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Abstract In this paper, a Cournot duopolymodel with homogeneous goods is exam-
ined with uncertain cost function. A random linear cost function is introduced in this
model for the first player. The case of homogeneous expectations is studied. The exis-
tence and uniqueness of the equilibrium are obtained. The asymptotic behavior of
the equilibrium point is also investigated. Complete stability and bifurcation analysis
are provided. The obtained theoretical results are verified by numerical simulations.

Keywords Cournot duopoly game · Cost uncertainty · Relative profit
maximization · Discrete dynamical system · Nash equilibrium · Stability ·
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1 Introduction

AnOligopoly is amarket structure betweenmonopoly andperfect competition,where
there are only a few number of firms in themarket producing homogeneous products.
The dynamic of an oligopoly game is more complex because firms must consider
not only the behaviors of the consumers, but also the reactions of the competitors
i.e. they form expectations concerning how their rivals will act. Cournot, in 1838
has introduced the first formal theory of oligopoly. In 1883 another French math-
ematician Joseph Louis Francois Bertrand modified Cournot game suggesting that
firms actually choose prices rather than quantities. Originally Cournot and Bertrand
modelswere based on the premise that all players follow naive expectations, so that in
every step, each player (firm) assumes the last values that were taken by the competi-
tors without estimation of their future reactions. However, in real market conditions
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such an assumption is very unlikely since not all players share naive beliefs. There-
fore, different approaches to firm behavior were proposed. Some authors considered
duopolies with homogeneous expectations and found a variety of complex dynamics
in their games, such as appearance of strange attractors (Agiza [1]; Agiza et al. [4];
Agliari et al. [5, 6]; Bischi and Kopel [11]; Kopel [18]; Puu [23]; Sarafopoulos [24,
25]; Sarafopoulos et al. [28]; Zhang et al. [32]). Also models with heterogeneous
agents were studied (Agiza and Elsadany [2, 3]; Den Haan [12]; Fanti and Gori [15];
Hommes [17]; Sarafopoulos et al. [26, 27, 29]; Tramontana [30]; Zhang et al. [31]).

In the real market producers do not know the entire demand function, though
it is possible that they have a perfect knowledge of technology, represented by the
cost function. Hence, it is more likely that firms employ some local estimate of
the demand. This issue has been previously analyzed by Baumol and Quandt [9];
Puu [22]; Naimzada and Ricchiuti [20]; Askar [7]; Askar [8]. Bounded rational
players (firms) update their strategies based on discrete time periods and by using
a local estimate of the marginal profit. With such local adjustment mechanism, the
players are not requested to have a complete knowledge of the demand and the cost
functions (Agiza and Elsadany [2]; Naimzada and Sbragia [21]; Zhang et al. [32];
Askar [8]; Bischi et al. [10, 11]).

In this paperwe study the dynamics of a Cournot-type duopolywith homogeneous
goods where each firm behaves with homogeneous expectations. We show that the
model gives more complex chaotic and unpredictable trajectories as a consequence
of change in the speed of players’ adjustment. The paper is organized as follows: In
Sect. 2, the dynamics of the duopoly game with homogeneous expectations, linear
demand and cost functions and relative profit functions for two players are analyzed.
A cost uncertainty is introduced into first player’s utility function.We set both players
as bounded rational players. The existence and local stability of the equilibriumpoints
are also analyzed. In Sect. 3 numerical simulations are used to verify the algebraic
results of Sect. 2 plotting the bifurcation diagrams of the game’s system and to show
the complex dynamics via computing Lyapunov numbers, and sensitive dependence
on initial conditions.

2 The Game

2.1 The Construction of the Game

In this study we assume that in the two companies there is a separation between
ownership and management, so there is a possibility that the managers who make
decisions for the company to decide at the expense of their company trying to increase
the profits of the competitor. Also, we consider homogeneous players and more
specifically, we consider that both firms choose the quantity of their productions in
a rational way, following an adjustment mechanism (bounded rational players). We
consider a simple Cournot-type duopoly market where firms (players) produce the
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same good and offer it at discrete-time periods on a common market. Production
decisions are taken at discrete time periods t = 0, 1, 2,… At each period t, every firm
must form an expectation of the rival’s strategy in the next time period in order to
determine the corresponding profit-maximizing prices for period t + 1. We suppose
that q1, q2 are the production quantities of each firm. Also, we consider that the
preferences of consumers represented by the equation:

U (q1, q2) = α(q1 + q2) − 1

2

(
q2
1 + q2

2 + 2dq1q2
)

(1)

where α is a positive parameter (α > 0), which expresses the market size and
d ∈ [−1, 1] is the parameter that reveals the differentiation degree of products
[13]. For example, if d = 0 then both products are independently and each firm
participates in a monopoly. But, if d = 1 then one product is a substitute for the
other, since the products are homogeneous. It is understood that for positive values
of the parameter d the larger the value, the less diversification we have in both prod-
ucts. On the other hand negative values of the parameter d are described that the two
products are complementary and when d = −1 then we have the phenomenon of
full competition between the two companies. The inverse demand functions (as func-
tions of quantities) coming from the maximizing of (1) are given by the following
equations (assuming d = 1):

p1(q1, q2) = α − q1 − q2 and p2(q1, q2) = α − q2 − q1, (d = 1) (2)

In this workwe suppose that the first player’s cost function contains an uncertainty
by which the marginal cost (linear cost function) is equal to the combination between
the parameters:c1, c2 > 0, which is described by the following equation:

C1(q1) = [p · c1 + (1 − p) · c2] · q1 (3)

where p ∈ [0, 1], is the positive uncertainty cost parameter.
On the other hand the second player uses a simple linear cost function that its

marginal cost is equal to c1 > 0 and it is described by the equation:

C2(q2) = c1 · q2 (4)

With these assumptions the profits of the firms are given by:

�1(q1, q2) = p1 · q1 − C1(q1) = [α − q1 − q2 − p · c1 − (1 − p) · c2] · q1 (5)

and

�2(q1, q2) = p2 · q2 − C2(q2) = [α − c1 − q1 − q2]q2 (6)
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Then the marginal profits at the point of the strategy space are given by:

∂�1

∂q1
= α − p · c1 − (1 − p) · c2 − 2q1 − q2,

∂�1

∂q2
= −q1 (7)

and

∂�2

∂q2
= α − c1 − q1 − 2q2,

∂�2

∂q1
= −q2 (8)

As it is noticed both managers care about the maximization of a utility function
that contains a percentage of opponent company’s profits (generalized relative profit
function), which is given by:

Ui = (1 − μi ) · �i + μi · (�i − � j ) = �i − μi · � j (9)

where μ ∈ [0, 1] is the percentage that the player i takes into account the opponent
company’s prifots. So, the marginal utility of the player i is given by the following
equation:

∂Ui

∂qi
= ∂�i

∂qi
− μi · ∂� j

∂qi
(10)

and the marginal utilities for each player are:

∂U1

∂q1
= α − p · c1 − (1 − p) · c2 − 2q1 − (1 − μ)q2 (11)

and

∂U2

∂q2
= α − c1 − (1 − μ)q1 − 2q2 (12)

Both players are characterized as bounded rational players. According to the
existing literature it means that they decide their productions following a mechanism
that is described by the equation:

qi (t + 1) − qi (t)

qi (t)
= k · ∂Ui

∂qi
, k ≤ 0 (13)

Through this mechanism the player increases his level of adaptation when his
marginal utility is positive or decreases his level when his marginal utility is negative,
where k is the speed of adjustment of player, it is a positive parameter (k > 0), which
gives the extend variation of production quantity of the each company, following a
given utility signal.
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The dynamical system of the players is described by:

⎧
⎪⎪⎨

⎪⎪⎩

q1(t + 1) = q1(t) + k · q1(t) · ∂U1

∂q1

q2(t + 1) = q2(t) + k · q2(t) · ∂U2

∂q2

(14)

We will focus on the dynamics of this system to the parameter k.

2.2 Dynamical Analysis

The dynamical analysis of the discrete dynamical system involves finding equilib-
rium positions and studying them for stability. The ultimate goal of this algebraic
study is to formulate a proposition that will be the stability condition of the Nash
Equilibriumposition. Finally, these algebraic results are verified and visualized doing
some numerical simulations using the program of Mathematica.

2.2.1 The Equilibrium Positions

The equilibriums of the dynamical system (14) are obtained as the nonnegative
solutions of the algebraic system:

⎧
⎪⎪⎨

⎪⎪⎩

q∗
1 · ∂U1

∂q1
= 0

q∗
2 · ∂U2

∂q2
= 0

(15)

which is obtained by setting:q1(t + 1) = q1(t) = q∗
1 andq2(t + 1) = q2(t) = q∗

2 .

• If q∗
1 = q∗

2 = 0 then the boundary equilibrium position is the point:

E0 = (0, 0) (16)

• If q∗
1 = 0 and ∂U2

∂q2
= 0 then: q∗

2 = α−c1
2 and the equilibrium position is the point:

E1 =
(
0,

α − c1
2

)
(17)

• If q∗
2 = 0 and ∂U1

∂q1
= 0 then: q∗

1 = α−p·c1−(1−p)·c2
2 and the equilibrium position is

the point:
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E2 =
(

α − p · c1 − (1 − p) · c2
2

, 0

)
(18)

• If ∂U1
∂q1

= ∂U2
∂q2

= 0 then the following system is obtained:

{
α − p · c1 − (1 − p) · c2 − 2q∗

1 − (1 − μ) · q∗
2 = 0

α − c1 − (1 − μ) · q∗
1 − 2q∗

2 = 0
(19)

and the nonnegative solution of this algebraic system will give the Nash
Equilibrium position E∗ = (

q∗
1 , q

∗
2

)
where:

q∗
1 = α(1 + μ) + (1 − μ − 2p) · c1 − 2(1 − p) · c2

4 − (1 − μ)2
(20)

and

q∗
2 = α(1 + μ) − (2 − p + p · μ) · c1 + (1 − p) · (1 − μ) · c2

4 − (1 − μ)2
(21)

This means that:

α(1 + μ) + (1 − μ − 2p) · c1 − 2(1 − p) · c2 > 0 (22)

and

α(1 + μ) − (2 − p + p · μ) · c1 + (1 − p) · (1 − μ) · c2 > 0. (23)

2.2.2 Stability of Equilibrium Points

To study the stability of the equilibrium positions we need the Jacobian matrix of the
dynamical system Eq. (15) which is the matrix:

J
(
q∗
1 , q

∗
2

) =
[
fq1 fq2
gq1 gq2

]
(24)

where:

f (q1, q2) = q1 + k · q1 · ∂U1

∂q1

g(q1, q2) = q2 + k · q2 · ∂U2

∂q2

(25)
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and as a result the Jacobian matrix of game’s discrete dynamical system Eq. (14)
is the following matrix:

J
(
q∗
1 , q

∗
2

) =
⎡

⎣
1 + k ·

(
∂U1
∂q1

+ q∗
1 · ∂2U1

∂q2
1

)
k · q∗

1 · ∂2U1
∂q1∂q2

k · q∗
2 · ∂2U2

∂q2∂q1
1 + k ·

(
∂U2
∂q2

+ q∗
2 · ∂2U2

∂q2
2

)

⎤

⎦ (26)

For the E0 the Jacobian matrix becomes as:

J (E0) =
[
1 + k · ∂U1

∂q1
0

0 1 + k · ∂U2
∂q2

]
A=1+k· ∂U1

∂q1=
B=1+k· ∂U2

∂q2

[
A 0
0 B

]
(27)

with Tr = A + B and Det = A · B.
From the characteristic equation of J (E0), we find the nonnegative eigenvalues:

r1 = A = 1 + k · ∂U1

∂q1
and r2 = B = 1 + k · ∂U2

∂q2
(28)

it’s clearly seems that |r1|, |r2| > 1 and the E0 equilibrium is unstable.
For the E1 the Jacobian matrix becomes as:

J (E1) =
[

1 + k · ∂U1
∂q1

0

−k · (1 − μ)q∗
2 1 − 2k · q∗

2

]
C=1+k· ∂U1

∂q1=
E=1−2k·q∗

2

[
C 0
D E

]
(29)

with Tr = C + E and Det = C · E .
From the characteristic equation of J (E1), we find the nonnegative eigenvalue:

r1 = C = 1 + k · α(1 + μ) + (1 − μ − 2p) · c1 − (1 − p) · c2
2

(30)

it’s clearly seems that |r1| > 1, because:
α(1 + μ)+(1 − μ − 2p) ·c1−2(1 − p) ·c2 > 0 Eq. (22) and the E1 equilibrium

is unstable.
For the E2 the Jacobian matrix becomes as:

J (E2) =
[
1 − 2k · q∗

1 −k · (1 − μ)q∗
1

0 1 + k · ∂U2
∂q2

]
F=1−2k·q∗

1=
H=1+k· ∂U2

∂q2

[
F G
0 H

]
(31)

with Tr = F + H and Det = F · H .
From the characteristic equation of J (E2), we find the nonnegative eigenvalue:

r2 = H = 1 + k · α(1 + μ) − (2 − p + p · μ) · c1 + (1 − p) · (1 − μ) · c2
2

(32)
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it’s clearly seems that |r2| > 1, because:
α(1 + μ) − (2 − p + p · μ) · c1 + (1 − p) · (1 − μ) · c2 > 0 Eq. (23) and the E2

equilibrium is unstable.
For the E∗ the Jacobian matrix becomes as:

J (E∗) =
[
1 + k · q∗

1 · ∂2U1

∂q2
1

k · q∗
1 · ∂2U1

∂q1∂q2

k · q∗
2 · ∂2U2

∂q2∂q1
1 + k · q∗

2 · ∂2U2

∂q2
2

]

(33)

with

Tr = 2 − 2k · q∗
1 − 2k · q∗

2 (34)

and

Det = 1 − 2k · q∗
1 − 2k · q∗

2 + [
4 − (1 − μ)2

] · k2 · q∗
1 · q∗

2 (35)

To study the stability of Nash equilibriumwe use three conditions that the equilib-
rium position is locally asymptotically stable when they are satisfied simultaneously
[14, 16, 19]:

(i)
(i i)
(i i i)

1 − Det > 0
1 − Tr + Det > 0
1 + Tr + Det > 0

(36)

The condition (i) gives:

1 − Det > 0 ⇔ 2k
(
q∗
1 + q∗

2

) − [
4 − (1 − μ)2

] · k2 · q∗
1 · q∗

2 > 0 (37)

It’s easy to find that the first condition (i) is always satisfied:

1 − Tr + Det > 0 ⇔ [
4 − (1 − μ)2

] · k2 · q∗
1 · q∗

2 > 0 > 0 (38)

because:
[
4 − (1 − μ)2

]
> 0.

Finally, the condition (iii) becomes as:

1 + Tr + Det > 0 ⇔ [
4 − (1 − μ)2

] · q∗
1 · q∗

2 · k2 − 4
(
q∗
1 + q∗

2

) · k + 4 > 0
(39)

Proposition: The Nash equilibrium of the discrete dynamical system Eq. (15) is
locally asymptotically stable if:

2k
(
q∗
1 + q∗

2

) − [
4 − (1 − μ)2

] · k2 · q∗
1 · q∗

2 > 0
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and

[
4 − (1 − μ)2

] · q∗
1 · q∗

2 · k2 − 4
(
q∗
1 + q∗

2

) · k + 4 > 0.

3 Numerical Simulations Focusing on the Parameter k

From the condition (i) focusing on the parameter k we take the following inequality:

0 < k <
2
(
q∗
1 + q∗

2

)

[
4 − (1 − μ)2

] · q∗
1 · q∗

2

(40)

The condition (iii) is the following:

[
4 − (1 − μ)2

] · q∗
1 · q∗

2 · k2 − 4
(
q∗
1 + q∗

2

) · k + 4 > 0

And its discriminant is positive:

� = 16
[(
q∗
1 − q∗

2

)2 + (1 − μ)2
]

> 0 (41)

so the condition (iii) is satisfied if:

k ∈ (0, k1) ∪ (k2,+∞) (42)

where:

k1,2 = 4
(
q∗
1 + q∗

2

) ± √
�

2
[
4 − (1 − μ)2

] · q∗
1 · q∗

2

(43)

are its two positive roots.
To provide some numerical evidence for the chaotic behavior of the system

Eq. (14), as a consequence of change in the parameter k (the speed of adjustment),
we present various numerical results here to show the chaoticity, including its bifur-
cations diagrams, strange attractors, Lyapunov numbers and sensitive dependence
on initial conditions.

In order to study the local stability properties of the equilibrium points, it is
convenient to take specific values for the other parameters: α = 5, c1 = 1, c2 = 0.5
and p = μ = 0.5. So, as a result we find that q∗

1 	 1.73 and q∗
2 	 1.57 and the

stability condition becomes as:

0 < k < 0.48 (44)
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This algebraic result is verified by the bifurcation diagrams of q∗
1 (Fig. 1) and q∗

2
(Fig. 2) with respect to the parameter k. As it seems there is a locally asymptotically
stable orbit until the value of 0.48 for the parameter k and after this value doubling
period bifurcations are appeared and finally, for higher values of the parameter k the
system’s behavior becomes chaotic and unpredictable (Fig. 3).

Fig. 1 Bifurcation diagram
with respect to the parameter
d against the variable q∗

1 with
400 iterations of the map
Eq. (15) for α = 5, c1 = 1, c2
= 0.50, p = 0.50 and μ =
0.50

Fig. 2 Bifurcation diagram
with respect to the parameter
d against the variable q∗

2 with
400 iterations of the map
Eq. (15) for α = 5, c1 = 1, c2
= 0.50, p = 0.50 and μ =
0.50

Fig.3 The two previous
bifurcation diagrams of
Figs. 1 and 2 in one
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This chaotic trajectory can create strange attractors (Fig. 4) for a higher value of
the parameter k like 0.675, outside the stability space. Also, computing the Lyapunov
numbers (Fig. 5) for this value of the parameter k and setting the same fixed values
for the other parameters α, c1, c2, p andμ it seems that they are getting over the value
of 1 as an evidence for the chaotic trajectory.

This chaotic trajectory makes the system sensitive on initial conditions, which
means that only a small change on a coordinate may change completely the system’s
behavior. For example, choosing two different initial conditions (0.1,0.1) (Fig. 6) and
(0.101,0.1) (Fig. 7) with a small change at the q∗

1 -coordinate and plotting the time
series of system it seems that at the beginning the time series are indistinguishable,
but after a number of iterations, the difference between them builds up rapidly.

Fig. 4 Phase portrait
(strange attractor) of the
orbit of (0.1,0.1) with 8000
iterations of the map Eq. (15)
for α = 5, c1 = 1, c2 = 0.50,
p = 0.50, μ = 0.50 and k =
0.675

Fig. 5 Lyapunov numbers
of the orbit of (0.1,0.1) with
8000 iterations of the map
Eq. (15) for α = 5, c1 = 1, c2
= 0.50, p = 0.50, μ = 0.50
and k = 0.675
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Fig. 6 Sensitive dependence
on initial conditions for
q∗
1 -coordinate plotted against
the time: the orbit of
(0.1,0.1) of the system
Eq. (15) for α = 5, c1 = 1, c2
= 0.50, p = 0.50, μ = 0.50
and k = 0.675

Fig. 7 Sensitive dependence
on initial conditions for
q∗
1 -coordinate plotted against
the time: the orbit of
(0.101,0.1) of the system
Eq. (15) for α = 5, c1 = 1, c2
= 0.50, p = 0.50, μ = 0.50
and k = 0.675

4 Conclusions

In this paper we analyzed the dynamics of a differentiated Cournot duopoly with
homogeneous expectations, linear demand and cost functions. An uncertainty of the
first firm’s cost function is introduced. By assuming that at each time period each
firm maximizes its expected relative profit under the same expectations, a discrete
dynamical systemwas obtained. Existence and stability of equilibrium of this system
are studied. We showed numerically that the model gives chaotic and unpredictable
trajectories. The main result is that higher values of the speed of adjustment may
destabilize the Cournot–Nash equilibrium.
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