®

Check for
updates

HoneyHash: Honeyword Generation Based
on Transformed Hashes

Canyang Shi and Huiping Sun®?

Peking University, Beijing, China
shigle@pku.edu.cn, sunhp@ss.pku.edu.cn

Abstract. Since systems using honeywords store a set of decoy passwords
together with real passwords of users to confuse adversaries, they are strongly
dependent on the algorithm for generating honeywords. However, all of the exist-
ing honeyword generating algorithms are based on raw passwords of users and
they either need lots of storage space or show weaknesses in flatness or usabil-
ity. This paper proposes HoneyHash, a new direction of generating honeywords
- generating by transforming password hashes. Analyses show that our algorithm
attains expected levels of flatness, security, performance and usability.

Keywords: Password - Honeyword - HoneyHash - Transformed hash - Flatness

1 Introduction

A large number of password disclosures were reported in recent years which have been
a big threat to password security. For instance, the hashed passwords of 50 million users
of Evernote were exposed [1] and similar leakages of password databases also happened
in LinkedIn, eHarmony, Yahoo and Adobe [2]. There are several existing mechanisms
against password-related attacks including SAuth [3], PolyPassHash [4], ErsatzPassword
[5] and Honeyword [6]. Among those existing mechanisms, the honeyword mechanism,
which is influenced by the honeypot technique [7] and Kamouflage [8], stands out for its
ability to detect attacks against hashed password databases. In a honeyword system, a set
of fake passwords are stored together with real passwords in order to confuse adversaries.
When an adversary attempts to log in with a fake password, the system can identify this
illegal submission and an alarm may be triggered, marking a possible leakage of the
password database.

The honeyword generating algorithm is important since the ability of detecting pass-
word database leakages is strongly dependent on the quality of honeywords. Until now,
all existing algorithms generate honeywords based on raw passwords of users, which
need to find a balance point among several factors such as flatness, performance and
usability. For instance, Juels and Rivest [6] proposed chaffing by tweaking and take-a-
tail when they first proposed the honeyword mechanism. Chaffing by tweaking brings
no burden on the memorability of users and has lower time and space complexity, but
it cannot generate flat honeywords. Take-a-tail can achieve flatness but it puts more
stresses on memorability.

© Springer Nature Switzerland AG 2021
M. Asplund and S. Nadjm-Tehrani (Eds.): NordSec 2020, LNCS 12556, pp. 161-173, 2021.
https://doi.org/10.1007/978-3-030-70852-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70852-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-70852-8_10

162 C. Shi and H. Sun

In this paper, we propose a new honeyword generating algorithm in which hon-
eywords are generated by transforming hashes of original passwords. Comparing with
existing algorithms, our algorithm attains higher levels of flatness, security, performance
and usability. All the honeywords are transformed hashes which achieve great flatness;
the algorithm shows a strong resistance to different password-related attacks including
brute-force attacks, dictionary attacks, denial-of-service (DoS) attacks, targeted pass-
word guessing and multiple system attacks; the generating process is simple and only one
transformed hash is stored in the password database, leading to lower time complexity
and storage cost; no extra burden is put on the memorability of users.

The rest of this paper is organized as follows — in Sect. 2 we describe some other
mechanisms against password-related attacks followed by the honeyword mechanism.
We list existing generating methods of honeywords and analyze them from four aspects
including flatness, security, performance and usability. Our new method is presented in
Sect. 3 with technical descriptions and basic routines. Then analyses of the proposed
method are elaborated from those four aspects thereafter in Sect. 4.

2 Related Works

2.1 Existing Mechanisms Against Password-Related Attacks

There are already several solutions to password-related threats including SAuth [3],
PolyPassHash [4], ErsatzPassword [5] and Honeyword [6]. SAuth employs authentica-
tion synergy among different services and requires users to log in other servers when
visiting a certain server. PolyPassHash employs a threshold cryptosystem to protect
password hashes so that they cannot be verified unless a threshold of them have been
decoded. ErsatzPassword utilizes a machine-dependent function at the authentication
server which can prevent off-site password discovery effectively, and it also employs a
deception mechanism to raise an alert if such an action is attempted.

The main idea of the honeyword mechanism is to store a set of passwords (sweet-
words) for each account which contains several decoy passwords (honeywords) and the
real password (sugarword), so that even if adversaries obtain the password-hash database
and recover the original passwords, they cannot discern the real one. When an adversary
tries to log in with a honeyword, an alarm may be triggered, informing administrators
of a potential leakage of the password database.

2.2 Existing Honeyword Generating Algorithms

Juels and Rivest [6] provided four methods of generating honeywords when they first
proposed the honeyword mechanism in 2013. Chaffing by tweaking generates honey-
words by replacing letters and numbers with other letters and numbers. Chaffing-with-a-
password-model applies a probabilistic algorithm based on publicly available password
databases. Chaffing with “tough nuts” generates honeywords which are much harder to
crack than the average, e.g., 256-bit, random bit-strings. Take-a-tail asks users to add
short suffixes to their raw passwords. Then honeywords are generated by changing the
suffix of the sugarword.

HoneyHash: Honeyword Generation Based on Transformed Hashes 163

Imran Erguler [9] proposed another honeyword generating method which maintains
a set of integers for each user, corresponding to a set of existing passwords stored in
another list. One of the passwords is the sugarword and the others are honeywords. The
index of the sugarword is saved in the honeychecker.

Nilesh Chakraborty and Samrat Mondal [11] proposed three new algorithms includ-
ing modified-tail, close-number-formation and caps-key based approach. Modified-tail
is an extension of fake-a-tail which allows users to have the freedom to choose tails
without diluting the security standards. Close-number-formation changes the numbers
in original passwords slightly. Caps-key based approach changes several letters from
lower case to upper case. In another paper, Nilesh Chakraborty and Samrat Mondal [13]
proposed paired distance protocol approach which not only attains a high detection rate,
but also reduces the storage cost to a great extent.

Akshima, etc. [18] proposed two legacy-UI models, evolving password model and
user-profile model, and one modified-UI model, append-secret model. Evolving pass-
word model utilizes a probabilistic model of real passwords. User-profile model gener-
ates honeywords by combining details from user profiles. Append-secret model generates
honeywords by calculating and appending a secret suffix to the passwords.

Several examples of aforementioned algorithms are presented below (Table 1).

Table 1. Examples of existing generating algorithms

Generating algorithm Sugarword Possible honeyword(s)

Chaffing by tweaking BG+7y45 BG+7q03, BG+7m55, BG+7y45

Chaffing-with-a-password-model | mice3blind goldSrings

Chaffing with “tough nuts” / 9,50PEe]KV.0?RIOtc&L-:1J"b +
Wol<*[INWT/pb

Take-a-tail RedEye2413 | RedEye2582, RedEye2766
(413 is the tail generated by the system
randomly)

Modified-tail tea@?| tea?l @, tea?@|, teal? @, teal @?, tea@|?

(@7 is the tail chosen by the user from
the set of special characters { @, ?, |}.)

Close-number-formation 28May2000 26 May 1999, 25 May 1997, 29 May
2001, 22 May 1998,

Caps-key based approach aNImal Anlmal, aNimaL, Animal, anImAl

Faired distance protocol secrettp? secretk8b, secretekx

(tp7 is the tail chosen by the user)

Evolving password model abcde123% secret_9
User-profile model / Wood = 1995, Alice_19, Jerry#19wood
Append-secret model abcde1998 abcdede7j@

(1998 is an extra entry chosen by the
user)

164 C. Shi and H. Sun

2.3 Analysis of Existing Algorithms

The effectiveness of the honeyword mechanism is strongly dependent on the honeyword
generating method. In this part, we focus on several factors, including flatness, security,
performance and usability, when evaluating existing generating algorithms.

Flatness

Flatness marks the probability of each honeyword to be regarded as the true password
from the view of an adversary. A flatter generating method makes it harder for adversaries
to discern the sugarword. Among all existing ideas, those algorithms which generate
honeywords by changing suffixes achieve better flatness, while tweaking algorithms may
not generate flat honeywords in some cases, especially when the sugarword contains a
unique pattern and stands out among fake passwords.

Security

The security of an algorithm represents its resistance to password-related attacks such
as brute-force attacks, dictionary attacks, denial-of-service (DoS) attacks, targeted pass-
word guessing and multiple system attacks. Algorithms like user-profile model show
lower resistance to targeted password guessing since their honeywords are highly related
to personal information. On the other hand, if honeywords are highly predictable, adver-
saries can use DoS attacks by keeping submitting honeywords deliberately with the help
of available true passwords. Some algorithms implement extra mechanisms to defend
attacks, but other factors are weakened at the same time.

Performance

Performance measures time and space costs, including time complexity of the generating
algorithm and storage space needed by both the password database and the honeychecker.
Compared with complex algorithms, those algorithms with simple ideas such as tweaking
or changing suffixes have lower time complexity, but nearly all existing algorithms have
to store extra k honeywords together with the sugarword, or maintain a huge database
of existing passwords which takes a lot of storage space.

Usability

Usability includes some user-related factors. For example, does the system interfere the
password choice of the user? Do users need to memorize extra information? What is the
possibility of inputting a honeyword by mistake? Among existing methods, generating
honeywords by changing suffixes requires users to memorize extra tails, bringing more
burdens to users; some other methods, such as the caps-key based approach, add extra
limits to legal passwords which interferes the password choices of users; for tweaking
methods, the typing mistake of a user may be recognized as a submission of honeyword,
leading to an alarm which is not expected to be triggered.

3 A New Direction

3.1 Main Ideas

Most of the existing generating algorithms are based on original passwords. They gener-
ate honeywords by directly transforming the original password, or by making up a new

HoneyHash: Honeyword Generation Based on Transformed Hashes 165

password according to the original pattern. Thus, existing methods may have a huge
storage cost, and the honeywords may not be flat enough so that adversaries can easily
discern the real passwords.

Our algorithm — “transformed-hash”, generates a honeyword from the hash of the
raw password, and actually, the honeyword is just a transformed hash. The information
of the transformation is stored in the honeychecker. The comparison between concerns
of existing models and our algorithm is showed below (Fig. 1). There are two main
improvements of our algorithm. Firstly, we only store one password hash for each user
in the password database, which reduces the storage cost to a large degree. Secondly,
instead of generating honeywords based on raw passwords, we focus on hashes and use
a transformed hash as a honeyword. Therefore, our method attains expected levels of
flatness, security, performance and usability.

The Traditional Honeyword Mechanism

@ Database

ID sweetwords
1 honeyword 1
@ Honeychecker
2 honeyword 2
username sugarword index username
u® <(i) u@
(i) sugarword
1. Data stored on the honeychecker
2. Credentials database of the login server in the honey Is system
k+1 honeyword k

Our Honeyword Mechanism

salt
@ Honeychecker

username index username password : username | password hash

u(i) mi(i)~mk() | - u(i) password(i) @ i) passHash(i)

Transformed to
unary complement l

mi) |

i)

1. Information of transformation stored on the honeychecker @ Database

2. Hashing the original password

3. The honeyhash generated from the password hash username honeyhash
u(i) honeyhash(i)

Fig. 1. Comparison between concerns of existing models and our algorithm

166 C. Shi and H. Sun

3.2 Transforming Methods

Transforming methods are applied to turn the hash of the real password to a fake hash.
In this paper, we propose a relatively simple strategy to illustrate our idea. We suppose
that the password hashes are 256-bit long. The algorithm transforms a hash by flipping
k bits, namely, it selects k bits of the password hash randomly, and then changes them
to their unary complements.

It is noteworthy that some transformed hashes may be excluded by adversaries since
they do not seem to be hashes of user-generated passwords, so the space of decoy hashes
must be huge enough so that enough deceptive keys are incorporated. Let p stand for the
ratio of the theoretical key space to the actual key space. For a 256-bit hash, the number
of deceptive transformed hashes is

1 < 256)
- X
P k

To find a proper value for k, we should focus on the number of deceptive hashes
(Table 2). The values of parameters should be set properly basing on actual situations. In
this paper, as an example, we assume p = 108 and set the value of k to 5, and the number
of deceptive hashes is 88 in this case. Therefore, the system generates a transformed
hash by flipping 5 different bits of the original hash.

Table 2. The number of deceptive transformed hashes for different values of k and p

k|p
107 108 | 10°
4 17, 2 0

881 88 9
36853 | 3685 | 369

AN |

3.3 Technical Descriptions

Symbols

u;: the ith user of the computer system

pi: the raw password of u;

H: the cryptographic hash function used in the computer system
H (p;): the password hash of u;

H'(p;): the transformed password hash of u;

m;1 ~ m;s: five integers that mark the indexes of the changed bits.

HoneyHash: Honeyword Generation Based on Transformed Hashes 167

Password Database

The system maintains a file F storing information of usernames and passwords. File F
lists the pairs of usernames and transformed password hashes which have the following
form:

(ui, H'(pi))
Thus, file F can be described as {(u;, H' (p;))}.

Honeychecker

Like the original honeyword generation methods proposed by Juels and Rivest, this new
method also needs a server called honeychecker to check whether the inputted password
is a sugarword. For each user u;, the honeychecker maintains m;; ~ m;s which represent
the indexes of the changed bits of H (p;). Records of the honeychecker database have
the following form:

(i, myy ~ mys) = (u;, mjy, mp, M3, M4, M;5)

And the honeychecker database can be described as {(u;, mj; ~ m;s)}.
Our honeychecker receives messages of the following two types:

Set: i,m| ~ ms

Store the indexes of the changed bits for u;, namely, set the values of m;; ~ mj5 to
mp ~ ms.

Check: i, m ~ ms

The honeychecker queries its database to get m;; ~ m;s. If mj; ~ m;s equals to
my ~ ms, then the check succeeds, otherwise the check fails and the honeychecker may
raise an alarm.

3.4 Algorithm Routines

Registration

A new honeyword is generated in the process of registration. When a user u; inputs the

expected password p;, the computer system calculates the password hash H (p;) at first.

Then five random integers m; ~ ms are generated, marking the indexes of bits that will

be changed. Later, the system transforms the password hash and gets H' (p;). Finally, the

honeychecker is informed of this operation and the pair (u;, H' (p;)) is stored into file F.
The routine of registration is presented below:

(1) Read u; and p; inputted by the user

(2) Calculate the password hash H (p;)

(3) Generate five different random integers m; ~ ms that are greater than or equal to
0 and smaller than 256

168 C. Shi and H. Sun

(4) Get H'(p;) by changing the five bits of H (p;) to their unary complements
(5) Send Set: i, my ~ ms to the honeychecker
(6) Store the pair (u;, H'(p;)) into file F

Login

When a user tries to login with a username u; and a password w; (the password may be
incorrect), the computer system calculates the password hash H (w;). Then the system
queries the file F database and get H' (p;). In order to detect possible leakages of password
databases, an alarm will be triggered when a similarly-transformed password (we still call
it a honeyword for convenience) is submitted. According to our transforming method,
compared with the hash of the sugarword, all those passwords whose hashes have exactly
five different bits are regarded as honeywords. Therefore, if H(w;) and H'(p;) have
exactly five different bits, then the system sends the indexes of the different bits to the
honeychecker and waits for it to have a further check.

The routine of login is presented below:

(1) Read u; and w; inputted by the user

(2) Calculate the password hash H (w;)

(3) Look for H'(p;), the transformed password hash of u;, in file F. Then compare
H (w;) with H'(p;). If H'(p;) is not found in F, or H (w;) and H'(p;) do not have
exactly five different bits, the login routine fails.

(4) Get the indexes of the different bits m; ~ ms

(5) Send Check: i, m; ~ ms to the honeychecker

(6) If the check succeeds, then the user login successfully, otherwise the login rou-
tine fails. Besides, an alarm may be raised when the check fails, informing an
administrator or other party of a possible leakage of the password hash database.

Modification

The routine of modifying the password is almost the same as that of registration. When
a user u; inputs the modified password p;, the computer system calculates the password
hash H (p}) at first, then generates five new random integers m| ~ mj, marking the five
bits of H (p}) that will be changed. Later, the system transforms the password hash and
get H'(p). After informing the honeychecker of this operation, the system stores the
pair (u;, H'(p})) into file F.

The routine of modifying the password is presented below:

(1) Read u; and p} inputted by the user

(2) Calculate the password hash H (p})

(3) Generate five different random integers m) ~ m that are greater than or equal to
0 and smaller than 256

(4) Get H'(p;) by changing the five bits of H (p;) to their unary complements

(5) Send Set : i, m} ~ mj to the honeychecker

(6) Store the pair (u;, H'(p})) into file F

HoneyHash: Honeyword Generation Based on Transformed Hashes 169

4 Analysis

4.1 Flatness and Security Analysis

Flatness

Flatness influences the difficulty of detecting the sugarword from honeywords. As our
model is based on transforming hashes, the honeyword and the sugarword only have
similar hashes and their original forms are totally different. For each account, adversaries
must find how the hash is transformed before looking for the sugarword.

However, it is really difficult to find the transforming way, and detecting the sugar-
word is nearly impossible. We suppose that the password hash is transformed by flipping
k bits. Then there are 256! = (251! x 5!) = 8809549056 possible original password
hashes for k = 5, each of which can be regarded as a honeyword. Comparing with exist-
ing generating algorithms which generally store about 20 sweetwords for each account,
our algorithm has a huge decoy-key space. Most importantly, adversaries cannot rely on
any pattern to help them discover the real hash of the original password because each
sweetword is a 256-bit hash and shows nothing special.

Brute-Force Attacks and Dictionary Attacks

Adversaries need to enumerate all possible passwords for a brute-force attack. Because
of the huge number of honeywords which may cause alarms, adversaries can easily
be detected while submitting guesses. Therefore, the proposed algorithm has a strong
resistance to brute-force attacks. For attackers, the computational expense of cracking
the password database is also higher comparing with that of attacking other existing
honeyword systems.

An adversary may also carry out a dictionary attack with the help of a dictionary
of user-generated passwords. If the adversary knows that the stored hashes have been
transformed by tweaking k bits, he can keep calculating hashes of passwords from the
dictionary offline until he discovers a password whose hash value has exactly k different
bits comparing with the stored hash, and then he may submit the discovered password.
However, if we suppose that the dictionary contains 10™8 of all theoretically possible
passwords, then there are 256! < (251! x 5!) x 1078 ~ 88 confusing honeywords when
5 bits are changed. Therefore, if k is chosen properly, the adversary can probably find
many confusing answers when carrying out a dictionary attack, leading to a high pos-
sibility of being detected when logging in. In sum, our algorithm can defend dictionary
attacks effectively.

Denial-of-Service Attacks

Denial-of-service (DoS) attacks can be a potential problem and threat for the honeyword
mechanism, especially when the generated honeywords are highly predictable. If an
adversary has not compromised the password database F but successfully knows the
original password of the user in some way, he has a great chance to guess honeywords
and submits them to the system deliberately. The system may force a global password
reset or blocking the whole web-server in response to the submission of one or more
honeywords.

170 C. Shi and H. Sun

The key point to mitigating DoS attacks is reducing the chance of triggering an
alarm maliciously. One way is to increase the difficulty of guessing honeywords with
the help of known sugarwords or honeywords. According to our algorithm, the sugarword
and honeywords can be totally different since they only have similar hashes. Knowing a
sugarword or a honeyword brings no benefit to adversaries when trying to discover other
honeywords, so the discovery of each honeyword needs a dictionary attack. Besides, the
alarming mechanism can be changed so that alarms cannot be triggered unless an enough
number of different honeywords are submitted to the system. For those adversaries who
have obtained the original password in some way, they have to use dictionary attacks
repeatedly until they have found enough different honeywords, so they almost have no
chance to trigger an alarm on purpose. Therefore, comparing with existing generating
algorithms, our model can help the system to defend DoS attacks to a large degree.

Targeted Password Guessing

Adversaries may also use targeted password guessing attacks by detecting the sugarword
with the help of the personal information of users, which can be easily obtained based
on usernames or the social network graphs, especially for those users whose passwords
are highly related to their personal information.

The best way to prevent targeted password guessing attacks is using irrelevant hon-
eywords so that personal information brings no benefit to adversaries. In our model,
only one honeyword, the transformed password hash, is stored for each account and
no personal information is involved because of the transformation, adversaries cannot
expect to gain any advantage of detecting the sugarword.

Multiple Systems

Users prefer setting the same password across different systems. In that case, adversaries
may get advantages for discovering the sugarword. Juels and Rivest described intersec-
tion attacks and sweetword-submission attacks which are related to multiple systems.
If a set of distinct honeywords are stored for each account, an adversary can compro-
mise the password database on several different systems and learn the real password
from the intersection of those sweetword sets. On the other hand, if a part of those
systems do not use honeywords in order to avoid intersection attacks, adversaries can
submit sweetwords as password guesses to the honeyword-absent systems without risks
of detection.

One way to make the system resistant to such attacks is enlarging the intersection
of sweetword sets among different systems. If the intersection has many sweetwords
instead of one, then adversaries cannot identify the sugarword from it. In our model,
when a user employs the same password on two different systems which both transform
original hashes by flipping k bits, then the intersection of the two sets has at least (21(]‘)
sweetwords (6 sweetwords when k = 2 and 252 sweetwords when k = 5). Therefore,
even if an adversary has compromised both systems and has found the intersection of
sweetword sets, he still cannot discover the exact sugarword. Thus, our algorithm has a
higher resistance to multiple system attacks.

HoneyHash: Honeyword Generation Based on Transformed Hashes 171

4.2 Performance and Usability Analyses

Performance

Time Complexity

Our algorithm has a comparatively lower time complexity. The idea and routines of our
algorithm are simple and the whole generating process can be divided into two parts,
calculating a hash and transforming a hash. Transforming a hash can be done easily and
quickly with the use of bit operation. Calculating the hash is the most time-consuming
part whose time cost depends on the hash method. Therefore, the time complexity of our
algorithm is nearly the same as that of calculating a hash, which is necessary for every
generating method.

Storage Cost

The hash-based generating method also has a low storage cost. Nearly all existing meth-
ods store k sweetwords for one account. If we suppose that k = 20 and sweetwords are
256-bit hashes, then for each account, the sweetwords take 20 x 256 = 5120 bits in the
password database and the honeychecker needs log,20 = 5 bits to store the index of the
sugarword. The total amount of storage cost is 5120 + 5 = 5125 bits. However, in our
model, the transformed hash takes 256 bits in the password database and the indexes of
the changed bits m;; ~ m;s are stored in the honeychecker which take 5 x1log,256 = 40
bits, so the storage space needed for each account is just 256 +40 = 296 bits. Therefore,
comparing with other existing mechanisms, the storage cost of our algorithm is reduced
to a large degree.

Usability

Stress on Memorability

This algorithm puts negligible burdens on the memorability of users. Users do not need
to memorize a tail or other extra information since the final password is the same as the
expected one. Users can choose their passwords freely without being limited or interfered
by the system. They can even set a relatively simple password or one that is related to
their personal information because even for a simple or person-related password, the
transformed password hash is still hard to be decoded. In addition, since the algorithm is
resistant to multiple-system attacks, a user can use same passwords for different systems,
which brings negligible stresses on the memorability of users when setting passwords
for a new account.

Typo-Safety

When typing the password, a user may make mistakes and input a wrong one, and a
worse case is that the wrong password happens to hit a honeyword which triggers an
alarm. This probably happens especially when honeywords are almost the same as the
sugarword. In our algorithm, however, comparing with the sugarword, those passwords
which can cause an alarm just have similar hashes, and their original forms can be totally
different from the true password, so it is impossible for a user to input a honeyword by
error. Thus, this method can be considered as typo-safe.

172 C. Shi and H. Sun

5 Discussions

In this paper, we present a simple algorithm of the transforming method. The way of
transforming hashes can be changed but the values of parameters should be set properly
basing on actual situations. For instance, if the password hash is transformed by flipping
k bits, then k can affect the number of theoretical honeywords. When k is too small,
adversaries can easily find the sugarword by carrying out a dictionary attack; when k is
too big, adversaries may find it nearly impossible to find the sugarword and do not try
submitting any guesses in the end, and hence the system may lose the ability to detect a
potential leakage of the password database.

6 Conclusion

In this paper, we propose HoneyHash, a new direction of generating honeywords which
overcomes some inherent defects of existing generating algorithms. It turns out that
the proposed methodology meets high standards of flatness, security, performance and
usability. We hope that the proposed algorithm can encourage more systems to use the
honeyword mechanism.

References

1. Gross, D.: 50 million compromised in Evernote hack. In: CNN (2013)

2. Gaylord, C.: LinkedIn, Last.fm, now Yahoo? Don’t ignore news of a password breach. In:
Christian Science Monitor (2012)

3. Kontaxis, G., Athanasopoulos, E., Portokalidis, G., Keromytis, A.D.: Sauth: protecting
user accounts from password database leaks. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, pp. 187-198. ACM (2013)

4. Cappos, J.: PolyPassHash: protecting passwords in the event of a password file disclosure.
In: Password Hashing Competition (PHC) (2014)

5. Almeshekah, M.H., Gutierrez, C.N., Atallah, M.J., Spafford, E.H.: ErsatzPasswords: ending
password cracking and detecting password leakage. In: Proceedings of ACSAC, pp. 311-320
(2015)

6. Juels, A., Rivest, R. L.: Honeywords: making password-cracking detectable. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 145—
160. ACM (2013)

7. Cohen, F.: The use of deception techniques: honeypots and decoys. In: Bidgoli, H. (ed.)
Handbook of Information Security, vol. 3, pp. 646—655 (2006)

8. Bojinov, H., Bursztein, E., Boyen, X., Boneh, D.: Kamouflage: loss-resistant password man-
agement. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol.
6345, pp. 286-302. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15497-
318

9. Erguler, I.: Achieving flatness: selecting the honeywords from existing user passwords. [IEEE
Trans. Depend. Secur. Comput. 13(2), 284-295 (2016)

10. Chatterjee, R., Bonneau, J., Juels, A., Ristenpart, T.: Cracking-resistant password vaults using
natural language encoders. IEEE Secur. Privacy 481-498 (2016)

11. Chakraborty, N., Mondal, S.: Few notes towards making honeyword system more secure and
usable. In: Proceedings of 8th International Conference Security and Information Network,
pp. 237-245 (2015)

https://doi.org/10.1007/978-3-642-15497-3_18

13.

14.

15.

16.

17.

18.

19.

20.

21.

HoneyHash: Honeyword Generation Based on Transformed Hashes 173

. Golla, M., Beuscher, B., Diirmuth, M.: On the security of cracking-resistant password vaults.

In: Proceedings of ACM CCS, pp. 1230-1241 (2016)

Chakraborty, N., Mondal, S.: On designing a modified-UI based honeyword generation
approach for overcoming the existing limitations. Comput. Secur. 66, 155-168 (2017)
Pasquini, C., Schéttle, P., Bohme, R.: Decoy password vaults: at least as hard as steganog-
raphy? In: De Capitani di Vimercati, S., Martinelli, F. (eds.) SEC 2017. IAICT, vol. 502,
pp- 356-370. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58469-0_24

Geng, Z.A., Kardas, S., Kiraz, M.S.: Examination of a new defense mechanism: honeywords.
In: Hancke, G., Damiani, E. (eds.) Information Security Theory and Practice. WISTP 2017.
Lecture Notes in Computer Science, vol. 10741. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-93524-9_8

Wang, D., Cheng, H., Wang, P., Yan, J., Huang, X.: A security analysis of honeywords. In:
NDSS (2018)

Gutierrez, C.N., Almeshekah, M.H., Bagchi, S., Spafford, E.H.: A hypergame analysis for
Ersatzpasswords. In: Janczewski, L.J., Kutylowski, M. (eds.) SEC 2018. TIAICT, vol. 529,
pp- 47-61. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99828-2_4

Akshima, C.D., Goel, A., Mishra, S., Sanadhya, S. K.: Generation of secure and reliable
honeywords, preventing false detection. IEEE Trans. Depend. Secure Comput. 16(5), 757—
769, (2019)

Wang, D., Cheng, H., Wang, P., Yan, J., Huang, X.: Targeted online password guessing:
An underestimated threat. In: Proceedings of ACM SIGSAC Conference on Computing
Communication Security, pp. 1242-1254 (2016)

Choi, H., Nam, H., Hur, J.: Password typos resilience in honey encryption. In: Proceedings
of IEEE 2017 ICOIN, pp. 594-598 (2017)

Karuna, P., Purohit, H., Ganesan, R., Jajodia, S.: Generating hard to comprehend fake
documents for defensive cyber deception. IEEE Intell. Syst. 33(5), 16-25 (2018)

https://doi.org/10.1007/978-3-319-58469-0_24
https://doi.org/10.1007/978-3-319-93524-9_8
https://doi.org/10.1007/978-3-319-99828-2_4

	HoneyHash: Honeyword Generation Based on Transformed Hashes
	1 Introduction
	2 Related Works
	2.1 Existing Mechanisms Against Password-Related Attacks
	2.2 Existing Honeyword Generating Algorithms
	2.3 Analysis of Existing Algorithms

	3 A New Direction
	3.1 Main Ideas
	3.2 Transforming Methods
	3.3 Technical Descriptions
	3.4 Algorithm Routines

	4 Analysis
	4.1 Flatness and Security Analysis
	4.2 Performance and Usability Analyses

	5 Discussions
	6 Conclusion
	References

