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Abstract. Virtual machine introspection (VMI) can be defined as the
external monitoring of virtual machines. In previous work, the impor-
tance of this technique for malware analysis and digital forensics has
become apparent. However, in these domains the problem occurs that
some information is not available in the main memory at all times. Specif-
ically, files contained on non-volatile memory are typically not accessible
for VMI applications. In this paper, we present a file extraction archi-
tecture that uses a dynamically injected in-guest agent to expose the file
system for VMI-based analysis. To enable the execution of this in-guest
agent, we also introduce a process injection mechanism for ELF binaries
through the main memory using VMI.

Keywords: File extraction · Virtual machine introspection · Code
injection

1 Introduction

Virtual machine introspection (VMI) is the process of monitoring virtual
machines from the outside to gain knowledge of the inner state [7]. Due to
this external monitoring of live systems, VMI has become an appealing tech-
nique for intrusion detection, malware analysis, virtual machine management,
software debugging and memory forensics [11].

When dealing with virtual machine introspection-based malware analysis and
computer forensics, many situations arise that require efficient access to non-
volatile memory such as files that are stored on hard disk [15]. However, practical
implementations for this use-case (when only access to main memory is given or
the file system is encrypted) are lacking. In automated malware analysis, it is
desirable to submit payloads that malware downloads to disk to the monitor for
static analysis. For example, updates to malware should automatically be trans-
ferred to the monitor to track its evolution. For computer forensics purposes,
it can be essential to obtain files contained in virtual machines during run-time
without interruption of active services. Because files are typically not loaded into
memory unless the user actively accesses them, performing forensics on the main
memory is insufficient. Access to virtualized storage of the guest through virtual
machine introspection instead of extracting the wanted data from the disk image
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is required in situations where the target is protected by (full) disk encryption.
Another reason could be that the targeted file is not stored on the VM itself, but
is instead located on network storage, which is not accessible by the monitor.

In order to extract files from persistent storage, domain-specific solutions
such as extracting credentials for NFS and WebDAV -based network storage
or key extraction for encrypted volumes such as encFS or LUKS have been
proposed [21]. However, those techniques only apply in their respective domain,
as in many cases the file system type is not known in advance, is proprietary, or
the technique relies on user actions.

In this paper, we design and implement a file extraction mechanism for use in
VMI environments with the assistance of a dynamically injected in-guest agent
that directly uses the file system capabilities of the guest. This proposed architec-
ture is built with the following goals in mind: First, it must work on remote and
encrypted file systems, this means the mechanism must operate independently of
the underlying file system. Second, it should allow for reasonable transfer speeds
so that the mechanism can be used to extract large files. Third, it must solely
rely on existing introspection APIs without any modifications to the VMM. Last,
it must be built considering stealthiness.

The contributions of this paper are the design, implementation, and evalu-
ation of the following components that can be deployed in production environ-
ments on an unmodified Xen hypervisor using primitive VMI operations and
events:

– A file extraction mechanism for files that are not loaded to main memory
– A process injection mechanism for VMI applications to execute ELF binaries
– A communication channel between an injected process and a VMI application

The outline of the paper is as follows: In Sect. 2 we present the common
techniques of virtual machine introspection for hardware-assisted virtualization.
The assumptions of our file extraction architecture and potential mitigation
measures for the monitored virtual machine are discussed in Sect. 3. Section 4
introduces the components of the file extraction mechanism and outlines their
interactions through VMI methods. In Sect. 5 we discuss the implementation of
the VMI application and the in-guest agent that is injected into the monitored
system as an ELF binary. Section 6 assesses the architecture based on transfer
speed, performance degradation and stealthiness. In Sect. 7 we compare our work
to the most related approaches concerning VMI-based code injection and file
extraction. Finally, we conclude our findings in Sect. 8.

2 Virtual Machine Introspection

We begin by introducing the relevant terminology and the principles integral to
the design and implementation of the file extraction architecture.
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VMI and the Semantic Gap: Virtual machine introspection (VMI) was first
designed to enhance robustness in intrusion detection systems by Garfinkel and
Rosenblum in 2003 [7]. They defined VMI as the approach of inspecting a VM
to analyze its behavior. Their first attempts at this novel technique involved
a modified version of VMW are Workstation, which allowed the use of direct
memory access (DMA) and access to virtual memory through manual address
translation.

Pfoh et al. provide the theoretical foundation by describing a formal model
for virtual machine introspection [24]. They still discuss this in the context of
intrusion detection, but their results remain applicable for all VMI-based security
applications. In particular, the research alludes to possible practical applications
such as computer forensics and secure logging. One of the main issues identified
here is the semantic gap, meaning the monitor requires assumptions over the
internal state of the virtual machine, e.g., the memory layout, data structure
layout, and kernel objects. The semantic gap is the problem of extracting high-
level semantic information from low-level data sources [5].

Jain et al. summarize and compare multiple approaches concerning bridg-
ing the semantic gap [15]. They divide the problem of the semantic gap into
sub-problems: The weak semantic gap refers to the challenge of creating VMI-
based tools. The strong semantic gap, on the other hand, is the open problem of
protecting such solutions from attacks interfering with the analysis, e.g., Direct
Kernel Object Manipulation.

Furthermore, they categorize VMI-based monitoring of virtual machines as
either asynchronous or synchronous [15]. Asynchronous monitoring refers to
methods that perform analysis of RAM much like traditional memory foren-
sic techniques, without manipulating the control flow inside the monitored VM.
Synchronous monitoring on the other hand interferes with the control flow of
the monitored VM, so that monitoring can take place at specific events or pre-
determined locations in the control flow, thus allowing a much greater level of
control. This, however, requires support in the virtualizing hardware to perform
context switches between VMs based on the monitored events.

Intel VT-x can perform a VM-exit when a software interrupt occurs within
the guest virtual machine [14]. VM-exit refers to the event of a privileged instruc-
tion being executed, which traps to the hypervisor and executes the provided
handler. This enables our code injection architecture to use the int3 instruc-
tion to trigger a software breakpoint, which exits the virtual machine and allows
the VMI application to intervene. Furthermore, we can perform a VM-exit on
other events depending on the specific implementation. On Intel processors, this
behavior can be configured using the primary and secondary Processor-Based
VM-Execution Controls. Additionally, the monitoring of writes to certain control
registers such as CR3 is supported [14]. As this register acts as the default page
table base register (PTBR), it must be updated by the scheduler when perform-
ing a context switch to an active process to reflect its page table, which enables
synchronization through a VM-exit when a process becomes active within the
monitored virtual machine. This makes synchronous VMI operations on specific
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processes possible, which is required for many intrusive VMI operations such as
code injection.

In this work, we use the Xen hypervisor and refer to the virtual machines
using the terms introduced by Taubmann et al. [27]. The term monitoring virtual
machine (MVM) is used for the virtual machine that performs the introspection
and contains the VMI application. The MVM can either be the Dom0 or a DomU
with the privilege to perform VMI operations on another VM. The production
virtual machine (PVM) is the virtual machine that is monitored by the MVM.

VMI Tool Support: Bryan D. Payne [23] provides a library named libvmi based
on XenAccess. This library aids in the prototyping of VMI applications. Through
integrated support of existing memory forensic frameworks such as Volatility [30]
and Rekall [25], bridging the semantic gap is significantly simpler in production
environments as provisioning for different machines can now be automated. The
bootstrapping of the in-guest agent via process injection and the resulting data
transfer will heavily build upon this work.

Libvmtrace, a tracing library for virtual machines based on libvmi, is intro-
duced by Taubmann et al. [28]. The library employs the previously mentioned
technique of monitoring the CR3 register to perform synchronous VMI oper-
ations. By doing so, the library can inject shellcode into an active process to
perform process forking for the Linux operating system [26].

3 Threat Model and Assumptions

In this paper, we make the following assumptions regarding the system under
analysis and discuss how a potential attacker that has access to the production
virtual machine may potentially undermine our efforts. This aspect is relevant to
the aforementioned use-cases when malware aims to prevent automated analysis
or when the user of the virtual machine tries to impede an on-going forensic
investigation.

First, we assume that the attacker does not compromise the kernel in a way
that prevents the introspection from bridging the semantic gap. In particular,
techniques such as DKOM are suitable to complicate or avert the use of virtual
machine introspection for the use-case of file extraction [2]. Second, general kernel
protection approaches such as (kernel) structure randomization [13] may prevent
a successful application of introspection altogether. Given the case of random-
ization on the task struct, the monitor would operate on the false assumption of
a default data layout and would thereby be unable to correctly extract process
information from the guest.

Furthermore, we assume that the attacker does not escape or bypass the iso-
lation provided by the hypervisor and attack the file extraction VMI application
directly. The hard disk’s controller may not be modified or controlled by the
attacker. Additionally, the guest virtual machine must allow for the execution
of the covert in-guest agent. This means there must be no hypervisor or other
mechanism in place that limits code execution on the guest by enforcing code
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signing for all executables. Finally, the attacker can know about the presence
of a hypervisor, but he may not be aware of the on-going introspection or code
injection. Otherwise, it seems highly plausible to delete or hide sensitive files.

Moreover, the requested file must be accessible by a running process of the
guest operating system. That is to say, the in-guest agent needs to be able to
read the file after code injection. For this to be possible, it is expected that
the kernel has not been modified, e.g., by placing hooks on relevant filesystem
system calls. Also, the file system may not be monitored by relevant event-based
callbacks in the kernel such as the fanotify API as this can be used to mitigate
file access to relevant files. Lastly, the file system itself must not be compromised
in a way that the relevant file can no longer be located by the PVM.

4 Methodology

In the following section, we describe the design of the system that is used to
extract arbitrary files using virtual machine introspection. The following archi-
tecture is crafted with regards to the limitations of introspection APIs in off-the-
shelf hypervisors, thereby enabling practical application in existing real-world
systems.

As explained earlier, a typical guest OS supports many different kinds of file
systems. Because the monitor might not know which file system to target and in
the worst-case lacks the required implementation, we choose to directly use the
file system capabilities of the guest, which makes our architecture suitable for
general purpose file extraction by removing file system dependencies from the
monitor.

Fig. 1. Our file extraction architecture consists of a VMI application on the MVM and
an in-guest agent injected on the PVM via a parent process. The in-guest agent reads
the file system and transfers data to the MVM via a shared memory communication
channel.

This shall be realized by injecting an agent into the guest system and estab-
lishing communication with this in-guest agent via shared main memory. Then,
the in-guest agent exposes the file system tree and potential extraction tar-
gets through the communication channel, enabling file transfer across virtual
machines.
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4.1 Components

The primary aim of this paper is to extract files from the guest virtual machine.
To achieve this goal, the file extraction architecture consists of two components.
These components and their relationships are visualized in Fig. 1.

The first component of this architecture is the VMI application. It is executed
in the monitoring virtual machine and performs the introspection of the PVM
and is responsible for communication with the guest as well as for receiving the
targeted file.

As previously mentioned, the extraction mechanism relies on an agent within
the PVM. We consider this in-guest agent the second component of the file
extraction architecture. The in-guest agent is bootstrapped by the VMI applica-
tion using the technique described in the next section and provides the necessary
insight into file systems available to the guest. Its purpose is to load a requested
file into memory to make it accessible for VMI.

Because the file may be arbitrarily big, it is unfeasible to load the file into the
main memory. Hence, the in-guest agent loads the requested file in chunks into
memory. A chunk is one part of the file that fits inside the allocated buffer and
can thereby be transmitted in one VMI operation. The shared memory region
of the in-guest agent contains the file chunk and encodes relevant protocol data.
In the context of VMI-based file extraction, shared memory refers to contiguous
memory that is shared between VMs.

4.2 Procedure

An overview of the code injection and file extraction process is depicted in Fig. 2.
Initially, we need to select a suitable user-mode process, which has the required

Fig. 2. The sequence of steps to accomplish file extraction consists of three phases: A
deployment phase, the actual file transfer, and the restoration phase. The former two
are performed using VMI-operations, while the latter is initiated by the agent after file
transfer.
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permissions to access the targeted file on the file system. We can identify suitable
processes by extracting the file permission of the requested file from the file
system and comparing them to the list of active processes as already implemented
in libvmi.

After forking the selected process, the child process is replaced at run-time
with the ELF executable in question. For this purpose, shellcode is injected into
the child process. The monitor writes the ELF executable to a shared memory
region created by the shellcode and resumes execution in the production virtual
machine. Finally, the child process is replaced by the ELF executable transmitted
from the monitor.

After the in-guest agent has been deployed in the guest machine, the actual
process of file extraction begins. As the user of the VMI application possibly does
not know where files of interest are stored within the guest virtual machine, the
extraction mechanism enables the VMI application to query a full file system
tree of the guest virtual machine. The result of this operation is transmitted to
the MVM by the same mechanism that is used to transfer the targeted file. This
enables the application to query and pick an arbitrary file present on the guest
without prior configuration of the in-guest agent.

Once the target has been selected and requested by the VMI application,
the in-guest agent determines the size of the file. At this stage, the guest reads
the current chunk into memory and signals the monitor that the buffer is clear
to read. When the respective chunk has been received by the application, it is
stored off to a file on the MVM. Now the only thing left to do is for the VMI
application to notify the in-guest agent that it may begin to transfer the next
chunk. This process repeats until the entire file has been transmitted to the
monitor.

4.3 Communication Channel

To establish communication between MVM and PVM, the in-guest agent exposes
an interface through shared memory. This interface allows the VMI application
to request files and the file system tree. It is also used to transfer the file to the
MVM. How the application can interact with this memory region is elaborated
on in Sect. 5.2.

This communication channel behaves like shared memory as supported by
many operating systems such as Linux and Microsoft Windows NT. When
transferring the targeted file to the monitor via VMI, a file chunk may only
be unmapped and replaced by the next chunk when the VMI application has
already stored off this particular chunk. In common non-VMI applications such
synchronization would be provided by techniques such as mutexes or semaphores,
typically implementations for these procedures are supplied by the operating sys-
tem. However, this means we cannot rely on them to guarantee mutual exclusion
as this makes them unsuitable for use across virtual machines.

Instead of reimplementing these mechanisms for VMI use, we provide syn-
chronization in the presented file extraction architecture through a spinlock,
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which can easily operate independently from both operating systems in the
MVM/PVM and is simple to implement.

5 Implementation

This section deals with the implementation of both architectures according to
the design principles outlined in the previous Section. All of the following imple-
mentations are built upon the libvmi introspection library. Because the task of
file extraction requires access to kernel structures to perform the code injection
and to find relevant user-mode task information, a Rekall -profile is necessary to
obtain the structure offsets [25]. We implemented our solution for Linux 4.5 and
believe that adaptions for other operating systems are possible.

5.1 Code Injection

In the following the characteristics of the code injection procedure for ELF exe-
cutables across virtual machines are elaborated. The goal of this technique is to
inject arbitrary user-mode programs into virtual machines solely through main
memory. As alluded to earlier, this process will be performed in two stages: First,
an eligible process with suitable rights for file system access must be forked using
VMI. Then the child of this process fork is replaced at run-time with the desig-
nated ELF executable.

Figure 3 shows the sequence of actions taken without consideration for syn-
chronization. To perform the first step of this procedure—process forking—the
host must know when and where the vCPU is executing code in the forked
user-mode process. For this purpose, we monitor changes to the CR3 -register,
where a pointer to the top-level paging structure is held. By doing so, we can
perform synchronous VMI operations when the guest OS scheduler switches to
our targeted process. To determine the address at which the program execution
will continue, we read the future instruction pointer directly from an offset to
the kernel-mode stack pointer. After we injected the stage 1 shellcode at this
location (1), it will first perform a vfork in the parent (2 & 3) and then a execve
in the child. When the execve system call in the shellcode is reached, we use
the VMI application to store the system call arguments under the user-mode
stack pointer. Additionally, the stage 1 shellcode must preserve the registers
RAX, RCX and R11 in the parent process as these are modified by performing
a system call.

For the use case of file extraction, the execve system call will execute
/bin/bash within the child process, thereby putting it into an infinite loop, which
causes frequent context switches to the target process by the Linux scheduler [20].
To inject the ELF executable into this newly created child process in stage 2, we
once again employ the technique of monitoring changes to the CR3 -register to
synchronize with the guest system. However, in the use-case of the proposed ELF
injection, it must also be taken into consideration that the forked child process
might still use the parent’s page tables when a CR3 event is first triggered [8].
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Fig. 3. Our VMI-based ELF injection implementation first forks a process using code
injection. Then, we replace the child of this fork at run-time with an executable trans-
mitted by the host.

Because the operating system does not duplicate the page tables of the child
process when using vfork, both the parent and the child process can refer to the
same top-level paging structure until execveat is called, thus not allowing any
distinction between them. To deal with this issue, it must be ensured that the
code injection is delayed until the above procedure is completed1. Eventually,
we can continue the injection of the stage 2 shellcode at the future instruction
pointer (4).

In stage 2, initially, a file descriptor to an anonymous file2 is opened by the
shellcode (5) using the memfd create system call. This is required because the
Linux operating system can execute programs only from files. To reduce the
chance of detection, the MFD CLOEXEC flag is used, so that the descriptor
closes on program execution. Afterward, the entire file is mapped to virtual
memory using the mmap system call (5).

At this point the shellcode performs a context switch to the VMI application
(6). Now there are two things that must be taken care of: First, the in-guest
agent must be written to the buffer (7). Second, measures must be taken to
restore the previously backed up memory region that was overwritten by the

1 This is achieved by waiting in the VMI application until the child’s top-level paging
structure differs from the parent’s.

2 Under Linux operating systems, the term anonymous file refers to a file that lives
solely in memory. It is not present on any mounted file system and released once it
is no longer referenced [12]. The memfd create system call was introduced in version
3.17. For older Linux versions or BSD variants, it is possible to use shm open instead.
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shellcode. For this purpose, a breakpoint is placed in kernel-space at LSTAR3

before the execveat system call is handled.
Subsequently the shellcode synchronizes the now mapped ELF executable to

the file descriptor and cleans up the allocated memory used for the transfer. To
finish the injection, execveat is invoked with the file descriptor, which discards
the anonymous file and replaces the current process with the provided program
(8). The only thing remaining is to restore the original instructions from the
monitor when the previously placed execveat-breakpoint is executed (9).

Fig. 4. During the ELF injection, multiple VMX context switches and VMI-based write
operations occur between VMI application, scheduler, parent and child process, and
system call handlers.

Figure 4 depicts essentially the same process as shown in Fig. 3, however, in
this instance, we consider context switches and read/write operations between
MVM and PVM instead of control flow. While this architecture for injecting ELF
binaries is in theory applicable to any hypervisor, lacking support for event han-
dling in libvmi for other hypervisors currently limits the practical applicability
to XEN.

5.2 File Extraction

After the groundwork has been laid, the details of the file extraction implemen-
tation are discussed. As described in Sect. 4.2, the previously introduced code
injection mechanism is used to deploy the in-guest agent within the PVM. This
in-guest agent will perform all file system related operations and aid in extract-
ing the file. For communication purposes, the in-guest agent exposes a shared
memory region as a symbol through its ELF export directory, which can be
located in virtual memory by the VMI application.

3 LSTAR is a model-specific register that holds the targeted instruction pointer when
executing a system call in long mode.
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Before any communication is established, the in-guest agent allocates the
transmission buffer on the heap. The size and location of this transmission buffer
is written to the shared memory region, so that the VMI application knows how
many bytes it can read. To prevent the PVM’s operating system from paging
out the buffer, we lock it into virtual memory using the mlock system call for
the duration of the in-guest agent’s execution.

If the user wishes to skip the transfer of the file system tree, the VMI appli-
cation signals this decision to the in-guest agent via a bit-flag in the shared
memory before any other operation takes place. Otherwise, the in-guest agent
pipes the result of tree/into an anonymous file, which is then transmitted by the
same mechanism as explained below.

After the user has decided on which file to extract, the respective file path
is written to the transmission buffer. Before the transmission begins, a CRC-32
checksum of the entire file and the total file size is stored within the shared
memory. Now, the transmission may begin and the targeted file is read chunk
by chunk into the transmission buffer by the in-guest agent. After each step, the
agent uses a bit-flag to indicate the buffer contents are valid again. As the VMI
application is pulling on this specific bit, spinlock alike behavior ensures. On each
successful pull, the VMI application extracts the current file chunk and stores it
off. In order to signal that the chunk was received correctly, the application flips
bit-flag again. If this chunk transfer completes the entire process, the in-guest
agent terminates in order to evade potential detection after file extraction.

Eventually this process ends as the entire file has transferred to the VMI
application and is stored off on the monitor’s file system. Note that the previ-
ously mentioned checksum is only intended to detect transmission errors, not to
provide any means to prove cryptographic integrity as required in applications
for digital forensics. Expanding the protocol, in particular, the in-guest agent for
this purpose however seems plausible, yet outside the scope of our current work.

6 Evaluation

In this section, the performance of the file extraction mechanism is measured and
evaluated. Additionally, the stealthiness of the architecture is elaborated upon
in the context of an attacker within the guest system. All tests are performed on
virtual machines equipped with one pinned core of an Intel i7-6700K processor
and 2048 MB of RAM, swapping is disabled. Both the MVM and PVM system
are virtualized by XEN 4.13 using the Intel VT-x processor extension. The PVM
is located in DomU, while the Dom0 acts as MVM. The PVM uses the Linux
kernel version 4.4.40, and the MVM uses version 4.19.0. The system is installed
on a Samsung PM951 128 GB SSD, the DomU is stored within a qcow2 image.
The measurements are performed while CR3 -monitoring is enabled in libvmi.

6.1 Transfer Speed

To evaluate the performance of the protocol and its sample implementation,
the first thing to measure is the transfer speed when extracting a file from the
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guest virtual machine compared to loading the file directly from disk. For this
purpose, several files of different sizes are placed in the guest machine as potential
extraction targets. We measure the duration of file transmission starting from
the request to the agent until the file has been received by the monitor. The
following sizes have been selected to represent different classes of files that one
may want to extract from the guest: 2 KiB, 1 MiB and 300 MiB.

Then four measurements per file are performed with different buffer sizes:

1. Native: Reading the file into a contiguous buffer in the guest without the
use of VMI.

2. One page: The buffer size is set to one page (4 KiB on the evaluated system)
so that the measurement shows the highest possible slowdown due to mutual
exclusion.

3. 10 MiB: The buffer size is set to 10 MiB, a good middle-ground for most
applications.

4. File size: The buffer size is set to the file size, as this measurement will show
potential, inherent slowdowns of the approach that are not caused by mutual
exclusion.

Fig. 5. Transfer time of VMI-aided file
extraction Transfer time of VMI-aided
file extraction

Fig. 6. Scheduler impact on agent
deployment

Figure 5 depicts the results of this measurement with a sample size of 10.
Given these measurements, we observe a best-case transfer rate of approximately
76 MiB/s with an average of 52 MiB/s. For this estimate, the values of one page
buffer size and 2 KiB total file size were not considered. The reason for this
decision is that the former is not suitable for general use due to the number of
context switches required and only designed to show the worst-case performance
of around 1.8 MiB/s. In the latter case however, the run-time is vastly impacted
by the setup of the transfer, not by actually exchanging the buffers. The error
of these measurements is around 2%, which is not representable in the figure.
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While these results can already be considered acceptable, there is still room
left for improvement. First, we can disable event handling while the file transfer
is in progress. As seen in Sect. 6.3, listening for CR3 events introduces a huge
overhead, which can, therefore, be avoided. Second, the current implementation
of the spinlock can be replaced with alternatives that make use of the relevant
x86 instructions. Moreover, it seems feasible to use an interrupt for the commu-
nication direction PVM to MVM instead.

6.2 Agent Deployment

Additionally, we have to consider the cost of deploying the agent within the
production virtual machine in the first place. For this purpose, we measure the
duration of ELF injection for our in-guest agent implementation. As this proce-
dure relies on scheduler timing, the results may vary depending on factors such
as overall activity in the machine and the specific implementation of the sched-
uler. We performed these measurements a hundred times on an idling system
and a busy system using the default Linux scheduler.

The results of these measurements are depicted in Fig. 6. We find that our
assumption of a large fluctuation in the injection time due to scheduler timing is
in line with the measured values. The measurements show an expected median
setup time of 0.82 s on an idling system, 2.99 s on the busy system. In the worst
case, the setup procedure took 1.01 and 4.51 s, respectively. Since the agent can
potentially be reused for multiple file transfers, we consider these results to be
reasonable.

6.3 Performance Degradation

Furthermore, the execution of the in-guest agent can cause noticeable perfor-
mance degradation for other applications running in the PVM. To measure
potential side effects of the file extraction procedure, a heavy computational
load is simulated by executing calculations on the guest. This is done by approx-
imating π with the Chudnovsky algorithm for the first eight iterations [4]. By
comparing the computation time under file extraction to normal conditions, any
potential slowdowns in the guest system that are not caused by I/O operations
become visible. The only way to effectively eliminate the latter problem is to
create an artificial bottleneck for the agent’s file access. Since this is in direct
contrast to the goal of high transfer speeds, I/O throughput is not considered for
potential slowdowns. The measurement is repeated 10 times for each instance.

In total, this results in computation time of 2.948 s for normal execution
and 3.495 s for file extraction with a respective standard deviation of 0.041 and
0.076 s. Therefore, the use of VMI-based file extraction degrades the guest’s per-
formance by approximately 16%. This degradation is mostly caused by the event
handling for CR3 writes. It might be desirable to filter relevant operations in
the hypervisor so that the additional context switch for non-monitored processes
is no longer required. However, even with this it can be considered unlikely to
improve the performance much further as a VM-exit is required in all cases to
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provide the necessary isolation. What is possible nonetheless, is to disable event
handling after the code injection.

6.4 Stealthiness

As previously discussed, the approach remains vulnerable to some detection vec-
tors. First of all, the presence of the hypervisor is detectable from the guest by
the use of timing attacks [3]. Because instructions like cpuid cause a VM-exit
on Intel CPUs, the elapsed time will be many times greater when a hypervi-
sor is present. However, the presence of the hypervisor itself is common in many
environments and does therefore not provide sufficient reason to suspect a malef-
icent hypervisor abusing the inherent isolation of this technique to extract files.
Nevertheless, some known timing attacks allow the detection of virtual machine
introspection as employed by the approach at hand [29].

Unlike other inter-VM communication channels such as ivshmem and ZVIM,
our protocol does not introduce a PCI device, but exchanges data directly
through the main memory [1,19]. This design choice enhances the stealthiness
of the channel as it requires no direct modification of the VM and prevents the
detection of suspicious PCI devices.

Additionally, it seems conceivable to monitor the file system for access to
sensitive files. Most operating systems allow event-based notifications for certain
actions on the file system, on Linux this is provided by the inotify API. Using
this method, it is possible to detect the in-guest agent as it attempts to read
a monitored file into memory. Since the virtual machine introspection approach
grants kernel access, it seems plausible to prevent this possibility of detection by
placing a hook on the dispatching function from the VMI application. However,
access to these sensitive files could also be visible on file systems that are capable
of tracking access time separately from modification time, such as zfs.

Furthermore, the code injection technique used to both fork and execute
the covert in-guest agent is easily detectable from inside the guest. Because
the injection mechanism partially overwrites the .text section when performing
a context switch to the user-mode program, it appears plausible to check the
integrity of the program by comparing the .text section to the program on disk
when the shellcode performs relevant system calls. This technique can detect
the injection mechanism even without enforcing strict code singing. To avoid
such attempts, the injected shellcode can be dynamically rewritten using return-
oriented-programming, leaving the entire .text section intact [18].

Finally, the injected in-guest agent itself runs within the guest virtual
machine and can, therefore, be detected and potentially attacked. Since the
introspection approach allows for kernel access as mentioned above, it is possi-
ble to use DKOM to hide the forked process and its code from other programs
within the guest.
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7 Related Work

In the following Section, we evaluate previous work that aims to achieve a similar
goal. Table 1 represents an overview over all discussed approaches.

In 2009 Richard Jones introduced a set of tools for accessing and modifying
disk images of virtual machines called libguestfs [16]. Specifically, the virt-copy-
out utility enabled file extraction from disk images mounted inside a virtual
machine. However, as this tool is not based around introspection, access to
encrypted, virtual or network file systems is not possible and applications on
live virtual machines are highly limited.

The same year Maartmann et al. demonstrated a technique for extracting
cryptographic keys from main memory [17]. One of the use-cases examined for
their methods was disk encryption through TrueCrypt. By extracting the cryp-
tographic key used in the encryption, the attacker can gain access to sensitive
data. Since VMI operations typically operate on the main memory, this approach
can easily be adapted for use in VMI environments.

Gu et al. showcased an active introspection framework for narrowing the
semantic gap by executing ELF binaries in the context of a production virtual
machine in 2011 [9]. This was realized by using the ELF loader on the monitor-
ing virtual machine to load a statically linked program to the main memory. By
hooking into the scheduler of the production virtual machine using CR3 moni-
toring, they implemented context switching on-top of the production operating
system. We show that by using the program loader and scheduler inside the PVM
instead, we can significantly increase performance and reduce the requirements
on the implanted program while decreasing isolation.

Soon after, Hale et al. released the GEARS framework for VMI-based ser-
vices. They argued that such services should place components inside the non-
compliant production virtual machine. By doing so, the implementation can be
simplified as programs running inside the production virtual machine do not
suffer from the semantic gap. This principle is fulfilled in our work through the
use of the dynamically injected in-guest agent.

Fu et al. proposed a compatibility layer for non-VMI applications called
HyperShell in the same year [6]. They introduced the concept of reverse system
calls that allowed them to selectively forward some system calls to the produc-
tion virtual machine while executing others on the monitoring virtual machine.
This compatibility layer essentially enables the reuse of existing binaries such as
cp, ls, etc. in VMI contexts, thus greatly simplifying VM management. However,
the architecture shows weaknesses in terms of compatibility and portability:
First, the concept of reverse system calls inevitably requires the same (or at
least a compatible) set of system calls. This means HyperShell cannot be used
in situations where the MVM and PVM run different operating systems. Fur-
thermore, the implementation requires modifications to the hypervisor, which
presents an obstacle in practical real-world applications where the hypervisor
cannot be patched for security and liability reasons.

Morbitzer et al. introduced a technique based on their previously published
SEVered attack to extract encryption keys for file systems and other applications
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Table 1. Comparison with related work

using virtual machine introspection in 2019 [21,22]. Their approach enabled the
extraction of sensitive data when the virtual machine was protected by AMD
SEV that encrypts the main memory of the VM with a key unknown to the
hypervisor. This enables file extraction, even in areas not covered by our file
extraction architecture. However, the presented approach falls short when deal-
ing with file systems that reside purely in RAM such as tmpfs or are simply not
accessible by the monitor such as WebDAV.

8 Conclusion

This paper addresses the adaptation of typical code injection techniques for VMI-
based applications and the extraction of files from virtual machines through the
use of an introspection-oriented in-guest agent. To address the issue of deploy-
ing the in-guest agent in the targeted virtual machine, we show how typically
used techniques for inter-process code injection can be adapted for inter-machine
applications using introspection. Furthermore, the implementation for Linux
MVM/PVM-systems is presented.

For obtaining files that are accessible from within the virtual machine, our
approach demonstrates the provisioning and placement of an in-guest agent
within the guest. This in-guest agent enables common memory forensic tech-
niques and tools to access non-volatile storage. Additionally, the presented solu-
tion is evaluated in terms of transfer speed, performance degradation and stealth-
iness.
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