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Preface

This volume contains the proceedings of the 25th Nordic Conference on Secure IT
Systems (NordSec 2020) organised at Linköping University, Linköping, Sweden
during 23–24th November 2020. It was organised by the Department of Computer and
Information Science with support from the national Research Centre on Resilient
Information and Control Systems (RICS) financed by the Swedish Civil Contingencies
Agency (MSB).

The conference, originally expected to be a physical gathering of researchers,
practitioners, and policy makers from Nordic countries, has in the past few years
become attractive to many European researchers. This year, the COVID-19 pandemic
created an exceptional situation whereby it became clear that the conference had to be
held virtually. This obviously impacted the ability of the attending presenters to engage
in networking outside the presentation sessions. However, the conference program also
reached a wider circle of presenters from across the globe who were able to attend and
present.

The conference attracted 45 full paper submissions of which 15 were accepted to be
presented and included in the proceedings. All papers were subject to at least 3 reviews
by the 39 members of the program committee, to whom we would like to extend our
warmest thanks. Altogether, participants from nine countries co-authored the papers in
the conference, from as far away places as New Zealand and China.

The program for NordSec 2020 included two outstanding keynote lectures, one from
academia, and one from the European Agency for Cyberecurity (ENISA). They dis-
cussed security issues and research in the context of future networks and applications,
as well as policy issues of importance to society and decision makers, as follows:

– “Security, Privacy and Safety in the IoT”, by Prof. Elisa Bertino, Samuel D. Conte
Professor of Computer Science, Purdue University, USA

– “Cybersecurity breach reporting in the EU”, by Dr. Marnix Dekker, Cybersecurity
Expert, ENISA

The organisers of the conference are grateful for the time and effort allocated by the
keynote speakers and their excellent talks as a contribution to the program.

The technical papers presented at the conference were organised in 5 sessions:
Malware and attacks, Formal analysis, Applied cryptography, Security mechanisms
and training, and Applications and privacy. One poster session with discussions around
a setup created for education of students in a hacking environment was also organised.
Without the timely preparations by the authors and the flexibility of presenters to make
the necessary adjustments to do virtual presentations the conference would not have
been the successful forum for discussions it became.

In addition to the reviewers and members of the program committee, there was a
small group of local organisers essential for the conference to take place in this on-line
setting. We gratefully acknowledge the help by Felipe Boeira and Lene Rosell in



preparations for the conference and for being prepared to hold the conference in its
original physical shape right until September when the decision to go virtual was made.

We do expect that lessons learnt in 2020 can enrich the forthcoming instances of the
conference, and more than ever look forward to the possibility of meeting our col-
leagues in person in some Nordic country every year.

January 2021 Simin Nadjm-Tehrani
Mikael Asplund

vi Preface
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Persistence in Linux-Based IoT Malware

Calvin Brierley(B), Jamie Pont, Budi Arief, David J. Barnes,
and Julio Hernandez-Castro

School of Computing, University of Kent, Canterbury, England
{C.R.Brierley,J.Pont,B.Arief,D.J.Barnes,jch27}@kent.ac.uk

Abstract. The Internet of Things (IoT) is a rapidly growing collection
of “smart” devices capable of communicating over the Internet. Being
connected to the Internet brings new features and convenience, but it
also poses new security threats, such as IoT malware. IoT malware has
shown similar growth, making IoT devices highly vulnerable to remote
compromise. However, most IoT malware variants do not exhibit the
ability to gain persistence, as they typically lose control over the com-
promised device when the device is restarted. This paper investigates
how persistence for various IoT devices can be implemented by attackers,
such that they retain control even after the device has been rebooted.
Having persistence would make it harder to remove IoT malware. We
investigated methods that could be used by an attacker to gain persis-
tence on a variety of IoT devices, and compiled the requirements and
potential issues faced by these methods, in order to understand how
best to combat this future threat. We successfully used these methods
to gain persistence on four vulnerable IoT devices with differing designs,
features and architectures. We also identified ways to counter them. This
work highlights the enormous risk that persistence poses to potentially
billions of IoT devices, and we hope our results and study will encour-
age manufacturers and developers to consider implementing our proposed
countermeasures or create new techniques to combat this nascent threat.

Keywords: IoT · Security · Malware · Persistence · Attack · Proof of
concept

1 Introduction

A standard piece of advice typically given to affected users for removing malware
from an Internet of Things (IoT) device is to restart it, as most forms of IoT
malware lack the ability to maintain persistence [3,4]. This is because, in general,
IoT malware is stored and executed from within temporary filesystems that
reside in Random-Access Memory (RAM) [32]. As this type of memory is volatile,
the stored programs and data are lost when the device loses power, including
any changes that the attacker may have made to the filesystem.

However, there have been some families of IoT malware that are able to
maintain persistence in some form [15,27]. If persistent IoT malware becomes

c© Springer Nature Switzerland AG 2021
M. Asplund and S. Nadjm-Tehrani (Eds.): NordSec 2020, LNCS 12556, pp. 3–19, 2021.
https://doi.org/10.1007/978-3-030-70852-8_1
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more prevalent, many IoT devices will not be recoverable at all once they have
been infected. Therefore, it is increasingly crucial for IoT developers both to
understand their devices’ potential vulnerabilities to persistence and to implement
preventative measures to prohibit attackers from exploiting them. These two aims
serve as the motivation for our work.

Contributions. The key contributions of this paper are:

– We summarise IoT persistence and its role in IoT based malware.
– We explain the challenges currently preventing IoT malware from establishing

persistence.
– We outline methods that could be used by IoT malware to gain persistence.
– Finally, we explore how this will change the approach of IoT malware and how

attackers could achieve and use persistence to perform new and previously
infeasible attacks, and what can be done to counter this threat.

The rest of the paper is organised as follows. Section 2 provides some back-
ground on Linux malware, IoT based malware and persistence. We also high-
light previous research and some of the challenges attackers may encounter when
attempting to gain persistence on IoT devices. Section 3 describes several meth-
ods that could be used by attackers to gain persistence on various types of
IoT device, along with their requirements and limitations. Section 4 shows the
results of attempting to gain persistence on four vulnerable IoT devices using
these methods. Section 5 discusses some potential countermeasures that could be
implemented to prevent an attacker from gaining persistence on an IoT device.
Section 6 covers our conclusions and defines some recommended further work.

2 Background

Various families of malware have increasingly attacked IoT devices. Popular bot-
nets such as Bashlite and Mirai have infected hundreds of thousands of devices
and have been responsible for one of the largest DDoS attacks in history [11,33].
Fortunately, this type of IoT malware is relatively simple to remove. By restart-
ing the device, the malware will be unloaded from volatile memory, removing
the infection from the device when it reboots [3,4].

However, some malware (such as Mirai) often exhibits worm-like behaviour
[5] and after hijacking a device, it will scan the Internet for more victims to
infect. While users would sometimes restart their devices (either deliberately or
coincidentally) and clear the infection, it would not remove the underlying issue.
The devices could easily be reinfected, possibly within minutes [3].

In effect, this behaviour has led to competitions between botnet authors, each
seeking to maximise their share of the limited number of vulnerable IoT devices.
Some malware even exhibited security features to remove competing malware.
Mirai, for instance, would search for strings present in competing malware, kill
any associated running processes and close any potentially vulnerable services
running on specific ports to prevent any further attacks by competitors [5].
However, as these changes were not persistent they were removed when the
device was reset.
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2.1 Persistent IoT Malware

IoT malware capable of making persistent changes that secure its presence would
be able to maintain control over the device through reboots, both removing the
requirement to reinfect the equipment and helping towards keeping competitors
at bay. The ability to secure persistence would also allow significant changes to
the device to persist after rebooting, allowing for more creative types of malware
and attacks, such as ransomware [10] or long term spyware. This would also
provide a means for the malware operator to install additional malicious features,
such as modules that can attack other devices on the infected device’s network.

Currently, restarting an infected device will remove the majority of IoT mal-
ware, but with persistence, the user would have to modify the flash memory of
the device to remove the infection. This is something not usually readily avail-
able nor practical to an average user. If the malware can also prevent updates
or factory resets, specialist equipment or access to a debug/programming inter-
face may be required to clear the infection. This is considered too complicated
for most IoT users to perform and may lead to IoT devices being discarded, or
worse, knowingly left in an infected state.

2.2 Challenges with Gaining Persistence

There are two key challenges currently faced by IoT attackers when attempting
to gain persistence on IoT devices:

– Read-Only. IoT devices often have data that is set to read-only for vari-
ous reasons, such as to prevent accidental modifications due to programmer
error. This feature may also prevent attackers from making the necessary
modifications to the stored data or filesystems in order to gain persistence.

– Variance. Each device is likely to have different hardware, update mecha-
nisms, software, architecture and filesystem types. Fortunately for IoT devel-
opers, the variation in IoT devices makes it quite difficult for attackers to
create a universal method for gaining persistence. However, if an attacker
were to develop a method that affects a large number of devices with simi-
lar implementation, it could reduce the required time investment immensely,
leading to persistent IoT Malware becoming more common.

2.3 Previous Persistent IoT Malware and Related Work

After identifying an increase in the presence of Linux based malware, researchers
analysed 10,548 samples over a year to gain a better understanding of the tech-
niques used by malware authors [12]. They highlighted the quick development
and deployment of insecure IoT devices as a potential motive for attackers to
target Linux for malware development.

As part of this analysis, they found that 21.10% (1,644) of the analysed sam-
ples implemented persistence methods. Some of these methods can be applied
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to IoT devices, but the attacker must be able to modify the filesystem. As men-
tioned previously, IoT devices often set certain data as read only, which would
prevent these methods from working.

Some variants of IoT malware have achieved persistence, but these are less
common and they rely on the device having a writeable filesystem, which may
reduce the applicability of this approach. We examine two examples of persistent
IoT malware below.

Torii is a variant of Mirai that adds several features, most notably the intro-
duction of six techniques to gain persistence [15]. Each technique modifies files
on the infected device which are executed as part of the boot process, such as:
– .bashrc, which is executed whenever an interactive bash session is started;
– initab, which is used to determine which processes should be ran during the

Linux boot process at certain runlevels;
– crontab, which is used to execute files at a certain time or interval.

Modifications to these files would allow the attacker to set particular pro-
grams or shell scripts to be run when the device boots.

VPNFilter is a complex IoT malware which affects a large number of
routers [30]. It is believed to have been developed by “Fancy Bear”, a Rus-
sian based hacker group [31]. Its modular structure allows many features to
be implemented, ranging from man-in-the-middle attacks to SCADA sniffing.
Additionally, VPNFilter seems to include a section of code to erase and rewrite
Memory Technology Devices (MTDs)1, which could potentially be used to brick
the device by wiping segments of the device’s storage [28]. VPNFilter modifies
the /etc./config/crontab file, which will run the malware (which has presum-
ably already been written to memory) every 5 min [27,29], even when the device
is rebooted.

3 Methods for Gaining Persistence

Due to the challenges described in Sect. 2.2, no universal methods to gain per-
sistence on IoT devices have yet been identified. Instead, our approach is to use
a collection of methods to gain persistence on certain subsets of IoT devices.

We have identified several viable methods that could be used by an attacker
to gain persistence on a variety of IoT devices. A summary of these methods can
be found in Table 1 and a detailed overview of each is provided in the following
subsections. The description of each method includes a list of requirements for
its applicability, its feasibility, and any potential issues that may prevent it from
working effectively. A malware writer could perform reconnaissance to ascertain
which method should be used, or simply attempt each method sequentially until
they gain persistence. Some methods could be used in conjunction with others
to improve their chances of success.

The techniques described assume that the attacker has gained access to the
shell (such as via a guessable telnet password), and can run arbitrary commands.
1 Memory Technology Devices (MTD) are commonly used to communicate with flash

devices to manage storage on IoT devices.
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Ideally, the attacker should be able to determine the storage capabilities of the
device and identify the device model. Many of these techniques also require the
identification and modification of filesystems and partitions in flash memory. The
/proc/mtd file contains the partition definition and a name set by the developer
via MTD, which may indicate its purpose. These partitions can be accessed by
using the files /dev/mtdX or /dev/mtdblockX where X is the partition index.
The attacker can also find a list of mount points and their filesystem types in
the /proc/mounts file, or use analytic tools such as Binwalk [25] to identify
recognisable file headers and metadata.

Table 1. IoT Persistence Methods

ID Method Modified Partition Ease of Use

A Modifying Writeable Filesystems Filesystem Easy

B Recreating Read-Only Filesystems Filesystem Medium

C Initrd/Initramfs Modification Kernel Hard

D “Set Writeable Flag” Kernel Module N/A Hard

E Update Process Exploitation Filesystem/Kernel Device Dependent*

F UbootKit Bootloader Hard

*Device update processes differ, so the complexity of exploits will vary.

3.1 Modifying Writable Filesystems

When an IoT device has a writeable filesystem by default, the attacker should
be able to modify the filesystem directly via the shell, allowing them to edit
important files that run on startup.

Requirements: The device must use a writable filesystem (e.g. yaffs2/ jffs2).
The MTD filesystem partitions must be writeable. The attacker must be able to
modify the startup scripts.

Feasibility: This is the simplest method and does not require any additional
tools. If the filesystem is writeable by default, the attacker can copy their mal-
ware to a known location on the device, then modify the startup scripts so that
it is executed when the device is rebooted. This is similar to the technique used
by VPNFilter and Torii, as described in Sect. 2.1.

Potential Issues: The attacker must be able to obtain write permissions for
the files they are attempting to modify, which is dependent on the privileges
held by the exploited application or compromised account used by the attacker.

Furthermore, the writable filesystem must store files that can lead to the
execution of arbitrary code on startup. Otherwise, while the attacker may be
able to store malware permanently, they will not be able to set it to run when the
device is booted. The filesystem may also be mounted as read only, so additional
steps may be required to remount it as writeable.
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3.2 Recreating Read-Only Filesystems

If the device is using a compressed read-only filesystem, the attacker will not be
able to modify its files directly. Instead, the attacker can use specialised tools to
recreate the filesystem.

Requirements: The device must use a compressed read-only filesystem (such
as cramfs/squashfs). The attacker must be able to modify the flash partition
which contains the read-only filesystem. The attacker must have the required
software to recreate the filesystem.

Feasibility: While it is not possible to modify files within compressed read-only
filesystems, it is possible to replace the entire filesystem in flash memory with
a modified version. To create a new version of the filesystem the attacker must
first obtain the compressed version, which resides in flash memory.

Once the attacker has identified the partition that holds the filesystem, they
can use the MTD subsystem to read it from flash to a file, which can then be
extracted and modified to their requirements. The attacker can then re-pack it
in the correct format. For squashfs and cramfs filesystems, this requires using
the mksquashfs and mkcramfs utilities respectively. The old version stored in
the filesystem partition can then be overwritten via the MTD files in /dev.

Potential Issues: Filesystems can vary significantly, even those of the same
format. If the replacement filesystem type is different from what is expected by
the device, it might not be interpreted correctly, which will lead to a failure
during the boot process. For this approach to be practical, the attacker must
match the used filesystem as closely as possible.

Read-only filesystems may prove challenging to modify, as it is unlikely that
the tools used to build a new filesystem will be included on the exploited device.
For device updates, it would be expected that another machine would generate
a new filesystem that is then transferred to the device itself. To follow this same
philosophy, the attacker would need to copy the filesystem from the infected
device to an external computer, then modify it using the required tools. It would
then need to be uploaded back to the device for writing. Filesystems are likely
to be much larger than the average malware upload, and as they will need to
be uploaded to each infected device; this might not scale well if used for a large
number of devices.

Alternatively, attackers could compile and upload the required tools for use
on the devices themselves. However, as there are likely to be many different
filesystem types and device architectures, this may be not easy to manage.

3.3 Initrd and Initramfs Modification

As part of its booting processes, the Linux kernel may utilise an appended initrd
or initramfs filesystem [18]. This is an initial filesystem which allows some setup
of the device to be performed before mounting the real filesystem.

Requirements: The device must use an initrd or initramfs filesystem. The
attacker must be able to modify the flash partition that contains the kernel.
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Feasibility: First, the attacker must identify the MTD partition that contains
the Linux kernel. Once the correct partition has been identified, the attacker
must analyse it and determine the offset of the filesystem that is appended
to the kernel. After carving out the relevant data, they must save the original
kernel and filesystem separately. The attacker can then extract and modify the
filesystem to include their required malware. Typically, an initramfs filesystem
will be contained in a CPIO archive, which will likely also be compressed, and
as such, this may require multiple extraction steps. The extraction process must
then be reversed, and the resulting filesystem can then be appended to the
original kernel. Finally, this data can be used to overwrite the original kernel
flash partition.

Potential Issues: The kernel may be stored on the flash chip as an image for
use with a chosen bootloader. This may require the attacker to take additional
steps to recreate the image and maintain compatibility with the bootloader, such
as the inclusion of image headers that the bootloader may use to boot from the
partition effectively. As with Method B: unless the filesystem modifications are
performed locally, large amounts of data may need to be transferred via the
Internet, which might not scale well.

3.4 “Set Writeable Flag” Kernel Module

MTD can be used to manage partitions of flash memory. Developers may unset
the MTD WRITEABLE flag for partitions that are unlikely to need modification,
which may also prevent attackers from making modifications that would allow
them to gain persistence. This method allows an attacker to re-enable the
MTD WRITEABLE flag from within userspace if the requirements are met. While
this method may not allow an attacker to gain persistence on its own, it may
allow other methods to circumvent the read-only protections that were put in
place by the developers.

Requirements: The Linux kernel must support loadable modules. Access to a
device’s kernel header files or source tree will improve the kernel module’s odds
of being compatible.

Feasibility: The MTD WRITEABLE partition flag can be difficult to modify from
userspace at runtime. However, by using a Loadable Kernel Module (LKM), an
attacker could force this flag to be set from kernel space. There are existing
kernel modules that have been created to implement this [16,19].

Kernel modules typically need to be compiled against the targeted kernel
source to be compatible. This is normally achieved by having access to either
the kernel’s headers or source tree [1]. If IoT developers use modified software
that falls under the GNU Public License (GPL), they may be required to make
the corresponding source code available [26]. The attacker can use this to compile
the kernel module for the targeted device.

After compiling and uploading the LKM to the target device, the attacker
can use the insmod utility to insert the module into the kernel. Once inserted,
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the module is able to set all MTD partitions to be writeable, after which the
attacker can use one of the other techniques to gain persistence.

Potential Issues: If the device’s kernel header and source code are unavailable,
it may be difficult to compile the LKM such that it remains compatible. However,
a defensive IoT tool “HADES-IoT” demonstrated that loadable kernel modules
could be compiled without the support of the original developer [9].

The developer may be able to prevent this method from being used by con-
figuring the Linux kernel to verify the signature of kernel modules when they are
loaded [2]. The attacker will not be able to forge a signature for kernel modules
if they do not have access to the developer’s cryptographic keys.

3.5 Update Process Exploitation

Most devices are expected to receive updates over their lifetime, either to pro-
vide new user features or patches for security issues. However, vulnerable update
implementations can potentially be used to attack the device and gain persis-
tence.

Requirements: The device must implement a vulnerable update function, such
that the attacker can forge fake updates. The attacker must be able to access
the update function.

Feasibility: If an attacker gains access to a vulnerable update function, they
may be able to provide a false firmware update which is accepted by the device.
For example, researchers found vulnerabilities in devices produced by Disney [8]
and Netgear [7], which allowed them to upload modified firmware. An attacker
could use these modified updates to include malware and configuration files such
that arbitrary code is run each time the device is booted.

Potential Issues: The requirements for this method are quite niche. It not only
requires that the attacker has access to the update process (for which they will
likely need to be authorised), but the process itself must also be vulnerable in
such a way that the updates are not verified before being implemented.

As the update process will differ from device to device, what may work for one
is very unlikely to work on another. The attacker will need to reverse engineer
the required format of the update for each targeted device’s update process. If
the forged update is incorrectly formatted, the update process may be halted,
preventing the attacker from gaining persistence.

The attacker could attempt to modify the filesystem of an existing firmware
file provided by the developer, but the update process may also need to interpret
metadata defined by the developer. As such, the attacker will be expected to
recreate the metadata, such as file sizes or checksums. Some tools are available
that may assist in this process, such as the “Firmware Mod Kit” [24]. This
will not work for all update formats, especially if the developer has obfuscated,
encrypted or signed the firmware they make available.
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3.6 Ubootkit

Das U-Boot (Normally shortened to U-Boot), is a universal bootloader designed
for use with a variety of embedded devices [14]. It is commonly used in IoT
devices to manage the booting process into the main operating system.

Requirements: The device must implement U-Boot as its bootloader. The
attacker must be able to modify the bootloader flash partition.

Feasibility: Researchers have produced an attack that demonstrates the cre-
ation of persistent root-level access in IoT devices, dubbed “UbootKit” [35].

If the filesystem MTD partition is marked as read-only, it may prevent some
of the other methods from being used. UbootKit, however, targets the boot-
loader partition. If the bootloader partition is writeable, UbootKit can modify
U-Boot in such a way that when the device is next booted, it will run arbitrary
code written by the attacker. UbootKit will use this vulnerability to corrupt sub-
sequent boot stages and modify startup scripts during Linux’s boot sequence,
gaining the ability to make persistent changes.

Potential Issues: The authors of Ubootkit state that it can be applied to other
devices and architectures than those used in the demonstration [35], but that it
would require modification. This technique relies on patching the bootloader and
kernel of the device with new shellcode at specific offsets. As the bootloader and
kernel will differ slightly on each targeted device model and version, determining
the correct shellcode modifications may be time-consuming.

Table 2. Device persistence methods exploits

Device Persistence method(s) Exploit

Netgear R6250 Router Recreate Read-Only
Filesystem & “Set
Writeable Flag” Kernel
Module

Command Injection
CVE-2016-6277 [21]

D-Link DCS-932L Initrd/Initramfs
Modification

Buffer Overflow
CVE-2019-10999 [22]

Yealink SIP-T38G Modify Writeable
Filesystem

Command Injection
CVE-2013-5758 [20]

WiPG-1000 Modify Writeable
Filesystem

Command Injection
CVE-2019-3929 [23]

4 Experimental Proof of Concepts and Results

To test the viability of the techniques described in the previous section, we
applied them to a range of IoT devices. We chose these devices as they have
been known to be vulnerable, with publicly available exploits. Some had also
been previously targeted by IoT malware. For persistence to be considered a
viable and realistic attack method, the following two constraints were applied:
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– No physical access to the device must be required during the process. Persis-
tence must be achievable remotely, preferably over the Internet.

– The method of persistence must allow an attacker to force the device to run
a custom application when the device is rebooted.

During our testing, we examined some local files on the device that are com-
monly found on Linux based systems to gather information about the device,
such as /proc/mtd to identify partitions and /proc/mounts to identify filesys-
tems. These would help determine the best technique to apply when attempting
to gain persistence on that device.

4.1 Netgear R6250 Router (Using Methods B and D)

The Netgear R6250 router is one of many routers that had a command injection
vulnerability present in their web server [17,21]. We used this vulnerability to
gain access to the shell and begin reconnaissance.

First, we read the /proc/mounts file and found that the router used both a
jffs2 and squashfs filesystem. We initially targeted the jffs2 filesystem as it
was writeable by default and would have been the easiest to modify. However, it
was mounted to /tmp/openvpn and only contained configuration files, so while
we were able to make persistent modifications to the directory, it would not
cause any arbitrary execution when the device was rebooted.

We instead decided to target the squashfs filesystem as it was mounted as
the root directory. We read /proc/mtd and identified a partition named “rootfs”,
which was most likely the root filesystem. We read the partition and found it
was using squashfs version 4.0, with xz compression.

Gaining Persistence. After extracting the files, we modified the result to
include a file named testfile in /bin, then re-created the filesystem using
the mksquashfs utility. We then uploaded the generated filesystem to the tem-
porary memory of the router. We overwrote the existing filesystem by writing
our modified version to /dev/mtdblock15. When we rebooted the device, the
testfile was readable, indicating a persistent edit.

Read-Only MTD Partitions. During our exploitation of the device, we found
that some of the partitions, notably the bootloader, had been marked as read-
only via MTD. We were able to compile the Netgear’s mtd-rw kernel module
against the firmware’s GPL source (https://kb.netgear.com/2649/NETGEAR-
Open-Source-Code-for-Programmers-GPL) and confirmed that inserting the
module would allow attackers to set MTD partitions as writeable from userspace.

https://kb.netgear.com/2649/NETGEAR-Open-Source-Code-for-Programmers-GPL
https://kb.netgear.com/2649/NETGEAR-Open-Source-Code-for-Programmers-GPL
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4.2 D-Link DCS-932L (Using Method C)

The DCS-932L is a web-connected camera for both indoor and outdoor use. Cus-
tomers can access the camera remotely via a web browser or linked application.

This camera has a buffer overflow vulnerability that allows an attacker to
gain access to the shell and run arbitrary commands [22]. We used this to gain
access to the device and investigate how it manages its storage. We read the
mounts file and found only temporary and pseudo filesystems were being used,
leading us to believe that it was using rootfs as its main filesystem, which
should be appended to the end of the kernel. For this device, we used Method
C, modifying the initramfs so that a custom filesystem would be loaded.

Fig. 1. Extracting the DCS-932L’s root filesystem from the kernel partition

We read the /proc/mtd file and identified an MTD partition named “kernel”
which we copied to a host machine to analyse. Using Binwalk [25], we found that
the filesystem could be extracted in three stages, as shown in Fig. 1.

1. Stage one was the raw data of the partition as it was stored on the flash chip.
It was made up of a 64-bit uImage Header, and LZMA compressed data. The
uImage header contained metadata that the U-Boot bootloader can use to
boot the kernel contained in the LZMA payload. We extracted the LZMA
compressed data in preparation for stage two.

2. Stage two consisted of the kernel and some further LZMA compressed data.
We identified that the LZMA data began at the offset 0x3AC000, so we carved
the data from this offset to the end of the file. We then decompressed this
data into stage three.

3. After extracting the LZMA data, we were left with a CPIO archive, which
we could then extract or mount to view the root filesystem of the device.

Gaining Persistence. To gain persistence on this device, we needed to mod-
ify the kernel partition in such a way that the device would be able to boot
and mount it correctly. To test our process, we changed the root filesystem to
contain a file named testfile in the /bin directory, then began to reverse the
process we used to extract it. First, we compressed the filesystem into a CPIO
archive. We then needed to compress the CPIO archive using LZMA. However,
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the compression used by the device was non-streamed. To recreate this as best as
possible, we used an old version of “LZMA utils” (https://tukaani.org/lzma/).
We then prepended the original binary/kernel data and compressed it using
LZMA. Finally, we had to add a new uImage header. As uImage headers include
checksums to check the integrity of the image contents and the header itself [13],
we could not simply prepend the original, as the checksums would fail to match
when the device starts, causing a fault. Instead, we created a new header with
the mkimage utility. The arguments to recreate the metadata, such as the archi-
tecture, load address and firmware name, were found by referring to the previous
header. We uploaded the new image to the device in temporary memory. As the
kernel flash partition was writeable, we could copy it from temporary memory
to flash memory via the MTD subsystem.

After restarting the device, we found our testfile was present in /bin,
indicating a successful persistent modification. Attackers could use this tech-
nique to modify various startup scripts to perform malicious actions or even run
applications included in the new filesystem.

4.3 Yealink SIP-T38G (Using Method A)

The SIP-T38G is an Internet-connected VoIP desk phone, allowing users to
manage multiple calls and messages. We gained control of the device using an
adaptation of an existing exploit for previous versions of the phone [20], which
allowed us to investigate the device further.

We read the /proc/mounts file and found that the device used yaffs2 filesys-
tems mounted to multiple locations, including the root (/), /boot, /phone,
/data, /config and /etc. directories.

As yaffs2 is a writeable filesystem with an MTD user module, we wrote
to the filesystem via the shell. The /etc. directory held scripts that are run at
boot-time, which we could modify to run custom shell commands or applications
when the system next boots.

4.4 WiPG-1000 (Using Method A)

The WiPG-1000 is a presenter that allows users to stream their screen from
other devices on the same network. We used a command injection vulnerability
[6,23] to start a telnet daemon, which we used to interact with the device via
the shell remotely.

After connecting via telnet, we read /proc/mounts to identify the root
mount. We found that the presenter used two types of storage, a flash chip and
an Embedded Multi Media Card (eMMC). The eMMC used an ext2 filesystem,
which was mounted to the root directory as read only. We were able to remount
it as write enabled with the mount utility, after which we were able to easily
modify the filesystem via shell commands, which persisted through reboots.

https://tukaani.org/lzma/
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4.5 Results Summary

There were significant variations in the structure of the devices we sought to
exploit, with the different types of storage implementations requiring a variety
of methods to be applied. However, we were able to gain persistence on every
device by applying the described techniques.

While the implementation of these tests was performed manually for this
paper, aspects of these techniques could be automated. As device reconnais-
sance for selecting the correct method was very time-consuming, automation of
this step would be essential for large scale attacks. Hard coding the appropriate
method when a specific model of the device is detected is a possibility, but this
would require manually identifying the best method for each device. Alterna-
tively, method identification could be performed when a device is exploited, but
this may be quite complicated to implement without generating false positives.
If performed incorrectly, this could also lead to the device being bricked.

We have created a process graph to show the best method for gaining persis-
tence, by prioritising on those which require the lower complexity to be imple-
mented. This graph can be seen in Fig. 2.

5 Countermeasures

We propose several countermeasures that could be used to mitigate the risk
or prevent the threat caused by these persistence methods. Due to the vari-
ance of IoT devices, there are no “perfect” countermeasures, but those that are
implemented will frustrate attackers in their attempt to gain persistence. As a
consequence, these countermeasures will make the device a less appealing target.

– Data Signing. The use of signatures allows verification that the data con-
tained on the flash chip has not been modified, which can prevent an attacker
from gaining persistence. For example, uBoot has a “trusted boot” feature
that can check whether an image is correctly signed before continuing the
boot process [34]. By cryptographically signing each stage of the booting pro-
cess – including the bootloader(s), operating system and filesystem – each
step can verify the signature of the next, creating a chain of trust. If a stage
has been modified, its signature will not be valid, and the device will fail to
boot. Immutable memory should be used to bootstrap the process, so that
an attacker cannot modify the chain of trust at the very first stage. As the
attacker should not have the developer’s cryptographic keys, they would not
be able to forge a signature for any modifications they might have made to
the protected stages.

– Principle of Least Privilege. All of these methods require an attacker to
modify data on the device. By running potentially exploitable applications
at a lower privilege level and only allowing certain privileged accounts to
interact with the storage device or make persistent changes to important
files, attackers would not be able to make modifications to gain persistence.
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Fig. 2. Process to gain persistence
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– HADES-IoT. HADES-IoT is a system designed for use on IoT devices,
which provides a process whitelisting feature [9]. HADES-IoT records a hash
of benign executables that are run in an uninfected state during a “profiling”
stage. When a new process is spawned, HADES-IoT can compare it against its
list of known benign executable hashes, preventing unknown processes from
being created. This can frustrate attackers attempting to gain persistence and
prevent uploaded malware from running.

– Device Updates. The methods outlined in our paper assume that an
attacker has shell access. Users can prevent attackers from abusing these
methods by regularly updating their device to patch vulnerabilities and pre-
vent exploitation that would provide a shell access to the attacker.

– Effective Factory Resetting. IoT devices often include a “factory reset”
feature that can be used to restore corrupted partitions to their original state.
This could be used by victims to remove malware from the device if the
process can reset partitions that have been modified by an attacker.

6 Conclusions and Future Work

In this work, we have discussed the increasing threat of persistence in IoT mal-
ware. We outlined the challenges that currently prevent IoT persistence from
being easily achieved. We then detailed techniques that attackers could use to
gain persistence on IoT devices, describing their requirements, what methodol-
ogy they can use and which potential issues they might encounter. We demon-
strated our ability to achieve true persistence in a wide range of different IoT
devices. Based on our findings, we outlined a potential process to identify the
best method of obtaining persistence. Finally, we listed several possible coun-
termeasures that can be used to hinder attackers from getting persistence on
vulnerable IoT devices.

Whilst we were able to gain persistence on all of our targeted devices, the
variations on device structure and implementation meant that it was a time-
consuming process that involved significant manual work. An attacker would
almost certainly want to automate this for massive-scale attacks. One possible
approach is to search for or remotely fingerprint vulnerable devices and then
launch the method appropriate for that model.

Additionally, whilst it was straightforward to gain persistence on some of
the devices we tested, others required more sophisticated methods that were
time-consuming to discover and implement. Attackers may soon look towards
automating both the discovery and the implementation of these more involved
methods for abusing them in large scale operations.

Finally, further research should be performed to discover new countermea-
sures against persistence attack on IoT devices, for example through novel net-
work intrusion detection systems that are effective for IoT scenarios.
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Abstract. Attackers regularly target Android phones and come up with
new ways to bypass detection mechanisms to achieve long-term stealth
on a victim’s phone. One way attackers do this is by leveraging critical
benign app functionality to carry out specific attacks.

In this paper, we present a novel generalised framework, JIT-MF
(Just-in-time Memory Forensics), which aims to address the problem
of timely collection of short-lived evidence in volatile memory to solve
the stealthiest of Android attacks. The main components of this frame-
work are i) Identification of critical data objects in memory linked with
critical benign application steps that may be misused by an attacker;
and ii) Careful selection of trigger points, which identify when memory
dumps should be taken during benign app execution.

The effectiveness and cost of trigger point selection, a cornerstone of
this framework, are evaluated in a preliminary qualitative study using
Telegram and Pushbullet as the victim apps targeted by stealthy mal-
ware. Our study identifies that JIT-MF is successful in dumping critical
data objects on time, providing evidence that eludes all other foren-
sic sources. Experimentation offers insight into identifying categories of
trigger points that can strike a balance between the effort required for
selection and the resulting effectiveness and storage costs. Several opti-
misation measures for the JIT-MF tools are presented, considering the
typical resource constraints of Android devices.

Keywords: Memory forensics · Android security · Digital forensics ·
Incident response · Accessibility attacks

1 Introduction

Android has established itself as a leader in the mobile OS market [14], making
it a primary target for malware. Whereas several detection mechanisms exist in
the Google Play Protect suite [7], both to hinder the availability of malicious
apps as well as to provide on-device detection, evasion techniques are still widely
used, from obfuscation to stealthy execution.
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Accessibility services misuse in Android has emerged as a predominant
stealth technique in recent years, primarily adopted by accessibility trojans
pulling off phishing attacks in a particularly stealthy manner [2,3,6]. While ini-
tially proposed as a way to maliciously interact with victim apps in a stealthy
way requiring only accessibility and overlay-related permissions [12], more recent
work suggested that the level of stealth can be increased further by offloading
most or all of the attack steps to benign apps [22]. In this setting, any classifier-
based malware detector is fooled since critical attack steps are executed solely via
white-listed victim apps. For instance, in the case of a messaging hijack attack,
whereby an attacker aims to hide behind a victim’s identity to send a message, or
intercept conversations from the victim’s phone, a malware may simply request
accessibility permission and leverage other existing (or secretly installed) apps
on the phone to read or send messages through that benign app.

Once the detection layer is breached, mitigation responsibility is shifted to
incident response, where the use of digital forensics tools is central. In the case
of such stealthy attacks, it becomes paramount to recreate the intrusion sce-
nario by identifying the main attack steps. In the case of messaging hijacks,
these comprise legitimate message sending or receiving/reading functionality,
this time attacker-controlled. Evidence uncovering the critical attack steps is
akin to an application logging its primary functionality. However, the absence
of such fine-grained audit trails, which is usually the case, leaves investigators
with no evidence in non-volatile storage to work with. Evidence collected from
volatile memory becomes essential. While forensics tools that operate similarly
have shown promise within very narrow domains, one cannot underestimate the
significant challenge of dealing with short-lived evidence [15,21,22].

In this work, we aim to harmonise the approach taken by these individ-
ual tools into a generalised framework, focusing specifically on the challenge of
timely memory dumps from benign victim apps through the careful selection of
trigger points. While we present the Just-in-Time Memory Forensics (JIT-MF)
framework within an accessibility misuse messaging hijack setting, the proposed
concept extends to the general case of attacks carried out largely through benign
apps. JIT-MF’s underpinning principles that distinguish it from state-of-the-art
memory forensics tools are: i) Real-time collection of critical data objects in
volatile memory related to the critical attack steps from victim apps; and, ii)
The timely dumping of specific fragments of process memory as specified by
trigger points. Notably, in contrast to malware detection and forensics tools,
JIT-MF tools focus on the collection of evidence from misused benign victim
apps (rather than malware).

Evidence objects and trigger points are specific to investigation scenario-
victim app pairs, as defined within JIT-MF Drivers. Four real-world case stud-
ies presented in this paper provide further insight into how to proceed from
framework to tool implementation. This mainly revolves around the creation of
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JIT-MF drivers. All cases concern messaging hijacks involving Pushbullet1 and
Telegram2, covering SMS and instant messaging (IM).

Experimentation results from these case studies show that evidence object
identification should focus on those data structures related to app functionality
that are most likely to serve as critical attack steps. As for trigger points, we
identified different candidate categories, ranging from those requiring general
knowledge of the Android framework to ones requiring more in-depth knowledge
of specific apps. Yet, results show that those requiring only Android framework
knowledge are sufficiently effective. Furthermore, experimentation that focuses
on the optimised implementation of JIT-MF tools shows that storage is a valid
concern, especially for devices with limited resources and propose an approach
to collect the specific objects through interactions with the Android’s runtime
Garbage Collector. The key contributions of our work are:

– We introduce the concept of JIT-MF as a generic framework for memory
forensic tools concerning Android attacks that offload their critical steps to
benign apps.

– Provide insight into trigger point selection, a fundamental aspect to JIT-MF.
– Experimentation using four case studies that provide insight into developing

practical JIT-MF tools.

2 Background and Motivation

2.1 Stealthy Android Accessibility Attacks

The misuse of accessibility services is on the increase in Android malware. Early
instances [2] demonstrated how through phishing and the misuse of accessibility
features, a malicious app could steal a victim’s credentials and attack other
benign apps and services by interacting with them without the user’s consent.
In the case of Gustuff [2] this was done to perform banking transactions. More
recently, however, with malware such as Eventbot [6] and BlackRock [5], this
misuse has shifted from being leveraged to perform the actual attack to being
used to maintain stealth. In the case of both Eventbot and BlackRock, the only
permission requested upon installation is that of accessibility. The rest of the
permissions required to perform the attack are obtained through the accessibility
permission granted by the user. Malware developers can also exploit accessibility
to leverage critical benign app functionality that coincides with the features they
need. For instance, attackers who are motivated to create a malicious app to send
SMSs via another phone to hide their identity (SMS crime-proxy), may exploit
accessibility to silently install a benign legitimate SMSonPC app, e.g. Pushbullet
[22], whose normal usage involves proxying sent/received SMSs through a remote
PC. By signing up with phished credentials, as part of the setting up (step 1
of Fig. 1b) on the installed app, attackers gain full control over every SMS that
is received and can send SMS remotely through a benign app, hiding its tracks
and increasing the stealth level of the attackers’ subsequent steps.
1 https://www.pushbullet.com.
2 https://telegram.org.

https://www.pushbullet.com
https://telegram.org
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(a) SMS hijack attack using accessibility
to attack default SMS app.

(b) SMS hijack attack using accessibility
to install an SMSonPC app that legiti-
mately interacts with the default SMS app.

Fig. 1. Misusing accessibility in different ways to carry out an SMS hijack attack.

Fig. 2. Instrumenting code via ArtMethod entry point.

2.2 Evidence Collection

Android Runtime (ART) has been the main managed runtime used by appli-
cations on Android [4] since it was released with Android KitKat in 2013 [23].
Similar to how JVM operates, ART uses two separate memory spaces to store
application data; the stack and the heap [20]. Short-lived data objects of a run-
ning app, critical to attack steps, are found in volatile memory within the appli-
cation’s heap, managed by the Android Runtime.

Out of the box, ART provides functionality through which developers can
dump heap data in the standard format of an hprof file, mainly for debugging
purposes. The Java API equivalent for this is Debug.dumpHprofData3. A typical
heap dump is semantically rich, containing information about an app’s memory
contents at the time the dump was taken. Most importantly, in our case, it
includes information on the objects used and created by the app [4].

Another feature of ART is that of garbage collection. Figure 2 shows how ART
provides a managed memory environment which enables the Garbage Collector
(GC) to keep track of objects in memory, to reclaim heap space once those
are no longer in use [4]. To do so, the GC uses a function exported by ART’s
binary module (libart.so), Heap::GetInstances, which has an object type
filter, allowing the GC to filter on specific objects in memory. While convenient

3 https://developer.android.com/reference/android/os/Debug#dumpHprofData.

https://developer.android.com/reference/android/os/Debug#dumpHprofData
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for selective evidence collection, the downside is that this function is not part of
the public API and therefore may change unexpectedly between versions.

2.3 Android App Instrumentation

The Android OS uses APKs (Android Package Kit) as a package file format
for distributing and installing mobile apps. The typical make up of an apk file
consists of: an Android Manifest file providing essential information about the
app, Dalvik (managed) bytecode in classes.dex, a lib directory for native code
(e.g. ARM instructions), and other resources such as images/files required by the
app. Native code can access the Android framework through the Java Native
Interface (JNI), which enables the switching between native code and Dalvik
bytecode. Therefore, since native code also calls into the Android framework, by
using this framework to facilitate interception, we would also be able to intercept
native code that calls into it.

ART uses specific C++ classes to mirror Java classes, their methods and
associated instances, specifically using Class, Object and ArtMethod data struc-
tures respectively, as shown in Fig. 2 [10]. The ArtMethod data structure contains
all the information about a particular Java method (method descriptors), such
as the modifier, the class in which it is declared and the entry address of the
method’s code. Figure 2 shows how method hooking can be attained through
ArtMethod patching, by first setting the method as native (Step 1), followed by
entry point patching (Step 2), completing control-flow re-direction to instrumen-
tation code.

3 JIT-MF

We assume the context of an investigation scenario whereby the device owner is
not a perpetrator but a victim of a potential accessibility misuse attack targeting
stealth. This may be the case with high-ranking government officials, or even
high-profile business owners, as was the case in a report published earlier on
this year [8]. In such cases, victims are expected to collaborate with forensic
investigators to obtain critical evidence in the case of such an attack.

Our main aim is to obtain evidence, in the form of data objects, corresponding
to critical application functionality from volatile memory which otherwise won’t
be made available by other sources of evidence. Due to their ephemerality, which
is typical of app-level data objects, timely collection of such objects becomes
critical. The primary goal behind the concept of Just-in-Time Memory Forensics
(JIT-MF) is to extend the notion of memory forensics. We refer specifically to the
kind that is carried out in real-time, over live process memory, capturing evidence
associated with critical benign app misuse steps in a just-in-time fashion.

While the identification of evidence object(s) revolves around critical app
functionality central to the threat in question, their timely collection requires
the selection of trigger points which is a concept that is somewhat novel to our
approach and requires more insight. These trigger points are events that occur
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during the app’s runtime at which JIT-MF will invoke a partial memory dump.
If the selected trigger points do not coincide with the invocation of misused app
functionality, critical attack evidence may be lost.

Figure 3 gives an overview of the steps involved when implementing a tool
based on the JIT-MF framework. Once a benign app is identified as having crit-
ical application steps which can be misused by an attacker, the app is extracted
from the device (using adb). The app is instrumented, possibly using a combi-
nation of static and dynamic tools (depending on whether the device is rooted),
to include code which uses the capabilities provided by ART to dump memory
at the identified trigger points. Once repackaged, the app is re-installed and set
up on the user’s phone. The memory dumps collected over time would then be
gathered by a forensic analyst to reconstruct the attack steps.

Fig. 3. JIT-MF steps.

3.1 Heuristic for Evidence Object and Trigger Point Selection

A typical memory dump contains all the objects created and/or being used by
an app (both specific to the app as well as those specific to the Android API), at
the point in time when this is performed. Not all of these objects are relevant to
the critical attack steps. For instance, in the case of a messaging hijack attack,
we are only after the message objects supporting the execution of messaging
functionality and which may be hijacked during eventual attacks.

The selection of trigger points is specific to the following two aspects: i) The
attack scenario for which we want evidence to be collected, and ii) How the app
itself operates. Attempting to define a method for trigger point selection requires
full knowledge of the specific app being analysed (and its version at the time).
Given that the majority of the apps being analysed are expected to be third-
party, assuming comprehensive knowledge of the app’s codebase is not practical.
Instead, we propose a heuristic which we have used across four case studies.
Taking into account an attack scenario, corresponding target app functionality
and the associated evidence objects, trigger points are selected based on the
code that processes the said objects; specifically concerning: i) The storing and
loading of the objects from storage; ii) The transferring of objects over the
network (e.g. Wi-Fi, 4G, etc.); or else iii) Any object transformation of some
sort (e.g. display on screen etc.).
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In the case of a messaging hijack, evidence objects comprise precisely those
that contain the messages themselves (as defined by an app-specific structure). In
contrast, the operations related to these objects involve storing/loading messages
from local content repositories and sending/receiving messages over communi-
cation networks. The latter provides the basis for trigger point selection.

Trigger Point Categories. Although the operations identified as candidate trigger
points are all potentially valid, their degree of specificity to the app may differ.
For instance when receiving a new instant message, one can safely assume that
the source code in the app handling the data object of interest (evidence object)
must have made use of underlying network functionality at some point. Other-
wise, the message would not have been received. In this case generic network-
related operations - such as recv system calls - are considered viable, generic
trigger points requiring minimal app reverse engineering effort, since they can be
derived without detailed knowledge of the app’s codebase. However, such trigger
points may not be as accurate as those selected with a more in-depth under-
standing of app functionality. The latter kind of trigger points encompasses
app-specific methods, reflecting the precise invocation of the sought after func-
tionality, e.g. displaying the message in an app-specific GUI grid on the device
screen. Such trigger points are expected to be more accurate, both in terms of
producing timely memory dumps and in not being triggered too frequently (over-
execution). That said, there may be instances in which generic trigger points can
have filters associated with them that decrease their invocation.

Overall, the varying degree of specificity of a trigger point reflects the amount
of effort put into comprehending the codebase of an app. Therefore we categorise
trigger points as follows, starting from the least specific (and require least reverse
engineering effort) to the most specific, as described in Table 1. The first three
categories are considered black-box, meaning they require the least knowledge of
an app’s codebase. The final category is considered white-box due to the need of
having to peek inside an app’s codebase for their identification. At first glance,
the impact of this trade-off is not obvious. Therefore we dedicate significant
experimentation effort on comparing trigger point categories as part of the case
studies presented in Sect. 4, to provide the necessary insight into trigger point
selection for eventual JIT-MF based tools.

Table 1. Trigger point categories.

Trigger point category Classification Description

Native Runtime (RT) Black-box Generic native runtime system calls

Device Events Black-box Generic events related to the device state

Android & 3rd party library APIs Black-box Android API calls

App specific APIs White-box API calls specific to the app

3.2 Offline Vs Online Evidence Collection Methods

Once triggered, memory dumps can comprise entire ART heap sections as
in hprof dumps, with subsequent evidence collection happening offline using
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an hprof parser, e.g. Eclipse MAT. A more frugal approach leverages ART’s
Garbage Collector (GC) to dump solely the required/critical objects in memory.
In this setting, evidence objects are collected during the dumping process itself
in an online fashion. Both approaches are compatible with non-rooted devices.

While JIT-MF defines those common steps followed by every JIT-MF tool,
those aspects that are specific to the investigation scenario/target app pair at
hand are described, and eventually implemented, by JIT-MF drivers. Their
implementation starts off the aforementioned evidence/trigger point selection
heuristic along with any argument value restrictions identified and is completed
with the selection of an appropriate evidence collection method. Figure 4 illus-
trates the involvement of these drivers in the JIT-MF framework.

Fig. 4. JIT-MF drivers.

4 Experimentation

To evaluate the effectiveness and runtime overheads imposed on forensically
enhanced devices, we conducted a series of experiments. These had the following
objectives: i) Demonstrate that JIT-MF tools can collect evidence on stealthy
accessibility attacks, effectively amplifying their forensic footprint; and ii) Per-
form a comparative analysis of the different trigger point categories, based on
accurate memory dump triggers and their associated overheads.

4.1 Setup

Four messaging hijack case studies were set up for experimentation purposes,
encompassing SMS and IM: 1) SMS Crime-proxy, 2) SMS Spying, 3) IM Crime-
proxy and 4) IM Spying. A crime-proxy attack involves an attacker proxying mes-
sages through a victim’s phone via a benign app. This could help to foil attribu-
tion of compromising communication, possibly even resulting in incorrect attri-
bution to the device owner. Spying through unlawful message interception com-
prises of attackers spying on device owners’ messages threatening their privacy,
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and possibly even their safety. SMS hijack case studies make use of Pushbullet,
an SMSonPC app that provides remote access to a device’s SMS functionality,
and more. SMSonPC could be smuggled as part of an attack for stealth, or else
could be the target of an attack in case a device owner is already making using
of it. Telegram, on the other hand, is the app chosen for the IM setting due
to its large userbase. In all case studies, we assume that accessibility malware
has been installed and granted the accessibility permission by a non-suspecting
device owner. We also carry out performance tests to analyse overhead storage
and runtime costs incurred on legitimate user activity.

All four attacks were implemented as extensions to the Metasploit’s Meter-
preter for Android4. For SMS-related attacks, the accessibility malware typically
first sets up a Pushbullet installation and signs in using phished credentials.
The remaining attack steps to send messages make direct use of Pushbullet’s
web portal, automated using Selenium5 whereas any incoming messages can be
obtained from browser logs. Furthermore, after sending an SMS, the attack can
delete the Pushbullet app for additional stealth. SMS conversations for inter-
ception were simulated using adb emu send <number> <message>. No message
deletion ensued in this case. IM-related attacks required the malware’s perma-
nence, interacting with Telegram’s IM sending and viewing functionality in a
continuous manner. The malware makes use of overlays in order not to attract
the device owner’s attention. In Telegram’s crime-proxy attack case study, all
sent messages are deleted after sending. In contrast, in the spying case study, a
new phone with a different SIM card was used to assume the role of the sender
and adb input events were used to automate message sending and receiving.

The full setup comprises: Pushbullet v17.7.19; Telegram v6.1.1 instrumented
with the trigger points described in Sect. 3.1; both installed on an Android 10
emulator equipped with Frida-server v12.8.20 for instrumentation. Both online
and offline evidence collection methods are encoded within the instrumentation
code as described in Sect. 3.2, leveraging Frida’s Java.choose() and Android’s
API Debug.dumpHprofData() respectively. To measure runtime overheads, we
analyse storage and execution time overheads of both apps during legitimate
message sending and reading/retrieving activities. In the case of Pushbullet, we
assume a legitimate user did the initial installation. To measure effectiveness we
search for the proxied/stolen messages in the resulting memory dumps and take
note of whether or not they were found. All attacks were repeated 10 times, since
it sufficed to reach convergence for all measurements taken.

Trigger Points. Eight trigger points (TP) were chosen, per attack scenario, two
for each category defined in Table 1, attempting to leverage all available candi-
date trigger points in terms of disk input/output, network send/receive and mis-
cellaneous object transformations. The chosen TPs are listed in Table 2, where
TP1 is either file/disk or object transformation-related, whereas TP2 is network-
related.
4

https://github.com/rapid7/metasploit-framework/tree/master/documentation/modules/
payload/android.

5
https://selenium-python.readthedocs.io/.

https://github.com/rapid7/metasploit-framework/tree/master/documentation/modules/payload/android
https://github.com/rapid7/metasploit-framework/tree/master/documentation/modules/payload/android
https://selenium-python.readthedocs.io/
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Where possible, we put filters on black-box trigger points, for better speci-
ficity. For instance, the app directory (in the case of device events) is spe-
cific to the app and obtained dynamically at runtime using getApplication
Context().getFilesDir().getParent() provided by the Android API (typ-
ically being /data/data/pushbullet|telegram). Incoming/outgoing network
statistics were obtained using Android’s TrafficStats package to monitor an
increase in either, depending on the use case. Device event trigger point checks
are triggered based on their native category counterpart, so the instrumentation
checks for increased directory size, after a write() call is made. Native runtime
calls were restricted to trigger on specific scenarios by checking whether the type
of the file descriptor passed as an argument is a TCP socket or a file.

Table 2. Trigger points selected.

Case study TP Category TP # Event selected

(SMS)

Pushbullet -

Crime-proxy

Native

Runtime

TP 1 write() - to disk

TP 2 read() - from socket

Device Event TP 1 Increase in app directory size

TP 2 Increase in incoming network traffic

Android & 3rd

Party APIs

TP 1 android.content.ContentResolver.insert

TP 2 android.telephony.SmsManager.sendTextMessage

App specific

APIs

TP 1 com.pushbullet.android.sms.SmsSyncService.a

TP 2 com.pushbullet.android.providers.syncables.SyncablesProvider.insert

(SMS)

Pushbullet -

Spying

Native

Runtime

TP 1 read() - from disk

TP 2 write() - to TCP socket

Device Event TP 1 Increase in app directory size

TP 2 Increase in outgoing network traffic

Android & 3rd

Party APIs

TP 1 android.content.ContentResolver.registerContentObserver

TP 2 com.google.android.gms.gcm.GcmReceiver.onReceive

App specific

APIs

TP 1 com.pushbullet.android.sms.SmsSyncService.a

TP 2 com.pushbullet.android.gcm.GcmService.a

(IM) Telegram

- Crime-proxy

Native

Runtime

TP 1 File open()

TP 2 send() - to socket

Device Event TP 1 Increase in app directory size

TP 2 Increase in outgoing network traffic

Android & 3rd

Party APIs

TP 1 android.widget.EditText.setText

TP 2 android.app.SharedPreferencesImpl$EditorImpl.commitToMemory

App specific

APIs

TP 1 org.telegram.tgnet.ConnectionsManager.native sendRequest

TP 2 org.telegram.messenger.SendMessagesHelper.performSendMessageRequest

(IM) Telegram

- Spying

Native

Runtime

TP 1 File open()

TP 2 recv() - from socket

Device Event TP 1 Increase in app directory size

TP 2 Increase in incoming network traffic

Android & 3rd

Party APIs

TP 1 android.view.ViewGroup.dispatchGetDisplayList

TP 2 android.app.ContextImpl.sendBroadcast

App specific

APIs

TP 1 org.telegram.ui.Cells.DialogCell.update

TP 2 org.telegram.messenger.MessagesStorage.putMessages

4.2 Results

Effectiveness. Table 3 compares the trigger points based on accurately dumping
evidence objects related to the proxied or intercepted SMS/IM messages over
ten runs per attack. The first six rows are the results obtained for the black-box
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trigger points, while the next two are for the white-box. The results presented
show the effectiveness obtained by using both offline and online collection meth-
ods which, as can be observed from the table, have very similar results. Looking
at the results column-wise, i.e. across trigger point categories, results show that
the hypothesis that white-box trigger points are more accurate than their black-
box counterparts does not hold. Having said that, when results are analysed
row-wise, i.e. across attacks, in each case study there is at least one trigger point
that returns a 100% accuracy. For both Pushbullet and Telegram case studies,
the collected evidence contains the following metadata: i) The contents of the
message sent/read; ii) The sender/recipient (for crime proxy and spying, respec-
tively); and iii) The time at which the message was received/intercepted.

Overall, results from this small, albeit representative, number of case studies
show that while identification of entirely accurate trigger points is possible, this
is not at all straightforward. This, of course, merits further investigation since
the timely dumping of evidence is central to JIT-MF. On the upside, it looks
like selecting accurate trigger points could be possible solely within the black-box
categories, which are those requiring minimal app-specific knowledge.

To further make a case for the JIT-MF framework, we compare the evidence
obtained by the JIT-MF tool (highlighted in Table 3), with that returned by
typical (baseline) logs which feature in classical forensic analysis. For every attack
scenario in the experiment, we obtain a copy of logcat at the point in time when
an attack has occurred, we analyse network traffic and get sqlite database files
which are used for on-device storage for both apps.

In the case of logcat we did not observe any of the metadata acquired by
JIT-MF in any of the logs for all four attack scenarios. For Telegram, it was
possible to instrument the app to enable verbose logging in logcat dynamically.
However, this did not make any difference with regards to critical metadata
present in logcat. As for sqlite files, in the case of Pushbullet, we could only
observe the received SMS messages, but no history of their access. For sent
messages, one would have to root the phone to obtain Android’s default message
store mmsms.db. In the case of Telegram, being a cloud app, sqlite files only
provide portions of cached data of received and sent messages. In the case that
the attacker deletes the chat, no evidence of the sent messages is found at all.
Furthermore, in the case of intercepted messages in Telegram, whereas there is
a state field that indicates whether or not a particular message was read, it
does not indicate the time at which the message was read. All network traffic
related to Pushbullet and Telegram communication protocols was exchanged
over HTTPS. Therefore while an initialised connection can be observed, none of
the traffic is decipherable unless decryption keys are obtained.

Runtime overheads. Runtime overheads were obtained during normal usage of
the app, by legitimately invoking events that would be misused by an attacker
in the case of a messaging hijack attack. Figure 5 shows the storage requirements
per trigger point category over the ten runs. Here we only consider the online
collection method for the time being. Overall, storage requirements are tied
to the number of times trigger points are hit per run. What is interesting to
note is that the black-box categories can still be as frugal as their white-box
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counterparts, showing that the use of filters paid off. As for the hprof-based
offline method, we note that while the average dump size required by online
collection is around 143 kB, that required by the offline method is 203 MB (an
order of magnitude more on average), per attack scenarios and trigger point
chosen. Execution overheads associated with memory-dumping instrumentation
code were negligible for both collection methods in Telegram’s case, with an
increase of 0.2 s at worst. For Pushbullet this value increases to 6s at worst (20%
of the cases) however given that Pushbullet operates from a browser setting,
this execution overhead does not incur any lag on the phone’s main UI thread,
enabling the user to continue using the phone normally.

4.3 Discussion

JIT-MF Amplifies the Forensic Footprint of Stealthy Attacks. Effectiveness
results show that, while trigger point-dependent, key evidence related to stealthy
messaging hijacks was only accessible through the JIT-MF approach. This is the
central tenet of the approach. While at the code and network levels key evidence
can be hidden through obfuscation and encryption, evidence linked to the key
attack steps must be revealed in volatile memory, even if only for a brief time.

Table 3. Trigger point effectiveness: % accuracy over 10 runs.

Trigger point Category/Scenario Crime-proxy - IM Spying - IM Crime-proxy - SMS Spying - SMS

Online Offline Online Offline Online Offline Online Offline

Native RT TP 1 100 80 100 100 30 80 80 80

TP 2 50 50 100 100 100 100 0 30

Device Event TP 1 40 40 100 90 50 80 20 30

TP 2 50 50 100 100 100 100 0 30

Android & 3rd Party APIs TP 1 90 90 100 100 100 100 0 0

TP 2 80 60 100 100 100 100 80 80

App specific APIs TP 1 100 100 100 100 0 0 0 0

TP 2 0 0 60 60 100 100 80 80

103 104 105 106

Native RT - Crime-proxy

Device Event - Crime-proxy

Android & 3rd party Specific - Crime-proxy

App Specific - Crime-proxy

Native RT - Spying

Device Event - Spying

Android & 3rd party Specific - Spying

App Specific - Spying Pushbullet
Telegram

Fig. 5. Storage overhead in bytes, per trigger point category, attack scenario and app.
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Black-Box Trigger Point Categories Show Promise. While results show that
selecting the right, most accurate, trigger point can be an arduous task, the fact
that black-box ones can be as effective and efficient as white-box ones is good
news. Obviously, this observation requires substantial follow-up; however, this
bodes well for efforts attempting to automate tasks related to JIT-MF driver
implementation, of which trigger point selection is central. While both effec-
tiveness and runtime overheads so far do not favour any of the three black-box
categories, it seems that certain trigger point categories might be less resource-
intensive for some apps, and more for others. This, however, merits more inves-
tigation.

Optimising on Storage Costs. Whilst results show that black-box trigger points
do not necessarily incur higher storage costs, with online collected dumps requir-
ing as little as 0.1 kB to be effective, these results must also be analysed in the
context of practical JIT-MF tool deployment. When one considers that dumps
are triggered per critical app functionality, which in our case studies corresponds
to SMS/IM sending/viewing, dumps are expected to be very frequent. While
perhaps SMS is of less concern nowadays, IM is an entirely different story. IM
functionality could result in daily triggers on the order of hundreds to thousands.
While 128GB smartphones are now the norm, users would rather use the space
for smartphone functionality rather than to store forensic evidence.

In this respect, the suggested way-forward concerns enhancing the collec-
tion method as defined in JIT-MF drivers in two ways. Firstly, we propose to
improve the collection method with a data transfer method. A transfer method
should establish both the transport channel, e.g. SD card, adb, network etc., as
well as the frequency of synchronisation points whenever applicable. Secondly, a
sampling option should also be provided. Rather than collecting the entire evi-
dence, successful incident response is possible even if only a subset of the attack
steps are recorded. In the case of crime-proxy attack, for example, a fragment
of a conversation could already provide sufficient clues pointing towards ongoing
hijacks, full content disclosure would require further effort. Sampling may be car-
ried out either periodically, e.g. sample maximum event objects per time-frame,
or else on a rule basis, e.g. sample outgoing messaging objects based on their
destination number, say those not found in the contact list. Ultimately, the right
combination for JIT-MF collection depends on the sensitivity of the investiga-
tion context. For instance, in the context of a high-profile government agent, or
Fortune 500 CEO, it could be worth spending extra money on high-spec devices
to opt for a more resource-hungry collection method.

5 Limitations and Future Work

The primary contribution made by this early attempt to investigate stealthy
Android attacks is a general framework, JIT-MF, upon which specific tools can
be modelled. The four case studies presented here provide valuable insight con-
cerning how to go about evidence object identification and trigger point selection.
Therefore these results have to be understood within this limited scope. Moving
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on to a larger-scale empirical study is undoubtedly going to require some level
of automation. The experience derived from the manual process undertaken so
far, as guided by the heuristic described in Sect. 3.1, presents a solid foundation
for this crucial next step.

A natural progression of this research also concerns developing complete JIT-
MF tools, initially those targeting messaging hijack investigation scenarios. In
this context, JIT-MF tool development can begin with those evidence object
and trigger point combinations that were already shown to be sufficiently effec-
tive. The pending work concerns: i) Target app repackaging, compatible with
non-rooted devices; ii) JIT-MF driver enhancement with an extension for the
collection method as discussed; iii) Correlation with additional evidence, e.g.
Call Data Record logs and cloud back-ups to provide additional context for
the collected evidence objects, within a forensic timeline. Comprehensive time-
lines can help give investigators a complete picture of events, and thus assist in
discerning between hijack activity and normal device usage with device owner
consent. Additionally, it would be interesting to assess the difference JIT-MF
evidence makes on forensic timeline richness as compared to those produced
using only state-of-the-art evidence collection.

Ultimately JIT-MF is not intended as a comprehensive solution. JIT-MF
tools also need to pull robust implementation, as well as addressing instrumen-
tation issues related to apps that perform code integrity checks. Despite the
assumption of the device owner’s collaboration, privacy issues still abound and
have to be taken care of. Finally, app instrumentation for memory dumping is
incompatible with system apps on non-rooted phones.

6 Related Work

While our work focuses on the problem of accessibility misuse to aid stealthy
attacks and builds on previous work in this regard [22], stealthy attacks aim-
ing for persistence go beyond accessibility misuse. Other similar attack vectors
include dual-instance apps [19] and stealthy persistent trojans like Triada [1]
which evade common detection mechanisms.

Similar to monitors like REAPER [11] and MOSES [25], JIT-MF uses trigger
points which, rather than being indicators for malicious events, such as permis-
sion misuse, are indicators of benign events that may be misused by an attacker.
In contrast to typical monitors, JIT-MF dumps necessary memory contents for
post-analysis at runtime, which is less costly than online analysis.

Saltaformaggio et al. [15–17] and Taubmann et al. [21] also developed tools
which are after ephemeral data in memory, to reconstruct flows within an app’s
runtime which can be critical in a forensic investigation. They do so by recon-
structing critical data structures from memory dumps. Rather than within a
general concept, their ephemeral data is very specific (GUI elements for screen
flows and TLS private keys respectively). DroidKex [21] acquires memory dumps
upon send and receive functionality of an app, an indicator that TLS connections
are being established, similar to JIT-MF’s concept of trigger points.

Having a custom specification (JIT-MF driver) underpinning a generic frame-
work is common in digital forensics tools. Frameworks such as Autopsy and
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Volatility allow the addition of modules and plugins which enable them to cater
for a broad range of investigation scenarios. The concept can be even applied to
reconstructing timelines from specific log files using custom analysers [13].

Several works have tackled recovery and digital forensics of specific mes-
saging apps, like Telegram [9,18,24]. The techniques mainly utilise disk images
to retrieve valuable evidence. While stored data can be useful, it is up to app
developers which metadata to store. Metadata critical to an investigative sce-
nario may not be available at all from disk (as seen in the results). Even if it
was, that may not be the case across versions. Furthermore, with the increase in
popularity of cloud-based messaging apps, fewer data becomes available locally
to retrieve.

7 Conclusions

Due to its ubiquitous presence, Android has become a significant target for
malware. Recent studies show the existence and gradual increase of stealthy
Android attacks that through accessibility, leverage benign app functionality to
execute critical attack steps. Since such attacks offload the majority of their
actions to benign apps, current techniques aimed at detecting malware based on
the presence of malicious behaviour are rendered ineffective. Volatile memory
remains the only place where evidence of such attacks may be found.

To address this problem, we introduce a framework called JIT-MF which,
through carefully selected trigger points, forensically enhances apps to timely
dump sections of memory that could contain critical data objects, as evidence.
We evaluate this framework in the context of accessibility messaging hijack
attacks, using widely deployed apps as victim apps. Results from four case stud-
ies show that: i) JIT-MF tools enhance the forensic footprint of stealthy attacks
beyond the current baseline; ii) There is a category of trigger points that is both
effective and only requires basic knowledge of the app; and iii) JIT-MF can be
optimised for storage. In this paper, we shed light on the capabilities of JIT-
MF in the context of messaging hijack attacks within Android. However, the
framework can be extended to cater for other investigative scenarios and even
operating systems, to capture evidence that would otherwise be irreparably lost.
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Abstract. Encryption on the Internet is as pervasive as ever. This has
protected communications and enhanced the privacy of users. Unfortu-
nately, at the same time malware is also increasingly using encryption
to hide its operation. The detection of such encrypted malware is cru-
cial, but the traditional detection solutions assume access to payload
data. To overcome this limitation, such solutions employ traffic decryp-
tion strategies that have severe drawbacks. This paper studies the usage
of encryption for malicious and benign purposes using large datasets and
proposes a machine learning based solution to detect malware using con-
nection and TLS metadata without any decryption. The classification
is shown to be highly accurate with high precision and recall rates by
using a small number of features. Furthermore, we consider the deploy-
ment aspects of the solution and discuss different strategies to reduce
the false positive rate.

1 Introduction

The Internet is moving towards ubiquitous encryption with more than 80% of
enterprises encrypting their web traffic today [5]. Moreover, with over 93% of
web traffic across Google being encrypted [8] and nearly 80% of web pages loaded
by Firefox using HTTPS [5], this trend will only move in one direction. It is clear
that encryption is a net gain for the security of both the Internet and society in
general. However, it seems that encryption is interesting for threat actors too.
They are leveraging these same benefits of encryption to evade detection and to
secure their malicious activities. The situation is important as already over half
of malware attacks carried out in 2019 use encryption [5]. It is expected that
more than 70% of malware will use encryption to hide its operation in 2020 and
alarmingly 60% of organizations will have no means to detect such threats [5].

Traditional network security infrastructure such as security middleboxes nor-
mally detect malicious events by scanning the payload part of the traffic. The
problem is that, with encrypted traffic, this is not possible. One alternate app-
roach to solve this problem depends on decrypting the encrypted traffic in the
middle to detect malicious activity, but it has multiple drawbacks. First, such
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a solution breaks the end-to-end security principle [17] and thus weakens the
privacy of users. Second, it is not always practical as it depends on end-point
cooperation. The biggest problem, however, is that it will be almost impossible
to use such an approach with newer versions of encryption protocols, such as
TLS 1.3. Moving forward, only the solutions that accept encrypted traffic as it
is and do not suggest any decryption to detect malicious activity in encrypted
traffic will sustain.

Research has shown that it is possible to detect non-benign usage of encryp-
tion without requiring decryption [1]. Using the potential of machine learning,
traffic metadata and communication behavior can be used in a way to reliably
distinguish between benign usage of encryption and a malware using encryption
to hide itself. In this paper, we further explore this possibility. We analyze a large
number of malware flows using our acquired dataset and study their communi-
cation behavior. We compare this to the behavior of benign usage of encryption
using a benign dataset and extract features that can be used to identify instances
of malware using encryption. The extracted features are evaluated for their dis-
criminatory power using a number of binary machine learning classifiers. Our
evaluation concludes that it is possible to detect encrypted malware with high
accuracy and precision by using a small number of features.

The rest of the paper is structured as follows. Section 2 provides the necessary
background and summarizes related work. Section 3 describes the datasets used
in this work and analyzes them. Section 4 describes the classification experiments
and presents the results. Finally, Sect. 5 summarizes the work presented and
provides concluding remarks.

2 Background and Related Work

Transport Layer Security (TLS) [14] is a popular protocol that is increasingly
being implemented on top of TCP to encrypt protocols such as HTTP for web
browsing or SMTP for email transmission. It enhances privacy of applications
by encrypting application data and is considered to be an important tool in the
security landscape. One side effect of encryption is that it takes away network
visibility. This is a concern considering that a lot of security infrastructure still
relies on the traditional assumption of visibility into the network traffic. As a
response to TLS, network operators and enterprises that need network visibility
to perform important security functions developed solutions to perform traf-
fic decryption. One approach employed, known as passive out-of-band decryp-
tion, is based on a static private key used to decrypt captured encrypted traffic
when necessary [3]. Other solutions use a man-in-the-middle (MITM) approach
to analyze encrypted communications [3]. All traffic traversing a middlebox is
decrypted to gain required visibility to perform security functionality. To achieve
this, a middlebox generates a local root certificate that is installed on all devices
for which the TLS traffic needs to be inspected. During a subsequent TLS hand-
shake by the inspected device, the middlebox modifies the certificate provided
by the server and signs it with its own private key from the root certificate,



Using Features of Encrypted Network Traffic to Detect Malware 39

allowing it visibility into all further exchanges on that TLS session. Despite the
ethical questions and the degraded end-to-end security [6] that arises as a result
of TLS inspection by decryption, the approach enables many use-cases [3] and
is utilized massively. However, the latest version of TLS (version 1.3) mandates
the use of dynamic(ephemeral) keys and encrypts more TLS handshake messages
(everything after the second message), among other changes. These changes will
make most TLS decryption approaches impossible.

Hence, as decryption of encrypted traffic is not a viable solution, there is only
one way forward. Encryption needs to be accepted as it is and, instead of relying
on traditional approaches to perform security functions, novel approaches that do
not suggest decryption need to be investigated. Anderson and McGrew [1] con-
tributed a landmark work in this area. They suggested a “data omnia” approach
that uses over 25 features from the TLS handshake, connection metadata, DNS,
and HTTP, to train a machine learning classifier that can accurately detect mal-
ware in encrypted traffic without decryption. In another work [2], they showed
how such features can also be used to accurately attribute malware flows to a
specific malware family. The work in [19] follows a similar approach and uses
nearly 30 features. Other works [4,10] aim to achieve similar goals. However,
both studies are only concerned with older versions of encryption protocols i.e.,
TLS 1.2 or earlier versions. Interestingly, a number of features used in these
works, especially those based on data from TLS handshake, DNS, and HTTP,
are either hard or impossible to obtain with TLS 1.3. Few other works [12,16,20–
22] have proposed ways to classify unencrypted traffic based on flow metadata
for the purpose of application identification or malware detection. BotHunter [9]
aims to detect the process of a successful malware infection by focusing on the
communication patterns of a host and using a state-based model. Overall, detec-
tion of malware in encrypted traffic without decryption has not been extensively
studied. The proposals that do so are based on limited datasets (500,000 flows
or lower) and suggest the use of a large number of features, some of which are
only possible with TLS 1.2 or earlier versions. To this end, this paper further
explores the idea of detecting malware using features of encrypted network traffic
in a machine learning approach. Our study is based on relatively large datasets
(over 2 million flows) and focuses on using a small set of features that are also
available with TLS 1.3. In addition, we consider the deployment aspects of such
a detection set-up and propose different strategies to reduce the number of false
positives.

3 Datasets

The size and correctness of a dataset have a direct impact on the quality of
research. There are not many publicly available datasets for encrypted malware
and benign traffic in comparison to datasets for other fields such as image recog-
nition and classification. One reason for this is that capturing malware traffic
is not a simple task. It requires access to a large number of malware binaries
where each binary, after a successful injection, can take a long time (weeks or
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months) until it generates traffic. Moreover, not all malware uses encryption, so
this further reduces the possibility of collecting encrypted malware flows on a
large scale. Collection of benign traffic can be manually done on a small scale, but
a large dataset of benign encrypted traffic is hard to collect and then share in the
public domain for privacy reasons. Despite these challenges, we have managed
to acquire relatively large datasets for both malware and benign flows. Below,
we describe these datasets in detail.

3.1 Malware

We considered a number of malware datasets for this work. However, we found
that there is only one dataset that can provide us with a large volume of
encrypted malware flows. The malicious dataset considered in this paper was
collected at the Stratosphere Malware Capture Facility Project (MCFP) in the
Czech Republic [7]. The dataset referred to as MCFP consists of over 400 mal-
ware files (pcaps) captured over eight years from 2011 to 2018. The dataset
includes some malware communication over a real network but the majority of
malware captures are collected after infecting virtual machines with malicious
binaries. Thus, it is expected that only a small quantity of background traffic in
the form of OS updates is also part of the dataset. The dataset has a readme file
for each capture that provides details about the traffic labels and occasionally
extra information about how the traffic was collected. As shown in Table 1, the
dataset consists of millions of malware flows. The number of malware flows using
encryption are over 2.2 million in total. The TLS ratio refers to the fraction of
malware flows using encryption in each year. As the majority of the malware
flows are not captured in the wild, these numbers can not be used to make any
inferences about the increasing usage of encryption by malware.

Table 1. Statistics of malware data by year.

Year Total flows TLS malware flows TLS ratio

2011/2012 33,632,712 565 0.00%

2013 166,305,676 434,726 0.26%

2014 10,811,159 121,976 1.12%

2015 60,308,666 274,254 0.45%

2016 72,094,904 93,915 0.13%

2017 151,961,617 1,230,292 0.80%

2018 40,630,858 136,630 0.33%

Total 535,745,592 2,292,358 0.42%



Using Features of Encrypted Network Traffic to Detect Malware 41

3.2 Benign

Our efforts to acquire a considerable dataset that represents real world benign
usage of encryption led us to three different sources. The first source is a benign
dataset from the MCFP project [7]. This data is a collection of Windows 7 users
browsing a number of common websites to mimic the benign usage of encryp-
tion. This part of the dataset consists of 147,779 benign TLS flows. The second
source is the CICIDS-2017 [18] dataset from the University of Brunswick. The
dataset captures benign human activities based on HTTPS, SSH, and SMTPS.
It contains 96,500 TLS flows. The combination of these two sources still did not
provide us with enough data as compared to the malware data. This was resolved
by convincing an enterprise to collect benign TLS flows from their demilitarized
zone (DMZ). Instead of gaining access to the traffic itself, we gained access only
to the requested features of the traffic. An ethical review was conducted by the
ethical advisers at Karlstad University to assess the data we gained from the
enterprise, and it was decided that ethical approval is not needed as the data
have no sensitive or personally identifiable information. This private part of our
benign dataset is based on flows collected during November 2019. The data pro-
vides us with information of around 626,120 benign TLS flows. In total, as shown
in Table 2, the combination of these three sources provides us with either raw
flows or features, of around 870,399 TLS flows. Of these flows, only 784,712 flows
were used for this work as they contained all the required data. It is assumed
that all benign flows are truly benign with no malware in them. We believe that
although the volume of benign flows is small compared to the malware flows, it
still provides a reasonable representation of encrypted benign flows.

Table 2. Statistics of benign datasets.

Source Benign TLS flows

MCFP 147,779

CICIDS-2017 96,500

Enterprise Network (only features) 626,120

Total 870,399

3.3 Data Exploration

This section explores our malware and benign datasets and provides details
about the data features employed in this work. We use joy [11], a tool developed
by Cisco, to process the malware and benign pcap files from the datasets. It
generates JSON files as output where each line in an output file corresponds to
a TLS flow with its metadata nicely summarized as keys and objects. Joy allows
for a number of data features related to, e.g., connection, TLS, HTTP, and DNS
to be calculated and added to the output file. Our hypothesis in this work is that
it should be possible to capture malware’s behavior with only a minimum number
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of features as a detection method that depends on too many features is hard to
deploy. In addition, only the features that are available in the long term should
be considered. For example, with TLS 1.3, features based on certificates are going
to be useless as only the initial two messages in the handshake are in plaintext.
To this end, this work focuses on using only five features of encrypted flows.
Four of these features are based on connection metadata, i.e., bytes out, bytes
in, packets out, and packets in. The last feature is based on the first unencrypted
TLS handshake message, i.e., “ClientHello” which contains the client offered list
of cipher-suites. We considered additional TLS-based features such as the order
of advertised cipher-suites and extensions, and the server selected cipher-suite
but they did not improve the detection performance.

Connection Metadata Features. A histogram analysis is performed on the
benign and malware datasets to explore the distribution of four selected connec-
tion metadata features. Figure 1 compares the normalized distribution of out-
going and incoming bytes among the malware and benign data flows, revealing
some interesting patterns. It can be seen that most of the malware flows have
less than 800 outgoing bytes and that most normal flows have a higher number
of total outgoing bytes between 800 to 2,000. Moreover, over 60% of benign flows
have more than 14,000 incoming bytes whereas the majority of malware flows
have an initial spike at around 0–200 bytes and then relatively smaller spikes
between 1,500 and 4,500 bytes. These spikes can be explained by considering
that the malware, after a successful injection, normally contacts its command
and control (C&C) server and downloads configuration files and additional bina-
ries. We expected more malware flows to send a large amount of data outside
than what was observed. One explanation for this can be that malware, after
settling down, waits for further commands from the server to send the data out-
side, and those commands do not arrive in the malware capture time window.

Fig. 1. Histogram comparing bytes distribution.



Using Features of Encrypted Network Traffic to Detect Malware 43

Hence the lack of a large amount of bytes going out in the malware flows. Figure 2
shows the distribution comparison in terms of packets. The plots reveal that the
majority of malware flows send and receive between 0 and 10 packets whereas
more benign flows have a higher number of incoming packets than outgoing pack-
ets. Considering the large volume of malware flows, it can be established that
this is how malware in our dataset operates. However, to verify that the observa-
tions about benign flows are actually true and not dependent on the dataset, we
performed additional comparisons between the data obtained from three sources
and found that they show similar communication behavior. This indicated that
the benign dataset used in this work appropriately represents benign encrypted
flows as they come from three different sources and are collected at different
times. The inferences we are able to make as a result of these comparisons hint
at a distinct malware communication behavior that should allow for accurate
models to be built.

Fig. 2. Histogram comparing packets distribution.

TLS Features. Previous work on encrypted malware detection [1] has sug-
gested the use of a large set of TLS features. However, only a few of those
features are possible to obtain with TLS 1.3. We performed a TLS analysis
on our benign and malware datasets focusing only on the initial message in
the TLS handshake. Figure 3 shows a comparison between malware and normal
flows from our datasets. The same coding of cipher-suites as suggested in the
RFC for TLS 1.2 [15] is used to ensure accurate comparisons. It can be seen
that some cipher-suites such as TLS RSA WITH AES 128 CBC SHA (0x002f)
and TLS RSA WITH AES 256 CBC SHA (0x0035) are advertised by both mal-
ware and benign flows. However, certain weaker cipher-suites are almost exclu-
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sively used by malware flows, e.g., TLS DHE RSA WITH AES 256 CBC SHA
256 (0x006b), TLS RSA WITH RC4 128 MD5 (0x0004), and TLS RSA WITH
RC4 128 SHA (0x0005). On the other hand, benign flows are likely to pre-
fer stronger cipher-suites, e.g., TLS ECDHE ECDSA WITH AES 128 GCM
SHA256 (0xc02b) and TLS ECDHE RSA WITH AES 128 GCM SHA256
(0xc02f). These observations point towards infected machines advertising TLS
cipher-suites in an identifiable fashion that can be captured by our fifth feature
based on advertised TLS cipher-suites.

4 Classification

In this section, we provide details about the machine learning experiments per-
formed to classify encrypted malware traffic. The problem presented is a binary
classification as we are only interested in predicting whether an encrypted flow is
benign or malware. We use the two datasets discussed in the previous section for
this task. The evaluation is performed in two stages. To begin with, a basic eval-
uation is presented. Later, a deployment focused evaluation is presented where
we consider different strategies to improve the classification performance.

Fig. 3. Client offered TLS cipher-suites between benign and malware datasets.

4.1 Classifier Selection

To get a better understanding of the type of binary classifiers that are best suited
for this task, we compare the performance of multiple supervised machine learn-
ing classifiers available in the scikit-learn library [13]. The number of flows used
for cross-validation (CV) are 784,712 benign flows and 2,159,432 malware flows
(2,944,144 samples in total) where only 80% (2,355,315) of the total samples
are used for the first phase of classifier selection. Joy provides five features for
each of these samples and we assign a label of either malware or benign to each
sample. Table 3 details the result of evaluating multiple models in terms of their
estimated accuracy, i.e., how successfully a classifier learns from the training
data based on given features. A 10-fold cross-validation is utilized to estimate
the accuracy, and the data used by each classifier is kept the same. From the
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table it can be seen that the tree based algorithms perform best for this prob-
lem. In particular, decision tree and random forest have the largest percentage
of estimated accuracy and exhibit minimum variance in terms of training accu-
racy across the runs. This indicates that the decision boundaries of the data
are more accurately separable using non-linear and non-parametric models that
make no assumption about the distribution of data. As random forest utilizes
an ensemble method to provide more accurate results, we conclude that random
forest provides the best balance between accuracy and interpretability for this
problem.

4.2 Model Evaluation

On the basis of the cross-validation results, we focus on classification with ran-
dom forest from this point. We train a random forest model with 80% (2,355,315)
of the total samples in our dataset and reserve the remaining 20% (588,829 sam-
ples) for validation by using the trained model to make predictions on these
unseen samples. The same distribution of classes as the original dataset is main-
tained in the training and test subsets using the “stratified” parameter of scikit-
learn. All other model parameters were set to default during the training process.

Table 3. Cross-validation results for different classification models.

Classifier Mean cross-validation
accuracy

Standard deviation (SD)

Logistic Regression 88.02% 0.079%

Linear Discrimination 87.61% 0.079%

K-nearest Neighbors 98.57% 0.037%

Decision Tree 98.88% 0.013%

Random Forest 98.94% 0.011%

Gradient Boosting 96.33% 0.074%

Naives-Bayes 87.06% 0.089%

Multi-layer Neural Network 96.97% 0.067%

Using Connection Features. The first set of experiments was conducted
using only the four connection features and no TLS information. A random for-
est classifier is trained accordingly and then asked to make predictions on unseen
data. Table 4 shows the classification report of predictions by the trained ran-
dom forest model. The numbers demonstrate a good prediction accuracy by the
model. However, as the training samples contain an unequal class distribution
(more malware than benign), the accuracy can be misleading. The precision
score shows that 99.11% of samples predicted as malware by the classifier were
actually malware. The recall score (also known as sensitivity) demonstrates that
99.50% of malware was correctly detected. The F1-score is just a harmonic mean
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of precision and recall scores. Table 5 shows a confusion matrix to further diag-
nose the performance of the model and the type of errors it encountered. The
matrix shows that 153,114 benign samples were correctly classified as benign
(true negatives) but 3,828 benign samples were incorrectly classified as malware
(false positives). Moreover, 429,751 malware samples were correctly predicted as
malware (true positives) but 2,136 malware samples were incorrectly classified
as benign (false negatives).

It is important for a classifier to show a good balance between precision and
recall. A high recall but low precision will yield too many false positives with
the advantage of not missing any malware. On the other hand, a high precision
but low recall will ensure a low false positive rate but at the cost of missing
some malware instances. Figure 4 plots the precision-recall (PR) curve from the
classification results. We can see that our model only achieves perfect precision
values up to a certain threshold of recall. After the threshold, to reach a higher
recall, the precision of the model suffers. This trade-off between precision and
recall is an important consideration for deployment in a real setting. Overall,
the random forest classifier model shows decent, but not perfect, performance
by using only four connection features.

Using Connection and TLS Features. The previous set of experiments was
conducted using only the four connection features and no TLS information. Next
we investigate the impact of adding the TLS feature on classification results. As
the TLS feature is not based on a number but a text, we used one-hot encoding
to encode this feature into a number. Dummy variables (either one or zero)
are created for each cipher-suite where a one is assigned to a sample if it has a
particular cipher-suite and zero if it does not. This allows a random forest model
to be trained with both the four connection features and the fifth TLS feature.
After training, the model makes predictions on unseen data. Table 6 shows the
classification results. We can see that these results are a big improvement over
the results obtained by only using connection features. The model now achieves
a precision of 99.92% and a recall of 99.88% with an overall accuracy of 99.85%.
The confusion matrix in Table 7 also shows better results, with reduced false

Table 4. Random forest classification results with connection features.

Features Model Accuracy Precision Recall F1-score

Connection Random forest 98.79% 99.11% 99.50% 99.31%

Table 5. Confusion matrix with connection features.

Actual labels Predicted labels

Benign Malware

Benign 153114 3828

Malware 2136 429751
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positives of 364 and false negatives of 405. The precision-recall curve in Fig. 5
now also shows near perfect behavior as it achieves a high precision and recall
for different thresholds. It would have been interesting to take a deep look at
why certain flows are miss-classified, however the lack of detailed readme files
on the malware dataset did not allow that. Overall, the results show that adding
TLS information is valuable for a classifier to improve its performance. Hence,
all forthcoming experiments are based on using both the four connection based
features and the fifth TLS feature.

Table 6. Random forest classification results with connection and TLS data.

Features Model Accuracy Precision Recall F1-score

Connection + TLS Random forest 99.85% 99.92% 99.88% 99.91%

Testing for Stability. The evaluation so far has employed a 10-fold cross vali-
dation strategy over a dataset collected over eight years. This implies an inherent
assumption that neither the benign nor the malicious flows have changed during
these years. To clarify this further, we performed two additional set of exper-
iments. In the first set, we trained a random forest model on 80% of all flows
from years 2011 to 2017 only. The trained model is then used to make predic-
tions on another distinct subset (20%) of flows from the same time period. This
gave us an estimated accuracy A1 of 99.92%. In the second set of experiments,
we trained another random forest model on all flows from years 2011 to 2017
but tested the model on latest flows from years 2018 and 2019. The resulting
estimated accuracy A2 was 98.36%. These experiments show that although A2 is
lower than A1 i.e., the estimated accuracy reduces when the model is trained on

Fig. 4. PR-curve with 4 features. Fig. 5. PR-curve with 5 features.
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Table 7. Confusion matrix with connection and TLS data.

Actual labels Predicted labels

Benign Malware

Benign 156578 364

Malware 405 431482

older flows and used to make predictions on latest flows, the stability of features
over eight years still exists. This also bodes well for the long-term usability of
the approach as it is possible to make future predictions based on training data
from the past.

4.3 Deployment Considerations

This subsection focuses on deployment based considerations of the model. A
model that is trained on an imbalanced dataset with a majority class of malware
samples is likely to put more emphasis on detecting malware and thus have
inherent bias. This can result in more false positives and fewer false negatives.
Similarly, a model trained with a balanced weight of classes is likely to put
equal emphasis on classifying malware as benign or benign as malware. Both of
these training methods are not optimal, as the proposed random forest model
is expected to be deployed in a real network where the appearance frequency
of benign traffic is much higher than malware. It is important to consider the
cost of different mistakes (false positives vs false negatives) and the base rate.
Clearly, in the case of malware detection in a real network, it is likely that there
will be more occasions for false alarms (false positives) than true positives. Such
false alarms can swamp the correct predictions and make the task of detection
useless from a cost/benefit perspective. It is therefore crucial to detect malware
only when the model has extra confidence in its prediction (optimize precision)
even if doing so comes at the cost of missing some malware instances. To this
end, we explore two different approaches to undertake the task of optimizing the
precision of a random forest model. This also provides insights into tuning the
model to find the right balance between false positives and false negatives.

Class Weights. The first approach is based on cost and operates at the model
level. In scikit-learn, different class weights can be assigned to each class during
the training phase of a random forest. The weight places a higher penalty or
cost on miss-classifying the minority class so that, although the overall accuracy
of the model suffers, the minority class has a greater chance of being correctly
classified. In other words, a higher class weight means we want to give more
importance to a particular class. For our use-case, class weights can be exploited
to assign a higher weight to the benign class (which is actually the minority
class in our dataset) with an expectation that this will put more emphasis on
its accurate classification. Table 8 shows the results when higher weights are



Using Features of Encrypted Network Traffic to Detect Malware 49

assigned to the benign class while the weight for the malware class is kept at
1. A weight fraction of 1:10 means that the benign class has been assigned 10
times the weight of the malware class. For each combination of class weights, 10-
fold cross-validation is performed using the entire dataset of 2,944,144 samples.
Scores for precision, recall, and accuracy are calculated in each fold and averaged
to get mean performance metrics over all folds. Confusion matrices from all folds
are summed up to form a cumulative matrix that is presented in the table. It
can be seen from the table that, as the class weight for benign samples increases,
the precision of the model increases and the number of false positives decreases.
However, the recall of the model suffers because a higher weight of benign class
causes more false negatives. The class weight fraction of 1:2.75 represents the case
when the classes are equally balanced and the results at fraction 1:1 are relatable
to the results reported earlier in Table 6. Moving on, at a weight of 10 to 1 in
favor of the benign class, the number of false positives (FPs) is reduced by almost
three times from 1,581 to 543 at the cost of more than doubling the number of
false negatives (FNs) from 2,141 to 5,155. The number of true positives (TPs)
also reduces and the number of true negatives (TNs) rises. Increasing the benign
class weight further only reduces the number of false positives by a small amount
and at the cost of missing a large number of malware instances. We deduce that
altering class weights can improve the classification of malware in a deployment
scenario by reducing the FPs. However, even after training the model with a
benign class weight set to one million times the weight of the malware class, the
FPs do not reduce at the same rate and the cost of reducing a FP in terms of
extra FNs is too big.

Table 8. CV evaluation results with different class weights.

Weight fraction Accuracy Precision Recall FPs FNs TPs TNs

1:1 99.87% 99.92% 99.90% 1,581 2,141 2,157,291 783,131

1:2.75 99.86% 99.95% 99.85% 951 3,095 2,156,337 783,761

1:10 99.80% 99.97% 99.76% 543 5,155 2,154,277 784,169

1:102 99.68% 99.97% 99.59% 437 8,841 2,150,591 784,275

1:103 99.07% 99.98% 98.75% 393 26,874 2,132,558 784,319

1:104 98.92% 99.98% 98.55% 398 31,187 2,128,245 784,314

1:105 98.21% 99.98% 97.58% 390 52,048 2,107,384 784,322

1:106 98.17% 99.98% 97.52% 311 53,503 2,105,929 784,401

Adjust Decision Cutoff. In a random forest model, there are many individual
decision trees all of which make their own class prediction in the form of a vote
for each sample in the testing phase. The final decision of a random forest is the
class that has the most votes. So, for example, if we have ten decision trees and
a sample gets four votes for negative class (benign) and six votes for positive
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class (malware), then the final decision for that sample will be positive class as
it has more votes (more than 50%). By default, this decision threshold or cutoff
probability is set to 0.5. Anything above 0.5 is predicted to be positive and
anything below 0.5 is predicted to be negative. Another possible way to increase
the prediction accuracy of the malware class samples is to adjust these cutoffs
for the predicted probabilities. A higher cutoff than 0.5 can ensure that positive
predictions are based on more votes (less chance of FPs) while accepting the
possibility of miss-classifying some malware samples as benign (FNs).

Fig. 6. ROC curve for different thresholds.

The best approach to determine a better cutoff for predictions and thus a
better balance between TP rate (TPR) and FP rate (FPR) is to use a receiver
operating characteristic (ROC) curve. Figure 6 shows the ROC curve for the
random forest model described in Sect. 4.2. We observe that there lies a cutoff
point on this curve such that, if the model operates there, it can ensure a high
TPR while keeping FPR low. Table 9 shows the effect of moving the cutoff point
from 0.5 to 0.99 on different performance scores. For each cutoff value, scores
for precision, recall, and accuracy are calculated for different folds using 10-fold
cross validation and averaged to get mean performance metrics over all folds.
Confusion matrices from all folds are summed up to form a cumulative matrix
that is presented in the table. It can be seen that, when a higher cutoff is selected,
the number of FPs decreases at the cost of extra FNs. The precision of the model
increases while the accuracy and recall decreases. At a cutoff point of 0.99, the
model is able to achieve a precision of 99.99% and reduce the number of FPs
(as compared to the default cutoff) by more than nineteen times from 1,522
to 77 while increasing FNs from 1,763 to 10745. We believe that this approach
of adjusting the decision cutoff gives a better balance between FPR and FNR
for the use-case of malware detection as compared to the earlier presented class
weight approach. To complement the cutoff approach in a deployment scenario,
a confidence score can also be added to all the generated alarms where a higher
confidence score indicates that more decision trees voted in favor of generating
an alarm.
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Table 9. CV evaluation results at different cutoffs.

Cutoff Accuracy Precision Recall FPs FNs TPs TNs

0.5 99.88% 99.92% 99.91% 1,522 1,763 2,157,669 783,190

0.6 99.88% 99.95% 99.89% 1,000 2,340 2,157,092 783,712

0.7 99.87% 99.96% 99.86% 712 2,881 2,156,551 784,000

0.8 99.86% 99.97% 99.84% 576 3,300 2,156,132 784,136

0.9 99.80% 99.98% 99.74% 234 5,415 2,154,017 784,478

0.91 99.78% 99.98% 99.72% 226 5,989 2,153,443 784,486

0.92 99.78% 99.98% 99.71% 223 6,061 2,153,371 784,489

0.93 99.78% 99.98% 99.71% 218 6,149 2,153,283 784,494

0.94 99.77% 99.99% 99.69% 188 6,490 2,152,942 784,524

0.95 99.76% 99.99% 99.68% 164 6,884 2,152,548 784,548

0.96 99.75% 99.99% 99.66% 152 7,130 2,152,302 784,560

0.97 99.72% 99.99% 99.63% 126 7,975 2,151,457 784,586

0.98 99.68% 99.99% 99.58% 100 9,067 2,150,365 784,612

0.99 99.63% 99.99% 99.50% 77 10,745 2,148,687 784,635

5 Concluding Remarks

The paper proposed a method to detect malware in encrypted traffic using a
machine learning approach that does not require any decryption. Our hypoth-
esis before conducting the machine learning experiments was that it should be
possible to capture the behavior of encrypted malware flows using a small set of
features. The work complements earlier work done in this area by focusing on
relatively large datasets and a small number of features. The classification results
show that by only using five connection and TLS-based features, it is possible
to perform the detection and achieve a high precision (over 99%) and recall and
a relatively low number of false positives and negatives. The detection method
also depicts resilience against time as shown in earlier experiments. However,
the possibility of a clever adversary to evade the detection method by modi-
fying malware’s communication pattern still exists. This limitation extends to
the majority of machine learning based detection approaches as the models are
trained on known communication patterns. All in all, using network traffic is just
one way to detect malware. A robust detection approach should complement this
with other information or indicators such as the local disk activity of a machine.
In the paper, we have also considered the real world deployment aspects of the
detection method and showed two different approaches to further reduce the false
positive rate. The results of these experiments show a potential for deployment,
but an implementation will require further tuning. This tuning will depend on a
number of factors including the exact needs of the deployment environment and
the observed base rate. It should be noted that our experiments are based on a
single source of encrypted malware dataset. It is worth exploring in the future
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whether the general communication behavior of malware that we have observed
is consistent with other malware, if such a dataset becomes available. We also
envision to go one step further from the binary classification method used in this
paper and attempt to predict the family or name of a malware.

Acknowledgment. The work was carried out in the High Quality Networked Services
in a Mobile World project funded partly by the Knowledge Foundation of Sweden. The
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Abstract. ElectionGuard is an open source set of software components
and specifications from Microsoft designed to allow the modification of
a number of different e-voting protocols and products to produce public
evidence (transcripts) which anyone can verify. The software uses ElGa-
mal, homomorphic tallying and sigma protocols to enable public scrutiny
without adversely affecting privacy. Some components have been for-
mally verified (machine-checked) to be free of certain software bugs but
there was no formal verification of their cryptographic security.

Here, we present a machine-checked proof of the verifiability guaran-
tees of the transcripts produced according to the ElectionGuard spec-
ification. We have also extracted an executable version of the verifier
specification, which we proved to be secure, and used it to verify elec-
tion transcripts produced by ElectionGuard. Our results show that our
implementation is of similar efficiency to existing implementations.

Keywords: Verifiable e-voting · Interactive theorem provers · Code
extraction

1 Introduction

Electronic voting has been in use for at least the last fifty years; however, the
nature of elections makes it very hard to verify whether the electronic com-
ponents are behaving as they should. Current best practice is to ensure that
each software component creates publicly verifiable evidence that its output is
correct with respect to certain criteria. A cascade of such processes then guaran-
tees that the whole process is end-to-end-verifiable [1]. Such systems invariably
require using increasingly complicated cryptographic techniques.

A particular group of techniques for adding verifiability to electronic voting
is homomorphic tallying in which each vote is encrypted under a homomor-
phic encryption scheme to produce a ciphertext with all ciphertexts publicly
tallied (without decrypting them) to produce an encryption of the tally. The
tally ciphertext is then decrypted by the authorities. Zero-knowledge proofs
can be used to prove publicly that the encrypted ballots are well-formed and
that the tally was decrypted correctly. This does not suffice for overall verifi-
ability since we do not know whether the collected ballots contain the votes
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M. Asplund and S. Nadjm-Tehrani (Eds.): NordSec 2020, LNCS 12556, pp. 57–73, 2021.
https://doi.org/10.1007/978-3-030-70852-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70852-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-70852-8_4


58 T. Haines et al.

intended by the eligible voters but is rather evidence that the collected ballots
are counted correctly. There are various ways to extend homomorphic tallying
to have end-to-end verifiability, so that the counted ballots are guaranteed to
be the intended ballots of the eligible voters, which we omit for brevity. The
most famous deployed e-voting scheme using homomorphic tallying is surely the
online voting system Helios [2], which is used by the International Association
for Cryptologic Research.

ElectionGuard is a set of open-source software components and specifications
released by Microsoft in 2019 [3]. It is designed to quickly allow ballot-collecting
devices (such as ballot-marking devices and optical scanners) to work with
trustees (so called because they are trusted to maintain privacy) to produce
public evidence. Specifically, to allow such devices to produce evidence that the
encrypted ballots are well-formed, that the ballots were correctly tallied, and
that the announced result was correct with respect to the tally. All references to
ElectionGuard in this document are to version 0.85.1

An election in the context considered by ElectionGuard is a protocol involv-
ing Election Officials, Trustees, Voters, and Interested Citizens. The Trustees are
responsible for generating the required cryptographic keys and then decrypting
the encrypted tally at the end of the election. The Election Officials have numer-
ous responsibilities including providing the Ballot Marking Devices, Electronic
Ballot Boxs, and Electronic Poll Books.

Prior to election day, the ballot style is determined by the Election Officials
and the Trustees generate their cryptographic keys (including what threshold is
required to decrypt); for brevity we elide much of the other preparation and refer
the reader to the ElectionGuard documentation.2 In the booth, the Voter selects
her candidates using the Ballot Marking Device. The Ballot Marking Device
then creates both a paper ballot and an electronic Cast Vote Record (CVR).
It assigns the ballot a unique ID number, encrypts the CVR and constructs a
non-interactive zero-knowledge proof that the ballot is well-formed. In addition
to the paper ballot, the voter is also provided with a tracker which contains
a human-comparable hash of the encrypted ballot. The voter is then given the
option to cast or spoil the ballot. If the ballot is cast, the paper ballot is added to
the ballot box and the CVR is added to the Electronic Ballot Box. If the ballot
is spoiled the Ballot Marking Device must prove to the voter that it correctly
encrypted the voter’s selection (and the voter must create another ballot).

After the election, the encrypted ballots are homomorphically aggregated;
the paper ballots are also tallied. Prior to tallying, the zero-knowledge proofs
should be checked by trustees to ensure that we tally only well-formed ballots.
The Trustees then decrypt the aggregated ciphertexts containing the election
result. Voters need not check the result, however a diligent voter should check
that any ballots (cast or spoiled) which match the trackers they posses appear

1 https://github.com/microsoft/electionguard/wiki/Informal/
ElectionGuardSpecificationV0.85.pdf.

2 For simplicity, we describe a fairly narrow use case of ElectionGuard.

https://github.com/microsoft/electionguard/wiki/Informal/ElectionGuardSpecificationV0.85.pdf
https://github.com/microsoft/electionguard/wiki/Informal/ElectionGuardSpecificationV0.85.pdf
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correctly on the bulletin board. Any observer can check the well-formedness of
voter encryptions and correct tallying by running a computer program called a
verifier over the published transcripts, and ElectionGuard includes a reference
verifier. The goal of this process is to give the voters high confidence that their
ballot was recorded correctly and that the collected ballots are correctly tallied.
The security guarantees from voter-initiated checks ensure individual verifiabil-
ity. The checks performed by any interested party ensure universal verifiability.

The checks that the voter needs to make are simple. But the checks that the
verifier software must make are considerably more complicated. Indeed, Elec-
tionGuard is useful only if we can be sure that a verifier that correctly imple-
ments the ElectionGuard verifier specification will indeed give the security guar-
antees claimed by ElectionGuard. As we point out next, this critical relationship
between the specification and implementation is easy to break.

1.1 Implementation Issues in E-Voting Systems

The theoretical foundations of verifiable electronic voting has matured greatly.
Simple schemes, such as ElectionGuard, using homomorphic tallying are well-
known and theoretically easy to construct. Nevertheless, we are now seeing small
but critical bugs in the implementation of such schemes. For instance, the Swiss
Post system, while not itself using homomorphic tallying, contained many of the
same components, many of which were broken despite extensive review [4]. This
is the tip of the proverbial iceberg in terms of failures and issues in allegedly
end-to-end verifiable systems; other examples have included the iVote system
deployed in the Australian state of New South Wales [5], and the e-voting system
used in national elections in Estonia [6]. In addition, many general issues have
been discovered [7–9] which need to be carefully avoided in any implementation.
Most of these issues were present in the Helios e-voting system [2]. Thus even
simple systems are prone to critical software errors.

General software development aims at increasing security through a process
of best practice which is not specific to the particular goal of that software. This
kind of development avoids many kinds of errors, including but not limited to,
division by zero, off-by-one errors, syntax errors, and resource errors. Various
organisations offer services for checking that software is developed according to
these standards and indeed this is commonly done for e-voting software. It is
interesting, then, that the bugs mentioned previously occurred even though the
software, in many cases, was certified according to these best practice standards.

The reason that the bugs slipped through is due to their nature. These bugs
are not standard programming bugs which might be caught by standard best
practice techniques. Rather, the code does not correctly capture the logical flow
of the protocol, as required by the cryptographic primitives. Compounding these
issues is that many of the bugs were present in the specification as well as the
code. So, at present, the problem of securely deploying electronic voting does
not appear to be primarily about improving theory or requiring more secure
programming; rather, it appears to be improving our ability to check that the
specification and implementation contain the logical flow they should.
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A key observation here is that while end-to-end verifiability protects against
bugs in the software running the elections, it transfers the correctness require-
ments to the software that checks (verifies) the produced evidence. This is an
excellent trade since the software required to check the evidence is much simpler
and multiple independent verifiers can be developed. However, the independence
of the verifiers is normally only skin deep since they are implementations of a
common specification which may itself be incorrect. (The common practice to
have under-graduate computer science students implement the independent ver-
ifiers is unlikely to result in insightful detection of errors in the cryptographic
specification.) Our work here can be viewed as a formal proof that the spec-
ification is cryptographically secure and that our extracted verifier tests that
our encoding of the specification is compatible (interoperable) with the existing
implementations, as well as being another independent verifier itself.

1.2 Contribution

We have formally verified the (universal) verifiability of the ElectionGuard spec-
ification: that is, we have encoded the specification in Coq and proved its crypto-
graphic soundness. Specifically, we prove special soundness (that if any adversary
is able to produce multiple accepting transcripts then the collected ballots must
be counted correctly) which is known to imply soundness [10].

We extend previous work on formally verifying the verifier of Helios by:

– Creating a richer type system to allow the ballots to be encoded into Coq;
– Defining a stand-alone verifier for these ballots and the associated proofs;
– Proving this verifier to be correct; that is to have correctness, special sound-

ness, and honest-verifier zero-knowledge.

This compares to prior work [11] where the various components of the verifier
were defined and proven secure in Coq but then composed in the extracted
version. The fact that the components should compose correctly is trivial (it
amounts to saying that the logical conjunction of n statements is true if all the
statements are true) but defining it formally in Coq results in complicated types.

These contributions allow us to extract our formally verified verifier into an
executable verifier which is comparable in efficiency to existing implementations.
We used this verifier to verify transcripts produced by ElectionGuard. We have
not proved any privacy properties of the ElectionGuard system but we have
proved the honest-verifier zero-knowledge of the verifier in Coq.

1.3 Interactive Theorem Provers

Interactive theorem provers are pieces of software that check that mathemat-
ical “proofs” are correct. A human encodes the mathematical theorem and
(purported) proof within the language of the interactive theorem prover and
the interactive theorem prover checks the proof using a given finite collection
of proof-rules. Trust rests upon three pillars: first, the code base for interac-
tive theorem provers is usually very small and has been scrutinised by many



Machine-Checking the Universal Verifiability of ElectionGuard 61

experts, typically over decades; second, most interactive theorem provers pro-
duce a machine-readable proof of the claimed theorem and these can be checked
either by hand or by a different interactive theorem prover; third, interactive
theorem provers typically enjoy extremely rigorous mathematical foundations,
which have withstood decades of peer review. Many interactive theorem provers
transliterate (extract) correct proofs into ML, Haskell, Scheme or OCaml pro-
grams.

The main impediment to using interactive theorem proving and code extrac-
tion is the rather steep learning curve involving exotic mathematical logic(s)
and the associated proof-rules. Consequently, interactive theorem provers mostly
remained in an academic setting [12,13], and were rarely considered for real life
software-engineering. Recent debacles, such as heartbleed3, have led companies
and researchers to focus on avoiding bugs by using formal verification, to the
point where it is now gaining momentum in mainstream development.

In this work, we used the interactive theorem prover Coq [14] to: encode
specifications; verify (machine-check) that (functional) programs are correct with
respect to these encoded specifications; and extract the code corresponding to
the verified functional programs.

1.4 Verification and Code Extraction via Coq

We now explain how to use the interactive theorem prover called Coq [14] to:
encode specifications; encode functional programs; and to verify them correct
against these encoded specifications to finally extract corresponding code.

Below, we exemplify one way to produce verified programs via Coq using
addition of two natural numbers. As in the sequel, we first give a natural language
definition as might be found in a mathematics text, then its encoding into Coq,
followed by an explanation of the encoding. Doing so is important as it helps to
ensure that the encoding really does do the job we intend it to do.

Definition 1. The set mynat is the smallest set formed from the clauses:

1. the term O is in mynat;
2. if the term n is in mynat then so is the term S n;
3. nothing else is in mynat.

I n du c t i v e mynat : Se t :=
| O : mynat (∗ O i s a mynat ∗)
| S : mynat −> mynat . (∗ S o f a mynat i s a mynat ∗)

Here, the first line encodes that mynat is of type Set and the vertical bar
separates the two subclauses of the encoding. The terms O and S are known
as constructors and anything in between “(*” and “*)” are comments. The first
subclause illustrates that the colon can also be read as set membership ∈ while
the second clause illustrates that the constructor S is actually a function that
3 http://heartbleed.com/.

http://heartbleed.com/
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accepts a member from mynat and constructs another member of mynat by
prefixing the given member with S. Thus the explicit mention of n in the natural
language definition is elided. Clause (3) of the natural language definition is
encoded by the declaration Inductive. Intuitively, the natural numbers are the
terms O, (S O), (S (S O)), · · · corresponding to 0, 1, 2, · · · .
Definition 2 (Specification of addition). Adding O to any natural number
m gives m, and for all natural numbers n, m, and r, if adding n to m gives r
then adding (S n) to m gives (S r).

I n du c t i v e add : mynat −> mynat −> mynat −> Prop :=
| addO : f o r a l l m, ( add O m m)
| addS : f o r a l l n m r , add n m r −> add (S n) m (S r ) .

Here, the notation mynat → mynat → mynat → Prop encodes that add is
ternary and that it is a “Proposition” which returns either true or else false, but
in intuitionistic logic rather than classical logic. Our specification of addition is
encoded as a ternary predicate add n m r that is true iff “adding n to m gives r”,
based purely on the only two ways in which we can construct the first argument:
either it is O, or it is of the form (S ·). The “extraction” facilities of Coq allow
us to produce actual code in OCaml, Haskell, or Scheme. The encoding below is
our hand-crafted function myplus in which the “where” keyword allows an infix
symbol + for myplus and ⇒ (not →) indicates the return value of the function:

Fixpoint myplus (n m: mynat ) : mynat :=
match n with
| O => m
| S p => S (p + m)
end
where ”p + m” := (myplus p m) .

Our function is correct if it implies the specification below.

Theorem 1. For all natural numbers n, m, r, if r = myplus n m then
add n m r is true.

Theorem myp lu s co r r e c t :
f o r a l l n m r : mynat , ( r = myplus n m) −> ( add n m r ) .

Proof .
i nduc t i on n . i n t r o m. i n t r o r . i n t r o H. s imp l in H.
s u b s t r . app l y addO . i n t r o s m r H. r ew r i t e H.
s imp l myplus1 . app l y addS . app l y IHn . r e f l e x i v i t y .

Qed .

The text shown between the words Proof and Qed consists of commands
typed in by the user to guide Coq to the proof of the theorem. That is, the
user interacts with Coq to obtain the proof, with Coq checking each step to
ensure that it is acceptable. The Coq extraction mechanism turns our function
“myplus” into Ocaml, Haskell or Scheme code giving us a program which is
provably correct with respect to our specification of addition.

We can also reason about our specification itself inside Coq. For example,
the theorem below encodes that our definition of addition is commutative:



Machine-Checking the Universal Verifiability of ElectionGuard 63

Theorem 2. For all natural numbers n, m, r, if add n m r then add m n r

Theorem add commutative :
f o r a l l n m r : mynat , ( add n m r ) −> ( add m n r ) .

Proof . . . . Qed .

In the sequel, we give all of our theorems in both plain text and in Coq to
enable the reader to confirm that our encodings do indeed capture our intentions.

1.5 Protecting Against Flaws in Code and Specifications

Haines et al. [11] suggested combining techniques for verifiable e-voting and
formal verification of software. The idea is that the key component, at least for
integrity, in a verifiable e-voting system is not the e-voting software but the
verifier that checks the public evidence produced by the e-voting software; if the
verifier is correct (and used) then the properties it guarantees will hold regardless
of any bugs present in the e-voting software. This is useful because the verifier
is a far simpler and more self contained than the e-voting software. Rivest [1]
called this “Software independence” but the term is perhaps slightly misleading
because there is still a fundamental reliance on the software that implements a
correct verifier.

If the verifier is the key entity to verify (machine-check), the next logical ques-
tion is what properties of the verifier need to be checked? Specifically, Haines et
al. argued that the logical properties of the verifier are what need to be checked.
In the context of e-voting systems built largely upon zero-knowledge proofs, the
key property of the verifier is soundness. That is, the verifier should not accept
the transcript unless the statement is true, at least with overwhelming proba-
bility. Collectively, this means that the integrity of a deployed e-voting scheme
can be reduced to the strong guarantees of correctness provided by interactive
theorem provers rather than the new and understudied e-voting scheme.

Haines et al. demonstrated the feasibility of this approach by creating several
machine-checked sub-verifiers for the Helios e-voting system which collectively
sufficed for universal verifiability. They achieved this by providing the logical
machinery to easily prove secure the sigma protocols used in e-voting; we reuse
this machinery in our work. The similarities in ElectionGuard and Helios mean
many of the underlying components (sub-verifiers) are similar but in our work
we take care of the various differences and extend Haines et al.’s work to prove
the completed verifier secure rather than the sub-verifiers.

1.6 Residual Trust Assumptions

The residual trust assumptions differ between the different aspects of our con-
tribution. In general, the work in Coq has fairly low trust assumptions whereas
the extracted verifier has higher trust assumptions.

The correctness of the work in Coq depends on the correctness of Coq but also
that we have correctly defined verifiability and ElectionGuard. The definition of
verifiability takes the well established form of special soundness. The soundness
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of the ElectionGuard definition is resolved by proving that it satisfies verifiability;
the compatibility of the definition is demonstrated by showing that it can handle
real ElectionGuard transcripts.

The extracted verifier incurs several additional trust assumptions and for this
reason we suggest that our extracted verifier should be one of many. First, the
extraction facility in Coq has not been formally verified and this could introduce
errors. In addition, we replace some of the inefficient Coq arithmetic functions
with significantly faster native OCaml functions. Finally, since deployed sigma
protocols are made non-interactive via the Fiat-Shamir transform, this transform
also needs to be checked for correctness to ensure the deployed elections are
secure. This is not challenging to do manually despite the prevalence of careless
implementations. It would be nice to prove the correctness of the Fiat-Shamir
transform inside an interactive theorem prover but unfortunately this would
involve rewinding random oracles which is not currently supported in any prover
known to the authors.

2 Machine Checking the Verifiability of ElectionGuard

In this section we will introduce our Coq specification which encapsulates the
relevant parts of ElectionGuard. We will aim to provide sufficient detail to give
an overview of what we did without completely overwhelming readers who are
unfamiliar with Coq. It is important to provide such details so that readers can
check that our Coq encodings do actually capture what we claim we capture.
For conciseness we will not provide details of the sigma protocols and interested
readers may consult [11].

2.1 ElectionGuard Elections

An election in the context of ElectionGuard consists of a fixed number of contests
with one or more candidates in each contest. This style of voting varies between
plurality voting and approval voting depending on the number of candidates
which are allowed for selection. We assume for simplicity that each voter is
allowed to select exactly one candidate in each contest: this is easy to change
but doing so unduly complicates the presentation. We use numContests as the
number of contests in any given election.

ElectionGuard uses ElGamal in Schnorr groups. We abstract our verifier over
any group G of prime order since the exact group does not matter for the security
reduction. For a given group G, the ElGamal ciphertext space is the product group
DG.G of G and G: a product group is the group-theoretic analogue of the Cartesian
product where all operations are taken component-wise. In the Coq examples that
follow G and DG.G will refer to the sets that underly these groups.

Running example: here we give a running example to show how we encode ballots
into Coq using the digit 1 to signify “preferred candidate” and using 0 to signify
“unpreferred candidate”. Suppose we have an election with three contests with
four candidates in the first contest, three candidates in the second contest, and
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two candidates in the third contest. To vote for a candidate in the first contest, a
voter has to create a list of natural numbers of length four containing exactly one
1 with the others all 0. The list entries are then mapped into the group G (which
is the message space of the encryption scheme) before being encrypted to give
ciphertext members of DG.G so we use E(1) and E(0) to stand for “encryption of
1” and “encryption of 0” respectively. For example, the vector [E(1), E(0), E(0),
E(0)] of length four is a vote for the first candidate out of the four candidates
in contest 1 where E(1) ∈ DG.G and E(0) ∈ DG.G. Suppose that the election has
two cast ballots with the first ballot cast for candidates 1, 2, and 1 in the three
respective contests and the second ballot cast for candidates 2, 1, 2. respectively,
as shown below:

Contests 1 2 3
Ballot 1 [E(1), E(0), E(0), E(0)] [E(0), E(1), E(0)] [E(1), E(0)]
Ballot 2 [E(0), E(1), E(0), E(0)] [E(1), E(0), E(0] [E(0), E(1)]

We now describe how we encoded such ballots into Coq using vectors and
product types.

2.2 Vector and Product Types

We assume that the reader is not an expert in Coq and therefore explain how we
encoded ballots into Coq in some detail. There is nothing particularly original
in our encoding but it may appear complicated to a naive reader.

We encode most of our information in vectors which are defined in Coq via
the command vector type length where type is the type of the elements of the
vector and length is the length of the vector: thus vector int 3 encodes that
the vector contains integers and is of length three. To maintain generality, the
declaration vector nat numContests tells Coq that each vector is of length
numContests and contains natural numbers nat. Our running example of an
election with three contests with four, three, and two candidates, respectively,
would be a vector called numSel = [4, 3, 2] of type vector nat 3. The functions
Vhead and VTail are provided by Coq to allow us to split a vector (a list) into
its components, so Vhead [4,3,2] would return 4 and Vtail [4,3,2] would
return [3,2].

In Coq, if A and B are two arbitrary types, then the type prod A B contains
all pairs (a, b) such that a is of type A and b is of type B. If A and B are of type
Set then so is prod A B.

An (encrypted) ballot, such as Ballot 1 above, is an ordered tuple where each
member of the tuple is itself a tuple of ciphertexts. We define it in Coq as shown
below. The type of a ballot is a nested product of vectors of ciphertexts where the
depth of the product is the number of contests and at each layer of the product
it contains a vector of ciphertexts of length equal to the number of candidates in
that contest. For example, continuing our previous example above, a ballot would
be of type vector DG.G 4 * vector DG.G 3 * vector DG.G 2. It is easy to
see that the ballots in our example, ([E(1), E(0), E(0), E(0)], [E(0), E(1), E(0)],
[E(1), E(0)] and ([E(0), E(1), E(0), E(0)], [E(1), E(0), E(0], [E(0), E(1)]), are of
this type.
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The type ballot is defined in Coq as a set of functions which accept a vector
of natural numbers of length numContests. By making ballot depend upon the
argument numContests, we tell Coq that the type of the vector input depends
on numContests. The function also specifics that the type it outputs will be a
set. The function fun ... consists of two clauses depending upon the value of
the natural number numContests:

Base case: the first is for the base case when the number of contests is zero in
which case we simply return the empty set.

Inductive case: the second is for when the number of contests is non-zero when we
recursively define the result as the Cartesian product of two sets whose types
are, respectively, vector DG.G (Vhead v) and ballot (Vtail v). The first
set has type vector DG.G (Vhead v) where (Vhead v) is the number of
candidates in the first contest. The second set has type ballot (Vtail v)
as returned by ballot on all remaining contests.

Fixpoint ballot (numContests : nat) :
vector nat numContests -> Set :=

match numContests with
| 0%nat => fun _ => Empty_set
| _ => fun v => prod (vector DG.G (Vhead v)) (ballot (Vtail v))
end.

A ballot on its own may be ill formed and contain a large number of votes for
each candidate. ElectionGuard, therefore, requires that each ballot come with a
cryptographic proof that it is well formed. We define the type of the ballot proof
as shown below.

Fixpoint ballotProof (numContests : nat) :
vector nat numContests -> Type :=

match numContests with
| 0%nat => fun _ => Empty_set
| _ => fun v1 => prod (ProofTranscript (OneOfNSigma (Vhead v1)))

(ballotProof (Vtail v1))
end.

In essence, it is a nested tuple where each element in the tuple corresponds
to the cryptographic proof, in the form of a sigma-protocol transcript, that the
corresponding ciphertexts are all encryptions of zero or else one and that the
summation of the ciphertexts is equal to one. That is, in this context, the votes
for each candidate are either yes or no and exactly one candidate has a yes vote.

The sigma protocol transcript type is returned by the function
ProofTranscript which takes a sigma protocol and returns the type of its tran-
scripts. In this case, the sigma protocol is OneOfNSigma which takes a natural
number n and returns a sigma protocol to check that n ciphertexts are all encryp-
tions of one or else zero and the product of the ciphertexts is one.

Once all the ballots are homomorphically combined, the authorities decrypt
the summation of all ballots. They do this by each using their share of the
secret key to produce decryption factors. These decryption factors can then be
publicly combined by anyone to decrypt the ciphertext. We define the type of
the decryption factors as shown below.
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Fig. 1. Algorithm of the verifier

Fixpoint decryptionFactors (numContests numTrustees : nat) :
vector nat numContests -> Set :=
match numContests with

| 0%nat => fun _ => Empty_set
| S n’ => fun v1 => prod (vector (vector G numTrustees) (Vhead v1))

(decryptionFactors numTrustees (Vtail v1))
end.

Since we do not trust the authorities (trustees) to honestly decrypt the result,
ElectionGuard uses sigma protocols to prove that the decryption factors are
computed correctly. We define the type of these proofs as below.

Fixpoint decryptionProof (numContests numTrustees : nat) :
vector nat numContests -> Type :=

match numContests with
| 0%nat => fun _ => Empty_set
| S n’ => fun v1 => prod

(ProofTranscript (BallotDecSigma (Vhead v1) numTrustees ))
(decryptionProof numTrustees (Vtail v1))

end.

2.3 Verifier

We will largely skip over the details of our implementation of the verifier because
we have proven its cryptographic soundness and have checked that it is com-
patible with ElectionGuard, and as such, the exact details are not particularly
important.

At a high level, the verifier is defined in Fig. 1 (for simplicity we use param-
eters implicitly); it takes in the election parameters, the cast ballots and various
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cryptographic proofs and decryption factors. It then checks that the crypto-
graphic proofs that the ballots are well formed are valid and that the cryto-
graphic proofs of correct decryption for the summation of all the ballots are
valid. The Coq variant is shown below. bVforall2 takes a predicate p on two
values, and two vectors v, v′ of the same length m and checks that p(v[i], v′[i])
is true for all i in 1 to m.

Definition Verifier

(* Parameters *)

(numTrustees numCast numContests : nat)

(numSel : vector nat numContests)

(g : G) (pks : vector G numTrustees)

(* Cast ballots *)

(castBallots : vector (ballot numContests numSel) numCast)

(* Proofs of correct encryption *)

(ballotProofs : vector (ballotProof numContests numSel) numCast)

(decFactors : decryptionFactors numTrustees numSel)

(decProofs : decryptionProof numTrustees numSel) : bool :=

let pk := (g, VG_prod pks) in

let tally := Vfold_left (multBallots numContests numSel)

(zeroBallot numContests numSel) castBallots in

(* Check proof of correct encryption *)

(bVforall2 (BallotVerifier pk numContests numSel )) castBallots ballotProofs

(* Checks proof of correct decryption *) &&

DecryptionVerifier g pks numContests numSel tally decFactors decProofs.

We describe each component of the Coq definition:

numtrustees: is the number of election authorities participating in the election;
numCast: is the number of ballots cast in the election;
numContests: is the number of contests in the election;
numSel: is a vector containing the number of candidates in each contest;
g: is the generator of the underlying Schnorr group G for ElGamal;
pks: is the vector of length numtrustees containing elements from G ie the public

keys of the authorities;
ballot numContests numSel: is the set of all ballots for numContests contests

with numSel candidates in each contest.
castBallots: of type vector (ballot numContests numSel) numCast is then

the vector of length numCast containing each ballot of type (ballot numSel);
multBallots numContests numSel: is a function which forms the multiplica-

tion of two ballots in ballot numContests numSel by multiplying the cipher-
texts component-wise.

2.4 Machine Checked Verifiability

In this subsection we will present our main theorem about the validity of the
verifier. We will present it first in more standard notation and then in Coq
notation. A reader familiar with sigma protocols will notice that it takes the
form of cryptographic special soundness.

Recall that a zero knowledge proof demonstrates that a statement s belongs
to a particular language, and it is common to use R to denote the relationship
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between statements and witnesses. Special soundness says that if any adversary
can produce two accepting transcripts for different challenges then it is possible
to extract a witness w from those transcripts efficiently such that (s, w) ∈ R.
Bellare and Goldreich give the standard definition of proofs of knowledge in their
work “On Defining Proofs of Knowledge” [15]. They define knowledge error,
which intuitively denotes the probability that the verifier accepts even when
the prover does not know a witness. It has been shown that a sigma protocol
satisfying special soundness is a proof of knowledge with negligible knowledge
error in the length of the challenge, as stated next.

Theorem 3. A sigma protocol P for relation R with challenge length t is a
proof of knowledge with knowledge error 2−t.

The intuition for why special soundness implies soundness is straightforward.
Special soundness says that, for any given commitment, if the adversary can
answer for two different challenges then the adversary must know a witness for
the statement. This implies that if no witness is known there must be at most
one challenge for which the adversary could successfully respond. The chance of
drawing the single challenge for which the adversary can successfully respond
is negligable in the security parameter. (The formal argument in the case of a
proof of knowledge is slightly different and can be found in [10].)

The reader may also find that the upcoming Theorem 5 has a slightly odd
feel. The proofs of correct encryption and decryption intuitively have a temporal
ordering, the protocol even specifies that the trustees should check the proofs of
correct encryption before decrypting. However, since we are defining the verifier
for the public information after the election is concluded, we can fold these proofs
into one large proof for simplicity. Formally, we are allowed to do this because
the properties of sigma protocol are invariant under parallel composition [10],
which was proven to be true for the formalisation of Sigma protocols we use
in [11].

Theorem 4. For all number of trustess, number of cast ballots, number of con-
tests, for all ballot formats, generators, public key shares, cast ballots, for all
decryption factors, if there exists an adversary A which can produce accepting
proofs for the verifier for two different challenges on the same commitment then
the ballots are all correctly formed and the summation is correctly decrypted.

The Coq theorem is stated slightly differently, we show that the existence
of two accepting proofs with two different challenges on the same commitment
implies that the ballots are all correctly formed and the summation is correctly
decrypted. Since this holds for any two transcript of this form it clearly holds
for any A producing transcripts of this form. We show this modified theorem in
Theorem 5.

Theorem 5. For all number of trustees, number of cast ballots, number of con-
tests, for all ballot formats, generators, public key shares, cast ballots, for all
decryption factors, for all pairs of accepting proof transcripts, if the pair of proof
transcripts have two different challenges on the same commitment, then the bal-
lots are all correctly formed and the summation is correctly decrypted.
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Theorem 5 is encoded into Coq as shown below.

Theorem VerifierCorrect :
forall

(numTrustees numCast numContests : nat)
(numSel : vector nat numContests)
(g : G)(pks : vector G numTrustees)
(* Cast ballots *)
(castBallots : vector (ballot numSel) numCast)
(* Proofs of correct encryption *)
(balProf1 balProf2 : vector (ballotProof numSel) numCast)
(decFactors : decryptionFactors numTrustees numSel)
(decProf1 decProf2 : decryptionProof numTrustees numSel)
(result : tally numSel),

let pk := (g, VG_prod pks) in
let summation := Vfold_left (multBallots numSel) (zeroBallot numSel)

(castBallots) in

(* The tally and the decryption factors are consistent *)
ResultDecFactorsConsistent numTrustees g numSel summation result decFactors
-> Verifier numSel g pks castBallots balProf1 decFactors decProf1
-> (* Conditions for special soundness *)

Verifier numSel g pks castBallots balProf2 decFactors decProf2 ->
Vforall2 (ballotProofDis numSel) balProf1 balProf2 ->
Vforall2 (ballotProofComEq numSel) balProf1 balProf2 ->
decryptionProofDis numTrustees numSel decProf1 decProf2 ->
decryptionProofComEq numTrustees numSel decProf1 decProf2 ->

Vforall (BallotCorrectlyFormed pk g numSel) castBallots /\
BallotCorrectlyDecrypted pk numSel summation result.

Vfold left Takes a binary function, an initial value, and a vector and reduces
the vector to a single value. In this case it multiplies all the encrypted bal-
lots using the function multBallots. The proof of Theorem 5 follows from the
soundness of the underlying sigma protocols; in essence we extract witness to
all the underlying statements and show that they collectively imply that all the
encrypted ballots are well-formed and the aggregation of all encrypted ballots is
correctly decrypted.

3 Using the Extracted Verifier

Having defined the verifier we could use it inside Coq to check election tran-
scripts, but unfortunately, this is prohibitively slow. Instead, we make use of the
Coq extraction facility to produce OCaml code which matches the Coq specifi-
cation. This extraction facility is the subject of the CertiCoq project [16] which
aims to verify its correctness. Our verifier is proven secure for any Schnorr groups
in the sense that the reductions and logical proofs hold for any such group; of
course, if the decisional Diffie-Hellman problem is easy in the chosen group then
privacy is lost. We note that our extracted verifier replaces the Coq implemen-
tation of arithmetic with the native OCaml implementation for efficiency.

We now encounter an issue, the reference verifier released with Elec-
tionGuard4 does not appear to be compatible with the parameters in the

4 https://github.com/microsoft/electionguard-verifier.

https://github.com/microsoft/electionguard-verifier
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ElectionGuard specification.5 The reference verifier works for a limited set of
safe prime groups whereas the specification requires a Schnorr group which is
not a safe prime group. To test our verifier, we therefore changed the parameters
from those in the specification to the 1536-bit group from the reference verifier.
We produced test cases (in the form of JSON files) with the reference verifier;
we then wrote code to parse this JSON and feed it into our verifier. Our verifier
accepted on the test cases and rejected on the incorrect inputs we tried.

3.1 Efficiency

Our extracted verifier with some underlying Coq functions replaced by OCaml
counterparts is twice as efficient as the reference verifier provided by Elec-
tionGuard. The time to verify is dominated by the number of ciphertexts which
is the total number of candidates in all contests multiplied by the number of
voters. Our verifier takes about 50 s per 1000 ciphertexts, so for an election
with one million ciphertexts, it would take roughly 14 h. This compares to the
reference verifier which takes 110 s per 1000 ciphertexts. We were surprised that
our verifier was faster; the OCaml implementation we use of the mathematics is
faster by a factor of two which might explain the difference.

Note, our current encoding is a first attempt and mimicks the underlying
mathematics as closely as possible to ensure that the encoding does not con-
tain transliteration errors. Our encoding can be further optimised for speed and
parallelised if required, but this requires further work.

The performance of our ElectionGuard verifier on the test cases, while com-
parable in efficiency to other implementations, is significantly slower than the
machine-checked verifier for Helios created by Haines et al. [11]. This is due to
the use of a safe prime group in the ElectionGuard reference verifier even though
the specification requires a Schnorr group. If we replace that safe prime group
with a Schnorr group of comparable security, as used by Helios, but with prime
order of around 256 bits, our implementation would be ∼6 times faster than it
currently is, meaning that an election of one million ciphertexts would take only
2 h to verify. The ElectionGuard specification mandates a Schnorr group with a
prime order of around 256 bits, so in a real election, our verifier would be faster
than it was on tests produced by the reference implementation.

4 Conclusion

In this work we machine-checked the verifiability specification of ElectionGuard
to be cryptographically sound. We achieved this by encoding the specification
inside the interactive theorem prover Coq and then proving that it has crypto-
graphic soundness. In addition, we proved the zero-knowledge properties of the
verifier. We extracted an executable version of the verifier specification which is

5 https://github.com/microsoft/electionguard/wiki/Informal/ElectionGuardSpecifi-
cationV0.85.pdf.

https://github.com/microsoft/electionguard/wiki/Informal/ElectionGuardSpecifi-cationV0.85.pdf
https://github.com/microsoft/electionguard/wiki/Informal/ElectionGuardSpecifi-cationV0.85.pdf
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of comparable efficiency to existing implementations and used it to verify election
transcriptions produced by the reference implementation of ElectionGuard.

Acknowledgments. This work was supported by the Luxembourg National Research
Fund (FNR) and the Research Council of Norway for the joint project SURCVS.

A Coq Source

Our code is available via the link below:

https://github.com/gerlion/secure-e-voting-with-coq.
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Abstract. This paper introduces a run-time mechanism for prevent-
ing leakage of secure information in distributed systems. We consider a
general concurrency language model where concurrent objects interact
by asynchronous method calls and futures. The aim is to prevent leak-
age of secure information to low-level viewers. The approach is based
on a notion of security wrappers, where a wrapper encloses an object
or a component and controls its interactions with the environment. Our
run-time system automatically adds a wrapper to an insecure compo-
nent.The wrappers are invisible such that a wrapped component and its
environment are not aware of it.

The security policies of a wrapper are formalized based on a notion
of security levels. At run-time, future components will be wrapped upon
need, and objects of unsafe classes will be wrapped, using static check-
ing to limit the number of unsafe classes and thereby reducing run-time
overhead. We define an operational semantics and sketch a proof of non-
interference. A service provider may use wrappers to protect its services
in an insecure environment, and vice-versa: a system platform may use
wrappers to protect itself from insecure service providers.

Keywords: Active objects · Futures · Information-flow security ·
Non-interference · Language-based security · Distributed systems

1 Introduction

Given the large number of users and service providers involved in a distributed
system, security is a critical concern. It is essential to analyze and control how
confidential information propagates between nodes. When a program executes,
it might leak secure information to public outputs or send it to malicious nodes.
Information-flow control approaches track how information propagates during
execution and prevent leakage of secure information [24]. Program variables are
tagged typically with security levels; such as high and low, to indicate secure
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and public data. In this setting, an “attacker” could be seen as a low-level
object that is not supposed to see high information. The basic semantic notion
of information-flow security is non-interference [10]. This means that in any two
executions of a program, if high inputs are changed, but low inputs are the
same, then the low outputs will be the same (at least for locally determinis-
tic programs). This way, an attacker (a low object) cannot distinguish between
observable behaviors of the two executions since low outputs are independent of
the high inputs [12].

We will consider a high-level model for object-oriented distributed systems
suited for service-oriented systems, namely the active object modelMethod inter-
action is implemented by message passing; moreover, most active object lan-
guages support a communication paradigm called futures [5]. A future is a com-
ponent that is created by a remote method call and eventually will contain the
corresponding return value [3]. Therefore, the caller does not need to block while
waiting to get the return value: it can continue with other tasks and later get
the value from the corresponding future. Futures can be passed to other objects,
called first-class futures. In this case, any object that has a reference to a future
can access its content, which may be a security threat if the future contains
secure data. Futures offer a flexible way of communication and sharing results,
but handling them appropriately in order to avoid security leakages requires
run-time checking (described in Sect. 2.1).

Our goal is to design a permissive and precise security mechanism for con-
trolling object communications in active object languages supporting first-class
futures. Our security mechanism is inspired by the notion of wrappers in [21],
where a wrapper encloses an object and enforces safety rules. In the present
paper, we suggest a notion of security wrapper, which wraps an object or a
future at run-time and performs security controls. Such wrappers are added
by the operational semantics upon need, and a wrapped component and its
environment are not aware of the presence of the wrapper. Security wrappers
block object communications that lead to leakage of secure data to low objects.
A future is wrapped if it contains a high value, and the wrapper blocks illegal
access by low objects. The operational semantics of a wrapper is defined based on
run-time security levels, resulting from a flow-sensitive information-flow enforce-
ment [23]. We enrich the operational semantics with dynamic information-flow
rules [23] where security levels of variables are allowed to change after an assign-
ment. Therefore, our dynamic approach guarantees a degree of permissiveness
and is precise since it deals with the exact run-time security levels.

The operational semantics of our security framework is provided in the style of
Structured Operational Semantics (SOS). In order to minimize run-time overhead,
we suggest static analysis to limit the number of classes where security checking
and wrappers are needed since often only a few methods deal with secure informa-
tion. In the resulting hybrid approach, the static analysis determines which classes
cannot produce any high output, so-called safe classes, while the run-time system
takes care of the precise security checking of objects of unsafe classes and futures
created by such objects. Assuming a sound static analysis, we show that our pro-
posed hybrid approach ensures the non-interference property.
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In summary, our contributions are: i) a notion of security wrappers for enforc-
ing noninterference and security control in object interactions (Sect. 4), ii) the
use of static analysis to reduce the run-time overhead (Sect. 4.1), iii) defining
the operational semantics for the dynamic information-flow enforcement with
automatic deployment of wrappers (Sects. 4.2, 4.3) for our language (Sect. 4),
and iv) an outline of the proof that our approach satisfies non-interference.

2 Background

Information-flow control approaches detect illegal flows. During program execu-
tion, there are two kinds of leakage of information, namely explicit and implicit
flows [24]. For simplicity, we assume two security levels, L (low) and H (high).
In the setting with observable and non-observable variables, an explicit flow hap-
pens when assigning a low variable (l) with a high value (h) by l := h. In the set-
ting without observable variables, one may deal with this by letting the level of l
be dynamically changed to H. In an implicit flow, there is an indirect flow due to
control structures. For example, in the if statement: l := 0 if h then l := 1 fi,
the guard h is high, and it affects the value of l indirectly. In order to avoid
implicit flows, a program-counter label (pc) is introduced [24]. If the guard is
high, then pc becomes high, indicating a high context. (In run-time analysis, one
may use a stack to deal with nested control structures.)

Information-flow control approaches are divided into two categories, static
and dynamic [23]. Static analysis is conservative [12]: to be sound, it over-
approximates security levels of variables (for example, it over-approximates a
formal parameter to high, while at run-time, a corresponding actual parameter
can be low). This causes unnecessary rejections of programs, especially when
the complete program is not statically known, as is usually the case in dis-
tributed systems. On the other hand, static analysis has less run-time overhead
since security checks are performed before program execution [12]. Dynamic
information-flow techniques perform security checks at run-time, and this intro-
duces overhead. But they are more permissive and precise since they deal with
the exact security levels instead of an over-approximation [12].

For example, consider the following method body:
{if low test then x := high exp else x := low exp fi; return x}

where low test and low exp evaluate to low values, while high exp evaluates
to a high value. A sound static analysis will detect a high method result here
since the value of low test is not known; while at run-time, an execution of the
method may give a low result (when low test evaluates to false). The exam-
ple shows that static analysis over-approximates the security level, in contrast
to run-time analysis. Similarly, the parameter mechanism gives rise to static
over-approximation. For a method T triv(T x){return x}, where T is a type
containing both high and low values, static analysis will detect a (potentially)
high result, whereas for calls with a low input value, the result is detected as low
at run-time. However, this could be handled by multiple static method profiles



Security Wrappers for Information-Flow Control 77

as in [19] (when low T values are reflected by a subtype of T ). For first-class
futures, the situation is worse: a get statement on a future is detached from the
call statement and also from the method name. Therefore, the static analysis of
a get statement must over-approximate the level of the possible future values,
while the exact level is revealed during run-time. This means that static analysis
of security levels in languages with first-class futures can easily lead to a high
degree of over-approximation.

In what follows, we briefly explain some of the terminologies of information-
flow security that we use in this paper:

Security Levels. Variables are tagged with security levels, organized by a par-
tial order � and a join � operator, such that L � H and L � H = H. The
� operator returns the least upper bound of two security levels. Inside a class,
declarations of fields, class parameters, and formal parameters may have stati-
cally declared initial security levels. These levels may change with statements.
We define a new syntax for object creation to assign security levels to objects.

Flow-Sensitivity. By a dynamic flow-sensitive analysis, security levels of vari-
ables propagate to other variables, and precise levels are evaluated during execu-
tion. Variables start with their declared security levels (the ones without levels
are assumed as L), but levels may change after each statement. In an assign-
ment, the left-hand-side level becomes high if pc is high, or there is a high vari-
able on the right-hand-side. The left-hand-side level becomes low if pc is low,
and there is no high variable on the right-hand-side [23]. Otherwise, the secu-
rity level of a variable does not change. E.g., a flow-sensitive analysis accepts
the program h := 0; if h then l := 1 fi; return l; since the level of h is
updated to L after the first assignment, hence there is no leakage. In if state-
ments, in order to avoid implicit flows, when the guard is high, the security lev-
els of variables appearing on the left-hand side of assignments in the taken and
untaken branches are raised to high [23]. E.g., considering an initial environment
Γ = {h �→ H, l1 �→ L, l2 �→ L} and the program: if h then l1 := 1 else l2 := 0 fi
when the condition is true, Γ changes to Γ = {h �→ H, l1 �→ H, l2 �→ H} for
a sound flow-sensitive analysis [23]. In a dynamic approach, in order to have
a sound flow-sensitive analysis, the assigned variables in the untaken branches
should be given to the analysis, which can be provided by static analysis of the
program code [4,23].

2.1 Active Object Languages
Active object languages are based on a combination of the actor model [1]
and object-oriented features [5]. Some well-known active object languages are
Rebeca [25,26], Scala/Akka [11,27], Creol [14], ABS [13], Encore [6], and
ASP/ProActive [7,8]. In communication with futures, when a remote method
call is made, a future object with a unique identity is created. Futures can be
explicit with a specific type and access operations like in ABS or can be implicit
with automatic creation and access [5]. E.g., in ABS, explicit futures are created
as in Fut [T ] f := o!m(e); v := f.get, where f is a future variable of type Fut [T ],
and T is the type of the future value. The symbol “!” indicates an asynchronous
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method call m of object o with actual parameters ē, and the future value is
retrieved with a get construct when needed. The variable f can be passed to
other objects as a parameter (first-class futures). The caller may continue with
other processes while the callee is computing the return value. The callee sends
back the return value to the corresponding future, and then the future is called
resolved. A synchronous call is denoted by o.m(e), which blocks the caller until
the return value is retrieved.

Fig. 1. Statement syntax. Here e is an expression list. Brackets denote optional parts.

Information-Flow Security with Futures. Static analysis is in general dif-
ficult for programs with futures, where the result of a call is no longer syntacti-
cally connected to the call, compared to the call/return paradigm in languages
without futures [15]. For example, a future may be created in one module and
received as a parameter in another. Thus, a future may not statically correspond
to a unique call statement. One could overestimate all future values as high, but
this would severely restrict the set of acceptable programs. It would be better to
overestimate the set of possible call statements that corresponds to a given get
statement, but this requires access to the whole program, which is often problem-
atic for distributed systems. Moreover, the return values of these overestimated
calls may have different security levels, which also results in overestimation.

A static analysis that assumes references as low, allows passing of future
references. However, the exact security level of a future value is revealed when it
becomes resolved, which goes beyond static analysis. For example, if a low-level
object performs x := f.get, and f refers to a future with a high value, it is a
leakage of information. A dynamic approach is required to control access to a
future value at run-time when it is resolved, and if the value is high it needs
protection. The futures concept makes static checking less precise, and the need
for complementary run-time checking is greater, as provided in the present paper.

3 Our Core Language

In order to exemplify our security approach, the security semantics (in Sect. 4.2)
is embedded in a simple, high-level core language. All remote calls are made by
means of futures, where the method result is always returned to the correspond-
ing future. Figure 1 gives the syntax of statements. The statement f := o!m(e)
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is an asynchronous call with futures, and o!m(e) is an asynchronous call without
waiting for the result and associating a future. We define an extended syntax for
object creation newlev c(ē), where lev is the object’s level (it can be L or H).

Figure 2 illustrates a health care service in our core language, involving
futures for the sharing of secure medical records. Personnel and patients with
lower-level access are not allowed to access medical records. High variables are
emphasized based on user specifications, in this case reflecting patients’ medical
test results. The server, specified by the class Service, searches for a patient’s test
result, and the object proxy publishes the result to the patient and personnel.
In Fig. 2, in line 10, a produce cycle is initiated between the server and proxy.
In line 13, the server searches for the test result of a patient with the userId
a by sending a remote asynchronous call to the laboratory f := lab!search(a),
where f is the future variable. In line 14, the server calls proxy !publish(f, a, d)
and passes the future f , userId a, and personnelId d to the object proxy. Both
search and publish are asynchronous calls, thus the server does not wait for the
return values and is free to respond to any client request. In line 18, the object
proxy waits for the test result and assigns the result to variable x by performing
x := f.get. Then proxy sends x to the patient and personnel.

Fig. 2. Example of sharing high patients’ test results by means of futures

A static analysis over-approximates the security levels of test results as high,
which leads to rejections of information passing. Note that the two send calls
in the class Proxy would not be allowed if we only use static checking since
we cannot tell which patients and personnel have a high enough level. A static
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analysis which considers references as low allows passing the future f to the
object proxy (line 14), but later when it is resolved, the future value can be
high, and the proxy compromises security by sending this value to other objects.

4 A Framework for Non-interference

Like Creol, our core language is equipped with interface encapsulation, which
means that created objects are typed by interfaces, not classes [14]. As a result,
remote access to fields or methods that are not declared in an interface is impos-
sible. Therefore, observable behavior of an object is limited to its interactions
through remote method calls. Illegal object interactions are the ones leading to
an information-flow from high information to low level objects. An object can
reveal confidential information in method calls by sending actual parameters
with high security levels to low-level objects. If a future contains data with a
high security level, low-level objects’ access is illegal.

We exploit the notion of wrappers to perform dynamic checking for enforc-
ing non-interference in object interactions. A wrapper blocks illegal interac-
tions. Wrappers’ security policies are based on run-time security levels. Inside
an object, in order to compute the exact security levels of created messages or
return values, the flow-sensitivity must be active. The operational semantics for
the dynamic flow-sensitive analysis, is given in Sect. 4.2 and for wrappers, in
Sect. 4.3.

We can be conservative and wrap all objects and correspondingly activate
flow-sensitivity, but this will cost run-time overhead. In order to be more efficient
at run-time, it is important to perform dynamic checking only for components
where it is necessary. We benefit from static analysis to categorize a class defi-
nition as safe or unsafe. A class is safe if it does not have any method calls with
high actual parameters and return values. A class is unsafe if it has a method
call with at least one high actual parameter or a high return value. Objects cre-
ated from unsafe classes are wrapped, and flow-sensitivity will be active inside
these objects. Objects from safe classes do not need a wrapper or active flow-
sensitivity. This will make the execution of objects of safe classes faster, as we
avoid a potentially large number of run-time checks and wrappers.

4.1 Static Analysis
Our security approach can be combined with a sound static over-approximation
for detecting security errors and safe classes, e.g., the one proposed in [20],
which is more permissive (to classify a class as safe) than the static analysis
indicated here, in that high communication is considered secure as long as the
declared levels of parameters are respected. In a class, variables are declared
with maximum security levels (the maximum level that can be assigned at run-
time). The same for future variables at the time of declaration, for example,
Fut [TH ] x indicates that x is a high future variable. Local variables without a
declared security level start with the level L (as default) but may change after
each statement due to the flow-sensitivity. Dataflow typing rules inside an object
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Fig. 3. The components of a configuration.

can be defined similar to [20]; however, we change the typing rules for method
calls and return values to classify unsafe and safe classes. A class is defined as
safe if the confidentiality of each method is satisfied. The confidentiality of a
method is satisfied if the typing rules for its return value and actual parameters
are satisfied. The typing rules check that each occurrence of an actual parameter
and a return value are not high; then, the class is safe; otherwise, it is unsafe
and needs dynamic checking. The typing rule for getting a future, checks that if
a future variable is high, then the class is classified as unsafe. Alternatively, we
could have used another sound static analysis, for instance (the relevant parts
of) the static analysis defined for ABS in [22], and adapt it to our setting.

We categorize safe and unsafe classes for the example in Fig. 2. The interface
laboratory LabI has a method with a high return value (search). Thus the object
lab is unsafe and flow-sensitivity is active to compute the security level of the
return value at run-time. The class Proxy is unsafe since it has at least one
method call with a high actual parameter (a!send(x)), thus object proxy is active
flow-sensitive and wrapped.

4.2 Security Semantics
We here discuss the operational semantics of our core language with the embed-
ded notions of flow-sensitivity and security wrappers in Figs. 4, 5. The small-step
operational semantics is defined by a set of rewrite rules [17]. In a rule, premises
are above the line and one step rewrite is under the line. A rule is applied to a
subset of a configuration if the premises are satisfied, and the subset is changed
from the left-hand-side to the right-hand-side of the rewrite rule.

In Fig. 3, an execution state is modeled as a configuration config, which
is a multiset of objects (with or without active flow-sensitivity), messages,
futures, wrappers, and classes. (Classes are included in a configuration to pro-
vide static information about fields and methods.) An object is represented as:
ob(o, a, p, lev), where o is the object identity, a is the field state, p is the current
active process, and lev is the object’s level (lev ∈ {L,H}). An active process p
is a pair (l, s), where l is the local variables state, and s is a list of statements,
or it is idle representing an empty local state and no statements. A state is a
mapping (substitution) binding variables to values. A flowsen-obj represents
an flow-sensitive object with an extra field pcs that denotes a stack of context
security levels inside an object, where pcs = emp denotes an empty stack.
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A class is represented as: Cl(c | a′,mm)lev , where c is the class name, a′

is the initial state of the class fields (attributes), mm is a multiset of method
declarations (with local variables and code), and lev denotes the type of the
class, i.e., if lev = L, the class is safe, and if lev = H, the class is unsafe. A msg
represents an invocation message or a completion message. In an invocation
message, f is the future identity, m is the method name, d̄ is a list of actual
parameters, and lev is a level attached to the message at time of creation. If
a message is created in a high context, then lev = H; otherwise, lev = L. A
completion message contains a return value d and a future identity f , and lev
represents the context level. The notation d denotes a value v or a value with
security level vlev . The future component shows a resolved future with identity f
and the value d, and fut(f, ) denotes an unresolved future. A security wrapper
is represented as: Wr{wId , lev | config}, where wId is the wrapper’s identity, lev
is the level, and config denotes the configuration inside the wrapper.

Auxiliary Functions. Let Γ be a mapping and [x �→ d] be a binding, mapping
x to d. The notation Γ [x �→ d] represents the update of Γ with the binding.
The look-up function is represented as Γ (x), where Γ [x �→ d](x) = d. The map
composition a#l indicates that the binding of a variable in the inner scope l
shadows any binding of that variable in the outer scope a. Thus a#l(x) gives
l(x) when defined, otherwise a(x). Consider an object with attribute state a and
local state l. Then the composition a#l defines the object state. The notation [[e]]
denotes the evaluation of expression e, where variables are evaluated according
to the object state. The evaluation in [[e]] is strict in the sense that the resulting
level is high if e contains variables that have a high security level. Other auxiliary
functions are given as follows:

– The function level(d) returns the security level of d, such that level(vlev ) =
lev , and for an untagged value level(v) = L. If e is a list of expressions, then
[[e]] = d̄ returns a list of data, and level(d̄) = � level(di),∀di ∈ d̄ (the join of
all data in d̄).

– The function level(o) returns the level of the object o.
– The function level(pcs) returns the join of security levels in pcs, where if

pcs = emp, level(pcs) = L, and if pcs �= emp, level(pcs) = H.
– The function updateH(s) raises the security levels of variables appearing in

the left-hand-side of assignments in s to high.
– The function fresh() returns a unique identity for an object or a future.
– The function bind(o,m, d̄, f) returns a process, where the method m in the

class of the object o is activated, and the method’ parameters are bound to
the actual ones (d̄), and a reserved local variable label is bound to f , denoting
where to send the return value of the method [13].

– The function bind(o,m, d̄) returns a process without the binding for the label ,
in case the method’s result is not needed.

– The function safe(Cl (c | a,mm)lev ) returns true if lev = L and false other-
wise.

Figure 4 represents the flow-sensitivity semantics of objects. The new rule
shows the command x := newlevc′(e) in the active process of an object o, where
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c′ is an unsafe class. The rule creates an active flow-sensitive object o′ and a
wrapper and assigns o′ to x. The active process of the new object o′ is initially
idle, denoting an empty active process. The level of o′ is lev as it is specified in
the command newlevc′(e), if not, the level is assumed low. The stack of pcs is
empty, denoted by emp. The wrapper has the same identity (o′) and the level
(lev) of the object o′. The semantics of the actual class parameters is treated like
parameters of an asynchronous call x!init(e) (creating an invocation message by
the rule call), where init is the name of the initialization method of a class.
Note that if ē contains high security level data, the wrapper does not send the
corresponding invocation message to the new object if the new object is low-
level (see rule wr-invc-error in Fig. 5, which we explain later). The Rule
assign-local shows an assignment x := e, where x is in the local state l, e
is evaluated to vlev ′ , and x is updated in l with the new value v and the level
lev ′ � level(pcs). Therefore, the level of x is updated with the right-hand-side
level joined with that of pcs. In if-low-true, the guard’s security level is low,
and the guard is true (trueL), thus the corresponding branch s′ is taken. While
in if-low-false, since the guard is false, the else branch s′′ is taken. In if-high-
true and if-high-false, since the guard’s security level is high, similar to the
approach in [23], the security levels of variables appearing in assignments in
both branches are raised to high to avoid implicit flows. In the rules, the guard’s
security level H is pushed to the pcs stack, resulting in a high security context,
where all the messages created in a high context will have high security levels
(see rules call-fut, call). Moreover, assignments in the taken branch result
in high security levels (see assign-local and assign-attribute). The added
statement endif (s ′′), where s′′ is the untaken branch, marks the join point of
the if structure and raises the assigned variables’ levels in the untaken branch.
In the endif rule, the function updateH(s′′) raises the security levels of variables
appearing in the left-hand-side of assignments in s′′ to high, and these variables
are updated in the local state. Moreover, the last element of pcs is removed
(pcs.pop()), reflecting the previous context level.

In the rules, we do not cover local calls, which do not involve object interac-
tions (therefore, less interesting here). The call-fut rule deals with an asyn-
chronous call x := e!m(e), where x is a future variable, and e is the callee.
The call generates a (not resolved) future with a unique identity f , where f is
assigned to x, and an invocation message containing f , m, actual parameters d̄,
and the callee o′. The invocation message’s level is level(pcs), which is needed to
avoid indirect leakage from the caller. The rule call shows an asynchronous call
e!m(e) without an associated future, where the method’s result is not needed.
The call creates an invocation message containing m, d̄, and the callee o′, and
the message’ level is level(pcs). The start-fut rule is applied when an object
is idle, and there is an invocation message to the object. The object’s active
process is updated with p, which is the bind ’s result, where method m is acti-
vated, formal parameters are bound to the actual ones (d̄), and the local variable
label is bound to the future identity (f ) for sending the method’s result to the
future by a return statement. The level of the received message lev ′ is added
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Fig. 4. Flow-sensitive operational semantics, lev , lev ′ ∈ {l,H}.

to the object’s stack pcs. This avoids implicit leakage from the sender. In the
start rule, the invocation message does not contain a future identity, and the
object starts execution the corresponding method, which is activated by the bind
function without the binding for the label variable. The return rule interprets
a return statement, which creates a completion message to the corresponding
future, which is looked up in the local state (l(label)), and the object becomes
idle. The security level of the completion message is level(pcs) to avoid indirect
leakage from the callee to the recipients of the future value. We assume that
each method body ends with a return statement. The rules for objects without
active flow-sensitivity are similar but without security levels, pcs, and wrappers.
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4.3 Operational Semantics of Security Wrappers
In this section, we discuss the operational semantics of security wrappers. As
mentioned, a wrapper for an object is created in the rule new in Fig. 4. A
wrapper has the same identity as the wrapped component; thereby, the wrapper
represents the component to the environment. Invocation messages generated by
the call-fut and call rules will first meet the object’s wrapper for security
checking before being sent to the callee. The wr-invc rule in Fig. 5, represents a
wrapper with an invocation message inside, which is produced by the object o. If
the join (�) of the message’s level lev ′ and the actual parameters’ levels level(d̄)
is less than or equal to the destination object’ level (level(o′)), then the wrapper
allows the message to go out. In wr-invc-error, since the recipient object’s
level is less than the message’s level, the invocation message is deleted and the
corresponding future value is replaced by an error value. This can be combined
with an exception handling mechanism such that an exception is raised when
a get operation tries to access an error value. However, as this is beyond the
scope of this paper, we ignore the exception handling part. We simply indicate

Fig. 5. Operational semantics involving wrappers, lev , lev ′ ∈ {l,H}.
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exceptions by assignments with error in the right-hand-side. The error-fut
rule represents the case where a future value is error; the object performing the
get command x := e.get, where e refers to the future, assigns an error to x. The
rule assign-attribute shows an assignment, where x is in the object’s fields.

The invc-wr rule represents a wrapper and an incoming invocation message
to the object o. The notation Λ[m, i] indicates the level of the ith formal param-
eter of the method m as declared in the class. If the security level of each actual
parameter (lev i) is less than or equal to the security level of the correspond-
ing formal parameter, then the wrapper allows the message to go through and
adds it to its configuration inside. Otherwise, the invocation message is deleted
in invc-wr-error. In low-fut, an unresolved future gets the corresponding
completion message containing d, hence the future becomes resolved with d. The
join of the message’s level lev and level(d) is low, thus no wrapper is created. In
high-fut, lev � level(d) = H, thus the future becomes wrapped and resolved.
Since the future is high, a wrapper is created to protect it, and the wrapper
has the same identity and level as the future. The error-high-fut-get rule
represents a wrapped future and an object that wants to get the future value. If
the security level of the object (lev) asking for the value is less than the wrapper
(H), then the wrapper sends an error value. In high-fut-get, the object gets
the value from the wrapped future since the object’s level is greater than or
equal to H. The low-fut-get rule shows that an object gets the value from an
unwrapped future without security checking.

4.4 Non-interference
We show that our security framework satisfies non-interference. Non-interference
considers the observable behavior of different executions. The observable behavior
of an object consists of invocation messages and completion messages. Even
the observable behavior of object creation, by the new rule in Fig. 4, is an
asynchronous call x!init(ē), which creates an invocation message. Since object
and future identities may change from execution to execution, we must compare
executions relative to a correspondence of such identities in one execution to
those in another execution. Corresponding objects must be of the same class.

A message is said to be low if it does not have a high tag nor contain any
parameters with high tags. Two low messages are indistinguishable, 	, if the
identities in the messages correspond to each other, and other values are equal.
Two execution states of corresponding objects o and o′ are said to be indistin-
guishable if the values of their local variables and attributes are indistinguishable
and they have the same remaining statement lists, and also agree on other system
variables, including flow sensitivity (with same values of pcs).

Definition 1. Global non-interference means that for any two executions with
corresponding objects and futures, such that the history of messages consumed
or produced by an object in one execution state is indistinguishable from that
of the corresponding object in a state of the other execution, and such that the
next communication event of the first object is a low output, then the next low
communication output event of the other object will be indistinguishable.
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Definition 2. Local non-interference means that for two executions with corre-
sponding objects o and o′, and for execution states where o and o′ are non-idle
and where the execution states of o and o′ are indistinguishable, the next execu-
tion states of these objects will also be indistinguishable when both have executed
the next statement, and in case the statement gives an output, both make indis-
tinguishable output (or neither makes no low output).

Note that our security approach includes termination aspects. We next prove
that each object is locally deterministic, in the sense that the next state of a
statement, other than idle and get, is deterministic, i.e., depending only on the
prestate. The only source of non-determinism is get and the independent speed
of the objects, which means that the ordering in the messages queues is in general
non-deterministic. Thus only idle states and get cause local non-determinism.

Lemma 1. In our security model, each object is locally deterministic.

Proof. According to our operational semantics, for each statement (other than
idle and get) there is only one rule to apply, and for an if statement, the choice
of the rule is given deterministically by testing the security level and value of
the guard. There is no interleaving of processes inside an object as well. 
�
Definition 3. Low-to-low determinism means that any low part of a state or
output resulting from a statement, other than get, is determined by the low part
of the prestate and the statement, when ignoring states where pcs is high.

Lemma 2. In our security model, each object is low-to-low deterministic.

Proof. This can be proved by case analysis on the statements. For an if with a
high test, the taken branch does not result in low state changes nor low outputs.
In particular, any invocation message made has label H, and the execution of
that method invocation by the same or another object, will start in a high
context (see the start-fut and start rules), and so will a new object created
from the branch. This ensures that there is no implicit leakage from a high
branch. However, the choice of branch could depend on high information, and
lead to distinguishable states, but this is compensated by endif (s ′′), which raises
the level of variables updated in the untaken branch s′′. For an if with low test,
the choice of branch is given by the low part of the prestate and the test. For an
assignment, the level of the left-hand-side becomes low if the level of the right-
hand-side is low and pcs is low. Otherwise, the left-hand-side’ level becomes high
after the assignment. The cases for the other statements are straightforward. 
�
Theorem 1. Our security model guarantees local and global non-interference,
and an attacker (i.e., a low object) will only receive low information.

Proof. Local non-interference can be proved by induction of the number of exe-
cution steps considering two executions of an object. The low part of each state
and the low outputs must be the same by the two previous lemmas, using the
fact that future values of corresponding futures will be indistinguishable, since
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these are given by earlier outputs, which are indistinguishable by the induction
hypothesis. Global non-interference can be proved by induction on the number
of steps considering two executions. It follows by local non-interference for all
objects. Since an attacker is a low object, the wrappers will prevent it from
receiving high inputs. 
�

This theorem implies that an attacker will not be able to obtain high infor-
mation explicitly or implicitly, nor observe difference of termination aspects.

5 Related Work

Starting with the work of Denning and Denning [9], a number of static techniques
for lattice-based security information flow analysis have been suggested.

In [20], a secure type system has been suggested for Creol without futures to
enforce noninterference in object interactions. Typing rules check that the secu-
rity levels of variables respect the declared security levels in the interfaces. In [20],
since the run-time security levels of objects, indicating the access rights, might
not be available at static time, an if-test construct is added to check the secu-
rity level of an object before sending data. Our approach is a dynamic technique,
which is more permissive and precise and supports futures confidentiality. In [22],
Pettai and Laud present a type system for ABS to ensure non-interference by
means of over-approximation. E.g., a future’s security level is the upper bound of
the tasks’ levels that the future refers to, while our run-time system does not use
over-approximation (assuming the labels are exact). This work also deals with
other concurrency features of ABS such as cogs and synchronization between
tasks, where security issues are prevented by using the operational semantics
and the type system. The cog feature of ABS is not relevant to our paper.

In [2], a dynamic information-flow control approach is performed for the ASP
language. Security levels are assigned to activities and communicated data. The
security levels do not change when they are assigned. Dynamic checks are per-
formed at activity creations, requests, and replies. Since future references are not
confidential, they are passed between activities without dynamic checking, but
getting a future value is checked by a reply transmission rule. In [2], the security
model guarantees data confidentiality for multi-level security (MLS) systems.
Our approach adds flow-sensitivity, which allows security levels of variables to
change during execution of an object. It makes our approach more permissive
and a wrapper deals with run-time security levels. In addition to enforcing the
non-interference property in object interactions, our approach guarantees that
an object will be given access only to the information that it is allowed to handle.

In [18], Nair et al. implement and design a run-time system, named Trishul,
to track the flow of information within the Java virtual machine (JVM). This
paper focuses on implicit and explicit flows through the Java control flows and
the architecture and does not enforce non-interference. Due to the Trishul’s
modular nature, our security wrappers can be deployed to prevent illegal flows.

Russo and Sabelfeld [23] prove that a sound flow-sensitive dynamic
information-flow enforcement is more permissive than static analysis. In [16],
the notion of wrappers is used to control the behavior of JavaScript programs
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and enforce security policies to protect web pages from malicious codes. A policy
specifies under which conditions a page performs a specific action, and a wrapper
grants, rejects, or modifies these actions. Moreover, the notion of wrappers has
been developed for the safety of objects [21], where the programmer needs to
specify which objects should have a wrapper and to program what each wrap-
per should do based on any input/output. In contrast, we apply wrappers to
security analysis, letting the runtime system automatically decide which com-
ponents should be wrapped, and also what the wrappers should do to prevent
illegal flows.

6 Conclusion

We have proposed a framework for enforcing secure information-flow and non-
interference in active object languages based on the notion of security wrappers.
We have considered a high-level core language supporting asynchronous calls and
futures. In our model, due to encapsulation, there is no need for information-
flow restrictions inside an object. Wrappers perform security checks for object
interactions (with methods and futures) at run-time. Furthermore, wrappers
control the access to futures with high values. Security rules of wrappers are
defined based on security levels of communicated messages. Inside an object,
the security levels of variables might change at run-time due to flow-sensitivity.
Wrappers on unsafe objects and future components protect exchange of confi-
dential values to low objects. Wrappers on objects protect outgoing method calls
and prevent leakage of information through outgoing parameters. The wrappers
are created automatically by the run-time system without the involved parties
being aware of it. Their behavior is also defined by the runtime system. We define
non-interference for our language and outline a proof of it. By combining results
from static analysis, we can improve run-time efficiency by avoiding wrappers
when they are superfluous according to the over-approximation of levels given
by the static analysis.
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Abstract. The long term privacy of voting systems is of increasing con-
cern as quantum computers come closer to reality. Everlasting privacy
schemes offer the best way to manage these risks at present. While homo-
morphic tallying schemes with everlasting privacy are well developed,
most national elections, using electronic voting, use mixnets. Currently
the best candidate encryption scheme for making these kinds of elections
everlastingly private is PPATC, but it has not been shown to work with
any mixnet of comparable efficiency to the current ElGamal mixnets. In
this work we give a paper proof, and a machine checked proof, that the
variant of Wikström’s mixnet commonly in use is safe for use with the
PPATC encryption scheme.
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1 Introduction

Traditional paper-based and electronic voting has many good properties, but
also limitations. A voter is not able to verify that her vote was counted as she
cast it, and confidentiality of the votes relies heavily on trust in the election
officials and procedures. In addition there are problems regarding for example
counting errors and accessibility. Verifiable electronic voting systems can solve
some of these issues. In particular, cryptographic techniques can be used to
provide public verifiability of election results and raise each individual voter’s
confidence in the privacy and integrity of her vote.

To achieve verifiable elections, encrypted votes are often published on a pub-
lic bulletin board, along with sophisticated cryptographic proofs that allow an
individual voter to verify that their ballot was not only listed on the bulletin
board, but also included correctly in the tally.

The votes are encrypted to provide confidentiality, which is usually considered
essential for a fair vote. Confidentiality requires votes to remain private not only
during the time of the election, but for all foreseeable future. However, due
to computers and algorithms getting faster and the potential introduction of
quantum computers, there is no way to safely predict how long it may take
c© Springer Nature Switzerland AG 2021
M. Asplund and S. Nadjm-Tehrani (Eds.): NordSec 2020, LNCS 12556, pp. 92–107, 2021.
https://doi.org/10.1007/978-3-030-70852-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70852-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-70852-8_6


Efficient Mixing of Arbitrary Ballots with Everlasting Privacy 93

before a ciphertext encrypted today is broken. Thus, the property of everlasting
privacy has been introduced.

Everlasting privacy is a property of electronic voting schemes where the infor-
mation released to the public perfectly (or information-theoretically) hides how
each voter voted, up to the outcome of the election. This means that regardless
of developments in practical computing power and algorithm design, individual
votes cannot be recovered from the public record.

Everlasting privacy is a subtle concept. In all systems that are practical
for large-scale voting, functional requirements mean that the voter will have to
encrypt their ballot and transmit this encryption to some infrastructure. The
subtlety is that this ciphertext is not part of the public record. This essen-
tially assumes that the potential powerful future attacker did not record the
network traffic, and is only working with the public record of the election. This
is in many cases a reasonable assumption. We emphasize that it is only privacy
against these potential future attackers that relies on this assumption. Com-
putationally secure cryptography still protects against adversaries with greater
network access. So schemes that provide everlasting privacy are no less secure
than conventional cryptographic voting schemes, but they have greater security
against future adversaries that work only from the public record.

There are various candidate constructions which achieve everlasting privacy
while maintaining verifiability. Most of the schemes are inspired by Cramer et
al.’s “Multi-Authority Secret-Ballot Elections with Linear Work” [3] and Moran
and Naor’s “Split-ballot voting: Everlasting privacy with distributed trust” [12].
In both cases perfectly hiding commitments are combined with zero knowledge
proofs to provide verifiability without leaking any information. In this work we
will focus on schemes in the style of [12] which are able to handle arbitrary
ballots rather than the homomorphic tally supported by [3].

Before the authorities perform the tally, the encrypted ballots need to be
decrypted. To ensure that privacy is preserved, the link between each ballot
and the voter who submitted the ballot is destroyed by running the ballots
through a mix net. Mix nets were first introduced by Chaum [2] and consist of
a finite sequence of authorities (mixers), each of which permutes (shuffles) and
hides the relationship between its inputs and its outputs. This style of schemes
is less developed than the homomorphic schemes, but have greater practical
implications since mixnet style schemes have been used in many of countries
who have voted electronically (Australia, Estonia, Norway, and Switzerland),
and where homomorphic counting is often hard to do.

The general idea in these schemes is to have a publicly verifiable part deal-
ing only with commitments to ballots. We achieve everlasting privacy by using
perfectly hiding commitments. However, somehow the ballots must be recovered
by the infrastructure, and this is done in a private part, typically working on
encrypted openings for the commitments. In this way, we get everlasting privacy.
Note that we only get computational integrity.

There are two encryption schemes which are commonly suggested for use in
this context, both involve first committing to the message and then encrypting
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the opening to the commitment. The schemes fit into a wider everlasting privacy
scheme with the perfectly hiding commitments being publicly shuffled and then
opened providing both verifiability and everlasting privacy; the encrypted open-
ings are shuffled by the authorities and then publicly posted. The first is the MN
encryption scheme from Moran and Naor [12] which is built on Paillier encryp-
tion [13] and Pedersen commitments [14]. The second is the PPATC encryption
from Cuvelier et al. [4] which uses ElGamal and Abe et al.’s [1] commitment
scheme. Since the latter encryption scheme can be instantiated on prime order
elliptic curves, rather than the semi-prime RSA groups of the former, it is sig-
nificantly faster.

Simple and efficient zero-knowledge proofs for correct encryption and decryp-
tion of both encryption schemes are known. An efficient mixnet for the MN
encryption scheme was proven by Haines and Gritti [11], but at present the
most efficient known mixnet for PPATC uses the general version of Terelius-
Wikström proof of shuffle [15] which proves statements over the integers using
Fujisaki-Okamoto commitments [6], based on an RSA modulus, which hampers
the efficiency of the mixnet. The reason is that every operation must happen
modulo the RSA modulus, which means that basic arithmetic is very slow. We
will use pairing groups, but we arrange it so that most of the group arithmetic
happens in a group where arithmetic is much faster, which means that Fujisaki-
Okamoto commitments will be slow compared to most of our arithmetic. In
practice everyone using the Terelius-Wikström proof of shuffle uses an optimised
variant which avoids the use of Fujisaki-Okamoto commitments. It is folklore that
the optimised variant of Terelius-Wikström works for wide class of encryption
schemes but the precise variant for each encryption scheme should be proven.

1.1 Contribution

We prove a variation of the optimised Terelius-Wikström shuffle [15] for the
PPATC encryption scheme [4]. This is essentially the optimised variation which
is widely used, and which avoids the use of Fujisaki-Okamoto commitments. In
addition we show how the Fiat-Shamir transform can be applied so that the
public proofs of correct shuffling can be trivially derived from the private proofs
of correct shuffling, nearly doubling the speed of mixing.

We provide a machine-checked proof using the interactive theorem prover
Coq. The machine-checked proof relies on recent work which shows that any
encryption scheme with certain properties works with the optimised Terelius-
Wikström shuffle. For completeness and human understanding, we also give a
straight-forward traditional paper proof.

2 Notation and Tools

We denote by G1 and G2 cyclic groups of large prime order q, and by Zq the field
of integers modulo q. Let An be the set of vectors of length n, with elements from
the set A. We denote vectors in bold, e.g. a. We denote by ai the ith element of
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the vector a. Sometimes, we will work with vectors that have tuples as elements.
In such cases, we also denote by ai the ith element of a, and by ai,j the jth
element of the tuple ai. Multiplication of tuples is elementwise multiplication,
that is, ab is the tuple where the ith element is aibi. We denote by An×n the set
of n × n-matrices with elements from the set A. Matrices will be denoted using
capital letters, e.g. M . We denote by Mi the ith column of M , by Mi,∗ the ith
row of M , and by Mi,j the element in row i and column j. A binary relation
for a set S of statements and a set W of witnesses is a subset of S × W and is
denoted by R.

Matrix Commitments. We now describe how to commit to a matrix using a
variation of Pedersen commitments [15]. We denote by Comγ,γ1(m, t) the Peder-
sen commitment of m ∈ Zq with randomness t ∈ Zq, i.e. Comγ,γ1(m, t) = γtγm

1

for group generators γ and γ1. To commit to a vector v ∈ Z
n
q , we compute

u = Comγ,γ1,··· ,γn
(v, t) = γt

∏n
i=1 γvi

i , where t is chosen at random from Zq, and
the γs are random group generators. If the commitment parameters are omitted,
it is implicit that they are γ, γ1, · · · , γn. An n × n matrix M is committed to
column-wise. For a matrix M ∈ Z

n×n
q and a vector t chosen at random from Z

n
q ,

we compute the commitment u of M as

u = Com(M, t) =
(
γt1Πn

i=1γ
Mi,1
i , . . . , γtnΠn

i=1γ
Mi,n

i

)
.

Abe Commitments. We now describe a perfectly hiding commitment scheme
due to Abe et al. [1], that is used in a construction of the PPATC encryption
scheme that we describe further down. Let Λsxdh = (q,G1,G2,GT , e, g, h) be a
description of bilinear groups, where g is a generator of G1, h is a generator of
G2 and e is an efficient and non-degenerate bilinear map e : G1 × G2 → GT .
We assume that the DDH problem is hard in both G1 and G2. In our notation,
an Abe commitment to a message m ∈ G1 is the tuple (hr1hr2

1 ,mgr2
1 ), where

r1 and r2 are random elements in Zq and g1 and h1 are random elements of
G1 and G2, respectively. An Abe commitment to m can be thought of as an
ElGamal encryption of m where the first coordinate is hidden in a Pedersen
commitment. An opening is of the form (gr1

1 ,m) which is valid if e(g, hr1hr2
1 ) =

e(gr1
1 , h)e(mgr2

1 /m, h1).

Polynomial Identity Testing. We will make use of the Schwartz-Zippel lemma
to analyze the soundness of our protocol. The lemma gives an efficient method
for testing whether a polynomial is equal to zero.

Lemma 1 (Schwartz-Zippel). Let f ∈ Zq[X1, ...,Xn] be a non-zero polyno-
mial of total degree d ≥ 0 over Zq. Let S ⊆ Zq and let x1, ..., xn be chosen
uniformly at random from S. Then Pr[f(x1, ..., xn) = 0] ≤ d/|S|.

3 Commitment Consistent Encryption

We now describe commitment consistent encryption (CCE), as defined by Cuve-
lier et al. [4]. The idea is that for any ciphertext, one can derive a commitment
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to that ciphertext, and the secret key can be used to obtain an opening to that
commitment. Furthermore, applied in a voting protocol, the idea is that the
voters compute a CC encryption of their ballot, and the authorities derive a
commitment to the ciphertext and post this commitment on a public bulletin
board. If the commitments are perfectly hiding, they can be used to provide a
perfectly private audit trail, which allows anyone to verify the correctness of the
count, but does not contain any information about who submitted which ballots.

Definition 1 (CC Encryption [4]). A commitment consistent encryp-
tion scheme Π is a tuple of six efficient algorithms (Gen,Enc,Dec,DeriveCom,
Open,Verify), defined as follows:

– Gen(1λ): on input a security parameter λ, output a triple (pp, pk, sk) of public
parameters, public key and secret key. The public parameter pp is implicitly
given as input to the rest of the algorithms.

– Encpk(m): output a ciphertext c, which is an encryption of a message m in
the plaintext space M (defined by pp) using public key pk.

– Decsk(c): for a ciphertext c in the ciphertext space C (defined by pp), output
a message m using secret key sk.

– DeriveCompk(c): From a ciphertext c, output a commitment d using pk.
– Opensk(c): from a ciphertext c, output an auxiliary value a, that can be con-

sidered as part of an opening for a commitment d.
– Verifypk(d,m, a): On input a message m and a commitment d wrt. public key

pk, and auxiliary value a, output a bit. The algorithm checks that the opening
(m,a) is valid wrt. d and pk.

Correctness. We expect that any commitment consistent encryption scheme
satisfies the following correctness property: For any triple (pp, pk, sk) out-
put by Gen, any message m ∈ M and any c = Encpk(m), it holds with
overwhelming probability in the security parameter that Decsk(c) = m and
Verifypk

(
DeriveCompk(c),Decsk(c),Opensk(c)

)
= 1.

The above definition does not guarantee that it is infeasible to create honest-
looking CCE ciphertexts that are in fact not consistent. To address this issue,
Cuvelier et al. [4] define the concept of validity augmentation (VA) for CCE
schemes. A validity augmentation adds three new algorithms Expand,Valid and
Strip to the scheme. The Expand algorithm augments the public key for use in the
other algorithms. The Valid algorithm takes as input an augmented ciphertext
cva along with some proofs of validity. It then checks whether it is possible to
derive a commitment and an encryption of an opening to that commitment. The
Strip algorithm removes the proofs of validity.

Definition 2 (Validity Augmentation [4]). A scheme Πva = (VA.Gen,
VA.Enc,VA.Dec,VA.DeriveCom,VA.Open,VA.Verify,Expand,Strip,Valid) is a vali-
dity augmentation of the CCE scheme Π = (Gen,Enc,Dec,DeriveCom,
Open,Verify) if the following conditions are satisfied:
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– Augmentation: VA.Gen runs Gen to obtain (pp, pk, sk) and outputs an updated
triple (ppva, pkva, skva) = (pp,Expand(pk), sk).

– Validity: Validpkva(cva) = 1 for all honestly generated public keys and cipher-
texts. In addition, for any PPT adversary A, the following probability is neg-
ligible in λ:

Pr[Validpkva(cva) = 1 ∧ ¬Verifypk(Strippkva(cva)) = 1

| c ← A(ppva, pkva); (ppva, pkva, skva) ← VA.Gen]

– Consistency: The values Strippkva(VA.encpkva(m)) and Encpk(m) are equally
distributed for all m ∈ M, i.e. it is possible to strip a validity augmented
ciphertext into a “normal” one. In addition, it holds, for all ciphertexts and
keys, that VA.Decskva(cva) = Decsk(Strippkva(cva)), that VA.Openskva(cva) =
Opensk(Strippkva(cva)) and that VA.Verifypkva(cva) = Verifypk(Strippkva(cva)). In
other words, the decryption, opening and verification for Πva is consistent
with those of Π.

3.1 The PPATC Encryption System

We now describe an augmented CCE system called PPATC (Perfectly Private
Audit Trail with Complex ballots). The system is defined as follows [4]:

– VA.Gen(1λ) : Generate Λsxdh = (q,G1,G2,GT , e, g, h) and random gen-
erators g1 = gx1 , g2 = gx2 ∈ G1 and h1 ∈ G2. Now, (pp, pk, sk) =
((Λsxdh, h1), (g1, g2), (x1, x2)). The augmented key pkva = Expand(pk) is com-
puted by adding a description of a hash function H with range Zq to the public
key, resulting in the triple (ppva = pp, pkva, skva = sk).

– VA.Encpkva(m; r) : Compute the CCE ciphertext c = Encpk(m; r) where
c = (c1, c2, c3, d1, d2) = (gr2 , gr3 , gr1

1 gr3
2 , hr1hr2

1 ,mgr2
1 ) and r = (r1, r2, r3) ∈

Z
3
q. Then compute the following validity proof. Select s1, s2, s3

r← Zq and
compute c′ = (c′

1, c
′
2, c

′
3, d

′
1) = (gs2 , gs3 , gs1

1 gs3
2 , hs1hs2

1 ). Compute νcc =
H(ppva, pkva, c, c′), f1 = s1 + νccr1, f2 = s2 + νccr2 and f3 = s3 + νccr3.
Let σcc = (νcc, f1, f2, f3). The ciphertext is cva = (c, σcc).

– VA.Decskva(cva) : Parse cva as (c1, c2, c3, d1, d2, σcc) and return d2/cx1
1 .

– VA.DeriveCompkva(cva) : Parse cva as (c1, c2, c3, d1, d2, σcc) and return (d1, d2).
– VA.Openskva(cva) : Parse cva as (c1, c2, c3, d1, d2, σcc) and return a = c3/cx2

2 .
– VA.Verifypkva(d1, d2,m, a) : Return 1 if e(g, d1) = e(a, h)e(d2/m, h1) and 0

otherwise.
– Validpkva(cva) : Parse cva as (c1, c2, c3, d1, d2, νcc, f1, f2, f3) and check if all

elements of cva are properly encoded. Compute c′
1 = gf2/cνcc

1 , c′
2 = gf3/cνcc

2 ,
c′
3 = gf1

1 gf3
2 /cνcc

3 and d′
1 = hf1hf2

1 /dνcc
1 . Return 1 only if

νcc = H(ppva, pkva, c1, c2, c3, d1, d2, c
′
1, c

′
2, c

′
3, d

′
1, d

′
2).

– Strippkva(cva): Parse cva as (c1, c2, c3, d1, d2, σcc) and return the CCE ciphertext
c = (c1, c2, c3, d1, d2) and the commitment d = (d1, d2).
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A CCE ciphertext c = Encpk(m; r) = (gr2 , gr3 , gr1
1 gr3

2 , hr1hr1
1 ,mgr2

1 ) can be re-
encrypted, by multiplying c with the encryption of 1 using randomness r′ =
(r′

1, r
′
2, r

′
3) ∈ Z

3
q. Thus, a ciphertext c′, where

c′ = c · Encpk(1; r′) = (gr2+r′
2 , gr3+r′

3 , g
r1+r′

1
1 g

r3+r′
3

2 , hr1+r′
1h

r2+r′
2

1 ,mg
r2+r′

2
1 ),

can be thought of as an encryption of m using randomness r + r′.

4 Shuffling Commitment Consistent Ciphertexts

In this section, we first describe how the PPATC can be used as a building
block in a voting system. We then give concrete protocols for shuffling PPATC
ciphertexts and their derived commitments, before describing how to apply the
Fiat-Shamir heuristic to make the shuffles non-interactive.

4.1 Using the PPATC Scheme in a Voting System

A validity augmented CCE scheme can be applied in an election as follows
[4]. First, a setup phase takes place, where the election authorities generate
encryption and decryption keys, as well as two bulletin boards PB and SB.
The public board PB will contain the public audit trail, while SB will contain
encrypted votes, be kept secret by the authorities and will be used to compute
the tally. To produce a ballot, each voter encrypts her vote using the PPATC
scheme, and sends the resulting ciphertext to the authorities. The ciphertext is
stored on SB and the derived commitment is stored on PB.

To preserve privacy, the link between voter and vote must be destroyed,
the list of ciphertexts on SB is shuffled. A shuffle of a list v of ciphertexts
is a new list v′, such that for all i = 1, . . . , n, v′

i = vπ(i) · Encpk(1; rπ(i)), where
π : {1, . . . , n} → {1, . . . , n} is a randomly chosen permutation. Thus, the two lists
v and v′ contain encryptions of the same plaintexts in permuted order. To also
provide verifiability, we keep track of the concordance between the ciphertexts
on SB and the corresponding commitments on PB. To achieve this, the list of
commitments on PB is also shuffled, using the same permutation as for SB.

The lists are shuffled several times, by a series of mix servers. It is necessary
that each mix server provides a proof of shuffle, to prove that he follows the pro-
tocol, and that the lists of ciphertexts in fact decrypt to the same plaintexts. For
our shuffle protocols we will use the optimised version of the Terelius-Wikström
shuffle presented by Haenni et al. [8], where a proof of shuffle consists of proving
knowledge of the permutation π and the random vector r used to re-encrypt the
ciphertexts. Thus, the tally procedure will proceed as follows:

1. Stripping : Algorithms Valid and Strip are run on the ciphertexts stored on SB
to obtain a vector v of n CCE ciphertexts and a vector d of the corresponding
commitments.
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2. Performing the shuffles: Each mix server selects a random permutation
π : {1, . . . , n} → {1, . . . , n}, also defining a permutation matrix M , and
computes a commitment u on that permutation matrix, along with a proof
of knowledge of the permutation. The mix server then selects a random vec-
tor r = ((r1,1, r1,2, r1,3), · · · , (rn,1, rn,2, rn,3)) and computes a new vector v′

where v′
i = vπ(i) · Encpk(1; rπ(i)), and rπ(i) = (rπ(i),1, rπ(i),2, rπ(i),3). Let the

last two components of each ciphertext v′
i form a vector d′. This vector is

posted on PB. Finally, the mix server computes two commitment consistent
proofs of shuffle, showing that v′ is a shuffle of v and d′ is a shuffle of d, with
respect to the permutation π.

3. Decryption of openings: The authorities verify the proofs and perform a
threshold decryption of the ciphertexts in v′. In addition, they run the algo-
rithm Open on these ciphertexts to obtain the auxiliary values for the com-
mitments. The plaintexts and the auxiliary values are posted on PB.

4.2 Proof of Shuffle on the Private Board

We begin with the shuffle on the private board, i.e. the shuffle of the CCE
ciphertexts. In the following, let Rcom be a relation between the commitment
parameters γ, γ1, ..., γn ∈ G1, m,m′ ∈ Z

n
q and t, t′ ∈ Zq which holds if and only if

Comγ,γ1,...,γn
(m, t) = Comγ,γ1,...,γn

(m′, t′) and m 	= m′. Let Rπ be the relation
between the commitment parameters γ, γ1, ..., γn, a commitment u ∈ G

n
1 , a

permutation matrix M ∈ Z
n×n
q and a randomness vector t ∈ Z

n
q which holds only

if u = Comγ,γ1,...γn
(M, t). Let Rshuf

ReEnc(pk, (v1, ..., vn), (v′
1, ..., v

′
n))(π, (r1, ..., rn)),

where π is a permutation of the set {1, ..., n}, be the relation which holds if and
only if v′

i = vπ(i) · Encpk(1; rπ(i)) for all i ∈ {1, ..., n}.

Theorem 1. Protocol 1 is a perfectly complete, 4-round special soundness, spe-
cial honest-verifier zero-knowledge proof of knowledge of the relation Rcom ∨
(Rπ ∧ Rshuf

ReEnc).

It is infeasible under the discrete log assumption to find a witness for Rcom,
so Theorem 1 implies a proof of knowledge for (Rπ ∧ Rshuf

ReEnc). To prove the
theorem, we now demonstrate the completeness of the protocol, as well as the
special soundness extractor and the special honest-verifier zero-knowledge simu-
lator. For brevity we omit parts of the paper proof. The full proof can be found
in the full version of our paper [7].

Special Soundness. We will follow the structure of Terelius and Wikström [15]
and split the extractor in two parts. In the first part, the basic extractor, we
show that for two accepting transcripts with the same w but different β, we can
extract witnesses for certain sub-statements. In the second part, the extended
extractor, we show that we can extract a witness to the main statement, given
witnesses which hold for these sub-statements, for n different w.
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Protocol 1. Interactive ZK-Proof of Shuffle on Private Board
Common Input: A public key pk, a matrix commitment u, commitment parameters

γ, γ1, ..., γn and ciphertext vectors v,v′ ∈ (G1 × G1 × G1 × G2 × G1)
n.

Private Input: Permutation matrix M ∈ Z
n×n
q and randomness t ∈ Z

n
q such that

u = Com(M, t). Randomness r ∈ (Zq×Zq×Zq)
n such that v′

i = vπ(i) ·Encpk(1; rπ(i))
for i = 1, ..., n.

1: V chooses a random w ∈ Z
n
q and sends w to P.

2: P computes w′ = (w′
1, ..., w

′
n) = Mw, and randomly chooses t̂ = (t̂1, . . . , t̂n), ẑ =

(ẑ1, ..., ẑn), z′ = (z′
1, ..., z

′
n) ∈ Z

n
q , z1, z2, z3 ∈ Zq and z̃ = (z̃1, z̃2, z̃3) ∈ Z

3
q. P defines

t = 〈1, t〉, t̃ = 〈t,w〉, t̂ = t̂n +

n−1∑

i=1

(
t̂i

n∏

j=i+1

w′
j

)
and

r′ =

(
n∑

i=1

ri,1wi,

n∑

i=1

ri,2wi,

n∑

i=1

ri,3wi

)
,

and sends the following elements to V (for i = 1, . . . , n):

û0 = γ1 ûi = γ t̂i(ûi−1)
w′

i a1 = γz1 a2 = γz2

a3 = γz3Πn
i=1γ

z′
i

i a4 = Encpk(1; z̃)Πn
i=1(v

′
i)

z′
i âi = γẑi(ûi−1)

z′
i .

3: V chooses a random challenge β ∈ Zq and sends β to P.
4: For i ∈ {1, . . . , n}, P responds with

b1 = z1 + β · t b2 = z2 + β · t̂ b3 = z3 + β · t̃

b̃ = z̃ − β · r′ b̂i = ẑi + β · t̂i b′
i = z′

i + β · w′
i.

5: V accepts if and only if, for i ∈ {1, . . . , n}

a1 = (Πn
i=1ui/Πn

i=1γi)
−β · γb1 a2 = (ûn/γ

Πn
i=1wi

1 )−β · γb2

a3 = (Πn
i=1u

wi
i )−β · γb3 · Πn

i=1γ
b′
i

i a4 = (Πn
i=1v

wi
i )−β · Encpk(1; b̃) · Πn

i=1(v
′
i)

b′
i

âi = (ûi)
−β · γ b̂i · (ûi−1)

b′
i

Basic Extractor. Given two accepting transcripts

(w, û, a1, a2, a3, a4, â, β, b1, b2, b3, b̃, b̂,b′)

(w, û, a1, a2, a3, a4, â, β∗, b∗
1, b

∗
2, b

∗
3, b̃

∗, b̂
∗
,b′∗)

where β 	= β∗, the basic extractor computes

t = (b1 − b∗
1)/(β − β∗) t̂ = (b2 − b∗

2)/(β − β∗) t̃ = (b3 − b∗
3)/(β − β∗)

t̂
′
= (b̂ − b̂

∗
)/(β − β∗) w′ = (b′ − b′∗)/(β − β∗) r′ = (b̃ − b̃∗)/(β − β∗)
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We will prove that

Πn
i=1ui = Com(1, t), Πn

i=1u
wi
i = Com(w′, t̃), Πn

i=1v
wi
i = Πn

i=1(v
′
i)

w′
i · Encpk(1;−r′),

ûi = Comγ,ûi−1 (w
′
i, t̂

′
i) and ûn = Comγ,γ1

(
Πn

i=1wi, t̂
)
.

The proof consists of algebraic manipulations:

Πn
i=1ui =

(
(Πn

i=1ui)β · a1

(Πn
i=1ui)β∗ · a1

) 1
β−β∗

= γ
b1−b∗

1
β−β∗ · Πn

i=1γi = Com(1, t).

Πn
i=1u

wi
i =

(
(Πn

i=1u
wi
i )β · a3

(Πn
i=1u

wi
i )β∗ · a3

) 1
β−β∗

= γ
b3−b∗

3
β−β∗ · Πn

i=1γ
b′
i−b′∗

i
β−β∗

i = Com(w′, t̃).

Πn
i=1v

wi
i =

(
(Πn

i=1v
wi
i )β · a4

(Πn
i=1v

wi
i )β∗ · a4

) 1
β−β∗

= Πn
i=1(v

′
i)

b′
i−b′∗

i
β−β∗ · Encpk

(

1;
b̃ − b̃∗

β − β∗

)

= Πn
i=1(v

′
i)

w′
i · Encpk(1;−r′).

ûi = γ
b̂i−b̂∗

i
β−β∗ · (ûi−1)

b′
i−b′∗

i
β−β∗ = γ t̂′

i · (ûi−1)w′
i = Comγ,ûi−1(w

′
i, t̂

′
i).

ûn = γ
b2−b∗

2
β−β∗ · γ

Πn
i=1wi

1 = γ t̂ · γ
Πn

i=1wi

1 = Comγ,γ1(Π
n
i=1wi; t̂).

Thus, all the equations are satisfied.

Extended Extractor. The extended extractor takes, for one statement, n different
witnesses extracted by the basic extractor, and produces a witness for the main
statement. Let t, t̂, t̃ ∈ Z

n
q , r′ ∈ (Zq × Zq × Zq)n and T̂ ′,W ′ ∈ Z

n×n
q be the

collective output from the n runs of the basic extractor, extracted from challenges
W ∈ Z

n×n
q . Let Wj be the jth column of W , i.e. the challenge vector from

the jth run of the basic extractor. The challenge vectors are sampled from a
uniform distribution, but since the cheating prover may not succeed with uniform
probability for all challenge vectors, the final distribution of challenge vectors
is non-uniform. However, since the adversary has a significant probability of
success, any set of challenge vectors with a significant success probability must
be much larger than the set of non-invertible matrices. It follows that the columns
of W will be linearly independent with overwhelming probability.

Thus, W will, with overwhelming probability, have an inverse. We call this
inverse A. For such matrix A, we have that WAk is the kth standard unit vector
in Z

n
q , where Ak is the kth column of A. We see that

uk = Πn
i=1u

WAk
i = Πn

i=1

(
Πn

j=1u
Wi,jAj,k

i

)
= Πn

j=1Com(W ′
j , t̃j)

Aj,k

= Πn
j=1Com(W ′

jAj,k, t̃jAj,k) = Com(W ′Ak, 〈t̃, Ak〉).
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Thus, we can open u to a matrix M , where Mk = W ′Ak is committed to using
randomness 〈t̃, Ak〉. We expect M to be a permutation matrix. If it is not, we
can find a witness breaking the binding property of the commitment scheme. We
extract this witness in two different ways, depending on whether or not M1 = 1.

If M1 	= 1, let w′′ = M1. We note that w′′ 	= 1 and that Com(1, tj) =
Πn

i=1ui = Com(w′′, t̃A), meaning that we have found a witness violating the
binding property of the commitment scheme.

Now assume that M1 = 1. Terelius and Wikström [15] prove that M is a
permutation matrix if and only if M1 = 1 and Πn

i=1〈Mi,x〉 = Πn
i=1xi for a

vector x ∈ Z
n
q of independent elements. This fact, along with the Schwartz-

Zippel lemma and the assumptions that M1 = 1 and that M is not a permu-
tation matrix, implies that there exists, with overwhelming probability, some
j ∈ {1, ..., n} such that Πn

i=1〈Mi,∗,Wj〉 − Πn
i=1Wi,j 	= 0. As this is true with

overwhelming probability, we assume that it is true and rewind if not. Now let
w′′ = MWj . Note that Πn

i=1W
′
i,j = Πn

i=1Wi,j and that Πn
i=1Wi,j 	= Πn

i=1w
′′
i .

The equality follows from the base statements, and the inequality follows from
the Schwartz-Zippel lemma and the definition of w′′. Together, these facts imply
that w′′ 	= W ′

j .
We also see that Com(W ′

j , t̃j) = Πn
i=1u

Wi,j

i = Com(w′′, 〈t̃A,Wj〉). Since w′′ 	=
W ′

j , this means that we have found a witness violating the binding property of
the commitment scheme. We conclude that either M is a permutation matrix,
or the binding property of the commitment scheme does not hold. We conclude
further that we either violate the binding property of the commitment scheme,
or we have that w′′ = Wj , meaning that W ′

j = MWj , for all j ∈ {0, ..., n}.

4.3 Proof of Shuffle on the Public Board

A verifiable shuffle for the public board is given in Protocol 2. Note that it
is very similar to the shuffle in Protocol 1. The difference is that on the pub-
lic board, the shuffle is performed on the two last components of each cipher-
text, rather than on the full ciphertext. Let Rπ and Rcom be as in Sect. 4.2.
Let Rshuf

ReRand(pk,d,d′)(π, r′), where π is a permutation on {1, . . . , n}, be the
relation which holds if d′

i = ReRand(dπ(i); r′
π(i)) for all i ∈ {1, . . . , n}, where

ReRand(di; r′
i) = (hri,1+r′

i,1h
ri,2+r′

i,2
1 ,mg

ri,2+r′
i,2

1 ) for di = (hri,1h
ri,2
1 ,mg

ri,2
1 ) and

random r, r′ ∈ (Zq × Zq)n.

Theorem 2. Protocol 2 is a perfectly complete, 4-round special soundness, spe-
cial honest-verifier zero-knowledge proof of knowledge of the relation Rcom ∨
(Rπ ∧ Rshuf

ReRand).

The proof is very similar to the proof of Theorem 1 and will be omitted.

4.4 Applying the Fiat-Shamir Heuristic

We now describe how we can make the shuffle non-interactive, by applying the
Fiat-Shamir heuristic [5]. The main idea is to replace the challenges sent by the
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verifier (in step 1 and 3) by a call to some hash function, making the challenges
look random. This is straight-forward, but we do not want to run the argument
twice, once for the public board and once for the private board. We want to
have only one computation. It is easy to see that the interactive public board
argument can be extracted from the interactive private board argument, but
applying Fiat-Shamir is not straight-forward now, since different knowledge is
available in the two cases.

The idea is to use a nested hash function for the private board argument,
and then provide the inner hash value as part of the public board argument.
This allows us to extract the public board argument from the private board
argument by replacing the knowledge that is not present on the public board
by their hash value. In order to ensure that no knowledge leaks, we actually
commit to the hash of the private values, so that we can prove that the hash
value does not contain any information about the private values. This is safe,
since commitments are binding.

To obtain w, we first hash the parts of the common input on the private
board that is not part of the common input on the public board, i.e. the first
three components of the CCE ciphertexts. We then commit to this hash, and
hash the commitment along with the part of the common input that is also
present on the public board. The challenge w is set to be this second hash value.
The commitment is posted on the public board and opened on the private board.

The challenge β is obtained in a similar manner. We first hash the information
on the private board that is not present on the public board, commit to this hash,
post the commitment on the public board and then open the commitment on the
private board. Further, the commitment is hashed along with the information
on the private board that is also present on the public board. This hash is set
to be the challenge value β.

5 Machine Checked Proof

Having given a paper proof of the mixnet we now turn our attention to the
machine checked proof. One approach would be to codify the above paper proof
in an interactive theorem prover. However, codifying such proofs is a complex
process, so instead we reuse previous work. The idea is that our variant of the
mixnet has a machine checked proof. The gap is that the mixnet is not proved
for our particular encryption scheme. But the existing proof applies to a large
class of encryption schemes. We need only prove that our scheme is in this class,
after which we know that the general results also applies to our concrete mixnet.

For the machine checked proof we will make use of the interactive theorem
prover Coq. Our work expands upon Haines et al. [10]; who demonstrated how
interactive theorem provers and code extraction can be used to gain much higher
confidence in the outcome of elections; they achieved this by using the interac-
tive theorem prover Coq and its code extraction facility to produce verifiers,
for verifiable voting schemes, with the verifiers proven to be cryptographically
correct. They also showed that it was possible to verify the correctness (com-
pleteness, soundness and zero-knowledge) of a proof of correct shuffle. Their work
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Protocol 2. Interactive ZK-Proof of Shuffle on Public Board
Common Input: A public key pk, a matrix commitment u, commitment parameters

γ, γ1, ..., γn and vectors d,d′ ∈ (G2 × G1)
n.

Private Input: Permutation matrix M ∈ Z
n×n
q and randomness t ∈ Z

n
q such that

u = Com(M, t). Randomness r ∈ (Zq × Zq)
n such that d′

i = ReRand(dπ(i), rπ(i))
for i = 1, ..., n.

1: V chooses a random w ∈ Z
n
q and sends w to P.

2: P computes w′ = (w′
1, ..., w

′
n) = Mw, and randomly chooses t̂ = (t̂1, . . . , t̂n), ẑ =

(ẑ1, ..., ẑn), z′ = (z′
1, ..., z

′
n) ∈ Z

n
q , z1, z2, z3 ∈ Zq and z̃ = (z̃1, z̃2) ∈ Z

2
q. P defines

t = 〈1, t〉, t̃ = 〈t,w〉, t̂ = t̂n +

n−1∑

i=1

(
t̂i

n∏

j=i+1

w′
j

)
and

r′ =

(
n∑

i=1

ri,1wi,

n∑

i=1

ri,2wi

)
,

and sends the following elements to V (for i = 1, . . . , n):

û0 = γ1 ûi = γ t̂i(ûi−1)
w′

i a1 = γz1 a2 = γz2

a3 = γz3Πn
i=1γ

z′
i

i a4 = (hz̃1hz̃2
1 , gz̃2

1 )Πn
i=1(d

′
i)

z′
i

âi = γẑi(ûi−1)
z′

i .

3: V chooses a random challenge β ∈ Zq and sends β to P.
4: For i ∈ {1, . . . , n}, P responds with

b1 = z1 + β · t b2 = z2 + β · t̂ b3 = z3 + β · t̃

b̃ = z̃ − β · r′ b̂i = ẑi + β · t̂i b′
i = z′

i + β · w′
i.

5: V accepts if and only if, for i ∈ {1, . . . , n}

a1 = (Πn
i=1ui/Πn

i=1γi)
−β · γb1 a2 = (ûn/γ

Πn
i=1wi

1 )−β · γb2

a3 = (Πn
i=1u

wi
i )−β · γb3 · Πn

i=1γ
b′
i

i

a4 = (Πn
i=1d

wi
i )−β · (hb̃1hb̃2

1 , gb̃2
1 ) · Πn

i=1(d
′
i)

b′
i

âi = (ûi)
−β · γ b̂i · (ûi−1)

b′
i

was subsequently expanded upon by [9] who removed a number of limitations
in the original work and expanded the result. Specifically they proved that for
any encryption scheme that falls within a class, which they formally defined,
it can be securely mixed in the optimised variant of Wikström’s mixnet. We
exploit this result by proving that PPATC falls within this class and hence can
be verifiably mixed by Wikström’s mixnet. Note that the mixnet generated in
the Coq code is equivalent to Protocol 1.
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In the rest of this section we will present our work in standard notation.
Interested readers can find the Coq code at https://github.com/gerlion/secure-
e-voting-with-coq. We begin by proving that the ciphertext space is a group.
Let G1 and G2 represent the elements of the two groups of the bilinear pairing
both of which are of prime order p. We let the set S of the ciphertext space equal
G1 × G1 × G1 × G2 × G1. All operations are performed pairwise and the group
axioms are satisfied trivially.

We then show that the ciphertext group is isomorphic to a vector space over
the field of integers modulo p. This follows directly from the fact that two groups
of the same order are themselves isomorphic to vector spaces over the field of
integers modulo p. We are now ready to define the encryption scheme. Beyond
the groups already mentioned we denote the field of integers modulo p as F.

Key generation space := G1 × G2 × G2 × F × F.
Public key space := G1 × G2 × G2 × G1 × G1.
Secret key space := F × F.
Message space := G1.
Randomness space := F × F × F.
Key generation := On input (g, h, h1, x1, x2) from key generation space output

public key (g, h, h1, g
x1 , gx2) and secret key (x1, x2)

Encryption := On input public key (g, h, h1, y1, y2), message m, and random-
ness (r1, r2, r3) and output ciphertext (gr1 , gr2 , yr2

2 gr3 , hr3hr1
1 , yr1

1 m).
Decryption := Given secret key (x1, x2) and ciphertext (c1, c2, c3, c4, c5) and

return c5/cx1
1 .

To show that the encryption scheme can be correctly mixed we need to prove
the three theorems stated below. We also require the vector space properties
for the spaces defined above, see the Coq code for a formal definition of these
properties.

Lemma correct : forall (kgr : KGR)(m : M)(r : Ring.F),
let (pk,sk) := keygen kgr in
dec sk (enc pk m r) = m.

Theorem 3. Correctness: ∀kgr ∈ Key generation space,m ∈
Message space, r ∈ Randomness space, (pk, sk) = Key generation(kgr),
Decryption(sk Encryption(pk m r)) = m.

The correctness of PPATC follows directly from the correctness of ElGamal.

Lemma homomorphism : forall (pk : PK)(m m’ : M)(r r’ : Ring.F),
C.Gdot (enc pk m’ r’)(enc pk m r) =
enc pk (Mop m m’) (Ring.Fadd r r’).

Theorem 4. Homomorphism: ∀pk ∈ Public key space,m m′ ∈ Message space,
r r′ ∈ Randomness space,
Encryption(pk m r) × Encryption(pk m′ r′) = Encryption(pk (m · m′) (r ∗ r′))

The homomorphic property of PPATC follows from the homomorphic properties
of ElGamal and Abe et al.’s commitments.

https://github.com/gerlion/secure-e-voting-with-coq
https://github.com/gerlion/secure-e-voting-with-coq
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Lemma encOfOnePrec : forall (pk : PK)(a : Ring.F)(b: F),
(VS.op (enc pk Mzero a) b) = enc pk Mzero (MVS.op3 a b).

Theorem 5. Encryption of one preserved: ∀pk ∈ Public key space, r r′ ∈
Randomness space, Encryption(pk 1 a)b = Encryption(pk 1 (a ∗ b)).

To see that this property holds, first consider a PPATC ciphertext
encrypting zero (gr1 , gr2 , yr2

2 gr3 , hr3hr1
1 , yr1

1 ). Now observe that raising it
to any power a is an encryption of one with randomness (r1a, r2a, r3a),
(gr1 , gr2 , yr2

2 gr3 , hr3hr1
1 , yr1

1 )a = (gr1a, gr2a, yr2a
2 gr3a, hr3ahr1a

1 , yr1a
1 ).

This suffices for a proof that the PPATC scheme can be safely mixed by the
optimised variant of the Wikström’s mixnet. Readers will have noted that we
proved the scheme for any pair of groups with the same prime order. Techni-
cally, we didn’t even require that there exists a bilinear pairing between them,
though this would be required to get the verifiable component of the Abe et al.
commitments to work. The current work could be extracted into OCaml code
and appropriate groups provided to check election transcripts. However, further
work is ongoing in Coq to allow these groups to be instantiated within Coq.

6 Conclusion

We have given a paper proof for a variant of the optimised Wikström’s mixnet
for the PPATC encryption scheme. This is a useful result for anyone wanting
to build an efficient e-voting scheme with everlasting privacy which can handle
arbitrary ballots. In addition we provide a machine checked proof of the mixnet.

Acknowledgments. This work was supported by the Luxembourg National Research
Fund (FNR) and the Research Council of Norway for the joint project SURCVS.
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Abstract. Functional Encryption (FE) allows users who hold a specific
secret key (known as the functional key) to learn a specific function of
encrypted data whilst learning nothing about the content of the under-
lying data. Considering this functionality and the fact that the field of
FE is still in its infancy, we sought a route to apply this potent tool
to solve the existing problem of designing decentralised additive repu-
tation systems. To this end, we first built a symmetric FE scheme for
the �1 norm of a vector space, which allows us to compute the sum of
the components of an encrypted vector (i.e. the votes). Then, we uti-
lized our construction, along with functionalities offered by Intel SGX,
to design the first FE-based decentralized additive reputation system
with Multi-Party Computation. While our reputation system faces cer-
tain limitations, this work is amongst the first attempts that seek to
utilize FE in the solution of a real-life problem.

Keywords: Functional Encryption · Multi-client · Multi-input ·
Multi-Party Computation · Reputation system

1 Introduction

Functional Encryption (FE) is an emerging cryptographic technique that allows
selective computations over encrypted data. FE schemes provide a key genera-
tion algorithm that outputs decryption keys with remarkable capabilities. More
precisely, each decryption key FK is associated with a function f . In contrast
to traditional cryptographic techniques, using FK on a ciphertext Enc(x) does
not recover x but the function f(x) – thus keeping the actual value x private.
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While the first definition of FE allowed the decryption of a single ciphertext per
decryption, more recent works [12] introduced the more general notion of multi-
input FE (MIFE). In a MIFE scheme, given ciphertexts Enc(x1), . . . ,Enc(xn),
a user can use FK to recover f(x1, . . . , xn). This new definition, seems to make
MIFE a perfect fit in many real-life applications.

Having identified the importance of FE and believing that it is a family of
modern encryption schemes that can push us into an uncharted technological
terrain, we try to make a first attempt to smooth out the identified asymmetries
between theory and practice. To do so, we first design a MIFE scheme for the �1
norm of a vector space based on [1]. Then, using our MIFE scheme we attempt
a first approach in embedding FE into the design of a decentralized additive
reputation system [10].

In particular, we show how MIFE can be leveraged to construct privacy-
preserving decentralized additive reputation systems. A reputation system rates
the behaviour of each user, based on the quality of the provided service(s),
and gives information to the community in order to decide whether to trust an
entity in the network. Furthermore, the absence of schemes that provide privacy
in decentralized environments, such as ad-hoc networks, is even greater [10]. Our
focus is on how to utilize FE and extend existing techniques in order to use this
cryptographic primitive to solve the problem of casting and collecting votes in a
privacy-preserving way.

Contribution: The contribution of this paper is twofold:

C1 First, we design a MIFE scheme in the symmetric key setting for the �1 norm
of a vector, based on the single-client MIFE for inner products presented
in [1]. Then, we show how our scheme can be transformed from the single-
client to the multi-client setting. This transformation requires the users to
perform a Multi-Party Computation (MPC). More precisely, each user gen-
erates their own symmetric keys independently and then they collaborate
to calculate a functional decryption key skf that is derived from a combi-
nation of all the generated symmetric keys. This result is quite remarkable
since users generate their private keys locally and independently. As a result,
their symmetric keys are never exposed to unauthorized parties, and thus
no private information about the content of the underlying ciphertexts is
revealed. At the same time, sufficient information to generate the functional
decryption key is provided.

C2 Our second contribution derives from the identified need to create a dia-
logue between the theoretical concept of FE and real life applications. As
a result, we tried to provide a pathway towards new prospects that show
the direct and realistic applicability of this promising encryption technique
when applied to concrete obstacles. To this end, we showed how our MIFE
scheme can be used to provide a solution to the problem of designing an
additive reputation system. More specifically, we use our Multi-client MIFE
to design a protocol that preserves the privacy of votes in decentralized envi-
ronments. The protocol allows n participants to securely cast their ratings
in a way that preserves the privacy of individual votes. More precisely, we
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analyze the protocol and prove that it is resistant to collusion even against
up to n − 1 corrupted insiders.

2 Related Work

Functional Encryption: While numerous studies with general definitions and
generic constructions of FE have been proposed [4,8,12–14,18] there is a clear
lack of work proposing FE schemes supporting specific functions – a necessary
step that would allow FE to transcend its limitations and provide the founda-
tions for reaching its full potential. To the best of our knowledge, the only works
that have shown how to efficiently run specific functions on ciphertexts is [1,2]
which calculates inner-product and [17] which successfully executes computa-
tions with quadratic polynomials. While [1] and [8] are symmetric FE schemes
(i.e. efficient), their actual application in real-life scenarios can be considered as
limited since both are limited to supporting the single-client model. Our work
is heavily influenced by the symmetric key MIFE scheme for inner products
presented in [1] where authors designed a scheme that can be regarded as the
FE equivalent of the one-time-pad and by [7], where two different FE-based
applications are presented. In particular, in [7], authors presented a Function-
ally Encrypted private database, and an Order Revealing Encryption scheme
that can be leveraged to design Symmetric Searchable Encryption schemes with
range queries support [5,6]. More precisely, using [1] as a basis, we constructed
a symmetric key MIFE scheme for the �1 norm of an arbitrary vector space.
Most importantly, we show that our construction can also support the multi-
client model while preserving exactly the same security properties as the MIFE
for inner-product in [1]. This is a significant result as it proves that functional
encryption can be efficiently applied to solve more complex problems.

Reputation Systems: In [16], authors designed a privacy-preserving reputa-
tion system and according to them “The logic of anonymous feedback to a rep-
utation system is analogous to the logic of anonymous voting in a political sys-
tem”. To ensure the confidentiality of the votes, authors use primitives such
as the secure sum and verifiable secret sharing. In [15], a new approach was
presented based on homomorphic encryption and zero-knowledge proofs. In par-
ticular, authors proved that by using their construction, the privacy of a user
can be preserved even in the presence of multiple malicious adversaries. In [10]
authors presented two protocols with similar architecture as in [15]. However,
their constructions were significantly more efficient since they did not rely on
homomorphic encryption, while at the same time, they reduced the number of
the exchanged messages. Despite the efficiency of these approaches, it is our firm
belief that functional encryption is a cryptographic paradigm that squarely fits
the field of reputation systems, and it has all the necessary traits to provide
more a well-rounded and versatile solution. Having identified this research gap
in the field, we present a description of a reputation system based on a MIFE
scheme that can efficiently calculate the sum of multiple encrypted numbers.
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3 Preliminaries

Notation: If Y is a set, we use y
$←− Y if y is chosen uniformly at random

from Y. The cardinality of a set Y is denoted by |Y|. For a positive integer m,
[m] denotes the set {1, . . . , m}. If m ∈ Z, we denote by m[i] the digit in the
i-th position of m where m[0] is the rightmost digit. The number of digits of
m in base n is �lognm� + 1. Vectors are denoted in bold as x = [x1, . . . , xn]. A
probabilistic polynomial time (PPT) adversary ADV is a randomized algorithm
for which there exists a polynomial p(z) such that for all input z, the running
time of ADV(z) is bounded by p(|z|). A function negl(·) is called negligible if
∀ c ∈ N,∃ ε0 ∈ N such that ∀ ε ≥ ε0 : negl(ε) < ε−c. A probabilistic polynomial
time (PPT) adversary ADV is a randomized algorithm for which there exists a
polynomial p(z) such that for all input z, the running time of ADV(z) is bounded
by p(|z|). A function negl(·) is called negligible if ∀ c ∈ N,∃ ε0 ∈ N such that
∀ ε ≥ ε0 : negl(ε) < ε−c.

Users, which in our scenario will be voters, are denoted by U = {u1, . . . u�}.
The universe of votes is V = {v1, . . . , v�}. We assume a star-based system in
the likes of well-known applications such as AirBnb and ebay. However, we let
the number of stars be an a set ST = {n1, . . . , nk} of arbitrary cardinality.
Hence, if a user wishes ui wishes to rate another user with j stars, then ui’s
vote is vi = nj . We now proceed with the definition of a decentralized additive
reputation system, as described in [16]

Definition 1. A reputation system R is said to be a Decentralized Additive Rep-
utation System, if it satisfies the following two requirements:

1. Feedback collection, combination and propagation are implemented in a decen-
tralized way.

2. Combination of feedbacks provided by the users is calculated in an additive
manner.

Definition 2 (Inner Product). The inner product (or dot product) of Zn is
a function 〈, 〉 defined by:

f(x,y) = 〈x,y〉 = x1y1 + · · · + xnyn, for x = [x1, . . . , xn],y = [y1, . . . , yn] ∈ Z
n

Definition 3. (�1 norm). The �1 norm of Zn is a function ‖·‖1 defined by:

f(x) = ‖x‖1=
i=n∑

i=1

xi = x1 + · · · + xn, for x = [x1, . . . , xn] ∈ Z
n

From Definitions 2 and 3, it follows directly that if x = [x1, . . . , xn] ∈ Z
n and

y = [1, . . . , 1] ∈ Z
n then 〈x,y〉 = x1 · 1 + · · · + xn · 1 =

∑n
i=1 xi = ‖x‖1.

Below, we define MIFE in the symmetric key setting. Note that while this
definition suits the single-client model, it is inadequate for a multi-client setup.
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Definition 4 (Multi-Input Functional Encryption in the Symmetric
Key Setting). Let F = {f1, . . . , fn} be a family of n-ary functions where each
fi is defined as follows: fi : Zn → Z. A multi-input functional encryption scheme
for F consists of the following algorithms:

– Setup(1λ): Takes as input a security parameter λ and outputs a secret key
K = [k1, . . . , kn] ∈ Z

n.
– Enc(K, i, xi) : Takes as input K, an index i ∈ [n] and a message xi ∈ X and

outputs a ciphertext cti.
– KeyGen(K): Takes as input K and outputs a functional decryption key FK1.
– Dec(FK, ct1, . . . , ctn): Takes as input a decryption key FK for a function fi

and n ciphertexts and outputs a value y ∈ Y.

For the needs of our work, we borrow the one-adaptive (one-AD) and one-
selective (one-SEL) security definitions from [1] that were first formalized in [3].
Informally, in the one-AD-IND security game, the adversary ADV receives the
encryption key of the MIFE scheme and then adaptively queries the correspond-
ing oracle for functional decryption keys of her choice. Furthermore, ADV out-
puts two messages x0 and x1 to the encryption oracle, who flips a random coin
and outputs an encryption of xβ , β ∈ {0, 1}. If the functional keys are associated
with functions that do not distinguish between the messages (i.e.f(x0) = f(x1))
then ADV should not be able to distinguish between the encryption of x0 and
x1. In the case of the one-SEL-IND security, the game is identical to the one-
AD-IND case, with the only difference being that ADV needs to decide on the
x0 and x1 messages before seeing the encryption key. The “one” in both security
games determines that the encryption oracle can only be queried once for each
slot i (i.e. the adversary is not allowed to issue multiple queries to the encryption
oracle for the same xi).

Definition 5 (one-AD-IND-secure MIFE). For every MIFE scheme for F ,
every PPT adversary ADV, and every security parameter λ ∈ N we define the
following experiment for β ∈ {0, 1}:
Adaptive Security

one-AD-INDMIFE
β (1λ, ADV):

K ← Setup(1λ)
α ← ADVKeyGen(K),Enc(·,·,·)
Output α

Where Enc(·, ·, ·) is an oracle that on input (i, x0
i , x

1
i ), flips a random coin β

and outputs Enc(K, i, xβ
i ), β ∈ {0, 1}. Moreover, ADV is restricted to only make

queries to the KeyGen oracle satisfying f(x0
1, . . . , x

0
n) = f(x1

1, . . . , x
1
n). A MIFE

1 In the literature, this algorithm can often be found as KeyGen(K, f) where it outputs
an FK for a specific function f . This is the case, with the MIFE scheme from [1]
presented in Sect. 4. In our case, we only work with one function, so we can omit
the f term in the definition of the algorithm.
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scheme is said to be one-AD-IND secure if for all PPT adversaries ADV, their
advantage is negligible in λ where the advantage is defined as:

Advone−AD−IND(λ,ADV) =
|Pr[one-AD-INDMIFE

0 (1λ,ADV) = 1] − Pr[one-AD-INDMIFE
1 (1λ,ADV) = 1]|

Definition 6 (one-SEL-IND-secure MIFE). For every MIFE scheme for
F , every PPT adversary ADV, and every security parameter λ ∈ N we define
the following experiment for β ∈ {0, 1}:
Selective Security

one-SEL-INDMIFE
β (1λ, ADV):

{xb
i}i∈[n],b∈{0,1} ← ADV(1λ, fi)

K ← Setup(1λ)

cti = Enc(K, xβ
i )

α ← ADVKeyGen(K)({cti})
Output α

ADV is restricted to only make queries to the KeyGen oracle satisfying
f(x0

1, . . . , x
0
n) = f(x1

1, . . . , x
1
n). A MIFE scheme is said to be one-SEL-IND secure

if for all PPT adversaries ADV, their advantage is negligible in λ where the
advantage is defined as:

Advone−SEL−IND(λ, ADV) =

|Pr[one-SEL-INDMIFE
0 (1λ, ADV) = 1] − Pr[one-SEL-INDMIFE

1 (1λ, ADV) = 1]|

Trusted Execution Environments: A Trusted Execution Environment
(TEE) is a secure, integrity-protected environment, with processing, memory
and storage capabilities, isolated from an untrusted, Rich Execution Environ-
ment that comprises the OS and installed applications. While there are several
different TEEs in our work we rely on the use Intel SGX whose main functional-
ities are (1) Isolation, (2) Sealing and (3) Attestation. Due to space constraints,
we ommit their formal description (more details can be found in [9]).

4 Multi-Input Functional Encryption for the �1 Norm

In this section, we present the first result and an important contribution of our
work. In particular, in the first part of this section, we design a MIFE scheme
for the �1 norm based on the construction presented in [1], while preserving
exactly the same security properties. Then, we show how we can transform our
construction from the single-client model to the multi-client one. The security of
our MIFE schemes, is derived from the fact that they behave as the functional
encryption equivalent of the one-time-pad. Note that, just like in the case of the
one-time-pad, to achieve perfect secrecy, we require that |ki|≥ |xi|, where ki is
the encryption key and xi, the message to be encrypted. Our construction is
illustrated in Fig. 1. Since our construction is a special case of the scheme in
Fig. [1], it is straight forward that the security proof of our scheme will be very
similar to the one presented in [1].
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Fig. 1. one-AD-IND-secure MIFE for the �1 norm (MIFE�1).

Theorem 1. The MIFE scheme for the �1 norm (described in Fig. 1) is one-
AD-IND-secure. That is, for all PPT adversaries ADV:

Advone−AD−IND
ADV (λ) = 0

Proof. The proof consists of two parts. First we construct a selective distin-
guisher B whose advantage for the one-SEL-IND experiment is an upper bound
for the advantage of any adaptive distinguisher ADV. Then, using the fact that
the MIFE for the �1 norm behaves like the one-time-pad, we prove that the
advantage of B is zero.

For the first part of the proof we will use a complexity argument. In particu-
lar, let B be an adversary that guesses the challenge {xb

i} and then simulates the
one-AD-IND experiment of ADV. If B successfully guesses ADV’s challenge then
she can simulate ADV’s view. Otherwise it outputs ⊥. Hence, ADV’s advantage
maximizes when B guesses correctly the challenge. If the input space is X , then
B can guess successfully with probability exactly |X |−1. Hence:

Advone−AD−IND
ADV ≤ |X|−1Advone−SEL−IND

B

From the above, it can be seen that if the input space X is very large, the
advantage of ADV tends to zero independently of the value of Advone−SEL−IND

B(
i.e. |X |→ ∞ ⇒ Advone−AD−IND

ADV → 0
)
. However, we will still show that no mat-

ter the cardinality of X , Advone−AD−IND
ADV = 0. To do so, we will prove that

Advone−SEL−IND
B = 0. This will directly imply that Advone−AD−IND

ADV = 0, since
Advone−AD−IND

ADV ≤ Advone−SEL−IND
B . In Fig. 2 we present a hybrid game that

is identical to the one-SEL-IND security game. This is derived from the fact that
if u

$←− Z, then {ui} and {ui−xβ
i } are identical distributions. Finally, it is easy to

see that the only information leaking about β, is ‖r−xβ‖, which is independent
of β according to the definition of the security game and the restrictions of the
adversary.

While we showed how a MIFE scheme for inner products can be transformed
into a MIFE scheme for the �1 norm, our construction is still inadequate for a
reputation system. This is due to the fact that it only supports the single-client
model. Assuming that such a model can be the right choice for a system that
requires input from a large number of users can only be regarded as a fallacious
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Fig. 2. Hybrid games for the proof of Theorem 1

conclusion. To this end, in Sect. 4.1, we show how we acutely attune our single
client MIFE to support the multi-client model.

4.1 From Single-Client to Multi-Client MIFE

We are now ready to describe how we can transform our single-user MIFE�1

to the multi-user MIFE for the �1 norm (MUMIFE�1). The idea is the follow-
ing: Each user generates a symmetric key ki ∈ Z which uses it to encrypt a
plaintext xi as cti = ki + xi. All the generated symmetric keys, form a vector
K = [k1, . . . , kn] ∈ Z

n, where n is the number of users. The functional decryption
key FK is then ‖K‖1 and decryption works as follows:

n∑

i=1

cti − FK =
n∑

1

(ki + xi) −
n∑

1

ki =
n∑

1

xi = ‖x‖1

A third party decryptor who would get access to FK should only learn ‖x‖1
and not each individual xi. In addition to that, the users should never reveal their
symmetric keys. To achieve this, we assume the existence of a trusted authority
that will allow users to perform an MPC in order to jointly compute a masked
version of FK without revealing each distinct ki. Before we proceed to the actual
description of our construction (Fig. 3), we present a high-level overview of our
system model that consists of a trusted authority (TA) and an evaluator (EV)
that evaluates the value of a function f on a set of given ciphertexts.

Trusted Authority (TA): TA is running in an enclave and is responsible for
generating and distributing a unique random number si to each user ui. The
users will use the received random values to mask their symmetric keys. By
doing so, and considering the fact that TA is running in an enclave and thus it is
trusted, they will be able to jointly compute a masked version of the functional
decryption key FK which will be used by the evaluator to calculate FK .

Evaluator (EV): EV is responsible for collecting all users’ ciphertexts
{ct1, . . . , ctn}, generating the functional decryption key FK based on the masked
value that will receive from users and finally, calculate f(x1, . . . , xn) without
getting any valuable information about the individual values xi.
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Theorem 2. The Multi-User Multi-Input Functional Encryption scheme for the
�1 norm (described in Fig. 3) is one-AD-IND-secure. That is, for all PPT adver-
saries ADV :

Advone−AD−IND
ADV (λ) = 0

Proof (Proof Sketch). The proof is omitted since it is a direct result from The-
orem 1. This can be seen by the fact that the Encryption and KeyGen oracles
are identical to the ones described in Fig. 2. The only difference is that in the
case of MUMIFE�1 , the Setup algorithm is executed by multiple users instead of
one, since each user generates a distinct symmetric key. Without loss of gener-
ality, we can assume that this is exactly the same procedure since in the case
of MIFE�1 , one user samples n random numbers from Z resulting to a vector
K = [k1, . . . , kn], and in case of MUMIFE�1 , n users sample one random number
from Z each, resulting to a vector K′ = [k′

1, . . . , k
′
n]. However, the distributions

{ki} and {k′
i} are identical and thus we conclude that we can use exactly the

same Hybrid game as the one in Fig. 2.

Fig. 3. Multi-Input MIFE for the �1 norm (MUMIFE�1)

Correctness: The correctness of the MUMIFE�1 scheme presented in Fig. 3
follows directly since:

n∑

i=1

cti − FK =
n∑

i=1

cti − T + S =
n∑

i=1

ki +
n∑

i=1

xi −
(

n∑

i=1

(ki + s1)

)
+

n∑

i=1

si

=
�

�
��

n∑

i=1

ki +
n∑

i=1

xi −
�

�
��

n∑

i=1

ki −
�

�
��

n∑

i=1

si +
�

�
��

n∑

i=1

si =
n∑

i=1

xi = ‖x‖1



120 A. Bakas et al.

5 The Reputation System

We begin this section by formalizing the problem that we are trying to solve.

Problem Statement: A user ui demands feedback for another user uj . To this
end, she requests from other users on the network, to give their votes about uj .
The problem is to find a way that each vote vi remains private while at the same
time an evaluator EV would be in position of understanding what voters, as a
whole, believe about uj , by evaluating the sum of all votes.

Stars, Voters and Votes: As already stated, the stars are represented as a
power of an integer n. Hence, for each vote vi we have that vi = nj . The reason
for representing votes in this way is that we can tell the final reputation score
just by looking at the sum of the votes. This is because for all β in base n, we
can represent β as a sum of powers of n. In other words:

∀ β ∈ Z,∃ βj ∈ Z :β = β0n
0 + · · · + β�lognβ�n�lognβ�

Hence, if
∑n−1

i=0 vi = β:

n−1∑

i=0

vi = β =
�lognβ�∑

j=0

βjn
j =β0n

0 + β1n
1 + · · · + β�lognβ�n�lognβ� ∈ Z

+,

then the coefficient of each nj tells us how many voters voted for vi = nj .
Moreover, on each round, we only allow n − 1 voters to cast their votes. The
reason for allowing only n − 1 voters is to avoid multiple representations of
the same number. Below we present a toy example to help the reader better
understand the idea of our design:

Table 1. Voting Example with five voters and five candidates.

Voter ui Vote vi Sum

u1 101 101 + 103 + 100 + 101 + 104 = 11021

u2 103

u3 100

u4 101

u5 104

Toy Example: For reasons of simplicity, let the base n = 10. We assume a
scenario with a five-star system such as n0 = 100, n1 = 101, n2 = 102, n3 =
103, n4 = 104 and five voters. Each voter casts her vote as shown in Table 1.
After all voters cast their votes, we simply compute the sum

∑
vi = 11021.

Hence, we see that the coefficients of the njs are β0 = 1, β1 = 2, β2 = 0, β3 = 1
and β4 = 1 and as a result, we conclude that one user gave a rating of 1 star
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n0, 4 stars n3 and 5 stars n4 (i.e. β0 = β3 = β4 = 1), two gave a rating of
two stars n1 (i.e. β1 = 2) and no one gave a rating of three stars. two users
voted for n1, one for n0, n3 and n4 and no one voted for n2. The reason for
allowing only n − 1 users vote on each round, is because we want to achieve a
unique representation of the sum of the votes. For instance, in this example, if
we allowed more than n − 1 = 10 − 1 = 9 users to vote, then we could interpret
11021 as 11 × 103 + 21 × 100 which cloud also mean that eleven users gave a
rating of 4 stars and twenty-one users a rating of 1 star. By limiting the number
of users to n−1, we overcome this problem by achieving a unique representation
of each number.

5.1 Formal Construction

In this section, we present our construction. Our scheme consists of three different
phases, namely, Setup,Voting and Count. The topology of our construction is
depicted in Fig. 4 and a formal description of our construction is presented in
Fig. 5.

Fig. 4. Topology of the voting scheme

Setup: In the setup phase, TA picks the base n and places the n− 1 voters ran-
domly in a circle. Then, generates n−1 random values s = [s1, . . . , sn−1] ∈ Z

n−1

and send an si to each ui. Finally, it computes ‖s‖1=
∑n−1

i=1 si = S and sends it
to the evaluator EV.

Voting: The voters are voting one by one as follows: At first, u1 generates
an encryption key k1 such that k1 ∈ Z. Then, she picks her vote v1 and runs
MUMIFE.Enc(k1, v1, si). In particular, u1 encrypts v1 and then masks k1 by cal-
culating t1 = k1 + s1 where s1 is the secret value received from the TA during
the setup phase. Finally, u1 sends ct1 to EV and t1 to u2 – the next voter in
the ring. The rest of the voters follow exactly the same steps except from the
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last user (un−1). In particular, un−1, apart from sending ctn−1 to EV, also sends
T =

∑n−1
i=1 ti. This sum will allow EV to compute the functional decryption key

FK that will be used to compute the sum of the votes.

Count: After EV gets n − 1 votes, it first computes the function key FK
based on the T and S values received during the voting phase. More pre-
cisely, EV computes FK = T − S = ‖K‖1=

∑n−1
i=1 ki. Then, it simply runs

MUMIFE�1 .Dec(FK, ct1, . . . ctn) → ‖vi‖1=
∑n−1

i=1 vi ∈ Z
+. Finally, by looking at

the coefficients of the result, it can tell which candidate gathered the most votes.

Fig. 5. Voting scheme

6 Security Analysis

In this section, we prove the security of our construction in the presence of an
honest-but-curious adversary ADV. In particular, we will prove that even if ADV
corrupts n−3 of the total n−1 voters and EV, she will still not be able to deduce
the votes of the uncorrupted voters.

Theorem 3. Assume an honest-but-curious adversary ADV corrupts at most
d < n − 2 voters out of those who participate in an election round. Moreover,
ADV corrupts the evaluator EV. Then ADV cannot deduce the votes of the
legitimate voters.

Proof. We are considering the most extreme case where d = n − 3. In this case,
ADV has corrupted all but two voters, ul and u�, and the evaluator EV. We
start by looking exactly what information ADV possesses.

– Since EV is corrupted, ADV knows S = ‖s‖=
∑n−1

1 si.
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– For each corrupted voter uci
, ADV knows: Her vote, vci

, Her key kci
and Her

share of the secret s, sci
.

– For the legitimate voters ul and u�, ADV knows: Their ciphertexts, ctl =
vl + rl and ct� = v� + r� and The masked values of their keys kl and k� as
tl = kl + sl and t� = k� + s�.

Note that for ADV to deduce the votes of ul and u�, she must find the keys
kl and k�. To do so, she has to unmask the masked values tl = kl + sl and
t� = k� +m�. In other words, to learn the votes vl and v� she either needs to find
sl and s� or kl and �. We present the above information in the form of equations.
The circled terms are the ones ADV has not been able to compromise.

‖v‖1=
∑

i∈[n−1]\{l,�}
vi+ vl + v� ‖ct‖1=

∑

i∈[n−1]\{l,�}
cti+ kl + vl

︸ ︷︷ ︸
ctl

+ k� + v�
︸ ︷︷ ︸

ct�

S =
∑

i∈[n−1]\{l,�}
si + sl + s� T =

∑

i∈[n−1]\{l,�}
mi + kl + sl

︸ ︷︷ ︸
tl

+ k� + s�
︸ ︷︷ ︸

t�

From the above equations, we see that for ADV to deduce the votes of ul and
u�, she needs to solve a system of four equations and six unknown variables. We
thus conclude, that the protocol remains secure even in the extreme case where
the evaluator, along with all but two voters are compromised.

7 Limitations

While this work is amongst the first that seeks to utilize FE to address real-life
problems, we acknowledge that it faces certain limitations. However, it is our
firm belief that our proposed schemes can serve as the basis for more advanced
applications. In particular, we plan to extend our application in order to design
a more sophisticated solutions to important and complex problem of designing
a decentralized additive reputation system.

– Threat Model: The most important limitation of our construction directly
affecting its security is the considered adversarial model. Our construction is
secure under the not so realistic honest-but-curious threat model – a model
that undoubtedly is inadequate for an e-voting protocol. This is due to the fact
that it allows us to overlook important features that need to be appropriately
addressed (e.g. double voting and validity of casted votes.).

– Topology: The ring topology we presented can be susceptible to various
attacks, such as breaking the link between two voters. Additionally, the failure
of a single node can cause the entire network to fail (ring down effect).

– MPC Implies Synchronization: Another limitation, also related to the
adapted topology, is that since the voters need to participate in an MPC, we
need to define a time interval where voters will be able to cast their votes.
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Additionally, due to the fact that voters are jointly calculating the masked
value T that will be sent to EV, we need to make sure that all voters will be
online for a certain amount of time. Otherwise, this will lead to changes in
the ring and will affect the entire performance of our construction.

8 Experimental Setup and Results

Our experiments mainly focused on analyzing the performance of our scheme. In
contrast to similar works in the area, we wanted our measurements to be taken
under realistic conditions and not just be conducted as lab-based experiments. It
is worth mentioning that while this can substantially weaken the overall measure-
ments and subsequently the performance of our scheme, we decided to adopt the
stance that by following this course we would ensure the conclusions of our work
are not built on optimal premises but rather on the realistic ones. Based on that,
we created a distributed architecture where the TA was running on an Azure
cloud with SGX support (VM with 1 vcpu, 4GB RAM and Standard DC1s_v2
instance type). The implementation of the TA was based on the Intel SGX
SDK2. The Evaluator was implemented on a different Azure instance without
SGX support (VM with 1 vcpu, 2GB RAM and Standard B1ms instance type).
Finally, the voters were running on an Amazon S3 cloud (a VM with 1 vcpu,
2GB RAM and t2.micro instance type). The communication between these
three entities was done over the Internet. Furthermore, the TA and the Voters
were implemented using C++, whereas EV in C++ and Python 3.

To test the performance of our scheme, we gradually increased the number of
voters starting from a set of 1,000 and moving up to 100,000 voters. We evaluated
two different scenarios regarding the number of candidates – the first uses 3 and
the second 15 candidates. In both scenarios, we ran each experiment ten times
and calculated the average processing time. If the attestation is successful, the
voters run our scheme by calculating their unique encryption keys locally and
communicating with the TA to receive the corresponding shares si (i.e. secret
values). Subsequently, they perform the multiparty computation through which
they compute the sum of all masked keys. At the end of this round, they send
their encrypted votes along with the sum of the masked keys to EV. Upon
reception, EV attests the TA and receives the sum of all shares sent to the
voters in the previous round. Finally, EV uses FK along with the value received
by the TA and calculates the total votes. Figure 6a illustrates the communication
and the processes run between the three components of our scheme.

By using the described test-bed and evaluating the aforementioned sce-
narios, we measured the processing time of the following processes: (1)
Enclave Creation: The average required time to initialize the enclave for the
TA was 0.011 s; (2) Remote attestation: The average time required for a spe-
cific enclave (the TA) to remotely attest itself to a remote party was 1.24 s; (3)
Voting Processing Time: The average time required to complete the voting for
single group of voters was 2.65 s (this includes a complete run of our scheme).
2 https://software.intel.com/en-us/sgx/sdk.

https://software.intel.com/en-us/sgx/sdk
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Fig. 6. Implementation architecture and performance evaluation

Figure 6b illustrates the results of running the two aforementioned scenarios
with up to 100,000 voters. It is important to note that our scheme allows the
implementation of the voting procedure in parallel. However, during our exper-
iments, we aimed to demonstrate and evaluate the performance of the scheme
without having any support of parallelism and/or scalability.

9 Conclusion

While our approach has certain limitations, and thus may not seem particularly
earth-shattering, we believe it should be seen as a valuable contribution to both
the field of cryptography and secure and private e-voting. This is due to the
fact that we showed how to utilize FE and extend existing techniques to solve
the important and difficult problem of casting and collecting votes in a privacy-
preserving way. Hence, our work can be seen as the first thoroughfare into the
creation of privacy-preserving e-voting schemes with the use of FE.
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Abstract. MACsec in VXLAN is an end-to-end security protocol for
protecting Ethernet frames traveling over IP networks. It can provide a
high-speed Ethernet encryption while supporting the virtualization of a
large network such as data center network. Although MACsec addresses
most of security threats, it is not immune against quantum attacks which
are a future, yet disastrous threat against public-key cryptography in use.
In this paper, we demonstrate a new solution for a MACsec protocol over
VXLAN in a post-quantum setting. Instead of a standard MACsec key
agreement protocol, we use an ephemeral key exchange protocol and
an end-to-end authentication scheme, both of which are based on post-
quantum cryptography. To measure the impact on the performance, we
established a quantum-secure link between Germany and Israel using
MACsec in VXLAN over public IP networks. We verified that the impact
on the latency and throughput is minimal. Our experiment confirms that
quantum-secure virtualized links can be already established in a long-
distance without changing their infrastructure.

Keywords: MACsec · Ethernet · VXLAN · VPN · Quantum
security · Authentication

1 Introduction

Due to ever-increasing risk of cyber attacks, data protection is as important as
its speed and performance assurance in modern networks. Wide Area Network
(WAN) has been driving the industry to innovate to increase security as well as
transport speeds. MACsec (Media Access Control Security) is an IEEE 802.1AE
standard protocol for secure communication on Ethernet links to ensure confi-
dentiality, integrity and origin authenticity of user data in transit.

While the standard MACsec protocol was developed for Local Area Network
(LAN) security, it can be also used for WAN security with additional frame
overhead. A common approach is to add a Virtual LAN (VLAN) tag to the
MACsec frame [15]. This tag allows MACsec frames to travel multiple hops and
enables the end-to-end network encryption over carrier Ethernet. However, it
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requires MACsec-aware intermediate switches and bridges in the middle. Hence,
MACsec frames often do not cross over IP networks, leaving the deployment of
VLAN limited in practice.

VXLAN (Virtual Extensible Local Area Network) technology can extend
VLAN and overcome the limited capability and scalability posed by VLAN.
VXLAN creates a layer 2 tunnel on top of layer 3 by encapsulating Ethernet
frames in UDP frames, enabling large-scale virtualized and multitenant data
center designs over a shared common physical infrastructure. Hence, VXLAN
is commonly used for a site-to-site VPN such as data center networks. VXLAN
allows Ethernet frames to travel over IP networks as long as the terminal device
is able to decapsulate the VXLAN into MACsec frames.

1.1 Our Contribution

Attacks using quantum computers are a future, yet critical threat against cyber
security. Although quantum attacks should not be overstated, it is sensible to
prepare new crypto schemes relying on the quantum-resistant mathematical
hardness for a long term security.

A MACsec key agreement protocol in a post-quantum setting is investi-
gated in [8]. We extend this approach to a MACsec in VXLAN tunneling. We
demonstrated by experiments that a quantum-secure MACsec in VXLAN can
be applied in a long distance network without any modification of infrastructure.

The core primitives of the protocol are a key encapsulation mechanism
(KEM) and a digital signature scheme, both of which are adapted from the 3rd
round finalists of NIST PQC project [2]. We compare their performance in terms
of latency and throughput. In order to achieve a forward security, an end-to-end
ephemeral key exchange protocol is established, meaning that each session key
is independently generated and there is no way to restore the previous keys even
though a current key is disclosed. In fact, this approach has been already widely
adopted in the industry, especially for WAN or MAN security although this does
not comply with a standard MACsec key agreement protocol.

The rest of this paper is structured as follows: first, we briefly describe the
background on MACsec in VXLAN and post-quantum cryptography. Then, we
propose a framework of the MACsec in VXLAN in a post-quantum setting. Next,
we describe our test platform and experimental results. Finally, we conclude the
paper.

2 Background

In this section, the MACsec protocol is briefly described in terms of encryp-
tion, authentication and key management. Then, the benefits of VXLAN are
discussed. Later, a brief introduction on the post-quantum crypto algorithms is
given.
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Table 1. PQC primitives: the 3rd round finalists of NIST PQC project [2] and hash-
based signatures from IETF [9]

SDO Family KEM Signature

NIST Lattice-based CRYSTALS-KYBER [28] CRYSTALS-DILITHIUM [23]

NTRU [6] FALCON [26]

SABER [10]

Code-based Classic McEliece [5] –

Multivariate – Rainbow [11]

IETF Hash-based – XMSS [14]

LMS [24]

2.1 MACsec

MACsec is an IEEE standard protocol for Layer-2 security [17]. A MACsec
packet is formed with an Ethernet frame by adding a SecTAG (Security TAG)
and an ICV (Integrity Check Value). A SecTAG conveys information on the pro-
tocol, the cipher suites, as well as the PN (packet number) for replay protection.
An ICV is a compressed value of the MAC address, SecTAG, and secure data
to ensure the integrity of a packet. Note that payload encryption is optional.
If a packet-authentication-only mode is configured, MACsec can verify only the
integrity of a transmitted packet.

MACsec supports a limited number of symmetric-key cipher suites: AES-
GCM-128 and AES-GCM-256 with a usage of XPN (eXtended PN) as an
option [17]. AES-GCM-128 is a default cipher suite. IEEE 802.1AEbn-2011 [18]
adds GCM-AES-256 as an optional cipher suite to allow a 256-bit key. IEEE
802.1AEbw-2013 [19] adds GCM-AES-XPN-128 and GCM-AES-XPN-256 for
further optional cipher suites that make use of a 64-bit (PN) to allow more than
232 MACsec protected frames to be sent with a single SAK (Secure Association
Key). MACsec is now part of the Linux kernel from the version 4.6 [20]. Note
that the National Security Agency (NSA) designed the Ethernet Security Spec-
ification (ESS) on top of MACsec for providing a hardened layer 2 encryption
scheme [25].

Although MACsec was developed for LAN security, a MACsec frame can
transverse across local networks by applying VLAN tags defined in IEEE 802.1Q
[15]. This technique allows MACsec to be used for WAN (wide area network)
security and provide the end-to-end network encryption over carrier Ethernet.

2.2 Virtual Extensible LAN

There are common ways to virtualize Layer 2 networks; VLAN and VXLAN.
VLAN is widely used for traffic separation and network segmentation in the
enterprise environment. According to the IEEE 802.1Q standard, traditional
VLAN identifiers are 12 bits long. This limits network segments to 4094 VLANs.
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The VXLAN protocol overcomes this limitation by using a longer logical
network identifier that allows more VLANs. The VXLAN protocol uses a 24-
bit logical network identifier that allows 224 network virtualizations in total. In
addition, VxLAN frames are encapsulated with UDP thus can be transported
across IP networks. Hence, VXLANs become dominant for large networks such
as cloud environments that typically include many virtual machines. In data
centers, VXLAN is commonly used to create overlay networks on top of the
physical network, enabling the use of a virtual network of devices. The VXLAN
protocol supports the virtualization of the data center network and addresses
the needs of multi-tenant data centers by providing the necessary segmentation
on a large scale. Note that VXLAN encapsulation by itself does not provide
any security features, hence, networks must be protected by other means e.g. as
introduced in [21].

2.3 Post-quantum Cryptography

The goal of post-quantum cryptography is to develop cryptographic systems
that are secure against both quantum and classical computers, and can interop-
erate with existing communications protocols and networks [7]. Post-quantum
cryptography is usually classified into five families: code-based, lattice-based,
multivariate, symmetric-based, and supersingular isogeny-based. Each family is
based on a different mathematical problem that is not feasible so far to solve
both with traditional computers as well as quantum computers. Recently, post-
quantum cryptography has drawn lots of attention from the community mainly
due to the NIST PQC project [7]. Code-based crypto has strength on KEM. It
has been studied for a long time and, the theory is well developed and under-
stood. However, the key size is usually quite large, compared to other families.
It seems not suitable for signature schemes. Lattice-based crypto is the most
popular among other families. It is applicable to both KEM and signature. How-
ever, selecting security parameters is challenging since their security is still not

Fig. 1. Comparison of overhead: MACsec encapsulation in VXLAN
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well-understood. Multivariate crypto is suitable for signature but not for KEM.
Isogeny-based crypto is relatively new but very promising for KEM in terms of
the key size. The NIST announced the third round finalists in July 2020 [2]. We
sorted out the finalists in Table 1. In addition, NIST supports hash-based signa-
tures that have been already published in IETF [9]. Based on another document
from NIST, it is likely that future post-quantum cryptographic standards will
specify multiple algorithms for different applications because of differing imple-
mentation constraints (e.g., sensitivity to large signature size or large keys) [4].

3 Protocols

In this section, we describe a frame format of MACsec in VXLAN. Then,
we present an authenticated post-quantum key exchange protocol in details,
together with several aspects of practical considerations.

3.1 Encapsulating MACsec in VXLAN

Due to the minimal requirement of overhead and simple configuration, MACsec
is often used for high-speed connectivity at low power and low cost. The disad-
vantage of MACsec is that all traffic traversing the link requires matching and
verifying secret keys at each node. In reality, this downside is avoided by adding
a VLAN tag defined in IEEE 802.1Q [15] and re-locating some header fields.
However, most of public nodes do not accept the VLAN tag, leaving the MAC-
sec with VLAN tag suitable for a dedicated private link requiring high security.
In VXLAN, a UDP header is placed in front of the frame, as shown in Fig. 1.
Hence, if a MACsec packet is encapsulated in VXLAN, it can travel over public
nodes as long as UDP is accepted. The downside is of course the increased size
of overhead. The comparison of frame format is given in Fig. 1.

3.2 Authenticated PQ Key Exchange

Limits on Data Usage. There are cryptographic limits on the amount of data
which can be safely encrypted under a single key. For example, TLS 1.3 specifies
limits on the number of data to be encrypted by AES-GCM up to 224.5 full-size
records with a safety margin of approximately 2−57 [27]. A new IETF RFC is
initiated for the detailed formulation [13]. For this reason, an authenticated key
exchange (AKE) protocol is periodically executed and a session key is refreshed
before such data limit is reached.

Let us remind that a payload of MACsec frame is encrypted using AES-
GCM. A limit on the amount of data that are encrypted by MACsec without
needing a key change is determined on the volume of data transmission. Here
is an example. Suppose the transmission rate of MACsec packets is 1 Gbps (=
0.125 Gbps). According to [22], the amount of data that can be safely encrypted
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with a single key is around 0.3887 terabytes with 2−60 success probability, which
leads us to calculate its re-key rate as

0.3887 TB/key
0.125 GB/s

= 31096 sec/key ≈ 51.8 min/key.

This means that a key exchange protocol should be executed every 52 min or
less to achieve such error probability. More information are given in Table 2.

Table 2. Max data vs. Re-key rate for an 1Gbps link

Attack success prob. Max data (terabytes) [22] Re-key rate

2−60 0.3887 52min

2−50 12.44 28 h

2−40 398.1 37 days

2−30 12, 738 3.2 years

Ephemeral PQ AKE Protocol. The standard MACsec key agreement
(MKA) protocol is a centralized key derivation mechanism based on a hier-
archical key structure [16]. Even though MKA is efficient and suitable for LAN,
it has a non-negligible risk of being hacked by a root key disclosure, which may
lead a severe security breach in entire networks. Especially this risk become high
if MACsec is used for WAN and MAN security. Hence, as stated earlier, an
ephemeral key exchange has been widely adopted in the industry. That is, each
session key is derived independently from the previous session keys so that the
disclose of current session key does not reveal any data encrypted in the past.
This is called forward secrecy.

Suppose Initiator and Responder perform an AKE protocol. Both peers are
assumed to have generated a pair of public and secret key. To agree upon a
new session key, two peers execute an AKE protocol using PQ crypto primitives
listed in Table 1. The detailed protocol is depicted in Fig. 2.

Hybrid AKE Protocol. A hybrid AKE protocol is a combination of post-
quantum authenticated key exchange with classical standard crypto schemes.
For instance, McEliece KEM with Falcon signature can be combined with DH
(Diffie-Hellman) key exchange protocol with RSA signature. In this way, keys
derived by a hybrid AKE scheme remain secure if at least one of the component
schemes is secure. This is called crypto agility. Note that post-quantum crypto
protocols are added independently on top of the standard protocol, rather than
being merged together because the security proof of each protocol should be
preserved. Recently NIST revised SP 800-56C to permit the use of a hybrid key
establishment construction in FIPS 140 validation [3]. The use of hybrid key
exchange and dual signature scheme is an on-going research topic e.g. [29].
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Fig. 2. A PQ authenticated key exchange protocol

Practical Considerations. During a PQ key exchange protocol, public keys
need to be fragmented in multiple Ethernet packets because the maximum size
of an Ethernet packet is much smaller than that of a PQ public-key. For instance,
Classical McEliece needs more than 1M bytes of a public-key for the security of
category 5, while maximum transmission unit (MTU) of Ethernet pack is around
1500 bytes. Note that a single MTU fits well for classical crypto schemes such
as RSA or Elliptic Curve Diffie-Hellman (ECDH).

For transferring a large PQ public-key, we used the simplest method – secured
file copy (SCP) over IP networks. The public key transfer could be done via a
plain RCP Linux command, but the RCP port 512 is disgraced by the security
policy and it is usually blocked by firewalls. So SCP is our preferable solution,
although security here is not necessary since the protocol is assumed to be exe-
cuted in an insecure channel. Another argument in favor of SCP is the presence
of management network. Most of deployed network elements have a separate
management channel over IP network. Hence, SCP can be run over this channel
for an out-of-band key exchange protocol.

SCP can be configured in a password-less mode; peers generate a standard
SSH key pairs and share their public keys each other. SSH pubic keys can be
easily distributed between peers with the help of network management system.
SCP uses the standard Linux IP stack, so it can handle a packet loss, which
is very handy for general internet. SCP can be used for either out-of-band or
in-band communication.
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Fig. 3. A site-to-site VPN between TLV and MUC over public IP networks

For a large key transfer, we also considered using a “fragmentation-over-
VXLAN” option. However, this requires more implementation efforts and the
potential benefit is not so clear. Also, while SCP is suitable for every case,
VXLAN-specific implementation would not work for the regular MACsec use
case.

4 Experiments

In [8], a post-quantum MACSec key agreement scheme was proposed. For exper-
iments, the authors performed a post-quantum key exchange protocol between
two MACsec nodes connected back-to-back in the lab. However, this technique
is not directly applicable to a site-to-site VPN where the distance is large and
the bandwidth is limited. The reason is that MACsec packets (even with VLAN
tag) cannot pass through the nodes in the middle which accept only IP packets.
To overcome this limit, MACsec packets are encapsulated in UDP frames. Only
end nodes need to decapsulate an ingress packet and retrieve a MACsec frame.

We established a VPN link between Tel Aviv (TLV) in Israel and Munich
(MUC) in Germany. A overview of the link is drawn in Fig. 3. The VPN link
between TLV and MUC is about 3600 km. The largest part of the path is the
JONAH link which is a submarine optical cable spanning 2,300 km. There are 11
traceable IP hops on the way; ICMP ping reports a round-trip delay of around 70
ms. Assuming that a round-trip fiber propagation delay is 2×3600×5µs = 36 ms,
we can estimate an average delay introduced by a single IP hop: (70−36)/2/11 =
1.54 ms.

4.1 System Setup

We set up a FSP 150 ProVMe edge device [1] on both TLV and MUC sites. They
are connected to the public internet through corresponding firewall and NAT on
site. A FSP 150 ProVMe is composed of a FPGA and a Linux host. The FPGA
facilitates an embedded traffic generator and a packet analyzer, allowing the
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Fig. 4. A block diagram of software architecture on FSP 150 ProVMe

latency measurement with resolution of 50 ns. The Linux host runs a macsec-gw
application for tunneling MACsec in VXLAN.

In our experiment, two transmission channels have been established: one is for
tunneling MACsec in VXLAN and the other is for performing a PQ key exchange
protocol. For this purpose, firewalls on the path must allow the following flows:

– VXLAN for MACsec traffic (UDP port 4789)
– SCP for key exchange (TCP port 22)
– ICMP for a connectivity test
– iperf3 (TCP/UDP port 5200) for a basic IP forwarding test.

Software Design. To achieve the best performance from x86 CPU, we imple-
mented DPDK [12] with the aes-ni-gcm driver for symmetrical encryption. As a
result, our macsec-gw DPDK application can process MACsec-in-VXLAN pack-
ets up to 9 Gbps on single CPU core. The measurement has been done using
a packet size of 1420 bytes and AES-GCM-256 encryption. Our software also
includes a DPDK KNI (Kernel NIC Interface) feature, so any application can
send and receive IP packets through the port which are used for the VXLAN
traffic. An overview of software architecture is given in Fig. 4.

A PQ key exchange engine is implemented in a separated application. It peri-
odically derives a new session key and provides it to the macsec-gw application
via an engine API. In fact, a PQ AKE protocol can be performed over either
out-of-band or in-band channel through regular kernel interfaces or a dedicated
DPDK KNI. This allows users to choose the best suitable communication path
for their key exchange protocols. In our experiment, we chose an out-of-band
key exchange using DPDK KNI.

Tunneling over IP Networks. Nowadays UDP is widely used for encapsulat-
ing Ethernet packets which need to travel over IP network. The reason is that



136 J. Y. Cho and A. Sergeev

Table 3. Encapsulation options for PQ MACsec

Encapsulation methods Overhead (bytes) Feature

MACsec in VLAN 28 Can’t pass IP
network

MACsec in VXLAN 24 + 54 = 74 Stripped
VLAN

MASsec over GRE in UDP 66 + 8 = 74 Kept VLAN

VXLAN over ESP in UDP 88 Stripped
VLAN and
duplicated
UDP

Fig. 5. Site-to-Site VPN setup using post-quantum MACsec over VXLAN

the UDP traffic can take full advantage of equal-cost multi-path (ECMP) rout-
ing. UDP is used in VXLAN as well as GRE (or NV-GRE). However, VXLAN
gained some popularity over GRE because it is slightly better to be integrated
with modern networks e.g. in cloud environment.

Table 3 shows several options for encapsulating MACsec packets in UDP.
Among those, MACsec in VXLAN is chosen for our experiments since encapsu-
lation can be done efficiently and the overhead size is acceptable for a limited
bandwidth. Alternatively, it is possible to encapsulate VXLAN in ESP-in-UDP
tunnel, but in this case the encapsulation includes two UDP headers, which is
not necessarily required.

4.2 Test Results

Baseline IP Connectivity. We run an iperf3 application over Linux Kernel
IP stack. The test results show that bandwidth allocations are not symmetrical,
depending on their traffic directions. See Table 4 for details. It is not clear why
the throughput of TLV to MUC link is much worse than that of MUC to TLV
link. This is also in line with a packet loss rate which will be presented later.
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Table 4. Throughput measured by an iperf3 application

Link iperf3 throughput

MUC to a public iperf3 Server 574Mbits/s

MUC to TLV 89.5Mbits/s

TLV to MUC 6.15Mbits/s

VXLAN Throughput. To measure a VXLAN throughput and a round-trip
latency we used the following setup shown in Fig. 5. A traffic generator sends a
test stream to a protected port at MUC site. Packets are encrypted by MAC-
sec, encapsulated in VXLAN (VTEP2) and sent towards TLV site. On TLV
site the VXLAN traffic is decapsulated by VTEP1, decrypted by MACsec and
transmitted via a protected port. We configured a terminal loopback on the pro-
tected port, so the traffic is looped back, encrypted by MACsec, encapsulated
in VXLAN and sent back to MUC site. On MUC site the decrypted traffic is
transmitted via the protected port back to the traffic analyser.

VXLAN Configuration. On TLV and MUC sites the VXLAN endpoint con-
figuration is as follows:

#TLV
vxlan vni 5005 src 172.19.252.107 dst 192.0.2.1
#MUC
vxlan vni 5005 src 172.20.140.8 dst 198.51.100.1

To allow an in-band SCP file transfer over DPDK KNI interface (vEth0), we
need to add the following routes to our nodes:

#TLV
ip route add 192.0.2.1 via 172.19.252.1 dev vEth0
#MUC
ip route add 198.51.100.1 via 172.20.140.1 dev vEth0

We measured the throughput and latency of traffic with 60 s interval repeat-
edly. The tested packet size was either 64 or 1412 bytes. Test results show that
the packet loss is different depending on the packet sizes. However, the round
trip delay does not depend on packet size – average value is approximately 71
ms for either short (64 byte) packets or long (1412 byte) packets. See Table 5 for
details.

Packet Loss. A packet loss over public Internet is well expected due to a long
distance connection. This is not observable in the lab setup with a back-to-back
connection. In Fig. 6, a packet loss in the direction of TLV → MUC link is
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Table 5. Latency and packet loss using 64 and 1412 bytes packets

Item Long packets (1412 bytes) Short packets (64 bytes)

Min. delay 70,628 µs 69,912 µs

Max. delay 70,658 µs 78,810 µs

Avg. delay 71,170 µs 70,471 µs

Tx frames 26,470 448,236

Rx frames 26,466 448,159

Rx avg. bit rate 5,055,325 bps 5,055,209 bps

Rx frame success prob 99.98 99.98

compared with a round-trip packet loss, depending on the usage of short and
long packets. We observed that the packet loss mainly occurs in the TLV →
MUC direction, especially when running a test using large packets. We guess
it is due to the channel characteristics but could not find a root cause of this
unbalanced packet loss. Note that all IP flows were set by a default DSCP value
(0) in order to make the configuration as simple as possible. Hence, no special
QoS setting is done.

Fig. 6. Comparison of packet loss: round-trip vs. TUV-MUC link

Impact of PQ AKE Protocol. We tested a PQ key exchange protocol
with multiple PQ crypto primitives listed in Table 1. Among various parame-
ter sets, we chose those of the category 5; mceliece6960119 (Classic McEliece),
ntruhps4096821 (NTRU), kyber1024 (Crystal-Kyber) and FireSaber (Saber) for
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KEM, Crystal-Dilithium (Dilithium IV) and Falcon1024 (Falcon) for digital sig-
nature. The most challenging primitive is Classic McEliece KEM due to its large
key size. Our experiments show that the completion of key exchange protocol
takes 17 to 22 s assuming there is no background traffic. If there exists a VXLAN
traffic with bidirectional 5 Gbps and a packet size of 1412 bytes, the maximum
value increases to 24 s.

To evaluate the impact of the packet loss caused by a PQ key exchange proto-
col, we monitored Linux kernel TCP counters using netstat command once each
key exchange is completed. On every key exchange sequence tcp re-transmission
counters increased in a range from 2 to 14, regardless of the presence of a back-
ground MACsec-in-VXLAN traffic.

# netstat -s — grep retrans
269 segments retransmited
235 fast retransmits

5 Conclusion

The post-quantum crypto standard by NIST is in the final stage, leaving the
final candidates only 7 primitives (4 for KEM and 3 for signature). We imple-
mented those finalists on a commercial product and measured their impacts on
the performance over a field trial link. We established a MACsec in VXLAN
tunnel between TLV and MUC and performed a PQ AKE protocol over the
link. Our test results show that MACsec in VXLAN using post-quantum crypto
primitives can be applied to existing networks without significant impact on their
performance. For instance, we did not observe any performance degradation on a
bidirectional MACsec-in-VXLAN traffic with a range from 5 to 6 Mbps through-
put. Therefore, we conclude that PQ MACsec in VXLAN is a practical solution
for establishing a quantum-secure site-to-site VPN on existing networks.

For future work, we plan to analyze the security of a PQ AKE protocol
by several attack methods, in particular, by timing attacks. Also, we plan to
apply our solution to some use cases where a quantum-secure VPN needs to be
deployed at a low cost.
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Abstract. Maritime shipping is currently undergoing rapid digitaliza-
tion, but with increasing exposure to cyber threats, there is a need to
improve the security of the ship communication technology used during
operations across international waters, as well as close to local shores
and in ports. To this aid, there are ongoing standardization efforts for an
international maritime Public Key Infrastructure, but the inherent prop-
erties of limited connectivity and bandwidth make certificate revocation
a problematic affair compared to traditional Internet systems. The main
contribution of this paper is an analysis of certificate revocation tech-
niques based on how they fulfil fundamental maritime requirements and
simulated usage over time. Our results identify CRLs (with Delta CRLs)
and CRLite as the two most promising candidates. Finally, we outline
the pros and cons with these two different solutions.

Keywords: Cyber security · Public key infrastructure · Certificate
revocation · Maritime · Shipping

1 Introduction

Maritime shipping is currently undergoing rapid digitalization. The introduc-
tion of new communication technologies onboard ships, such as the upcoming
VHF Data Exchange System (VDES) [21], enables a wide variety of new dig-
ital services, such as digital ship reporting, electronic port clearance, search
and rescue communications, vessel traffic services and broadcast of maritime
safety information. These services will all require information security, and a
prevalent solution to establish and deploy a Public Key Infrastructure (PKI)
for distributing digital certificates and securing the integrity and confidentiality
of the information exchange. Several different research groups have in parallel
worked to define, implement and test the characteristics of a PKI for the mar-
itime domain [7,12,13,23], and the concept has now been acknowledged by IMO1

and brought into the ongoing standardization by IALA2 [5]. However, there is
1 International Maritime Organization (IMO). http://www.imo.org.
2 International Association of Marine Aids to Navigation and Lighthouse Authorities

(IALA), https://www.iala-aism.org/.
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a significant challenge related to certificate revocation yet to be solved. This is
a crucial part of any PKI, and unlike typical Internet applications that can be
constantly online, ships tend to be offline for long periods of time or sailing in
the open sea where connectivity and bandwidth can be both poor and expensive.
The consequences could be delayed awareness of revocations and less trust in
the PKI itself. Even though some previous work has evaluated and compared
different revocation mechanisms [15,27,28,30], there are no previous studies that
address the specific maritime challenges.

The main contribution of this paper is an analysis of certificate revocation
techniques based on requirements fulfilment and simulated use in a maritime
setting over time. The paper is organised as follows. Section 2 provides the back-
ground to our work, including a description of the envisioned maritime PKI
as well as an overview of existing solutions for certificate revocation. Section 3
presents the fundamental requirements and Sect. 4 gives an analysis of and sim-
ulation benchmarks for the solution candidates. Section 5 discusses these results
and Sect. 6 concludes the paper.

2 Background

2.1 The Maritime PKI

A normal PKI depends on a hierarchy of trust, e.g. as depicted in Fig. 1. There
are three layers in this model:

1. A Trusted International Root Certificate Authority (CA) that issues cer-
tificates to its subordinates. The root CA is envisioned to be operated by
IMO, since they are a trusted entity by the majority of maritime stakehold-
ers around the world.

2. A number of (intermediate) Issuing National CAs, that would typically be
the Flag State administrations associated with each country.3

3. End entities, which are the ships, ports and coastal services that need to
communicate securely.

In addition, an entity called “Revocation issuer” responsible for issuing infor-
mation about invalid certificates, will be needed. This role could also be handled
by the root CA.

2.2 Existing Revocation Solutions

Revocation of certificates in a PKI ecosystem can happen for a number of rea-
sons, such as change of ship name, change of association between the end entity
and the issuing CA, or compromise of the corresponding private key [10]. Affected
entities should be informed as fast as possible after a revocation, and we have
described existing revocation mechanisms that we have considered for the mar-
itime sector.
3 Every merchant ship has to be registered under a jurisdiction, called the flag state,

which has the responsibility to enforce regulations over vessels registered under its
flag.
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Fig. 1. The PKI trust hierarchy.

Certificate Revocation List (CRL). (RFC 5280 [10]) are issued at regular
time intervals. When a user wants to check the validity of a certificate, he needs
to have a local copy of the CRL installed. This is usually be achieved by pulling
the CRL from the CA’s CRL distribution endpoint. While this method works
well for PKIs with relatively few end entities, the solution does not scale well,
since a full and complete CRL will list all (unexpired) certificates that have been
revoked. To counter this problem, delta-CRLs can be used, which only include
certificates whose revocation status has changed since last update. A drawback
with CRLs (and delta-CRLs) is that the validity check is done “offline” and
there is a risk that end entities accept certificates that have been revoked.

The use of CRLs to revoke certificates in the Maritime PKI has been proposed
by Froystad et al. [13] and the Maritime Cloud Development Forum [12]. Figure 2
presents the principle: a CRL issuer collects CRLs from all entities entitled to
issue such lists, and creates a joint CRL that is distributed to all the end entities
in the PKI. However, neither [13] nor [12] specify the use of delta-CRLs or discuss
the risk of using obsolete CRLs.

Fig. 2. CRLs from multiple sources are collected and distributed to end entities through
a CRL issuer [13].
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Online Certificate Status Protocol (OCSP). (RFC 6960 [26]), was
designed to provide more timely revocation information compared to CRLs. The
protocol is “online”; to verify a certificate’s validity, the user sends an OCSP
request to the CA, asking for the status of one or more given certificate(s).
The CA will respond with the certificate(s)’s status (good/revoked/unknown),
along with a response validity interval. However, the solution comes with some
drawbacks:

– If the CA is unavailable, the validity of certificates cannot be confirmed.
– Increased latency since the OCSP request needs to be confirmed before the

certificate can be used. If the CA is unreachable, it can take several seconds
before the request times out,4 which will be a no-go for time critical applica-
tions.

– While the OCSP response is signed, error messages are not. This may open
up to interception attacks [18].

– The identity of the user is revealed to the CA each time the user sends an
OCSP request, possibly creating privacy issues.

To counter OCSP bandwidth issues, RFC 5019 [11] defines a lightweight profile
that minimises the communication bandwidth and client-side processing.

OCSP Stapling/OCSP Must Staple. To solve some of OCSP’s problems,
RFC 6961 [24] and RFC 7633 [25] (commonly referred to as “OCSP Stapling”
and “OCSP Must Staple”, respectively) define a method where a server makes
a request to the OCSP service and get a signed message with its certificate
status that it can then “staple” to its certificate during the Transport Layer
Security (TLS) handshake. This method is more efficient than the original OCSP
because the server can cache OCSP messages, thus reducing the latency. This
also partially solves the privacy issue with OCSP, as the user does not need to
reveal its identity each time. Still, OCSP Stapling suffers from being an “online”
solution, which is not suitable for all maritime applications.

CRLSet [3]/OneCRL. [1] are currently used by Google and Firefox to revoke
CA certificates stored in their web browsers. Revocation lists are built inter-
nally by the respective companies and pushed to the clients daily. The lists only
include a subset of the most critical revoked certificates. The main benefit is
that bandwidth is minimised. In contrast to OCSP, these solutions do not reveal
communication patterns, as all end entities receive the same lists. The common
downside of CRLSet and OneCRL is that end entities must be online on a daily
basis.

CRLite. allows to push all TLS certificate revocations to all browsers. Initially
described in a research paper by Larisch et al. [19], it has since 2019 been tested
by Mozilla Firefox as its new certificates revocation method [8]. CRLite relies
4 Telemetry from Internet browsing with Firefox shows that OCSP requests “time out

about 15% of the time, and take in average 350 ms even when they succeed” [4].
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on cascading bloom filters to efficiently push out the revocation information,
which is “a simple space-efficient randomized data structure for representing
set to support membership queries” [22]. The answer to a membership query
is probabilistic; if the answer is negative, we know the element is not in the
set, but if the answer is positive then chances are that this is a false positive.
To remove false positives, CRLite takes advantage of Certificate Transparency
(CT), which aims to fix several flaws in the SSL certificate system by “providing
an open framework for monitoring and auditing SSL certificates in nearly real
time” [2]. In practice, certificate logs are built by collecting all certificates issued
by trusted CA [2,20]. In the context of CRLite, a first bloom filter is b.uilt using
the revoked certificates data and then, using the CT log, a new bloom filter
(smaller than the first one) containing all false positives of the first bloom filter
is built. This operation can be repeated until there is no more false positive, thus
the name of cascading bloom filters.

Larisch et al. [19] emphasize the following advantages of CRLite over CRLs
and OCSP:

– Small Size: About 10 MB is needed to represent the status of all Web certifi-
cates, and 560 kB in average for daily updates. While OCSP also covers all
certificates, it is online. CRL on the other hand is not efficient to handle so
many certificates.

– Update Frequency: An OCSP response is valid for 4 days in average for the
Web, and a CRL has usually a lifetime of 7 days. CRLite is believed to be
more up-to-date because it involves daily update.

– Failure Mode: CRLite covers all certificates and allows end entities to operate
in a hard fail mode.

– Privacy: The privacy issues caused by OCSP are avoided as CRLite caches
the information locally.

– Deployment and Auditing: CRLite is easily deployed and can be audited.
– Speed: Telemetric data shows that CRLite is faster than OCSP in 99% of the

cases [16].

There is also some criticism towards the Bloom filter cascades.
Holzhauser [14] shows that CRLite will suffer a scalability problem when the
number of certificates increase. She also shows faults in the CRLite design that
can lead to higher than expected number of false positives.

Short-Lived Certificates. Which are valid from a few hours up to 2–3 days,
represent an alternative strategy. Firefox for instance, does not check such short-
lived certificate for revocation if they are valid for less than 10 days [8]. This will
efficiently remove the need to revoke certificates, given an acceptable risk that
illegitimate keys will probably not be used before the certificates expire. The
obvious downside is the need for frequent certificate renewal and distribution,
which does not go hand in hand with maritime operations.
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Table 1. Data capacity, cost and availability of different data bearers

Communication link Shared capacity Cost Availability

VDES 153.6 kbps Free Near shore, between nearby ships

GSM/LTE 100 Mbps 0.006 USD/MB Near shore

Low Frequency SATCOM 100–500 kbps 5–10 USD/MB Globally

High Frequency SATCOM 100 kbps–8 Mbps 1–2 USD/MB Globally, dependent on service provider

WiMAX/Wi-Fi 10–100 Mbps Free In port

3 Fundamental Requirements for Revocation

We perform an initial filtering of suitable revocation mechanisms by identify-
ing the fundamental requirements imposed by the maritime sector. These are
presented below.

While some ships call at port on a regular basis, others might be out at sea
for several weeks or even months [13]. They usually rely on different technologies
to get connectivity depending on their position: VDES, SatCom, GSM/LTE or
even Wi-Fi when at shore. Table 1 developed by Frøystad et al. [13] gives an
overview of their properties. Some will in many cases be too expensive or not
available at all while at sea. It should therefore be possible to use a cache of
revocation information, e.g. when vessels encounter each other on open sea.

Requirement 1 - Offline support: The revocation mechanism should be
able to operate when the vessel has no internet connectivity.

Chrome and Firefox currently push incomplete CRLs with only high value
certificates in them, but this is not acceptable in the maritime context. The
solution needs to be complete, meaning that revocations must be shared between
intermediate CAs and eventually known to all end entities. Of course, with a
solution that operates offline from time to time, there will be some delay before
a revocation information is available to the end entities. The update frequency
of the revocation information is left for discussion.

Requirement 2 - Completeness: The revocation mechanism should
inform about all revoked vessels in a timely manner.

While the revocation mechanism should not be dependent on the communica-
tion link, its bandwidth usage should be as low as possible to ensure acceptance
affordability in the wider maritime community. In practice, this means within
the capacities given by Table 1.

Requirement 3 - Bandwidth: The bandwidth usage of the revocation
mechanism should be within the capacity of the available communication
link.
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4 Analysis of the Revocation Candidates

4.1 Requirements-Based Selection of the Revocation Mechanism

We now use the requirements identified in Sect. 3 to do an initial filtering of the
candidate solutions.

R1 - Offline support: Amongst the previously presented revocation mecha-
nisms, only CRL, DeltaCRL, CRLSet/OneCRL and CRLite are truly offline
mechanisms, meaning that the ships can stay off-line for a long period of
time and the mechanism will still work, even though it will be on outdated
data. On the contrary, OCSP Stapling, OCSP Must Staple and Short-Lived
Certificate all rely on periodic connection to update their staple or certifi-
cate in order to work. They are therefore not considered viable solutions for
the maritime sector.

R2 - Completeness: All revocation mechanisms but CRLSet and OneCRL
are complete or can be. CRLSet and OneCRL by definition only include high
value revocation information to allow a quick reaction to critical events like
of a CA compromise.

R3 - Bandwidth: This parameter is difficult to evaluate. A known problem
with CRL is their growing size when the number of certificates in the sys-
tem growths. However, the deltaCRL is less dependent on this parameter,
and more on the system revocation ratio. CRLite was conceived with low-
bandwidth usage in mind, but it has only been applied to the web by Mozilla,
and the web has very different parameters than the maritime sector.

Table 2 shows which mechanisms fit our requirements the best. As can be
seen, CRL/DeltaCRL and CRLite meet al.l three requirements, but there is
an uncertainty on their respective bandwidth usage, which we analyse further
below.

Table 2. Requirements vs revocation mechanisms
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4.2 Bandwidth Analysis for CRL/DeltaCRL and CRLite

In order to estimate bandwidth requirements for the different revocation solu-
tions, we need to estimate some parameters for the PKI. This includes the
expected number of certificates in the system and the expected revocation fre-
quency.

The number of merchant ships in the world is varying, but as of January
2019, there were 96,295 registered ships in the total fleet world wide, whereof
51,684 were commercial ships of 1000 gt and above [6]. In addition there will
be shore users communicating with the ships (ports, VTS, applications human
users etc.), but this number is lower than 1000. To simplify, we approximate that
the total number of end entities that will be enrolled in the maritime
PKI will be around 100 000. Based on the simulation, we observed that the
result remains the same with more entities in the PKI, which covers the case of
several certificates per ship.

Revocation of the digital certificates from the end entities in a PKI can
happen for a number of reasons, but in the maritime domain, change of flag is
expected to be the main driver for revocation. We foresee that the frequency
of other reasons are negligible in comparison. All commercial ships must be
registered with a country, which is known as its Flag State. Ships normally
change their flags in connection with sale and purchase transactions. However,
ship owners may also do this to avoid the stricter marine regulations imposed by
their own countries. In practice, many ships are therefore registered under a flag
that does not match the nationality of the vessel owner (“flag of convenience”).
The Flag State with the largest number of registered ships is Panama (6465
ship as of January 2019), followed by China (4039 ships), Liberia (3456) and the
Marshall Island (3454) [6]. Even though the total number of Flag States is fairly
large (117 as of January 2019), we do not foresee that all of these will operate
their own Intermediate CA. However, a ship will still need to obtain a new digital
certificate when it changes its flag. A study from 2008 [9] provides an indication
of the frequency of flag changes. The study uses data collected from 35,261 port
state control inspections on 7,547 vessels, carried out between 2002 and 2008.
The data shows that 25.3% of all the inspected ships have had at least one change
of flag during this time period. Further, 9.5% of all the ships have had at least
one change in flag since their previous inspection, where the average number of
inspections per ship in this time period was 4.05. Unfortunately, the paper does
not include information on how many times the ships have re-flagged, when they
have changed their flags “more than once,” but we can use an approximation of
the yearly revocation ratio of around 5%.

We also need to know how long the certificates will be valid. This will impact
our analysis, because when revoked certificates expire, they will not be included
in the transmitted revocation information anymore. The validity period of end
entity certificates in a maritime PKI was studied by several independent research
groups [12,13] who proposed to set it to 3 years. We thus chose to fix this param-
eters to 3 years for our simulation.
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Theoretical Approach5

Size of the CRL: In order to evaluate the size of the CRL, we will consider
the scenario in which the CRL contains the most certificates. Given that the
certificates have a 3-year validity period, they are removed from the CRL once
they are not valid anymore. Thus the maximum number of certificates in the
CRL is 15 000 (3× 100000× 0.05). After doing some tests, we calculated that in
average the size (in bytes) of a CRL is given by S(n) = 277 + 50 ×n, where n is
the number of certificates to be included in the CRL (with a reason code), 277
the size of an empty CRL in bytes and 50 the average size added by the addition
of a certificate to the CRL (empirically determined). So, for the maritime sector
we end up with a maximum CRL size of 750 kB.

Size of the DeltaCRL. We need to have an idea of the number of certificates that
will be included in it, both newly revoked certificates and those that need to be
removed from the CRL. If we make the assumption that the CRL and DeltaCRL
are issued on a weekly basis, then there is around 100 newly revoked certificates
for each DeltaCRL. In addition, we will assume that there is about the same
number of certificates removed from the CRL. Following the same formula as
above, the size of the DeltaCRL should be around 10 kB.

Size of the CRLite Filter: We need to find an estimation of the size of the
filter that needs to be downloaded by the end entities in order to check for
the revocation status of a certificate. In their original paper on CRLite [19],
the authors present a way to set the parameters of the different filters to have
the smallest possible size of the overall bloom filter cascade. We followed that
methodology and chose the filters’ parameters to minimise the overall size of the
bloom filter cascade. For those condition, the overall size of the filter is given
by: Sbfc = 4.92 ∗ |R|, where R is the set of revoked certificates. In our case, the
result yields 73 800 bits, or 9.2 kB.

Size of the Delta CRLite Filter: There is no easy way to theoretically estimate
the size of the delta filter for CRLite. This needs to be determined in an empirical
manner.

As it can be observed from the estimated sizes of the different “payload” for
each mechanism, these sizes are smaller than what is normally found and used
on the Internet. However, there is still a 75-factor between the size of the CRL
and the size of the optimised CRLite filter. The DeltaCRL is about the size of
the optimised CRLite filter.

Empirical Approach
In order to get a better idea of the sizes for the different revocation mechanisms,
we developed a PKI simulator, consisting of a Root CA, Intermediate CAs, End
entities and a CRL issuer. The parameters of the simulator are its duration
in time, the revocation ratio and frequency, along with the PKI (number of
5 All the calculations below are based on x509 certificates in DER format.
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intermediate CA and end entities). The simulator can also determine the growth
of the PKI, as we can assume that not all ships will be part of it from day one,
and thus get a better idea of what will happen when a real PKI is be deployed.
The following steps are taken for each iteration:

1. Renew certificates that are about to expire.
2. Revoke random certificates based on the revocation ratio parameter.
3. Generate revocation data:

(a) Generate new CRL.
(b) Generate DeltaCRL.
(c) Generate Optimised (minimum) CRLite filter.
(d) Update CRLite filter.
(e) Generate Delta Filter (using the updated filter).

4. Enrol new entities (if any, when growth enabled).

Our implementation of the CRLite bloom filter cascade follows Mozilla’s
implementation available on Github [17] and the implementation of the delta
filter follows what is described in the CRLite paper [19].

For the parameters, we used 100 000 end entities and a revocation ratio of
5% as above. The revocation frequency was set to 7 days, which is the common
revocation frequency for a CRL. We also estimated that the PKI will start with
1000 entities and then grow to 100 000 over a 5 year period. However, this was
only to get an idea of the system evolution when integrating new components.
What we really care about is the system in its “steady” state, which is why
ran the simulation over a period of 20 years. Figures 3 and 4 along with Table 3
present the results of the simulation.

CRLite Vs CRL: The results presented in Fig. 3 show that the size of the
CRL is much bigger than the size of any other mechanism, with an average size
of 356 kB for the simulation. Even if this is much smaller than CRLs from the
Internet world, this is still too big to be downloaded over a low-speed network.
As presented in Table 3, even if the size of the DeltaCRL remains small (with an
average of 8.6 kB), the delta filter is even smaller with an average size of 2 kB.
It is also interesting to note that the size of the delta filter is almost constant
once the system has reached its equilibrium (no more ship being added), and is
not much influenced by big changes in the end entities certificates. Indeed, the
certificates having a 3-years validity, large amount of already revoked certificates
expire every 3-years, leading to substantial changes in CRL (and thus deltaCRL
as well). The “waves” pattern that can be observed is the direct consequence of
the initial certificates’ expiration. The size of the filter is in average 39.5 kB, but
like the CRL, it is based as a reference to get the delta filter, and is not sent over
low-speed communication channels. The size of the optimised filter, calculated
every day for comparison, is close to the size of the DeltaCRL, with an average
size of 10.1 kB. Based on the analysis of the simulation, it seems like CRLite is
indeed well suited for low-bandwidth usage, not only for the Internet world, but
also for the maritime sector, with a payload being five times smaller than the
DeltaCRL.
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Fig. 3. Results of the PKI revocation simulation, comparing the size of the payload
for CRL/DeltaCRL and CRLite filter/Delta filter, over a period of 20 years.

Fig. 4. Zoom on the results of the PKI revocation simulation, comparing the size of the
payload for CRL/DeltaCRL and CRLite filter/Delta filter, over a period of 20 years.

Table 3. Size of the payload for different revocation mechanisms

Theory (Max) Simulation (Avg.)

CRL Size 750 kB 356 kB

DeltaCRL Size 10 kB 8.6 kB

Optimised filter Size 9.2 kB 10.1 kB

Filter Size ? 39.5 kB

Delta Filter Size ? 2.74 kB

5 Discussion

5.1 CRL and DeltaCRL

Using solely CRL as the revocation mechanism for the maritime PKI is not
possible as shown by the simulation: the size of the PKI grows fast and does not
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meet the low-bandwidth usage requirements. It must be coupled with the use of
DeltaCRL.

The main advantage of using CRL/DeltaCRL is that it is a well-known and
standardised revocation mechanism. It is also already implemented in commer-
cial PKI solution and is thus more easily acceptable. However, ships can stay at
sea for long periods of time, and might have to download several DeltaCRL (or
the full CRL) to catch up. Moreover, it is known that CRL/DeltaCRL does not
scale well for the Internet. This is true as well for the maritime sector where the
constraints are even more strict regarding the internet access and the bandwidth
usage. Finally, the CRLs must be collected from all CAs to create a joint CRL by
the CRL issuer. This CRL is then transmitted to the end entities. That means
that different states might have to trust not only the Root CA but also the CRL
issuer.

5.2 CRLite for the Maritime Sector

The second solution is to adapt CRLite to the maritime sector. To the best of
our knowledge, this has not been proposed before. A web browser and a ship are
very different in nature, and while the main concept can remain the same, the
update frequency along with the push/pull model might have to be adapted to
fit the need of the maritime sector.

The first advantage of CRLite over CRL is the smaller size of the payload
that needs to be delivered to the end-entities. Based on our simulation, the size
of the CRLite payload is five times smaller than the equivalent payload for the
DeltaCRL. As explained in the background section, CRLite relies on having
both the revocation information and the valid certificates information in order
to create the filter. To achieve that, CRLite relies on Certificate Transparency,
which, even if it is out of the scope for this paper, harden the security of the PKI
as a whole. Finally, the authors of the original CRLite paper proposed a way to
create the filter in a distributive manner and not involving only the issuer. This
is an interesting property for the maritime sector where different states have to
collaborate but do not necessarily trust each other.

On the other hand, CRLite is a recent technology (at least compared to
CRL), and is neither standardised nor field-tested, which can be an issue to be
accepted by the maritime organisations. There is also a lack of formal security
analysis and research done. A bachelor thesis from ETH Zurich analysed CRLite
and more specifically the usage of Bloom Filter Cascade and concluded that the
mechanism presents some weaknesses [14]. In particular, Bloom Filter Cascades
do not adapt and scale well with the market growth. This argument does not hold
for the maritime sector however, as the amount of certificates is much lower than
in the Internet world, where CRLite has been proven to work with around 36M
certificates (which is more certificates than the maritime PKI will ever have).
Finally, another negative point compared to CRL is that the end entities will
get no information on the revoked certificate. When checking for the status of a
certificate with CRLite, the answer is either “valid” or “revoked.” Depending on
how applications plan to handle revocation information, this can be a problem.
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5.3 Common Topics to both Solutions

No matter which solution is chosen, the frequency of the updates needs to be
determined. CRL and DeltaCRL are usually issued on a weekly basis. For CRLite
it is on a daily basis. In our simulation however, we used a weekly basis for
both methods as a mean for comparison. Choosing the update frequency comes
down to answering the question: “How long do we want the ships to accept
revoked certificates.” The answer to this question might vary between different
ship owners and flag states.

Related to this, the importance of the revocation information may vary
depending on the reason why a certificate is revoked. For instance, a certifi-
cate being revoked because the ship has changed its flag state is not a security
threat by itself, but a certificate revoked because CA compromise is. Different
priority could thus be given to different revocation information. The notion of
“scopes” is described in RFC 5280 [10], and CRLs (and DeltaCRLs) can be
issued with a scope. For instance, it is possible to have a CRL for certificate
revoked with the reason code “keys compromised” and another one with all the
remaining reasons. It is also possible to implement different frequencies for the
different scopes, thus allowing reducing the bandwidth costs as well. Splitting
the revocation information in scopes is also feasible in CRLite, but as there are
very few cases of key compromises compared to other reasons, creating a filter
for those might not be justifiable.

How applications handle the revocation information is also another impor-
tant issue. Currently, in the Internet world, browsers tend to apply a “soft-fail”
techniques, meaning that if it can’t verify the certificate validity, it will consider
it valid, creating a feeling of false security for the user. In the maritime world,
it will be important to think about the failure scenarios, how the information is
communicated to the user and what are the process to respond to those failures.

5.4 Looking Elsewhere

Something that has been out of our research scope is to analyse solutions that
are still on a conceptual level. For instance, a blockchain-based certificate trans-
parency and revocation mechanism for the web has been proposed by Wang
et al. [29] The idea is to remove the trust from the CA, and to transfer it to
the end-entities which are in this case the browsers. Servers can then publish
their certificates to a public blockchain, and a browser will accept the certificate
received during the SSL/TLS negotiations if and only if it matches the ones in
the public blockchain and if it is not revoked. It is very much likely that this
and similar solutions will require a degree of connectivity that could be difficult
to obtain in a maritime setting.

6 Conclusion

In this paper we have identified two potential candidate solutions for revocation
of certificates in the maritime sector: 1) CRLs (with DeltaCRLs) and 2) CRLite
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(with Delta filters). Both these solutions can operate when vessels are offline
and they both inform about all revoked vessels in a timely manner. However,
our results from simulating the behaviour of these two different solutions over
time show that will be significant changes in terms of required bandwidth. While
the size of the CRLs itself will have an average size of 365 kB, the size of the
DeltaCRLs is expected to be relative small (8.6 kB). Still, CRLite is a much
better solution in this respect, with 39.5 kB filter size and 2.74 kB Delta filter
size. However, as explained in the discussion, there are pros and cons with both
solutions and the final choice will be a trade-off between selecting a more well-
known and mature technology (CRL), or going for a potentially more efficient,
but less tested, solution (CRLite).
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Abstract. Since systems using honeywords store a set of decoy passwords
together with real passwords of users to confuse adversaries, they are strongly
dependent on the algorithm for generating honeywords. However, all of the exist-
ing honeyword generating algorithms are based on raw passwords of users and
they either need lots of storage space or show weaknesses in flatness or usabil-
ity. This paper proposes HoneyHash, a new direction of generating honeywords
- generating by transforming password hashes. Analyses show that our algorithm
attains expected levels of flatness, security, performance and usability.
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1 Introduction

A large number of password disclosures were reported in recent years which have been
a big threat to password security. For instance, the hashed passwords of 50 million users
of Evernote were exposed [1] and similar leakages of password databases also happened
in LinkedIn, eHarmony, Yahoo and Adobe [2]. There are several existing mechanisms
against password-related attacks includingSAuth [3], PolyPassHash [4], ErsatzPassword
[5] and Honeyword [6]. Among those existing mechanisms, the honeyword mechanism,
which is influenced by the honeypot technique [7] and Kamouflage [8], stands out for its
ability to detect attacks against hashed password databases. In a honeyword system, a set
of fake passwords are stored togetherwith real passwords in order to confuse adversaries.
When an adversary attempts to log in with a fake password, the system can identify this
illegal submission and an alarm may be triggered, marking a possible leakage of the
password database.

The honeyword generating algorithm is important since the ability of detecting pass-
word database leakages is strongly dependent on the quality of honeywords. Until now,
all existing algorithms generate honeywords based on raw passwords of users, which
need to find a balance point among several factors such as flatness, performance and
usability. For instance, Juels and Rivest [6] proposed chaffing by tweaking and take-a-
tail when they first proposed the honeyword mechanism. Chaffing by tweaking brings
no burden on the memorability of users and has lower time and space complexity, but
it cannot generate flat honeywords. Take-a-tail can achieve flatness but it puts more
stresses on memorability.
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In this paper, we propose a new honeyword generating algorithm in which hon-
eywords are generated by transforming hashes of original passwords. Comparing with
existing algorithms, our algorithm attains higher levels of flatness, security, performance
and usability. All the honeywords are transformed hashes which achieve great flatness;
the algorithm shows a strong resistance to different password-related attacks including
brute-force attacks, dictionary attacks, denial-of-service (DoS) attacks, targeted pass-
word guessing andmultiple system attacks; the generating process is simple and only one
transformed hash is stored in the password database, leading to lower time complexity
and storage cost; no extra burden is put on the memorability of users.

The rest of this paper is organized as follows – in Sect. 2 we describe some other
mechanisms against password-related attacks followed by the honeyword mechanism.
We list existing generating methods of honeywords and analyze them from four aspects
including flatness, security, performance and usability. Our new method is presented in
Sect. 3 with technical descriptions and basic routines. Then analyses of the proposed
method are elaborated from those four aspects thereafter in Sect. 4.

2 Related Works

2.1 Existing Mechanisms Against Password-Related Attacks

There are already several solutions to password-related threats including SAuth [3],
PolyPassHash [4], ErsatzPassword [5] and Honeyword [6]. SAuth employs authentica-
tion synergy among different services and requires users to log in other servers when
visiting a certain server. PolyPassHash employs a threshold cryptosystem to protect
password hashes so that they cannot be verified unless a threshold of them have been
decoded. ErsatzPassword utilizes a machine-dependent function at the authentication
server which can prevent off-site password discovery effectively, and it also employs a
deception mechanism to raise an alert if such an action is attempted.

The main idea of the honeyword mechanism is to store a set of passwords (sweet-
words) for each account which contains several decoy passwords (honeywords) and the
real password (sugarword), so that even if adversaries obtain the password-hash database
and recover the original passwords, they cannot discern the real one. When an adversary
tries to log in with a honeyword, an alarm may be triggered, informing administrators
of a potential leakage of the password database.

2.2 Existing Honeyword Generating Algorithms

Juels and Rivest [6] provided four methods of generating honeywords when they first
proposed the honeyword mechanism in 2013. Chaffing by tweaking generates honey-
words by replacing letters and numbers with other letters and numbers.Chaffing-with-a-
password-model applies a probabilistic algorithm based on publicly available password
databases. Chaffing with “tough nuts” generates honeywords which are much harder to
crack than the average, e.g., 256-bit, random bit-strings. Take-a-tail asks users to add
short suffixes to their raw passwords. Then honeywords are generated by changing the
suffix of the sugarword.
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Imran Erguler [9] proposed another honeyword generating method which maintains
a set of integers for each user, corresponding to a set of existing passwords stored in
another list. One of the passwords is the sugarword and the others are honeywords. The
index of the sugarword is saved in the honeychecker.

Nilesh Chakraborty and Samrat Mondal [11] proposed three new algorithms includ-
ing modified-tail, close-number-formation and caps-key based approach. Modified-tail
is an extension of take-a-tail which allows users to have the freedom to choose tails
without diluting the security standards. Close-number-formation changes the numbers
in original passwords slightly. Caps-key based approach changes several letters from
lower case to upper case. In another paper, Nilesh Chakraborty and Samrat Mondal [13]
proposed paired distance protocol approach which not only attains a high detection rate,
but also reduces the storage cost to a great extent.

Akshima, etc. [18] proposed two legacy-UI models, evolving password model and
user-profile model, and one modified-UI model, append-secret model. Evolving pass-
word model utilizes a probabilistic model of real passwords. User-profile model gener-
ates honeywords by combining details fromuser profiles.Append-secretmodel generates
honeywords by calculating and appending a secret suffix to the passwords.

Several examples of aforementioned algorithms are presented below (Table 1).

Table 1. Examples of existing generating algorithms

Generating algorithm Sugarword Possible honeyword(s)

Chaffing by tweaking BG+7y45 BG+7q03, BG+7m55, BG+7y45

Chaffing-with-a-password-model mice3blind gold5rings

Chaffing with “tough nuts” / 9,50PEe]KV.0?RIOtc&L-:IJ"b +
Wol<*[!NWT/pb

Take-a-tail RedEye2413 RedEye2582, RedEye2766
(413 is the tail generated by the system
randomly)

Modified-tail tea@?| tea?|@, tea?@|, tea|?@, tea|@?, tea@|?
(@? is the tail chosen by the user from
the set of special characters {@, ?, |}.)

Close-number-formation 28May2000 26 May 1999, 25 May 1997, 29 May
2001, 22 May 1998,

Caps-key based approach aNImal AnImal, aNimaL, Animal, anImAl

Paired distance protocol secrettp7 secretk8b, secretekx
(tp7 is the tail chosen by the user)

Evolving password model abcde123% secret_9

User-profile model / Wood = 1995, Alice_19, Jerry#19wood

Append-secret model abcde1998 abcde4e7j@
(1998 is an extra entry chosen by the
user)
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2.3 Analysis of Existing Algorithms

The effectiveness of the honeyword mechanism is strongly dependent on the honeyword
generating method. In this part, we focus on several factors, including flatness, security,
performance and usability, when evaluating existing generating algorithms.

Flatness
Flatness marks the probability of each honeyword to be regarded as the true password
from the viewof an adversary.Aflatter generatingmethodmakes it harder for adversaries
to discern the sugarword. Among all existing ideas, those algorithms which generate
honeywords by changing suffixes achieve better flatness, while tweaking algorithmsmay
not generate flat honeywords in some cases, especially when the sugarword contains a
unique pattern and stands out among fake passwords.

Security
The security of an algorithm represents its resistance to password-related attacks such
as brute-force attacks, dictionary attacks, denial-of-service (DoS) attacks, targeted pass-
word guessing and multiple system attacks. Algorithms like user-profile model show
lower resistance to targeted password guessing since their honeywords are highly related
to personal information. On the other hand, if honeywords are highly predictable, adver-
saries can use DoS attacks by keeping submitting honeywords deliberately with the help
of available true passwords. Some algorithms implement extra mechanisms to defend
attacks, but other factors are weakened at the same time.

Performance
Performancemeasures time and space costs, including time complexity of the generating
algorithmand storage space needed by both the password database and the honeychecker.
Comparedwith complex algorithms, those algorithmswith simple ideas such as tweaking
or changing suffixes have lower time complexity, but nearly all existing algorithms have
to store extra k honeywords together with the sugarword, or maintain a huge database
of existing passwords which takes a lot of storage space.

Usability
Usability includes some user-related factors. For example, does the system interfere the
password choice of the user? Do users need to memorize extra information? What is the
possibility of inputting a honeyword by mistake? Among existing methods, generating
honeywords by changing suffixes requires users to memorize extra tails, bringing more
burdens to users; some other methods, such as the caps-key based approach, add extra
limits to legal passwords which interferes the password choices of users; for tweaking
methods, the typing mistake of a user may be recognized as a submission of honeyword,
leading to an alarm which is not expected to be triggered.

3 A New Direction

3.1 Main Ideas

Most of the existing generating algorithms are based on original passwords. They gener-
ate honeywords by directly transforming the original password, or by making up a new
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password according to the original pattern. Thus, existing methods may have a huge
storage cost, and the honeywords may not be flat enough so that adversaries can easily
discern the real passwords.

Our algorithm – “transformed-hash”, generates a honeyword from the hash of the
raw password, and actually, the honeyword is just a transformed hash. The information
of the transformation is stored in the honeychecker. The comparison between concerns
of existing models and our algorithm is showed below (Fig. 1). There are two main
improvements of our algorithm. Firstly, we only store one password hash for each user
in the password database, which reduces the storage cost to a large degree. Secondly,
instead of generating honeywords based on raw passwords, we focus on hashes and use
a transformed hash as a honeyword. Therefore, our method attains expected levels of
flatness, security, performance and usability.

Fig. 1. Comparison between concerns of existing models and our algorithm
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3.2 Transforming Methods

Transforming methods are applied to turn the hash of the real password to a fake hash.
In this paper, we propose a relatively simple strategy to illustrate our idea. We suppose
that the password hashes are 256-bit long. The algorithm transforms a hash by flipping
k bits, namely, it selects k bits of the password hash randomly, and then changes them
to their unary complements.

It is noteworthy that some transformed hashes may be excluded by adversaries since
they do not seem to be hashes of user-generated passwords, so the space of decoy hashes
must be huge enough so that enough deceptive keys are incorporated. Let p stand for the
ratio of the theoretical key space to the actual key space. For a 256-bit hash, the number
of deceptive transformed hashes is

1

p
×

(
256

k

)

To find a proper value for k, we should focus on the number of deceptive hashes
(Table 2). The values of parameters should be set properly basing on actual situations. In
this paper, as an example, we assume p = 108 and set the value of k to 5, and the number
of deceptive hashes is 88 in this case. Therefore, the system generates a transformed
hash by flipping 5 different bits of the original hash.

Table 2. The number of deceptive transformed hashes for different values of k and p

k p

107 108 109

4 17 2 0

5 881 88 9

6 36853 3685 369

3.3 Technical Descriptions

Symbols

ui: the ith user of the computer system
pi: the raw password of ui
H : the cryptographic hash function used in the computer system
H (pi): the password hash of ui
H ′(pi): the transformed password hash of ui
mi1 ∼ mi5: five integers that mark the indexes of the changed bits.
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Password Database
The system maintains a file F storing information of usernames and passwords. File F
lists the pairs of usernames and transformed password hashes which have the following
form:

(ui,H
′(pi))

Thus, file F can be described as {(ui,H ′(pi))}.

Honeychecker
Like the original honeyword generation methods proposed by Juels and Rivest, this new
method also needs a server called honeychecker to check whether the inputted password
is a sugarword. For each user ui, the honeychecker maintainsmi1 ∼ mi5 which represent
the indexes of the changed bits of H (pi). Records of the honeychecker database have
the following form:

(ui,mi1 ∼ mi5) = (ui,mi1,mi2,mi3,mi4,mi5)

And the honeychecker database can be described as {(ui,mi1 ∼ mi5)}.
Our honeychecker receives messages of the following two types:

Set: i,m1 ∼ m5

Store the indexes of the changed bits for ui, namely, set the values of mi1 ∼ mi5 to
m1 ∼ m5.

Check: i,m1 ∼ m5

The honeychecker queries its database to get mi1 ∼ mi5. If mi1 ∼ mi5 equals to
m1 ∼ m5, then the check succeeds, otherwise the check fails and the honeychecker may
raise an alarm.

3.4 Algorithm Routines

Registration
A new honeyword is generated in the process of registration. When a user ui inputs the
expected password pi, the computer system calculates the password hash H (pi) at first.
Then five random integers m1 ∼ m5 are generated, marking the indexes of bits that will
be changed. Later, the system transforms the password hash and getsH ′(pi). Finally, the
honeychecker is informed of this operation and the pair (ui,H ′(pi)) is stored into file F.

The routine of registration is presented below:

(1) Read ui and pi inputted by the user
(2) Calculate the password hash H (pi)
(3) Generate five different random integers m1 ∼ m5 that are greater than or equal to

0 and smaller than 256
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(4) Get H ′(pi) by changing the five bits of H (pi) to their unary complements
(5) Send Set: i,m1 ∼ m5 to the honeychecker
(6) Store the pair (ui,H ′(pi)) into file F

Login
When a user tries to login with a username ui and a password wi (the password may be
incorrect), the computer system calculates the password hash H (wi). Then the system
queries the file F database and getH ′(pi). In order to detect possible leakages of password
databases, an alarmwill be triggeredwhen a similarly-transformedpassword (we still call
it a honeyword for convenience) is submitted. According to our transforming method,
comparedwith the hash of the sugarword, all those passwordswhose hashes have exactly
five different bits are regarded as honeywords. Therefore, if H (wi) and H ′(pi) have
exactly five different bits, then the system sends the indexes of the different bits to the
honeychecker and waits for it to have a further check.

The routine of login is presented below:

(1) Read ui and wi inputted by the user
(2) Calculate the password hash H (wi)

(3) Look for H ′(pi), the transformed password hash of ui, in file F. Then compare
H (wi) with H ′(pi). If H ′(pi) is not found in F, or H (wi) and H ′(pi) do not have
exactly five different bits, the login routine fails.

(4) Get the indexes of the different bits m1 ∼ m5
(5) Send Check: i,m1 ∼ m5 to the honeychecker
(6) If the check succeeds, then the user login successfully, otherwise the login rou-

tine fails. Besides, an alarm may be raised when the check fails, informing an
administrator or other party of a possible leakage of the password hash database.

Modification
The routine of modifying the password is almost the same as that of registration. When
a user ui inputs the modified password p′

i, the computer system calculates the password
hash H (p′

i) at first, then generates five new random integers m′
1 ∼ m′

5, marking the five
bits of H (p′

i) that will be changed. Later, the system transforms the password hash and
get H ′(p′

i). After informing the honeychecker of this operation, the system stores the
pair (ui,H ′(p′

i)) into file F.
The routine of modifying the password is presented below:

(1) Read ui and p′
i inputted by the user

(2) Calculate the password hash H (p′
i)

(3) Generate five different random integers m′
1 ∼ m′

5 that are greater than or equal to
0 and smaller than 256

(4) Get H ′(pi) by changing the five bits of H (pi) to their unary complements
(5) Send Set : i,m′

1 ∼ m′
5 to the honeychecker

(6) Store the pair (ui,H ′(p′
i)) into file F
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4 Analysis

4.1 Flatness and Security Analysis

Flatness
Flatness influences the difficulty of detecting the sugarword from honeywords. As our
model is based on transforming hashes, the honeyword and the sugarword only have
similar hashes and their original forms are totally different. For each account, adversaries
must find how the hash is transformed before looking for the sugarword.

However, it is really difficult to find the transforming way, and detecting the sugar-
word is nearly impossible.We suppose that the password hash is transformed by flipping
k bits. Then there are 256! ÷ (251! × 5!) = 8809549056 possible original password
hashes for k = 5, each of which can be regarded as a honeyword. Comparing with exist-
ing generating algorithms which generally store about 20 sweetwords for each account,
our algorithm has a huge decoy-key space. Most importantly, adversaries cannot rely on
any pattern to help them discover the real hash of the original password because each
sweetword is a 256-bit hash and shows nothing special.

Brute-Force Attacks and Dictionary Attacks
Adversaries need to enumerate all possible passwords for a brute-force attack. Because
of the huge number of honeywords which may cause alarms, adversaries can easily
be detected while submitting guesses. Therefore, the proposed algorithm has a strong
resistance to brute-force attacks. For attackers, the computational expense of cracking
the password database is also higher comparing with that of attacking other existing
honeyword systems.

An adversary may also carry out a dictionary attack with the help of a dictionary
of user-generated passwords. If the adversary knows that the stored hashes have been
transformed by tweaking k bits, he can keep calculating hashes of passwords from the
dictionary offline until he discovers a password whose hash value has exactly k different
bits comparing with the stored hash, and then he may submit the discovered password.
However, if we suppose that the dictionary contains 10−8 of all theoretically possible
passwords, then there are 256! ÷ (251! × 5!)×10−8 ≈ 88 confusing honeywords when
5 bits are changed. Therefore, if k is chosen properly, the adversary can probably find
many confusing answers when carrying out a dictionary attack, leading to a high pos-
sibility of being detected when logging in. In sum, our algorithm can defend dictionary
attacks effectively.

Denial-of-Service Attacks
Denial-of-service (DoS) attacks can be a potential problem and threat for the honeyword
mechanism, especially when the generated honeywords are highly predictable. If an
adversary has not compromised the password database F but successfully knows the
original password of the user in some way, he has a great chance to guess honeywords
and submits them to the system deliberately. The system may force a global password
reset or blocking the whole web-server in response to the submission of one or more
honeywords.
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The key point to mitigating DoS attacks is reducing the chance of triggering an
alarm maliciously. One way is to increase the difficulty of guessing honeywords with
the help of known sugarwords or honeywords.According to our algorithm, the sugarword
and honeywords can be totally different since they only have similar hashes. Knowing a
sugarword or a honeyword brings no benefit to adversaries when trying to discover other
honeywords, so the discovery of each honeyword needs a dictionary attack. Besides, the
alarmingmechanism can be changed so that alarms cannot be triggered unless an enough
number of different honeywords are submitted to the system. For those adversaries who
have obtained the original password in some way, they have to use dictionary attacks
repeatedly until they have found enough different honeywords, so they almost have no
chance to trigger an alarm on purpose. Therefore, comparing with existing generating
algorithms, our model can help the system to defend DoS attacks to a large degree.

Targeted Password Guessing
Adversaries may also use targeted password guessing attacks by detecting the sugarword
with the help of the personal information of users, which can be easily obtained based
on usernames or the social network graphs, especially for those users whose passwords
are highly related to their personal information.

The best way to prevent targeted password guessing attacks is using irrelevant hon-
eywords so that personal information brings no benefit to adversaries. In our model,
only one honeyword, the transformed password hash, is stored for each account and
no personal information is involved because of the transformation, adversaries cannot
expect to gain any advantage of detecting the sugarword.

Multiple Systems
Users prefer setting the same password across different systems. In that case, adversaries
may get advantages for discovering the sugarword. Juels and Rivest described intersec-
tion attacks and sweetword-submission attacks which are related to multiple systems.
If a set of distinct honeywords are stored for each account, an adversary can compro-
mise the password database on several different systems and learn the real password
from the intersection of those sweetword sets. On the other hand, if a part of those
systems do not use honeywords in order to avoid intersection attacks, adversaries can
submit sweetwords as password guesses to the honeyword-absent systems without risks
of detection.

One way to make the system resistant to such attacks is enlarging the intersection
of sweetword sets among different systems. If the intersection has many sweetwords
instead of one, then adversaries cannot identify the sugarword from it. In our model,
when a user employs the same password on two different systems which both transform

original hashes by flipping k bits, then the intersection of the two sets has at least
(
2k
k

)
sweetwords (6 sweetwords when k = 2 and 252 sweetwords when k = 5). Therefore,
even if an adversary has compromised both systems and has found the intersection of
sweetword sets, he still cannot discover the exact sugarword. Thus, our algorithm has a
higher resistance to multiple system attacks.
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4.2 Performance and Usability Analyses

Performance

Time Complexity
Our algorithm has a comparatively lower time complexity. The idea and routines of our
algorithm are simple and the whole generating process can be divided into two parts,
calculating a hash and transforming a hash. Transforming a hash can be done easily and
quickly with the use of bit operation. Calculating the hash is the most time-consuming
part whose time cost depends on the hash method. Therefore, the time complexity of our
algorithm is nearly the same as that of calculating a hash, which is necessary for every
generating method.

Storage Cost
The hash-based generating method also has a low storage cost. Nearly all existing meth-
ods store k sweetwords for one account. If we suppose that k = 20 and sweetwords are
256-bit hashes, then for each account, the sweetwords take 20× 256 = 5120 bits in the
password database and the honeychecker needs log220 ≈ 5 bits to store the index of the
sugarword. The total amount of storage cost is 5120 + 5 = 5125 bits. However, in our
model, the transformed hash takes 256 bits in the password database and the indexes of
the changed bitsmi1 ∼ mi5 are stored in the honeychecker which take 5×log2256 = 40
bits, so the storage space needed for each account is just 256+40 = 296 bits. Therefore,
comparing with other existing mechanisms, the storage cost of our algorithm is reduced
to a large degree.

Usability

Stress on Memorability
This algorithm puts negligible burdens on the memorability of users. Users do not need
to memorize a tail or other extra information since the final password is the same as the
expected one.Users can choose their passwords freelywithout being limited or interfered
by the system. They can even set a relatively simple password or one that is related to
their personal information because even for a simple or person-related password, the
transformed password hash is still hard to be decoded. In addition, since the algorithm is
resistant tomultiple-system attacks, a user can use same passwords for different systems,
which brings negligible stresses on the memorability of users when setting passwords
for a new account.

Typo-Safety
When typing the password, a user may make mistakes and input a wrong one, and a
worse case is that the wrong password happens to hit a honeyword which triggers an
alarm. This probably happens especially when honeywords are almost the same as the
sugarword. In our algorithm, however, comparing with the sugarword, those passwords
which can cause an alarm just have similar hashes, and their original forms can be totally
different from the true password, so it is impossible for a user to input a honeyword by
error. Thus, this method can be considered as typo-safe.
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5 Discussions

In this paper, we present a simple algorithm of the transforming method. The way of
transforming hashes can be changed but the values of parameters should be set properly
basing on actual situations. For instance, if the password hash is transformed by flipping
k bits, then k can affect the number of theoretical honeywords. When k is too small,
adversaries can easily find the sugarword by carrying out a dictionary attack; when k is
too big, adversaries may find it nearly impossible to find the sugarword and do not try
submitting any guesses in the end, and hence the system may lose the ability to detect a
potential leakage of the password database.

6 Conclusion

In this paper, we propose HoneyHash, a new direction of generating honeywords which
overcomes some inherent defects of existing generating algorithms. It turns out that
the proposed methodology meets high standards of flatness, security, performance and
usability. We hope that the proposed algorithm can encourage more systems to use the
honeyword mechanism.
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Abstract. Virtual machine introspection (VMI) can be defined as the
external monitoring of virtual machines. In previous work, the impor-
tance of this technique for malware analysis and digital forensics has
become apparent. However, in these domains the problem occurs that
some information is not available in the main memory at all times. Specif-
ically, files contained on non-volatile memory are typically not accessible
for VMI applications. In this paper, we present a file extraction archi-
tecture that uses a dynamically injected in-guest agent to expose the file
system for VMI-based analysis. To enable the execution of this in-guest
agent, we also introduce a process injection mechanism for ELF binaries
through the main memory using VMI.

Keywords: File extraction · Virtual machine introspection · Code
injection

1 Introduction

Virtual machine introspection (VMI) is the process of monitoring virtual
machines from the outside to gain knowledge of the inner state [7]. Due to
this external monitoring of live systems, VMI has become an appealing tech-
nique for intrusion detection, malware analysis, virtual machine management,
software debugging and memory forensics [11].

When dealing with virtual machine introspection-based malware analysis and
computer forensics, many situations arise that require efficient access to non-
volatile memory such as files that are stored on hard disk [15]. However, practical
implementations for this use-case (when only access to main memory is given or
the file system is encrypted) are lacking. In automated malware analysis, it is
desirable to submit payloads that malware downloads to disk to the monitor for
static analysis. For example, updates to malware should automatically be trans-
ferred to the monitor to track its evolution. For computer forensics purposes,
it can be essential to obtain files contained in virtual machines during run-time
without interruption of active services. Because files are typically not loaded into
memory unless the user actively accesses them, performing forensics on the main
memory is insufficient. Access to virtualized storage of the guest through virtual
machine introspection instead of extracting the wanted data from the disk image
c© Springer Nature Switzerland AG 2021
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is required in situations where the target is protected by (full) disk encryption.
Another reason could be that the targeted file is not stored on the VM itself, but
is instead located on network storage, which is not accessible by the monitor.

In order to extract files from persistent storage, domain-specific solutions
such as extracting credentials for NFS and WebDAV -based network storage
or key extraction for encrypted volumes such as encFS or LUKS have been
proposed [21]. However, those techniques only apply in their respective domain,
as in many cases the file system type is not known in advance, is proprietary, or
the technique relies on user actions.

In this paper, we design and implement a file extraction mechanism for use in
VMI environments with the assistance of a dynamically injected in-guest agent
that directly uses the file system capabilities of the guest. This proposed architec-
ture is built with the following goals in mind: First, it must work on remote and
encrypted file systems, this means the mechanism must operate independently of
the underlying file system. Second, it should allow for reasonable transfer speeds
so that the mechanism can be used to extract large files. Third, it must solely
rely on existing introspection APIs without any modifications to the VMM. Last,
it must be built considering stealthiness.

The contributions of this paper are the design, implementation, and evalu-
ation of the following components that can be deployed in production environ-
ments on an unmodified Xen hypervisor using primitive VMI operations and
events:

– A file extraction mechanism for files that are not loaded to main memory
– A process injection mechanism for VMI applications to execute ELF binaries
– A communication channel between an injected process and a VMI application

The outline of the paper is as follows: In Sect. 2 we present the common
techniques of virtual machine introspection for hardware-assisted virtualization.
The assumptions of our file extraction architecture and potential mitigation
measures for the monitored virtual machine are discussed in Sect. 3. Section 4
introduces the components of the file extraction mechanism and outlines their
interactions through VMI methods. In Sect. 5 we discuss the implementation of
the VMI application and the in-guest agent that is injected into the monitored
system as an ELF binary. Section 6 assesses the architecture based on transfer
speed, performance degradation and stealthiness. In Sect. 7 we compare our work
to the most related approaches concerning VMI-based code injection and file
extraction. Finally, we conclude our findings in Sect. 8.

2 Virtual Machine Introspection

We begin by introducing the relevant terminology and the principles integral to
the design and implementation of the file extraction architecture.
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VMI and the Semantic Gap: Virtual machine introspection (VMI) was first
designed to enhance robustness in intrusion detection systems by Garfinkel and
Rosenblum in 2003 [7]. They defined VMI as the approach of inspecting a VM
to analyze its behavior. Their first attempts at this novel technique involved
a modified version of VMW are Workstation, which allowed the use of direct
memory access (DMA) and access to virtual memory through manual address
translation.

Pfoh et al. provide the theoretical foundation by describing a formal model
for virtual machine introspection [24]. They still discuss this in the context of
intrusion detection, but their results remain applicable for all VMI-based security
applications. In particular, the research alludes to possible practical applications
such as computer forensics and secure logging. One of the main issues identified
here is the semantic gap, meaning the monitor requires assumptions over the
internal state of the virtual machine, e.g., the memory layout, data structure
layout, and kernel objects. The semantic gap is the problem of extracting high-
level semantic information from low-level data sources [5].

Jain et al. summarize and compare multiple approaches concerning bridg-
ing the semantic gap [15]. They divide the problem of the semantic gap into
sub-problems: The weak semantic gap refers to the challenge of creating VMI-
based tools. The strong semantic gap, on the other hand, is the open problem of
protecting such solutions from attacks interfering with the analysis, e.g., Direct
Kernel Object Manipulation.

Furthermore, they categorize VMI-based monitoring of virtual machines as
either asynchronous or synchronous [15]. Asynchronous monitoring refers to
methods that perform analysis of RAM much like traditional memory foren-
sic techniques, without manipulating the control flow inside the monitored VM.
Synchronous monitoring on the other hand interferes with the control flow of
the monitored VM, so that monitoring can take place at specific events or pre-
determined locations in the control flow, thus allowing a much greater level of
control. This, however, requires support in the virtualizing hardware to perform
context switches between VMs based on the monitored events.

Intel VT-x can perform a VM-exit when a software interrupt occurs within
the guest virtual machine [14]. VM-exit refers to the event of a privileged instruc-
tion being executed, which traps to the hypervisor and executes the provided
handler. This enables our code injection architecture to use the int3 instruc-
tion to trigger a software breakpoint, which exits the virtual machine and allows
the VMI application to intervene. Furthermore, we can perform a VM-exit on
other events depending on the specific implementation. On Intel processors, this
behavior can be configured using the primary and secondary Processor-Based
VM-Execution Controls. Additionally, the monitoring of writes to certain control
registers such as CR3 is supported [14]. As this register acts as the default page
table base register (PTBR), it must be updated by the scheduler when perform-
ing a context switch to an active process to reflect its page table, which enables
synchronization through a VM-exit when a process becomes active within the
monitored virtual machine. This makes synchronous VMI operations on specific
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processes possible, which is required for many intrusive VMI operations such as
code injection.

In this work, we use the Xen hypervisor and refer to the virtual machines
using the terms introduced by Taubmann et al. [27]. The term monitoring virtual
machine (MVM) is used for the virtual machine that performs the introspection
and contains the VMI application. The MVM can either be the Dom0 or a DomU
with the privilege to perform VMI operations on another VM. The production
virtual machine (PVM) is the virtual machine that is monitored by the MVM.

VMI Tool Support: Bryan D. Payne [23] provides a library named libvmi based
on XenAccess. This library aids in the prototyping of VMI applications. Through
integrated support of existing memory forensic frameworks such as Volatility [30]
and Rekall [25], bridging the semantic gap is significantly simpler in production
environments as provisioning for different machines can now be automated. The
bootstrapping of the in-guest agent via process injection and the resulting data
transfer will heavily build upon this work.

Libvmtrace, a tracing library for virtual machines based on libvmi, is intro-
duced by Taubmann et al. [28]. The library employs the previously mentioned
technique of monitoring the CR3 register to perform synchronous VMI oper-
ations. By doing so, the library can inject shellcode into an active process to
perform process forking for the Linux operating system [26].

3 Threat Model and Assumptions

In this paper, we make the following assumptions regarding the system under
analysis and discuss how a potential attacker that has access to the production
virtual machine may potentially undermine our efforts. This aspect is relevant to
the aforementioned use-cases when malware aims to prevent automated analysis
or when the user of the virtual machine tries to impede an on-going forensic
investigation.

First, we assume that the attacker does not compromise the kernel in a way
that prevents the introspection from bridging the semantic gap. In particular,
techniques such as DKOM are suitable to complicate or avert the use of virtual
machine introspection for the use-case of file extraction [2]. Second, general kernel
protection approaches such as (kernel) structure randomization [13] may prevent
a successful application of introspection altogether. Given the case of random-
ization on the task struct, the monitor would operate on the false assumption of
a default data layout and would thereby be unable to correctly extract process
information from the guest.

Furthermore, we assume that the attacker does not escape or bypass the iso-
lation provided by the hypervisor and attack the file extraction VMI application
directly. The hard disk’s controller may not be modified or controlled by the
attacker. Additionally, the guest virtual machine must allow for the execution
of the covert in-guest agent. This means there must be no hypervisor or other
mechanism in place that limits code execution on the guest by enforcing code
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signing for all executables. Finally, the attacker can know about the presence
of a hypervisor, but he may not be aware of the on-going introspection or code
injection. Otherwise, it seems highly plausible to delete or hide sensitive files.

Moreover, the requested file must be accessible by a running process of the
guest operating system. That is to say, the in-guest agent needs to be able to
read the file after code injection. For this to be possible, it is expected that
the kernel has not been modified, e.g., by placing hooks on relevant filesystem
system calls. Also, the file system may not be monitored by relevant event-based
callbacks in the kernel such as the fanotify API as this can be used to mitigate
file access to relevant files. Lastly, the file system itself must not be compromised
in a way that the relevant file can no longer be located by the PVM.

4 Methodology

In the following section, we describe the design of the system that is used to
extract arbitrary files using virtual machine introspection. The following archi-
tecture is crafted with regards to the limitations of introspection APIs in off-the-
shelf hypervisors, thereby enabling practical application in existing real-world
systems.

As explained earlier, a typical guest OS supports many different kinds of file
systems. Because the monitor might not know which file system to target and in
the worst-case lacks the required implementation, we choose to directly use the
file system capabilities of the guest, which makes our architecture suitable for
general purpose file extraction by removing file system dependencies from the
monitor.

Fig. 1. Our file extraction architecture consists of a VMI application on the MVM and
an in-guest agent injected on the PVM via a parent process. The in-guest agent reads
the file system and transfers data to the MVM via a shared memory communication
channel.

This shall be realized by injecting an agent into the guest system and estab-
lishing communication with this in-guest agent via shared main memory. Then,
the in-guest agent exposes the file system tree and potential extraction tar-
gets through the communication channel, enabling file transfer across virtual
machines.
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4.1 Components

The primary aim of this paper is to extract files from the guest virtual machine.
To achieve this goal, the file extraction architecture consists of two components.
These components and their relationships are visualized in Fig. 1.

The first component of this architecture is the VMI application. It is executed
in the monitoring virtual machine and performs the introspection of the PVM
and is responsible for communication with the guest as well as for receiving the
targeted file.

As previously mentioned, the extraction mechanism relies on an agent within
the PVM. We consider this in-guest agent the second component of the file
extraction architecture. The in-guest agent is bootstrapped by the VMI applica-
tion using the technique described in the next section and provides the necessary
insight into file systems available to the guest. Its purpose is to load a requested
file into memory to make it accessible for VMI.

Because the file may be arbitrarily big, it is unfeasible to load the file into the
main memory. Hence, the in-guest agent loads the requested file in chunks into
memory. A chunk is one part of the file that fits inside the allocated buffer and
can thereby be transmitted in one VMI operation. The shared memory region
of the in-guest agent contains the file chunk and encodes relevant protocol data.
In the context of VMI-based file extraction, shared memory refers to contiguous
memory that is shared between VMs.

4.2 Procedure

An overview of the code injection and file extraction process is depicted in Fig. 2.
Initially, we need to select a suitable user-mode process, which has the required

Fig. 2. The sequence of steps to accomplish file extraction consists of three phases: A
deployment phase, the actual file transfer, and the restoration phase. The former two
are performed using VMI-operations, while the latter is initiated by the agent after file
transfer.
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permissions to access the targeted file on the file system. We can identify suitable
processes by extracting the file permission of the requested file from the file
system and comparing them to the list of active processes as already implemented
in libvmi.

After forking the selected process, the child process is replaced at run-time
with the ELF executable in question. For this purpose, shellcode is injected into
the child process. The monitor writes the ELF executable to a shared memory
region created by the shellcode and resumes execution in the production virtual
machine. Finally, the child process is replaced by the ELF executable transmitted
from the monitor.

After the in-guest agent has been deployed in the guest machine, the actual
process of file extraction begins. As the user of the VMI application possibly does
not know where files of interest are stored within the guest virtual machine, the
extraction mechanism enables the VMI application to query a full file system
tree of the guest virtual machine. The result of this operation is transmitted to
the MVM by the same mechanism that is used to transfer the targeted file. This
enables the application to query and pick an arbitrary file present on the guest
without prior configuration of the in-guest agent.

Once the target has been selected and requested by the VMI application,
the in-guest agent determines the size of the file. At this stage, the guest reads
the current chunk into memory and signals the monitor that the buffer is clear
to read. When the respective chunk has been received by the application, it is
stored off to a file on the MVM. Now the only thing left to do is for the VMI
application to notify the in-guest agent that it may begin to transfer the next
chunk. This process repeats until the entire file has been transmitted to the
monitor.

4.3 Communication Channel

To establish communication between MVM and PVM, the in-guest agent exposes
an interface through shared memory. This interface allows the VMI application
to request files and the file system tree. It is also used to transfer the file to the
MVM. How the application can interact with this memory region is elaborated
on in Sect. 5.2.

This communication channel behaves like shared memory as supported by
many operating systems such as Linux and Microsoft Windows NT. When
transferring the targeted file to the monitor via VMI, a file chunk may only
be unmapped and replaced by the next chunk when the VMI application has
already stored off this particular chunk. In common non-VMI applications such
synchronization would be provided by techniques such as mutexes or semaphores,
typically implementations for these procedures are supplied by the operating sys-
tem. However, this means we cannot rely on them to guarantee mutual exclusion
as this makes them unsuitable for use across virtual machines.

Instead of reimplementing these mechanisms for VMI use, we provide syn-
chronization in the presented file extraction architecture through a spinlock,
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which can easily operate independently from both operating systems in the
MVM/PVM and is simple to implement.

5 Implementation

This section deals with the implementation of both architectures according to
the design principles outlined in the previous Section. All of the following imple-
mentations are built upon the libvmi introspection library. Because the task of
file extraction requires access to kernel structures to perform the code injection
and to find relevant user-mode task information, a Rekall -profile is necessary to
obtain the structure offsets [25]. We implemented our solution for Linux 4.5 and
believe that adaptions for other operating systems are possible.

5.1 Code Injection

In the following the characteristics of the code injection procedure for ELF exe-
cutables across virtual machines are elaborated. The goal of this technique is to
inject arbitrary user-mode programs into virtual machines solely through main
memory. As alluded to earlier, this process will be performed in two stages: First,
an eligible process with suitable rights for file system access must be forked using
VMI. Then the child of this process fork is replaced at run-time with the desig-
nated ELF executable.

Figure 3 shows the sequence of actions taken without consideration for syn-
chronization. To perform the first step of this procedure—process forking—the
host must know when and where the vCPU is executing code in the forked
user-mode process. For this purpose, we monitor changes to the CR3 -register,
where a pointer to the top-level paging structure is held. By doing so, we can
perform synchronous VMI operations when the guest OS scheduler switches to
our targeted process. To determine the address at which the program execution
will continue, we read the future instruction pointer directly from an offset to
the kernel-mode stack pointer. After we injected the stage 1 shellcode at this
location (1), it will first perform a vfork in the parent (2 & 3) and then a execve
in the child. When the execve system call in the shellcode is reached, we use
the VMI application to store the system call arguments under the user-mode
stack pointer. Additionally, the stage 1 shellcode must preserve the registers
RAX, RCX and R11 in the parent process as these are modified by performing
a system call.

For the use case of file extraction, the execve system call will execute
/bin/bash within the child process, thereby putting it into an infinite loop, which
causes frequent context switches to the target process by the Linux scheduler [20].
To inject the ELF executable into this newly created child process in stage 2, we
once again employ the technique of monitoring changes to the CR3 -register to
synchronize with the guest system. However, in the use-case of the proposed ELF
injection, it must also be taken into consideration that the forked child process
might still use the parent’s page tables when a CR3 event is first triggered [8].



182 T. Dangl et al.

Fig. 3. Our VMI-based ELF injection implementation first forks a process using code
injection. Then, we replace the child of this fork at run-time with an executable trans-
mitted by the host.

Because the operating system does not duplicate the page tables of the child
process when using vfork, both the parent and the child process can refer to the
same top-level paging structure until execveat is called, thus not allowing any
distinction between them. To deal with this issue, it must be ensured that the
code injection is delayed until the above procedure is completed1. Eventually,
we can continue the injection of the stage 2 shellcode at the future instruction
pointer (4).

In stage 2, initially, a file descriptor to an anonymous file2 is opened by the
shellcode (5) using the memfd create system call. This is required because the
Linux operating system can execute programs only from files. To reduce the
chance of detection, the MFD CLOEXEC flag is used, so that the descriptor
closes on program execution. Afterward, the entire file is mapped to virtual
memory using the mmap system call (5).

At this point the shellcode performs a context switch to the VMI application
(6). Now there are two things that must be taken care of: First, the in-guest
agent must be written to the buffer (7). Second, measures must be taken to
restore the previously backed up memory region that was overwritten by the

1 This is achieved by waiting in the VMI application until the child’s top-level paging
structure differs from the parent’s.

2 Under Linux operating systems, the term anonymous file refers to a file that lives
solely in memory. It is not present on any mounted file system and released once it
is no longer referenced [12]. The memfd create system call was introduced in version
3.17. For older Linux versions or BSD variants, it is possible to use shm open instead.
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shellcode. For this purpose, a breakpoint is placed in kernel-space at LSTAR3

before the execveat system call is handled.
Subsequently the shellcode synchronizes the now mapped ELF executable to

the file descriptor and cleans up the allocated memory used for the transfer. To
finish the injection, execveat is invoked with the file descriptor, which discards
the anonymous file and replaces the current process with the provided program
(8). The only thing remaining is to restore the original instructions from the
monitor when the previously placed execveat-breakpoint is executed (9).

Fig. 4. During the ELF injection, multiple VMX context switches and VMI-based write
operations occur between VMI application, scheduler, parent and child process, and
system call handlers.

Figure 4 depicts essentially the same process as shown in Fig. 3, however, in
this instance, we consider context switches and read/write operations between
MVM and PVM instead of control flow. While this architecture for injecting ELF
binaries is in theory applicable to any hypervisor, lacking support for event han-
dling in libvmi for other hypervisors currently limits the practical applicability
to XEN.

5.2 File Extraction

After the groundwork has been laid, the details of the file extraction implemen-
tation are discussed. As described in Sect. 4.2, the previously introduced code
injection mechanism is used to deploy the in-guest agent within the PVM. This
in-guest agent will perform all file system related operations and aid in extract-
ing the file. For communication purposes, the in-guest agent exposes a shared
memory region as a symbol through its ELF export directory, which can be
located in virtual memory by the VMI application.

3 LSTAR is a model-specific register that holds the targeted instruction pointer when
executing a system call in long mode.
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Before any communication is established, the in-guest agent allocates the
transmission buffer on the heap. The size and location of this transmission buffer
is written to the shared memory region, so that the VMI application knows how
many bytes it can read. To prevent the PVM’s operating system from paging
out the buffer, we lock it into virtual memory using the mlock system call for
the duration of the in-guest agent’s execution.

If the user wishes to skip the transfer of the file system tree, the VMI appli-
cation signals this decision to the in-guest agent via a bit-flag in the shared
memory before any other operation takes place. Otherwise, the in-guest agent
pipes the result of tree/into an anonymous file, which is then transmitted by the
same mechanism as explained below.

After the user has decided on which file to extract, the respective file path
is written to the transmission buffer. Before the transmission begins, a CRC-32
checksum of the entire file and the total file size is stored within the shared
memory. Now, the transmission may begin and the targeted file is read chunk
by chunk into the transmission buffer by the in-guest agent. After each step, the
agent uses a bit-flag to indicate the buffer contents are valid again. As the VMI
application is pulling on this specific bit, spinlock alike behavior ensures. On each
successful pull, the VMI application extracts the current file chunk and stores it
off. In order to signal that the chunk was received correctly, the application flips
bit-flag again. If this chunk transfer completes the entire process, the in-guest
agent terminates in order to evade potential detection after file extraction.

Eventually this process ends as the entire file has transferred to the VMI
application and is stored off on the monitor’s file system. Note that the previ-
ously mentioned checksum is only intended to detect transmission errors, not to
provide any means to prove cryptographic integrity as required in applications
for digital forensics. Expanding the protocol, in particular, the in-guest agent for
this purpose however seems plausible, yet outside the scope of our current work.

6 Evaluation

In this section, the performance of the file extraction mechanism is measured and
evaluated. Additionally, the stealthiness of the architecture is elaborated upon
in the context of an attacker within the guest system. All tests are performed on
virtual machines equipped with one pinned core of an Intel i7-6700K processor
and 2048 MB of RAM, swapping is disabled. Both the MVM and PVM system
are virtualized by XEN 4.13 using the Intel VT-x processor extension. The PVM
is located in DomU, while the Dom0 acts as MVM. The PVM uses the Linux
kernel version 4.4.40, and the MVM uses version 4.19.0. The system is installed
on a Samsung PM951 128 GB SSD, the DomU is stored within a qcow2 image.
The measurements are performed while CR3 -monitoring is enabled in libvmi.

6.1 Transfer Speed

To evaluate the performance of the protocol and its sample implementation,
the first thing to measure is the transfer speed when extracting a file from the
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guest virtual machine compared to loading the file directly from disk. For this
purpose, several files of different sizes are placed in the guest machine as potential
extraction targets. We measure the duration of file transmission starting from
the request to the agent until the file has been received by the monitor. The
following sizes have been selected to represent different classes of files that one
may want to extract from the guest: 2 KiB, 1 MiB and 300 MiB.

Then four measurements per file are performed with different buffer sizes:

1. Native: Reading the file into a contiguous buffer in the guest without the
use of VMI.

2. One page: The buffer size is set to one page (4 KiB on the evaluated system)
so that the measurement shows the highest possible slowdown due to mutual
exclusion.

3. 10 MiB: The buffer size is set to 10 MiB, a good middle-ground for most
applications.

4. File size: The buffer size is set to the file size, as this measurement will show
potential, inherent slowdowns of the approach that are not caused by mutual
exclusion.

Fig. 5. Transfer time of VMI-aided file
extraction Transfer time of VMI-aided
file extraction

Fig. 6. Scheduler impact on agent
deployment

Figure 5 depicts the results of this measurement with a sample size of 10.
Given these measurements, we observe a best-case transfer rate of approximately
76 MiB/s with an average of 52 MiB/s. For this estimate, the values of one page
buffer size and 2 KiB total file size were not considered. The reason for this
decision is that the former is not suitable for general use due to the number of
context switches required and only designed to show the worst-case performance
of around 1.8 MiB/s. In the latter case however, the run-time is vastly impacted
by the setup of the transfer, not by actually exchanging the buffers. The error
of these measurements is around 2%, which is not representable in the figure.
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While these results can already be considered acceptable, there is still room
left for improvement. First, we can disable event handling while the file transfer
is in progress. As seen in Sect. 6.3, listening for CR3 events introduces a huge
overhead, which can, therefore, be avoided. Second, the current implementation
of the spinlock can be replaced with alternatives that make use of the relevant
x86 instructions. Moreover, it seems feasible to use an interrupt for the commu-
nication direction PVM to MVM instead.

6.2 Agent Deployment

Additionally, we have to consider the cost of deploying the agent within the
production virtual machine in the first place. For this purpose, we measure the
duration of ELF injection for our in-guest agent implementation. As this proce-
dure relies on scheduler timing, the results may vary depending on factors such
as overall activity in the machine and the specific implementation of the sched-
uler. We performed these measurements a hundred times on an idling system
and a busy system using the default Linux scheduler.

The results of these measurements are depicted in Fig. 6. We find that our
assumption of a large fluctuation in the injection time due to scheduler timing is
in line with the measured values. The measurements show an expected median
setup time of 0.82 s on an idling system, 2.99 s on the busy system. In the worst
case, the setup procedure took 1.01 and 4.51 s, respectively. Since the agent can
potentially be reused for multiple file transfers, we consider these results to be
reasonable.

6.3 Performance Degradation

Furthermore, the execution of the in-guest agent can cause noticeable perfor-
mance degradation for other applications running in the PVM. To measure
potential side effects of the file extraction procedure, a heavy computational
load is simulated by executing calculations on the guest. This is done by approx-
imating π with the Chudnovsky algorithm for the first eight iterations [4]. By
comparing the computation time under file extraction to normal conditions, any
potential slowdowns in the guest system that are not caused by I/O operations
become visible. The only way to effectively eliminate the latter problem is to
create an artificial bottleneck for the agent’s file access. Since this is in direct
contrast to the goal of high transfer speeds, I/O throughput is not considered for
potential slowdowns. The measurement is repeated 10 times for each instance.

In total, this results in computation time of 2.948 s for normal execution
and 3.495 s for file extraction with a respective standard deviation of 0.041 and
0.076 s. Therefore, the use of VMI-based file extraction degrades the guest’s per-
formance by approximately 16%. This degradation is mostly caused by the event
handling for CR3 writes. It might be desirable to filter relevant operations in
the hypervisor so that the additional context switch for non-monitored processes
is no longer required. However, even with this it can be considered unlikely to
improve the performance much further as a VM-exit is required in all cases to
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provide the necessary isolation. What is possible nonetheless, is to disable event
handling after the code injection.

6.4 Stealthiness

As previously discussed, the approach remains vulnerable to some detection vec-
tors. First of all, the presence of the hypervisor is detectable from the guest by
the use of timing attacks [3]. Because instructions like cpuid cause a VM-exit
on Intel CPUs, the elapsed time will be many times greater when a hypervi-
sor is present. However, the presence of the hypervisor itself is common in many
environments and does therefore not provide sufficient reason to suspect a malef-
icent hypervisor abusing the inherent isolation of this technique to extract files.
Nevertheless, some known timing attacks allow the detection of virtual machine
introspection as employed by the approach at hand [29].

Unlike other inter-VM communication channels such as ivshmem and ZVIM,
our protocol does not introduce a PCI device, but exchanges data directly
through the main memory [1,19]. This design choice enhances the stealthiness
of the channel as it requires no direct modification of the VM and prevents the
detection of suspicious PCI devices.

Additionally, it seems conceivable to monitor the file system for access to
sensitive files. Most operating systems allow event-based notifications for certain
actions on the file system, on Linux this is provided by the inotify API. Using
this method, it is possible to detect the in-guest agent as it attempts to read
a monitored file into memory. Since the virtual machine introspection approach
grants kernel access, it seems plausible to prevent this possibility of detection by
placing a hook on the dispatching function from the VMI application. However,
access to these sensitive files could also be visible on file systems that are capable
of tracking access time separately from modification time, such as zfs.

Furthermore, the code injection technique used to both fork and execute
the covert in-guest agent is easily detectable from inside the guest. Because
the injection mechanism partially overwrites the .text section when performing
a context switch to the user-mode program, it appears plausible to check the
integrity of the program by comparing the .text section to the program on disk
when the shellcode performs relevant system calls. This technique can detect
the injection mechanism even without enforcing strict code singing. To avoid
such attempts, the injected shellcode can be dynamically rewritten using return-
oriented-programming, leaving the entire .text section intact [18].

Finally, the injected in-guest agent itself runs within the guest virtual
machine and can, therefore, be detected and potentially attacked. Since the
introspection approach allows for kernel access as mentioned above, it is possi-
ble to use DKOM to hide the forked process and its code from other programs
within the guest.
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7 Related Work

In the following Section, we evaluate previous work that aims to achieve a similar
goal. Table 1 represents an overview over all discussed approaches.

In 2009 Richard Jones introduced a set of tools for accessing and modifying
disk images of virtual machines called libguestfs [16]. Specifically, the virt-copy-
out utility enabled file extraction from disk images mounted inside a virtual
machine. However, as this tool is not based around introspection, access to
encrypted, virtual or network file systems is not possible and applications on
live virtual machines are highly limited.

The same year Maartmann et al. demonstrated a technique for extracting
cryptographic keys from main memory [17]. One of the use-cases examined for
their methods was disk encryption through TrueCrypt. By extracting the cryp-
tographic key used in the encryption, the attacker can gain access to sensitive
data. Since VMI operations typically operate on the main memory, this approach
can easily be adapted for use in VMI environments.

Gu et al. showcased an active introspection framework for narrowing the
semantic gap by executing ELF binaries in the context of a production virtual
machine in 2011 [9]. This was realized by using the ELF loader on the monitor-
ing virtual machine to load a statically linked program to the main memory. By
hooking into the scheduler of the production virtual machine using CR3 moni-
toring, they implemented context switching on-top of the production operating
system. We show that by using the program loader and scheduler inside the PVM
instead, we can significantly increase performance and reduce the requirements
on the implanted program while decreasing isolation.

Soon after, Hale et al. released the GEARS framework for VMI-based ser-
vices. They argued that such services should place components inside the non-
compliant production virtual machine. By doing so, the implementation can be
simplified as programs running inside the production virtual machine do not
suffer from the semantic gap. This principle is fulfilled in our work through the
use of the dynamically injected in-guest agent.

Fu et al. proposed a compatibility layer for non-VMI applications called
HyperShell in the same year [6]. They introduced the concept of reverse system
calls that allowed them to selectively forward some system calls to the produc-
tion virtual machine while executing others on the monitoring virtual machine.
This compatibility layer essentially enables the reuse of existing binaries such as
cp, ls, etc. in VMI contexts, thus greatly simplifying VM management. However,
the architecture shows weaknesses in terms of compatibility and portability:
First, the concept of reverse system calls inevitably requires the same (or at
least a compatible) set of system calls. This means HyperShell cannot be used
in situations where the MVM and PVM run different operating systems. Fur-
thermore, the implementation requires modifications to the hypervisor, which
presents an obstacle in practical real-world applications where the hypervisor
cannot be patched for security and liability reasons.

Morbitzer et al. introduced a technique based on their previously published
SEVered attack to extract encryption keys for file systems and other applications
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Table 1. Comparison with related work

using virtual machine introspection in 2019 [21,22]. Their approach enabled the
extraction of sensitive data when the virtual machine was protected by AMD
SEV that encrypts the main memory of the VM with a key unknown to the
hypervisor. This enables file extraction, even in areas not covered by our file
extraction architecture. However, the presented approach falls short when deal-
ing with file systems that reside purely in RAM such as tmpfs or are simply not
accessible by the monitor such as WebDAV.

8 Conclusion

This paper addresses the adaptation of typical code injection techniques for VMI-
based applications and the extraction of files from virtual machines through the
use of an introspection-oriented in-guest agent. To address the issue of deploy-
ing the in-guest agent in the targeted virtual machine, we show how typically
used techniques for inter-process code injection can be adapted for inter-machine
applications using introspection. Furthermore, the implementation for Linux
MVM/PVM-systems is presented.

For obtaining files that are accessible from within the virtual machine, our
approach demonstrates the provisioning and placement of an in-guest agent
within the guest. This in-guest agent enables common memory forensic tech-
niques and tools to access non-volatile storage. Additionally, the presented solu-
tion is evaluated in terms of transfer speed, performance degradation and stealth-
iness.
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Abstract. Cyber security research is quintessential to secure comput-
erized systems against cyber threats. Likewise, cyber security training
and exercises are instrumental in ensuring that the professionals pro-
tecting the systems have the right set of skills to do the job. Cyber
ranges provide platforms for testing, experimentation and training, but
developing and executing experiments and training sessions are labour
intensive and require highly skilled personnel. Several cyber range oper-
ators are developing automated tools to speed up the creation of emu-
lated environments and scenarios as well as to increase the number and
quality of the executed events. In this paper we investigate automated
tools used in cyber ranges and research initiatives designated to augment
cyber ranges automation. We also investigate the automation features
in CRATE (Cyber Range And Training Environment) operated by the
Swedish Defence Research Agency (FOI).

Keywords: Cyber range · Cyber range automation · Automated
tools · Cyber Range and Training Environment (CRATE)

1 Introduction

A cyber range is a specialized facility dedicated to cyber security where research
experiments and training sessions can be executed in a controlled fashion. The
basic concept of the cyber range has been used since the beginning of the mil-
lennium with early examples being the Emulab [49], DETERLab [39] and U.S.
National Cyber Range [15].

In order to better counter threats against computerized systems, there is
currently a need for an increased number of experiments and training sessions
[1,13,35]. There is a need to shorten the time taken [13,15], and decrease the
resources needed [11,13], to setup and execute cyber range events. There is also
a need of larger and more complex environments [15,31] and to increase the
fidelity of the experiments and the training sessions [11]. Furthermore, there is
a need to validate the emulated environments prior to executing events [13,22].

To address these challenges, several cyber range operators are developing
automated tools [11,13,35,45,51]. In this paper, we investigate the current sta-
tus and research trends in automated cyber range tools. We also describe the
c© The Author(s) 2021
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architecture and tools of the cyber range CRATE, operated by FOI, as an exam-
ple of a cyber range where automation has been integrated into the design.

The remainder of this paper is organized as follows. In Sect. 2, related work
is presented, followed by a presentation of the cyber range CRATE in Sect. 3.
In Sect. 4, we describe the automated tools integrated into CRATE. Section 5
describes how these tools have been utilized to perform research and training.
Section 6 contains a compilation of the automated tools identified in eleven cyber
ranges. The paper is concluded with a discussion of the findings in Sect. 7 and
conclusions in Sect. 8.

2 Related Work

In 2013, Davis and Magrath presented 28 cyber ranges and network testbeds [14].
Eight of these were described to include some form of automated features. In
2019, Yamin, Katt and Gkioulos presented a literature review where 100 papers
are analyzed [51]. Based on the analysis, the authors of the surveys identify a
research trend towards automated cyber ranges starting in 2014. This automa-
tion trend is also identified in a survey presented by Karlzén, where a literature
review covering 74 cyber ranges is described [25]. Interestingly, the latter actually
utilized an automated tool to perform the survey.

In total, fourteen cyber ranges containing different automated tools were
identified by the surveys. AIT Cyber Range in Austria incorporate automation
to deploy virtual machines during capture the flag (CTF) events [16]. The same
cyber range also incorporates a tool called GameMaker used as a scenario engine
to automatically execute injects during cyber range events [27]. Melón, Väisänen,
and Pihelgas describe the tool suite EVE and ADAM, used to provide situational
awareness during exercises hosted in the cyber range used by Nato Cooperative
Cyber Defence Centre of Excellence (CCDCOE) [30]. The cyber range used by
CCDCOE also incorporate an automated availability scoring system used during
exercises such as Locked Shields [34]. Kim, Mæng, and Jang describe multiple
automated tools needed in the cyber range used to host a complex exercise called
Cyber Conflict Exercise [24]. The described tools automate activities such as
system deployment and configuration, flag updates, attack execution and various
types of scoring. An automated system which utilize virtualization features to
restore the emulated environment after the event is also mentioned. Pham et al.
describe an automated tool called CyRIS (Cyber Range Instantiation System)
used in the cyber range CyTRONE [33]. CyRIS deploys and configures systems
and services in the cyber range. In [43], an automated tool capable of executing
attacks in CyTRONE is described.

In the cyber range DETERLab, a tool called MAGI (Montage AGent Infras-
tructure) is used to automatically run tests [44]. Davis and Magrath also mention
that DETERLab is able to automatically deploy environments based on abstract
test definitions [14]. Hibler et al. describe the automated tools used in the cyber
range Emulab to allocate hardware, configure networking and execute events
[19], and in [8], the tool Linktest, used to validate emulated environments in
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Emulab, is described. Vykopal et al. describe a tool called PM Portal used to
automate the setup and control of cyber exercises in the cyber range KYPO in
[48]. They also mention automatic scoring of cyber exercises and that attacks
can be automatically executed. In the future, a capability to automatically pre-
pare and execute cyber experiments will be developed [48]. Braje describes a tool
called ALIVE (Automatic Live Instantiation of a Virtual Environment) which
is implemented into the cyber range LARIAT [11]. The tool uses configuration
files to automatically build and configure virtual machines to create emulated
environments. ALIVE is also able to configure many standard network services,
including directory services, email servers, websites and file shares.

Urias et al. address the question of how cyber ranges can meet the increas-
ing demand for cyber training and testing, with the U.S. National Cyber Range
(NCR) as a use case. One of the solutions proposed is to utilize automated range
provisioning and configuration tools to set up the emulated environments [45].
Automation of the NCR is further investigated in [35], where an overview of
the tool suite called FACTR (Flexible, Automated Cyber Technology Range) is
provided. FACTR automates core testing processes and procedures including
testbed creation, verification and validation, monitoring, data collection, load
and user behavior modeling, testbed reconfiguration, reconstitution, and execu-
tion [35]. Another cyber range that is described as partly automated by Davis
and Magraph is VSCTC (Virtual Cyber Security Testing Capability). Shu et al.
describe the automation features incorporated in VCSTC as capable to deploy
emulated environments and to run experiments [38]. Davis and Magrath also
describe the cyber ranges SIMTEX, CAAJED and ATC CYDEST as partly
automated [14]. However, no further details have been found about the automa-
tion features in these cyber ranges, why these will not be further discussed in
this paper.

The surveys presented by Yamin, Katt, and Gkioulos [51] and by Karlzén [25]
also include several research initiatives where automated concepts and tools, not
affiliated to any named cyber range, are presented. Russo, Costa and Armando
introduce a scenario definition language used for scenario design and valida-
tion in [36]. In [13], the work is carried on with a description of a framework
used for automating the definition and deployment of complex cyber range sce-
narios, based on a scenario definition language called VSDL (Virtual Scenario
Description Language). VSDL will be integrated into the future Italian national
cyber range [13]. A framework related to VSDL is also presented in [37]. In
[12], Burke and van Heerden describe how automated attack capabilities can be
developed for use in a cyber challenge environment. Abbott et al. describes how
performance assessment can be achieved using automated parsing of log files
generated during cyber training exercises [1]. Finally, Yasuda et al. present a
tool called Alfons that automates the setup of an emulated environment using
definition files and virtualization [52].
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3 CRATE - Cyber Range and Training Environment

In this section, we describe the cyber range CRATE operated by the Swedish
Defence Research Agency (FOI). The description is based on technical reports
released in Swedish by FOI.

3.1 History

The development of CRATE started in 2008 and the cyber range has since been
used in numerous research experiments such as [41], multiple training sessions
[6], and exercises such as the Baltic Cyber Shield [20] and SAFE Cyber [47].

From the start, CRATE was developed to be a highly flexible and cost-
effective cyber range, able to emulate large and complex environments [4]. To
achieve this, automation has always been a priority, as exemplified by [17]. In
2016, development of a second generation of CRATE was initiated, where the
lessons learnt from operating the cyber range are incorporated [4]. The second
generation is scheduled to become fully operational in 2021.

3.2 Architecture

CRATE is a cyber range of the emulation type as categorised by Davis and
Magrath [14], using both virtual machines and hardware devices. The research
experiments and training sessions are conducted by running scenarios in emu-
lated environments. Both the scenarios and the emulated environments are cre-
ated and controlled with a set of cyber range tools developed by FOI. CRATE
runs on a dedicated hardware platform that is hosted locally, a design choice
made to ensure the flexibility and independence of the cyber range as well as
the capability to handle sensitive data during research and training [4].

Figure 1 shows a high level architecture of CRATE with the virtualization
servers that house the emulated environments in the center. The control plane,
to the left, is utilized for cyber range management and the event plane, to the
right, for the systems where the experiments and training sessions are executed.
The planes represent two security zones and are isolated from each other, which
is essential to ensure that the control plane is not affected by the events executed
in the event plane.

The virtualization servers house the virtualmachines used in the emulated envi-
ronments (Subsect. 3.3). There are currently more than 500 virtualization servers
operational in CRATE. The virtualization servers run a tiny, customized Linux-
based operating system called CrateOS [5]. To facilitate cyber range maintenance
and to ensure server integrity, CrateOS runs in a read-only environment and over-
lay file systems are used to store the virtual machines and configurations. This
enables the operating system of the servers to be replaced without affecting the
hosted virtual machines or their configuration, allowing CrateOS to be updated
as new software versions and security updates become available. The process to
update the servers has been automated using scripts, allowing the cyber range
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Fig. 1. High level architecture of CRATE showing the principal elements of the cyber
range.

administrators to run the desired version of CrateOS on each server. This capa-
bility further increases the cyber range stability and security [5].

Integrated in CrateOS is also a system service called NodeAgent. NodeAgent
handles communication between the Core API and the virtual machines and
automates the deployment and configuration of the emulated environments, as
described in Subsects. 4.1 and 4.2.

There is a separate network infrastructure for each plane in CRATE. The
LAN in the event plane is described by Almroth in [3] and utilizes software
defined networking (SDN) to facilitate automated configuration of the emulated
networks. VXLANs, virtual network segments, are used to support a high num-
ber of emulated networks. The VXLANs are dynamically assigned to the virtual
machines’ network cards and the routing protocols OSPF, RIP and BGP are
used to share the routing information of each emulated environment within the
event plane. Automatic management of the network configuration decreases the
work load and skill required to create emulated environments in CRATE. It also
decreases the risk of configuration errors [3].

The control plane houses the systems used to configure and control the emu-
lated environments and the scenarios that run in the cyber range. In the second
version of CRATE, the CRATE Core API (Subsect. 3.5) is used as the primary
control channel between the cyber range operators and systems in the event
plane. CRATE Exercise Control (CEC) (Subsect. 4.3) is a tool used to set up
and manage training sessions. SVED (Scanning, Vulnerabilities, Exploits and
Detection) (Subsect. 4.4) is a tool used to automate experiments and training
scenarios.
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Depending on the purpose of the cyber range event, the network data in
the event plane may be collected along with relevant log files from the virtual
machines or hardware devices. The data collection capability allows research on
events such as training sessions, as exemplified in [18].

3.3 Emulated Environments

The emulated environments in CRATE are set up as organisations. Each organ-
isation contains at least one emulated network and each network contains one
or more virtual machines and/or hardware devices. The virtual machines are
created using templates defined in the CRATE Core API database.

CRATE is able to run several emulated environments in parallel without
them affecting each other. There is no fixed limitation to the number of environ-
ments that can be run simultaneously, as this depends on the size and complexity
of the organisations being emulated.

Normally, most emulated environments are not operational in the cyber
range, but stored as definitions in a configuration database. The database
contains more than one hundred different environments that are ready to be
deployed in the cyber range. Some of these environments are used to create
a simulated internet, that contains internet services such as backbone routers,
DNS, RIPE Database, search engines and different web services such as social
media and newspapers. The simulated internet enables realistic scenarios to be
created in the cyber range.

A tool to automatically generate templates for emulated environments by
setting some seed parameters is currently in development, and has been suc-
cessfully tested in CRATE. This tool has the potential to help save time when
creating large and complex environments for research and exercises.

3.4 Hardware Devices

One key capability of CRATE is the ability to connect any type of hardware
device anywhere in the emulated environments. Even though this capability
may be used to conduct experiments with hardware-based security solutions, it
is mainly used to build replicas of critical infrastructure with industrial control
systems (ICS) and SCADA environments, as exemplified by [2]. CRATE hosts
replicas of several critical infrastructure environments, including energy produc-
tion and distribution, a traffic intersection, a railroad, an energy company, and a
water purification plant. Several of these environments interact with the physical
scale model called CRATE City.

However, using hardware devices make it costly to emulate larger environ-
ments due to device cost and the time needed to configure the systems. Few
cyber ranges use virtualized industrial control systems as identified by Holm et
al. [23]. None of the 30 testbeds included in the survey use virtualized industrial
control systems or utilize automated tools to setup or control hardware devices.

To be able to create large and complex ICS environments, CRATE makes
use of software based PLCs. The PLCs are based upon a modified version of



198 T. Gustafsson and J. Almroth

OpenPLC [39]. One example of an emulated environment that makes use of this
capability is the railroad system in CRATE City, which incorporates more than
70 software-based PLCs.

3.5 CRATE Core API

One of the lessons learned while operating the first generation of CRATE was
that the cyber range needs to support continuous development to meet new
requirements. Therefore, the second generation is centered around a new API,
called CRATE Core API. The API runs as a service and is the central hub
that manages all communication between the cyber range infrastructure and
the different applications, as depicted in Fig. 2.

Fig. 2. A high level overview of the role of Core API

The API software is divided into three layers as shown in Fig. 3. In the bottom
layer, a database is used to store the configurations of the event environments
to be emulated in CRATE. The server module of the API resides in the middle
layer, and a series of API clients supply the user interfaces to the cyber range
tools in the top layer [40].

CRATE Core API is built upon the Thrift framework [9]. One of the strengths
with Thrift is that it can generate clients in several different programming lan-
guages [7]. Currently, clients are generated for Python and Java [40]. The Python
client is primarily used for scripting purposes and the Java client is used by the
graphical user interface called CRATE Core GUI. CRATE Core GUI is a web
service that relies on the Vaadin framework [46]. Vaadin generates content in
HTML and JavaScript dynamically from server code written in Java [29].

Core API also provides several supporting services such as user authentica-
tion via LDAP and a service for cyber range resource reservations.
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Fig. 3. The architecture of the Core API, showing the central role of the Thrift frame-
work

3.6 Cyber Range Users

The cyber range users are exemplified in Fig. 1. Technical staff include the devel-
opers designing the cyber range tools and the technicians who operate the cyber
range. The tutors use the cyber range for training sessions and exercises, and
the researchers to conduct experiments.

During training sessions and exercises, users are often assigned to a team
designated by a color matching their role, depicted in the top left corner in Fig. 1.
The most frequently used colors are blue representing the team being trained
or the defending team, red representing counterplay or attacking team, white
representing exercise management, and green representing the team managing
the technical infrastructure [50]. The user access (Subsect. 3.6) takes place via
command line or graphical user interfaces (GUIs).

To provide remote access to the cyber range, two solutions are available.
Individual users are able to connect via a client-based VPN solution based on
OpenVPN [32]. There is also a hardware-based solution where VPN boxes are
used to create a site-to-site VPN. The VPN box contains a 48-port network
switch and can be remotely administered through a web-based management
tool. Each physical switch port can be mapped to a VXLAN (virtual network
segment) representing an emulated network in an emulated environment. The
automated configuration process takes less time than a manual operation and
ensures that the configurations written to the devices are correct [3].

4 Automation Features in CRATE

In the following subsections, we describe where and how the cyber range CRATE
makes use of automation features.
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4.1 Range Provisioning

Range provisioning includes the preparation of the virtualization servers and con-
figuration of the software-defined networks, processes that are fully automated
in CRATE.

When virtual machines are to be deployed on a virtualization server, the
NodeAgent service will configure the server’s network with the required VXLANs
(virtual network segments) and connect them to the virtual machines’ network
cards.

The automated range provisioning features also include the ability to reset
a virtualization server to “factory state”, wipe individual virtual machines or
to upgrade the operating system, CrateOS. For an OS upgrade, the server only
needs to be rebooted. All virtual machines and other settings are persistent.

4.2 System and Service Configuration

The process of configuring virtual machines and their services is fully automated
in CRATE, and handled by the NodeAgent service. NodeAgent is a manager that
runs on every virtualization server and it is subscribed to an AMQP queue, from
where it reads instructions sent from the Core API. When NodeAgent receives
the deploy command together with a JSON blob containing the virtual machine’s
configuration parameters, it will copy a virtual machine template to the server,
start it and then run configuration commands through the hypervisor’s API.
NodeAgent will set configuration parameters such as hostname, local users and
network settings. Services like DNS, Firewalls, gateways, directory servers and
email servers are also configured. To ensure that a deployment was successful,
NodeAgent will run a series of validation commands, and report the result back
to Core API.

4.3 Exercise Management

CRATE Exercise Control (CEC) is a web-based exercise management and sup-
port tool integrated into CRATE [6]. It is used to create and control scenarios,
enhance the situational awareness during event execution, and score and eval-
uate performance of the participants after the training session or exercise. An
event is created using a planning view, where injects are chosen from an inject
database and scheduled on an event timeline. The database contain information
about the inject, information on how the blue team may detect and report the
inject, how the response should be scored by the white team and instructions
for the red team on how to execute attacks when the inject is played. When
exercise planning is ready, CEC generates a timeline view that can be used as a
scheduler during the event.

During the event execution, red team activities can be automatically sched-
uled and launched from CEC if sSVED is used. Scoring is also performed by
scoring bots that monitor system and service availability in the event environ-
ment. CEC incorporates a view where incidents are reported and managed. Each
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report is also associated to an inject, which will enhance the situational aware-
ness for the white team during the event.

The foundation for the after-action analysis consists of the event view where
the reports are plotted chronologically, the scoreboard view, and information
from the inject database [6].

4.4 Inject and Test Execution

SVED (Scanning, Vulnerabilities, Exploits and Detection) provides CRATE with
a tool where actions are executed automatically and verbosely logged during an
experiment or training session [21]. SVED increases the fidelity of the experi-
ments executed in the cyber range by allowing actions to be executed in a reliable
and repeatable manner. It also reduces the effort needed to run training sessions
and exercises since the red team actions can be automated.

SVED consists of five components as described in [21]. A threat intelligence
module collects system and vulnerability data from several different sources,
including Core API, U.S. National Vulnerability Database and automatic scans
performed with OpenVAS. A designer is used to create attack graphs via a GUI
or via a script-based REST API. The executioner executes the attack graph
and attacker/sensor agents runs commands or reports alerts in the emulated
environments. The latter may be placed on any emulated network in the event
plane, enabling SVED to mimic multiple attack patterns. Lastly, a logger stores
log data generated when executing the attacks in the attack graph.

4.5 User Emulation and Traffic Generation

The ability to emulate realistic user behavior and to generate network traffic is
an essential part of a cyber range to enable realistic and relevant experiments,
training sessions and exercises.

In CRATE, there are three methods used to automate user behavior. The
first option is a bot that runs on the virtualization server and that uses the
hypervisor’s API to send instructions to the virtual machines. This option works
best for command-line actions. The second option relies on the software AutoIt
[10] and is used to automate software with graphical user interfaces, such as
email clients and web browsers. The third option is integrated in the attack
orchestration tool SVED, and is used where user actions are part of an attack. To
emulate user behavior, SVED contains several pre-defined user actions that can
be invoked, including sending and reading emails, opening files and attachments
and visiting web pages. Different user behavior, for example risk-aware users or
uneducated users, can be simulated with SVED by setting probabilities on the
different user actions such as opening email attachments and clicking on links.

Traffic generation in CRATE relies on the traffic generated by user actions
from the methods mentioned above.
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4.6 Data Collection

Data is usually collected from several sources during an event in CRATE, but
only the traffic monitoring and intrusion detection system has yet been fully
automated. Traffic monitoring and intrusion detection is done with system
called SNART. SNART consists of several components that are configured to
work together: a configuration component in CRATE Core GUI, an infrastruc-
ture component to collect network traffic from the network cards of the virtual
machines and a dedicated virtual machine running TCPDump and Snort with
the web GUI Snorby. The SNART system is configured in CRATE Core GUI
and automatically deployed in the event environment.

5 Usage of Automation in CRATE

The automated tools in CRATE are frequently used in the cyber range. In this
section, we will exemplify how the automation enables or facilitates research
experiments, training sessions and exercises.

5.1 Research Experiments

Holm and Sommestad describe a experiment where SVED is used to investi-
gate if the availability of offensive cyber tools decrease the skill required by an
attacker to compromise a system [23]. During the research, SVED was used to
automatically execute 1,223 exploits from 45 different exploit modules against
204 virtual machines in the cyber range. Without automation, this experiment
would probably have been too labour-intensive to be possible.

[28] describes research performed in an emulated environment hosted in
CRATE, where a generated scenario was executed automatically in a SCADA
environment. The resulting dataset can also be used for future research. The
environment used to perform the experiment is further described in [2].

In [26], Karresand, Axelsson, and Dyrkolbotn describe NTFS cluster alloca-
tion behavior. The experiments carried out during the research utilized auto-
mated capabilities in CRATE, including the creation of emulated environments
as described in Subsect. 3.3 and 3.5 and the management of CrateOS described
in Subsect. 4.1.

5.2 Training Sessions and Exercise Events

In [42] and [47], two cyber security exercises in CRATE are described. During
both events, CRATE Exercise Control (CEC) was used to automate exercise
management and after-action analysis and evaluation, the latter enhancing the
learning process of the blue teams. CEC also enabled the situational aware-
ness during the exercises to be achieved without requiring a dedicated observer
(often referred to as the yellow team). During repeated exercises and courses
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run in CRATE, CEC has proven capable of providing a good situational aware-
ness during the events, making this task less labour-intensive, as described in
Subsect. 4.3.

Another tool used to automate training sessions and exercises is SVED. Dur-
ing SAFE Cyber [47], SVED was used to perform the tasks normally performed
by a red team by executing pre-configured attack graphs.

6 Automated Tools in Cyber Ranges

As described in Sect. 2, numerous cyber ranges incorporate automated tools.
However, the terminology used to describe the tools varies and the details avail-
able about the tools are sometimes scarce. Table 1 contains a compilation of the
automated tools identified in the eleven cyber ranges as described in Sect. 2, 3
and 4. To facilitate comparison, the tools have been grouped into categories as
described below.

Table 1. Automated tools used in eleven different cyber ranges.
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Range setup
Range provisioning X X X X X X X

Environment setup
System deployment X X X X X X X X X
System configuration X X X X X X X X
Service configuration X X X X X X
Hardware configuration
Environment validation X X X X

Event execution
Environment adaptation X
Situational awareness X X X X
Traffic generation X X
User emulation X X X
Inject execution X X X X X X
Test execution X X X

Performance assessment
System availability X X X X X
Service availability X X X X X
Data analysis X

Post-event actions
Data collection X
System restore X X X X

Range provisioning includes tools used to assign and setup cyber range infras-
tructure. System deployment refers to tools used to deploy pre-prepared virtual
machines to create emulated environments. System configuration and Service
configuration are used to setup and configure the virtual machines as well as
their applications and services. Hardware configuration refers to tools used to
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setup and control hardware devices in the event plane, a capability none of the
analyzed cyber ranges currently possess. Once deployed to the cyber range, the
emulated environment is tested to ensure that is fulfills the defined requirements
with Environment validation tools.

Environment adaptation includes tools used to change the environment dur-
ing event execution and Situational awareness include automated tools that
provide an overview and visualization of an event. Traffic generation refers to
tools used to generate traffic in the emulated environments and User emula-
tion includes tools used to mimic user behavior on the virtual machines. Inject
execution is mainly used during training sessions and exercises, and includes
automated execution of attacks. Test execution is focused on the execution of
research experiments and tests in the emulated environments.

Automated performance assessment is mainly used during training sessions
and exercises and includes measuring System availability as well as Service avail-
ability. The latter includes more advanced features such as synthetic logon and
verifying service functionality. Data analysis encompasses tools used to derive
the performance assessment based on data produced by the participants or their
actions, such as logs or incident reports.

Post-event actions conclude the table. Data collection refers to tools that
automate the collection of data from multiple sources after an event. System
restore includes tools used both to release assigned cyber range infrastructure,
reset the emulated environments and, when needed, completely erase the event
data to prevent data leakage.

Note that Table 1 only includes tools used to automate the cyber range itself
and not tools used within the emulated environments, such as scanning tools
or analytic tools. Nor does the table include generic IT tools that are manually
configured to perform a task, such as sniffers, scanners or monitoring tools.

Figure 4 displays the number of automated tools identified in the eleven cyber
ranges included in Table 1.

All but one of the analyzed cyber ranges include automated tools to setup
and control emulated environments. During the event execution, a majority of
the analyzed cyber ranges utilize automated tools to execute injects. Automated
tools used to assess performance is included in five cyber ranges, four of which
also include automated tools to enhance the situational awareness. All of these
cyber ranges are described as used for training sessions and exercises.

7 Discussion

The information available about the automated tools in cyber ranges has proven
to be rather limited. The automation features are often mentioned only in a few
sentences, and it is hard to assess the maturity or extent of a certain tool, or
even if it is operational or just an identified requirement. The terminology used
to describe the tools varies between different papers, and when an evaluation
of the automated tools are included, they are normally only compared to per-
forming the same task manually in the same cyber range. All together, these
circumstances makes it hard to compare tools in different cyber ranges.
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Fig. 4. Number of automated tools in the eleven cyber ranges included in Table 1

The tools in Table 1 are included based on the assessments that could be
made based on information available. It is therefore quite possible that tools are
incorrectly included, or left out of Table 1. Furthermore, the data in Table 1
should not be seen as a comparison of cyber range capabilities, since the data
available is too limited to perform such a comparison.

Two of the surveys, [51] and [25], used as sources in this paper identifies an
automation trend in cyber ranges starting around 2014. However, our findings
indicate that many cyber ranges have been using automated tools to setup and
control emulated environments several years prior to 2014. Even though the
reason for this deviation has not been exhaustively analyzed while writing this
paper, our theory is that it depends on how cyber range automation tools are
described in research papers.

8 Conclusions

In this paper we have presented a compilation of automated tools used in cyber
ranges, as well as several research initiatives designated to further increase cyber
range automation. We have also presented the cyber range CRATE, operated by
the Swedish Defence Research Agency, and described its automation features. We
have found that automated tools have been used to setup and control emulated
environments in cyber ranges for several years, and that many cyber ranges
include such tools today. We have also identified that there is a need to further
use automation to be able to increase the number of cyber range events and to
increase the fidelity of the experiments executed.
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Abstract. This paper presents results from a privacy analysis of
COVID-19 contact tracing apps developed within the EU. Though these
apps have been termed advantageous, concerns regarding privacy have
become an issue that has led to their slow adoption. In this empiri-
cal study, we perform both static and dynamic analysis to judge apps’
privacy-preserving behavior together with the analysis of the privacy and
data protection goals to deduce their transparency and intervenability.
From the results, we discover that while the apps aim to be privacy-
preserving, not all adhere to this as we observe one tracks users’ location,
while the other violates the principle of least privilege, data minimisation
and transparency, which puts the users’ at risk by invading their privacy.

Keywords: Privacy · COVID-19 · Contact tracing apps

1 Introduction

The global spread of COVID-19 resulted in governments taking extreme mea-
sures to prevent further spread of the pandemic within their borders. In the EU,
the imposition of these measures, which include partial to total lock-down of
cities or the entire country, has seen the restriction of fundamental human rights
and freedoms (e.g., liberty), and a significant decline of the economy [23]. For
example, EU member states such as Spain, Greece and Portugal whose economies
mostly depend on tourism -contributing to over 15% of there respective GDPs-
will be highly affected by measures introduced as a way of reducing the spread
of COVID-19 [10]. Hence, to ease these restrictions, support manual contact
tracing in the context of public health, and allow the return to a new normal,
several EU member states have followed suit in the development and rolling-out
of contact tracing apps (e.g., France - StopCovid France and Spain - Radar
COVID), while others are on the process of developing one (e.g., Belgium1 and
Luxembourg2).

1 https://www.brusselstimes.com/all-news/belgium-all-news/health/120349/
belgian-contact-tracing-app-will-be-ready-in-september/, Accessed 07.07.2020.

2 https://today.rtl.lu/news/luxembourg/a/1514009.html, Accessed 07.07.2020.
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Nevertheless, with the said advantages that come with the use of contact
tracing apps, there have been concerns regarding privacy which slow down their
adoption. In the common EU toolbox for member states, the adoption of these
apps by users depends on privacy preservation and trustworthiness [8]. Addition-
ally, in the guidelines adopted by the European Data Protection Board (EDPB),
contact tracing apps should be compliant with the GDPR and privacy legisla-
tion [9]. It is in this regard that we investigate the privacy of contact tracing
apps deployed in the EU member states with the aim of determining if they are
privacy friendly. As such, we analyse the AndroidManifest.xml files of these
apps with a focus on permissions declared in relation to their respective frame-
works outlined in Table 2. We measure permission usage with and without user
interaction to gain an insight into the apps’ actual permission access behaviour.
Finally, we look into the privacy and data protection goals to assess the privacy
aspect of these apps in terms of their transparency and intervenability.

Research Questions: With a number of studies discussing the privacy aspects
of contact tracing apps across EU, for instance [18,20]; our interest is driven
by critiquing their behaviour and data protection expectations empirically. To
accomplish these, we set out to answer the following questions:

1. Do the apps violate the Principle of Least Privilege (PoLP)? According to
Saltzer and Schroeder [22], a program needs to function with the least set of
privileges in order to avoid any form of malicious interaction. Hence, we assess
these apps to identify whether they operate with the least set of privileges
(permissions) by measuring their actual permission access in relation to the
app’s core functionality.

2. How do these apps behave during runtime, i.e., with and without user inter-
action? While static analysis is used in determining declared permissions and
permission levels, we monitor the apps during runtime by measuring per-
missions access patterns, which provides an insight into how they actually
behave.

3. Can a person be identified based on the permissions accessed by these apps
during runtime? According to the principles of data minimisation (Art.
5(1)(a)) and purpose limitation (Art. 5(1)(b)) of the GDPR, data collections
should be kept at a minimum and for a specific purpose respectively. Violating
these principles could lead to the amassing of personal data that potentially
allows for linkability and the identification of a person [25]. As such, we iden-
tify apps that collect more data than required for their core functionality and
assess whether a user could be identified through such data.

4. Is the privacy and data protection goals of transparency and intervenability
respected? With the acknowledgement that there are three privacy and data
protection goals [16], we identify and assess the goals of transparency and
intervenability as they can be inspected from the end-user side. Hence, this
bit provides the answer to whether these apps are open in terms of data
processing, and if the rights of the data subject are implemented.
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To answer the questions, we adapt different assessment metrics that provide
an insight and a comparison into the privacy of these apps deployed across the
EU member states.

Outline: The rest of the paper is organised as follows: Sect. 2 discusses the back-
ground of contact tracing apps. Section 3 discusses the methods, which includes
the inclusion criteria for app selection and different analytical approaches for
privacy analysis. Section 4 discusses comprehensive results of the analysis while
Sect. 5 provides the discussion, limitations, and conclusion of the study.

2 Background

Contact tracing is a key procedure when it comes to preventing the spread
of a highly contagious infection. This process requires quick identification of
individuals who have come into close contact with an already identified case
of the said infection. Conventionally, the process of contact tracing is based
on manual tracking where individuals suspected of being in close contact to a
confirmed case are identified, and a contact list is constructed for immediate
follow-up. However, in certain cases, this process is not only labor intensive and
marred with privacy concerns due to direct identification of infected individuals,
but is also reliant on human memory, which more than often leads to inaccuracies
[1,21]. Manual contact tracing can easily take place where a deadly contagion is
contained rather than widely spread to a point of overwhelming the authorities
[1,4]. However, with the current global spread of COVID-19, manual contact
tracing has become more arduous; hence the need for apps that can construct
a digital record of ephemeral proximity identifiers and instantly notify users if
they have come into close contact with an individual who has previously tested
positive for COVID-19 [11]. While contact tracing apps are not meant to replace
manual tracing [9], their uses have been termed as an advantage as they would
allow a smooth exit strategy, including the return to normalcy of the fundamental
human rights and freedoms that had been restricted to reduce the spread of the
disease.

These apps work by building a digital record of identifiers derived from prox-
imity data, which is obtained from either Bluetooth Low Energy (BLE) or loca-
tion data. The latter, which has already been put in use by certain countries
across Asia (e.g., Taiwan and South Korea), uses a comprehensive time-stamped
list of GPS locations obtained from users’ mobile devices. While this approach
seems to work in the mentioned countries, such solutions cannot be embraced by
European Citizens as they are regarded invasive in terms of privacy [1]; indeed,
the use of location based services could be used to determine both the identity
of the person and their surroundings [12]. As such, several contact tracing apps
that utilise BLE have been developed as their use has been found to be more
effective, or rather suitable, in detecting contacts between people rather than
the use location data [3,6]. The BLE technology depends on the exchange of
identifiers between nearby devices via a Bluetooth connection. In the context of
COVID-19, the proximity and period of exposure between people influences the
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probability of an infection [1]. It is in the same context that the use of proximity
tracing apps has become convenient as the exchange of identifiers between two
or more close devices could be used to notify a user if they have been exposed
to the infection, without sacrificing their privacy. As a result, in their guidelines,
EDPB highlight and support the idea of using apps that do not require access
to location data as proximity data is considered sufficient in tracing COVID-19
cases [9].

Hence, several privacy-preserving contact tracing apps that rely on proxim-
ity data and are compliant with the GDPR have been proposed and considered
within EU member states [8]. These apps leverage a number of frameworks,
for example, ROBERT (ROBust and privacy-presERving proximity Tracing),
among others [1]. Recently, Google and Apple released the ExposureNotification
API framework; a system which facilitates in alerting users of the possibility
of having been potentially exposed to COVID-193. These frameworks strive to
be privacy-preserving and compliant with the data protection regulation. As a
result, these frameworks are currently being leveraged when it comes to devel-
oping contact tracing apps across EU member states (see Table 2). Nevertheless,
developing contact tracing apps from different frameworks results in apps seek-
ing different goals and having contrasting designs, which could possibly lead
to a number of privacy violations. For example, [4] discusses an attacker model
where an adversary can violate a user’s privacy by deanonymizing their IDs with
the intention of tracing new cases. Therefore, we analyse and compare the pri-
vacy of contact tracing apps deployed in several EU member states in relation
to their respective frameworks, with the aim of investigating whether they are
privacy-friendly or privacy invasive.

3 Methods

In this section, we define the inclusion criteria, which is relevant in determining
which apps are to be included in the study, followed by the assessment methodol-
ogy, which we follow to answer the aforementioned questions. We limit our study
to the Android platform due to its large user base and open source nature.

3.1 Inclusion Criteria

Several EU member states have already developed and rolled-out contact tracing
apps; nonetheless, it is worth knowing that not every app was eligible for inclu-
sion in our study. During the initial app installation phase, it was noted that
not all apps could be installed and run on the test device based on a number
of reasons, which include but are not limited to: the requirements of citizen’s
personal data and the unavailability of apps in the official app store, in this case
Google Play Store. Following this, we defined inclusion criteria that guided us

3 https://developer.apple.com/documentation/exposurenotification, Accessed 09.07.
2020.

https://developer.apple.com/documentation/exposurenotification
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Table 1. Inclusion criteria for app selection

Criteria Description

Criterion 1 The app should not ask for registration details (e.g., Phone Number)

Criterion 2 The app should be available for installation in the country of study

Criterion 3 The app should be available in official stores, i.e., Google Play Store

Criterion 4 App’s functionality - the app should be used for contact tracing purposes

in determining which apps could be included in our study. Table 1 shows the
criteria followed in selecting and installing the apps that were deemed eligible for
our study. A majority of the released apps were asking for citizen’s registration
details such as phone numbers with a country code so as to access the app’s core
functionality (e.g., eRouška - Czechia Republic). As a result, we focused on
apps that did not require registration of personal details for its use. Moreover,
a number of apps (e.g., ProteGO Safe - Poland) were unavailable within the
country where the study was being conducted (i.e., outside of their origin coun-
try); hence, such apps were automatically excluded from our study. In addition
to this, we targeted official contact tracing apps that had been released by pub-
lic authorities and published in official app stores. One of the recommendations
outlined by EDPB is that public officials should provide links to their respective
official contact tracing apps so as to prevent users from installing third-party
apps, which might pose significant risks to their privacy [9]. As such, we fol-
lowed the links provided to download apps as per the criteria provided. Finally,
with the apps having different functionalities, for example self-diagnosis as in
the case of Greece DOCANDU Covid Checker, we focused only on apps whose
core functionality is contact tracing. As a result, we were able to install and run
a total of 7 apps, each from a different EU member state as indicated in Table 2.

3.2 Assessment Methodology

The study design followed in order to provide an in depth privacy analysis of the
apps has three different assessment metrics: Static Analysis, Dynamic Analysis
(with and without user interaction) and, Privacy and Data Protection Goals
Analysis.

Static Analysis: During the development of an Android app, it is mandatory
for a developer to include an AndroidManifest.xml file within the app’s APK.
It is in this file that the developer declares, inter alia, the app’s package name,
build-version code, its principle components, etc., that the app needs for a par-
ticular purpose. Of importance is the declaration of the permissions that an app
needs in order to access sensitive system resources (e.g., GPS) and user’s personal
information such as location. By declaring these permissions, the Android Oper-
ating System ensures that users’ privacy are safeguarded by permitting secure
access to sensitive resources [15]. Further, a developer is recommended to declare



218 S. Wairimu and N. Momen

Table 2. List of apps collected in conjunction with their respective frameworks

Apps # Framework Country

Stopp Corona Apple/Google - ExposureNotification API Austria

CovTracer Safe Paths (MIT-led project) Cyprus

Smitte—stop Apple/Google - ExposureNotification API Denmark

StopCovid France ROBERT France

Immuni Apple/Google - ExposureNotification API Italy

Apturi Covid Apple/Google - ExposureNotification API Latvia

Corona-Warn-App Apple/Google - ExposureNotification API Germany

the least privileged set of permissions required for the app’s functionality [24].
As such, we extract the manifests from the apps APK files and analyse them
with the intention of gaining an insight into the apps’ protection levels through
the evaluation of the permissions declared. Additionally, we investigate whether
the permissions declared correspond to the apps’ functionalities in relation to
their underlying framework specifications.

Dynamic Analysis: Based on permissions declared, an app is able to request
access to required resources during runtime. These permissions, when granted by
a user, access resources in a manner and frequency that a user is unaware of. As
such, several studies for instance [17,19], shed some light on this by vetting the
runtime behaviour of android apps by analysing how often they access sensitive
resources and their actual permission access pattern. Hence, we adopt and apply
a similar approach on the apps in order to inspect the frequency in which they
access resources and if they portray uncalled for behaviour during resource utili-
sation by analysing their actual permission access patterns. Further, we uncover
whether the apps adhere to PoLP, “that is, each app, by default, has access only
to components that it requires to do its work and no more”4, by comparing the
actual accessed permissions to the apps core functionality. We base this analysis
on data gathered from two phases, that is, with and without user interaction;
both collected on separate occasions for a period of six days. To accomplish data
collection, we use A-Ware, a prototype tool introduced by [19] that runs as a
service and uses AppOpsCommand5 to extract and log in the accessed resources.
The tool logs in resource events that the apps previously accessed and records
them in a predefined format that is later saved and accessed as a JSON file (see
sample log below).

4 https://developer.android.com/guide/components/fundamentals.html, Accessed 28.
07.2020.

5 https://android.googlesource.com/platform/frameworks/base/+/android-6.0.1
r25/cmds/appops/src/com/android/commands/appops/AppOpsCommand.java,
Accessed 28.07.2020.

https://developer.android.com/guide/components/fundamentals.html
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.1_r25/cmds/appops/src/com/android/commands/appops/AppOpsCommand.java
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.1_r25/cmds/appops/src/com/android/commands/appops/AppOpsCommand.java
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1 {" Package ":" com.netcompany.smittestop_exposure_notification

"," Permission ":" READ_EXTERNAL_STORAGE ","Timestamp ":" Wed

Jul 08 11:05:41 EDT 2020"}

In addition to the aforementioned analysis, we investigate whether the actual
permissions accessed and recorded during runtime using A-Ware could be used
to identify a user through linkability, that is, “if too much linkable information
is combined” [25]. For example, if the apps access location data through the
ACCESS COARSE LOCATION or ACCESS FINE LOCATION permissions, one could be
able to directly infer the whereabouts, area or address of an app user. To observe
this, we adopt a model introduced by [13] that visualises the identity of person
by mapping it to permission accessed by a particular app.

Privacy and Data Protection Goals Analysis: In the protection goals for
privacy engineering, Hansen et al. [16] describe unlinkability, transparency and
intervenability as the three privacy and data protection goals that complement
the CIA (confidentiality, integrity and availability) triad. While all these are
important aspects, we focus on the transparency and the intervenability goals as
they can inspected from the end-user. By analysing the goal of transparency, we
assess how open these apps are in terms of data processing. On the other hand,
assessing the intervenability goal aims at analysing if the data subject rights
have been implemented from the end user perspective [16]. To achieve this, we
investigate these goals by relating them to the GDPR and in relation to the apps
privacy policies which we extracted and archived.

4 Results

This section presents the main findings of our analysis.

4.1 Manifest Analysis

Essentially, for an app to perform as required, it normally needs access to cer-
tain resources from either the user or the system. These resources are conven-
tionally accessed through permissions, and depending on which resources the
app requires, the permissions can either be granted automatically or explicitly
through user’s approval. The permissions requested, which act as protection
mechanisms for user privacy, are of three levels6: Normal, Signature and Dan-
gerous. Normal permissions are granted automatically (i.e., during installation
of the app) as they access resources that pose little threat to the users pri-
vacy. Like normal permissions, Signature permissions are automatically granted
at install time, however, they only access permissions signed by the same cer-
tificate. Finally, Dangerous permissions are exclusively granted by the user at
run-time as they access sensitive resources that pose a high risk to the user’s
privacy.
6 https://developer.android.com/guide/topics/permissions/overview#normal-

dangerous, Accessed 28.07.2020.

https://developer.android.com/guide/topics/permissions/overview#normal-dangerous
https://developer.android.com/guide/topics/permissions/overview#normal-dangerous
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Permissions Declared per App: Table 3 shows the permissions declared in
the manifest files of the apps indicated in Table 2. Overall, the apps declare a
total of 64 permissions, which are grouped into two permission levels. Of these
permissions, 82.81% are Normal and 17.19% are Dangerous. Taking each app in
isolation, it can be noted that CovTracer requests a large number of permissions
(20 in total - with 35% covering dangerous permissions), followed by StopCovid
France, which requests a total of 11 permissions - with 27.3% covering dangerous
permissions. On the other hand, Corona-Warn-App requests only one dangerous
permission by declaring the use of CAMERA.

Table 3. Permissions declared within each app’s AndroidManifest.xml file. Y is used
in this context to indicate the permissions requested per app

Permissions Stopp

corona

Cov

tracer

Smitte

stop

Stop

covid

france

Immuni Apturi

covid

Corona-

warn-app

BLUETOOTH Y Y Y Y Y Y Y

BLUETOOTH ADMIN Y Y

INTERNET Y Y Y Y Y Y Y

RECEIVE BOOT

COMPLETED

Y Y Y Y Y Y Y

ACCESS NETWORK STATE Y Y Y Y Y Y Y

WAKE LOCK Y Y Y Y Y Y Y

FOREGROUND SERVICE Y Y Y Y Y Y Y

ACCESS LOCATION

EXTRA COMMANDS

Y

READ SYNC SETTINGS Y

WRITE SYNC SETTINGS Y

ACCESS WIFI STATE Y

AUTHENTICATE ACCOUNTS Y

REQUEST IGNORE

BATTERY OPTIMIZATIONS

Y

WRITE EXTERNAL

STORAGE

Y

ACCESS COARSE LOCATION Y Y

ACCESS BACKGROUND

LOCATION

Y

ACCESS FINE LOCATION Y Y

GPS Y

ACTIVITY RECOGNITION Y

CAMERA Y Y

RECEIVE Y Y

BIND GET INSTALL

REFERRER SERVICE

Y Y

Interesting Observations in Relation to the Frameworks: The frame-
works indicated in Table 2 endeavour to preserve users’ privacy according to their
documentations. Hence, apps that leverage these frameworks use the privacy
specifications highlighted within the frameworks’ documentations. For exam-
ple, the ExposureNotification API leveraged by Stopp Corona, Smitte|stop,
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Immuni, Apturi Covid, and Corona-Warn-App specifies the use of a decen-
tralised BLE technology for proximity identification and exchange of identi-
fiers between nearby devices [2], thus alerting users of potential exposure to
COVID-19 with minimal privacy risk. Hence, based on its specifications7 and
the Google COVID-19 Exposure Notifications Service Additional Terms [14],
these apps are required to declare and use normal permissions only, excluding
the use of BLUETOOTH ADMIN, other permissions such as Signature, Privileged or
Special permissions, and any runtime permissions (unless granted their use by
Android), for example STORAGE.

Nevertheless, Corona-Warn-App is seen to declare a dangerous permission
(i.e., CAMERA), although its usage is explicitly stated in the privacy policy as a
feature required for scanning QR codes for test registration. On the other hand,
the ROBERT framework specifies the use of a centralised BLE technology for
proximity tracing in fighting COVID-19 by measuring risk exposures between
users [5]. Hence, StopCovid France, which leverages the framework, should
declare the use of BLUETOOTH, among other normal permissions, for the purpose
of detecting when users are in close proximity. However, it can be noted that
the app requests for dangerous permissions (i.e., CAMERA, ACCESS FINE LOCATION
and ACCESS COARSE LOCATION). While the reason for accessing CAMERA has been
pointed out in the privacy policy as a feature needed to scan a QR code to self
report whether a user has tested positive for COVID-19, the reason for accessing
location is not mentioned.

Contrary to the above-mentioned frameworks that use BLE technology for
proximity tracing, Safe Paths leverages the ubiquitous use of mobile devices
to trace and reduce the spread of COVID-19 by allowing users to decen-
trally log in their time-stamped GPS locations [21] and voluntarily share
these data with other users in an event where one is tested positive. As seen
in Table 3, CovTracer, which utilises the framework, declares not only nor-
mal permissions, but dangerous ones such as ACCESS COARSE LOCATION and
ACCESS FINE LOCATION, which when granted accesses the location of the user.
While the developers of this app explicitly state the use and advantage of mobile
location data for contact tracing8, this goes against the general legal analy-
sis highlighted by EDPB that states that “contact tracing apps do not require
tracking the location of individual users. Instead, proximity data should be used.”
[9]. Furthermore, a number of studies, for example [4,5], show adversarial models
on how public health officials or authorities can use the gathered contact tracing
information for other purposes. For instance, while the Safe Paths framework
enables health officials with ways of redacting location trails of diagnosed car-
riers9, such data could be used for other intentions such as re-identification of
users with the purpose of inferring their contact graphs. In addition, even though
CovTracer targets users whose movements are not restricted at the present time,

7 https://developers.google.com/android/exposure-notifications/exposure-
notifications-api, Accessed 16.08.2020.

8 https://covid-19.rise.org.cy/en/, Accessed 28.07.2020.
9 https://www.media.mit.edu/projects/safepaths/overview/, Accessed 22.10.2020.

https://developers.google.com/android/exposure-notifications/exposure-notifications-api
https://developers.google.com/android/exposure-notifications/exposure-notifications-api
https://covid-19.rise.org.cy/en/
https://www.media.mit.edu/projects/safepaths/overview/
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Fig. 1. The chart shows the permissions declared (static analysis) versus the permis-
sions accessed (dynamic analysis) by the apps. The numbers within the bars indicate
the number of apps that declare and access that particular permission.

for instance police officers, their data could still be used for other purposes as
previously mentioned. As such, this poses a risk in terms of privacy for the users
of this app.

4.2 Dynamic Analysis

Figure 1 shows the comparison between what the apps declare in their mani-
fests and what they actually access during runtime. As an assumption, a user
would expect the apps to behave in a transparent manner by using permis-
sions that it has actually requested and in a fashion that would not endan-
ger their privacy. However, the actual permission access pattern differs from
what has been declared or from what has been mentioned in the apps’ privacy
policies. Figure 2 shows the visualised results obtained from our app set with
and without the user interaction phase respectively. The graphs show the fre-
quency at which the apps accessed the permissions during the period of study.
For instance, it can be noted that the frequency at which the apps access per-
missions without user interaction is slightly less compared to the user inter-
action phase. Of interest is that apps which leverage the ExposureNotification
API tend to access the READ EXTERNAL STORAGE and WRITE EXTERNAL STORAGE
permissions and at a higher frequency in both phases even though these
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permissions were not requested. According to the Android developers10,
“Android 4.4 (API level 19) or higher apps do not need to request any stor-
age related permissions to access app-specific directories within external stor-
age”; hence, this can explain this behaviour of these apps that leverage the
ExposureNotification framework. Further, [14] highlights that developers should
not request any runtime permissions such as STORAGE expect in a case where
Android Developers have authorised their use; this is because the ExposureNo-
tification API accesses the on-device storage for the purposes of storing the
ephemeral proximity identifiers required for contact tracing11. Regardless of this,
it can be noted that two apps, that is, Corona-Warn-App and StopCovid France
requested access to the use of CAMERA which was granted during the user inter-
action phase when we acted like a user who intended to scan a QR code for test
registration or wanted to self report a positive case respectively. Having been
granted this permission, it was noted that the camera feature was constantly
accessed by both apps even with the user having ceased to use the QR function-
ality. Nevertheless, it can be assumed that the use of this runtime permission
was exclusively authorised by Android as its use is relevant in reporting and
slowing the spread of COVID-19. Further, Corona-Warn-App is shown to access
a special permission, that is WRITE SETTINGS, which [14] prohibits the develop-
ers leveraging ExposureNotification API from using, and which the user has to
grant exclusively if the app aims for API level 23 or higher12.

A closer look at both graphs also indicate that one of the app, that is
StopCovid France, is violating PoLP as it accesses a permission that it does
not require for its core functionality. This is because the privacy policy mentions
that the app uses BLE in tracing and notifying users if they have come into close
contact with a positive case or are at risk of COVID-19. In spite of this, however,
it can be noted that even though the app’s core functionality depends on BLE
technology, it still accesses location data through the ACCESS COARSE LOCATION
permission, which provides the approximate location of a user. This does not only
violate PoLP, but also contradicts the Commission Nationale de L’informatique
et des Libertés (CNIL) opinion, which explicitly states that the app does not
track users’ location [7] but instead uses BLE functionality for contact tracing.
Further, access to location without obvious justification poses a high risk to
users privacy as the use of location data could be used to infer the location of
a user and their surroundings [12]. As such, one can deduce from the analysis
that the use of this app could potentially lead to invasion of privacy. In addition,
the issue of under-privilege permissions, that is, the use of permissions that have
not been declared in the manifest, arises here. This is because some apps (i.e.,
CovTracer, StopCovid France and Immuni) fail to declare the use of VIBRATE

10 https://developer.android.com/training/data-storage/app-specific#external,
Accessed 23.10.2020.

11 https://developers.google.com/android/exposure-notifications/exposure-
notifications-api, Accessed 16.08.2020.

12 https://developer.android.com/reference/android/Manifest.permission#WRITE
SETTINGS, Accessed 03.08.2020.

https://developer.android.com/training/data-storage/app-specific#external
https://developers.google.com/android/exposure-notifications/exposure-notifications-api
https://developers.google.com/android/exposure-notifications/exposure-notifications-api
https://developer.android.com/reference/android/Manifest.permission#WRITE_SETTINGS
https://developer.android.com/reference/android/Manifest.permission#WRITE_SETTINGS


224 S. Wairimu and N. Momen

Fig. 2. Permission usage by contact tracing apps for a period of six days: The left
bar graph shows permission usage without user interaction while the right bar graph
shows the permission usage with user interaction. Of interest, is the access to location
by StopCovid France, which supposedly uses BLE technology for contact tracing and
CovTracer, which accesses location when the phone rests (without user interaction).
The left graph also shows that the apps are (very) active when the phone rests.

permission in their manifests but access it regardless. However, the use of the
vibrate permission or its declaration in the manifest file can be omitted by using
the performHapticFeedback() function of a View thus vibrating once to deliver
response on a user action13.

Extrapolation of Permission Access Usage: According to Hansen et al.
[16], the inability to distinguish a user in a large data set is associated with data
minimisation and purpose limitation. As such, it can be argued that when too
much information is collected, which goes beyond the app’s specified purpose, it
could lead to the identifiability of the user. For instance, Fig. 3 shows the user
identities derived from the permissions accessed by StopCovid France through
the use of the aforementioned partial identity model. As indicated, the app
violates PoLP by accessing components that go beyond its core functionality.
Through this, the app violates the principle of data minimisation and purpose
limitation by collecting location data, which goes against its core functionality as
indicated in its privacy policy. Further, with the ROBERT framework allowing
the collected data to be stored centrally, the “honest-but-curious” government
could be able to infer the whereabouts of the user in question, together with

13 https://stackoverflow.com/questions/56213974/androids-performhapticfeedback-
vs-vibrator-documentation-and-use, Accessed 27.10.2020.

https://stackoverflow.com/questions/56213974/androids-performhapticfeedback-vs-vibrator-documentation-and-use
https://stackoverflow.com/questions/56213974/androids-performhapticfeedback-vs-vibrator-documentation-and-use
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their address as shown in Fig. 3, which could further be used to deduce their
contact graph [5] or create a hot spot mapping.

Fig. 3. Derivation of identity attributes from permission accessed by StopCovid France.
Identity attributes are highlighted in dark red color (rectangle), with the permissions
access contributing to this highlighted in maroon (ellipse) (Color figure online)

4.3 Privacy and Data Protection Goals Analysis:

As highlighted earlier, the property of transparency ensures that the end user
is aware of the entire process concerning their personal data, which includes
what data is being processed [16]. In the context of the contact tracing apps,
it is expected that such information is documented in the apps’ privacy policies
where users can learn what data is being considered for processing. Considering
the principle of data minimisation (Art. 5 (1)(c) GDPR), the apps are required
to collect information that are relevant and necessary for their functionality. On
the other hand, the principle of purpose limitation (Art. 5 (1)(b) GDPR), limits
the collection of data to only specific, definite and lawful purposes. Hence, in
terms of transparency, StopCovid France is the only app within the app set
that violates these two principles as it can be noted in its privacy policy that it
does not mention location as a category of data to be processed.

In the context of intervenability, it can be noted that majority of the apps
give users control over their personal data via the apps user interface. This
promotes users trust towards the use of the app. Art. 6 (1)(a) GDPR mentions
consent as a basis for lawful processing of personal data with the conditions
specified in Art. 7. From the analysis, it can be noted that 71% of the apps
request users consent as the legal basis for processing users data, which includes
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data collection, use or any form of disclosure. This empowers users with control
over their personal data as they have been granted with the right to withdraw
their consent at any given time thus preventing further processing. However, two
of the apps within the app set, i.e., StopCovid France and Immuni quote Art. 6
(1)(e) - which mentions public interest as the basis for lawful processing. With
this being one of the acknowledged basis for lawful processing, Art. 6 (3)(a)
permits EU member states to impose such a law, which leaves users with limited
control over there personal data. Further analysis of these two apps indicate that
users cannot exercise their rights. On one hand, StopCovid France assures users
privacy by stating that personal data processed are pseudonymized; hence, Art.
15, 16 and 18 cannot be exercised. However, the user has the right to erasure
(Art. 17) as they can delete data on both their device and the central server by
uninstalling the app. On the other hand, users using Immuni cannot exercise the
rights on Art. 15-20 as the re-identification of users is impossible due to data
anonymisation. Notwithstanding, the user, under Art. 21, has the right to object
the processing of their data by uninstalling the app, which gradually deletes the
data on the central server over a period of fourteen days. Despite these, both
apps, like the rest of the other apps, comply with the right for a user to lodge a
complaint and contact the Data Protection Officer (DPO) if need be. While this
is the case, it can be interpreted that such little control for the users to exercise
their rights undermines the respect for user privacy; however, we assume that
the user privacy is being backed up by the implementation of security measures.
Inspection of the remaining apps indicate that users have the right to exercise
Art. 15-20 via the app’s interface.

5 Discussion and Conclusion

Having analysed all the apps in Table 2, we present the following findings:

– The EDPB, under the general legal analysis, point out that contact trac-
ing apps need not trace users using location as proximity data is considered
sufficient [9]. However, it can be noted that CovTracer tends to use loca-
tion to track users instead of proximity data, even though the developers
of this app specify the use of location data. This can also be noted from
StopCovid France - where the app utilises location data by accessing the
ACCESS COARSE LOCATION.

– StopCovid France not only violates PoLP by accessing more than is required
for its core functionality when it accesses location data, but also violates
the principle of data minimisation and purpose specification which cause the
app to collect more than it requires. This data could be used in ways that
the user least expects. For example, developers of the ROBERT framework,
which the app leverages, document an adversarial model that indicate how the
authority could use centrally gathered data for other purposes, for example,
re-identification of users [5].

In regards to our contribution and based on the findings in this research, we note
that, the identified contact tracing apps in Table 2 play an important role when



Privacy Analysis of COVID-19 Contact Tracing Apps in the EU 227

it comes to curbing the spread of the pandemic. All apps provide privacy policies
that explain clearly to the users what kind of data the apps collect and how they
use these data. Further, the apps leverage privacy preserving frameworks that
ensure privacy of users. However, while this is the case, it was noted that two
apps tend to go against the EDPB recommendations. For example, StopCovid
France, which leverages a privacy preserving framework that specifies the use of
BLE, uses location on top of proximity data without actually being transparent
to the users. The use of location data has been shown to be of high risks to
users in the context of contact tracing apps, as such, the privacy of users does
not need to sacrificed in order to slow the spread of the virus. This applies to
CovTracer as well, which uses location data for the purposes of contact tracing.

Limitations: Conventionally, apps are dynamic in nature. As such, the reliabil-
ity of this study would be questionable as the results would lack reproducibility.
This would include the results of the apps behaviour with and without user anal-
ysis, which would ultimately affect the visualisation of partial identity graphs.
In addition, we consider the possibility of false-positives in our data set as we
observed instances whether the apps accessed permissions which had not been
declared in their AndroidManifest.xml files, for example, VIBRATE.

Conclusion: In summary, a user would expect apps within the EU Member
states to be privacy friendly due to the strong data protection rules. However,
while a majority of the apps tend to be privacy friendly, a few are not. For
example, StopCovid France tends to access course location which gives the
approximate location of a user, and goes against PoLP. On the other hand,
CovTracer does not follow on the EDPB recommendations, which highlight that
an app should not track a user using location data, but instead proximity data
using BLE. Hence, certain measures need to be taken when developing these
apps. For instance, the developers need to follow the guidelines issued by EDPB
that highlight the general legal analysis for contact tracing apps. Further, the
principles relating to processing of personal data need to be followed.
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Abstract. We present a privacy transparency tool, which helps non-
expert consumers understand and compare how Internet of Things (IoT)
devices handle data. The need for such tools arises with the growing
number of IoT products and the privacy implications of their use. This
research is further motivated by legal acts, such as the General Data
Protection Regulation (GDPR), which mandates the communication of
privacy practices in a clear language. Our solution summarizes key pri-
vacy facts and visualizes information flows in a way that facilitates quick
assessments, even for large data sets. We followed an interdisciplinary
iterative design process that combines input from legal and usability
experts, as well as feedback from 15 participants of our think-aloud task
analysis study. In addition to explaining the rationale behind the design
and evaluation methodology, we compare our solution, implemented as
a graphical user interface, with existing ones. The results show that par-
ticipants consider the interface straightforward and useful. Our solution
encourages them to think critically about privacy and question some of
the manufacturers’ claims. Participants also reported that they would
be glad if such tools were widely available, to further improve privacy
awareness. Besides, our solution can be a part of an evidence-based stan-
dardization process, enabling policy-makers to further promote privacy.

Keywords: Internet of Things · IoT · Privacy · Usability · GDPR

1 Introduction

The number of IoT devices, such as smart appliances, fitness trackers or surveil-
lance cameras, has grown over the last decade [37]. While this brings economic
benefits, it also comes with major privacy risks [40]. For example, it has been
shown that in some circumstances, individuals can be deanonymized by corre-
lating data sets [6,27]. Another example is the analysis of smart-meter readings
to identify media played on a TV [18]. Such privacy issues can be amplified
by factors like device ubiquity, sensor diversity, data collection frequency, and
the large volume of collected data [21,22]. Moreover, the risks to privacy do
not only target users of IoT devices, but also bystanders who are uninformed
about the presence of such devices in their surroundings [1,9,23]. Another factor
that contributes to loss of privacy is the lack of awareness about the technical
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Fig. 1. LITE label for a hypothetical IoT device called “Hausio T1000” [32].

capabilities of IoT devices [23,29,33]. Besides that, users are skeptical of the
ways algorithms can infer personal facts about them [39].

The GDPR aims to improve privacy, by requiring organizations that control
personal data to explain how the data are handled “in a concise, transparent,
intelligible and easily accessible form, using clear and plain language” [14]. The
regulation creates a context in which privacy tools can gain more traction than
in markets that lack enforcement or rely on self-regulation [7].

Despite the introduction of the GDPR, solutions to support IoT trans-
parency have not been sufficiently researched yet. In addition to the legal require-
ments, demand for such solutions also comes from potential users, who explicitly
expressed interest in transparency information or stated that it would influence
their purchase decisions [10,19,23]. To address this need, several “privacy facts”
labels have been proposed [10,17,31,35], including our own “Label for IoT Trans-
parency Enhancement”, LITE (Fig. 1, [32]).

LITE implements the GDPR transparency requirements to inform and help
potential buyers protect their privacy, before deciding to acquire an IoT device.
It provides answers to questions such as “what information is collected?” or
“who gets the data?”. The answers are presented in a concise way, allowing
IoT products to be compared side by side. The results of the usability study
conducted in [32] show that participants could interpret the contents of LITE
correctly and found it useful. However, they wanted extra details, that did not
fit into the label due to size constraints.

In this paper, we present OnLITE, a Graphical User Interface (GUI) that
extends LITE and addresses its shortcomings. Although LITE was the only
user-validated GDPR-based label at the time we started this research, we also
considered other designs (see Sect. 8.1, 8.2, 9). We follow ISO-9241, a human-
centered, multi-disciplinary, iterative design approach when developing OnLITE.
Compared to LITE, the new design shows more information and provides search,
sort, and comparison features, as well as visualizations that distill large data sets
into concise representations that can be reviewed at a glance. Its goal is to make
the ways in which IoT devices handle data more transparent, informing users
before and after the purchase (e.g. when updates are released). Our other con-
tributions are the insights derived from the user validation of OnLITE, based on
think-aloud task analysis with 15 participants. We also share evaluation scores
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that can be used to compare OnLITE with similar interfaces. To foster replica-
bility, we provide the source code of the prototype, our statistical calculations,
and other supplementary materials at zenodo.org/record/4126346.

2 The Structure of LITE

The original label is divided into sections that provide information about col-
lected data, destination and frequency of transmission, duration of storage, third-
parties that access data, purpose of collection, and received data. The label also
contains a “trace view” - a high-level graphical representation of the data flows
[16], as well as a quick-response (QR) code with actual data samples.

This design has been revised to include a web address with a unique product
number, which is also a part of the QR code payload. This change enables users
to retrieve the digital version of the label, either by typing the address manually,
or by using a specialized program that will scan and interpret the QR code.

3 Requirements and Design Space Analysis

The primary goal of OnLITE is to implement GDPR transparency by assisting
consumers in making informed decisions when choosing IoT devices. It uses the
same terminology and structure as LITE. Each element of the paper version,
can be directly mapped to a section of OnLITE. The second goal is to enhance
LITE with search and sort capabilities, and provide details that do not fit on the
printed label. Our third goal is to facilitate comparisons, by showing labels side
by side, and highlighting differences. This applies not only to different devices,
but also to software updates of the same device, released after its purchase. Next,
OnLITE must provide practical information to novices, even after brief use. We
aim for a design that works on desktops and mobile devices. In addition, accessing
OnLITE should take little effort once the physical label is at hand. We also strive
for a generic design that can be applied outside of IoT (e.g. smartphone apps).

The information architecture of OnLITE is rooted in the GDPR and is cen-
tered around questions about data collection practices [32]:

1. What data are collected?
2. What is the purpose of collection?
3. Where are the data stored?
4. How long are they kept?
5. Who has access to the data?
6. What do the data look like?
7. How to access the data?

8. How often are the data sent?
9. Which communications are pro-

tected?
10. What paths do the data follow?
11. What does the device receive from

other sources?

4 OnLITE Design

Based on our analysis, we propose the following design for OnLITE. For brevity,
we do not describe the intermediate stages of the prototype, only the last itera-
tion is presented. The interface consists of the following tabs:

https://zenodo.org/record/4126346
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Fig. 2. Collage of screenshots of the tabs of OnLITE. The information is provided by
vendors themselves, as the they are obliged to do so under the GDPR.
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Fig. 3. The “Data flows” tab shows how data are shared with third parties. The
“sensitivity” view highlights special categories of data defined by the GDPR.

Overview - the starting page provides the same information as LITE, plus a
photo of the device. When several devices are compared, they are shown side by
side, and optionally, the differences between devices can be highlighted (Fig. 2a).

Who gets the data - this tab contains a table with the columns: data type,
purpose of collection, company, country, and sensitivity. When multiple devices
are compared, a “device” column is added. The table can be sorted by each
column. A search function is available, it highlights the matching text and only
displays rows that contain the searched string, thus reducing the total amount
of information shown on the screen.

Data flows are a graphical complement of the previous table, they facilitate
a quick comparison of relative data flow sizes, making outliers more prominent.
Flow widths are computed as dataSize× frequency. This is a simplified model
that is sufficient to test the interpretability of the image; devising a more elab-
orate formula is outside the scope of this paper. Several visualizations are avail-
able, each will group the flows in different ways. Colours are used to differentiate
data types or devices, while the view shown in Fig. 3 offers a quantified measure
of the sensitivity of each data transfer, highlighting special categories of data
defined by the GDPR. The image features a legend and a link to a video that
guides the user in interpreting the image. Theofanos et al. found that instruction
videos are effective in helping users understand how to use a system [36]. We
use Sankey diagrams [24] to distill multidimensional data into a compact view,
give a sense of scale of the data flows and reveal the relationships between flow
attributes (Fig. 3). Such diagrams can also be interpreted in grayscale.

Data sample - this tab shows actual samples of collected data, revealing
aspects that would otherwise go unnoticed. For example, two devices can collect
a “customer number”, however, one of them can use an email address, while the
other could use a more privacy-preserving identifier, such as “481-AHR-1831”.
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Fig. 4. Comparing three IoT devices throughout the phases of their lifecycle.

Security - this tab presents security information (Fig. 2c). We have made
sure to use common language. For example, “Secure from Internet eavesdrop-
pers”, as opposed to specialized terms [34]. Low-level details, such as encryption
algorithms or key lengths can be revealed by clicking on “More technical details”.

Lifecycle - this tab structures the attributes of the IoT device around the
phases of its lifecycle: set up, use, maintenance, and retiring [33] (Fig. 4). For
example, it informs consumers whether unique passwords are factory-set, what
the duration of the support period is, or whether automatic updates are available.

Contact - according to the GDPR, a consumer has to be informed about
several points of contact: the data controller, the Data Protection Officer (DPO),
and the Data Protection Authority (DPA). This tab groups the contact details
based on the action that prompted the need for contact: view, edit or delete
data, report a privacy issue to the DPO, or lodge a complaint with the DPA
(Fig. 2d). The structure is based on the feedback from a DPA representative,
who stated that consumers often contact the DPA right away, expecting that
appealing to the highest authority will address a problem faster. This creates
unnecessary workload and causes delays, because a DPA can only step in if the
DPO was contacted, but did not respond within a certain period of time.
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4.1 Usability of Product Codes

These codes enable users to switch from the printed label to OnLITE. To make it
a smooth transition, we use the Base58 character set, which excludes look-alike
symbols, e.g., 0O Il1, to avoid ambiguities. We split the code in two chunks,
to make it easier to keep in short-term memory when writing down or sharing
orally [26].

5 Prototype Implementation

We developed a web-based prototype, using standard graphical widgets such as
tables, buttons or tabs, to ensure compatibility with accessibility tools and enable
users to leverage their experience with GUIs. We refrain from using colour as the
sole channel to convey a message, to ensure the interface preserves its efficacy
even if viewed in grayscale. We use tables, such as in Fig. 2, as the main way of
visualizing information, to make it easier to compare IoT devices side by side.

Non-specialized terms are preferred. When they cannot be avoided, tooltips
provide extra details. Text is further simplified by avoiding paragraphs. The
information consists of keywords grouped in tables; sentences are an exception,
the longest one is 12 words long. While defining a dictionary of terms was outside
the scope of our work, we encourage the reuse of terminology from projects such
as P3P or SPECIAL [3,7].

To further enhance accessibility, we leverage semantic HTML markup. Inter-
activity is used to indicate what parts of the interface are clickable, and highlight
certain elements when the mouse is above them. The GUI is touch-friendly.

Progressive disclosure is used to show the most important information first.
The start page offers a concise privacy facts summary, while exploring other
parts of the GUI provides more details.

6 Evaluation Methodology

To test the readability, clarity, and usability of OnLITE, we first applied heuris-
tic evaluation, reviewing early prototypes with usability and legal experts [28].
We presented various elements of the interface to 14 experts, of which 7 had
repeated exposure to the complete UI. These sessions prompted us to shorten
texts, replace specialized terms with general ones, add more information, and
simplify the controls. For brevity, we omit ideas that did not make it into the
final version, and the intermediate iterations.

We then conducted a task analysis study with 15 participants, who had to
think aloud while carrying out tasks under the observation of a facilitator. The
tasks are derived from the GDPR transparency questions listed in Sect. 3 and
are aimed at evaluating whether the presented information can be interpreted
correctly. After interviewing the first group of five people, the interface was
revised and a new iteration was produced for the next group. We iterated until
we reached the point of feedback saturation and no new insights were gained.
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The incremental nature of the changes between versions means that participants
using v2 were looking at a slightly evolved v1, and so on with v3 and v2. Thus,
we regard this study as one with a sample of 15 (rather than 3 smaller ones with
a sample of 5), which yields a minimum of 90% of usability issues found and
a mean of 97% [15]. We further quantified the usability of the GUI using the
System Usability Scale (SUS) [5], chosen due to its good performance at sample
sizes ≥ 12 [38], and because scores of similar interfaces can be compared.

6.1 Experiment Settings

The experiment protocol was approved by our Ethics Committee. After signing
an informed consent form, the participant is seated at a laptop equipped with
a mouse, touchpad and trackpoint. The GUI is viewed in Firefox v66, running
full-screen on a 13.3 ′′ 1366×768 display. We chose a laptop due to availability of
tools for debugging and video recording, and because we could hide all toolbars
and menus of the operating system, such that participants only see OnLITE.
These instructions were given in written form, and then orally summarized, to
set the focus on our UI as the primary interaction goal: The aim of this experiment is to

evaluate an interface that provides privacy information about devices, enabling you to review their privacy

practices and make informed decisions when choosing products. We ask you to analyze the privacy facts of

several smart temperature and humidity meters using this interface. Please think aloud and comment your

actions and decisions. Remember, that we are testing the interface, not you! There are no wrong actions or

incorrect assumptions, do not worry about making mistakes or hurting our feelings, your “raw thoughts”

are what we need. An assistant will help if you get stuck, but try to do everything on your own. The
participant also gets three 128 mm × 40 mm privacy labels on A6 sheets, each
corresponding to a device, as shown in Fig. 1. The labels are centered, such
that if they stand side by side, there is spacing between them, as it would be in
the case of real product boxes. Audio and screen recordings are made for later
analysis. The facilitator sits next to the participant, and gives them a task from
Table 1 at a time, observing and taking notes, reminding them to think aloud, if
needed. After going through the tasks, the facilitator steps out so the participant
can fill out a questionnaire that collects demographic data and includes a SUS
form. When the participant is done, they call the facilitator and the evaluation
proceeds to the last phase, where several open-ended questions are discussed.

Interviews lasted between 42 and 76 min, the median duration being 57 min.

6.2 Recruitment

We recruited 15 participants from a German language study group at the Uni-
versity of Kiel, Germany, offering an optional 10e (USD 11) cash reward. The
selection criteria were fluency in English and a minimum age of 18 years. The
interviews were carried out between April and June 2019.

6.3 Demographics

Among our participants, 53% are male, 40% are female, 7% did not disclose their
gender. 67% of the participants are between 27 and 35 years, followed by 18 and
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Table 1. The tasks of the experiment. The entries A-F were given sequentially because
they depend on one another. Tasks G-N were randomized, to avoid order effects. The
entries O-V are open-ended questions that were asked at the end of the session.

Task Description

A Retrieve the privacy facts of the device Hausio T1000

B Which partner companies get data collected by this device?

C What partner company gets the largest amount of data?

D Compare Hausio T-1000 with the other two devices

E Remove the device Domowoj from the comparison

F Add it back to the comparison table

G Which device shares data that might have the greatest impact on your
privacy?

H What data are used by partner companies for targeted ads?

I Which device uses a form of customer numbers that protects the owners’
identities better?

J Which device can securely erase all the data before the owner gives the
device away?

K If you suspected that the device Casami FX was not protecting your data
correctly, whom would you contact?

L Which collected data is stored outside of the European Union?

M Who provided the information about each of the devices?

N In what way are these devices different?

O Which tab gave you the best assistance in comparing these devices?

P To what extent did the graphical data flows support you in comparing the
devices?

Q Which of the flow views you found most informative?

R What conclusions do you draw from the “verified by an independent
auditor” marker?

S What other information or features, if any, would you like this interface to
provide?

T What parts of the interface were not clear to you?

U Which of the shown devices is the best choice for the given task, in your
opinion?

V What other comments have you got about the system?

26 years (20%), the rest are between 36 and 44 years (13%). Their self-reported
technical competence is computed using the method defined in [33]. In our sam-
ple, 60% are expert, 27% are intermediate, and 13% are novice (Table 2). The
group is diverse in terms of academic fields, and includes economists, mathemati-
cians, computer scientists, environmentalists, and lawyers. Our sample included
participants from all of the continents except Australia and Antarctica.

Although we did not collect demographic details about our heuristic evalua-
tors, their ages are between 30 and 65 years. Note that they belong to an older
age category than the participants of our study. Since their age is not determi-
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Table 2. Demographic data and results.

Age Sex Skill SUS score Time (minutes)

Tasks Interv. Total

P1 27..35 F expert 92.5 40 13 53

P2 27..35 M expert 90 43 24 67

P3 18..26 F expert 60 40 16 56

P4 27..35 F interm. 67.5 42 15 57

P5 27..35 F interm. 55 36 19 55

P6 36..44 M expert 72.5 39 15 54

P7 18..26 M novice 80 30 12 42

P8 27..35 F interm. 37.5 42 18 60

P9 18..26 F expert 65 39 25 64

P10 27..35 M expert 70 49 11 60

P11 27..35 – expert 77.5 55 21 76

P12 36..44 M expert 67.5 27 26 53

P13 27..35 M expert 65 47 12 59

P14 27..35 M interm. 47.5 38 20 58

P15 27..35 M novice 72.5 28 23 51 Fig. 5. SUS scores grouped by skill.

nant to their evaluation, we have applied the concept of data minimisation and
hence not collected it.

6.4 Data Analysis

To understand the strengths and weaknesses of the prototype, we reviewed the
screen recordings, observing the actions and comments of each sample of five
participants. The interface was refined, and tested with the next sample.

The interviews were transcribed and processed through thematic analysis, to
reveal common interaction patterns and themes [4]. We did not rely on several
coders to independently encode transcripts, as the codes are only a step in the
process of UI refinement, rather than the end product of our research [25].

7 Results

7.1 Qualitative

The qualitative feedback was used to refine the prototype and is therefore
reflected in its latest iteration. We now share the highlights of thematic analysis.

Expectation of clickability was one of the main reasons for design changes.
Participants clicked on static UI elements, expecting them to provide tooltips,
e.g.: “I wanted it to show me the details of this line, but I cannot, I don’t
know what is wrong <clicks on flows again>” (P3). The most common click
targets were sections of the “Overview” tab and the graphical flows (Fig. 3).
This prompted us to make these elements clickable to reduce friction and provide
interactivity where users expect it.

Manual comparisons were another common pattern. Some participants
counted how often each company occurs in a table, to understand which of



OnLITE: On-line Label for IoT Transparency Enhancement 239

them gets the most data: “I counted ... the number of times they appear” (P4).
It is more efficient to use the sorting feature, or rely on the graphical flows and
look for the widest curve. Though the manual approach is effective, most partic-
ipants prefer the more efficient methods once they discover them: “I think this
one, <points to thickest flow> Minerva from Canada, because of the line width”
(P5).

Time to understand how flows work was needed by many participants. They
said it was not immediately clear how the graphical flows should be interpreted,
and that it took them a while to grasp: “I needed more time to understand
them” (P1), “The graphic is also just fine, I just needed a couple more seconds
to understand the idea” (P2). In the subsequent prototype iterations, we added
a 40s video that explained the logic behind the diagrams, as suggested by P5:
“maybe a tutorial on how to interpret the charts of the data flow”. The video
had a positive impact on user satisfaction and comprehension, e.g., “<watches
video> ok, now it’s much more clear” (P15), and most participants watched it
entirely, without being prompted to do so.

Flows are comprehensive and useful, as stated by many participants: “The
data flow gives a lot of information as well, and it’s visual” (P6), “It’s visual,
it has colors and it’s easy to use” (P11), “The faster way for me was looking at
the data flow, it was more concise” (P12), “I think the graphical representation
was really good for making a conclusion about the similarities and dissimilarities
between the 3 devices” (P13), and “[flow] is really complete and very dense in
information, not too dense” (P15).

Verified information about IoT devices is often referred to as a strong influ-
ence on a purchase decision: “it sounds more trustable if there is an independent
verification, not just the vendor. They just want to convince you they have the
best option, that is not necessarily the case” (P6), another participant said “I’ll
choose the independently verified one, because things should be verified” (P7).

The authority void came up when we asked participants about an authority,
whose independent verification of product information they would trust. Most
referred to the government: “anything related to the government” (P6), “I will
trust the EU” (P15); and failed to name a specific organization: “I don’t know,
the international society of web developers, anything similar to that, the board
of trust of... I don’t know” (P6).

The most useful tab is “Overview”, as indicated by most participants: “I
could easily see the things written in each column and I saw that [show differ-
ences] switch” (P4), “definitely the first one, because it had this option to show
differences” (P6), and “It gives information about what parameters are collected
and also how long this info is stored. It is the most helpful. If you want more
details, you go to other tabs” (P2).

Extra information mentioned by participants, when asked what else they
would want to see in OnLITE: price (3 mentions), reviews (3 mentions). Each of
the following was referred to twice: how many people bought the device, detailed
technical specifications, more device photos and videos, device user guide, and
the physical size of the device. P7 wished for telephone numbers, so they could
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talk to a person in emergency cases. Others would say the interface is complete,
for example: “To be honest, I don’t know, because it looks very complete” (P6),
“I think the interface has a lot of information, I really couldn’t think of anything
else to add” (P5), “I cannot think of any more to add to this” (P9).

The “Contact” tab is well-structured. Participants understood it and cor-
rectly identified the address they would have to write to when solving a par-
ticular type of problem: “I think it is this one, because it is just for reporting
privacy related issues” (P3).

An educational opportunity arises when reasoning about an IoT device and
drawing incorrect conclusions. For example, “I won’t be very stressed ... if the
information about the temperature in my apartment ... would be read by some-
one else. I mean, what can they do? ... As long as they don’t have the key from my
apartment, they can’t do anything, I think” (P2). In this case, privacy tools can
provide tips like “temperature data can tell whether anyone is at home”, which
might improve awareness about the privacy implications of sharing seemingly
harmless data (e.g. yellow area in Fig. 3).

Data samples are useful, as shown by the participants’ ability to reason about
different forms of customer numbers: “I think the first one is better, because it is
just a sequence of numbers and letters” (P1), “The first one for sure!” (P6). This
information prompted some participants to think of workarounds, such as “this
could be resolved with an email address that is not important to you” (P2).

Privacy profiles are a personalized formula for computing a sensitivity score,
which determines the colour of each data flow in the sensitivity view. Profiles
can be created and shared by trusted authorities, or the users themselves. This
idea was mentioned during heuristic evaluation and in the interviews: “maybe
a multiple choice at the start ... where they can decide which kind of data is
sensitive for them ... the data will be presented in that way” (P12). OnLITE
determines sensitivity by referring to Art. 9 of the GDPR, which defines “special
categories of data”, such as religious beliefs or sexual orientation. Note that the
flow colours in Fig. 3 are not necessarily aligned with the GDPR, they were
hand-tuned for experimental purposes, to see if the participants would notice
the difference and how they would interpret it.

Critical thinking is an attitude that OnLITE helps foster, encouraging par-
ticipants to reflect on the information shown to them. In some cases, they doubt
that certain types of data are required for serving the declared purpose: “truth
be told, I don’t understand why they need to store the device Internet address”
(P2), or “why would a temperature measuring device have this feature? This, I
don’t understand” (P11). In other cases, they would question the data retention
period: “6 years, that’s a long time for such a small purpose, I can’t say it is
reasonable” (P15). We consider this an important effect, as it guides participants
towards questioning the status quo, as opposed to telling them what to believe.

7.2 Quantitative

The SUS results are given in Table 2 and Fig. 5. The mean score of OnLITE is 68,
which matches the industry average for web interfaces [2]. Statistical analysis, by
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means of a t-test1, did not reveal any correlation between SUS scores and age or
gender. Prototype iterations have no significant difference in scores either, which
we attribute to the incremental nature of the changes between versions. We have
not found significant differences between expert and non-expert participants’
SUS scores. This suggests that the observed variations can be attributed to
individual preferences rather than the level of technical skill. While the low
power of the t-test with such a sample size cannot rule out differences between
groups, it would have revealed major and obvious effects, if they existed.

All participants completed all the tasks, except P1, P3, P4 and P6, who
failed task M. Note that the session durations in Table 2 are not an indication of
invested effort, because we encouraged participants to explore alternatives and
elicited additional feedback, even after a task was done.

8 Discussion

Our results show that participants can understand and use the presented infor-
mation. The data also reveal a void when it comes to an authority that regulates
such labels. All participants agreed they would trust a label that came from “the
government” or “a reputable international organization”, however none gave a
specific name. We believe the EU could be in a unique position to fill this gap,
given that it is an international body, and that the GDPR is now in effect.

Sankey diagrams effectively visualize data sharing flows towards partner com-
panies. They appealed to some of our participants and enabled them to make
rapid judgments about which IoT device they prefer. However, some found them
difficult to read at first. Thus, it is important to ensure that information is also
conveyed in another form. Adding an instructional video that explains how the
diagrams work had a positive impact on comprehension, and most participants
watched the entire video without being nudged to do it. We believe that repeated
exposure to OnLITE or the act of observing others reading the diagrams can
further decrease the perceived effort.

“Overview” was chosen as the most informative tab by all participants, sug-
gesting that it summarizes well the answers to the transparency questions in
Sect. 3. We consider it a good choice for a starting page, as this way OnLITE
conveys useful information to users, even if they do not explore other tabs.

Based on participants’ positive feedback, we expected higher SUS scores.
While this can be explained by two outliers who drove the score down (P8 and
P14), it is also possible that OnLITE can be improved, or that a privacy-focused
GUI is simply not appealing to users. They may not find the topic of privacy
exciting, or the GUI could be perceived as a nuisance that stands in the way of
using an IoT device that they are enthusiastic about. According to Bangor et al.,
the average SUS score varies depending on the type of system [2]. To the best of
our knowledge, no SUS scores of similar transparency tools are available at the
moment, so we cannot say with confidence whether or not “IoT transparency
1 We chose this test because it is suitable for a sample size of 15, and because we have

a normal distribution of scores, verified by means of a Shapiro-Wilk normality test.
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tools” constitute a separate UI category with its specific average score. Sankey
diagrams may be another reason why some scores were low. Even though the
participants completed the tasks by finding answers in other tabs, we always
insisted that they interpret the diagrams too. Thus, the diagram could have
been seen as an “unnecessary effort”.

8.1 Avoiding Scores

Our design only conveys facts and avoids judgment. Instead of telling consumers
“what is better”, we summarize information, so they can decide for themselves.
This is inspired by the concept of intelligence amplification, where humans are
assisted in various ways, yet remain central in the decision-making process [12].
While comparing device privacy ratings via scores is easy for consumers [11,19],
such grading schemes have limitations. (1) Privacy does not map to a linear scale,
unlike measurable physical quantities. (2) There is no scoring method that all
stakeholders agree with yet. (3) Transparency requires an understanding of the
answers to the questions listed in Sect. 3. Some of that information is qualitative
in nature and cannot be expressed numerically. (4) Scores can hinder adoption.
It is possible that a substantial portion of current IoT devices would get a low
privacy score, potentially prompting manufacturers to use their lobbying power
to limit a label’s standardization. Thus, a gradual introduction of scores could
be appropriate. While we have chosen not to use scores, we do not exclude doing
so in the future, when the raised issues are addressed.

8.2 The Drawback of Sensor Lists

In contrast to Shen et al., who consider it “critical to enumerate all the sensors
that are used by an IoT device” [35], we argue that a better approach is to show
what information is collected, regardless of whether it was retrieved from sensors,
inferred, or obtained through correlation with other data. Sensor lists can (1)
obfuscate true intentions, while creating a false sense of security. For example,
a device that is equipped with a camera and does not have a microphone can
reasonably be considered as a “device that cannot record my voice”. However,
it is possible to extract an audio signal from video [8], thus companies can claim
compliance, while engaging in unethical practices. (2) Such lists take valuable
space, potentially drawing attention away from other details. (3) Products can
contain sensors that are only used internally (e.g., a thermometer is needed to
prevent overheating), and listing them could confuse users. (4) Sometimes a
sensor can be physically present, but remain unused (e.g., due to economies of
scale, keeping it may be cheaper than making a product version without it).

8.3 Limitations

Our tests did not include participants above the age of 44 and we had few
novice participants. Although we may have overlooked issues that could occur
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with some groups, the interface is derived from a design that was evaluated with
31 participants of a wider range of ages and skills [32]. We also believe that
heuristic evaluation further compensates this limitation, especially when most
of the experts were at least in their forties. Another limitation is that we only
tested the GUI on a laptop. We might have missed some issues that arise on
touch-only devices with smaller screens. Finally, our evaluation did not explore
what happens with repeated exposure to the GUI.

9 Related Work

Several designs were proposed to address IoT privacy and security issues. Some
inherit the grid layout and the layered approach of [20]. A taxonomy proposed
by [19] places privacy labels into one of three categories: graded labels that
quantify security or privacy; seals of approval which show that a certification
was attained, and informational labels that communicate facts about a device.

Van Diermen designed a graded and informational label for IoT, accompa-
nied by an electronic interface [31]. The design is inspired by the EU energy
efficiency label; it includes details about the support period, a list of processed
data types and the available communication technologies, like Wi-Fi or Blue-
tooth. An extended version of the label provides information about security and
the purpose of collection. However, this design has not been subjected to usabil-
ity tests.

Shen et al. propose two informational labels for IoT [35]. Unlike in the case
of LITE, more technical details are provided, e.g., a complete list of sensors and
communication interfaces. This label employs a “traffic light” colour-scheme. For
example, if encryption is not supported, the corresponding line will have a red
marker. The design has not undergone a usability evaluation.

Grace et al. designed an informational privacy label and UI based on the
GDPR. The details include a list of collected data, the purpose of collection,
contact information and a list or rights that the user has. Although it has been
user-validated by means of a focus group, it is not tailored for IoT devices [17].

Emami-Naeini et al. created a user-validated informational privacy and secu-
rity label for IoT [10]. A difference is the use of scoring to quantify the level of
privacy a device provides, while we have avoided using star ratings (see Sect. 8.1).
Moreover, their design is not GDPR-centric, so it does not offer some specific
information, like the location of the data, or the contact details of a DPA.

Bihr proposes a trustmark for IoT, a self-assessed, voluntary seal of approval
[30]. Several regulators, e.g., Traficom (Finland) and the National Cyber Security
Centre (UK) issue seals for IoT devices that meet a certain standard of security.
The seals are derived from ETSI guidelines that dictate what security measures
IoT devices should employ [13] (similar to the security tab of OnLITE). How-
ever, the seals do not convey privacy-related details, nor mandate the way this
information ought to be visualized. Thus, they are not directly comparable to
OnLITE.
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10 Conclusions

We have proposed OnLITE, an on-line label for IoT transparency enhancement.
The design has been examined through heuristic evaluation by legal and usability
experts, and tested by 15 participants in a think-aloud task analysis study. The
results indicate that the prototype conveys privacy facts in a way that can be
understood by non-experts and experts alike. The participants find the interface
useful, and are in favour of its wider availability. Our findings also suggest that
the credibility of such a transparency tool could be higher, if it were regulated
by governments or a reputable international organization.
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Abstract. Research suggests that permission requests do not adequately inform
users about the implications of granting or denying such requests. It is important
that informed consent is given should users grant the request. This paper reports on
the results of a study that examined novel comic-based permission request design
in terms of user response and preferences for permission-granting decisions. We
conducted co-design workshops to design the comic-based permission requests.
We then compared our comic-based designs to current Android text-based permis-
sion requests using five common permission request types in an online survey. Our
results showed that 52% of participants preferred the comic-based requests, and
24% the text-based requests. While comics were found to be an effective medium
to achieve informed consent, some participants reported that the text-based request
offered sufficient information tomake decisions. Given that a relatively large num-
ber of participants preferred the comic-based permissions, we encourage future
designers to consider alternative forms of permission requests.

Keywords: Mobile privacy · Comics · App permission requests

1 Introduction

Many smartphone features are provided through applications (apps) that typically require
the smartphone user to grant access to resources on their phone by responding to a
permission request. However, apps sometimes request access to resources that are not
necessarily required, for example a gaming app that requests access to a phone’s location.
Even when the requested access might be necessary, the permission request descriptions
may not be engaging or informative. Previous research showed that users paid little
attention to the currently employed, text-based permission requests and displayed low
comprehensionofwhatwasbeing askedof them[1].Almuhimedia et al. [2] andBalebako
et al. [3] concluded that users were generally unaware of data collection practices and
were not comfortable with the amount of data being gathered and where this data was
sent. This suggests that text-based permission requests can leave some smartphone users
unaware of potential risks to the privacy of their data.

Previous research has explored the impact of personalized and contextualized ver-
sions of text-based permission requests [4, 5]. Kelley et al. [6] found that presenting
participants with permission requests in a clear, simple and timely manner increased
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the likelihood of participants installing applications that requested fewer permissions.
Shih et al. [7] similarly found that when participants were presented with information
that details the data that an app can access and the reasons why access is required, they
were less likely to grant permissions. Despite these measures, researchers have found
that many people still do not read permission requests.

Similar to permission requests, research into user acceptance and understanding of
app Terms and Conditions (T&C) and Privacy Policies (PP) revealed that such infor-
mation can be difficult to understand and is often not read [8]. Tabassum et al. [9] and
Zhang-Kennedy et al. [10] used comics to teach users about threats to their privacy
and security. They established that comics can increase the attention paid to T&C and
PP. Researchers in other contexts, such as the medical field, have shown that comics
can better educate patients and increase the understanding of, or adherence to medical
instructions [11, 12]. As far as we are aware, no research has explored comic-based
permission requests compared to their text counterparts.

In this paper, we report on the design of comic-based permission requests which
are compared to current text-based permission requests, to investigate the viability of
comics as another medium for the current requests. Our approach involves user-centered
co-design workshops to inform the creation of the comic-based permission requests, and
a survey to assess their effectiveness. In Sect. 2 we discuss related work and our comic-
based request design in Sect. 3. In Sects. 4 and 5 we respectively present the survey
design and results. In Sect. 6 we discuss some design implications, then our limitations
in Sect. 7, followed by our conclusions and future work in Sect. 8.

2 Related Work

2.1 User Awareness

Users have been found to disregard or pay little attention to Terms and Conditions
(T&C), Privacy Policies (PP) or privacy permissions [1, 13, 14]. Talib et al. [14] found
that participants were not interested in reading the PP of social networking websites as
theywere too long, difficult to understand andnot presented in an appealingmanner. They
further suggested that the presentation of PPs should be geared towards a multimedia
and interactive approach to better engage users. Kelley et al. [6] similarly reported that
most of their participants did not consider permissions when downloading apps and
actively chose not to check which permissions would be required to install and use
the app. Further, Morrison et al. [13], found that only 30% of participants realized a
game that the researchers made available on an app store was part of an academic trial
despite this being made clear in the T&C, They also found that none of the participants
interviewed had read the T&C. Furthermore, even when users do read the T&C they
do not necessarily understand them, due to complicated terminology and legalese [14].
Harris et al. [15] discovered that 63% of their participants felt there was often a good
reason for apps to request questionable permissions and trusted the Apple app store and
Google play markets. Despite this trust Kuehnhausen and Frost [16] have shown that
app stores such as Apple app store and Google Play, often contain unsafe apps (e.g. that
request unnecessary permissions). Felt et al. [1] found that only 3% of the participants
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who had read information related to permission requests had a good understanding of
them and 42% of participants were unaware of the existence of permissions.

Since the introduction of Android 6.0 (Marshmallow) Android permissions have
changed and are now often displayed on an Ask on First Use (AOFU) basis rather than
prior to installation [17, 18]. AOFU permissions pop up on the screen when the user tries
to use the functionality of an app. The request must be accepted or declined before the
user can proceed. This means access is not requested or granted until required, which
limits unwanted data collection. The introduction of AOFU permission requests means
that whether a user ignores the T&C or PP, or fails to understand them, they will have
to interact with permission requests.

2.2 Personalization and Contextualization of Permission Requests

Human Computer Interaction (HCI) research has investigated how personalization and
contextualization can affect user receptiveness to permission requests. Personalization
refers to information that has been tailored to each user specifically, whilst contextual-
ization refers to the provision of additional information related to how other users have
reacted to requests. Tan et al. [19] found that participants were more likely to grant
permission requests when they had been allowed to personalize them. Additionally, they
found that participants were more likely to grant access to permission requests which
contained an explanation of why the app needed access, regardless of whether the expla-
nation contained useful information. Raij et al. [20] likewise, argued the importance
of personalization. They reported that participants did not understand the “sensitive
nature” of the data shown if they had little or no personal stake in it.

Contextualization, unlike personalization is not concerned with the user personally,
but with the circumstances surrounding them. Researchers have found that the way
information detailing privacy is framed can influence the extent to which users are
willing to share their information. Zhang and Xu [5] found that if privacy information
is framed socially, such as “91% of people share location”, people are more likely to
share.

The framing (personalization and contextualization) of the information presented in
the request should be designed carefully. Permissions requests should contain a sufficient
amount of information to ensure users are informed, not coerced into decisions [7, 21].
This suggests the exploration of alternative, multimedia methods, such as comics, to
frame permission requests could encourage users to pay more attention to the requests
and in turn make more informed decisions.

2.3 Educational Comics

Comics are an alternative medium that researchers are exploring to successfully convey
information more effectively than plain text. A comic is composed of a series of panels
in which a story and message are conveyed using imagery and text. Pavio posited that
as pictures are coded in two areas of the brain (visual and verbal), and words only one
(verbal) that pictures are better remembered and retained for longer than words, which
suggests comics could be useful aids in smartphone privacy [21].
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Comics have proven to be effective educational tools, with research showing their
successful implementation in the healthcare field [11, 22, 23]. Comics have proven simi-
larly effective in online security and privacy contexts [9, 10]. Tabassum et al. [9] explored
the use of comic versions of T&Cs as a replacement for text-based T&Cs. They found
that comic versions held user attention for longer than text versions but did not improve
comprehension. Conversely, Zhang-Kennedy et al. [10, 24] found that the graphical and
interactive elements of their comics (Secure Comics) aided reader comprehension. Addi-
tionally, they found that Secure Comics improved the understanding of security threats
and facilitated readers into more security conscious decisions. Equally, Mekhail et al.
[25] explored the use of infographics in a mobile privacy context to determine whether
infographics were more beneficial for users than text. They found the infographic infor-
mation led to 64% of participants reportedly taking additional measures to protect their
privacy and approximately two thirds of the users could describe the concepts shown in
the infographics. This suggests images alongside text not only help with comprehension
but are more likely to be read than their text counterparts and in some cases lead to more
privacy conscious decisions.

3 Comic-Based Permission Requests Design

3.1 Co-design Workshops

Over the course of three days we conducted a series of 3 co-design workshops in several
UK locations to inform the design of our comic-base permission requests. 13 participants
were recruited through a social media and poster campaign (Table 1). The workshops
began with a general introduction to comics and comic creation, after which participants
in each workshop were spilt into 2 groups and used “big paper” prototyping techniques
[26] to create the comics together. Participants were given the descriptions of the permis-
sion requests available today on the Android Google Play Store [18] to help guide them.
An example of one of the created comics is in Fig. 1. Within their group (intragroup)
participants then used the sticky note evaluation technique to answer pre-set evalua-
tion questions, such as “How could your comic(s) be improved?”. They then similarly
discussed their comics to the other group (intergroup). The intragroup and intergroup
discussions were recorded and transcribed. The comics created were analyzed using
four design themes inspired by McCloud [27]: (1) tone, (2) characters, (3) content, (4)
aesthetic quality. We similarly use these themes to present our final designs in Sect. 4.

Table 1. Co-design workshops demographic information

Workshop Participants Mean age Gender

1 1–4 26.75 2 Male, 2 Female

2 5–8 26.75 4 Male

3 9–13 31 3 Male, 2 Female
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Fig. 1. A comic showing the addition of a solution, created during the workshop

For theme one, tone, participants indicated the comics should be light and humorous
to some extent, which aligns with people’s perceptions of most comics [27]. They were
also cautious about the frequency of “negative” or “scare mongering” aspects of comics.
For theme two, characters, participants preferred and drew characters that could exist in
the real world, that were likeable, relatable and that reoccur. For theme three, content,
participants felt that the comics should have a clear storyline, be easy to follow and that
showed negative and positive aspects of permission requests. One group realized that
their comicwas entirely negative, so they decided to add narrator text to their comic’s last
slide which informed the reader that they could still make changes to their permissions
(Fig. 1). This group wanted comics to show solutions and felt that in doing so they could
make comics more positive. For the final theme, aesthetics, participants believed that the
amount of text and imagery should be balanced and expressed concern over the quality
of their drawings and lack of color. Participants also felt that comics should be large
enough for readers to read. We used the information gained from these participatory
workshops to support the design of our online survey comic-based permission requests,
as discussed below.

3.2 Comic-Based Permission Request Creation

Figure 2 provides examples of the comic-based permission request and sample of the
text-based permission request for a generic storage and camera app (respectively) that
we used in our survey. Permissions were created for five of the more risky permission
types concerning privacy and security (camera, calendar, contacts, location and storage)
[28]. The comic-based permission requests are centered around 2 main characters, who
encounter permission requests and consider their impact.

For the first design theme, tone, humor has been incorporated into the stories to
lighten the mood and to help to create a more enjoyable reading experience. Humor has
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Fig. 2. Two comic-based requests shown to participants. For the text-based variants participants
saw only the bottom portion, centered vertically (as with current requests).

been found to be a successful tool in gaining and holding attention [29], which is an
aspect that the current permission requests are lacking [14], though it is also recognized
that humor can be culturally-specific [30]. For the second theme, character, most of the
characters created during ourworkshopwere human. Therefore,we focused on creating a
relatable human protagonist, designed to have few gender defining characteristics. These
choices were made in the hope that readers would identify or relate with the character
more if they could interpret the character to be ofwhichever gender they choose or desire.
The literature on character identification has highlighted that people are more likely to
have wishful identification with a same-gender character [31]. The secondary character
is an anthropomorphic cat, designed to introduce humor into the comic and facilitate
dialogue or the progression of the storyline. For the third theme, content, the comic text
has been kept relatively informal and simple, as literature has suggested that this helps
to increase user understanding [14]. The comics have also been designed to provide
the reader with more information about the permission request and has the characters
consider what using the app could mean for their privacy. The characters never suggest a
correct decision, rather they simply reflect on what granting the permission could mean
for them. Additionally, as suggested in our workshops, two of our comics (camera and
location) were designed to offer solutions to participants on how they could protect
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their privacy if they choose to grant the permission, such as by later revoking access
or turning off location (e.g., camera request in Fig. 2). Finally, for the fourth theme,
the aesthetic of comics are minimized, with simple line drawings for the illustrations.
Research has shown that stripping down the comics to their simplest form amplifies the
message conveyed by the comics and minimizes distraction [27]. The simplistic style
of the comics also helped ensure the comic-based permission requests were more easily
read and understood on smaller screens. We decided against the introduction of color,
as it could prove problematic with cultural differences and color associations [32].

4 Survey Design

Given our focus on behaviors and perceptions of permission requests an online sur-
vey was created to compare the viability of the comics-based requests to the current
text-based permission requests [33]. The text-based permission requests were based on
Android permission requests, and displayed as they would look on a smartphone, (par-
ticipation in the surveywas open to users of any device or operating system). Participants
were not provided any context for the app requesting the permissions in this study, in
order to reduce the number of variables influencing their decision and to allow us to
focus on a comparison of the two permission request styles. The survey1 consisted of
3 stages: (1) Demographics and permission statement questions, (2) Permission request
responses and (3) Preference and efficacy questions.

In thefirst stage, demographic informationwas used to determine any answer patterns
for our survey participants. Demographic questions included age, gender, familiarity
with comics and permission requests, to gain an understanding of prior knowledge. The
permission statement questions sought to evaluate participant knowledge of permissions
and privacy risks, and whether this influenced their responses. For these questions, par-
ticipants were asked whether they agreed or disagreed (or were unsure) with statements
such as “Once a permission requests is accepted you cannot change your mind”. There
were eight statements based on similar statements from related research [24]. In the
second (and main) stage, participants were presented with comic and text-based permis-
sion requests for each of five permission types: camera, calendar, contacts, location and
storage (see examples in Fig. 2). The different permission types were presented to each
participant in random order. For each permission request, participants were asked how
likely theywould be to allow each permission on a 5-point scale (1= extremely likely, 5=
extremely unlikely), as well as an open-ended question “what makes you feel this way?”.
In the third stage, participants were asked which permission requests they preferred, felt
taught them more (teachability), and felt they understood better (understandability).

A series of statistical analysis tests were carried out on the quantitative data using
SPSS. As the data collected is ordinal data and not normally distributed a series of non-
parametric tests were completed. Due to multiple comparisons being made, Bonferroni
Corrections were employed, dividing the significance value by the number of tests run.
Content analysis was used to analyze the qualitative data from our open-ended questions.
Krippendorff’s alpha [34] inter-coder reliability test with one other coder (who was not

1 A full copy of the survey can be found here: https://www.macs.hw.ac.uk/~mjust/projects/app
Permissions/.

https://www.macs.hw.ac.uk/~mjust/projects/appPermissions/
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involved in our study) was run to confirm the coding reliability. A sample was randomly
selected and alongside the generated categories was sent to the second coder. The chosen
sample was approximately 10% (112 units) of the data gathered [35]. Results showed a
solid inter-coder reliability score (α = 0.8928).

5 Survey Results

We recruited 240 participants, with 204 completing the survey. Considering the stage 1
demographic data, of the 204 participants 83 were male (41%), 120 were female (59%)
and 1 preferred not to say. The mean age was 33.5, (med = 29, min = 18, max = 69).
The majority of participants were from the UK (38%) and New Zealand (37%) with
some from the USA (5%) and the rest from 20 other countries. The majority (71%) were
employed, with the remainder being students (22%), self-employed (8%), unemployed
(3%), retired (1%), or unable to work (<1%) – some participants chose multiple options.
52% were Android users, with 48% Apple iOS users.

The responses to the permission statement questions suggest that participants did
not fully comprehend the potential consequences of granting permission requests, with
fewer than half (41%) were unsure or did not know the correct response, and only 8% of
participants answered all the statements correctly.We graded the responses using a letter
grading system, to help group and compare participants by their levels of understanding.
A letter based on the percentage of correct responses was assigned to each participant,
spilt into 5 groups, with A= 90–100% and E< 60%. Therefore, for example, those who
scored 8/8 were assigned an A, whereas those who scored 4/8 or under were grouped
E. We used these grades to examine if participants with different grades responded
differently to the permission requests.

5.1 Permission Request Responses and Preferences

For our stage 2 data, Wilcoxon signed ranks test indicated that there was a statistically
significant difference between those who would grant access to permissions based on
whether the permission request was comic-based or text-based. Overall, participants
were less likely to grant access when shown a comic-based permission request (Mdn
= 2) than they were when shown a text-based permission request (Mdn = 3), Z = −
7.359, p> 0.001. Overall, we found that participants aged 18–44 were significantly less
likely to grant comic-based permissions and this difference was not significant for those
over 44 years. Out of the 5 different permission types investigated (camera, calendar,
contacts, location and storage), the comic-based versions for the calendar, contact and
storage permissions were all significantly less likely to be granted (Table 2). These were
the comic-based requests that did not offer a solution. The two requests which offered a
solution, camera and location, were not significantly different when compared to their
text-based counterparts. However, when compared against the other permission types,
location and camera are significantly more likely to be granted in general than all the
other requests (both comic and text-based versions), which suggests that the location
and camera permission types might be more likely to be allowed in general. We found
no other statistically significant differences in participants responses to comic-based
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versus text-based permission requests for any other demographic factors, or participant
responses to the permission statement questions. A comparison of all permissions is in
Fig. 3.

For stage 3, participants were asked which permission request types they preferred:
52% preferred comic requests, 24% text, 17.2% had no preference, and 6.9% would
prefer no requests. Additionally, participants were asked which permission request they
would rather experience in the future. 52.9% preferred comic requests, 27.9% text,
15.2% said it did not matter, and 3.9% preferred no permissions. Tests were carried
out to explore whether demographics or the permission statement questions influenced
preference and no such correlations were found.

Table 2. Sig. Wilcoxon Signed-Rank test results comparing comic and text-based permissions

Type of permission Median Mean Std. d Z p

Calendar comic 2 2.45 1.34 −6.16 >.001

Calendar text 3 2.96 1.36

Camera comic 3 2.75 1.36 −0.453 0.651

Camera text 3 2.8 1.36

Contact comic 2 2.10 1.20 −5.08 >.001

Contact text 2 2.47 1.35

Location comic 3 2.91 1.30 −0.122 0.903

Location text 3 2.90 1.25

Storage comic 2 2.35 1.26 −5.12 >.001

Storage text 3 2.81 1.32
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Fig. 3. Graph comparing participants overall likelihood to grant each permission

5.2 Permission Request Understanding & Teachability – Quantitative Results

In stage 3, participants were also asked how understandable they felt the comic and
text-based permissions were. Likert scale results showed that 62.3% of participants felt
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the comic-based requests were extremely easy to understand, and 25% felt they were
somewhat easy. For the text-based 39% of participants felt that they were extremely
easy to understand and 29% somewhat easy. AWilcoxon Signed-Ranks test showed that
there was a significant difference between the perceived understanding of comic and
text-based permissions, with comic-based (Mdn = 5) permissions being perceived as
more understandable than the text-based (Mdn = 4), Z = −4.298, p > 0.001.

Additionally, participantswere asked howeffective they felt the comic and text-based
requests were at teaching them about what can happen to their data if they allow access.
Likert scale results showed that 43% felt the comic requests were extremely effective at
teaching, and 13% felt the text requests were extremely effective. 33.8% felt that comic
requests were somewhat effective, and 18% felt text requests were somewhat effective.
A Wilcoxon Signed-Ranks test established a significant difference between how much
participants felt that each version of permission request taught them, with the comic-
based requests (Mdn = 5) being viewed as more effective at teaching participants than
the text-based (Mdn = 2). Z = −8.895, p > 0.001.

5.3 Permission Request Understanding & Teachability – Qualitative Results

Out of the 204 participants, 178 (87.3%) stated they felt that the comic-based permission
requests were somewhat or extremely easy to understand. When asked “what makes you
feel this way?” 106 participants indicated that this was due to the informative nature of
the requests. Participantswrote that they felt the comicswere detailed and offered a better
explanation. Participants also stated that the comic visuals made it easier to understand
the consequences of allowing the permission, and that they grabbed their attention “You
see a picture and you get the words in it. If it was just text I don’t think the questions
would capture my attention as much as they did with the cartoon” (P5). Participants
responded positively to the characters and humor of the comics “[The comics are]
Really straightforward, the scenarios are great, funny but also raise awareness. Love
the cats, especially the lady cat” (P83).

However, ten participants reported that the additional information in the comic-
based permission requests was difficult to understand. In terms of aesthetics, participants
remarked that the requests were cluttered, and that comics are an inappropriate medium
to convey permission requests. Some participants felt that the comic-based requests
were “unprofessional”, and even though they were easy to understand, they found the
comic-based requests “a little trivializing” (P23). Participants also remarked that the
comic-based requests were too positive and assumed that they would encourage readers
to either ignore them or be too open to accept, “Comic versions seem too light-hearted
for my device. A little too ‘right on’” (P23) despite the results showing evidence of the
reverse. Another participant disliked the comic-based permissions as they taught them
too much and preferred to be left in the dark “comic version made me less likely to want
to accept, so couldn’t use app if wanted to” (P176). Some participants also felt that more
information should be included, such as why access needs to be granted, e.g., “I only
really trust permission popups when they have some context about why the app requires
the permission” (P113).

Out of the 204 participants, 139 participants (68.6%) said they felt the text-based
requests were somewhat or extremely easy to understand. 22 participants indicated this
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was due to the straightforward nature of the requests, as they found the requests, “Neutral,
straight to the point and clear” (P150) and that therewas “No misleading jargon” (P156).
Other participants indicated that it iswhat they are used to e.g. “It’s what’s always used, so
everyone understands it” (P129. Participants also indicated they preferred the“clear and
concise” (P110) nature of the text requests, as “They were simple and not overwhelming
with information” (P184).

Some participants stated their preference for text-based permission requests was
due to their prior knowledge, e.g. “I’m younger and have been using this tech from
the beginning” (P103) and “They seem straightforward. Maybe because i have a CS
background or i’m just familiar with them.” (P83). However, one participant did suggest
that people may not be engaged by text-based requests, “I feel I’m slightly more tech
savvy (and paranoid) than the average user. I doubt most people do more than glance and
agree” (P117). Participants also indicated that more information should be included, e.g.
“Easy to understand but lacking context” (P23), and “they were pretty straight forward
but didnt give much context to someone who doesnt understand” (P8). Additionally,
some participants expressed concern for other user’s privacy as the implications are not
clear in the text-based requests e.g. “the permission requests are easily understood. The
implications of them are not. They can seem innocuous, but I could be giving away far
more than I realise” (P28) and “They are written simply and seem clear, but there are
unspoken implications of decreased privacy” (P202).

77%of participants felt that the comic requestswere either “somewhat” or “extremely
effective” at teaching people about smartphone permissions and indicated that this was
due to the informative nature of the requests. Participants commented on how the comics
reminded them of potential consequences of allowing access, e.g., “[the comics are]
much better than text, many users would just hit approve without thinking it through but
this step forces a secondary appraisal” (P69). Participants also regularly commented
about the “succinct” nature of the requests and the level of convenience offered through
the visual aspect of the comic-based permission requests, e.g., “Visually better at com-
municating the point than words” (P79). The addition of a graphic element was said to
help visualize what happens when a request is allowed and how to change it. Participants
also mentioned how the visual nature of the comic requests may be beneficial to people
who have limited knowledge of permission requests.

Some participants (8.3%) felt that the comic requests were “ineffective” or “nether
ineffective nor effective” at teaching users about permissions and stated that they were
already knowledgeable in the topic. However, one user who felt this way suggested they
could see the value for other users: “Im very aware of the dangers of cyber threats, so for
me this didnt teach me anything new, but for others i see it being quite valuable” (P1).
One participant further felt the comic-based requests taught them the concepts behind
the current text-based requests “They were straightforward.[ text-based permissions]
But, I didn’t really grasp the concepts behind them until I saw the comics” (P70).

30% of participants indicated that they felt the text requests were “somewhat” or
“extremely effective” at teaching people about smartphone permissions. Participants
indicated this was due to the text-based requests being familiar and the simplicity of
the requests. Participants specified that they felt that text-based permission requests
contained “Clear information” (P110) and that “They asked you simply so it’s easy to
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understand what they want” (P78). The experience of the participants also had an impact
on their perceived teachability, as participants commented, “I am aware of security and
privacy concerns so more openness and transparency is good” (P127) and “I can read”
(P32) One participant also felt the lack of information was a positive, “you are not
aware of danger you are more likely to accept the request” (P196). In addition partici-
pants commented that their data is “worthless”: “In my opinion, my data is worthless.
I’m not famous, I’m not a wanted criminal. I don’t care who knows about me. Privacy is
dead anyways so better not to remind people that it’s dead.” (P129). A few participants
displayed a lack of concern towards their personal privacy on smartphones, with partic-
ipants indicating they are not bothered by permissions and that they are always going to
accept them in the future.

52% of participants felt that the text requests were “ineffective” or “nether ineffective
nor effective” at teaching users about permissions. 72 participants indicated this was
due to the uninformative nature of the text-based requests, as “It is easy to just click
yes without fully realising the implications. They did not explain request or any of the
consequences of saying yes” (P7). Additionally, participants also suggested the level of
trust between users and app providers could influence responses e.g. “It is generic and
could mean many different things, ultimately it comes down to how much trust you have
in the app” (P90) and “I felt like I was trusting and blindly accepting just so I could
use the app.” (P202). Concern regarding less knowledgeable users was also expressed,
with participants suggesting the requests “assume knowledge”. E.g., “those with little
technology experience won’t understand the implications” (P52) and “no other info
given. Its just assumed you understand what you’re agreeing to” (P91).

6 Discussion

While some participants continued to prefer the text-based permissions, a large propor-
tion saw some value with the comic-based permission requests. However, there were
also some criticisms and suggestions for improvement. We discuss such feedback below
with an aim to inform future designs and studies. We structure our discussion based on
the four design themes identified previously: (1) tone; (2) characters; (3) content; and,
(4) aesthetic quality.

Tone: The results suggest that the tone conveyed by each of the permission requests
had an impact on preference. Participants responded positively to humorous comics and
negatively to comics perceived as “A little too ‘right on’” (P23) or that they “Only tells
me about the negative use” (P15). For some of the participants the somewhat lighthearted
and humorous nature of the comics made them seem “friendlier” (P74 & P111), and
more likely to engage with the permission request as they found them entertaining
“More informative, entertaining, willing to read” (P201) and “It’s more entertaining
than the usual neutral messages.” (P150). Overall, the majority of participants found
the comics “friendlier”, “entertaining,” and more “engaging” and the “light-hearted”
humorous tone of the comics an improvement over the clinical text-based requests.
However, some participants felt the comics were a little “patronizing” or preachy which
led to them favoring the text-based permissions. Participants who favored text-based
permissions felt that they were more “simple” and “professional” which they felt made
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themmore appropriate mediums to request access. Despite this, one participant who was
initially wary of comics reported “At first I thought it was childish but then I realized
the importance of what’s being said.” (P98). This suggests that whilst a humorous
tone shows promise in creating more engaging permission requests [29], not everybody
appreciates the same humor. This could be overcome in future designs by offering user
choice of whether they receive comic or text-based permission requests, and the tone
(e.g., serious or lighthearted).

Characters: An advantage comics have over text is that they make use of characters
who inhabit a story to convey the information. The results likewise suggest that the
characters in the comics had an impact on participant preference. Participants in general
responded positively to the two main characters, as they felt that they were “relatable”
and made the requests seem personal. For example, “The comics themselves with the
characters going through similar experiences to the user made the request more personal,
like the request is talking to me personally. Plain text just seems flat, or dead. It doesn’t
care about informing me, it just wants access.” (P16), “The characters hesitation added
to my hesitation” (P118) and “Consequences are shown explicitly. The character weighs
up the pros and cons, showing us what is at stake” (P70). By encouraging users to
empathizewith the characters, permission requests can be re-framed as a personal request
from character to reader rather than a formal request for access to data. The presence
of relatable characters undergoing similar experiences as the reader, and the personal
nature of the request could encourage further reflection on what is being asked of the
user. Previous research has shown that if participants have a personal stake in a matter
it can increase participant understanding of privacy risks [20].

Content: The content of the permissions requests was also found to greatly influence
user preference and likelihood of allowing different permissions. This is seen when
a solution was proposed within the comic-based permissions, leading to participants
being just as likely to allow a permission compared to a text-based permission request.
This could be a result of the privacy and control paradox [36], with solutions offering
participants a feeling of increased control over their data, helping them justify their
current text-based response. In other words, the solution offered in the comic might
remind the user that they can change their mind and deny access to the permission at
a later time. Solutions additionally offer a rationale for participants to allow access,
though it is even unclear whether participants will follow through and later deny access
previously allowed. Similar effects have been noted by other researchers [37] and is
reflected by participants in our study, for example, “the actual impact by normalising
the tracking behaviour. ‘I can always turn it off when I want’ is a big lie. Users don’t turn
things off per use. They set their settings and leave them alone most of the time.” (P30).
The inclusion of a solution, providing the impression of increased control, could lead
some users to allow access they ordinarily would not, as they know they can revisit such
access. In this way our results suggest that the content of the request, in particular the
inclusion of a solution, could trigger other decision-making considerations by users. We
encourage researchers to study the impact of solutions in permission requests further.
The inclusion of solutions in permission requests warrants further study.

Aesthetic quality: In terms of the aesthetic quality of the comic-based permissions
requests, the majority of participants responded positively, with participants indicating
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that the use of visuals contributed to increased understanding. This phenomenon, “pic-
torial superiority effect” [38] was highlighted in numerous participants responses, “The
comics explain in pictures what the permission actually involves” (P47) and “Visuals
are easier to understand than reading” (P79). Participants indicated the comics were
“Well drawn, clear and concise” (P50) and “Good visual cues” (P45). However, some
felt the addition of comics to permission requests came across as “unprofessional”, and
“scaremongering”. Some participants echoed this sentiment and stated they preferred
text-based permission as they are “used to it”. This could suggest that personal prefer-
ence and an individual’s opinion on comics as amedium could influence receptiveness of
use: “They were straightforward. [the text-based permissions] But, I didn’t really grasp
the concepts behind them until I saw the comics” (P70). This implies that even though
some users will prefer the current text-based requests, there are users who will benefit
from the additional visual cue.

7 Limitations

Our survey was not limited to users on smartphones. Therefore, the effectiveness of
the comic-based permission requests may differ between participants using a larger
screen. Also, the requests were not experienced by users as they would be in a real-life
situation, and as such potential disruption or irritation caused by a permission request
is not explored. Finally, the comparison with today’s text-based permissions doesn’t
necessarily reveal which aspects (e.g. the introduction of imagery or text) of the comics
affects behavior. Future studies could compare comic-based designs to enhanced text-
based designs to confirm the effect of the visual aspects of comics.

8 Conclusion and Future Work

Comic-based permission requests show promise, at least for some users. The results
of our survey indicate that many participants preferred the comic-based permissions.
Participants also reported that they found the comics easier to understand and that they
were more informative. However, a number of participants did continue to prefer current
text-based permission requests. Participants also requested that both types of requests
(text and comic-based) contain more information about implications behind allowing
access, and why the app requires access.

Future work could include investigating further improvements to permission
requests, possibly by running co-design workshops with a different set of users, or
by including personalized options so that users might choose the type of permission
request that they would see. Furthermore, the applicability of humor could be further
explored, and comics of another tone (e.g., less lighthearted) created and tested. The
level of information presented in permission requests could also be explored, not only in
comic-based permission requests but also text-based permission requests. Comic-based
permission requests with more or less information could be tested, as could enhanced
text-based permission requests. The impact of aesthetics could also be examined, with
the creation of more detailed or colored comics. Future studies should consider “in the
wild” evaluations to investigate the acceptance of new types of permission requests in
more realistic contexts.
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