration, it is possible
to determine a unique ensemble of strings by colouring all the vertices of the system
as done for the 2 in - 2 out states of Fig. 6.1; the downward magenta spins form
the strings. The only arbitrary choice would be for the ε

↓
z vertex where two strings

are crossing. This distinction is usually irrelevant but if necessary, it can easily be
imposed by choosing a convention. A string always goes “straight” from top to
bottom, moving from a (001) layer to the next one just below. Of course, as long
as time-reversal symmetry is respected, it is equivalent to consider strings made
of upward spins and the saturated configuration with mz = −1 as a vacuum. But
once this choice is fixed, there is a one-to-one mapping between spin and string
configurations.

To put this definition in practice, let us consider a system made of Lx × Ly × Lz

cubic unit cells (see Fig. 6.6b for the definition of a cubic unit cell). The total number
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of sites is N = 16Lx L yLz and a string is made of 4Lz spins, i.e. exactly the number
of layers of spins in the [001] direction. To go from one saturated state to its time-
reversal symmetric, one needs toflip 4Lx L y strings. The relation between thewinding
number and magnetisation is

mz = 1 − wz

2Lx L y
(6.1)

Since (6.1) is valid in all three directions, the above equation can be written in vector
form

m =
⎛
⎝
1
1
1

⎞
⎠ − 1

2L2
w . (6.2)

Topological sectors and magnetisation are thus equivalent concepts in the Coulomb
phase of spin ice. From (6.2) transpires the fact that thewinding numbers {wx ,wy,wz}
are not independent from each other. For example ifwz = 0, thenwy = wz = 2Lx L y

since |m| � 1. An interesting property of the topological sectors is that a cut along a
(001) layer directly indicates wz , by counting how many spins are pointing down in
the layer. Equation (6.1) then immediately givesmz . Taking advantage of the topology
of the spin-ice ground state, it is thus possible to calculate the magnetisation, m, of
a given spin configuration by measuring a quantity of size O

(
N 2/3

)
, instead of the

usual O (N ).
Since non-winding worms do not carry anymagnetisation, they cannot change the

topological sector. On the other hand their dynamics correspond to the fluctuation of
strings, as illustrated in Fig. 6.2 for an hexagonal worm. From a dynamical point of
view, in absence of winding worms, the system can be considered as topologically
ordered, since it cannot evolve between different topological sectors. There is thus
topological ergodicity breaking [21], making contact with the glassiness of classical
topological systems that has been observed even in absence of structural disorder
[22, 23]. We won’t go into the details here since two chapters of this book (4 and
7) are dedicated to the dynamics of spin-ice materials. But we shall conclude this
section by mentioning the mediating source of dynamics in real materials, namely
the topological charges.

6.1.4 Topological Charges Out of the Vacuum

Excitations out of the spin-ice ground state are point-like topological defects
(Fig. 6.1). Worms can terminate on these charges, which serve as sources or sinks
of the vector field carried by the worms. The topological nature of these defects
comes from the fact that the vector field emerging from them cannot be removed by
continuous deformations. As a consequence, the Gauss’ law confers a gauge charge

http://dx.doi.org/10.1007/978-3-030-70860-3_4
http://dx.doi.org/10.1007/978-3-030-70860-3_7
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to these defects, that can only take a discrete set of values: ±1 and ±2. Neutrality of
the system imposes in spin ice that the charges are created and annihilated by pairs.
To move around in the system, the defects must modify the surrounding vector field,
thus imposing constraints on the spin configurations. This has consequences on the
entropy of the configuration, inducing an entropic Coulomb potential between the
topological defects [24, 25].

In presence of magnetic dipolar interactions, an effective magnetic charge is
attached to the topological defects [26]. Themagnetic charge is not quantised though;
hydrostatic or chemical pressure can modify its numerical value [27]. Since the mag-
netic charges derives from the three-dimensional dipolar interaction between spins,
the resulting magnetic Coulomb potential is always three dimensional, even in pla-
nar artificial spin ice. On the other hand, the entropic Coulomb potential between
the gauge charges depends on the dimension of the lattice: logarithmic in 2D and
1/r in 3D. Remarkably, in presence of a weak non-magnetic dilution of the lattice,
impurity sites can be seen as “ghost spins” [28] on top of an unperturbed 2 in - 2
out configuration. These ghost spins interact with the rest of the system via dipolar
interactions of energetic (magnetic) and entropic origins (see Chap. 3).

From a practical point of view, the topological charges mediate the dynamics of
the system in spin-ice materials [29]. The creation, propagation and annihilation of
a pair of charges is indeed equivalent to the dynamics of a worm. It has further been
shown in Monte Carlo simulations that a very diluted, but finite, density of charges
was enough to equilibrate the system down to very low temperatures, even in absence
of a dedicated worm algorithm [30].

To conclude, let us consider a given spin configuration with a unique pair of topo-
logical charges. Since the construction of worms is stochastic, it is always possible
to define several “in - out - in - out ...” paths to connect the two charges. However, if
there is an external perturbation fixing a preferred (cubic) axis—say a magnetic field
h along the [001] direction—then the portion of string connecting these two charges
can be defined in a unique way, as illustrated in Fig. 6.3c. This portion of string is
the minimum distance between the two defects, and represents the confinement of
these topological excitations due to the magnetic field [26, 31]; to separate a pair of
charges cost an energy proportional to its length. This portion of string is a classical
analogue of a Dirac string [26] and has been observed in Fourier space via neutron
scattering measurements [32].

6.2 Loop Statistics of the Coulomb Phase

In the next section, we will study how topological sectors can be manipulated via
external perturbations, inducing unconventional phase transitions. But before that, let
us describe the intrinsic properties of the 2 in - 2 out ensemble of states by considering
another type of one-dimensional degrees of freedom that has not been mentioned so
far: the loops.

http://dx.doi.org/10.1007/978-3-030-70860-3_3


124 L. D. C. Jaubert

Fig. 6.4 Loops: (a) The centres of tetrahedra form a bipartite (diamond) lattice made of A and
B tetrahedra sublattices. Connecting together all the spins pointing inside a A tetrahedron form
extended one-dimensional degrees of freedom, coloured in red here. In absence of topological
defects, these 1D structures necessarily close on themselves, forming loops. The red loops occupy
half of the lattice, the other half supporting blue loops made of outward spins. Once the colour-
ing choice is fixed, there is a one-to-one mapping between the corresponding spin- and loop-
configurations. (b) The same mapping is valid in two dimensions on the checkerboard lattice

As opposed to worms and strings, loops do not follow an “in - out - in - out ...”
structure. They are defined by connecting on one hand all the inwards spins together
(the red loops of Fig. 6.4a) and on the other hand all the outwards spins (the blue
loops of Fig. 6.4a). This definition of in/out spins is necessarily done with respect
to a given tetrahedron sublattice (A or B). Once this arbitrary choice of sublattice
is fixed—which is irrelevant to the physics—there is a bijective mapping between
the red/blue loop configuration and the underlying spin configuration. The same
definition can be applied to the checkerboard lattice (Fig. 6.4b)

The definition of loops is thus deterministic, as opposed to the stochastic con-
struction of worms. The statistics of loops offers an alternative description of the
spin-ice ground state, away from the more traditional Coulomb gauge field theory.

In the rest of this section, let us consider a system with periodic boundary condi-
tions and N = 4L2 sites in 2D and 16L3 sites in 3D. Most of the numerical results
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presented in this section come from [33]. The Coulomb phase is often described as
“critical”, because of its algebraic spin-spin correlation. In the language of loops,
this criticality takes the form of power-law distributions P(�) of the loop length �

[33] (Fig. 6.5a, c). To understand this behaviour, let us start with the two-dimensional
case.

6.2.1 Loops in Two Dimensions

On the 2D checkerboard lattice, the Coulomb phase maps onto a two-flavour fully
packed loop model (FPL2) on the square lattice [34] (Fig. 6.4b). The two flavours are
the red and blue loops, and the full compactness is due to every vertex of the square
lattice being occupied by a loop. If Cb and Cr are respectively the total number
of blue and red loops in a given configuration, the FPL2 is characterised by two
fugacities nb and nr giving a weight, (n

C b
b nC r

r ), to this configuration in the partition
function. In the present case applied to the Coulomb phase, all configurations are
equivalent, independently of the number of loops Cb and Cr . It means that nblue =
nred = n = 1. At this special point, it is also possible to consider the system as a
fully packed loop model with one flavour of loop (FPL) and fugacity n = 1 [35]. For
n � 2, the FPL is critical [34] with a scaling invariance of P2D(�), as observed in
Fig. 6.5a. Powerful analytical methods are available for scaling-invariant problems
in 2D, such as the Coulomb gas approach. This method offers an exact calculation
of the exponent τ = 2 + 1/7 of the power law, P2D(�) ∼ �−τ [34–36], consistent
with Monte Carlo simulations, τ = 2.14 ± 0.01, (Fig. 6.5a). More precisely, the
loop-length distribution of non-winding loops follows

P2D(�) = A
L2

�τ
⇔ P2D(�) LD f = A

(
LD f

�

)τ

, (6.3)

where A is a constant of orderO(1) and D f = 2/(τ − 1) = 7/4 is the fractal dimen-
sion of the loops D f [37, 38]. The value of 7/4 is consistent with the scaling of the
radius of gyration for non-winding loops (see the solid black line in Fig. 6.5b). In
simulations, the radius of gyration is measured as,

R ≡
〈√√√√1

�

�∑
i=1

(ri − r̄)2
〉

∝ �1/D f , (6.4)

where 〈...〉 is the statistical average, ri is the position of site i inside a loop of length
�, and
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Fig. 6.5 Loop statistics: (b) The fractal dimension of the non-winding loops, D f = 7/4 in 2D
and D f = 2 in 3D, is given by the scaling of the radius of gyration R (6.4). Up to � � LD f , the
loop-length distribution, P(�), follows a scaling behaviour for non-winding loops: (a) �−(2+1/7)

on checkerboard and (c) � � L2 on pyrochlore. Above � � LD f , the distribution is dominated by
winding loops. It gives rise to a small deviation in 2D (a), but develops into an entire different
scaling law in 3D (c); P3D(�) ∼ �−1, followed by a divergence at � = N/2. Panels (a, c) have
been adapted from [33] with permission of the American Physical Society.

r̄ ≡ 1

�

�∑
i=1

ri , (6.5)

is the geometrical centre of the loop.
A global picture starts to emerge. SinceP2D scales like L2 for a given loop length

� (6.3), we have an extensive number of loops whose length distribution scales like
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a power law. While power laws are usually characterised by an absence of length
scale, the fact that τ > 2 means that the average loop length does not diverge [36].
On the contrary, it quickly converges to a non-trivial value, 〈�〉2D ≈ 24.7. As for the
fractal dimension, one could have naively expected a similarity with self-avoiding
walks (SAW), DSAW

f = 4/3, since loops never intersect themselves, nor cross another
loop of the same colour. The value D f = 7/4 is nevertheless the one of the hull of
clusters at critical percolation [37]. To rationalise this, one needs to realise that for
any configuration in the Coulomb phase, the ensemble of bonds in the system is
precisely divided into two halves: red and blue. This corresponds to the critical
value of bond percolation on the square lattice. Of course, the FPL2 model is more
complexed than percolation. However, it has been argued that neither short-range nor
sufficiently rapidly decaying algebraic correlations influence the exponents of critical
percolation [39]. Based on this argument, the 1/r2 correlations of the Coulomb phase
are marginal, with an anisotropy making them vanish in some directions [20, 40].
This might tip the influence of correlations towards irrelevance (up to possibly small
logarithmic corrections) and explain why we find the same fractal dimension as for
critical percolation.

The analogy to percolation raises an interesting parallel. For a square system
at criticality, the number of percolating domains is of order O(1). Here, the ana-
logues of percolating domains would be winding loops, crossing the system from
one side to the other. Their number is indeed, on average, 1.86 ± 0.01 per configu-
ration, independently of the system size L � 1 [33]. Winding loops are responsible
for the deviation at � ∼ L7/4 away from the power law in the loop-length distribu-
tion (Fig. 6.5a). However, the distribution of winding loops continues to scale like
�/L7/4. It means that the fraction of the system occupied by winding loops vanishes
like L7/4/L2 = L−1/4 in the thermodynamic limit. This scenario is fundamentally
different in three dimensions.

6.2.2 Loops in Three Dimensions

While the two-dimensional distribution is clearly dominated by the universal
behaviour of non-winding loops for n = 1, the 3D loop-length distribution is divided
into three distinctive parts (Fig. 6.5c) [33, 41]:

� � λ ≈ 20 ⇒ P3D(�) is non-universal, due to the lattice mesh, (6.6)

λ  � � L2 ⇒ P3D(�) = B
L3

�5/2
, (6.7)

L2 � � � L3 ⇒ P3D(�) = B ′ 1

�

√
1 − �

N/2

. (6.8)
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The first part is fairly small, � � λ ≈ 20. Here, P3D(�) oscillates around the
scaling law of (6.7). This oscillation is non-universal, and is due to the fact that the
pyrochlore lattice favours loops of length � ∈ {6, 10, 14, ...} over loops of length
� ∈ {8, 12, 16, ...}. Since the system is fully packed, this difference of behaviour
may be rationalised from the point of view of their excluded volume. The former
kind of loops are (mostly) planar, as illustrated for � = 6 and 10 in Fig. 6.4a, while
the latter kind necessarily has to bend. For example, loops � = 10 can be crossed by
a loop of a different color, which is impossible for � = 8. From this point of view,
the excluded volume of the latter is larger than for the former, which might be the
reason for this oscillation. As � increases, it becomes statistically less and less likely
for loops to remain flat; most of the loops occupy a finite volume and the oscillations
disappear. The non-universal behaviour is also visible for the scaling of the radius of
gyration which deviates from the power law for small � (Fig. 6.5b). Being a feature
of the pyrochlore lattice, other 3D Coulomb phases are not expected to show the
same behaviour.P3D(�) should probably be labeledPpyro(�) when referring to the
oscillations for � � λ ≈ 20.

Influence of the microscopic details of the lattice also exist in 2D. They are
unnoticeable at the naked eye in Fig. 6.5a, but a small deviation from the power law
is visible in the radius of gyration for small � (Fig. 6.5b).

The second part of the loop-length distribution corresponds to the scaling of non-
winding loops (6.7). In 3D, their radius of gyration gives a fractal dimension D f = 2
(Fig. 6.5b), i.e. the same as for a Brownian motion (BM) even though loops are self
avoiding. Remarkably, the passage from D f = 7/4 in 2D to D f = 2 in 3D is the same
as for polymer solutions at the θ point [42]. Arguments from polymer physics justify
that in a dense solution in 3D, the presence of other polymers may counteract the
self-avoidance, giving rise to BM universality. The apparition of Brownian physics
provides a continuum framework for the scaling of (6.7) [43]. In 3D, the probability
for a BM to go from r0 to r after � steps is

p(r0, r; �) = 1

(2π�)3/2
exp

[
− (r − r0)2

2�

]
. (6.9)

The probability to close the loop, i.e. r = r0, is (2π�)−3/2. Summing over all possible
starting positions, (×N ), and accounting for the arbitrary starting position along the
loop of size �, (×1/�), the loop-length distribution of non-winding loops is

Pnw
3D (�) ≈ N

�

1

(2π�)3/2
∼ L3

�5/2
(6.10)

However, a loop of length � ∼ L2 has a radius of gyration, R ∼ �1/D f ∼ L . In
a system with periodic boundary conditions, it means loops of length � � L2 start
to see themselves on the other side of the system, forming winding loops. Let us
consider a BM starting at site r0 and closing in a mirror image of the system at
distance r0 + nL where n = (nx , ny, nz) ∈ Z

3 are the Cartesian coordinates of the
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mirror image in units of the linear system size L . The distance travelled by the BM

is
√
n2x + n2y + n2z L . Using (6.9), the probability for the BM to close at r0 in the

original system (non-winding) or in a mirror image (winding) is

∞∑
nx ,ny ,nz=−∞

exp
[
− (n2x+n2y+n2z ) L

2

2�

]

(2π�)3/2
=

⎛
⎜⎜⎜⎝

∞∑
n=−∞

e
−
n2 L2

2�√
2π�

⎞
⎟⎟⎟⎠

3

≈ 1

L3
. (6.11)

Again, summing over all starting positions, modulo the arbitrariness within a loop,
(×N/�), the loop-length distribution of (mostly) winding loops is Pw

3D(�) ∼ 1/�,
which is the leading term of (6.8). The physics of Brownian motion thus accurately
explains the two scaling laws of Fig. 6.5c and their crossover at � ∼ L2. Colloqui-
ally speaking, the loops of our model “want” to be of fractal dimension 2. On one
hand, there is not enough space in 2D, which is why the fraction of winding loops
disappear and the fractal dimension is smaller, D f = 7/4. On the other hand, the
extra dimension in 3D allows for the distribution of winding loops to spread. This
behaviour is closely related to Pólya’s theorem stating that a D−dimensional random
walk is recurrent for D ∈ {1, 2} and transient for D � 3.

However, the 1/� scaling of the distribution does not account for the divergence
at � = N/2 in Fig. 6.5c. This divergence is due to a vanishingly small number of
winding loops occupying a finite fraction of the system: respectively 41%, 30% and
12% on average for the first, second and third longest loops in the system [33]. The
non-mean-field correction to thewinding-loop statistics is particularly non trivial and
has been solved exactly in a tour de force byAdamNahum et al. [41]. Using a combi-
nation of the O(n) σ model and replica methods, they have shown that this correction
follows a Poisson-Dirichlet distribution proportional to (1 − �/( f N ))n/2−1, with n
being the fugacity of undirected loops and f a non-universal constant of the model.
In our model, one finds f ≈ 1/2 because loops are limited to 50% of the system,
due to their bi-colour. The divergence of the distribution is thus a consequence of the
fugacity of the loops, n = 1 < 2.

With a logarithmic number, log L , of winding loops occupying 93.7% of the sys-
tem, and an extensive number, L3, of non-winding loops confined in its complement,
the average loop length 〈�〉3D = 227.5 ± 0.5 is an order of magnitude larger than in
2D, but remains remarkably finite. To give an order of magnitude, even for a system
of N ∼ 8 000 000 sites, the number of winding loops is around 7. Because of these
gigantic loops occupying a finite fraction of the system, there is a finite probability
for two spins to sit on the same loop, in presence of periodic boundary conditions
[33]. This finite probability is responsible for partial antiferromagnetic long-range
order in valence-bond states on bipartite lattices [44, 45].

To conclude, let us mention the role of these loops played in the dynamics of
systems beyond classical spin ice. We have seen in the first part of this chapter that
worms and strings are the natural paths for the propagation of topological charges. In
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the charge ice [46, 47] and quantum spin ice [48] models, loops also play the role of
an effective rail for the hopping of confined pairs of spinons. This dynamic has been
dubbed a “leapfrog”move [48], and is non-ergodic since confined along a given loop.
When spin ice, with collinear Ising spins, is coupled to itinerant electrons via a large
Hund coupling, these loops also serve as natural paths for itinerant electrons [49–51].
As a feedback to the localised magnetism, the electron hopping induces a non-trivial
fugacity to the loops. For systems with open boundaries, the winding loops break up
into several filaments terminating on the surfaces, inducing conductivity.

6.3 Topological Phase Transitions

Up to now, we have considered that all configurations in the Coulomb phase are
equivalent. It is now time to perturb the ground state of spin ice in order to lift its
extensive degeneracy, and seewhat kind of phase transition takes place. In this section
we will continue to consider that the nearest-neighbour coupling is much bigger than
any other energy scale, i.e. all tetrahedra are 2 in - 2 out, even at finite tempera-
ture. This will have two immediate consequences. Firstly, transitions will often be
topological in nature, naturally described in terms of topological-sector excitations.
Secondly, the ice rule implies that the disordered phase at high temperature, above
any eventual transitions, is not a standard paramagnet but a classical spin liquid
with algebraic correlations. As studied in a family of classical and quantum dimer
models [52–61], algebraic correlations in the disordered phase do not fit within the
traditional Landau-Ginzburg-Wilson theory of phase transitions. It is this aspect we
are going to explore in the context of spin ice, where our textbook intuition about
critical phenomena loses its footing, and continuous/discontinuous transitions are
not necessarily what they seem.

6.3.1 Repulsion Between Strings: The Kasteleyn Transition

Let us start with the influence of a magnetic field, h, in the [001] direction, favouring
the fully saturated configuration with only ε

↑
z tetrahedra everywhere (Fig. 6.1).

Tetrahedron energies in a [001] field: ε↑
z < εx = εy < ε↓

z (6.12)

Since all symmetries of theHamiltonian are broken byh, no critical points are a priori
expected at finite temperature. This is where the topology of the Coulomb phase
comes into play, inducing the so-called Kasteleyn transition [62]. This transition in
spin ice has first been studied in 2D: on the checkerboard lattice as an idealised planar
version of pyrochlore [63], and in a realistic experimental setting as a perturbation of
the kagome-ice phase [64, 65], when the magnetic field is tilted away from the [111]
direction [66, 67] (see Chap. 5 for a detailed discussion). Here we will focus on its

http://dx.doi.org/10.1007/978-3-030-70860-3_5
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full three-dimensional version in a [001] field [17], whose fluctuations are directly
related to the topological sectors defined in Sect. 6.1.3.

First of all, why is there a transition? Since the configuration with saturated mag-
netisation is a topological sector by itself, any relaxation out of this ground state
requires a string excitation. The Zeeman energy per spin is ±h/

√
3. For a system

made of Lz cubic unit cells along the [001] direction and 4 layers of spins per cubic
unit cells, the Zeeman energy cost of the string is δU = 8Lzh/

√
3. As illustrated by

the magenta spins in Fig. 6.2, strings can fluctuate. To be more precise, a string alone
in the system has two possibilities to propagate from one layer to the next; e.g. tetra-
hedra ε1x and ε1y have the same entry site (top layer) and two different possibilities to
exit (bottom layer). This confers an entropic gain, δS = 4Lz ln 2, to the string. The
difference of free energy is [17]

δF = δU − T δS = 4Lz

(
2h√
3

− T ln 2

) {
< 0 when T > TK
> 0 when T < TK

(6.13)

with TK = 2h√
3 ln 2

. (6.14)

In the thermodynamic limit, Lz → +∞, string excitations are suppressed forT < TK
(δF → +∞) and the system remains completely frozen with saturated magnetisa-
tion. For T > TK , string excitations are possible (δF → −∞) and the system relaxes.
When two strings meet in a given tetrahedron, the energy cost is the same but the
entropic gain disappears; there is only one possible state, namely ε

↓
z . Strings are

entropically repulsive and an incremental value of the temperature is necessary to
visit topological sectors of decreasing magnetisation. The magnetisation, mz , is thus
continuous at the transition.

Despite the apparent simplicity of the above argument, the value of the Kaste-
leyn transition temperature TK is correct and has been confirmed numerically [17].
Because the upper critical dimension dc of the Kasteleyn transition is dc = 3 [68],
thermodynamic quantities can be calculated via Husimi-tree calculations, up to log-
arithmic corrections, giving for the magnetisation

T < TK : mz = 1 , (6.15)

T > TK : mz = sinh(2βh)

2 − cosh(2βh)
, (6.16)

as plotted in Fig. 6.6a. For t ≡ (T − TK )/TK → 0+, the magnetisation scales to
first order O(t) as mz = 1 − (

8
3 ln 2

)
t . It means one can define the critical exponent

β = 1 for T > TK and β ′=0 for T < TK , with no critical fluctuations at low tem-
peratures. This asymmetry of criticality is the reason why the Kasteleyn transition is
sometimes referred to as a 3/2−order transition [69]; somewhere in between a first-
and second-order transition
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Fig. 6.6 (a) Kasteleyn and KDP transitions, where the magnetisation, mz , is saturated below
the transition, without any fluctuations. At TK , mz displays either a kink in a [001] magnetic
field (Kasteleyn), or a discontinuous jump under uniaxial [001] pressure (KDP). In both cases, the
high-temperature phase is adiabatically connected to the Coulomb phase with dipolar spin-spin
correlations. (b) A cubic unit cell of the pyrochlore lattice is made of 16 sites (see the corners of
the four dark tetrahedra). For each site, there are 6 first, 12 second and 6 third nearest neighbours.
J1, J2 (resp. J3) couple spins on different (resp. same) sublattices.While the third nearest-neighbour
coupling across hexagons is not considered here (6.18) [70], the term V4 of (6.20) couples the four-
site magnetisation of tetrahedra sitting opposite from each other across hexagons [71]

As an elegant and complementary approach, strings can be treated as world lines
for hard-core bosons, moving in the two-dimensional xy plane, with the z−direction
taken as imaginary time [17, 72]. In the thermodynamic limit, the classical 3DKaste-
leyn transition at finite temperature maps onto a zero-temperature 2D Bose-Einstein
condensation. Since strings cannot terminate in the bulk—they cross the system
from top to bottom—the number of bosons is conserved. The reduced temperature
t plays the role of a chemical potential for bosons μ. The low-temperature, fully
saturated, configuration corresponds to a vacuum of bosons for μ < μ0, with con-
densation atμ = μ0. In the Bose-Einstein condensate (BEC) for (t > 0 ⇔ μ > μ0),
there is a Goldstone mode resulting from the broken phase-rotation symmetry [72].
Interestingly, this off-diagonal long-range order of the BEC can be interpreted as
deconfinement in the high-temperature Coulomb phase, responsible for the dipolar
correlations betweens spins. However, as μ → μ+

0 , the speed of sound in the con-
densate vanishes like

√
μ − μ0 [72]. In the spin language, it means that the dipolar

correlations evolve into a strongly anisotropic regime between the z−direction and
the x, y plane. The two-point correlation function between a reference spin S0 and a
spin Si at position (x, y, z) becomes

C(r, z) = 〈S0 · Si 〉 − 〈S0〉〈Si 〉 ∝ 1

z
exp

(
− r2

ρ z

)
, (6.17)
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where r = √
x2 + y2 and ρ is a microscopic length scale. This form reflects the dilu-

tion of strings at T+
K . Once the contribution of the saturated magnetic background is

subtracted, what remains is the string auto-correlation, characteristic of a 2D random
walk propagating in time z.

The present analogy with world lines of bosons is remarkable on several fronts.
First of all, (6.17) has been beautifully used in neutron scattering experiments as a
signature of classical analogues of Dirac strings in the Ho2Ti2O7 spin-ice materials
[32] (see Chap. 8).

Also, as we discussed at the beginning of this section, the Kasteleyn transition
is not a priori expected to obey the traditional Landau-Ginzburg-Wilson (LGW)
theory of phase transitions. However, the BEC fits within this theory. The trick was
to reverse the roles: the low-temperature ordered phase is now a vacuum, while
the troublesome algebraic spin-spin correlations of the high-temperature Coulomb
phase emerge from the off-diagonal long-range order of the BEC [72]. However, the
quantum mapping in (2+1) dimension should not be considered as a general method
to transform a non-LGW problem into “LGW friendly”. For example, when applied
to a specific classical dimer model on the cubic lattice, the quantum mapping gives
rise to a non-LGW transition between a bosonic superfluid and a Mott insulator at
fractional filling [59, 61].

The BEC mapping also provides a framework for the inclusion of topological
charges. In theBECanalogy, these defects are generated by source terms for the boson
operator. As a consequence, the phase-rotation symmetry is intrinsically broken and
the Kasteleyn transition disappears [72]. Alternatively, in terms of renormalisation-
group theory, the Kasteleyn transition is a confinement/deconfinement critical point.
The loss of the transition in presence of topological charges means that the charge
fugacity, z = exp[−ΔEc/T ]where ΔEc is the energy cost for a charge, is a relevant
perturbation [73]. If ΔEc/TK is large but finite, the Kasteleyn transition becomes a
sharp crossover, and the kink of the magnetisation at TK is smoothed out [17, 74],
comparing qualitatively well with experimental measurements on Ho2Ti2O7 [75,
76] and Dy2Ti2O7 [17, 77]. A careful scaling analysis shows that the logarithmic
corrections are quickly washed out in presence of topological defects [74].

To conclude, one should mention that in presence of dipolar interactions, the fully
saturated configuration enters in competition with the antiferromagnetic ground state
of the dipolar spin ice model. This competition stabilises half-magnetisation plateau
at intermediate values of the magnetic field [78–80].

6.3.2 Non-Repulsive Strings : KDP and 1st Order Transitions

An external magnetic field is not the only way to stabilise a fully saturated magnetic
configuration. Here we will explore two other mechanisms, which do not break time
reversal symmetry: further nearest-neighbour couplings [70] and uniaxial pressure
[18].

http://dx.doi.org/10.1007/978-3-030-70860-3_8
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In rare-earth pyrochlores, further neighbour exchange is usually considered neg-
ligible because of the short-range nature of the 4 f orbitals. Precise analysis of neu-
tron scattering measurements have nonetheless suggested that a weak ferromag-
netic second-neighbour coupling is present in Dy2Ti2O7 [81–83]. Also, in Tb-based
pyrochlores, quantum fluctuations due to the presence of a low-lying singlet in the
single-ion crystal field can be renormalised as effective classical J2 and J3 couplings
[70, 84].Herewewill consider an interaction between second 〈〈...〉〉 and third 〈〈〈...〉〉〉
nearest neighbours (Fig. 6.6b)

H ′ = J2
∑
〈〈i, j〉〉

Si · S j + J3
∑

〈〈〈i, j〉〉〉
Si · S j (6.18)

where Si are Ising spins parallel to their local easy axes. Within the 2 in - 2 out
ensemble of configurations, J2 and J3 have the same effect, up to a prefactor [85].
Hence, all discussions can be made based on the J3 interaction only. In particular,
ferromagnetic couplings, J3 < 0, lift the spin-ice ground-state degeneracy in favour
of one of the six fully saturated configurations [70, 83, 86].

As for uniaxial pressure along the [001] direction, the resulting distortion lifts
the 2 in - 2 out degeneracy at the level of each tetrahedron: (εz) versus (εx , εy). The
anisotropic shape of 4 f orbitals makes it difficult to predict which one is expected
to be the lowest in energy [87], but an analysis [18] of one of the rare experiments
of a spin-ice material under uniaxial pressure [88] indicates that for Dy2Ti2O7, such
uniaxial pressure favours εz :

Tetrahedron energies under [001] uniaxial pressure: εz < εx = εy (6.19)

with the energy differenceΔ = εx − εz > 0. Equation (6.19) corresponds to a special
case of the 6-vertex model, namely the ferroelectric KDP transition [3, 5, 89]. The
acronym KDP stands for potassium dihydrogen phosphate KH2PO4, one of the most
venerable example of a ferroelectric material. Please note that [001] uniaxial strain
tend to occur naturally in thin films grown in the [110] or [001] directions because
of the lattice mismatch between the film and the substrate [90].

At low temperature, the same reasoning as for the Kasteleyn transition applies.
The ground states correspond to different topological sectors, each of them made
of a unique configuration. Any excitation respecting the ice rule requires a string
update with an energy cost, δU , and an entropy gain, δS, diverging with system
size. For the uniaxial distortion, δU = 4LzΔ and δS = 4Lz ln 2, giving a transition
temperature at TKDP = Δ/ ln 2 (same calculations as in (6.14)). For the further-
neighbour perturbation, the argument is more evolved since the J3 term couples
spins within the string. The propagation of the string is biased by this interaction
and the entropy gain is not simply ln 2 per layer. Nonetheless, the string fluctuates at
finite temperature (the J2, J3 terms are finite) and the entropy gain of a single string
scales with the system size Lz (the J2, J3 couplings are short range). Monte Carlo
simulations have confirmed a first-order transition at finite temperature [70].
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And here is themain differencewith theKasteleyn case: the transitions are discon-
tinuous. This is because the uniaxial strain and further-neighbour coupling respect
time-reversal symmetry. The high-temperature, disordered, phase is necessarily non
magnetic, with mz = 0. With a single phase transition separating the low- and high-
temperature phases, the magnetisation must be discontinuous (Fig. 6.6a). By fol-
lowing a similar argument, Nagle has shown exactly the discontinuity of the KDP
transition in any dimensions [91].

What does itmean in termsof strings?Once afirst stringhas appeared in the sample
at the transition temperature, a ferromagnetic J3 interaction makes it easier to create
a second string in its vicinity, making the strings attractive. In other words, once
the system has reached the transition temperature with enough entropy to stabilise
the first string, there is already enough thermal fluctuations in the system to create a
second, third ... string. It is an avalanche effect, and the transition is first order.

For KDP, the transition is more subtle. The order parameter is discontinuous,
but the transition is not first order. It is a multi-critical point of infinite order [18,
89, 92] with a flat free energy. From Landau theory, critical points of infinite order
can be of two types [92]: infinitely smooth (e.g. the Berezinky-Kosterlitz-Thouless
transition) or infinitely sharp, as is the case here. The criticality of the transition
has been confirmed numerically by the extinction of the surface tension between
domains. Its main consequence is that every topological sector becomes equivalent
at the transition [18]. In the framework of the quantum counterpart model in (2+1)
dimensions, this equivalence of topological sectors corresponds to an enhancement
of symmetry from the U(1) Coulomb phase to the SU(2) KDP critical point. Inter-
estingly, the two-point correlation function as T → T+

KDP is described by the same
formula as in (6.17) for the Kasteleyn transition. This is because at the KDP critical
point, the strings “do not see each other” and the auto-correlation of the string with
itself dominates. Between Kasteleyn and KDP, the magnetic background surround-
ing each string is of course different, but is subtracted by the term, (−〈S0〉〈Si 〉), in
(6.17), giving in the end the same correlation.

As mentioned earlier, the discontinuity of the transition is a consequence of the
time-reversal symmetry of the Hamiltonian. However, this discontinuity is imposed
only if there is a single phase transition. In presence of two (or more) transitions, an
intermediate phase may connect the low-temperature saturated order with the high-
temperature, non-magnetic, disordered phase. Stephen Powell has shown that such
scenario was indeed possible [71] by perturbing the KDP transition via the following
interaction

V4

∑
[t,t ′]

Θ(St ,St ′) , (6.20)

where St = ∑
i∈t Si is the total magnetic moment of tetrahedron t and

Θ(S,S′) =
{
1 if S = S′ = ±4/

√
3 ez

0 otherwise
,
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with ez the unit vector along the z−direction. The sum of (6.20) runs over all pairs of
tetrahedra sitting opposite to each other in hexagons, as illustrated in Fig. 6.6b. This
new term adds a second energy scale to the problem, allowing for two separate order-
ing processes. For positive V4, it hinders the onset of magnetisation imposed by the
uniaxial distortion. This opens a finite region in temperature where the magnetisation
is continuously increasing from zero at Tc1 to saturation at Tc2. This intermediate
region, Tc2 < T < Tc1, is at the same time ferromagnetically ordered with |mz| > 0,
and a Coulomb phase whose topological excitations are deconfined and interact via
an entropic Coulomb potential [71]. Such phase has been dubbed a Coulomb ferro-
magnet (CFM) in the context of the quantum spin ice Hamiltonian [93, 94], as will
be discussed in Chaps. 9 and 12. The transition at Tc1 is of the 3D Ising universality
class with spontaneous Z2 symmetry breaking. Because of the dipolar correlations
between spins, this transition might be at its upper critical dimension. At Tc2 on the
other hand, there is no symmetry breaking. We have a Kasteleyn transition between
a long-range order with saturated magnetisation and a Coulomb phase with finite
magnetisation.

6.4 Conclusion

In this chapter, we have reviewed how the emergence of extended degrees of free-
dom are related to the topological properties of spin ice. The 2 in - 2 out ground-state
ensemble can be decomposed into topological sectors, separated from each other by
extended strings of spins spanning the system. These strings carry a finite magnetisa-
tion and the winding vector associated to a topological sector is directly related to the
magnetisation of the system (6.2). Fluctuations within a topological sector are done
via non-winding worms, i.e. closed fluxes of spins carrying zero magnetisation. The
spin-ice ground state is a vacuum for topological excitations. Each excitation carries
a charge which can only take a discrete set of values, {±1,±2}, and is created and
annihilated in pair of opposite sign. A charge alone cannot vanish by any continuous
transformation of the system. From a more general point of view [95], the ground
state of spin ice is topological in the sense that it is a disordered phase with non-trivial
global properties—supporting a Coulomb gauge field—but without being described
by a local order parameter.

In addition to worms and strings, which represent fluxes of magnetisation, another
kind of one-dimensional degree of freedom can be defined: the loops. In this lan-
guage, the Coulomb phase is a bi-colour fully packed loop model, FPL2. Once the
colour choice has been fixed, there is a bijective mapping between loop- and spin-
configurations. The fractal dimension of loops is D f = 7/4 in 2D (related to critical
percolation) and D f = 2 in 3D (related to Brownian motion), in analogy with the
physics of polymer solutions at the θ point. The loop statistics in 2D and 3D are
respectively dominated by non-winding and winding loops. Some of the winding
loops in 3D occupy a finite fraction of the system, and their statistics follow a non-
trivial Poisson-Dirichlet distribution.

http://dx.doi.org/10.1007/978-3-030-70860-3_9
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The extensive degeneracy of the 2 in - 2 out ground state can be lifted by external
perturbations. The resulting transitions are topological in nature, characterised by
the effective interaction between string excitations:

• Kasteleyn transition in a [001] field ⇒ repulsion between strings
• KDP transition in a [001] uniaxial distortion ⇒ non-interacting strings
• 1st-order transition with 2nd and 3rd neighbour coupling ⇒ attraction between
strings

Strings represents the world lines for bosons in the corresponding quantum problems
in (2+1) dimensions, and their auto-correlation dominates the two-point correlation
of the system as T → T+

K .

In the future, nano-lithography should be a useful experimental framework for
the study of these phenomena in 2D, thanks to the recent realisation of the Coulomb
phase in artificial square ice [11, 12]. As an intermediate step between two and three
dimensions, the confinement of these topological sectors in a slab geometry opens
the path for new properties in thin films of spin-ice materials [90, 96–100]. And
of course, the realisation of a quantum spin ice would offer a coherent quantum
dynamics for worms (see Chaps. 9, 10 and 12).

While the present chapter has focused on the 2 in - 2 out Coulomb phase of
classical spin ice, we should conclude this chapter by mentioning a few other types
of Coulomb phases. For example, as mentioned in Sect. 6.3.1, the kagome ice can
be stabilised in the magnetisation plateau of spin ice in a [111] field, giving rise to a
2D Kasteleyn transition when the field is canted away from the [111] direction (see
Chaps. 3 and 5). The kagome-ice phase is also expected at very low temperature
in thermalised artificial lattices (see Chaps. 15 and 16). A different 3D Coulomb
phase also appears in the dimer model on the diamond lattice [101–103], which has
been discussed in the context of the magnetisation plateau observed in HgCr2O4 and
CdCr2O4 [104–106].

This Coulomb phase on the diamond lattice corresponds to the emergent gauge
field co-existing with the antiferromagnetic order in fragmented spin liquids [107].
Indeed, when a high density of single charges is imposed, an exotic phase is sta-
bilised [30, 107]: half of the degree of freedom are long-range ordered, while the
other half corresponds to a disordered Coulomb gauge field. This co-existence has
been observed experimentally in Nd2Zr2O7 [108], Dy3Mg2Sb3O14 [109], Ho2Ir2O7

[110]... The topological properties of these systems remain for the time being poorly
understood [25].
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Chapter 7
Modelling of Classical Spin Ice: Coulomb
Gas Description of Thermodynamic
and Dynamic Properties

C. Castelnovo and P. C. W. Holdsworth

Abstract The Coulomb gas description of spin ice has revolutionized our under-
standing of these systems. Built on the remarkable self screening of the dipolar spin
ice model, the emergence of magnetic monopole quasi-particles has allowed a depth
of analytic and conceptual progress that is far beyond the spin description. After
defining the magnetic Coulomb gas, or magnetolyte, we bench mark it against dipo-
lar spin ice, before presenting a Debye-Hückel theory modified to take into account
the underlying constraints of the spin degrees of freedom. The calculated specific heat
compares favourably with simulation and experiment, with quantitative agreement at
high and at low temperature. Moving to dynamical properties, we show how the tem-
perature dependence of experimentally observed relaxation time scales is captured
by monopole dynamics. We show that the magnetolyte exhibits non-Ohmic contri-
butions to the monopole conductivity, the AC Wien effect, and we propose detailed
protocols for its observation in experiments. Thermal and field quenches take the
magnetolyte far from equilibrium, exposing a cornucopia of phenomena character-
istic of reaction diffusion processes, dimer absorption and kinetically constrained
models.

7.1 Introduction

The last ten years have seen frustrated pyrochlore magnets at the centre of a vast
research effort, leading to the discovery of phenomena outside the conventional
paradigms for magnetic materials, both in classical and quantum regimes. The start-
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Fig. 7.1 Pyrochlore lattice: The spins are located at the corners of every tetrahedron and are
constrained to point along their local [111] axis represented by the dashed lines. There are two
types of tetrahedra that we shall call the down tetrahedra (bottom left with the four spins) and the up
tetrahedra. Each down tetrahedron is connected to four up ones, and vice-versa. The cube represents
a unit cell with 8 tetrahedra (4 of each kind) and 16 spins, and defines the [100] (x), [010] (y) and
[001] (z) axes. We introduce the length of the unit cell a � 10 Å as well as the distance between

nearest neighbour spins rnn =
√
2
4 a � 3.5 Å and between the centres of two connected tetrahedra

rd =
√
3
4 a � 4.3 Å. The smallest close loop encompasses 6 spins (see green dotted loop)

ing point of this revolution is the representation of the constraints on the local spin
configurations that characterize the extensive low energy manifolds of these mate-
rials as effective gauge fields [1]. The emergence of this gauge physics endows
the low temperature regime with topological properties, leading to Coulomb phase
correlations [2], magnetic monopole excitations [3–6], phase transitions lying out-
side the established Landau-Ginzburg-Wilson framework [7–9], and model quantum
electrodynamics [10, 11] emanating from new classes of quantum spin liquids [12].

Spin ice systems [13, 14] such as Dy2Ti2O7 and Ho2Ti2O7 are a cornerstone
example of this emergence. They can be described by a corner sharing network of
tetrahedra forming a pyrochlore lattice of localized magnetic moments, as shown in
Fig. 7.1. The pairwise interaction is made up of both exchange and dipolar terms
and the physics of spin ice has been shown to be well represented by the dipolar spin
ice (DSI) Hamiltonian [15],

H = Jm2
∑

〈i, j〉
Si · S j + Dm2

∑

i> j

[
Si · S j∣∣ri j

∣∣3
− 3

(
Si · ri j

) (
S j · ri j

)
∣∣ri j

∣∣5

]
, (7.1)
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Fig. 7.2 Lowest energy state for a single tetrahedron: The pseudo spins σi correspond to Ander-
son’s model for antiferromagnetic spinels [18]. The spins map directly to proton positions in water
ice: the white spheres are the hydrogen atoms and the red one is the oxygen. A spin pointing into
(resp. out of ) a tetrahedron corresponds to a down (resp. up) spin in the Anderson model and a short
covalent bond (resp. long H -bond) in water ice

where the rare earth ions carry a moment of the order of 10 Bohr magnetons, m =
10µB , Si is a spin of unit length, 〈i, j〉 indicates a sum over nearest neighbour pairs
and ri j is the vector joining spin sites i and j . Subsequent, more refined versions
of the DSI also include second and third neighbour exchange couplings [16, 17].
The coupling constants are on the 1 K energy scale; for example for Dy2Ti2O7,
|J |m2 � 3.72 K and Dm2 � 1.41 K (assuming the distances ri j are measured in
units of the pyrochlore lattice constant rnn) [15]. These energy scales are 100 times
smaller than the crystal field terms that confine the spins along the axis joining the
centres of two adjacent tetrahedra, forming a local set of body centered cubic axes:

S1 = σ1√
3
[−1,−1, 1], S2 = σ2√

3
[1, 1, 1], (7.2)

S3 = σ3√
3
[1,−1,−1], S4 = σ4√

3
[−1, 1,−1],

where σi = ±1 is an Ising pseudo-spin with the chosen convention that σi = 1 cor-
responds to a moment pointing out of a down tetrahedron and into an up tetrahedron
(see Fig. 7.1). As a result, at energies smaller than ∼ 1 K, the moments behave as
Ising spins along their local axis.

The lowest energy states of a single tetrahedron are the six configurations with
two spins pointing inwards and two outwards—the Bernal Fowler 2in-2out ice rule,
from which spin ice gets its name [13], as shown in Fig. 7.2. Indeed, restricting the
Hamiltonian to nearest neighbor interactions (nearest neighbour spin ice—NNSI)
leads to a macroscopically degenerate ground state manifold of so called Pauling
states which maps directly onto the set of disordered proton configurations in the
cubic phase of water ice. The “Pauling entropy”, SP [19] associated with these states
is well approximated by a random phase type argument: take a sample of 2N0 spins
decorating N0 tetrahedra; for each tetrahedron, 6 out of the 16 configurations satisfy
the ice rules, so that roughly a fraction

(
6
16

)N0 of the total phase space, W0 = 22N0 ,
satisfies the ice rules: SP ≈ kBN0 ln

(
3
2

)
.

The nearest neighbor approximation already gives a good description of spin
ice materials, as the high symmetry of the pyrochlore lattice gives the Hamiltonian a
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Fig. 7.3 Dumbbell model: Each magnetic dipole is seen as two charges sitting on the vertices of
the diamond lattice (dashed lines). 2in-2out is the vacuum (left panel) whereas 3in-1out is a positive
charge (right panel)

remarkable property: the long rangepart of the dipole interactions are almost perfectly
screened [15, 20]. As a consequence, the Pauling states are quasi-degenerate even
for the full dipolar Hamiltonian. This highly degenerate low energy sector of states
constrained to the 2in-2out ice rules leads to spin liquid behavior with an emergent
gauge symmetry—the Coulomb phase with characteristic dipolar spin correlations
and pinch point scattering patterns [21]. The degeneracy is ultimately lifted by terms
of quadrupolar order, generated by the cubic symmetry [20], leading to a small band
width for the Pauling states. Model DSI therefore undergoes a conventional ordering
transition at low temperature, on the scale of the quadrupolar coupling strength
(� J, D) [16, 17, 22].

The screening of the long range interactions can be understood bymaking a further
simplification to the Hamiltonian, (7.1), extending the point dipoles into infinites-
imally thin magnetic needles lying along the axes linking the centres of adjoining
tetrahedra of the pyrochlore lattice [3, 23] (see Fig. 7.1). The needles touch at the dia-
mond lattice sites so that, by construction, the 2in-2out Pauling states are degenerate
in this model and the small low energy bandwidth is absorbed by the transformation.
The richness of spin ice is in this smallness: the DSI is, to an excellent approxima-
tion, a vertex model which is at the heart of its emergent properties. This is to be
compared with its two dimensional equivalent—square ice. Here, the symmetry is
much lower with the result that the bandwidth of Pauling states for point dipoles is
large and replacing themwith needles is a poor approximation [23]. Charge superpo-
sition at the vertices generates a diverging energy scale. However, this is a constant
for each vertex and can be successfully absorbed into a self energy term [3]. The
needles can hence be thought of as dumbbells of charge from which monopoles can
be constructed: the ensemble of degenerate ground states form a vacuum in which
monopoles can be excited by reversing the orientation of a needle, breaking the ice
rules on a pair of neighbouring sites, as shown in Fig. 7.3. The needle flip changes
the magnetic moment by �M = ±2m along the local body centered cubic axis and
transports magnetic charge over a distance rd , so that the elementary charge of a
moving quasiparticle is ±Q, with Q = 2m/rd .
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Within the dumbbell approximation, the Hamiltonian can be written as:

H − H0 = 1

2

∑

α 	=β

μ0QαQβ

4πrαβ

+ 1

2
v0

∑

α

Q2
α, (7.3)

where Qα is the total magnetic charge on diamond lattice site α and rαβ the distance
separating diamond sites α and β,μ0 is themagnetic permeability and v0 is an on-site
termwhose value is calculated from estimating spin flip energies in the dipolar model
(see SI of [3]).H0 is the ground state energy of (7.1), written in the dumbbell approx-
imation; namely, H0 = −(N0/2)v0Q2. Hence magnetic monopoles [3] emerge as
quasi-particle excitations from the ground state configurations of the dumbbellmodel
of spin ice.

The ice rules and their consequent violation impose that Qα = 0,±Q,±2Q
only. The single charges correspond to 3in-1out (3out-1in) vertices and the dou-
ble charges to 4in and 4out. The diagonal term provides the chemical potentials for
both monopoles (μ) and double monopoles (μ2):

〈
1

2
v0

∑

α

Q2
α

〉
= −μN − μ2N2, (7.4)

where μ = −v0Q2/2, μ2 = 4μ = −2v0Q2, and where the (thermally averaged)
number of single and double monopoles are N and N2 respectively. The chemical
potential fixes the energy scale, 2� = −2µ (> 0) required to introduce a neutral pair
of monopoles and separate them to infinite distance [24]. In this representation the
internal energy can thus be written as U = UC − μN − μ2N2, where

UC =
〈
1

2

∑

α 	=β

μ0QαQβ

4πrαβ

〉
(7.5)

is the thermally averaged Coulomb energy. Namely, spin ice can be described as a
grand canonical lattice Coulomb gas! At low temperature, double monopoles can be
neglected, leaving a simple monopole fluid.

In the rest of this article we refer to the monopole fluid generated by the dumb-
bell model Hamiltonian as a “magnetolyte”, in analogy with a lattice electrolyte, or
lattice Coulomb gas (Coulomb liquid). The two differ by the constraints imposed by
the spin (dumbbell) configurations. Notably, while the electrolyte vacuum has zero
entropy, the magnetolyte vacuum is made up of the 2in-2out spin configurations and
has a finite (Pauling) entropy, SP . The moments satisfy the local divergence free
condition, mapping onto an emergent gauge field and making up a network of ‘Dirac
strings’ along which monopoles can move, in analogy with real Dirac monopoles.
Monopole creation, destruction and motion involves spin flips. Hence, a monopole
displacement leaves a string of overturned dipoles that re-arrange the network, as
shown in Fig. 7.4, influencing both the static and the dynamic properties. The mag-
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Fig. 7.4 Emergence of monopoles: a The magnetic ions (Ho3+ or Dy3+) lie on the sites of the
pyrochlore lattice and are constrained to the bonds of the diamond lattice (dashed lines). Local
topological excitations 3in-1out or 3out-1in correspond to magnetic monopoles with positive (blue
sphere) or negative (red sphere) charges respectively. b The diamond lattice provides the skeleton
for the network of Dirac strings with the position of the monopoles restricted to the vertices. The
orientation of the Dirac strings shows the direction of the local field lines in H. Adapted figure from
[5] with permission from Nature Physics

netolyte can be restricted to single charged monopoles by setting μ2 = −∞, which
limits the tetrahedra to 14 vertex configurations—6 empty, 4 north poles (3in-1out)
and 4 south poles (3out-1in), or extended to include double monopoles and all 16
vertices.

7.2 Emergent Electrolyte Physics in Spin Ice

In the previous section we have presented a simplified model for spin ice that can be
understood as a spin liquid “vacuum” with an emergent gauge symmetry inherited
from the 2in-2out local constraints that minimise the energy. The vacuum hosts
classical fractionalised excitations that take the form of free magnetic charges in
three dimensions, or emergent magnetic monopoles.

In this section we address the question of how quantitatively the magnetolyte
picture reproduces the physics of either the DSI model, from which it is derived, or
spin ice materials.We find that it works remarkably well, providing an understanding
that goes far beyond that givenby state of the art techniques for localized spin systems.
Notice that the magnetolyte description trades complex many body spin correlations
that become progressively stronger at low temperatures for a vacuum with point
charge excitations that become exponentially less dense and hence easier to model
and simulate.

A qualitative phase diagram for spin ice is shown in Fig. 7.5. The low tempera-
ture region begins at around 2 K for both Holmium and Dysprosium Titanate. This
corresponds to the experimental observation of the Coulomb phase [2, 21]. Below
500 mK experimental systems fall out of equilibrium as time scales rapidly increase.
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ordered phase spin ice (Coulomb) phase

f

out of equilibrium (expm.)

T ~ 500 mK

p

T

T ~ 2 KdT = 60 mK?

Fig. 7.5 Schematic illustration of the different temperature regimes in spin ice. The theoretically
predicted ordering transition at Td � J, D appears to be prevented in experiments by freezing of the
magnetic degrees of freedom below a threshold temperature T f , as evidenced e.g., by a discrepancy
between field-cooled and zero-field-cooled magnetisation. The 2in-2out spin ice regime undergoes
a continuous crossover to trivial paramagnetic behaviour around Tp ∼ J, D

At much lower temperatures, between 200 and 60 mK, the DSI model [22] and its
variants [16, 17] undergoes a transition to a long range ordered state as the band
width of Pauling states comes into play. No such ordering has as yet been observed
in experiment, although evidence of a non-trivial low energy landscape has recently
been shown for Dy2Ti2O7 [25].

By construction, the Pauling states are degenerate in the dumbbell model, thus
showing Coulomb phase physics in the spin ice regime, and predicting correctly the
evolution of pinch point scattering patterns above 0.5 K [26]. In this approximation
there is no ordering down to zero temperature, and the magnetolyte description does
not reproduce any of the details coming from the bandwidth of the low energy states,
as this is explicitly excluded from the model.

7.2.1 The Magnetolyte as a Model for Spin Ice

The mapping to a grand canonical fluid means that the independent thermodynamic
variables are T and μ, which together with the diamond lattice constant rd and
the monopole charge Q completely specify the problem. For each spin ice mate-
rial, μ (7.4) can be estimated from the parameters of the DSI model, which are
themselves extracted from specific heat measurements. Starting from a vacuum
configuration, �s is the energy required to flip a spin and create a nearest neigh-
bor monopole-antimonopole pair and ud = −u(rd) = μ0Q2

4πrd
is the Coulomb energy

required to separate the pair to infinity. Following the sign convention of thermody-
namics, μ = −(�s + ud)/2. For Dy2Ti2O7 and Ho2Ti2O7 one finds μ = −4.35 K
and −5.8 K respectively [3, 27].

Internal consistency can be tested numerically by driving a slavemagnetolyte from
a DSI simulation [27]. Here the monopole and Dirac string network configurations
were taken directly from the spin configurations of DSI for Dy2Ti2O7. At each step
that creates or destroys a nearest neighbor pair of monopole defects, a monopole
chemical potential can be estimated by comparing the spin and Coulomb energy
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Fig. 7.6 Creation of a pair of quasi-particles: Energy (in Kelvin) required in the dipolar spin
ice model (�Udef , orange •) or gained in the slave magnetolyte (�Umono, green �) and the
resulting chemical potential 2μ(T ) = �Umono − �Udef (�) as a function of temperature [27].
The vertical bars are not error bars but the standard deviation of these quantities. 2μ(T ) tends to
the limit 2μ1 = −8.92 K (lower dashed line) at very low temperature. The middle dashed line
is the analytical prediction of the energy gained by creating a pair of monopoles in a vacuum
−ud = −3.07 K. The temperature scale below 3 K is enlarged for a better display. Note that,
neglecting the bandwidth of vacuum states, one can take �s = �Udef (T = 0)

changes in the two systems. These quantities fluctuate strongly due to both screening
effects from the long range interactions and the bandwidth of Pauling states, but the
extracted μ was found to be constant to within 3% error from 0.5 K to 10 K, with
mean value μ̄ = −4.46 K in close agreement with the calculated value. The small
difference can be put down as direct evidence for the small bandwidth of Pauling
states present in the DSI but absent in the magnetolyte.

The monopole picture therefore appears robust, with the logical consequence
that the emergent magnetostatics of the magnetolyte should provide an accurate
account of spin ice thermodynamics. Hence, we expect themagnetolyte to accurately
reproduce the thermodynamic properties of either the DSI model, or of experiments
on spin ice materials. In Fig. 7.7, we compare specific heat data simulated from
the DSI and from the magnetolyte model with parameters J and D taken to model
Dy2Ti2O7. Results for the magnetolyte are shown for both the calculated values of
μ,−4.35 K and the value extracted from the slave magnetolyte simulation,−4.46 K.
Excellent agreement is seen between the two model systems for temperatures above
0.6 K confirming that the magnetolyte is an accurate simplification of the DSI above
the temperature range in which the DSI undergoes an ordering transition. The slight
under estimation of the peak height could reflect the 3% variation of the extracted
μ with temperature observed in Fig. 7.6. The data for μ = −4.35 K is slightly
shifted from that of the DSI, but allowing μ to shift to −4.46 K gives a quantitative
description of the model dipolar system, whose success in describing the specific
heat of spin ice materials is well documented [16, 17, 22].

Moving away from holmium and dysprosium titanate, the full phase diagram for
DSI has been been mapped out, as a function of T/D and J/D. The Coulomb phase
and low temperature ordering (Fig. 7.5) give way to an antiferromagnetic phase
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Fig. 7.7 Specific heat: Specific heat vs temperature for models of DysprosiumTitanate: simulation
ofmagnetolyte including doublemonopoles,μ = −4.35K (brown circles [28]),μ = −4.46K (blue
squares [28]), dipolar spin ice with Jm2 = 3.72 K and Dm2 = 1.41 K (orange crosses [15])—see
text. Data taken from [15, 28] with permission from the American Physical Society

in which alternate tetrahedra have all spins pointing into and all out, for negative
J/D [22]. Within the monopole description, the all-in all-out phase corresponds to
a double monopole crystal on the diamond lattice—the Zinc blend structure. As a
consequence, the all-in-all-out, spin ice phase boundary can be estimated from the
emergent magnetotatics [29]. The ground state of the magnetolyte is determined by
the trade off between Coulomb energy gain of having an ionic cystal of single or dou-
ble monopoles (Uc1/Uc2) and the energy cost of monopole creation (−μN − μ2N2).
In spin ice materials the energy cost largely outweighs the gain from interactions, so
that the ground state is a vacuum—the Coulomb phase. This vacuum energy should
be compared with that of both a singly and a doubly charged monopole crystal
forming a zinc blend structure on the diamond lattice of N0 sites:

Uc1 =
(
N0

2

)
u(rd) α − N0μ, Uc2 =

(
N0

2

)
u2(rd) α − N0μ2 , (7.6)

where u2(rd) = 4u(rd) is the nearest neighbour Coulomb energy of a pair of dou-
ble monopoles, and α = 1.63 is the Madelung constant for a diamond lattice (Zinc
blende). One finds a single thresholdμ2/u2(rd) = α/2, belowwhichmonopole crys-
tallization is preferred over the vacuum. Above the threshold, the Coulomb energy
of the double monopoles wins ensuring that, at zero temperature, the magnetolyte
passes from a vacuum to a double monopole crystal. Using the values for μ2 and
u2(rd) calculated from the DSI model [3] and applying this criterion [29] one finds
the threshold ratio
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Jnn
Dnn

= −4

5

[
1 +

√
2

3

(
1 − α

2

)]
= −0.918, (7.7)

where Jnn = J/3 and Dnn = 5D/3. Thismagnetostatic estimate is in excellent agree-
ment with numerical results for DSI. Melko et al. [22] find Jnn/Dnn = −0.905 with
hysteresis down to Jnn/Dnn � −1. The slight difference is again due to the small
bandwidth for the Pauling states arising from the quadrupolar corrections that are
neglected in the magnetic charge description [30].

The emergent monopole fluid therefore gives an excellent description of classical
spin ice materials over the whole phase diagram. Most importantly, the identification
of the emergent quasi-particles renders the otherwise complex problem of frustration
in spin ice accessible through the development of effective theories for the emergent
degrees of freedom, particularly at low temperature, as we illustrate in the next
section.

7.2.2 Debye-Hückel Theory

In this section we use Debye-Hückel theory for the Coulomb interactions, to obtain
the monopole density profile and heat capacity of spin ice [24, 31]. We will refer to
three different Coulomb fluids: a magnetolyte restricted to single charge monopoles
which we refer to as the 14-vertex magnetolyte when distinction is required; the
full 16 vertex magnetolyte including double charge sites; and a symmetric, dia-
mond lattice electrolyte in which the constraints imposed by the spin background
are neglected.

Starting with the electrolyte, one can construct the grand potential, � = UC −
ST − μN for different levels of approximation. Initially we consider the non-
interacting case, which is a self avoiding lattice gas of N/2 positive and N/2
negative quasiparticles on N0 vertices of the diamond lattice. Each vertex can be
in one of three states with charge Qα = 0,±Q. The number of configurations is
WE = N0!/[(N/2)!(N/2)!(N0 − N )!], giving the well-known entropy of mixing

S = −kBN0 [n ln(n/2) + (1 − n) ln(1 − n)] , (7.8)

where n = N/N0 is the quasiparticle number density.Minimizing�0 = −ST − μN
with respect to n gives

n = 2 exp(βμ)

1 + 2 exp(βμ)
∼ 2 exp(βμ) for T → 0 (μ < 0). (7.9)

This equation of state is modified by interactions and solving for the Coulomb
energy UC of a charged system is a complex problem. An approximate solution
is provided by Debye-Hückel theory (see e.g., [31, 32]) which uses the linearized
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Poisson-Boltzmann equation to go beyondmean field theory, predicting a correlation
induced electrostatic potential, ψ(r), at distance r from a test charge Q:

ψ(r ≥ rd) =
(

μ0Q

4πr

)
exp [−(r − rd)/	D]

1 + rd/	D
, 	D =

√
kBT

Q2ρμ0
, (7.10)

where 	D is the Debye length. The short distance cut off is, in our case, the lattice
spacing rd of the diamond lattice, andρ = N/V is the volume density of charges. The
test charge induces a charge cloud in its vicinity of opposite sign, whose extension is
controlled by 	D . The Coulomb energy is the energy required to place the test charge
in the induced potential. It can be calculated using the Debye charging procedure in
which the charge on each site is built up adiabatically for fixed particle correlations.
Setting Q(λ) = λQ, the Coulomb energy for infinitesimal λ is defined

δu(λ) = −λQψ(rd , λ) = −
(

μ0Q2

4πrd

)
λ2

1 + (rdλ/	D)
. (7.11)

This expression can now be integrated from λ = 0 to λ = 1 to find the Coulomb
energy of the test particle leading to an extensive internal energy UDH

C

UDH
C = N0uDH = −N0kBT

6π
√
3

[
ln

(
1 + rd

	D

)
−

(
rd
	D

)
+ 1

2

(
rd
	D

)2
]

. (7.12)

To convert the extensive variable from volume to N0 we have used the volume per
diamond lattice site, ṽ = 8r3d/3

√
3 [24]. Surprisingly, as 	D ∝ 1/

√
n,UDH

C ∼ n3/2 at
lowmonopole density, contrary to the n2 behaviour typical of mean field descriptions
of short range systems.

We nowhave an expression for the full free energy� as a function of themonopole
density n and independent thermodynamic variables μ (defined as −� in [24]) and
T , as well as the lattice parameter rd and the monopole charge Q. Minimizing �(n)

with respect to n gives an effective chemical potential

μeff = μ + �μDH = μ + kBT
	T

	D + rd
, (7.13)

and zero field activity coefficient,

γ (0) = exp (−β�μDH) . (7.14)

Here, it is convenient to introduce the Bjerrum length, 	T = μ0Q2

8πkBT
, at which the

Coulomb interaction per particle is equal to the thermal energy scale.
Putting μeff into (7.9) and solving self-consistently for the density [24] gives a

Debye-Hückel equation of state n(μ, T ) from which all thermodynamic quantities
follow. The interactions reduce the energy scale for the inclusion of monopoles at



154 C. Castelnovo and P. C. W. Holdsworth

Fig. 7.8 Charge density: Charge vs temperature for a lattice electrolyte, comparing simulation
results and self-consistent theories discussed in the text. The parameters of the electrolyte correspond
to monopoles in Dy2Ti2O7 but the Dirac string constraints are absent. Reprinted figure from [33]
with permission from Nature Materials

finite density: |μeff | < |μ| and γ (0) < 1, leading to an increased monopole concen-
tration compared to the non-interacting gas, in the ratio 1/γ (0) [33].

Debye-Hückel theory underestimates this increase, as the linearization is not a
good approximation for bound pairs separated by distances r < 	T . The Bjerrum
length provides a threshold, allowing the division of the charge concentration into two
categories: free particles, n f , and neutral (Bjerrum) pairs of charges bound together
by the long range Coulomb interaction. We define nb = n+

b + n−
b , the concentration

of charge bound into pairs so that the bound pair concentration is nb/2 and the total
charge concentration n = n f + nb. The theory can be improved in certain regimes by
employing Bjerrum’s correction, which treats bound pairs exactly within a two body
approximation, and performing Debye-Hückel theory on the free particles for which
r > 	T (see [31] for details). The density profile is compared with Debye-Hückel-
Bjerrum theory in Fig. 7.8 for a lattice electrolyte with μ = −4.35 K as appropriate
for Dy2Ti2O7. The agreement is excellent, showing the relevance of this theoretical
approach and the importance of interactions even in the low density, low temperature
limit.

Moving from the lattice electrolyte to the magnetolyte, the entropy of the vacuum
can be included in the non-interacting limit by returning to the vertex problem. Fol-
lowing Ryzhkin [4], one can write an approximate expression for the vertex entropy
of the magnetolyte by considering each type of vertex as a species of indistinguish-
able objects. Restricting to single monopoles, that is, to the 14-vertex magnetolyte,
each vertex can again be occupied by magnetic charge 0,±Q, with 6 2in-2out spin
ice configurations corresponding to charge zero, and 4 3in-1out (4 3out-1in) con-
figurations corresponding to charge Q (−Q). The total number of microstates is
estimated to be
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W =
(
1

2

)2N0 N0!
N1!N2! . . . N14! , (7.15)

where Na is the number of vertices of type a = 1, . . . , 14. The prefactor, (1/2)2N0

takes into account the compatibility of the spins shared between neighboring vertices.
Without this the vertex distribution wildly over estimates the number of micro states.
Setting N1 = N2 = · · · N6 = Np/6 and N7 = N8 = · · · N14 = Nm/8, where Np =
(1 − n)N0 is the number of 2in-2out vertices and Nm = nN0 is the number of vertices
carrying a monopole, it follows that

S = −kBN0

{
n ln

(n
2

)
+ (1 − n) ln (1 − n) + (1 − n) ln

(
2

3

)}
. (7.16)

This formula elegantly separates the entropy into a monopole term and a vacuum
term, and yields the approximate Pauling entropy, Sp = kBN0 ln (3/2) as n → 0.
Minimizing the noninteracting free energy with respect to n, including the vacuum
term, yields

n =
4
3 exp(βμ)

1 + 4
3 exp(βμ)

, (7.17)

fromwhich we obtain the correct high temperature limit for the density of the 14 ver-
tex magnetolyte, n(T → ∞) = 4

7 , the correct entropy limit, S(∞) = N0kB ln
(
7
2

)
,

and the entropy change �S = S(∞) − S(0) = ln
(
7
3

)
, calculated within a Pauling

approximation. The process can easily be extended to include double monopoles in
the full 16 vertex magnetolyte.

One can now proceed with Debye-Hückel theory as before, giving a complete
self contained description of the magnetolyte fluid in which the spin and magnetic
charge degrees of freedom have been included independently, rather in the spirit of
the gauge mean field theories used to study quantum spin liquids [34]. The magnetic
specific heat transforms, in the monopole representation, to

Cμ =
(

∂

∂T

)

μ

(UC − μN ) = −N0μeff

(
∂n

∂T

)

μ

. (7.18)

Specific heat data are shown in Fig. 7.9 for systems with the chemical poten-
tial μ = −5.57 K, corresponding to the value extracted for Ho2Ti2O7. The upper
panel shows simulation data for the electrolyte and the 14-vertex magnetolyte. One
can notice that the areas under the curves are significantly different. This is a con-
sequence of the constrained magnetolyte having a significantly different entropy
change going from low to high temperature. The inset shows the effect of including
double monopoles, moving from the 14 to 16-vertex magnetolyte. As can be seen,
double monopoles modify the specific heat from 2K and above. In the lower panel
we show data for the 16-vertex magnetolyte together with the corresponding Debye-
Hückel theory, which has been extended accordingly [31]. The theory provides a
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Fig. 7.9 Specific heat: Top panel: simulation data for the electrolyte (blue crosses) and 14-vertex
magnetolyte (brown crosses) with μ = −5.7 K, as estimated for Ho2Ti2O7 [22]. Inset: difference
between 14 and 16-vertex (violet circles) magnetolytes above 2 K. Bottom panel: simulation
data for 16-vertex magnetolyte with μ = −5.7 K (violet circles) and nearest neighbour spin ice
with Jeff = −μ/2 = 2.85 K (green triangles), Debye-Hückel theory (violet line), non-interacting
magnetolyte (green line) forμ = −5.7 K, and non-interacting magnetolyte forμ = −3.4 K (dotted
turquoise line). Data taken from [28] with permission from the American Physical Society

good qualitative description of the simulation data giving a Schottky peak charac-
teristic of monopole excitation out of the vacuum with approximately the correct
position and amplitude. The theory becomes quantitatively correct at both high and
low temperature. This is to be expected as the theory is accurate for small values of
rd
	d

∝
√

udn
kBT

, but it is worth pointing out that model systems against which Debye-

Hückel theory can be so extensively compared are rare and spin ice clearly is such a
system.

To illustrate the importance of the Coulomb interactions in spin ice, we also show
specific heat data for a non-interacting magnetolyte with μ = −5.57 K. The non-
interacting model appears in error at both high and low temperature and gives only
a poor qualitative description of the Schottky peak. Closer examination at low tem-
perature shows an asymptotic approach towards the simulation results below 0.5 K,
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Fig. 7.10 Specific heat: Experimental results for the heat capacity of Dy2Ti2O7 (data taken from
[35] with permission from AAAS), compared with Debye-Hückel theory of the electrolyte, for
μ = −4.35 K, (solid blue line) and μ = −4.57 K (dashed cyan line)

as the monopole density falls to zero [31] (see also Fig. 7.8). At high temperature
the data always disagree, illustrating the importance of screening in a Coulombic
system even in this limit.

A non-interacting approximation for the magnetolyte is equivalent to a single
tetrahedronmodel for spin ice [31]with Jeff = −μ/2.The specific heat of theNNSI is
accurately described by the single tetrahedronmodel everywhere in the spin ice phase
diagram, except close to the boarder with the all-in-all-out phase [30]. Comparing
with simulation data for the NNSI for Jeff = 2.85 K one can see that this is the
case here. Finally, we have also included data for a non-interacting magnetolyte
with μ = −3.34 K, which corresponds to Jeff = 1.7 K, the estimated value for a
NNSI description of Ho2Ti2O7 [22]. This model fails to capture the quantitative
features of the magnetolyte, even at high temperature where it underestimates the
simulation, although the value of Jeff could be fine tuned to fit the data in this limit.
Specific heat data for Dy2Ti2O7 have previously been compared with Debye-Hückel
theory for the electrolyte [35]. In Fig. 7.10, reproduced from reference [35] we
show the comparison. The data are plotted on a logarithmic scale to accentuate the
low temperature region. The overall form of the experimental specific heat is well
reproduced.However, there appears to be some structure at low temperature, possibly
coming from the fine structure of the low energy band of states, that the theory does
not predict. The theory passes above the experimental data through the peak because
of the differences between electrolyte and magnetolyte discussed above, while at
high temperature the data crosses above the theoretical curve due to the absence of
double defects in this Debye-Hückel treatment. As we have seen, both effects can
be accounted for in the magnetolyte and the ensuing Debye-Hückel theory, to give a
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quantitative agreement between the model, the theory and experiment over the whole
temperature range of the spin ice phase above 0.6 K (not shown).

In conclusion, we demonstrated that the monopole picture provides a framework
for theoretical modelling beyondmean field approaches, using Debye-Hückel theory
and improvements thereof, which gives a semi-quantitive description of spin ice. This
kind of development has so far proved beyond the capacity of the spin picture. Hence
in this regard, the magnetolyte takes us a step further than the dipolar spin ice model
fromwhich it is derived. The price one pays for this step however, is to sweep the finite
energy scale of the bandwidth of Pauling states under the carpet. This has important
consequences, particularly for the long time scale dynamics at low temperature, as
we will see in the next section.

7.3 Monopoles and Dynamics

The benefits of a Coulomb liquid description are not limited to thermodynamic
properties. It is also key to understand response and equilibration time scales in
these systems.

To estimate time scales, one needs first to identify the energy scales of the dynami-
cal processes. Starting from a vacuum state, the energy required to break the ice rules
and create a monopole-antimonopole pair is �s = 2� − ud , where � = −μ > 0.
As shown in Fig. 7.6, this is estimated at around 5.7 K for Dy2Ti2O7. This should
be compared with the hopping of a free monopole. Three of the four spins next to
an isolated monopole can flip at low energy cost. Their reversal results in conser-
vative dynamics in which the monopole hops from one tetrahedron to the next (see
Fig. 7.11) with the monopole number unchanged. For finite monopole concentration

Fig. 7.11 Left side: a generic spin reversal in 2in-2out spin ice incurs a large energy barrier due to
the creation of a monopole-antimonopole pair. Right side: a monopole acts as a spin flip facilitator,
in that it allows three of the four neighbouring spins to flip without such barrier. Flipping one of
those spins results in the monopole hopping to a neighbouring tetrahedron and the energy of the
system remains essentially unchanged
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Fig. 7.12 Relaxation time scales τ in Dy2Ti2O7 experiment and simulation. The experimental
data (×) are from Snyder et al. [36]. The Arrhenius law (red line) represents the free diffusion
of topological defects for the nearest neighbour model. The relaxation time scale of the Dirac
string network driven by Metropolis dynamics of magnetic monopoles has been obtained for fixed
chemical potential and with μ varying slowly to match the defect concentration in dipolar spin ice.
The temperature scale is fixed without any free parameters. Inset: Magnification of the same data
at the lowest temperatures. Reprinted figure from [5] with permission from Nature Physics

these hops will be dressed by a Coulomb energy coming frommonopole—monopole
interactions, but these can be neglected as the concentration goes to zero. The density
of sites open to the first process scales as f ∼ (1 − n), suggesting an associated time
scale, τs ∼ e�s/T /(1 − n) ∼ e�s/T , at low temperatures where n ∼ e−�/T � 1. On
the contrary, the hopping process involves no or small energy barriers, but it can
only occur next to an existing monopole, suggesting a monopole hopping correla-
tion time τm ∼ 1/n ∼ e�/T . Which of the two processes dominates is determined
by the smallest of the two energy scales, � and �s = 2� − ud . In known spin
ice materials, � > ud (� = 4.35 K and ud = 3.07 K in Dy2Ti2O7, for example)
so that the dynamics is dominated by monopole hopping and the above arguments
suggest an Arrhenius behavior for equilibration times at low temperature. However,
this statement must be modified on several counts for a successful encounter with
experiment. In a key experiment, Snyder et al. [36] extracted relaxation times from
bulk magnetometry measurements in Dy2Ti2O7. The data, reproduced in Fig. 7.12,
show a quasi-plateau region, followed by a steep increase in time scales that one
can interpret as due to a rapid fall in monopole concentration. The data through the
upturn cannot be fitted to a simple exponential law, but can be interpreted within the
monopole picture, as shown in the same figure, where the data is compared with time
scales extracted from simulations of the magnetolyte [5, 37]. These simulations use
stochastic Metropolis dynamics with a single, temperature independent monopole
hopping, τ0 [5], as the existence of the plateau region suggests is the case above
2 K. The monopole-monopole interactions considerably modify the relaxation time
scales. As discussed in the previous section, screening effects are important when
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the monopole concentration is high, so that at high temperature the energy scales
are significantly modified, giving relaxation times that are characteristic of a sys-
tem of non-interacting tetrahedra [5]. Through the region from 3 to 0.7 K there is a
continuous evolution of the energies scales (see Fig. 7.6) leading to a non-Arrhenius
behaviour which is well reproduced by the simulation data, although the time scales
are underestimated at the lowest temperatures.

The observation of a characteristic temperature-independent monopole hopping
time scale has been the key to developing a theoretical understanding [38–41] of spin
ice dynamics and to the interpretation of experiments on real materials [42–45]—
some of whichwill be reviewed in Sects. 7.3.2, 7.3.3, 7.3.4, and 7.3.5. However, it is
clear from subsequent experiments [42, 46–50] that there are important corrections
to this picture. A detailed analysis suggests that the evolution does indeed cross over
to an Arrhenius law at lower temperature but that the temperature scale corresponds
more closely to 2� than �. One explanation could be that the monopole hopping
time scale depends significantly on its local environment [49–51] through for example
surface effects or magnetic impurities, leading to a temperature dependent hopping
rate at low temperature.

These results promoted further work examining the properties of spin ice away
from equilibrium [40, 52–55]. Magnetic impurities in these materials and their rela-
tion to response and relaxation properties have only recently started to be inves-
tigated systematically [56], suggesting that Oxygen vacancies play a crucial role.
Recent experiments [51, 57] suggest that a heterogeneous spread of time scales is
present, even at high temperature, when a temperature independent mean times scale
appears to be well established. It is too soon to tell definitively which mechanism(s)
are at the root of these phenomena, but the challenge is certain to stimulate new and
exciting research on spin ice and related materials. Better microscopic modelling
and understanding is needed to bring further clarification.

Finally, as we have seen, within the dumbbell approximation the two terms μ =
−� and ud are functions of the microscopic parameters of the system, so that one
could in principle realize the opposite situation for different spin icematerials. Indeed,
as shown in Sect. 7.2.1, the criterion for passage from spin ice to the all-in all-
out antiferromagnetic phase corresponds, within the monopole picture, to �/ud =
α/2 (where α is the Madelung constant for the diamond lattice), leaving a window
between monopole crystallization and the threshold,� = ud , in which the dynamics
could be dominated by monopole creation rather than diffusion.

In the following sections we illustrate the rich dynamical properties of model
spin ice, examining response and relaxation phenomena, transport processes and
the behaviour far from equilibrium through both thermal and field driven quenches.
This led to the emergence of complex phenomena occurring in diverse fields and
contexts, such as the conductivity of electrolytes, reaction diffusion processes, dimer
adsorption, andkinetically constrainedmodels,making spin ice a laboratory of choice
for the study of tuneable, slow dynamics.
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7.3.1 Hydrodynamic Description

Ahydrodynamic approach to dynamics was taken in [4] in the approximation of non-
interactingmonopoles, using the thermodynamics of irreversible processes. Building
on Jaccard theory for water ice [58], Ryzhkin identified an entropic correction to an
applied magnetic field, H, coming from the ordering of the Dirac string network. The
configurational entropy of a coarse grained volume element of spin ice depends on
the local magnetic moment [1], providing entropic disordering forces. The entropy
per unit volume can be estimated quantitatively [1, 58, 59],

S[M(r)] − S(0) ≈ −kB
4rd√
3Q2

|M(r)|2. (7.19)

Equatingmonopole flux and entropy production, one can identify a generalized force
driving the monopole movement and hence an effective field acting on the thermally
excited monopoles

Heff = H − M
χT

, (7.20)

where M(r) is the magnetic moment per unit volume and χT =
√
3μ0Q2

8kBTrd
is the mag-

netic susceptibility of the nearest neighbor spin icemodel [60, 61], expressed in terms
of the magnetic charge [4]. The effective field drives a magnetic current density j(r)

j(r) = ∂M(r)
∂t

= Q2κmn f

V̂
μ0Heff(r), (7.21)

where V̂ = 8r3d
3
√
3
is the volume associated with a single tetrahedron (n f is a number

density), and κm is the monopole mobility. The latter can be estimated within the
linear response regime, using the Einstein relation and the diffusion constant for

stochastic monopole dynamics on the diamond lattice; κm = D
kBT

and D = r2d
9τ0

[24,

31].1 Normalizing the magnetic moment by its equilibrium value, m = |M|
|Meq | , leads

to the dynamical equation,
dm

dt
= 1

τm
(h − m), (7.22)

where the dimensionless field h = χT
|H|

|Meq | and where τm = 3τ0
2n f

[62] corresponds
roughly to the equilibration time scale discussed above, given that for low monopole
concentration n ≈ n f . Hence, assumming that the free monopole concentration, n f

1 The diffusion constant for a random walk on a diamond lattice is D = r2d
6τ0

[24], which is modified
to take into account both the spatial [24] and temporal [31] constraints of monopole hopping in the
magnetolyte.
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and mobility are time and field independent, this non-interacting theory predicts that
τm indeed diverges exponentially at low temperature, capturing the leading order
divergence of magnetic relaxation time scales [5, 36] discussed in the previous
section.

7.3.2 Wien Effect

The magnetolyte description of spin ice leads naturally to the study of dynamical
properties in the spirit of charge dynamics in an electrolyte. In particular, it has been
proposed that spin ice should exhibit the Wien effect in the presence of a magnetic
field in analogy with the response of a weak electrolyte to an electric field [63].

The Wien effect [64] is the non-Ohmic contribution to the conductivity of a weak
electrolyte due to the field induced change in the number of charge carriers. As only
the free charges contribute to the conductivity, the latter is an indirect measure of
their concentration, n f . In the low concentration, or weak electrolyte limit, the effect
can be spectacular, with the concentration of charge carriers increasing by up to an
order of magnitude. This is due to the fact that the charge increase varies linearly with
the modulus of the applied field which is a highly unusual result—a scalar quantity
that responds linearly to an applied vector perturbation.

Onsager’s famous solution of this problem gives the non-(thermodynamic) equi-
librium steady state for a double chemical equilibrium between a vacuum, an ensem-
ble of bound charge pairs treated as a neutral chemical species, and a plasma of free
charges: (0) � (+−) � (+) + (−). The dissociation/association equilibria for the
two stages are characterized by the dissociation constants K0 and K respectively.
K0, the constant determining the balance between the vacuum and the bound pairs, is
taken to be field independent. This is a valid approximation, as long as the time scales
associated with the first equilibrium are short compared with those of the second
[31, 33].

The ‘vacuum’ (0) is a classical electrolyte of molecules which can dissociate
into charges, or other vacua in many chemical and physical processes. Important
examples are

2H2O � [H3O
+HO−] � H3O

+ + OH−, (7.23)

in the case of both water and ice; also, thermal and optical electron-hole generation in
semiconductors [65]; to this list one can now add spin ice, a highly original magnetic
example [63, 66].

For an electrolyte of charges ±q and permittivity ε = ε0εr in the presence of
an electric field E = |E|, the evolution of free charges due to the association and
dissociation of pairs can be written in the form of a rate equation

dn f

dt
= kDnb − kA

2
n2f , (7.24)
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where kD and kA are the dissociation and association rates and K = kD
kA
. In the non-

equilibrium steady state, one finds that, while the association constant remains field
independent, the dissociation rate evolves with field leading to Onsager’s solution:

K (E)/K (0) ≡ F(b) = I1(
√
8b)/

√
2b = 1 + b + b2/3 + O

(
b3

)
(7.25)

where b = q3E/8πε(kBT )2 and I1 is a modified Bessel function. The result is uni-
versal in that all microscopic details disappear from the dimensionless argument b,
which can be cast as the ratio of two lengths: the Bjerrum length 	T = q2/8πεkBT
and the field length 	E = kBT/qE , which defines the scale of thermal fluctuations
against the applied field. The leading linear term signals the non-equilibrium nature
of the effect, as it would be forbidden by symmetries in equilibrium.

The increase in K (E) relates to the free ion concentration through the steady
state solution of the rate equation, (7.24). However, one further caveat is required
in that both the chemical kinetics and Onsager’s solution are constructed using two
body interactions only. As a result, the concentrations occurring in (7.24) are those
of a non-interacting system. Including the effects of charge screening increases the
concentration by a factor 1/γ , as discussed in Sect. 7.2.2. As a consequence, in the
weak electrolyte limit which is of interest for spin ice, the free charge concentration
is predicted to evolve in a universal manner:

�n f (E)

n f (0)
= γ (0)

γ (E)

√
F(	T /	E ) − 1, (7.26)

while the bound pair concentration is buffered, i.e., replenished rapidly from the
reservoir so that nb(E)/nb(0) = 1. Consequently the total charge concentration,
n = n f + nb, increases considerably as the field is applied. Outside an initial low
field region one assumes that the Debye screening cloud surrounding a charge is
destroyed by the appliedfield, so thatγ (E) = 1,while for intermediate field strengths
a phenomenological theory interpolates successfully between the high and low field
limits, restoring a regularized E2 dependence at low fields (see [31, 33] for details).

In Fig. 7.13 we show results from numerical simulations of an electrolyte with
parameters equivalent to those of spin ice (diamond lattice, chemical potential equal
to that of monopoles in Dy2Ti2O7) but without the constraints of the spin degrees
of freedom [33]. The data shown are for a temperature equivalent to 0.5 K for
Dy2Ti2O7 and external field which, when translated into the language of magnetic
monopoles, corresponds to a magnetic field in the range, μ0H = 0 − 150 mT, with
the field aligned along the [100] cubic axis (see Fig. 7.1). The excellent agreement
between theory and simulation clearly shows that, putting aside for the moment the
kinetic constraints of the Dirac string network, spin ice offers a lattice Coulomb
gas at low temperature that falls in the parameter range where the Wien effect is
important.We note, for example, that Onsager’s theory predicts a five fold increase in
monopole density over the above field range. Returning to the magnetolyte, we need
to change electric charge q → magnetic charge Q, ε → 1/μ0 and E → H = |H|,
thus converting the problem from an electrostatic to a magnetostatic one. However,
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Fig. 7.13 Wien effect for electrolyte: Relative free charge increase as a function of reduced field
E∗. The green circles are simulation data from a diamond lattice electrolyte; the continuous line
represents Onsager’s theory. The data shown parameterize Dy2Ti2O7 at T = 0.5 K, with reduced
field range E∗ = qE

ũ(rd )
= 0 − 0.12, where ũ(rd ) is the nearest neighbor Coulomb interaction for

electrical charges q. For spin ice this corresponds to a magnetic field range, μ0H = 0 − 150 mT,
as discussed in the main text. Reprinted figure from [33] with permission from Nature Materials

things are now complicated by the fact that the magnetolyte does not support a
dc current due to the presence of the reaction field. As discussed in Sect. 7.3.1,
after applying a field the current decays on a magnetization time scale τm [4, 5, 62],
because amovingmonopole leaves a wake of flipped spins behind it, and amonopole
flux inexorably orders the network of Dirac strings, cutting off prospective pathways
and stifling the current. However, a transient Wien effect does exist, as can be seen
in Fig. 7.14. Here we show simulation results for the evolution of the free charge
concentration n f as a function of time, with an external field applied along [100] at
t = 0 for an electrolyte and magnetolyte of equivalent chemical potential. While the
electric charge builds up from the equilibrium value to a new steady state value on
the ‘Langevin’ time scale τL , the monopole concentration increases to an equivalent
level, but then dips down, falling eventually below the starting concentration over a
time scale τm . At the temperature shown, T = 0.5 K, the two times scales are very
different and this difference increases as the temperature falls, resulting in a time
window in which the two systems are equivalent. Therefore, as shown in Fig. 7.15,
on applying a square wave ac field for frequencies within this window, an excess
monopole concentration can be stabilized, corresponding to the steady state excess
for the electrolyte at the given field strength. From Fig. 7.15b one can observe that the
agreement between Onsager’s theory for the fractional increase in n f and the results
fromnumerical simulation for a square field pulse of frequency 2π/τm < ω < 2π/τL
is indeed quantitative, confirming the existence of a quasi-steady state Wien effect
in the magnetolyte. The steady state response to a field of constant amplitude, but
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Fig. 7.14 (Color online) a Monopoles move via spin flips; their current magnetizes the spin con-
figuration. b The second Wien effect involves the field-enhanced dissociation of bound pairs. Non-
linear response: c After a field quench, the Wien effect increases the free charge density, nf , in
an electrolyte. In a magnetolyte with the same initial density and temperature, the free monopole
density increase is only transient, counteracted by the growing magnetization m of the system (d).
The increased monopole density is observable in the faster rate of magnetization m compared to a
magnetization process at fixed density n. The response is well described by the kinetic model. The
bound charge density is only weakly influenced (nb). The magnetolyte parameters are T = 0.45 K,
ntot(0) � 1.1 × 10−4, nf (0) � 1.0 × 10−4, and μ0H0 = 50 mT; the electrolyte parameters are set
to obtain the same zero field density. Reprinted figure from [62] with permission from the American
Physical Society

alternating directions, illustrates the coupling of themonopole density to themodulus
of the applied field. The magnetization reverses with the field as expected, but the
moment at each reversal point is far from saturated.

As we have seen, the magnetization time scale depends inversely on the free
monopole concentration, τm ∼ 1/n f . Hence, going beyond linear response theory,
the magnetic response and the monopole response to an applied field are coupled.
A nonlinear theory can be developed which encapsulates this coupling. Applying
H(t) = H0h(t) along [100] and following (7.22), (7.24) and (7.25), one can write

dnf/dt = kDF (b0 |h(t) − m|) nb − kAn
2
f /2 , (7.27)
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Fig. 7.15 (Color online) Square wave driving stabilizes the free monopole density increase due
to the second Wien effect (a), provided that the magnetization M stays well below Meq = χT H0
(b). The kinetic model captures the response including the transition from equilibrium to a periodic
steady state. The amplitude-dependence of the average density increase (c) matches the DC Wien
effect theory with no free parameters, confirming spin ice’s dynamical “window” of electrolyte
behavior. Magnetolyte parameters are T = 0.45 K, ntot(0) � 1.1 × 10−4, nf (0) � 1.0 × 10−4,
and μ0H0 = 50 mT (a–b). Reprinted figure from [62] with permission from the American Physical
Society

where, b0 = μ2
0Q

3
mH0/8π(kbT )2. We note again that the evolution of the rate

equation depends on the modulus of the field. Linearising in b0|h(t) − m| and in
�nf = nf − n0f one finds

d�nf/dt = kD(0)nbb0 |h(t) − m| − kAn
0
f �nf . (7.28)

We now use the key elements of the Wien effect: nb and kA are unchanged
on application of a field and kD(0) = kAn f (0)2/(2nb), so that defining ζ(t) =
�nf(t)/(b0nf(0)/2), one obtains the first of two constitutive equations

dζ/dt = 1

τ
(0)
L

(|h(t) − m| − ζ ) , (7.29)

where τ
(0)
L = 2τ0/(χT nf(0)) is the zero field Langevin time [64, 67]. The second

is the Ryzhkin dynamical equation for the magnetization relaxation, (7.22), taken
beyond linear response through the field dependence of the free monopole concen-
tration:

dm/dt = (1 + b0ζ/2)(h(t) − m)/τ 0
m . (7.30)

with τ 0
m = (3/2)τ0/nf(0).

Equations (7.29) and (7.30) form a complete kinetic model which captures the
non-equilibrium dynamics observed in simulations: the non-linear behavior comes
dominantly from the absolute value in (7.29) and the monopole-spin coupling term



7 Modelling of Classical Spin Ice: Coulomb Gas Description … 167

Fig. 7.16 (Color online) The free monopole density increase (a) due to sine driving enhances the
magnetic response (b). The Wien effect persists over a range of frequencies (c). The enhanced
density leads to an increase in the absolute value of the non-linear susceptibility (d), where the
dashed line is χT and solid line is ∝ 1/ω. The relative change in χH0 is shown in (e) revealing
additional features in the Wien effect plateau compared to the density increase. The amplitude
dependence stays close to Onsager’s theory of the DC Wien effect despite the approximations
made (f). The kinetic model (results for μ0H0 = 50 mT) captures the time evolution of density
and magnetization (dashed lines in a–b); the low-frequency transition in density and susceptibility
(dashed lines in c and e); and the structure of the susceptibility increase. However, it does not
include the high-frequency cutoff due to pair reorientation.Magnetolyte parameters are T = 0.45K,
ntot(0) � 1.1 × 10−4, nf (0) � 1.0 × 10−4. Reprinted figure from [62] with permission from the
American Physical Society

bζm/2 in (7.30). To make quantitative comparisons between this non-linear theory
and numerical simulation, one can further replace b0ζ/2 with the full expression for
the Wien effect, (7.26) and τ

(0)
L with τL = τ

(0)
L nf(b)/nf(0). The equations are not

generally solvable in closed form, but are readily integrated numerically. As shown
in Figs. 7.14, 7.15a, b, 7.16a, b, the dynamical equations give quantitive agreement
with numerical data for both magnetization and monopole density, in the case of a
constant field applied at t = 0 and for a square/sinusoidal field of frequency ω.

The major advantage of spin ice over an electrolyte system is that magnetic
response experiments are readily available. The dynamical coupling between
monopole concentration and magnetization strongly suggests that Wien effect
physics should be apparent in these. From Fig. 7.16 one can see that, as for an
electrolyte [67–70], enhanced density is stabilized by harmonic driving of the
magnetolyte with field H(t) = H0 sin(ωt). Harmonic driving stabilises a plateau
of monopole density increase in a frequency window between ωlow � 1/τm and
ωhigh � 1/τL (Fig. 7.16c). The magnetization also responds to the applied field
and the dynamical equations reproduce the evolution of both these quantities with
remarkable accuracy. We notice that the process limiting the ACWien effect at high
ω appears to be the reorientation of bound pairs along the field direction (on a time
scale τor), and not the density relaxation (τL); see [42] for an early treatment of
reorientation.
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As a consequence, a signature of the Wien effect can indeed be developed from
susceptibility measurements. From (7.22), holding n f = n f (0), one finds a Debye-
like susceptibility [4, 71], characteristic of a paramagnetic response

χ0(ω) = χT /(1 − iωτ 0
m), (7.31)

although the time scale τ 0
m corresponds to the collective response of the Dirac strings,

rather than of the individual dipoles, and is consequently extremely long at low
temperature compared to microscopic time scales. Including the time dependent
evolution of the monopole density through the Wien effect, (7.30), introduces a
correction to this relaxation which shows up in the non-linear susceptibility.

Spectral analysis of M(t) yields M(ω), from which one can define χH0(ω) =
M(ω)/H0, with the non-linear part being the excess, δχ(ω) = χH0(ω) − χ0(ω).
One finds non-linear contributions both at the frequency of the applied field and for
higher harmonics. Both the magnitude of the field response and the occurrence of
higher harmonics are characteristic of the Wien effect. Specifically, only odd higher
susceptibilities are visible. This is a direct consequence of the coupling of the density
to themodulus of an applied vector field [67] and to the occurrence of even harmonics
in density.

In Fig. 7.16d, e one can observe the appearance of a significant non-linear sus-
ceptibility in the same frequency window for Dy2Ti2O7 at T = 0.45 K. Throughout
the window we have ω � 1/τm , so that

|δχ(ω)|
|χ0(ω)| ≈ � 〈nf(H0)〉T

nf(0)
, (7.32)

where themonopole concentration increase is averaged over the period of the applied
field, T = 2π/ω. Hence the relative non-linear susceptibility should be given by
Onsager’s formula, (7.26). From Fig. 7.16f one can see that this is true to a good level
of approximation, particularly at frequencies 1/τm � ω � 1/τL (Fig. 7.16e) where
the density fully relaxes as the field changes (even from zero field, as in Fig. 7.14c).
A reduction in magnetic response is observed between 1/τL and 1/τor, reflecting the
increasing fraction of time the monopoles spend establishing the Wien effect rather
than magnetizing the system. The Wien effect vanishes for ω � 1/τor. The same
theory holds at higher temperatures where relaxation time scales aremore accessible;
we refer the reader to [62] for equivalent results for parameters corresponding to
Dy2Ti2O7 at T = 0.7 K.

From this analysis it appears that the magnetolyte provides a rare example of a
model system in which an experimentally relevant non-linear many body response
can be treated analytically and numerically in great detail. This luxurious situation is
down entirely to the monopole picture, as it is hard to imagine that the complex mag-
netic response to the field could have been predicted without it. Initial experiments
on Dy2Ti2O7 show that this kind of protocol works at high fields [45] where theWien
effect, which predicts a monopole current varying as the square root of the applied
field, is observed. Onsager’s theory is fitted in this limit with an anomalously small
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activity coefficient, which could be a signal of non-equilibrium behaviour. Results at
lower field are, however less convincing, possibly because of a temperature or dis-
order dependent monopole mobility, as discussed above. Clearly more experimental
work is required to access theWien effect over a full range of temperatures and fields.
This is a great challenge for the future as success in modelling of the ACWien effect
would open the door to a broad range of experiments in which spin ice provides a
model system for the study of non-equilibrium and non-linear physics.

For themoment however, there remain open questions for instance about the exact
nature of the linear response at T < Tf � 0.6 K in Dy2Ti2O7 [25, 36, 40, 72, 73],
when the system is no longer ergodic on experimentally accessible time scales. Here
it is convenient that the approach outlined above relies only on measuring relative
quantities, eliminating many non-universal contributions. Finally, we note that this
model and analysis should contribute to the resolution of open issues concerning the
experiment of [63] (see also [74–78], and [79] for a summary).

7.3.3 Behaviour Far From Equilibrium

In general, a system in which point-like excitations freely moving in three dimen-
sions are responsible for bulk magnetic response is bound to exhibit an interesting
separation of time scales. This is in contrast with the conventional scenario where the
dynamics is dominated by the domain coarsening time scale, characteristic e.g., of
ferromagnetic and antiferromagnetic systems [80]. Monopoles are created and anni-
hilated in nearest neighbour pairs, so that monopole density relaxation processes
involve monopole motion over distances of the order of the average monopole-
monopole separation, ξ ∼ n−1/3. In a ballistic regime where positive monopoles are
driven towards negative monopoles, the corresponding time scale is of the order of
ξ monopole hops. At sufficiently high temperatures and / or beyond the screening
length, the monopole motion is diffusive and the time scales as ξ 2 ∼ n−2/3. Finally,
any changes in the bulk magnetisation and other observables that depend on the local
spin orientations require the monopoles to visit a finite fraction of the spins in the
systems. Therefore on average they have to move across a finite fraction of ξ 3 spins
per monopole, corresponding to a time scale of the order of ξ 3 ∼ n−1 (see Sect. 7.3.1
for a more formal discussion of this result).

One further expects a close interplay between the dynamical properties of the
monopoles—which are fractionalised point-like excitations—and the properties of
the spin-ice vacuum that hosts them. For instance, at a local level each monopole can
only ever hop across 3 of the 4 neighbouring spins (see later Fig. 7.18). At a global
level the motion of monopoles polarises the vacuum they traverse and therefore
two monopoles of the same charge cannot directly follow one another (see also
the discussion of the reaction field in Sect. 7.3.2). This interplay is responsible for
both local and global (topological) kinematic constraints that play a crucial role
in determining the dynamical behaviour of spin ice systems. The fact that we can
couple to the vacuum directly using externally applied fields allows for a supripsing
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tuneability of the dynamical behaviour, as we have already seen in the case of the
Wien effect in Sect. 7.3.2.

As a result, the nature of the fractionalised excitations in spin ice strongly affects
its dynamical properties and is reflected in the behaviour of the system when it is
brought strongly out of equilibrium. In the following, we shall discuss two examples
in some detail. Specifically, we shall consider sudden quenches from a high to a low
monopole density state, triggered by either tuning the temperature (Sect. 7.3.4) or
an applied magnetic field (Sect. 7.3.5).

We shall discover intriguing connections between the physics of spin ice and other
areas of research, including reaction diffusion processes in the presence of long-range
Coulomb interactions, dimer adsorption, and kinetically constrained models. This
lead to the affirmation of spin ice as a laboratory of choice for the study of tuneable,
slow dynamics.

We mention in passing that the phase diagram of spin ice includes a critical end
point in presence of a magnetic field. “Slow quenches” (i.e., continuous variations of
the parameters as a functionof time) to / across the critical point are therefore expected
to give rise to out-of-equilibrium scaling behaviour à la Kibble-Zurek, in the novel
context of a topological magnet with emergent gauge symmetry and fractionalised
Coulomb-interacting quasiparticles [81]. Although experimental evidence for the
universal scaling of defect density in Kibble Zurek ramps is available [82, 83],
a decisive test of the scaling of dynamical response functions in this context is
currently lacking. Spin ice materials offer a unique experimental opportunity owing
to their slow microscopic time scales [5, 36], τ0 ∼ 1 ms, in contrast with typical
critical phenomena in magnetic materials which occur on much faster time scales, of
the order of nanoseconds or even picoseconds. The simulations in [81] suggest that
Kibble Zurek scaling in spin ice is within reach of current field sweep experimental
capability [40].

7.3.4 Thermal Quenches

One way to cause the system to evolve from a state with high monopole density
to a state with low monopole density is to lower its temperature. Here we consider
for simplicity the case where the system is initially at infinite temperature (trivial
Ising paramagnet) and it is suddenly quenched to a target (low) temperature [38]. In
Coulomb liquid terms, this is equivalent to quenching a plasma where positive and
negative charges can be created (and annihilated) only in pairs, and each charge costs
some finite amount of energy � = −μ.

Immediately after the quench, the system is strongly out of equilibrium (e.g., the
monopole density is much larger than its thermodynamic value at the target temper-
ature). When coupled to a thermal bath, it will relax to equilibrium via the avail-
able dynamical processes, namely monopole motion and monopole-antimonopole
creation/annihilation—this is typical of reaction-diffusion processes and contrasts
the behaviour of conventional magnetic systems.
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Whereas monopole-antimonopole annihilation events lower the energy of the
system, pair creation events face a finite energy cost �s and are hence suppressed by
the Boltzmann factor exp(−�s/kBT ). We limit ourselves below to the case where
the target temperature is much smaller than the pair creation energy so that we
can neglect creation processes altogether. In this regime the equilibrium density of
monopoles at the target temperature is also vanishingly small and we shall set it to
zero. The equations of evolution for the monopole density can be generically written
as [84]:

∂n±(r, t)

∂t
+ ∇ · J± = −κ n+(r, t)n−(r, t)

J± = −D∇n±(r, t) − κm q±n±(r, t)∇V (r, t) , (7.33)

where n± and J± are the densities and currents of positive and negative monopoles,
κ = 2kA is the annihilation reaction constant and where the local monopole cur-
rent j(r) = Q(J+ − J−). The two current terms are due to diffusion (constant D)
and deterministic drift caused by long range interactions (mobility κm , interaction
potential V ). As discussed in Sect. 7.3.1, the relevant constants can be estimated ana-
lytically or obtained from independent comparison to simulations or experiments,
leaving few or no fitting parameters in the equations [38].

Nearest-neighbour spin ice
Let us focus firstly on the case where spin-spin interactions are truncated at nearest-
neighbour distance and correspondingly the charges in the Coulomb liquid language
are non-interacting (V (r) = 0), so that ud = 0 and �s = 2�.

Within this approximation, andunder the quench conditions outlined inSect. 7.3.4,
the dynamical processes in the system are limited to diffusion of non-interacting
charges and monopole-antimonopole annihilation events. At the mean field level
(uniform system, no spatial dependence), the diffusive term can be dropped and we
are left with a straightforward reaction equation:

dn

dt
= −κ n2(t). (7.34)

(This is directly related to the chemical kinetics discussed in Sect. 7.3.2, namely
(7.24), once Coulomb interactions are suppressed, as appropriate for nearest-
neighbour spin ice.) The right hand side is determined by the rate of monopole
annihilation events, which is proportional to the probability of finding a monopole-
antimonopole pair in the system (∼ n2) divided by the characteristic time scale for
a single annihilation event to take place (namely, the characteristic single spin flip
time scale τ0). The constant κ ∝ 1/τ0 depends on details of the underlying micro-
scopic lattice through a combinatorial factor accounting for the ways to arrange two
monopoles next to one another across a bond of the lattice [38] (see also Sect. 7.3.2).

The mean field (7.34), complemented with the initial condition n(t = 0) = n0,
can be solved straightforwardly to find
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n(t) = n0
1 + κn0 t

(7.35)

such that the long time decay in the monopole density goes as t−1. The accuracy
of the mean field solution in describing the behaviour of nearest-neighbour spin ice
depends crucially on how uniform the initial charge distribution is, to ensure that
diffusion time scales are indeed irrelevant.

Spatial variations in the initial distribution of monopoles and antimonopoles can
however alter the behaviour significantly [85]. For instance, if the charges are dis-
tributed entirely at random with density n0, then the net charge fluctuations in a
volume of linear size 	 scale as

√
n0	3. Given that annihilation processes conserve

the local net charge (they always remove one positive and one negative monopole),
they cannot remove these fluctuations. After a time t sufficient for monopoles to
diffuse over the length 	 (i.e., 	 = √

Dt), all possible annihilation events within
the volume of size 	 will have taken place, leaving behind a number ∼ √

n0	3 of
monopoles of the same charge due to the statistical net charge fluctuation. The den-
sity of leftover monopoles scales as

√
n0	3/	3 = n1/20 (Dt)−3/4; it decays with time

more slowly than the mean field behaviour (∼ t−1) and therefore dominates at long
times. (We refer the reader to [85] for a detailed derivation and discussion of this
result.)

However, none of this in fact applies to spin ice. As discussed above, when a
monopole travels along a given path across the system, it modifies the underlying
spin ice vacuum by polarising the spins along the path. Another monopole of the
same charge cannot follow the same path in the same direction. Equivalently, we
can at most drive 	2 monopoles of equal charge across a system of volume 	3 before
the system becomes fully polarised and no more monopoles of the same charge can
travel in that direction. This means that the most net charge that can accumulate in a
volume 	3 of a spin ice system is of the order 	2. The density of leftover monopoles
in spin ice therefore scales as

√
	2/	3 = (Dt)−1 rather than (Dt)−3/4, which has the

same asymptotic behaviour as the mean field solution.
These observations are confirmed by the excellent agreement between Monte

Carlo simulations of thermal quenches in nearest neighbour spin ice and the solution
of the mean field equation, (7.35), illustrated in Fig. 7.17. Notice that the agreement
is achieved without any fitting parameters [38].

Dipolar spin ice
Let us now consider the case of dipolar spin ice, where monopole excitations are
coupled by long range Coulomb interactions. The additional energetic term intro-
duces a bias for positive and negative monopoles to find one another which leads to
screening correlations at equilibrium, and it has in general a smoothing effect on spa-
tial fluctuations of the net charge. Therefore, the naive expectation from this coarse
grained picture is that the monopole density decay following a thermal quench in
DSI is at least as fast as the nearest neighbour case. (We refer the reader to [84] for
a discussion of annihilation-diffusion reaction processes in presence of long-range
interactions.)
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Fig. 7.17 Monopole density evolution in nearest neighbour spin ice, after a thermal quench from
T = 10 K to T = 0 K, for system sizes L = 32, 64, 128 (where the total number of spins is
16L3). The analytical mean-field result (7.35) is shown for κ = 3/2τ0 (dashed black line) and
κ = 9/5τ0 (solid black line)—see [38] for details. Reprinted figure from [38] with permission from
the American Physical Society

Monte Carlo (MC) simulations confirm this expectation at short times, as illus-
trated in Fig. 7.18, right panel. However, for sufficiently low target temperatures, a
long-livedmetastable plateau develops in the time evolution of themonopole density.
This new and unexpected feature is due to a curious interplay between long-range
emergent physics (the Coulomb liquid description) and lattice-scale physics (related
to how monopole motion changes the underlying spin ice vacuum)—a phenomenon
already encountered in the discussion of the Wien effect in Sect. 7.3.2.

When a positive and a negative monopole meet in spin ice, there is a one in four
chance that spin between them is a minority spin rather than one of the three majority
ones, as illustrated in Fig. 7.18, top left panel. In this case, flipping the spin does not
annihilate the two monopoles but rather creates a double monopole pair (a pair of
4in-4out tetrahedra) at high energy cost. At low temperatures, the likelihood of such
process is so low that it is effectively forbidden.We shall dub such pairs ofmonopoles
noncontractible. Once they meet through a minority spin, the two monopoles of a
noncontractible pair are bound together, held by their mutual Coulomb attraction.
This is a direct consequence of the long-range nature of the dipole-dipole interaction.

The monopoles forming noncontractible pairs do not need necessarily to separate
in order to be able to annihilate. It can also happen that another (free) monopole
collides with the pair, whereby it annihilates one of the monopoles in the pair (that
with opposite charge to the free monopole) and free up the other one. Pictorially, one
can think of this as radioactive decay, triggered by the absorption of a monopole,
in contrast to spontaneous decay of the pair, where the monopole and antimonopole
separate and annihilate elsewhere on the lattice. The radioactive process straightfor-
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Fig. 7.18 Top left panel: Spin configuration of two adjacent tetrahedra hosting a noncontractible
monopole-antimonopole pair. Top right panel: Decay of the total monopole density in Monte Carlo
simulations of dipolar spin ice, following thermal quenches from infinite temperature to different
finite target temperatures (see Fig.3 in [38] for details). Inset: comparison of the long time tail of the
monopole density to the Poissonian modelling of the spontaneous decay of noncontractible pairs
discussed in the text. Bottom panel: Monte Carlo simulation of dipolar spin ice, showing the total
monopole density (red), noncontractible pair density (blue), and free monopole density (magenta),
following a thermal quench from T = ∞ to T = 0.125 K, with system size L = 8 and Dy2Ti2O7
parameters. Reprinted figure from [38] with permission from the American Physical Society

wardly reduces the energy of the system, whereas the spontaneous process incurs a
finite energy barrier (the Coulomb separation energy).

Which of the two processes controls the long time decay of the monopole density
depends on the relative populationof freemonopoles andnoncontractible pairs. If free
monopoles are abundant, then nearly all noncontractible pairs decay radioactively
(vanishing energy barrier, fast relaxation channel). If instead most monopoles in the
system formnoncontractible pairs, then their annihilationmust occur via spontaneous
decay (slow relaxation channel, due to the finite activation energy barrier).

At high-temperature, when the system is nearly paramagnetic and the defects are
dense, one can readily verify that the density of free monopoles is statistically larger
(by about one order of magnitude) than the density of noncontractible pairs—as
reflected in the initial conditions that can be inferred from Fig. 7.18, bottom panel.
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Fig. 7.19 Top panel:
Qualitative illustration of the
dynamical processes
involved in the monopole
density evolution following a
thermal quench in dipolar
spin ice. (A=positive and
B=negative monopole;
D=noncontractible pair).
Bottom panel: Example of a
hexagonal path for the
spontaneous decay of a
noncontractible pair

+ D

A + B

D B BD+

A A

Therefore, we see that a population inversion is required to cause the system to
relax via the slow channel and to develop a long-lived metastable plateau at low
temperature.

Once again, the long rangeCoulomb interaction plays a crucial role in determining
how the free vs noncontractible monopoles evolve with time. Free monopoles and
antimonopoles are drawn together by Coulomb forces which are stronger than the
attraction between free monopoles and noncontractible pairs (charge-dipole interac-
tion). Naively, one would thus expect that the long range interactions favour direct
annihilation of free monopoles over the radioactive decay of noncontractible pairs.
If the bias is sufficiently pronounced, it can eventually cause the density of free
monopoles to becomevanishingly smallwith respect to the density of noncontractible
pairs, leading to the population inversion and themetastable plateau.MC simulations
of DSI seem to confirm this picture, in that they show a population inversion taking
place and the density of noncontractible pairs is solely responsible for the long lived
metastable plateau (see bottom panel in Fig. 7.18). However, the precise role of the
long-range tail of the Coulomb interaction in the population inversion, to verify or
reject the naive conjecture about the bias, is subject of ongoing investigation.

As in the case of nearest-neighbour spin ice, one can use differential equations
for reaction-diffusion processes to model the evolution of the monopole density
following a quench and confirm the qualitative understanding presented above. The
processes that ought to be included are:

1. monopole-antimonopole annihilation
2. noncontractible pair formation
3. radioactive and spontaneous decay of noncontractible pairs.
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They are qualitatively illustrated (with the exception of the spontaneous decay) in the
top panel of Fig. 7.19. In contrast to the nearest neighbour case, one has to introduce
an additional density variable to represent noncontractible pairs (a new ‘species’ of
particles whose evolution is directly related to that of the free monopoles).

Here we limit ourselves to modelling in some detail the long time tail of the
monopole density decay. As discussed above, it is evident from the bottom panel of
Fig. 7.18 that the noncontractible pairs are largely responsible for this tail. In this
regime we expect the spontaneous decay of noncontractible pairs to be the leading
dynamical process in the system.

Firstly, we ought to estimate the typical energy barrier �Enc of a spontaneous
decay process. This is determined by the distance by which a monopole and an
antimonopole in a noncontractible pair need to be separated before they are able
to annihilate elsewhere in the lattice. The shortest possible path is illustrated in the
bottom panel of Fig. 7.19. It requires separating the two monopoles from nearest
neighbour (rnn) up to third neighbour (r3n) distance, before they are brought together
again to annihilate:

�Enc = − μ0

4π
Q2

(
1

r3n
− 1

rnn

)
. (7.36)

Now that we have an estimate of the energy barrier, we can proceed with mod-
elling the spontaneous decay of noncontractible pairs. (Notice that the existence of
a hexagonal decay path for each noncontractible pair is far from obvious and ought
to be regarded as a working assumption at this stage; it will be confirmed a poste-
riori by comparison with simulations.) We shall assume that the spontaneous decay
events are uncorrelated and they obey a Poissonian distribution, with decay proba-
bility per unit time P(t) = e−t/τnc/τnc. The time scale for the activated process is
τnc = τ0e�Enc/kBT , where τ0 is the microscopic spin flip time scale (τ0 = 1 in MC
simulations). Finally, the noncontractible pair density at time t is determined by the
number of pairs that have not annihilated via spontaneous decay at any t ′ ≤ t , i.e.,

n(t) ∝ 1 −
∫ t

0
P(t ′) dt ′ ∝ e−t/τnc . (7.37)

In themagnetolyteCoulomb liquid,�Enc is defined by theCoulomb interaction as
in (7.36). However, as we have seen, when mapping from the DSI to the magnetolyte
one neglects quadrupolar corrections to self-screening that give the Pauling states
a finite bandwidth [3, 15, 20] (see Sect. 7.2.1). These terms lead to many body
corrections to �Enc that are well approximated by a Gaussian distribution of mean
�Enc � 1.47 K and variance 0.01 K2 [38], obtained from MC simulations of DSI
using Dy2Ti2O7 parameters. The value of n(t) in (7.37) ought to be averaged over
such a Gaussian distribution to compare with simulations:

〈n(t)〉dis ∝
∫

exp

[
− (�E − �Enc)

2

2σ 2

]
exp

[
− t

τ0e�E/kBT

]
d�E . (7.38)
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Fig. 7.20 Phase diagram of
spin ice in presence of a
[111] field. The vertical
arrows represent field
quenches from saturated ice
(high monopole density) to
kagome ice (low monopole
density), discussed in the
text. Reprinted figure from
[41] with permission from
PNAS spin ice
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Notice that (7.37), (7.38) have only one fitting parameter left: the proportionality
constant, i.e., the height of the metastable plateau induced by the long-lived non-
contractible pairs. The comparison between theory and simulations is illustrated in
the inset of the right panel in Fig. 7.18. We note the good agreement over more than
20 orders of magnitude, demonstrating that the qualitative understanding in terms
of Coulomb liquid and noncontractible pairs is indeed correct, and that the choice
of single-hexagon paths for the spontaneous decay is justified. (Had we ignored the
finite width of the Gaussian distribution and used the mean value of �Enc instead,
we would have captured the long time behaviour to leading order, but the agreement
between theory and simulations in Fig. 7.18 would have been appreciably worse.)

We close by stressing the role played by the long range Coulomb interactions
between the monopoles in determining the strikingly different behaviour in dipo-
lar vs nearest neighbour spin ice. On the one hand, they are responsible (at short
range) for the existence of metastable noncontractible pairs. On the other hand—we
conjectured—their long range nature contributes to the population inversion that is
key to the long time plateau in the monopole density at low temperatures.

(We refer the reader to [38] for a discussion of possible experimental verification
in field-quench and field-sweep measurements, and also to [43], [45].)

7.3.5 Field Quenches

An alternative protocol to drive spin ice from high to low monopole density involves
the use of an applied magnetic field pointing in one of the global [111] crystallo-
graphic directions. Whereas a small field exerts a force driving the monopoles across
the system, this effective description breaks down for intermediate and large fields,
and their leading effect becomes that of a (staggered) chemical potential for the
monopoles [3]. The resulting phase diagram is typical of a liquid-gas system, with a
first order transition line ending at a critical end point (see Fig. 7.20).
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Fig. 7.21 Left panel:With respect to the global [111] direction identified by the field, the pyrochlore
lattice can be seen as a stack of triangular (yellow) and kagome (green) layers perpendicular to the
field direction. The easy axis of the triangular spins is parallel to the field whereas the kagome
easy-axes are canted, all with the same projection factor 1/3 onto the field direction. Middle panel:
Saturated spin ice state. Right panel: An example of a kagome ice spin configuration. Reprinted
figure from [41] with permission from PNAS

To understand this phase diagram, it is convenient to divide the pyrochlore spin
lattice into alternating kagome and triangular layers perpendicular to the field direc-
tion, as illustrated in Fig. 7.21, left panel. In the limit of strong fields (the saturated
ice regime), all of the spins point along the field direction while respecting the local
easy axes (Fig. 7.21, middle panel). The ice rules are violated everywhere and each
tetrahedron hosts a monopole; the monopoles form an ‘ionic crystal’ of alternating
positive and negative charges [29]. As the field strength is reduced, violations of
the ice rules are no longer offset by a gain in Zeeman energy and a regime where
most tetrahedra obey the ice rules is recovered (at low temperature). This necessarily
requires some of the spins to point against the applied field. At intermediate field
strengths, these are mostly spins in the kagome planes, because their Zeeman energy
is smaller by a factor of three compared to the spins in the triangular planes. This
leads to an extensively degenerate regime known as kagome ice [86–88], illustrated
in Fig. 7.21, right panel. At low field strengths, the kagome ice regime becomes
entropically unstable to the conventional spin ice regime, namely the ensemble of
all configurations satisfying the ice rules irrespective of the polarisation of the trian-
gular spins. All of these regimes cross over at sufficiently large temperatures into a
conventional paramagnet.

The range of behaviours that can be investigated in quenches involving an applied
field is far richer than in thermal quenches [41]. For instance, the fact that triangular
and kagome spins couple differently to the applied field can be used to tune the
dimensionality of the system (2D ↔ 3D). Moreover, the ability to tune both temper-
ature and Zeeman energy against the long range Coulomb interaction allows one to
control the dynamical processes at play and even to alter the characteristic monopole
hopping time scales.

Here we focus for simplicity on field quenches across the first order transition,
while the temperature is held constant. Our initial condition is the large field (satu-
rated ice) state, where each spin has positive projection in the direction of the field
(Fig. 7.21, middle panel). Every ‘upward pointing’ tetrahedron is occupied by a pos-
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itive monopole and every ‘downward pointing’ tetrahedron is occupied by a negative
monopole. Further, we only consider temperatures and target field values whereby
the thermal equilibrium state after the quench is that of kagome ice. Here the Zeeman
energy of the triangular spins is sufficiently large with respect to temperature that
they remain effectively fully polarised in the field direction. On the other hand, the
Zeeman energy of the kagome spins is comparable to the temperature, and they are
therefore disordered (indeed, the ice rules due to exchange and dipolar interactions
within kagome ice result in a reduced yet extensive degeneracy [89–91]). We note
that this choice of temperature and field after the quench typically corresponds to a
negligibly small equilibriummonopole density—hence the quenches can be regarded
once again to be from high to zero monopole density, albeit the starting configuration
is much different from the initial paramagnetic state used in thermal quenches. (For
a more detailed discussion of [111] field quenches in spin ice, we refer the reader to
[41].)

Initial decay
Immediately following a field quench from saturated ice at low temperature, the
monopole density is far greater than its thermodynamic equilibrium value, and
dynamical spin flip processes leading tomonopole-antimonopole annihilation events
occur.

Notice that the triangular spins do not participate in the initial decay of the
monopole density. Not only they are pinned by a larger Zeeman energy than the
kagome spins, but also—and more importantly—they are akin to the intervening
spin in a noncontractible pair. Flipping a triangular spin in saturated ice leads to the
creation of a 4in and a 4out defect rather than to the annihilation of two monopoles.

The initial dynamics of a field quench is thus confined to the 2D kagome planes.
Here, flipping a spin between two monopoles leads to their straightforward annihila-
tion, which lowers the energy of the system. The process continues so long as there
are kagome spins available between two monopoles. With the help of the schematic
illustration in Fig. 7.22, one can draw an analogy between the initial decay and a
dimer deposition process. To see this, consider the honeycomb lattice formed by the
centres of the triangular plaquettes in a kagome plane. Each spin uniquely identifies
a bond in the honeycomb lattice. Let us then say that when a spin is flipped and two
monopoles are annihilated, the corresponding bond becomes occupied by a dimer.
Clearly none of the adjacent spins (bonds) can then be flipped (occupied), accord-
ing to the process above where only spins between two monopoles can flip. This is
equivalent to the hard-core condition typical of dimer models. As time progresses
and more spins are flipped, more bonds in the honeycomb lattice become occupied
by hard-core dimers.

Notice that dimers can sometimes ‘desorb’ during the initial decay when thermal
fluctuations lead to a second reversal of the same spin, thus creating anew the two
monopoles that had been previously annihilated. The desorption rate can be con-
trolled by tuning the value of the target field as well as the temperature. Here we
focus for simplicity on the regime where the desorption rate is negligible.
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Fig. 7.22 Pictorial representation of the initial monopole annihilation processes within a kagome
plane, from left to right. Positive and negative monopoles are represented by red and blue dots; the
spins are not shown for simplicity. The green crosses indicate the spins the have flipped in going
from one configuration to the next (left to right panels). The flipped spins can be represented as
hard core dimers on the dual honeycomb lattice (thick yellow lines)

Ignoring the long-rangedCoulomb interactionbetween themonopoles, one should
expect to be able to model the initial decay process with reasonable accuracy at
the mean field level, given the uniformity of the charge distribution in the initial
(saturated) state. The equation of motion is thus the same as for nearest-neighbour
thermal quenches, (7.34). The agreement with MC simulations of field quenches in
DSI is excellent without fitting parameters (Fig. 7.23), suggesting that the Coulomb
interactions do not have a measurable effect on the reaction process.

The solution of the mean field equations is temperature independent. As time
passes,we see fromFig. 7.23 that the results of the simulations eventually depart from
the mean field behaviour and become strongly temperature dependent. This signals
the end of the initial (dimer deposition like) regime: randomly selected neighbouring
monopoles have straightforwardly annihilated until only isolated ones are left behind
and they need to diffuse across the system before their density can decay further.

When the target field value becomes sufficiently large, it is no longer possible to
disregard desorption events. This is the likely cause of the departure from mean field
behaviour at short times, which begins to appear in the bottom panel of Fig. 7.23.

Intermediate regime
The initial decay ends when there are no more monopoles and antimonopoles next
to one another that can be annihilated by flipping the intervening kagome spin.
Monopoles are now required to travel across the lattice before their density can be
further reduced.

Fig. 7.24 illustrates the behaviour over a large time window, for different fields
and temperatures. In general, we observe that the relaxation time scales in the system
become substantially longer after the initial decay discussed in the previous section.
The new time scales show a clear temperature dependence (the lower the temperature,
the slower the decay), as one would expect in presence of activation energy barriers
obstructing the relaxation. This scenario is similar to the one observed in thermal
quenches in dipolar spin ice (Fig. 7.18). However, we see that the behaviour in field
quenches is far richer, with intermediate time regimes that appear to be distinct from
both the initial as well as the asymptotically long time decay.
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Fig. 7.23 Monte Carlo
simulations of field quenches
in dipolar spin ice for
different values of the target
field
(H = 0.2, 0.3, 0.35 Tesla,
from top to bottom). Only
the initial (short time) decay
of the monopole density is
shown. The different colour
curves correspond to
different values of the
temperature and the
superposed black line is the
mean field solution (7.34),
without any fitting
parameters. Reprinted figure
from [41] with permission
from PNAS
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Fig. 7.24 Monopole density (thick lines), density of triangular spins in the direction of the initial
magnetisation (thin dotted-dashed lines), and density of noncontractible pairs (thin solid lines)
from MC simulations for a system of size L = 8 (8192 spins), fields H = 0.2, 0.4, and 0.6 Tesla
(from left to right panels), and temperatures T = 0.1, 0.15, 0.2, 0.3, 0.4, and 0.5 K (red, blue,
green, magenta, cyan, and yellow, respectively). At intermediate times, some of the triangular spins
reverse, as shown by the dip in their density; the latter has been magnified by a factor of 100
and 1,000 (left and central panels, respectively) for visualisation purposes. In the right panel, the
density of triangular spins in the direction of the applied field remains very nearly 1 throughout the
simulations; the triangular spins remain polarised throughout the quench and the monopole motion
is effectively 2D. (The black dotted horizontal line in each figure indicates the density threshold of
one monopole in the entire MC system.) Reprinted figure from [41] with permission from PNAS

The intermediate regimes are controlled by finite size, finite time processes and
are rather challenging to model analytically. This interesting and unique regime of an
emergent reaction-diffusion process in presence of long-range Coulomb interactions
and kinematic constraints, which can in principle be accessed experimentally in spin
ice materials [43–45], lacks proper understanding to date.

Long time behaviour
At long times, the monopole density decay becomes increasingly dominated by the
longest relaxation time scale in the system. We should therefore be able to capture
the physics of this regime by modelling analytically its asymptotic behaviour.

At small and intermediate target field values (left and middle panels in Fig. 7.24)
most of the monopoles at long times form noncontractible pairs, and their decay is
similar to the case of thermal quenches. This is clearly not the case at larger fields
(right panel in Fig. 7.24), and hereafter we shall focus only on this regime.

For large field values, the long relaxation times cannot be ascribed to long-lived
noncontractible pairs. Rather, it must be that an energy barrier impedes the diffusion
and annihilation of free monopoles. The origin of this barrier can be understood if
we recall that monopole diffusion at large fields and low temperatures takes place
nearly exclusively within each kagome plane, whilst the triangular spins remain fully
polarised (Fig. 7.24, right panel). Under these conditions, a positive monopole in a
kagome plane has lower Zeeman energy when it sits in an upward-pointing tetrahe-
dron than in a downward pointing tetrahedron (vice versa for a negative monopole,
as illustrated in Fig. 7.25). If we were to make a monopole hop across the kagome
lattice, at every other step it would have to overcome a Zeeman energy barrier
dE � 4.48 H K (where H is the value of the target field measured in Tesla) [41].
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nn

dE = 4.48 H

dE = 4 J eff − 4.48 H

Fig. 7.25 Schematic representation of monopole motion in a kagome plane, via ordinary hopping
(upper intermediate diagram) and via pair-assisted hopping (lower intermediate diagram). Both
processes result in a negative monopole being transferred from a downward-pointing tetrahedron
(left diagram) to one of the four nearest downward-pointing tetrahedra (right diagram). Each process
encompasses two spin flips but, according to the order in which they are executed, the two processes
face different energy barriers dE with opposite field dependence. The figure shows the value of
the barriers for nearest-neighbour spin ice. In the main text we discuss how they are modified in
presence of dipolar interactions. The field dependence, however, remains unchanged. The tails of
the green arrows originate from the spin being flipped in going from one panel to the next. Only the
spins in the front three tetrahedra are drawn for convenience. The triangular spins remain polarised
throughout. Reprinted figure from [41] with permission from PNAS

This is the cost of reversing a kagome spin (whose easy axis is canted with respect
to the [111] field direction).

Alternatively, the system can create a monopole-antimonopole pair next to the
existing monopole and then annihilate the existing monopole with the oppositely
charged member of the pair. The outcome is equivalent to moving a monopole from
one Zeeman-favoured tetrahedron to another Zeeman-favoured tetrahedron two lat-
tice spacings away from the first (see again Fig. 7.25). This process costs interaction
energy (monopole pair creation+Coulomb interactions) but it canbedonewhile gain-
ing Zeeman energy. The corresponding barrier, using theCoulomb liquid description,
can be estimated as dE � 2� − 2ud + u2d − 4.48 H K,where u2d = −u(r2d) is the
strength of the Coulomb interaction between next nearest neighbour monopoles.

Notice that the two dynamical processes have opposite dependence on the applied
field strength. Using spin ice parameters appropriate for Dy2Ti2O7, the second pro-
cess (pair assisted hopping) becomes energetically favoured with respect to the first
one for H � 0.5 Tesla. When H = 0.6 Tesla (right panel in Fig. 7.24), the barrier
to pair assisted hopping is of the order of 2 K whereas the barrier to ordinary hop-
ping is approximately 3 K. In order to confirm our understanding of the slowing
down of the monopole hopping, we attempt to collapse the long time tails of the MC
simulations of DSI by rescaling time using the characteristic activated time scale
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Fig. 7.26 Collapse of the long-time decay of the monopole density (thick lines) and of the noncon-
tractible monopole density (thin lines) after rescaling the time axis by a factor exp(−2.4/T ). The
MC simulations are for L = 10 with H = 0.6 Tesla and T = 0.13, 0.15, and 0.18 K (red, blue, and
green curves, respectively). The good quality of the collapse indicates that the simulated systems
are large enough for the energy scale of 2.4 K not to exhibit appreciable system size dependence.
Reprinted figure from [41] with permission from PNAS

edE/T . For the target field H = 0.6 Tesla, we find a good collapse when we choose
dE = 2.4 K, in reasonable agreement with the estimated value for the pair assisted
hopping (Fig. 7.26). However, larger system sizes and longer simulation times are
required for a more discerning and conclusive comparison [41].

Summary and experiments
In summary, field quenches in spin ice offer a realisation of several paradigmatic con-
cepts in nonequilibrium dynamics: dimer adsorption, Coulombic reaction-diffusion
physics, andkinetically constrained slowdynamics. There is anunusually highdegree
of tunability, as one is able to control, say, the time scale of the elementary dynam-
ical move through a Zeeman energy barrier; or the dimensionality of the final state
(d = 2 kagome vs. d = 3 spin ice); or else the relative importance of dimer desorp-
tion compared with Coulomb interactions between the monomers.

Given the availability of a range of experimental probes for magnetic systems
and the ability to apply time dependent fields of the strength required for spin ice
materials, one can expect that it will be possible to study some of these out of
equilibrium phenomena experimentally in the near future. (For a discussion of the
difference between sudden quenches and fast but continuous field ramps, see for
instance [41].)

A range of experimental results on the behaviour of these systems far from equi-
librium is already available [40, 42–45, 52–55, 73]. However, these results are not
straightforwardly connected to the physics of thermal or field quenches and further
theoretical modelling is needed to interpret them.
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Amongst other phenomena, it is interesting to point out an intriguing interplay
between magnetic and thermal degrees of freedom leading to magnetic deflagration
effects [40, 43, 44, 54, 73].
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Chapter 8
Experimental Observation of Magnetic
Monopoles in Spin Ice

Steven T. Bramwell and T. Fennell

Abstract In spin ice, the model of magnetic monopoles arises as a transformation
of the dipolar spin ice Hamiltonian developed for materials such as Dy2Ti2O7 and
Ho2Ti2O7. The treatment of spin ice in terms of an effective theory of emergent
monopoles presents both theoretical and experimental challenges. In this chapter
we give ‘monopole theory’ a precise definition which allows us to critically assess
the extent to which magnetic monopoles have been observed in experiment. We
start by answering some basic questions: what magnetic monopoles are, whether or
not they are quasiparticles, to what extent they form a ‘magnetic electrolyte’ and
what it means to observe them. We then introduce the main experimental techniques
and their relation with the monopole theory, before comparing experimental results
on the canonical spin ices Ho2Ti2O7 and Dy2Ti2O7 with theoretical expectations.
We conclude with some comments on different viewpoints on magnetic monopoles,
different definitions and disagreements in the literature. Our main conclusion is that
the monopole theory is strongly supported by experiment. The Chapter is organised
as follows:

8.1 Introduction What are magnetic monopoles in spin ice? Magnetic monopoles
as quasiparticles. Confirmation or falsification of monopole theory. Spin ice as a
magnetic electrolyte. Direct observation of magnetic monopoles.
8.2 Quantities available to experiment Equilibrium thermodynamics. Linear
response and non-equlibrium thermodynamics.
8.3 Experiments in weak applied fields Magnetisation correlations measured by
neutron scattering. Specific heat. dc-Susceptibility. ac-Susceptibility. Summary: suc-
cess and failures of the monopole theory in the weak field regime.
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8.4Experiments in strong applied fieldsMonopole condensationwith applied field
along [111]. Strong field correlations. Strong field sweeps and quenches.
8.5Monopole derived properties Thermal Conductivity. Field distribution at point
probes. Dielectric response.
8.6Future directions formonopole observationPlasmas. Phonons.Newmaterials.
Quantum spin ice.
8.7 Conclusions Different viewpoints. Definitions and disagreements. Final word.

8.1 Introduction

8.1.1 What Are Magnetic Monopoles in Spin Ice?

The classical spin ice materials Ho2Ti2O7 and Dy2Ti2O7 are generally discussed
in terms of three model spin Hamiltonians. These are valid at low temperature,
where crystal field terms other than the lowest doublet can be neglected. In order
of increasing complexity the three models are the near neighbour spin ice model
(NNSI) [1, 2], the standard dipolar spin ice model (s-DSM) [3] and the generalised
dipolar spin ice model (g-DSM) [4]. NNSI explains spin ice’s entropy and general
behaviour, but fails to fit properties in fine detail [5]. The s-DSMwas originally used
to explain the heat capacity and neutron scattering of Ho2Ti2O7 [6] and contains only
the dipolar interaction and competing first neighbour exchange. It goes beyondNNSI
by adding the long range part of the dipole-dipole interaction between spins [5]. The
g-DSM, which contains further neighbour exchange constants, was a refinement of
the s-DSM that was introduced [4] to account for the detailed spatial correlations
between spins, as measured by neutron scattering on Dy2Ti2O7 [7].

The long ranged dipole-dipole interaction has been shown to be largely self-
screened in the spin ice state, [8, 9], hence the success of NNSI, but it remains
important in excited states. These states involve local “three-in–one-out/three-out–
one-in’ or ‘four-in/four-out’ spin configurations that are analogous towater ice’s ionic
defects H2+zOz+ and OHz−

2−z (here z = 1, 2 respectively). The magnetic monopole
model of Castelnovo, Moessner and Sondhi (CMS) [10] is an approximate transfor-
mation of the s-DSM Hamiltonian that accounts (to within quadrupolar terms) for
the remaining dipole-dipole interaction in the excited states. Notably, this turns out
to take the form of a magnetostatic Coulomb interaction between the ‘ionic’ defects.

The monopole model essentially reduces the s-DSM to NNSI, but with defects
that interact like magnetic monopoles [11, 12]. Its introduction marked a return to
describing spin ice in terms of the water ice analogy, and connected with the work of
Ryzhkin [13], who, by directly exploiting the ice analogy, and performing a coarse
grained integration of dipolar fields, had inferred the charge-like properties of the
defects. Indeed, Ryzhkin has stressed that spin ice and water ice have (essentially)
the same properties because they share the same Hamiltonian, which for spin ice
is the s-DSM [3], while for water ice it is a pseudo-spin Hamiltonian, developed
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a number of years earlier [14]. As we will discuss below, the fact that the ‘DSM’
approach and the ‘water ice’ approach to the spin ice materials lead to consistent
descriptions, confirms the robust nature of the monopole picture.

The close relationship of NNSI to the monopole model invites a very simple for-
mulation of monopole dynamics. Thus, making the simplest possible assumption,
that the spin dynamics of NNSI are spin flip, or Glauber-type [15] dynamics, shows
very clearly that magnetic monopoles in spin ice behave just like idealised ionic
defects in water ice in the sense that they are created as pairs, can separate (‘fraction-
alise’ [10, 16]), diffuse by ‘hopping’ from site to site and recombine and annihilate -
or more generally, they obey quasi-chemical kinetics. Free monopoles are therefore
long-lived in the sense that it may take many diffusive hops before the monopole is
ultimately annihilated.

A picture of ‘NNSI spins plus monopole interactions’ creates the ‘magnetolyte’
model of Jaubert and Holdsworth [11, 12], used in their numerical simulations. This
is entirely equivalent to the idealised water ice model and may be described as a gen-
eralised Coulomb gas in the grand-canonical ensemble. Here the word ‘generalised’
refers to the presence of the transverse part of the magnetization field as illustrated
in Fig. 8.1. Thus, the solution of the magnetic Gauss’ law ∇ · H = ρm ≡ −∇ · M
generates a magnetisation fieldM(r, t), which has both transverse (divergence-free)
and longitudinal (divergence-full) components (for the equivalent electrical analysis
see [17]). The monopoles are sources and sinks of the longitudinal field, while the
monopole vacuum is described by the transverse field, as discussed further below.
In Ryzhkin’s theory the coarse-grained magnetization field M(r, t) is an auxiliary
variable which coexists and interacts with the monopole density field n±(r, t) [13,
18].1 Properties of the monopole gas arise from the interaction of these two fields.

What we will call ‘monopole theory’ therefore incorporates two statements:

I Spin ice may be represented as a generalised monopole gas in the grand canonical
ensemble.

II Monopoles obey quasi-chemical kinetics and diffusion.

Here statement (I) has been justified theoretically [10, 13], and if taken by itself,
offers some advantages over the microscopic approach of s-DSM. For example, it
allows an analytical approach to the heat capacity that could previously be obtained
only by numerical simulation [19]. Statement II on the other hand is a very soundly
based hypothesis [13, 18] that provides a means to understand the collective spin
dynamics of spin ice. The appeal of this is that it allows one to go far beyond theDSM
approach, to treat the spin dynamics of a complex, long range interacting system.
A key role of experiment is to test the hypothesis (II) and identify the nature of the
diffusion—for example, Brownian or anomalous, with single or multiple relaxation
times—and to determine how the monopole mobility depends on temperature or
field.

We would like to emphasize that, in both theory and experiment, the monopole
picture not only offers a simplification and solves a few problems, but it also sets

1 Strictly the auxiliary variable is Ω(r, t) = M(r, t)/Q, the configuration vector [13].
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Fig. 8.1 Schematic of the coarse grained magnetisation field in spin ice. The local magnetisation
M(r, t) can be Helmholtz decomposed into a divergence-free part (reflected here by closed loops)
and a divergence-full part (reflected here by sources and sinks). The monopole vacuum is entirely
divergence-free, while the thermally excited monopoles are the ‘quanta’ of the effective magnetic
charge density, ρm = −∇ · M(r). The yellow circle represents a Gaussian surface drawn around
a single monopole: the monopolar field crossing the surface defines the monopole. Well within
the surface there are only spins and the concept of a monopole as an effective point source of the
Coulomb field loses its precise meaning. Hence ‘direct’ observation of a monopole necessarily
entails the study of magnetisation textures, M(r, t)

new problems to be solved. The reason is that the behaviour of a Coulomb gas in the
grand canonical ensemble is anything but simple, as two hundred years of research
on electrolytes and water ice [20] has most vividly illustrated [21–25]. While much
progress canbemadeby adopting textbook chemical thermodynamics of electrolytes,
such as Debye-Hückel theory [21], the general statistical mechanics of Coulomb
gases such as electrolytes remains very subtle indeed—and the ‘magnetolyte’ in
spin ice is no exception. Nevertheless, this difficulty is really what drives interest in
magnetic monopoles in spin ice. The monopole concept is a rich source of new and
interesting theoretical and experimental problems.

8.1.2 Magnetic Monopoles as Quasiparticles

Both the ionic defects of water ice and the magnetic monopoles in spin ice bear close
analogy to the quasiparticles of condensed matter, such as quasi-electrons and holes
in intrinsic semiconductors. Like electrons and holes, they are thermally excited from
a ‘quasiparticle vacuum’ according to the quasi-chemical reaction scheme:

(0) = (+−) = (+) + (−) (8.1)
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(here and henceforth, unless otherwise stated, we simplify the discussion by consid-
ering single charge monopoles only). However, in contrast to the case of electrons
and holes, it does not make much sense to talk of an energy-momentum dispersion
relation ε(p) for magnetic monopoles. Our previous statements can alternatively be
expressed by saying that the monopole gas is a shorthand for static excited state con-
figurations, and the assumption II above is that transitions between these states can
be represented as a monopole diffusion. Hence monopoles are quasiparticles only in
the general sense that they reduce the problem of treating a strongly-interacting spin
system to that of treating a weakly interacting gas of particle-like configurations [13].
They are not derived from an underlying dynamical theory, in contrast to electrons
and holes.

What does it mean to ‘detect’ a quasiparticle? It is immediately apparent that there
is a difference between detecting particles and detecting quasiparticles. High energy
physicists have invested great efforts in obtaining images of individual particle decay
processes, which may be interpreted as clear proof of the existence and properties of
the particle in question [26]. This approach is not generally possible in condensed
matter (except perhaps for some surface-dwelling examples such as skyrmions in
thin films [27]), but we nonetheless accept the existence of a variety of quasipar-
ticles, including phonons, magnons and spinons, Landau quasiparticles and heavy
fermions [28], fractional quasiparticles in the fractional quantum Hall effect [29],
and an array of boojums, hedgehogs and monopoles in 3He [30].

Let us consider one example from the above list, in order to examine the question
of how to detect a quasiparticle. It is widely accepted that conduction in heavy
fermionmetals ismediated by a quasiparticlewith electron-like properties but greatly
enhanced mass [28]. Of course these heavy fermions do not exist outside the material
in question—they cannot be liberated from the sample and probed directly—because
they are actually formed from the underlying valence and conduction electrons and
their interactions. Experimental evidence in the form of effective electron masses
derived from conductivity and de Haas-van Alphen effect measurements, as well as
thermodynamic properties in accord with a gas of free (heavy) fermions, all in accord
with theory, are sufficient for us to accept and use the concept of the heavy fermion.

Spin ice is accessible by many probes and the approach to detecting monopoles
is no different—comparison of theory and experiment can validate a picture of
monopole quasiparticles based on properties that are sensitive to the population,
dynamics and interactions of monopoles. However, it is certainly the case that some
experiments isolate and expose themonopoles and their propertiesmore directly than
others. Below we review which properties of spin ice, thus far, contain distinctive
signatures of the monopoles, and how they support (or otherwise) the theory.

8.1.3 Confirmation or Falsification of Monopole Theory

As we have defined it, ‘monopole theory’ is seen to be an idealised statistical and
kinetic theory, developed with respect to the spin ice materials like Ho2Ti2O7 and
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Dy2Ti2O7. The question is, how far is this ideal monopole theory realised in the spin
ice materials? It is convenient to consider this question with respect to the statements
I and II above.

Regarding statement I, the static monopole model is not an exact transformation
of the s-DSM, but it is nearly so, and any limitations of the monopole model are
essentially limitations of s-DSMaswell. In the strictest sense, the s-DSMhas already
been falsified as a model for Dy2Ti2O7 through the introduction of the g-DSM [4].
However the s-DSM is nevertheless widely accepted to form the basic description of
the static magnetic behaviour of dipolar spin ice, based on the analysis of numerous
experimental properties [31]. The monopole model must therefore be accepted as a
valid approximate description of spin ice, at the same level as the s-DSM, and the
question of falsifying statement I does not arise.Departures from themonopolemodel
are most likely to be observed at low fields and low temperatures where the extra
terms of the g-DSMmodel become relevant. For example, one established departure
from the monopole model is the finite bandwidth of the manifold of Pauling states,
as exposed by neutron scattering below 1 K [4]. Although the s-DSM has a finite
bandwidth [8, 9], only the g-DSM captures the effect quantitatively. Possibly the
extra terms of the g-DSM also modify the Coulomb interaction between magnetic
monopoles, but even if such corrections are observed, it is not likely that themonopole
picture will have to be completely abandoned.

Statement II, as mentioned above, is equivalent to assuming that the basic dynam-
ics of spin ice are simple spin flips, i.e. Glauber-type [15] dynamics. Such spin flips
create and annihilate monopoles and cause them to diffuse. This statement could be
falsified in principle, for example, if it were discovered that the dominant spin dynam-
ics in the real materials were propagating (e.g. spin wave—like) modes, rather than
diffusive spin flips. However it seems very hard to imagine that spin flip dynamics
are completely irrelevant to the classical spin ice materials, which are close to being
ideal Ising-like model magnets [31]. Once again, even if corrections to a diffusion
picture are found, it seems unlikely that the monopole picture will have to be com-
pletely abandoned. Much more likely is that the monopole model will survive as the
basic, if approximate, starting model for the discussion of collective spin dynamics
in dipolar spin ice.

For these reasons, it is probably unhelpful to talk of the monopole theory
being ‘correct’ or ‘incorrect’ as regards a theoretical description of Dy2Ti2O7 and
Ho2Ti2O7. The question is really to what extent can the ideal monopole theory be
used immediately to simplify and understand the complex magnetic properties of
these strongly interacting materials, and what are the modifications to monopole
theory (and their meaning) that are required for more precise descriptions?

8.1.4 Spin Ice as a Magnetic Electrolyte

To conclude this section it is worth identifying towhat extent spin ice can be treated as
a magnetic electrolyte or ‘magnetolyte’ of single and double charge monopoles. The
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analogy is with a ‘weak electrolyte’ in which free charges coexist with undissociated
molecules: for example acetic acid orwater. Note that in electrolyte terminology [21],
weak/strong refer to degree of dissociation, not to level of dilution. They should not
be confused with ‘dilute/concentrated’ electrolytes (respectively).

As in the case of ions in solution, magnetic monopoles in spin ice are localised,
static, Coulombic quasiparticles on which a diffusion theory is based. The theory
is most useful when departures from ideal gas behaviour are relatively small and
properties can be summarised by an activity coefficient γ 2 and mesoscopic ionic
mobilities u±.3 This is indeed the case inmonopole theory. However there are several
differences.

(1) An ion in solution typically carries a solvent cloud and is considered to reside
in a polarisable liquid medium. There is no analogue of either property in the
spin ice magnetolyte, which is analogous to an idealised lattice electrolyte, with
no solvent or liquid mechanical properties. The ‘vacuum’ in spin ice can be
locally polarised (magnetised [13]) and is treated as a divergence-free field. In
contrast, in a typical weak electrolyte, the vacuum state is treated as an (possibly
non-) ideal gas of molecules embedded in a polarisable medium, described by
an effective dielectric constant. In the earlier discussion we distinguished these
two idealised cases by referring to the monopole gas as a ‘generalised’ Coulomb
gas.

(2) No real electrolyte can be perfectly charge symmetric but spin ice presents the
contrary situation: it is a perfectly symmetric Coulomb gas in which the charges
and mobilities of positive and negative monopoles are equal and opposite:
Q± = ±Q and u± = ±u. The positive-negative charge symmetry is ‘protected’
by symmetry and topology. Firstly, it is protected by time reversal-symmetry
because the spins are axial vectors and if all are reversed, the resulting state must
be equivalent in its physical properties to the initial one. It is further protected by
topology because the monopoles are topological defects caused by symmetric
fractionalisation of dipoles: so local perturbations cannot alter the initial sym-
metry of the positive and negative charges. Spin ice is remarkable in presenting
the only known laboratory example of a perfectly symmetric Coulomb gas.

(3) In the spin icemagnetolyte, conduction is accompanied bymagnetisation [13], in
the sameway that the celebrated ‘Grotthusmechanism’ [32] leads to polarisation
in protonic conductors. However this mechanism is never exclusively realised
in protonic systems. Even in water ice [20], so-called D/L defects remove the
polarisation and allow normal conduction of ionic defects, for example round a
closed loop. There are no analogous defects in spin ice and hence spin ice cannot
sustain a direct current round a loop. The expression of this in Ryzhkin’s theory
is that the magnetic current is ∂M/∂t , driven by the fieldH − M/χ . The system

2 In chemical thermodynamics, ideal solution equations involving the concentration ormole fraction
x of a species, are applied to non-ideal solutions by replacing the mole fraction with activity a. The
activity coefficient is defined as γ = a/x . Note that γ is always precisely defined and measurable:
the theoretical challenge is to calculate it.
3 Defined here as ratio of monopole drift velocity to local (H-) field at zero concentration gradient.
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thus reaches equilibrium withM = χH and zero magnetic current, even though
the monopole conductivity κ and mobility u both remain finite.

(4) Ions in solution can be transformed to other particles, for example by electroly-
sis, in accord with the laws of mass, charge and particle conservation. There is
essentially no analogy of this for magnetic monopoles, although certain conser-
vation laws do apply under all circumstances (for example the total monopole
charge is zero).

Despite these differences, as explained below, there are many similarities between
the properties of the spin ice magnetolyte and those of a simple weak electrolyte,
and many instances where electrolyte theory may be applied to spin ice with only
small modifications.

8.1.5 Direct Observation of Magnetic Monopoles

The question might reasonably be asked, is it possible to directly observe a magnetic
monopole? This question gets to the heart of what magnetic monopoles really are. As
we have seen, they are local spin configurations that interact like monopoles when
viewed over extended length scales. Considering aGaussian surface drawn in a region
of spin ice, the net magnetic charge density ρm ≡ −∇ · Mwithin the surface may be
found by counting the number of positive and negative monopoles within, taking the
difference, and multiplying by the charge: ρm = Q(N+ − N−). What makes spin ice
materials different to other magnetic materials in this regard is that the the effective
magnetic charge is discretised—one might even say ‘quantised’—and hence the fol-
lowing description of amagnetic monopole is essentially an accurate one: amagnetic
monopole is a (non-universal4) quantum of effective magnetic charge [33]. However,
within the Gaussian surface there is nothing other than certain spin configurations,
the existence of which is not in question. From this one can see that even a single
monopole can only be ‘observed’ by means of its associated Gauss’ law and the
coarse grained magnetisation texture M(r, t) that it creates. This is illustrated in
Fig. 8.1.

At present there are no probes that allow such direct observation of a single
monopole: the thermally averaged properties of M(r, t) are the closest one can get.
This makes Ryzhkin’s theory [13] and its extensions [18, 34, 35], where the basic
variables are M(r, t) and n±(r, t), very attractive. Monopole properties (n±(r, t),
Q, μ) influence the magnetisation (M(r, t)), and monopoles are directly observable
in this sense. From the above argument, we would say that strictly speaking, there
can be no other sense in which magnetic monopoles are directly observable. For this
reason, in Sect. 8.2 we treat the question of magnetic response in some detail.

4 The ‘quantum’of charge ismaterial-specific because it depends on the single-ionmagneticmoment
and lattice spacing of the spin ice under study [10].
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Table 8.1 Key parameters and variables in monopole theory: a, Q are microscopic parameters,
μ, n are thermodynamic variables and n(r, t) and M(r, t) are mesoscopic variables. See footnote
1 for definition of the configuration vector

Symbol Meaning Relations

a Diamond lattice parameter a = √
3/16 × cubic lattice

parameter

Q Monopole charge Q = 2 × rare earth moment/a

μ Monopole chemical potential −μ =
2Jeff + √

2C(4
√
6 − 3)/6π

C = Curie constant.

Jeff = Jnn + Dnn [5]

n Equilibrium monopole density n = N/V = 2N±/V

n±(r, t) Local densities

M (r,t) Local magnetisation M = Q × configuration vector

8.2 Quantities Available to Experiment

In this section, we discuss the main quantities available to experiment in the classical
dipolar spin ice materials (Ho2Ti2O7, Dy2Ti2O7 etc.) and identify how these may be
used to probe the properties ofmagneticmonopoles.We focus attention on properties
in weak applied field, returning to the strong field case later. For ease of reference
we list some important parameters of monopole theory in Table 8.1.

8.2.1 Equilibrium Thermodynamics

In the simplest case, and neglecting boundary effects, the thermodynamic proper-
ties of a magnetic material are summarised by F = F(T,M) or G = G(T,H) (in
a familiar notation). That is, there are two independent thermodynamic variables.
The monopole model adds a third thermodynamic variable, the monopole number
N = N+ + N− = 2N± or monopole density n = N/V , conjugate to the monopole
chemical potential μ. Although the chemical potential μ, approximates a material
constant in zero and weak fields for any given spin ice material (see Chap. 7), it
remains an independent variable in the monopole theory.5 This allows the monopole
theory to describe a whole class of magnetic materials—the classical dipolar spin
ices [5].

Consider the case of zero magnetisation (or zero field). In theory, the specific heat
and (isothermal) susceptibility need to be written as functions of two variables, for

5 In principle, it is weakly temperature dependent as a result of thermal expansion, but high preci-
sion neutron Larmor diffraction experiments cannot resolve any thermal expansion in the relevant
temperature range for either Dy2Ti2O7 or Ho2Ti2O7 [36].

http://dx.doi.org/10.1007/978-3-030-70860-3_7
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example c(μ, T ) and χ(μ, T ) respectively. However, in the low temperature limit,
the (isothermal) susceptibility χ of the monopole model turns out to be independent
of μ [13], although it still depends on the magnetic charge Q. In spin language the
low-temperature susceptibility of the monopole model is twice the Curie susceptibil-
ity χ = 2χC and the product χT/C (whereC is the Curie constant) is approximately
temperature independent, adopting its zero temperature value of 2.6 Hence the equi-
librium susceptibility at low temperature is not a sensitive signature of magnetic
monopoles. At higher temperature the susceptibility evolves back towards the Curie
susceptibility and this temperature variation does depend on the monopole chemical
potential μ [38].

In contrast, the zero field specific heat c(μ, T ) provides a very strong signa-
ture of monopole interactions, as the internal energy is a function of the number
of excited monopoles and their Coulombic interaction energy. Following electrolyte
theory [21], the quantity that controls the specific heat is an effective chemical poten-
tial:

μeff = μ + kT ln γ (n, T ), (8.2)

where γ is the activity coefficient, which here accounts for the screened Coulomb
energy of the monopole gas. In the limit of small n/T , the activity coefficient γ

may be directly calculated by the ‘extended’ Debye-Hückel method [21], in which
it becomes a function of Q, n, T and a. For a given spin ice material, fitting specific
heat to Debye–Hückel theory gives access to the monopole density as a function of
temperature, n(T ). In general, good agreement between experimental specific heat
and Debye–Hückel theory can be obtained, as discussed further below (8.3.2) and in
Chap. 7.

It should be noted that boundary (demagnetising) effects are very important in
spin ice materials [38, 39], particularly in the usual case that the spin ice sample
forms a simply connected domain—let us assume an ellipsoidal shape for simplicity.
The bulk magnetic dipole moment and hence the magnetization M, is dependent
upon the surface magnetic charge (or monopole) density, which at equilibrium in the
grand canonical Coulomb gas, is independent of the bulk monopole density to low
order in field. Therefore, at weak fields, the sample may be magnetised at constant
monopole density.

8.2.2 Linear Response and Non-equilibrium
Thermodynamics

Linear response theory [40, 41] formulates the near-to equilibrium response of a
magnetic system in terms of position r, wave vector q, time t , and frequency ω.

6 This behaviour is of interest for another reason: it is a signature of ‘topological sector fluctuations’
in a harmonic field [37].

http://dx.doi.org/10.1007/978-3-030-70860-3_7
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Table 8.2 Relationship among response functions and experimental quantities (neglecting cor-
rections from form factor and demagnetising factor). Note that all S, R, χ are really second-rank
tensors e.g. Sαβ with α, β = x, y, z, but the superscripts here are omitted for clarity. It should also
be noted that the wavevector q here is the wavevector that enters the Fourier description of crystal
properties. Because of the periodic crystal symmetry, properties are invariant under the transforma-
tion q + GwhereG is a reciprocal lattice vector. For example a general component of the scattering
function Sαβ(q) is invariant in this way. Neutron scattering gives a particular way of observing the
scattering function in terms of the scattering vector Q = q + G. It projects out the components
of the scattering function that are perpendicular to Q by multiplying by the transverse projection
operator δαβ − Q̂α Q̂β

Response function Symbol Technique Relations for
�ω � kT

Correlation function S(q, ω) Neutron scattering

S(q, t) Neutron spin echo

S(q) Neutron static approx. S(q) = S(q, t = 0)

S(q) ≈ ∫
S(q, ω)dω

Relaxation function R(q, t) T R(q, t) ∼ S(q, t)

R(t) dc-magnetization R(t) = R(q = 0, t)

Susceptibility χ(q, t) χ(q, t) ∼ ∂R(q, t)/∂t

χ(t) χ(t) = χ(q = 0, t)

χ(t) ∼ ∂R(t)/∂t

χ(q, ω) T Imχ(q, ω) =
S(q, ω)

χ(ω) ac-susceptibillity χ(ω) = χ(q = 0, ω)

χ(q) χ(q) = χ(q, ω = 0)

Tχ(q) ∼ S(q)

χ(q) ∼ R(q, t = 0)

Generalized susceptibilities χ , relaxation functions R, or correlation functions S7

relate the local, time dependent magnetisation to a local, time dependent applied
field. Given say χ(q, ω), all the other functions (χ, R, S) can be derived by stan-
dard transformations. Generalized susceptibility is therefore a very powerful tool for
comparing experiments on a magnetic system.

Table 8.2 gives a list of which response functions are accessible to which probes.
Neutron scattering is, in principle, the preeminent probe for model magnets, as it
can measure the whole response function. However, in spin ice the dynamics are
so slow that this largely removes the possibility of using neutron scattering to mea-
sure dynamics. An exception is neutron spin echo on Ho2Ti2O7, which can just
about resolve some spin dynamics in the monopole regime [42, 43]. Setting this
aside, to a first approximation, we must be content to use neutron scattering to mea-
sure χ(q, ω = 0), which may be derived from the diffuse scattering intensity in

7 Unfortunately both entropy and correlation function are invariably denoted by S, the context
should make clear which we are referring to.
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the static approximation [40], ac-susceptometry to measure χ(q = 0, ω) and dc-
magnetometry to measure R(q = 0, t) (proportional to the time dependent magneti-
sation, following sudden field removal or application). This limitation makes a clean
break between ‘static’ properties like χ(q) and “dynamic” ones like χ(ω).

In monopole theory, at fixed temperatures, an extension of the above thermody-
namic considerations shows that there are two independent local variables, M(r, t)
and n(r, t) [18]. However, because the monopole density is a scalar it does not cou-
ple to the applied field to low order, near to equilibrium, and the monopole density
may be treated as a constant (although this breaks down for the Wien effect, dis-
cussed below). The theory of Ryzhkin [18] calculates the generalised susceptibility
of the monopole gas and expresses it in terms of monopole transport parameters.
This analytical theory of diffusion and drift is an extension (due to Jaccard in the
context of ice physics [44]) to the macroscopic theory of transport in electrolytes
(Nernst-Planck-Poisson theory) or semiconductors (Van Roosbroeck theory [45]),
and is valid on long length scales only. The theory has been extended to treat far
from equilibrium and nonlinear response in Ref. [35]. This response, the second
Wien effect, is a universal property of weak electrolytes in the dilute regime (here
low temperature). In spin ice it takes the form of a transient, field dependent increase
in monopole density in response to an applied dc-field. The ac-response becomes
more complex: for example the variation of monopole density doubles the frequency
of an applied oscillating field [35].

In experiment, only the magnetisation can be measured directly, the monopole
density remaining a ‘hidden’ variable. Bearing in mind the above discussion, there
are essentially three available measurements: (1) measurements of χ(q) and hence
correlations in M(q), (2) measurement of M(t) and (3) measurements of M(ω).

The wavevector dependent magnetisation, M(q), accessible through its correla-
tions via the neutron scattering S(q), contains both longitudinal (to q) and transverse
contributions, as expressed in the susceptibility tensor χαβ(q). The magnetisation in
the monopole ‘vacuum’ is entirely transverse (divergence free), while the monopole
contribution is entirely longitudinal (irrotational). Polarised neutron scattering mea-
surements of Sαβ(q) are able to separate the longitudinal and transverse components
and provide information on both the monopole vacuum, via the transverse corre-
lations, and the monopole distribution itself, via the longitudinal correlations. The
latter provides direct spatial imaging of magnetic monopole correlations in spin ice.
In theory it allows direct access to the monopole diffusion length ldiff , closely related
to the Debye (screening) length (lD) of the monopole gas [18].

The time and frequency dependent magnetisations, M(t) and M(ω), are directly
accessible in dc-and ac-magetization measurements, respectively, giving access to
the relaxation function R(t) and the dynamical susceptibility χ(ω). In contrast to the
equilibrium susceptibility, these properties provide a sensitive test of the monopole
theory. Detailed predictions [13] in the linear approximation are summarised in
Table 8.3. Referring to the table, themain quantity that can be extracted by comparing
theorywith experiment (or with numerical simulation of the s-DSM) is themonopole
mobility u, or equivalently, the diffusion constant D or monopole hop-rate ν0(T ).
The nonlinear response (Wien effect) that develops at low temperature additionally
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Table 8.3 Results of the linear theory [13], for bulk properties

Symbol Meaning Relations

J Magnetic current density J = ∂M/∂t

Equation of motion J = κ(H − M/χ)

χ Isothermal susceptibility χ(T → 0) = 2C/T = Q2/�

(� defined in [13])

κ Monopole conductivity κ = μ0Qun

u Monopole mobility u = DQ/kT

D Diffusion constant D = 4a2ν0/27 [19]

ν0(T ) Monopole hop rate

ν Magnetic relaxation rate ν = κ/χ

Table 8.4 Relationship among response functions and experimental quantities

Response function Monopole property Measured Derived

S⊥(q) Vacuum correlations

S‖(q) Monopole correlations ldiff ∼ a/
√
n n(T )

cμ Screening energy μeff = μ + kT ln γ n(T )

R(t), χ(ω) Ohmic conductivity κ/χT = μ0nuQ/χT u(T )

→ D(T ), ν0(T )

(Nonlinear response) Wien effect, screening,
pairwise Coulomb
interaction

κ0, γ Q

provides direct access to the monopole charge Q and directly exposes the Coulomb
interaction between magnetic monopoles [35].

Summary of magnetic response

Table 8.4 summarises the weak field experimental properties of spin ice, within the
monopole theory. There are four experimental properties that probe the monopoles
directly: the specific heat, the wavevector dependent susceptibility, and the time
and frequency dependent magnetisations. The weak-field magnetic response of the
monopole gas is formulated in [13, 18, 19, 34, 35]. The table summarises which
monopole properties can be extracted, or verified, by each of these measurements.

8.3 Experiments in Weak Applied Fields

In this section we follow Table 8.4 closely, to examine how the direct predictions of
monopole theory are born out in experiment.
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8.3.1 Magnetisation Correlations Measured by Neutron
Scattering

As discussed above, neutron scattering studies of spin ices produce S(q) ∼ Tχ(q),
which provides information about magnetization correlations underlying the
monopole theory that are static on the timescale it takes the neutron to pass through
the sample. Early diffuse scattering data [6] were used to parameterize the s-DSM
and so provide indirect support for the monopole model, insofar as these two models
are nearly equivalent. This is the case for Ho2Ti2O7, but for Dy2Ti2O7 the g-DSM
model with additional superexchange interactions was required [4, 7]. The effect on
the monopole theory of these additional interactions has not been established, and it
would be interesting to do so. There is no suggestion that they dramatically change
the Coulombic physics of spin ice, but by giving the spin ice states a finite band
width, they could in principle alter the interaction between monopoles, or control an
ultimate low temperature ground state which has still not been observed [3, 4, 46,
47, 49, 50].

Transverse versus longitudinal correlations

As already discussed in the caption of Table 8.2, magnetic neutron scattering obeys
the selection rule that the scattering function depends only on magnetisation com-
ponents perpendicular to the scattering vectorQ. As shown in Fig. 8.2, these visible
components may be parallel or perpendicular to the Fourier wavevector q in which
the properties of the periodic crystal system are analysed. This means that in the
first Brillouin zone, neutron scattering ‘sees’ correlations only in the transverse (to
q) magnetisation, M⊥, while in higher order zones, it additionally sees correlations
in the longitudinal magnetisation,M‖. Polarised neutron scattering may therefore be
used to distinguish the transverse and longitudinal magnetisation correlations.8

Analysis into transverse and longitudinal correlations in a sense ‘diagonalises’
the monopole theory. Thus, correlations in the vacuum state are dictated only by the
ice rules, which enforces the divergence-free condition on the local magnetisation
(for example if spins are regarded as link variables on a continuous magnetisation
flux). This means that the vacuum state is described only byM⊥. Monopoles, on the
other hand, are sources and sinks of magnetisation flux, so the magnetisation associ-
ated with them is entirely longitudinal, M‖ [51]. The energetic distinction between
the monopole vacuum and the excited monopole states therefore performs a kind
of ‘physical Helmholtz decomposition’ on the magnetisation field by energetically
separating the vector field M into its components M⊥ and M‖.

Neutron scattering can resolve the correlation functions based on M⊥ and M‖
respectively, and in this way it can distinguish vacuum correlations from monopole-
induced correlations of the magnetisation. Monopoles are thus ‘seen’ by neutrons
through the quasi-static divergence-full magnetisation correlations they induce, as in

8 If the incident neutron polarisation is perpendicular to the scattering plane then spin flip scattering
(which flips the neutron spin) isolates the in-plane component of the fluctuating magnetisation, as
in Fig. 8.2, while non-spin flip scattering isolates the out-of-plane component.
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Fig. 8.2 Neutron scattering ‘sees’ correlated magnetisation components perpendicular to the scat-
tering vector Q while physical properties are analysed in terms of the crystal wave vector q. The
figure shows the firstBrillouin zone (lower hexagon) and two secondBrillouin zones (upper and right
hexagons) for the [11̄0] plane of spin ice. An example ‘physical’ wavevector q (red) is translated
by ‘parallel transport’ from the origin (0, 0, 0) to the respective zone centres by means of recipro-
cal lattice vectors G (blue). Neutron scattering detects components perpendicular to the scattering
vectors (dashed black arrows). In the first zone only, the wave vectors Q and q are coincident
and neutron scattering measures transverse (to q) magnetisation components. In the (0, 0, 2) zone
(for example) the two wave vectors Q and q are nearly orthogonal and neutron scattering detects
longitudinal in-plane components. Note that out-of-plane components are always transverse to q
in this scattering plane geometry. The various components may be separated by polarised neutron
scattering

Fig. 8.1. It should be noted that neutrons do not directly excite or de-excite monopole
states as they do for say spinons in one dimensional magnets [52]. In the classical
spin ices, such direct processes are forbidden by the spin selection rule ΔS = ±1.

Structure of the monopole vacuum

In its simplest form, monopole theory predicts no correlations in the monopole vac-
uum state beyond those imposed by the ice rules, so the transverse correlations
should be featureless, or paramagnetic, in reciprocal space. The experimental data
forHo2Ti2O7, Fig. 8.3, shows that this is only approximately the case.While themea-
sured transverse correlation function S⊥(q) ∼ 〈M⊥(q)M⊥(−q)〉 has intensity across
the Brillouin zone, there is a fairly sharp dip at the zone centre, which indicates a
correction to monopole theory that has not yet been elucidated theoretically.
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Fig. 8.3 Transverse magnetisation correlations in Ho2Ti2O7 measured by polarised neutron scat-
tering in the static approximation [53]. The figure shows the [11̄0] plane of reciprocal space, with
yellow denoting relatively high scattered intensity and blue relatively low scattered intensity. The
scattered intensity measures components of the static correlation function Sαβ(q) projected onto the
plane perpendicular to the scattering vector, as in Fig. 8.2. Shown here is the out-of-plane scatter-
ing, which corresponds to non-spin-flip (NSF) scattering and correlations transverse to the physical
wave vector q. Each Brillouin zone centre is marked by a sharp ‘dip’ in intensity. Reprinted figure
from [53] with permission from AAAS

Monopole correlations

As shown in Fig. 8.2 the longitudinal correlation function S‖(q) ∼ 〈M‖(q)M‖(−q)〉
may be measured along a line in reciprocal space that runs perpendicular to the
scattering vector, such as (h, h, 2) close to (0, 0, 2). The observed scattering along
this line for Ho2Ti2O7 can be fitted to a Lorentzian function added to a wavevector-
independent (‘flat’ ) component [53]—see Fig. 8.4. Monopole theory predicts the
Lorentzian functionwith thewidth determined by themonopole diffusion length [18].
This allows a direct test of monopole theory as the diffusion length is related to
the monopole density. The diffusion length is predicted to go as ldiff ∼ 1/

√
n(T ),

which for Ho2Ti2O7 at high temperatures implies a temperature dependence of
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Fig. 8.4 Longitudinal correlations in Ho2Ti2O7 measured by polarised neutron scattering in the
static approximation. The plot shows scattered intensity versus wavevector q at different temper-
atures. The wavevectors are chosen to be nearly perpendicular to the scattering vector Q so that
longitudinal correlations are measured by isolating the in-plane component of the correlation func-
tion Sαβ(q) as in Fig. 8.2. Experimentally, this corresponds to spin flip scattering (see Fig. 8.5 for the
full scattering map). The data show a Lorentzian peak shape superimposed on a flat, temperature-
dependent component [53]. Reprinted figure from [53] with permission from AAAS

∼ exp (2 K/T ),9 in accord with experimental observations [53], at least down to
about 1.2 K.10

There are, however, three discrepancies with the theory that should be noted. First,
the flat component of the diffuse scattering is not predicted in current theory, yet its
temperature dependence suggests that it is another measure of the monopole den-
sity [53] (very recently this discrepancy has been resolved [54]). Second, the exper-
imental width at T > 1.5 K [53] is slightly smaller than the predicted width [55],
and third, the experimental width fails to diverge below 1 K as predicted theoreti-
cally [56].While there is currently no explanation of these discrepancies, they should
not necessarily be regarded as contrary to the monopole model. In particular, the the-
ory is developed at very long wavelength and does not take account of the lattice
structure of spin ice, yet for the relatively short diffusion lengths observed in experi-
ment, this must be accounted for. Also, below 1 K, the simple view of the monopole
gas as a Debye-Hückel gas starts to break down [35], and this is not accounted for in
the theory of magnetic correlations. For this reason, a more sophisticated theory that
accounts for the lattice structure (the ‘finite size’ of monopoles) and the complexities
of the Coulomb gas correlations at low temperature, would be desirable.

9 In Ho2Ti2O7 the chemical potential is μ/k = 5.7 K and the Coulomb energy per monopole
is 1.5 K; Debye-Hückel screening at high temperature lowers the effective chemical potential to
slightly less thanμeff/k = 5.7 − 1.5Kor approximately 4K—hence

√
n varieswith an exponential

amplitude of ∼ 2 K.
10 Note that in [53] the parameter ξice needs to be divided by 2π to get ldiff .
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Fig. 8.5 Pinch points measured in Ho2T i2O7 [53] and Dy2T i2O7 [56] using polarized neutron
scattering. Reprinted figure from [53] with permission from AAAS

Pinch points

The pinch point [57] is a distinctive bow-tie like form in the diffuse scattering inten-
sity, when measured or presented in a single plane. In essence it arises from viewing
a ‘mixture’ of transverse and longitudinal correlations, for example in an unpolarised
neutron scattering experiment, or via ‘spin flip’ scattering in the case of a polarised
experiment on spin ice [53, 58]. Because it is a very striking feature, it has become an
iconic signature of a ‘Coulomb phase’, or vacuum state from which effective mag-
neticmonopoles are the basic excitation. Pinch points inHo2Ti2O7 andDy2Ti2O7 are
illustrated in Fig. 8.5.

In general, pinch points arise from either ice rules, which lead to pseudo-dipolar
or power-law (1/r3) spin correlations, or directly from dipolar interactions in a
paramagnet [59]. Both mechanisms exclude magnetic charge density, the former
on all scales, and the latter on long scales only. In spin ice, both mechanisms are
simultaneously active: the divergence free condition is enforced at short scales by the
ice rules and reinforced at longer scales by the dipolar interaction (here expressed by
the monopole concept) [18, 60]. The different theoretical approaches [18, 60] show
that for a particular response function (magnetisation divided by applied field) there
should be a ‘gap’ between the longitudinal and transverse correlation functions at the
zone centre. However, such a gap cannot appear in experimental neutron scattering
and hence a mechanism must be invoked to remove it. One possible mechanism is
instrumental resolution, but this does not appear to explain observations on spin ice.
Further work is necessary to clarify the mechanism by which the gap is removed.

Historical observation of pinch points in spin ice

Pinch points were historically observed and discussed in the context of ice-rule ferro-
electrics [61–63]. Indeed, a theory based on ice rules and a non-divergent polarization
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field was developed, but the relevance of this work to spin ice was only rediscovered
later. In spin systems, the pinch point was first identified in Monte Carlo simulations
of the pyrochlore Heisenberg antiferromagnet [64], and in analytical calculations
for large-N spins on the pyrochlore lattice [65]. The dipolar form of the correlation
function was subsequently identified in dimer models on bipartite lattices [66] and
the Heisenberg pyrochlore antiferromagnet [67, 68], and then connected with spin
ice [9].

Given this, it was therefore somewhat surprising that no pinch points were visible
in either Ho2Ti2O7 or Dy2Ti2O7 when first probed by unpolarised neutron scat-
tering [6, 7]. Although the residual entropy suggested that the ice rules are obeyed
in both compounds [6, 69], it might be argued that the entropy confirms only the
shortest-range existenceof the ice rules, andnot their long-range coherence, forwhich
the observation of a pinch point is crucial. Eventually pinch points were unearthed
by polarized neutron scattering, confirming the power-law form of the spin correla-
tions. They are now known to exist in Ho2Ti2O7 [53, 58] and Dy2Ti2O7 [56, 70], see
Fig. 8.5. The reason they are not clearly visible by unpolarised neutron scattering
is that the zone centre ‘dip’ in the transverse correlation function (discussed above)
largely cancels the Lorentzian peak in the longitudinal one. The theoretical reason
for this has not yet been determined, but it goes beyond the equivalent monopole
models of [18, 60].

8.3.2 Specific Heat

Two results—the integration of the specific heat to obtain the value of Pauling
entropy [6, 69], and the recent report that this residual entropy may not persist
to the lowest temperatures [47] (but see [48])—bookend the study of the spin ice
specific heat. Before [71], and in between [72–79], the specific heat of Dy2Ti2O7

has been reported a number of times. The data in these reports have small quanti-
tative differences, but all have the same generic features. A large asymmetric peak
at T ∼ 1.1 K with (from low temperature upwards) a very steep rise, followed by
a long decaying tail. The peak is rather sharper than a Schottky anomaly, but is not
indicative of a thermodynamic phase transition.

The specific heat can be reproduced by the s-DSM, which implicitly contains the
energetic fluctuations represented by creation and annihilation of monopoles, but
one may ask if the monopole theory works at least equally well, is more compact
and improves understanding. In the case of the specific heat, if one treats only the
monopoles (i.e. ignoring the vacuum), textbook Debye-Hückel theory, as formulated
by CMS [19], is a very reasonable approximation to the specific heat, as first shown
by Morris et al. [72].

Standard Debye-Hückel theory can be significantly improved by accounting for
the vacuum and double charge monopoles, as explained in Chap. 7. One important
conclusion that comes out of the Debye-Hückel analysis is that the monopole gas
may be treated as nearly ideal in two regimes: first at low temperature, where the

http://dx.doi.org/10.1007/978-3-030-70860-3_7
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monopole density ρ is small, and second at high temperature, where 1/T is small.
The reason is that Debye-Hückel charge correlations depend on n/T . In the high
temperature regime, the dense monopole gas is actually very strongly screened, but
it approaches ideal behavior because T is large.

The inclusion of double charge monopoles into the Debye-Hückel theory [80]
has resulted in a very close agreement between theory and experiment. The general
success of the monopole model in describing the specific heat of spin ice materials
is a conspicuous triumph of the theory.

Modification of the chemical potential

An important property of the monopole gas is the chemical potential, which governs
the monopole population at a given temperature. In spin ices, the monopole chem-
ical potential has a unique value in each spin ice material, controlled by the lattice
parameter, size of the magnetic moment, and the relative strengths of their dipole and
exchange interactions (which control the energy of creation of a pair of monopoles).
It is not at all easy to modify in-situ, in a particular spin ice material, likely requiring
the application of enormously high pressure. However, it can be conveniently modi-
fied by chemical pressure, as was done by synthesis of the high pressure pyrochlore
phases Ho2Ge2O7 and Dy2Ge2O7. They have considerably smaller lattice parame-
ters than the titanates, which leads to stronger exchange interactions competing with
the dipolar interaction, resulting, at least in Dy2Ge2O7, in a much lower chemical
potential for monopole creation than the respective titanates. As such, they represent
magnetolytes with more strongly interacting monopoles, and this is manifested in
the heat capacity, which cannot be reproduced by simple Debye-Hückel theory, but
requires the addition of a Bjerrum term to account for the enhanced importance of
monopole dimers [81, 82]. The resultant modification analytically captures the heat
capacity of Dy2Ge2O7 and provides a neat explanation of the difference between the
two heat capacities, as shown in Fig. 8.6.

8.3.3 dc-Susceptibility

Asdiscussed above, thedc-susceptibilityχ = M/Hinternal, obtainedbymeasuring the
apparent susceptibility χa = M/Happlied and taking account of the demagnetisation
factor [38, 83–85], is not a direct signature of the monopoles. Nevertheless, the
temperature dependence of χ can be related to the monopole chemical potential,
with satisfactory results [38].

It is worth noting that the fact that the susceptibility χ = M/Hinternal is finite
immediately distinguishes spin ice from a true conductor of magnetic monopoles.
Thus, if the susceptibility depended only on free charges (monopoles), then the sur-
face charge would completely screen the applied field and the apparent susceptibility
χa = M/Happlied would be exactly equal to the reciprocal of the demagnetising factor
at all temperatures: χa = 1/D . The usual susceptibility χ = M/Hinternal would then
be infinite at all temperatures, like the divergent dielectric constant of an electrical
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Fig. 8.6 Specific heat of
Dy2Ge2O7 fitted to an
approximate Debye-Hückel
theory (full black line) [81].
Dashed line refers to an ideal
lattice gas. Inset compares
the specific heat of
Dy2Ge2O7 and Dy2Ti2O7.
Reprinted from [81] with
permission from Nature
Communications
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conductor. However, in spin ice, the susceptibility χ becomes finite once the vacuum
is taken into account, and χa is given by:

χ−1
a = χ−1 + D . (8.3)

A detailed theory of the screening of the applied fields by magnetic monopoles is
given in [34] (see also [39] for a detailed calculation of the anomalous demagneti-
sation factor).

8.3.4 ac-Susceptibility

The ac-susceptibility of Dy2Ti2O7 and Ho2Ti2O7 has been investigated a number
of times [38, 42, 43, 84–94], though most interest has been in Dy2Ti2O7. From an
experimental point of view, the susceptibility shows a frequency dependent peak in
χ ′′, which shifts to lower frequency at lower temperature. One way to present the
complicated behaviour of the ac-susceptibility has been to extract a characteristic
spin relaxation time, which is taken as τ = 1/2π fmax, where fmax is the frequency
at which the maximum of the peak in χ ′′ occurs for a particular temperature.11

As observed experimentally in Ho2Ti2O7 and Dy2Ti2O7, the magnetic relaxation
time has four thermal regimes, of which it is sensible to consider only three for
comparison with the monopole response functions: high temperatures (2 < T < 12

11 Note the different convention with respect to 2π in the works of Snyder et al. [86].



210 S. T. Bramwell and T. Fennell

K), in which the relaxation time is roughly temperature independent; intermediate
temperatures (0.6 < T < 2 K), in which the relaxation time is getting longer with
decreasing temperature; and low temperatures (T < 0.6 K), where the spins freeze
and the relaxation time becomes too long to measure in these experiments. The
distinction between these ranges has both a theoretical and experimental basis, as
explained below. The fourth regime is a thermally activated part at T > 12 K where
the activation energy corresponds roughly to the energy of the first crystal field level.
This part can be attributed to a phonon mediated or Orbach mechanism [95] and is
not relevant to monopole physics.

High temperatures: 2 < T � 12 K

In this region the average relaxation time is roughly temperature-independent [84].
In [42] for Ho2Ti2O7 and [86] for Dy2Ti2O7, it was argued that the temperature-
independence arose from spin tunnelling. By equating a tunnelling spin flip with a
monopole ‘hop’ in numerical simulations of both dipolar spin ice and a magnetic
Coulombgas, Jaubert andHoldsworth produced impressive support for themonopole
model [11, 12]. Specifically they reanalyzed the previously published χ(ω) data of
Snyder et al. [86], using their ‘magnetolyte’ model and assuming a temperature-
independent monopole hop rate. At sufficiently high temperature, the relaxation rate
is proportional to the monopole density, but there are corrections [11, 12] associated
with the Coulomb interaction. These corrections were discussed by CMS in the
context of Debye-Hückel theory [19].

In this regime, although themonopole density is large, the ratio n/T is sufficiently
small thatmonopole screening iswell accounted for byDebye-Hückel theory.Hence,
the monopole gas may be treated as dense, but weakly interacting. As in the case of
electrolytes [96], it is therefore appropriate to apply the usual drift-diffusion theory,
which in this case is Ryzhkin’s theory of monopole transport (originally derived
for the dilute limit). In Ryzhkin’s theory, the magnetic relaxation rate is simply the
monopole conductivity divided by the isothermal susceptibility: see Table 8.3.

Bovo et al. [94] applied Ryzhkin’s theory directly to the average relaxation rate
derived from fitting ac-susceptibility measurements to derive the temperature depen-
dence of the monopole mobility. This involved combining accurate experimental
measurements of themean relaxation time, the static susceptibility, and themonopole
density derived from fitting the heat capacity to Debye-Hückel theory. They thus
established experimentally that the monopole mobility u is inversely proportional to
temperature in the high temperature regime, as shown in Fig. 8.7. This conclusion is
consistent with a constant monopole hop rate and Brownian diffusion of monopoles
to give the Nernst-Einstein relation i.e. u = DQ/kT with temperature-independent
diffusion constant D.

The numerical simulations of Jaubert and Holdsworth are equivalent to the
Ryzhkin theory in the sense that they treat the long-range dipole interaction entirely
through magnetic monopoles, but they also differ in two ways: first, they take into
account the lattice nature of spin ice (as in extended Debye-Hückel theory), and
second, they assume a constant hop-rate for magnetic monopoles. In the experiment
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Fig. 8.7 Monopole mobility measured by ac-susceptibility measurements [94]. The left panel
shows fitted data. The right panel shows the measured monopole mobility (at several weak field
values) compared to predictions for a constant hop rate (red line). The inset shows the measured
diffusion constant. Reprinted from [94] with permission from Nature Communications

of Bovo et al., the constant hop rate at T ≥ 2 K is an experimental result rather than
a prior assumption.

In a related numerical approach Takatsu et al. [97] used single spin flip dynamics
to achieve close agreement with the experimental susceptibility while monitoring a
“conversion factor” betweenMonte Carlo time and real time. In the high temperature
regime (2 < T < 10 K in their work) this factor is again almost exactly temperature
independent. The question of the hop-rate at lower temperatures will be further
addressed below.

The consistency of these numerical and analytic approaches to the analysis of
the ac-susceptibility χ(ω) is excellent evidence for the robust and correct nature
of the monopole model. In Ryzhkin’s formulation the relaxation time depends on
three potentially temperature dependent factors: u(T ), χ(T ) and n(T ). Hence it is
somewhat fortuitous that a temperature-independent hop rate leads to a temperature-
independent relaxation time. Although they were ultimately correct, the inferences
of [42] and [88] (i.e. that spins flip by quantum tunnelling) cannot be fully justified
in the absence of the monopole model, since the relaxation implies nothing directly
about the spin flip processes. In this way we can see that the monopole model has,
at the very least, enabled the experimental observation of spin tunnelling to be put
on a much firmer experimental basis.

In summary, the simplest numerical or analytical treatment of monopole dynam-
ics employs a single, temperature independent hop rate, and already matches the
measured relaxation time extremely well at T ≥ 2 K in Dy2Ti2O7. In Ho2Ti2O7, the
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relaxation is much faster than for Dy2Ti2O7 in the high temperature regime [42], and
similar analysis has not proved feasible.

Intermediate temperatures: 0.6 K < T < 2 K

In the intermediate temperature range, the specific heat peaks and monopole screen-
ing becomes strong in the sense that Debye-Hückel theory can no longer describe it.
As a consequence, the simple linear theory of Ryzhkin should only be applied with
caution in this regime. Indeed, the linear variation of magnetic relaxation rate with
monopole density observed at higher temperatures breaks down [93]. However, an
interesting observation is that themagnetic relaxation rate seems to vary as the square
of the monopole density in this regime [98], which again suggests that monopoles
are the natural variables with which to understand the spin dynamics of spin ice.
Although the squared law has not yet been explained in detail it is not in any sense
contradictory to the monopole model as has been suggested by some authors [93]—
unless one insists that the monopole hop rate has to be temperature-independent over
the entire temperature range.

Low temperatures: T < 0.6 K

Below T ∼ 0.6 K, the magnetic relaxation time becomes exceptionally long and
spin ice “freezes” on experimental time scales [86]. A natural explanation of spin
freezing is a definite triumph of the monopole model. For example, Ho2Ti2O7 has
slower dynamics than Dy2Ti2O7 in this regime because it has fewer monopoles as
a consequence of a larger monopole chemical potential (5.7 K as opposed to 4.3
K)—despite its much faster dynamics at higher temperature. In general the freezing
temperature should depend on the timescale of the experiment—a slower experi-
ment should maintain equilibrium to a lower temperature with a smaller population
of monopoles. However, the freezing temperature observed is always close to 0.6
K, but this is again a consequence of several factors which conspire at about this
temperature—the monopole gas is rarifying rapidly and the hop rate is possibly also
decreasing rapidly—leading to an exponential suppression in relaxation rate and loss
of equilibrium on all reasonable experimental time scales (restoration of dynamics
by quenching monopole-rich states to low temperature is discussed below) [92, 98].

Thermal quenches

In a thermal quench, the system, which may be a dipolar spin ice model or Coulomb
gas, transitions rapidly from a relatively high temperature, where a large population
of monopoles would exist, to a low temperature, where few monopoles would exist
at equilibrium. The evolution of the system from the large quenched-in population
of monopoles towards the equilibrium population is then studied. In both cases,
there is a rapid decay of the monopole density, leading to a plateau which represents
a metastable, long-lived monopole population. The importance of so-called non-
contractible pairs in maintaining this population of monopoles was stressed [99]. A
non-contractible pair of monopoles is a pair of monopoles on adjacent tetrahedra,
which cannot annihilate because flipping the intermediate spin would actually create
a higher-energy spin configuration (i.e. pair of double-charged monopoles). The
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shortest path for annihilation of these monopoles is for one of them to hop around
the hexagonal loop which contains an edge of their respective tetrahedra, but in
general they have to diffuse away across the lattice and find a new way to annihilate,
and there is always a Coulombic energy cost for them to do this. Hence, their removal
from the system is thermally activated and, at the low temperatures reached in the
quench, is extremely slow.

The onset of non-equilibrium physics (on typical experimental timescales) is at
T ≈ 0.6 K in Dy2Ti2O7 and T ≈ 0.7 K for Ho2Ti2O7 (which also corresponds to
the low-temperature regime discussed above in Sect. 8.3.4), as signalled by the well-
documented splitting of field-cooled and zero-field-cooled susceptibilities at this
temperature [87, 100]. The key point to stress, when considering this temperature
regime, is that from the point of view of the monopole model, all typical experiments
are actually thermal quenches. This is an explicit result of the monopole model
that is largely independent of the microscopic nature of the spin dynamics, and
occurs as a consequence of the kinetic equations for monopole recombination [51].
Comparing experiments in this temperature regime is therefore extremely difficult,
since temperature and field sweep parameters and history must be controlled in a
reproducible way. Furthermore, processes existing in non-equilibrium experiments
may not appear in ostensibly equilibrated experiments with different techniques. For
example, it may not be simple to compare relaxation of the magnetisation after a
field pulse in the low-temperature state with an ac-susceptibility experiment at the
same temperature with a different cooling history.

Reproducible thermal quenching was achieved in [101], which developed a
magneto-thermal quench technique for fast and reproducible cooling. Comparison
with numerical simulations showed definite evidence of quenched, non-equilibrium
monopole density, and its relaxation. It should be stressed that the effective chemical
kinetic theory of [35] is a rigorous non-equlibrium theory that naturally accounts for
thermal quenches. Hence looking forward, all experiments in the low temperature
regime should apply either the protocol of [101] or a similarly reproducible method
of thermal quenching. One goal of controlled thermal quenching experiments is to
identify the ‘noncontractible’ monopole pairs, which have been discussed theoreti-
cally [99].

The Wien effect in spin ice

In the dilute regime, the response of a Coulomb gas to applied fields may be coun-
terintuitively complex owing to the occurrence of the second Wien effect, as first
calculated by Onsager for the case of electrolytes [22]. Onsager solved the problem
of electrodiffusion in the combined Coulomb and applied field potentials and the
results were very surprising and non-trivial. Kaiser et al. recently extended the anal-
ysis to the case of a lattice Coulomb gas and then to magnetic monopoles in spin ice
[35, 102].

The essential result is that the rate of production of free charges (as in 8.1) becomes
strongly field-dependent. At low applied field E or H, the increase is linear with the
modulus of the field while at high field it depends on the exponential of the square
root of the field. At very low field, screening regularises the linear dependence to
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make it quadratic. Even though spin ice does not sustain a direct monopole current,
these effects feed through to increase the charge density at short times, which in turn
affects the magnetisation and its rate of relaxation in a striking way.

Although the physics of the Wien effect is very complex, its final result, as sum-
marised by Onsager’s function [22], is rather simple and universal, and most impor-
tantly, does not depend on the definition of free and bound charges—a consequence
of Gauss’ divergence theorem [103]. The appeal of measuring the Wien effect for
magnetic monopoles in spin ice is first, that it extends this remarkable non-linear
and non-equilibrium physics to a magnetic system, and second it can be used to
experimentally image the Coulomb interaction between magnetic monopoles and
to measure the monopole charge. The reason for this is that Onsager’s function is
essentially a direct transform of the pairwise interaction betweenmonopoles. Indeed,
according to our discussion above, one must conclude that is not possible to conceive
of any more direct detection of magnetic monopoles that the observation of theWien
effect.

Figure 8.8 [35] shows a simulation of the monopole density versus time in spin ice
when a field is suddenly applied: the increase is the Wien effect, and the subsequent
decrease is a return to equilibrium.Avery comprehensive set ofmeasurements of out-
of-equlibrium monopole response [104], using the reproducible ‘avalanche quench
protocol’ [101] has now unambiguously established the Wien effect for magnetic
monopoles in spin ice, consistent with Fig. 8.8. Some of the results are shown in Fig,
8.9. These experiments have finally established the Coulomb interaction between
magnetic monopoles in spin ice, have confirmed the expected monopole charge to
within about 10 % and have given direct evidence of ‘non-contractible’ pairs [99].
The only discrepancy between theory and experiment in [104] is an anomalously
large screening correction at low field, that needs further investigation.

The experiments of [104] supersede two earlier experimental attempts to measure
the Wien effect for magnetic monopoles. In [105] slow relaxation of the magneti-
zation was studied by applying field pulses of different size or duration to the low-
temperature state [105], hence measuring the relaxation function (see Table 8.2).
The non-exponential decay of the magnetization following a field pulse could be
satisfactorily described by a model of monopole kinetics in which the new charges
produced by theWien effect led to polarization (magnetization), as in a capacitor: this
is essentially a theory of ‘saturation current’ for the Wien effect. Although the data
seemed consistent with Onsager’s universal function, it now seems unlikely that the
‘saturation current’ approximation is correct, given the results of [104]. The other
experimental paper [106], which involves muon spin rotation, μSR, is discussed
further below.

TheWien effect accounts for the magnetic response at relatively short times in the
low temperature regime (see Fig. 8.8 ). The long time limit, which probes the near to
equilibrium response, is less dominated by theWien effect, as the field that drives the
monopoles,H − M/χ [13] approaches zero [35]. However some progress has been
made in connecting the approach to this limit to the monopole model. In particular
Revell et al. have shown that monopoles trapped on crystal defects contribute to
the slowing of the current at long times [98]. At exceptionally long times (> 106
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Fig. 8.8 Theoretical Wien effect in spin ice and an analogous lattice electrolyte, following the
sudden application of a field (magnetic and electric respectively), from [35]. The brown and blue
lines are, respectively the ion or monopole concentration as a function of log time (Dy2Ti2O7
parameters at 0.45 K). Dotted line is a kinetic model [35] and n f , nb are free and bound monopole
concentrations respectively. In spin ice theWien effect dies away at long times as the fieldH − M/χ

approaches zero, while at short times spin ice behaves like the electrolyte. Reprinted figure from
[35] with permission from the American Physical Society

s), it has been argued that the spin ice state may start to rearrange and lower its
degeneracy [47], but more experiments and theory are needed to verify this (See [48]
for the latest results).

The μSR controversy

The Wien effect [104] is unquestionably the signature of magnetic monopoles in
spin ice, as it unambiguously exposes their deconfinement and pairwise Coulombic
interaction. In particular, measurement of the monopole conductivity κ or density n
as a function of field allows a no-parameter measurement of the magnetic charge Q.
All of these possibilities were originally developed in [106], in which the authors and
colleagues also reported a transverse field μSR experiment in which it was assumed
that the muon relaxation rate was a measure of n, and on this basis, they derived an
estimate for the magnetic charge, in close agreement with the theoretical value. The
experiment was later repeated on both Dy2Ti2O7 and Ho2Ti2O7 by Chang et al., with
a consistent results [107].

Therewere two comments on [106] byDunsiger et al. [108] and byBlundell [109],
which called into question the interpretation of the μSR data. Following this, the
interpretation of extra data offered by Dunsiger et al. [108] has been debated [110],
and this study itself also questioned [111]. For detailed discussion of the issues at
stake we refer the reader to the paper of Chang et al. [107] and the review by Nuccio
et al. [112].

Regardless of all the issues under debate, it is clear that, unlike the magnetisation
experiment of [104], theμSR experiment of [106] is not a convincing demonstration
of the Wien effect in spin ice. The explanation of the data collapse of [106] and
[107] therefore remains an open question of interest from the perspective of μSR
methodology. The muons analysed in these experiments were implanted in low-field



216 S. T. Bramwell and T. Fennell

Fig. 8.9 Nonlinear
non-equilbrium
magnetisation dynamics
captured by the monopole
model. Experimentally
measured magnetic
monopole current density
(∂M/∂t , circles) compared
with the theory [35] of the
Wien effect for magnetic
monopoles in spin ice (line),
from [104]. Each point on
the figure represents the
early-time current density
after a highly controlled
thermal quench, which
corresponds roughly to the
peak in Fig. 8.8. Reprinted
figure from [104] with
permission from Nature
Physics

sites (whether inside or outside the sample), as shown experimentally [106, 107]. It
seems that the question of the data collapse can only be resolved by more detailed
calculation of the fields to which these muons were exposed [108, 109, 113, 114].

Distribution of relaxation times

It has long been recognised that the magnetic relaxation times of spin ice materials
are broadly distributed [84]. This is a particular area in which observations and
interpretations are complicated, and suggests modifications to the simplest version
of the monopole theory.

A single relaxation time is usually provided by the treatment of ac-susceptibility
data, the characteristic time being related to the frequency of the peak in χ ′′. How-
ever, some susceptibility experiments provide evidence for two relaxation processes
within the time-window of such experiments, while other techniques also suggest
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both slower and faster processes exist. Notably, heat capacity experiments suggest the
existence of very slow processes; neutron spin echo [42] and backscattering [115],
μSR [116] and dielectric constant measurements [117] suggest processes which have
the same general temperature dependence as ac-susceptibility (hence indicative of
monopoles), but with faster frequencies, characteristic of the probe. Transforma-
tion of both susceptibility and dielectric constant measurements suggest a stretched
exponential distribution of timescales.

From the monopole perspective there are at least four causes of this broad distri-
bution of relaxation times and associated non-exponential relaxation.

(1) The hop rate itself may be distributed according to the physical nature of the
microscopic spin flip process. As a static representation, monopole theory has
nothing to say about this, but it can accommodate it phenomenologically in the
same way that electrolyte theory can accommodate the dynamical details of
microscopic chemical processes.

(2) The monopolar fields can create a broadening of the relaxation time distribution.
Experimental evidence [94] has shown that the variance of the relaxation time
distribution is related to the monopole density, suggesting the importance of
monopole fields in causing local spin flip processes. Also, the high frequency
‘adiabatic’ susceptibility is proportional to the monopole density. Further theo-
retical work is needed to understand those effects.

(3) The Wien effect creates a broad intrinsic distribution of relaxation times in the
monopole gas. The theory is set out in [35] and experiments are required to test
it.

(4) The dynamical scales of even the most simple Coulomb gas are broadly dis-
tributed, in the sense that the hop rate ν0 and the relaxation rate ν are propor-
tional by a factor of the (dimensionless) monopole density, which, as a function
of temperature, varies over many orders of magnitude [51]. Although this latter
effect does not lead to a departure from single-exponential relaxation in the bulk
magnetisation, it can, of course affect spatially dependent probes.

8.3.5 Summary: Success and Failures of the Monopole
Theory in the Weak Field Regime

In the previous sectionswe have discussed the interface between themonopole theory
and extant observations. We have shown many instances where the monopole theory
agreeswith experimental observations, otherswhere experimental observations agree
qualitatively with dynamics mediated by monopoles, and pointed to some instances
where developments are required to fully resolve theory and experiment. However,
there are no exampleswhere themonopole theory is outright falsified by experimental
data.

We want to stress that the monopole theory (or other successful theory of spin
ice) should be able to describe the magnetic response across the full range of its
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applicability i.e. within the temperature range of the Ising approximation and above
any process which releases the spin ice entropy. Within this temperature window, a
single, unifying description should be possible, without recourse to too complex a
phenomenology.

This raises the question of whether accepting the broad distribution of relaxation
times and thermal evolution of the monopole mobility u(T ) really goes too far from
themost basicmonopole dynamicalmodel as formulated byRyzhkin.We feel that, on
balance, it does not, particularly because the broadness of the distribution seems con-
nected to monopole parameters, and the thermal evolution of u(T ) is not unexpected
in the monopole picture. Nevertheless, a recent paper applied the phenomenology
of glasses and supercooling to the magnetic relaxation of Dy2Ti2O7, suggesting that
this would be a more profitable approach to spin ice dynamics than one based on
monopoles [118].While the results of [118] are interesting, we feel that the approach
of that paper is a step backwards: at least the monopole model is well established as
the correct static description of spin ice, as the fits to Debye-Hückel theory demon-
strate, and themonopole theory is surely the best starting point for understanding spin
dynamics. Hence we feel that it is premature to abandon the monopole model and
return to a purely phenomenological approach that has no theoretical justification.

8.4 Strong Field Response

With the exception of the work of Shtyk and Feigel’man [119] and Otsuka et al.
[120] (see below), the analytical monopole theory has been less comprehensively
developed for strong fields than it has in the weak field limit. Nevertheless, the
behaviour of spin ice in strong applied fields is very diverse and interesting, and the
idea of magnetic monopoles has allowed a number of insights into its behaviour.
These are reviewed in this section.

8.4.1 Monopole Condensation with Applied Field Along [111]

Application of the field along the [111] direction of a spin ice corresponds to applying
the field parallel to one spin on each tetrahedron, while the remainder make a rather
shallow angle with the field. This means that at relatively low fields one spin per
tetrahedron will be pinned parallel to the field, but the ice rule can still operate and a
subset of the ice rule states are selected. Parallel to the [111] direction, the pyrochlore
lattice forms an alternating stack of triangular and kagome planes. The pinned spins
occupy the triangular planes, while the competition of field and ice rule means that
one spin per tetrahedron (or per triangle in a kagome layer) opposes the field. This
creates a magnetisation plateau, known as the kagome ice [78, 121] phase, a quasi-
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two dimensional version of spin ice formed by these degenerate 1-down–2-up spin
components.12

Kagome ice is a 2d Coulomb phase [123–126]. It survives until the field is large
enough to flip the ‘down’ spin, resulting in an ordered ‘three-in–one-out’ phase. This
results in a gigantic peak in the entropy, due to the crossing of energy levels of the
ice rule and non-ice rule states [127], which has been observed in Dy2Ti2O7 [128]. It
was also observed, again in Dy2Ti2O7, that this plateau termination has a first-order
character at low temperature, leading to a critical point [129, 130]. The existence of
a critical point was later confirmed in Ho2Ti2O7 [100, 126].

The liquid-gas critical point in spin ice should itself be viewed as a fascinating
surprise—no explanation was available when it was originally reported and studied
and CMS pointed out that such a critical point is extremely rare in localized spin
systems. In the monopole picture the ordered array of 3-in-1-out and 1-in-3-out
tetrahedra is a monopole-antimonopole crystal. The monopole theory provides a
natural explanation of the existence of the liquid-gas critical point, which is a property
of a symmetric Coulombic gas at sufficient density. CMS argued that the field tunes
the chemical potential of dipolar pairs of monopoles (here not to be confusedwith the
monopole chemical potential) so as to increase their density sufficiently that such a
transition occurs. They thus showed that the existence of the line of first order phase
transitions reflectsmonopole interactions, which explains why it is not a property of a
near-neighbour spin ice model, where the analogous defects are non-interacting [10].

Developing Ryzhkin’s method, Shtyk and Feigel’man [119] produced a compre-
hensive monopole-based theory of magnetic response at the critical point that termi-
nates the first order line, showing it to be in the mean field universality class (with
logarithmic corrections). However they pointed out that there is no true monopole
conductivity at the critical point as monopoles are essentially bound into dipole pairs.
This conclusion also applies at much higher temperatures than the critical point, as
discussed below.

More recently, Otsuka et al. [120] have considered the susceptibility of kagome ice
in terms of the entropic interaction of monopoles in two dimensions, which makes an
analogy with the two dimensional Coulomb gas [131]. They have suggested a scaling
form in terms of a characteristic frequency which can be identified as the breather
excitation of the two dimensional Coulomb gas. This scaling form is expected to
be valid within the kagome ice plateau, and limited Monte Carlo simulations in this
region do confirm this.

Neutron scattering

An early experiment in this regime was by Kadowaki and collaborators [75]. Close
to the liquid-gas critical point, if the analogy to a Coulomb gas holds, the diffuse
neutron scattering should show evidence of fluctuations between a phase with sparse
monopoles (kagome ice) and a phase with concentrated monopoles (in this case

12 Another spin model with a type of ice rule constraint on the kagome lattice was orginally studied
by Wills et al. [122] and referred to as kagome spin ice. It is topologically distinct to kagome ice in
spin ice, as it lacks the constraint on the ice rule introduced by the interlayer spins [123]. However,
it is the prototype of many artificial spin ices.
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the field induced ordered phase). By examining the diffuse scattering close to the
critical point (Hc, Tc) diffuse scattering around (or underlying) certain Bragg peaks
was located, and shown to coexist with the pattern characteristic of the kagome ice.
The component of the diffuse scattering underlying the Bragg peaks indicates fer-
romagnetic fluctuations characteristic of the high density phase, while the kagome
ice pattern is characteristic of the coexisting low density phase. These observations
supported the picture of a liquid-gas critical point originating from monopoles, as
postulated by CMS. An interesting aspect of these observations concerns the dimen-
sionality of the fluctuations. The kagome ice scattering pattern is two dimensional,
and monopoles are confined to the kagome planes there. However, by employing
different out-of-plane resolutions, it was found that the ferromagnetic fluctuations
are three dimensional, suggesting that although the monopoles are confined in two
dimensions, they interact within and between planes (as would be expected for an
isotropic Coulomb interaction). This observation was subsequently confirmed both
in theory (see above) and susceptibility experiments (see below).

ac-susceptibility studies

Several investigations of the susceptibility of spin ices with field applied in the [111]
direction have beenmade post-CMS, though unfortunately they have not approached
the critical point very closely. At least two distinct measurements are possible: the
longitudinal susceptibility, parallel to the main field along the [111] direction [94,
119, 132]; and the transverse susceptibility perpendicular to themain field, parallel to
the kagome planes [120, 133]. The former is the conventionalmeasurement, the latter
is less common but has an intuitive appeal for studying monopole motion within the
kagome planes. In fact, observations by ac-susceptibility in longitudinal [94, 132]
and transverse [133] directions are qualitatively similar. Observations of the adiabatic
susceptibility [94] focus on the highest frequency part of the response, which has a
dramatic field dependence.

Using longitudinal ac-susceptibility, Matthews et al. investigated the field range
of the monopole crystallisation transition, but at a temperature much higher than the
critical point [132] (i.e. T > 1.8 K). They observed a broad peak in the real part of
the response, χ ′ at the crossover field. Bovo et al. [94] observed that the adiabatic
susceptibility, which in zero field is directly proportional to the monopole density,
is very sharply peaked at the crossover field. The susceptibility on this peak is given
almost exactly by the Curie law for the subset of spins that flips at the crossover. This
dramatically confirms and generalises the point made by Shtyk and Feigel’man [119]
i.e. that monopoles are confined into dipole pairs at the crossover.

Shtyk and Feigel’man predicted that the susceptibility would diverge at the criti-
cal point with mean field-like exponents (i.e. χ ∼ |H − HC |(1/δ)−1 with δ = 3) and
logarithmic correction, and that the critical fluctuations would belong to the same
universality class as easy-axis ferroelectrics. Bovo et al. [94] tested this on the adi-
abatic susceptibility peak (albeit well above the critical temperature), and found
unusual scaling behavior, characteristic of a zero-dimensional phase transition. We
suggest that one possible explanation of this difference is that the extended line of
sharp crossovers studied by Bovo et al. might actually be aWidom line for the super-
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critical monopole fluid [134], rather than the fluctuations associated with the critical
point.

Takatsu et al. applied the main field along the [111] direction to form the kagome
ice phase, but then measured the ac-susceptibility using a small driving field per-
pendicular to this direction [133]. With a lowest temperature of 0.5 K, their study
approaches the critical point at TC ≈ 0.36 Kmore closely. They also observe a broad
peak in χ ′ at the crossover field. A Monte Carlo analysis confirmed that monopole
motion is highly correlated at the crossover, in agreement with the findings of Shtyk
and Feigel’man and Bovo et al.

As can be seen from the maps of the field and temperature dependence of both χ ′
and χ ′′ presented by Takatsu et al. [133] (see Fig. 8.10), at low frequency peaks in
both χ ′ and χ ′′ seem to delineate the phase diagram of spin ice/kagome ice (and also
therefore, correspond well with regimes of high and low monopole density that they
simulate), as well as a fan of fluctuations above the critical point (particularly in χ ′).
At higher frequency the peaks seem to demarcate crossover lines in the supercritical
region (particularly in χ ′′). Considering only the data at 1 K, again well above the
critical region, they found that with increasing frequency the double peak structure
seems to narrow about the critical field (Hc), such that the characteristic fluctuation
frequency gets faster as Hc is approached from either side, or the relaxation rate
diverges—a so-called critical speeding up [133]. This critical speeding up could be
simply parameterized in terms of simulated monopole density. Using Monte Carlo
simulations of the dipolar spin ice model, the general features in the ac-susceptibility
were semi-quantitatively reproduced, apart from the speeding up.

8.4.2 Strong Field Correlations

As previously described, the diffuse neutron scattering pattern contains signatures of
the spin configurations in a spin ice, both the ice rule manifold and excited/monopole
states. The whole pattern contains aspects of both, but certain parts of it may be more
readily associated with the former or the latter. Diffuse neutron scattering measure-
ments as a function of field and temperature provided early qualitative support for
the monopole picture.

By applying a strong field in the [001] direction, all monopoles are swept out
of the system, and the spins form an ordered ice rule state which can be viewed
as a well defined configuration of ‘Dirac strings’ (lines of flipped spins which span
the sample at this point). Decreasing the field allows the creation of monopoles
within the sample. Although there is a Zeeman energy cost for the string to be
extended along the field direction, there is an entropic gain as the string ends make
a random walk in successive lattice planes perpendicular to the field, and this can
lead to a net free energy gain. Then the system can be viewed as random walking
monopoles interacting by a Coulomb interaction, connected by a short section of
Dirac string, in which the spins are oppositely oriented to the bulk of spins in the
sample, which are still oriented by the field. This ensemble of small, (assumed to
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Fig. 8.10 ac-χ⊥ of Dy2Ti2O7, showing how the susceptibility peak delimits the phase diagram,
which itself is determined by the monopole density. a Phase diagram under the [111] field. b–d real
part of the susceptibility. e Simulated monopole density. f–h Imaginary part of the susceptibility.
Reprinted figure from [133] with permission from the Journal of the Physical Society of Japan

be) uncorrelated and non-interacting string segments in a ferromagnetic background
provides contrast for a diffuse neutron scattering experiment, and Morris et al. [72]
showed that diffuse neutron scattering in fields between zero and saturation could be
qualitatively reproduced by a model of random walking string ends. They also noted
the difficulty of making experiments in applied fields on the large size of single
crystal typically used for neutron scattering by showing that strongly tilted fields
obtained purely by the demagnetizing factor biased the random walk probabilities in
agreement with their calculations.

8.4.3 Strong Field Sweeps and Quenches

Field sweeps starting from different field cooled and zero-field cooled states and
heading towards saturation have long been studied for spin ice. As one passes into
the low-temperature regime, irreversible processes appear inmagnetisationmeasure-
ments, which show hysteresis and steps [135, 136], sweep rate dependence [135–
138], and departure from predicted scaling forms [72]. Although such effects can
be seen when the field is parallel to [001] [72, 135] and [110] directions [135], they
can be particularly pronounced when the field is parallel to the [111] direction [136,
139].
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Slobinsky et al. [136] investigated the magnetisation steps of Dy2Ti2O7 in consid-
erable detail. As a magnetic field applied along the [111] direction is swept upward,
one expects the magnetisation to increase smoothly to the value expected in the
kagome ice plateau. However, in the low-temperature regime, at sweep-rates above
a critical value, the magnetization curve has a slow, or even field independent, onset,
then jumps up essentially to the equilibrium curve (measured at higher temperature),
where it may again lag in an almost temperature independent plateau, before jumping
up again. Further observations were made by Jackson et al. [139] , and also for both
zero and finite field cooled initial states with the field applied along the [001] direc-
tion. When expressed in terms of the internal field, the magnetization has a negative
slope, an effect which has also been observed in Ho2Ti2O7 [100], though the steps
have not been investigated in detail in that material.

Slobinsky et al. [136] suggest that this negative slopemeans that themagnetization
jump is a “triggered” event: “once the process has started, it does not stop even
though the internal field falls below the triggering value.” Consequently they drew an
analogywith deflagration13 initiated by a spark. They suggested that in the fast-sweep
regime, when jumps are produced, that as Zeeman energy evolves by the formation
of monopoles at the start of the jump, the lattice is unable to equilibrate the system
with the bath so that there is local heating which promotes the creation and unbinding
of more monopoles and more Zeeman energy, leading to a thermal runaway. They
obtained evidence of this by monitoring the sample temperature, which has a strong
spike at themagnetization jump. Interestingly, themaximumof the temperature spike
is approximately independent of the starting condition of themagnetization jump—it
always reaches ≈ 0.6 K, the temperature at which equilibration becomes efficient.

Jackson et al. [139] obtained further evidence for avalanches, but showed that
while the avalanches are very reproducible for a given experiment, the exact sweep
rates will depend on the experimental set up, implying that they depend on the degree
of coupling between the sample and apparatus, which is similar but not identical in
these studies. They also point out that the temperature jumps up to ≈ 0.9 K, around
the maximum of the heat capacity. The question of coupling was also addressed in
the studies of Erfanifam et al. [137, 138], using ultrasonic techniques. The sample
temperature and sound velocity are closely correlated, and peaks in both appear at
sufficiently fast field sweep rates. Theyobserved that the decayof the non-equilibrium
peak in the sound velocity/temperature resembled that of a system in which heat
is leaking to the environment, and were subsequently able to show that the non-
equilibrium effects can be completely suppressed with sufficiently strong coupling,
in this case by immersing the sample in liquid helium.

These studies are qualitatively consistent with the monopole picture since any
magnetisation in spin ice requires spin flips that can be represented in the monopole
picture. However as Jackson et al. have pointed out, such magnetothermal processes
are the norm, rather than the exception in low temperature magnets, so they are
not themselves indicative of monopoles. Nevertheless, the interesting question is

13 Deflagration is “combustion which propagates through a gas or across the surface of an explosive
at subsonic speeds, driven by the transfer of heat.”
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whether such processes can be represented by the monopole picture to a point that
might be useful or quantitative. The strong field magnetisation involves irreversible
creation and annihilation of monopoles. Considering annihilation, there must be
‘decayproducts’ that carry away the energy, and theremust bemagnetic reconnection.
The energy released in these processes presumably either appears as phonons and
is dumped in the lattice, or is transferred directly to neighbouring spins via their
interactions i.e. used to create new monopoles. It is interesting to speculate that with
highly sensitive apparatus, one might detect monopole annihilations or magnetic
reconnection events bymeasuring the phonons released. The possibilities of imaging
avalanches in spin ice are discussed in [139].

We finally mention a field quench protocol that has been investigated theoretically
byMostame et al. [140]. Here the field is applied along [111] as above, and the system
is quenched from the low-temperature,monopole-rich, high-field state, across thefirst
order transition, to the low-temperature, monopole-poor, low-field state. However,
such field quenches have not yet been studied experimentally.

8.5 Monopole Derived Properties

So farwehaveviewedmonopole theory as essentially a theory of coarse-grainedmag-
netic response. However, in an earlier sectionwe discussed howmagnetic monopoles
could be viewed as quasiparticles, and as such we might expect them to interact with
non-magnetic excitations or fields, or even microscopic probes. In this section we
summarise a number of properties that are derived from magnetic monopoles in this
spirit.

8.5.1 Thermal Conductivity

In general, measurement of the thermal conductivity of a material can provide
important information about its excitations. Usually it is dominated by contributions
from phonons, but in materials with spin or other electronic degrees of freedom,
these can also contribute—for example, superconducting quasiparticles or magnons.
The thermal conductivity of spin ice materials has now been investigated in both
Dy2Ti2O7 [73, 141–143] and Ho2Ti2O7 [144] and it has been shown that there is
a magnetic contribution that can be understood to come from discrete, deconfined
magnetic monopoles.

That there is a magnetic contribution to the thermal conductivity of a spin ice
is agreed by all investigators, but their interpretations are different. In a detailed
calorimetric study, Klemke et al. [73] assumed that the magnetic excitations were
localized, such that all heat transport is due to phonons. They observed a weak sup-
pression of the thermal conductivity with increasing field (along the [110] direction)
at low temperature in Dy2Ti2O7 which they attributed to scattering of phonons on
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Fig. 8.11 Thermal
conductivity of Ho2Ti2O7
modeled by monopole and
phonon
contributions [144].The data
are fitted with a kinetic
theory. Reprinted figure from
[144] with permission from
the American Physical
Society
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localized magnetic excitations. On the other hand, Kolland et al. [141], with the field
applied along the [001] direction, observed a strongly field dependent contribution to
the thermal conductivity which took the form of a step-like decrease as the field was
increased (with hysteresis at sufficiently low temperature). It was concluded that
monopoles themselves transport heat, and the decrease corresponds to monopole
confinement by the field. A diffusion coefficient was obtained for the monopoles
which strongly increases below 0.5 K, when monopoles are expected to be sparse
and to have a long free path. However this diffusion constant is orders of magnitude
larger than the value obtained from the directly determined monopole mobility [94].
Two more studies [142, 143] report results qualitatively in agreement with a mag-
netic contribution to the thermal conductivity due to monopoles with their roughly
expected properties—confinement by field for example—but with some unexpected
and unexplained irreversibility.

In the work of Toews et al. [144] thermal conductivity data, measured with field
along [111], is confronted with the monopole theories in the form of Debye-Hückel
calculations. These authors used both zero field and strong field data to estimate pure
magnetic and phonon contributions, and adopted very simple models of monopole-
monopole andmonopole-phonon scattering, i.e. that the scattering rate is proportional
to the monopole density. They then applied Debye-Hückel theory to calculate the
temperature dependence of the monopole density, and in this way, they were able
to reproduce the observed temperature dependence of the total zero field thermal
conductivity extremely accurately, as shown in Fig. 8.11.
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8.5.2 Field Distribution at Point Probes

The possibility of detecting monopolar fields by point probes is an appealing one,
although it should be born in mind that on microscopic scale, there are only spins
in the system. Hence a point probe can only detect monopolar fields in the sense
that the coarse grained or far field has a long range monopolar component that is
longitudinal. In the dilute monopole regime this will tend to be dominated by the
shorter range fields coming from the transverse part of the magnetisation, or spin
structure.

The field distribution inside and around a sample of spin ice has been calculated,
with monopoles present and absent [108, 113]. By performing a zero-field NMR
experiment on 17O nuclei, the internal field distribution of spin ice could be probed
and agreed well with the calculated expectation [113]. The possibility of measuring
monopolar fields was discussed.

External field distributions have also been estimated [109] in the context of
μSR experiments, although only the surface charge contribution was accounted for.
Although it is relatively short range, it would be interesting to calculate the contri-
bution arising from bulk monopoles (volume magnetic charge), as this is potentially
relevant to the experiments of [106, 107].

8.5.3 Dielectric Response

Khomskii pointed out another possible consequence of emergent monopoles on the
pyrochlore lattice [145]. A redistribution of electric charge depending on the spin
configuration can lead to the formation of a spontaneous electric dipole moment.
On the pyrochlore lattice, with 〈111〉 spins, this is only expected for “1-in–3-out”
configurations, i.e. monopoles, as other possible spin configurations on tetrahedra
are too symmetric to allow an uncompensated charge redistribution. Sarkar et al.
proposed the formation of an electric dipole moment on a magnetic monopole by
a different mechanism[146]. As a consequence, monopoles should couple not only
to magnetic fields, but also to electric fields. The electric dipole moment of the
monopole becomes like the spin of a charged particle—a nice example of duality
between electricity and magnetism! Various measurable consequences, which differ
in details between the two mechanism, were outlined, e.g. the possibility to separate
monopoles and antimonopoles in an electric field.

The most striking consequence of Khomskii’s theory, particularly since it already
appeared to have beenmeasured, is the contribution to dielectric response functions in
monopole-rich parts of the phase diagram. As Khomskii pointed out, the previously
unexplained results of Saito et al. [147] contain a strong peak in the dielectic constant
ofDy2Ti2O7 at≈ 1T,with thefield applied along [111], just as the kagome ice plateau
is terminated by the proliferation ofmonopoles and formation of themonopole crystal
phase.
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Fig. 8.12 Formation of electric dipole moment on monopole hosting tetrahedra [145], and peak
frequency of the dielectric loss function showing critical speeding up of magnetoelectric response
as monopoles proliferate at the termination of the kagome ice plateau [117]. Reprinted figures from
[117, 145] with permission from Nature Communications

This effect has been examined in considerably more detail by Grams et al. [117]
(see Fig. 8.12). They found that the dielectric response is insensitive to the slow
relaxation process attributed to Brownian motion of monopoles in magnetic suscep-
tibility studies, but contains another relaxation process that is roughly two orders of
magnitude faster, and whose magnetic field dependence confirms it has a magnetic
origin. This process leads to a field and temperature dependent relaxation spectrum
which is fastest and sharpest at the critical point, and broadens and slows, forming
a fan-shaped region above the critical point, whose border follows the scaling pre-
dictions of Shytk and Feigel’man. The increased relaxation rate at the critical point
implies a negative dynamical critical exponent and critical speeding up, rather than
the usual critical slowing down, similar to what has been observed by Takatsu et al.
and Bovo et al. in the magnetic susceptibility [94, 133]. Liu et al. have obtained some
evidence that Ho2Ti2O7 also responds to an electric field at low temperature [148].

8.6 Future Directions for Monopole Observation

8.6.1 Plasmas

As alluded to above, the physics of Coulomb gases is extremely rich, and many
phenomena are possible. Current connections between experiment and theory in spin
ice are based on casting theories of electrolytes in terms of magnetic monopoles.
A gas of charged particles is more generally a plasma, and connections between
magnetic monopoles and plasma physics have been proposed [149]. An ambitious
future direction would be the exploration of this connection. Indeed, the study of
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frequency dependent effects in kagome ice is already somewhat reminiscent of this
approach.

Apart from the charge correlations and dynamics, plasma physics has another
important ingredient which has an appealing analog in spin ice. Many fascinating
plasma properties are regarded as being controlled by magnetic field lines, which
essentially gain a real physical quality in such work. Modification of the topology of
magnetic field line configurations is known as magnetic reconnection [150], graph-
ically visible in an event such as a coronal mass ejection at the surface of the sun,
where huge loops of flux are ‘short circuited’ at the solar surface as the plasma
which carries them is ejected into space [151]. Field lines in spin ice have a similarly
appealing physical reality in the form of the Dirac strings which thread the monopole
vacuum. Annihilation of a pair of monopoles can be seen directly as a reconnection
event, and creation of a pair must be a disconnection.

Magnetic reconnection in material spin ice has yet to be explored, but it may
provide a unique way to test the physics of the monopoles. In this context, it is
interesting to note that Vedmedenko has proposed a model of artificial spin ices that
focusses on Dirac strings and their reconnections: this model potentially goes much
further than the monopole model as it naturally accounts for the loss of degeneracy
of the Pauling states [152]. A three dimensional version of this theory would be very
interesting.

8.6.2 Phonons

At magnetic reconnection, magnetic energy is released. In stellar plasmas this natu-
rally goes toward the acceleration of ejected mass. In spin ice, a rather specific pro-
cess must accompany the reconnection event. Currently there is interest in decays of
quasiparticles such as magnons [153], and one may ask what happens to monopoles.
So far there is no suggestion that they decay, indeed since they are fractional topo-
logical defects, it does not appear possible for an individual monopole to decay—the
annihilation of a pair is required. This process must release energy, and some decay
products are to be expected, presumably phonons. Phonon detection experiments are
known in other rare earth based materials, and it would be highly interesting to try
to detect monopole decay phonons in spin ices.

Generally, the role of phonons in the behaviour of the monopoles is relatively
unexplored. It has been implied that the monopoles and phonons scatter on each
other [144], and this interaction suggests that the spin ice monopole universe may
be more complicated than an idealised magnetic Coulomb gas. The interaction of
monopoles with another quasiparticle may be exploitable, perhaps to control the
propagation or annihilation/creation of monopoles.
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8.6.3 New Materials

As also explained above, the behavior of the magnetic Coulomb gas in a given spin
ice, i.e. the trajectory through the (magnetic) Coulomb gas phase diagram, in the
space of chemical potential and temperature, is largely fixed by material parame-
ters. It is therefore of interest to identify new spin ices, in which the relevant energy
scales can be modified and new magnetic Coulomb gas phenomena may be realized.
The high pressure synthesis of Ho2Ge2O7 and Dy2Ge2O7 provides one example—
stronger exchange interactions compete with the dipolar interactions resulting in a
lower chemical potential and a denser monopole gas with stronger monopole correla-
tions [81]. With a view to testing the theory of magnetic Coulomb gases by accessing
other aspects of their behavior, it will be interesting to develop the study of other spin
ices. For example in other crystal structures such as the chalcogenide spinels (e.g.
CdEr2Se4 [154]) the balance of such parameters may be quite different, or differently
controllable, to the pyrochlore oxides.

8.6.4 Quantum Spin Ice

Quantum effects in spin ice are an extremely interesting direction for the future. We
leave the exploration of so-called quantum spin ices for dedicated chapters, Chaps. 9,
10, 11 and 12, but note that a recent thread of work has begun in which quantum
effects in long-thought classical spin ices such as Dy2Ti2O7 are explored [49, 155–
157]. This is particularly motivated by the possible loss of entropy and possibility
of a quantum spin liquid at low temperature. It is interesting to note that the pinch
point behaviour calculated in [155] is close to that observed in experiment [7].

8.7 Conclusion

In this section we draw some conclusions and comment on different conceptions of
magnetic monopoles in spin ice and on some disagreements in the literature.

8.7.1 Different Viewpoints

In nearly twenty years of research on spin ice there have always been two intertwined
approaches that offer complementary viewpoints on the problem.

The first approach may be called the ‘model magnetism’ approach [52], that sees
materials such as Dy2Ti2O7 and Ho2Ti2O7 of interest insofar as they approximately
realise idealised statistical mechanical models. In the early days the model of interest

http://dx.doi.org/10.1007/978-3-030-70860-3_9
http://dx.doi.org/10.1007/978-3-030-70860-3_10
http://dx.doi.org/10.1007/978-3-030-70860-3_11
http://dx.doi.org/10.1007/978-3-030-70860-3_12
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was the ice-type 16-vertex model (NNSI) [1, 2, 158], and it was found that these
materials realise it to a remarkable degree. More recently the model of interest has
been NNSI embellished with magnetostatic Coulomb interactions—the monopole
model discussed in this review. This model has all the rich physics of the 16-vertex
model and much more besides—it is a classical statistical mechanical model of
enormous interest, which has recently been extended into the quantum mechanical
regime [155, 159]. As shown in this chapter, there is no question that Dy2Ti2O7 and
Ho2Ti2O7 are model magnets that realise the classical monopole model to a very
considerable degree, and that is sufficient to inspire much interest in these materials
and models.

The second approach might be called the ‘microscopic’ approach, which focusses
on the materials Dy2Ti2O7 and Ho2Ti2O7 and seeks to establish their microscopic
Hamiltonian and understand their material properties. Rather remarkably, the basic
Hamiltonian that has been established, the s-DSM [3], is the same as that put forward
for water ice [14]. The fact that the monopole model is an approximation to s-DSM
explains why both the spin ice materials and water ice realise the elegant statistical
mechanical models discussed in the first approach.

Similar ‘model’ and ‘microscopic’ approaches are applied to many other con-
densed matter systems. However, among model magnets, spin ice is remarkable and
unusual in that the two approaches are in such close alignment. The classical spin
ices are both model magnetic Coulomb gases (or magnetic ice analogues) and inter-
esting magnetic materials. This gives magnetic monopoles in spin ice a particularly
broad appeal. Interest focusses not only on identifying the fundamental properties
of the magnetic Coulomb gas, but also on understanding material properties such as
thermal conductivity, dielectric response and the role of defects [98, 160], in terms
of monopole theory.

As the detailed microscopic understanding of spin ice materials improves, it
remains to be seen how closely the microscopic description remains in alignment
with magnetic monopole theory. Whatever the outcome, it is surely undeniable that
magnetic monopole concept has already proved very valuable. An analogy here may
be drawn with liquid helium physics, where the question of to what extent helium-
II is a Bose condensate taxed the community for many years [161]. However, the
immediate adoption of the idea that helium-II is essentially a Bose condensate led
to much understanding and rich physics [162]. In a similar way, while one might
anticipate the monopole description to be more clearly delimited, it is very hard to
imagine it being completely overhauled as a description of spin ice materials.

8.7.2 Definitions and Disagreements

Surveying the literature, there has been a tendency of the community to adopt a rather
fuzzy and flexible definition of magnetic monopoles in spin ice. Historically, this is
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justifiable, as it took several years for the theory to catch up with experiments.14

However, in this review we have given a precise definition of magnetic monopole
theory, which has allowed us to critically assess its successes and limitations. The
downside to our present approach is that adoption of a definition might hinder the
organic development of the concept, but we feel that this is more than outweighed
by the advantage of logical precision.

To illustrate this, we return to the fact that some authors have claimed that there
are experimental inconsistencies with monopole theory related to the temperature
dependence of the magnetic relaxation time and the non-exponential relaxation (see
Sect. 8.3). This argument is valid only if one insists that the monopole hop rate or
diffusion constant is temperature-independent and non-dispersed. However we see
no reason to add such artificial constraints to monopole theory, any more than one
should insist on them in the study of water ice or electrolytes, for example. Ryzhkin’s
original model does not insist on a temperature independent diffusion constant and
is clearly a linear approximation to the dynamics, which could be (and in fact are)
more complex in detail.

Therefore, while it is important that researchers identify and report any incon-
sistencies they find with the monopole model, we recommend that they take great
care to define exactly what model they are talking about and exactly what the nature
of the inconsistency is. This highlights the risks of adopting an imprecise definition
of monopole theory: what to some researchers is perfectly consistent, to others is
perfectly inconsistent.

By taking this approach, we have shown how many published experiments have
revealed magnetic monopoles and their interactions in the classical spin ice com-
pounds.

8.7.3 Final Word

In conclusion, we may call upon various lines of evidence for the existence of
monopoles in spin ice. Generally, we must seek the evidence of monopoles in bulk
and collective properties. Activity in the field at present divides between looking
at the basic magnetic response of monopoles and measuring other properties, to
see if they can be understood in terms of monopoles. An overview of the literature
shows that there is currently no serious contender to the monopole picture. Since the
monopole dynamics are single spin flips, the simplest possible dynamic in an Ising
magnet [15], they are extremely reasonable objects to propose. Spin ice as a universe
with magnetic monopoles is extremely interesting since one can look over all aspects
of it—the quasiparticles and the vacuum from which they emerge.

14 For example the detailed theory of pinch points [18, 60] post-dated experiments [53, 58] on them.
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Chapter 9
Quantum Coherence: Quantum Spin Ice
and Lattice Gauge Theory

Lucile Savary and Leon Balents

Abstract In this chapter, we address the effects of symmetry-allowed terms which
induce quantum dynamics in a range of models close to the classical spin ice point.
Specifically, we focus on Coulombic quantum spin liquid states, in which a highly
entangled massive superposition of spin ice states is formed, allowing for dramatic
quantum effects. In the perturbative limit near classical spin ice, a compact U (1)
lattice gauge theory applies, and affords a direct description of the simplest such state.
Supplementing the gauge theory with matter fields provides the key to a physically-
motivated non-perturbative parton approach, which allows a description of the phase
diagram more broadly. Throughout the presentation we use and discuss how results
from lattice gauge theory translate to the context of quantum spin ice. We include a
somewhat pedagogical presentation of duality and of the excitations of Coulombic
spin liquids, and a new discussion of the wavefunctions of the various phases of
quantum spin ice, not previously published in the literature. The latter provides
some intuitive insight and may be a useful reference point for future variational
approaches. Finally, we draw a thorough comparison between classical and quantum
spin ice, before addressing some frontier topics such as the more frustrated version
of quantum spin ice, quantum phase transitions, numerics and disorder.

9.1 What Is Quantum Spin Ice?

Prior chapters have discussed the canonical spin ice problem and corresponding
materials. There, spins are regarded as purely classical Ising variables, and a (long-
range) classical Ising model is the proper Hamiltonian for the system. The physics is
that of dynamics and statistical mechanics within themacroscopically degenerate but
constrained manifold of spin ice ground states. A large amount of entropy remains
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present in the system, and many distinct states are accessed over time. The dynamics
itself is very slow, requiring thermal activation to achieve actual, not virtual, transi-
tions between states. The slow nature of the dynamics furthermore implies that it is
incoherent, and can be thus described simply by classical stochastic models, or even
rate equations.

In this chapter, we will discuss a class of systems in which the basic spin ice
physics is still present, but where quantum effects play a major role. The quantum
dynamics is generated by substantial non-Ising exchange terms in the Hamiltonian,
which we will specify below. In general such terms break the spin ice degeneracy,
though not in an explicit and obvious way, since they are non-classical. Thus at
sufficiently low temperatures, the entropy of the system becomes fully quenched,
and the system does not explore many distinct states. Rather we will see that, in
a certain limit, the low energy quantum states are superpositions of many of the
classical spin ice states. It should be emphasized that superposition is fundamentally
different fromfluctuation. The former does not imply any large entropy. Furthermore,
the superposition state, by virtue of quantum entanglement (which the classical spin
ice states lack), can support a variety of novel excitations. All this will be discussed
below.

9.1.1 Hamiltonian

As mentioned in Chap.1, The majority of rare earth pyrochlores have single ion
physics described by a doublet ground state. Provided mixing with higher multiplets
can be considered small, which is usually an excellent approximation, the two-level
system of the on-site doublet can be regarded as an effective spin-1/2, and described
by spin operators Sμ

i = σ
μ

i /2, where σ
μ

i are Pauli matrices. When nearest-neighbor
interactions dominate, symmetry strongly restricts the form of allowed couplings
between these spins. If we assume that the spins transform as dipolar doublets, i.e.
like angular momentum operators under the restricted set of symmetry operations of
the pyrochlore lattice, the most general nearest-neighbor Hamiltonian involves four
distinct interactions [1–3]:

H =
∑

〈i j〉

{
JzzSz

iS
z
j − J±(S+

i S
−
j + S−

i S
+
j )

+ Jz±
[
Sz
i (ζi jS

+
j + ζ ∗

i jS
−
j ) + i ↔ j

]

+ J±±
[
γi jS+

i S
+
j + γ ∗

i jS
−
i S

−
j

] }
. (9.1)

Here we have written the spins in a local basis, so that Sz
i is proportional to the

moment along the local Ising axis of the spin at site i . The matrices γi j , ζi j consist
of unimodular complex numbers (see Chap. 11). Since this Hamiltonian is based on

http://dx.doi.org/10.1007/978-3-030-70860-3_1
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symmetries, the parameters include all nearest-neighbor contributions, regardless of
their origin.

The Hamiltonian in (9.1) applies to many real materials. This includes the “clas-
sical spin ices,” for which Jzz is positive and the other three “quantum” couplings
are negligible in comparison. In that limit, (9.1) is the Hamiltonian for classical
nearest-neighbor spin ice. Equation (9.1) has also been shown to be a good descrip-
tion of Er2Ti2O7 [4] and Yb2Ti2O7 [2, 5–7], both of which have dipolar doublet
ground states with substantial quantum dynamics. It also describes Pr2Sn2O7 and
Pr2Zr2O7 [3, 8], where Pr3+ has a non-Kramers doublet ground state which forces
Jz± = 0 above. Relying only upon the symmetry of the pyrochlore lattice, (9.1) is
also appropriate for rare earth ions on the B-site of the spinel lattice, such as for
example CdEr2Se4.

It should be noted that there are situations where (9.1) does not apply. This can
happen in severalways.Rare earth ions on the pyrochlore lattice canhave anoctupolar
rather than dipolar doublet ground state. This is described by a different effective
Hamiltonianwritten in [9], and appropriate to, for example,Nd2Zr2O7.Equation (9.1)
may also fail even in the presence of a symmetry appropriate ground state doublet,
if the mixing to higher multiplets cannot be neglected. This may be the case in
Tb2Ti2O7, where Tb3+ has the same non-Kramers doublet ground state as Pr3+, but
a very small gap to the next excited doublet [10]. Also, in general, non-Kramers
doublets can couple strongly to the lattice, and this coupling, not included in (9.1),
may play a crucial role. Finally, longer distance interactions might be important.
This is obviously the case in the classical spin ice materials. We expect it is much
less important in the quantum systems, since there is much less degeneracy when the
non-Ising exchange terms are significant.

For the remainder of this chapter, we will consider the Hamiltonian in (9.1) as a
working definition of “quantum spin ice”, with the requirement that Jzz > 0, which
enforces the spin ice ground state manifold in the classical limit, and the somewhat
vague proviso that the remaining couplings are “not too large”. Later sections will
clarify unambiguously sharp criteria to define phases which are the most “spin ice
like”.

9.1.2 Near the Spin Ice Point

If the quantum terms are small, 0 < |J±|, |J±±|, |Jz±| � Jzz , the system is “close”
to classical spin ice, and can be described by perturbation theory around that point [2,
11]. Since the spin ice point, J± = J±± = Jz± = 0 is highly degenerate, degenerate
perturbation theory is the appropriate formalism, and the result of this exercise is an
effective Hamiltonian projected onto the classical ground state manifold of nearest-
neighbor spin ice. In the present notation, these are the states for which

∑

i∈t
Sz
i = 0, (9.2)
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where the sum is taken over the four sites of any tetrahedron t . This corresponds to
the “two-in-two-out” condition familiar from previous chapters.

The effectiveHamiltonian is highly constrained by the requirement that it operates
in the spin ice manifold of states. This requirement in particular prohibits any single
spin-flip processes, which would violate the two-in-two-out constraint. The terms in
the effective Hamiltonian must either be diagonal, i.e. flip no spins, or act in such a
way that spins are flipped always pairwise on tetrahedra. This necessitates at least six
spin flips, around the smallest hexagonal ring of the pyrochlore lattice. The physical
meaning of this will become apparent below.

The form of the perturbative effective Hamiltonian is, to leading order [2],

Heff = −K
∑

{i, j,k,l,m,n}=�
(
S+
i S

−
j S

+
k S

−
l S

+
mS

−
n + h.c.

)
− J(3)

∑

〈〈〈i, j〉〉〉
Sz
iS

z
j . (9.3)

Here K = 12J 3±/J 2
zz is the six-site “ring exchange” term alluded to above, and J(3) =

3J 2
z±/Jzz is an Ising exchange between the third-neighbor sites which share one

common nearest-neighbor and are symmetric with respect to the latter (in particular,
they are not on opposite sides of a hexagon). Note that, to leading order, J±± does
not generate any additional terms, and its leading contribution to K and J(3) above
is subdominant to those from Jz± and J± given above if J±± is of the same order as
the other quantum exchanges [2, 11].

The effectiveHamiltonian in (9.3)was first introduced, for J(3) = 0, in [11]. There,
Heff was derived for the XXZ model with Jz± = J±± = 0, and it was furthermore
shown that it is actually a form of U (1) lattice gauge theory. We will discuss this
gauge theory much further in Sect. 9.2. For the moment, we simply note that the full
Heff contains just one dimensionless parameter, the ratio of J(3) to K . When J(3) = 0,
the Hamiltonian is entirely off-diagonal in the Sz

i basis. In the limit J(3)/K � 1,
fluctuations are strong, and the description as a gauge theory is essential. We will
argue in Sect. 9.2 that this describes a quantum spin liquid phase.

For K = 0 (or large J(3)), the Hamiltonian is diagonal in the Sz
i basis, and hence

can be treated classically. Since J(3) > 0, a state in which all third neighbor spins
are parallel, if any exist, must be a ground state. The set of all sites connected by
third neighbor moves from a given site is simply the fourth of the sites of a single
sublattice. Thus any configuration which does not enlarge the unit cell is a ground
state. Since there are six 2in-2out states of a single tetrahedron, these are the six
global ground states (see Fig. 9.1). Physically, these are ferromagnetic states with
total moment

∑
i Si aligned along one of the six 〈100〉 axes.

9.1.3 Mean Field Limit

Far from the spin ice point, and far from any phase boundaries, the general Hamil-
tonian in (9.1) is not very frustrated, and being three-dimensional, is expected to
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Fig. 9.1 A “two-in-two-out” tetrahedron, and the Q = 0 state obtained by repeating this struc-
ture. Such a state contains no “flippable” hexagons. Reprinted from [2] with permission from the
American Physical Society

be only weakly affected by fluctuations, including quantum ones. Thus we expect
that a mean-field or classical ground state analysis is a good starting point. This con-
tains four generic ordered states: a non-collinear ferromagnet with net magnetization
along the 〈100〉 axes, and three antiferromagnetic phases with zero net magnetization
[12]. As there are four exchange couplings and the overall scale of energy is unim-
portant at zero temperature, in general the ground state phase diagram, classical or
otherwise, is three-dimensional. A representative cut of the classical result is shown
in Fig. 9.2 [5]. A complete classical analysis can be found in [12]. Near the spin ice
point, and also near some phase boundaries, quantum fluctuations become large and
the classical result is unreliable. The quantum spin ice state which is the focus of this
chapter is the ultimate outcome of these fluctuations when Jzz dominates.

Fig. 9.2 Classical phase
diagram in the
J±/Jzz − Jz±/Jzz plane for
Jzz > 0 close to the spin ice
point. Reprinted from [5]
with permission from the
American Physical Society



244 L. Savary and L. Balents

9.2 Perturbative Gauge Theory

9.2.1 Derivation and Formulation

As remarked in Sect. 9.1.2, the effective Hamiltonian in the vicinity of the spin
ice point is a U (1) lattice gauge theory. In a certain sense this is inevitable from
the nature of the spin ice constraint itself. Since the effective Hamiltonian operates
within the space with

∑
i∈t S

z
i = 0, it necessarily commutes with the left-hand-side

of this equation for every tetrahedron t separately. Since the operator
∑

i∈t S
z
i is

integer-valued, this is a local U (1) symmetry of (9.3).
More formally, we may define

Qt = εt
∑

i∈t
Sz
i =0 0, (9.4)

where for convenience we included the factor εt which assigns a sign that discrimi-
nates two orientations of tetrahedra: εt = +1(−1) for up (down) oriented tetrahedra
(see Fig. 9.3). The equality on the right hand side of (9.4) holds in the ground state
sector (as indicated by the subscript 0 on the equality sign). The “charge” Qt com-
mutes with Heff . It follows that Heff is invariant under theU (1) symmetry generated
by the unitary operator U = eiχQt , for any t and any χ .

Noting that the charge Qt is defined on the sites t of a diamond lattice (the
tetrahedron centers), we can recast the effective Hamiltonian entirely as a diamond
lattice gauge theory. To do so, we define

S±
t,t ′ = S±εt

i(t,t ′), (9.5)

Sz
t,t ′ = εtSz

i(t,t ′), (9.6)

where i(t, t ′) is the pyrochlore site shared by neighboring tetrahedra t and t ′. This
definition gives a “vectorial” sense to the operators on the diamond lattice, so that
S±
t,t ′ = S∓

t ′,t and Sz
t,t ′ = −Sz

t ′,t . Then the gauge charge becomes

Fig. 9.3 Classical
representation of a
spinon-antispinon pair
(spinons and antispinons
correspond to the monopoles
in other chapters). The red
and blue spheres are located
on “up” and “down”
tetrahedra, respectively
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Qt = εt
∑

t ′∈∂t

Sz
t,t ′ ≡ εt

(
divSz

)
t =0 0, (9.7)

where the sum indicates nearest neighbor sites of t , and the result is the lattice
divergence at t of the vector field Sz

t,t ′ . We recognize therefore Sz
t,t ′ as the lattice

analog of a “magnetic field”. The quantity Qt is a magnetic “charge”, so that a state
with non-zero Qt is analogous to a magnetic monopole. Such states in the earliest
works on QSI were called “spinons”, which is a term widely used in the literature
on quantum spin liquids, more generally. In this chapter we use the term magnetic
monopole and spinon interchangeably. In the classical context, magnetic monopoles
in spin ice are discussed extensively in other chapters of this book.

Here we should note that we are departing from most prior literature on quantum
spin ice, in which Qt was called an “electric” charge, and Sz

t,t ′ an “electric” field.
The ambiguity in terminology reflects an element of the physics of 3+1-dimensional
quantum electrodynamics: self-duality. In electrodynamics, electric and magnetic
variables (fields, charges, currents) can be exchanged leaving the theory invariant.
Prior work on QSI fixed the convention based on the convention for compactness:
in most literature on compact U(1) gauge theory, the electric field is regarded as
discrete and magnetic vector potential as periodic. This, unfortunately, is opposite
to the usual spin ice conventions, and so in this article, to keep in closer agreement
with the rest of the book, we choose the opposite convention. There is one particular
merit to the spin ice convention we take here: the emergent electro-magnetic fields
transform in the same way as their fundamental counterparts under time reversal
symmetry. It is because of this that a magnetic monopole in spin ice can be “really”
magnetic, in the sense that it carries a divergence of physical magnetization.

The Hamiltonian becomes

Heff = −K
∑

�
(

6∏

t∈�=1

S+
t,t+1 + h.c.

)
− J(3)

′∑

t1,t2,t3,t4

Sz
t1,t2S

z
t3,t4 . (9.8)

The prime on the sum in the latter term indicates it represents a complicated form
which simply reproduces the third-neighbor condition in (9.3).

ThisHamiltonian nowhas amanifest gauge invariance, under local phase rotations
by angle χt on each diamond site, for which

S±
t,t ′ → e±i(χt ′ −χt )S±

t,t ′ . (9.9)

We can recognize from (9.9) that S±
t,t ′ behaves as a gauge connection, i.e. the expo-

nential of a gauge field or vector potential.
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9.2.2 Relation to Compact QED

One may make this more explicit, following [11], by representing the spin-1/2 oper-
ators Si by rotors. We can write

Sz
t,t ′ → Bt,t ′ , (9.10)

where Bt,t ′ is a half-integral valued angular momentum, and

S±
t,t ′ → e±iA t,t ′ , (9.11)

where At,t ′ = −At ′,t is a 2π -periodic angular variable. If we impose the canon-
ical commutation relations [Bt,t ′ ,At,t ′ ] = i then S±

t,t ′ acts as the desired spin rais-
ing/lowering operator, except that it can raise/lower “outside” the physical spacewith
Bt,t ′ = ±1/2. To fix this problem, we add a term+U (B2

t,t ′ − 1/4) to the Hamiltonian
and remember that in the end we must take the limit U → ∞, which projects out
the unphysical states. After these manipulations, Heff → HcQED , with

HcQED = −2K
∑

� cos(curlA ) +U
∑

〈t,t ′〉

(
B2
t,t ′ − 1

4

)
− J(3)

′∑

t1,t2,t3,t4

Bt1,t2Bt3,t4 .

(9.12)
Here (curlA )� = ∑6

t∈�=1 At,t+1 defines a “electric flux” E through a plaquette.
Now (9.12) is very recognizable (thoughwritten in variables dual to standard compact
gauge theory conventions) as a quantum model of compact electromagnetism on the
lattice. It is compact becauseA is 2π -periodic, so that the space of gauge connections
eiA is the compact U (1) group.

9.2.3 Phases of Compact QED

This problem with J(3) = 0 and integer (rather than half-integer) Bt,t ′ was studied
in detail in [13] in the context of lattice gauge theories. In this model there are
two phases: the “confining” phase which occurs for U  K , and the “Coulomb”
phase, which occurs atU � K . In the confining phase B has very small fluctuations
away from theU = ∞ ground state which, is simply a product wavefunction |ψ〉 =
⊗〈t t ′〉|Bt,t ′ = 0〉. The smallest excitation away from the ground state costs a non-zero
energy, since B is discrete. If a test charge is introduced, i.e. we require that divB
is non-zero at some single lattice site, the magnetic field emanating from this site
is concentrated into a line in order to minimize the U term. This field line costs an
energy proportional to its length, which extends over the full system width or the
distance to a compensating opposite charge. This linear energy cost is a characteristic
of confinement. More generally, we may consider a confined phase as one in which
the elementary excitations are all “local”, i.e. can be created by local operators. The
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magnetic monopoles of spin ice (i.e. the magnetic charges of the gauge theory) are
non-local, and are not elementary excitations in the confined phase of quantum spin
ice because they cost an infinite energy.

In the Coulomb phase, B fluctuates wildly due to small U , while A fluctuates
enormously because the large K term constrains only the curl but not the averageA .
In this phase, at low energy E = curlA is constrained to be small, so it is legitimate
to expand the cosine term, which leads, up to a constant, to the quadratic effective
Hamiltonian,

HEM = K
∑

� (curlA )2 +U
∑

〈t,t ′〉
B2
t,t ′ . (9.13)

The normal modes of this quadratic Hamiltonian contain a gapless “photon”, with
linear dispersion at small momentum. This is a standard calculation in the continuum,
in which it corresponds to a textbook quantization of vacuum electromagnetism. On
the lattice, it is only slightly more involved. Please see Chap.11, or [5, 14]

At the most fundamental level, the difference between the Coulomb and confined
phases has to dowith the support of thewavefunction inHilbert space. In the confined
phase, the wavefunction amplitude is substantial only on a very small region of
this space, in which Bt,t ′ = 0 for most t, t ′. Conversely, in the Coulomb phase,
the wavefunction is “delocalized” in the magnetic field basis. Moreover, there is
actually no local basis for which the wavefunction is not a massive superposition.
We say that the Coulomb phase exhibits massive or long-range entanglement. It is
this entanglement which is responsible for the ability of this state to support novel
emergent excitations such as the photon and magnetic charges.

9.2.4 Electric Charges and Duality

A somewhat more subtle feature of the Coulomb phase is the presence of another
gapped excitation apart from the magnetic charges: a dual electric charge. The pres-
ence of both electric and magnetic charges is a feature of compact electrodynamics,
due to the periodicity of A (famously Dirac postulated the existence of a magnetic
monopole to explain the quantization of electric charge). Physically, a finite energy
configuration can arise inwhich E is small almost everywere, except in the vicinity of
some cell of the lattice which acts as a source of electric flux. From the outside of this
cell, this appears as amonopole configuration of E , and the flux,

∑�∈S E� = ±2π ,
if the sum is taken over the surfaceS of hexagons enclosing the source cell.

It is instructive to bring out the electric charges explicitly by what is known as a
duality transformation [15–17]. We follow a Hamiltonian formulation as in [18]. To
do so, we solve the Gauss’ law constraint divB = 0 (which is (9.7) rewritten from
(9.10)) according to

Bt,t ′ = (curl A)t,t ′ + B(0)
t,t ′ , (9.14)

http://dx.doi.org/10.1007/978-3-030-70860-3_11
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where B(0)
t,t ′ is a fixed classical half-integer configuration satisfying the Gauss’ law

constraint, and Aa,a′ is an integer-valued vector field on a dual lattice whose sites
a, a′ are centered on the “voids” of the original one. In trading B for A, we at the
same time trade the At,t ′ variables for Ea,a′ , with

Ea,a′ = (curlA )a,a′ , (9.15)

which is just the electric flux of the original gauge field. One can readily check that

[
Ea,a′ , Aa,a′

] = i. (9.16)

and that these variables commute on different bonds. So the E and A variables have
the same commutation relations as the B andA variables in the original formulation.
Then the Hamiltonian is simply rewritten as

HcQED = −2K
∑

〈a,a′〉
cos E +U

∑

〈t,t ′〉

[
(curl A)t,t ′ + B0

t,t ′
]2

, (9.17)

up to a constant, and neglecting J(3). Now a standard manipulation is to “relax” the
integer constraint on Aa,a′ by making it continuous and at the same time adding a
term to favor integer values. After these manipulations, we arrive at

Hdual = K
∑

〈a,a′〉
E2 +U

∑

〈t,t ′〉

[
(curl A)t,t ′ + B0

t,t ′
]2 − υ

∑

〈a,a′〉
cos(ϑa − ϑa′ − 2π Aa,a′),

(9.18)
where now E and A are continuous variables, and the υ term “remembers” the
discreteness of the original A (or B) fields. Comparing to (9.13), we see that mag-
netic and electric fields have changed roles, as have A and A. This is why this is
called a duality transformation. Indeed, the vacuum Maxwell equations have such
a symmetry under interchange of magnetic and electric fields (up to signs related
to time-reversal). From the point of view of low energy physics in the Coulomb
phase, the magnetic charges are on the same footing as the electric ones, and indeed
a duality transformation exists which interchanges them, taking E ↔ B. However,
the electric charges are non-local in the spin basis natural to QSI, and have no analog
in classical spin ice.

The additional ingredient in (9.18) is the final, υ term, which appears like an XY
ferromagnetic interaction of “spins” with phase ϑ coupled to the gauge field A. This
reflects the promised presence of electric charges in the compact electromagnetism
from which we started. We can identify the operator eiϑa as creating such an electric
charge at the dual site a. Such a charge must be accompanied by an electric field
configuration div E = ±2π , reflecting the dual Gauss’ law. The dual Hamiltonian
in (9.18) is in fact the same as that of a charge boson coupled to a gauge field, as is
familiar in condensed matter from the theory of superconductivity.
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All the effects of compactness are captured by the υ term. We can use (9.18) to
make a few observations. First, if υ is small (or K is large and U is small), then we
may perturbatively integrate out the ϑa fields in an expansion in υ. Since the theory
with υ = 0 has a continuous gauge invariance under Aa,a′ → Aa,a′ + μa − μa′ , with
arbitary μa , by Elitzur’s theorem [19], all non gauge-invariant expectation values in
this theory vanish, and consequently, the effective action to all orders in υ is gauge
invariant, and these terms only renormalize the coefficients of E2 and (curl A)2. This
demonstrates the stability of the Coulomb phase. The physical interpretation is that
so long as the electric charges are gapped (which they are in this limit), then they
can be integrated out and they only renormalize the Coulomb phase quantitatively.

Second, if we increase υ sufficiently, or at fixed non-zero υ increaseU/K enough,
then the XY phase variables ϑ order. We can say that by e.g. increasing υ, the
gap for electric monopoles lowers until they “condense”. When this happens, we
can expect a “Meissner” effect for the flux of the dual gauge field A. That is, the
flux, curl A, is concentrated into lines like the magnetic field in a superconductor
is concentrated into vortex lines. Recall from (9.14) that this flux is the original
emergentmagnetic field strength B. This phenomenon is nothing but the confinement
of magnetic field into lines discussed directly in the previous subsection. Thus we
conclude that, remarkably, the confined phase and the condensate of electric charges
are one and the same! [13] Indeed, it is common to view condensation of charges as
the mechanism of confinement.

9.2.5 Application to Quantum Spin Ice

This same picture largely applies to the case relevant for quantum spin ice, in which
B takes half-integer rather than integer values, and J(3) is non-zero. In the half-integer
case, the limit U → ∞ remains non-trivial, as B = ±1/2 states remain degenerate.
However, it is a strongly coupled limit, and we must rely upon numerical methods
to evaluate even the J(3) = 0 case. There is strong evidence that in this limit, the
system remains in the Coulomb phase despite U = ∞ [14, 20]. In this regime the
magnetic charges (spin ice monopoles) have a gap of order Jzz , the electric charges
have a gap of order K , and the “speed of light” of the emergent photon is also of
order K . With increasing J(3), however, the magnetic degeneracy is broken, and we
expect a transition to a confined phase. This transition can actually be thought of as
condensation/proliferation of the electric charges.

Finally, we ask a question: what makes the gauge theory a useful description when
neither B nor A are “good quantum numbers?” Certainly, one answer comes from
the identification to the well-studied theory of quantum electromagnetism, and more
generally from the experience accumulated treating lattice gauge theory in general.
In Sect. 9.3.1, the appropriateness of the gauge fields will become more transparent
as we include “matter fields” whose particles will represent “defects” of the pure
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gauge theory. The (gauge invariant!) gauge field fluxes will then quantify the num-
ber of enclosed defects, which will be nothing but the electric charges and magnetic
monopoles. Therefore, the gauge theory description, while not providing an explicit
ground state wavefunction, does shed light on the nature of the massive excitations
above the ground state. Moreover, the identification of the theory with a U (1) (con-
tinuous) gauge theory also informs us on the existence of gapless excitations.

9.3 A Global View

In the previous section, we discussed the perturbative treatment around the degen-
erate spin ice point. In this limit, the ground state can be fully represented within
the degenerate spin ice manifold, with corrections outside that manifold included
perturbatively by the systematic machinery of degenerate perturbation theory. Thus
Heff in (9.3) acts entirely within the constrained subspace of the full spin-1/2 Hilbert
space. In this description, there are really just two distinct ways the wavefunction can
behave: it can delocalize across the spin ice states, which is the case in the Coulomb
phase, or it can localize to one or a few specific spin ice states, which describes
confining phases, such as the ordered 〈100〉 ferromagnet.

Outside the perturbative regime, it is no longer obvious that one can fully describe
the dynamicswithin the spin icemanifold. Specifically, wemaywonder if a third type
of phase, in which violations of the spin ice constraint become important, might be
possible. In this section, we will describe a formalism which allows one to capture
both the spin ice physics and emergent U (1) gauge theory, but without invoking
perturbative projection into the spin ice manifold [5]. Such a formalism is especially
useful for describing transitions out of the Coulomb spin liquid phase. From it, we
can ascribe a precise meaning to the notion of when the ground state “violates” the
spin ice constraints.

9.3.1 Slave Spinon Formulation

As mentioned above, the perturbation theory described in Sects. 9.1.2 and 9.2 acts
only within the manifold which preserves the spin ice constraints, and is therefore
inappropriate to treat terms in the Hamiltonian which take one out of this manifold
and wavefunctions with terms that violate the spin ice constraints. The identification
of the projected Hamiltonian as a (pure) gauge theory, however, guides us on how to
proceed. Indeed, we will turn the pure gauge theory in which S±

t,t ′ → e±i(χt ′−χt )S±
t,t ′

(9.9), to a full gauge theory with matterwhere now it is the combined transformation
of matter fields �t and �

†
t and gauge field which will leave the theory invariant.
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The “matter” fields �t and �
†
t are lowering and raising operators of the charge Qt

defined in Sect. 9.2, (9.4), and can be formally defined to be �
†
t = eiϕt , where ϕt is

a real and compact operator canonically conjugate to Qt , i.e. [ϕt , Qt ] = i , and the
new gauge transformation is given by:

s±
t,t ′ → e±i(χt ′ −χt )s±

t,t ′ and �t → �t e
−iχt , (9.19)

wheres is the gaugefield for this theorywithmatter,which replacesS. In otherwords,
one allows for “defects” in the pure gauge theory where the absence of symmetry
under s±

t,t ′ → e±i(χt ′ −χt )s±
t,t ′ at some points (ends of strings) may be compensated

by an appropriate transformation of the matter fields. In that sense, the latter are
“slaved” to the gauge fields. In more pedestrian terms, and as applied to the problem
of quantum spin ice, the action of a spin raising or lowering operator on a diamond
bond (t, t ′) should be associated with the action of charge raising and lowering
operators on t and t ′. We can call Φ and Φ† spinon/magnetic monopole annihation
and creation operators, respectively.

We now proceed to this formal construction, introduced in [5].We first consider an
enlarged Hilbert space HS → HS ⊗ HQ = Hg , where HS is the 2N dimensional
space of states of the N spins Si , and HQ is the space of possible superpositions
of integer charge states for each tetrahedon, HQ ∼ Z

Nt , with Nt the number of
tetrahedra. The idea is to embed the physical states in HS into Hg so that Qt −
εt

∑
i∈t S

z
i = 0. We denote the subspace of Hg which satisfies this constraint H̆g .

This is a “projection” of the enlarged Hilbert space back to a physical one. It is
isomorphic to the original spaceHS, and indeed we can map states inHS one to one
to states in H̆g (see Sect. 9.3.4).With this mapping, there is a correspondingmapping
of operators. Specifically, S+

t,t ′ → s+
t,t ′ ⊗ �

†
t �t ′ ≡ �

†
t s

+
t,t ′�t ′ and Sz

t,t ′ → szt,t ′ ⊗ 1,
where st,t ′ acts in the copy of HS in Hg . By construction, the operators on the
right hand side of these transformations have the same matrix elements in H̆g as the
operators on the left hand side do inHS. A thorougher discussion of the differences
between the Hilbert spaces defined here is given in Sect. 9.3.4.

So, finally, with the replacements

S+
t,t ′ = �†

t s
+
t,t ′�t ′ and Sz

t,t ′ = szt,t ′ (9.20)

the gauge constraint commutes with the Hamiltonian, and all the matrix elements of
the original Hamiltonian are reproduced. We obtain:
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H =
∑

t∈I,II

Jzz
2

Q2
t − J±

⎧
⎨

⎩
∑

t∈I

∑

μ,ν �=μ

�
†
t+eμ

�t+eν
s−
t,t+eμ

s+
t,t+eν

(9.21)

+
∑

t∈II

∑

μ,ν �=μ

�
†
t−eμ

�t−eν
s+
t,t−eμ

s−
t,t−eν

⎫
⎬

⎭

−Jz±

⎧
⎨

⎩
∑

t∈I

∑

μ,ν �=μ

(
γ ∗

μν�
†
t �t+eν

szt,t+eμ
s+
t,t+eν

+ h.c.
)

+
∑

t∈II

∑

μ,ν �=μ

(
γ ∗

μν�
†
t−eν

�ts
z
t,t−eμ

s+
t,t−eν

+ h.c.
)
⎫
⎬

⎭

+J±±

⎧
⎨

⎩
∑

t∈I

∑

μ,ν �=μ

γμν�
†
t �

†
t+eμ−eν

�2
t+eμ

s+
t,t+eμ

s+
t+eμ−eν ,t+eμ

+ h.c.

+
∑

t∈II

∑

μ,ν �=μ

γμν�
†
t−eμ

�
†
t−eν

�2
t s

+
t−eμ,ts

+
t−eν ,t + h.c.

⎫
⎬

⎭ + const.,

where the eμ are the nearest-neighbor vectors of the dual diamond lattice. The
Hamiltonian (9.21) thereby obtained is an exact rewriting of the original Hamil-
tonian expressed in terms of the spin variables, (9.1). The terms proportional to J±
and Jz± appear as spinons hopping in a fluctuating background. More precisely,
J± introduces same-diamond-sublattice hopping, while Jz± is the parameter for a
“nearest-diamond-neighbor” hopping Hamiltonian. (Note that the mean field decou-
pling discussed in Sect. 9.3.2 will decouple the spinon and gauge field Hamiltonians,
which will then be solved self-consistently.) The term proportional to J±± [8] intro-
duces interactions directly between the spinons themselves.

We now make a number of important remarks. Parton constructions based on
Schwinger bosons and Abrikosov fermions have been extensively studied [21]. The
partons used here are different, and have the merit of a much more transparent phys-
ical interpretation. This is thanks to the degeneracy of the spin ice manifold and the
fact that this construction has the spinons live at the centers of the tetrahedra. More-
over, when Jz± = J±± = 0, the Hamiltonian (9.1) is (accidentally) spin-conserving.
Sz is then a good quantum number, which the spinons can carry. Since a spin flip, i.e.
a Sz = ±1 “excitation,” excites two spinons, and since the spinons can separate to
an arbitrarily large distance in the deconfined phases, one may see each spinon as a
Sz = ±1/2 (i.e. “fractional”) excitation. When Jz± and/or J±± are non-zero, while
this picture is valid in spirit, Sz is not conserved, and the spinons therefore do not
rigorously carry Sz = ±1/2. However, they are still “fractional” in the sense that a
single spinon is “half” of what can be created by any local operator. It may be better
to say that the spinons are non-local excitations.



9 Quantum Coherence: Quantum Spin Ice and Lattice Gauge Theory 253

This construction, while appearing natural for a number of reasons, is of course
not unique, and one may well imagine that other parton constructions based on (9.1)
will lead to quantum spin liquid phases in the phase diagram, which may be different
in nature, or not, from those which we describe in the bulk of this chapter. In fact, a
field theoretic classification of possible time-reversal symmetric U (1) QSLs on the
pyrochlore lattice exists and indicates the potential existence of six other QSL states
which would require other parton constructions [22]. However, it is unclear whether
any of these pertain to (9.1), or indeed in what, if any, microscopic situations they
may arise.

Finally, we address why the electric particles do not appear explicitly like the
magnetic particles described by �t operators. This is fundamentally because the
electric and magnetic particles are dual to one another, and have long-range statis-
tical interactions, which makes it difficult to include both particles explicitly in the
Hamiltonian. Nevertheless, they are necessarily present since the rewriting is exact.
In these variables, as for the gauge-field-only Hamiltonians in (9.8) or (9.12), the
electric charge is implicit as a non-local texture in the dual vector potential A . For
a crude intuition, one might think thus, given the correspondence in (9.20), of a tex-
ture in the x-y components of the spins (however in reality these spins are strongly
fluctuating even in the absence of the electric particle).

9.3.2 Gauge Mean Field Theory

The usual Curie-Weiss mean field theory applied to spin systems is useful when the
order parameter is a local moment. This assumes small fluctuations of the spins and
the spins, directly, to provide a fairly good description of the system. In a quantum
spin liquid, like that of quantum spin ice, such an approach is doomed to failure.
Indeed, the spins are wildly fluctuating, and their expectation values are nowhere
close to the right quantities to describe the system well. The exact rewriting above,
however, can provide a good starting point to a mean field like treatment, where it
is meaningful to perform a decoupling in the natural variables of the quantum spin
liquid state.

So, using the formalism developed in the section above, we proceed to the fol-
lowing mean field decoupling,

�†� s s → �†�〈s〉〈s〉 + 〈�†�〉s〈s〉 + 〈�†�〉〈s〉s − 2〈�†�〉〈s〉〈s〉, (9.22)

and

�†�†�� s s → 〈s〉〈s〉 (9.23)

×
(
〈�†�†〉�� + �†�†〈��〉 + 〈�†�〉�†� + �†�〈�†�〉 + 〈�†�〉�†� + �†�〈�†�〉

)

+ (〈s〉s + s〈s〉)
(
〈�†�†〉〈��〉 + 〈�†�〉〈�†�〉 + 〈�†�〉〈�†�〉

)

−4〈s〉〈s〉〈�†�†〉〈��〉 − 4〈s〉〈s〉〈�†�〉〈�†�〉 − 4〈s〉〈s〉〈�†�〉〈�†�〉.
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The goal of this decoupling is to separate the gauge field s and particle � sectors,
and reduce the mean field Hamiltonian to a sum of individual gauge spins sμ

t,t ′ each

in its own self-consistent Zeeman field, and a quadratic Hamiltonian for the �
†
t ,�t

and Qt operators. Thus, at the mean field level, solutions are determined by the state
of the gauge spin and spinon subsystems. In the former, the state is specified by the
orientation of the gauge spins, which may be along the z axis, or normal to it, or at
some angle. The latter spinon part, if written in terms of the fundamental ϕt operators,
becomes a type of quantum XY model. Consequently we expect that it contains two
types of states: a “paramagnet” in which 〈�t 〉 = 0, and anXY ordered state, in which
〈�t 〉 �= 0. A third possibility, mentioned briefly below, is an intermediate “nematic”
state in which 〈�t 〉 = 0 but 〈�2

t 〉 �= 0. Each combination of states in the spinon
and gauge subsystems constitutes a possible phase of the system. We say possible
phases because all combinations may not occur in the actual mean field solution, and
because, since some of these quantities are not gauge invariant, their interpretation
as order parameters is somewhat subtle. We will first discuss the solution, and then
elucidate the meaning.

A technical complication arises because the mean field spinon part, while
quadratic and decoupled from the gauge fields, is not in general exactly soluble
because the �t are not canonical fields. Rather, it is a quantum XY model contain-
ing cosine terms of the ϕt variables. Hence some further approximation, not related
to the emergent gauge structure, is required to solve the spinon sector. The simplest
approach comprises a spherical approximation [5] which converts�t to fundamental
fields at the cost of introducing a Lagrange multiplier λ to enforce 〈�†

t �t 〉 = 1 on
average. Other approaches are possible [23].

To solve the mean field problem, we resort to Ansätze. We focus on the situation
where J± > 0. In that case, by dint of the perturbative approach, we choose a zero
“flux” solution on all the hexagonal plaquettes. (Conversely, the situation where
J± < 0 introduces complications due the requirement of a non-zerofluxonhexagonal
plaquettes. This issue is discussed in Sect. 9.6.) When J±± = 0 we use:

〈s−
μ 〉 = s cos θ, 〈szμ〉 = s εμ sin θ with ε = (1, 1,−1,−1). (9.24)

At T = 0, s = 1/2, while at T > 0 we allow for s ≤ 1/2. The latter Ansatz is
meant to capture Q = 0 ferromagnetic order with net moment along the 〈100〉 axis.
Here there are three general cases: (i) θ = 0, for which Ising component of the
gauge spin vanishes 〈sz〉 = 0; (ii) 0 < θ < π/2, for which both in-plane and Ising
components are non-zero; and (iii) θ = π/2, for which the gauge spin has zero
transverse component. We note that sz = Sz is gauge invariant, so this component
is a true order parameter in the usual sense, while s± should really be interpreted as
a gauge connection, and 〈s±〉 �= 0 in gMFT does not imply 〈S±〉 �= 0.

For each of these possibilities, we must self-consistently solve the spinon sector.
One constraint is immediately apparent: if θ = π/2 so that 〈s±〉 = 0, then the spinon
hopping vanishes, i.e. there is no exchange in the effective XYmodel. Clearly in this
limit there is no XYmagnetism, i.e. 〈�t 〉 = 〈�2

t 〉 = 0. In fact, this type of solution is
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Table 9.1 Order parameters for phases within gMFT. The last four columns are related to the
Ansätze we give in the text. In particular, the ferromagnetic state chosen in (9.24), related to 〈Sz〉 is
one of the classicalQ = 0 spin ice states. The entries FM/FQ (ferromagnetic/ferroquadrupolar) and
AFM/AFQ (antiferromagnetic/antiferroquadrupolar) describe the physical meaning of the broken
symmetries in the Kramers/non-Kramers cases. TSL stands for Thermal Spin Liquid. Note that
Sz = sz

〈�〉 〈��〉 〈sz〉 〈s−〉 〈Sz〉 〈S−〉
U (1) QSL 0 0 0 �= 0 0 0

Coulomb
FM

0 0 �= 0 �= 0 �= 0 �= 0

Z2 QSL 0 �= 0 0 �= 0 0 0

FM/FQ �= 0 �= 0 �= 0 �= 0 �= 0 �= 0

AFM/AFQ �= 0 �= 0 0 �= 0 0 �= 0

Confined 0 0 �= 0 0 �= 0 0

TSL 0 0 0 0 0 0

never obtained at zero temperature in the nearest-neighbor model within gMFT, but it
would occur with additional interactions such as for example next-nearest-neighbor
Ising exchange. Combining these possibilities for the gauge sector with those for the
spinons mentioned above, we arrive at a set of phases summarized in Table9.1.

We are now armed to solve the gMFT. There are in fact two possible approaches.
One consists in solving self-consistent equations, choosing the lowest-energy solu-
tion, when there are several, and the other is to minimize a variational energy.
Depending on the details, one approach might be simpler than another.

Taking the self-consistent route for J±± = 0 and the Ansatz (9.24) at T = 0, one
obtains self-consistent equations on 〈�†

t �t 〉, |hz
eff,μ|, and |h−

eff,μ|, where hν
eff,μ are the

effective mean fields which act on the “spins” sν . These equations allow to solve for
λ, θ and a parameter ρ, which, when nonzero, signals 〈�〉 �= 0. Because there may
exist several solutions to the self-consistency equations with different energies, the
energy must be calculated for each one of them. The mean field rules for J±± = 0,
(9.22), yield:

HMF = HMF
� + HMF

s − EMF. (9.25)

The energy EMF is simply given by the constant term in (9.22). The energies from
the spinons E� = 〈HMF

� 〉 and the s fields Es = 〈HMF
s 〉 are given by:

E� =
∫

k
(ω+

k + ω−
k ) − 2Nu.c.λ, Es = −Nu.c.

2

∑

μ

√
(hz

eff,μ)2 + |h−
eff,μ|2,

(9.26)
where ω±

k are the spinon dispersion relations. Another calculation for the energy
consists in a “variational” formulation. Then, one looks at 〈H − H0〉0 (Fv = F0 +
〈H − H0〉0 at finite temperature) where 0 denotes a trial wavefunction (taken here
to be the mean field wavefunction).



256 L. Savary and L. Balents

9.3.3 Phases of gMFT and Their Interpretation

The result of the gMFT solution is the assignment of one of the entries of Table9.1
to each set of physical parameters, along with of course various quantitative results.
Now we discuss the interpretation of these solutions. The most obvious quantity is
〈szt 〉, which is gauge invariant and equal to the local spin expectation value. If this
is non-zero, the spins have some Ising order and time-reversal symmetry is broken.
This, however, does not address the entanglement and emergent gauge structure of
the phase.

First let us consider the states in which the spinon sector is fully gapped, i.e.
〈�t 〉 = 〈�2

t 〉 = 0. This corresponds to the situation in the perturbative limit discussed
inSect. 9.2,where the ground state is in the spin ice sector. Then thekeydistinguishing
feature is whether 〈s±

t 〉 is zero or non-zero. In the actual gMFT solution, we always
find it to be non-vanishing, i.e. θ < π/2. What is the interpretation?

The non-vanishing 〈s±〉 may seem confusing at two levels. First, as mentioned
above, s± acts as a gauge connection, and Elitzur’s theorem imposes that local gauge
invariance cannot be spontaneously broken [19], so that a non-zero expectation value
may seem to contradict the absence of gauge symmetry breaking in the Coulomb
phases. Second, it might seem to immediately give a nonzero expectation value to
the spins 〈S±〉. The first concern in fact appeared in the early days of the appli-
cation of mean field approximations to gauge theories and was soon resolved by
the realization that ascribing a non-zero value to the expectation value of the gauge
field corresponded to a gauge-fixing choice, leaving all gauge-invariant quantities
unmodified [24, 25]. In fact, 〈s±〉 �= 0 is the signature (when 〈�t 〉 = 〈�2

t 〉 = 0 as
assumed) of the deconfined Coulomb phase. At the mean field level, we can see that
〈s±〉 �= 0 is necessary for the spinons to be able to propagate, which is consistent with
the basic property of the Coulomb phase that magnetically charged quasiparticles
exist. Furthermore, on including quadratic phase fluctuations around the uniform
saddle point for 〈s±〉, the gapless linear photon mode is recovered. Specifically, if
one replaces s±

t t ′ → s cos θe±iA t t ′ , and integrates out the spinons to quadratic order in
A in a path integral formulation, one obtains a leadingMaxwell action, proportional
to (εμνλ∂νAλ)

2, at low energy.
Returning to the second issue, the spin expectation value may or may not be

non-zero, as via (9.20), s± and S± are not equal. In fact, in gMFT two Coulombic
phases arise, one with 〈sz〉 = 0 (θ = 0), corresponding to the QSL, and another with
0 < 〈s±〉 < 1/2 (0 < θ < π/2), which we denote the Coulomb ferromagnet . In the
latter, indeed 〈S±〉 �= 0 [23], but as we discuss in Sect. 9.3.4.3, this does not destroy
or fundamentally modify the deconfined (entangled) nature of the associated phase.

Having established the specification of the Coulomb phases in gMFT, we can
ask: what would it mean if, instead, 〈s±〉 = 0 (i.e. θ = π/2)? In that case, the phase
of s± is not well-defined, and so there is no low energy gauge field. Moreover, the
spinons are unable to propagate and cannot be coherent quasiparticles. Thus we are
led to interpret 〈s±〉 = 0 as the signature of the confined phase within gMFT. This
indeed occurs if we add further neighbor Ising interactions which classically break
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the frustration of the spin ice manifold. As explained in Sect. 9.2.4, the confined
phase may be thought of as a condensation of the emergent electric charges, though
this is not evident without a duality transformation.

Now we turn to the “order parameters” in the spinon sector. Unlike the elec-
tric charges, the magnetic charges of the Coulombic phases are explicit: they are
the spinons. Hence gMFT can directly describe condensates of magnetic charges.
Due to the duality between electric and magnetic charges and fields, the effect of
such magnetic condensation is directly analogous to electric condensation: it too
destroys the emergent U(1) gauge structure of the Coulomb phases. Condensation of
charged particles is known as a Higgs transition. The bosonic spinon theory devel-
oped here proves particularly convenient to describe Higgs transitions. Condensation
of the “fundamental” Higgs field 〈�t 〉 �= 0 fully destroys the gauge structure. As in
a superconductor, a gap is induced for the gauge fieldA (i.e. for the photon), and the
consequent Meissner effect implies the confinement of emergent electric fields into
lines with a non-zero line tension, removing the electric charges as quasiparticles.
The magnetic charge is no longer a good quantum number as the Higgs condensation
makes it uncertain. Hence neither spinons nor electric charges nor photon remain in
the spectrum. Thus we may correctly regard any state with 〈�t 〉 �= 0 as a conven-
tional phase. We will show in Sect. 9.3.4.4 that the corresponding wavefunction is
short range entangled, i.e. essentially a product state. Note that the Higgs transition
itself occurs at the point at which the spinon gap vanishes (if the transition is a second
order one), so that at the mean field level both gapless spinons and a gapless gauge
field are present.

When J±± �= 0, onemust also allow for the spinons to condense in pairs, 〈��〉 �=
0, yielding a Z2 QSL when 〈�〉 = 0 [26], and again a conventional phase for 〈�〉 �=
0. The Z2 QSL is a distinct QSL for which the magnetic charge is not a good
quantum number but its parity remains well-defined. It can rightly be considered
a topological phase: it hosts gapped fractional excitations and supports non-zero
topological entanglement entropy, and is fully gapped [27–29]. However, while such
a solution is a priori allowed in gMFT, in the phase space explored so far, it was not
found to be realized as a ground state.

Additional details do not distinguish between conventional and deconfined phases,
but, rather, aspects of symmetry. A summary is in Table9.1. They depend somewhat
on the Ansätze chosen, and the latter should be motivated by physical arguments
relative to the magnitudes of the couplings. Concretely, when J±± = 0, the “angle”
θ acts as an order parameter distinguishing between phases with (for θ > 0) and
without (for θ = 0) a local polarization along the local z axes (which leads to a
global polarization along one of the 〈100〉 axes), induced by a nonzero Jz±. The state
with θ = 0 and 〈�t 〉 �= 0 describes antiferromagnet planar ordering of pseudospins
S±
i : ψ2 and ψ3 states in the nomenclature of [12], denoted AFM here. The state

with θ > 0 is a canted ferromagnetic (FM) state. When Jz± = 0 but J±± �= 0, the
ground states are found byminimizing a variational energy, which yields, throughout
the phase diagram the sameU (1) Coulombic QSL, discussed throughout this paper,
and two conventional ordered phases. These states correspond to FM and the AFM
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Fig. 9.4 gMFT phase diagrams in the J±/Jzz − Jz±/Jzz (left [5, 30]) and J±/Jzz − J±±/Jzz
(right [8]) planes at J±± = 0 and Jz± = 0, respectively. Reprinted from [8, 30] with permission
from the American Physical Society

states of the pseudospins. With Jz± = 0 there is no canting, and the ferromagnetism
due to J±± is purely in-plane.

The physicalmeaning of these states is quite distinct in the case of dipolarKramers
doublets and magnetic non-Kramers doublets. In the former case, the magnetic
moment is proportional to the pseudospin, and the above interpretation is literal.
For non-Kramers magnetic doublets, the same model holds except that Jz± = 0 is
required by symmetry. However, the in-plane pseudospin components describe not
magnetic moments but quadrupole moments. Hence these states describe “ferro-
quadrupolar” (FQ) and “antiferroquadrupolar” (AFQ) phases [8].

Finally, we remark that at non-zero temperature, a first-order phase transition to a
thermal spin liquid (TSL) state, akin to classical spin ice, is found within gMFT [30].
At the transition, entropy is released, and in this thermal state, coherent hopping of
the spinons is entirely suppressed, s = 0. There is no sharp distinction between the
Coulomb QSL and high temperature TSL at non-zero temperature, so there is no
need for such a phase transition beyond mean field theory. Numerical studies of the
XXZ model [20] suggest the transition itself is an artifact of gMFT, though a rapid
crossover may be considered a remnant of it (Fig. 9.4).

9.3.4 Wavefunction

It is interesting to construct a wavefunction which corresponds to the gMFT approxi-
mation. This is helpful not only in understanding the physical meaning of gMFT, but
for comparison to more standard variational wavefunctions used to describe other
highly entangled spin systems. Moreover, a wavefunction can be a useful jumping
off point for numerical investigations.
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9.3.4.1 Three Hilbert Spaces

It is amusing to compare the Hilbert spaces of three Hamiltonians: the original
quantum spin ice model, (9.1), the effective model near the classical spin ice point,
(9.3), and the slave spinon Hamiltonian in (9.21). In the first, the Hilbert spaceH is
that of the original pseudo-spin 1/2 problem, and has dimension 2N , where N is the
number of pyrochlore sites. In the effective Hamiltonian of (9.3), we have projected
to the 2in-2out manifold, which has a smaller dimension, approximately 1.22N . In
the slave spinon approach, we have enlarged the Hilbert space toHg with additional
boson states, on top of the spin-1/2 states of the original model—unless we truncate
the Hilbert space of the bosons, the third model has an infinite dimensional Hilbert
space! A physical wavefunction for the spin Hamiltonian must live in the first of
these spaces.

To obtain this from the gMFT Hamiltonian, we must apply the gauge constraints,
which define a projection. In particular, we require that the constraint in (9.7) be
imposed for each t , with Qt equal to the spinon charge on the diamond site t . It is
easy to confuse the physical spins Sμ

i and the “small” spins sμ

i which play the role of
gauge fields. These seem to be almost the same! Understanding how to relate them
at the wavefunction level helps to clarify the difference.

The slave spinon formulation is really amapping between the original spinHilbert
space H and a subspace H̆g of the larger Hg one of the small spins plus spinons.
We can make this completely concrete by defining an operator M which maps a
physical state in H to one in H̆g:

M =
∑

{σi=±1/2}

(
⊗t |Qt = εt

∑

t ′∈t
σi(t,t ′)〉

)
|{szi = σi }〉〈{Sz

i = σi }|. (9.27)

Similarly, we can define the “left inverse” M−1, which takes a state in H̆g into a
physical one inH :

M−1 =
∑

{σi=±1/2}
|{Sz

i = σi }〉〈{szi = σi }|
(

⊗t 〈Qt = εt
∑

t ′∈t
σi(t,t ′)|

)
. (9.28)

These operators have the property that, M−1M = 1 acts as the identify inH . How-
ever, MM−1 = 1 only within H̆g , not within Hg . Actually, MM−1 is the projector
to H̆g withinHg .

The operator M−1 is what we need to produce a physical spin state from a gMFT
calculation, that is

|ψ〉var = M−1|�〉gMFT, (9.29)

where |ψ〉var is the desired physical—variational – wavefunction. Let us consider
what the wavefunctions look like in the different phases obtained by gMFT.
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9.3.4.2 Coulomb QSL Phase

First consider the most interesting case of the Coulombic QSL phase. There we took
the “spins” si to be fully polarized in the X direction. That is |�〉gMFT = |�〉spinon ⊗
|�〉s, with

|�〉s = ⊗i |sxi = 1

2
〉. (9.30)

To evaluate the action of M−1, we need to express this in the szi basis, using |sxi =
1
2 〉 = 1√

2
(|szi = + 1

2 〉 + |szi = − 1
2 〉):

|�〉s = 2−N/2
∑

{si=± 1
2 }

|{szi = si }〉, (9.31)

which is an equal-weight superposition of all possible Ising spin states. Next, we
need the spinon wavefunction, which in general is more non-trivial. Without further
approximations (i.e. the spherical model approximation used in some calculations),
this is the ground state of a quantumXYmodel, in its paramagnetic “Mott insulating”
state. Deep in the Mott phase, this is just a product state, |�〉spinon ≈ ⊗t |Qt = 0〉,
i.e. the trivial spinon vacuum. However, as the spinon hopping increases, the ground
state of the XY model increasingly mixes in virtual pairs of nearby spinons and
anti-spinons. A reasonable approximate wavefunction capturing this is the Jastrow
form (recall that by construction [ϕt , Qt ] = i , see Sect. 9.3)

|�〉spinon ≈ exp

[
∑

t,t ′
vt,t ′ cos(ϕt − ϕt ′)

]
⊗t |Qt = 0〉, (9.32)

where vt,t ′ are amplitudes which: (1) are translationally invariant, (2) decay expo-
nentially for large |t − t ′|, and (3) are non-zero only when t and t ′ are on the same
sublattice. The first condition is a consequence of symmetry, the second is due to
the gap in the spinon excitation spectrum, and the latter condition arises because
in the QSL, the inter-sublattice hopping vanishes at the mean field level. This in
turn implies that the total charge on each sublattice separately exactly vanishes, i.e.∑

t∈A Qt = 0 exactly.
This is a good wavefunction when the vt,t ′ are not too large. How do we use it?

Again,we should express (9.32) in the samebasis asM−1, in this case the spinonnum-
ber Qt basis. Essentially the exponential in (9.32) acts to create oppositely charged
pairs on sites t, t ′ connected by vt,t ′ , with small amplitude vt,t ′ . So we can think
that |�〉spinon is just the Qt = 0 vacuum plus a sprinkling of superimposed randomly
placed dipoles with Qt = −Qt ′ = ±1 on nearby t, t ′ on the same sublattice.

Now we form the product of this state with the spin wavefunction |�〉s in (9.31),
and act on it with M−1. The result is that we copy every configuration of szi spins
to the physical Sz

i spins with an amplitude given by calculating the charge Qt of
that spin configuration according to (9.7), and taking the corresponding amplitude
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from |�〉spinon. For the “deep Mott” limit vt,t ′ = 0, this amounts to a projection to
the spin ice manifold. The result is that this “deep Mott” wavefunction for the QSL
is just a uniform sum over all the ice rule states. This is the exact ground state of the
Rokhsar-Kivelson point model discussed in Chap.10.

More generally, when vt,t ′ �= 0, violations of the ice rules are allowed, with
reduced weight, but only when the defects—the “spinons” or “monopoles”—arise
in neutral nearby pairs on the same sublattice. Physical spin configurations therefore
occur in |ψ〉var for which the associated monopole charges are non-zero, provided
those charges form nearby dipoles independently on each sublattice. It is possible to
construct wavefunctions of this type and use them variationally [31]. Most impor-
tantly, the fact that only allowed configurations are those with bound dipoles of Qt

charges on each sublattice means that the wavefunction obtained by flipping a single
spin, S+

i |ψ〉var is necessarily orthogonal to |ψ〉var. This is because the action of S+
i

creates a state with
∑

t∈A Qt = 1. Moreover, the state |ψ〉var is obviously invariant
under Sz

i → −Sz
i , and together we see that

var〈ψ | Sμ

i |ψ〉var = 0, (9.33)

as expected in a fully disordered QSL state.

9.3.4.3 Coulomb Ferromagnet Phase

Let us nowconsider themodification to thewavefunction in theCoulomb ferromagnet
state. There are two modifications: the spins si are now polarized at an angle in the
X-Z plane, and, consequently, the spinons now have a non-zero amplitude to hop
between opposite sublattices. The former leads to a modified “spin” wavefunction
(c.f. (9.31))

|�〉s ∝ 2−N/2
∑

{si=± 1
2 }

∏

i

√
1 + ηi si |{szi = si }〉, (9.34)

where ηi = ±η, with the sign depending upon the sublattice of the site i , and 0 <

η < 1. The limit η → 0 recovers the QSL phase, while increasing η introduces a
preference for up (down) spins on site i when ηi is positive (negative).

In the Coulomb ferromagnet phase, the spinons remain gapped, so that a wave-
function of the form of (9.32) is still a good approximation. However, the non-zero
amplitude for spinon hopping between different sublattices means that the restriction
that vt,t ′ = 0 when t, t ′ are on different sublattices should be lifted. Consequently,
the physical wavefunction now includes terms in which dipoles form across the two
sublattices, for example with a positive and negative charge on neighboring tetrahe-
dra. The net charge on each sublattice thereby no longer exactly vanishes, and indeed
is uncertain.

From the point of view of entanglement and gauge theory, none of these changes
are truly significant. The variational wavefunction |ψ〉var is still highly entangled,

http://dx.doi.org/10.1007/978-3-030-70860-3_10


262 L. Savary and L. Balents

and the fluctuations of monopolar charges are very small on long scales. In this sense
it retains the “Coulombic” nature of the QSL phase. However, the modifications to
the wavefunction alter its symmetry completely. The asymmetry between up and
down spins and the violation of the sublattice charge conservation means that both
Sz
i and S±

i develop non-zero expectation values. While 〈Sz
i 〉 �= 0 was pointed out

already in [5], the fact that 〈S±
i 〉 �= 0 in the Coulomb ferromagnet was noticed only

recently [23].

9.3.4.4 Higgs Phases: “XY” Ferromagnet and Antiferromagnet

We now consider the “Higgs” phases in the gMFT phase diagram, in which spinons
have condensed. The wavefunction |�〉s has the same form as in the Coulomb fer-
romagnet above. The difference is in the spinon wavefunction, which now must be
that of an XY ordered phase. That is, we should take a wavefunction |�〉spinon such
that

spinon〈�| �t |�〉spinon �= 0. (9.35)

This means that states in which the charge configuration differs by ΔQt = ±1 on
a single tetrahedron must be contained in |�〉spinon, when expressed in the charge
basis. Contrary to the Mott insulating spinon wavefunction, this “superfluid” spinon
wavefunction contains therefore isolated spinon/monopole charges, not just tightly
bound dipoles.

It is instructive to consider the extreme limit (opposite to the deep Mott limit in
Sect. 9.3.4.2) of an ideal superfluid. This is the limit of the rotor model as Jzz → 0,
and the phaseϕt becomes a definite variable. The spinon hopping prefers equal values
of ϕt on all diamond sites t , so

|�〉ideal sfspinon = ⊗t |ϕt = 0〉, (9.36)

where we chose the global phase ϕ = 0 arbitrarily. Expressing this in the Qt basis,
we have

|�〉ideal sfspinon =
∑

{nt }∈Z
⊗t |Qt = nt 〉. (9.37)

Here all Qt configurations have equal weight, and so, acting with M−1, one sees that
the state of the physical spins is identical to that of the gauge spins st in this limit. It
is as though, in the gMFT, we replace �t → 1 everywhere.

9.4 Comparison of Classical and Quantum Spin Ice

Some of the physics of quantum spin ice seems very similar to its classical coun-
terpart. Obviously, in the perturbative limit discussed in Sect. 9.1.2, the low energy
physics of QSI can be understood entirely in the two-in-two-out manifold of classical
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Fig. 9.5 Difference in the
structure of energy levels in
classical and quantum spin
ice
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spin ice. Going further, the emergent magnetic fields and monopoles, which feature
throughout the discussion of classical spin ice, appear very close to the emergent
gauge theory of the Coulomb QSL (and Coulomb ferromagnet). In this section we
will try to clarify the similarities and differences.

A basic difference is in the structure of energy levels, as shown in Fig. 9.5. In ideal
models of classical spin ice, say the nearest-neighbor spin ice model with coupling
Jzz , the energy depends only upon the net spin on each tetrahedron. Thus there is
an extensively degenerate set of ground states, and additional highly degenerate
“monopolar” states at energy Jzz and above. It has been argued that this remains a
good approximation for dipolar spin ice [32, 33] (but see below). In QSI, there is
no extensive degeneracy of ground or excited states. Very generally, large ground
state degeneracies are forbidden by level repulsion of quantum mechanics, which
dictates that many more parameters must be tuned to achieve degeneracies quantum
mechanically than classically. The situation closest to classical spin ice in QSI is the
QSL in the perturbative regime as discussed in Sect. 9.1.2. In this case, the classically
degenerate spin ice ground states are broadening into a “band” with characteristic
energy K � Jzz . These correspond to the excitations of electric and magnetic fields
of the emergent gauge theory. Magnetic monopolar states form additional bands
beginning at around Jzz , and these states are more highly dispersive (of order J±
rather than K ) than the electromagnetic field states. When temperature is lowered
within the low energy band, kBT � K , the entropy vanishes as S(T ) ∼ T 3.

The phase structure of classical and quantum spin ice is quite different. The
Coulomb behavior of classical spin ice is not a phase, in the thermodynamic sense:
on increasing temperature, the Coulomb regime crosses over smoothly to a trivial
paramagnet. Physically, this is because the spin ice constraint is never perfectly
imposed: though monopoles have a non-zero energy cost Δ (=Jzz in the nearest-
neighbor model), they always exist at a non-zero thermal activated density for any
non-zero temperature, and at a length scale beyond their typical separation, properties
of spin ice are qualitatively those of a usual paramagnet. We cannot properly take
classical spin ice to T = 0, as the ground state is not defined due to degeneracy.
QSI has a proper T = 0 ground state, and the Coulomb QSL is a distinct phase of
matter at T = 0. A non-zero gap Δ for monopoles is sufficient to ensure that there
are no unbound monopoles (spinons) in the QSL ground state, only virtual bound
dipoles. A more formal view of this is that the quantum problem is described by an
imaginary time partition function in 3 + 1 dimensions with a length of the imaginary
time τ direction equal to β = �/kBT . In this problem themonopoles become lines in
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space-time, and an unboundmonopole exists for the full τ interval and thereby has an
action proportional to β which diverges at T = 0. Small finite loops of the monopole
world-lines describe virtual dipole fluctuations which do not disrupt the Coulomb
phase. The latter being a distinct phase, a quantum phase transition unavoidably
occurs on tuning from the QSL to any trivial ordered state by changing exchange
parameters, applying a magnetic field, etc.

If we do insist on taking the T → 0 limit of classical spin ice (strictly T = 0 is
not defined), then we see that it is extremely fine-tuned, even at the classical level.
An arbitrarily weak generic additional exchange interaction, for example between
second or third neighbor spins, splits the degeneracy of the two-in-two-out manifold,
and immediately orders the system at low enough temperature. Indeed, it was shown
long ago that this was the case for the physical dipolar interaction [34]. This ordering
has not been widely observed, presumably because spin ice tends to fall out of
equilibrium before order can set in. The very low energy difference between spin
ice states and the very slow intrinsic timescale of spin dynamics in the classical spin
ice materials makes equilibration difficult. Recent experiments have nonetheless
observed quenching of the magnetic entropy below the spin ice value in Dy2Ti2O7

[35]. Because of the lack of degeneracy in quantum spin ice, and the substantial off-
diagonal terms in the Hamiltonian, the dynamics in QSI is much faster, and much
less susceptible to disequilibrium.

The CoulombQSL is a highly entangled, coherent quantum ground state. As such,
it supports additional emergent excitations not found in classical spin ice, beyond the
spin ice monopoles, which are the spinons of the QSL. Most spectacularly, there are
gapless emergent photons, discussed extensively in Chaps. 10 and 11, with the prop-
erties of real photons but ultimately composed entirely of microscopic spins. Unlike
the more familiar Goldstone modes of ordered magnetic systems with continuous
symmetries, the photon cannot be gapped by any small perturbation: it is a robust
feature of the Coulombic phases, and is removed at low energy only if a transition
occurs to an entirely different ground state. Furthermore, the QSL supports a “dual”
electric monopole which behaves similarly to the spinon but is associated with trans-
verse spin configurations rather than Ising ones—see Sect. 9.2.3. The existence of a
particle that acts like an electric charge in a purely magnetic system (i.e. microscopi-
cally composed of spins) is remarkable, and perhaps it is even more striking than the
photon. It is a purely quantum object, not present at all in classical spin ice, arising
solely due to the uncertainty relation between electric and magnetic variables.

Although spinons/monopoles occur both in classical and quantum spin ice, there
is an important difference between them. In classical spin ice, a monopole is not a
“state” of the system.Consistentwith any single assignment ofmonopolar charges are
many spin micro-states. Motion of a monopole changes these states. For example,
if we consider a classical spin ice state with a single monopole in, we can move
that monopole in a loop by a certain series of spin flips, and return the monopole
to the original position. Although the monopole charges of the final and original

http://dx.doi.org/10.1007/978-3-030-70860-3_10
http://dx.doi.org/10.1007/978-3-030-70860-3_11
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configuration are identical, the final state is different from the original. In this sense
the monopole in classical spin ice is not a quasiparticle. The set of flipped spins left
behind from the monopole’s motion is called a “string”, and this string is observable
in principle. The change of the spin background with the monopole’s motion means
that in ordinary spin ice it is not possible to form superpositions of monopoles over
extended spatial regions, whichwould require a superposition of an extensive number
of degenerate spins. Another consequence of the degenerate spin background is that
the monopole is easily confined by perturbations. As remarked earlier, arbitrarily
small perturbations should order spin ice at low temperature. This lifts the degeneracy
of the spin background, and once the order has set in, the string acquires a non-zero
free energy cost per unit length.

By contrast, a monopole or spinon in the QSL phase of spin ice is a quasiparticle.
The analog of the spin micro-states in classical spin ice is the background magnetic
field of the spinon. However there is a unique magnetic field state of the spinon
in its ground state, so this does not bring any degeneracy. Indeed, the spinon has
essentially an identical description to that of an electron in vacuum, which is clearly
a “quasiparticle”. What about the “string”? To move the monopole still requires
acting with spin flip operators over a line along the path of motion: a string operator.
So why does a string operator not disrupt the state of the system? The answer is
that the massive superposition of quantum spin ice is essential. Since the low energy
states are already superpositions of all the ice rule states, flipping spins consistent
with the ice rules simply reshuffles the states within the superposition, and does not
actually change the wavefunction, except near the ends of the string operator, where
of course it should be disrupted if the monopole is to move. Because the QSL is a
robust quantum phase of matter, the monopole is also a robust quasiparticle.

What the quantum monopole has in common with the classical one is that it is
non-local: it cannot be created one at a time by any local operator. In the classical
case, this may be considered due to the “string”. In the quantum case, it is due to
the magnetic field of the monopole. To create a monopole, one must also create
its field configuration, which is extended around it. Any other phenomena related
to the non-locality of the monopole can be understood, just as for an electron, by
thinking of the physics of the surrounding (in this case emergent) electro-magnetic
field. For example, like an electron, an accelerating monopole would be expected to
radiate (emergent) photons. One could imagine somehow separating a finite density
of positive monopoles/spinons on one side of the sample from an equal density
of negative monopoles/spinons on the other. This is like a (dual) capacitor, and
would produce a net magnetic field between the two sides. If the density is low,
however, so that the QSL is weakly perturbed in the interior, then the field will be
uniform, i.e. it will not be resolved into any sort of string-like observable. This is all
perfectly consistent with regarding the monopole as a quasiparticle, and the strings
as unobservable: there are magnetic (and electric) fields but no strings in the QSL.
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9.5 Observing Quantum Spin Ice

The construction has at least provided us with the right class of materials where
the phenomena described here may appear. We will not discuss specific materials
here, leaving that for Chap. 12. If we have a candidate material in hand, how can we
tell whether its ground state is one of the quantum spin liquid states of the phase
diagram? This same question arises in all situations where a material is identified
as a “possible quantum spin liquid candidate.” In the case of quantum spin ice, one
is in the unique situation where the quantum spin liquid candidate is theoretically
completely understood, with a well-identified (and general) Hamiltonian and many
specific predictions as regards the expected experimental signatures.Moreover, in the
class of systems where one looks for quantum spin ice behavior, high field neutron
scattering experiments on single crystals are possible and allow for a complete,
quantitative and precise determination of the Hamiltonian [2, 4].

What are these experimental signatures? Certainly, a common hallmark of quan-
tum spin liquids is the fractional excitations they support, in the case of quantum
spin ice, the spinons/magnetic monopoles and electric charges. However, precisely
because of their fractional nature, sharp signals in conventional probes are not read-
ily obtained. Here, while the spinons nicely couple directly to neutrons, only diffuse
scattering is expected, whose origin is tricky to trace back precisely to spinons. More
quantitative modeling, specific to a candidate material and its parameters, would
be necessary to make such a case. The quantum spin liquids in quantum spin ice,
however, also feature a photon, which, despite tracing back directly to a gauge field,
couples nevertheless directly to neutrons as well. The corresponding structure factor
〈Sz

−k−ωS
z
kω〉 may be readily calculated upon including fluctuations beyond mean

field theory [5]. It presents a sharp signal for potential experiments, though it is cer-
tainly challenging due to the low energy required and small spectral weight expected
from theory. The photon, however, provides an additional feature: because it is a
linear mode near q = 0, it contributes (in 3d) by a Bphot T 3 term in the specific heat.
This temperature dependence is identical to that of phonons, but a quick estima-
tion of its coefficient B shows that it is expected to be a thousand times larger than
Bphonon [5]. While this should in principle provide convincing evidence of the exis-
tence of a photon mode, the quantum spin liquid phases only survive at very low
temperatures, a condition in which it is often challenging to perform accurate specific
heat measurements. In general many other low energy experiments might probe the
photon—e.g. NMR 1/T1 relaxation, ultrasound attenuation, thermal conductivity,
etc.—and would be worthwhile to pursue if a strong candidate is found.

http://dx.doi.org/10.1007/978-3-030-70860-3_12
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9.6 Frontier Topics

9.6.1 Antiferromagnetic XY Coupling

Most of the work on the QSI model in (9.1) has concentrated on the case of J± > 0,
which corresponds to unfrustrated “ferromagnetic” (in the local basis) XY coupling.
It is indeed known that J± > 0 in Yb2Ti2O7 and Er2Ti2O7. Not only does J± > 0
simplify analytic approaches, it also allows sign-free quantum Monte Carlo (QMC)
simulation in the case Jz± = J±± = 0, which places the phase diagram of the model
in this case on a quite rigorous footing. By contrast, the “antiferromagnetic” sign
J± < 0, which has been speculated to apply to some Pr compounds, is frustrated and
complicates analytic approaches while generating a sign problem in QMC.

The antiferromagnetic case is, however, both interesting theoretically and promis-
ing physically. The QMC simulations for J± > 0 show that the Coulomb QSL occu-
pies only a very small region of phase space, giving way to an XY ordered phase
(an antiferromagnet in the global spin basis) at the small value J±/Jzz � 1/40 (for
Jz± = J±± = 0) [20]. The dominance of the XY ordered phase can be ascribed to its
unfrustrated nature, which gives it a very low energy. By contrast, the frustrated anti-
ferromagnetic interaction J± < 0 has no obvious energetically competitive ground
state, and indeed even the pure antiferromagnetic XYmodel on the pyrochlore lattice
has an extensive classical degeneracy, and so we expect strong quantum fluctuations
to persist regardless of the ratio of J±/Jzz in this case.

For |J±/Jzz| � 1, the perturbative analysis discussed in Sect. 9.1.2 implies that
the effective model of (9.3) applies with K < 0 in the antiferromagnetic case. The
effective model with K < 0 can be rigorously mapped to the one with K > 0, and
so in the perturbative regime we know that a Coulomb QSL exists also on this side.
The mapping that changes the sign of K changes the sign of the “electric” flux
through the hexagons, so the state for 0 < −J±/Jzz � 1 is in fact a π -flux QSL,
which is a distinct phase from the QSL with the opposite sign. For example, the
spinons/monopoles of this π -flux QSL have a drastically altered and more narrow
dispersion, i.e. are expected to be much “heavier” than those of the unfrustrated QSL
state.

Due to the frustration of XY ordering, we expect this CoulombQSL to be stable to
larger |J±/Jzz| than on the ferromagnetic side. Indeed, a naïve application of gMFT
to this case [8] already supports this conclusion. However, an exhausting search
for ground states even at the gMFT level has not been carried out, and is probably
necessary, since competing ordered states are likely quite complex in this case. The
evolution from the QSI limit to the Heisenberg point J± = − 1

2 Jzz is particularly
interesting, since the Heisenberg model has enhanced SU (2) symmetry which may
be incompatible with the spin-ice-inspired QSL state. It is widely suspected that the
Heisenberg antiferromagnetic model, however, has some sort of QSL ground state,
which would imply multiple distinct QSL states along the antiferromagnetic XXZ
line, and the prospect of interesting quantum phase transitions between these states.
This is an interesting subject for future investigations.
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9.6.2 Quantum Phase Transitions

While the focus of this paper has primarily been on the Coulombic QSL states, there
are alsomany interesting phase transitions in themodel.Within the gMFT formalism,
several distinct quantum phase transitions, for example between the QSL and AFM,
andQSLandCoulombFM,were obtained.These are drivenby theonset of local order
parameters (e.g. 〈szt 〉) or by “Higgs” condensation of gauge charged particles (e.g.
spinons). There has been very limited theoretical work addressing the nature of these
transitions beyond the mean field approximation. However, Higgs transitions in 3+1
dimensions are at their upper critical dimension in the sense of critical phenomena,
and are amenable to renormalization groupmethods. It is typically the case that these
transitions are driven weakly first order by feedback effects between the gauge field
and gapless Higgs field [18].

Furthermore, even outside the QSI regime when Jzz > 0 dominates, there can
be transitions between different classically ordered states of (9.1). Even though the
ordered states themselves typically are adequately described classically, with some-
times semi-classical corrections (for example order-by-disorder in the XYAFM [4]),
the transitions between states can exhibit enhanced quantum fluctuations.

9.6.3 Numerics

Computational studies of quantum spin ice have already proven quite fruitful, and are
discussed inChap. 10 of this book. Themajority of studies focus onQMCapproaches,
and are thereby tied to sign-free limits of the problem. This includes several studies
of the perturbative regime, and of the XXZ model on the J± > 0 side [20].

There are many motivations to go beyond these limits. The best characterized
QSI material experimentally, Yb2Ti2O7, has strong Jz± exchange, which cannot be
treated directly by QMC methods. The J±± interaction may favor a gapped Z2 QSL
state (see Sect. 9.3.2), which so far however has not been supported by analytic
calculations. As discussed in the previous subsection, the case J± < 0 also raises
many interesting issues that cannot be addressed by QMC.

BeyondQMC, established numerical methods for frustrated quantum spinmodels
include exact diagonalization (ED), series expansions, density matrix renormaliza-
tion group, tensor network approaches, and variational wavefunctions. The applica-
tion of such methods up to now for QSI is very limited. Following early ED work on
the isotropic Heisenberg antiferromagnet [36], some exploration of the more gen-
eral Hamiltonian was carried out in [3]. Series and coupled cluster expansions have
been used to successfully calculate intermediate temperature thermodynamics [6, 7].
Variational wavefunctions have been very little explored [37], but seem a promising
direction for future exploration, following the discussion in Sect. 9.3.4 and other
standard Ansätze.

http://dx.doi.org/10.1007/978-3-030-70860-3_10
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9.6.4 Disorder

Some imperfections are inevitable in real materials, and this disorder can of course
affect the subtle competition of phases in QSI. For example (see Chap.12), many
rare earth pyrochlores suffer a tendency to “inversion”, the placement of A or B
site atoms on the wrong sublattice and “stuffing,” off-stoichiometric replacements
of, e.g., A-sites by B-site atoms. This can lead to missing or extra spins, as well as
changes to the environment that give rise to modified crystal field splittings andmod-
ified exchange couplings. The effect of these various types of disorder are largely
unknown, theoretically or experimentally, though enormous sample to sample vari-
ations in the specific heat of materials such as Yb2Ti2O7 point to a strong influence
on the physical properties.

Do such disorder effects spell doom for QSI physics? There are several reasons
for hope. First, and most importantly, the Coulomb QSL state is in fact immune at
least to weak disorder. Fundamentally, this is because the long range entanglement of
the Coulomb phase is entirely independent of any symmetry, including translational,
time-reversal, and spin-rotation symmetries whichmight be broken by various impu-
rities. So there is no a priori reason to suppose that the QSL physics is washed out by
defects. However, strong, even dilute, defects, which may well be relevant to some
samples, can alter or destabilize highly entangled states. It may be that particular
types of disorder actually stabilize a QSL state. The actual consequences for simple
and/or realistic models of defective QSI should be an interesting subject for future
work.
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Chapter 10
Quantum Monte Carlo Simulations
of Quantum Spin Ice

Nic Shannon

Abstract One of the strongest reasons for studying “quantum spin–ice” materials
is the possibility that quantum tunnelling between different ice states could convert
the classical magnetostatics of spin ice into a lattice analogue of quantum electrody-
namics, with both magnetic and electric charges, and emergent “photon” excitations.
In this Chapter we review what Quantum Monte Carlo simulations have taught us
about this exotic quantum spin liquid state, and how this might help us to understand
real materials.

10.1 Introduction

10.1.1 Preamble—Why Try to Simulate a Quantum Spin Ice?

Quantum Monte Carlo simulation of frustrated magnets can be a unrewarding busi-
ness, since the very frustration which makes these systems interesting, frequently
leads to fatal “sign problems” in simulation. Quantum spin ice offers a rare excep-
tion to this rule, since many of the most important questions can be asked in the
context of models which are “sign–free”. And as a result, quantum Monte Carlo
simulation has been central to progress in understanding quantum spin ice.

The purpose of this chapter is to explore what numerical simulation, and in partic-
ular quantum Monte Carlo (QMC), has taught us about quantum effects in spin–ice
like magnets. We begin by introducing the idea of a “quantum ice”, as a natural
treatment of quantum tunnelling between ice–like states, whether in proton–bonded
ferroelectrics, spin ice, or water ice. Models of this type find a natural description
in terms of lattice–gauge theories, and we provide a concise overview of some of
key predictions of this approach, identifying those questions where simulation could
play a decisive role.
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We then turn to simulation, considering first the ground–state properties of an
idealised “Rokshar–Kivelson” model of a quantum ice, of the type introduced by
Hermele et al. [1]. We review evidence, from zero–temperature Green’s function
Monte Carlo simulation, for a robust quantum spin–liquid ground state, with exci-
tations described by a quantum U(1) lattice gauge theory [2]. And we explore how
simulation informs us about some of the features which would distinguish this spin–
liquid in experiment [3].

We then consider simulation of a microscopic model of anisotropic exchange on
the pyrochlore lattice, more directly motivated by experiment, at finite temperature.
Here path-integral QMC simulation, pioneered by Banerjee et al. [4], provide strong
evidence for a quantum spin–liquid, described by the same U(1) lattice gauge theory
[4, 5]. Simulations at finite temperature also offer valuable insight into what such a
spin–liquid would look like in experiment.

We conclude the chapter with a brief survey of simulation of problems which
closely parallel quantum spin ice, including its two–dimensional anaglogue, quantum
square ice [6–9], three–dimensional quantum dimer models [10–15], and quantum
effects in dipolar spin ice [16], before discussing someof the open issues in simulation
of quantum spin ice.

10.1.2 So What Is a Quantum Spin Ice, Anyway ?

The term quantum spin ice naturally suggests a spin ice in which quantum fluctua-
tions play an important role. As such, the most obvious place to look for a quantum
spin ice might be in a conventional spin ice such as Dy2Ti2O7, at very low tem-
peratures. In practice, however, things are not quite this simple. The magnetic ions
in Dy2Ti2O7 have strong single–ion anisotropy, which inhibits dynamics, and are
subject to long–range, dipolar interactions. As a result, they tend to fall out of equi-
librium at low temperatures [17–20] (see also Chap.4), and attempts to understand
quantum effects in dipolar spin ice remain in their infancy [16, 21, 22]. Meanwhile,
the epiphet “quantum spin ice”, has been applied to a range of different pyrochlore
magnets, based on different rare-earth ions, all of which have been argued to show
spin–liquid behaviour in the presence of significant quantumdynamics [23–25]. And,
to add to the confusion, spin ice is just one example of a wide class of materials,
including common water ice, with ice–like degeneracies. Quantum effects could, in
principle, play a role in any of these systems.

Concrete simulations require a concrete model, and for the purposes of this
chapter, we will consider a quantum spin ice to be a magnet in which spin configu-
rations are governed by the same “two–in, two–out” constraint as in a conventional
spin ice, but in which quantum fluctuations permit tunnelling between different spin
configurations obeying these “ice rules”. (An example of this type of tunnelling in
illustrated in Fig. 10.1). Fortunately, this common–sense definition of a quantum spin
ice is exactly what is needed to obtain a model described by a lattice gauge theory,
and accessible to simulation. And since exactly the same considerations apply to

http://dx.doi.org/10.1007/978-3-030-70860-3_4
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Fig. 10.1 (Color online). Illustration of the simplest form of quantum tunnelling in a spin ice.
The ice rules dictate that two spins point into, and two spins point out of, every tetrahedron on
the lattice. Where these spins form a closed loop, the sense of each spin within the loop can be
reversed without violating the ice rules. The shortest such loop in the pyrochlore lattice occurs on
an hexagonal plaquette, and the minimal model of a quantum spin ice, Htunnelling (10.6) describes
quantum tunnelling between the two “flippable” configurations of this plaquette, here shaded pink.
Reprinted from [3] with permission from the American Physical Society

common water ice [26–29], and other proton–bonded systems [8, 30], we can view
it as a paradigm for a more general “quantum ice”.

Given a model, the most urgent question will be “what is its equilibrium ground
state ?” Ice–like systems exhibit an extensive classical ground–state degeneracy [31],
leading to the celebrated Pauling residual ice entropy [32, 33]. This residual entropy
stands in clear violation of the third law of thermodynamics, and at low temperatures,
the effect of quantum fluctuations must ultimately be to lift the extensive degeneracy
of the classical ground–state manifold. But how this happens is far less obvious. It
could be that quantumfluctuations drive the system to order, for example by selecting
one particular spin–ice configuration as a ground state. Alternatively, fluctuations
could blend an extensive set of classical spin–ice configurations into a single, unique,
ground–state wave function. It is this second possibility—of a quantum spin liquid
(QSL) in a well–motivated model of a three–dimensional quantum magnet—which
makes simulations of quantum spin ice so interesting. And the goal of this chapter
is to explore what QMC has taught us about the possible ground states of a quantum
spin ice, and what the associated phases might look like in experiment.

As a first step, in Sect. 10.1.3 we briefly review the passage from a minimal
microscopicmodel of a quantum spin ice, to an effectivemodel of tunnelling between
different spin ice configurations, and from that to a description of quantum spin ice in
terms of aU(1) lattice gauge theory. Doing so, we arrive at amore precise formulation
of our question about the nature of ground state of a quantum spin ice, in a form
which can be answered directly by simulation. Our account will closely parallel the
treatment of Hermele et al. [1], since this has most directly influenced published
results for simulation [2–5]. None the less, we note that there are alternative routes
to a gauge theory of quantum spin ice [34], and that quantum spin ice is by no means
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the only way of obtaining a U(1) spin liquid [35]. Readers already familiar with
the relevant lattice gauge theory are encouraged to turn directly to the account of
simulation in Sect. 10.2. Those less familiar might also like to refer to Chaps. 9 and
11 of this book.

10.1.3 A Short Tour of Models, and the Maths Used
to Describe Them

The simplest, microscopic, model satisfying our working definition of a quantum ice
is a simplified model of anisotropic exchange interactions on the pyrochlore lattice

Hxxz = −J±
∑

〈i j〉

(
S+
i S

−
j + S−

i S
+
j

)
+ Jzz

∑

〈i j〉
Sz
iS

z
j , (10.1)

where, following the notation of [24], Si describes a (pseudo) spin-1/2

[S+
i ,S−

j ] = 2Sz
i δi j . (10.2)

with the local z–axis chosen to be parallel to the [111] axis at site i . Both exchange
interactions are taken to be positive, Jzz, J± > 0. In the limit Jzz � J±, the “Ising”
term Jzz selects the manifold of ground states where each tetrahedron obeys the ice
rule

∑

i∈tet.
Sz
i = 0 , (10.3)

while the transverse term J± introduces fluctuations about these spin configurations
and, ultimately, makes it possible for the system to tunnel from one spin–ice config-
uration to another.

So far as real pyrochlore magnets are concerned, the anisotropic exchange model
Hxxz (10.1) is an idealisation, since it neglects both Dzyaloshinski–Moriya and
pseudo–dipolar interactions permitted by the symmetry of the lattice [24, 36, 37].
None the less, it remains a useful approximation to materials such as Yb2Ti2O7 [24,
38, 39]. And, crucially, it is a model which does not present any sign problem in
simulation.

Studies of quantum ice can also be motived from models of Fermions [40] or
hard–core Bosons [4] with strong nearest–neighbour interactions on the pyrochlore
lattice

HtV = −t
∑

〈i j〉

(
b†i b j + b†j bi

)
+ V

∑

〈i j〉

(
ni − 1

2

)(
n j − 1

2

)
− μ

∑

i

ni

(10.4)

http://dx.doi.org/10.1007/978-3-030-70860-3_9
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For V � t , at half–filling, interactions enforce the ice–rule constraint, (10.3), which
become the condition that there should be exactly two particles in each tetrahedron
on the lattice. For Bosons, [bi , b†j ] = δi j , and HtV can be mapped onto Hxxz (10.1)
through the quantum lattice–gas mapping

Sz
i = ni − 1

2
, Jzz = V , J± = t . (10.5)

Just as the form of exchange interactions in a Mott insulator are dictated by the
symmetry of the lattice andwave function, so the formof tunnelling between different
ice configurations is controlled by the topology of the ice states. Within our model
of a quantum spin ice, quantum fluctuations take the form of short–lived virtual
pairs of magnetic monopoles [41, 42], created by transverse exchange J±. These can
propagate through the lattice, reversing the sense of a closed loop of spins before
annihilating. On a pyrochlore lattice, the shortest such loop occurs on a hexagon [cf.
Fig. 10.1], and tunnelling can be represented by the effective Hamiltonian

Htunnelling = −g
∑

� S+
1 S

−
2 S

+
3 S

−
4 S

+
5 S

−
6 + H.c. , (10.6)

acting on the space of spin–ice configurations [1, 16].Within degenerate perturbation
theory forHxxz (10.1),

g = 12J 3±
J 2
zz

> 0 , (10.7)

cf. [1]. In principle (10.6) could be extended to include tunnelling on loops of 8, 10,
12,… spins. However tunnelling on a loop of six spins is sufficient to connect all but
a vanishing fraction of spin–ice configurations within a given topological sector, and
so represents the minimum model of a quantum spin ice [2].

It is important to note that Htunnelling (10.6) is not tied to Hxxz (10.1), but could
be derived from any microscopic model which described fluctuations about spin–
ice configurations. In particular, equivalent forms of tunnelling can be derived for
protons in water ice [26, 29], or for hard–core bosons described by HtV (10.4). To
emphasise this point, as well as for compactness, it can be helpful to represent (10.6)
symbolically as

Htunnelling = −g
∑

� |�〉〈� | + |�〉〈� | , (10.8)

where � and � represent the two “flippable” configurations of the hexagonal pla-
quette in Fig. 10.1.

Written in terms of spins, our model of a quantum ice reduces to a constraint
imposing the ice rules, (10.3), and a term introducing dynamics within the extensive
set of states which satisfy that constraint, (10.6). Following Hermele et al. [1], we
can resolve both of these terms by interpreting the z–component of spin as an electric
field, and writing
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Sz
rr′ → Err′ , S±

rr′ → e±i Arr′ (10.9)

where Arr′ is a real–valued field with canonical commutation relation

[Err′ , Ar′′r′′′ ] = iδrr′′δr′r′′′ (10.10)

(Here both Err′ and Arr′ are directed variables, defined on the bonds of a diamond
lattice, as described in [1, 3], see also Chap.9). Following this prescription, the
constraint (10.3) becomes a zero–divergence condition on the electric field Err′ ,
while the tunnelling term (10.6) takes on the Villain form [43]

Htunnelling = −2 g
∑

� cos (A12 − A23 + A34 − A45 + A56 − A61) . (10.11)

This theory is invariant under the U(1) gauge transformation

Anm → Anm + χn − χm (10.12)

and is compact, since the Hamiltonian is periodic in χ . It is also said to be frustrated,
since the electric field is required to take on half–integer values Err′ = ±1/2, and
we cannot resolve (10.3) simply by setting Err′ ≡ 0.

Lattice gauge theories of this form have a long history [44–47], and are known
to undergo a phase transition between a “confined” phase in which there are no free
charges, and a “deconfined” phase in which charges interact through Coulomb inter-
actions [45]. These two phases correspond to the two scenarios which we discussed,
on general grounds, for a quantum spin ice. Viewed in terms of spins, the electric
charges of the gauge theory are magnetic monopoles [41, 42] (see also Chaps. 3,
9), and the deconfined phase is a QSL, with emergent photon excitations, in which
magnetic monopoles are free to propagate. Meanwhile the confined phase would
corresponds to one or more competing forms of magnetic order [34].

Lattice gauge theories have also beenwidely studied in the context of the quantum
dimermodel (QDM) introduced byRokhsar andKivelson [48]. And by analogywith
work on the QDM, it is instructive to introduce an additional interaction term μRK

which counts the number of “flippable” plaquettes

HRK = −g
∑

� |�〉〈� | + |�〉〈� | + μRK

∑

� |�〉〈� | + |�〉〈� | , (10.13)

in a given spin–ice configuration or, equivalently, the fluctuations of magnetic field in
the compact, frustrated lattice gauge theory described above. Since the off–diagonal
matrix elements of HRK (10.13) have a definite sign, which can always be chosen
to be negative [1], its ground state must be real, coherent superposition of spin–ice
configurations with definite flux

|0〉 =
∑

λ

cλ|λ〉 , cλ ≥ 0 . (10.14)

http://dx.doi.org/10.1007/978-3-030-70860-3_9
http://dx.doi.org/10.1007/978-3-030-70860-3_3
http://dx.doi.org/10.1007/978-3-030-70860-3_9
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This means that HRK is accessible to quantum Monte Carlo simulation. Moreover,
at the “RK–point”, g = μRK, (10.13) takes the form of a projection operator,

H ′
RK = g

∑

� [|�〉 − |�〉] [〈� | − 〈� |] , (10.15)

for which the ground state is known exactly [48]—it is the equally–weighted super-
position of all states within a given topological sector, with energy

H ′
RK|0〉′0 = E ′

0|0〉′0 ≡ 0 . (10.16)

This simple result has a very profound consequence—the ground state of the quantum
model HRK, for g = μRK, is a spin liquid whose correlations are identical to those
of a classical spin ice.

By continuity, Hermele et al. [1] argued that the ground state ofHRK should be a
quantum spin liquid, described by the deconfined phase of the lattice gauge theory—
cf. Fig. 10.2. Exactly same argument was advanced by Moessner and Sondhi, in the
context of three–dimensional quantumdimermodels [10].Both sets of authors further
argued that low–energy correlations in the spin–liquid phase should be described by
the non-compact form of the lattice gauge theory

HU(1) = U

2

∑

〈rr ′〉
E2
rr′ + K

2

∑

� [∇� × A]2 + W

2

∑

� [∇� × ∇� × A]2 ,(10.17)

where Err′ can take on any value, and ∇�× denotes a lattice curl. The term propor-
tional toU in (10.17) reflects the ice–rule constraint, while the term proportional to
K , describes tunnelling between different spin–ice configurations. The third term,
proportional to W , is needed to describe the correlations at the RK point, where
K = 0 [1, 3, 10]. Naively, U ∝ Jzz , while K ∝ g − μ. However, since HU(1)

(10.17) is an effective low–energy theory, the values of these parameters are strongly
renormalised by fluctuations.

After this long series of manipulations we have finally arrived at a form of theory
which looks very familiar. Introducing a magnetic field

1

isolated
states

ordered,

-∞ μ    /gRK

QSL

RK point

?

Fig. 10.2 Schematic ground–state phase diagram diagram of the Rokshar–Kivelson (RK) model,
HRK (10.13), following [1, 10]. A quantum spin-liquid (QSL), described by the deconfined phase
of the U (1) lattice gauge theory HU(1) (10.17), abuts the exactly–soluble RK point μRK = g



280 N. Shannon

Fig. 10.3 Schematic
finite–temperature phase
diagram of the anisotropic
exchange model Hxxz
(10.1), adapted from a study
of proton disorder in water
ice [26]. On the basis of
earlier work on lattice gauge
theories [47, 49], the ground
state for small values of the
XY interaction J±/Jzz is
conjectured to be a quantum
liquid described by the
deconfined phase of the
lattice gauge theory HU(1)
(10.17)

disordered,

phase

J  /J0

ordered,

phase

± zz

T/Jzz

B = ∇� × A (10.18)

we recognise the first two terms in (10.17) as a lattice version of the Maxwell Hamil-
tonian

HMaxwell =
∫

dr
1

2

[
ε0E2 + 1

μ0
B2

]
. (10.19)

By analogy, the excitations of (10.17) should be transverse excitations of the gauge
field A, i.e. photons, with long–wavelength dispersion

ω(k) = c|k| , (10.20)

with effective speed of light

c = √
U K a0 �

−1 . (10.21)

where a0 is the linear dimension of the cubic unit cell of the pyrochlore lattice [3, 4].
We will not attempt to review the steps which lead to the non–compact lattice

theory HU(1) (10.17), or its solution in terms of photons, and refer the interested
reader instead to the original papers [1, 3, 10], and the related discussion in Chaps. 9
and 11 of this book. None the less, we will make extensive use of HU(1) below, in
comparisonwith simulation of themicroscopicmodelsHxxz (10.1) andHRK (10.13).
And it is important to note that this lattice gauge theory applies to amuchwider range
of systems than just a quantum spin ice—the arguments leading up to HU(1) could
equally have been presented in terms of a three–dimensional quantum dimer model
[10], frustrated charge order on the pyrochlore lattice [4, 40], or protons in water ice
[26, 29]—cf. Fig. 10.3.

http://dx.doi.org/10.1007/978-3-030-70860-3_9
http://dx.doi.org/10.1007/978-3-030-70860-3_11
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10.1.4 How Can Simulations Help ?

Sowhat havewe learned, and howhas it brought us closer to understanding a quantum
spin liquid ?

We have seen that a physically motivated model of a quantum spin ice, Hxxz

(10.1) reduces both to a familiar problem in lattice gauge theory HU(1) (10.17), and
to a simple effective model which could support a spin–liquid ground state, HRK

(10.13).
Simulations of classicalmodels of ice have a long history, and efficient algorithms,

based on “loop” updates make it possible to simulate very large systems [50]. The
simulation of classical spin ice, where long–range dipolar interactions must also
be taken into account, has also been raised to high art [42, 51]. However for a
quantum ice, at T = 0, the choices are much more limited. Exact diagonalisation
(ED) offers exact and unbiased answers, regardless of the model considered, but
is limited to small cluster sizes (for these models, 108 sites [52]), and so provides
limited information about long–wavelength excitations. Furthermore, since both of
the microscopic models Hxxz (10.1) and HRK (10.13) are “sign–free”, both are, in
principle, acesssible to quantum Monte Carlo simulation.

Our first goal therefore is to determine whether the quantum spin liquid phase
proposed in Figs. 10.2 and 10.3 is really seen in simulation. And since it is relatively
easy to carry out analytic calculations for the lattice gauge theory (10.17), we can
compare the results of simulations directly with the predictions of theory. Happily
this has been accomplished, first for the anisotropic exchange model Hxxz [4], and
then for the RK–model HRK [2]. In what follows we review what simulations have
taught us about each of these models. For pedagogical reasons, we consider first the
ground–state properties ofHRK, before turning to finite–temperature simulations of
Hxxz.

10.2 Simulation of Quantum Spin Ice at Zero Temperature

10.2.1 Overview of Section

In what follows we explore the evidence for a quantum spin–liquid ground state in
the Rokhsar–Kivelson (RK) model HRK (10.13) introduced by Hermele et al. [1].
Our main tool will be Green’s function Monte Carlo (GFMC) simulation, a form
of zero–temperature quantum Monte Carlo simulation which preserves quantum
numbers [53]. Since GFMC gives us access to ground states in different topological
sectors, we begin by considering the structure of spin ice states, and the way in
which their degeneracy is lifted by quantum tunnelling. Comparing the results of
simulation with the predictions of the lattice gauge theory HU(1) (10.17), we find
clear evidence of a quantum spin–liquid, and a ground state phase diagram of the
form shown in Fig. 10.4, confirming the predictions of Hermele et al. [cf. Fig. 10.2].
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Fig. 10.4 Ground–state phase diagramdiagramof theRokshar–Kivelson (RK)model,HRK (10.13)
from simulation, following [2, 3]. For a wide range of parameters, bordering the exactly–soluble
RK point, the ground state is a quantum spin-liquid (QSL) described by the lattice gauge theory
HU(1) (10.17). This competes with an ordered, confining “squiggle” phase, described in [2]. The
minimal model of a quantum spin ice, Htunnelling (10.6), corresponds to μRK = 0

We go on to examine the correlations of this quantum spin liquid, and explore how
simulation informs us about the different length scales over which quantum, and
classical, effects predominate.

10.2.2 Topology, Quantum Numbers and Simulation

The key to successful simulation of HRK (10.13) at T = 0 is understanding the
topology of spin–ice states, and the quantum numbers which follow from it. All
spin–ice configurations can be classified according to the flux of the electric field

φS =
∫

S
dS · E (10.22)

through a closed surface S, as illustrated in Fig. 10.5a. The flux φS is a topologi-
cal property, conserved under all local operations which respect the ice rules [cf.
Fig. 10.5b]. And since the dynamics ofHRK are purely local, we can define a set of
topological quantum numbers

φ = (φx , φy, φz) (10.23)

which are conserved under the action of this Hamiltonian. For this reason, the QSL
formed through the coherent superposition of ice–configurations can be considered
to have topological order [1].

The topological sector with the greatest number of spin ice configurations is the
zero–flux sector φ = 0, and all of the low–lying topological sectors contains an
extensive number of states [54]. Spin–ice configurations in other topological sectors
can be systematically constructed by reversing the sense of a closed loop of spins
which traverse the periodic boundaries of the cluster (cf. Fig. 10.5c, and discussion in
[14]). In the language of the lattice gauge theory, this is equivalent to creating a point
source of electric field (in a spin ice, a magnetic monopole), moving it through the
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a) b) c)

x

z
y

Fig. 10.5 Flux of electric field E as a topological quantum number. a Surface S used to define
the flux φx associated with a particular spin–ice configuration, for a cluster with periodic boundary
conditions. b A closed loop of spins within the cluster. Reversing the sense of these spins leaves
the flux through the surface S unchanged. c A closed loop of spins which traverses the periodic
boundaries of the cluster. The flux can be changed by reversing the sense of the spins in this loop

periodic boundary of the cluster, and then annihilating it. Fortunately, in the case of
quantum spin ice, all but a vanishing fraction of states within low–lying topological
sectors are connected by the matrix elements ofHRK [2].

To directly probe the structure of this topologically–ordered ground state, simula-
tions should be carried out in a way which preserves topological quantum numbers.
This is automatically true in ED. However ED studies are limited to clusters of
108 sites [52], far too small to reveal the long–wavelength behaviour of any QSL.
Fortunately, GFMC, a form of diffusion Monte Carlo simulation provides a means
of evaluating ground state properties which respects all quantum numbers, includ-
ing topological ones. GFMC simulation proceeds by using matrix elements of the
Hamiltonian to tunnel, at random, from one spin–ice configuration to another [53].
However, since there is no way to sample all of the extensive number of spin–ice
configurations which contribute to a spin–liquid ground state, importance–sampling
must be used to guide this process of diffusion through “Hamiltonian graph” (the
network of spin–ice configurations connected by 10.6). In practice, this means identi-
fying a good variational wave function, carrying out variational Monte Carlo (VMC)
simulations to optimise this variational wave function for a given parameter set, and
then using the optimised wave function to guide GFMC simulations. In this sense
GFMC can be thought of as a systematic way of improving on VMC simulations.
It is numerically exact, where simulations converge, however simulations are not
guaranteed to converge in finite time.

The most important step in GFMC simulation, therefore, is identifying a suitable
variational wave function, and here our physical intuition can help. The QSL is
adiabatically connected with the ground state at the RK point, which is the uniform
superposition of the set of states {c}φ , within in a given topological sector φ, which
are connected by matrix elements of HRK (10.13)

|φ〉 = 1√
Nc

∑

λ∈{c}φ
|λ〉 (10.24)
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The Frobenius–Perron theorem implies that, away from the RK point, the ground
statemust still be a superposition of spin–ice configurationswith positive coefficients.
We can therefore construct a variational wave function for the ground state within
a given topological sector by acting on |φ〉 with an operator which re–weights the
spin–ice configurations within {c} so as to minimise the energy.

A variational wave function which has proved effective in practice [2, 3, 13, 14]
is

|ψvar〉φ = exp

⎡

⎣αNf +
∑

i j

γi jτiτ j

⎤

⎦ |φ〉 , (10.25)

where sum on i j runs over pairs of hexagonal plaquettes within the pyrochlore lattice
and τi = 0,1 is an Ising-like variable which takes on the value τi = 1when the hexag-
onal plaquette i is “flippable” [cf. Fig. 10.1]. Meanwhile Nf = ∑

i τi counts the total
number of flippable plaquettes. For large lattices there are many different pairs of
hexagonal plaquettes, and the variational parameters α, γi j are minimized using a
stochastic reconfiguration algorithm [55, 56]. In practice, a good wave function can
be obtained using a set of approximately 40 inequivalent γi j . We note that in parallel
work on the QDM, described in Sect. 10.4.1, it is useful to add an additional varia-
tional parameter associated with the order parameter mR of the competing ordered
ground state [13, 14].

10.2.3 Evidence for a Spin–Liquid from Finite–Size Scaling
of Energy Spectra

Armedwith a simulationmethod, and a suitable guide wave function, we are now in a
position to determine the ground state phase diagram ofHRK (10.13). The first point
of business is to identify any competing ordered phases—cf. Fig. 10.2. This is easiest
to accomplish for μRK → −∞, where the ground state is the spin–ice configuration
with the maximum number of flippable plaquettes Nf. This can be determined by
using classical Monte Carlo simulation techniques, and was found to be the ordered,
“squiggle state” described in [2]. The squiggle state has a 20–site unit cell, is 60–
fold degenerate, has finite magnetisation parallel to the [100] axis, and belongs to a
topological sector with flux

φsquiggle = (φsquiggle, 0, 0) , φsquiggle = N/5 (10.26)

where N is the number of sites in the cluster. GFMC simulations find a crossing
between a ground state in the squiggle–flux sector, and a ground state in the zero–flux
sector, for μRK = (−0.50 ± 0.03) × g, suggesting that the squiggle state remains a
ground state for −∞ < μRK < −0.5 g [2].
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Fig. 10.6 Evidence for the existence of a quantum spin liquid (QSL) ground state in the Rokhsar–
Kivelson (RK) model HRK (10.13). a Scaling of finite–size energy gap Eφ − E0, as a function of
topological sector φ, for parameters approaching the RK point μRK = g. b Scaling of Eφ − E0 for
μRK = 0, corresponding to the minimal model of a quantum spin ice. The dashed lines show the
scaling expected from theU(1) lattice gauge theory, (10.28). Results are taken fromGreen’s function
Monte Carlo simulation of 320-site, 640-site and 1280-site clusters, and exact diagonalization for
an 80-site cluster. Flux φ is measured relative to the flux φsquiggle of the competing ordered ground
state [10.26]. Reprinted from [2] with permission from the American Physical Society.

The bestway to approach any simulation of a finite size system, is to use finite–size
effects to your advantage. Happily, the lattice gauge theory, HU(1) (10.17), makes
a prediction for the finite–size scaling of energy gaps within its deconfined phase,
which uniquely identify the QSL in question. In the thermodynamic limit, the ground
states of HRK in all topological sectors are degenerate. However this is not true for
a finite–size cluster [10], where a flux φ through a cluster of volume L3 corresponds
to an average electric field

E = φ/L2 (10.27)

and, in a spin–liquid described by (10.17), the ground states in different topological
sectors with different values of electric field are split by an energy gap

Eφ − E0 ∝ c2φ2/L ∝ c2 N
(
φ/φsquiggle

)2
. (10.28)

The energy gap Eφ − E0 can be calculated directly in GFMC simulation [2] and,
for g − μRK → 0, in perturbation theory about the the RK point [1, 2]. As shown
in Fig. 10.6, both perturbation theory and simulation are found to be in excellent
agreement with (10.28), for a wide range of parameters bordering the RK point.

As no evidence is found in simulation of any other state besides the QSL for
μRK > −0.5 g, the ground state phase digram ofHRK (10.13) is believed to have the
form shown in Fig. 10.4, confirming the form predicted by Hermele et al. [1]—cf.
Fig. 10.2.
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10.2.4 Evidence for a QSL Ground State from Correlation
Functions

Simulation also allows us to probe the phenomenology of the QSL ground state in a
waymore directly linked to experiment. Spin correlations in classical spin ice exhibit
dipolar correlations in 3 dimensions, for which S(r) ∝ 1/r3 [54, 57]. This leads to
characteristic “pinch points” in polarised neutron scattering experiments [58], with
structure factor

Sαβ(q) ∝
(

δαβ − qαqβ

q2

)
. (10.29)

In the QSL ground state, on the other hand, quantum fluctuations lead to dipolar
correlations in (3 +1) dimensions, with S(r) ∝ 1/r4 [1]. At long–wavelength the
corresponding equal–time structure factor has the form [3]

Sαβ(q) =
∫

dω Sαβ(q, ω) ∝ q√
c2 + W 2q2

(
δαβ − qαqβ

q2

)
. (10.30)

In the limit c → 0 (i.e. at the RK point), the properties of the QSL are controlled
by the term proportional toW inHU(1) (10.17), and the correlations are identical to
those of a classical spin ice, (10.29). However, away from the RK point, c �= 0, and
sharp pinch–points for q → 0 are eliminated by the the additional factor of q in the
numerator of (10.30).

As shown in Fig. 10.7, this phenomenology finds strong support in simulation. It
is possible to calculate the equal–time structure factor for a finite–size cluster, both
within GFMC simulation of HRK (10.13), and using the lattice gauge theory HU(1)

(10.17), with parameters U ,K , W , extracted from simulation, as described in [2].
Comparing the two, we find essentially perfect agreement, validating the use of the
non–compact form of the lattice gauge theory HU(1) to describe the ground state
properties of the microscopic mode, HRK. And this, in turn, suggests that, much as
in conventional electrodynamics, the photons of a quantum spin ice do not interact
in the absence of charge.

ForμRK/g = 0—where themicroscopicmodel corresponds to theminimalmodel
of a quantum spin ice, Htunnelling (10.6)—quantum fluctuations have a dramatic
effect, eliminating the zone–center pinch points entirely. However, away from the
zone center, simulations reveal that correlations are very similar for all values of
μRK/g—cf. Fig. 10.7. This evolution of correlationswithq highlights another feature
of the phenomenology of the QSL. While the term proportional toW inHU(1) is an
irrelevant perturbation, in the RG sense [1], it sets a length scale

λW ∝
√
W

c
, (10.31)
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Fig. 10.7 Evolution of spin correlations in the Rokhsar–Kivelson (RK) model of a quantum spin
ice,HRK (10.13), following [3]. First row—predictions of the lattice gauge theoryHU(1) (10.17) for
the equal–time structure factor S(q), as a function of μRK/g, in the thermodynamic limit N → ∞.
At the RK point, μRK/g = 1, correlations exactly reproduce those of a classical spin ice. Second
row—predictions of the lattice gauge theory for a finite–size (FS) cluster of N = 2000 sites. Third
row—results of Green’s function Monte Carlo (GFMC) simulations for cluster of N = 2000 sites.
Correlations are shown in the spin–flip channel measured by Fennel et al. [58]. Reprinted from [3]
with permission from the American Physical Society

and correlations for distances r < λW retain their classical character, while correla-
tions for r > λW are strongly renormalised by quantum fluctuations. And as we will
see in Sect. 10.3, the thermal excitation of photons introduces another length–scale
into the problem, λT , restoring classical correlations at long distance.

10.3 Simulation of Quantum Spin Ice at Finite
Temperature

10.3.1 Overview of Section

While the ground–state properties of the RK model HRK (10.13) demonstrate the
quantum aspects of ice in their purest form, making comparison with experiment
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means getting to grips with the properties of the anisotropic exchange model Hxxz

(10.1), at finite temperature. Historically, quantumMonte Carlo simulations at finite
temperature predate studies of quantum ice at T = 0, and they provide a powerful tool
for exploring the phenomenology of a quantum spin ice, particularly when combined
with analytic results for the lattice gauge theory [3–5].

Besides bringing us closer to experiment, the finite–temperature physics ofHxxz

contains a number of new features not present in HRK. Firstly, any QSL ground
state must interpolate, presumably through a classical spin–ice regime, to the high–
temperature paramagnet. How this happens is an interesting question. Secondly, for
large values of J±, Hxxz need not support a QSL ground state, and its phase dia-
gram should include at least one competing ordered phase, as proposed in Fig. 10.3.
And thirdly, while HRK represents a pure lattice gauge theory, the Hilbert space of
Hxxz includes the charges of the gauge field. Given that the electric charges of the
gauge theory correspond to the magnetic monopoles of a spin ice, this is of both
experimental and theoretical interest.

Continuing the theme developed in Sect. 10.2.4, we start by exploring evidence
for a QSL from quantumMonte Carlo simulations carried out at finite temperatures.
We then consider the way in which this QSL evolves into a paramagnet at finite tem-
perature, before turning to competing ordered phases, and the global phase diagram
of Hxxz as a function of interactions and temperature.

10.3.2 Evidence for a QSL from Correlations at Finite
Temperature

At low temperatures, within the QSL regime, the evolution of spin correlations is
controlled by the thermal excitation of photons. These modify the T = 0 prediction
of the lattice gauge theoryHU(1) (10.17) for the equal–time structure factor, (10.30),
to give [3]

Sαβ(q) ∝ q√
c2 + W 2q2

(
δαβ − qαqβ

q2

)
coth

(
q
√
c2 + W 2q2

2T

)
. (10.32)

For T � cq, we can apoximate the thermal factor as

coth

(
q
√
c2 + W 2q2

2T

)
≈ 2T

q
√
c2 + W 2q2

+ O
(cq
T

)
, (10.33)

and, for W q � c, (10.32) interpolates to the result for a classical spin ice, (10.29).
More generally, the thermal de Broglie wavelength for photons,

λT = πc

T
, (10.34)
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sets an intermediate length scale, beyond which thermal fluctuations destroy the
quantum coherence of a quantum spin ice, restoring classical spin–ice correlations.
Thus, we expect the pinch points of a quantum spin ice to slowly “switch back on”
as the QSL is heated from T = 0 and, at least in the pure gauge theory HU(1), the
transition fromquantum to classical spin ice can be accomplished through a crossover
[3]. Simulation at finite temperatures provides the opportunity to check whether this
is true.

The first QMC simulations of correlations in a quantum ice were carried out by
Banerjee et al. [4], who considered the model of hard–core Bosons on the pyrochlore
lattice, HtV (10.4), equivalent to Hxxz (10.1). Simulations were performed within
the path–integral formulation of QMC, using a stochastic series expansion (SSE)
[59], in a version tailored to the simulation of frustrated spin systems [60, 61]. Great
care was taken to ensure thermalisation of simulations at low temperatures, with
cross–checks made between two, independently–written, codes [62].

Following the conjectured form of the phase diagram [1, 26], a QSL state should
be found at low temperature, for small J±. For J± = 0.103 Jzz , and T = 0.0017 Jzz ,
Banerjee et al. found good agreement between the results of simulations and their
own analytic calculations, from the lattice gauge theory, HU(1) (10.17), of both the
equal time,

Cαα′
(q, τ = 0) = 〈nα(q)nα′(−q)〉 (10.35)

and the zero–frequency correlations of

Sαα′
(q, ωn = 0) =

∫ β

0
dτ Cαα′

(q, τ ) (10.36)

Bosons on the sublattice α = 0, 1, 2, 3—cf. Fig. 10.8—demonstrating the existence
of a quantum liquid state. And, to underwrite the quantum nature of this liquid
state, they developed a scaling argument, relating equal–time and zero–frequency
correlations at different temperatures through scaling functions derived fromHU(1).
Once again, excellent agreement was found between theory and simulation [4].

For J±/Jzz � 0.1, Banerjee et al. found evidence of a first–order transition into
a superfluid state of Bosons [4]. Viewed in terms of the lattice gauge theory, such a
superfluid is a confined state, and within a quantum lattice–gas mapping, (10.5), it
has the interpretation of easy–plane magnetic order. Overall, the finite–temperature
phase diagram found by in these simulations closely matches the expectation shown
in Fig. 10.3.

The QMC simulation of Hxxz (10.1) at finite temperatures was subsequently
revisited by Kato and Onoda [5], using a continuous (imaginary) time formulation
of world–line QMC [63], with directed loop updates [59], modified so as to deal
efficiently with the hard–core constraint [64]. The results of Kato and Onoda are
entirely consistent with the earlier findings of Banerjee et al. [4], and lead to the
phase diagram shown in Fig. 10.9. For J± > 0.052 Jzz , the ground state of Hxxz is
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Fig. 10.8 Numerical evidence for the existence of a quantum liquid in a model of hard–core
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[4] with permission from the American Physical Society
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figure from [5] with permission from the American Physical Society
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found to be an easy–plane ferromagnet; for J± < 0.052 Jzz the ground state is a
QSL, described by the deconfined phase of HU(1) (10.17).

Kato and Onoda also present extensive results for the equal–time spin struc-
ture factor Sαβ(q). At low temperatures, within the QSL, the evolution of correla-
tions is found to be well–described by the predictions of the lattice gauge theory
HU(1) (10.17)—cf. (10.32)—suggesting that the transition into the classical spin–ice
(CSI) regime occurs through a smooth crossover, as described in [3]. Unsurpris-
ingly, the pure gauge theory HU(1) does not give such a good account of the sub-
sequent crossover from the CSI regime into the high–temperature paramagnet, for
T ≈ 0.2Jzz , where the ice–rules begin to break down. Within this high–temperature
paramagnet, the structure factor Sαβ(q) is dominated by strong “rods” of scattering
along [111] directions, similar to those observed in Yb2Ti2O7 [38, 39, 65–67].

10.3.3 Thermodynamics of Quantum Spin Ice

The two crossovers seen in the correlations of quantum spin ice, from high–
temperature paramagnet to CSI, and from CSI to QSL, also have thermodynamic
signatures. Simulation results for the heat capacity cV (T ) ofHxxz (10.1), evaluated
for J± = 0.045 Jzz , are shown in Fig. 10.10. A pronounced peak in cV for T ≈ 0.2 Jzz
marks the onset of classical spin–ice behaviour. Below this peak, the entropy remain-
ing in the system is found to be very close to the residual entropy S = 1/2 ln(3/2)
predicted by the ice rules [32, 68].

Since the QSL has a unique quantum mechanical ground state, this residual
entropymust also be lost on cooling to T = 0. And on general grounds, the crossover
from CSI to QSL is expected to be accompanied by a Shottky–like anomaly in the
specific heat. For T → 0, this second peak in cV (T ) should merge with the simple
power law

cV (T → 0) = B T 3 + . . . (10.37)

controlled by the thermal excitation of photons [1, 34], with the dimensional coef-
ficient B given by [3]

B =
(

π2

30

)
kB

(
kBa0
�c

)3

J K−4 mol−1 , (10.38)

where mol−1 refers one mole of the formula unit. Unfortunately, at present, no sim-
ulation results are available at the temperatures T � 0.001 Jzz needed to confirm
these predictions. None the less, Kato and Onoda [5] have used a cubic spline inter-
polation to extrapolate their numerical data for cV (T ) into the QSL regime, and
these interpolations suggest the existence of a second specific heat anomaly, shown
in Fig. 10.10b.
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Fig. 10.10 Heat capacity of a quantum spin ice. a Heat capacity per spin, cV (T ), showing a
peak at T ≈ 0.2 Jzz , signalling the onset of classical spin ice (CSI) correlations. The dashed line
shows an interpolation to low temperatures, where a second peak associated with the onset of
quantum coherence is anticipated. b Detail of extrapolation to low temperatures—the dashed line
shows a fit to the anticipated low–temperature behaviour cV (T ) ∝ (T/c)3 [cf. (10.37), based on
an independent estimate of the speed of light c. Results are taken from QMC simulations of Hxxz
(10.1) for J± = 0.045 Jzz , as described in [5]. Adapted figure from [5] with permission from the
American Physical Society

Moreover, it is possible to extract the speed of light c, and thereby the behaviour of
the heat capacity for T → 0, from the finite size scaling of the ground–state energy
of the QSL [3, 14]. Doing so, for J± = 0.045 Jzz , Kato and Onoda find

c = 1.49(4) g a0 �
−1 (10.39)

in good agreement with their interpolation of cV [cf. Fig. 10.10]. It is interesting to
compare this value with the estimate

c = 1.8(1) g a0 �
−1 (10.40)

obtained in the earlier quantum Monte Carlo simulations of Banerjee et al.. [4] for
J± = 0.103 Jzz , and the value

c = (0.6 ± 0.1) g a0 �
−1 , (10.41)

obtained in Greens function Monte Carlo simulations of the effective low–energy
modelHtunnelling (10.6), valid in the limit J±/Jzz → 0 [3]. A similar, if slightly lower,
estimate for the speed of light
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c ≈ 0.41 g a0 �
−1 , (10.42)

was also obtained in a recent semi–classical treatment of quantum spin ice [69].
The trend which emerges is an enhancement of the speed of light, as measured in

units of g, with increasing J±/Jzz . This is consistent with degenerate perturbation
theory, where tunnelling on longer loops becomes possible with increasing J±/Jzz .
Since the tunnelling matrix elements associated with these longer loops all have
the same (negative) sign, they do not change the ground state, but lead to faster
fluctuations of the gauge field, and so to a higher speed of light.

10.4 An Honourable Mention—Work on Related Models

10.4.1 The Quantum Dimer Model on a Diamond Lattice

While it remains the most visible example, quantum spin ice is by no means the only
three–dimensional system to be described by by an effective low–energy model of
the formHtunnelling (10.6), acting on an extensive manifold of states. Quantum dimer
models (QDM’s), on bipartite lattices, in three dimensions, have also been proposed
to support quantum liquid ground states, analagous to those found in quantum spin
ice [1, 10–12]. And in the case of the QDM on a diamond lattice, this proposal has
found strong support in simulation [13–15].

The ground state phase diagram of the Rokshar–Kivelson (RK) model HRK

(10.13), acting on the dimer coverings of a diamond lattice, has been studied using
themethods described in Sect. 10.2, leading to the phase diagram shown in Fig. 10.11
[13, 14]. A quantum liquid, described by the deconfined phase of HU(1) (10.17), is
indeed found bordering the RK point, μRK = g, confirming the original conjecture
of Moessner and Sondhi [10]. However the extent of this quantum liquid is notably
smaller than that found in the RK model of a quantum spin ice, [cf. Fig. 10.4], and
does not include the pointμRK = 0.Moreover, theQDMonadiamond lattice exhibits
hidden quantum numbers which can adversly effect the ergodicity of simulation [14].

1

isolated
states

ordered R-state

-∞ μ    /gRK0.750

Q
SL

RK point

Fig. 10.11 Ground–state phase diagram of the Rokshar–Kivelson (RK)modelHRK (10.13), acting
on the dimer coverings of a diamond lattice, following [13, 14]. Strong evidence is found for a
quantum liquid ground state, described by the deconfined phase of HU(1) (10.17), bordering the
RK point μRK = g. This competes with an ordered “R–state”, described in [11, 12]
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Fig. 10.12 Ground–state phase diagram for hard–core bosons on the pyrochlore latticeHtV (10.4),
as a function of chemical potential μ. The phase CMI-1/2, found at half–filling, is equivalent to
the spin liquid in a quantum spin ice [2–5]. The phases CMI-1/4 and CMI-1/4 both correspond to
the quantum liquid found in the quantum dimer model on a diamond lattice, previously studied in
[11–14]. Phase boundaries are estimated from finite–temperature QMC simulation, as described in
[15]. Reprinted figure from [15] with permission from the American Physical Society

More recently, Lv et al. [15] have also presented evidence for a quantum liquid
phases in QMC simulations of hard–core bosons on the pyrochlore lattice, HtV

(10.4), at filling factors which correspond to the QDM on a diamond lattice.Working
in the grand canonical ensemble, using a finite–temperature, continuous–time QMC
method based on a worm algorithm [70–72], Lv et al. revisited the model considered
by Banerjee et al. [4], considering a range of values of chemical potential which span
1/4–, 1/2– and 3/4–filling—cf. Fig. 10.12. At 1/2–filling, these simulations reproduce
earlier results for quantum spin ice [4, 5], while new liquid phases for 1/4– and 3/4–
filling correspond to tunnelling between states with exactly one, or three, bosons
per tetrahedron, which can be mapped onto dimer coverings of the diamond lattice,
previously studied in [11–14]. The residual entropy associated with these phases
is found to be similar to the known value S/N = 0.13 for dimer coverings of the
diamond lattice [73].

10.4.2 Quantum Square Ice, Also Known as the Quantum
Six–Vertex Model

A two–dimensional analogue of water ice, often referred to as “square ice”, occurs
in certain proton–bonded ferroelectrics [30], and has a long and venerable history
as a problem in statistical mechanics, where it is known as the 6–vertex model
[74]. Quantum versions of square ice, analagous to quantum spin ice, have been
motivated by models of cuprate high–temperature superconductivity [75], and hard–
core bosons on the checkerboard lattice [6, 9]. Meanwhile a very similar, quantum
8–vertex model, arises in models of layered anti–ferroelectrics known as “square
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acid” [8]. And a square ice built of water molecules was also recently realised for the
first time [76]. Here too, experiments on rings of water molecules hint that quantum
tunnelling could play a role [77].

Just as in three–dimensional quantum spin ice, quantum tunnelling between dif-
ferent two–dimensional ice configurations can be described by a compact U(1) lattice
gauge theory. However, in two dimensions, this is expected to be confining [26, 47,
78], and early exact diagonalisation studies of quantum square ice found clear evi-
dence of a plaquette–ordered ground state [6]. None the less, the properties of the
model remain of interest, and considerable ingenuity has been brought to bear on
simulations of quantum square ice. Ground–state properties have been investigated
using continuous–time diffusion Monte Carlo [7], and a tailor–made “membrane
algorithm" was used to explore phases at finite–temperature [9]. QMC simulations
have also been carried out for the closely–related quantum 8–vertex model [8]. In
all cases, ground states are found to be ordered [7], but with a very low transition
temperature [9, 26]. Quantum effects remain significant at finite temperature, even
in the disordered phase [8, 9].

10.5 Where Next ?

Viewed in terms of all the things which don’t happen, the ground state of a quantum
spin ice is not a very interesting state. Breaking no symmetries, and possessing only
hidden, topological order, it evolves quietly out of the classical, high–temperature
paramagnet without so much as a phase transition. What makes this massively–
entangled, but seemingly inert, spin–liquid so interesting is the range of different
excitations which it can support—the elementary excitations of the lattice gauge
theoryHU(1) (10.17) include emergent photons, as well as both electric andmagnetic
charges. However, while QMC has contributed enormously to our understanding
of the ground–state and thermodynamic properties of quantum spin ice, to date
simulations offer only an indirect portrait of the photons [cf. Fig. 10.13], and the
electric charges of the lattice gauge theory (the magnetic monopoles of spin ice). As
yet, no evidence has been found for the magnetic charges of (10.17).

So far as simulation is concerned, this lack of a clear portrait of excitations has
to be viewed as unfinished business. However some information is now available
from other sources—estimates of the dispersion of the electric gauge–charges (mag-
netic monopoles) can be gleaned from mean–field theory [34, 79], calculations on a
Bethe lattice [80], and an analysis of spinon diffusion [81] And in the case of two–
dimensional quantum square ice, estimates of the associated bandwidth have been
made from QMC for bosons [9] and ED for fermions [40, 82].

Another promising avenue for future investigation is the generalisation of the
quantum ice to new contexts, such as Rydberg atoms in an optical lattice [83]. And
there is growing evidence that the collective quantum tunnelling of protons [26–29,
84, 85], may play an important role in the low–temperature physics of the original
ice—common, hexagonal water ice [31–33, 86–88]. But given its importance as a
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Fig. 10.13 Figure
illustrating the connection
between the photons of the
lattice gauge theory HU(1)
(10.17) and the equal–time
structure factor S(q), in a
quantum spin ice. The
vanishing spectral weight in
the zone center (absent pinch
point) can be understood in
terms of the vanishing
intensity of the photon for
ω → 0, [3, 34]. Reprinted
figure from [3] with
permission from the
American Physical Society

model system, perhaps the most glaring omission is the lack of a clear picture of how
quantum mechanics enters into the theory of conventional, dipolar spin ice.

Conventional spin ice materials, such as Dy2Ti2O7, differ in important ways from
the idealised quantum spin ice considered in this chapter. Magnetic moments inter-
act through strong, long–range, dipolar interactions [51, 89–93]. In the absence of
quantum fluctuations, these interactions are known to favour ordered ground states
[51, 89–91, 94]. For a long time, experiment did not reveal any sign of an ordering
transition down to 300 mK [17–19, 95]. But recent experiments, which observe an
upturn in the heat capacity of Dy2Ti2O7 below 500 mK [20], provide a strong moti-
vation to reexamine the ground state of dipolar spin ice. And since it is clear that spin
ice still has dynamics at this temperature, albeit a very slow dynamics, it is worth
asking whether quantum effects could play a role ?

As yet, there is no universally agreed picture, at a microscopic level, of how
quantum effects enter in a dipolar spin ice [21, 22]. However, if quantum fluctuations
lead to tunnelling between different spin configurations obeying the ice rules, the
form of tunnelling is subject to exactly the same topological constraints as in a
quantum spin ice. We can therefore take Htunnelling (10.6) as a minimal, effective
model of quantum effects in a dipolar spin ice. Carrying out QMC simulations of a
system with frustrated, long–range interactions is a challenging proposition. None
the less, the ground–state properties of dipolar spin ice, in the presence of quantum
tunnelling Htunnelling, were recently investigated using the same GFMC methods as
previously applied to quantum spin ice [2, 3]. These simulations [16] reveal that even
a small amount of quantum tunnelling g ≈ 0.1 D can stabilise a QSL ground state
of the same type as found in quantum spin ice (here D is the bare scale of dipolar
interactions)—cf. Fig. 10.14.While this is a long way from being the end of the story,
these results leaves open the possibility that the equilbrium ground state of a dipolar
spin ice could be a quantum spin liquid.
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Fig. 10.14 Ground–state phase diagram of a spin ice with long range dipolar interactions D,
quantum tunnelling g (10.6), and 2nd–neighbour exchange, J2. For g � 0.1 D, the ground state is
a quantum spin liquid (QSL), described by the deconfined phase of the U(1) lattice gauge theory,
HU(1) (10.17). The competing phases, marked FM, TDQ, OZZ and CAF, exhibit chain–based
order, of the type discussed in [16]. Phase boundaries are taken from Green’s function Monte Carlo
(GFMC) simulation, as described in [16]. Reprinted figure from [16] with permission from the
American Physical Society

10.6 Conclusions

In this chapter we have explored some of the recent progress in understanding quan-
tum spin ice which has come from quantum Monte Carlo simulation. This work
has brought a number of rewards. Crucially, it has given us reason to believe that a
quantum spin–liquid of the type described in Chap.9 and 11 [1, 34], can occur in a
realistic microscopic model of a three–dimensional magnet [2, 4]. It has also taught
us to trust in the lattice–gauge theory description of this quantum spin–liquid, at its
simplest, non–compact level [2–5], opening the route to a clear phenomenology for
comparison with experiment [2, 3, 5]. And, by allowing us to pose questions in new
ways, simulation has brought alive many of the subtle and exotic features of this
spin–liquid state.

Note added in proof:
Two very recent publications are worth remark in context of this Chapter. The first, by Huang et al.,
presents dynamical structure factors for a model quantum spin ice found from QMC simulations,
showing the dynamics of topological excitations [96]. The second by Sibille et al., reports the
possible observation of emergent electrodynamics in the quantum spin ice candidate, Pr2Hf2O7
[97].

http://dx.doi.org/10.1007/978-3-030-70860-3_9
http://dx.doi.org/10.1007/978-3-030-70860-3_11
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Chapter 11
Analytical Approaches to Quantum
Spin Ice

Owen Benton

Abstract In this chapter we introduce some analytical approaches which are useful
for the description of quantum spin ice systems. Firstly, we will show how to obtain
the dispersion relation of the emergent photons in the U(1) spin liquid phase of
quantum spin ice, starting from a lattice field theory. We will see how this can be
used to calculate the structure factor for neutron scattering experiments. Secondly,
we will introduce a method which allows us to derive the general Hamiltonian for
pyrochlore spin systems and to find its classical phase diagrampurely from symmetry
considerations. This enables us to express the conditions for a pyrochlore magnet to
be in its ground state in terms of a general local constraint, of which the “ice rule”
known from spin ice is a special case.

11.1 Emergent Photons in Quantum Spin Ice

One of the most intriguing features of the U (1) quantum spin liquid state on the
phase diagram of quantum spin ice materials is the predicted existence of gapless,
linearly dispersing, emergent photons as excitations of this state [1]. For exchange
parameters falling within the quantum spin liquid regime, one can describe the low
temperature physics in terms of a “photon gas”. This approach has been very suc-
cessful in describing simulation results for quantum ice models on the pyrochlore
lattice, both with regard to thermodyamic properties and spin correlations [2–5]. A
detailed discussion on the gauge theory and numerics of quantum spin ice is given
in Chaps. 9 and 10.

In what follows, will we derive the photons as the excitations of a non-compact,
lattice gauge theory, Hamiltonian

HU(1) = U

2

∑

〈rr ′〉
E2
rr′ + K

2

∑

� [∇� × A]2 (11.1)
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defined on the diamond lattice.
The electromagnetic fields E and A live on the links rr′ of the diamond lattice.

They are directed variables, i.e.

Err′ = −Er′r (11.2)

Arr′ = −Ar′r (11.3)

The lattice curl (∇�×) in (11.1) is definedon the hexagonal plaquettes of the diamond
lattice. As in conventional electromagnetism, the electric field E and the vector
potential A are canonically conjugate and have a commutation relationship

[Err′ , Ar′′r′′′ ] = i(δrr′′δr′r′′′ − δr′r′′δrr′′′). (11.4)

This lattice field theory describes the low energy physics of the U (1) quantum spin
liquid phase of a quantum spin ice [1, 4, 7]. One can view this description as phe-
nomenological, with the parameters being fixed by comparison with numerics for a
given microscopic model [4]. Alternatively, one can derive this description from a
microscopic model of tunnelling between ice-rule obeying states using a novel 1/S
approximation [6].

Remembering that a bond on the diamond lattice maps to a site of the pyrochlore
lattice, the electric field Err′ on each bond relates directly to the direction of the flux
carried by the spin on each pyrochlore site, in the classical spin ice problem. The
spin structure factor thus relates directly to the correlation functions of the electric
field.

In Sect. 11.1.1 we will show how (11.1) may be diagonalized in terms of photon
operators and calculate the photon dispersion on the lattice. In Sect. 11.1.2 we will
show how to calculate the correlation functions of the electric field, and how these are
related to the spin-spin correlation functions which one could measure in a neutron
scattering experiment on a quantum spin ice.

11.1.1 Constructing the Photon

The quantisation of the electromagnetic potential Arr′ proceeds in analogy with
conventional quantum electromagnetism by introducing a bosonic operator

[aλ(q), a†λ′(q′)] = δλλ′δqq′ (11.5)

where the band index λ runs from 1 to 4, because there are four sites in the primitive
unit cell of the pyrochlore lattice.

We adopt a labelling convention in which the bonds r, r′ of the diamond lattice
are labelled by a single site r, belonging to the ‘A’ sublattice of the diamond lattice,
and a direction index m
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r, r′ = r, r + em → r,m (11.6)

where the bond vectors em are

e0 = a0
4

(1, 1, 1) (11.7)

e1 = a0
4

(1,−1,−1) (11.8)

e2 = a0
4

(−1, 1,−1) (11.9)

e3 = a0
4

(−1,−1, 1) (11.10)

and a0 is the linear dimension of the cubic unit cell of the lattice.
The electromagnetic potential written in terms of the operators aλ(q), aλ(q)†

becomes

A(r,m) =
√

2

N

∑

q

4∑

λ=1

√
U

ωλ(q)

[
exp(−iq · (r + em/2))ηmλ(q)aλ(q) +

exp(iq · (r + em/2))η∗
mλ(q)a†λ(q)

]
(11.11)

where the ηmλ(q) are the elements of a unitary 4 × 4 matrix whose columns ηλ(q)

play the same role as the polarisation vector in conventional electromagnetism. The
function ωλ(q) will be determined below. The electric field is then

E(r,m) = i

√
2

N

∑

q

4∑

λ=1

√
ωλ(q)

U

[
exp(−iq · (r + em/2))ηmλaλ(q) −

exp(iq · (r + em/2))η∗
mλa

†
λ(q)

]
(11.12)

Inserting these definitions into (11.1) we obtain a Hamiltonian which is bilinear
aλ(q), a†λ(q). All we need to do to diagonalise (11.1) is to choose the function ωλ(q)

such that terms which do not conserve photon number are eliminated. In order to
do this, we need to evaluate the Fourier transform of the lattice curl operator on
hexagonal plaquettes (∇�×), illustrated in Fig. 11.1.

The centres of the hexagonal plaquettes form an additional pyrochlore lattice, dual
to the ‘original’ one. The lattice of plaquette centres therefore has four sublattices
and we denote the position of any plaquette as

p − en/2

where the set of points p forms an FCC lattice.
Each six-bond plaquette is composed of pairs of bonds which enter with opposite

signs in the directed sum around the plaquette. These bonds have midpoints located
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Fig. 11.1 Lattice curl taken
around a hexagonal
plaquette. The black (gray)
sites are the A (B) sites of
the diamond lattice. The
lattice curl is given by the
sum of terms ±A(r,m) with
alternating signs as indicated

at
p − en/2 ± hnm

where

hnm = a0√
8

en × em
|en × em | (11.13)

Therefore, we obtain for the lattice curl of A evaluated around a plaquette located at
p − en/2

(∇� × A)(p,n) =
√

2

N

∑

q

4∑

λ=1

√
U

ωλ(q)

{
exp[−iq · (p − en/2)]aλ(q)

∑

m

(−2i sin(q · hnm))ηmλ(q) +

exp[iq · (p − en/2)]a†λ(q)
∑

m

(2i sin(q · hnm))η∗
mλ(q)

}
(11.14)

The
∑

m in (11.14) may be written in a more convenient form by introducing an
Hermitan, anti-symmetric matrix

Z(q) = −2i

⎛

⎜⎜⎝

0 sin(q · h01) sin(q · h02) sin(q · h03)
− sin(q · h01) 0 sin(q · h12) sin(q · h13)
− sin(q · h02) − sin(q · h12) 0 sin(q · h23)
− sin(q · h03) − sin(q · h13) − sin(q · h23) 0

⎞

⎟⎟⎠ .(11.15)

The matrix Z(q) is Hermitian, and therefore a complete, orthonormal, basis may
be constructed from its eigenvectors. We choose the “polarisation” vectors ηλ(q) to
be the eigenvectors of Z(q) , i.e.
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Z(q) ·

⎛

⎜⎜⎝

η0λ(q)

η1λ(q)

η2λ(q)

η3λ(q)

⎞

⎟⎟⎠ = ζλ (q)

⎛

⎜⎜⎝

η0λ(q)

η1λ(q)

η2λ(q)

η3λ(q)

⎞

⎟⎟⎠ . (11.16)

This choice corresponds to a specific choice of gauge, which we have made for
maximum convenience in constructing the photon dispersion. It corresponds to the
Coulomb, or radiation, gauge

∇ · A = 0 (11.17)

Using (11.16), (11.14) becomes

(∇� × A)(p,n) =
√

2

N

∑

q

4∑

λ=1

√
U

ωλ(q)

{
exp[−iq · (p − en/2)]aλ(q)ζλ (q)ηnλ(q) +

exp[iq · (p − en/2)]a†λ(q)ζλ (q)η∗
nλ(q)

}
(11.18)

Inserting this into (11.1) gives

HU(1) =
∑

q

4∑

λ=1

[ (
U K ζλ (q)2

4ωλ(q)
+ ωλ(q)

4

)
(aλ(q)a†λ(q) + a†λ(q)aλ(q)) +

(
U K ζλ (q)2

4ωλ(q)
− ωλ(q)

4

)
(a†λ(−q)a†λ(q) + aλ(q)aλ(−q))

]
.

(11.19)

To diagonalize the Hamiltonian we require

U K ζλ (q)2

4ωλ(q)
= ωλ(q)

4
(11.20)

=⇒ ωλ(q) = √
U K |ζλ (q)|. (11.21)

This gives us four bands of non-interacting modes, with dispersion ωλ(q)

HU(1) =
∑

q

4∑

λ=1

ωλ(q)

(
a†λ(q)aλ(q) + 1

2

)
(11.22)

To find the dispersionsωλ(q)we need to know the eigenvalues of thematrix Z(q),
ζλ(q). These are
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Fig. 11.2 Dispersion of the photon excitations of the gauge theoryHU(1) (11.1). The dispersion is
given by (11.23) and (11.26), and is shown here in the (h, h, l) plane of reciprocal space. Close to
reciprocal lattice vectors the photons are linearly dispersing (11.27)

ζ1(q) = −ζ2(q) = √
2

√∑

mn

sin(q · hnm)2 ≡ ζ(q) (11.23)

ζ3(q) = ζ4(q) = 0 (11.24)

Thus, the four bands of excitations correspond to two, degenerate, physical, photon
modes and two unphysical zero energymodes. The unphysical modes arise as a result
of the gauge redundancy in A and make no contribution to either the Hamiltonian or
any gauge invariant correlation function.

We can therefore drop the unphysical modes from the sum in (11.22) and write

HU(1) =
∑

q

2∑

λ=1

ω(q)

(
a†λ(q)aλ(q) + 1

2

)
(11.25)

where the sum over λ now runs over two, transverse, photons and both physical
modes have dispersion

ω(q) = √
U K ζ(q). (11.26)

This dispersion relation is illustrated in Fig. 11.2.
The photon dispersion is linear and isotropic in the long wavelength limit

ω(q ≈ 0) ≈ c|q| (11.27)

with a “speed of light”

c = √
U K a0. (11.28)
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11.1.2 Correlation Functions of the Electromagnetic Fields

The electric fields of our gauge theory, are directly related to the 〈111〉 components of
the spin in a quantum spin ice. Therefore their correlation functions may be accessed
in neutron scattering experiments.

We define the correlation function

Smn
E (q, ω) = 1

2π

∫
dteiωt 〈Em(q, t)En(−q, 0)〉 (11.29)

where m, n are sublattice indices, indexing the four pyrochlore sublattices (or four
inequivalent sets of bonds on the diamond lattice). Em(q, t) is simply the spatial
Fourier transform of the electric field at time t

Em(q, t) =
√

1

Nu.c.

∑

r

exp[−iq · (r + en/2)]Em(r, t) (11.30)

where N.u.c. = N
4 is the number of primitive unit cells. The time evolution of the elec-

tromagnetic fields is given by the time evolution of the photon operators aλ(q), a†λ(q),
which, since the photons are eigenstates of HU(1), is simply

a†λ(q)(t) = eiωλ(q)t a†q(0) aλ(q)(t) = e−iωλ(q)t aq(0). (11.31)

Therefore

Em(q, t) = i√
2

4∑

λ=1

√
ωλ(q)

U

(
ηmλ(q)aλ(−q)e−iωλ(q)t − η∗

mλ(q)eiωλ(q)t a†λ(q)
)

.

(11.32)

Inserting this into (11.29) we obtain

Smn
E (q, ω) = 1

2

2∑

λ=1

ωλ(q)

U
ηmλη

∗
nλ

[
δ(ω − ωλ(q))〈aλ(q)a†λ(q)〉 + δ(ω + ωλ(q))〈a†λ(q)aλ(q)〉

]
. (11.33)

In writing (11.33) we have used the fact that the operators which do not conserve
photon number have vanishing expectation values

〈aλ(q)aλ′(−q)〉 = 〈a†λ(q)a†λ′(−q)〉 = 0. (11.34)

For the physical polarisations λ = 1, 2
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〈aλ(q)a†λ′(q)〉 = δλλ′ + 〈a†λ(q)aλ′(q)〉
= δλλ′

(
1 + 1

exp(ω(q)/T ) − 1

)
≡ δλλ′ (1 + nB(ω(q))) (11.35)

and thus

Smn
E (q, ω) = 1

2

[
δ(ω − ω(q))(1 + nB(ω(q))) + δ(ω + ω(q))nB(ω(q))

] ×
2∑

λ=1

ωλ(q)

U
ηmλη

∗
nλ. (11.36)

The sum over polarisations can be simplified by extending the sum to include the
unphysical polarisations λ = 3, 4 (they make no contribution since ω3,4(q) = 0) and
using the fact that for all bands λ (including the unphysical ζλ(q) = 0 bands)

ωλ(q) = √
U K |ζλ(q)| (11.37)

|ζλ(q)| = ζλ(q)2/ζ(q) (11.38)

with ζ(q) defined by (11.23).
We can now use the spectral theorem to note that

4∑

λ=1

ζλ(q)2ηmλη
∗
nλ = (Z(q)2)mn. (11.39)

Thus, the dynamical correlation function for the electric fields is

Smn
E (q, ω) = 2

K

ω(q)

(
∑

l

sin(q · hml) sin(q · hnl)
)

× [
δ(ω − ω(q))(1 + nB(ω(q))) + δ(ω + ω(q))nB(ω(q))

]
(11.40)

Integrating over energy gives the equal-time correlation function

Smn
E (q, t = 0) = 2

K

ω(q)
coth

(
ω(q)

2T

) (
∑

l

sin(q · hml) sin(q · hnl)
)

(11.41)

The contribution this makes to the physical spin structure factor of a quantum spin
ice, as might be measured in a neutron scattering experiment, is given by projecting
on to the local easy axes

Sαβ(q, ω) =
∑

mn

(ên.α̂)(êm .β̂)Smn
E (q, ω). (11.42)
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where α and β index different spin components in the crystal coordinate frame.
By using polarised neutron scattering one can probe different combinations of the
components of Sαβ(q, ω).

From (11.41) we can see how the correlations of a quantum spin ice in the U (1)
liquid phase differ from those of a classical spin ice and how one can cross over to
the other as a function of temperature. In a classical spin ice, we expect to see pinch
points at reciprocal lattice vectors, reflecting the dipolar nature of the correlations.
In the U (1) spin liquid at T = 0, these pinch points disappear and are replaced by
suppressions of the scattering, with the intensity vanishing as |q − K| approaching
a reciprocal lattice vectorK. This multiplicative factor effectively “hollows out” the
pinch point.

At small but finite temperature the pinch point is restored, with a height growing
linearly with T , due to the thermal excitation of photons. This can be seen using the
fact that at small q

coth

(
ω(q)

2T

)
≈ coth

( cq

2T

)
≈ 2 T

cq
. (11.43)

The extra factor of q in the demoninator cancels the linear suppression of the scatter-
ing and restores the pinch point. This makes clear the existence of a thermal length
scale in the problem

λT = πc

T
(11.44)

which defines a wavelength scale over which correlations cross over from their
classical to quantum form [4].

11.2 Point Group Symmetries of the Pyrochlore Lattice
and Anisotropic Exchange Interactions

Symmetry has longbeen a foundational concept in theoretical physics and the studyof
pyrochlore magnets, including the spin ices, is no exception to this. In this section,
we enumerate the point group symmetries of the pyrochlore lattice and use these
to consider the problem of nearest-neighbour anisotropic exchange in pyrochlore
magnets. These symmetry considerations will enable us to derive the four-parameter
Hamiltonian [8–10] studied in Chaps. 9 and 12.

A full consideration of the symmetries, however, allows us to domore than simply
constrain the form of the Hamiltonian. Using some elementary representation theory
we will see that one can re-write this Hamiltonian in terms of local order parameters
for the different types of four-sublattice magnetic order which are found in magnetic
pyrochlores [17, 18]. Once this simplification is obtained, it becomes a simple matter
to identify the classical ground state of the model for arbitrary exchange parameters.

http://dx.doi.org/10.1007/978-3-030-70860-3_9
http://dx.doi.org/10.1007/978-3-030-70860-3_12
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11.2.1 Classical Vector Spins on the Corners of a Tetrahedron

We begin by considering a single tetrahedron with a spin at each vertex. Initially, we
consider the spins to be classical, axial vectors.

We wish to consider nearest neighbour interactions on the pyrochlore lattice. All
nearest neighbour bonds belong uniquely to a single tetrahedron, so quite generically
we may write our exchange Hamiltonian, Hex, as a sum over tetrahedra of single
tetrahedron Hamiltonians

Hex =
∑

tet,i

Htet,i =
∑

tet∈A
Htet,A +

∑

tet∈B
Htet,B. (11.45)

On the RHS of (11.45) we have split the sum over tetrahedra into two sums, one
running over the A sublattice tetrahedra of the lattice and the other running over the
B sublattice tetrahedra. Translational symmetry guarantees that all tetrahedra of one
sublattice have the same Hamiltonian.

The operations under which a tetrahedron is unchanged form a 24 element group,
Td. This group is a subgroup of Oh, which contains the full set of point group
operations of the pyrochlore lattice. Oh differs from Td by the inclusion of inversion
symmetry which swaps the A sublattice and B sublattice tetrahedra.

We can thus derive the appropriate nearest neighbour Hamiltonian on the
pyrochlore lattice by using Td to derive the Hamiltonian of a single tetrahedron,
with the inversion symmetry being satisfied by the fact that the ‘A’ and ‘B’ tetrahe-
dra have the same Hamiltonian

Htet,A = Htet,B = Htet. (11.46)

Since we consider bilinear exchange we may write Htet as

Htet = 1

2

3∑

i, j=0

Si · Ji j · S j (11.47)

where

Ji j = (J j i )
T , Ji i =

⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠ . (11.48)

We now proceed to use the operations of Td to constrain the form of Htet. The
group Td has five conjugacy classes:

1. The identity element (e)
2. 8 × 2nπ

3 around 〈111〉 axes (8 C3)
3. 3 × π rotations around 〈100〉 axes (3 C2)
4. 6 × 2(n+1)π

2 rotations around 〈100〉 axes combined with reflection in the plane
normal to the rotation axis (rotoreflection) (6 S4)
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Fig. 11.3 The symmetries
of a tetrahedron. There are 8
three-fold rotations around
〈111〉 axes (green), 3
two-fold rotations and 6
four-fold rotoreflections
around 〈100〉 axes (yellow)
and 6 reflections in [011]
planes (blue)

C2

S4

C3

d

Fig. 11.4 The operations of
Td represented as
permutations of the four
vertices of a tetrahedron.
a The conjugacy class 8 C3:
one site remains fixed while
the other three are cyclically
permuted. b 6 σd : two sites
are swapped. c 3 C2: two
pairs of sites are swapped.
d 6 S4: all four sites are
cyclically permuted

5. 6× reflections in [011] planes (6 σd)

These are illustrated in Fig. 11.3.
Any symmetry operation of Td both permutes the sites of a tetrahedron (as illus-

trated in Fig. 11.4) and rotates the spins. The spins transform as axial vectors. The
action of reflecting a vector in a plane with normal n̂ may in general be written

A(n̂) = R(n̂, π)I (11.49)

whereI is spatial inversion and R(n̂, π) is aπ rotation around n̂. Axial vectors don’t
transform under spatial inversion, and hence the action of the reflection operations
is to simply rotate the spin by π around the normal vector of the reflection plane (in
addition to the relevant permutation of the site indices).
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First off we consider the coupling matrix between S0 and S1, initially allowing
all nine elements of the matrix to be independent

J01 =
⎛

⎝
Ja Jb Jc
Jd Je J f

Jg Jh Ji .

⎞

⎠ (11.50)

Reflecting the system in the [011̄] plane swaps sites 2 and 3 but leaves sites 0 and
1 where they are, so J01 is affected only by the rotation by π around (0,−1, 1).
Imposing invariance under this transformation gives us

R((0,−1, 1), π)T · J01 · R((0,−1, 1), π) =
⎛

⎝
Ja Jc Jb
Jg Ji Jh
Jd J f Je

⎞

⎠ =
⎛

⎝
Ja Jb Jc
Jd Je J f

Jg Jh Ji

⎞

⎠

(11.51)

=⇒ Jb = Jc, Jg = Jd , Ji = Je, J f = Jh (11.52)

Applying a π rotation around the [100] axis swaps sites 2 and 3 and sites 0 and
1, so using (11.48)

R((1, 0, 0), π)T · J10 · R((1, 0, 0), π) =
⎛

⎝
Ja −Jd −Jd

−Jb Je J f

−Jb J f Je

⎞

⎠ =
⎛

⎝
Ja Jb Jb
Jd Je J f

Jd J f Je

⎞

⎠

(11.53)

=⇒ Jb = −Jd , (11.54)

which finally leaves us with a matrix with only four parameters

J01 =
⎛

⎝
J2 J4 J4

−J4 J1 J3
−J4 J3 J1.

⎞

⎠ (11.55)

All the remaining exchange matrices may be generated by applying combinations of
2π
3 rotations around the various 〈111〉 axes to (11.55). This gives the full Hamiltonian
in the global, crystal, co-ordinate frame.

It is quite common in the literature to present the Hamiltonian in a local co-
ordinate frame, with the z-axis on each site pointing along the local C3 axis. Writing
theHamiltonian in this co-ordinate frame, and using ladder operatorsS± = Sx ± iSy

gives
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Htet =
∑

〈i j〉

{
JzzSz

iS
z
j − J±(S+

i S
−
j + S−

i S
+
j )

+J±±
[
γi jS+

i S
+
j + γ ∗

i jS
−
i S

−
j

]
+ Jz±

[
Sz
i (ζi jS

+
j + ζ ∗

i jS
−
j ) + i ↔ j

] }

(11.56)

where the complex, unimodular, 4 × 4 matrices γ and ζ are given by

γ = −ζ ∗ =

⎛

⎜⎜⎝

0 1 exp
(
2π i
3

)
exp

(−2π i
3

)

1 0 exp
(−2π i

3

)
exp

(
2π i
3

)

exp
(
2π i
3

)
exp

(−2π i
3

)
0 1

exp
(−2π i

3

)
exp

(
2π i
3

)
1 0

⎞

⎟⎟⎠ (11.57)

and occur due to the rotation of the local co-ordinate frame between different sites.
The relationships between the exchange co-efficients {J1, J2, J3, J4} and

{Jzz, J±, J±±, Jz±} are

Jzz = −1

3
(2J1 − J2 + 2(J3 + 2J4)) (11.58)

J± = 1

6
(2J1 − J2 − J3 − 2J4) (11.59)

J±± = 1

6
(J1 + J2 − 2J3 + 2J4) (11.60)

Jz± = 1

3
√
2
(J1 + J2 + J3 − J4). (11.61)

11.2.2 Rewriting the Hamiltonian in Terms of Local Order
Parameter Fields

A useful rewriting of Hex can be obtained which allows us to directly obtain the
classical ground state for any set of exchange parameters [17, 18]. In this section we
will obtain that rewriting by finding objects, defined on a single tetrahedron, which
transform according to the different irreducible representations (irreps) of the point
group.

Rewriting the Hamiltonian in terms of the order parameters of four sublattice
order is attractive because for any set of exchange parameters {Ji } it is possible
to find a q = 0, four-sublattice, state which minimises the classical energy of Hex.
One can convince oneself of this by the following argument: the full Hamiltonian
can be written as a sum over the Hamiltonians of the tetrahedra. Taking a classical
ground state of the A sublattice tetrahedra and tiling it over all A tetrahedra obviously
minimises the total energy of the A sublattice tetrahedra. Since the ‘A’ and ‘B’
tetrahedra are related by inversion symmetry, and thus have the same Hamiltonian
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(11.46), this state also minimises the energy of the B tetrahedra. Since the energy of
each individual tetrahedron is minimal in such a state, it is clear that the total energy
of the system must be.

This demonstrates the existence of a q = 0, four-sublattice, classical ground state
but of course does not preclude the existence of degenerate, finite q states. Generally
speaking, however, this will only occur at the T = 0 classical phase boundaries [18].

11.2.3 Irreducible Representations of Td

The dominance of four sublattice orders on the phase diagram leads us to consider
the different symmetries of local order parameter which may be constructed from the
four spins on a tetrahedron. By saying that these objects have “different symmetries”
we mean that they transform according to different irreducible representations of
the group Td . Below, we give a brief explanation of the meaning of this statement.
For a fuller explanation of the concept of irreducible representations and their use in
solving physics problems we invite the reader to consult one of the many textbooks
on the subject (e.g. [19, 20]).

Consider some linear combination of the different components of the four spins
on a tetrahedron

ϕ1 =
3∑

i=0

∑

α=x,y,z

ciαS
α
i . (11.62)

We could apply all the symmetry operations of Td to this object and in this way
generate somenumber,d, of linearly independent objects {ϕ1...ϕd}. This set of objects
would, by construction, transform only amongst each other under the operations of
Td , i.e. for each group operation g acting on any ϕn we could write

gϕn =
d∑

m=1

nm(g)ϕm (11.63)

and we can therefore associate with each group element g a d × d matrix (g) in
the d-dimensional basis {ϕ1...ϕd}.

The set of matrices (g) form a d-dimensional representation of Td . Two repre-
sentations of a group are equivalent if they are related by a unitary transformation

(g) → U(g)U † (11.64)

U † = U−1. (11.65)

If we can find some unitary transformation which simultaneously block diagonalises
all the (g) then we have decomposed the d-dimensional representation into a series
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of lower dimensional representations. For example, if we have

U(g)U † =
(

1(g) 0
0 2(g)

)
(11.66)

then the matrices 1(g) and the matrices 2(g) seperately form representations of
Td . If the matrices 1(g) have size d1 × d1 and the matrices 2(g) have size d2 × d2
then we have decomposed the d-dimensional representation into one d1-dimensional
and one d2-dimensional representation, where d = d1 + d2. If there exists no unitary
transformation which block diagonalises all the (g) then (g) form an irreducible
representation.

A generalmethod for decomposing reducible representations into irreducible ones
is obtained by considering the “characters” χ(g) in a given representation, which are
given by

χ(g) = Tr[(g)]. (11.67)

The characters of any two group elements belonging to the same conjugacy class
will be equal, so we need only calculate χ(g) for one element from each class. If
a representation  may be decomposed into two representations 1 and 2 then it
follows the characters may also be decomposed as

χ(g) = χ1(g) + χ2(g). (11.68)

More generally, the character of a general reducible representationχ can be expressed
as a sum over characters of the irreducible representations χ j (g) with integer coef-
ficients h j

χ(g) =
∑

j

h jχ j (g). (11.69)

The meaning of the coefficients h j is that irreducible representation j occurs h j

times in the decomposition of the reducible representation.
The characters of the irreducible representations obey an orthogonality

theorem [19]

∑

g

χ∗
i (g)χ j (g) = N δi j . (11.70)

whereN is the number of group elements (N = 24 in the case of Td ). The characters
of each conjugacy class within the irreducible representations may be looked up in
a book for commonly occurring symmetry groups.

The character table of Td is reproduced in Table11.1. The group Td has two one
dimensional representations (A1 and A2), one two dimensional representation (E)
and two three dimensional representations (T1 and T2).
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Table 11.1 The character table of the irreducible representations of Td . Each row corresponds
to one of the irreducible representations and each column to one of the conjugacy classes. Each
entry in the table shows the character χ j of a given conjugacy class within a given irreducible
representation. This information can be used in conjuction with (11.71) to decompose a given
reducible representation into a direct sum of irreducible representations

E 8C3 3C2 6S4 6σd

A1 1 1 1 1 1

A2 1 1 1 −1 −1

E 2 −1 2 0 0

T1 3 0 −1 1 −1

T2 3 0 −1 −1 1

Armed with this information, we can use (11.69) and (11.70) to find the coeffi-
cients h j

h j = 1

N

∑

g

χ∗
j (g)χ(g) (11.71)

where the sum is over group elements, χ j (g) is the character of the group element
g within irreducible representation j and can be found in Table11.1 and χ(g) is the
character of g within the (reducible) representation which we are trying to decom-
pose.

11.2.4 Local Order Parameter Fields

We may uniquely write any spin configuration on a tetrahedron as a 12 component
vector

S̃ = (Sx
0 , S

y
0 , S

z
0, S

x
1 , S

y
1 , S

z
1, S

x
2 , S

y
2 , S

z
2, S

x
3 , S

y
3 , S

z
3). (11.72)

All of the operations of Td become 12 × 12 matrices which act on S̃. These matrices
thus form a 12-dimensional representation of Td . One may readily construct these
matrices, by considering each symmetry as a combination of rotation operations on
the spins and permutations of the sites, as discussed in Sect. 11.2.1. Once this is
done, one simply takes the trace of these matrices to find the characters of our 12
dimensional representation and uses Table11.1 and (11.71). We find

hA1 = 0, hA2 = 1, hE = 1, hT1 = 2, hT2 = 1. (11.73)
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Table 11.2 Local order parametersmγ appearing in (11.74). When summed over the lattice these
become the order parameters of the q = 0, 4-sublattice ordered phases of the model (11.47)

Local Definition in terms

order of spin components

para-

meter

mA2
1

2
√
3

(
Sx0 + Sy0 + Sz0 + Sx1 − Sy1 − Sz1 − Sx2 + Sy2 − Sz2 − Sx3 − Sy3 + Sz3

)

mE

(
1

2
√
6

(−2Sx0 + Sy0 + Sz0 − 2Sx1 − Sy1 − Sz1 + 2Sx2 + Sy2 − Sz2 + 2Sx3 − Sy3 + Sz3
)

1
2
√
2

(−Sy0 + Sz0 + Sy1 − Sz1 − Sy2 − Sz2 + Sy3 + Sz3
)

)

mT2

⎛

⎜⎜⎝

1
2
√
2

(−Sy0 + Sz0 + Sy1 − Sz1 + Sy2 + Sz2 − Sy3 − Sz3
)

1
2
√
2

(
Sx0 − Sz0 − Sx1 − Sz1 − Sx2 + Sz2 + Sx3 + Sz3

)

1
2
√
2

(−Sx0 + Sy0 + Sx1 + Sy1 − Sx2 − Sy2 + Sx3 − Sy3
)

⎞

⎟⎟⎠

mT1,ice

⎛

⎜⎜⎝

1
2
√
3
(Sx0 + Sy0 + Sz0 + Sx1 − Sy1 − Sz1 + Sx2 − Sy2 + Sz2 + Sx3 + Sy3 − Sz3)

1
2
√
3
(Sx0 + Sy0 + Sz0 − Sx1 + Sy1 + Sz1 − Sx2 + Sy2 − Sz2 + Sx3 + Sy3 − Sz3)

1
2
√
3
(Sx0 + Sy0 + Sz0 − Sx1 + Sy1 + Sz1 + Sx2 − Sy2 + Sz2 − Sx3 − Sy3 + Sz3)

⎞

⎟⎟⎠

mT1,pl

⎛

⎜⎜⎝

1
2
√
6
(−2Sx0 + Sy0 + Sz0 − 2Sx1 − Sy1 − Sz1 − 2Sx2 − Sy2 + Sz2 − 2Sx3 + Sy3 − Sz3)

1
2
√
6
(Sx0 − 2Sy0 + Sz0 − Sx1 − 2Sy1 + Sz1 − Sx2 − 2Sy2 − Sz2 + Sx3 − 2Sy3 − Sz3)

1
2
√
6
(Sx0 + Sy0 − 2Sz0 − Sx1 + Sy1 − 2Sz1 + Sx2 − Sy2 − 2Sz2 − Sx3 − Sy3 − 2Sz3)

⎞

⎟⎟⎠

This tells us that, from linear combinations of the 12 spin components Sα
i we can

form one local order parameter transforming according to each of the representa-
tions A2, E and T2 and two which transform according to T1. Since these objects
are linear in the spin components, and the Hamiltonian is bilinear in the spins the
Hamiltonian must also be bilinear in the local order parameters. Furthermore, since
the Hamiltonian is symmetric under the operations of Td it cannot couple objects
transforming according to different irreducible representations. Thus, when written
in terms of the local order parameter fields the Hamiltonian of one tetrahedron must
take the form

H tet
ex = 1

2

[
aA2m

2
A2

+ aEm2
E + aT2m

2
T2

+
aT1,Am

2
T1,A + aT1,Bm

2
T1,B + aT1,ABmT1,A · mT1,B

]
. (11.74)

If we can identify the objects mγ which transform according to the irreducible rep-
resentations {A2, E, T1, T2} then we can find explicit expressions for the coefficients
aγ by comparison of (11.74) with (11.47).

Such a set of fields is defined in Table11.2. These fields are the local order parame-
ters for the different kinds of four-sublattice order which can occur on the pyrochlore
lattice.

The scalar object mA2 is the order parameter for the Ising-like, two-fold degen-
erate,“all in, all out” ordered state. The two-component vector mE serves as a local
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Table 11.3 Definitions of the coefficients aγ appearing in H tet
ex (11.74) in terms of the exchange

parameters Ji
Coefficient Definition in terms of exchange Definition in terms of exchange

parameters {J1, J2, J3, J4, D} parameters {Jzz, J±, J±±, Jz±}
aA2 −2J1 + J2 − 2(J3 + 2J4) 3Jzz
aE −2J1 + J2 + J3 + 2J4 −6J±
aT2 −J2 + J3 − 2J4 2J± − 4J±±
aT1,ice

1
3 (2J1 − J2 + 2J3 + 4J4) −Jzz

aT1,pl
1
3 (4J1 + J2 − 5J3 + 2J4) 2J± + 4J±±

aT1,mixing − 4
√
2

3 (J1 + J2 + J3 − J4) −8Jz±

order parameter for the XY-like order observed in Er2Ti2O7. There is a U (1) man-
ifold of states which maximises mE, the degeneracy of which can only be lifted by
terms at sixth order in the free energy. The lifting of this degeneracy by the mech-
anism of order-by-disorder has attracted a lot of attention in the context of experi-
ments on Er2Ti2O7 [11, 12]. The vectormT2 is associated with the Palmer-Chalker
ordered state, which was originally identified as a ground state in a model describ-
ing competition between antiferromagnetic Heisenberg and long range dipolar
interactions [13].

Since we can define two independent fields which transform according to the T1
representation, there will generally exist a term which couples them. We have some
choice about how to define these fields. In Table 11.2 we show one convenient choice
in which one field, (mT1,ice) is maximised by an ‘ice’ configuration and the other
(mT1,pl) is maximised by a ferromagnetic state in which all spins are perpendicular
to the local 〈111〉 axes. With this choice of co-ordinates the Hamiltonian of a single
tetrahedron is

H tet
ex = 1

2

[
aA2m

2
A2

+ aEm2
E + aT2m

2
T2

+
aT1,icem

2
T1,ice + aT1,plm

2
T1,pl + aT1,mixingmT1,ice · mT1,pl

]
. (11.75)

The coefficients aγ are shown in terms of the exchange parameters in Table11.3.
The term which couples the two T1 fields may be removed by a parameter depen-

dent, orthogonal transformation

(
mT11

mT12

)
=

(
cos(φT1) sin(φT1)

− sin(φT1) cos(φT1)

)
·
(
mT1,ice

mT1,pl

)
(11.76)

tan(2φT1) = aT1mixing

aT1,ice − aT1,pl
. (11.77)
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The fields mT11 and mT12 are linear combinations of mT1,ice and mT1,pl and will
be maximal in the “splayed ferromagnet” configurations which have been proposed
ground states for Yb2Ti2O7 [14, 15] and Yb2Sn2O7 [16].

The Hamiltonian of the whole system thus becomes a sum of five quadratic terms,
defined on each tetrahedron, summed over all tetrahedra

H = 1

2

∑

tet

[
aA2m

2
A2

+ aEm2
E + aT2m

2
T2

+ aT1,1m
2
T1,1 + aT1,2m

2
T1,2

]
.

(11.78)

There is a simple way to identify the ground state from (11.78). We define

E0 = min(aA2 , aE, aT2 , aT11, aT12) (11.79)

and make use of the identity

m2
A2

+ m2
E + m2

T2
+ m2

T1,1 + m2
T1,2 = S20 + S21 + S22 + S23 = 4S2. (11.80)

by adding and subtracting NS2E0 from 11.78.
This gives us

H = 1

2

∑

tet

[
(aA2 − E0)m

2
A2

+ (aE − E0)m2
E + (aT2 − E0)m2

T2
+

(aT1,1 − E0)m2
T1,1 + (aT1,2 − E0)m2

T1,2

] + NS2E0. (11.81)

The local order parameter (or parameters in the case of a degeneracy) for which
aγ = E0 is eliminated from theHamiltonian,while the others nowoccur quadratically
with positive coefficients. Thus the condition

mγ = 0 ∀ γ such that aγ > E0 (11.82)

applying to every tetrahedron in the lattice is both a sufficient and necessary condition
to be in a ground state.

The problem of finding the classical ground state for the nearest neighbour
anisotropic exchange model on the pyrochlore lattice, can therefore always be
reduced to the problem of satisfying local constraints, defined on each tetrahedron
in the lattice.

The nearest neighbour spin ice model is a special case in which the constraints
are

mE = mT1,pl = mT2 = 0 (11.83)

which forces all spins onto their 〈111〉 axes and
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mA2 = 0 (11.84)

which enforces the “2 in, 2 out” rule on every tetrahedron.
While in the case of spin ice there is an exponentially large set of degenerate ground

states, for more general sets of exchange parameters the constraints will usually only
be satisified by a discrete set of q = 0 configurations with degeneracyO(1). Greater
freedom is obtained when E0 is equal to two or more coefficients aγ , which occurs
at the classical T = 0 phase boundaries of the model. These degeneracies can be
associatedwithmany interesting phenomena including dimensionally reduced states,
spin nematics and spin liquids [18, 21, 22].
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Chapter 12
Experimental Search for Quantum Spin
Ice

Kate A. Ross

Abstract At the most general level, Quantum Spin Ice refers to a pyrochlore system
in which ice-rule obeying configurations are endowed with dynamics from quantum
fluctuations. To generate such a state experimentally, material candidates must sup-
port anisotropic exchange interactions between localized spins on the pyrochlore
lattice. Quantum fluctuations result from smaller XY-like interactions that compete
with the dominant ferromagnetic Ising interactions required for classical spin ice.
These quantum fluctuationsmodify the experimental signatures associated with clas-
sical spin ice, and may also generate novel ground states, such as a U(1) Quantum
Spin Liquid. In the search for such exotic phases there have arisen several material
candidates; Yb2B2O7 (B = Sn, Ti), Tb2B2O7 (B = Sn, Ti) and Pr2B2O7 (B = Sn,
Zr, Ir, Hf) all display properties consistent with a dynamic version of spin ice, but
their lowest temperature properties are not yet understood. The status of the current
literature on these materials is reviewed here.

12.1 Introduction

Classical Spin Ice (CSI) has the intriguing characteristic of supporting emergent
excitations that can be identified asmagneticmonopoles. Thesemonopole excitations
are the result of a fractionalization of a single spin flip out of a macroscopically
degenerate manifold of disordered ground states—the monopole “vacuum”. The
constraints imposed by the ice rules can be re-written in terms of an emergent gauge
field, with the monopoles as the gauge charges. In CSI, to generate new ice states
from a starting configuration, loops of at least 6 spins must be flipped. This process
becomes extremely unfavorable at temperatures below the nearest neighbor exchange
energy, and the spin system freezes. InQuantumSpin Ice (QSI), quantumfluctuations
promote tunneling between ice states, potentially resulting in coherent motion of
monopoles.
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One of the most appealing aspects of QSI is that it offers the possibility of extend-
ing the monopole picture of CSI by inducing dynamics in the gauge field, effectively
producing a full emergent electrodynamics; the fundamental quasi-particles would
be spin-based analogs to electrons, magnetic monopoles, and photons. This phase of
matter is called a U(1) Quantum Spin Liquid (QSL), and related to it is a partially
polarized spin liquid called the Coulomb Ferromagnet (CFM). The unique excita-
tions of these phases, in particular the gapless, linearly dispersing magnetic photon
modes, can lead to identifiable experimental signatures. If they were to be observed,
this would constitute the long-sought “smoking gun” for an experimental example
of a QSL. Since the early days of QSL research, material candidates could only be
described in terms of what they were not; i.e. not magnetically ordered, and not
valence bond crystals [1, 2]. It is of enormous interest to find experimental realiza-
tions of QSI, which could support the “smoking gun” photons; these could finally
provide a positive signature for QSL physics in a real material.

Experimental Quantum Spin Ice is a rapidly advancing area. This chapter dis-
cusses the status of the field as of December 2016. At the time of writing, an obser-
vation of emergent photons has not yet been claimed in any material. However, there
are several candidateQSI compounds that deserve attention in the quest for this exotic
physics. Primarily, the goal of this chapter is to review the body of knowledge on
current QSI candidate materials. The theoretical background is presented earlier in
the book, and has also been comprehensively reviewed in [3]. Prior to an exposition
of the experimental behavior of QSI materials, the expected experimental signatures
of QSI physics will be reviewed and compared to CSI. At the end of the chapter, a
review of useful single-ion properties as well as a perspective for the future of QSI
materials is provided. This may provide a guide for the search for newQSI materials.

12.1.1 Experimental Signatures of Classical Spin Ice

Taken in the most literal sense, QSI starts from the CSI ground state manifold of
ice-rule obeying states and adds quantum fluctuations. Therefore, it is reasonable
to expect that experimental signatures for QSI may be similar to CSI, with some
modifications. The CSI signatures are reviewed here for comparison.

The pyrochlore lattice consists of an array of corner-sharing tetrahedra. Ising-like
moments on this lattice, when coupled solely by a ferromagnetic nearest neighbor
interaction (called Jzz here, in anticipation of the QSI case), will lead to CSI. In real
materials, the necessary Ising anisotropy is generated by spin-orbit coupling. The
single-ion angular momentum eigenstates of strongly spin-orbit coupled moments
(for example in rare earth based materials) can be split by the Crystal Electric Field
(CEF) generated by the surrounding ions, leading tomoment anisotropy at the single-
ion level that can be characterized by the g-tensor. In pyrochlore materials, the
symmetry of the lattice dictates that any anisotropy of the g-tensor must be defined



12 Experimental Search for Quantum Spin Ice 327

with respect to the local < 111 > direction; gz (Ising) and gxy (XY) components
point respectively parallel and perpendicular to the axis connecting the corner of the
tetrahedron to its center.

The ground states of CSI are characterized by the “ice rule”, which refers to the
constraint that each tetrahedron must have two spins pointing in and two spins point-
ing out, a 6-fold degenerate configuration for a single tetrahedron. On the pyrochlore
lattice, the two-in-two-out rule does not fully constrain the choice for each tetrahe-
dron. This leads to a macroscopic manifold of degenerate disordered ground states
having emergent dipolar spin correlations. With the addition of dipolar interactions,
as in the dipolar spin ices Ho2Ti2O7 and Dy2Ti2O7, the model retains the same
ground statemanifold, but the dynamical properties are richer. Although some degree
of single-ion quantum tunneling seems to be necessary to explain the dynamics of
dipolar spin ice, the coherent multi-spin moves allowed in QSI are not appreciable,
and in this sense dipolar spin ice should still be considered a CSI. Dipolar spin ice
is discussed extensively in the first half of this book.

How do you tell if your pyrochlore material is a spin ice? First, the Ising nature
of the g-tensor (i.e. gz >> gxy) required for CSI can be determined from knowledge
of the crystal field Hamiltonian (deduced, for example, through analysis of neutron
or optical spectroscopy [4, 5]), or it can be directly measured by ESR or Mössbauer
spectroscopy [6]. Meanwhile, the sign of the dominant exchange interaction can be
determined from inverse susceptibility through Curie-Weiss analysis, although this
represents only an average interaction energy and does not usually tell the whole
story. Sometimes the existence of dominant Ising-like ferromagnetic interactions is
inferred based on other experimental signatures of CSI, which we now describe.

The experimental signatures of CSI are exemplified by the materials Dy2Ti2O7

and Ho2Ti2O7. First, the freezing of the system into one particular choice of
ice rule obeying states produces a residual molar entropy approximately equal to
Sp = 1

2 R ln(3/2), the same residual entropy that was first estimated by Pauling in
relation to water ice. This residual entropy has been observed in Dy2Ti2O7 and
Ho2Ti2O7, via low temperature specific heat measurements [7, 8]. Secondly, mag-
netization measurements on single crystals of spin ice show a plateau at 2/3 of the
saturationmagnetization (which itself occurs at 1/3 of the fullmoment)when the field
is applied along the < 111 > direction (see Chap. 5) [9, 10]. This plateau indicates
the formation of a partially polarized ice rule obeying state known as Kagome ice.
Third, the freezing of the moments manifests as a very long relaxation time, measur-
able via the frequency dependence of ac susceptibility, for example. The timescale
for relaxation diverges as the temperature is lowered beyond the energy required to
thermally excite a spin flip. For example, the relaxation time in Dy2Ti2O7 begins
to diverge at about 1K [11, 12], which is on the same order as Jzz = 1.1K [13].
However it should be noted that a simple activation process is not observed in CSI
and understanding the monopole dynamics in CSI is still a subject of active research.

Another distinguishing characteristic of CSI is the dipolar form of the spin cor-
relations, < Si (0) · Sj (r) >∝ 1

r3 , leading to “pinch points” observable by diffuse
neutron scattering from a single crystal. It should be noted that the presence of pinch
points generally indicates dipolar spin correlations (see Chap. 3) but these can arise

http://dx.doi.org/10.1007/978-3-030-70860-3_5
http://dx.doi.org/10.1007/978-3-030-70860-3_3
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in other models on the pyrochlore lattice (for example, the Heisenberg AFM model
[14, 15]). Therefore, the presence of pinch points alone does not guarantee spin ice.
The details of the structure factor, as could be observed by diffuse single crystal
neutron scattering, have been calculated for the nearest neighbor CSI model, both
with and without the inclusion of dipolar interactions, and the results agree well with
polarized neutron scattering experiments on Ho2Ti2O7 [16]. Although pinch points
can not be directly observed in polycrystalline samples, the powder average of this
structure factor can be compared to diffuse scattering to identify spin ice correlations,
as was done for Ho2Ge2O7 [17], Ho2Sn2O7 [18], and Pr2Sn2O7 (see Fig. 11) [19].

12.1.2 Experimental Signatures of Quantum Spin Ice

The most basic requirement of QSI is that, despite dominant spin ice type interac-
tions, there is retention of spin dynamics at temperatures well below the energy scale
of the nearest neighbor spin ice interaction Jzz . Although the most general interpreta-
tion of QSI, that of CSI with the addition of quantum fluctuations, allows for ordered
T = 0 ground states, one may still expect a finite temperature region of dynamic
spin ice behavior [20, 21] above the temperature at which the quantum ground state
sets in. Spin dynamics in such a fluctuating spin ice regime can be probed by several
experimental methods; ac and dc susceptibility, μSR, Mössbauer spectroscopy, spe-
cific heat, thermal transport, and inelastic neutron scattering have all been employed
to show this property in the case of the known QSI candidates.

Great insight on the nature of QSI has come from the application of an anisotropic
exchange pseudo-spin 1

2 Hamiltonian (see Chap. 11).

H =
∑

〈i j〉

{
JzzSz

iS
z
j − J±(S+

i S
−
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+
j )
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[
γi jS+
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i jS
−
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−
j

]

+ Jz±
[
Sz
i (ζi jS

+
j + ζ ∗

i jS
−
j ) + i ↔ j

] }
, (12.1)

whereSμ

i are local spin coordinates, with z defined along the local< 111 > direction
(Fig. 12.1a). The matrices γ and ζ consist of unimodular complex numbers (see
Chap.11 and the Appendix of [22]). The four exchange constants of this Hamiltonian
represent the full symmetry-allowed exchange tensor for the pyrochlore lattice, as
first developed by Curnoe [23]. Jzz is the nearest neighbor Ising exchange; retaining
only this term would produce either the nearest neighbor CSI model for positive Jzz
or a long range ordered “all-in all-out” (AIAO) state for negative Jzz . The additional
interactions (J±, J±±, and Jz±) introduce some XY character, and when they are
small compared to a positive Jzz they act to introduce quantum fluctuations to the
spin ice.

http://dx.doi.org/10.1007/978-3-030-70860-3_11
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a) b)

c)

Fig. 12.1 aDefinition of the local z axis in spin ice; each spin on the corner of a tetrahedron points in
or out of the center of the tetrahedron.bClassical spin ice is characterized by ferromagnetic exchange
that couples the spins along the local z directions, Jzz > 0. The ground state is a macroscopically
degenerate manifold of states in which each tetrahedron obeys the ice rule: “2-in-2-out”. When
smaller planar exchange terms are introduced, J⊥ �= 0, the spin ice states are endowedwith dynamics
and can tunnel between ice-rules obeying configurations. c A general zero-field phase diagram for
Quantum Spin Ice materials. The specific heat typically shows either one or two features at low
temperatures. The first is a Schottky-like hump at Ts ∼ Jzz , signaling the entrance to ice rule obeying
states which retain significant dynamics. In somematerials, there is then a lower temperature feature
such as a sharp anomaly at Tc, signaling a phase transition, or small peak at TF , signaling spin
freezing or a crossover. The ground state below Tc or TF could be exotic, such as the Quantum
Spin Liquid (QSL) or Coulomb Ferromagnet (CFM), or it could be more conventional. The region
between Ts and Tc is called “dynamic spin ice” in this chapter

There are several ground state phases of this model which have been identified
for dominant positive Jzz . Two of these phases are conventional ferromagnetic and
antiferromagnetic orders (or ferroquadrupolar and antiferroquadrupolar phases in
the case that the pseudo-spin is constructed from a non-Kramers ion [24]), and two
are exotic phases: the U(1) QSL and the Coulomb Ferromagnet (CFM). In the two
latter phases, the fundamental excitations are not magnons, as would be expected
from conventionally ordered states, but are instead analogs of magnetic monopoles,
electric monopoles (electrons), and gauge photons leading to a complete “lattice
electrodynamics” [25–29].

In what follows, we first outline some experimental signatures of dynamic spin ice
systems which exist at temperatures above a phase transition to any of the relevant
ground states of the model, but below the crossover to ice rule dominated spin states
at Ts (see Fig. 12.1c). Then we outline the predicted experimental signatures for the
exotic phases of the QSI model described above.
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Fig. 12.2 a Specific heat of several QSImaterials compared toDy2Ti2O7. QSImaterials sometimes
show a “double peak” structure, with a broad peak higher temperature signaling the entrance to
ice-rule-dominated states, and a lower temperature transition, or upturn in Cp vs. T . b The molar
entropy associated with the Cp curves; all materials shown here (aside from Dy2Ti2O7) approach
a total entropy change of Rln(2) which is taken as the limiting high temperature value. In several
QSI materials there is a slight entropy plateau near the Pauling value, 1/2Rln(3/2), suggesting ice-
rules-dominated spin correlations. The lower temperature transition will act to remove the residual
entropy associated with CSI, potentially forming a quantum superposition of ice rule states, the
QSL. (Source of data: Pr2Sn2O7 [19], Pr2Ir2O7 [30], Yb2Ti2O7 [31], and Dy2Ti2O7 [7], with
permission from Nature Materials, the American Physical Society and Elsevier.)

Dynamic Spin Ice Signatures

The freezing behavior of CSI is controlled by the interaction Jzz . When temperature
is low enough that the strong spin ice correlations prevent the spin flips necessary to
create and move the monopoles, the relaxation time increases dramatically [12]. In a
QSI material, quantum fluctuations allowing multi-spin moves are expected, and the
monopoles can therefore propagate more easily at temperatures below this energy
scale. In this case, if amagnetization plateau is observed in a< 111 >field, it is likely
to be less sharply defined (in some cases, it may look more like an inflection point:
see, for example, theoretical estimates in [32]). Furthermore, the entropy associated
with the dynamic spin ice regime may be near to Pauling’s entropy, but in QSI the
system can more easily release the excess entropy through a phase transition, or
crossover, at a lower temperature. This scenario results in an entropy plateau near
the Pauling value (Fig. 12.2). Note that this eventual release of the Pauling entropy
has also been shown to occur in the CSI material Dy2Ti2O7, but on experimentally
impractical timescales [33]; thus for all practical purposes, Dy2Ti2O7 goes out of
equilibrium and stays a spin ice to the lowest temperatures.

InQSI, the signatures of the residual fast spin dynamics can be observed by several
experimental techniques. μSR may show a quickly relaxing asymmetry, indicating
fluctuating moments. Meanwhile, if any spin freezing is detected by ac or dc sus-
ceptibility, it would be expected to occur at temperatures lower than ∼ Jzz/kB , and
the deduced timescale for spin flips will be relatively fast. Furthermore, inelastic
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neutron scattering may reveal a large fraction of quasi-elastic scattering (relative to
elastic scattering) at low temperatures, indicative of enhanced fluctuations in the spin
system.

The application of a magnetic field at low temperatures in the dynamic spin
ice regime may be revealing. A weak magnetic field applied along the < 100 >

direction could also be used to reveal the monopole-like nature of the excitations
in the the QSI phase, through the detection of quantized “string excitations” [34].
These excitations result from a field-induced tension of the Dirac strings that connect
magnetic monopoles in the quantum system, resulting in quantized energies for
different Dirac string lengths. Experimental signatures of such a scenario may have
been seen in one QSI candidate, Yb2Ti2O7, in its dynamic spin ice regime [35].

Signatures of U(1) QSL-related Phases

Theoretically, QSI materials may support exotic physics in their ground states. The
ground states may be reached from the dynamic spin ice regime by a phase transi-
tion [36] or a thermal crossover [20], at which the residual entropy of the system is
removed. If the ground state is a QSL or CFM phase, the fundamental excitations
would lead to unique experimental signatures. The gapless and linearly dispersing
photon modes are expected to dominate the very low temperature thermodynamic
properties, for example as a large T 3 dependence of the low temperature specific
heat [28, 29]. Furthermore, these photons are actually composed of spin degrees
of freedom and could therefore be detected by neutron scattering. In one minimal
model of QSI based on retaining only Jzz and a perturbative J± term in Eqn. (12.1),
the neutron scattering response from these photon modes is predicted [29]. A distin-
guishing characteristic is that, in contrast to magnon excitations, the intensity of the
photon modes is expected to vanish as as energy approaches zero (I (ω) ∝ 1/ω as
ω → 0) [29].

The CFM phase, while predicted to support emergent electrodynamics, might
simultaneously display signatures of a conventionally ordered ferromagnet, includ-
ing magnetic Bragg peaks, finite magnetization, and perhaps even magnon excita-
tions, coexisting with a quantum Coulomb phase supporting the other more exotic
signatures. This could be understood as a kind of moment fragmentation [37], where
the Ising component of the spin degree of freedom on each site becomes polarized in
an ordered fashion, while the remaining XY component is responsible for the QSL
type physics. It is worth noting that although the CFM phase is stable in gauge mean
field theory (gMFT) for Kramers ion systems [27], this approach ignores fluctuations
of the gauge field and the interaction of the gauge field with the spinons, and may not
capture the true phase stability of the model. In another approach in which the gauge
fluctuations are phenomenologically considered, it appears that the CFM phase is
replaced by a fully ordered phase with conventional excitations [38]. It is currently
not well-understood whether the CFM phase is a stable phase of the model when
both gauge fluctuations and interactionswith spinons are included.However, the idea
of a phase with coexisting spin polarization and exotic excitations (e.g. deconfined
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spinons) appears to be plausible, particularly in the context of recent experimental
findings on QSI materials (particularly Yb2B2O7) as discussed later in this chapter.

In contrast to the gauge photons, the emergent electrons and magnetic monopoles
of theQSL andCFMphases are gapped, andwould contribute an exponential temper-
ature dependence to the low temperature specific heat, and would produce low-lying
gapped modes in neutron scattering. Thus, even in the QSL phase, there are multiple
signatures that could compete in a single measurement. Therefore, as a first step,
a departure from conventional CSI behavior in the low temperature phases of QSI
materials is promising.

While direct signatures of QSL physics and emergent electrodynamics such as
those mentioned above have not yet been conclusively shown in any particular mate-
rial, there are several promising material candidates, which we discuss below.

12.2 Quantum Spin Ice Materials

The known QSI materials all come from the rare-earth pyrochlore family of com-
pounds. Their general chemical formula is R2B2O7, with R a trivalent rare earth ion
(e.g. Pr3+, Tb3+ or Yb3+), and B a tetravalent cation (e.g. Sn4+, Ti4+, Zr4+, Hf4+
or Ir4+). The magnetism arises solely from the R pyrochlore sublattice, which is
strongly influenced by the CEF imposed by the nonmagnetic ions forming the local
environment. The CEF in the pyrochlore lattice allows magnetic dipole moments
that are in general described by a g-tensor with two independent components, gz
and gxy . Some CEF doublets will also support significant quadrupole or octupole
moments, and these play a role in determining the symmetry-allowed terms in Eqn.
(12.1) and the physical ground state phases of the model [24, 39–41]. Depending on
the type of rare-earth ion (Kramers vs. non-Kramers) as well as the details of the CEF
Hamiltonian, each pyrochlore material has varying degrees of single-ion anisotropy.
CSI materials have strong Ising dipole moments with essentially no XY dipole or
quadrupole moments, while QSI materials usually have significant XY moments.
Additionally, the intrinsic exchange interactions may be anisotropic and have vary-
ing Ising and XY contributions. Substituting different non-magnetic B cations can
change the weight of relevant exchange interactions between the R ions. Thus, mate-
rials which differ only by the B site cations can display different ground states (see,
for example, Yb2Ge2O7 versus Yb2Ti2O7 [42]). The QSI materials are part of an
extensive family of isostructural magnetic pyrochlore oxides; an excellent review of
the more general behavior of these materials can be found in [43].

In the QSI materials there is a distinct departure from the classical “dipolar spin
ice” materials such as Ho2Ti2O7 and Dy2Ti2O7. In part, the difference arises because
the size of themagneticmoments aremuch smaller (∼ 2 to 5μB rather than∼ 10μB),
strongly diminishing the relative importance of the dipolar interactions in the QSI
materials. The resulting dominance of the exchange interactions encourages quantum
dynamics, since inmany cases there are sizable transverse exchange terms that couple
the XY components of the ground state CEF doublets.
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In each QSI material outlined in this chapter, the nature of the magnetic ground
state is not net fully understood; some of them form partially ordered states, while
others display partial spin freezing at very low temperatures. In many of the mate-
rials there is a sample-to-sample variation of the lowest temperature properties, the
understanding of which is currently the subject of much experimental effort. How-
ever, in each material there appears to exist a temperature regime in which spin ice
correlations form, but resist freezing; i.e. the “dynamic spin ice” regime outlined
above (Fig. 12.1), which exists between the Schottky-like peak in the specific heat
(Ts) and a lower temperature anomaly that signals the entrance to the ground state
(Tc, TN or TF or another crossover). Both the ground state properties as well as the
properties in this dynamic spin ice regime, which could host monopoles excitations
experiencing much faster dynamics than CSI allows.

The remainder of this chapter is organized by families of pyrochlores defined by
the relevant rare earth cation, since the CEF ground states of these ions control the
anisotropy and symmetry properties of the resulting pseudo-spin.

12.2.1 Yb3+-Based Pyrochlores

The known Yb3+-based magnetic pyrochlores are Yb2B2O7, with B = Ti, Sn and
more recently synthesized Ge, and Pt. Each Yb2B2O7 compound is expected to
have a well-isolated Kramers CEF ground state doublet that is composed mainly
of Jz = ± 1

2 eigenstates, as shown explicitly for Yb2Ti2O7 [4–6, 44]. This CEF
scheme allows for a pseudo-spin 1/2 description with XY-like moments and strong
transverse exchange interactions. If combinedwith strongly Ising-like superexchange
interactions, this could lead to QSI. The pyrochlore structural phases of B = Ge, Pt
have so far only been obtained through high pressure synthesis [45–47], which has
limited the sample sizes and number of studies on these members. Accordingly,
most studies have focussed on Yb2Ti2O7 and Yb2Sn2O7, while only the former can
be produced as large single crystals by the floating zone method, and thus has been
the most widely studied. Therefore, the following discussion mainly emphasizes
results in Yb2Ti2O7, which has been proposed as a QSI material. However, a recent
comparison between Yb2Ti2O7, Yb2Sn2O7, and Yb2Ge2O7 shows that they have
similar unusual excitations despite having different magnetically ordered ground
states [48]. Much less is known about Yb2Pt2O7, but its heat capacity signatures are
similar to the three aforementioned materials, and therefore it may be expected to
provide an additional point of comparison in the future [47]. This similarity between
the Yb3+-based pyrochlores despite their different ground states suggests a new
direction for the understanding of this enigmatic pyrochlore family.
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Fig. 12.3 Comparison of μSR and specific heat results on powder samples of Yb2Ti2O7 and
Yb2Sn2O7. a Spin fluctuation rates as measured by μSR, reprinted from [57] with permission from
theAmerican Physical Societyb specific heat of powder samples, adapted from [57]with permission
from the American Physical Society and from [31] with permission from Elsevier. Arrows show
the temperatures of the transitions (Tc) and the Schottky-like peaks (Ts )

Yb2Ti2O7

The XY-like g-tensor in Yb2Ti2O7 (gz =1.92; gxy =3.69 [44]) combined with its
overall ferromagnetic interactions (θCW ∼ 0.3 K) [31, 49] should naively lead to a
magnetically long range ordered state. However, the story is richer than this. The
anisotropic exchange described in Eqn. (12.1) with dominant couplings involving
the Ising direction (positive Jzz and negative Jz±) has been found to be appropriate
to this material, suggesting a connection to spin ice.

The specific heat shows two features of interest (Fig. 12.3); a broad Schottky-like
anomaly with a peak at Ts = 2.6K, and a sharper anomaly at a temperature that
depends on the detailed preparation of the sample, between Tc = 200 and 265 mK
[22, 31, 50–52]. Despite the sharp anomaly, results of μSR [49, 53, 54], Mössbauer
spectroscopy [49], and several neutron scattering experiments [22, 49, 55, 56] seem
to be inconsistent with static long range magnetic order (LRO) below this tempera-
ture. An earlyμSR study revealed that the spin fluctuation rate undergoes a dramatic
decrease at Tc in a first order transition, but with persistent spin fluctuations below
Tc [49] (Fig. 12.3), prompting the initial suggestion that Yb2Ti2O7 hosts a kind of
spin liquid state below Tc.

There is a known sample-to-sample variation in the properties of this material,
including even theμSR result justmentioned. Some samples are seen tomagnetically
order below Tc, while others are not. For this reason, it is important to carefully dis-
cuss the results in different classes of samples, namely single crystals versus powder
samples. The high sensitivity to structural disorder in Yb2Ti2O7 may be the result of
a delicate competition between competing classical phases, a situation not uncom-
mon to frustrated materials in general. After several years of experimental study, it
now seems clear that the most structurally ideal samples of Yb2Ti2O7 form a long
range ordered state below Tc. However, the nature of the excitations in all samples,
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Fig. 12.4 Energy integrated polarized diffuse neutron scattering from single crystal Yb2Ti2O7.
Rods of scattering along< 111 > are visible in both spin flip (SF) and non-spin flip (NSF) channels,
making them the strongest features in the total neutron scattering (as observed in [55]). Near the
zone centers, the scattering appears to sharpen, a feature reminiscent of pinch points from a coulomb
phase. White circles indicate the position of nuclear Bragg peaks which were subtracted. Reprinted
figure from [59] with permission from Nature Communications

whether those samples are long range ordered or not, seems to be unconventional.
Furthermore, the temperature regime between Ts and Tc is an unusual correlated
regime, which may be related to a dynamic version of spin ice in which monopole
excitations propagate freely due to quantum fluctuations.

Large single crystals of Yb2Ti2O7 can be prepared via the optical floating zone
method of crystal growth, and are thus quite amenable to neutron scattering studies.
Such studies have been reported by several authors, and some inconsistencies sur-
rounding the nature of the magnetic state in different crystals at the lowest accessible
temperatures were noted. Above Tc, neutron scattering studies appear to be con-
sistent with one another, revealing “rods” of magnetic diffuse scattering extending
along the < 111 > directions (Fig. 12.4) [55, 58, 59]. In at least one single crystal
sample, these “rods” were found to be the result of dynamic correlations, appearing
as quasi-elastic neutron scattering [22, 55].

Below Tc there have been varying reports. Several single crystals of Yb2Ti2O7

do not seem to undergo a transition to LRO [22, 55, 56]. In those samples, the
low energy continuum-like diffuse scattering persists to temperatures well below Tc.
However, there exists one crystal reported to display a long range ordered state below
Tc, revealed through the development of magnetic Bragg peaks in neutron diffrac-
tion [59, 60] and magnetization measurements [61]. The discrepancy likely relates
to inconsistencies in the magnetic specific heat of different samples of Yb2Ti2O7

[22, 50, 52]. A survey of the literature reveals that single crystal samples are less
likely to display sharp specific heat peaks than powders: their heat capacity anoma-
lies are broader and occur at low temperature (typically 200 mK). This variation in
heat capacity must arise from extrinsic effects like non-stoichiometry (“stuffing”,
Yb deficiency, or oxygen non-stoichiometry have all been proposed) induced by the
crystal growth process [51, 59, 62]. The polycrystalline (powder) samples are less
prone to sample variability than the crystals, and it is by now accepted that these
high quality samples show signs of magnetic LRO below Tc with a reduced moment
reported to be between 0.8 to 1.2 μB [58, 61, 63, 64]. However, the ground state of
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Fig. 12.5 Inelastic neutron scattering from Yb2Sn2O7 and Yb2Ti2O7 powder samples, taken on
the Disk Chopper Spectrometer at the NIST Center for Neutron Research, with λ = 5Å incident
neutrons. The Yb2Ti2O7 sample is the same one previously characterized by neutron diffraction
and found to be fully stoichiometric [51]. The Yb2Sn2O7 results have been previously presented
in [73]. a, b Inelastic neutron scattering from Yb2Sn2O7 and Yb2Ti2O7 at T = 100 mK. Broad
incoherent inelastic scattering is seen in both samples even at the lowest temperatures. This broad
feature is present at higher temperatures, and when data at 8K or 10K is subtracted c, d the low
temperature inelastic features are revealed to be dispersive excitations with no gap to within the
energy resolution (0.1 meV). e χ ′′(ω) at low |Q| (0.2 to 0.5 Å−1), showing that no gap in the
excitation spectrum is opening upon crossing Tc

the powder samples still apparently lacks the ability to depolarize neutrons, contrary
to what would be expected for a conventional ferromagnet [63], while μSR exper-
iments show persistent spin dynamics in some cases [49, 54], though not in others
[52]. Finally, in at least one powder sample there remains a broad dynamic struc-
ture factor as measured by inelastic neutron scattering, inconsistent with magnon
excitations despite confirmed LRO in that same sample (see Fig. 12.5) [64].

Despite the XY nature of the dipole moment anisotropy, which arises from the g-
tensor for the lowest CEF Kramers doublet, Yb2Ti2O7 has strong exchange coupling
involving the z components of the pseudo-spins (i.e., sizable Jzz or Jz± in Eqn. 12.1).
A large Ising-like exchange inYb2Ti2O7 was first reported byCao et al. on the basis of
local susceptibility measurements [66], and further insight has come from studying
the spin dynamics induced by the application of a magnetic field. The spin wave
dispersions measured by inelastic neutron scattering in the field-polarized regime
have been fit in order to extract of the four constants in (12.1). Two sets of exchange
interactions have been obtained this way [27, 56] with a similarly good description
of the measured spin wave excitations that were reported in [27]. However, these
parameter sets are not mutually consistent, and it can be noted that while one set
reproduces zero-field thermodynamic quantities at intermediate temperatures [21,
67], the other seems to capture features of diffuse scattering more accurately [56]
but has not yet been tested against the thermodynamic measurements. Further, two
additional sets of exchange interactions were initially extracted by concentrating
solely on matching the details of the diffuse scattering above Tc in the cooperative
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Table 12.1 Exchange parameters that have been proposed for Yb2Ti2O7 (in meV). The values
which best reproduce the field polarized spin wave spectrum are distinguished by boldface

Exchange
constanta

Reference [56] Reference [27] Reference [65] Reference [59]

Jzz 0.07 0.17(4) 0.023 0.059

J± 0.085 0.05(1) 0.038 0.023

J±± 0.07 0.05(1) 0.007 0.006

Jz± −0.15 − 0.14(1) −0.040 −0.029
aterms defined based on (12.1)

paramagnetic regime, but the values so-obtaineddonot reproduce the thermodynamic
measurements [21]. The sets of exchange parameters that have been proposed for
Yb2Ti2O7 are summarized in Table12.1, and the twomost robust sets are emphasized
in bold.

Considering first the exchange parameter set, from [27], Jzz is dominant and
positive, as expected for CSI, but the additional presence of transverse terms could
be expected to produce quantum fluctuations amongst the spin ice states. Within
this model Yb2Ti2O7 would thus have the necessary ingredients for QSI. This phe-
nomenology could possibly explain some of the puzzling experimental features in
Yb2Ti2O7, for instance the lack of conventional spin wave excitations below Tc
[55, 56] even in spite of the confirmed presence of LRO in the powders [64], while
also providing a natural explanation for some of the low energy dynamical phenom-
ena above Tc [59, 68, 69]. This leads to the tantalizing possibility of the exotic QSL
or CFM phases being realized by this material.

The suggestion that Yb2Ti2O7 may support QSI physics begs the question as
to whether Yb2Ti2O7 hosts “ice rule” correlations in any temperature regime. This
question has not yet been definitively answered, however some indirect evidence
favors such correlations in the temperature regime between Tc and Ts (what might
be considered the “dynamic spin ice” regime, Fig. 12.1); notably the observed pinch
points in diffuse neutron scattering in one experiment (Fig. 12.4, [59]) and a smoothed
entropy plateau near the Pauling value [21]. Intriguingly, terahertz spectroscopy
measurements performed at T = 1.6 K (below Ts) on a single crystal of Yb2Ti2O7

have revealed an unusual field-dependence of the g-factor for small magnetic fields
applied along the [100] direction [35], possibly arising from excitations similar to
the quantum strings predicted for QSI [34]. Furthermore, the zero-field dynamics
measured by the same technique [68] as well as thermal conductivity [69] may be
consistent with monopole dynamics above Tc. Finally, the temperature dependence
of ultrasound velocitymeasurements above Tc can be qualitatively reproducedwithin
the single tetrahedron model of spin ice [70].

Themore recently proposed exchange parameter set from [56] includes a fit to both
the field polarized spinwave excitations from [27] aswell as the paramagnetic diffuse
neutron scattering in zero field, most importantly the diffuse scattering intensity near
the (220) position. This scattering, as well as the diffuse rods along 〈111〉 can be



338 K. A. Ross

accounted for by the presence of both AFM and FM correlations [56, 71], and this
parameter set places Yb2Ti2O7 very close to a classical phase boundary between the
splayed ferromagnet and the XYAFMordered states calledψ2 andψ3. Furthermore,
the ice-like Jzz does not dominate; Jz± is larger by a factor of two. This raises a new
question: what effect does the proximity to this phase boundary between competing
classical phases have? Could it be responsible for the extreme sample dependence of
the low temperature properties? This line of questioning has been pursued in recent
theoretical works [71, 72].

The “splayed ferromagnet”, which is the mean field LRO ground state for large
enough Jz± [21, 28, 71], supports nearly collinear moments oriented approximately
along the [100] direction with a small canting that is thought to be either “ice-like”
[59, 64] or “all-in-all-out like” [74] in Yb2Ti2O7. Within the QSI phenomenology,
the presence of this ordered state was proposed to arise through a Higgs mechanism,
in which the free spinons (monopoles) condense into conventional excitations [59],
again suggesting that temperature regime between Ts and Tc could be related to
dynamic spin ice physics. However, the nature of the spin excitations in the ordered
state in the best powder samples are strikingly inconsistent with a conventionally
ordered state (or equivalently, a “Higgs phase”), even in samples where magnetic
Bragg peaks from the splayed ferromagnet arise in neutron diffraction [64]. There
are no sharp magnon modes; instead, continuum-like excitations persist below Tc
with no sign of the spin wave gap predicted for the conventionally ordered state
(see Fig. 12.5). Furthermore, the ordering transition appears to have no effect on this
spectrum; it is identical above and below Tc.

The reported ordered moment in samples of Yb2Ti2O7 that display LRO ranges
from 0.87μB to 1.2μB [49, 61, 63, 64] which is 50 to 70% of the total moment of 1.7
μB [6, 61]. The reduction is presumably due to quantum fluctuations. The fluctuating
part of the moments may be free to engage in unusual behavior, such as the emergent
electrodynamics predicted for the polarizedCFMphase, or possibly another quantum
effect arising from proximity of a classical phase boundary. Whatever viewpoint is
taken, any successful theory will have to account for the simultaneous presence of
LRO with a reduced moment and continuum-like inelastic scattering in Yb2Ti2O7.

Yb2Sn2O7 and Yb2Ge2O7

In terms of both static and dynamic properties, Yb2Sn2O7 bears a remarkable resem-
blance toYb2Ti2O7; the sharp transition observed in the specific heat at Tc = 150mK
also does not appear to lead to a completely ordered state in Yb2Sn2O7. The same
discontinuous drop in spin fluctuation rate is observed with μSR [57] (Fig. 12.3).
Low temperature neutron diffraction reveals a splayed ferromagnetic LRO state with
an ordered moment of only 1.1 μB , and inelastic neutron scattering reveals persis-
tent spin dynamics [73] with a constant relaxation rate below ∼ Ts . Glassy dynam-
ics coexisting with magnetic order were observed by ac susceptibility, μSR, and
neutron diffraction, and was compared to a percolating cluster glass with possible
quantum Griffiths behavior [75]. ac susceptibilty measurements on both Yb2Sn2O7
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and Yb2Ti2O7 revealed similar frequency and field dependences, which are consis-
tent with a spontaneous moment below Tc, but are not consistent with conventional
ferromagnetism [42]. Finally, inelastic neutron scattering on powders of both mate-
rials displays a combination of correlated and uncorrelated behavior down to 60 mK
(Fig. 12.5), and the inelastic spectra do not change appreciably at Tc [64].

Strikingly, the pyrochlore Yb2Ge2O7 [46, 48, 76], while having similar heat
capacity signatures to the stannate and titanate, shows AFM order below TN =
570mK.Despite this qualitatively different ground state, this Yb pyrochlore supports
spin excitations that are nevertheless nearly identical to Yb2Ti2O7 and Yb2Sn2O7,
resembling damped FM spin waves (as in Fig. 12.5) [48]. Again, the inelastic neu-
tron scattering signatures are not modified on passing through TN . This apparent
insensitivity of the excitations to the type of ordered ground state, and indeed also
to the thermal transition, is perhaps the result of very close proximity to a quantum
critical point in the exchange parameter phase space. Whatever the explanation, it is
clear that the Yb2B2O7 compounds are quite unusual frustrated magnets. The appar-
ent lack of connection between the ordered ground states and the spin excitations
is an important outstanding issue in the Yb2B2O7 compounds; how this observa-
tion is eventually explained will also speak to the relevance of QSI physics to these
materials.

12.2.2 Tb3+-Based Pyrochlores

Tb2Ti2O7

Tb2Ti2O7 was the first material to be suggested as a quantum spin ice, but this
designation is not yet agreed upon in the literature. Since 1999 the material has been
intensely studied owing to its spin liquid behavior down to temperatures well below
themean interaction strength, θcw = − 13K [77]. The spin dynamics at temperatures
down to 30 mK have been probed by neutron scattering and neutron spin echo [78–
81], μSR [78, 82, 83], and ac susceptibility [80, 84–86], with no LRO or complete
spin freezing detected.

However, the disorder and persistent spin fluctuations in Tb2Ti2O7 are quite sur-
prising when considering the CEF scheme and average exchange interactions. Con-
sidering only the non-Kramers CEF ground state doublet of Tb3+ in this material,
the moments are strictly Ising with no possibility of dynamics at the single ion level,
since there are no matrix elements of the angular momentum raising and lowering
operators J+ or J− between the two states [77, 87]. Furthermore, the Curie-Weiss
temperature indicates an antiferromagnetic mean field interaction strength of 13K
[77]. The combination of Ising spins and antiferromagnetic exchange should lead to
an ordered “all-in-all-out” (AIAO) configuration that is the complement of spin ice
[13, 88]. Yet Tb2Ti2O7 is famed for its persistently dynamic and disordered mag-
netism down to millikelvin temperatures, indicating that the simple picture of Ising
spins with antiferromagnetic exchange is not sufficient to describe its behavior.
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What is the mechanism for the persistent fluctuations in Tb2Ti2O7? One route
to understanding this might be to try to extract the symmetry-allowed anisotropic
exchange parameters for Tb2Ti2O7, as was done for Yb2Ti2O7. An attempt has been
made to extract the exchange parameters for the pseudo-spin 1/2 model (12.1) judi-
ciously applied to the unique case of the symmetries allowed by the non-Kramers
doublet coupled to a very low-lying excited CEF level which sits at 1.5 meV (i.e.
18K) in Tb2Ti2O7 [23, 91]. Exchange parameters within this model were extracted
for Tb2Ti2O7 based on energy integrated diffuse neutron scattering at 1.4K [91],
and they do have QSI character. However, as was shown for Yb2Ti2O7, fitting the
diffuse scattering in the correlated paramagnetic regime does not always lead to a
unique solution for these parameters. And although Tb2Ti2O7 can be field-polarized
and supports spin wave excitations observable with inelastic neutron scattering [92],
the analysis of these modes is complicated by the strong field-induced mixing of the
low lying crystal field level into the ground state.

Instead of analyzing a Hamiltonian such as (12.1), two alternative theoretical
models have been proposed to explain the persistent spin dynamics and lack of LRO
in Tb2Ti2O7. One proposal is that the CEF ground state non-Kramers doublet is split
by local lattice distortions. Such a Jahn Teller (JT) distortion, either static or dynamic,
would produce two singlet levels with a small energy splitting. Such a splitting
is conceivable; strong magneto-elastic coupling in Tb2Ti2O7 is well documented
[93–98] (Fig. 12.7) and an incipient dynamic tetragonal distortion was observed at
300 mK by x-ray scattering in a single crystal sample [95]. If such a distortion
were occurring, the low temperature magnetic dynamics could result from the newly
allowed transitions between the two low energy states [99]. An observed splitting
consistent with a static JT scenario has not been definitively resolved experimentally,
except in samples known to be non-stoichiometric [100], although a low energy
feature revealed by inelastic neutron scattering in most samples has been proposed as
evidence for this scenario in the past [101–103].More recently, however, other studies
have shown that the low energy feature coexists with elastic scattering, and thus
cannot be due to a simple doublet splitting [89, 104, 105]. The dynamic JT distortion
scenario seems to be more plausible and has been explored recently though the
introduction of quadrupolar interactions to the effectiveHamiltonian [87],whichmay
induce dynamics as has been proposed in the Pr-based pyrochlores [39] discussed
later in this chapter.

A second possibility for the origin of the dynamics in Tb2Ti2O7 arises from the
details of the known CEF eigenstates. Because the lowest excited crystal field level is
only 18K above the ground state (compare this to a∼900K separation of the ground
state to first excited doublet in the CEF scheme for Yb2Ti2O7 [44]), there will be
appreciable second order effects, i.e. virtual crystal field excitations, occurring even
at very low temperatures. Molavian et al. [106] have shown that by including the
effects of virtual excitations to the next highest crystal field doublet the interac-
tions between Ising moments in Tb2Ti2O7 become effectively ferromagnetic, while
also inducing transverse coupling terms, leading to the possibility of QSI physics.
Polarized neutron diffraction experiments on single-crystal Tb2Ti2O7 may be taken
as evidence supporting QSI-like physics. The measurements reveal pinch points in
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c)

a) b)

d)

Fig. 12.6 Diffuse neutron scattering from single crystals of Tb2Ti2O7. a unpolarized elastic (δE =
±0.1 meV) scattering at 66 mK, showing strong peaks at (1/2,1/2,1/2) positions [89]. b proposed
short range correlations in Tb2Ti2O7 based on the data in (a); an “ordered spin ice” structure is
modified by tilting spins away from local < 111 > axes by 12◦ (resembling the longer-ranged
ordered structure in Tb2Sn2O7), and the pattern is reversed every other unit cell [89]. c, d polarized
neutron diffraction (energy integrated) in Tb2Ti2O7 from spin correlations in the scattering plane
(My) and perpendicular to the scattering plane (Mz). The maps reveal detailed anisotropic spin
correlations with “pinch points” at 50 mK [90]. Red and black lines refer to additional data shown
in [90]. Reprinted figures from [89] and from [90] with permission from the American Physical
Society

the diffuse scattering from Tb2Ti2O7 indicating a Coulomb phase with dipolar spin
correlations (Fig. 12.6c, d) [90, 105]. However, since Coulomb phases can also arise
in non-spin ice models, such as the Heisenberg AFM pyrochlore model [14, 15],
this does not by itself settle the debate. Further evidence for spin ice correlations in
Tb2Ti2O7 comes from the form of the diffuse scattering seen in the partially frozen
state below 400 mK observed in some samples; the correlations produce neutron
scattering intensity at (1/2/,1/2,1/2) type positions; this pattern of diffuse scattering
can be modeled by a short range ordered spin ice with AFM correlations between
unit cells (Fig. 12.6a, b) [89]. At the time of writing, it is not yet clear whether this
short range correlated state proposed in [89] could also be consistent with the pinch
points and the other details of the polarized neutron diffraction experiment [90].

The proposal of quantum spin ice in Tb2Ti2O7 came with the prediction of a
roundedmagnetization plateau in a< 111 > field [32]. The theory predicts a plateau,
which would be due to the formation of a dynamic version of Kagome ice, ending
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at fields of ∼0.1T. However, the experimental search for this plateau has turned up
conflicting results [85, 108–110]. What this effort has shown so far is that there are
several low field regimes possible in different samples of Tb2Ti2O7 at the lowest
temperatures, which have been discussed both in terms of the predicted plateau [85]
as well as multiple other field-induced transitions [84, 108, 109], all at fields lower
than 0.5T. The presence of such very low field features indicates that there is a
delicate balance of energetic terms responsible for the low temperature behavior
of this material. This may be consistent with the observation of sample-dependent
properties for extremely small variations in stoichiometry, as discussed below.

Many studies have been devoted to understanding which of the two pictures put
forward for spin dynamics in Tb2Ti2O7 are correct, and unfortunately the exper-
imental literature on Tb2Ti2O7 can seem contradictory. Not until recently was it
appreciated that small deviations from ideal stoichiometry in different Tb2Ti2O7

samples can have a strong influence in the lowest temperature magnetic properties.
This was shown by Taniguichi et al. by varying the nominal Tb content in powder
samples by ∼ 0.25%. This study revealed that the low temperature specific heat can
be dramatically changed by such a small change in stoichiometry. A specific heat
anomaly at 400 mK was observed for slightly stuffed Tb2+xTi2−xO7 (x = 0.005)
which was accompanied by an apparent splitting of the ground state doublet [100].
As the composition was varied towards nominal full stoichiometry (i.e. x = 0), the
specific heat anomaly evolved towards something resembling a freezing transition at
lower temperatures. Signatures of this low temperature freezing at various temper-
atures between 100 mK and 400 mK have been observed in many previous studies
[80–86, 89, 108] and the magnetic behavior below the freezing transition seems to
show slightly different properties from sample to sample, indicating that each has
slightly different stoichiometry. Further investigation of the cause of sample depen-
dence is warranted, with the study by Taniguchi et al. offering the first road map
[100].

One reason for the apparent sensitivity of Tb2Ti2O7 to small structural details may
be attributable to the strong magnetoelastic coupling that has been clearly observed
in this material. This has been demonstrated directly from x-ray diffraction in a
magnetic field (Fig. 12.7b) [96], low-temperature x-ray diffraction [95], pressure-
induced LRO (Fig. 12.7c) [107], as well as from the striking observation of a sharp
magnetoelasticmode [98] which couples the lattice vibrations to the low lying crystal
field level [105] (Fig. 12.7a). Thus, the eventually successful microscopic description
of Tb2Ti2O7 may require a combination of QSI type interactions [91, 106], and
a dynamic JT distortion that couples to them via the magnetoelastic modes [87].
Recently, effective magnetoelastic parameters in Tb2Ti2O7 were proposed which
may be used to predict the interplay of magnetic and lattice degrees of freedom [111,
112]. The dynamic nature of themagnetic ground state, made even richer by coupling
to the lattice, is unprecedented and promises a new direction in the search for exotic
phases.
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a)a) b)

c)
P = 7.1 GPa

Fig. 12.7 Evidence for magnetoelastic coupling in Tb2Ti2O7. a A sharp magneto-elastic mode
was observed by inelastic neutron scattering; the phonon-like mode hybridizes with the magnetic
CEF level at 10 meV, and its partial magnetic character has been confirmed by polarized neutron
scattering. Reprinted figure from [98] with permission from the American Physical Society. b The
time vs. θ (Bragg angle) dependence of a structural peak measured by synchrotron diffraction in
a pulsed magnetic field. Adapted figure from [96] with permission from the American Physical
Society. The overlaid line shows the time dependence of the magnetic field strength. The lattice
contracts upon application of magnetic fields and a strong field of∼ 30 T can lower the symmetry of
the crystal structure. c Pressure-induced long range order in polycrystalline Tb2Ti2O7. Inset shows
the proposed ordered structure, which consists of a partially collinear structure in which only two
spins point parallel to their local < 111 > axes. Reprinted figure from [107] with permission from
Nature

Tb2Sn2O7

Replacing Ti on the non-magnetic B-site with Sn in Tb2B2O7 has the seemingly
innocuous effect of increasing the lattice constant (10.426 Å [113] compared to
10.1694 Å in Tb2Ti2O7 [114]) as well as modifying the shape of the oxygen envi-
ronment around Tb3+, making it slightly more of an isotropic cube with x = 0.336
[113] vs. x = 0.329 in Tb2Ti2O7 [114] (see Chap.1 for the definition of x). These
slight changes in lattice structure appear to bring about a rather dramatic change in
the magnetic properties at low temperatures.

In contrast to Tb2Ti2O7, all samples of Tb2Sn2O7 have been reported to undergo
a transition below Tc = 0.87K, where a large anomaly in the specific heat is observed
[113, 115]. Above this temperature, there is a broad peak in specific heat around 1.3K

http://dx.doi.org/10.1007/978-3-030-70860-3_1
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Fig. 12.8 Specific heat of Tb2Sn2O7 (blue points) [113] and Tb2Ti2O7 (red points) [77]. Both
compounds show a broad peak around TCEF ∼ 6K that can be attributed to thermally populating
a low-lying excited CEF doublet. The features at lower temperatures in Tb2Ti2O7 are relatively
featureless, depending on the sample [100]. In Tb2Sn2O7 there are two low temperature features, a
broad feature starting at TSRO = 1.3 K, and a sharp anomaly at Tc = 0.87 K. Data digitized from
[113] and [77] with permission from the American Physical Society

[113], and yet another broad feature at ∼6K which can be ascribed to thermal pop-
ulation of a low-lying CEF level (Fig. 12.8). It is noteworthy that sample-to-sample
variation of the specific heat of Tb2Sn2O7 does not appear to be an issue. Elastic neu-
tron scattering has revealed broad magnetic diffuse scattering below 10K, indicative
of AFM correlations with a similar form to that in Tb2Ti2O7 [78] (Fig. 12.9). Below
1.3K, FM correlations begin to form, as indicated by the development of scattering
near |Q| = 0. The widths of the peaks increase sharply below Tc, but do not become
resolution limited, maintaining a correlation length of ξ ∼ 180 Å at all T<600 mK
[113]. The magnetic structure is related to spin ice in the following way: the Ising
components of the moments follow a two-in-two-out rule as in spin ice, but each
tetrahedron satisfies it in the same way, forming what is known as “ordered spin ice”
with a net moment along [001]. Due to the cubic symmetry, six magnetic domains of
this structure are expected in a zero field cooled sample. It should be expected that by
applying a magnetic field while cooling, a net moment could be induced by aligning
domains of this structure, as was observed with dc magnetization and μSR [116].
Note that the “ordered spin ice” structure has an ordering wave vector of k = (000),
which differs from the ordered state predicted for dipolar spin ice having k = (001)
[117]. However, in Tb2Sn2O7, the ordered spin ice structure described above is not
exact; finite transverse components of the moments exist, and they produce a total
canting of 13.3◦ from the local Ising axis (Fig. 12.9) [113].
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a) b)

Fig. 12.9 aNeutron diffraction fromTb2Sn2O7 at different temperatures, showing the development
of AFM correlations below about 10K with a typical length scale of 1 nearest neighbor (the inverse
of that length is indicated by L). At 1.3K there is a shift to FM correlations, indicated by an
upturn at low |Q|, and below Tc = 0.87K a short range ordered structure appears. b The derived
magnetic moment as a function of temperature from the data in panel (a), based on a k = (0,0,0)
magnetic structure shown in the inset. Top inset: the correlation length of the SRO structure does not
exceed 180 Å at the lowest temperatures [113]. Bottom inset: The magnetic structure of Tb2Sn2O7
below Tc = 0.87K, shown for a single tetrahedron. Red components represent the ordered spin ice
configuration, and blue components are the deviation from an ordered spin ice. The actual direction
of the short range ordered moments in Tb2Sn2O7 are shown as black arrows. Reprinted figures
from [113] with permission from the American Physical Society

The presence of an ordered structure based on the two-in-two-out rule indicates
that the effective nearest neighbor interaction in Tb2Sn2O7 is ferromagnetic, despite
an antiferromagnetic Curie-Weiss temperature (∼ −12K [118]). Some of the fer-
romagnetic coupling comes from a sizable dipolar interaction between the large
moments expected in the ground state CEF doublet, μ = 5.9μB [119], which as
in the CSIs, could overwhelm the AFM exchange to produce overall effective FM
coupling. Furthermore, an isolated non-Kramers doublet arising from Tb3+ would
necessarily be Ising-like, just as in Tb2Ti2O7, and we therefore have the basic ingre-
dients for spin ice behavior. Given the non-Kramers ground state doublet, it is natural
to ask where the finite anisotropy comes from that allows transverse moments in the
partially ordered structure. One answer is that, just as in Tb2Ti2O7, some exchange
field induced XY spin susceptibility can arise from virtual excitations to a low-lying
CEF level, which lies at ∼1.2 meV in Tb2Sn2O7. These virtual excitations can mix
in transverse components to the CEF ground state doublet.

Thus there appears to be a microscopic basis for spin ice physics in Tb2Sn2O7.
Intriguingly, the moments in the ordered state in Tb2Sn2O7 are only short range
ordered spatially, and it supports spin dynamics that appear to span several decades
of frequency [113, 115, 120–123]. This has been shown experimentally in several
ways. For example, analysis of the nuclear hyperfine splitting in specific heat has
shown that the static moment on the timescale of 10−5 to 10−6 s is only ∼50%
of the static moment observed by neutron diffraction [119] (the latter was 5.9 μB ,
comparable to the full moment allowed by the CEF ground state). Polarized neutron
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diffraction has also shown a static component of only 60 % on the neutron timescale
[121]. μSR results initially led to the conclusion that the whole spin system retains
dynamics [115, 120], but later a study in which muons were implanted outside of
the sample found an external magnetic field static on the timescale of 10−9 to 1 s,
which was correlated with the two transitions and was argued to arise from a net
magnetization of the ordered spin ice state.

Results of a neutron spin echo experiment may be able to explain the apparent
discrepancy between inferred spin fluctuation timescales. Rule et al. found that the
spin dynamics vary as a function of |Q|, spanning fluctuation time scales on the
order of 10−8s at |Q| ∼ 0.1 Å−1 to 10−11 at higher |Q| [123]. This gives a hint
as to why such different timescales can be observed in this material; the slowest
response is governed by the ferromagnetic correlations at low |Q| (i.e. the ordered
spin ice component), which manifest as a static signal in macroscopic probes like
dc magnetometry and external muon implantation. The fast response, observed by
internally implanted muons and other probes that average over |Q|, is then either
associated with AFM correlations, or could be totally incoherent. This coexistence
of an ordered and disordered component calls tomind the exoticCFMphase proposed
for the nearest neighbor quantum spin ice. Perhaps in support of such a scenario, a T 3

dependence of specific heat below Tc [113], normally observed for antiferromagnetic
spin waves, shows that the low energy spin excitations (E <0.1 meV) may be of an
unusual character in this material and calls to mind the photon modes predicted for
the theoretically proposed CFM state.

In comparison to the AFM correlations observed in Tb2Ti2O7, the ferromagnetic
nature of the spin correlations in Tb2Sn2O7 may be understood based on the larger
moment afforded by theCEFground state (∼6.0μB in the stannate [119, 124], versus
4μB [124] or 5μB [77, 119, 125] in the titanate), which increases the importance of
the ferromagnetic near neighbor dipolar coupling. Yet despite the obvious differences
between Tb2Ti2O7 and Tb2Sn2O7, i.e. the partially ordered spin ice state in the latter
in contrast to the liquid-like or partially frozen state in the former, there are many
similarities between the two compounds. The spin excitations for E >0.1 meV in the
partially ordered state in Tb2Sn2O7 have beenmeasured using time-of-flight inelastic
neutron scattering [123] and show a remarkable similarity to the excitations in the
magnetic field induced state of Tb2Ti2O7 [92]. Furthermore, the short range spin
structure inferred in some samples of Tb2Ti2O7 based on (1/2,1/2,1/2) peaks shows
the same “ordered spin ice” character for a single unit cell (although in Tb2Ti2O7,
the sign of this ordered spin ice structure changes every other unit cell along <

111 >, indicating the increased importance of AFM interactions). The presence and
persistence of spin dynamics spanning a large range of timescales is intriguing in both
materials. The CEF eigenstates of both compounds have received renewed attention
recently, and have been suggested [124] to be even more similar than previously
thought [119], though the details of the Tb2Ti2O7 CEF levels are still not completely
agreed upon [125]. It is clear that both compounds have a low lying CEF level around
1.2 to 1.5 meV. The origin of the spin dynamics in both compounds may therefore
be the same, whether it be related to virtual crystal field excitations, a dynamic JT
distortion, or both. The magnetoelastic properties of Tb2Sn2O7 are also likely to



12 Experimental Search for Quantum Spin Ice 347

be of importance in its microscopic description. The coupling of the magnetism to
the lattice is already hinted at by the long range AFM ordered state induced by
hydrostatic pressure [126], which also occurs in Tb2Ti2O7 [107].

In Tb2Sn2O7 there is clear evidence for a spin ice type correlations (“ordered
spin ice”) that supports unusual spin dynamics at the lowest measurable tempera-
tures. Thus the stannate is in some ways more likely to be directly related to exotic
phases predicted for QSI than the titanate. This, combined with less variation from
sample to sample of its low temperature magnetic properties means that, despite the
lack of single crystal samples, Tb2Sn2O7 should be a fruitful source of interesting
comparisons to QSI models.

12.2.3 Pr3+-Based Pyrochlores

Pyrochlores with the non-Kramers Pr3+ ion (Pr2B2O7, B = Hf, Zr, Ir, Sn, and the
metastable pyrochlore Pr2Pb2O7 [127]) have attracted attention as candidates for
QSI behavior for the following reasons; (1) they have Ising-like dipole moments, (2)
the well-isolated non-Kramers CEF doublets allow for fewer exchange interactions
in (12.1), and (3) strong quadrupolar interactions were predicted to “melt” the spin
ice state by introducing quantum fluctuations in the pseudo-spin 1/2 model [39, 40].
Analysis of possible ground states of the model described by (12.1) for non-Kramers
pyrochlores with well-isolated ground state doublets was carried out, and the QSL
phase was found to have increased stability compared to the Kramers case due to the
requirement that Jz± = 0 [24]. Mean field theory can capture the classical ordered
phases of the model, some of which are quadrupolar-ordered phases involving the
XY part of the non Kramers pseudo-spin [24, 40, 128].

Pr2Zr2O7

Pr2Zr2O7 can be grown as large single crystals by the floating zone method [129–
131]. This has enabled many detailed measurements, and there is ample evidence for
some version of dynamic spin ice. Crystal field analyses based on an inelastic neutron
scattering measurement confirm a well-isolated (by 9.5 meV ∼110K) non-Kramers
doublet, which by symmetry is required to have Ising character [132, 133]. The
Ising character is confirmed by magnetization measurements [131, 134]. A Curie-
Weiss (CW) analysis of the susceptibility gives an effective moment of 2.5 μB and
a negative CW temperature ranging from -2.4K [131] to -0.4K [132] depending
on the temperature range considered. Despite the negative CW temperature, which
indicates overall AFM exchange, there is no sign of an AIAO long range dipole
ordered state down to 20 mK [129, 132]; instead there are signs for partial freezing
of the moments near 300 mK [128, 129, 132]. The freezing may be expected to
lead to some residual entropy, and indeed the change in magnetic entropy, estimated
by subtracting lattice and nuclear contributions of the specific heat, shows good
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a) b)

Fig. 12.10 a Elastic (bottom) and inelastic (top) neutron scattering from single crystal Pr2Zr2O7
at T = 0.1 K. The elastic scattering, which due to the energy resolution of the measurement probes
spinswith fluctuation timescales longer than 2 ps, accounts for only 10%of themoment in Pr2Zr2O7.
Pinch point scattering is observed near zone centers, which is strongly reminiscent of the nearest
neighbor CSI. The inelastic scattering, however, is very strong even at the lowest temperatures, and
the absence of pinch points at finite energy transfer indicates a monopole-rich spin ice correlation
for the spin fluctuations. b Magnetic entropy of Pr2Zr2O7 estimated based on lattice and nuclear
subtractions of the specific heat. The entropy released from 0.1K to 10K is approximately the
Pauling value, similar to the CSI Dy2Ti2O7. Reprinted figures from [132] with permission from
Nature Communications

agreement with a Pauling residual entropy over the range of 0.1 to 10K (Fig. 12.10b))
[132]. However, ac susceptibility measurements of Pr2Zr2O7 show that the “spin flip
attempt frequency” is orders of magnitude faster than in Dy2Ti2O7 and Ho2Ti2O7,
suggesting that monopole dynamics are faster in this spin ice-like system [132].

Single crystal neutron scattering provides the best indication of a connection to
spin ice, but also an interesting departure from it.Using unpolarized neutrons,Kimura
et al. showed that Pr2Zr2O7 has weak diffuse elastic scattering taking the same form
as predicted for the nearest neighbor spin ice model (Fig. 12.10) [132]. The presence
of pinch points in the elastic scattering pattern identifies dipolar correlations arising
from a spin ice ground state. However, the pinch points are not resolution limited,
indicating that the dipolar correlations are cut off at some length scale. The effective
length scale for the correlations seems to be limited by the density of defects (∼1%
Pr vacancies) in the single crystal used in [132]. Intriguingly, most of the scattering
(> 90%) is inelastic. Gapless excitations (to within the energy resolution of 0.2
meV) forming a continuum were observed to extend up to at least 1.5 meV. These
excitations are strongly Q-dependent; the pattern of inelastic scattering resembles
the nearest neighbor spin ice model, but with a high density of magnetic monopoles.
Themonopole defects destroy the algebraic correlations and remove the pinch points.

In an Ising system, including spin ice, spin flips are expected to be gapped due
to the absence of a continuous degree of freedom. An estimate of the size of the
energy gap to monopole excitations can be made based on the thermal activation
barrier for spin flips determined by ac susceptibility, 1.6K ∼ 0.1 meV. Thus the
energy resolution of the measurement in [132] (δE = 0.2 meV) may not be fine
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enough to resolve the expected gap to the monopole-dense excitations. Although
gapless photon excitations are predicted for the QSL phase of QSI, these transverse
fluctuations would primarily correspond to fluctuations in the quadrupolar part of
the pseudo-spin in a non-Kramers spin ice, and therefore may not be observable with
neutron scattering. Instead they may be observable by thermodynamic probes.

Recently, a similar inelastic neutron scattering signature from Pr2Zr2O7 was inter-
preted in a differentmanner [128]. In one single crystal sample, the inelastic spectrum
a T = 60 mK was found to be well-described by an overdamped mode at 0.4 meV.
The Q-dependence of this mode is similar to that in [132], including the pinch
point structure and ice-like pattern (Fig. 12.10a). This was explained in terms of a
liquid-like antiferro-quadrupolar correlated ground state [128]. Within this scenario,
inelastic spin ice scattering is explained by spin ice correlations between the precess-
ing part of the pseudo-spin around locally ordered quadrupole moments. This brings
to mind another possible meaning of the term “dynamic spin ice”; that is, literally,
the dynamics themselves have spin ice correlations. This is not quite the same as the
QSI picture presented earlier in this chapter. For the quadrupolar ordered state that
is proposed in [128] to be relevant to Pr2Zr2O7, the important term in Eqn. (12.1) is
not Jzz but rather J±. In fact Jzz could even be zero or negative, and the same spin
ice-like excitations would be present. This may explain the apparent discrepancy
between negative CW temperature in Pr2Zr2O7 and the spin ice-like dynamics.

The Role of Disorder in Non-Kramers Pyrochlores: Relevance to
Pr2Zr2O7

Recently, a new route to QSI in non-Kramers pyrochlores was proposed based on
the presence of local structural disorder [135]. Since the ground CEF doublets are
not protected by time reversal symmetry, they can be split by random crystal strains.
Savary and Balents showed that small enough distortions could induce quantum
entanglement and lead to the U(1) QSL phase in these non-Kramers pyrochlores, in
an analogy to the random transverse field Ising model [135]. This picture is of great
interest in the context of Pr2Zr2O7, as there is evidence for local structural disorder
that depends on crystal growth parameters [130], and evidence for random splittings
of the non-Kramers doublet has recently emerged [136]. This type of random split-
ting of the non-Kramers doublet is similar to that observed in Pr2Ru2O7 [137] and
postulated for the Tb-based pyrochlores [99]. This seems to be an unavoidable ques-
tion for all QSI candidates based on non-Kramers ions, and therefore studying the
effects of dynamic and static lattice distortions will be an important route to pursue
in Tb3+, Pr3+, and even Ho3+ pyrochlores.

Pr2Hf2O7

The non-magnetic cation Hf4+ is chemically very similar to Zr4+, making Pr2Hf2O7

a natural system to explore in light of the dynamic spin ice behavior observed in
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Pr2Zr2O7. Large single crystals can be produced [138]. Two recent reports on the
magnetic properties single crystals and powders of Pr2Hf2O7 have indicated many
similarities to Pr2Zr2O7, including a well isolated Ising CEF ground doublet [139,
140], a crossover to a correlated state for T < 0.5 K with a broad inelastic neutron
scattering spectrum peaked at ∼0.4 meV [139], and partial spin freezing near 0.2K
[139, 140]. Magnetization measurements of one crystal [139] reveal a smoothed
plateau-like feature for fields oriented along < 111 >, consistent with QSI phe-
nomenology. Such ametamagnetic feature has not been clearly observed in Pr2Zr2O7,
and is not reported in another crystal of Pr2Hf2O7 [140]. These differences might
be due to different levels of structural disorder in the samples; Pr2Hf2O7 generally
appears to be more structurally pristine than Pr2Zr2O7 [138, 140]. Inelastic neutron
scattering from single crystals is not yet reported, but should be expected to appear
soon after the time of writing, given the availability of large crystals.

Pr2Sn2O7

The Pr3+ based stannate pyrochlore, so far only available as powder samples, is
known to form spin ice correlations with some spin freezing in addition to persistent
fluctuations. Like Pr2Zr2O7 and Pr2Hf2O7, the CEF ground state of Pr3+ is a non-
Kramers doublet with a significant quadrupole moment [141], which may provide a
mechanism for quantum fluctuations in a spin ice ground state. Although there is no
evidence formagnetic order down to 90mK (from specific heat [19], ac susceptibility
[142], or neutron scattering [19]) there is a frequency-dependent peak near 0.3K in
the ac susceptibility which is consistent with spin freezing [142]. Unlike Pr2Zr2O7,
however, the ac susceptibility does seem to vanish as T → 0 [142], consistent with a
static frozen state like CSI, and the relaxation time is expected to diverge. The mag-
netic specific heat shows a broad Schottky-like peak around 1K, but the integrated
entropy only approaches 25% of the Pauling entropy. This has been used as an argu-
ment for a dynamic spin ice state in Pr2Sn2O7 [19]. In support of this claim, inelastic
neutron scattering reveals a quasi-elastic signal that persists down to at least 200mK,
with a spin relaxation rate that is much faster than observed in the frozen spin ice state
of Dy2Ti2O7 (0.02 ns compared to 1000 ns) [19]. Although only powder samples are
available, the |Q| dependence of this quasi-elastic neutron scattering resembles that
of dipolar spin ice, but with small differences. The pattern is better described by the
anisotropic exchange model proposed by Onoda et al. [39], in which quadrupolar
interactions are argued to create quantum fluctuations in the spin ice ground state,
and a different weighting of ice rules states compared to the dipolar spin ice model is
expected (Fig. 12.11a). Furthermore, the observed linear decrease of S(|Q|) as |Q|
goes to zero has been shown to be consistent with quantum spin ice [143].

The similarities between the reported properties of Pr2Sn2O7 and Pr2Zr2O7 are
striking. However, there are some differences: the ac susceptibility does not vanish
in Pr2Zr2O7, and by best estimates of nuclear Schottky contributions, the magnetic
entropy in Pr2Zr2O7 reaches approximately the full Pauling value [132]. Some ques-
tions remain, namely, what fraction of the spins are static in the low temperature
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a) b)

Fig. 12.11 a Elastic magnetic diffuse scattering in Pr2Sn2O7 at 1.4K (blue) and 0.2K (green)
(50K data subtracted). The red line is the form of the diffuse scattering predicted for dipolar CSI
[18], and the black line results from a model based on a pseudo-spin 1/2 Hamiltonian for Pr-based
pyrochlores that predicts QSI behavior [39]. b Energy dependence of the dynamic structure factor
in Pr2Sn2O7. At 1.4K the dynamic spin response can be fit to a Lorentzian (blue solid line) and a
timescale of 4 × 10−4 ns for the spin fluctuations can be extracted. At 200 mK (bottom panel) the
spin fluctuations persist, and a timescale of 0.02 ns can be extracted. These spin relaxation times
are much shorter than those found in the dipolar spin ice materials, which are on the order of 10
to 1000 ms in the spin ice regime. Reprinted figure from [19] with permission from the American
Physical Society

phase of Pr2Sn2O7 (this was found to be less than 10 % in Pr2Zr2O7)? How does
the magnetic entropy compare to CSI if it is measured to lower temperatures and
the nuclear contributions are removed? Such questions can be investigated even in
powder samples and therefore we should expect to see more progress on Pr2Sn2O7

in the near future.

Metallic Spin Ice, Pr2Ir2O7

The concept of QSI requires localized magnetic moments on the pyrochlore lattice.
The metallic pyrochlore Pr2Ir2O7 is a fascinating example of QSI in which the local-
ized moments forming the dynamic spin ice coexist with conduction electrons. The
Ir4+ cation on the pyrochlore B-site forms mobile electron bands while Pr3+ gives
a localized Ising moment as in the other Pr-based pyrochlores described above, and
these seem to form spin ice configurations.

In Pr2Ir2O7, the Ir conduction electrons experience the strongly correlated yet
disordered local fields generated by the spin ice. The interplay between the con-
duction electrons and the spin ice state gives rise to novel properties, namely an
anomalous hall effect (AHE) below T = 1.5 K even in the absence of time-reversal
symmetry breaking from magnetic dipole ordering or freezing [144, 145]. The AHE
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and other aspects of the conduction electron behavior in Pr2Ir2O7 are discussed in
another chapter in this book, Chaps. 13 and 14, so here attention is limited to the
local moments.

The localmoments in Pr2Ir2O7 are formed by awell-isolated non-Kramers doublet
ground state of the CEF split Pr3+ levels [146]. Despite an AFM low-temperature
Curie-Weiss temperature (θCW = −1.8 K), evidence for ferromagnetic coupling in
Pr2Ir2O7 is inferred from the presence of a magnetization plateau when the field
is applied along the < 111 > direction in the partially frozen state of single crystal
samples. As in other Pr-based pyrochlores, the non-Kramers doublet gives strict Ising
anisotropy to the dipole moments, meanwhile the planar components transform as
quadrupoles. And, as in the other Pr based systems, the “quantum melting of spin
ice” might be expected based on interactions between these quadrupole parts of the
pseudo-spin [39].

The spin ice state that is formed by the Pr moments remains dynamic, at least
down to ∼400 mK. This conclusion may be drawn from dc susceptibility, which
does not show any field cooled vs. zero field cooled splitting until ∼ 0.3 K, and
which maintains a constant value of the susceptibility below this freezing transition
indicating remaining unfrozen moments [146]. The dynamic nature of the spin ice is
also inferred based on the temperature independent dynamic relaxation rate observed
down to 20 mK in μSR [147] (note, however, that both [147, 148] have inferred the
presence of a local distortion caused by the muons which influences μSR results
on Pr-based materials). Finally, quantum critical behavior was observed down to
400 mK, implying that quantum fluctuations are strong in this system [30]. This
may be due to the conduction electrons, as postulated in a quantum critical theory
describing the pyrochlore iridate family [149, 150], or from the local Pr moments
forming a QSI state near a quantum critical point, or most likely the unique physics
arising from their interplay.

12.2.4 Summary and Outlook

This chapter has been primarily devoted to a review of the known QSI candidate
materials. In each material, the dominant interactions have been proposed to be
ferromagnetic and locally Ising, just as in CSI. The major difference between CSI
and these materials, however, is the introduction of additional interactions which
promote quantum fluctuations within the spin ice manifold. As a result, the systems
discussed here do not freeze and fall out of equilibrium at temperatures set by the
spin ice interaction energy, Jzz , as the classical dipolar spin ice materials do. Instead,
these materials remain in equilibrium and support persistent spin fluctuations down
to very low temperatures relative to the dominant interaction strength. Theirmagnetic
entropy sometimes makes a brief visit at the Pauling entropy, in a temperature regime
called “dynamic spin ice” in this chapter, before carrying on further towards S = 0
in their ground states. In some cases, whether the ground states of these materials are
conventionally long range ordered or are more exotic, such as a U(1) QSL or CFM

http://dx.doi.org/10.1007/978-3-030-70860-3_13
http://dx.doi.org/10.1007/978-3-030-70860-3_14
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phases with emergent electrodynamics, is presently debated. The future observation
of such emergent excitations in the QSI materials discussed here is a tantalizing
possibility.

Experimentally, a key step towards understanding the ground states of these mate-
rials will be to gain a better understanding of the presence and effects of structural
imperfections. For example, lattice defects on the order of 0.25% have been shown
to generate grossly varying low temperature behavior in Tb2Ti2O7 [100]. Although
phase competition likely plays a role, particularly in the Yb2B2O7 materials, another
reason for the sensitivity of the QSI materials to such low levels of disorder is the
overall low energy scales associated with their interactions. This is due to the mag-
netism being generated by rare earth ions, which have verywell localized 4 f orbitals,
and thus weak exchange. This sensitivity to disorder could perhaps be thought of as
a “feature” rather than a “bug” in non-Kramers systems, where it could actually pro-
mote entanglement [135]. This idea may be applicable to Pr2Zr2O7 [136], as briefly
discussed in this chapter, and perhaps also the recently reported anion-defective
pyrochlore Tb2Hf2O7 [151].

Given the extreme sensitivity to disorder in several of the QSI candidates, one
hope for the future is the discovery of a high temperature version of spin ice, perhaps
incorporating magnetic 3d transition metal ions as in the recently synthesized series
of fluoride-pyrochlores NaA′M2F7 (A′ = Ca, Sr; M = Co, Mn, Fe, Ni) [152–155].
However, this path is not without its challenges, since spatial anisotropy generated
by spin-orbit coupling is a key to the spin ice story. In this regard, pyrochlores
or spinels based on Co2+ in a distorted octahedral environment could provide the
required anisotropy, similar in spirit (but opposite in anisotropy) to the XY fluoride
pyrochlores NaCaCo2F7 and NaSrCo2F7 [156, 157].

Another consequence of their relatively weak interactions is that rare earth based
QSI materials can display rather different behavior depending on the details of the
non-magnetic ions in the lattice. For example, Tb2Sn2O7 forms a quasi-long range
ordered ground state, while Tb2Ti2O7 remains liquid-like, but can be easily driven to
long range order by applied pressure, as discussed earlier in this chapter. The effect of
suchmodifications of the lattice is a very informative route to pursue in understanding
the QSI materials; this is already beginning to be explored in solid solutions of
Tb2Sn2−xTixO7 [158], and in the recent comparative study of Yb2B2O7 (B = Sn, Ti,
Ge) [42, 48]. These types of studies may guide the field towards an understanding of
the structure–property relationships in QSI. Simply put, the relevant question is: how
can we tune the interactions in Eqn. (12.1) by tuning the non-magnetic sublattices?

Much of the promise of QSI materials lies in the possibility of producing a U(1)
QSL phase. In this regard it is interesting that a distinct version of this U(1) QSL
exists, which is not based on spin ice-like dipole correlations, but rather octupole cor-
relations [41, 159]. This could occur in materials with so-called “dipolar-octupolar”
CEF ground state doublets, such as Ce2Sn2O7 and Nd2Zr2O7. Experimentally, the
former has been shown to be aQSL candidate [160], and the latter was proposed as an
example of moment fragmentation in spin ice [161]. In this regard, the experimental
QSI signatures discussed in this chapter, which are often based on ice-correlations
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forming amongst dipole moments, should not be taken too strictly, and the transfor-
mation properties ofCEFdoublets in each rare earth pyrochlore should be considered.

Although this chapter has discussed only pyrochlore materials R2B2O7, the spinel
structure with general chemical formula AB2X4 also hosts a pyrochlore sublattice on
the B site.Although there aremany examples ofmagnetic spinels, only a few reported
compounds have magnetic rare-earth B-sublattices and non-magnetic A-sites [162–
164]. In principle, these could lead to the required Ising anisotropy and a similar
anisotropic exchange Hamiltonian to Eqn. (12.1). Towards this end, it is promising
that the compounds CdEr2Se4 and CdEr2S4 are reported to display signatures for
classical spin ice [165, 166], yet the Yb3+-based spinels MYb2X4 (M =Mg, Cd,
X =Se, S) appear to be more Heisenberg-like [164]. This variation in anisotropy
suggests that it might be possible to extend the materials space of rare earth B-site
spinels to find new QSI candidates.

In the search for new QSI materials, some guiding principles may be useful.
First, the materials must be able to support anisotropic exchange interactions, which
are generated by spin-orbit coupling—heavier magnetic ions are therefore generally
more desirable (although Co2+ should not be ignored, as mentioned above). Sec-
ond, a source for quantum fluctuations is required. In Kramers ion systems, such as
Yb2B2O7, the fluctuation-generating XY exchange terms in the effective Hamilto-
nian can come from the planar nature of the g-tensor. In non-Kramers systems, such
as Tb2B2O7 and Pr2B2O7, the spin dynamics must come from another route; cou-
pling to low lying CEF levels, quadrupolar interactions, and coupling to the lattice
degrees of freedom or structural defects have all been proposed as mechanisms to
generate these quantum fluctuations.

With these principles in mind, it may be possible to design new QSI materials.
Such an effort combinedwith the continued intense experimental effort on the current
QSI materials may bring us to definitive observations of truly novel phases of matter.
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Chapter 13
Novel Electronic Phases of Matter:
Coupling to Itinerant Electrons

Masafumi Udagawa

Abstract In this chapter,wewill address the properties of itinerant electrons coupled
with spin ice, whichwe call “itinerant spin ice”. In a broader scope, this system serves
as a prototypical example of the itinerant electrons interacting with geometrically
frustratedmagnet. To describe the nature of this frustrated itinerant systems,wefirstly
introduce the classical Kondo lattice model, and discuss its basic properties. After
that, equipped with the knowledge of the model, we consider the thermodynamic and
transport properties of itinerant spin ice, with reference to the experimental data of
Pr2Ir2O7. Finally, we end this chapter with the discussion on several on-going topics
and future perspectives for the frustrated itinerant systems.

13.1 Spin Ice Meets Mobile Carriers

Spin ice belongs to a large family of magnetic systems, termed “geometrically frus-
trated magnet”. Geometrical frustration is a concept, associated with the local struc-
ture of the lattice on which the system is defined; if a lattice is composed of triangular
units, we call the system frustrated, having in mind the difficulty of energy optimiza-
tion for the antiferromagnetically coupled magnetic moments (Fig. 13.1a). As this
example shows, geometrical frustration is usually considered for localized magnetic
systems, in which the local nature of magnetic moments makes the system sensitive
to the local structure of lattice. In contrast, it is unclear how geometrical frustration
affects the itinerant electron systems.

At first glance, it seems unlikely that properties of itinerant electrons are consid-
erably affected by geometrical frustration. In itinerant systems, electrons behave as
plane waves extended over the system, apparently insensitive to the small difference
in the shape of local lattice structure (Fig. 13.1b). Nevertheless, contrary to this naive
expectation, we sometimes come across unusual phenomena in itinerant systems
defined on highly frustrated lattice structure.
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Fig. 13.1 Schematic pictures of the role of geometrical frustration in a localized spin systems, b
itinerant electrons systems, and c the hybrid model

To give a few examples, in magnetites, Fe3O4, its metal insulator transition was
originally attributed to a variant of ice rule imposed on charge degrees of freedom [1].
In LiV2O4, it was reported that electrons have 200 times as largemass as those in nor-
mal metals [2]. Similar heavy-fermion behavior is also observed for YMn2 [3], β-Mn
[4], Molybdates [5], and many other frustrated conductors. In rare-earth molybdates
and iridates, anomalous transport properties have been observed, such as resistivity
minimum, unconventional Hall response, and spontaneous Hall effect [6–9].

How does geometrical frustration bring about anomalous phenomena in these
materials? To give a hint to this problem, we focus on one important class of systems,
namely the composite systems, where itinerant electrons interact with a localized
subsystem, such as magnetic moments (Fig. 13.1c). Localized moments are sensitive
to the frustrated lattice structure, due to their local nature, and sometimes develop
unusual spatial structure, e.g., spin ice. Through the interaction with the anoma-
lous spatial structure developed in the local subsystem, itinerant electrons may also
acquire nontrivial properties. In this review, we will focus on this kind of “hybrid”
systems, with itinerant spin ice as a prototypical example.

The organization of this article is as follows. In Sect. 13.2, we will introduce
the classical Kondo lattice model, as a representative model to describe this hybrid
system, followed by a detailed discussion on the basic properties of this model in
Sect. 13.3. Section13.4 will be devoted to the summary of experimental data of
Pr2Ir2O7, and theoretical perspectives of itinerant spin ice. We will introduce several
on-going topics about frustrated itinerant systems in Sect. 13.5, and summarize in
Sect. 13.6.

13.2 Classical Kondo Lattice Model

As a basic model to describe the hybrid system, we consider the classical Kondo
lattice (CKL) model,
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Hck[J ] = −t
∑

(i, j),s

(c†isc js + c†jscis) − J
∑

i

si · Scli ≡ Hkin + Hint, (13.1)

where c†is(cis) is a creation (annihilation) operator of electron at site i and spin s,
si ≡ 1

2c
†
isσ ss ′cis ′ means an electron spin, with σ ss ′ , the vector notation of Pauli matri-

ces. Scli = (Scli x , S
cl
iy, S

cl
i z) is a vector with three c-number components, representing

a classical localized moment defined at site i . The summation over the site pairs,
(i, j) defines the lattice structure. This is the simplest possible model to describe the
interaction between itinerant electrons and classical localized moments, with only
two independent parameters: electron density (n ≡ 1

2N

∑
i,s〈c†iscis〉, N : the number

of sites), and the exchange coupling (J/t).
What kind of physical systems can be described by this Hamiltonian, Hck[J ]?

In fact, the study of CKL model has a long history. Starting from 1950s, the mag-
netism and conduction properties of manganites [10] have been studied, based on the
ferromagnetic CKL model by assuming large coupling constant, J [11–16]. In man-
ganites, the partially filled 3d orbitals, subject to crystal field splitting, exhibits a dual
nature of itinerancy and localization. As a typical example, in the perovskite man-
ganites, La1−xSrxMnO3, the localized S = 3/2 magnetic moments in the t2g orbitals
interact with itinerant electrons in the conduction band formed by eg orbitals, through
the strong Hund’s rule coupling. This picture is well captured by the CKL model
(13.1), by assuming large positive J due to the Hund’s rule coupling. And, as a result,
the magnetic and conduction properties of the manganites have been successfully
explained.

Rare-earth compounds are another class of systems represented by thismodel, and
its quantum counterpart, where the classical moment Scli is replaced with a quantum
spin operator, Sqi . In rare-earth compounds, localized magnetic moments due to the f-
orbitals of rare-earth ions, interact with itinerant electrons due to other, often lighter,
ions contained in the compounds [17]. The coexistence of itinerant and localized
electrons are well described by Kondo lattice model, however, in quite different
parameter region from themanganitesmentioned above. In rare-earth compounds, the
magnetic interaction is usually originated from superexchange interaction between
rare-earth and “light” ions, which is smaller, compared with the energy scale of band
width. Accordingly, in the analysis of rare-earth systems, J � t is usually assumed
in Hamiltonian,Hck[J ], in contrast to J � t for Manganites, where J is connected
to strong Hund’s rule coupling, as mentioned above.

In these two cases, the CKL model naturally appears as a relevant model to
describe actual compounds. Meanwhile, in the analysis of more formidable models,
theCKLmodel often serves as an effectivemodel to give reliable approximate results.
Starting from the quantum version of Kondo lattice model with Sqi , the CKL model
can be obtained through a sort of static approximation, which ignores the quantum
dynamics of localized moments, and leads to the replacement, Sqi → Scli . The CKL
HamiltonianHck[J ] can also be related to Hubbard model, where electrons interact
through the on-site interaction:
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HHub = −t
∑

(i, j),s

(c†isc js + c†jscis) +U
∑

i

ni↑ni↓. (13.2)

The key to the derivation of Hck[J ] from the Hubbard model is the replacement:

ni↑ni↓ = −2

3
si · si + 1

2
(ni↑ + ni↓) � −2

3
〈si 〉 · si + 1

2
(ni↑ + ni↓). (13.3)

The first equality in (13.3) is the operator identity, while the second equality is the
replacement of the operator si with its (site-dependent) thermal average, 〈si 〉. If one
identifies 〈si 〉 with the classical localized moment, Scli , one can recover the Hamilto-
nian, (13.1), with the constraint that Scli should be connected to the thermal average,
〈si 〉. For a systematic derivation of static approximation, see, for example, [18] These
treatments, the replacement of quantum spin operator with classical variables or ther-
mal average, can be allowed in high temperature regions, where thermal fluctuation
dominates the quantum fluctuation. In addition to the high temperature region, the
CKL model can be justified at much lower temperature, where the magnetic order is
well developed, and both thermal and quantum fluctuations are suppressed, accord-
ingly.

Summarizing so far, theCKLmodel stands as useful phenomenologicalmodels on
its own, as well as it is connected to various microscopic models. In the subsequent
chapter, we will introduce the basic properties of classical Kondo lattice model,
together with useful numerical/analytical techniques for this model.

13.3 Basic Properties of Classical Kondo Lattice Model

In this section, we will discuss the basic properties of the CKL model, defined with
the Hamiltonian, Hck[J ], given in (13.1).

13.3.1 Ground State

The CKL model belongs to a class of models, where non-interacting fermions are
coupled to macroscopic number of classical degrees of freedom, or more generally,
conserved quantities. Since Scli is composed of c-numbers, it trivially commutes with
HamiltonianHck[J ], and can be regarded as continuous-valued conserved quantity.
This class ofmodels also includes Falicov-Kimballmodel [20, 21], inwhich fermions
are coupled to discrete classical charge degrees of freedom. Kitaev model gives an
example, in which conserved quantities takemore non-trivial form. In this model, the
Hamiltonian can be mapped into the free Majorana fermions coupled to conserved
Z2 degrees of freedom [22].
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Common through the models in this class, once the values of conserved quantities
are fixed, the Hamiltonian takes quadratic form in terms of fermion operators, and
can be diagonalized easily. This means that the determination of the ground state
of CKL model is nothing but to find the configuration of {Scli }, which minimizes
the ground-state energy of descendant free fermion Hamiltonian. However, since the
number of configurations for {Scli } grows exponentially with system size, brute-force
search for the optimal configuration is possible only for small-size cluster. For large
systems, one has to resort to approximate analytical or numerical techniques, which
we will introduce later in Sect. 13.3.4.

13.3.2 Finite-Temperature Properties

In order to study finite-temperature properties, in the first place, it is necessary to
calculate Boltzmann weight, exp(−Hck[J ; {Scli }]/T ), corresponding to each fixed
configuration, {Scli }. Once {Scli } is fixed, this quantity can be obtained easily, through
the diagonalization of quadratic Hamiltonian. However, to obtain the expectation
value of observable, O , we have to make summation over the configurations, {Scli }:

〈O〉 = 1

Z
Tr{Scli }Trc,c†

[
O exp(−Hck[J ; {Scli }]/T )

]
. (13.4)

Here, Tr{Scli } means taking trace in terms of classical magnetic moments, while Trc,c†
means the trace by fermionic degrees of freedom. To evaluate the summation (13.4)
exactly, one has to generate all possible configurations of {Scli }, and make summation
over them. This is again, an exponentially formidable task as increasing the system
size.

13.3.3 Rigorous Results

While it is difficult to evaluate the observables exactly, several rigorous properties
are known for the CKL model. We’ll introduce some of them, in this subsection.

Time-Reversal Symmetry

From time-reversal symmetry, one can show that the sign of J does not affect the
energy spectrum of the CKLmodel. For the HamiltonianHck[J ] given in (13.1), one
can construct a time-reversal operator acting only on electronic degrees of freedom,
T = RyK , where K is the anti-unitary operator taking complex conjugate, and
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Ry = exp(iπ
∑

i s
y
i ) is the 180◦ rotation around the y-axis. If the kinetic part of

the Hamiltonian, Hkin is time-reversal invariant, i.e., t is real, T −1Hck[J ]T =
Hck[−J ]. Accordingly, Hck[J ] and Hck[−J ] have the identical energy spectrum.
We note that the quantum version of Kondo lattice model, with quantum spin Sq

instead of Scl, does not have this property. The argument above relies on the fact that
Ry maps (Scli x , S

cl
iy, S

cl
i z) → (−Scli x , S

cl
iy,−Scli z), while K maps siy Scliy → −siy Scliy , so

T reverses the sign of interaction term, Hint, in total. However, for quantum case,
K maps siy S

q
iy into itself, invalidating the argument.

Limit of d → ∞

Remarkably, exact solution is available for the classical Kondo lattice model at
the limit of infinite dimension, d → ∞ [23]. At this limit, various thermodynamic
quantities and even transport coefficients can be obtained exactly. These results are
described in the language of many-body Green’s function, and it shares practically
the same structure with the exact solution of Falicov-Kimball model [24–29]. The
simplification at d → ∞ has been pointed out for many other problems [30], and
forms a basis of dynamical mean-field theory, which has been extensively used for
the analysis of many-body systems [31].

In many-body perturbation theories, the effect of interaction is taken into account,
through the self-energy, �i j (ω). The key observation at infinite dimension is that the
self-energy is completely local,�i j (ω) = �i (ω)δi j , which simplifies the mathemati-
cal structure of the formulation considerably, and make the exact solutions available.

Absence of Spontaneous Symmetry Breaking for Small d

For localized spin systems with continuous symmetry, it is well known that sponta-
neous symmetry breaking is forbidden in the system dimension d ≤ 2 for any finite
temperature. This Mermin-Wagner’s theorem [32] also seems to forbid spontaneous
symmetry breaking for the CKL model, since it has continuous symmetry as to the
global rotation of spin.

Actually, there is a subtle point in the application of Mermin-Wagner’s theorem,
since the theorem assumes that the magnetic interaction decays faster than 1/r2+d .
However, the effective spin interaction derived fromHck[J ] is usually long-ranged,
as discussed in Sect. 13.3.4. Despite this subtlety, theMermin-Wagner’s theoremwas
proved for quantumKondo latticemodelwith the use ofBogoliubov’s inequality [33],
and recently reconsidered, taking account of the effect of spin-orbit interaction [34].
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13.3.4 Basic Analytical/Numerical Techniques

Apart from the exactly solvable points, the analysis of classical Kondo lattice model
requires rather involved calculations. In this section, we introduce popular numeri-
cal/analytical methods for the analysis of this model.

Monte Carlo Simulation

A reliable numerical method to accomplish the summation in (13.4) is the determi-
nantial Monte Carlo method. In this method, one replaces the outer trace, Tr{Scli } in
(13.4) with stochastic average, by generating a Markov chain process, and evaluates
the inner trace, Trc,c† , exactly by diagonalizing the free fermion Hamiltonian. To
construct Markov chain process, one can use, e.g., single spin flip dynamics com-
bined with standard Metropolis algorithm. This method is free from negative sign
problem, which can be a serious obstacle in the application of quantumMonte Carlo
simulation.

The bottleneck in the numerical cost lies in the diagonalization of free fermionic
part. In contrast to classical spin systems, the energy change accompanied with local
update requires the diagonalization of fermionic Hamiltonian on the whole lattice.
The numerical cost for the diagonalization scales as O(N 3) with the number of
spins, N . This means one Monte Carlo step, composed of N spin flips, requires
the computation scaled as O(N 4), imposing a severe computational cost for large
systems. To remedy this problem, several efficient algorithms have been proposed
[35, 36]. Recently, the application of machine learning was proposed to reduce the
computational cost [37].

Dynamical Mean-Field Theory

Given the numerical cost of Monte Carlo simulation, it is desirable to have a well-
controlled analytical technique. In this light, dynamical mean-field theory (DMFT)
is quite useful. This method is based on the exact solution at infinite dimension,
d → ∞, which we introduced in Sect. 13.3.3. DMFT assumes that self-energy is
local: �i j (ω) = �i (ω)δi j , and provides a scheme to determine �i (ω) in a self-
consistent way. This assumption is justified only at d → ∞, but nevertheless, various
aspects of low-dimensional systems remain well described by DMFT [31].

DMFTwas applied to the CKLmodel in the study of colossal magneto-resistance
[40], accounting for the behavior of resistivity observed for Mn perovskites
[23, 38, 39]. (In this context, the model is often termed as double-exchange model.)

The disadvantage of DMFT lies in the technical difficulty in taking the spatial cor-
relations into account. At the cost of simplification, the off-site components of self-
energy are ignored in this scheme. This shortcoming can be serious, when it comes
to considering the spatial character of the system, such as geometrical frustration.
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To remedy this disadvantage, cluster extension of DMFT (CDMFT) is sometimes
adopted, in which not only the on-site component, �i i (ω), but all the components
of self-energy within a certain size of cluster are taken into account. In particu-
lar, by choosing fundamental unit of geometrical frustration, such as triangle and
tetrahedron, as a cluster, one can take account of the minimal effect of frustration
[41, 42].

Perturbation Expansion

In weakly interacting regimes, it is useful to consider perturbation expansion in terms
of J . For this purpose, we firstly fix the configuration of localized moments, {Si },
and then, expand the free energy, F , in terms of Hint in CKL Hamiltonian (13.1):

F − F0 = −T log
〈
Tτ exp

[
−

∫ β

0
dτHint(τ )

]〉

0
= F2 + F4 + · · · , (13.5)

where 〈· · · 〉0 means the thermal average in terms ofHkin in (13.1). Here, J nth order
term of the free energy is denoted as Fn . The odd-order terms are absent, under
the time-reversal symmetry, which we implicitly assumed. The remaining even-
order terms, Fn , are composed of the products of Sq1 , Sq2 , . . . Sqn , which satisfy
q1 + q2 + · · · qn = 0 (modulo reciprocal vectors).Here,Sq = 1

N

∑
i Si e

iq·ri (= S∗−q)

is the Fourier transform of the localized moments. To write down the first few terms,
we have

F2 = −J 2
∑

q

χ0(q)|Sq|2, (13.6)

F4 = −J 4
∑

q1+q2+q3+q4=0

[
Aq1q2,q3q4 (Sq1 · Sq2 )(Sq3 · Sq4 ) + Bq1q2,q3q4 (Sq1 × Sq2 ) · (Sq3 × Sq4 )

+ Cq1q2,q3q4

(
Sα
q1 S

β
q2 + Sβ

q1 S
α
q2 − 2

3
Sq1 · Sq2δαβ

)(
Sα
q3 S

β
q4 + Sβ

q3 S
α
q4 − 2

3
Sq3 · Sq4δαβ

)]
.

(13.7)

The coefficients: χ0(q), Aq1q2,q3q4 , Bq1q2,q3q4 and Cq1q2,q3q4 are expressed with the
multiple correlation functions of fermionic creation/annihilation operators evaluated
at J = 0. In particular, χ0(q) has a special meaning as a susceptibility for the for-
mation of spin density wave with wave number q. If J is small, the lowest order
term, F2, dominates in the expansion, (13.5). Consequently, the configuration of
localized moments, {Si }, which minimizes F2, or equivalently maximizes χ0(q),
will be realized as the most stable magnetic structure. We will discuss this point in
more detail, in Sect. 13.3.5.

Expressing F2 in a real-space basis, we obtain

F2 = −J 2
∑

i, j

χ0
i, jSi · S j . (13.8)
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This form is known as the Rudermann-Kittel-Kasuya-Yoshida (RKKY) interaction.
χ0
i, j = ∑

q e
−iq·(ri−r j )χ0(q) is the Fourier transform of the χ0(q), and it usually

decays algebraically, as∝ 1/|ri − r j |3 with oscillation, in three-dimensional normal
metallic systems. Interpreting F2 as an effective Hamiltonian, χi j serves as long-
ranged effective interaction between localized moments at the limit of small J .

13.3.5 Dual Property of Classical Kondo Lattice Model

The analysis of classical Kondo lattice model can be divided into two steps. At zero
temperature, first, one has to determine the magnetic structure, which minimizes the
energy of itinerant electrons. After that, one calculates electronic response, given the
optimized magnetic structure. This division is possible due to the static nature of the
localized moments. Any eigenstate of CKL model can be described as a direct prod-
uct of Slater determinant of itinerant electrons and one particular configuration of
localizedmoments. This is true only for “classical” Kondo lattice model. In the quan-
tum counterpart of the model, the eigenstates are superposition of direct products,
which disables treating magnetic part and electronic part separately.

This separability simplifies the analysis of the model, considerably. It also facili-
tates to set up phenomenology that connects theory and experiment. If the information
of magnetic structure can be obtained from different sources, such as neutron scat-
tering experiment, one can directly calculate the electronic response, by treating the
magnetic structure as an “input parameter”. This flexibility makes the CKL model
stands as a powerful phenomenological model.

Effective Interaction Between Localized Moments

Although it is difficult to determine magnetic structure by taking trace in (13.4), at
limiting cases, one can understand the optimized magnetic structure intuitively. At
the limit of J/t � 1 in (13.1), the spins of itinerant electrons are oriented parallel to
the localized moments at each site. Consequently, if the electron density is less than
half-filling (n < 1), the CKL Hamiltonian (13.1) can be rewritten as

Hck[J ] → HDE = −t
∑

〈i, j〉
(〈Si |S j 〉α†

i α j + H.c.), (13.9)

considering only the low-energy sector at ε ∼ −J + O(t). Here, |Si 〉 is the one-
particle eigenstate, which satisfies −Si · σ |Si 〉 = −|Si 〉, corresponding to the fixed
distribution of localized moments, {Si }. α†

i creates an electron in |Si 〉. This limiting
case: J/t � 1 is realized in e.g. Manganese oxides, where J is attributed to Hund’s
rule coupling as noted in Sect. 13.1.
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In this limit, the magnetic structure can be determined by minimizing the energy
〈HDE〉. This procedure can be easily carried out, if the electron density, n, is small. In
the dilute case, the energy, 〈HDE〉, is determined as 〈HDE〉 ∝ nεb, where εb is the low-
est one-particle eigenenergy of Hamiltonian, HDE. Accordingly, the minimization
of energy can be achieved by aligning all the magnetic moments ferromagnetically,
which gives 〈Si |S j 〉 = 1 in (13.9), leading to the lowest possible band bottom at
−zt , with the coordination number of lattice, z. Physically, this alignment of mag-
netic moments comes from the optimization of kinetic energy, and this mechanism
is called “double-exchange mechanism” (Fig. 13.2).

In the opposite limit of J/t � 1, a quite differentmechanismworks. In this region,
the perturbative treatment introduced in Sect. 13.3.4 works very well. According to
(13.8), the localizedmoments interact through the RKKY interaction, and the system
energy can be minimized by forming the magnetic structure, which maximizes the
susceptibility, χ0(q), as far as the lowest-order term, F2, is considered. χ0(q) is
particularly enhanced, if the wave vector, q = Q, connects the two points on Fermi
surface. In this case, the degeneracy of the two points, connected by the vector
Q, is lifted, leading to the formation of a local gap ∝ J |Sq|2 (Fig. 13.2), favoring
the formation of spin density wave with wave number Q [45]. In particular, if the
non-interacting band structure has nesting, i.e., a finite fraction of Fermi surface is
connected by a single wave vector, χ0(q) shows a singularity, signaling the strong
instability toward the magnetic ordering.

WhileF2 plays an important role inmagnetic ordering,χ0(q) does not solely give
sufficient information to determine the magnetic structure. The magnetic structure
cannot be uniquely determined fromwave vector, q. One can make various magnetic
patterns, using the three components of Sq. Furthermore, in most systems, due to the
point-group symmetry, χ0(q) takes the same value for a set of momenta, connected
by point-group operation. In this case, superpositions ofmagnetic density waves with
several q will give the same energy, as far as only F2 is considered.

To lift the degeneracy, one has to consider non-linear contributions. Some superpo-
sitions are automatically eliminated due to the fixedmagnitude for localizedmoment,
|Si | = 1. Moreover, the fourth-order term,F4 usually makes difference between the
degenerate magnetic structures. For example, as is clear from (13.7),F4 involves the
term ∝ Aq1−q1,q2−q2 |Sq1 |2|Sq2 |2. This term works to stabilize magnetic structure of
single wave number (multiple wave numbers) for Aq1−q1,q2−q2 > 0 (< 0), depending
on the details of a non-interacting band structure.

The superposition of magnetic density waves leads to the possibility of stabilizing
non-coplanar magnetic structures, where all the magnetic moments cannot be placed
in a plane. This non-coplanar magnetic ordering accompanies finite spin scalar chi-
rality, and leads to finite Hall response, as we discuss below. Regarding this magnetic
pattern, several theoretical analyses have shown the realization of integer Hall effect
[43–45], and the possibility of chiral spin liquid formation was also pointed out [46].
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Fig. 13.2 Mechanisms of magnetic ordering in classical Kondo lattice model. a At high temper-
ature, due to the thermally disordered spin configurations, itinerant electrons form a quite narrow
band with large damping. b As lowering temperatures, the localized spins show ferromagnetic
ordering for small n, which facilitates the electron motion, leading to the formation of a wide band.
The small number of electrons are populated around the band bottom, gaining large kinetic energy.
c If the electron density is tuned so that Fermi surface develops nesting, or large χ0(q), a magnetic
ordering characterized by the corresponding wave vector Q is stabilized. As regards, the system
gains energy by opening a gap at the Fermi level

Impact of Magnetic Structure on Itinerant Electrons

Once the magnetic structure is fixed, the localized moments affect the itinerant elec-
trons as a site-dependent magnetic field. Among the various effects on itinerant
electrons, particularly interesting is the influence on transport properties. If anoma-
lous correlation is developed among the localized moments, as in spin ice, it gives
peculiar scattering effects on itinerant electrons. An another interesting effect comes
from the geometrical phase the localized moments impose on the electronic wave
function. At the strong coupling limit (J � t), the electron spins perfectly follow
the directions of localized moments at each sites, as described by the strong coupling
Hamiltonian (13.9). To describe the effect, assuming the spatial variation of mag-
netic structure is slow enough,we switch to the continuumpicture:Si → S(R). Then,
along the motion from Ri → R f , the electron wave function acquires an additional
phase, called Berry phase:

|ψ〉 → exp
[
−i

R f∫

Ri

A(R) · dR
]
|ψ〉, A(R) = −i〈S(R)|∇|S(R)〉. (13.10)

This expression is interesting in that the magnetic structure S(R) seems to produce
effective vector potential, A(R). In fact, the non-coplanar magnetic structure gives
rise to a non-vanishing effective “magnetic field”.
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Fig. 13.3 a Antiferromagnetic spin configuration. Starting from the left figure, (middle) time-
reversal, followed by (right) translation with one lattice space maps the spin state into the original
configuration. bAn example of spin triplets forming a non-coplanar configuration, spanning a finite
spin scalar chirality

In fact, this fictitious magnetic field works as real magnetic field, and gives rise
to Aharonov Bohm effect for itinerant electrons. Especially well studied transport
quantity in this context is the Hall conductivity [50–52]. In the conventional theory of
metal, Hall conductivity, σxy is proportional to magnetic field. In the 60s, the concept
of anomalous Hall effect was proposed, in which σxy is proportional tomagnetization
[47–49]. These conventional theories expect that σxy should behave as a monotonic
function of magnetic field. However, in contrast to them, the coupling to background
magnetic structure leads to fertile behaviors of Hall response.

Then, which type of magnetic structure leads to finite Hall response? We would
like to start with a simple criterion to identify the magnetic structure which does not
contribute to finiteHall conductivity. To start with, theHall conductivity σxy connects
electric current J and electric field E, as Jx = σxy Ey . Under time-reversal operation,
these quantities transform like Jx → −Jx and Ey → Ey . As to the Hall conductivity
itself, if time-reversal symmetry is preserved for a system, any observables should
not change under this operation, hence σxy → σxy . This means that σxy has to be
identically zero, if time-reversal symmetry is preserved.

In fact, more strict condition has to be satisfied to obtain finite Hall conductivity. If
time-reversal+ finite spatial translation maps the system into itself, the Hall conduc-
tivity will be absent. This is almost obvious, since a slight translation never changes
macroscopic response of the system. This extended criterion is, however, quite use-
ful to judge whether the Hall conductivity is finite or not, given a certain magnetic
structure. For example, in the antiferromagnet on square lattice, obviously time-
reversal + translation by one lattice space maps the system into itself (Fig. 13.3a).
Consequently, the Hall conductivity must be zero.

To check with this criterion, a convenient quantity is the spin scalar chirality,
S1 · (S2 × S3), defined for spin triplet, (S1,S2,S3) (Fig. 13.3b). This quantity takes
finite value for non-coplanar magnetic ordering, and reverses its sign under time-
reversal operation. This means that the uniform ordering of spin scalar chirality
guarantees that a system avoids the “no-go theorem”. In fact, finite Hall response
has been reported for magnetic structure with uniformly ordered spin scalar chirality
[43, 44].
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Given that this no-go theorem does not hold for a certain magnetic structure, how
can one evaluate the Hall conductivity quantitatively? The Hall conductivity can be
obtained through the Kubo formula,

σxy = i

N

∑

m,m ′

f (Em ′) − f (Em)

Em − Em ′

〈m|Jx |m ′〉〈m ′|Jy|m〉
Em − Em ′ + i

τ

. (13.11)

|m〉 and Em are the mth one-particle eigenstate and corresponding eigenenergy of
the Hamiltonian (13.1) (with fixed spin configuration), Jν is the current operator
in ν direction, and 1/τ is a phenomenologically introduced damping rate due to
non-magnetic impurities.

If the magnetic structure has a periodic spatial pattern, the formula (13.11) can
be rewritten as an integral of Berry curvature, Bz(k) over the Brillouin zone. At zero
temperature,

σxy = e2

h

1

N

∑

k

Bz(k), B(k) =
∑

n∈occ
∇k × 1

i
〈ψ(n)

k |∇k |ψ(n)
k 〉, (13.12)

where the |ψ(n)
k 〉 is the one-particle electron wave function with momentum, k, in the

nth band. ∇k is the gradient in the momentum space, and
∑

n∈occ is the summation
over the occupied bands. B(k) is called Berry curvature, and its structure determines
the Hall conductivity as a function of electron density. In particular, this expression
shows that if the system is insulating, i.e., the chemical potential is within a gap, the
Hall conductivity is quantized to be the integer multiple of e2/h.

If the magnetic structure does not have a periodic pattern, the analysis of σxy will
be more involved. However, in the perturbative regime as to J/t and Jτ , one can
expand the equation (13.11), and the Hall conductivity can be written as a weighted
summation of spin scalar chirality [53]:

σxy =
∑

(i, j,k)

gi jk(Si × S j ) · Sk . (13.13)

Here, the summation is taken over any triplets of spins, as shown in Fig. 13.4. The
weight gi jk is anti-symmetric with respect to the site indices, i, j, and k, and decays
as site i, j and k are separated. The formula (13.13) means that third-order scattering
process contributes to finite Hall response at the lowest order. This comes from the
fact that itinerant electrons acquire different phases between two scattering processes:
i → j → k and i → k → j . This is a remnant of Berry phase effect introduced in
(13.10): the magnetic structure imposes a path-dependent phase on the electron wave
function, leading to Aharonov-Bohm effect. This picture holds even in the weakly
interacting regime, and leads to finite Hall response.

This picture naturally explains the τ dependence of the coefficients, gi jk : if tτ
is small, only the nearby spin triplets contribute to σxy , (e.g. triplets with m = 3,
compared withm = 9 in Fig. 13.4b). For the phase difference between paths to make
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Fig. 13.4 The crossover of Hall conductivity from real-space picture to the momentum-space
picture on the basis of the kagome ice model. One of the a uniformly ordered and b disordered
spin configuration on a kagome lattice. The spins take non-coplanar configurations, as shown at
the bottom of (b). The closed graphs used in the expansion (13.13) are depicted in (b) for the total
path lengths of m = 3 and 9. c The J dependence of Hall conductivity, obtained by applying Kubo
formula (13.11) to the Kagome ice model for the system size: 32 × 32 unit cells at n ∼ 0.1, both for
the a uniform and b disordered configurations. For the disordered case, sample average is taken for
100 configurations. In the disordered case, for Jτ � 1, σxy scales as σxy ∝ J 3, while converges
to a constant value for J � t . Meanwhile in the uniform case, σxy ∝ J 3 for Jτ � 1, σxy ∝ J for
1
τ

� J � t , and σxy ∼ Const. for J � t . Figures adapted from [64] with permission from the
American Physical Society

sense, an electron has to keep its phase without being scattered by nonmagnetic
impurities, during the third-order scattering.

In Fig. 13.4c, we plot σxy obtained from the general Kubo formula (13.11) for
the ordered (Fig. 13.4a) and disordered (Fig. 13.4b) non-coplanar configurations of
magnetic moments [64]. For both configurations, σxy ∝ J 3 is obtained for small J .
This scaling breaks down at Jτ ∼ 1 or J/t ∼ 1, and in particular, for ordered config-
urations, σxy ∝ J is obtained for 1

τ
� J � t [54, 64], indicating σxy is described by

the momentum space picture, (13.12). For J � t , σxy takes almost a constant value,
where the system is described by strong-coupling effective Hamiltonian, HDE.

13.4 Itinerant Spin Ice

Equipped with the basic knowledge we have introduced so far, now, we would like to
tackle on the itinerant spin ice. This setting is actually realized in pyrochlore oxides,
Pr2Ir2O7. Also the signature of 2-in 2-out type spin ice correlation is observed at
high temperature region of Nd2Ir2O7. We would like to start with a brief summary of
experimental results of these compounds. For detailed introduction of thesematerials,
and more generally, a family of compounds, Ln2Ir2O7 (Ln =rare earth), See the
Chap.14.

http://dx.doi.org/10.1007/978-3-030-70860-3_14


13 Novel Electronic Phases of Matter: Coupling to Itinerant Electrons 377

Pr

IrIr

i

j
i5

j i6

ji1

j i4

j i2 j i3

Fig. 13.5 a The crystal structure of Ln2Ir2O7 (Ln = rare earth), which includes Pr2Ir2O7 as one of
themembers. The green balls are Ln ions, while the blue objects stand for the IrO6 octahedra. If only
the Ir ions are connected, it gives a pyrochlore lattice. Similarly,Ln ions constitute another pyrochlore
network, i.e., Ln2Ir2O7 is composed of two interpenetrating pyrochlore lattices. Localizedmagnetic
moments exist on the Ln pyrochlore network, except for Ln = Eu and Sm. b Relative configuration
of Ln and Ir ions. One Ir ion (located at site i) is surrounded by six Ln ions (at ji1 · · · ji6), and vice
versa

13.4.1 Brief Summary of Experiments

The crystal structure of Pr2Ir2O7 is shown in Fig. 13.5. This compound is a member
of a more general class of materials, Ln2Ir2O7. In this compound, Ir ions and Pr ions
constitute pyrochlore networks separately, and the two pyrochlore lattices interpen-
etrate with each other. Each Ir (Pr) ion is located in the center of hexagonal ring of
Pr (Ir) pyrochlore lattice, and is surrounded by six Pr (Ir) ions, respectively.

As to the electronic state of this compound, the 5d orbitals of Ir ions form a con-
duction band, according to the first-principle calculation [55, 56]. These calculations
also shows that only a small number of carriers exist in this system, which is esti-
mated to be less than 2% of total number of Pr ions, consistent with the observed
value of the normal component of the Hall coefficient. Furthermore, it was recently
proposed by photoemission spectroscopymeasurement that the Fermi level is located
at quadratic band touching point [57].

On the other hand, the electrons originated from the f-orbitals of Pr ions are
well localized. A well-defined magnetic moment of 3.0 Bohr magneton exists in Pr
sites. The local ground state levels are formed by the non-Kramers Ising doublet
with dominant components of total angular momentum J = 4 [58]. The easy axes
of Ising moments are parallel to the direction connecting the centers of neighboring
tetrahedra, which is an important prerequisite for the formation of spin ice.

Inelastic neutron scattering also gives information on local excited levels. For Pr
ions, the first excited states are separated by 160K from the lowest level. This level
splitting is larger, compared with the energy scale of interaction between magnetic
moments, which is estimated to be ∼20K, from Curie-Weiss temperature. So, the
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H = [100] H = [111] H = [110]

B = [111]

Fig. 13.6 a The temperature dependence of electrical resistivity of Pr2Ir2O7. The inset shows
the magneto-resistivity for three field directions, [100], [110], and [111]. b The specific heat c
The magnetic susceptibility, and dMagnetization process for the three field directions. The relative
relations between the field directions and orientation of tetrahedra are schematically shown. Figures
reprinted from [7] with permission from the American Physical Society

local excited states can be safely neglected and Prmagneticmoment is well described
as a classical two-component Ising spin.

Actually, the strong Ising anisotropy of magnetic moments can be confirmed
also in the magnetization process. Magnetization curve is strongly dependent on the
field direction. In particular, at high magnetic fields, the magnetization approaches
different saturation values depending on the field directions. For example, ifmagnetic
field is applied in the [111] direction, the magnetization approaches the half of full
moment for large magnetic field, as shown with the blue horizontal line in Fig. 13.6d,
as is expected from the strong easy-axis anisotropy. For other field directions, the
magnetizations approach the saturation values expected for Ising limit at each field
directions. In other words, these data provide the firm evidence that Pr magnetic
moments behave as Ising moments with strong anisotropy.

However, do these Ising moments truly lead to the formation of spin ice? Sig-
natures of spin ice formation can be seen in the thermodynamic behavior of this
compound. Firstly, as shown in Fig. 13.6c, the magnetic susceptibility, χ is well
fitted with Curie-Weiss law at high temperature region, with Curie-Weiss temper-
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ature, θCW ∼ −20K. However, as decreasing temperature, χ shows no singularity
much below the temperature scale given by |θCW|. χ only shows slight bifurcation
at 0.12K, implying the freezing. The absence of phase transition is also obvious in
specific heat,C (Fig. 13.6b), for which themeasurement was recently extended down
to 0.3K, however, C shows no singularity down to this lowest temperature [59].

The close inspection of these quantities reveals several evidence in support of the
development of spin ice correlation. As shown in Fig. 13.6b,C/T becomes enhanced
as decreasing temperature, showing C ∝ √

T behavior. This enhancement suggests
that a large amount of entropy remains unreleased at low temperatures implying the
spin ice degeneracy. Moreover, χ does not show any saturation at low temperatures,
as well as it shows no divergence. As decreasing temperature, χ simply continues to
go up, suggesting that the system remains a cooperative paramagnet. These features
give indirect, but rather convincing evidence that spin-ice-like states are realized at
low temperature regions.

Then, how does the enhanced spin ice correlation affect the transport properties
of this system? In this compound, several unusual transport phenomena have been
reported. The first is resistivity minimum. As shown in Fig. 13.6a, the resistivity
shows quite non-monotonic behavior in this compound, takingminimumaround 40K
and shows upturn below that temperature. At low temperatures, negative magneto-
resistivity is also observed. What brings about this resistivity minimum?

One of the well-known mechanism which causes resistivity minimum, is Kondo
effect [60]. As lowering temperature, itinerant electrons and a magnetic impurity
tend to form a spin singlet, which leads to stronger scattering effects, resulting in
a resistivity upturn. In addition to the resistivity minimum, however, Kondo effect
gives rise to several characteristic features in thermodynamic quantities, which seem
to contradict the experimental data of Pr2Ir2O7. As to specific heat, if Kondo effect
happened, there would be a peak around the temperature of the resistivity minimum,
since the entropy release due to spin-singlet formation should leave a signature in
the specific heat. However, in Pr2Ir2O7, there is no feature in specific heat around
the temperature of resistivity minimum, 40K. There is a peak around 2K, but this
temperature is too low, comparedwith 40K. Secondly,magnetic susceptibility should
saturate and takes a finite value at low temperatures, if Kondo effect takes place.
However, there is no saturation, and the susceptibility continues to increase much
below the temperature of resistivityminimum.This also contradicts the typicalKondo
behavior. Considering these discrepancies, Kondo effect seems quite unlikely as an
origin of the resistivity minimum.

Another transport quantity, which shows anomalous behavior, is the Hall con-
ductivity. In conventional theory of metallic transport, the Hall conductivity should
behave as amonotonic functionofmagneticfield, as noted inSect. 13.3.5. InPr2Ir2O7,
however, the Hall conductivity is anisotropic, and shows highly non-monotonic
behavior (Fig. 13.7a). Obviously, this Hall conductivity cannot be explained by con-
ventional mechanisms.

The most striking phenomenon observed in this system is the spontaneous Hall
effect. In order to obtain finite Hall signal, one usually needs to apply a magnetic
field, or the system needs to develop finitemagnetization. To be precise, time-reversal
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Fig. 13.7 a Magnetic field dependence of Hall conductivity, σxy , of Pr2Ir2O7 for [100], [110],
and [111] field directions, reprinted from [8] with permission from the American Physical Society.
b The T dependence of Hall conductivity, σH is shown. (Upper) σH is plotted, together with the
magnetic susceptibility, χ for field cooling and zero field cooling condition for B ‖ [111] at 0.05T.
(Lower) σH and magnetization M are plotted at zero magnetic field, which are obtained by setting
the system at 7T for B ‖ [111] at first, and by removing the field. In the shaded region, even after
removing the magnetic field, σH shows finite value, while M drops to zero, i.e. the spontaneous
Hall effect is observed. Figure adapted from [9] with permission from Nature

symmetry must be broken as a prerequisite for the finite Hall response, as we noted
in Sect. 13.3.5. And, in most cases, external magnetic field or magnetization are
responsible for broken time-reversal symmetry.

However, this compound exhibits finite Hall signal at zero magnetic field, even in
the absence of magnetization [9]. To describe the experimental setting more clearly,
suppose the system is placed in the magnetic field of 7T, in the first place. Then you
decrease magnetic field gradually to zero, and for this temperature range, from 0.3
to 2.0K, Hall conductivity shows hysteresis, and exhibits finite value even at zero
magnetic field, meanwhile the magnetization behaves continuously, and drops to
zero at vanishingmagnetic field (Fig. 13.7b). So, in this temperature range, even after
the magnetic field is removed, the system remains time-reversal broken, however,
without net magnetization. What is the hidden origin, which breaks the time-reversal
symmetry?
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D A

CB

Fig. 13.8 a A pyrochlore lattice shown with sublattice-dependent easy axes, dα (α = A,B,C,D).
Schematic picture of 4- and 16-site clusters used inCDMFTare also shown.bThe double pyrochlore
lattice. On gold tetrahedra, localized moments reside, as shown with arrows, meanwhile itinerant
electrons are defined on the green tetrahedra. c A tetrahedron for itinerant electrons, surrounded by
a quartet of tetrahedra for localized moments. A site on one tetrahedron is surrounded by six sites
on the other tetrahedra, as shown with thick red hexagon

13.4.2 Theoretical Formulation with Classical Kondo Lattice
Model

The Ising Kondo lattice model provides a good starting point to account for the
thermodynamic and transport properties of Pr2Ir2O7. Here, we introduce a series of
theoretical works to address this system from this viewpoint. This is a variant of
classical Kondo lattice model introduced in equation (13.1), which we write in a
generalized form:

H = −t
∑

〈i, j〉,s
(c†isc js + H.c.) − ∑

i,s,s ′
c†isσ ss ′cis ′ · hi . (13.14)

Here, hi means the effective field coupled to itinerant electrons at site i , originating
from the localized moments, {S j }.

We consider this Hamiltonian on two types of lattices shown in Fig. 13.8. One is
the pyrochlore lattice (Fig. 13.8a), and we take hi = JSi , i.e., electrons couple to the
localized moments at the same site. To reflect the strong Ising nature of Pr moments,
we set Si = ηidα (ηi = ±1, α =A, B, C, D), assuming that Si is an Ising moment
with anisotropy axis, dα , with i , belonging to the sublattice α (Fig. 13.8a).

Alternatively, we can define the Hamiltonian on “double pyrochlore lattices”,
faithful to the crystal structure of Pr2Ir2O7 (Fig. 13.8b). In this case, we distinguish
the two pyrochlore lattices which itinerant electrons and localized moments belong
to, respectively. As the effective field, hi , we most naturally adopt the form: hi =
J

∑
k∈n.n.of i Sk , i.e. the sum of six surrounding sites of site i (Fig. 13.8c). For this

choice, we also set Sk = ηkdα (ηk = ±1), to assume that Sk is an Ising moment with
[111] easy axes.

This model has been studied with various methods we have introduced in this
chapter [61, 64, 65, 78]. Among them, CDMFT provided a coherent description
of the phase diagram, thermodynamic and transport quantities. In this problem, in
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particular, amapping to 4- and16-site clusterswas used to obtain reliable information,
as well as check the cluster-size dependence of the obtained results [61, 65].

As to the determination of magnetic ordering patterns, however, CDMFT has
its own limitation due to the tractable cluster size. For this problem, Monte Carlo
simulation has given more reliable results. While CDMFT can treat up to 16-site
magnetic unit cell, the Monte Carlo method enables to analyze ordering structure
with longer period. In fact, existence of up-to-32-site magnetic order was identified
for this model [78], as we introduce later.

Accurate description of Hall conductivity requires an analysis of a larger-size
system, even comparedwith themaximal size one can treatwithMonteCarlomethod.
Due to this size limitation, the perturbative method was adopted, combined with the
effective spin model for localized moments. In this scheme, spin scalar chirality
distribution was sampled with Monte Carlo simulation for effective classical spin
model, and the obtained information is used as an input to the formula (13.13) to
obtain Hall conductivity [64].

13.4.3 Comparison with Experiments

In this section, we aim at explaining the experimental data of Pr2Ir2O7 in a unified
way, starting from the Hamiltonian (13.14), mainly on the basis of CDMFT.

Phase Diagram

To start with, we show the phase diagram, in terms of J and n, obtained by CDMFT,
in Fig. 13.9. Here, we plot the transition temperatures to ordered states. In the dilute
region, theq = 0 ordering of 2-in 2-out tetrahedra takes place, while in higher density
region, n ∼ 0.5, the all-in all-out tetrahedra make the q = 0 order. In the interme-
diate density region, we cannot find any ordering down to low temperature 0.001 t
in CDMFT. The absence of ordering is partly due to the limitation of cluster size
available in CDMFT, i.e., only the magnetic order accommodated in the adopted size
of cluster can be tractable. The stability of the above two phases were, however, also
confirmed by extensive Monte Carlo simulation, in similar regions of J and n [66].
TheMonte Carlo analysis revealed twomore phases, the q = [0, 0, 2π ] order of 2-in
2-out tetrahedra, which is the same ordering pattern as that found for the dipolar spin
ice model [67], and a 32-site magnetic order, in the intermediate density, where no
order was obtained by CDMFT. These two phases have too large magnetic unit cells
to be treated in CDMFT, in which up to 16-site cluster was examined.

How can we understand the structure of this phase diagram? For this purpose, the
three energy scales: transition temperature (Tc), Curie-Weiss temperature (TCW), and
the nearest-neighbor (n.n.) component of RKKY interaction (JRKKY), are compared
at each particle density, in Fig. 13.9b. Let us first discuss the behavior of TCW, which
is obtained by fitting the inverse of magnetic susceptibility as χ−1 = 1

C (T − TCW)
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Fig. 13.9 a The transition temperature in terms of electron density (n) and the exchange coupling
(J ). The thin dashed lines show the phase boundaries at T = 0. The gray area means the region
where phase separation takes place. b n dependences of the nearest-neighbor component of RKKY
interaction (JRKKY), Curie-Weiss temperature (TCW), and Tc obtained at J = 2. Tc is plotted above
(below) the horizontal line at 0.00 for two-in two-out (all-in/all-out) order. Figures reprinted from
[61] with permission from the American Physical Society

at 0.5 < T/t < 1.0. As is clear from this plot, TCW has small correlation with Tc.
In particular, at higher density region, while TCW is nearly equal to zero, or even
slightly positive, the magnetic order has antiferromagnetic tendency (all-in/all-out,
in this case). This discrepancy may be attributed to the long-range nature of RKKY
interaction: TCW is determined by summing up all the long-range components of the
RKKY interaction, however, the sign of n.n. interaction is dominant in the determi-
nation of ordering patterns.

In fact, JRKKY shows a good correlation with Tc, as is shown in Fig. 13.9b. JRKKY
is estimated from the non-interacting band structure (at J = 0). It is ferromagnetic
(antiferromagnetic) in the low (high) density region, well consistent with the order-
ing pattern. The sign of JRKKY can be understood from the relation of χ0(q) and the
shape of Fermi surface, mentioned in Sect. 13.5. χ0(q), as a function of wave vector,
q, shows strong enhancement, if q transverses the Fermi surface. Accordingly, in the
small density region, χ0(q) takes large value at smaller |q|, which transverses small
Fermi surface, i.e. the RKKY interaction is nearly ferromagnetic. As a result, the 2-in
2-out order is favored in this region. Similar result is obtained by the analysis assum-
ing spherical Fermi surface [68]. Meanwhile, as the particle density is increased, the
Fermi volume increases. This leads to the enhancement ofχ0(q) at large |q|, resulting
in antiferromagnetic tendency in RKKY interaction, which stabilizes all-in/all-out
type order.

Suppression of Magnetic Order

The remarkable feature of this phase diagram is the asymmetry of transition temper-
atures. For all-in/all-out ordering, the transition takes place around T ∼ 0.1t . Mean-
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while for 2-in 2-out ordering, the Tc is ∼ 0.01t , one order of magnitude smaller. In
the first place, this asymmetry of the transition temperatures is ascribed to the stabil-
ity of high-temperature paramagnetic phase. For small n, the 2-in 2-out correlation
already starts growing at high temperature, accompanying a huge degeneracy. As a
result, the associated large entropy stabilizes the paramagnetic phase, leading to the
suppression of the transition temperature.

The second reason is a somewhat unexpected protection mechanism of spin ice
against the short-rangedperturbation.Atfirst sight, themassive degeneracyof spin ice
implies extreme fragility against external perturbations. However, it is well known
that the mechanism called “projective equivalence” protects spin ice from long-
ranged dipolar interaction in Ho2Ti2O7 and Dy2Ti2O7 [69]. Surprisingly, it turns out
that spin ice is similarly protected from short-ranged perturbations [62].

For small J , the localized moments interact with each other, through the RKKY
interaction, and its effective Hamiltonian may be written as

Heff [J1, J2, J3] = J̃1
∑

n.n.

Si · S j + J̃2
∑

2nd.

Si · S j + J̃3
∑

3rd.

Si · S j

= J1
∑

n.n.

ηiη j + J2
∑

2nd.

ηiη j + J3
∑

3rd.

ηiη j , (13.15)

with truncating the long-ranged exchange couplings further than 3rd neighbors.
Actually, this effective Hamiltonian rather faithfully reproduces the phase diagram
obtained with Monte Carlo simulation fully taking account of the effect of itinerant
electrons [62].

This form of Hamiltonian, surprisingly, turns out to preserve the spin ice state as
the ground state, even in the presence of 2nd- (J2) and 3rd-neighbor (J3) exchanging
couplings, if J2 = J3 ≡ J ′ is satisfied, in an analogousway to projective equivalence,
as detailed in Chap. 3. This stability can be proved [62] by rewriting the Hamiltonian
(13.15) in the charge representation [89], or by noting that the exchange matrix of
H [J, J ′, J ′] can be expressed as a polynomial of the nearest-neighbor Hamiltonian,
H [J, 0, 0]:H [1, J ′, J ′] = J ′

2 (H [1, 0, 0])2 + (1 − 2J ′)H [1, 0, 0] − 3N J ′. This
polynomial expression shows that the 2nd- and 3rd-neighbor perturbations are essen-
tially proportional to (H [1, 0, 0])2, which can be minimized simultaneously with
the nearest-neighborHamiltonian,H [1, 0, 0], by assuming the spin ice ground state,
for moderately small J ′. In other words, the relevant perturbation to spin ice is given
by the energy scale, |J2 − J3|, which might be smaller than J2 or J3 themselves.
This fact may underlie the stability of spin-ice-like state in Pr2Ir2O7, as well as the
canonical spin ice, Ho(Dy)2Ti2O7.

The combination of two reasons suppress the transition temperature at lowdensity,
and makes this region quite interesting. In Fig. 13.10b, we show the fraction of 2-in
2-out tetrahedra at J = 1.0 and n = 0.05. At this density, ordering does not happen
down to temperature equal to 0.001t. Nevertheless, 2-in 2-out short-range correlation
starts to develop at some higher temperature, and the fraction of 2-in 2-out tetrahedra
reaches almost 100%, close to absolute zero, even in the absence of long-range

http://dx.doi.org/10.1007/978-3-030-70860-3_3
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Fig. 13.10 a Temperature dependences of resistivity ρ, the rate of 2-in 2-out configuration, spe-
cific heat, and magnetic susceptibility, from top to bottom. The data are obtained at n = 0.05 by
CDMFT with 4-site cluster. ρ is measured in unit of h/8πe2, where h is the Planck constant
and e is the elementary electronic charge. For comparison, the data for J = 0.7 and 0.4 are mul-
tiplied by 1.8 and 5.0, respectively. In the plot of χ , the Curie-Weiss fitting χCW and “Kondo”
susceptibility χK are shown for comparison. The inset of the bottom figure shows the plot of χ

and χ−1 in the linear T scale. Figures reprinted from [61] with permission from the American
Physical Society. b The temperature dependence of the rate of 2-in 2-out, 3-in 1-out/1-in 3-out
and all-in/all-out configurations at n = 0.05 and J = 1.0. Figure reprinted from [61] with permis-
sion from the American Physical Society. c The magneto-resistivity scaled at its zero-field value,
ρ̄(H) = ρ(H)/ρ(H = 0) = 1 − AM2 + · · · . The inset shows the temperature dependence of the
quadratic coefficient, A. Figure reprinted from [65] with permission fromWorld Scientific Publish-
ing Co

ordering. So, in this broad temperature range, conduction electrons interact with
enhanced spin ice correlation.

Resistivity Minimum

The growing spin ice correlation evidently affects the transport properties of the sys-
tem. In Fig. 13.10a, we show the temperature dependence of resistivity, together with
several thermodynamic quantities. Resistivity goes down from high temperature as
in normal metals, and takes a minimum at T = T ∗ ∼ 0.1t , with successive upturn
towards lower temperatures. Roughly speaking, the resistivity takesminimumaround
the temperature where the 2-in 2-out short-range correlation starts to develop, i.e. the
enhanced spin correlation acts as a rather stronger scatterers for electrons, resulting in
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resistivity upturn at low temperatures. The relation between the resistivity minimum
and the enhanced spin ice correlation is also discussed in the context of its cousin
compound, Nd2Ir2O7 [70]. Accordingly, the magneto-resistivity becomes negative,
insensitive to the magnetic field direction, as shown in Fig. 13.10c. This behavior is
reasonable, since the magnetic field aligns 2-in 2-out tetrahedra, and reduces scat-
tering. In fact, the normalized resistivity, ρ̄ ≡ ρ(H)/ρ0, scaled with the zero-field
resistivity at each temperature, ρ0, can bewell fittedwith the square ofmagnetization,
as ρ̄ = 1 − A(T )M2, and its coefficient A(T ) shows uprise around T = T ∗ ∼ 0.1t ,
below which the resistivity shows upturn, together with the enhancement of spin ice
correlation.

While the growing spin ice correlation leads to the resistivity minimum, as dis-
cussed above, how is this scenario compatible with other thermodynamic quantities?
As regards the Kondo effect, we found obvious discrepancies with experimental data
as noted in Sect. 13.4.1: one is that the peak of specific heat is located at much lower
temperature compared with resistivity minimum, and the other one is a diverging
magnetic susceptibility.

Firstly, as to specific heat, we actually obtain the peak at much lower temperature
than resistivity minimum, as shown in Fig. 13.10a. While the resistivity takes min-
imum around the temperature where the spin ice correlation starts to develop, the
specific heat shows a peak when the spin ice correlation saturates. Or more precisely,
where the weight of 2-in 2-out tetrahedra has an inflection point, in the sense that
entropy release is maximized at this point. These two energy scales: starting point
and saturation of spin ice correlation can be considerably different.Moreover, in con-
trast to the Kondo-like susceptibility, TK, the obtained magnetic susceptibility shows
diverging behavior, consistent with experiment (Fig. 13.10a). This behavior can also
be understood by considering that spin ice is a sort of cooperative paramagnet.

Hall Response

At low temperatures, the enhanced spin ice correlation affects the Hall response,
considerably. Roughly speaking, we have two main problems as to the Hall response
in Pr2Ir2O7. Firstly, how can one account for the anisotropic and non-monotonic
magnetic field dependence of Hall conductivity? And secondly, what is the origin of
spontaneous Hall effect?

Regarding the first question, the conventional theories obviously cannot account
for the non-monotonicity ofHall conductivity, as is noted inSect. 13.4.1.Onepossible
mechanism is the effect of spin scalar chirality discussed in Sect. 13.3.5. In particular,
the spin ice forms a non-trivial spin scalar chirality distribution, due to its site-
dependent anisotropy axes, which may affect the motion of itinerant electrons, and
bring about nontrivial Hall response.

To describe the effect of spin scalar chirality on the Hall conductivity, one has
to describe the direction of local field, hi in the Hamiltonian (13.14), precisely.
Accordingly, we consider the double pyrochlore lattice instead of the single one,
faithful to the crystal structure of Pr2Ir2O7. Another crucial point is that the spatial
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distribution of spin scalar chirality has to be taken into account accurately. For this
purpose, we give up CDMFT due to its inadequacy to consider spatial correlation,
and adopt a phenomenological analysis based on the effective spin model. Firstly,
considering the spin ice correlation is sufficiently developed at low temperatures, we
adopt the effective nearest-neighbor spinHamiltonianHeff [Jspin, 0, 0] in (13.15), and
generate the spin configuration by classical Monte Carlo simulation by introducing
a phenomenological temperature, Teff , which describes the partial violation of spin
ice state due to the long-range component of RKKY interaction. Then, we couple
the generated spin configuration to itinerant electrons, by inserting it into the local
field, hi , in the Ising Kondo lattice Hamiltonian (13.14). For the calculation of Hall
conductivity σH, the small exchange coupling in Pr2Ir2O7, inherent in rare-earth
systems, allow us to use the third-order perturbation formula given in (13.13), for a
large-size system. This strategy is based on the separability of classical Kondo lattice
model, which is useful to construct a phenomenological model by extracting the
information of localizedmoments from reliable sources, as introduced in Sect. 13.3.5.

The result is plotted in Fig. 13.11b. Here, we consider only [100] and [111]
field directions. For [110] direction, our phenomenological nearest-neighbor spin
ice model does not work, since the semi-macroscopic degeneracy remains in the
ground state, and further perturbation plays an important role in the ground state
selection (see Chap.5). However, for the other two directions, the calculation seems
to reproduce the experiential result, Fig. 13.7a, quite well.

Firstly, for small magnetic field, σH has the same value irrespectively of the field
direction. This should be attributed to the cubic symmetry of the system. If magnetic
field is small enough to be within the linear response region, the Hall response should
be isotropic, reflecting the cubic symmetry.

Secondly, at high magnetic field, σH takes different signs between H ‖ [100] and
[111]. This sign reversal may be understood by assuming that only the spin scalar
chirality defined for the smallest triangles contributes [8].

And thirdly, a conspicuous peak in the intermediate field range appears for [111]
field. In fact, the [111] magnetic field provides a fertile research field for canonical
spin ice, as discussed in detail in Chap.5. Summarizing the main points here, as
increasingmagnetic field in [111] direction, firstly the spin ice state shows a crossover
to the so-called kagome ice state, inwhich the spins on the triangular plane are aligned
in the field direction, while letting the other spins on the kagome plane follow the
ice rule [71]. This state persists for finite magnetic field regions, making the kagome
ice plateau for Dy2Ti2O7. Then as increasing the magnetic field further, the kagome
ice state eventually surrenders to spin flip, and the fully polarized 3-in 1-out/1-in
3-out state takes over. These characteristic changes of spin state may affect the Hall
response.

To make the connection between σH and these spin ice physics, the ratio of 2-in
2-out (P22) and 3-in 1-out/1-in 3-out tetrahedra (P31) , and the fraction of upward
spins on the triangular plane (Ptriangle) are plotted in Fig. 13.11c. As is evident from
the figure, the peak of σH corresponds to saturation of Ptriangle, which is an indicator
of the spin-ice to kagome-ice crossover. In contrast, the sign reversal of σH roughly
corresponds to the interchange of P22 and P31, showing that the reversal can be

http://dx.doi.org/10.1007/978-3-030-70860-3_5
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Fig. 13.11 a The magnetization curves for T = 0.02, 0.01 and 0.004 from bottom to top, obtained
by CDMFT for the Hamiltonian (13.14), reprinted from [65] with permission fromWorld Scientific
Publishing Co. b, c The magnetic field dependence of Hall conductivity for H ‖ [100] and [111],
obtained by phenomenological analysis (see themain text). c Shows the Hall conductivity in a wider
field range, together with the rate of 2-in 2-out (P22) and 3-in 1-out/1-in 3-out tetrahedra (P31), and
the fraction of upward spins on the triangular plane (Ptriangle). Depending on the behavior of these
quantities, the field range can be divided into three regions, as colored differently. d Schematic
figures of (upper) the spin flip crossover from 2-in 2-out dominant state to 3-in 1-out/1-in 3-out
state, and (lower) the spin ice to kagome ice crossover. Figures reprinted from [64] with permission
from the American Physical Society

ascribed to the spin flip crossover to the saturated state (Fig. 13.11d). We note that
this peak cannot be obtained in the analysis taking account only of the smallest
triangles [64]. The spin scalar chirality from spatially extended spin triplets play a
relevant role [64].

The relation of the peak and the spin ice to kagome ice crossover is rather surpris-
ing. The experimental magnetization curve (Fig. 14.16) is rather smooth, with only a
kink-like weak singularity, in contrast to Dy2Ti2O7, and this behavior is also repro-
duced theoretically by CDMFT (Fig. 13.11a). Nevertheless this result implies that
the existence of peak in σH means substantial kagome ice correlation is developed at

http://dx.doi.org/10.1007/978-3-030-70860-3_14
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the intermediate field range beyond the peak. It is desired to check this kagome ice
correlation through a different experimental probe, such as neutron scattering.

Spontaneous Hall Effect

Another mystery concerning the Hall response, namely the spontaneous Hall effect,
has stimulated many theorists and several proposals have been made as to its origin.
Roughly speaking, these theories canbedivided into twogroups. Somepeople ascribe
this phenomenon to the magnetic structure formed by Pr moments, while others seek
the origin in the anomalous electronic band structure of this compound.

In the former group, Flint et al. proposed the scenario of ferromagnetic chirality
ordering [72]. They derived the effective interaction between chirality degrees of
freedom, by mimicking the RKKY interaction between magnetic moments. They
suggested that this interaction leads to uniform chirality order at ∼1.5K, below
which the spontaneous Hall effect sets in, with a caveat that symmetry-allowed
linear coupling between chirality and magnetization causes only a slight amount of
uniform magnetization.

Lee et al. proposed another scenario based on the spatially modulated magnetic
order [73]. They start from the effective pseudospin−1/2 model describing the
interaction between ground state-doublets of Pr moments, and found that incom-
mensurate pseudospin order is stabilized in a wide parameter region spanned by
exchange coupling constants. By coupling to the pseudospin order, the modulated
electronic state gives rise to substantial Hall response, however, with undetectably
small magnetization.

In the latter group, Moon et al. proposed a quadratic band touching in the elec-
tronic state, as a possible origin of spontaneous Hall effect, combined with long-
ranged Coulomb interaction [74]. Referring to the classic theory by Abrikosov
[75, 76], they showed that the peculiar electronic state leads to the Hall conduc-
tivity sensitive to magnetic field: σxy ∝ H 0.51, by renormalization group analysis,
which may account for finite Hall response with undectectably small magnetization,
as observed in the experiment. In fact, the recent fully-relativistic first-principle cal-
culation based on LSDA +U ansatz with non-collinear magnetization supports the
existence of electronic structure with quadratic band touching in the weakly inter-
acting region [56]. This band structure was also experimentally confirmed recently
[57].

Despite all these efforts, however, the definite understanding has not been estab-
lished for the spontaneous Hall effect. The theories in the former group relies on
the existence of chirality/magnetic order. To justify these scenarios, it is crucial to
detect these orders by, e.g. neutron scattering experiments, or at least by identifying
the existence of sharp signals of phase transition in sufficiently clean samples free of
broadening. The theories in the latter group proposed a fascinating story based on the
exotic electronic state. However, σxy shows hysteresis, rather than H 0.51 behavior,
still casting some doubts on the applicability of the theory. Theoretical breakthrough
is still awaited for the understanding of this fascinating phenomenon.
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13.5 Other Frustrated Itinerant Systems

In this section, we discuss several front-line topics associatedwith frustrated itinerant
systems, and briefly introduce them. We note that the choice of topics is rather
subjective.Due to the limitation of pages,wehave to give upmany important subjects.

13.5.1 Charge Ice

Ice rule is not an idea limited to spin ice, but can be defined for any Ising-like degrees
of freedom defined on tetrahedra, or other complete graphs. In fact, ice rule comes
from the polarization of hydrogen atom in ice. As another classic example, Anderson
proposed that ice rule defined for charge degrees of freedom [1] plays an important
role in the metal-insulator transition of Fe3O4 [77].

In the context of this “charge ice”, it is interesting to consider the Falicov-Kimball
model with ice-rule constraint, instead of the classical Kondo lattice model consid-
ered in this text. This problem may be regarded as a charge version of itinerant
spin ice, which we considered in the previous section. In fact, this model and its
equivalent models have been considered on a pyrochlore, checkerboard and kagome
lattices, and its transport properties have been well studied [78–80]. Furthermore, it
was found that this model is exactly solvable on a loopless variant of the pyrochlore
lattice, a tetrahedron Husimi cactus [81]. With the exact solution, the ground-state
phase diagram was found to involve two insulating regions separated by a quantum
critical point (QCP) where the excitation gap closes. Moreover, novel non-Fermi
liquid behavior is obtained right at the QCP, where the self-energy shows anomalous
exponents.

13.5.2 Heavy Fermion Behavior

In geometrically frustrated systems represented by spin ice, a large amount of entropy
sometimes remains unreleased down to very low temperatures, due to the macro-
scopic degeneracy in low-energy degrees of freedom. If this residual entropy is trans-
ferred to itinerant electrons, we could expect that electrons acquire a large effective
mass. In Fermi liquid theory, electronic entropy S is proportional to temperature:
S ∝ C = γ T , and it is directly related to effective mass m∗, as m∗ ∝ γ .

In fact, heavy fermion behaviors are observed for LiV2O4 [2],Molybdates [5], and
other frustrated conductors [3, 4]. The role of frustration in heavy-fermion behavior
was also pointed out in the theoretical analysis [82]. Does the itinerant spin ice have
heavy electrons? In fact, a large specific heat is observed for Pr2Ir2O7 [7]. However, to
show the large effective mass experimentally, one has to prove that the large entropy
is associated with itinerant electrons, not localized moments, by observing e.g. a
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sharp coherence peak with photoemission spectroscopy. Theoretical description of
large electron mass also requires an involved analysis. The classical Kondo lattice
model describes the many-body state only as a direct product of Slater determinant
of itinerant electrons and one specific configuration of localized moments. In this
description, the effective mass of electrons is given by a thermal average of that in
each configuration, and accordingly, it remains more or less the same value as the
non-interacting band mass. To describe the large effective mass, one needs to go
beyond the classical Kondo lattice model by taking account of the quantum nature of
the exchange coupling, which brings quantum coherency between the macroscopic
number of direct product states. However, such an analysis inevitably needs treating
a huge number of quantum states, which will be a formidable task.

13.5.3 Magnetic Chern Insulator and Dynamics

In Sect. 13.2, we discussed the stablemagnetic structure in the classical Kondo lattice
model, depending on the electron density and electronic structure. We further dis-
cussed the possibility of non-coplanar magnetic ordering, and associated quantized
Hall response in the insulating phase. This magnetic Chern insulator is interesting
as a variant of integer quantum Hall system, however, can one find essentially new
physics beyond IQHE?

We would like to answer this question positively. The crucial difference between
the integer quantum Hall system and magnetic Chern insulator is that while the
former is induced by external magnetic field, the latter is caused by ordered magnetic
moments. While the magnetic field is static external field, the magnetic moments
have their own dynamics. Accordingly, one can expect that though there are little
difference in the “static” properties like equilibrium Hall current, the dynamical
properties should be considerably different between these two systems.

Indeed, the fluctuation of non-coplanar magnetic order can also show topological
transport [83–85]. This may be understood as a bosonic analogy of itinerant electrons
interactingwith frustratedmagnets, since the fluctuation around the orderedmoments
can be regarded as bosonic magnons coupled to the background ordered magnetic
moments.

What is more, the topological defects of magnetic Chern insulator shows a quite
non-trivial property. For instance, it is proposed that the Z2 vortex excitation of the
four-sublattice magnetic order on a triangular lattice accumulates fractional charge
associated with Chern number at its core, and behave as an Abelian anyon [86]. In
this regard, while the magnetic Chern insulator is similar to integer quantum Hall
system in its static property, it may be closer to fractional quantum Hall system in
its dynamical property.
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13.5.4 Tight-Binding Model on Line Graphs

In this section, we discuss the motion of non-interacting electrons on a class of
geometrically frustrated lattices, called line graph. This topic is different from the
problems described by e.g. classical Kondo lattice model. Nevertheless, we would
like to discuss this topic, since the mathematical structure of this problem appears
in a broad range of geometrically frustrated systems. A line graph is the name of
graphs constructed by the following procedures: (a) putting new sites on edges of an
original graph, (b) draw new edges between the new sites which are connected to a
common site of the original graph, (c) then removing the old sites, as schematically
shown in Fig. 13.12a–c.

The popular frustrated lattices, such as pyrochlore, kagome and checkerboard
lattices belong to this category, and can be constructed with the procedure above,
from diamond, honeycomb and square lattices, respectively. The fundamental unit
of the line graph is a complete graph, like a triangle or a tetrahedron, in which all the
sites are connected with all the others. In other words, the line graph is the network
on which a variant of ice rule can be defined, if proper Ising variables, e.g. charges
or Ising spins, are placed on that.

We consider a tight-binding model defined on a line graph,

H = −t
∑

〈i, j〉
(c†i c j + H.c.). (13.16)

The energy spectrum of this model has Nl bands, corresponding to the number of
sites within the unit cell, Nl . Then one can find a common interesting property that
there appears Nl − No completely flat bands, with the number of sites within the
unit cell in the original graph, No. This property can be proved based on an elegant
mathematical tool, analogous to the concept of supersymmetry. Interestingly, similar
arguments lead to the existence of invariant energy levels in the classicalKondo lattice
model [88], and anomalous localized modes associated with disordered spin-ice-like
magnetic structure [89, 90]. It is also worth pointing out that this argument simplifies
the analysis of large-N analysis of spin model on line graphs, which gives a quite
accurate description for the spin correlation of spin ice at zero temperature [69], and
at finite temperature [91], as detailed in Chap.3.

An intuitive proof for the existence of flat bands is available, by focusing on the
real-space structure of the flat modes. As is obvious from the construction rule above,
a line graph is made of complete graphs, and several complete graphs make a “loop”.
In the example in Fig. 13.12d, six triangles make hexagonal loops. By focusing on
a loop, one can explicitly construct a localized mode belonging to a flat band, by
assigning staggered signs as coefficients of an eigenstate wave function. Specifically,
in the example in Fig. 13.12d, the state 1√

6
(c†1 − c†2 + c†3 − c†4 + c†5 − c†6) creates a

localized one-particle eigenmode of Hamiltonian (13.16), with energy 2t . On time
evolution with (13.16), this state makes destructive interference at e.g. site 7 in

http://dx.doi.org/10.1007/978-3-030-70860-3_3
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Fig. 13.12 a–cSchematic figure of the line-graph correspondence betweenhoneycombandkagome
lattices. aHoneycomb lattice.bExtended honeycomb lattice, inwhich sites are located on each edge
of honeycomb lattice, in addition to the original honeycomb sites. c The Kagome lattice obtained
by removing the honeycomb site from the extended honeycomb lattice, then by connecting the edge
sites. d Schematic figure of the modes consisting the flat band

Fig. 13.12d, and the state cannot go out of the loop. Accordingly, this state stays as
the completely localized eigenmode.

Similar flat band structure is also found in different types of lattices, such as the
Lieb lattice. However, there is a crucial difference between the flat bands on these two
classes of lattices. The flat band of line graph inevitably touches one of the dispersive
bands, i.e., no energy gap appears between the flat and dispersive bands. This fact
can be understood from the real-space argument in the kagome lattice (Fig. 13.12d)
above. There, we insisted that one localized mode exists per one loop. Since the
number of loops, Nloop, is equal to that of triangles, i.e., unit cells, this means that
the number of localized modes is precisely equal to the number of one-particle states
contained in one band.

However, there is a subtle point in this argument.While it appears there are exactly
Nloop localized modes, the localized modes are not linearly independent, but their
rank is Nloop − 1, rather than Nloop. One can understand this fact by checking that
the eigenmodes of the type, 1√

6
(c†1 − c†2 + c†3 − c†4 + c†5 − c†6), summed up over all

the loops to vanish. However, this is not the whole story. Under periodic boundary
conditions, there are two more modes with the same energy, 2t , which cannot be
expressed as linear combinations of localizedmodes around loops. These exceptional
modes are “stringmodes”, which can be obtained by assigning staggered sign along a
string crossing the system, globally. We have two such modes, modulo superposition
with additional hexagonal modes. Consequently, there are Nring + 1 modes with
equal energy, 1 mode excess of the number of modes accommodated in a single
band. This means that a flat band has to be degenerate with one of the other bands
to share this excess mode [92]. This mode counting argument is reminiscent of the
structure of Homology group on two-dimensional torus, in which the counterparts
of the string modes construct Z2 component of the group. Similar argument is also
used to count topological degeneracy in toric code model.
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13.6 Summary

In this review, we have discussed the property of itinerant electrons coupled to local-
ized magnetic moments on geometrically frustrated lattice structures. To explore the
physics of frustrated itinerant electron systems, the classical Kondo lattice model
provides a good starting point. Even without frustration, this model has various
important properties, and has drawn considerable attention for a long time, as was
detailed in Sect. 13.3. This model has dual properties. Itinerant electrons mediate
effective interaction between localized moments, and give rise to ordered magnetic
structures, depending on the carrier density and electronic structure. The stabilized
magnetic structure, in turn, affects thermodynamic as well as transport properties of
itinerant electrons. The separability of these two actions makes the analysis of this
model considerably easier, compared with fully quantum mechanical models, and
help understanding the physics of this model to a quite deep level. The role of geo-
metrical frustration in this model is two-fold, accordingly. It brings about peculiar
structure in localized moments, e.g. spin ice correlation, which leads to anomalous
electron transport. One can see the best example of this process through the analysis
of itinerant spin ice, in Sect. 13.4.

There are still many on-going problems in the area of frustrated itinerant systems.
Or, we should say, on the basis of a rather firm understanding of purely localized
frustrated systems, this area is growing rapidly. In the specific example of itinerant
spin ice, the spontaneous Hall effect stands as yet unsolved problem. We have also
listed part of the problems left for future, in Sect. 13.5. Ice rule on charge degrees
of freedom has provided interesting problems. Among recent topics, this viewpoint
may give a clue to the glassy behavior observed in organic compounds [93]. The
relation between frustration and glass is a historical problem. The classical Kondo
lattice model provides an anchor point, which enables detailed theoretical analysis.
However, of course, it sacrifices some essential physics for the sake of simplification.
Departure from the classical limit is another important direction, and the description
of large electron mass may give a good target for this direction. Incorporation of
quantum fluctuation also enables one to examine the dynamics and carrier doping
effect of frustratedmagnets, especially those comprising non-trivial topological state.
we hope that this article will help solving these problems, and further exploring this
fertile research field.
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Chapter 14
Anomalous Transport Properties
of Pyrochlore Iridates

K. Matsuhira and S. Nakatsuji

Abstract Pyrochlore rare-earth iridates Ln2Ir2O7 (Ln: lanthanides) is a unique frus-
tratedKondo lattice system composed of localized 4 f moments and Ir 5d conduction
electrons. Recent active research has revealed that the Kondo coupling between the
4 f electron and the Ir 5d bands leads to novel transport properties. First, we will
make an overview of the phase diagram of pyrochlore rare-earth iridates Ln2Ir2O7.
Next, we focus on the phenomena associated with spin ice physics. Ln2Ir2O7 (Ln
= Nd, Sm, Eu, . . .) exhibits a metal-insulator transition, while Pr2Ir2O7 does not
show any sign of long range ordering. Both Pr and Nd moments have a local 〈111〉
Ising anisotropy. In the metallic state, localized 4 f moments are coupled through the
RKKY interaction. For Pr2Ir2O7, a ferromagnetic correlation between Pr moments is
developed on cooling. On the other hand, Nd2Ir2O7 exhibits a metal-insulator tran-
sition at 33K, and then, all-in all-out magnetic structure of Nd moments emerges
below 10K, as observed in the neutron scattering experiments. For Nd2Ir2O7, anti-
ferromagnetic correlation between Nd moments is dominant. Metal insulator tran-
sition of Nd2Ir2O7 can be suppressed by the application of pressure. The insulating
phase disappears above 10 GPa. In the pressure induced metallic state, a new phase
transition emerges around 3K. This phase transition is likely due to ferromagnetic
ordering, suggesting an ordered spin ice of Nd moment. In the metallic frustrated
magnet Pr2Ir2O7, a spontaneous Hall effect is observed at zero field in the absence of
uniform magnetization, suggesting an emergence of a chiral spin liquid. The origin
of this spontaneous Hall effect is ascribed to chiral spin textures, which are inferred
from the magnetic measurements indicating the spin ice-rule formation.
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14.1 Pyrochlore Rare-Earth Iridates

Recently, 4d and 5d transition metal pyrochlore oxides have been attracting much
interest because of their novel transport properties [1–7]. An important problem
that has yet to be solved is to clarify how the geometrical frustration influences the
ground states of strongly correlated electron systems in triangle-based lattices.1 As
the pyrochlore rare earth iridates Ln2Ir2O7 is a good candidate for the purpose, an
active investigation has been carried out. As the Ln ion is trivalent, the (5d)5 elec-
trons from Ir4+ form an unfilled t2g band. As the 4f electrons are generally well
localized, only the 5d electrons contribute to the electrical conductivity. Therefore,
pyrochlore rare-earth iridates Ln2Ir2O7 form frustrated Kondo lattice systems com-
posed of localized 4f moments and Ir 5d conduction electrons (Fig. 14.1).

Figure14.2 shows the temperature dependence of electrical resistivity of Ln2Ir2O7

for Ln = Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho [9], in the decreasing order of
ionic radius. The electrical resistivity ρ of Ln2Ir2O7 strongly depends on the ionic
radius of Ln3+ [5, 10]. As the ionic radius of Ln3+ becomes smaller, the electrical
conductivities change from metallic to semiconducting with a small energy gap. As
the ionic radius of Ln3+ is reduced, the Ir-O-Ir bond angle decreases, consequently,
the t2g bandwidth becomes narrower. For Ln = Nd, Sm, Eu, Gd, Tb, Dy, and Ho,
Ln2Ir2O7 exhibits metal-insulator transition (MIT) at 33, 117, 120, 127, 132, 134,
and 141K, respectively. In this MIT, no thermal hysteresis and no discontinuous
change are observed at MIT temperature T.MI. Therefore, these MITs are second-
order transitions. For Pr2Ir2O7, no MIT was observed, and the compound remains
metallic.

Figure14.3 shows the phase diagramofLn2Ir2O7,which is based on theLn3+ ionic
radius dependence of T.MI; the ionic radius of Ln3+ is for an 8-coordination-number
site [9]. TMI monotonically increases as the ionic radius ofLn3+ decreases.Obviously,
the trend of TMI does not depend on the de-Gennes factor: (g − 1)2 J (J + 1) or on
the magnetism of Ln3+. This fact means that the origin of MITs comes from Ir 5d
electrons.

At room temperature, Ln = Pr and Nd are metallic with low carrier density.
In contrast, Ln = Sm, Eu and Gd are semimetals, and Ln = Tb, Dy, and Ho are
semiconductors with small band gaps. In recent theoretical studies, for this insulating
state of Ln2Ir2O7, the possibility of realizing a topological Mott insulator state and
Weyl semimetal state have been discussed. Furthermore, Pr2Ir2O7 and Nd2Ir2O7 are
unique metal near the critical point of MIT [11]. Moreover, a new type of quantum
critical phenomena is theoretically predicted, accompanied with a disappearance of
MIT [12].

Next, we will discuss the crystalline electric field (CEF) ground state (GS) of
Pr3+ in Pr2Ir2O7 and Nd3+ in Nd2Ir2O7. The CEF analyses from neutron inelastic
scattering experiments reveal that the CEF GS of both Pr3+ and Nd3+ has a local
Ising anisotropy along the 〈111〉 directions [4, 13]. In addition, from the magnetic

1 A tetrahedron, a building block of pyrochlore lattice, is a triangle-based object.
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Fig. 14.1 Crystal structure
of Ln2Ir2O7. This image is
produced by VESTA [8]

Fig. 14.2 Temperature
dependence of electrical
resistivity of Ln2Ir2O7 (Ln =
Pr-Ho), reprinted from [9]
from the Journal of the
Physical Society of Japan

susceptibility data at low temperature, the effective magnetic moments of Pr2Ir2O7

and Nd2Ir2O7 are estimated to be 2.68 and 2.73 μB, respectively. Figure14.4 shows
these CEF level schemes.

The CEF GS of Pr3+ in Pr2Ir2O7 is a non-Kramers doublet, which is mainly
composed of ∼| Jz = ±4〉. Now z-direction corresponds to the trigonal axis in the
tetrahedron. The magnetic moment of GS has a component only along the 〈111〉
directions. The other degrees of freedom are two quadrupole moments of Ozx and
Oyz [14]. The CEF GS is well separated from other levels, as the 1st excited CEF
state is 162K above. Therefore, this doublet has an Ising magnetic anisotropy along
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Fig. 14.3 Phase diagram of
Ln2Ir2O7, reprinted from [9]
from the Journal of the
Physical Society of Japan.
The ionic radius of Ln3+ is
for an
8-coordination-number site

Fig. 14.4 CEF level scheme
of Pr3+ in Pr2Ir2O7 and
Nd3+ in Nd2Ir2O7

the trigonal axis at low temperature. In contrast, the CEF GS of Nd3+ in Nd2Ir2O7

is a Kramers doublet;

| ±0〉 = α | Jz = ±9/2〉 ± β | Jz = ±3/2〉 + γ | Jz = ∓3/2〉 ± δ | Jz = ∓9/2〉
(14.1)

where α = 0.822, β = 0.489, γ = 0.286 and δ = 0.057. The value of magnetic
moment of GS doublet is obtained from gJ 〈±0 | J | ±0〉 = (0, 0,±2.37). Then, this
doublet has a magnetic moment along the 〈111〉 directions. As is shown in Fig. 14.4,
the CEF GS is again, well separated from the other levels, as the 1st excited CEF
state is 302K above, which suppresses the transverse component (〈1 | Jx | 0〉) where
| 1〉 is 1st excited CEF state. Therefore, this doublet has an Ising magnetic anisotropy
along the trigonal axis at low temperature.
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As explained above, their 4f moments of both Pr2Ir2O7 and Nd2Ir2O7 have Ising
anisotropies at low temperature. Therefore, these pyrochlore iridates form frustrated
Kondo lattice systems composed of localized 4f moments and Ir 5d conduction
electrons. The magnetic ground states of pyrochlore iridates have been theoretically
discussed [15–18]. They propose an emergence of ordered spin ice state and all-in
all-out ordering as well as more complicated magnetic structure. These theoretical
studies imply that various ground states are in competition, in comparison with
simpler insulating Ising systems. In addition, non-Kondo mechanism for resistivity
minimum is also proposed [19]. Further studies to reveal the new ground states and
phenomena are desirable.

14.2 Metal-Insulator Transition of Pyrochlore Iridate

Wewill address the characteristics of MIT in pyrochlore rare-earth iridates Ln2Ir2O7

in this section. Figure14.5 shows the magnetic susceptibility M/H of Eu2Ir2O7

measured under the zero-field-cooled (ZFC) and the field-cooled (FC) conditions.
ZFC curve above TMI is explained by a summation of Van Vleck paramagnetism

of Eu3+ and Pauli paramagnetism from Ir 5d electrons. M/H exhibits a Van Vleck
paramagnetism at low temperature as Eu3+ has the ground state J = 0 multiplet.
In the case of Eu3+ (4 f 5), the energy splitting between the ground state (J = 0)
and the 1st excited states (J = 1) corresponds to the spin-orbit coupling constant
λ. Furthermore, a low carrier density from the t2g band, indicating a semi-metallic
behavior, shows Pauli paramagnetism above TMI. From the result of fitting M/H
curve above TMI, the parameters of spin-orbit coupling constant λ = 375K and
constant Pauli paramagnetism χ0 = 1.3 × 10−3 emu/mole are obtained.

M/H measured under the ZFC condition shows a tiny peak at TMI. A difference
in the M/H appears below TMI between ZFC and FC conditions. This is caused by
a tiny ferromagnetic component (10−3μB) below TMI. The difference in M/H gives
clear evidence that this MIT originates from Ir 5d electrons; Eu3+ (4 f 5: J = 0) has
no magnetic degree of freedom at low temperature [9]. The slight upturn observed
in both curves below 10K may be caused by a small amount of magnetic impurity.

The difference in the M/H measured under the ZFC and FC conditions is
attributed to the very weak ferromagnetic components. The present result indicates
that the observed emergence of very weak ferromagnetic components is intrinsic.
However, it is very difficult to consider the very weak ferromagnetic ordering as
the origin of MIT because the observed ferromagnetic moment is too small to cause
magnetic ordering.

Figure14.6 shows the specific heat divided by temperatureC/T of polycrystalline
Eu2Ir2O7 [9].A sharp anomaly is clearly observed at TMI [20]. The lattice contribution
was subtracted from the raw data; the electronic portions of the C/T (	C/T ) are
shown in the inset. By integrating 	C/T , we obtained 	S = 1.4 J/K mole. 	S is
much smaller than a change in entropy of 2R ln 2 (= 11.5 J/K mole), which we



404 K. Matsuhira and S. Nakatsuji

Fig. 14.5 Magnetic susceptibility M/H of Eu2Ir2O7 in a magnetic field of 1 kOe. The dotted line
indicates the contribution of the Van Vleck susceptibility due to Eu3+ with a spin-orbit coupling
constant λ = 375K. The dash-dotted line shows a constant Pauli contribution χ0 = 1.3 × 10−3

emu/mole. Solid line shows the fitting curve above TMI, which is obtained by the summation of
above-mentioned contributions. Figure reprinted from [9] from the Journal of the Physical Society
of Japan

Fig. 14.6 Specific heat
divided by temperature of
polycrystalline Eu2Ir2O7.
The broken line shows a
smooth polynomial fitted to
the data outside the region of
the peak. The inset shows the
electronic portion of C/T
(	C/T ) and the entropy 	S
estimated from 	C/T .
Figure reprinted from [9]
from the Journal of the
Physical Society of Japan

would have expected if 5d electrons from Ir4+ ions with S = 1/2 had shown perfect
ordering. The small 	S implies the ordered moment is reduced due to the itinerancy
of 5d electrons.

MIT of Eu2Ir2O7 is confirmed in a single crystal sample. Figure14.7 shows the
temperature dependence of electrical resistivity and themagnetic susceptibilityM/H
of single crystal Eu2Ir2O7. The electrical resistivity clearly exhibits MIT at 120K
which is the same transition temperature in polycrystalline sample although the pos-
itive dρ/dT is observed above TMI in contrast with the negative dρ/dT observed in
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Fig. 14.7 Temperature dependence of electrical resistivity and magnetic susceptibility M/H of
single crystal Eu2Ir2O7, reprinted from [21] with permission from the American Physical Society.
Inset: Temperature dependence of muon spin precession frequency in polycrystalline Eu2Ir2O7,
reprinted from [22] with permission from the American Physical Society

polycrystalline sample (Fig. 14.2) [21]. In addition, very weak ferromagnetic com-
ponents emerges below TMI = 120K as the difference in the M/H measured under
the ZFC and FC conditions is observed. The inset shows the temperature dependence
of muon spin precession frequency in polycrystalline Eu2Ir2O7. The result indicates
the appearance of internal field below TMI = 120K, which supports a long range
magnetic ordering of Ir moment [22].

Next, Fig. 14.8 shows the C/T of Nd2Ir2O7 below 40K [9]. An anomaly due to
MIT is observed at TMI, which is consistent with the anomalies in the resistivity,
thermoelectric power, and magnetization. The entropy release associated with the
MIT is estimated to be 0.47 J/K mole. C/T also shows a broad peak at 4K and a
shoulder at 1K. From the entropy variation, this broad peak is caused by the CEF
ground state doublet in Nd3+. Then, we can fit the data using the Schottky specific
heat of two levels with energy splitting 	 = 13K; the lattice contribution estimated
from the data of Eu2Ir2O7 is also considered in this fitting. A good fitting is obtained
above 5K. Because Nd3+ is a Kramers ion, the splitting is caused by the internal
field due to a d-f interaction. This indicates the appearance of an internal field due to
MIT below TMI.

From the results of magnetization and specific heat measurements, we may con-
sider that the MIT originates from antiferromagnetic ordering of Ir moments. Fur-
thermore, because the trend of TMI is independent of the magnetism of Ln3+, it is
speculated that the magnetic structure of Ir moments is common in insulating state of
Ln2Ir2O7. As Ir moments are not large, Ir moments seem subject to strong frustration
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Fig. 14.8 Specific heat
divided by temperature of
polycrystalline Nd2Ir2O7.
The broken line (green)
shows the Schottky specific
heat with energy splitting
	 = 13K. The dash-dotted
line (black) shows the lattice
contribution estimated from
the data of Eu2Ir2O7. The
solid line (blue) shows the
sum of these contributions.
Figure reprinted from [9]
from the Journal of the
Physical Society of Japan

on the pyrochlore lattice. However, contrary to the expectations, some microscopic
measurements (powder neutron scattering and resonant magnetic X-ray scattering)
reveal all-in all-out (AIAO) structure withQ= 0 which has nomacroscopic degener-
acy in the ground state. The AIAO structure is observed for the first time in Nd2Ir2O7,
among the pyrochlore oxides. Figure14.9 shows measured neutron diffraction data
for powder Nd2Ir2O7 [23]. The magnetic scattering in this data is mainly originated
from Nd magnetic moments. Bragg reflection lines around (220) reciprocal lattice
point at 9, 40, and 102K are shown in Fig. 14.9a. On cooling, the intensity at 9K
becomes clearly bigger than those above TMI. Figure14.9b shows the temperature
dependence of summation of the integrated intensities for Bragg reflection lines (113)
and (222). As temperature decreases, this summation of integrated intensities begins
to increase below 15 ± 5 K. Furthermore, a significant peak begins to appear below
TMI = 33K in the inelastic scattering data as shown in Fig. 14.9c. The peak position
gradually shifts to high energy side on cooling and becomes 1.2 meV at 3K; this
energy is nearly equal to the energy splitting of CEF ground state doublet in Nd3+
(	 = 13K) in specific heat as discussed above. The results suggest that Nd magnetic
moments are in a magnetic ordered state with Q = 0.

From these experimental results, the ordered Ir moments at TMI align the Nd
moments through the d-f interaction below 15 ± 5 K; the magnetic ordering of Ir
moment at TMI is a true phase transition because the specific heat shows sharp
anomaly, but themagnetic ordering ofNdmoment is not a phase transition and there is
only a broad peak in the specific heat. As is discussed later, the crystal structure keeps
cubic symmetry even below TMI. Therefore, it is quite reasonable that the magnetic
structure of Ir moment is AIAO structure, which keeps the cubic symmetry, as shown
in Fig. 14.10 [23]. From the analysis on the basis of theAIAO structure in bothNd and
Ir moments, the values of magnetic moments of Nd and Ir are estimated to be 2.3 μB

and 0.2 μB at 0.7K, respectively. Figure14.11 shows the temperature dependence of
the internal field Hint byμSRmeasurement for polycrystallineNd2Ir2O7.On cooling,



14 Anomalous Transport Properties of Pyrochlore Iridates 407

Fig. 14.9 Measured neutron diffraction data for powder Nd2Ir2O7 [23]. a Bragg reflection lines
around (220) reciprocal lattice point at 9, 40, and 102K. b Temperature dependence of summation
of the integrated intensities for Bragg reflection lines (113) and (222) c Energy scan data measured
at constant Q of 0.8 at various temperatures below 39K. The vertical origins shift to the height
indicated by the horizontal dotted lines. Figures reprinted from [23] with permission from the
Journal of the Physical Society of Japan

Hint appeared below TMI, which indicates a magnetic ordering of Ir moments [24].
Furthermore, on cooling, the internal field tends to a constant but begins to increase
again below 10K. This increase corresponds to the gradual ordering of Nd magnetic
moments.

The magnetic ordering of Ir moments withQ = 0 below TMI is clearly confirmed
by the resonant magnetic X-ray scattering for Eu2Ir2O7 as Eu3+ ion is non-magnetic
[25]. Furthermore, the AIAO ordering is also realized in the MIT of Cd2Os2O7

(TMI = 225K) [26]. It should be noticed that this AIAO ordering appears in MIT
of 5d electrons systems. It suggests that this Ising magnetic anisotropy is caused by
strong spin-orbit interaction in 5d electrons systems.

AIAO ordering can relieve the magnetic frustration in pyrochlore lattice with no
change of cubic symmetry. In the case of long range ordering with “2-in 2-out”
configuration, the symmetry may change to tetragonal. Actually, by using X-ray
diffraction (XRD) measurements, the single crystal structure analyses for Nd2Ir2O7

and Eu2Ir2O7 reveal that the lattice keeps its FCC structure below TMI. Figure14.12
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Fig. 14.10 a All-in all-out magnetic structure in pyrochlore lattice [23]. b Relation between mag-
netic moments (blue thin arrows) of Ir4+ ions (blue small balls) and magnetic moments (red thick
arrows) of Nd3+ ions (red large balls) [23]. Both the Ir and the Nd moments form the all-in all-out
structures. In this figure, the directions of Nd moments are described in the case of a ferromagnetic
Nd-Ir interaction. Figures reprinted from [23] with permission from the Journal of the Physical
Society of Japan

Fig. 14.11 For Nd2Ir2O7, temperature dependence of the internal field at the muon site Hint
observed in the μSR measurement, adapted from [24] with permission from the American Physical
Society. The Hint at the base temperature is estimated by the LF measurement

shows the temperature dependence of Bragg reflection for Nd2Ir2O7 (TMI = 33K)
and Eu2Ir2O7 (TMI) by XRD measurements. No peak splitting and no superlattice
reflections are observed below TMI within the present experimental accuracy [25, 27].
This fact strongly supports the AIAO ordering in MIT of Nd2Ir2O7 and Eu2Ir2O7.
From the result of Raman scattering for Nd2Ir2O7, as no peak splitting and no new
peak in the spectra are observed below TMI, the lattice keeps its FCC structure [28].
However, Raman scattering experiments of Eu2Ir2O7 and Sm2Ir2O7 suggest that the
symmetry could be lowered below TMI as new peaks emerge at low temperature
[28]; even if the symmetry change occurs below TMI, the lattice deformation may be
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Fig. 14.12 Temperature dependence of Bragg reflection for a Nd2Ir2O7 (TMI = 33K) and b
Eu2Ir2O7 (TMI) by XRD measurements, adapted from [25] with permission from the American
Physical Society

very tiny. The contradiction between XRD and Raman scattering measurements is
an open problem. The further study on the low temperature structure is significant in
order to clarify the mechanism of MIT.

14.3 Pressure-Induced Magnetic Ordering in Nd2Ir2O7

The application of pressure is an effective method to lead to a dramatic change
of ground state through the change of various physical parameters such as magnetic
interactions, bandwidth, and electronic correlations. The pressure effect of Nd2Ir2O7

is shown in this section. Figure14.13 shows the resistance of single crystal Nd2Ir2O7

up to 15 GPa by using a diamond anvil cell [29]. The resistance R(T ) at room
temperature decreaseswith increasing pressure [30]. Themetal insulator transition of
Nd2Ir2O7 can be suppressed by the application of pressure.With increasing pressure,
TMI and R(T ) in the insulating phase also decrease. Only a tiny change of slope in
R(T ) is observed at TMI(∼ 3.5K) at 9 GPa, suggesting an incomplete opening of
band gap. Furthermore, with increasing pressure, R(T ) at 10 GPa drops at 3.5K and
increases slightly at 3K; this slight increase may be considered as the MIT observed
at lower pressures. In addition, it should be noticed that R(T ) above 11 GPa drops
at TO; TO = 3K at 11 GPa. The insulating phase almost disappears above 10 GPa.
The results clearly indicate the emergence of different phase transition from MIT.

It should be noted that a minimum in R(T ) is observed in the metallic phase
above, at a temperature denoted as Tmin, although no minimum in R(T ) is observed
at ambient pressure as shown in Fig. 14.2. This minimum is observable for the first
time by the suppression of the MIT under pressure. With increasing pressure, Tmin

shifts toward high temperature up to 13 GPa. Similar minimum in resistivity is
observed in Pr2Ir2O7 at ambient pressure [4]. Furthermore, Eu2Ir2O7, which has no
localized 4f moments, also shows a resistivity minimum above 6 GPa [31]. In the
case of Eu2Ir2O7, Kondo effect is ruled out, due to the absence of magnetic moments
in Eu3+. As the possible origin for resistivity minimum in Pr2Ir2O7, Kondo effect
and new mechanism caused by spin ice correlation are discussed [4, 19]. However,
the origin of resistivity minimum in Ln2Ir2O7 is still not clear.
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Fig. 14.13 a R(T ) of single crystal Nd2Ir2O7 up to 10GPa [29]. b R(T ) of single crystal Nd2Ir2O7
in the pressure range of 9 and 15 GPa below 4K. Figures reprinted from [29] with permission from
the American Physical Society

Figure14.14a shows R(T ) at 11 GPa under magnetic fields of 0, 0.5, and 1T.With
increasing magnetic field, the peak of R(T ) becomes broader and the R(T ) begins
to decrease at higher temperature. These features are consistent with ferromagnetic
(FM) transition. Nowwewill discuss the origin of the pressure-induced FM ordering
in a pyrochlore lattice in the metallic state. There are three possibilities: ordering of
the Ir moment, the Nd moment, or both Ir and Nd moments. Nd moments has a
magnetic entropy from the ground state Kramers doublet. Therefore, the ground-
state entropy of Nd moments has to be relieved down to 0K. However, as is shown
in Fig. 14.14b, no additional phase transition is observed at 15 GPa down to 40 mK.
If the FM ordering originates from only the Ir moment, the ground-state entropy
of the Nd moment is not relieved down to near 0K. Furthermore, it is difficult
to consider the FM magnetic ordering of Ir 5d conduction electrons because the
change of R(T ) is not large; the drop of R(T ) is only 4%. Therefore, it is highly
possible that the FM ordering is mainly driven by the Nd moments originated from
RKKY interaction. Nd2Ir2O7 under high pressure is considered frustrated Kondo
lattice systems composed of localized 〈111〉 Ising 4f moments and 5d conduction
electrons. According to theoretical study, the ordered phase of “two-in two-out” with
the wave vector Q = (0,0,0) or (0,0,2π/a) is found to be realized in metallic state
[15, 17]. Consequently, it is speculated that the present pressure-induced transition
of Nd2Ir2O7 at 3K is the FM ordering of “two-in two-out” with Q = (0,0,0); this
corresponds to an “Ice-ferro” phase [17].

Figure14.15 shows the pressure-temperature phase diagram for Nd2Ir2O7. With
increasing pressure, the “AIAO” insulator phase is rapidly suppressed. The AIAO
insulator phase disappears above 11 GPa. Instead, a new magnetic ordered phase
emerges in themetallic state. The feature ofmagnetic ordered phase is consistentwith
FM transition which is caused by Nd-moments originated from RKKY interaction.
It is suggested that this pressure-induced phase corresponds to “Ice-ferro” phase
which is theoretically predicted [15, 17]. Consequently, the application of pressure
for Nd2Ir2O7 can change the ground state from AFM AIAO insulator to FM metal
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Fig. 14.14 a R(T ) at 11 GPa under several magnetic fields for Nd2Ir2O7, adapted from [29] with
permission from the American Physical Society. b R(T ) at 15 GPa down to 0.04K for Nd2Ir2O7

Fig. 14.15 Pressure-
temperature phase diagram
for Nd2Ir2O7, adapted from
[29] with permission from
the American Physical
Society

(“ordered spin ice” of Nd moments). Further studies are desired in order to reveal
the details of the new pressure-induced magnetic ordered phase.

14.4 Unconventional Anomalous Hall Effect in the Spin Ice
Metal Pr2Ir2O7

The final material, Pr2Ir2O7, shows a quite different behavior from the other mem-
bers of the family, Ln2Ir2O7. In contrast to the other members, Pr2Ir2O7 does not
show metal-insulator transition, and the AF correlated Pr 4f moments of Pr2Ir2O7

remain paramagnetic down to at least 0.3K in themetallic state. This low-temperature
metallic behavior places Pr2Ir2O7 as a candidate for a geometrically frustratedKondo
lattice, and provides a stage, where a number of exotic behaviors are observed, such
as Kondo-like resistivity minimum, topological Hall effect, quantum criticality, and
spontaneous Hall effect. There have already been many theoretical analyses on these
phenomena. For a summary of existing theoretical efforts, see the Chap. 13.

http://dx.doi.org/10.1007/978-3-030-70860-3_13
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14.4.1 Material Properties of Pr2Ir2O7

The metallic behavior of this compound is ascribed to the Ir 5d-conduction bands
[10]. A carrier density is estimated to be 2.6 × 1020cm−3 (1.8% = Pr), from the
preliminary Hall effect measurements at low T . This low carrier density is also
supported from the first-principle analyses [32, 33]. The crystal electric field (CEF)
schemeof Pr has been determined by inelastic neutron scatteringmeasurements at 5K
[34], as shown in Fig. 14.4. It reveals the following two points: (i) ninemultiplet levels
of Pr split into a ground-state doublet, three excited-singlets (162, 1218, 1392K) and
two excited doublets (580, 1044K); and (ii) the groundstate doublet is magnetic with
local [111] Ising anisotropy whose strength is 160K. Because of the large separation
between CEF levels, the magnetism discussed below comes solely from the ground
doublet.

The 〈111〉 Ising-like anisotropy of the 4fmoments is confirmed by the field depen-
dence of the magnetization M along [100], [110] and [111] at 70 mK (Fig. 14.16a)
[35]. At 13T, M tends to saturate and approaches a Brillouin function for noninter-
acting, local 〈111〉 Ising spins with gJ Jz consistent with the CEF analysis [34].

The inverse susceptibility is shown in the inset of Fig. 14.16b [4]. No anisotropy
is found under a field of 0.1T applied along [100], [110], and [111]. χ0 = 1.25 ×
10−3emu/mole-Pr is determined by a Curie-Weiss (CW) analysis above 100K
using the formula χ = χ0 + C/(T − T ∗). The effective moment gJ

√
Jz(Jz + 1) =

3.06μB for the ground doublet is lower than the Pr multiplet value (3.62μB) due to
the CEF. The AF Weiss temperature T ∗ = −20.0K is most likely due to the RKKY
interactions of the 4f moments.

14.4.2 Four Characteristic Temperature Regions

On cooling, Pr2Ir2O7 shows the following four characteristic temperature regions:
(1) T > |T ∗|, Pr 4 f moments are decoupled from Ir 5d-conduction electrons; (2)
|T ∗| > T > |θW|, the Kondo effect leads to the screening of the 4 f moments; (3)
|θW| > T > T f , underscreened moments form a spin-ice-like 2-in 2-out-dominant
spin liquid states; and (4) T f > T , the moments partially freeze.

The first evidence of Kondo effect in Pr2Ir2O7 is the ln T dependence of resistiv-
ity ρ(T ) (Fig. 14.16b). Over a decade in T between 3K and 35K, ρ(T ) can be fit
to the Hamann’s expression (solid line) with TK = 25K [37]. In addition, the field
dependence of the resistivity is consistent with the Kondo effect [38]; the negative
magnetoresistance is proportional to the square of magnetization for all axes under
fields up to 2T (inset of Fig. 14.16b, the top panel). Second, the Kondo effect is also
seen in the low T decrease of the effective Curie constant C(T ) = Tχ(T ); see the
middle panel of Fig. 14.16b. The rapid decrease in C(T ) below 10K suggests that
the moment size diminishes owing to Kondo screening. Correspondingly, χ−1(T )

follows the CW law over a decade in T from 1.5 to 16K, yielding a slightly smaller
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Fig. 14.16 a The magnetization process of Pr2Ir2O7. The inset highlights the metamagnetic tran-
sition observed for [111] field direction.Figures reprinted from [35]. b (top)The temperature depen-
dence of resistivity is shown. The inset shows the magnetoresistivity for magnetic field directions
along [100], [110], and [111] at 2K. (middle) Tχ is plotted against temperature, where χ is the mag-
netic susceptibility. The inset shows the inverse susceptibility, 1/χ . (bottom) Temperature depen-
dence of CM/T is shown with green open circles, where CM is magnetic specific heat. The solid
line shows the entropy. The inset showsCM , which has a peak, around the temperature, θW ∼ 1.7K.
Figures reprinted from [4] with permission from the American Physical Society. c (Top) the entropy
and (bottom) the specific heat in a wide temperature range, reprinted from [36] with permission
from Nature. d �HH is plotted against T/H4/3, reprinted from [36] with permission from Nature

effective moment 2.69μB, and a reduced Weiss temperature, |θW| = 1.7K, in com-
parison with the high T values (3.06μB, 20K). These results and the crossover to
ln T dependence below |θW| indicate partial screening of 4fmoments. Themonotonic
increase of ρ(T ) on cooling indicates incoherent spin scattering in the spin-liquid
state at T < |θW| [4].

Evidence for the formation of spin-ice-like state can be found in the T dependence
of the magnetic part of the specific heat CM (Fig. 14.16b). No evidence of LRO, but
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a rapid increase up to ∼ 2.5J/mole-Pr K2 is seen in CM/T below |T ∗|, attributable
to the Kondo screening. Significantly, CM forms a broad peak around T ∼ |θW|,
and decreases on cooling with a T 1/2 dependence between 1.8 and 0.4K (inset of
Fig. 14.16b, the bottom panel). This peak indicates the formation of a correlated
spin-ice-like state below |θW|. The entropy, SM also follows the T 1/2 dependence at
low Ts, indicating the presence of muchmore highly degenerate magnetic states than
in a Fermi liquid with a T-linear entropy. This also represents additional evidence for
magnetic frustration. In fact, at Tm � 0.4K , the entropy approaches thePauling value,
indicating that the formation of two-in two-out spin-ice configurations is completed
in all of the tetrahedra (Fig. 14.16c) [36].

The fact that the metamagnetic transition occurs only for H ‖ [111] provides
further evidence for the formation of the “2-in, 2-out” configurations of 〈111〉 Ising
moments on each tetrahedron (inset of Fig. 14.16a) [35]. Further consistency with
the “2-in 2-out” correlation can be found for the values of the magnetization Mc

and the magnetic field Bc at the metamagnetic transition. Using the Landé factor gJ

for Pr3+ and J obtained from peff = gJ
√
J (J + 1), Mc is estimated to be 0.9μB/Pr,

which is close to our observation of Mc = 0.8μB/Pr. On the other hand, the observed
Bc = 2.3T indicates the effective nearest-neighbor FM coupling J eft

ff ∼ 1.4K which
is close to the peak temperature (∼ 2K) of the magnetic specific heat CM as in spin-
ice systems. Therefore, we conclude that at T � J eft

ff , the “2-in 2-out” configuration
appears with the highest probability.

Further cooling below 0.4K yields to a huge enhancement of the specific heat
divided by temperature. In the absence of a clear phase transition anomaly we asso-
ciate the corresponding entropy reduction to the melting of spin ice configurations
by quantum fluctuations at Tm � 0.4K (Fig. 14.16c) [36]. Interestingly, the cooling
process down to Tm can be associated with quantum critical behavior. The magnetic
Grüneisen ratio �H = 1/T (dT/dH)s is defined as the change of temperature with
magnetic field under adiabatic conditions, which is also expressed by the magnetiza-
tion M and specific heat C , as �H = −(dM/dT )/C . Upon cooling, �H at low field
diverges according to T−3/2 over almost one decade in temperature down to about
Tm � 0.4K , providing evidence for quantum critical behavior. In Fig. 14.16d, the
magnetic Grüneisen ratio data are displayed as �H H vs T/H 4/3. The measured data
collapse on a common curve for about four decades in the x- and more than three
decades in the y-axis. This confirms that the system is located at a zero-field QCP.
The scaling plot clearly shows the crossover between the quantum critical and quan-
tum paramagnetic states, that are characterized by�H ∼ HT−3/2 and�H = 0.25/H
(temperature independent), respectively.

14.4.3 Hall Response in Spin-Ice and Spin-Liquid Regions

The spin ice regime below |θW| exhibits a characteristic Hall response. The noncopla-
nar texture of Pr 〈111〉 Ising-like moments imposes a spin-chirality effect on the Ir 5d
conduction band, and gives rise to an anomalous Hall response. Figure14.17a shows
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the field dependences of the Hall conductivity along [100], [110] and [111]measured
at T = 0.5K [40]. Up to Bp ∼ 0.7T, σxy(B) is nearly isotropic and shows rapid
and linear increase with field. However, beyond Bp, the field dependence becomes
strongly anisotropic and is no longer proportional to the magnetization. In terms of
the conventional mechanism due to the spin-orbit coupling, it is highly difficult to
understand the above nontrivial temperature and field dependences of the large Hall
effect observed below θw = 1.7K. Instead, it is natural to expect the spin-chirality
contribution to the Hall effect because the Pr 〈111〉 Ising-like spins under fields may
well have a sizeable spin chirality due to their noncoplanar spin texture and produce
a fictitious magnetic field on the Ir sites through the Kondo coupling. This possibility
has been discussed in Nd2Mo2O7, which also shows nonmonotonic M dependence
of σxy [39].

More strikingly, finite Hall resistivity is observed in the absence of both an exter-
nal magnetic field and conventional magnetic long-range order. This spontaneous
Hall effect strongly suggests the existence of a chiral spin liquid, a spin-liquid phase
breaking the time-reversal symmetry. Below 2K, σH(T ) exhibits a strong temper-
ature dependence and even bifurcation at θ ∼ 1.5K between the zero-field cooled
(ZFC) and field-cooled (FC) results. On the other hand, the onset temperature of
the irreversibility in χ(T ), Tf ∼ 0.3K (Fig. 14.17b) is significantly lower than that in
σH(T ), θ ∼ 1.5K. This hysteresis in σH(T ) suggests that the time-reversal symmetry
(TRS) is already broken macroscopically below in the spin-liquid state. The finite
σH observed in the apparent absence of B and M indicates that the TRS is broken
spontaneously and macroscopically in the spin-liquid state, pointing to an LRO or
freezing of higher degrees of freedom than spin dipole moments, for instance, the
net spin chirality. There exists a close link between the macroscopic TRS-breaking
and the local “2-in, 2-out” spin correlation. The onset temperature θ ∼ 1.5K almost
coincides with the effective FM coupling J eft

ff ∼ 1.4K estimated from the metamag-
netic transition field Bc. Besides, the hysteresis observed in σH as a function of field
disappears at Bc where a large portion of “2-in, 2-out” configurations are transformed
into “3-in 1-out/1-in 3-out”. Therefore, the macroscopically TRS-broken spin-liquid
state found in Tf ≤ T ≤ θW should comprise the “2-in, 2-out” configurations having
a net spin chirality.

The transport properties of Pr2Ir2O7 have been investigated up to much higher
magnetic field∼35T [41]. Figure14.17c shows themagnetoresistivity ratio as a func-
tion of field along three principal axes at T = 0.03K. When H is applied along the
[100] and [110] directions, the magnetoresistivity is small and negative, suggesting
the suppression of scattering by local Pr moments as they are oriented along the field.
In contrast, for fields along the [111]-direction one observes a pronounced positive
increase in magnetoresistivity above the metamagnetic critical field Bc � 2.3T [41].
It is followed by an oscillatory structure. This oscillatory component is not periodic in
H nor in H−1, although its nearly exponential growth as a function of H indicates that
it corresponds to Shubnikov-de Haas (SdH) oscillations. In fact, one can fit it to a sin-
gle Lifshitz-Kosevich oscillatory term containing a single field-dependent frequency
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Fig. 14.17 a The magnetic field dependence of Hall resistivity for [100], [110] and [111] field
directions at T = 0.5K, reprinted from [40] with permission from the American Physical Society. b
The temperature dependence of (top) FC and ZFCmagnetic susceptibility (χ) and Hall conductivity
(σH), (bottom) the zero-field Hall conductivity and magnetization (M), reprinted from [7] with
permission from Nature. c The SdH signal, reprinted from [41] with permission from the American
Physical Society

(dotted line) implying that the associated Fermi-surface cross-sectional area is field-
dependent. This probably results from the effect of the Zeeman splitting on a very
small Fermi-surface whose frequency F < 10T at low-fields, increases up to∼ 22 T
at higher fields. As seen in Fig. 14.17c, the oscillations are still very well-defined at
much higher temperatures. The temperature dependence of their amplitude indicates
quite light effective masses which are also field-dependent, see inset of Fig. 14.17c.
The oscillations are seen only for fields applied along the [111]-direction and above
Bc where the 3-in 1-out spin-configuration becomes dominant. This indicates that
the field-induced change, from a state containing all possible degenerate 2-in 2-out
spin configurations to a state dominated by a uniform 3-in 1-out spin configuration,
can actually lead to the reconstruction of the Fermi surface.
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Chapter 15
Artificial Spin Ice: Beyond Pyrochlores
and Magnetism

Gia-Wei Chern

Abstract Artificial spin ices [1–4] have raised considerable interest for its techno-
logical potentials, and as a tailorable medium to investigate collective phenomena in
a materials-by-design approach. These metamaterials are made of frustrated arrays
of interacting single-domain ferromagnetic nano-islands of about 100nm size [5].
Figure15.1 shows the two most representative artificial spin ices, the square [6] and
honeycomb [7, 8] arrays; both have been realized experimentally. In this chapter, we
review the thermodynamic behaviors and nonequilibrium dynamics of these mag-
netic nano-arrays from the theoretical point of view. A special focus is the novel
emergent phases and phenomena that originate from the magnetic charge degrees of
freedom in these metamaterials. Finally, we also discuss recent theoretical propos-
als of extending ice physics to other artificial systems such as colloidal particles in
optical trap arrays and cold atoms in optical lattices.

15.1 Artificial Spin Ice: Basic Energetics and Dynamics

Spin ice materials are essentially frustrated Ising magnets. While the Ising nature of
pyrochlore spin-ice compounds such as Dy2Ti2O7 and Ho2Ti2O7 is due to a strong
easy-axis spin anisotropy, the effective Ising variables in artificial spin ice result
from the largemagnetostatic shape anisotropy of the nano-islands. Themagnetostatic
energy is minimized when the moments align with the long axis of the islands, giving
rise to two equilibrium state specified by a Ising variable σ = ±1. The two Ising
states of a nano-island are separated by a large energy barrier. Consequently, each
Ising configuration {σi } represents a metastable local energy minimum of the array.
Transitions between different Ising configurations, on the other hand, are governed
by complex magnetization dynamics of individual islands; this process involves the
creation and subsequent annihilation of domain walls and other topological defects.
A complete description of the magnetic nano-array is given by the magnetization
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Fig. 15.1 Artificial spin ices as magnetic metamaterials. a square and b honeycomb arrays of
single-domain ferromagnetic islands. The centers of the nano-islands form a checkerboard and a
kagome lattices for arrays shown in (a) and (b), respectively. The arrows indicate themagnetizations
of individual islands. The configuration in a is a generic spin ice state in square array, in which
every four-leg vertex has two spins pointing in and two pointing out. A generic kagome ice-I state
is shown in b, where every vertex is either in a 2-in-1-out or a 1-in-2-out configurations

fieldmi (r, t) of each island or element. In some experimental realizations, the ends
of the islands are joined together, giving rise to a connected nano-wire network.

Let the magnetization of the i-th nano-island be mi (r), the Hamiltonian of the
magnetic array is

H = Aex

∑

i

∫

Ωi

|∇ mi |2 dr − μ0

2

∑

i, j

∫

Ωi

mi · h j dr, (15.1)

where Ωi is the domain of the i th island, and the demagnetizing field hi (r) is related
to the magnetization through Maxwell’s equations,

∇ × hi = 0, ∇ · (hi + mi ) = 0. (15.2)

The hi can be viewed as field generated by magnetic charge density ρi (r) =
−∇ · mi . The total magnetic field is given by H = ∑

i hi , and the total magneti-
zation M = ∑

i mi . The first term in (15.1) comes from the microscopic exchange
interaction, while the second term is the magnetostatic energy (μ0/2)

∫ |H|2dr =
−(μ0/2)

∫
M · H dr in the absence of external current [9]. Here we have neglected

magnetocrystalline anisotropy energy, which is a reasonable approximation for most
materials used in the nano-arrays.

The dominant energy in (15.1) is the self-coupling term (i = j) of the magne-
tostatic energy. This term favors magnetization pointing along the long axis of the
island:

mi (r) ≈ m0 σi êi , (15.3)
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wherem0 is the equilibriummagnetization, êi is a unit vector pointing along the long
axis of the island, and σi = ±1 is an Ising variable indicating the two possible orien-
tations. The uniform magnetization described in (15.3) also minimizes the exchange
interaction, the first term in (15.1). The magnetic state of the nano-array is then spec-
ified by a collection of Ising variables {σi }. The effective interactions between these
Ising variables is given by the magnetostatic couplings between neighboring islands,
the i �= j terms in (15.1).

Assuming uniform magnetization for each island, the demagnetizing field hi can
be approximated by a dipolar field, and the interaction energy of the magnetic array
becomes:

Hdipole = μ0m2
0 A

2

8π

∑

i �= j

∫ ∫
d�i d� j

(êi · ê j ) − 3(êi · r̂i j )(ê j · r̂i j )
|ri − r j |3 σi σ j , (15.4)

where A is the cross section of the island, �i measures the distance along the island,
ri = r(�i ) is the position of the line element d�i , and r̂i j = (ri − r j )/|ri − r j |. This
Ising model is used to investigate large-scale thermodynamic behaviors of artificial
spin ices, to be discussed below.

Magnetic charges as emergent degrees of freedom play an important role in
describing the static as well as dynamic properties of spin ice materials [10, 11].
For artificial spin-ice arrays, the magnetostatic energy can also be expressed as the
Coulomb interaction of magnetic charges with bulk density ρ = −∇ · M and sur-
face density ρs = M · n̂. The magnetostatic energy is minimized when there are
no magnetic charges and H = 0. This minimum charge condition leads to the ice
rules in artificial spin ice. For a nano-island with uniform magnetization, the surface
charges at the two ends of the island are the main source of magnetic charge. A uni-
formlymagnetized island can be approximated by a dumbbell with a pair ofmagnetic
monopoles with charge ±q located at its two ends [11]. Here q = ∫

ρs dS = m0A.
One can then assign a magnetic charge to each vertex as the sum of the monopole
charges joining at the vertex, i.e. Qα = ∑

i∈α qi for vertex α. For connected nano-
wire network [8], the vertex as junction of the nano-wires has an internal magne-
tization structure. Unlike isolated islands, most of the charge at these connected
junctions come from the bulk charge ρ = −∇ · M. Its total charge is the volume
integral Q = ∫

ρ dV = − ∮
M · n̂d A, which can be converted into surface integrals

over the island cross sections; its value again is quantized to multiples of q = m0A.
Examples of dumbbell representations for spin ice are shown in Fig. 15.11.

For a four-legged vertex in a square array, the total charge can be Q = 0, ±2q,
or ±4q; see Fig. 15.2a. The minimum charge Q = 0 condition leads to the two-in-
two-out ice rules. The vertices in a honeycomb lattice, Fig. 15.1b, have three legs and
always have a finite magnetic charge Q = ±q or ±3q. The condition of minimum
charge gives rise to a different set of two-in-one-out/one-in-two-out pseudo-ice rules.

The magnetic charge can also be expressed in terms of Ising variables. As both
square and honeycomb lattices are bipartite, we define the vector êi on each link as
pointing from sublattice B to A. The magnetic charge of vertex α is then given by
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Fig. 15.2 Types of vertices in artificial spin ices. a four-legged vertices have 16 possible moment
configurations, which are classified into four symmetry distinct types. The total magnetic charge
Q = 0 for type-I and II vertices (2-in-2-out), Q = ±2q for type-III (3-in-1-out or 1-in-3-out), and
Q = ±4q for type-IV (4-in or 4-out) b the 8 possible three-legged vertices separate into two types
of different symmetries. There is always a nonzero charge in a three-legged vertex: Q = ±q for
type-I’ (2-in-1-out or 1-in-2-out), and Q = ±3q for type-II’ (3-in or 3-out). c The four different
types of boxes with a height offset h between pairs of parallel moments

Qα = ±q
∑

i∈α σi , where + (−) sign is used for sublattices A (B). In the dumbbell
approximation, the magnetostatic energy becomes

Hdumbbell =
∑

α

Q2
α

2C
+ μ0

8π

∑

α �=β

QαQβ

|rα − rβ | , (15.5)

where C ∼ d/μ0 is an effective capacitance for the self-energy of individual vertex,
and d is the length scale of a vertex junction. The above Hamiltonian neglects higher-
order multipole interactions that are weak and fall off quickly with the distance;
these terms are responsible for the long-range ordering of magnetic moments at low
temperatures. Note that the dominant Q2

α term is equivalent to an antiferromagnetic
nearest-neighbor (NN) Ising ice model

Hice = J
∑

〈i j〉
σiσ j , (15.6)

on the checkerboard and kagome lattices for the two array geometries; here J = 1/C
is the effective exchange interaction. Minimization ofHice gives rise to the ice rules,
whereas the Coulomb interaction, second term in Hdumbbell, is the source of novel
emergent phenomena associated with magnetic charges to be discussed below.

In terms of the mesoscopic Ising degrees of freedom, the dynamics of artificial
spin ice is governed by flipping of the Ising variables σi → −σi . Microscopically,
magnetization reversal in a nano-island is a complex process involving the nucle-
ation of domain walls, and their subsequent propagation and annihilation [12, 13];
see Fig. 15.3 for the case of a connected honeycomb array. The process is usually
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Fig. 15.3 Magnetization reversal in artificial spin ice. a a domain wall carrying a magnetic charge
−2q is emitted at one end of the link, propagates along the field direction, and gets absorbed by
the vertex at the other end. b When the domain wall hits a vertex with like magnetic charge, it
creates a high-energy −3q vertex which quickly emits a new domain wall into an adjacent link. c
Micromagnetic simulation using the OOMMF [24] simulator of the reversal of a magnetic island
showing a propagating vortex-type head-to-head domain wall, reproduced from [23] by permission
of IOP Publishing. CC BY-NC-SA. © Deutsche Physikalische Gesellschaft

triggered when the total magnetic field at the nano-island, including external and
dipolar fields, exceeds a threshold. For connected nano-islands, the magnetization
reversal begins when a head-to-head domain wall is emitted at one of the nano-wire
vertices. This process conserves the magnetic charge: the emission of a domain wall
of charge ±2q converts the charge of the vertex from ±q to ∓q. The Zeeman force
fZ = ±2qμ0H then pushes the domain wall to the opposite end of the island; see
Figs. 15.3a, b. For disconnected arrays, the reversal process might start inside the
bulk of the island. For example, edge roughness of the island is known to influence
the coercive field by creating nucleation sites [14]. In that case, a pair of domain
walls enclosing an inverted domain is nucleated and then pulled away by the Zee-
man force. However, micromagnetic simulations show that the nucleation of domain
walls mostly starts at the ends of disconnected island; the nucleation is assisted by
the curling of magnetization at the ends [15].

Althoughdomainwalls aremesoscopic one-dimensional objects along awire [16],
microscopically they have complex internal structures. Depending on the width w
of the island, the domain wall has a “transverse” or “vortex” structure for small and
large w, respectively [17]. In fact, it is shown that domain walls in nanomagnets
are composed of elementary topological defects of coplanar spins [18, 19]. These
are the ordinary vortices in the bulk, and a novel type of edge defects carrying
half vorticity [18]. For connected honeycomb arrays, every Q = ±q vertex junction
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contains exactly one such half-vortex. Themagnetization dynamics of the nano array
can be understood and controlled by the interplay of topological defects bound to
domain walls and those innate to the array junctions [20].

A microscopic description of the magnetization process is given by the Landau-
Lifshitz-Gilbert (LLG) equation [21, 22]

∂mi (r, t)
∂t

= −γ mi ×
(

∂H

∂mi
+ Hext

)
+ α

m0
mi × ∂mi

∂t
, (15.7)

where γ = gμB/� is the gyromagnetic ratio, α is a damping coefficient, Heff is the
external magnetic field, and ∂H /∂mi withH given by (15.1) is an effective mag-
netic field originating from the local exchange interaction and the long-range demag-
netizing field. Figure15.3c shows the LLG simulations of magnetization reversal in
a honeycomb nanowire [23]. In this case, the reversal is triggered by a vortex-type
domain wall.

In micromagnetic simulations of the artificial ice arrays [15], a discretized LLG
equation is solved using either a finite-element or a finite-difference scheme [24,
25]. Because of the long-range magnetostatic interaction, such calculation is too
costly for large scale simulations and further simplifications are usually required.
One simplification is to assume that the magnetization is uniform in individual
island [26, 27], i.e. mi (r) = μi/V , where μi is the island magnetization, and V
is the volume. In this approach, the magnetostatic energy can be expressed as:
H = (μ0/8π)

∑
i, j μi · N i j · μ j , where N i j is the magnetometric tensor and is

given by the convolution of the shape-shape correlation function and the dipolar
interaction tensor [28]. The effects of island shape and finite size are included in the
magnetometric tensor. Approximating the islands as structureless needles, the mag-
netostatic energy reduces to the dipolar form similar to (15.4). Further simplification
is to approximate the shape anisotropy, the N i i term, by an effective single-spin
anisotropy −D1(μi · êi )2 + D2(μi · ẑ)2, where D1,2 ∼ −μ0/4πd3 originates from
magnetostatic energy [29, 30]. However, it is important to note that magnetization
reversal in this approach is through the rotation of the Heisenberg-like spin μi ,
which neglects the microscopic details such as domain wall nucleation and propa-
gation. On the other hand, they could be applied to simulating magnetic nano-arrays
consisting of circular islands, which have been experimentally realized as artificial
XY-magnets [31, 32].

Dynamics based on the Ising Hamiltonian (15.4) is very efficient for large-scale
simulations, but is mostly phenomenological. For example, single-spin dynamics
based on Metropolis or Glauber type updates is employed in the nonequillibrium
studies of pyrochlore spin ice [33]. Connections with microscopic properties, such
as transition rates, can be achieved through the kinetic Monte Carlo method [34, 35].
This approach not only introduces a time scale into the Monte Carlo simulations, but
also bridges the huge difference between the atomistic and mesoscopic time scales.
Kinetic Monte Carlo simulations have been applied to studying the in and out-of
equilibrium dynamics of artificial spin ices [36–40]. On the other hand, artificial
ice arrays far from equilibrium are governed by pure relaxation dynamics, in which
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the mesoscopic Ising variables always evolve toward a nearby local minimum in
energy landscape [13, 41]. Phenomenological vertex population dynamics are also
developed for pyrochlore [33] as well as for artificial spin ices [41].

15.2 Thermodynamic Behaviors

In earlier experimental realizations of artificial spin ice, thermal fluctuations are
virtually absent in the nano-arrays: reversing the magnetization of a nano-island
requires overcoming an energy barrier of a few million kelvins [6]. Most studies of
artificial spin ice treated it as a granular material activated by alternating magnetic
field [42, 43]. Such approaches have yielded frozen disordered states with only
short-range order. It has been shown that such athermal states can be described by an
effective temperature [44, 45]. An indirect attempt of producing thermalized artificial
spin ice is to anneal the nano-arrays as they are initially formed [46–49]. Recent
advances in fabrication and control of lithographically created arraysmake it possible
to realize thermally fluctuating artificial spin ice down to certain temperatures [50–
53]. In light of these recent experimental developments, we discuss the similarities
and differences in the thermodynamic behaviors of the square and honeycomb ice
arrays.

A full micromagnetic thermodynamic simulation of artificial spin ice can be
done using the stochastic LLG formulation [54], sometimes also called the Landau-
Lifshitz-Bloch (LLB) equation [55]. In this approach, several randomfields are incor-
porated into the LLG equation (15.7) to represent the effects of thermal fluctuations;
themethod can even be applied to simulate magnetic arrays that are close to the Curie
temperature [56]. The random fields are uncorrelated both spatially and temporally
and have standard deviations proportional to

√
T/V , where T is the temperature

and V is the island volume. This is consistent with the fact that the blocking tem-
perature of a super-paramagnetic nano-island is proportional to its volume [57]. The
LLB method has been used to investigate the growth of a square ice array containing
as many as 40 × 40 islands in [26]. For simplicity, the islands are assumed to be
uniformly magnetized with mi = μi/V , as discussed above, and the magnetomet-
ric tensors N i j are computed assuming ellipsoidal shaped islands [26]. Figure15.4a
shows that the dipolar energy of the annealed array is lowered with increasing thick-
ness, and the final state is dominated by type-I vertices. The simulations also find that
arrays with slow growth rates show the highest degrees of antiferromagnetic ordering
shown in Fig. 15.5a, which is the ground state of coplanar square ice, to be discussed
below. These results are consistent with the experimental observations [46]. A similar
approach has also been used to study the thermodynamic properties and hysteresis
in square ice model [27, 29, 30].

For large scale thermodynamic simulations of artificial spin ice, Monte Carlo
method based on the effective Ising Hamiltonian (15.4) is much more efficient,
while at the same time giving an accurate description of the low temperature ice and
ordered phases. We first discuss Monte Carlo studies on the thermodynamic behav-
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Fig. 15.4 LLB simulations of artificial spin ices. aDipolar energy of the square array as thickness d
increases from0.1nm to 5nmwith a growth rate 3.125×10−3 nm/ns. The inset shows the population
of the four types of vertices vs island thickness. b A snapshot of array magnetizations when d = 5
nm [26]. The two grey-shaded areas correspond to the two-fold degenerate antiferromagnetic ground
states shown in Fig. 15.5a; they are composed of type-I vertices. The colors of islands on the domain
boundaries indicate the dominant magnetization direction: yellow: +x , magenta: −x blue: +y, and
green: −y. Figures reprinted from [26] with permission from AIP Publishing

iors of square ice. One important question is whether there exists an ice regimewhere
configurations obeying the ice rules, or the minimum charge conditions, are over-
whelmingly presentwith approximately equalweights.Contrary to the 3Dpyrochlore
spin ice, this is not the case because the two types of zero charge vertex (I and II)
in the square array are inequivalent in symmetry and have different energies. This
inequivalence results from the fact that, unlike the case of a tetrahedron, the six bonds
between the four coplanar islands in a vertex are not all the same: the interaction J1,⊥
between orthogonal pairs is stronger than that J1,‖ between parallel pairs. However,
this can be remedied by introducing a height displacement h between the vertical
and horizontal islands [58]; see Fig. 15.2c.

The required displacement depends on the geometrical parameters such as length �

of the island and the lattice constant a. In the so-called point-dipole limit (�/a → 0),
the two interactions are equivalent J1,‖ = J1,⊥ when hc/a = √

(3/8)2/5 − 1/2 ≈
0.419. Taking into account the finite extension of the islands lowers the required
height offset. For h ≤ hc, we have J1,⊥ > J1,‖ and the ground state is an antifer-
romagnetic order with staggered arrangement of the two type-I vertices related by
time-reversal symmetry, shown in Fig. 15.5a. On the other hand, for large offset
h > hc, the type-II vertices have the lowest energy and the ground state is a ferro-
magnetic ordering of type-II vertices; see Fig. 15.5b. A macroscopic degeneracy can
then be realized when the height offset h = hc, as demonstrated by recent experi-
ment [59]. In this special point h = hc, the square array realizes a two-dimensional
Coulomb phase with deconfined magnetic monopoles.

Another interesting limit is when � → a. The required height offset hc/a ∼√
2ε → 0, where ε ≡ (1 − �/a). Moreover, since interactions beyond J1 vanish

identically in this limit [58], the low temperature phase of the array corresponds
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Fig. 15.5 Ordered states of artifical square ice. a Antiferromagnetic order consisting of staggered
type-I vertices. b Ferromagnetic order of type-II vertices. c Entropy density S and heat capacity
C as functions of temperature obtained from Monte Carlo simulations for square ice arrays [58].
The temperature is measured in units of J ≡ J1,⊥. The ideal Ising-ice limit corresponds to ε =
1 − �/a → 0, which is equivalent to the exactly solvable six-vertex model [60]. For parameter
�/a = 0.7, an intermediate ice regime exists for T < 0.42J . The critical height offset hc ≈ 0.207a.
A phase transition into a ordered phase occurs at T ≈ 0.1J ; the order is of antiferromagnetic
(ferromagnetic) type for h/a = 0.205 (0.207). Figures reprinted from [58] with permission from
the American Physical Society.

to an ideal Ising ice, or the symmetric six-vertex model [60, 61]. In this limit, there
exists an extensive ground-state degeneracy which manifests itself in the appear-
ance of a entropy-density plateau at Sice/kB = 3

4 ln
4
3 [60] as T → 0; see Fig. 15.5c.

However, it should be noted that in this ideal ε → 0 limit the effects of the island
internal structure and disorder will start to play a role. Numerical simulations, on the
other hand, show that a finite ice phase is possible even for finite ε. As demonstrated
in Fig. 15.5c for a square array with �/a = 0.7, an intermediate ice regime (blue
shaded area) is sandwiched between the high-temperature paramagnetic phase and
a low-T ordered phase [58]. A generic ice state with disordered spins is shown in
Fig. 15.1a. Experimentally, a quasi-ice regime has been observed both in athermal [6]
and equilibrated square arrays without height offset [50].

As discussed above, the appearance of an ordered phase at low T is caused by
the inequivalence between type-I and II vertices when h �= hc. Antiferromagnetic
ordering shown in Fig. 15.5a, which is the ground state when h < hc, has been
achieved in as-grown arrays [46] as well as the thermalized ones [50]. The selection
of the ground state, staggered type-I versus uniform type-II, is completely due to
the energetics of vertices, and is not affected by the long-range part of the dipolar
interactions. This implies that the nature of the ordering transition can be described
by a simplified vertex model, which includes only nearest-neighbor interactions.
Indeed, Monte Carlo simulations of a 16-vertex model (with four different types
of vertices) [62] agree well with the experimental result [47]. Extensive numerical
simulations further show that the ordering into the staggered type-I state is a second-
order phase transition [62].Although this ground state is described by a Z2 Ising order
parameter, the ordering transition in square ice seems to belong to a universality class
different from that of 2D Ising model [63]. The exact nature of the phase transition
remains to be clarified.
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Fig. 15.6 Multilayer construction of 3D artificial spin ice. a A three-dimensional network built
from the four types of rectangular boxes, or ‘vertices’ shown in Fig. 15.2c. The resultant spin
lattice is equivalent to the 3D pyrochlore spin ice. b Schematic diagram showing the arrangement
of magnetic nano-islands in the multilayer structure. Figures reprinted from [64] with permission
from AIP Publishing

Introduction of the height displacement h also provides an approach to design
a 3D magnetic nano-array which is topologically equivalent to the pyrochlore spin
ice [64]. The basic frustration unit in this multilayer construction is a rectangular
box containing four nano-islands as shown in Fig. 15.2c; these are the analogs of
tetrahedra in pyrochlore lattice. Arranging these boxes into a corner-sharing network
gives rise to a multilayer structure shown in Fig. 15.6a, which can be viewed as a
flattened pyrochlore structure. In each layer, parallel nano-islands form a rectangular
lattice with the long and short lattice constants being 2a and a, respectively; the
orientation of the islands are aligned with the short axis. The arrays are rotated
by 90◦ from one layer to the next. In addition, the arrays in every other layer are
shifted by a along the long axis. Interestingly, the projection of this 3D structure
onto the xy plane is exactly the same as a square ice. The approach of building
a 3D spin ice by stacking 2D arrays takes advantage of the well developed planar
nano-lithography technology. Similar to the square ice array, by properly choosing
the interlayer distance h, an extended ice regime at finite temperatures is realized in
this 3D structure [64].

We next turn to the thermodynamic phases of honeycomb arrays. As mentioned
above, such arrays are realizations of the kagome spin ice, as the centers of the
nano-islands form a kagome lattice. The kagome spin ice is first studied in [65] as a
frustrated statistical model. It is found that with only nearest-neighbor interactions,
kagome ice retains an extensive ground state degeneracy corresponding to an entropy
density SI/kB ≈ 0.501 [65]. In this so-called kagome ice-I manifold, each vertex has
either two spins coming in and one going out, or vice versa. The huge degeneracy
is lifted upon the introduction of further neighbor couplings [65, 66]. In magnetic
honeycomb arrays, the kagome ice rules correspond to theminimumcharge condition
Q = ±q at every vertex; a generic disordered ice-I state is shown in Fig. 15.1b. The
ice-I phase has been observed experimentally in athermal [7, 8] as well as fully
equilibrated kagome ice arrays [50].

The fact that there are uncompensatedmagnetic charges at every vertex of the hon-
eycomb array introduces new features that are absent in square ice. The Coulomb
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Fig. 15.7 Ordered phases of artificial honeycomb array. a An Ising microstate in the ice II phase
in which emergent magnetic charge degrees of freedom develop a NaCl-type order, while spins
remain disordered. The red and blue dots denote vertices with±q charge, respectively. bOne of the
six-fold degenerate ground states exhibiting the

√
3 × √

3 spin order. c Temperature dependence
of entropy density S and heat capacity C obtained from Monte Carlo simulations for honeycomb
arrays with parameter ε = 1 − �/a = 0.05. Figures reprinted from [67] with permission from the
American Physical Society

interaction (15.5) among these residual charges gives rise to a novel phase in which
the residual ±q charges crystalize into a NaCl-type order [67, 68]; see Fig. 15.7a.
This charge-ordered kagome ice, also called the ice-II phase, is closely related to
spins in the kagome plane of the pyrochlore spin ice when subjecting to a 〈111〉
magnetic field [69, 70]. While the ice-II phase is ordered in terms of charges, it is
still consistent with an exponentially large number of Ising configurations; the degen-
eracy of the ice-II manifold corresponds to an entropy density SII/kB ≈ 0.108 [71].
These charge-ordered ice states are exactly degenerate in the dumbbell model (15.5).
The degeneracy is lifted by higher-order corrections from the original dipolar inter-
actions (15.4). The ice-II phase is quite robust; charge ordering has been observed
experimentally even in non-thermal states generated by alternating field [72, 73].
Incipient crystallization of magnetic charges has been observed in thermalized hon-
eycomb arrays [50].

The above energy hierarchy suggests a sequence of thermodynamic phases
demonstrated in Fig. 15.7c. At high temperatures, uncorrelated Ising spins have an
entropy density S/kB → ln 2 = 0.693. As the array cools down from the paramag-
netic state, it gradually enters the ice-I phase; the entropy curve exhibits a plateau at
SI. At a lower temperature, the magnet undergoes a phase transition into the charge-
ordered ice-II phase. Since the order parameter of the staggered NaCl pattern has a
discrete Z2 symmetry, the transition belongs to the 2D Ising universality class [68].
The ice-II phase manifests itself in the appearance of a second entropy plateau at SII.
Finally, at an even lower temperature, another phase transition of the 2D Potts univer-
sality class [68] completely removes the residual entropy and selects a ground state
with

√
3 × √

3 spin order shown in Fig. 15.7b. Consistent with the fact that the most
favorable arrangement of a single hexagonal ring is for all island magnetizations to
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point head to tail [37, 43], the selected
√
3 × √

3 order maximizes the occurrence of
such motif. Thermal ordering of moments into the loop crystal in honeycomb arrays
remains an experimental challenge.

15.3 Disorder and Nonequilibrium Dynamics

Experimental realizations of artificial spin ice unavoidably introduce small variations
during the array fabrication process, leading to a statistical distribution of island
properties. Quenched disorder provides pinning and nucleation sites and strongly
affects the dissipative dynamics of themagnetic arrays. It is thus crucial to understand
the role of disorder in the nonequilibrium dynamics of artificial spin ice. A full
microscopic modeling of disorder based on the LLG equation is computationally too
expensive, and is infeasible for large-scale simulations. Models based on the Ising
Hamiltonian (15.4) again provide a practical approach to study disorder-induced
nonequilibrium phenomena in large lattices. In the relaxation dynamics formulation
of artificial ice arrays, mesoscopic Ising degrees of freedom move downhill in the
energy landscape until they come to rest at a local energy minimum.

As discussed above, each Ising configuration corresponds to a local minimum of
the spin-ice array. Different local minima are connected by flipping one ormore Ising
spins. Consequently, an important new energy scale for the dynamical process is the
energy barrier of magnetization reversal in individual islands. For effective Ising
model (15.4), this energy barrier is characterized by a coercive or switching field
Hc
i . More specifically, an Ising spin σi is flipped if the total local field, composed of

the external fieldHext and the dipolar field from all other islands, exceeds its coercive
field:

−
(
Hext +

∑

j �=i

h j

)
· êi > Hc

i . (15.8)

The energy released during the reversal is completely dissipated into the lattice. We
emphasize once again that flipping the Ising spin corresponds microscopically to the
nucleation, propagation, and subsequent absorption of domain walls as described in
Sect. 15.1. The quenched disorder manifests itself in the random distribution of the
coercive fields Hc

i . Although disorder is present also in the spin coupling constants,
its effect is usually smaller and, to some degree, can be absorbed into the disorder in
Hc [74, 78].

When the system is subject to a perturbing external field Hext, interesting dynam-
ical behaviors occur when Hext ∼ H̄ c, where H̄ c is the average switching field.
However, the nature of the magnetization dynamics, whether it is mostly single-
spin process or multi-spin collective behavior, depends on the relative scales of
ΔHc and Ed , where ΔHc is a characteristic width of the random distribution and
Ed = μ0m2

0V
2/4πa3 is the energy scale of dipolar interactions.
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An illuminating example of nonequilibrium dynamics is the rotating-field driven
relaxation of square spin ice [41, 74]. In this setup, a strong diagonal field first polar-
izes the system to the polarized state consisting entirely of one particular type-II ver-
tex. Thefield is then reduced to a hold value Hh and the sample is rotated in-plane [74].
The relaxation dynamics formulation (15.8) has been applied to study this nonequi-
librium process [41, 74]; the results agree well with the experiments. Figure15.8b,
c show the average fractional vertex populations versus the hold field Hh obtained
from experiments and simulations, respectively. For Hh smaller than a threshold, the
field does not affect the type-II state. Above this threshold, type-I vertices are gener-
ated by the field; its population shows a non-monotonic behavior with a maximum
at Hh ≈ 520 Oe experimentally. This non-monotonic behavior can be understood as
follows. For small field, chains of reversed moments are generated in a background
of polarized type-II vertices. These chains are similar to those observed in the mag-
netization reversal experiments driven by a dc field [76, 77], to be discussed below.
As Hh further increases, small domain of type-I ground states start to form. Near
the maximum of about 50 % type-I vertices, the net magnetization approaches zero
and all four type-II vertices have similar populations. Finally, further increasing Hh

rapidly suppresses the staggered type-I order. As the interaction is dominated by the
Zeeman coupling to the type-II dipoles, most of the spins simply rotate with the field.

The simulations shown in Fig. 15.8c assume an average H̄c = 11.25Hd and a
rather large standard deviation ΔHc ≈ 1.875Hd , where Hd = μ0m0V/4πa3 is a
characteristic dipolar field. The large ΔHc indicates that the system is in the strong
disorder regime [78], which also explains the irrelevance of the boundary effects [74].
For athermal artificial arrays driven by magneto-agitation, quenched disorder plays
a crucial role by increasing the dynamical pathways in phase space. In this sense,
the effects of quenched disorder is similar to thermal fluctuations in equilibrium
systems; both provide links between nearly degenerate spin configurations [79].
The effect of disorder on the connectedness of the configurational space can be
quantitatively investigated using the network approach [80]. For a given magneto-

Fig. 15.8 Relaxation dynamics driven by rotating field. a Schematic diagram of the experimental
setup. b The vertex population vs hold field Hh obtained from experiments [74]. c Numerical
simulations of the same process [41, 74]. Open and filled symbols represent data obtained from
arrays with open and closed edges, respectively. Figures reprinted from [74] with permission from
the American Physical Society
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agitation, the network is defined as a directed graph (or ‘adjacency matrix’) in the
configurational space whose dimension is 2N for an array of N islands. A directed
link from Ising state A to B is introduced to the network if A can evolve to B under the
driving field [81]. Compared with the perfect array, quenched disorder “rewires” the
network by significantly increasing the number of links. One important consequence
of the increased links is the reversibility of dynamics. This property is related to the
concept of strongly connected components in networks [80]. In a directed network,
if two configurations A and B are in the same strongly connected component, there
exists a path from A to B and vice versa. It is found that the presence of disorder
increases both the number and size of such components in the network [79]. The
increased links thus can help the system reach lower-energy states through field-
driven dynamics. Overall, the network picture provides a framework to understand
and control quenched disorder in artificial spin ices.

Quenched disorder also significantly affects the hysteresis curves and magneti-
zation reversal of artificial spin ice [82–86]. Micromagnetic simulations using the
LLG equation (15.7) is employed to study demagnetization process of a small-size
square array consisting of 144 islands [15]. The LLG simulation clearly identifies
that the magnetization reversal is assisted by the proliferation of type-III vertices, or
monopole defects to be discussed in the next section. This result is corroborated by
real-space observations in both square and honeycomb arrays [15, 76, 77, 84, 85].

A systematic study of the disorder effects onmagnetization reversal of the ice array
requires large-scale simulations, which can be achieved, again, using the relaxation
dynamics (15.8) for effective Ising models. In these simulations, a strong external
field initially polarizes the islands along the diagonal direction in square array, and
along one of the island long axis in the honeycomb case. The array is then subject
to a reverse field Hr in the opposite direction, with gradually increasing magnitude.
Extensive relaxation dynamics simulations on large lattices containing as many as
N ∼ 106 spins have been performed for the two representative spin-ice arrays [87]. It
is found that both square and kagome spin ices exhibit disorder-induced nonequilib-
rium phase transitions, with power-law avalanche distributions at the critical disorder
level [87, 88]. The phenomena of driven criticality far from equilibrium are observed
in many first-order transitions, such as the famous Barkhausen noise [89] in the hys-
teresis of magnetic materials. The random field Isingmodel [90] probably is the most
studied system in this regard.

In both random field Ising model and artificial spin ices, the reconfiguration of
the spin arrangements during magnetization reversal occurs in the form of avalanche
events in the vicinity of the critical switching field when Hr ∼ Hc (the average
coercive field). The avalanche dynamics exhibit three different behaviors depending
on the level of disorder. The weak disorder regime is dominated by large clusters
extending the whole system, while many subsystem size clusters occur in the strong
disorder regime; see Fig. 15.9. A critical disorder level separates these two regimes.
Interestingly, the square and honeycomb arrays exhibit rather different geometries
of the avalanche clusters, as demonstrated in Fig. 15.9: the avalanche clusters mostly
propagate along the diagonal direction in the square ice array, whereas the clusters
branch out and form fractal-like structures in kagome ice [87].



15 Artificial Spin Ice: Beyond Pyrochlores and Magnetism 433

Fig. 15.9 Snapshots of spin avalanches during magnetization reversal. The white (green) area
denotes the non-inverted (inverted) spins, while the blue area indicate instances of avalanche clus-
ters. The disorder strength is characterized by a dimensionless parameter r ≡ ΔHc/H̄c. The three
snapshots of the square ice correspond to a weak r = 0.012, b near critical r = 0.018, and c strong
disorder r = 0.023. Similarly for kagome ice, the disorder levels at the three distinct regimes are
r = d 0.06, e 0.10, and f 0.12. Figures from [87]

In square ice array, an avalanche event starts with the flip of a single spin at an
island of lowest coercive field. In the monopole picture to be discussed in Sect. 15.4,
this single spin flip corresponds to the creation ofmonopole pairs. The twomonopoles
carrying opposite charges are then pulled away by the Zeeman force until they are
stopped by links of large Hc. The twomonopoles are connected by aDirac string [75]
running roughly parallel to the diagonal direction. It is worth noting that Dirac strings
consisting of type-I vertices are locally stable object since they are ground states
of the dipolar interactions. Large-scale simulations find avalanche clusters consist-
ing of inverted domains with edges roughly parallel to the diagonal direction; see
Fig. 15.9a–c. This result indicates that a Dirac string (of inverted spins) tends to
induce neighboring strings, and the avalanche propagation is driven by the expan-
sion of domain walls.

The avalanche size distribution D(s) at varying level of disorder is shown in
Fig. 15.10c, here s is the size of the avalanche cluster. The parameter r ≡ ΔHc/H̄c

measures the level of quenched disorder in the array, and a Gaussian distribution of
the island switching field Hc

i is assumed in the simulations. The distribution shows
two distinct behaviors. For weak disorder, a peak in D(s) at the largest cluster sizes
indicates that the avalanches are dominated by large system-wide events, correspond-
ing to the so-called super-critical regime [90]. The resultant magnetization curves
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Fig. 15.10 Disorder induced criticality in artificial spin ice. a and b show the normalized magne-
tization versus applied field at various disorder strengths r for square and kagome ice, respectively.
The avalanche size distribution D(s) during magnetization reversal for the two types of ice arrays
are shown in c and d. For square ice, the different curves in c correspond to r = 0.011, 0.012,
0.013, 0.014, 0.015, 0.016, 0.022, and 0.030 (from top to bottom). For avalanches in kagome ice,
the difference curves in d correspond to r = 0.02, 0.03, 0.05, 0.07, 0.09, 0.1, 0.105, 0.115, and
0.135 (top to bottom). In both cases, the solid curves indicate super-critical regime of avalanches,
while the dotted curves belong to the sub-critical regime. The dashed lines indicate the power-law
behavior D(s) ∼ s−τ near the critical disorder. Figures from [87].

M(Hr ) shown in Fig. 15.10a are characterized by a pronounced jump in M . For
arrays with strong disorder, the large avalanches are cut off at a characteristic size sm
that decreases with increasing r . Close to a critical value of rc ≈ 0.0145, the distribu-
tion shows a power-law behavior D(s) ∼ s−τ , implying avalanches of all sizes occur
during the reversal. Interestingly, the numerically obtained exponent τ ≈ 1.31 and
further scaling analysis [87] are consistent with the scenario of propagating domain
walls separating two polarized states [91].

Avalanche clusters in kagome ice are also triggered by single-spin flip or the
creation of monopole pairs [84, 85, 92, 93]. In stark contrast to the square-ice case,
the propagation of the clusters is dominated bymany branching processes as shown in
Fig. 15.9d–f. Such tree-like avalanche clusters are also observed experimentally [93].
Moreover, while the Dirac string in square ice can propagate in both directions
along the diagonal, the tree-like cluster in kagome mainly propagates along one
direction. The high degree of branching and strong unidirectional growth of the
cluster suggest that avalanches in kagome ice belong to the universality class of
directed percolation [94]. The avalanche size distribution shown in Fig. 15.10d also
shows super- and sub-critical behaviors, similar to the square ice case, at weak and
strong disorders, respectively. Interestingly, avalanches in the super-critical regime
exhibits an unusual crossover behavior: the exponents of the power-law part s−τ
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of D(s) gradually changes from τ = 1.5 at very small r � 0.03 to τ = 2 at the
critical disorder rc ≈ 0.107. This crossover phenomenon might reflect the reduced
dimensionality (from 2D to quasi-2D) of avalanche clusters with increasing r . The
exponent τ = 2 agrees very well with the experimental result [93]; it is suggested
that the exponent τ = 2 is a result of super-universality for certain classes of time-
directed avalanches [95].

Experiments on kagome ice composed of disconnected islands find dimensional
reduction phenomenon in magnetization reversal [85, 96]. In this scenario, the prop-
agation of the avalanches is mainly through the (opposite) movements of monopole
pairs connected by a Dirac string, similar to some of the square ice clusters. One
important consequence of this quasi-1D process is that the avalanche size distribution
has a exponential decay D(s) ∼ exp(−s/s0) [85, 96]. On the other hand, significant
branching of avalanche clusters and power-law distribution were observed in con-
nected honeycomb nano-wire networks [93]. Although these two different behaviors
could be attributed to the boundary effects of the sample, or the misalignment of the
field in the experiments, one intriguing explanation might have something to do with
the chiral nature of monopoles in disconnected arrays, as observed in micromagnetic
simulations [97]. The spontaneous chiral-symmetry breaking at the ±3q vertices
might disfavor branching process, and cause the string to grow in one particular
direction.

15.4 Elementary Excitations: Monopoles

Magnetic charges in spin ice are not only a useful bookkeeping tool for computing
energies, but also true dynamical variables describing low-energy collective phenom-
ena [10, 11]. For example, the ordering of magnetic charges in the kagome ice-II
phase discussed in Sect. 15.2 shows that they are emergent degrees of freedom that
interact with each other through the Coulomb law. The fact that magnetic charges
precisely capture the leading-order interactions in spin ice is best illustrated by the
dumbbell picture introduced in Sect. 15.1. Since the lowest-energy vertices in the
ice-rule obeying states have minimum charges, excited vertices in this background
carry an extra charge and behave as magnetic monopoles. Indeed, these excited ver-
tices are particle-like objects that can be driven by an applied field [10]. These excited
vertices or monopoles are also topological defects as they violate the ice rules and
must be created and annihilated in pairs. Figure15.11 shows examples of emergent
monopoles in the dumbbell picture for various spin ice lattices. In this Section, we
will discuss the monopole excitations in square and honeycomb arrays. In particular,
we show that artificial spin ices with mixed lattice coordination numbers contain
composite quasi-particles which can be viewed as monopole polarons.

Associated with monopole excitations is another topological defects called Dirac
strings [11]. Since magnetic monopoles in spin ice are not fundamental elemen-
tary particles, their charges are not quantized and a Dirac string connecting a pair of
monopoles is a visible object [75]. In the ice-rule states, a single-spin flip corresponds
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Fig. 15.11 Monopoles in artificial spin ice. a A pair of magnetic monopoles connected by a Dirac
string in a square ice array with height offset h < hc. The ground state in this case is a staggered
type-I order shown in Fig. 15.5a. These monopoles are called Nambu monopoles [108] because
there is a finite tension of the Dirac string that consists of the higher energy type-II vertices. b
A pair of ±3q monopoles connected by a tension-less Dirac string in an artificial kagome ice.
c Two monopole ‘molecules’ in artificial pentagonal ice. In this lattice, there are both 4-legged and
3-legged vertices. Emergent monopoles (defect vertices) live on the 4-legged vertices and interact
with the residual charges on the 3-legged vertices [112]. d Distribution of magnetic charges around
a Q = 2q monopole at x = 0 for two different temperatures. The extended and oscillatory charge
correlation suggest a polaron picture for the composite quasi-particle [112]. Reprinted from [112]
with permission from EPL

to the creation of a monopole pair. When the two monopoles are subsequently sep-
arated, a path of inverted spins constitute the visible Dirac string. This process also
demonstrate the fractionalization of dipoles into monopoles in spin ice. However,
whether the separation of the monopole pair is allowed energetically depends on
the tension of the Dirac string. In pyrochlore spin ice, these strings are tensionless
and the separated monopoles only interact through a power-law decaying Coulomb
potential [11]. In square ice, the inequivalence of the six 2-in-2-out vertices leads to
a unique ground state, whose ordering pattern is determined by the height offset h;
see Fig. 15.5. But more importantly, the Dirac string acquires a finite tension because
of this inequivalence. For example, for coplanar square ice (h = 0), the ground state
is a staggered arrangement of type-I vertices, and two monopoles are connected by a
string of type-II vertices [109, 110]; see Fig. 15.11a. The tension of the Dirac string is
τ ∼ εII − εI. The monopoles in square ice share several features with the monopole
particles proposed by Nambu [107]: the Dirac string in both cases are energetic and
is oriented [108]. In Nambu’s original theory for hadrons, the monopoles correspond
to quarks and the finite string tension is used to describe their confinement [107].
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Although magnetic monopoles in square ice with h �= hc are not true quasi-
particles because of the energetic Dirac strings, it is argued that the string tension
might be compensated by its configurational entropy above a critical temperature, and
the monopoles become deconfined thermally [111]. Another approach is to modify
the string tension through the height offset h [110] as discussed in Sect. 15.2. Detailed
numerical calculation shows that the tension diminishes as the offset approaches the
critical hc from both sides and for different string paths. The vanishing string tension
also results in a dramatic increase of thermally excited strings at finite temperatures,
as observed in Monte Carlo simulations [38].

Magnetic monopoles in kagome ice, on the other hand, are connected by tension-
less strings because of the exact degeneracy of the six minimum energy vertices. As
discussed in Sect. 15.2, there are uncompensated ±q charges at every vertex in the
ice phases of kagome because of its odd coordination number. In the ice-I phase,
monopole excitations refer to the type-II’ vertices carrying ±3q charges; an exam-
ple is shown in Fig. 15.11b. A new type of charge excitations occurs in the ice-II
phase of kagome. Recall that in this phase the residual ±q charges crystallize into a
NaCl-type order on the honeycomb lattice, say +q (−q) charges in sublattice A (B).
A misplaced charge, e.g. a −q vertex in sublattice A, is energy costly and represents
elementary defects in the ice-II states. Relative to the background staggered charges
in a ice-II state, these defects also carry a relative charge ±2q, and are sometimes
also called monopoles. In magnetization reversal of kagome ice array, both types of
monopoles (±3q vertices and charge defects) were observed [84, 85, 116–118].

A new collective phenomenon associated with monopoles and magnetic charges
is the composite quasi-particles in spin ices with mixed lattice coordinations [112].
This is illustrated in the so-called pentagonal spin ice, shown in Fig. 15.11c. The
pentagonal lattice is probably the simplest structure that combines the elementary
four- and three-legged vertices shown in Fig. 15.2. In the ice phase of this lattice, there
is no charges at the four-legged vertices, whereas uncompensated±q charges exist at
the 3-legged vertices. Elementary excitations are emergent monopoles carrying Q =
±2q at the z = 4 sites. These monopoles then attract a cloud of net opposite charges
through magnetic Coulomb interaction, forming an entity similar to the electron
polaron in crystalline lattice [113]. The unusual charge-charge correlation around
such a polaron is demonstrated in Fig. 15.11d obtained fromMonte Carlo simulations
on the dipolar pentagonal spin-ice [112]. At low temperatures, the strong correlation
between the center±2q and the two∓q neighbor charges resembles aH2Omolecule.
Although the pentagonal ice array has yet to be realized in experiments, similar
magnetic charge screening phenomenon has been observed in the shakti lattice [114],
to be discussed in Sect. 15.6, and dice lattice [115], both of which have mixed
coordination vertices.



438 G.-W. Chern

15.5 Elementary Excitations: Magnons

In addition to the monopole excitations associated with the mesoscopic Ising degrees
of freedom, another elementary excitations in artificial spin ice are magnetic reso-
nances, or spin waves, that correspond to continuous magnetization fluctuations.
These two types of excitations also have rather different time scales. Movements
of topological defects involve magnetization inversion of individual islands, which
needs to overcome an energy barrier and occurs over times on the order of a few
nanoseconds. Basically, the system evolves from one local minimum to another; each
energy minimum corresponds to a Ising configuration. On the other hand, magnon
excitations are small amplitude fluctuations around a given Ising state, or a local min-
imum. The characteristic frequencies of magnons for typical permalloy materials are
on the order of a few GHz or higher.

The finite dimension of nano-islands introduce boundary effects on the spin wave
propagation, creating standing-wave modes as well as edge-localized modes [100,
101]. In particular, since the edge modes can extend significantly outside the island
and hybridize with similar modes from the neighbors, they play an important role in
the collective resonant dynamics that depend on the array geometry. Collective spin
wave modes have been extensively studied in 1D chains and 2D arrays [100–102],
although most of these studies consider rather simple structures such as square or
rectangular lattices. Moreover, the magnon resonance also depends on the magneti-
zations of individual elements for a given array. The engineering of collective spin
waves through design of lattice structure, magnetization pattern, the size and geom-
etry of the elements is an intriguing emergent field called magnonics [103–105].

In artificial spin ice, the spin wave spectrum is significantly modified by the
presence of topological defects [99]. Moreover, different topological excitations,
monopole pairs and Dirac strings, display distinct and localized features, both spa-
tially as well as in the frequency domain. These results suggest that artificial spin ice
can serve as promising reprogrammable spin-wavewaveguides ormagnonic crystals.
In this section, we will discuss the collective spin wave resonances in the artificial
square ice.

The calculation of spin wave eigenmodes in nanoscale magnetic particles is an
extremely complicatedproblemwhenboth exchange andmagnetostatic contributions
are taken into account [106]. Numerically, the magnetization resonant dynamics can
be investigated by exciting the artificial ice arraywith a shortmagnetic field pulse. The
time evolution of the array is simulated using the LLG equation (15.7); information
about the eigenmodes can be extracted with the aid of Fourier transform [119]. This
approach is applied to study the magnon spectra in an artificial square ice consisting
of 112 stadium-shaped nano-islands in [99]. The ferromagnetic state consisting of
uniform type-II vertices shown in Fig. 15.5b is used as a reference state. The magnon
spectrum of this uniform type-II order is shown in Fig. 15.12a as the gray filled
area. The largest peak at f ∼ 8 GHz (position ➅) corresponds to the ferromagnetic
resonance in which the oscillation is approximately uniform in the interior of the
islands. The many smaller peaks at lower frequencies are associated with various
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Fig. 15.12 Spin-wave spectra of artificial square ice. a Evolution of the spin-wave spectrum with
increasing string length and number of monopole pairs compared with the reference state. The
shaded labels correspond to the main, distinct signatures of topological defects. The magnetization
amplitude Δm of localized resonance mode associated with b monopole pairs G+G−, c Dirac
strings, and d doubly charged monopoles G∗+G∗− (all-in/all-out vertices). The splitting of the
ferromagnetic resonance peak in the presence of a Dirac string is shown in e. The numbers (1, 2, 3,
6) in the gray-filled circle indicate the corresponding features in the spectra [99]. Figures reprinted
from [99] with permission from the American Physical Society.
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kinds of edge modes of the array. For example, the modes at ∼ 2 GHz and 5GHz
(positions ➀ and ➃) correspond to fundamental and higher-order edge excitations,
respectively, at the array boundary.

The various curves in Fig. 15.12a depict the spectrum evolution when monopoles
and Dirac strings are inserted into the lattice. First, a new resonance whose ampli-
tude increases almost linearlywith the number ofmonopole pairs appear at frequency
f ∼ 2.2 GHz [99]. Although the frequency of this resonance is close to the edge
mode ➀ of the reference state, this mode is actually localized around the monopole
and antimonopole labeled as G+ and G−, respectively in Fig. 15.12b. The enhanced
peak around 5GHz, roughly at peak ➃ of the reference state, is also related to the
monopole-antimonopole pairs. Second, the new mode at f ∼ 3.5 GHz (position ➂)
is attributed to localizedmodes around the Q = ±4q monopole pairs (or type-IV ver-
tices). These doubly charged monopoles are labeled as G∗+ and G∗− in Fig. 15.12d.
The pronounced peak at position ➄ is also due to these topological defects. In both
cases, a similar linear relation between themode amplitude and the number of doubly-
charged monopole pairs is obtained in the numerical simulations [99].

The Dirac strings also leave distinct fingerprints on the magnon spectrum of
artificial ice array. A new mode at f ∼ 3 GHz (position ➁) corresponds to localized
oscillations around the Dirac string connecting the monopole-antimonopole pairs.
Since this mode is very localized at the type-I vertices that constitute the Dirac string
in a type-II background, as shown in Fig. 15.12c, its amplitude increases linearly with
the string length. The dominant ferromagnetic resonance at position ➅ is also split
and shifted by the Dirac strings. The spatial profile of these two modes, shown in
Fig. 15.12e, are obtained by projecting the magnetization along the [11] direction of
the string. The peak amplitude of the higher-frequency (8.33GHz) mode increases
with the string length at the expense of the lower-frequency resonance mode at
8.08GHz.

As the topological defects are mesoscopic objects extending over several islands,
their induced resonances are therefore dominated by the non-local magnetostatic
energy. However, the spectral features induced by monopoles and strings are quite
robust: reducing the lattice constants, hence increasing the magnetostatic interaction,
only blue-shifts the peaks while maintaing most of the characteristics of the induced
resonances. In summary, micromagnetic LLG simulations show that there is a one-
to-one correspondence between the topological defects and the magnon spectrum of
the artificial ice array. The fact that these modes are localized around the topological
objects implies that contributions from individual defects do not interfere much with
each other. Potential applications of artificial ice arrays as dynamical frequency filter
or sensor can be envisioned by locally creating and moving monopoles to modify
the resonant dynamics.
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Fig. 15.13 Emergent frustration in Shakti spin ice. a Building blocks for artificial spin ices. There
are four symmetry distinct types of four-leg vertices (type-I, II, III, IV), and three distinct types
of 3-leg vertices (I’, II’, and III’). b The magnetic nano-array for Shakti spin ice and a generic ice
state. The arrows indicate the island magnetizations. In this ice microstate, every 4-leg vertices are
of type-I configuration, half of the 3-leg vertices are in the ground-state type-I’, and the other half
are the higher-energy (frustrated) type-II’ state. The frustrated type-II’ vertices are mapped to a
defect configuration shown in (c), which is further mapped to a six-vertex configuration in (d).

15.6 Emergent Frustration by Design

Artificial spin ice is one particular class of nano-arrays that belong to a larger family
of magnetic metamaterials. One appealing feature of this metamaterial approach is
that the frustrated or competing interactions between the constituent nanomagnetic
elements can be engineered or designed through, e.g. the lattice geometries. In a
narrow sense, spin ices are frustrated magnets in which the spin configuration of ele-
mentary units (vertices, triangles, or tetrahedra) follows constraints that are similar to
theBernal-Fowler rules [128] dictating local proton ordering in solidwater ice. These
systems are exemplified by the square, honeycomb, and pentagonal arrays discussed
in previous sections. Broadly speaking, however, the term “artificial spin ice” is used
to refer to engineered frustrated Ising-like magnets. The advances in modern nano-
lithographic fabrication has significantly broaden the scope and applications of such
artificial spin systems. Other than the most studied square and honeycomb ices, var-
ious array geometries have been proposed. These include the triangular [120, 121],
brickwork [122], pentagonal [112] lattices, perpendicular nano-rods arrays [123],
three-dimensional structures [64], and quasi-crystals [124]; some of them have also
been fabricated.

Instead of building on geometries that have been realized by nature, a systematic
method of designing novel frustrated arrays is proposed in [125]. In this approach,
frustrated arrays are built from elementary vertices shown in Fig. 15.13a. Other than
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the conventional four types of 4-legged vertices, the building blocks include three
different types of 3-legged vertices with orthogonal islands. The square and brick-
work arrays are examples that can be built from these elementary vertices. Because
of the orthogonal geometry, the minimum Q = ±q vertices separate into two types:
the lower-energy type-I’ and excited type-II’. Importantly, there is no accidental
geometry-induced degeneracy in the lowest energy configurations (for both 3- and
4-legged vertices) other than the time-reversal symmetry. A consequence of this non-
degeneracy of lowest-energy vertex is that both the square and brickwork arrays are
not frustrated and have a well defined antiferromagnetic-type ground state.

However, it is possible to design lattices with extensive degeneracy based on the
building blocks shown in Fig. 15.13a. The frustration in these designed arrays is not
due to the many different ways of arranging the degenerate lowest-energy vertices
(triangles in kagome or tetrahedra in pyrochlore spin ice). Instead, the frustration
comes from the fact that not all vertices can reach their lowest-energy type-I or I’
configurations [125]. In practice, since the energy difference between type-I and
II vertices is larger than that between the 3-legged type-I’ and II’, all four-legged
vertices are in the lowest-energy type-I configuration. Frustration can be designed
such that some of the 3-legged vertices have to be in the higher energy type-II’
state [125].

One representative and intriguing example of this approach is the emergence of
a frustrated six-vertex phase in the so-called shakti spin ice [126, 127], shown in
Fig. 15.13b. The shakti lattice can be derived from the square lattice by alternatively
placing an additional vertical or horizontal island in each square plaquette. To see
how the frustration emerges in this array, we first restrict ourself to the vertex model,
and neglect dipolar interactions beyond the nearest neighbors. Numerical simulations
show that while all four-legged vertices are in the lowest-energy type-I state, only
half of the 3-legged vertices can reach the type-I’ state in the ground state [126].
Extensive degeneracy arises from the distribution of the unhappy type-II’ vertices;
a generic disordered ground state is shown in Fig. 15.13b. Characterization of this
degenerate manifold can be achieved by specifying the location of the unhappy type-
II’ vertices, as demonstrated in Fig. 15.13c. This mapping from spins into defects
on plaquettes is at least 2-to-1: each spin-ice state and its time-reversal partner are
mapped to the same defect configuration. Moreover, when both defects sit at the two
ends of the center long island, there is an additional Z2 degrees of freedom associated
with the magnetization of the center island; an example of this case is shown by the
red dashed line in Fig. 15.13c.

The positions of these type-II’ defects are highly correlated in the degenerate NN
ground states. In fact, the local defect configurations satisfy constraints which are
exactly equivalent to the Bernal-Fowler ice rules [128]. The mapping is simple: each
plaquette can be viewed as a water molecule H2O, with the center of the plaquette
being the oxygen and type-II’ defect being the hydrogen atom [126]. In the ground
states of the nearest-neighbor shakti array, the ice rules thendictate that eachplaquette
has exactly two defect vertices [126]; an example is shown in Fig. 15.13c. The shakti
spin ice thus provides the first realization of an extensively degenerate planar ice,
or six-vertex model. Figure15.13d shows the mapping of the defect configuration
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to the six-vertex state. The ice phase of shakti array in which local defect ordering
satisfies the Bernal-Fowler rules were also confirmed experimentally [114]. Taking
into account the additional Z2 degeneracy when two defects enclose a center long
island, the degenerate manifold actually maps to a special 6-vertex model, the F-
model, with a larger statistical weight for the symmetric vertices [126]. The notion
of frustration by design exemplified by the shakti ice opens avenue to engineer novel
collective behaviors in artificial spin ice.

15.7 Other Artificial Ices

The material-by-design approach can be extended beyond magnetic systems, and
several artificial systems are shown to exhibit emergent ice physics. Different real-
izations explore different aspects of the ice or the Coulomb phase that are related to
the specific physical features of the system. For example, adding particles into arti-
ficial colloidal ice introduces new types of defects that are absent in spin ices. This
artificial frustrated system consists of interacting colloidal particles confined in 2D
arrays of optical traps [129]; see Fig. 15.14a. Each trap has a double well potential,
and the colloidal particle can sit at one of the two minima. When the doping is such
that each optical trap has exactly one particle, the double-well trap behaves essentially
as an Ising spin. Antiferromagnetic coupling between the Ising variables, which is
essential for ice rules, comes from the repulsive interactions between colloidal parti-
cles [129]. In square arrays, the vertex where four traps meet corresponds to oxygen
atoms in water ice, while the colloidal particles act as protons. The Bernal-Fowler ice
rules then correspond to constraints that each vertex has exactly two colloidal parti-
cles. Brownian dynamics simulations of colloidal square ice find a finite ice regime at
moderate particle repulsion, and an ordered state at strong colloidal-colloidal inter-
actions [129]. Different lattice geometries such as kagome ice can also be realized in
a similar setup; a highly degenerate ice ground state is obtained in kagome colloidal
ice [130].

The same mechanism, namely repulsive interactions and double-well traps, can
be used to realize a novel vortex ice system in nanostructured superconductors [131].
In this setup, non-superconducting islands with the double-hump shape are placed
in a superconducting layer. These islands again serve as effective Ising spins when
trapping exactly one vortex. The repulsive vortex-vortex interaction then forces ice
rules at the junctions of the islands. Vortex ice phases have been observed experi-
mentally in nanostructured MoGe thin films [132]. In both colloidal and vortex ices,
the doping level can be easily controlled experimentally. For example increasing or
decreasing magnetic field controls the number of vortices. While empty traps are
equivalent to vacancy spins, a doubly-occupied trap corresponds to a double-arrow
spin, which has no counterpart in spin systems. It is found that adding colloidal
particles to the arrays produces dramatically different effects on square and kagome
colloidal ices [133]. We note in passing that a similar setup with vortex replaced by
magnetic skyrmion has also been proposed recently [134].
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Fig. 15.14 Artificial ice systems. a Artificial ices build on repulsive interactions between colloidal
particles or superconductor vortices. The dumbbell shaped double-well traps are arranged in a
square lattice. Each trap behaves as a giant Ising spin as the particle or vortex can be in one of the
two energy minima. b Rydberg cold atom realization of quantum square ice. c Orbital ice states
in p-orbital fermonic cold atoms on a diamond lattice. The blue arrays at the diamond-lattice sites
indicate the pseudo-vectors 〈λi 〉, while the red arrows specify the spins on the pyrochlore lattice.
Figure reprinted from [143] with permission from the American Physical Society.

Cold atoms in optical lattices provide another platform for engineering artificial
ice systems. Thanks to the high-degree of control over the atom dynamics and the
advances in creating complex optical lattices, cold-atom systems are used to realize
novel phases of matter and simulate complex many-body physics [135]. A recent
proposal of realizing quantum square ice in optical lattices [136] is based on the
well-established equivalence between hardcore Bose-Hubbard model and the XXZ
spin-1/2 Hamiltonian. In this mapping, the presence (absence) of boson corresponds
to spin up (down). These bosons are then placed at a checkerboard lattice, shown
in Fig. 15.14b. Recall that the Ising degrees of freedom of spin ice, e.g. center of
nano-islands in square ice array, form a checkerboard lattice; see Fig. 15.1. The
Bose-Hubbard Hamiltonian reads

HHB = −t
∑

〈i j〉
(b†i b j + h.c.) +

∑

i, j

Vi j ni n j , (15.9)

The density-density interaction, second term above, is mapped to the dominant Ising
interaction Vi jσ

z
i σ

z
j , that is essential for ice physics. However, the interaction poten-

tial has to be highly anisotropic and step-like such that Vi j is a constant for atoms
belonging to a square plaquette and zero otherwise; see (15.6) for the Ising ice
model. In particular, this requires the different couplings between nearest neigh-
bors in x and y directions: V x•• = V y◦◦ = V d•◦ �= 0, while V y•• = V x◦◦ ≈ 0, where V d•◦
denotes the coupling between the two sublattices along the diagonal directions; see
Fig. 15.14b. Thanks to the advances in Rydberg atom techniques, such complex inter-
actions can be engineered using the laser-excited Rydberg states [136]. For example,
the van derWaals forces are strongly anisotropic for Rubidium atoms excited to Ryd-
berg p states [137]. As in the colloidal ice case, doping is another control parameter
here and the square ice is realized at half-filling. The Rydberg atom ice offers the
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opportunity to investigate quantum fluctuations and dynamical emergent gauge field
in ice models [136].

While Rydberg quantum ice requires engineering of complex interactions, a novel
orbital ice phase occurs naturally in p-bandMott insulator in a diamond lattice [143].
Motivated by experimental advances on higher orbital bands of optical lattices [138–
140], cold atom systems have emerged as a new playground to investigate novel
many-body orbital physics [141]. A characteristic of orbital exchange is the strong
coupling between real and orbital spaces, giving rise to novel interactions such as
quantum compass and Kitaev models [142]. Here we consider a p-band Hubbard
modelwith spinless fermonic atoms on a diamond lattice. In theMott insulating phase
with two atoms per site, one fill the inert s band while the other occupies one of the
three p orbitals. The remaining local degrees of freedom are similar to 3-state Potts
variables, and they interact with each other through second-order exchange process.
The highly directional p-orbital hopping leads to a new quantum Hamiltonian on the
diamond lattice.

To describe the orbital exchange, we first define a pseudo-vector operator λ =
(λx , λy, λz) = (λ(6), λ(4), λ(1)) acting on the local px , py , and pz basis. Here the
components of λ are given by the three real-valued off-diagonal Gell-mann matrices;
they are the SU(3) analog of the Pauli σ x matrix. The operators have the following
non-zero elements: 〈py |λx |pz〉 = 〈pz|λy|px 〉 = 〈px |λz|py〉 = 1.Taking into account
only the dominant longitudinal hopping, the effective exchange Hamiltonian is given
by [143]

Htetrahedral = J
3∑

m=0

∑

〈i j〉‖n̂m

(
λi · n̂m

) (
λ j · n̂m

)
, (15.10)

where m = 0, 1, 2, 3 corresponds to the four different NN bonds; their orientations
are specified by unit vectors n̂0 = [111], n̂1 = [11̄1̄], n̂2 = [1̄11̄], and n̂3 = [1̄1̄1].
Because the anisotropic interactions involve the four n̂m of a tetrahedron, this Hamil-
tonian is called a quantum tetrahedral model [143]. The model is geometrically
frustrated in the sense that there is no way to minimize the NN interactions simul-
taneously. Monte Carlo simulations with variational product states of the form
|�〉 = ∏

i |ψi 〉 find extensively degenerate minimum energy states. Remarkably,
direct calculation shows that these product states are exact eigenstates of (15.10).
Huge degeneracy of the ground states is also obtained in exact diagonalization of
small clusters. Moreover, these product ground states are highly correlated; orbitals
in the degenerate manifold have to satisfy two constraints. (i) The expectation value
of the pseudo-vector only takes on six different values: 〈λi 〉 = ±x̂, ±ŷ, and ±ẑ.
(ii) Defining an Ising variable on each of the four bonds that attached to site-i :
σm
i ≡ √

3〈λi 〉 · n̂m = ±1, the NN pairs need to satisfy σm
i σm

j = −1.
It turns out these two constraints are equivalent to the ice rules [143]: the six

different 〈λi 〉 are mapped to the six distinct 2-in-2-out Ising spins, while constraint
(ii) ensures that consistent Ising spins can be assigned on the pyrochlore lattice.
Figure15.14c shows a generic disordered orbital ice state and the mapping to the
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spin-ice configuration on pyrochlore. The p-band Mott insulator in diamond lattice
thus provides an orbital analog of the ice phase. It is worth noting that, unlikemost ice
models with Ising degrees of freedom defined on a bi-simplex lattice (e.g. kagome or
pyrochlore), the fundamental variables in orbital ice are orbital triples on a bipartite
diamond lattice. The ice rules are emergent correlations in the ground state of the
quantum dynamics.

15.8 Conclusion and Outlook

To summarize, we have reviewed the fundamental theories and physical properties of
artificial spin ice, including the basic energetics and dynamics (Sect. 15.1), thermody-
namic phases (Sect. 15.2), effects of disorder, nonequilibrium dynamics (Sect. 15.3),
and elementary excitations (Sects. 15.4 and 15.5). Contrary to natural spin-ice com-
pounds, the artificial version of spin ice offers the opportunity for researchers to
tailor-design the many-body interactions and to directly probe the resultant dynam-
ics “microscopically” in real space. In particular, artificial spin ices provide a new
playground for scientists to explore the physics and technological applications of
emergent magnetic monopoles. This has inspired the study of a new field dubbed
magnetricity, which is the magnetic equivalent of electricity. An intriguing possibil-
ity is to use magnetic monopoles as binary mobile memory storages that also serve
as the information processing units. Taking advantage of the topological and collec-
tive nature of monopole excitations, artificial spin ice opens a new avenue to realize
massively parallel computation that goes beyond the conventional von Neumann
architecture [145].

While magnetic moments in natural spin-ice compounds are regarded as struc-
tureless entities, the Ising “spins” in artificial spin ices are themselves macroscopic
ferromagnets that exhibit complex textures and support spin-wave excitations. A
unique feature of artificial spin ice is thus the intriguing interplay between its two
basic elementary excitations: magnetic monopoles and magnons. As discussed in
Sect. 15.5, both the monopoles and the Dirac strings that connect them have unique
signatures in the spin-wave excitations of the nanomagnetic arrays. Several recent
studies along this line [146–148] have further established that artificial spin ices
can be viewed as reconfigurable and tunable magnonic crystals that can be used as
metamaterials for spin-wave-based applications at the nanoscale. This suggests the
fascinating possibility of dynamically controlling themagnon band structure through
the motion and configuration of magnetic monopoles.

Another new frontier is the study of electric charges flow through the nano-wires
in artificial spin ice. Recent experiments have demonstrated that connected artificial
ice arrays exhibit unusual and complex magneto-transport phenomena [98, 149–
151]. Remarkably, rather large Hall signals are observed in artificial kagome spin ice
even in the absence of external magnetic field [150]. Theoretical models based on the
anisotropicmagneto-resistance effect of permalloy show that significant contribution
to the Hall voltage comes from the vertex regions of the connected network [150,
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152]. Moreover, an effective circuit model has been developed to understand the
complex magneto-transport properties of artificial spin ice [152]. In this picture, the
system can be viewed as a resistor network driven by voltage sources that are located
at vertices of the spin-ice array. The differential voltages across different terminals of
these sources are related to the ice-rules that govern the local magnetization ordering.
The circuit model thus underscores the many-body origin of Hall signals in artificial
spin ice [152].

Artificial spin ice, originally designed to model the frustrated magnetic inter-
actions in pyrochlore spin-ice compounds, has now become a flourishing field of
research with rapid advances in several fronts. A central theme that drives this field
is the concept of frustration by design discussed in Sect. 15.6. Thanks to the impres-
sive progress in nano-fabrication and imaging technology, virtually any imaginable
lattice geometry can be fabricated and characterized in real space and real time. For
example, dedicated geometries have been proposed and realized to explore interest-
ing physics such as magnetic charge screening [114, 115], magnetic charge ice [144,
153], emergent dimensional reduction [154], topological lattice defects [155], and
nanoscale spin ratchet [156], to name but a few. The artificial spin array can be used
to dynamically imprint complex patterns of magnetic field on other interesting mate-
rials, e.g. superconductors, topological matters, and quantum heterostructures, thus
opening a new route to create multifunctional metamaterials and devices. Finally,
implementation of ice or frustrated systems in other setups as discussed in Sect. 15.7
introduces new dimensions, such as spin vacancy and quantum fluctuations, to the
already rich physics of spin ice materials.

References

1. C. Nisoli, R. Moessner, P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013). https://doi.org/10.1103/
RevModPhys.85.1473

2. L.J. Heyderman, R.L. Stamps, J. Phys.: Condens. Matter 25, 363201 (2013). https://doi.org/
10.1088/0953-8984/25/36/363201

3. J. Cumings, L.J. Heyderman, C.H. Marrows, R.L. Stamps, New J. Phys. 16, 075016 (2014).
https://doi.org/10.1088/1367-2630/16/7/075016

4. I. Gilbert, C. Nisoli, P. Schiffer, Phys. Today 69, 55 (2016). https://doi.org/10.1063/PT.3.3266
5. See Chapter 16: “Experimental Studies of Artificial Spin Ice” by C. J. Marrows for details

about the experimental realizations and characterizations of artificial spin ice
6. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N.

Samarth, C. Leighton, V.H. Crespi, P. Schiffer, Nature 439, 303 (2006). https://doi.org/10.
1038/nature04447

7. M. Tanaka, E. Saitoh, H. Miyajima, T. Yamaoka, Y. Iye, Phys. Rev. B 73, 052411 (2006).
https://doi.org/10.1103/PhysRevB.73.052411

8. Y. Qi, T. Brintlinger, J. Cumings, Phys. Rev. B 77, 094418 (2008). https://doi.org/10.1103/
PhysRevB.77.094418

9. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998). 978-0-471-30932-1
10. I.A. Ryzhkin, J. Exp. Theor. Phys. 101, 481 (2005). https://doi.org/10.1134/1.2103216
11. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008). https://doi.org/10.1038/

nature06433

https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1088/0953-8984/25/36/363201
https://doi.org/10.1088/0953-8984/25/36/363201
https://doi.org/10.1088/1367-2630/16/7/075016
https://doi.org/10.1063/PT.3.3266
https://doi.org/10.1038/nature04447
https://doi.org/10.1038/nature04447
https://doi.org/10.1103/PhysRevB.73.052411
https://doi.org/10.1103/PhysRevB.77.094418
https://doi.org/10.1103/PhysRevB.77.094418
https://doi.org/10.1134/1.2103216
https://doi.org/10.1038/nature06433
https://doi.org/10.1038/nature06433


448 G.-W. Chern

12. O. Tchernyshyov, Nat. Phys. 6, 323 (2010). https://doi.org/10.1038/nphys1658
13. P. Mellado, O. Petrova, Y. Shen, O. Tchernyshyov, Phys. Rev. Lett. 105, 187206 (2010).

https://doi.org/10.1103/PhysRevLett.105.187206
14. J. Gadbois, J.-G. Zhu, IEEETrans.Magn. 31, 3802 (1995). https://doi.org/10.1109/20.489777
15. C. Phatak,A.K. Petford-Long,O.Heinonen,M. Tanase,M.DeGraef, Phys. Rev. B 83, 174431

(2011). https://doi.org/10.1103/PhysRevB.83.174431
16. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge

University Press, Cambridge, 2000) isbn: 9780521794503
17. R.D. McMichael, M.J. Donahue, IEEE Trans. Magn. 33, 4167 (1997). https://doi.org/10.

1109/20.619698
18. O. Tchernyshyov, G.-W. Chern, Phys. Rev. Lett. 95, 197204 (2005). https://doi.org/10.1103/

PhysRevLett.95.197204
19. G.-W. Chern, D. Clarke, H. Youk, O. Tchernyshyov, inQuantumMagnetism, B. Barbara et al.

(eds.), NATO Science for Peace and Security Series B: Physics and Biophysics, pp. 35–48,
Springer (Dordrecht, 2008) https://doi.org/10.1007/978-1-4020-8512-3

20. A. Pushp, T. Phung, C. Rettner, B.P. Hughes, S.-H. Yang, L. Thomas, S.S.P. Parkin, Nat. Phys.
9, 505–511 (2013). https://doi.org/10.1038/nphys2669

21. L.D. Landau, E.M. Lifshitz, Phys. Z. Sowjet. 8, 153 (1935). https://doi.org/10.1016/B978-0-
08-036364-6.50008-9

22. T.L. Gilbert, Phys. Rev. 100, 1243 (1955). https://doi.org/10.1103/PhysRev.100.1243
23. Y. Shen, O. Petrova, P. Mellado, S. Daunheimer, J. Cumings, and Oleg Tchernyshyov. New

J. Phys. 14, 035022 (2012). https://doi.org/10.1088/1367-2630/14/3/035022
24. M. J. Donahue and D. G. Porter, OOMMF National Institute of Standards and Technology,

Tech. Rep. NISTIR 6376, Gaithersburg, MD, 1999 http://math.nist.gov/oommf
25. A. Vansteenkiste, B. Van de Wiele, J. Magn. Magn. Mater. 323, 2585 (2011). https://doi.org/

10.1016/j.jmmm.2011.05.037
26. S.J. Greaves, H. Muraoka, J. Appl. Phys. 112, 043909 (2012). https://doi.org/10.1063/1.

4747910
27. C. Phatak, M. Pan, A.K. Petford-Long, S. Hong, M. De Graef, New J. Phys. 14, 075028

(2012). https://doi.org/10.1088/1367-2630/14/7/075028
28. M. Beleggia, M. De Graef, J. Magn. Magn. Mater. 285, L1 (2005). https://doi.org/10.1016/j.

jmmm.2004.09.004
29. G.M. Wysin, W.A. Moura-Melo, L.A.S. Mól, A.R. Pereira, J. Phys.: Condens. Matter 24,

296001 (2012). https://doi.org/10.1088/0953-8984/24/29/296001
30. G.M. Wysin, W.A. Moura-Melo, L.A.S. Mól, A.R. Pereira, New J. Phys. 15, 045029 (2013).

https://doi.org/10.1088/1367-2630/15/4/045029
31. M. Ewerlin, D. Demirbas, F. Brüssing, O. Petracic, A.A. Ünal, S. Valencia, F. Kronast, H.

Zabel, Phys. Rev. Lett. 110, 177209 (2013). https://doi.org/10.1103/PhysRevLett.110.177209
32. U.B. Arnalds, M. Ahlberg, M.S. Brewer, V. Kapaklis, ETh. Papaioannou, M. Karimipour, P.

Korelis, A. Stein, S. Olafsson, T.P.A. Hase, B. Hjörvarsson, Appl. Phys. Lett. 105, 042409
(2014). https://doi.org/10.1063/1.4891479

33. C. Castelnovo, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 104, 107201 (2010). https://doi.
org/10.1103/PhysRevLett.104.107201

34. A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comp. Phys. 17, 10 (1975). https://doi.org/10.
1016/0021-9991(75)90060-1

35. A.F. Voter, F. Montalenti, T.C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002). https://doi.
org/10.1146/annurev.matsci.32.112601.141541

36. A. Farhan, P.M. Derlet, A. Kleibert, A. Balan, R.V. Chopdekar, M.Wyss, J. Perron, A. Scholl,
F. Nolting, L.J. Heyderman, Phys. Rev. Lett. 111, 057204 (2013). https://doi.org/10.1103/
PhysRevLett.111.057204

37. A. Farhan, P.M. Derlet, A. Kleibert, A. Balan, R.V. Chopdekar, M. Wyss, L. Anghinolfi, F.
Nolting, L.J. Heyderman, Nat. Phys. 9, 375 (2013). https://doi.org/10.1038/NPHYS2613

38. D. Thonig, S. Reissaus, I. Mertig, J. Henk, J. Phys.: Condens. Matter 26, 266006 (2014).
https://doi.org/10.1088/0953-8984/26/26/266006

https://doi.org/10.1038/nphys1658
https://doi.org/10.1103/PhysRevLett.105.187206
https://doi.org/10.1109/20.489777
https://doi.org/10.1103/PhysRevB.83.174431
https://doi.org/10.1109/20.619698
https://doi.org/10.1109/20.619698
https://doi.org/10.1103/PhysRevLett.95.197204
https://doi.org/10.1103/PhysRevLett.95.197204
https://doi.org/10.1007/978-1-4020-8512-3
https://doi.org/10.1038/nphys2669
https://doi.org/10.1016/B978-0-08-036364-6.50008-9
https://doi.org/10.1016/B978-0-08-036364-6.50008-9
https://doi.org/10.1103/PhysRev.100.1243
https://doi.org/10.1088/1367-2630/14/3/035022
http://math.nist.gov/oommf
https://doi.org/10.1016/j.jmmm.2011.05.037
https://doi.org/10.1016/j.jmmm.2011.05.037
https://doi.org/10.1063/1.4747910
https://doi.org/10.1063/1.4747910
https://doi.org/10.1088/1367-2630/14/7/075028
https://doi.org/10.1016/j.jmmm.2004.09.004
https://doi.org/10.1016/j.jmmm.2004.09.004
https://doi.org/10.1088/0953-8984/24/29/296001
https://doi.org/10.1088/1367-2630/15/4/045029
https://doi.org/10.1103/PhysRevLett.110.177209
https://doi.org/10.1063/1.4891479
https://doi.org/10.1103/PhysRevLett.104.107201
https://doi.org/10.1103/PhysRevLett.104.107201
https://doi.org/10.1016/0021-9991(75)90060-1
https://doi.org/10.1016/0021-9991(75)90060-1
https://doi.org/10.1146/annurev.matsci.32.112601.141541
https://doi.org/10.1146/annurev.matsci.32.112601.141541
https://doi.org/10.1103/PhysRevLett.111.057204
https://doi.org/10.1103/PhysRevLett.111.057204
https://doi.org/10.1038/NPHYS2613
https://doi.org/10.1088/0953-8984/26/26/266006


15 Artificial Spin Ice: Beyond Pyrochlores and Magnetism 449

39. D. Levis, L.F. Cugliandolo, Europhys. Lett. 97, 30002 (2012). https://doi.org/10.1209/0295-
5075/97/30002

40. D. Levis, L.F. Cugliandolo, Phys. Rev. B 87, 214302 (2013). https://doi.org/10.1103/
PhysRevB.87.214302

41. Z. Budrikis, P. Politi, R.L. Stamps, Phys. Rev. Lett. 105, 017201 (2010). https://doi.org/10.
1103/PhysRevLett.105.017201

42. X. Ke, J. Li, C. Nisoli, P.E. Lammert, W. McConville, R.F. Wang, V.H. Crespi, P. Schiffer,
Phys. Rev. Lett. 101, 037205 (2008). https://doi.org/10.1103/PhysRevLett.101.037205

43. E. Mengotti, L. J. Heyderman, A. Fraile Rodriguez, A. Bisig, L. Le Guyader, F. Nolting, and
H. B. Braun, Phys. Rev. B 78, 144402 (2008) https://doi.org/10.1103/PhysRevB.78.144402

44. C. Nisoli, R.Wang, J. Li, W.F. McConville, P.E. Lammert, P. Schiffer, V.H. Crespi, Phys. Rev.
Lett. 98, 217203 (2007). https://doi.org/10.1103/PhysRevLett.98.217203

45. C. Nisoli, J. Li, X. Ke, D. Garand, P. Schiffer, V.H. Crespi, Phys. Rev. Lett. 105, 047205
(2010). https://doi.org/10.1103/PhysRevLett.105.047205

46. J.P. Morgan, A. Stein, S. Langridge, C.H. Marrows, Nat. Phys. 7, 75–79 (2011). https://doi.
org/10.1038/nphys1853

47. J.P. Morgan, J. Akerman, A. Stein, C. Phatak, R.M.L. Evans, S. Langridge, C.H. Marrows,
Phys. Rev. B 87, 024405 (2013). https://doi.org/10.1103/PhysRevB.87.024405

48. C. Nisoli, New J. Phys. 14, 035017 (2012). https://doi.org/10.1088/1367-2630/14/3/035017
49. J. Cumings, Nat. Phys. 7, 7 (2011). https://doi.org/10.1038/nphys1898
50. S. Zhang, I. Gilbert, C. Nisoli, G.-W. Chern, M. J. Erickson, L. O’Brien, C. Leighton, P.

E. Lammert, V. H. Crespi, and P. Schiffer, Nature 500, 553 (2013). https://doi.org/10.1038/
nature12399

51. J.M. Porro, A. Bedoya-Pinto, A. Berger, P. Vavassori, New J. Phys. 15, 055012 (2013). https://
doi.org/10.1088/1367-2630/15/5/055012

52. V. Kapaklis, U.B. Arnalds, A. Farhan, R.V. Chopdekar, A. Balan, A. Scholl, L.J. Heyderman,
B. Hjörvarsson, Nat. Nanotech. 9, 514 (2014). https://doi.org/10.1038/NNANO.2014.104

53. L.J. Heyderman, Nat. Nanotech. 8, 705 (2013). https://doi.org/10.1038/nnano.2013.193
54. J.L. Garcia-Palacios, F.J. Lazaro, Phys. Rev. B 58, 14937 (1998). https://doi.org/10.1103/

PhysRevB.58.14937
55. R.F.L. Evans, D. Hinzke, U. Atxitia, U. Nowak, R.W. Chantrell, O. Chubykalo-Fesenko, Phys.

Rev. B 85, 014433 (2012). https://doi.org/10.1103/PhysRevB.85.014433
56. O. Chubykalo, U. Nowak, R.W. Chantrell, D. Garanin, Phys. Rev. B 74, 094436 (2006).

https://doi.org/10.1103/PhysRevB.74.094436
57. L. Néel, Ann. Geophys. 5, 99 (1949). An English translation is available in Kurti, N., ed.

(1988). Selected Works of Louis Néel. New York: Gordon and Breach. pp. 407–427. ISBN
978-2-88124-300-4

58. G. Möller, R. Moessner, Phys. Rev. Lett. 96, 237202 (2006). https://doi.org/10.1103/
PhysRevLett.96.237202

59. Y. Perrin, B. Canals, N. Rougemaille, Nature 540, 410 (2016). https://doi.org/10.1038/
nature20155

60. E.H. Lieb, Phys. Rev. Lett. 18, 692 (1967). https://doi.org/10.1103/PhysRevLett.18.692
61. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Dover Publications, Mineola,

New-York, 2007). ISBN 10: 0486462714
62. D. Levis, L.F. Cugliandolo, L. Foini, M. Tarzia, Phys. Rev. Lett. 110, 207206 (2013). https://

doi.org/10.1103/PhysRevLett.110.207206
63. L. Foini, D. Levis, M. Tarzia, L.F. Cugliandolo, J. Stat. Mech. P02026 (2013). https://doi.org/

10.1088/1742-5468/2013/02/P02026
64. G.-W. Chern, C. Reichhardt, C. Nisoli, Appl. Phys. Lett. 104, 013101 (2014). https://doi.org/

10.1063/1.4861118
65. A.S. Wills, R. Ballou, C. Lacroix, Phys. Rev. B 66, 144407 (2002). https://doi.org/10.1103/

PhysRevB.66.144407
66. G.-W. Chern, O. Tchernyshyov, Phil. Trans. Roy. Soc. A 370, 5718 (2012). https://doi.org/

10.1098/rsta.2011.0388

https://doi.org/10.1209/0295-5075/97/30002
https://doi.org/10.1209/0295-5075/97/30002
https://doi.org/10.1103/PhysRevB.87.214302
https://doi.org/10.1103/PhysRevB.87.214302
https://doi.org/10.1103/PhysRevLett.105.017201
https://doi.org/10.1103/PhysRevLett.105.017201
https://doi.org/10.1103/PhysRevLett.101.037205
https://doi.org/10.1103/PhysRevB.78.144402
https://doi.org/10.1103/PhysRevLett.98.217203
https://doi.org/10.1103/PhysRevLett.105.047205
https://doi.org/10.1038/nphys1853
https://doi.org/10.1038/nphys1853
https://doi.org/10.1103/PhysRevB.87.024405
https://doi.org/10.1088/1367-2630/14/3/035017
https://doi.org/10.1038/nphys1898
https://doi.org/10.1038/nature12399
https://doi.org/10.1038/nature12399
https://doi.org/10.1088/1367-2630/15/5/055012
https://doi.org/10.1088/1367-2630/15/5/055012
https://doi.org/10.1038/NNANO.2014.104
https://doi.org/10.1038/nnano.2013.193
https://doi.org/10.1103/PhysRevB.58.14937
https://doi.org/10.1103/PhysRevB.58.14937
https://doi.org/10.1103/PhysRevB.85.014433
https://doi.org/10.1103/PhysRevB.74.094436
https://doi.org/10.1103/PhysRevLett.96.237202
https://doi.org/10.1103/PhysRevLett.96.237202
https://doi.org/10.1038/nature20155
https://doi.org/10.1038/nature20155
https://doi.org/10.1103/PhysRevLett.18.692
https://doi.org/10.1103/PhysRevLett.110.207206
https://doi.org/10.1103/PhysRevLett.110.207206
https://doi.org/10.1088/1742-5468/2013/02/P02026
https://doi.org/10.1088/1742-5468/2013/02/P02026
https://doi.org/10.1063/1.4861118
https://doi.org/10.1063/1.4861118
https://doi.org/10.1103/PhysRevB.66.144407
https://doi.org/10.1103/PhysRevB.66.144407
https://doi.org/10.1098/rsta.2011.0388
https://doi.org/10.1098/rsta.2011.0388


450 G.-W. Chern

67. G. Möller, R. Moessner, Phys. Rev. B 80, 140409 (2009). https://doi.org/10.1103/PhysRevB.
80.140409

68. G.-W. Chern, P. Mellado, O. Tchernyshyov, Phys. Rev. Lett. 106, 207202 (2011). https://doi.
org/10.1103/PhysRevLett.106.207202

69. R. Higashinaka, H. Fukazawa, Y. Maeno, Phys. Rev. B 68, 014415 (2003). https://doi.org/10.
1103/PhysRevB.68.014415

70. Y. Tabata, H. Kadowaki, K. Matsuhira, Z. Hiroi, N. Aso, E. Ressouche, B. Fak, Phys. Rev.
Lett. 97, 257205 (2006). https://doi.org/10.1103/PhysRevLett.97.257205

71. M. Udagawa, M. Ogata, Z. Hiroi, J. Phys. Soc. Jpn. 71, 2365 (2002). https://doi.org/10.1143/
JPSJ.71.2365

72. A. Schumann, B. Sothmann, P. Szary, H. Zabel, Appl. Phys. Lett. 97, 022509 (2010). https://
doi.org/10.1063/1.3463482

73. N. Rougemaille, F. Montaigne, B. Canals, A. Duluard, D. Lacour, M. Hehn, R. Belkhou,
O. Fruchart, S. El Moussaoui, A. Bendounan, F. Maccherozzi, Phys. Rev. Lett. 106, 057209
(2011). https://doi.org/10.1103/PhysRevLett.106.057209

74. Z. Budrikis, J.P. Morgan, J. Akerman, A. Stein, P. Politi, S. Langridge, C.H. Marrows,
R.L. Stamps, Phys. Rev. Lett. 109, 037203 (2012). https://doi.org/10.1103/PhysRevLett.109.
037203

75. P. A. M. Dirac, Proc. R. Soc. London, Ser. A 133, 60 (1931) https://doi.org/10.1098/rspa.
1931.0130

76. J.P. Morgan, A. Stein, S. Langridge, C.H. Marrows, New J. Phys. 13, 105002 (2011). https://
doi.org/10.1088/1367-2630/13/10/105002

77. S.D. Pollard, V. Volkov, Y. Zhu, Phys. Rev. B 85, 180402 (2012). https://doi.org/10.1103/
PhysRevB.85.180402

78. Z. Budrikis, P. Politi, R.L. Stamps, J. Appl. Phys. 111, 07E109 (2012). https://doi.org/10.
1063/1.3671434

79. Z. Budrikis, P. Politi, R.L. Stamps, Phys. Rev. Lett. 107, 217204 (2011). https://doi.org/10.
1103/PhysRevLett.107.217204

80. R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002). https://doi.org/10.1103/
RevModPhys.74.47

81. Z. Budrikis, K.L. Livesey, J.P. Morgan, J. Akerman, A. Stein, S. Langridge, C.H. Mar-
rows, R.L. Stamps, New J. Phys. 14, 035014 (2012). https://doi.org/10.1088/1367-2630/
14/3/035014

82. A. Westphalen, A. Schumann, A. Remhof, H. Zabel, M. Karolak, B. Baxevanis, E.Y. Vedme-
denko, T. Last, U. Kunze, T. Eimüller, Phys. Rev. B 77, 174407 (2008). https://doi.org/10.
1103/PhysRevB.77.174407

83. S.A. Daunheimer, O. Petrova, O. Tchernyshyov, J. Cumings, Phys. Rev. Lett. 107, 167201
(2011). https://doi.org/10.1103/PhysRevLett.107.167201

84. S. Ladak, D.E. Read, G.K. Perkins, L.F. Cohen, W.R. Branford, Nat. Phys. 6, 359 (2010).
https://doi.org/10.1038/nphys1628

85. E.Mengotti, L.J. Heyderman, A.F. Rodriguez, F. Nolting, R.V. Hügli, H.-B. Braun, Nat. Phys.
7, 68 (2011). https://doi.org/10.1038/nphys1794

86. K.K. Kohli, A.L. Balk, J. Li, S. Zhang, I. Gilbert, P.E. Lammert, V.H. Crespi, P. Schiffer, N.
Samarth, Phys. Rev. B 84, 180412(R) (2011). https://doi.org/10.1103/PhysRevB.84.180412

87. G.-W. Chern, C. Reichhardt, and C. J. Olson Reichhardt, New J. Phys. 16, 063051, (2014)
https://doi.org/10.1088/1367-2630/16/6/063051

88. C. J. Olson Reichhardt, G.-W. Chern, A. Libal, and C. Reichhardt, J. Appl. Phys. 117, 172612
(2015) https://doi.org/10.1063/1.4913884

89. D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman and Hall, London,
1996). ISBN 9781482238877

90. J.P. Sethna, K.A. Dahmen, C.R. Myers, Nature 410, 242 (2001). https://doi.org/10.1038/
35065675

91. G. Durin, S. Zapperi, Phys. Rev. Lett. 84, 4705 (2000). https://doi.org/10.1103/PhysRevLett.
84.4705

https://doi.org/10.1103/PhysRevB.80.140409
https://doi.org/10.1103/PhysRevB.80.140409
https://doi.org/10.1103/PhysRevLett.106.207202
https://doi.org/10.1103/PhysRevLett.106.207202
https://doi.org/10.1103/PhysRevB.68.014415
https://doi.org/10.1103/PhysRevB.68.014415
https://doi.org/10.1103/PhysRevLett.97.257205
https://doi.org/10.1143/JPSJ.71.2365
https://doi.org/10.1143/JPSJ.71.2365
https://doi.org/10.1063/1.3463482
https://doi.org/10.1063/1.3463482
https://doi.org/10.1103/PhysRevLett.106.057209
https://doi.org/10.1103/PhysRevLett.109.037203
https://doi.org/10.1103/PhysRevLett.109.037203
https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1088/1367-2630/13/10/105002
https://doi.org/10.1088/1367-2630/13/10/105002
https://doi.org/10.1103/PhysRevB.85.180402
https://doi.org/10.1103/PhysRevB.85.180402
https://doi.org/10.1063/1.3671434
https://doi.org/10.1063/1.3671434
https://doi.org/10.1103/PhysRevLett.107.217204
https://doi.org/10.1103/PhysRevLett.107.217204
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1088/1367-2630/14/3/035014
https://doi.org/10.1088/1367-2630/14/3/035014
https://doi.org/10.1103/PhysRevB.77.174407
https://doi.org/10.1103/PhysRevB.77.174407
https://doi.org/10.1103/PhysRevLett.107.167201
https://doi.org/10.1038/nphys1628
https://doi.org/10.1038/nphys1794
https://doi.org/10.1103/PhysRevB.84.180412
https://doi.org/10.1088/1367-2630/16/6/063051
https://doi.org/10.1063/1.4913884
https://doi.org/10.1038/35065675
https://doi.org/10.1038/35065675
https://doi.org/10.1103/PhysRevLett.84.4705
https://doi.org/10.1103/PhysRevLett.84.4705


15 Artificial Spin Ice: Beyond Pyrochlores and Magnetism 451

92. A. Schumann, P. Szary, E.Y. Vedmedenko, H. Zabel, New J. Phys. 14, 035015 (2012). https://
doi.org/10.1088/1367-2630/14/3/035015

93. S. A. Daunheimer, J. Cumings, unpublished data (private communication)
94. G. Ódor, Rev. Mod. Phys. 76, 663 (2004). https://doi.org/10.1103/RevModPhys.76.663
95. S. Maslov, Phys. Rev. Lett. 74, 562 (1995). https://doi.org/10.1103/PhysRevLett.74.562
96. R.V. Hügli, G. Duff, B. O’Conchuir, E.Mengotti, A.F. Rodriguez, F. Nolting, L.J. Heyderman,

H.B. Braun, Phil. Trans. Roy. Soc. A 370, 5767 (2012). https://doi.org/10.1098/rsta.2011.
0538

97. N. Rougemaille, F. Montaigne, B. Canals, M. Hehn, H. Riahi, D. Lacour, J.-C. Toussaint,
New J. Phys. 15, 035026 (2013). https://doi.org/10.1088/1367-2630/15/3/035026

98. W.R. Branford, S. Ladak, D.E. Read, K. Zeissler, L.F. Cohen, Science 335, 1597 (2012).
https://doi.org/10.1088/1367-2630/14/4/045010

99. S. Gliga, A. Kakay, R. Hertel, O.G. Heinonen, Phys. Rev. Lett. 110, 117205 (2013). https://
doi.org/10.1103/PhysRevLett.110.117205

100. V.V. Kruglyak, P.S. Keatley, A. Neudert, R.J. Hicken, J.R. Childress, J.A. Katine, Phys. Rev.
Lett. 104, 027201 (2010). https://doi.org/10.1103/PhysRevLett.104.027201

101. G. Carlotti, S. Tacchi, G. Gubbiotti, M. Madami, H. Dey, G. Csaba, W. Porod, Appl. Phys.
Lett. 117, 17A316 (2015). https://doi.org/10.1063/1.4914878

102. S. Tacchi, F. Montoncello, M. Madami, G. Gubbiotti, G. Carlotti, L. Giovannini, R. Zivieri,
F. Nizzoli, S. Jain, A.O. Adeyeye, N. Singh, Phys. Rev. Lett. 107, 127204 (2011). https://doi.
org/10.1103/PhysRevLett.107.127204

103. S. Neusser, D. Grundler, Adv. Mater. 21, 2927 (2009). https://doi.org/10.1002/adma.
200900809

104. V.V. Kruglyak, S.O. Demokritov, D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010).
https://doi.org/10.1088/0022-3727/43/26/264001

105. B. Lenk, H. Ulrichs, F. Garbs, M. Münzenberg, Phys. Rep. 507, 107 (2011). https://doi.org/
10.1016/j.physrep.2011.06.003

106. L.R. Walker, Phys. Rev. 105, 390 (1957). https://doi.org/10.1103/PhysRev.105.390
107. Y. Nambu, Phys. Rev. D 10, 4262 (1974). https://doi.org/10.1103/PhysRevD.10.4262
108. R.C. Silva, R.J.C. Lopes, L.A.S. Mól, W.A. Moura-Melo, G.M. Wysin, A.R. Pereira, Phys.

Rev. B 87, 014414 (2013). https://doi.org/10.1103/PhysRevB.87.014414
109. L.A. Mól, R.L. Silva, R.C. Silva, A.R. Pereira, W.A. Moura-Melo, B.V. Costa, J. Appl. Phys.

106, 063913 (2009). https://doi.org/10.1063/1.3224870
110. L.A.S. Mól, W.A. Moura-Melo, A.R. Pereira, Phys. Rev. B 82, 054434 (2010). https://doi.

org/10.1103/PhysRevB.82.054434
111. R.C. Silva, F.S. Nascimento, L.A.S. Mól, W.A. Moura-Melo, A.R. Pereira, New J. Phys. 14,

015008 (2012). https://doi.org/10.1088/1367-2630/14/1/015008
112. G.-W. Chern, P. Mellado, Europhys. Lett. 114, 37004 (2016). https://doi.org/10.1209/0295-

5075/114/37004
113. L.D. Landau, Phys. Z. Sowjetunion 3, 644 (1933)
114. I. Gilbert, G.-W. Chern, S. Zhang, L. O’Brien, B. Fore, C. Nisoli, P. Schiffer, Nat. Phys. 10,

670 (2014). https://doi.org/10.1038/nphys3037
115. A. Farhan, A. Scholl, C.F. Petersen, L. Anghinolfi, C. Wuth, S. Dhuey, R.V. Chopdekar, P.

Mellado, M.J. Alava, S. van Dijken, Nat. Commun. 7, 12635 (2016). https://doi.org/10.1038/
ncomms12635

116. S. Ladak, D.E. Read, T. Tyliszczak, W.R. Branford, L.F. Cohen, New J. Phys. 13, 023023
(2011). https://doi.org/10.1088/1367-2630/13/2/023023

117. S. Ladak, D.E. Read, W.R. Branford, L.F. Cohen, New J. Phys. 13, 063032 (2011). https://
doi.org/10.1088/1367-2630/13/6/063032

118. S. Ladak, S.K. Walton, K. Zeissler, T. Tyliszczak, D.E. Read, W.R. Branford, L.F. Cohen,
New J. Phys. 14, 045010 (2012). https://doi.org/10.1088/1367-2630/14/4/045010

119. S.-K. Kim, J. Phys. D: Appl. Phys. 43, 264004 (2010). https://doi.org/10.1088/0022-3727/
43/26/264004

https://doi.org/10.1088/1367-2630/14/3/035015
https://doi.org/10.1088/1367-2630/14/3/035015
https://doi.org/10.1103/RevModPhys.76.663
https://doi.org/10.1103/PhysRevLett.74.562
https://doi.org/10.1098/rsta.2011.0538
https://doi.org/10.1098/rsta.2011.0538
https://doi.org/10.1088/1367-2630/15/3/035026
https://doi.org/10.1088/1367-2630/14/4/045010
https://doi.org/10.1103/PhysRevLett.110.117205
https://doi.org/10.1103/PhysRevLett.110.117205
https://doi.org/10.1103/PhysRevLett.104.027201
https://doi.org/10.1063/1.4914878
https://doi.org/10.1103/PhysRevLett.107.127204
https://doi.org/10.1103/PhysRevLett.107.127204
https://doi.org/10.1002/adma.200900809
https://doi.org/10.1002/adma.200900809
https://doi.org/10.1088/0022-3727/43/26/264001
https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1103/PhysRev.105.390
https://doi.org/10.1103/PhysRevD.10.4262
https://doi.org/10.1103/PhysRevB.87.014414
https://doi.org/10.1063/1.3224870
https://doi.org/10.1103/PhysRevB.82.054434
https://doi.org/10.1103/PhysRevB.82.054434
https://doi.org/10.1088/1367-2630/14/1/015008
https://doi.org/10.1209/0295-5075/114/37004
https://doi.org/10.1209/0295-5075/114/37004
https://doi.org/10.1038/nphys3037
https://doi.org/10.1038/ncomms12635
https://doi.org/10.1038/ncomms12635
https://doi.org/10.1088/1367-2630/13/2/023023
https://doi.org/10.1088/1367-2630/13/6/063032
https://doi.org/10.1088/1367-2630/13/6/063032
https://doi.org/10.1088/1367-2630/14/4/045010
https://doi.org/10.1088/0022-3727/43/26/264004
https://doi.org/10.1088/0022-3727/43/26/264004


452 G.-W. Chern

120. L.A.S. Mòl, A.R. Pereira, W.A. Moura-Melo, Phys. Rev. B 85, 184410 (2012). https://doi.
org/10.1103/PhysRevB.85.184410

121. S. Zhang, J. Li, J. Bartell, X. Ke, C. Nisoli, P.E. Lammert, V.H. Crespi, P. Schiffer, Phys. Rev.
Lett. 107, 117204 (2011). https://doi.org/10.1103/PhysRevLett.107.117204

122. J. Li, X. Ke, S. Zhang, D. Garand, C. Nisoli, P. Lammert, V.H. Crespi, P. Schiffer, Phys. Rev.
B 81, 092406 (2010). https://doi.org/10.1103/PhysRevB.81.092406

123. S. Zhang, J. Li, I. Gilbert, J. Bartell, M.J. Erickson, Y. Pan, P.E. Lammert, C. Nisoli, K.K.
Kohli, R. Misra, V.H. Crespi, N. Samarth, C. Leighton, P. Schiffer, Phys. Rev. Lett. 109,
087201 (2012). https://doi.org/10.1103/PhysRevLett.109.087201

124. V.S. Bhat, J. Sklenar, B. Farmer, J. Woods, J.T. Hastings, S.J. Lee, J.B. Ketterson, L.E. De
Long, Phys. Rev. Lett. 111, 077201 (2013). https://doi.org/10.1103/PhysRevLett.111.077201

125. M.J. Morrison, T.R. Nelson, C. Nisoli, New J. Phys. 15, 045009 (2013). https://doi.org/10.
1088/1367-2630/15/4/045009

126. G.-W. Chern, M.J. Morrison, C. Nisoli, Phys. Rev. Lett. 111, 177201 (2013). https://doi.org/
10.1103/PhysRevLett.111.177201

127. R.L. Stamps, Nat. Phys. 10, 623 (2014). https://doi.org/10.1038/nphys3072
128. J.D. Bernal, R.H. Fowler, J. Chem. Phys. 1, 515 (1933). https://doi.org/10.1063/1.1749327
129. A. Libál, C. Reichhardt, C. J. Olson Reichhardt, Phys. Rev. Lett. 97, 228302 (2006) https://

doi.org/10.1103/PhysRevLett.97.228302
130. C. J. Olson Reichhardt, A. Libál, and C. Reichhardt, New J. Phys. 14, 025006 (2012) https://

doi.org/10.1088/1367-2630/14/2/025006
131. A. Libál, C. J. Olson Reichhardt, and C. Reichhardt, Phys. Rev. Lett. 102, 237004 (2009)

https://doi.org/10.1103/PhysRevLett.102.237004
132. M.L. Latimer, G.R. Berdiyorov, Z.L. Xiao, F.M. Peeters, W.K. Kwok, Phys. Rev. Lett. 111,

067001 (2013). https://doi.org/10.1103/PhysRevLett.111.067001
133. A. Libal, C. J. Olson Reichhardt, C. Reichhardt, New J. Phys. 17, 103010 (2016) https://doi.

org/10.1088/1367-2630/17/10/103010
134. F.Ma, C. Reichhardt,W. Gan, C. J. Olson Reichhardt, andW. S. Lew, Phys. Rev. B 94, 144405

(2016) https://doi.org/10.1103/PhysRevB.94.144405
135. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008). https://doi.org/10.1103/

RevModPhys.80.885
136. A.W. Glaetzle, M. Dalmonte, R. Nath, I. Rousochatzakis, R. Moessner, P. Zoller, Phys. Rev.

X 4, 041037 (2014). https://doi.org/10.1103/PhysRevX.4.041037
137. T.G. Walker, M. Saffman, Phys. Rev. A 77, 032723 (2008). https://doi.org/10.1103/

PhysRevA.77.032723
138. T. Müller, S. Fölling, A. Widera, I. Bloch, Phys. Rev. Lett. 99, 200405 (2007). https://doi.org/

10.1103/PhysRevLett.99.200405
139. G. Wirth, M. Ölschläger, A. Hemmerich, Nat. Phys. 7, 147 (2011). https://doi.org/10.1038/

nphys1857
140. P. Soltan-Panahi, D.-S. Lühmann, J. Struck, P. Wind-passinger, K. Sengstock, Nat. Phys. 8,

71 (2012). https://doi.org/10.1038/nphys2128
141. M. Lewenstein, W.V. Liu, Nat. Phys. 7, 101 (2011). https://doi.org/10.1038/nphys1894
142. Z. Nussinov, J. van den Brink, Rev. Mod. Phys. 87, 1 (2015). https://doi.org/10.1103/

RevModPhys.87.1
143. G.-W. Chern, C. Wu, Phys. Rev. E 84, 061127 (2011). https://doi.org/10.1103/PhysRevE.84.

061127
144. P.A. McClarty, A. O’Brien, F. Pollmann, Phys. Rev. B 89, 195123 (2014). https://doi.org/10.

1103/PhysRevB.89.195123
145. M. Di Ventra, Y.V. Pershin, Nat. Phys. 9, 200 (2013). https://doi.org/10.1038/nphys2566
146. E. Iacocca, S. Gliga, R.L. Stamps, O. Heinonen, Phys. Rev. B 93, 134420 (2016). https://doi.

org/10.1103/PhysRevB.93.134420
147. Y. Li, G. Gubbiotti, F. Casoli, S.A. Morley, F.J.T. Gonçalves, M.C. Rosamond, E.H. Linfield,

C.H. Marrows, S. McVitie, R.L. Stamps, J. Appl. Phys. 121, 103903 (2017). https://doi.org/
10.1063/1.4978315

https://doi.org/10.1103/PhysRevB.85.184410
https://doi.org/10.1103/PhysRevB.85.184410
https://doi.org/10.1103/PhysRevLett.107.117204
https://doi.org/10.1103/PhysRevB.81.092406
https://doi.org/10.1103/PhysRevLett.109.087201
https://doi.org/10.1103/PhysRevLett.111.077201
https://doi.org/10.1088/1367-2630/15/4/045009
https://doi.org/10.1088/1367-2630/15/4/045009
https://doi.org/10.1103/PhysRevLett.111.177201
https://doi.org/10.1103/PhysRevLett.111.177201
https://doi.org/10.1038/nphys3072
https://doi.org/10.1063/1.1749327
https://doi.org/10.1103/PhysRevLett.97.228302
https://doi.org/10.1103/PhysRevLett.97.228302
https://doi.org/10.1088/1367-2630/14/2/025006
https://doi.org/10.1088/1367-2630/14/2/025006
https://doi.org/10.1103/PhysRevLett.102.237004
https://doi.org/10.1103/PhysRevLett.111.067001
https://doi.org/10.1088/1367-2630/17/10/103010
https://doi.org/10.1088/1367-2630/17/10/103010
https://doi.org/10.1103/PhysRevB.94.144405
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevX.4.041037
https://doi.org/10.1103/PhysRevA.77.032723
https://doi.org/10.1103/PhysRevA.77.032723
https://doi.org/10.1103/PhysRevLett.99.200405
https://doi.org/10.1103/PhysRevLett.99.200405
https://doi.org/10.1038/nphys1857
https://doi.org/10.1038/nphys1857
https://doi.org/10.1038/nphys2128
https://doi.org/10.1038/nphys1894
https://doi.org/10.1103/RevModPhys.87.1
https://doi.org/10.1103/RevModPhys.87.1
https://doi.org/10.1103/PhysRevE.84.061127
https://doi.org/10.1103/PhysRevE.84.061127
https://doi.org/10.1103/PhysRevB.89.195123
https://doi.org/10.1103/PhysRevB.89.195123
https://doi.org/10.1038/nphys2566
https://doi.org/10.1103/PhysRevB.93.134420
https://doi.org/10.1103/PhysRevB.93.134420
https://doi.org/10.1063/1.4978315
https://doi.org/10.1063/1.4978315


15 Artificial Spin Ice: Beyond Pyrochlores and Magnetism 453

148. I. Panagiotopoulos, J. Magn. Magn. Mater. 422, 227 (2017). https://doi.org/10.1016/j.jmmm.
2016.08.051

149. B.L. Le, D.W. Rench, R. Misra, L. O’Brien, C. Leighton, N. Samarth, P. Schiffer, New J.
Phys. 17, 023047 (2015). https://doi.org/10.1088/1367-2630/17/2/023047

150. B.L. Le, J.-S. Park, J. Sklenar, G.-W. Chern, C. Nisoli, J. Watts, M. Manno, D.W. Rench,
N. Samarth, C. Leighton, P. Schiffer, Phys. Rev. B 95, 060405(R) (2017). https://doi.org/10.
1103/PhysRevB.95.060405

151. J. Park, B. Le, J. Sklenar, G.-W. Chern, J.D. Watts, P. Schiffer, Phys. Rev. B 96, 024436
(2017). https://doi.org/10.1103/PhysRevB.96.024436

152. G.-W. Chern, Phys. Rev. Appl. 8, 064006 (2017). https://doi.org/10.1103/PhysRevApplied.
8.064006

153. Y.-L.Wang, Z.-L. Xiao, A. Snezhko, J. Xu, L.E. Ocola, R. Divan, J.E. Pearson, G.W. Crabtree,
W.-K. Kwok, Science 352, 962 (2016). https://doi.org/10.1126/science.aad8037

154. I. Gilbert, Y. Lao, I. Carrasquillo, L. O’Brien, J.D. Watts, M. Manno, C. Leighton, A. Scholl,
C. Nisoli, P. Schiffer, Nat. Phys. 12, 162 (2016). https://doi.org/10.1038/nphys3520

155. J. Drisko, T. Marsh, J. Cummings, Nat. Commun. 8, 14009 (2016). https://doi.org/10.1038/
ncomms14009

156. S. Gliga, G. Hrkac, C. Donnelly, J. Büchi, A. Kleibert, J. Cui, A. Farhan, E. Kirk, R.V.
Chopdekar, Y. Masaki, N.S. Bingham, A. Scholl, R.L. Stamps, L.J. Heyderman, Nat. Mater.
16, 1106 (2017). https://doi.org/10.1038/nmat5007

https://doi.org/10.1016/j.jmmm.2016.08.051
https://doi.org/10.1016/j.jmmm.2016.08.051
https://doi.org/10.1088/1367-2630/17/2/023047
https://doi.org/10.1103/PhysRevB.95.060405
https://doi.org/10.1103/PhysRevB.95.060405
https://doi.org/10.1103/PhysRevB.96.024436
https://doi.org/10.1103/PhysRevApplied.8.064006
https://doi.org/10.1103/PhysRevApplied.8.064006
https://doi.org/10.1126/science.aad8037
https://doi.org/10.1038/nphys3520
https://doi.org/10.1038/ncomms14009
https://doi.org/10.1038/ncomms14009
https://doi.org/10.1038/nmat5007


Chapter 16
Experimental Studies of Artificial
Spin Ice

Christopher H. Marrows

Abstract Artificial spin ices were originally introduced as analogs of the pyrochlore
spin ices, but have since become a much richer field. The original attractions of
building nanotechnological analogs of the pyrochlores were threefold: to allow
room temperature studies of geometrical frustration; to provide model statistical
mechanical systems where all the relevant parameters in an experiment can be tuned
by design; and to be able to examine the exact microstate of those systems using
advanced magnetic microscopy methods. From this beginning the field has grown to
encompass studies of the effects of quenched disorder, thermally activated dynam-
ics, microwave frequency responses, magnetotransport properties, and the develop-
ment of lattice geometries–with related emergent physics—that have no analog in
naturally-occurring crystalline systems. The field also offers the prospect of con-
tributing to novel magnetic logic devices, since the arrays of nanoislands that form
artificial spin ices are similar in many respects to those that are used in the devel-
opment of magnetic quantum cellular automata. In this chapter, I review the exper-
imental aspects of this story, complementing the theoretical chapter, Chap.15, by
Gia-Wei Chern.

16.1 Introduction

Whilst ice is a very commonplace material, it is never mundane: as I look out of my
office window as I type these opening words on a fine February morning it coats the
trees in a fine and beautiful frost; it will add a certain zip to the gin and tonic I’ll
pour to celebrate typing the closing sentence of this chapter. This is not to say that it
lacks scientific interest: the complexity of its phase diagram and the wide variety of
environments in which it is foundmean that it is a very active area of interdisciplinary
research [1].
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To condensedmatter physicists, one of its most remarkable propertiesmust be that
itsmost common form (Ice Ih) has a residual entropy at low temperatures due to proton
disorder, and so violates the third law of thermodynamics. As Linus Pauling noted in
1935 [2], the possible configurations of protons in Ice Ih provide a clear example of
how geometrical frustration can lead to vast numbers of energetically similar states,
resulting in a non-zero entropy for temperatures arbitrarily close to absolute zero. This
was one of the first recognised examples of a much broader phenomenon: frustration
occurs in a wide variety of condensed matter systems, and arises when it is not
possible to simultaneously satisfy all of the competing pairwise interactions present.
This leads to a rich phenomenology, where huge numbers of possible degenerate
microstates play important roles in all kinds of complex systems in the physical
sciences and beyond [3]. Examples include liquid crystals,magnetic domain patterns,
stripe structures in high-temperature superconductors, protein-folding, and neural
networks.

Conventionally, the study of physical systems is restricted to the investigation of
the limited set of naturally occurring materials. The family of rare earth pyrochlore
materials closely resemble water ice in their crystal geometry, and equivalent geo-
metrical frustration effects are found in the interactions between the large spins on the
rare earth sites: hence they are dubbed ‘spin ices’ [4]. One can mimic their behaviour
using nanotechnology, which allows the construction of model systems where the
nature of the elements and their interactions can be varied at will to create artificial
frustrated systems [5–7]. Magnetic analogs of spin ice built using these methods,
termed ‘artificial spin ice’ [5, 8], have been widely studied in recent years since they
provide convenient models for frustration phenomena. One of the most appealing
aspects is that advanced microscopy techniques are able to interrogate the system
and reveal the exact configuration of all its constituent elements: yielding direct
knowledge of the microstate (and the way that it evolves with time) of this artificial
statistical mechanical system. When tied to the ability to engineer every aspect of
the system during its construction, this is an extremely powerful new approach to the
study of statistical mechanics, where experiments used to be restricted to revealing
only the macrostate. In this chapter, an overview of experimental explorations of
artificial frustrated systems is profiled. These studies have led to new insights into
ordering and other dynamical processes in frustrated and disordered systems, and
offer the prospect of technological innovations in information storage and processing.

16.2 The First Artificial Spin Ices

In the initial, ground-breaking experiments fromSchiffer’s group at the Pennsylvania
State University [8], artificial spin ices were conceived as exactly what their name
describes: an artificially created system that mimics some aspects of the frustration
physics observed in the pyrochlore spin ices [4]. In the pyrochlores, rare earth ions
are found at the points where the corner-sharing tetrahedra touch. These ions carry
large spin magnetic moments and strong crystal fields cause them to have a uniaxial
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anisotropy whose easy axis lies along the line between the centres of the two adjacent
tetrahedra. Thus eachmomentmust point into one of the two tetrahedra and out of the
other one and so can take up only two states. In this sense the moments are described
as being Ising-like. When we consider all four moments in a given tetrahedron, it
becomes obvious that their interactions must be frustrated, since it is not possible
for them all to simultaneously form in-out pairs. The best that can be done is to
form a ‘two-in/two-out’ arrangement, identical to the Bernal–Fowler ice rule for the
frustrated arrangement of protons inwater ice [9]. In thisway the statisticalmechanics
of the spin ice are identical to that of Ice Ih, and these systems have exactly the same
extensive degeneracy and the same Pauling value [2] of the residual entropy [10].

Schiffer’s group constructed a system that is a physical realisation of the ‘square
ice’ vertex models studied theoretically by theorists such asWu [11] and Lieb [12] in
the 1960s, which were, in turn, versions of a model introduced by Slater for the ferro-
electricmaterial KH2PO4 [13]. Their approachwas to represent the rare earth spins in
a pyrochlore spin ice by the macrospins of nanomagnets. This required engineering
the shape and size of the nanomagnets so that they were small enough to be in the sin-
gle domain regime such that there was a well-definedmacrospin and exhibited a clear
uniaxial anisotropy to yield the required Ising-like behaviour. To achieve these aims
they selected 80nm × 220nm islands patterned from a 25nm thick Permalloy film.
Permalloy (Ni81Fe19) was selected since its lack of magnetocrystalline anisotropy
means that its micromagnetics are entirely controlled by the shape of nanoelements:
the rectangular shape provides the Ising-like easy axis through shape anisotropy.
The size is such that they form single domains and therefore behave as almost ideal
Stoner–Wohlfarth particles [14].

These elements are then arranged along the edges of a square tiling, such that they
meet at the vertices of the tiling in groups of four, as shown in Fig. 16.1. The mutual
magnetostatic interactions between the four macrospins then mimic those between
the four rare earth spinsmeeting in each tetrahedronof a pyrochlore spin ice. There are
24 = 16 possiblemagnetic configurations of any given vertex, as shown in Fig. 16.1c,
of which six obey the two-in/two-out ice rule.Whilst in the 3-dimensional pyrochlore
system all six are energetically degenerate, here the reduction in dimensions means
that not all the pairwise interactions are equivalent, and so these six can be further
subdivided into a group of two with the lowest energy, and a further four with a
slightly higher energy. (The interactions between neighbouring nanomagnets are
stronger than those between nanomagnets that face each other across the vertex).
In the terminology introduced by Wang et al., and subsequently adopted by the
community, these two groups are referred to as ‘Type 1’ and ‘Type 2’, respectively.
There is no net magnetic pole at the centre of these two types of vertices. The eight
‘Type 3’ configurations are thosewhere the ice rule is violated by flipping themoment
of a single element, these have a ‘three-in/one-out’ or ‘three-out/one-in’ arrangement,
and carry a net magnetic charge of ±2q, where q is the magnetic charge of a single
pole at the tip of one element. The two highest energy configurations, ‘all-in’ or
‘all-out’, comprise ‘Type 4’, and carry a magnetic charge of ±4q. The Type 2 and
Type 3 vertices also possess a net magnetic dipole moment. The fact that only two
vertex types are selected for the lowest energy state means that this system possesses
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Fig. 16.1 Square artificial
spin ice. a Atomic force
micrograph showing the
arrangement of nanomagnets
along the edges of a square
tiling. b Magnetic force
micrograph of the same area,
showing the magnetic poles
of each nanomagnet as bright
or dark contrast. c The
sixteen possible magnetic
configurations of a vertex in
a square spin ice, divided
into four types by energy
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a twofold degenerate ground state consisting of a chessboard tiling of the Type 1
vertices [15], as opposed to the macroscopic degeneracy of the pyrochlore system.

In the ideal case, studied theoretically as the six-vertex model [11, 12], only Type
1 and Type 2 vertices are found, and the ice rule is obeyed everywhere. On the
other hand, in a non-interacting system, all sixteen vertex types will be found with
equal probability, since they will be randomly populated. The experimental results
of Wang et al. fell between these two extremes [8]. Whilst all sixteen vertex types
were populated, the system showed a preference for those of Type 1 and Type 2, with
an accompanying deficit in the populations of Type 3 and Type 4, as compared to
the random case. This preference grew stronger as the lattice constant of the square
ice was reduced, packing the nanomagnets more closely together, and allowing the
stronger magnetostatic interactions to better enforce the ice rules.

The other ice-like geometry studied at the outset of the field is the so-called
kagome or honeycomb ice, which had been analysed theoretically by Wills et al.
[16]. Here the macrospins are arrayed along the edges of a hexagonal tiling (see
Fig. 16.2), visually resembling a honeycomb. The lattice points at the centre of each
element lie on a kagome lattice. This system is analogous to the pyrochlore spin ice
under a large field applied along a 〈111〉 direction [17]. The fact that three elements
meet at each vertex means that all the interactions at that vertex are of equal strength.
Artificial experimental realisations of this geometry were studied in a connected
form by Tanaka et al. at Keio University in Japan [18] and as small groups of discrete
islands by Mengotti et al. at the Paul Scherrer Institute in Switzerland [19]. This
lattice has two inequivalent structural vertex types, depicted in Fig. 16.2c. Each of
these can take up 23 = 8 possible magnetic configurations: Type 1 obeys a two-
in/one out or one-in/two out pseudo-ice rule and carries a net charge of ±q; Type 2
has an all-in or all-out configuration and carries a charge of ±3q. These are shown
in Fig. 16.2d. There are no uncharged vertices in this structure.
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Fig. 16.2 Kagome artificial
spin ice. a Atomic force
micrograph showing the
arrangement of nanomagnets
along the edges of a
honeycomb tiling. b
Magnetic force micrograph
of the same area, showing
the magnetic poles of each
nanomagnet as bright or dark
contrast. c The two
inequivalent structural vertex
types of a kagome spin ice. d
The eight possible magnetic
configurations of a vertex in
a kagome spin ice
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16.3 Experimental Methods

The methods used in experimental studies of artificial spin ice fall into two main
categories: those used to fabricate the arrays of nanoscale magnets that form the
artificial frustrated systems, and those used to study the magnetic states they take up,
which primarily consist of various forms of advanced magnetic microscopy.

16.3.1 Fabrication Methods

The fabrication methods for artificial spin ices are the conventional nanofabrication
routes that are now well-established in magnetic nanotechnology [20]. The critical
lateral dimensions of the elements that form artificial spin ices are in the 10–100nm
range, and this means that electron beam lithography is the method of choice for
writing the patterns that form the frustrated arrays. In this technique a pattern is
written into an electron sensitive resist by raster-scanning a highly focussed electron
beam across it, referred to as exposing the pattern. The resist is spin-coated onto the
substrate and is typically a polymer that will undergo either scission (for a positive
tone) or cross-linking (negative tone) upon electron beam exposure. This changes
the solubility, and so the pattern may be developed by washing with an appropriate
solvent. The pattern may then be transferred by depositing or etching material on the
substrate surface. The natural variations in the exact shape and size of the islands
corresponds to the quenched disorder in the statistical mechanical system that is
being engineered [21].
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The use of a negative tone resist is most common, in a pattern transfer process
referred to as ‘lift-off’. Here the resist is coated onto a bare substrate and once the
pattern is developed the resist forms a stencil mask through which magnetic material
may be deposited to form the desired nanostructure: in this case an array of islands.
The use of a strong solvent then removes (lifts-off) all the resist and leaves behind
only the material deposited through the holes onto the substrate. The most common
resist used for liftoff is polymethylmethacrylate (PMMA). Many common magnetic
materials can be deposited by thermal evaporation: Permalloy falls into this group.
This technique is easily compatible with lift-off, since it is a high vacuum process
and there is this ballistic transport of the deposited atom flux from the source to the
substrate. This highly directional flux means that the sidewalls of the holes that have
been opened in the resist are hardly coated at all and lifting-off the resist proceeds
easily. Things are more complex when the other main deposition technology, sput-
tering, is used. Since sputtering involves the use of a working gas at a few mTorr
pressure, the mean free path of the deposited flux is short and there is significant
step coverage, meaning that clean liftoff is difficult. Two possibilities now present
themselves. First, a bilayer resist that provides a large undercut can be used, meaning
that the sputtered film cannot easily coat the sidewalls. On the other hand, patterns
can be written and developed in resist spun on top of a sputtered film to provide an
etch mask, with the pattern subsequently transferred by wet (chemical) or dry (ion
mill or reactive ion) etching. The fact that the magnetic islands forming a spin ice
array grow as discrete elements during liftoff has consequences for their magnetic
configuration, since themacrospin system is able to thermalise during the early stages
of growth [15, 22]. For transmission microscopy experiments (e.g. Lorentz imaging
or X-ray transmission microscopy) it is necessary to carry the sample fabrication on
an electron transparent substrate, typically a Si3N4 membrane.

16.3.2 Measurement and Imaging Methods

The experimental methods used to study artificial spin ices can be divided into two
categories. The first are “macroscopic” probes which measure a quantity that is aver-
aged over the entire sample: this can be thought of as measuring, in some sense, the
statistical mechanical macrostate. On the other hand, one of the main advantages of
the artificial spin ice approach is that the lengthscales make the system amenable to
study using the various advancedmagneticmicroscopymethods that have been devel-
oped over the past few decades. These allow the statistical mechanical microstate of
the artificial spin ice to be interrogated, and its response to external stimuli probed.

Most of the macroscopic probes used to study magnetic materials have been
applied, in some way, to the study of artificial spin ices. Whilst it is just about
possible to write a pattern that is large enough for measurement using conventional
magnetometry (e.g. by SQUID magnetometer), this is challenging, since it relies on
a very long write time. A more convenient way to measure the magnetic hysteresis
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loop of an object that is microns or tens of microns across–the typical size of an
artificial spin ice array–is to use the magneto-optical Kerr effect (MOKE) [23], more
elaborate forms of which include Bragg-MOKE in a scattering geometry [24], and
a temperature dependent form used by Kapaklis et al. [25]. If connected arrays are
formed then they become able to conduct an electrical current and magnetotransport
measurements become possible [26, 27], which are also able to probe switching
fields and hence interactions within the array. The fact that the artificial spin ices
are periodic arrays means that soft X-ray resonant magnetic scattering (XRMS) can
be used to study them, since they will give rise to well-defined diffraction peaks
[28, 29]. The generation of such soft X-rays requires a synchrotron. This method, as
is usual with scattering techniques, gives spatial resolution in reciprocal space, and
allows for the sampling of a larger area of the sample than the typical field-of-view
of a microscope. Last, it has been predicted that ferromagnetic resonance (FMR)
measurements [30] can also be used to study ordering in artificial spin ices [31].

Of course, imaging the exact magnetic configurations of artificial spin ices leads
to deeper insights into their behaviour. Since the individual elements are of a size
that is smaller than the wavelength of visible light, they cannot be resolved in a
optical microscope and so techniques such as Kerr microscopy cannot be used. The
simplest method by which the magnetism in objects that are a few tens or hundreds
of nm in size can be observed is magnetic force microscopy (MFM). This is a
variant of the atomic force microscope method, where the tip is magnetised and so
responds to magnetic, as well as van der Waals, forces. These are generated by field
gradients, and so this method is well-suited to revealing the poles at the ends of the
nanomagnets, as shown in Fig. 16.3a. From these, the direction of each macrospin is
easily determined. Thismethodwas the one used in the first experiments at Penn State
[8] and remains popular due to thewide availability of suchmicroscopes [15, 32–39].
The typical spatial resolution is ∼50nm, although more advanced instruments can
do better than this. A potential drawback is that the magnetic tip can influence the
magnetic state of the sample as it is scanned across it if that state is particularly labile.
Measurements can, in principle, be carried out under an applied field, although most
MFM instruments are usually AFMs retrofitted with a magnetic tip, and so usually
only specialised instruments are equipped with magnets.

The other imaging technique used at the outset of the fieldwasLorentzmicroscopy
[26]. This is a form of transmission electron microscopy, and so has very high spatial
resolution–typically better than 10nm, but can be up to an order of magnitude less in
modern aberration corrected microscopes–but requires the artificial spin ice array to
be on a membrane that is thin enough to be electron transparent: typically 50–100nm
ofSi3N4. Thismeans, of course, that such samples are very fragile.Contrast arises due
to the deflection of the electrons by Lorentz forces as they pass through the sample,
which can be accessed if the image is deliberately slightly defocussed. Imaging
can be carried out under an applied field. An example of a Lorentz micrograph is
shown in Fig. 16.3b. It has therefore proved popular among those groupswith suitable
transmission electron microscopes [21, 40–43]. Since this method depends on the
magnetic flux B that the electron beam passes through for contrast, it is possible to
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Fig. 16.3 Magnetic micrographs of artificial spin ices, obtained by a magnetic force microscopy,
where blue/white contrast corresponds to opposite vertical force gradients, revealing the charges in
this square ice array [97], b Lorentz microscopy, here in Fresnel mode, where dark/bright contrast
on the sides of the bars in this connected kagome network reveals the magnetisation direction (after
Qi et al. [40]), c photoemission electron microscopy, where the contrast depends on XMCD and
therefore is given by the relative alignment of the magnetisation and the X-ray beam direction, here
used to reveal the magnetic states of small hexagonal rings that are kagome ice prototypes (after
Mengotti et al. [19]) and d Full field X-ray transmission microscopy, which also uses XMCD as the
effect to yield contrast, showing Dirac strings of reversed elements. Figures reprinted from [97],
[40] and [19] with permission from the American Physical Society

image the flux-lines between the elements that give rise to the frustrated couplings.
This has been accomplished using the related electron holography technique [44].

The other main imaging technique used in the field of artificial spin ices is
synchrotron-based: photoemission electron microscopy (PEEM) using X-ray mag-
netic circular dichroism (XMCD) as the contrast-generating mechanism. Here the
sample is illuminated with soft X-rays tuned to an absorption edge of a ferromag-
netic element: for the most commonly used material, Permalloy, the L3 edge of Fe is
used. The XMCD effect is connected to the XRMS through a Kramers–Kronig rela-
tion, and means that there is differential absorption of the X-ray photons depending
on whether the photon helicity is parallel or antiparallel to the magnetisation. This
differential absorption in differently oriented domains leads to different photoelec-
tron yields, giving rise to a magnetic contrast mechanism in an image formed when
those photoelectrons are collected in an electron column. The fact that these phot-
electrons are easily Lorentz deflected means that employing this technique precludes
the application of magnetic fields to the sample during imaging. The typical spatial
resolution is better than ∼100nm. An example of an XMCD-PEEM micrograph is
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shown in Fig. 16.3c. The use of this method as a means of studying artificial spin
ices was pioneered by Heyderman’s group at the Paul Scherrer Institute [19], and it
has subsequently been adopted by others [45–49]. The extreme surface sensitivity of
the technique, arising from the short (2–3nm) escape depth for the photoelectrons,
means that it can be used to study extremely thin samples that cannot be imaged by
the other methods described here. This means that the volume of the nanoislands is
very small, allowing them to be influenced by thermal fluctuations [50–52].

Transmission X-ray microscopy (TXM) combines features of the Lorentz TEM
andPEEMmethods. Like the former, it is a transmissionmethod and requires samples
in the same type of thin membranes. Like the latter, it makes use of XMCD as a
contrast generating mechanism. However, since it is a photon-in/photon-out method,
it can be performedwith the sample under an applied field, and so can be used to track
the response of artificial spin ice arrays as they are taken around their hysteresis loops
[53]. An example of an XTM micrograph is shown in Fig. 16.3d. It has been most
commonly used in the scanning XTM (STXM) implementation to study artificial
spin ice samples, where a focussed soft X-ray is scanned over the sample [54–56].

16.4 Monopoles and Magnetricity

A paradigm-defining result in spin ice physics was the development by Castelnovo
et al. of the theoretical description of excitations in pyrochlore spin ices in terms of
deconfined magnetic monopoles [57]. The central concept is that whilst a vertex in
the tetrahedral pyrochlore network possesses no net magnetic charge when the two-
in/two-out ice rule is obeyed, a violation of that ice rule, caused by a spin-flip, leads
to the creation of net positive and negative magnetic charges in the two tetrahedra
connected by that spin. This can be thought of as corresponding to a monopole-
antimonopole pair creation event. Flipping adjacent spin, then another, and another,
gradually separates the monopole and antimonopole, with the chain of flipped spins
being analogous to the flux-tube known as a Dirac string in the theory of fundamental
cosmicmonopoles [58]. An important feature of the pyrochlore geometry is that once
this has been done, whilst the sites of the oppositely chargedmonopoles can be easily
seen, it is not possible to tell which chain of spins has been flipped to separate them.
As a result there is no string tension and the energy of the monopoles is determined
only by their separation through an equivalent of the Coulomb law. This picture was
soon experimentally confirmed using neutron [59–61] andmuon [62] experiments on
different pyrochlore systems. Building upon the concept of mobile magnetic charge
carriers, the idea of ‘magnetricity’ has been introduced. This is the creation and flow
of mobile magnetic charges that respond to externally applied magnetic fields [63].

Translating this picture into the language of square spin ice, as introduced in
Sect. 16.2, we can see that whilst Type 1 and Type 2 vertices are charge neutral
(obeying the ice rules), the monopoles in the Castelnovo et al. picture correspond to
the charged Type 3 vertices. A type 4 vertex corresponds to the superposition of two
monopoles of the same charge. Since the Dirac strings must carry flux, they must be
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Fig. 16.4 Magnetic monopoles and Dirac strings in a square artificial spin ice, visualised using
Lorentz microscopy (after Pollard et al. [42]) and b kagome artificial spin ice, visualised using
PEEM, with an accompanying schematic (after Mengotti et al. [45]). Figure a is reprinted from
[42] with permission from the American Physical Society. Figure b is reprinted from [45] with
permission from Nature Physics

composed of the dipole-bearing Type 2 vertices. The fact that there is a distinction
to be drawn in a square spin ice between the Type 1 and 2 vertices means that in
this case a unique Dirac string can be identified [64]. Under these circumstances
the monopoles are not deconfined. For this reason, strictly speaking, the monopoles
present in square artificial spin ice systems [65] are of the Nambu type [66]. In a
kagome spin ice, all vertices must bear charges, since an odd number of magnetic
dipoles meet at each vertex. The same monopole/Dirac string picture applies in this
case [32], but the monopoles must be defined as charge differences with respect to a
well-defined state [45].

The observation of monopoles and their field-driven dynamics in artificial ices
was in fact first accomplished in the kagome systems [32, 45]. The premise of the
experiment is simple: the magnetic array is first saturated in one direction and then
a reverse field applied to take it along one branch of its hysteresis loop. (In fact, in
these two experiments, due to the constraint of only being able to image at zero field,
were in fact measurements of the first-order reversal curve, although the thermal
bistability of the systems means that this is equivalent to a major hysteresis loop in
this case.) Mengotti et al. performed an analysis of the size distribution of the Dirac
strings that they observed in their experiments on a kagome ice formed from discrete
Permalloy islands [45]. The propagation of these Dirac strings may be regarded as
avalanche events. It is usually the case, in physics and beyond, that the distribution of
avalanches sizes follows a power law, often referred to as a Gutenberg–Richter law
(terminology that first arose in seismology), and so is scale free. In contrast to this,
an exponential law was found, implying a characteristic scale. This was attributed to
the fact the Dirac strings are 1-dimensional objects in a 2-dimensional system, viz.
the frustrated interactions enforce a lowering of the dimensionality of the events.
This general type of reversal (nucleation of monopole-antimonopole pairs, followed
by Dirac string cascades) has also been shown to take place in artificial square spin
ices [36, 42]. Micrographs showing Dirac strings in both geometries are displayed
in Fig. 16.4.
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Whereas the studies discussed above are performed for monopoles constructed
from the uncompensated magnetic poles at the ends of finite-sized discrete elements
(which do show monopole-like field distributions [44]), similar concepts can be
used to interpret the behaviour of connected spin ice arrays, which are networks
constructed from magnetic wires. These vertices emerge at the intersections of the
magnetic wires usually studied in the form of a honeycomb lattice equivalent to a
kagome ice [32, 54]. In these systems, monopoles are created by the emission and
interaction of magnetic domain walls at the wire intersections. This is expected to
be governed by the chirality and topological properties of the domain walls [48],
although this has been recently questioned [56], since quenched disorder in the
system may affect this ideal behaviour in samples where the lithographic defects are
not under complete control.

16.5 Array Topology and Geometry

It is a truism that in geometrically frustrated systems, control of both the static states
and their dynamics can be achieved through a proper design of the topology and
geometry of the network of interacting elements. So far in this chapter we have
discussed only the two most common geometries, square and kagome, which mimic
different aspects of the tetrahedral pyrochlore systems. Nevertheless, one of the
main attractions of the artificial spin ices approach is that the array geometry can
be designed and engineered lithographically, and so the only limitation on possible
designs is the imagination of the designer.

A so-called ‘brickwork’ latticewas developed by the Penn State group, depicted in
Fig. 16.5a [67]. It is constructed by removing staggered rows of every other element
from a square ice system. This maintains the axes of the islands to be orthogonal to
each other, just as for square ice, but reduces the number of islands meeting at each
vertex to three, making it topologically equivalent to the kagome lattice. However
it retains the property of the square lattice that the interactions at each vertex are
not all equivalent, since the angles between the nanoislands are not all the same.
As a result the properties of the lattice, such as approach to the ground state on ac
demagnetisation and the correlations between the island alignments, aremore similar
to the square than kagome structure. The details of the geometry matter in artificial
frustrated systems: they cannot be classified on topology alone.

Thin magnetic films are usually magnetised in-plane since they have a strong
shape anisotropy, and it is usually this anisotropy that is used to provide the Ising-
like nature of the macrospins in artificial spin ices. Nevertheless, other anisotropies
can be used. Perpendicular anisotropies are common at the interfaces between mag-
netic and heavy metals due to the lowering of symmetry at a point where there are
strong spin-orbit interactions. For a sufficiently thin ferromagnetic film, which in
practice usually means �1nm, the reduction in the volume demagnetising energy
is large enough that this interface anisotropy can dominate and the magnetic easy
axis is out-of-the-plane. A prototypical materials system displaying this effect is a
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Fig. 16.5 Novel geometries for artificial spin ices include a the brickwork lattice (MFM, after Li
et al. [67]), b hexagonal and c kagome networks of perpendicularly magnetised islands (SEM, both
after Zhang et al. [68]), d the shakti lattice (SEM, after Gilbert et al. [39]), and e kite-and-dart
(SEM, after Bhat et al. [69]) and f rhomboid quasiperiodic Penrose tilings (SEM) [70]. Figure a,
b–c and e are reprinted from [67–69] with permission from the American Physical Society. Figure
d is reprinted from [39] with permission from Nature Physics

multilayer of Co/Pt. A nanoscale dot of such a multilayer will possess an Ising-like
macrospin that is directed out-of-the-plane and so the magnetostatic coupling to a
neighbouring dot will be antiferromagnetic. Placing three such dots in a triangle is
enough to realise a frustrated system, since it realises the prototypical example of
frustration : three antiferromagnetically coupled (macro)spins. Such small clusters
of dots were studied by the Paul Scherrer Institute group [71], who studied their
energy spectra both experimentally and theoretically. Meanwhile, the Penn State
group have studied (frustrated) kagome and (unfrustrated) honeycomb lattices of
such perpendicularly magnetised dots (depicted in panels (b) and (c) of Fig. 16.5)
[68], and found that there is a remarkable correspondence between the correlations
in this type of kagome ice and a conventional in-plane one, in spite of their very
different magnetostatic couplings. This concept of building artificial systems from
perpendicularly magnetised materials deserves more attention than it has received to
date.

All of the lattices discussed so far have a single co-ordinationnumber. For instance,
in the square ice, four islands meet at every vertex, whereas in the kagome ice, the
number of islands that interact at every vertex is three. In order to estimate the
entropy of such systems (as Pauling did for the Ice Ih phase of H2O [2], and can
easily be done for the six-vertex model of Lieb [12]), it is necessary only to extend
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the vertex-level degeneracy to the global ground state. Nevertheless, it is simple to
envisage lattices that have mixed co-ordination, where this basic procedure cannot
be followed. This leads to a new class of vertex models where the frustration arises
not from the properties of an individual vertex but from the relative arrangements of
neighbouring vertices, not all of which can take up their lowest energy configuration
at the same time. Breaking the pure co-ordination rules allows for the construction of
a wide variety lattices (with names such as the pinwheel, tetris, or Santa Fe lattices)
with extensive degeneracy [72]: the key property of the pyrochlore spin ice that is lost
in the square ice, with its twofold ground state. The most heavily studied of these
is the so-called shakti lattice, constructed by removing elements from the square
ice system in such a way that there is a mixed 3/4 co-ordination. This has been
shown theoretically to possess a quasicritical ice phase with algebraic correlations
[73], similar to the critical correlations of the Coulomb phase in the pyrochlore
spin ices. Importantly, this is the only lattice showing this new type of topologically
emergent frustration to have been experimentally realised [39]. The results can be
mapped onto the six-vertexmodel by breaking the lattice up into emergent composite
plaquettes, which reveals the extensive degeneracy that it possesses. Whilst the four-
island vertices possess no net magnetic charge in their ground state, the three-island
vertices necessarily must. These couple through long-range interactions that leads
to crystallisation and screening. This idea of mixed co-ordination number lattices
can also be used to construct not only emergent magnetic monopoles, but also the
associated emergent magnetic polarons [74]. Screened charges have been directly
visualised as a transient state in dice lattice artificial spin ices [75]. All of mixed
co-ordination number models, and the topologically emergent frustration that they
possess, can only be realised through the artificial spin ice route, since they have no
known analogs in nature, and remain a fruitful avenue for future work.

Spin ices form the archetype for geometrically frustratedmagnetic systems,where
the frustration persists even in the limit of structurally perfect crystalline order. On
the other hand, positional disorder/random interaction lead to another famous form
of frustrated magnetic system: the spin glass [76]. Such systems naturally rely on a
lack of crystalline order to provide the necessary random couplings. (The idea of an
artificial analog of a spin glass is not one that seems to have been pursued yet.) At the
boundary of crystals, with their perfect discrete translation symmetry, and glasses,
with the total absence of any such symmetry, lie the quasicrystals. These possess
order (in the sense that knowing a small part of the structure, one can follow rules to
construct the rest of it and fill all of space) but lack translational symmetry. Quasicrys-
tals containing both rare earth [77] and transition metal [78] magnetic species show
spin glass-like freezing when the spins are dilute. Nevertheless, geometry appears to
play some role. The discovery of quasicrystals [79] forced a redefinition by the Inter-
national Union of Crystallography of the term “crystal” in 1991 to refer to structures
that produce sharp diffraction patterns, regardless of whether they posses discrete
translational symmetry or not. Mathematically, it is now understood that quasicrys-
tals are projections in three-dimensional space of structures that are periodic in some
higher number of dimensions. This applies to magnetism as well as structure: the
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neutron diffraction pattern of a Zn–Mg–Ho icosahedral quasicrystal can be under-
stood in terms of the system realising a projection of a higher dimensional multi-q
antiferromagnetic structure [80].

The two-dimensional analog of a quasicrystal is a Penrose tiling [81]. Heisen-
berg spins on the nodes of a Penrose tiling have been studied theoretically [82]
and their configuration can be shown to correspond to interpenetrating non-collinear
sublattices in a higher dimensional structure [83]. It is natural to use these results
at the inspiration to build an artificial analog of a magnetic quasicrystal using the
samemethodology as building an artificial spin ice: place magnetic nanoislands with
Ising-like spins along the edges of a Penrose tiling and study their configurations.

Penrose patterns come in two forms, known as kite-and-dart or rhomboid, with
the names derived from the shapes of the tiles used to form them. Bhat et al. have con-
structed Permalloy lattices based on the kite-and-dart form, where the elements are
connected to form a continuous network [69]. These were studied using the macro-
scopic probes of SQUID magnetometry and FMR, revealing well-defined switching
fields and a rich mode structure. However, magnetic imaging of the patterns was
not reported. Meanwhile, Fig. 16.5 shows a small portion of an artificial magnetic
quasicrystal constructed in the author’s laboratory built using discrete islands along
the edges of rhomboid tiles, which take the forms of thin or fat rhombi. In this pat-
tern, in contrast to the kite-and-dart, all the links between vertices of the tilings are
the same length. Theoretical considerations and MFM imaging show that the pattern
contains rigid parts with a two-fold ground state and loose spins that lead to extensive
degeneracy [84], similar to the decagonal ordering in the Heisenberg system [82].
The very high level of co-ordination number mixing–there are vertices where as few
as three or as many as seven elements meet–leads to strong topologically induced
frustration. The enhanced level of frustration means that the ground state is very
difficult to access, a phenomenon seen in a weaker form in the square ice [85].

16.6 From Effective to Real Thermodynamics

It has become a commonplace that artificial spin ices are realisations of the toy
models of statistical mechanics, such as the square ice model [12]. What is missing
so far from the discussion is one of the most important parameters of that sub-field
of physics: temperature. So far in this chapter we have implicitly assumed that the
state of the array that is being inspected through microscopy is fixed, so that we can
acquire a stable image, and that any changes to that state are driven by the application
of a field. What that means in practice is that Eb � kBT must hold, where Eb is the
energy barrier between the bistable states of an island and kBT is the thermal energy
at the ambient temperature T . Indeed, for islands of the size studied by Wang et al.
[8] can be shown to have Eb ∼ 105 K, far in excess of any realistically achievable
experimental temperature. Thus thermal fluctuations play no role.
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Such a system is said to be athermal. It is not ergodic and its states may not
correspond to thermally equilibrated states. Such athermal systemsmay nevertheless
be described in terms of an effective thermodynamics, originally developed in the
field of granular matter [86]. In that field, the process of vibro-fluidisation is used to
relax the many-body system into a low energy state [87]. The equivalent process in
magnetism is an ac demagnetisation.

The demagnetisation protocol used in the initial experiments by Wang et al. [8]
to relax the spin ices into a state where fidelity to the ice rules could be tested was
to subject the sample to an ac demagnetisation process whilst rapidly spinning it at
about 20Hz so that the field samples all in plane directions in the array, as shown
in Fig. 16.6a, b. The aim of a demagnetisation process is, of course, to reduce the
magnetisation as close to zero as possible. There are of course many such square ice
states with zero magnetisation: one is the antiferromagnetic state formed from an
alternating tiling of the two Type 1 vertices, but also many higher energy states with
disordered moments. At first these protocols were able to provide this disorder [88],
and thus degeneracy [89], but ground state access was not possible. Given the energy
scales involved, a state very close to the ground state is expected to be the thermally
equilibrated one. A more detailed study of the states yielded by this protocol showed
that whilst it can be improved by using finer and finer field steps, the energy of
the system does not extrapolate to the ground state [90]. Some years later, a linear
demagnetisation protocol was shown to produce partial ground state ordering (up to
∼60% of the vertices in the Type 1 configuration, as shown in Fig. 16.6c) [91], as
previously predicted by theory [92]. Slow field sweep rates are required, so that each
island has a chance to experience all field directions in the few moments before it
approaches its switching field. The degree of ground state fidelity is constrained by
the level of quenched disorder [93].

Nevertheless, these field driven protocols seem to be incapable of producing prop-
erly thermalised states, perhaps because they only permit downward steps in energy,
rather than the upward and downward steps permitted by a true anneal process. Nev-
ertheless, the states they do produce can be described by an effective thermodynamics
[89]. Notions of the effective temperature of the macrospin system, as introduced in
the field of granular matter [86], can be brought into play [35]. This effective temper-
ature is derived from an inspection of the artificial spin ice of the system, and is thus
a microscopic measurement, rather than the macroscopic measurements required
to establish the real temperature. It is based on a simple vertex gas model in the
canonical ensemble, where the energy of a vertex of Type i is denoted by Ei , and its
multiplicity (the number of equivalent configurations) by νi . It is convenient to define
an energy scale such that E1 = 0 and E3 = 1. It is worth noting that this formalism
neglects any kind of correlations between adjacent vertices, even the most basic one
that each macrospin must be a dipole. It is an effective thermodynamics since ν2,
which ought to be equal to 4 (see Fig. 16.1), is set to be 5. The reason for this is that
an additional Type 2 vertex type is defined, which is the background configuration
defined by the rotating field. In this state, all the macrospins track the field, rotating
between the four different Type 2 configurations. As the field is reduced through the
switching field distribution of all of the macrospins in the array (which has a finite
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Fig. 16.6 Rotating field
demagnetisation protocols: a
ac demagnetisation field
profile (with results) (after
Wang et al. [88]), and b
linear demagnetisation field
profile (with results) (after
Morgan et al. [91]).
Reprinted from [88] with
permission from AIP
Publishing and from [91]
with permission from
Frontiers in Physics

(b)(a)
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width due to both quenched disorder and the couplings between the islands) it carves
defects into this background as each vertex drops out of the rotating background
population into one of the four conventional vertex types. To determine the effective
temperature Teff = 1/βeff , one measures the fractional population ni of each vertex
type (with

∑
i ni = 1) and notes that this should be defined by a Boltzmann factor

as ni = qi exp(−βeffEi )/Z , where Z is the partition function. The ratio of any two
of these Ni will suffice to determine the effective temperature, but the definition of
zero energy means that it is convenient to compare any other vertex population to
n1. This leads to βeff = E−1

i ln [(qi/2)(n1/ni )]. Nisoli et al. used this approach to
show that when rotational ac demagnetisation is used, more strongly coupled arrays
generally had lower effective temperatures than more weakly coupled ones [35]. In
a truly thermally equilibrated system, the real and effective temperatures will be the
same, and any variation between them is a measure of how athermal the systems is.
Extending the idea of there being an effective statistical mechanics at play, it has
also been shown to be possible to determine an effective entropy of the macrospin
system from an inspection of the artificial spin ice, once a suitable formalism has
been developed [94].

Nevertheless, a true thermalisation remained highly sought after, since (i) it would
allow for the ‘real’ thermodynamics of the system to be studied and (ii) obtaining
a state close to the ground state means that excitations above it may be easily stud-
ied. A one shot thermalisation process was discovered by Morgan et al., who found
extensive ground state order in some of their samples in their as-grown state after
fabrication [15]. An important point is that these samples were fabricated by liftoff,
and so comprised discrete islands that passed through every thickness between zero
and their final thickness during fabrication. The barrier to reversal Eb = KV , where
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Fig. 16.7 Thermally equilibrated artificial spin ices. a One shot thermalised, imaged using MFM
[97]. b Thermally annealed, imaged using MFM. After Zhang et al. [38]. c Thermally relaxed,
imaged using PEEM. After Farhan et al. [51]. Figure a and c are reprinted from [97] and [51] with
permission from the American Physical Society. Figure b is reprinted from [38] with permission
from Nature

K is an anisotropy constant defined by the island shape and V is the island volume.
When very thin, the island volume would be small and so KV will be smaller than
the thermal energy kBT allowing free thermal fluctuation. As the thickness increases,
KV will rise until it exceeds the thermal energy by a large enough factor that the
system arrests, dropping out of thermal equilibrium and becoming athermal. It thus
captures a snapshot of a truly thermal state at the temperature and island thickness
when this arrest takes place: an example is shown in Fig. 16.7a. Theoretical treat-
ments of this process were given by Nisoli [22] and Greaves and Muraoka [95].
States with large domains of ground state order, separated by domain walls [96], and
containing isolated excitations were observed. These excitations were distributed
according to Boltzmann factors [15]. These states had very low effective tempera-
tures, which could be described within a canonical ensemble model where ν2 could
be set to the true value of 4 [97]. Thus, the effective temperature model shows that
truly thermalised states can be discriminated from those prepared by field demag-
netisation on the basis of their statistical properties, just as anticipated by Ke et al.
[90]. Measurements of such states allow access to phase transitions between the anti-
ferromagnetically ordered ground state and a high effective temperature disordered
state [98].

A drawback of this one-shot anneal process is that it can only be performed
during the sample growth, and the thermalised state is irrecoverably destroyed once
the sample state is changed by a field, and the ground state can never be reset. An
obvious approach to this problem is to carry out a true anneal of the sample, heating it
to above the relevant temperature scale, which is either the blocking temperature Tb
of themacrospins or the Curie temperature Tc of themicrospins (whichever is lower),
and then cooling back to room temperature in order to image the state that had been
prepared. This was attempted by several groups, but in every case the nanostructures
did not survive the heat treatment and the artificial spin ice arrays were destroyed.

The first success in achieving anything resembling a reversible anneal was made
byKapaklis et al., who fabricated artificial spin ice arrays from atomic Femonolayers



472 C. H. Marrows

sandwiched between Pd layers [25]. These had aCurie point below room temperature
and so could be heated and cooled through Tc to ‘melt’ and ‘freeze’ the macrospin
system. This was detected through MOKE magnetometry, but the states obtained
were not imaged. An experiment along similar lines was carried out by Porro et
al., who reduced the Tc of Permalloy by enriching it with Ni [37]. Although the
reduction was fairly modest, it was sufficient to reduce the temperature needed for a
magnetic anneal to a low enough value that the artificial islands survived. Extensive
ground state order was achieved in square ice samples. The process was perfected
by Zhang et al., who fabricated their artificial spin ices on substrates coated with an
inert layer of Si3N4. This allows for annealing up to high enough temperatures to
completely anneal the macrospin system [38]. They studied both square and kagome
ice arrays, and were able to obtain perfect ground state order in the former (see
Fig. 16.7b), and to observe the charge crystallisation due to the interactions of the
magnetic charges intrinsic to the odd coordination at each vertex predicted by theory
[64, 99] in the latter. The same effect has achieved by Drisko et al., who used the
low Curie temperature ferrimagnet FePd3 (Tc ∼ 200 ◦C) to achieve perfect ground
state ordering in square ices and an even higher degree of monopole charge order
in connected kagome systems [100]. This approach has been extended to the study
of deliberately introduced topological defects–dislocations, which possess a Burgers
vector–that disrupt the ability to form ground state order by forcing into being an
excited string of Type 2 and 3 vertices that stretches to the edge of the array [101].

Once static thermalised states had been observed, the next step is clearly to observe
thermally activated dynamics. The first hints of thiswere seen byArnalds et al., where
a handful of unstable islands were seen in otherwise frozen thermalised arrays [102].
Fully fluctuating kagome clusters were soon achieved by making very thin–and
hence low volume–Permalloy islands [50], which can nevertheless be easily imaged
by PEEM due to the surface sensitivity of that technique. Applying the same idea to
full square ice arrays led to a remarkable discovery: after saturation by a field into a
fully Type 2 configuration the system is able to relax thermally into the ground state
by nucleating monopole-antimonopole pairs, which create Dirac strings that flip the
correct chains of islands to yield Type 1 vertices [51], as shown in Fig. 16.7c. That
the interactions between islands help to stabilise their macrospins against thermal
fluctuations was shown by studying the dynamics in Fe-monolayer in Pd kagome
ices with different lattice spacings [52]. A beautiful recent result fromGilbert et al. is
the demonstration of emergent reduced dimensionality in the tetris lattice: on cooling
from the fluctuating state, the system subdivides into oblique stripes of stable ground
state order interspersed with stripes of fluctuating spins [103].

16.7 Outlook

The field of artificial spin ices remains active with many new breakthroughs emerg-
ing. These include the cross-fertilisation with magnonics [31, 104, 105], work on
disorder-induced criticality [106], proposals for three-dimensional systems [107],
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and the development of complex network theories to represent the changing states
in artificial spin ice systems [108].

Whilst nanomagnetic systems remain by far the most popular, the general con-
cept of constructing artificial frustrated systems using nanotechnological means has
found expressions in other forms. Superconducting systems have been studied in var-
ious forms, with the earliest implementations using coupled superconducting rings
[109, 110]. A theoretical proposal for a square ice in which each element contains a
single superconducting vortex forms a very close analog with the frustrated proton
system Ice Ih, where the vortex must occupy one of two positions that are close to
one vertex or the other, leading to a two-in/two-out ice rule at each vertex [111]. Just
a such a system was very recently realised (albeit using slightly different means to
provide the bistable energy landscape for the vortices) by Latimer et al. [112]. Soft
matter approaches are also possible. A square ice system where interacting colloidal
particles are held in optical traps was theoretically analysed by Libál et al. [113],
which operates on much the same principle as the superconducting vortex systems:
the particle must lie at one end or the other of an elongated trapping potential, and
thus be present at one or other vertex. Again, the analogywith protons in Ice Ih is very
close. On the other hand, a realisation of the frustrated triangular antiferromagnet
was constructed by placing colloidal particles in a layer confined between two sheets
such that the particles can move up or down a small distance [114]. By packing them
a suitable density, complex patterns can be formed due to the frustration. An advan-
tage of this approach is that the colloidal particles are large enough to image using
an ordinary optical microscope. Going further in this direction, it is not even always
necessary to use nanoscale systems: a macroscopic kagome spin ice was constructed
byMellado et al. using centimeter scale bar magnets on hingedmounts, the dynamics
of which were studied using a high speed video camera [115].

Fromamore technological perspective, viewing these systems as information stor-
age [34, 116] or processing technologies could also lead to nanomagnetic logic archi-
tectures [117, 118] based on frustrated arrays. These need not have the traditional
von Neumann architecture: for instance, the Ising model provides the theoretical
underpinning for the Hopfield model of neural networks [119], suggesting that non-
Boolean neuromorphic architectures based on artificial spin ices might be possible.
Advances in the field of nanomagnetic logic also cross-pollinate into new experi-
mental opportunities in artificial spin ices, for instance driving out-of-equilibrium
dynamics using spin Hall torques [120]. Whilst initially perceived as an attempt
simply to build analogs of existing systems such as pyrochlores, new physics, such
as topologically emergent frustration, can only be studied by this route, which is
an important justification for continued work in the field. It is clear that there will
be plenty more opportunities to put the drinks on ice in order to celebrate future
breakthroughs.
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