q

Check for
updates

Information-Flow Control by Means
of Security Wrappers for Active Object
Languages with Futures

Farzane Karami'®) Olaf Owe!®) | and Gerardo Schneider?

! Department of Informatics, University of Oslo, Oslo, Norway
{farzanka,olaf}@ifi.uio.no
2 Department of Computer Science and Engineering, Chalmers University
of Technology, Gothenburg, Sweden
gerardo@cse.gu.se

Abstract. This paper introduces a run-time mechanism for prevent-
ing leakage of secure information in distributed systems. We consider a
general concurrency language model where concurrent objects interact
by asynchronous method calls and futures. The aim is to prevent leak-
age of secure information to low-level viewers. The approach is based
on a notion of security wrappers, where a wrapper encloses an object
or a component and controls its interactions with the environment. OQur
run-time system automatically adds a wrapper to an insecure compo-
nent. The wrappers are invisible such that a wrapped component and its
environment are not aware of it.

The security policies of a wrapper are formalized based on a notion
of security levels. At run-time, future components will be wrapped upon
need, and objects of unsafe classes will be wrapped, using static check-
ing to limit the number of unsafe classes and thereby reducing run-time
overhead. We define an operational semantics and sketch a proof of non-
interference. A service provider may use wrappers to protect its services
in an insecure environment, and vice-versa: a system platform may use
wrappers to protect itself from insecure service providers.

Keywords: Active objects + Futures - Information-flow security -
Non-interference + Language-based security - Distributed systems

1 Introduction

Given the large number of users and service providers involved in a distributed
system, security is a critical concern. It is essential to analyze and control how
confidential information propagates between nodes. When a program executes,
it might leak secure information to public outputs or send it to malicious nodes.
Information-flow control approaches track how information propagates during
execution and prevent leakage of secure information [24]. Program variables are
tagged typically with security levels; such as high and low, to indicate secure

© Springer Nature Switzerland AG 2021
M. Asplund and S. Nadjm-Tehrani (Eds.): NordSec 2020, LNCS 12556, pp. 74-91, 2021.
https://doi.org/10.1007/978-3-030-70852-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70852-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-70852-8_5

Security Wrappers for Information-Flow Control 75

and public data. In this setting, an “attacker” could be seen as a low-level
object that is not supposed to see high information. The basic semantic notion
of information-flow security is non-interference [10]. This means that in any two
executions of a program, if high inputs are changed, but low inputs are the
same, then the low outputs will be the same (at least for locally determinis-
tic programs). This way, an attacker (a low object) cannot distinguish between
observable behaviors of the two executions since low outputs are independent of
the high inputs [12].

We will consider a high-level model for object-oriented distributed systems
suited for service-oriented systems, namely the active object modelMethod inter-
action is implemented by message passing; moreover, most active object lan-
guages support a communication paradigm called futures [5]. A future is a com-
ponent that is created by a remote method call and eventually will contain the
corresponding return value [3]. Therefore, the caller does not need to block while
waiting to get the return value: it can continue with other tasks and later get
the value from the corresponding future. Futures can be passed to other objects,
called first-class futures. In this case, any object that has a reference to a future
can access its content, which may be a security threat if the future contains
secure data. Futures offer a flexible way of communication and sharing results,
but handling them appropriately in order to avoid security leakages requires
run-time checking (described in Sect. 2.1).

Our goal is to design a permissive and precise security mechanism for con-
trolling object communications in active object languages supporting first-class
futures. Our security mechanism is inspired by the notion of wrappers in [21],
where a wrapper encloses an object and enforces safety rules. In the present
paper, we suggest a notion of security wrapper, which wraps an object or a
future at run-time and performs security controls. Such wrappers are added
by the operational semantics upon need, and a wrapped component and its
environment are not aware of the presence of the wrapper. Security wrappers
block object communications that lead to leakage of secure data to low objects.
A future is wrapped if it contains a high value, and the wrapper blocks illegal
access by low objects. The operational semantics of a wrapper is defined based on
run-time security levels, resulting from a flow-sensitive information-flow enforce-
ment [23]. We enrich the operational semantics with dynamic information-flow
rules [23] where security levels of variables are allowed to change after an assign-
ment. Therefore, our dynamic approach guarantees a degree of permissiveness
and is precise since it deals with the exact run-time security levels.

The operational semantics of our security framework is provided in the style of
Structured Operational Semantics (SOS). In order to minimize run-time overhead,
we suggest static analysis to limit the number of classes where security checking
and wrappers are needed since often only a few methods deal with secure informa-
tion. In the resulting hybrid approach, the static analysis determines which classes
cannot produce any high output, so-called safe classes, while the run-time system
takes care of the precise security checking of objects of unsafe classes and futures
created by such objects. Assuming a sound static analysis, we show that our pro-
posed hybrid approach ensures the non-interference property.

76 F. Karami et al.

In summary, our contributions are: i) a notion of security wrappers for enforc-
ing noninterference and security control in object interactions (Sect. 4), ii) the
use of static analysis to reduce the run-time overhead (Sect. 4.1), iii) defining
the operational semantics for the dynamic information-flow enforcement with
automatic deployment of wrappers (Sects. 4.2, 4.3) for our language (Sect. 4),
and iv) an outline of the proof that our approach satisfies non-interference.

2 Background

Information-flow control approaches detect illegal flows. During program execu-
tion, there are two kinds of leakage of information, namely explicit and implicit
flows [24]. For simplicity, we assume two security levels, L (low) and H (high).
In the setting with observable and non-observable variables, an explicit flow hap-
pens when assigning a low variable (I) with a high value (h) by [:= h. In the set-
ting without observable variables, one may deal with this by letting the level of [
be dynamically changed to H. In an implicit flow, there is an indirect flow due to
control structures. For example, in the if statement: [:= 0 if h then [:= 1 fi,
the guard h is high, and it affects the value of [indirectly. In order to avoid
implicit flows, a program-counter label (pc) is introduced [24]. If the guard is
high, then pc becomes high, indicating a high context. (In run-time analysis, one
may use a stack to deal with nested control structures.)

Information-flow control approaches are divided into two categories, static
and dynamic [23]. Static analysis is conservative [12]: to be sound, it over-
approximates security levels of variables (for example, it over-approximates a
formal parameter to high, while at run-time, a corresponding actual parameter
can be low). This causes unnecessary rejections of programs, especially when
the complete program is not statically known, as is usually the case in dis-
tributed systems. On the other hand, static analysis has less run-time overhead
since security checks are performed before program execution [12]. Dynamic
information-flow techniques perform security checks at run-time, and this intro-
duces overhead. But they are more permissive and precise since they deal with
the exact security levels instead of an over-approximation [12].

For example, consider the following method body:

{if low_test then x := high_exp else x := low_exp fi; return x}
where low_test and low_exp evaluate to low values, while high_exp evaluates
to a high value. A sound static analysis will detect a high method result here
since the value of low_test is not known; while at run-time, an execution of the
method may give a low result (when low_test evaluates to false). The exam-
ple shows that static analysis over-approximates the security level, in contrast
to run-time analysis. Similarly, the parameter mechanism gives rise to static
over-approximation. For a method T' triv(T z){return z}, where T is a type
containing both high and low values, static analysis will detect a (potentially)
high result, whereas for calls with a low input value, the result is detected as low
at run-time. However, this could be handled by multiple static method profiles

Security Wrappers for Information-Flow Control 77

as in [19] (when low T values are reflected by a subtype of T'). For first-class
futures, the situation is worse: a get statement on a future is detached from the
call statement and also from the method name. Therefore, the static analysis of
a get statement must over-approximate the level of the possible future values,
while the exact level is revealed during run-time. This means that static analysis
of security levels in languages with first-class futures can easily lead to a high
degree of over-approximation.

In what follows, we briefly explain some of the terminologies of information-
flow security that we use in this paper:

Security Levels. Variables are tagged with security levels, organized by a par-
tial order C and a join LI operator, such that L C H and L U H = H. The
LI operator returns the least upper bound of two security levels. Inside a class,
declarations of fields, class parameters, and formal parameters may have stati-
cally declared initial security levels. These levels may change with statements.
We define a new syntax for object creation to assign security levels to objects.

Flow-Sensitivity. By a dynamic flow-sensitive analysis, security levels of vari-
ables propagate to other variables, and precise levels are evaluated during execu-
tion. Variables start with their declared security levels (the ones without levels
are assumed as L), but levels may change after each statement. In an assign-
ment, the left-hand-side level becomes high if pc is high, or there is a high vari-
able on the right-hand-side. The left-hand-side level becomes low if pc is low,
and there is no high variable on the right-hand-side [23]. Otherwise, the secu-
rity level of a variable does not change. E.g., a flow-sensitive analysis accepts
the program h := 0; if h then [:= 1 fi; return [; since the level of h is
updated to L after the first assignment, hence there is no leakage. In if state-
ments, in order to avoid implicit flows, when the guard is high, the security lev-
els of variables appearing on the left-hand side of assignments in the taken and
untaken branches are raised to high [23]. E.g., considering an initial environment
I'={h— H,ly — L,ly — L} and the program: if h thenl; := 1 elsely :=0fi
when the condition is true, I" changes to I' ={h — H,l; — H,lo — H} for
a sound flow-sensitive analysis [23]. In a dynamic approach, in order to have
a sound flow-sensitive analysis, the assigned variables in the untaken branches
should be given to the analysis, which can be provided by static analysis of the
program code [4,23].

2.1 Active Object Languages

Active object languages are based on a combination of the actor model [1]
and object-oriented features [5]. Some well-known active object languages are
Rebeca [25,26], Scala/Akka [11,27], Creol [14], ABS [13], Encore [6], and
ASP /ProActive [7,8]. In communication with futures, when a remote method
call is made, a future object with a unique identity is created. Futures can be
explicit with a specific type and access operations like in ABS or can be implicit
with automatic creation and access [5]. E.g., in ABS, explicit futures are created
asin Fut[T] f := olm(€);v := f.get, where f is a future variable of type Fut[T],
and T is the type of the future value. The symbol “!” indicates an asynchronous

78 F. Karami et al.

method call m of object o with actual parameters e, and the future value is
retrieved with a get construct when needed. The variable f can be passed to
other objects as a parameter (first-class futures). The caller may continue with
other processes while the callee is computing the return value. The callee sends
back the return value to the corresponding future, and then the future is called
resolved. A synchronous call is denoted by o.m(€), which blocks the caller until
the return value is retrieved.

Basic constructs

Z 1= newe, c(€) object creation with the security level lev
return e creating a method result/future value

if b th s [el s'] fi if statement (b a Boolean condition)

f = om(e) remote asynchronous call, future variable f
x:= f.get blocking access operation on future f
olm(e) simple asynchronous remote call

Fig. 1. Statement syntax. Here € is an expression list. Brackets denote optional parts.

Information-Flow Security with Futures. Static analysis is in general dif-
ficult for programs with futures, where the result of a call is no longer syntacti-
cally connected to the call, compared to the call/return paradigm in languages
without futures [15]. For example, a future may be created in one module and
received as a parameter in another. Thus, a future may not statically correspond
to a unique call statement. One could overestimate all future values as high, but
this would severely restrict the set of acceptable programs. It would be better to
overestimate the set of possible call statements that corresponds to a given get
statement, but this requires access to the whole program, which is often problem-
atic for distributed systems. Moreover, the return values of these overestimated
calls may have different security levels, which also results in overestimation.

A static analysis that assumes references as low, allows passing of future
references. However, the exact security level of a future value is revealed when it
becomes resolved, which goes beyond static analysis. For example, if a low-level
object performs x := f.get, and f refers to a future with a high value, it is a
leakage of information. A dynamic approach is required to control access to a
future value at run-time when it is resolved, and if the value is high it needs
protection. The futures concept makes static checking less precise, and the need
for complementary run-time checking is greater, as provided in the present paper.

3 Our Core Language

In order to exemplify our security approach, the security semantics (in Sect. 4.2)
is embedded in a simple, high-level core language. All remote calls are made by
means of futures, where the method result is always returned to the correspond-
ing future. Figure 1 gives the syntax of statements. The statement f := olm(e)

Security Wrappers for Information-Flow Control 79

is an asynchronous call with futures, and olm(€) is an asynchronous call without
waiting for the result and associating a future. We define an extended syntax for
object creation new;., c(€), where lev is the object’s level (it can be L or H).

Figure 2 illustrates a health care service in our core language, involving
futures for the sharing of secure medical records. Personnel and patients with
lower-level access are not allowed to access medical records. High variables are
emphasized based on user specifications, in this case reflecting patients’ medical
test results. The server, specified by the class Service, searches for a patient’s test
result, and the object proxy publishes the result to the patient and personnel.
In Fig. 2, in line 10, a produce cycle is initiated between the server and proxy.
In line 13, the server searches for the test result of a patient with the userld
a by sending a remote asynchronous call to the laboratory f := lab!search(a),
where f is the future variable. In line 14, the server calls proxy!publish(f, a, d)
and passes the future f, userld a, and personnelld d to the object prozy. Both
search and publish are asynchronous calls, thus the server does not wait for the
return values and is free to respond to any client request. In line 18, the object
prozy waits for the test result and assigns the result to variable z by performing
z = f.get. Then prozy sends = to the patient and personnel.

data type Result = ... // definition of medical data

interface Servicel { Void produce() ... }

interface Proxyl { Void publish(Fut[Result] q, Patientl a, List[Personnell] d) ... }

interface Labl { Resulty search(Patientl a) ... }

interface Patientl { Void send(Resulty r) ... }

interface Personnell { Void send(Resulty r) ... }

interface DataBase { ... }

class Service(Labl lab, DataBase db) implements Servicel {

Proxyl proxy = newpy Proxy(this);

thislproduce(); // initial action, starting a produce cycle

Void produce() { Fut[Result] f; Patientl a; List[Personnell] d = Nil;
// finding a patient and the associated personnel in a database
f:=lablsearch(a); // searching for the test result of patient a
proxy!publish(f, a, d); } } //sending the future f, not waiting for the resuly

00~ O U i W N —

el e e el
DU WD~ OO

class Proxy(Servicel s) implements Proxyl{ Resulty x;

Void publish(Fut[Result] f, Patientl a, List[Personnell] d) {

x:=f.get; // waiting for future and assigning the value to x. x becomes H
alsend(x); // x is now H

dlsend(x); // multicasting, = is H

slproduce(); } }

[
O © 00

[\
—_

Fig. 2. Example of sharing high patients’ test results by means of futures

A static analysis over-approximates the security levels of test results as high,
which leads to rejections of information passing. Note that the two send calls
in the class Proxy would not be allowed if we only use static checking since
we cannot tell which patients and personnel have a high enough level. A static

80 F. Karami et al.

analysis which considers references as low allows passing the future f to the
object prozy (line 14), but later when it is resolved, the future value can be
high, and the prory compromises security by sending this value to other objects.

4 A Framework for Non-interference

Like Creol, our core language is equipped with interface encapsulation, which
means that created objects are typed by interfaces, not classes [14]. As a result,
remote access to fields or methods that are not declared in an interface is impos-
sible. Therefore, observable behavior of an object is limited to its interactions
through remote method calls. Illegal object interactions are the ones leading to
an information-flow from high information to low level objects. An object can
reveal confidential information in method calls by sending actual parameters
with high security levels to low-level objects. If a future contains data with a
high security level, low-level objects’ access is illegal.

We exploit the notion of wrappers to perform dynamic checking for enforc-
ing non-interference in object interactions. A wrapper blocks illegal interac-
tions. Wrappers’ security policies are based on run-time security levels. Inside
an object, in order to compute the exact security levels of created messages or
return values, the flow-sensitivity must be active. The operational semantics for
the dynamic flow-sensitive analysis, is given in Sect. 4.2 and for wrappers, in
Sect. 4.3.

We can be conservative and wrap all objects and correspondingly activate
flow-sensitivity, but this will cost run-time overhead. In order to be more efficient
at run-time, it is important to perform dynamic checking only for components
where it is necessary. We benefit from static analysis to categorize a class defi-
nition as safe or unsafe. A class is safe if it does not have any method calls with
high actual parameters and return values. A class is unsafe if it has a method
call with at least one high actual parameter or a high return value. Objects cre-
ated from unsafe classes are wrapped, and flow-sensitivity will be active inside
these objects. Objects from safe classes do not need a wrapper or active flow-
sensitivity. This will make the execution of objects of safe classes faster, as we
avoid a potentially large number of run-time checks and wrappers.

4.1 Static Analysis

Our security approach can be combined with a sound static over-approximation
for detecting security errors and safe classes, e.g., the one proposed in [20],
which is more permissive (to classify a class as safe) than the static analysis
indicated here, in that high communication is considered secure as long as the
declared levels of parameters are respected. In a class, variables are declared
with maximum security levels (the maximum level that can be assigned at run-
time). The same for future variables at the time of declaration, for example,
Fut[Ty] x indicates that x is a high future variable. Local variables without a
declared security level start with the level L (as default) but may change after
each statement due to the flow-sensitivity. Dataflow typing rules inside an object

Security Wrappers for Information-Flow Control 81

config = € | object | flowsen-obj | msg | future | wrapper | class | config config
object = ob(o, a,p, lev) d =7 | View

flowsen-obj ::= 0b(o, a, p, lev, pcs) p = (l,s) | idle

msg = inve(f,m,d, 0)iev | comp(d, f)iev

future = fut(f,d)

wrapper == Wr{wld, lev | config }

class = Clc | @', mm)es

Fig. 3. The components of a configuration.

can be defined similar to [20]; however, we change the typing rules for method
calls and return values to classify unsafe and safe classes. A class is defined as
safe if the confidentiality of each method is satisfied. The confidentiality of a
method is satisfied if the typing rules for its return value and actual parameters
are satisfied. The typing rules check that each occurrence of an actual parameter
and a return value are not high; then, the class is safe; otherwise, it is unsafe
and needs dynamic checking. The typing rule for getting a future, checks that if
a future variable is high, then the class is classified as unsafe. Alternatively, we
could have used another sound static analysis, for instance (the relevant parts
of) the static analysis defined for ABS in [22], and adapt it to our setting.

We categorize safe and unsafe classes for the example in Fig. 2. The interface
laboratory Labl has a method with a high return value (search). Thus the object
lab is unsafe and flow-sensitivity is active to compute the security level of the
return value at run-time. The class Proxy is unsafe since it has at least one
method call with a high actual parameter (alsend(x)), thus object prozy is active
flow-sensitive and wrapped.

4.2 Security Semantics

We here discuss the operational semantics of our core language with the embed-
ded notions of flow-sensitivity and security wrappers in Figs. 4, 5. The small-step
operational semantics is defined by a set of rewrite rules [17]. In a rule, premises
are above the line and one step rewrite is under the line. A rule is applied to a
subset of a configuration if the premises are satisfied, and the subset is changed
from the left-hand-side to the right-hand-side of the rewrite rule.

In Fig. 3, an execution state is modeled as a configuration config, which
is a multiset of objects (with or without active flow-sensitivity), messages,
futures, wrappers, and classes. (Classes are included in a configuration to pro-
vide static information about fields and methods.) An object is represented as:
0b(o, a, p, lev), where o is the object identity, a is the field state, p is the current
active process, and lev is the object’s level (lev € {L, H}). An active process p
is a pair (,s), where [is the local variables state, and s is a list of statements,
or it is idle representing an empty local state and no statements. A state is a
mapping (substitution) binding variables to values. A flowsen-obj represents
an flow-sensitive object with an extra field pcs that denotes a stack of context
security levels inside an object, where pcs = emp denotes an empty stack.

82 F. Karami et al.

A class is represented as: Cl(c | a’, mm)e,, where ¢ is the class name, o’
is the initial state of the class fields (attributes), mm is a multiset of method
declarations (with local variables and code), and lev denotes the type of the
class, i.e., if lev = L, the class is safe, and if lev = H, the class is unsafe. A msg
represents an invocation message or a completion message. In an invocation
message, f is the future identity, m is the method name, d is a list of actual
parameters, and lev is a level attached to the message at time of creation. If
a message is created in a high context, then lev = H; otherwise, lev = L. A
completion message contains a return value d and a future identity f, and lev
represents the context level. The notation d denotes a value v or a value with
security level v;.,,. The future component shows a resolved future with identity f
and the value d, and fut(f, _) denotes an unresolved future. A security wrapper
is represented as: Wr{wld, lev | config}, where wld is the wrapper’s identity, lev
is the level, and config denotes the configuration inside the wrapper.

Auwaziliary Functions. Let I' be a mapping and [z — d] be a binding, mapping
x to d. The notation I'[z — d] represents the update of I with the binding.
The look-up function is represented as I'(x), where I'[x +— d](z) = d. The map
composition a+#l indicates that the binding of a variable in the inner scope [
shadows any binding of that variable in the outer scope a. Thus a#l(z) gives
I(x) when defined, otherwise a(z). Consider an object with attribute state a and
local state I. Then the composition a#t defines the object state. The notation [e]
denotes the evaluation of expression e, where variables are evaluated according
to the object state. The evaluation in [e] is strict in the sense that the resulting
level is high if e contains variables that have a high security level. Other auxiliary
functions are given as follows:

— The function level(d) returns the security level of d, such that level(vie,) =
lev, and for an untagged value level(v) = L. If € is a list of expressions, then
[e] = d returns a list of data, and level(d) = U level(d;),Vd; € d (the join of
all data in d).

— The function level(o) returns the level of the object o.

— The function level(pcs) returns the join of security levels in pes, where if
pes = emp, level(pes) = L, and if pes # emp, level(pes) = H.

— The function update(s) raises the security levels of variables appearing in
the left-hand-side of assignments in s to high.

— The function fresh() returns a unique identity for an object or a future.

— The function bind(o,m,d, f) returns a process, where the method m in the
class of the object o is activated, and the method’ parameters are bound to
the actual ones (d), and a reserved local variable label is bound to f, denoting
where to send the return value of the method [13].

— The function bind (o, m, J) returns a process without the binding for the label,
in case the method’s result is not needed.

— The function safe(Cl (¢ | a, mm);e,) returns true if lev = L and false other-

wise.

Figure 4 represents the flow-sensitivity semantics of objects. The NEW rule
shows the command x := new;,¢'(€) in the active process of an object o, where

Security Wrappers for Information-Flow Control 83

¢ is an unsafe class. The rule creates an active flow-sensitive object o’ and a
wrapper and assigns o’ to x. The active process of the new object o' is initially
idle, denoting an empty active process. The level of o’ is lev as it is specified in
the command new;.,c’(€), if not, the level is assumed low. The stack of pcs is
empty, denoted by emp. The wrapper has the same identity (o) and the level
(lev) of the object o’. The semantics of the actual class parameters is treated like
parameters of an asynchronous call x!init(€) (creating an invocation message by
the rule CALL), where init is the name of the initialization method of a class.
Note that if € contains high security level data, the wrapper does not send the
corresponding invocation message to the new object if the new object is low-
level (see rule WR-INVC-ERROR in Fig. 5, which we explain later). The Rule
ASSIGN-LOCAL shows an assignment x := e, where x is in the local state [, e
is evaluated to vy, , and x is updated in [with the new value v and the level
lev' U level(pes). Therefore, the level of x is updated with the right-hand-side
level joined with that of pcs. In IF-LOW-TRUE, the guard’s security level is low,
and the guard is true (fruey), thus the corresponding branch s’ is taken. While
in IF-LOW-FALSE, since the guard is false, the else branch s is taken. In 1F-HIGH-
TRUE and IF-HIGH-FALSE, since the guard’s security level is high, similar to the
approach in [23], the security levels of variables appearing in assignments in
both branches are raised to high to avoid implicit flows. In the rules, the guard’s
security level H is pushed to the pcs stack, resulting in a high security context,
where all the messages created in a high context will have high security levels
(see rules CALL-FUT, CALL). Moreover, assignments in the taken branch result
in high security levels (see ASSIGN-LOCAL and ASSIGN-ATTRIBUTE). The added
statement endif (s”), where s” is the untaken branch, marks the join point of
the if structure and raises the assigned variables’ levels in the untaken branch.
In the ENDIF rule, the function update ; (s") raises the security levels of variables
appearing in the left-hand-side of assignments in s” to high, and these variables
are updated in the local state. Moreover, the last element of pcs is removed
(pes.pop()), reflecting the previous context level.

In the rules, we do not cover local calls, which do not involve object interac-
tions (therefore, less interesting here). The CALL-FUT rule deals with an asyn-
chronous call z := elm(e), where x is a future variable, and e is the callee.
The call generates a (not resolved) future with a unique identity f, where f is
assigned to z, and an invocation message containing f, m, actual parameters d,
and the callee o’. The invocation message’s level is level(pcs), which is needed to
avoid indirect leakage from the caller. The rule CALL shows an asynchronous call
elm(e) without an associated future, where the method’s result is not needed.
The call creates an invocation message containing m, d, and the callee o', and
the message’ level is level(pes). The START-FUT rule is applied when an object
is idle, and there is an invocation message to the object. The object’s active
process is updated with p, which is the bind’s result, where method m is acti-
vated, formal parameters are bound to the actual ones (CZ), and the local variable
label is bound to the future identity (f) for sending the method’s result to the
future by a return statement. The level of the received message lev’ is added

84 F. Karami et al.

NEW
o' = fresh() false = safe(C")
0b(0,a, (I, x := new., c'(€);s),lev’) —
ob(0, a, (I, z := o'; xlinit(e); s), lev') Wr{o',lev|ob(0, a'[this — 0], idle, lev, emp)}

ASSIGN-LOCAL ASSIGN-ATTRIBUTE
x € dom(l) v = [€] x € dom(a) vy = [€]
ob(o,a, (l,x :=e;s), lev, pcs) — ob(o,a, (I,x := e;s), lev, pcs) —

Ob(07 a, (l[ZC — Ule'u'ulevel(pcs)]a 5)7 lev, pCS) Ob(O, (l[fl? = Ulev’ulevel(pcs)]a (l7 S)a lev, pCS)

IF-LOW-TRUE IF-LOW-FALSE
truer, = [e] false; = [e]
ob(o,a, (I,if(e) s’ el s” £i;s),lev,pcs) ob(o,a,(l,if(e) s’ el s” £i;s), lev, pcs)
— ob(o,a,(l,s';s), lev, pcs) — ob(o,a,(l,s";s), lev, pcs)
IF-HIGH-TRUE ENDIF
trueg = [e] I = l[update g (s")]
ob(o,a, (l,if(e) s’ el s” £i;s), lev, pcs) — ob(o,a, (I, endif (s'); s), lev, pcs) —
ob(o,a, (I,s'; endif (s'");), lev, pcs.push(H)) ob(o,a, (I, s), lev, pcs.pop())
CALL-FUT
IF-HIGH-FALSE f = fresh()
falsey = [€] o =[e] d=[e]
ob(o,a, (l,if(e) s’ el s” £i;s),lev,pcs) — ob(o,a, (I,z := e!lm(€);s), lev, pcs) —
ob(o,a, (I,s"; endif (s'); 5), lev, pcs.push(H)) ob(o,a, (l,x := f;s),pcs)
fU’t(fv *) im)c(f, m, d7 Ol)level(pcs)
CALL START-FUT
o =[e] d=[e] p = bind(o,m,d, f)
ob(o,a, (1, e!m(e); s), lev, pcs) — ob(0, a, idle, lev, pcs) inve(f,m, d, 0) e
ob(o,a,(l, s), lev, pcs) inve(m, d, o')level(pcs) — ob(o, a, p, lev, pcs.push(lev’))
START RETURN
p = bind(o,m,d) d=[e] f=I(destiny)
ob(o0, a, idle, lev, pcs) inve(m, d, 0)jeur ob(o,a, (I,return(e);), lev, pcs) —
— ob(o,a,p, lev, pcs.push(lev’)) ob(o, a,idle, lev, pcs) comp(d, f)ievei(pes)

Fig. 4. Flow-sensitive operational semantics, lev, lev’ € {l, H}.

to the object’s stack pcs. This avoids implicit leakage from the sender. In the
START rule, the invocation message does not contain a future identity, and the
object starts execution the corresponding method, which is activated by the bind
function without the binding for the [abel variable. The RETURN rule interprets
a return statement, which creates a completion message to the corresponding
future, which is looked up in the local state (I(label)), and the object becomes
idle. The security level of the completion message is level(pcs) to avoid indirect
leakage from the callee to the recipients of the future value. We assume that
each method body ends with a return statement. The rules for objects without
active flow-sensitivity are similar but without security levels, pcs, and wrappers.

Security Wrappers for Information-Flow Control 85

4.3 Operational Semantics of Security Wrappers

In this section, we discuss the operational semantics of security wrappers. As
mentioned, a wrapper for an object is created in the rule NEW in Fig. 4. A
wrapper has the same identity as the wrapped component; thereby, the wrapper
represents the component to the environment. Invocation messages generated by
the CALL-FUT and CALL rules will first meet the object’s wrapper for security
checking before being sent to the callee. The WR-INVC rule in Fig. 5, represents a
wrapper with an invocation message inside, which is produced by the object o. If
the join (L) of the message’s level lev’ and the actual parameters’ levels level(d)
is less than or equal to the destination object’ level (level(0')), then the wrapper
allows the message to go out. In WR-INVC-ERROR, since the recipient object’s
level is less than the message’s level, the invocation message is deleted and the
corresponding future value is replaced by an error value. This can be combined
with an exception handling mechanism such that an exception is raised when
a get operation tries to access an error value. However, as this is beyond the
scope of this paper, we ignore the exception handling part. We simply indicate

WR-INVC HIGH-FUT
lev' U level(d) C level(o') H = level(d) U lev
Wr{o, lev | inve(f,m,d, 0)i, config } — Jut(f,-) comp(d, f)iev —
Wr{o,lev | config } inve(f,m,d, 0)i Wr{f, H | fut(f,d) }
WR-INVC-ERROR LOW-FUT
lev' U level(d) 3 level(o') L = level(d) U lev
Wr{o, lev | inve(f,m,d, 0) ey config } fut(f,) — Jut(f,-) comp(d, f)iev —
Wr{o,lev | config } fut(f,error) fut(f,d)
ERROR-FUT HIGH-FUT
f=1el H = level(d) U lev
fut(f,error) ob(o,a, (l,x := e.get;s), lev, pcs) — fut(f,-) comp(d, f)iev —
fut(f,error) ob(o,a,(l,z := error;s), lev, pcs) Wr{f, H |fut(f,d)}
INVC-WR INVC-WR-ERROR
Viev; € level(d) : lev; T Alm, 1] Jlev; € level(d) : lev; 3 Alm,]
Wr{o, lev | config } inve(f, m,d, 0)r — Wr{o,lev | config } inve(f, m,d,0) iy
Wr{o, lev | inve(f,m,d, 0) 1, config} — Wr{o,lev | config}
ERROR-HIGH-FUT-GET HIGH-FUT-GET
f=1e] levC H f=1e] lev 3 H
Wr{f, H | fut(f,d)} Wr{f, H | fut(f,d)}
ob(o,a, (I, z := e.get; s), lev, pcs) — ob(o,a, (I,x := e.get; s), lev, pcs)
Wrif, H | fut(f,d)} = Wr{f, H | fut(f,d)}
ob(o,a, (I,x := error;s), lev, pcs) ob(o,a, (l,x :=d;s), lev, pcs)

LOW-FUT-GET
f=1e]
Jut(f,d) ob(o,a, (l,z := e.get; s), lev, pcs) —
fut(f,d) ob(o,a, (l,x :=d;s), lev, pcs)

Fig. 5. Operational semantics involving wrappers, lev, lev’ € {l, H}.

86 F. Karami et al.

exceptions by assignments with error in the right-hand-side. The ERROR-FUT
rule represents the case where a future value is error; the object performing the
get command x := e.get, where e refers to the future, assigns an error to «. The
rule ASSIGN-ATTRIBUTE shows an assignment, where x is in the object’s fields.

The INVC-WR rule represents a wrapper and an incoming invocation message
to the object o. The notation A[m,] indicates the level of the ith formal param-
eter of the method m as declared in the class. If the security level of each actual
parameter (lev;) is less than or equal to the security level of the correspond-
ing formal parameter, then the wrapper allows the message to go through and
adds it to its configuration inside. Otherwise, the invocation message is deleted
in INVC-WR-ERROR. In LOW-FUT, an unresolved future gets the corresponding
completion message containing d, hence the future becomes resolved with d. The
join of the message’s level lev and level(d) is low, thus no wrapper is created. In
HIGH-FUT, lev U level(d) = H, thus the future becomes wrapped and resolved.
Since the future is high, a wrapper is created to protect it, and the wrapper
has the same identity and level as the future. The ERROR-HIGH-FUT-GET rule
represents a wrapped future and an object that wants to get the future value. If
the security level of the object (lev) asking for the value is less than the wrapper
(H), then the wrapper sends an error value. In HIGH-FUT-GET, the object gets
the value from the wrapped future since the object’s level is greater than or
equal to H. The LOW-FUT-GET rule shows that an object gets the value from an
unwrapped future without security checking.

4.4 Non-interference

We show that our security framework satisfies non-interference. Non-interference
considers the observable behavior of different executions. The observable behavior
of an object consists of invocation messages and completion messages. Even
the observable behavior of object creation, by the NEwW rule in Fig. 4, is an
asynchronous call zlinit(€), which creates an invocation message. Since object
and future identities may change from execution to execution, we must compare
executions relative to a correspondence of such identities in one execution to
those in another execution. Corresponding objects must be of the same class.

A message is said to be low if it does not have a high tag nor contain any
parameters with high tags. Two low messages are indistinguishable, ~, if the
identities in the messages correspond to each other, and other values are equal.
Two execution states of corresponding objects o and o' are said to be indistin-
guishable if the values of their local variables and attributes are indistinguishable
and they have the same remaining statement lists, and also agree on other system
variables, including flow sensitivity (with same values of pcs).

Definition 1. Global non-interference means that for any two executions with
corresponding objects and futures, such that the history of messages consumed
or produced by an object in one execution state is indistinguishable from that
of the corresponding object in a state of the other execution, and such that the
next communication event of the first object is a low output, then the next low
communication output event of the other object will be indistinguishable.

Security Wrappers for Information-Flow Control 87

Definition 2. Local non-interference means that for two executions with corre-
sponding objects o and o, and for execution states where o and o' are non-idle
and where the execution states of o and o' are indistinguishable, the next execu-
tion states of these objects will also be indistinguishable when both have executed
the next statement, and in case the statement gives an output, both make indis-
tinguishable output (or neither makes no low output).

Note that our security approach includes termination aspects. We next prove
that each object is locally deterministic, in the sense that the next state of a
statement, other than idle and get, is deterministic, i.e., depending only on the
prestate. The only source of non-determinism is get and the independent speed
of the objects, which means that the ordering in the messages queues is in general
non-deterministic. Thus only idle states and get cause local non-determinism.

Lemma 1. In our security model, each object is locally deterministic.

Proof. According to our operational semantics, for each statement (other than
idle and get) there is only one rule to apply, and for an if statement, the choice
of the rule is given deterministically by testing the security level and value of
the guard. There is no interleaving of processes inside an object as well. O

Definition 3. Low-to-low determinism means that any low part of a state or
output resulting from a statement, other than get, is determined by the low part
of the prestate and the statement, when ignoring states where pcs is high.

Lemma 2. In our security model, each object is low-to-low deterministic.

Proof. This can be proved by case analysis on the statements. For an if with a
high test, the taken branch does not result in low state changes nor low outputs.
In particular, any invocation message made has label H, and the execution of
that method invocation by the same or another object, will start in a high
context (see the START-FUT and START rules), and so will a new object created
from the branch. This ensures that there is no implicit leakage from a high
branch. However, the choice of branch could depend on high information, and
lead to distinguishable states, but this is compensated by endif (s), which raises
the level of variables updated in the untaken branch s”. For an if with low test,
the choice of branch is given by the low part of the prestate and the test. For an
assignment, the level of the left-hand-side becomes low if the level of the right-
hand-side is low and pcs is low. Otherwise, the left-hand-side’ level becomes high
after the assignment. The cases for the other statements are straightforward. O

Theorem 1. Our security model guarantees local and global non-interference,
and an attacker (i.e., a low object) will only receive low information.

Proof. Local non-interference can be proved by induction of the number of exe-
cution steps considering two executions of an object. The low part of each state
and the low outputs must be the same by the two previous lemmas, using the
fact that future values of corresponding futures will be indistinguishable, since

88 F. Karami et al.

these are given by earlier outputs, which are indistinguishable by the induction
hypothesis. Global non-interference can be proved by induction on the number
of steps considering two executions. It follows by local non-interference for all
objects. Since an attacker is a low object, the wrappers will prevent it from
receiving high inputs. O

This theorem implies that an attacker will not be able to obtain high infor-
mation explicitly or implicitly, nor observe difference of termination aspects.

5 Related Work

Starting with the work of Denning and Denning [9], a number of static techniques
for lattice-based security information flow analysis have been suggested.

In [20], a secure type system has been suggested for Creol without futures to
enforce noninterference in object interactions. Typing rules check that the secu-
rity levels of variables respect the declared security levels in the interfaces. In [20],
since the run-time security levels of objects, indicating the access rights, might
not be available at static time, an if-test construct is added to check the secu-
rity level of an object before sending data. Our approach is a dynamic technique,
which is more permissive and precise and supports futures confidentiality. In [22],
Pettai and Laud present a type system for ABS to ensure non-interference by
means of over-approximation. E.g., a future’s security level is the upper bound of
the tasks’ levels that the future refers to, while our run-time system does not use
over-approximation (assuming the labels are exact). This work also deals with
other concurrency features of ABS such as cogs and synchronization between
tasks, where security issues are prevented by using the operational semantics
and the type system. The cog feature of ABS is not relevant to our paper.

In [2], a dynamic information-flow control approach is performed for the ASP
language. Security levels are assigned to activities and communicated data. The
security levels do not change when they are assigned. Dynamic checks are per-
formed at activity creations, requests, and replies. Since future references are not
confidential, they are passed between activities without dynamic checking, but
getting a future value is checked by a reply transmission rule. In [2], the security
model guarantees data confidentiality for multi-level security (MLS) systems.
Our approach adds flow-sensitivity, which allows security levels of variables to
change during execution of an object. It makes our approach more permissive
and a wrapper deals with run-time security levels. In addition to enforcing the
non-interference property in object interactions, our approach guarantees that
an object will be given access only to the information that it is allowed to handle.

In [18], Nair et al. implement and design a run-time system, named Trishul,
to track the flow of information within the Java virtual machine (JVM). This
paper focuses on implicit and explicit flows through the Java control flows and
the architecture and does not enforce non-interference. Due to the Trishul’s
modular nature, our security wrappers can be deployed to prevent illegal flows.

Russo and Sabelfeld [23] prove that a sound flow-sensitive dynamic
information-flow enforcement is more permissive than static analysis. In [16],
the notion of wrappers is used to control the behavior of JavaScript programs

Security Wrappers for Information-Flow Control 89

and enforce security policies to protect web pages from malicious codes. A policy
specifies under which conditions a page performs a specific action, and a wrapper
grants, rejects, or modifies these actions. Moreover, the notion of wrappers has
been developed for the safety of objects [21], where the programmer needs to
specify which objects should have a wrapper and to program what each wrap-
per should do based on any input/output. In contrast, we apply wrappers to
security analysis, letting the runtime system automatically decide which com-
ponents should be wrapped, and also what the wrappers should do to prevent
illegal flows.

6 Conclusion

We have proposed a framework for enforcing secure information-flow and non-
interference in active object languages based on the notion of security wrappers.
We have considered a high-level core language supporting asynchronous calls and
futures. In our model, due to encapsulation, there is no need for information-
flow restrictions inside an object. Wrappers perform security checks for object
interactions (with methods and futures) at run-time. Furthermore, wrappers
control the access to futures with high values. Security rules of wrappers are
defined based on security levels of communicated messages. Inside an object,
the security levels of variables might change at run-time due to flow-sensitivity.
Wrappers on unsafe objects and future components protect exchange of confi-
dential values to low objects. Wrappers on objects protect outgoing method calls
and prevent leakage of information through outgoing parameters. The wrappers
are created automatically by the run-time system without the involved parties
being aware of it. Their behavior is also defined by the runtime system. We define
non-interference for our language and outline a proof of it. By combining results
from static analysis, we can improve run-time efficiency by avoiding wrappers
when they are superfluous according to the over-approximation of levels given
by the static analysis.

Acknowledgements. We thank Christian Johansen for useful interactions. The Nor-
wegian Research Council has funded us by project IoT'Sec (no.248113/070).

References

1. Agha, G.A.: Actors: a model of concurrent computation in distributed systems.
Technical report, Massachusetts Inst. of Tech, Cambridge Artificial Int. Lab. (1985)

2. Attali, 1., Caromel, D., Henrio, L., Aguila, F.L..D.: Secured information flow for
asynchronous sequential processes. Electron. Notes Theor. Comput. Sci. 180(1),
17-34 (2007)

3. Baker Jr, H.C., Hewitt, C.: The incremental garbage collection of processes. ACM
Sigplan Not. 12(8), 55-59 (1977)

4. Balliu, M., Schoepe, D., Sabelfeld, A.: We are family: relating information-flow
trackers. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS,
vol. 10492, pp. 124-145. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66402-6-9

https://doi.org/10.1007/978-3-319-66402-6_9
https://doi.org/10.1007/978-3-319-66402-6_9

90

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

F. Karami et al.

De Boer, F., et al.: A survey of active object languages. ACM Comput. Surv. 50(5),
76 (2017)

Brandauer, S., et al.: Parallel objects for multicores: a glimpse at the parallel
language ENCORE. In: Bernardo, M., Johnsen, E.B. (eds.) SFM 2015. LNCS, vol.
9104, pp. 1-56. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18941-
3-1

Caromel, D., Delbé, C., Di Costanzo, A., Leyton, M.: Proactive: an integrated
platform for programming and running applications on grids and P2P systems.
Comput. Methods Sci. Technol. 12(1), 16 (2006)

Caromel, D., Henrio, L.: A Theory of Distributed Objects: Asynchrony-
Mobility-Groups-Components. Springer, Heidelberg (2005). https://doi.org/10.
1007/b138812

Denning, D.E.; Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504-513 (1977)

Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, p. 11. IEEE (1982)

Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410, 202-220 (2009)

Hedin, D., Sabelfeld, A.: A perspective on information-flow control. Softw. Saf.
Secur. 33, 319-347 (2012)

Johnsen, E.B., Hahnle, R., Schéfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142-164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Softw. Syst. Model. 6(1), 39-58 (2007)

Karami, F., Owe, O., Ramezanifarkhani, T.: An evaluation of interaction
paradigms for active objects. J. Log. Algebr. Methods Program. 103, 154-183
(2019)

Magazinius, J., Phung, P.H., Sands, D.: Safe wrappers and sane policies for self
protecting JavaScript. In: Aura, T., Jarvinen, K., Nyberg, K. (eds.) NordSec 2010.
LNCS, vol. 7127, pp. 239-255. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27937-9_17

Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73-155 (1992)

Nair, S.K., Simpson, P.N.D., Crispo, B., Tanenbaum, A.S.: A virtual machine based
information flow control system for policy enforcement. Electron. Notes Theor.
Comput. Sci. 197(1), 3—-16 (2008)

Owe, O., Dahl, O.-J.: Generator induction in order sorted algebras. Form. Asp.
Comput. 3(1), 2-20 (1991)

Owe, O., Ramezanifarkhani, T.: Confidentiality of interactions in concurrent
object-oriented systems. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein,
H., Herrera-Joancomarti, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436,
pp. 19-34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0_2
Owe, O., Schneider, G.: Wrap your objects safely. Electron. Notes Theor. Comput.
Sci. 253(1), 127-143 (2009)

Pettai, M., Laud, P.: Securing the future—an information flow analysis of a dis-
tributed OO language. In: Bielikova, M., Friedrich, G., Gottlob, G., Katzenbeisser,
S., Turdn, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 576-587. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-27660-6_47

https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/b138812
https://doi.org/10.1007/b138812
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-27937-9_17
https://doi.org/10.1007/978-3-642-27937-9_17
https://doi.org/10.1007/978-3-319-67816-0_2
https://doi.org/10.1007/978-3-642-27660-6_47

23.

24.

25.

26.

27.

Security Wrappers for Information-Flow Control 91

Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
2010 23rd IEEE Computer Security Foundations Symposium (CSF), pp. 186-199.
IEEE (2010)

Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5-19 (2003)

Sirjani, M., Movaghar, A., Mousavi, M.R.: Compositional verification of an object-
based model for reactive systems. In: Proceedings of the Workshop on Automated
Verification of Critical Systems (AVoCS 2001), Oxford, UK, pp. 114-118. Citeseer
(2001)

Sirjani, M., Movaghar, A., Shali, A., De Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informaticae 63(4), 385-410 (2004)
Wyatt, D.: Akka Concurrency. Artima Incorporation, USA (2013)

	Information-Flow Control by Means of Security Wrappers for Active Object Languages with Futures
	1 Introduction
	2 Background
	2.1 Active Object Languages

	3 Our Core Language
	4 A Framework for Non-interference
	4.1 Static Analysis
	4.2 Security Semantics
	4.3 Operational Semantics of Security Wrappers
	4.4 Non-interference

	5 Related Work
	6 Conclusion
	References

