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Higgs Boson and Higgs Field in Fractal
Models of the Universe: Active
Femtoobjects, New Hubble Constants,
Solar Wind, Heliopause

Valeriy S. Abramov

Abstract Theoretically the relationship between the main parameters of active
femtoobjects and the Higgs boson in fractal models of the Universe was investi-
gated. To describe the structure of the solar wind, heliopause, new Hubble constants
are proposed. Estimates of the main parameters are conformed with the experimental
data obtained by the Planck space observatory (based on Fermi-LAT and Cerenkov
telescopes), UTR-2 and URAN-2 radio telescopes, Parker Solar Probe, Voyager 2
and Voyager 1. Within the framework of the anisotropic model, a description of the
main characteristics of the model femtoobject and its relationships with the param-
eters of the Higgs boson and the Higgs field was performed. To take into account
the stochastic behavior of the parameters of a model femtoobject (an active object
with dimensions of the order of the classical electron radius), random variables are
introduced. Using the example of a hydrogen atom, we estimated the radius of a
proton, its mean square deviation, and compared it with an experiment. Estimates of
the anomalous contributions to the magnetic moments of leptons based on the lepton
quantum number are obtained.

Keywords Model femtoobject · Higgs boson and Higgs field · Fractal models of
the Universe · Hubble constants · Structure of the solar wind · Heliopause ·
Hydrogen atom · Proton and electron radii · Magnetic moments of leptons

1 Introduction

To describe fractal cosmological objects (using binary black holes and neutron stars
as an example), the model was proposed in [1, 2] that takes into account the relation
between the parameters of the Higgs boson and relict photons, gravitons. Within the
framework of this model, the possibility of radiation of gravitational waves from
such cosmological objects in the superradiation regime is shown [2]. Higgs field
accounting made it possible to propose an anisotropic model of fractal cosmology,
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within the framework of which it is possible to describe the effect of accelerated
expansion of the Universe [3]. In this case, a transition to the description of atomic
defects, active nanoobjects, and neutrinos is possible [4, 5]. Active objects in fractal
quantumsystemshave their owncharacteristic features of behavior [6–8]. In this case,
superradiative states of active objects may appear [7].When describing various phys-
ical fields (gravitational, electromagnetic, neutrino, deformation, stress) in fractal
quantum systems, it is necessary to take into account the ordering effect of the corre-
sponding operators [8]. Coherent laser spectroscopy methods and the modern devel-
opment of nanotechnology make it possible to study active femtoobjects (protons,
neutrons, atomic and muon hydrogens, leptons) in fractal quantum systems. Esti-
mates of the characteristic sizes for the proton radius and Rydberg constant in atomic
and muon hydrogens were obtained in [9–11]. Note that active femtoobjects such as
leptons have anomalies in magnetic properties [12–14]. For neutrinos, the effect of
oscillations (mutual transformations of the electron, muon neutrino and τ-neutrino
into each other) is observed [13].

The relationships between the Higgs boson parameters and active nanoelements
in fractal systems were studied in [15–17]. Features of the behavior of coupled states
of a vortex–antivortex pair were considered in [16]. In [17], the description of the
relations of the Higgs boson parameters with cosmological objects in the Universe
was proposed. For the accelerated expansion of the Universe, within the framework
of this model [17], the relationships of the Hubble constant (old value) with the
parameters of the Higgs boson and relict radiation were obtained. The experimental
data on the attenuation of gamma rays against an intergalactic background, obtained
by the Planck space observatory (based on Fermi-LAT and Cerenkov telescopes),
made it possible to determine new values of the Hubble constant and the density of
matter in the Universe [18]. The authors explain these new values by the interaction
of γ rays with relic photons. In this case, it becomes necessary to agreement the old
and new values of the Hubble constants both within the framework of our model
and with the cosmological model

V

CDM (plane cosmology). On the other hand,
experimental data on the compound, structure, and behavior of the solar wind (flows
of various particles) near the Sun [19–24], Earth [25] and in interstellar space (near
the heliopause) [26–30] should also be associated with new values of the Hubble
constant, the expansion rate, and the density of matter in the Universe.

The aim of this work is to describe the main characteristics of active femtoobjects,
the solar wind, heliopause and their relationships with the parameters of the Higgs
boson and the Higgs field in fractal models of the Universe.

2 Description of Model Femtoobject

The compound of the solar wind may include active nanoobjects [4–7] and femtoob-
jects. Based on the results of [1, 2, 4–7], we introduce the main parameters ξ 2p,�A0,
rp of a model femtoobject
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ξ2p = χ0/n
′
F = 1/(N ′

p − N ); �A0 = nA0Ee/EH0; rp = 2re/(z
′
μnF ), (1)

which are related with the known parameters of quantum electrodynamics

re = e2
/(

mec
2
0

); � c 0 = e · eα0; eα0 = e · α 0;α 0 = � c 0/e
2;

Ee = m e c
2
0 = e2/re; r 0p = m e re/mp = e2/Ep; Ep = mp c

2
0 = e2/r 0p;

μB = e �/2me;μN = e �/2mp. (2)

Here re and r 0p, me and mp, Ee and Ep are classical radii, rest masses, rest ener-
gies for electron and proton, respectively; c0 is limited speed of light in vacuum;
� is Planck’s constant; e is electron charge; α 0 is fine structure constant; eα0 is
renormalized electron charge; μB is Bohr magneton; μN is nuclear magneton. Next
we will use the numerical values Ee = 0.51099907 eV, mp/me = 1836.152701,
Ep = 938.2723226 eV, re = 2.81794092 fm, r 0p = 1.534698568 am. Note that
in this work, model femtoobjects are active objects with sizes of the order of the
classical electron radius re. Model attoobjects with sizes of the order of the clas-
sical proton radius r 0p describe the internal structure of nucleons (the presence of a
core and scalar, vector clouds [12]). In fractal quantum systems (such as atomic and
muon hydrogen), model attoobjects can lead to a change in the main parameters (1),
anomalies in magnetic properties (2) and stochastic behavior [8] of model femtoob-
jects and leptons. In our model, the main parameters of the model femtoobject are
related to the resting energy of the Higgs boson EH0, the main parameter nA0 for
black holes [1, 2], the number of quanta nF , n′

F of the fermionic field (nF +n′
F = 1)

from the anisotropic model (taking into account the presence of the Higgs field) [3],
and the cosmological redshift z′

μ [1, 2], the effective susceptibility χ 0 in the absence
of the Higgs field [4–7] and the effective number N in the Dicke superradiation
model [2]. The numerical values of these parameters are: EH0 = 125.03238GeV,
nA0 = 58.04663887, nF = 0.945780069, n′

F = 0.054219931, z′
μ = 7.18418108,

χ 0 = 0.257104198, N = 17.0073101. Using formulas (1), we find the numer-
ical values of the main parameters of the model femtoobject ξ 2p = 4.741876161,
�A0 = 237.232775 · 10−6, rp = 0.829458098 fm and N ′

p = 17.21819709.
To take into account the stochastic behavior of the parameters of the model

femtoobject, we introduce a randomvariable ξ̂rp with two possible values ξ1p, ξ2p and
their corresponding probabilities P1p, P2p, and expected value M(ξ̂rp) = 1. Based
on the parameters ξ 2p, �A0 from (1) we find the probabilities P1p, P2p, possible
value ξ1p, variance D(ξ̂rp), standard deviation σ(ξ̂rp)

P1p = ξ 2p/(ξ 2p + �A0); P2p = �A0/(ξ 2p + �A0); P1p + P2p = 1

ξ1p = (1 − ξ2p P2p)/P1p; D(ξ̂rp) = (ξ 2p − ξ 1p)
2P1p P2p; σ(ξ̂rp) = D1/2(ξ̂rp).

(3)
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The values of these parameters from (3) are equal: P1p = 0.999949973,
P2p = 50.027 · 10−6, ξ1p = 0.999812796, D(ξ̂rp) = 700.495 · 10−6, σ(ξ̂rp) =
0.026466865.

Next, we introduce a random variable r̂ p = rp · ξ̂rp with two possible values r∗
p,

r∗
e and their corresponding probabilities P1p, P2p. If rp is a constant value, then the
possible values r∗

p, r
∗
e , expected value M(r̂ p), variance D(r̂ p), standard deviation

σ(r̂ p) are found by the formulas

r∗
p = ξ 1p rp; r∗

e = ξ 2p rp; M(r̂ p) = r∗
p P1p + r∗

e P2p = rp;
D(r̂ p) = (r∗

e − r∗
p)

2P1p P2p; σ(r̂ p) = D1/2(r̂ p) (4)

The numerical values are equal: r∗
p = 0.82930282 fm, r∗

e = 3.933187582 fm,
D(r̂ p) = 481.936 · 10−6( f m)2, σ(r̂ p) = 0.021953046 f m. Our calculated value of
the proton radius r∗

p almost coincides with the new experimental value of 0.8293 fm
for the proton radius in the hydrogen atom, obtained by 2S-4P spectroscopy (based
on quantum interference) [11].

Based on the anisotropic model [1, 2, 4], we find the relationship of the radii rp,
r∗
p with other characteristic parameters r ′

p, xp, yp, rpτ , r
∗
pτ , rpμ

r ′
p − rp = xp; xp = rp sn(uμ;kμ); yp = rp cn(uμ;kμ); x2p + y2p = r2p;
rp − yp = 3(r ′

p − rpτ ); r∗
pτ = rpτ nFτ ; 2rpμ = r ′

p(1 − S1u − S2u) − 4(rp − r∗
p).

(5)

The parameter sn(uμ;kμ) = sinϕμ = 0.057234291 is related to the angle
ϕμ [1, 2]; quantum numbers nFτ = 0.950987889, n′

Fτ = 1 − nFτ are
related with the lepton quantum number �τ L = (n′

Fτ )
2 = 0.002402187 from

[5]; parameters |S1u | = 0.046741575, S2u = 0.033051284 defined in [4]. Further,
based on expressions (5), we find the numerical values of the characteristic param-
eters: r ′

p = 0.876931544 fm, xp = 0.047473446 fm, yp = 0.828098429 fm,
rpτ = 0.876478321 fm, r∗

pτ = 0.833520268 fm, rpμ = 0.841841587 fm. Our
calculated values r ′

p and rpμ practically coincide with the values of 0.8768 fm (the
CODATA value) and 0.84184 fm (determined on the basis of fine and ultrafine split-
ting in the framework of quantum electrodynamics) [9], respectively. Our calculated
value r∗

pτ practically coincideswith the value of 0.8335 fm formuonic hydrogen [10].
Our anisotropic model [1, 2, 4] also makes it possible to estimate the measurement
error δrp, δr ′

p using the formulas

δrp = χ32 r
′
p = rpχ sn(uμ; kμ)[1 + sn(uμ; kμ)]; rpχ = 2re χ11/(z

′
μ nF );

δr ′
p = rdτ S2u; rdτ = |χe f |rFτ ; rFτ = nFτ r

′
p. (6)

Taking into account χ11 = 0.181800122, χ32 = 0.010405201, | χe f | =
0.250425279 from [1, 2] and expressions (6) we find estimates of measurement
errors δrp = 0.009124649 fm, δr ′

p = 0.006902512 fm, which do not disagree the
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experimental estimates of 0.0091 fm from [11], 0.0069 fm from [9], respectively.
In this case, the calculated value of the radius rdτ = 0.208842481 fm in our model
is near the mean square radius of the electric charge distribution in the core of
nucleons equal to 0.21 fm [12]. The radius rFτ = 0.833951278 fm is related with
the characteristic radii r ′

Fτ , rτ L and the value �′
τ L = 0.97597813 by the expressions

r ′
Fτ = n′

Fτr
′
p; (r ′

Fτ )
2 + (rτ L)

2 = (r ′
p)

2;
r2τ L = �′

τ L(r
′
p)

2; �′
τ L = 1 − �τ L = nFτ (1 + n′

Fτ ). (7)

The values of these radii are equal: r ′
Fτ = 0.042980266 fm, rτ L =

0.866334751 fm. Anomalies in the magnetic moments of leptons can be determined
by the influence of CMB radiation. In this case, relict radiation can lead to effects of
renormalization of the initial parameters: fine structure constant α0, electron charge
e, limiting speed of photon propagation in vacuum c0; rest masses me, mμ, mτ and
magnetons μB , μμ = e�/2mμ, μτ = e�/2mτ for electron, muon, τ -lepton, respec-
tively. The magnetic moments of leptons < μ̂e >, < μ̂μ >, < μ̂τ > for an electron,
muon, τ -lepton, respectively, are determined by the expressions

2 < μ̂e >= (2 + �μe)μB; 2 < μ̂μ >= (2 + �μμ)μμ; 2 < μ̂τ >= (2 + �μτ )μτ .

(8)

Anomalous contributions to magnetic moments and renormalization effects are
described by parameters �μe, �μμ, �μτ for electron, muon, τ -lepton, respectively,
based on the lepton number �τ L

�μe = �τ L − �HL; �HL = EHL/EH0; EHL = n′
H3Ee; N ′ = 17.21088699;

(9)

�μμ = �τ L − �′
NL; �′

NL = E ′
NL/EH0; E ′

NL = N ′Ee; (N ′ − N ) · χ0 = n′
μF ;
(10)

�μτ = �τ L − 0.5(�HL + �GL); �GL = EGL/EH0; EGL = nGEe. (11)

Additional contributions �HL , �′
NL , �GL are determined based on the energies

EHL , E ′
NL , EGL and the resting energy of the Higgs boson EH0. From (9–11) it

follows that these additional energies are determined by the numbers of quanta n′
H3,

N ′, nG and the rest energy of the electron Ee. Wherein

n′
H3 = nH3/(1 + �0ν); 1 + �0ν = 1 + (n′

F )2 = 1 + (N ′
p − N )2 · χ2

0; (12)

nH3 = QH3nh2 = 0.5QH3 nA0; nA0 = z′
μ(z′

μ + 1) − nQ/ng; nQ = 2nG . (13)

Here ng = 8, nQ = 6, nG =< ĉG ĉ+
G >= 3 and n′

G =< ĉ+
G ĉG >= 2 can be

interpreted as the numbers of quanta of the gluon, quark, excited, and ground states
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of the gravitational fields, respectively; neutrino density �0ν = 0.002939801 [4].
Based on (13) we find nH3 = 20.33926863. Further, taking into account (12, 10),
we obtain n′

H3 = 20.27965049, n′
μF = 0.052340473. Based on Eqs. (9–11) we

find the energies EHL = 10.36288254MeV, E ′
NL = 8.794747246MeV, EGL =

1.53299721MeV; additional contributions �HL = 82.88159067 · 10−6, �′
NL =

70.33975716 · 10−6, �GL = 12.26080164 · 10−6. The found parameters �μe/ 2 =
1159.652705 · 10−6, �μμ/2 = 1165.923621 · 10−6, �μτ/2 = 1177.307902 · 10−6

coincide with the data [14] for anomalies of the magnetic moments of leptons.

3 New Hubble Constants

The parameters of active nanoobjects and femtoobjects are relatedwith cosmological
parameters. To describe accelerated expansion of the Universe in model I [17] and
the anisotropic model [1, 2, 4], the Hubble constants H01, H02, H0, characteristic
distances L01, L02, L0, speeds υ01, υ02, υ0 were introduced

H01 = c0/L01 = υ01/L0; H02 = c0/L02 = υ02/L0; H0 = υ0/L0; H0 = υ0/L0.

(14)

The values L0 = 1Mpc, H01 = 73.2 km · s−1 · Mpc−1, L01 = 4.0954948Gpc
(distance to supernova type 1a), υ01 = 73.2 km · s−1 and L02 = 4.2574359Gpc
(event horizon), H02 = 70.415674 km · s−1 ·Mpc−1, υ02 = 70.415674 km · s−1 were
obtained on the basis of the analysis of supernova type 1a [3] and measurements by
Cepheids, respectively. The Hubble constant H0 = 67.83540245 km · s−1 · Mpc−1,
velocity υ0 = 67.83540245 km · s−1 were introduced in [1, 2, 4] to describe the
radiation of gravitational waves, relict photons from binary black holes, neutron
stars based on the expression

υ0 = υ01/�t H ; �t H = QH0 + |S′
01|; QH0 = υ01/υ02 = H 01/H 02 = L02/L01.

(15)

Here are QH0 = 1.039541282, |S′
01| = 0.039541282. New experimental data on

the attenuation of γ-rays against an intergalactic background [18] make it possible
to introduce a new Hubble constant H∗

0 , velocity υ∗
0 , and matter density �m based

on expressions

H∗
0 = υ∗

0/L0; υ∗
0 = υ01/�∗

t H ; �∗
t H − �t H = S012; S012 = |S′

01| − S′
02. (16)

Here is S′
02 = 0.03409. The numerical values of H∗

0 = 67.49443576 km · s−1 ·
Mpc−1, υ∗

0 = 67.49443576 km · s−1, �m = (n′
F + �′

c1)/2 = 0.141145722 (the
parameter �′

c1 = 0.228071512 is related to the gap in the energy spectrum of relict
photons) are close to the experimental data from [18]. From [16] it follows the
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connection of parameters H01, υ01 for the accelerated expansion of the Universe
with new parameters H∗

0 , υ
∗
0 . Our parameters H0, υ0 and new parameters H∗

0 , υ
∗
0 are

close to the main parameters H ′
0, υ

′
0 of the model

V

CDM (plane cosmology). In our
model H ′

0, υ
′
0 are defined by expressions

H ′
0 = υ ′

0/L0; υ ′
0 = υ01/�′

t H ; �′
t H = �∗

t H + �0ν + ng�A0/nA0. (17)

Values H ′
0 = 67.30995226 km · s−1 · Mpc−1, υ ′

0 = 67.30995226 km · s−1 are
close to the parameters of the planar cosmology model.

4 Solar Wind and Heliopause

The Sun is the source of solar wind (flows of photons and various particles) [19].
Photons achieve the Earth after 8 min, and high-energy particles arrive with a delay
of 100 min [20]. To estimate the characteristic distances and times, we use

L ′
ES = LES/QH0 = c0tES = υH0 t

′
ES; nH0 = Q2

H0 = (1 + |S′
01|)2 = υ2

01/υ
2
02,

(18)

where υ2
H0 = c20/nH0. Taking into account the numerical values of the distance from

the Earth to the Sun LES = 1 au = 1.495995288 · 108km, the limiting speed of light
in a vacuum c0 = 2.99792458 · 105km s−1, we find estimates of the refractive index
of the medium nH0 = 1.080646077, the speed of photon propagation in the medium
υH0 = 2.883891801·105km s−1, the distance L ′

ES = 0.961962759 au, and the times
of arrival of photons to the Earth from the Sun in vacuum tES = 480.0293392 s and
in the medium t ′ES = 499.0103147 s.

To estimate the delay time t0m of particles, arriving on the Earth from the Sun, we
use the expressions

2 t0m = τ0γ ln N0m; τ0γ = τ0α/n0α; τ0α = ν−1
0α ; n0α = 1.5 + |ξ0H |2;

ln N0m = 2n0α ln N0α; QH2N0α = 0.5 + �′
c1 + n′

Fτ ; ν0α = νH0/N0A. (19)

Expressions (19) were obtained in the framework of the Dicke theory of super-
radiance and describe the main parameters τ0γ , t0m of the superradiance pulse in a
medium from a state with the number of particles N0m .

Based on the numerical values N0A = 3.557716045 · 105, νH0 = 50.182731Hz,
|ξ0H |2 = 0.181800122, QH2 = 1/3, n′

Fτ = 0.049012111 we find estimates of
the frequency ν0α = 141.0532217μHz, relaxation time τ0α = 118.1587096min,
fractal parameter n0α = 1.681800122, coherent spontaneous relaxation time τ0γ =
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70.25728449min, effective numbers of active particles N0α = 2.331250869 and
N0m = 17.23047995, delay time t0m = 100.0101199min.

To estimate the characteristic parameters for the region near the boundary of the
heliopause, we first find the relationships between the rest energies E0E and EH0,
rest masses ME and mH0, the gravitational radii of Schwarzschild RGE and RH0 for
the Earth and the Higgs boson, respectively, by the formulas

E0E/NaEH0 = ME/Na mH0 = RGE/Na RH0 = n0E ; EH0 = c20mH0;

mH0 = c20RH0/2GNa; RGE = AGE0E ; AG = RH0/EH0 = 2GNa/c
4
0;

RGE = NGE LES = n0E Na RH0; ME = 5.977 · 1027g. (20)

Basedon (20)wefind the parameters of the theory AG = 0.960836162 fm (eV)−1,
n0E = 73.87419814, RGE = 5.347530124 · 1018km, NGE = 3.574563481 · 1010.

Taking into account (18) in the framework of the anisotropic model [4] we find
the characteristic velocities υhS , υ ′

hS , distances LhS , L ′
hS , time of arrival of the signal

from the heliopause to the Earth thS from the expressions

υ ′
hS = QH0 υhS = |χe f |υ01; LhS = NhSLES; L ′

hS = N ′
hS LES; L∗

hS = LhS/QH0;

N ′
hS = nH0NhS; LhS/RGE = υ2

hS/c
2
0; LhS/LES = thS/tES. (21)

Based on (18–21), the values |χe f | = 0.250425279 from [4], we find the esti-
mates υhS = |χe f | υ02 = 17.63386481 km s−1, NhS = 123.6734916, N ′

hS =
133.6472735, LhS = 1.850149607 · 1010km, thS = tESNhS = 16.49080679 hour.
The speed υhS is close to the speed υV2 = 17.5 km s−1 of the V2 probe; the distance
L∗
hS = 118.9692932 au is near the distance to the heliopause boundary LV2 = 119 au

from [26].
To describe the transition region near the boundary of the heliopause, we introduce

the times t1, t2, t3, distances L1, L2, L3. Next, we find the characteristic time intervals
t31, t21, t32 by the formulas

t31 = t3 − t1 = 1/ν31; ν31 = (1 − ψ02)νH0S2u/N0A; t21 = t2 − t1 = t31Pτ ;

t32 = t3 − t2 = t31P
′
τ ; Pτ + P ′

τ = 1; P ′
τ = 1/(2 + S′

03). (22)

Using the parameters ψ02 = 0.984494334, S′
03 = 0.460458718 from [4], we

obtain numerical values: frequency ν31 = 0.072287263μHz; probabilities Pτ =
0.593571722, P ′

τ = 0.406428278; time intervals t31 = 160.1122188 day, t21 =
95.03808539 day, t32 = 65.07413336 day. The obtained values of the intervals t21
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and t32 practically coincide with the time intervals of 95 days and 65 days for the
transition region near the heliopause boundary from [26, Fig. 1a].

The characteristic distance L3 for interstellar space (outside the heliopause at
L3 > L2) is determined from the expressions

L3 = NL3LES; NL3 = (1 − �hL − S2u)NhS. (23)

Using the parameters�hL = 0.000118617 from [4, 5], NhS from (21), we find the
value NL3 = 119.5712542 and the estimate of the distance L3 = 119.5712542 au.
To estimate the distance L1 (inside the heliosphere for L1 < L2), we use the charac-
teristic distances Lμe, Lμμ, Lμτ for e, μ, τ -leptons, respectively, determined by the
expressions

Lμe = NμeLES; Nμe = nμeNhS; nμe = (2 + �μe) − (1 + S1u);

Lμμ = NμμLES; Nμμ = nμμNhS; nμμ = (2 + �μμ) − (1 + S1u);

Lμτ = Nμτ LES; Nμτ = nμτ NhS; nμτ = (2 + �μτ ) − (1 + S1u). (24)

Using the parameters �μe, �μμ, �μτ from (9–11), based on (24) we find the
estimates of distances Lμe = 118.1796344 au, Lμμ = 118.1811855 au, Lμτ =
118.1840014 au. For search of the characteristic distance L2 (as the heliopause
boundary), we consider a random variable L̂2 with two possible values L3 from
(23), L1 = Lμe from (24) and their corresponding probabilities Pψ01, P ′

ψ01. For

expected value M(L̂2), variance D(L̂2), deviation σ(L̂2), we have

M(L̂2) = Pψ01L3 + P ′
ψ01Lμe = L2; D(L̂2)

= (L3 − Lμe)
2Pψ01P

′
ψ01; σ(L̂2) = D1/2(L̂2);

Pψ01 + P ′
ψ01 = 1; P ′

ψ01 = ψ01/(1 + S′
03 + ψ01); ψ01 = 1.015268884. (25)

The numerical values of the distance L2 = 119.0005661 au and space intervals
L32 = L3 − L2 = 0.57068813 au, L21 = L2 − Lμe = 0.8209317 au practically
coincide with the characteristic values of 119 au, 0.57 au, 0.82 au, respectively, from
[26, Fig. 1a]. Based on (22), (25), we find the average values of the velocities υ21

(inside the heliosphere), υ32 (outside the heliopause), the jump in velocities δυ21 (at
the heliopause) and the ratio of velocities υ32/υ21

υ21 = L21/t21 = L31Pψ01/t31Pτ ; υ32 = L32/t32
= L31P

′
ψ01/t31P

′
τ ; L31 = L3 − L1;

δυ21 = υ32 − υ21; υ32/υ21 = ψ01 = ε01/EH0 = ν01/νH0. (26)
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The numerical values are equal: υ21 = 14.95635805 km s−1, υ32 =
15.18472495 km s−1, δυ21 = 228.366896m s−1.We note, that the probabilities Pψ01

and Pτ are coupled through a conditional probability Pψτ , and the ratio of the veloc-
ities and the jump in velocities allow us to introduce probabilities Pψ , P ′

ψ using
expressions of the type

Pψ01 = Pτ Pψτ ; Pψτ = (2 + S′
03)/(1 + S′

03 + ψ01) = 1/(1 + n01); Pψ + P ′
ψ = 1;

Pψ = 1/ψ01 = υ21/υ32; P ′
ψ = δυ21/υ32; n01 = (ψ01 − 1)/(2 + S′

03). (27)

From (27) it follows, that n01 is a function of two arguments ψ01 and S′
03. If the

Higgs field is absent (ψ01 = 1), then from (27) we obtain: n01 = 0; probabilities
Pψτ = 1, Pψ01 = Pτ , Pψ = 1, P ′

ψ = 0; jump in speed δυ21 = 0 and equality of
speeds υ21 = υ32. The presence of the Higgs field (ψ01 �= 1) leads to the appearance
of a velocity jump, when crossing the heliopause boundary. Replacing the parameter
S′
03 in (27) with other parameters S′

0x , Sxu (x = 1, 2, 3, 4) of the energy (frequency)
spectra leads to a change in the probabilities and stochastic behavior of the velocities
υ21, υ32.

The anisotropic model [4] and expressions (1, 4) allow us to obtain relationships
of velocities υ32, υ21 with characteristic velocities υψu , υeu (active nanoobjects,
femtoobjects that are part of the solar and galactic wind) of the type

υ32 = n′
F υψu = χ0 υeu = ψ01 υ21; υψu = ξ2p υeu; ξ2p = r∗

e /rp. (28)

Based on (28) we find the velocity estimates υeu = 59.04358906 km s−1, υψu =
279.9773874 km s−1. On the other hand, the characteristic solar wind velocity υψu

is related to the Hubble constants H01 and H02, H0, H∗
0 , H

′
0, velocities υ01 and υ02,

υ0, υ∗
0 , υ

′
0 for models from (14, 15, 16, 17), respectively, by expressions of the type

0.5υψu = 2υ02 − υ0A = υW − υq − υ0A; υq = υ01 − υ02 = υW − 2υ02;

υW = υ01 + υ02 = υ0 �t H + υ02 = υ∗
0 �∗

t H + υ02 = υ ′
0 �′

t H + υ02; υ0A = c0/N0A.

(29)

Values of speeds are equal:υ0A = 0.84265426 km s−1,υW = 143.615674 km s−1,
υq = 2.784326 km s−1.

The velocity υhS from (21) is related to the characteristic velocities of relict
photons υra , υ∗

ra and the velocities υ02, υ∗
0 , υ0ρ , υW , υhρ by expressions of the type

2 υhS υra = υ∗
ra υ02; υra = c0/Nra; υ∗

ra = 2|χe f |υra;

υ∗
ra υ0ρ = υra υ∗

0 ; υ2
W = υ2

0ρ + υ2
hρ; Nra = 1041.293475; (30)
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Values of speeds are equal: υra = 287.9039053 km s−1, υ∗
ra =

144.1968316 km s−1, υ0ρ = 134.7596298 km s−1, υhρ = 49.65182785 km s−1.
The experimental data obtained by the Wind probe (the interval of solar wind

speed changes of 600–300 km s−1, Fig. 6 from [25]), on the UTR-2, URAN-2 radio
telescopes (Fig. 5 from [25]) showed, that the solar wind in orbit and beyond the
Earth’s orbit consists of a set of particle flows with different velocities and densities.
The structure of these flows depends on time and solar activity [19, 20]. An anal-
ysis [25] of intermode (intramode) interactions of particles of different flows was
performed by the interplanetary scintillation method based on the behavior of space
and time correlation functions for radiation intensity. The velocities 2 υ0ρ , υψu and
υra are close to the characteristic velocities of 270, 280 and 290 km s−1 of separate
solar wind modes from [25]. The detailed analysis of the multimode structure of the
solar wind in our model is possible based on spectra of type υψux = 2 υψu Sxu and
υrax = 2 υra Sxu . From (30) it follows that the velocities υ0ρ and υhρ can be inter-
preted as both the radial and transverse components of the total velocity υW . The
presence of transverse components±υhρ of the solar wind near the Sun is confirmed
by experimental data collected by the Parker Solar Probe [21–24]. The behavior of
the transverse component (Fig. 2 from [22]) is stochastic and varies in the range from
50 to –50 km s−1. In [24], such a behavior of the slow solar wind is associated with
the presence of equatorial coronal holes in the Sun. A fast solar wind with speeds
2 υ0ρ occurs near the poles of the Sun.

In ourmodel, it is also possible to describe themultimode structure of the solar and
galactic winds at the crossing of the heliopause based on the velocities υeu from (28),
υW from (29),υ∗

ra from (30) and the corresponding velocity spectra. The experimental
data (Fig. 4d from [27], Fig. 2 from [29]) confirm the stochastic behavior and change
in the velocity of solar wind particles when the heliopause crosses from 150 km s−1

to 100 km s−1. The complex dynamic behavior of the plasma components (Figs. 3, 4
from [29]) with velocities nearυeu , 2 υeu inside the heliosphere indicates the presence
of a boundary layer near the heliopause.

To estimate the characteristic energies ε0A, E0A, ελA, effective wavelength λA,
effective number N0n of particles, we use expressions of the type

EH0/ε0A = E0A/EG = N0A; EH0/E0A = ε0A/EG = N0n;

EH0/EG = NHG = N0nN0A; ε2λA = ε0AE0A = EH0EG; λA = aλ/ελA. (31)

Taking into account N0A = 3.557716045 · 105, NHG = 1.031830522 · 1016, aλ

from [6] we find the estimates: ε0A = 351.4400206 keV, E0A = 4.311073329 eV,
ελA = 1.230887363 keV, λA = 1.007114093 nm, N0n = 2.900261036 · 1010.

The presence of a multimode structure of the solar and galactic wind, the Higgs
field leads to the replacement ελA, λA by ε∗

λA, λ
∗
A by the formulas

ε∗
λA = ψrcεbb; λ∗

A = aλ/ε
∗
λA = 2RλA; EλA = RλA/AG;
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εbb = ε0A(| S1u | + S2u); ψrc = 2�rc/E0A = (ε01 − ε02)S1u/ε02S2u . (32)

The values are equal: εbb = 28.042404 keV, ψrc = 0.04420725, �rc =
95.290347meV, ε∗

λA = 1.239677565 keV, λ∗
A = 0.999972933 nm, EλA =

0.520365996MeV. The energy EλA (for solar wind particles inside the heliosphere)
is associated with the energy EλL (for galactic wind particles behind the heliopause)

EλA = (�τ L + ng�0G)EλL; �0GN0A = 1.5 + �′
c1 + n′

Fτ ;

E2
rc = E2

0A − 4�2
rc; (E ′

rc)
2 = E2

0A + 4�2
rc. (33)

The numerical values are equal: �0G = 4.99501253 · 10−6, EλL =
213.0772532MeV, Erc = 4.306858745 eV, E ′

rc = 4.315283797 eV. The energy
estimates εbb, EλL obtained in our model are consistent with the energies of 28 keV,
213 MeV from [26], and the energy EλA is consistent with the energy of 0.5 MeV
from [28].

The magnetic characteristics of solar and galactic wind particles have features of
the behavior at the intersection of the heliopause: a jump in the magnetic field from
0.42 to 0.68 nT is observed (Fig. 1a from [27]); components of the magnetic field can
have different signs (Fig. 3 from [27]); the presence of a magnetic barrier (Fig. 4a
from [27]); a change in the direction of the magnetic field components (Fig. 6b, c
from [27]). In our model, to estimate the components of magnetic fields Byβx , B∗

yβx
we use frequency spectra of the type

νyβx = γn Byβx/2π = 2νyβ S
′
0x ; ν∗

yβx = γn B
∗
yβx/2π = 2νyβ Sux ; y = 0, 1, 2;

νyβ = ν0y/Nra; B ′
2β1 = B∗

2β1/(1.5 + n′
zg + S012); ν00 = νH0; ν02 = ψ02νH0.

(34)

Here we use the well-known nuclear gyromagnetic ratio γn/2π =
0.6535MHz/kO for the deuteron (2H) [4, 12]. Based on (34) we find estimates:
frequencies ν∗

2β1 = 4.4353480mHz; jump of magnetic fields from B ′
2β1 =

0.4190147 nT to B∗
2β1 = 0.6787067 nT at the intersection of heliopause. The numer-

ical values of the fields deviations of the type δB = B0β1 − B0β2 = 0.0804015 nT,
δB∗ = B∗

0β1 − B∗
0β2 = 0.2019195 nT and the sum of the deviations δB + δB∗ =

0.282321 nT are characteristic of the stochastic behavior of the magnetic field on
time inside the heliosphere (consistent with data Fig. 6 from [27]).
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5 Conclusions

In fractal quantum systems the model femtoobjects, as active objects with sizes of
the order of the classical electron radius, are considered. The main parameters of the
model femtoobject, which are coupled with the known parameters from quantum
electrodynamics and the Higgs boson, are introduced. To take into account the
stochastic behavior of the parameters, random variables with two possible values
and the corresponding probabilities are introduced. It was shown, that the obtained
estimates of the proton radius,measurement errors using the example of the hydrogen
atom, and estimates of the anomalies in the magnetic moments of leptons are
consistent with the experimental data.

The parameters of active nanoobjects and femtoobjects are coupled with cosmo-
logical parameters, with new values of theHubble constants. These active objects can
determine the compound, structure and behavior of the solar wind (flows of various
particles) near the Sun, Earth and in interstellar space (near the heliopause). The
relationships of such active objects with the parameters of the Higgs boson and the
Higgs field are determined. Estimates of the main parameters are conformed with
the experimental data, obtained by the Planck space observatory (based on Fermi-
LAT and Cerenkov telescopes), UTR-2 and URAN-2 radio telescopes, Parker Solar
Probe, Voyager 2 and Voyager 1.

The results can be used to find a solution to the problem associatedwith the Covid-
2019 virus (based on active femtoobjects and nanoobjects), in cosmic medicine.
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Qubits and Fractal Structures
with Elements of the Cylindrical Type

Olga P. Abramova and Andrii V. Abramov

Abstract By the method of numerical simulation, the behavior of the deforma-
tion field of both separated and related model fractal structures of a cylindrical type
was investigated. It is shown, that for the considered structures, the behavior of the
deformation field essentially depends on the choice of stochastic processes (realized
during iterations) and on the states of the qubit in the perpendicular plane to the axis
of the cylinder. It is shown that the structure of the complex deformation field for
a circular (elliptical) cylinder essentially depends on the initial basic, superposition
states of the qubit. Due to the presence of various qubit states for coupled (using
the example of circular and elliptic cylinders) fractal structures, the appearance of
random matrices during iterations is characteristic. There is a need to use commu-
tators and anti-commutators, products of separate deformation field operators. At
this, the structure of the complex deformation field has own characteristic features
of behavior.

Keywords Fractal structure · Qubits · Random matrices · Complex deformation
field · Ordering of operators · Quantum chaos

1 Introduction

Earlier in [1–3], to describe the total deformation field of coupled fractal struc-
tures in an iterative process, the sum of the displacement field operators of separate
fractal structures was used. The deformation field of the coupled structure essen-
tially depends on the sequence of separate operators of displacement fields in the
iterative process. On the examples of quantum dots [4], elliptic [1, 2] and circular
[3, 5] cylinders the influence of the ordering of separate operators of displacement
fields on the total deformation field of the coupled structure was shown. The pres-
ence of variable semiaxes and variable moduli leads to stochastic behavior of the
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complex deformation field of such structures. Based on pairs of same fractal struc-
tures with opposite orientations of the deformation fields, complex zero operators
were introduced [3, 5]. It is shown that changes in the order of the sequence of sepa-
rate operators in the zero operator for a coupled structure leads to the appearance of
a nonzero complex deformation field. At the same time, noise tracks appear on the
background of stochastic peaks. The noise track is a stochastic ring, the inside region
of which is regular region.

For describe quantum chaos random matrices are used [6]. Elements of random
matrices can be formed as a result of an iterative process. In this case, the need arises
for the use of commutators and anti-commutators, products of separate operators,
qubit states [7, 8] of the deformation field. Quantum computers [9–12] encode infor-
mation in qubits. The physical systems that realise qubits can be any objects having
two quantum states. Different nanostructures and metamaterials [13] can be chosen
as active objects. These active objects can be in superposition qubit states and exhibit
stochastic properties, quantum entanglement.

The aim of this work is to describe the deformation fields of fractal coupled
structures consisting of two separate structures (circular and elliptical cylinders)
with different qubit states. In this case, the deformation fields of coupled structures
are considered as the sum and product (scalar and matrix) of the deformation fields
of separate structures.

2 Description of the Deformation Field of Separate Fractal
Structures in Various Qubit States

We consider a model fractal structure (circular or elliptical cylinder), located in a
bulk discrete lattice N1 × N2 × N3, whose nodes are given by integers n, m, j .
By analogy with [5, 11–13] nonlinear equations for the dimensionless displacement
function u of the lattice node are

u = k2u(1 − 2sn2(u − u0, k
′
u)); (1)

k2u = (1 − α)
/
Q; k ′

u = (
1 − k2u

)1/2; p = p0 + p1n + p2m + p3 j (2)

Q = p − b1(n − n0)
2/n2c − b2(m − m0)

2/m2
c − b3( j − j0)

2/j2c . (3)

Here u0 is the constant (critical) displacement; α is the fractal dimension of the
deformation field u along the axis Oz (α ∈ [0, 1]); variable modules ku , k ′

u are
functions of indices n, m, j nodes of the bulk discrete lattice. The choice of the
positive sign of the module k ′

u is associated with the choice of the second branch
of the displacement function u [14]. Function Q determines the form of the fractal
structure, the type of attractors and take into account the interaction of the nodes of
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both in themain plane of the discrete rectangular lattice N1 × N2 as well as interplane
interactions. The parameters b1, b2, b3, n0, nc, m0, mc, j0, jc characterize different
fractal structures. The choice of function p depends on the choice of parameters pi ,
i = 0, 3. In this paper, we are limited to consideration of qubit states with p1 �= 0,
p2 �= 0, p3 = 0 and shift p0 �= 0.

The iterative procedure on index n for Eqs. (1)–(3) simulates stochastic processes
on a rectangular discrete lattice with dimensions N1 × N2.

By numerical modelling, it was assumed that N1 = 240, N2 = 240, α = 0.5,
u0 = 29.537, p0 = 1.0423, b1 = b2 = 1, n0 = 121.1471, m0 = 120.3267,
j0 = 31.5279, jc = 11.8247, b3 = 0. For a circular cylinder, the semiaxes were
equal nc = mc = 57.4327, and for an elliptical cylinder they were as follows
nc = 55.2537, mc = 14.9245.

To describe the deformation field of an separate circular (elliptical) cylinder, the
basic states of the qubit and their superposition in the plane nOm are introduced. The
various states of the qubit in the plane nOm are described by nonzero coefficients
for linear terms in the functions p, Q.

The initial state of an separate circular (elliptical) cylinder is the state (0, 0) with
the coefficients p1 = 0, p2 = 0.

The basic states of a qubit are states (1, 0), (0, 1), (−1, 0), (0, −1) with the
coefficients p1 �= 0 or p2 �= 0. So for state (1, 0) are p1 = 0.00423, p2 = 0; for
state (0, 1) are p1 = 0, p2 = 0.00572; for state (−1, 0) are p1 = −0.00423, p2 = 0;
for state (0, −1) are p1 = 0, p2 = −0.00572.

For superpositional states of qubits, we have, respectively:

state (1, 1) are p1 = 0.00423, p2 = 0.00572;
state (1,−1) are p1 = 0.00423, p2 = −0.00572;
state (−1, 1) are p1 = −0.00423, p2 = 0.00572;
state (−1,−1) are p1 = −0.00423, p2 = −0.00572.

(4)

Figure 1 shows the behavior of the cross sections of the deformation field u for
elliptical (Fig. 1a, d) and circular (Fig. 1b, e) cylinders in the initial state (0, 0) and
basis states of qubits.

Figure 1c, f, g, h, i, j, k, l shows the behavior of the cross sections of the deformation
field u for a circular cylinder in the basic states of qubits: Reu (Fig. 1c, g, h, i), Imu
(Fig. 1f, j, k, l). In this case, the peak amplitudes and the variation range Reu, Imu
for the elliptical cylinder are smaller than for the circular one.

For the initial (0, 0) and basic states (1, 0), (0, 1) of qubits the regular behavior
Reu in the inner region is characterized (Fig. 1b, c, g).

By changing qubit states, the features of behavior of the deformation field is
observed: the concave part of the inner region (Fig. 1b) changes to the convex (Fig. 1c)
and then to the convex-concave (Fig. 1g). Such behavior allows the interpretation
of the inner region as a membrane with the possible alteration of its states due to a
change in the states of qubits.
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a) state (0,0) b) state (0,0) c) state (1,0)

d) state (0,0) e) state (0,0) f) state (1,0)

g) state (0,1) h) state (-1,0) i) state (0,-1)

j) state (0,1) k) state (-1,0) l) state (0,-1)

Fig. 1 The behavior of the cross sections u (top view) depending on the states of qubits of separate
structures: Reu ∈ [−1; 1]—(a, b, c, g h, i); Imu ∈ [−1; 1]—(d, e, f, j, k, l). The initial states of
qubits (0, 0) for elliptical (a, d) and circular (b, e) cylinders. The basic states of qubits for a circular
cylinder (c, f, g–l)

The regular behavior of the inner region Reu is limited by the stochastic boundary
(stochastic ring). The outer region Reu is characterized bywave-like behavior, which
is explained by the presence of variable modules kui , k ′

ui (2) in expressions (1).
Localized in the region of boundary rings with discontinuities (Fig. 1e, f, j) the
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stochastic behavior is characteristic for Imu, while Imu = 0 is characteristic in the
inner and outer regions of the rings.

For the other basic states (−1, 0), (0, −1) of qubits characteristic stochastic
behavior Reu in the inner region and wave-like behavior in the outer region (Fig. 1h,
i), that indicates a significant alteration of the structures.

For these states Imu has a stochastic structure, localized in the inner region of
the cylinder (Fig. 1k, l), and outside the region Imu = 0. The imaginary part Imu
indicates the presence of an effective damping. By changing these basis states, the
character of damping changes.

The presence of superpositional states of qubits in separate structures leads to
a change in the behavior of the complex deformation field. As an example, Fig. 2
shows the behavior Reu (Fig. 2a, d) and cross sections (Fig. 2b, c, e, f) of an separate
structure (circular cylinder) in superposition states of qubits (1, 1) and (−1, −1).
The characteristic features of the behavior of the deformation field for state (1, 1)
(Fig. 2b, c) are close to state (0, 0) (Fig. 1b, e). The characteristic features the cross
sections behavior of deformation field for the state (−1, −1) (Fig. 2e, f) are close to
the states (−1, 0) (Fig. 1h, k), (0, −1) (Fig. 1i, l).

However, the behavior Reu for the superposition state (−1, −1) (Fig. 2d) differs
significantly from the characteristic behavior Reu of all other superposition states
of qubits (1, 1) (Fig. 2a), (1, −1), (−1, 1). Instead of a structure such as a circular
stochastic dislocation (Fig. 2a), a structure like a stochastic funnel (Fig. 2d) arises.

a) state (1,1) b) Re [ 1;1]u∈ − c) Im [ 1;1]u∈ −

d) state (-1,-1) e) Re [ 1;1]u∈ − f) 9 9Im [ 10 ;10 ]u − −∈ −

Fig. 2 Superpositional states of qubits of a separate structure (circular cylinder). Behavior Reu (a,
d) and cross sections (top view) (b, c, e, f) in the states: (1, 1)—(a, b, c); (−1, −1)—(d, e, f)
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In this case, the amplitudes Reu and Imu for the state (−1, −1) are significantly
smaller than the amplitudes for other states of qubits.

3 Fractal Coupled Structures with Initial States of Qubits
of Separate Structures

Consider the model fractal coupled structures (I,II), (II,I), consisting of two separate
structures (I) and (II) with the same initial qubit states (0, 0). By analogy with (1)–(3)
nonlinear equations for the dimensionless complex displacement function u of the
lattice node are

u =
2∑

i=1

uRi ; uRi = Rik
2
ui (1 − 2sn2(u − u0i , k

′
ui )); (5)

k2ui = (1 − αi )
/
Qi ; k ′

ui = (
1 − k2ui

)1/2; pi = p0i + p1i n + p2im + p3i j; (6)

Q i = pi − b1i (n − n0i )
2/n2ci − b2i (m − m0i )

2/m2
ci − b3i ( j − j0i )

2/j2ci . (7)

Here, all parameters have the samemeaning as for expressions (1)–(3). Parameters
Ri (i= 1, 2) determine the orientation of the deformation fields of separate structures
in a coupled system. For separate structures (I) and (II), the deformation fields u =
uR1 and u = uR2 correspond to the matrices MR1 and MR2, whose elements are
found independently fromeach other by the iterationmethod. In this case, the iterative
procedure on index n for Eqs. (5)–(7) simulates two independent stochastic processes
on a rectangular discrete lattice with dimensions N1 × N2. Earlier in [5], ordered
operators of displacement fields of a coupled structure were introduced as the sum
of the operators of separate structures. Here, for the sum of the matrices MR1, MR2

the relation is fulfilled.

MR1 + MR2 = MR2 + MR1. (8)

The deformation fields for the coupled structures (I,II), (II,I) correspond to the
ordered operators

u = u (I,II) = uR1 + uR2, u = u (II,I) = uR2 + uR1 (9)

and matrices M(I,II), M(II,I), whose elements are found by the iteration method. The
iterative procedure on index n for Eqs. (5)–(7) simulates two other independent
stochastic processes for matricesM(I,II),M(II,I). In this case, the relations are fulfilled

M(I,II) = MR1 + MR2 = MR2 + MR1 = M(II,I);M(I,II) − M(II,I) = 0 (10)
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To describe the deviation of the deformation field of the coupled structures (I,II)
and (II,I), we introduce the ordered operator

uδ = (uR1 + f2(uR2)) − (uR2 + f1(uR1)), (11)

which corresponds to the matrix Mδ . An iterative procedure on index n simulate
stochastic process for amatrixMδ , which does not coincidewith stochastic processes
for matrices M(I,II),M(II,I), MR1,MR2. In this case

Mδ �= M(I,II) − M(II,I);Mδ �= 0. (12)

From (12) follows, that stochastic processes for matrices M(I,II), M(II,I) become
dependent. If in (11) assume f2(uR2) = uR2, f1(uR1) = uR1, then M(I,II) = M(II,I),
what confirms the independence conditions for stochastic processes (10). Attractors
of the deformation field of the coupled fractal structure are located on the surface,
the core of which is determined from the condition

Q1 · Q2 = 0. (13)

By numerical modeling, it was assumed, that:αi = 0.5, u0i = 29.537, p0i =
1.0423, b1i = b2i = 1, n0i = 121.1471, m0i = 120.3267, nc1 = mc1 = 57.4327,
j0i = 31.5279, jci = 11.8247, p1i = p2i = p3i = 0, b3i = 0. In this case, in fractal
coupled structures (I, II) and (II, I), the structure (I) is a circular cylinder and the
structure (II) is an elliptical cylinder with variable semi-axes nc2 , mc2. The variable
semiaxes were chosen so that the cross-sectional area of the ellipse S = π nc2mc2

did not change and was equal to the cross-sectional area of the circular cylinder
S = 824.6316π from [2, 3]. For an elliptical cylinder (II), the semiaxes nc2 , mc2

were defined as follows:
variant 1 are nc2 = 43.0746, mc2 = 19.1443 (the elliptical cylinder is inside the

circular cylinder);
variant 2 are nc2 = 55.2537, mc2 = 14.9245 (the elliptical cylinder approaches

to the circular cylinder along the axis On);
variant 3 are nc2 = 119.9327, mc2 = 6.8758 (the elliptical cylinder extends

beyond the boundaries of the circular cylinder along the axis On).
Figure 3 shows the behavior of attractors for all three variants of fractal structures

(I, II) and the complex deformation field u(I,II). The different behavior of attractors
(Fig. 3a, b, c) and cross sections of the complex deformation field (Fig. 3d–i) confirm
the stochastic nature of the deformation field of the structure (I, II) and its dependence
on the semiaxes of the elliptic cylinder (II).

The behavior of the deformation field of the structure (II, I) in this paper is not
given. However, completed researches performed make it possible to estimate the
deviations (12) ReMδ ≈ 10−9, ImMδ ≈ 10−25, which indicates to the dependence
of stochastic processes in (11).
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a) variant 1 b) variant 2 c) variant 3

d) variant 1 e) variant 2 f) variant 3 

g) variant 1 h) variant 2 i) variant 3 

a) variant 1 b) variant 2 c) variant 3

d) variant 1 e) variant 2 f) variant 3 

Fig. 3 The behavior of attractors (a, b, c) and the deformation field u of coupled structure (I,II):
(d, e, f)—Reu(I,II) ∈ [−1; 1], (g, h, i)—Imu(I,II) ∈ [−1; 1] cross sections (top view)

As a result of the iterative process, elements of randommatrices are formed,which
depend on various qubit states of separate structures in a coupled structure. Random
matrices are used to describe quantum chaos [6]. In this case, there is a need to use
commutators and anti-commutators, products of separate operators of the deforma-
tion field. Next, we consider fractal coupled structures (III) and (IV), the deformation
fields of which u3 and u4 are described by the product of the deformation fields of
separate structures (I) and (II) with the same initial qubit states (0, 0). The deforma-
tion fields of structures (III) and (IV) correspond to the matrices M3 = MR1 · MR2

and M4 = MR2 · MR1. Here, the dot symbol describes the operation of ordinary
matrix multiplication. Figure 4 shows the behavior of the complex deformation field
for structures (III) and (IV). In this case, structure (II) parameters were chosen corre-
sponding to variant 2. The attractors of structures (III) and (IV) coincide with the
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a) b) Re [ 1;1]u∈ − c) Re [ 1;1]u∈ −

d) e) Im [ 1;1]u∈ − f) Im [ 1;1]u∈ −

Fig. 4 Deformation fields of structures (III), (IV): u = u3 (a, d)—projections onto the plane nOu,
(b, e)—cross sections (top view); u = u4 (c, f)—cross sections (top view)

attractor from Fig. 3b. Cross sections (Fig. 4b, e), projections onto the plane nOu
(Fig. 4a, d) confirm the stochastic and fractal behavior of the deformation field of
structure (III), which differs significantly from the behavior of the deformation field
of structure (IV) (Fig. 4c, f). This confirms the non-commutativity the operation of
ordinary matrix multiplicationM3 − M4 = MR1 · MR2 − MR2 · MR1 �= 0.

Changing the operation of ordinarymatrix multiplication on the scalar multiplica-
tion of complex deformation fields leads to the replacement of the coupled structures
(III) and (IV) on structures (V) and (VI). In this case, the iterative procedure on index
n simulates the coupled (dependent) stochastic processes of the initial independent
stochastic processes for separate structures (I) and (II) with the same initial qubit
states (0, 0).

The deformation fields of structures (V) and (VI) are described by the functions
u5 = uR1 f5(uR2) and u6 = uR2 f6(uR1), to which the matrices M5 and M6 corre-
spond. If by modeling we use independent iterative processes for structures (I) and
(II), then

f5(uR2) = uR2; f6(uR1) = uR1; u5 = uR1uR2 = uR2uR1 = u6;M5 = M6. (14)

Matrix equality confirms the independence of iterative processes.
Figure 5 shows the behavior of the complex deformation field for structures

(V) and (VI). In this case, structure (II) parameters were chosen corresponding to
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a) b) Re [ 1;1]u∈ − c)

d) e) Im [ 1;1]u∈ − f)

Fig. 5 Deformation fields of structures (V), (VI): u = u5 (a, d)—projections onto the plane nOu,
(b, e)—cross sections (top view); u = u6 (c, f)—projections onto the plane nOu

variant 2. The attractors of structures (V) and (VI) coincide with the attractor from
Fig. 3b.Cross sections (Fig. 5b, e), projections onto the planenOu (Fig. 5a, d) confirm
another (compared to Fig. 4) stochastic and fractal deformation field behavior of the
structure (V), which also differs significantly from the deformation field behavior
of the structure (VI) (Fig. 5c, f). This is due to the dependence of the stochastic
processes (M5 �= M6).

4 Fractal Coupled Structures with Various Superpositional
Qubits States of Separate Structures

Next, we consider the superpositional qubits states of fractal coupled structures (V)
and (VI). The deformation fields of these structures are described by functions u5 =
uR1 f5(uR2) and u6 = uR2 f6(uR1) with the corresponding matrices M5 and M6,
where the scalar multiplication of complex deformation fields of separate structures
(I), (II) is realized. In this case, the iterative procedure on index n simulates coupled
(dependent) stochastic processes for the initial independent stochastic processes for
structures (I) and (II), the deformation fields of which are described by the functions
u = uR1 and u = uR2. As an example, Fig. 6 shows the behavior of the complex
deformation field for structure (V). In this case, the separate structure (I) is a circular
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a) 3Re 10u −⋅ b) 3Im 10u −⋅ c) Reu

d) Re [ 1;1]u∈ − e) Im [ 1;1]u∈ − f) Re [ 1;1]u∈ −

Fig. 6 The behavior of the displacement u of the fractal coupled structure (V): separate structures
(I) and (II) have the same superposition qubit states: (1, 1)—(a, b, d, e); (−1, −1)—(c, f)

cylinder with parameters as for Fig. 1, and the parameters of a separate structure
(II) (elliptical cylinder) correspond to variant 2 (the elliptical cylinder approaches
the circular cylinder along the axis On). In the coupled structure (V), the separate
structures (I), (II) have the same superposition qubit states (1, 1) (Fig. 6a, b, d, e)
and (−1, −1) (Fig. 6c, f). The behavior of the deformation field of the coupled
structure (V) with the same initial qubit states (0, 0) is given on Fig. 5a, b, d, e.
The presence of same superpositional qubit states (1, 1) of separate structures in
a coupled system (Fig. 6a, b, d, e) leads to a change in the complex deformation
field compared to Fig. 5a, b, d, e: the decrease amplitudes of peaks, the shift of
peaks (Fig. 6a, b), the change of structure (Fig. 6d, e) are observed. An original
feature of the deformation field behavior of the coupled structure (V) with the same
superpositional states (−1,−1) of separate structures is the absence of the imaginary
part of the displacement function in all region (Imu5 = 0), that indicates the absence
of effective attenuation. This makes it possible to interpret the coupled structure (V)
with the same superpositional states (−1, −1) of the separate structures (I), (II) as a
memory cell. ForReu5 the presenceof a broadened stochastic peakup is characteristic
(Fig. 6c). In this case the cross-sectional structure (Fig. 6f) for state (−1, −1) differs
from the cross-sectional structure (Fig. 6d) for state (1, 1).

By changing the superposition qubit states of separate structures (I), (II), one can
change and control the behavior of the complex deformation field of the coupled
structure (V). As an example, Fig. 7 shows the behavior of cross sections Reu5
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a) (I):(1,1), (II):(-1,1) b) (I):(1,1), (II):(-1,-1) c) (I):(1,1), (II):(1,-1)

d) (I):(-1,-1), (II):(-1,1) e) (I):(-1,-1), (II):(1,1) f) (I):(-1,-1), (II):(1,-1)

Fig. 7 The behavior of the cross sections Reu ∈ [−1; 1] (top view) for fractal coupled structure
(V). Separate structures (I) and (II) have different superpositional states of qubits

of the fractal coupled structure (V), when changing superposition qubit states of
separate structures (I), (II). If structure (I) is in state (1, 1), and the qubit states of
structure (II) change (Fig. 7a–c), then the complex deformation field of structure (V)
changes significantly compared to Fig. 6d, e: for sections Reu5, the effect of mixing
of separate trajectories in the inner region, a change in behavior Imu5 are observed.
If structure (I) is in the state (−1, −1), and the qubit states of structure (II) change
(Fig. 7d–f), then the complex deformation field of structure (V) in comparison with
Fig. 6c, f (where Imu5 = 0) arises. In this case, an alteration of the structure of the
inner region with the formation of stochastic boundary rings, the effect of mixing
of individual trajectories for the cross sections Reu are observed. Using additional
(external or internal) action the transitions of separate structures from one qubit state
to another can be realized.

Similarly, the behavior of the deformation field of the coupled structure (VI),
depending on the qubit states of separete structures (II), (I) was studied. In the
general case, the deformation field of the coupled structure (VI) is complex. In this
case, the conditions

u6 − u5 = uR2 f6(uR1) − uR1 f5(uR2) �= 0,M6 − M5 �= 0, (15)

are satisfied, that is connected with the dependence of this stochastic processes. This
indicates, that the displacement field operators of the separate structures (II), (I) and
(I), (II) do not commute in the coupled structures (VI) and (V). As for structure (V),
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a feature of the deformation field behavior of the coupled structure (VI) with the
same superposition states (−1, −1) of separate structures is the absence of effective
attenuation in all region (Imu6 = 0). For Reu6 the presence of the broadened
stochastic peak with a structure close to the peak Reu5 (Fig. 6c) is also characteristic,
but Reu6 − Reu5 �= 0.

5 Conclusions

By the numerical modelling method the behavior of the deformation field of the
coupled fractal structures (circular and elliptical cylinders) in various (initial, basic,
superpositional) qubit states was investigated. It is shown, that when the qubit states
change, features of the behavior of the complex deformation field of a separate
structure are observed. The regular behavior of the inner region Reu is limited by the
stochastic boundary (stochastic ring), wherein the concave part of the inner region
changes to convex and then to convex-concave. The wave-like behavior for outer
region Reu is characteristic. Such behavior allows the interpretation of the inner
region as a membrane with the possible alteration of its states due to the change of
qubit states. The stochastic behavior for Imu, localized in the region of boundary
rings with discontinuities is characteristic, wherein in the inner and outer regions of
the rings Imu = 0.

For fractal coupled structures with initial states of qubits of separate structures,
the behavior of attractors and the complex deformation field is considered. It is
shown, that the behavior of the deformation field essentially depends on the choice
of stochastic processes realized during iterations. As examples, the features of the
behavior of the deformation fields resulting from the sum, scalar and matrix products
of independent and dependent stochastic processes are investigated.

Fractal coupled structures with various superpositional states of qubits of separate
structures are considered. It is shown, that the presence of same superpositional qubit
states of separate structures in the coupled system leads to the change in the complex
deformation field: there is the decrease in peak amplitudes, peak displacement, and
the change in structure. The original feature of the behavior of the deformation field
of the coupled structure with the same superpositional states (−1, −1) of separate
structures is the absence of effective attenuation (Imu = 0), which allows one to
interpret the such structure as the memory cell.

By changing the superpositional qubit states of separate structures, one can change
and control the behavior of the complex deformation field of the coupled structure.
In this case, for the cross sections Reu, the alteration of the inner region structure
with the formation of stochastic boundary rings, the effect of mixing of separate
trajectories is observed. Using additional (external or internal) action transitions of
separate structures from one qubit state to another can be realized.

In the general case, the operators of the displacement field of coupled structures
depend on the qubit states of separate structures and do not commute.
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The results can be used to describe neural networks with variable parameters, in
medicine when modeling blood vessels, for quantum information processing.
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Fractal Atomicity, a Fundamental
Concept in the Dynamics of Complex
Systems

Maricel Agop, Alina Gavriluţ, Lucian Eva, and Gabriel Crumpei

Abstract Applying a fractal method of analyzing the dynamics of the structural
units of any complex system, a mathematical concept is built, namely that of fractal
atomicity. The construction of such a concept involves defining dynamic variables in
the form of fractal functions, defining scale resolutions, defining a principle of scale
covariance as a fundamental principle of motion, equations of evolution, etc. Finally,
some specific mathematical properties of the fractal atom are also established.

Keywords Fractal atomicity · Complex systems dynamics · Fractal functions ·
Holographic atom

1 Introduction

The notion of non-atomicity for set functions plays a key role in Measure Theory
and its applications and extensions. For classical measures taking values in finite
dimensional Banach spaces, it guarantees the connectedness of range. Even just
replacing σ-additivity with finite additivity for measures requires some stronger
non-atomicity property for the same conclusion to hold.

Because of their multiple applications in game theory ormathematical economics,
the study concerning atoms and non-atomicity for additive, respectively, non-additive
set functions has developed. Particularly, (non)atomic (purely) measures have been
studied in different forms due to their special form and their special properties
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(Chiţescu [4, 5], Cavaliere and Ventriglia [3], Gavriluţ and Agop [13], Gavriluţ
and Croitoru [10–12], Gavriluţ [7–9], Gavriluţ et al. [14], Khare and Singh [23], Li
et al. [24, 25], Pap [28–30], Pap et al. [31], Rao and Rao [32], Suzuki [40], Wu and
Bo [41] and many others). Modifications of non-additive Measure Theory (Pap [29,
30]) led to Quantum Measure Theory (Gudder [15–19], Salgado [33], Sorkin [35–
38], Surya and Waldlden [39]. In these papers, an extended notion of a measure has
been introduced and certain applications to interference, probability have been high-
lighted (Schweizer and Sklar [34]). In fact, Quantum Measure Theory (introduced
by Sorkin [35–38]) represents a generalization of Quantum Theory, where physical
predictions are computed from a matrix known as decoherence functional. Quantum
measures are an useful tool to describe Quantum Mechanics and its applications to
Quantum Gravity and Cosmology (Hartle [20, 21], Phillips [31]).

Despite the continuous efforts of numerous scientists, reconciling General Rel-
ativity with Quantum Theory remains one of the most important open problems in
Physics. The framework of General Relativity suggests that one promising approach
to such a unification will be by means of a reformulation of Quantum Theory in
terms of histories rather than states. Following this idea, Sorkin [35–38], has pro-
posed a history-based framework, which can accommodate both standard Quantum
Mechanics as well as physical theories beyond the quantum formalism.

As we shall prove in this paper, in such framework, Schrödinger’s equation from
Quantum Mechanics can be identified with a particular type of geodesic of the frac-
tal space. In consequence, fundamental concepts of Quantum Mechanics can be
extended to similar concepts, but on fractal manifolds. In this paper, we extend
the concept of atoms/pseudo-atoms to the concept of fractal minimal atom/fractal
pseudo-atom, respectively.We also give characterizations from amathematical view-
point to these new concepts and we make explicit certain physical implications. The
notion of a fractal minimal atom as a particular case of fractal atom is also dis-
cussed. In this framework, we are looking for certain physical correspondences in
the Quantum Mechanics context.

The present paper is organized as follows. After an Introductory part, Sect. 2
contains some results concerning the properties of different types of atoms, intro-
duced from the Quantum Measure Theory mathematical perspective. Certain phys-
ical implications and interpretations are provided. In Sect. 3, elements of Fractal
Mechanics are provided in order to build the background for extending the notions
that are specific to atomicity, to those involving fractal atomicity. From this perspec-
tive, new concepts as that of a fractal minimal atom is introduced and some of its
properties are discussed in Sect. 4.

2 Types of Atoms in the Mathematical Approach

In what follows, T denotes an abstract nonvoid set and C a ring of subsets of T .
Suppose (V,+, ·) is a real linear space, with the origin 0.

If p ∈ N
∗, then by i = 1, p we usually mean i ∈ {1, 2, . . . , p}.
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Definition 2.1 (Gavriluţ and Agop [13]) Let m : C → V be a set function, with
m(∅) = 0. m is said to be:

(i) finitely additive if m(
n∪

i=1
Ei ) =

n∑

i=1
m(Ei ), for any arbitrary pairwise disjoint

sets (Ei )i∈{1,2,...,n} ⊂ C, n ∈ N
∗;

(ii) null-additive1 if m(E ∪ F) = m(E), for every disjoint E, F ∈ C, with
m(F) = 0;

(iii) null-additive2 if m(E ∪ F) = m(E), for every E, F ∈ C, with m(F) = 0;
(iv) null-null-additive if m(E ∪ F) = 0, for every E, F ∈ C, with m(E) =

m(F) = 0;
(v) null-equal if m(E) = m(F), for every E, F ∈ C, with m(E ∪ F) = 0;
(vi) diffused if m({t}) = 0, whenever {t} ∈ C.

Definition 2.2 (Gavriluţ et al. [14]) If V is, moreover, a Banach lattice, a set function
m : C → V , with m(∅) = 0, is said to be:

(i) null-monotone if for every E, F ∈ C, with E ⊆ F , if m(F) = 0, then
m(E) = 0;

(ii) monotone (or, fuzzy) if m(E) ≤ m(F), for every E, F ∈ C, with E ⊆ F;
(iii) a submeasure (in the sense of Drewnowski [6]) if m is monotone and subad-

ditive, i.e., m(E ∪ F) ≤ m(E) + ν(F), for every (disjoint) E, F ∈ C;
(iv) σ-additive (or, a (vector) measure) if m(

∞∪
n=1

En) = lim
n→∞

n∑

k=1
m(Ek), for every

pairwise disjoint sets (En)n∈N∗ ⊂ C, with ∞∪
n=1

En ∈ C.

Definition 2.3 If A is an arbitrary σ-algebra of T and if m : A → R+ is a measure
on A, with m(T ) = 1, then:

(i) The space (T,A, m) is said to be a sample space andm is said to be a probability
measure;

(ii) The elements of T are called sample points or outcomes and the elements of
A are called events.

In this case, for every E ∈ A, m(E) is interpreted as the probability of the event
E to occur.

Remark 2.4 (i) The notion of a null-equal-measure has the following physical inter-
pretation (Gavriluţ andAgop [13]): in the situation involving destructive interference,
in order for two waves to produce complete destructive interference, thereby “can-
celling out” each other, their original amplitudes must have been equal.

(ii) If m(T ) > 0, then one can immediately generate a probability measure by
means of a normalization process.

Remark 2.5 (I) (i) One observes that a set function m : C → V is diffused if the
measure of any singleton of the space is null. This means in the construction of
a physical theory, the vacuum condition of the matter should be considered as its
complement.

(ii) Shannon’s entropy is a subadditive real-valued set function [2].
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(iii) If V is a Banach lattice, T = {t1, t2, . . . , tn}, n ∈ N
∗, is an arbitrary finite

metric space andm : P(T ) → V (or, more general, if T is a T1-separated topological
space, B is the Borel σ-algebra of T generated by the lattice of all compact subsets
of T and m : B → V ) is null-additive and diffused, then m(T ) = 0 (i.e., the space
T is composed of particles which annihilate one each other).

(II) If m : C → V is null-monotone, then:
(i) m is null-additive1 if and only if it is null-additive2. In this case, m will be

simply called null-additive.
(ii) If m is null-null-additive, then it is null-equal.

Definition 2.6 (Gavriluţ and Croitoru [10–12]) Let m : C → R+ be a set function,
with m(∅) = 0.

(i) A set E ∈ C is said to be an atom of ν if m(E) > 0 and for every F ∈ C ,
with F ⊆ E , we have m(F) = 0 or m(E\F) = 0 (in a certain sense, an atom can
be interpreted as being a black hole);

In consequence, an atom is a measurable set which has positive “measure” and
contains no set of smaller positive “measure”. In fact, the main examples of atomsare
singletons that have positive “measure”.

(ii)m is said to be non-atomic (or, atomless) if it has no atoms (i.e., for every E ∈ C
with m(E) > 0, there exists F ∈ C, F ⊆ E, such that m(F) > 0 and m(E\F) > 0);

(iii) A set E ∈ C is called a pseudo-atom of ν if m(E) > 0 and F ∈ C, F ⊆ E
implies m(F) = 0 or m(F) = m(E);

(iv) m is said to be non-pseudo-atomic if it has no pseudo-atoms (i.e., for every
E ∈ C with m(E) > 0, there exists F ∈ C, F ⊆ E, such that m(F) > 0 and m(E) �=
m(F));

(v) m is said to be finitely purely atomic if there is a finite family (Ei )i∈{1,2,...,n} of

pairwise disjoint atoms of m so that T = n∪
i=1

Ei (in this case, the space T is a finite

collection of pairwise disjoint atoms).
I is well-known that the Lebesgue measure on the real line has no atoms. It is also

that the entropy of a non-atomic measure must be infinite, while the entropy of an
atomic measure vanishes. The following statements easily follow:

Proposition 2.7 Suppose m : C → R+ is so that m(∅) = 0.
(i) If m is finitely additive, then E ∈ C is an atom of m if and only if E is a

pseudo-atom of m.
(ii) Any {t} ⊆ T , provided {t} ∈ C and m({t}) > 0, is an atom of m.
(ii) If m is null-additive1, then every atom of m is also a pseudo-atom. The converse

is not generally valid.

Example 2.8 Let T = {t1, t2} be a finite abstract space composed of two elements.
(i) We consider the set function m : P(T ) → R+ defined for every E ⊂ T by

m(E) =
⎧
⎨

⎩

2, E = T
1, E = {t1}

0, E = {t2} or E = ∅.

.
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Then T is an atom and it is not a pseudo-atom of m.

(ii) We define m : P(T ) → R+ by m(E) =
{
1, E �= ∅
0, E = ∅ , for every E ⊂ T .

Then m is null-additive and T = {t1, t2} is a pseudo-atom of m, but it is not an
atom.

(iii) Let be T = {1, 2, . . . 10} and m : P(T ) → R+, m(A) = cardA, ∀A ⊆ T .
Then each of the singletons {i}, i ∈ {1, . . . , 10} is an atom.

(iv) Let T be a countable set, A = {A ⊆ T ; A is finite or T \ A is finite } and
m : A → R+,

m(A) =
{
0, A is finite
1, T \ A is finite

,∀A ∈ A.

Then every set A ∈ A so that T \ A is finite is an atom of m.
(v) On T = R, let be the algebra A = {∅, T } and m : A → R+, m(∅) = 0,

m(R) = 1. Then R is an atom and obviously it is not a singleton set.

Proposition 2.9 If m : C → R+ is null-monotone and null-additive and if E ∪ F
is an atom of m, then E, F are m-compatible that is, the following property holds:
m(E ∪ F) + m(E ∩ F) = m(E) + m(F) (thus, any two components of an atom
must be compatible).

Proof 1. If m(E) = 0, then m(E ∩ F) = 0 and m(E ∪ F) = m(F), so the conclu-
sion follows.

2. If m(E) > 0, then by Proposition 2.7 - (i) E is an atom, too and m((E ∪
F)\E) = m(F\E) = 0. Since F = (F\E) ∪ (F ∩ E), thenm(F) = m(E ∩ F) and
since E ∪ F = E ∪ (F\E), we get m(E ∪ F) = m(E).

In what follows, let K be the lattice of all compact subsets of a locally compact
Hausdorff space T andB be the Borel σ-algebra generated byK. In such framework,
the following definition is consistent:

Definition 2.10 (Pap [28–30]) m : B → R+ is said to be regular if for every E ∈ B
and every ε > 0 , there exist K ∈ K and an open set D ∈ B such that K ⊂ E ⊂ D
and m(D\K ) < ε.

Theorem 2.11 (Pap [28–30]) Suppose m : B → R+ is a monotone null-additive
regular set function. If E ∈ B is an atom of m, there exists only one point e ∈ E so
that m(E\{e}) = 0 (and so, m(E) = m({e}).
Remark 2.12 The previous theorem has the following physical interpretation: in an
atom, the entire ”information” is concentrated in each of its points.

3 Fractal Theory of Motion

As a rule, the classical models used in the description of the dynamics of the sys-
tems are based on the assumption, otherwise unjustified, of the differentiability of
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the variables that describe them. The success of these models must be understood
gradually/sequentially, on “domains” in which the differentiability and integrability
are still valid. But the differentiable and integrable mathematical procedures “suf-
fer” when we want to describe the dynamics of the systems, because only these ones
“support” and “operate” with nonlinearities and chaoticities.

In order to describe dynamics,while still being dependent on the differentiable and
integrable mathematical procedures, it is necessary to explicitly introduce the scale
resolution in the expressions of the physical variables that describe them and implic-
itly in the expressions of the fundamental equations that govern these dynamics. This
means that any variable, used in describing the dynamics of the systems, dependent
in the classical sense, both on the spatial and time coordinates, depends, in the con-
text mentioned above, on the scale resolution. In other words, instead of “operating”
for example with a single variable described by a strictly non-differentiable mathe-
matical function, we will “operate” only with approximations of this mathematical
function obtained by mediating it at different scale resolutions. Consequently, any
variable designed to describe system dynamics will “function” as the limit of a family
of mathematical functions, this being non-differentiable for a zero-scale resolution
and differentiable for a non-zero scale resolution.

This way of describing the dynamics of the systems, where any “explicitation” of
dynamics is done at finite scale resolution, obviously implies both the development of
a newgeometrical structure and ofmodels conforming to these geometrical structures
for which the laws of motion, invariant to spatial and temporal transformations, are”
integrated” with scale laws invariant to transformations of scale resolution. In our
opinion, such a geometric structure can be based on the concept of fractal, and the
corresponding physical model, the Multifractal Theory of Motion in the form of
Scale Relativity Theory with arbitrary and constant fractal dimension [27].

Let us suppose that on a fractal space-time manifold the motions of systems take
place on fractal curves. Then:

Remark 3.1 Any fractal curve is explicitly scale resolution dependent (which will
be referred as δτ ). Its length tends to infinity when its proper time interval,�τ , tends
to zero (an extension of the Lebesgue theorem on a fractal space-time manifold).

Remark 3.2 In the limit �τ → 0, a curve in a fractal space-time manifold is a zig-
zagged as one can imagine. Thus, it exhibits the property of self-similarity in all its
points of a fractal space-time manifold, which can be translated into an extension
property of holography (every part of a fractal space-timemanifold reflects the whole
of the same space-time manifold).

Remark 3.3 The differential proper time reflection invariance of any variable is bro-
ken. Then every variable Q(τ ) is replaced by the fractal variable Q(τ , dτ ) explicitly
dependent on the proper time resolution interval whose derivative is undefined only
in the limit, �τ → 0. As a consequence, two derivatives of every fractal variable as
explicit functions of τ and dτ will be defined. For example, the two derivatives of
the 4-coordinate Xμ(τ ,�τ ) takes the form:
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d+ Xμ

dτ
= lim

�τ→0+

Xμ(τ + �τ ,�τ ) − Xμ(τ ,�τ )

�τ

d− Xμ

dτ
= lim

�τ→0−

Xμ(τ ,�τ ) − Xμ(τ − �τ ,�τ )

�τ
(1)

The sign + corresponds to the forward process and the sign − to the backwards
one.

Remark 3.4 The differential of 4-coordinate d Xμ(τ ,�τ ) can be expressed as the
sum of two differentials, one not scale dependent, d±xμ(τ )), and other scale depen-
dent, d±ξμ(τ , dτ )), i.e.,

d± Xμ(τ ,�τ ) = d±xμ(τ ) + d±ξμ(τ , dτ ); (2)

Remark 3.5 d±ξμ satisfies the equation

d±ξμ(τ , dτ ) = λ
μ
±(dτ )1/ f (α) (3)

where λ
μ
± are constant coefficients whose statistical significance will be given in

what follows, f (α) is the singularity spectrum of order α,α is the singularity index
and DF is the fractal dimension of the motion curves from the fractal space-time
manifold.

Remark 3.6 There are many modes and thus various selection of definitions of
fractal dimensions: fractal dimension in the Kolmogorov sense, fractal dimension in
the Hausdorff–Besikovici sense etc. Selecting one of these definitions and operating
with it in the dynamics of systems, the value of the fractal dimension must be con-
stant and arbitrary: DF < 2 for correlative processes, DF > 2 for non-correlative
processes etc. In such conjecture we can identify not only the “areas” of the dynam-
ics of the system that are characterized by a certain fractal dimension, but also the
number of “areas” whose fractal dimensions are situated in an interval values. More-
over, through the singularity spectrum we can identify “classes of universality” in
the dynamics of the system, even when strange attractors have various aspects.

Remark 3.7 The differential proper time reflection invariance is recovered by com-
bining the derivatives d+/dτ and d−/dτ in the fractal operator (Cresson procedure):

d̂

dτ
= 1

2

(
d+ + d−

dτ

)

− i

2

(
d+ − d−

dτ

)

(4)

Applying, for example, the fractal operator to the 4-coordinate Xμ yields the
4-complex velocity:

V̂ μ = d̂ Xμ

dτ
= 1

2

(
d+ Xμ + d− Xμ

dτ

)

− i

2

(
d+ Xμ − d− Xμ

dτ

)

= V μ − iUμ (5)
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with

V μ = 1

2
(v

μ
+ + v

μ
−), Uμ = 1

2
(v

μ
+ − v

μ
−), v

μ
+ = d+xμ + d+ξμ

dτ
, v

μ
− = d−xμ + d−ξμ

dτ

The real part V μ is scale resolution independent, while the imaginary one Uμ is
scale resolution dependent.

Remark 3.8 An infinite number of geodesics can be found relating any pair of
points of a fractal space-time manifold, and this is true on all scale resolutions of the
physical system dynamics. Then, in the fractal space-time manifold, all the entities
of the system are substituted with the geodesics themselves so that any external
constraint can be interpreted as a selection of geodesics in the same fractal space-
time manifold.

Remark 3.9 The infinity of geodesics in the bundle, their multifractality, the two
values of the derivative etc., imply a generalized statistical fluid-like description
(fractal fluid). Thus, one provides the multifractalisation type through stochastic
processes. For example, we can choose the average of d± Xi in the form

< d± Xi >≡ d±xi (6)

which by (2) implies
< d±ξi >= 0

Theorem 3.10 The transition from the dynamics of the Special Relativity to the
dynamics of Multifractal Theory of Motion in the form of Scale Relativity Theory on a
fractal space-time manifold can be described through the scale covariant derivative:

d̂

dτ
= ∂τ + V̂ μ∂μ + 1

4
(dτ )(2/ f (α))−1Dμν

�μ�ν (7)

where
Dμν = dμν − id

μν

dμν = λ
μ
+λν+ − λ

μ
−λν−, d

μν = λ
μ
+λν+ + λ

μ
−λν−

(8)

Proof The proof of the above statements is given in [1].
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Remark 3.11 If the multifractality of the motion curve is achieved throughMarkov
type stochastic process

λ
μ
+λν

+ = λ
μ
−λν

− = −λημν (9)

where ημν is the Minkowski metric, then the scale covariant derivative (8) takes the
form

d̂

dτ
= ∂τ + V̂ μ∂μ + i

λ

2
(dτ )(2/DF )−1∂μ�

μ (10)

Remark 3.12 Applying the scale covariant operator to the complex velocity (5),
the geodesics equation on a fractal space-time is obtained:

d̂ V̂ μ

dτ
= ∂τ V̂ μ + V̂ ν∂ν V̂ μ + 1

4
(dτ )(2/ f (α))−1Dαβ∂α∂β V̂ μ ≡ 0 (11)

Remark 3.13 Through separation of motions on scale resolutions (the real part
from the imaginary one) on a fractal space-time, the geodesics equation in real terms
becomes:

d̂V μ

dτ
= ∂τ V μ + V ν∂ν V μ − U ν∂νUμ + 1

4 (dτ )(2/ f (α))−1dαβ∂α∂βV μ−
− 1

4 (dτ )(2/ f (α))−1d
αβ

∂α∂βUμ = 0

d̂Uμ

dτ
= ∂τUμ + V ν∂νUμ + U ν∂ν V μ + 1

4 (dτ )(2/ f (α))−1dαβ∂α∂βUμ+
+ 1

4 (dτ )(2/ f (α))−1d
αβ

∂α∂βV μ = 0

(12)

Theorem 3.14 Choosing the 4-complex velocity from (5) in terms of a scalar com-
plex field �,

V̂ μ = iλ(dτ )(2/ f (α))−1∂μ ln� (13)

the geodesics of a fractal space-time manifold in the case of multifractalisation by
means of Markovian stochastic processes, for a null value of the integration constant
takes the form of the generalized Schrödinger type equation

λ2(dτ )(4/ f (α))−2∂μ∂
μ� + iλ∂τ� = 0 (14)

Remark 3.15 For non-relativistic dynamics in 3D space on Peano type curve,
f (α) ≡ DF = 2, at Compton scale resolution, λ = �/2m0, with � the Planck
reduced constant and m0 the rest mass of the particle, from (13) it results the standard
Schrödinger equation

�
2

2m0
∂i∂

i� + i�∂τ� = 0 (15)
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4 From the Standard Mathematical Atom to the Fractal
Atom by Means of a Physical Procedure

Let T be an abstract nonvoid set, G a lattice of subsets of T and m : G → R+ an
arbitrary set function with m(∅) = 0. Evidently, one can immediately generalize the
notions of a pseudo-atom / minimal atom, respectively, to this context when G is only
a lattice and not necessarily a ring.

Example 4.1 (i) It T is a nonempty metric space, then the Hausdorff dimension
dimHaus : P(T ) → R (Mandelbrot [26]) is a monotone real function. Evidently,
dimHaus(∅) = 0.

(ii) For every d ≥ 0, the Hausdorff measure H d : P(T ) → R is a submeasure.

Remark 4.2 (i) The union of two sets E and F having the fractal dimensions DE ,
respectively, DF , has the fractal dimension DE∪F = max{DE , DF };

(ii) The intersection of two sets E and F having the fractal dimensions DE ,
respectively, DF has the fractal dimension DE∩F = DE + DF − d, where d is the
embedding Euclidean dimension (Iannaccone and Khokha [22]).

The following definition is then consistent:

Definition 4.3 A pseudo-atom/minimal atom, respectively, E ∈ G of m having the
fractal dimension DE is said to be a fractal pseudo-atom/fractalminimal atom, respec-
tively.

Therefore, we can give:

Proposition 4.4 If E, F ∈ G are fractal pseudo-atoms of m and if m(E ∩ F) > 0,
then E ∩ F is a fractal pseudo-atom of m and m(E ∩ F) = m(E) = m(F).

5 Conclusions

The main conclusions of the present paper are the following:
(i) (Pseudo)-atomicity is treated from the QuantumMeasure theory mathematical

perspective and several physical applications are given;
(ii) Minimal atomicity in correspondence with Quantum Measure Theory is also

discussed. In such context, some physical applications are provided;
(iii) The concept of atomicity (and, particularly, that of minimal atomicity) is

extended in the form of fractal atomicity, respectively, fractal minimal atomic-
ity. Some mathematical properties of fractal minimal atomicity are given. In such
approach, an inverse method with respect to the common developments concerning
the atomicity concept has been used, observing that Quantum Mechanics identifies
as a particular case of Fractal Mechanics for a given scale resolution. Precisely, we
talk about a fractality through Markov type stochastic processes, in which case the
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standard Schrödinger equation identifies with the geodesics of a fractal space for
motions of a complex system structural units on Peano type curves at Compton scale
resolution.

The concept of fractal atomicity introduces a minimal code which could corre-
spond to the DNA that is specific to each person. In this paper, we introduced the
basis for a multivalent logic, which could open new perspectives in genomics for
instance, in the decipher of the intimate mechanisms at biostructures level.
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14. A. Gavriluţ, A. Iosif, A. Croitoru, TheGould integral in Banach lattices. Positivity 19(1), 65–82

(2015)
15. S. Gudder, Quantum measure and integration theory. J. Math. Phys. 50 (2009)
16. S. Gudder, Quantum integrals and anhomomorphic logics (2009), arXiv:quant-ph (0911.1572)
17. S. Gudder, Quantum measure theory. Math. Slovaca 60, 681–700 (2010)
18. S. Gudder, Quantum measures and the coevent interpretation. Rep. Math. Phys. 67, 137–156

(2011)
19. S. Gudder, Quantum measures and integrals
20. J.B. Hartle, The Quantum Mechanics of Cosmology. Lectures at Winter School on Quantum

Cosmology and Baby Universes, Jerusalem, Israel, Dec 27, 1989–Jan 4, 1990 (1989)
21. J.B. Hartle, Spacetime quantum mechanics and the quantum mechanics of spacetime, in

Proceedings of the Les Houches Summer School on Gravitation and Quantizations, ed. by
J. Zinn-Justin, B. Julia, Les Houches, France, 6 Jul–1 Aug 1992 (North-Holland, 1995),
arXiv:gr-qc/9304006

22. P.M. Iannaccone,M.Khokha,Fractal Geometry in Biological Systems: An Analitical Approach
(1995)

http://arxiv.org/abs/quant-ph
http://arxiv.org/abs/gr-qc/9304006


40 M. Agop et al.

23. M. Khare, A.K. Singh, Atoms and Dobrakov submeasures in effect algebras. Fuzzy Sets Syst.
159(9), 1123–1128 (2008)

24. J. Li, R. Mesiar, E. Pap, Atoms of weakly null-additive monotone measures and integrals. Inf.
Sci. 134–139 (2014)

25. J. Li, R. Mesiar, E. Pap, E.P. Klement, Convergence theorems for monotone measures. Fuzzy
Sets Syst. 281, 103–127 (2015)

26. B.B. Mandelbrot, The Fractal Geometry of Nature, Updated and augm. edn. (W.H. Freeman,
New York, 1983)
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Statistical Methods and Nonlinear
Dynamics for Analyzing Brain Activity.
Theoretical and Experimental Aspects

Maricel Agop, Andrei Zală, Dan Dimitriu, Ştefan Irimiciuc, Alina Gavriluţ,
Cristina Marcela Rusu, Gabriel Crumpei, and Lucian Eva

Abstract In this paper, we propose statistical methods and nonlinear dynamics for
analyzing brain activity in epileptic patients, using the PhysioNet database. Thus,
the analysis by statistical methods (the time variation of the standard deviation of
the component signals of the electroencephalogram, the time variation of the signal
variance, the time variation of the skewness, the time variation of the kurtosis, the
construction of the recurrence maps corresponding to both normal functioning of the
brain, as well as of the pre-crisis period, respectively of the crisis, the evolution in
time of the spatial–temporal entropy, the variations of the Lyapunov coefficients, etc.)
allows us to determine not only the epilepsy time based on a specific strange attractor
but also that the entry into the epileptic seizure can be determined at least twenty
minutes in advance. Finally, utilyzing elements of nonlinear dynamics and chaos,
one builds in the states space certain attractors corresponding to a wide “class” of
signals of encephalographic type. These classes dictate the normal or the abnormal
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Faculty of Mathematics, Alexandru Ioan Cuza University from Iaşi, Iaşi, Romania
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functioning (the epileptic one) of the brain so that a possible classification of the
types of epilepsy can be given.

Keywords Brain activity · Epilepsy · Electroencephalogram · Fractal model ·
Signal · Skewness · Kurtosis

1 Introduction

Epilepsy is a group of long-term neurological disorders characterized by one or more
epileptic seizures. Epileptic seizures are the result of excessive or abnormal activity
of nerve cells in the cortex in the brain. Epilepsy cannot be cured, but seizures can
be controlled with medication in about 70% of cases. In cases where seizures do
not respond to medication, surgery, neurostimulation, or dietary changes may be
considered. Normally, the electrical activity of the brain is not synchronous. In the
case of epileptic seizures, due to structural or functional problems in the brain, a
group of neurons discharges in an abnormal, excessive and synchronized manner.
Crisis prediction can play a particularly important role and refers to the attempt to
predict epilepsy seizures based on EEG. Our work is in this direction.

The scope of the present paper is to develop a ‘’procedure” through which not
only the prediction but also the type of epilepsy can be established.

Although the first electroencephalograms (EEG) were recorded 143 years ago,
progress in interpreting them is extremely slow. So far, there is no classification of the
structures that appear in the EEG, so that there is a correspondence between them
and the activity of the brain. The clinical interpretation of electroencephalograms
is mainly performed by visual recognition of certain structures and by associations
made by the specialist physician [1]. The Fouriér analysis cannot be applied because
the signals associated with the electroencephalograms are not stationary. The signals
are extremely weak, in the domain of microvolts, “submerged in high noise” [2].
For this reason, special attention must be paid to the quality of the electrodes used
and their positioning. Also, the identification and analysis of artifacts should not
be underestimated, as they may occur due to slight movements of the electrodes,
or contraction of the muscles below the electrodes. The analyzed electroencephalo-
grams were downloaded from the PhysioNet database (https://physionet.org/physio
bank/database/chbmit/), (Fig. 1). This allows all researchers to access a free collec-
tion of physiological signals (PhysioBank), recorded from a wide range of patients,
as well as specialized software for viewing and analyzing them. It is supported by the
National Institute of General Medical Science (NIGMS) and the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), and free access is made in accor-
dance with ODC Public Domain Dedication and License v1.0. Existing resources
are made available to stimulate current research in the domain of studying complex
biomedical and physiological signals.

https://physionet.org/physiobank/database/chbmit/
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Fig. 1 Interface of PhysioNet database

2 Statistical and Nonlinear Procedures

In the present paper we analyzed an EEG recorded from an epileptic patient aged
11 years using the statistical and nonlinear procedures (standard deviation and vari-
ance, spatianl-temporal entropy, Lyapunov exponents etc.). The characteristics of
this EEG are as follows:

– the signals were collected on 23 channels;
– the resolution of each signal was 16 bit;
– the sampling time of 4 ms;
– the duration of the signal was 60 min;
– the duration of the epileptic crisis was of 40 s.

Figure 2 graphically shows the signal recorded on channel FP1-F7. It can be
observed that neuronal activity does not have regular dynamics. The brain’s operating
period can be divided into four areas of interest:

– the normal activity area of the brain (range 0–1800s), which is characterized by
a chaotic dynamic, with a relatively high signal amplitude;

– the pre-crisis area (range 1800–3000 s), characterized by a decrease in signal
amplitude;

– the epileptic crisis zone (range 3000–3040 s), in which the amplitude of the signal
reaches its maximum value in a very short period of time, having a more regular
behavior due to the synchronization of the neurons activity;

– the post-crisis zone (range 3040–3600 s), where the signal amplitude decreases
to a relatively small value, but increases to the value corresponding to the area of
normal neuronal activity.

In Figs. 3, 4, 5 and 6 the EEG corresponding to the four areas described above
are represented. The corresponding signals were analyzed with a series of statistical
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Fig. 2 Graphical representation of the signal recorded on channel FP1-F7

Fig. 3 Electroencephalogram corresponding to the normal functioning of the brain
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Fig. 4 Electroencephalogram corresponding to the pre-crisis period

Fig. 5 Electroencephalogram corresponding to the period of epileptic crisis
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Fig. 6 Electroencephalogram corresponding to the post-crisis period

methods and nonlinear dynamics and only those results that allowed to extract some
information of interest are described. The graphical representation of the standard
deviation (Fig. 7) shows that, before the pre-crisis, its value drops sharply (approx-
imately until second 1800) and then remains approximately constant until near the
crisis (second 3000). During the epileptic crisis, the standard deviation presents an
accentuated maximum. Since the standard deviation is an indicator of data disper-
sion, the fact that it remains at a small, approximately constant value, during the
pre-crisis period, denotes that the recorded potentials have small, relatively equal
values, so the nerve impulses at the neuron level are of small amplitude and with a
“quiet” dynamic. During the crisis the values of the potentials deviate strongly from
the average value.

The same result, but much better outlined, with smaller errors, is obtained from
the graphical representation of the variance in time (Fig. 8).

Figures 9 and 10 show the time variations of skewness and kurtosis, parameters
that indicate the deviation from a normal Gaussian distribution. Figure 9 it can
observed that skewness has an average value close to zero, with the exception of
pronounced positive maxima that appear in the pre-crisis and crisis regions, but only
on a few channels (FP1-F7 and FP1-F3), which it is an indication that the epileptic
crisis is most likely a focal one, located in the part of the brain that is in the immediate
vicinity of the FP1 electrode.

Regarding kurtosis, it has positive average values, but lower than 3, except for high
maximum of high values on channels FP1-F7, FP1-F3 and FP2-F4, correlated with
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Fig. 7 Variation in time of the standard deviation of the component signals of the electroencephalo-
gram

Fig. 8 The variation in time of the variance of the component signals of the electroencephalogram
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Fig. 9 The variation in time of the skewness, calculated for the component signals of the
electroencephalogram

Fig. 10 Variation in time of kurtosis, calculated for the component signals of the electroencephalo-
gram
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the maximum observed for skewness. The behavior of this parameter confirms that,
most likely, we are dealing with a focal epileptic crisis. The recurrence map will give
us global information about the dynamics of the brain and, for this reason, wewill not
get information about the focal or global character of the epileptic crisis. The recur-
rence maps for the signal recorded on channel FP1-F7, corresponding to the normal
functioning of the brain, the pre-crisis period and, respectively, the crisis period in
Figs. 11, 12 and 13 are represented. These were obtained with the Visual Recur-
rence Analysis v.4.7 free application, developed by Eugene Kononov, (https://web.
archive.org/web/20070131023353), https://www.myjavaserver.com/~nonlinear/vra/
download.html.

The lack of homogeneity of the maps indicates the existence of a non-stationary
signal, and the single points, isolated, indicate strong fluctuations in the system.
During the epileptic crisis, the regular component of the system dynamics is much
more evident, in agreement with previous observations.

For a more detailed quantitative analysis, the variation in time of the spatio-
temporal entropy for 5 channels in Fig. 14 is represented. There is a decrease of this
until the beginning of the pre-crisis period,when it shows a rapid growth, remaining at
a high value throughout the pre-crisis and crisis period. On some channels (FP1-F7,

Fig. 11 The recurrence map corresponding to the normal functioning of the brain

https://web.archive.org/web/20070131023353
https://www.myjavaserver.com/~nonlinear/vra/download.html
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Fig. 12 The recurrence map corresponding to the pre-crisis period

FP1-F3 and F7-T7) the existence of several minimums is observed, the spatial—
temporal value of entropy decreasing to values close to the regularity limit. This
is best evidenced by the evolution of the signal corresponding to channel FP1-F7,
represented in Fig. 15. In this case, the decrease in the entropy value occurs exactly
during the epileptic crisis.

Figure 16 shows the time variation of the largest Lyapunov exponent, calculated
for 10 channels of the electroencephalogram using the subroutine “Largest Lyapunov
exponent” from the Santis application. It is found that the largest Lyapunov exponent
is positive, with an average value of about 0.09. This means that the brain dynamics
are chaotic. During the crisis and the pre-crisis, the largest Lyapunov exponent shows
some sharp decreases to values close to zero, i.e. to the regularity limit.

3 Nonlinear Dynamics Procedures

In this section, we analyzed wide ‘’classes” of signals corresponding both to the
functioning of the normal brain but also to the brain affected by epilepsy, based
on the EEGs generated by the same database PhysioNet. Then the analysis of these
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Fig. 13 Recurrence map corresponding to the epileptic crisis

Fig. 14 Evolution in time of
the spatial–temporal entropy
for 5 component signals of
the electroencephalogram
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Fig. 15 Spatial–temporal
entropy variation for the
signal corresponding to
channel FP1-F7

Fig. 16 Variation of the
largest Lyapunov exponent
corresponding to the
10-channel signals of the
electroencephalogram

signals allowed us the construction of the attractors in the states space, see Figs. 17a–
n. One observes that to each class of signals, it corresponds a specific attractor and
this enables us to conclude that to each type of epilepsy, in the states space it could
correspond a specific attractor. Moreover, one could give a classification of the types
of epilepsy based on the type of the specific attractor.

4 Conclusions

The analyzes performed on the signals corresponding to the electroencephalogram of
an epileptic patient show that some statistical parameters, such as standard deviation
or variance, as well as the spatial–temporal entropy, can be used to predict in advance
(about 20 min before the electroencephalogram investigated here) the onset of the
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epileptic crisis. To do this, these parameters (or at least one of them) need to be
monitored permanently, and the warning system must be coupled to a system of
automatic intervention on the patient, by drug or electrophysiology, so that the onset
of the crisis is prevented. Thus, the basis of a functional electronic device, which
can be carried and controlled permanently by the epileptic patient, can be laid (as
soon as a sensor notices the occurrence of a dynamic behavior of a pre-crisis type, a
treatment that avoids the onset of the epileptic crisis).

In the future, statistical analysis should be extended to other types of electroen-
cephalograms, in which multiple epileptic crises occur at short intervals. Also,
methods for analyzing more complex signals, specific to non-stationary signals, such
as wavelet transform or Hilbert-Huang transform, must be tried.

Concerning the analysis of nonlinear dynamics and chaos, they showed to us that
the type of the strange attractor form the states space could allow us to distinguish
between the diverse types of epilepsy. Such result could be of very much help for
the doctor in establishing the diagnosis accurately.
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Behaviour of Solutions of a Neuron
Model

Aija Anisimova and Inese Bula

Abstract We consider a discrete-time network of a single neuron as the discrete
dynamical system

xn+1 = βxn − g(xn), n = 0, 1, . . . , (1)

whereβ > 1 and an internal decay rate, g is a step signal function given by a piecewise
constant function which consists of five steps in the form

g(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b, x ≥ α
a, α > x > 0
0, x = 0

−a, 0 > x > −α
−b, −α ≥ x

, b > a > 0,α > 0. (2)

The considered model is quite simple as a mathematical expression, but with
complex dynamics of its solutions. The model is highly sensitive to initial conditions
and parameters. Small differences in an initial value and parameters yield widely
diverging outcomes for the model, giving a great amount of different periodic orbits.
Periodic orbits have been discussed according to the different rage of β. We can find
some values of parameters such our considered model has the chaotic behaviour.
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1 Introduction and Preliminaries

We are inspired by works of May, Wu, Zhou, Huang, Zhu [14, 20–23], where had
been considered a discrete-time model of neurons with different signal functions.
Typical signal functions are step functions, piecewise linear functions and sigmoid
functions. Models involving a step signal function are referred as McCulloch-Pitts
models. A sigmoid function is the most common form of a signal function. It is
defined as a strictly increasing smooth bounded function satisfying certain concavity
and asymptotic properties. Our major question is: whether we are able to describe
the behaviour of these simple single neuron models with different kinds of signal
functions, would it be possible to do similar research with more complex models—
describing two or more neurons network with more complicated characteristics of
function f is the fundamental motivation of the present work. We expect that our
investigation in the future bring us to more general results in neuron science, perhaps
giving the importance of modelling more realistic neuron models describing by
discrete dynamical systems. In [2] we have already obtained some results about the
periodicity of a neuron model (1) with parameter 0 < β ≤ 1 and a signal function
(2). Also in [3] we had analysed model (1) with a different step signal function—a
step function with two thresholds. In [4, 5] is considered model (1) with periodic
internal decay rate.

We conclude that themodel (1) with the signal function (2) describesmore general
situation as considered in [21] (also [6, 18, 19, 22, 23]).

For the general theory of difference equations, one can refer to the monographs of
Elaydi [9], Holmgren [11], Kulenovic [12], as well as Zhou [21] article, where have
been mentioned basic concepts which are necessary for studies of periodic points,
periodic orbits and their stability. Before the discussion of our results we give an
overview of theory recalling some definitions which will be used in our research.

Consider a first-order difference equation

xn+1 = f (xn), n = 0, 1, . . . , (3)

where f : R → R is a given function. A solution of (3) is a sequence (xn)n∈N satis-
fying equation (3) for all n = 0, 1, . . .. If an initial condition x0 ∈ R is given, then
the orbit O(x0) of a point x0 is defined as a set of points

O(x0) = {x0, x1 = f (x0), x2 = f (x1) = f 2(x0), x3 = f (x2) = f 3(x0), . . .}.

Definition 1 A point xs in the domain of f is said to be a fixed point of the map f
defined by (3) (or an equilibrium or a stationary state) if f (xs) = xs .

Note that for a stationary state xs the orbit consists only of the point xs .

Definition 2 A stationary state xs of (3) is stable if

∀ε > 0 ∃δ > 0 ∀x0 ∈ R ∀n ∈ N |x0 − xs | < δ ⇒ | f n(x0) − xs | < ε.
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Otherwise, the stationary state xs is called unstable.

Definition 3 A stationary state xs of (3) is asymptotically stable if it is stable and
attracting, i.e., it is stable and if there exists ν > 0 such that |x0 − xs | < ν implies
lim

n→∞ f n(x0) = xs .

Definition 4 An orbit O(x0) of the initial point x0 ∈ R, is said to be eventually
stationary state to xs if

∃N ∀n ≥ N xn+1 = xn = xs .

Definition 5 An orbit O(x0), x0 ∈ R, is said to be asymptotically stationary state
to xs if lim

n→∞ f n(x0) = xs .

Definition 6 An orbit O(x0) of the initial point x0 of (3) is said to be periodic of
period p ≥ 2 if

x p = x0 and xi 
= x0, 1 ≤ i ≤ p − 1.

So, we say that (3) has a p-periodic orbit.

Definition 7 A periodic orbit O(x0) = {x0, x1, x2, . . . , x p−1, . . .} of period p is
stable if each point xi , i = 0, 1, . . . , p − 1, is a stable stationary state of the difference
equation xn+1 = f p(xn). A periodic orbit of period p which is not stable is said to
be unstable.

Definition 8 Apoint z is said to be a limit point of O(x0) if there exists a subsequence
(xnk )k=0,1,2,... of O(x0) such that lim

k→+∞ |xnk − z| = 0. The limit set L(x0) of the orbit

O(x0) is a set of all limit points of the orbit.

Definition 9 An orbit O(x0) is said to be asymptotically periodic if its limit set is a
periodic orbit. An orbit O(x0) such that xn+p = xn for some n ≥ 1 and some p ≥ 2
is said to be eventually periodic.

2 Stationary Points

We consider (1) with β > 1. We find periodic orbits of period 2, 4 and others and
discuss equilibrium points for the model (1) with the signal function (2), which arises
from iterating the function

h(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βx − b, x ≥ α
βx − a, α > x > 0

0, x = 0
βx + a, 0 > x > −α
βx + b, −α ≥ x

, b > a > 0,α > 0. (4)
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Fig. 1 Stationary states

To find stationary states (fixed points of function (4)) of (1) we solve the equation
h(x∗) = x∗ (or graphically find intersections with y = x line). It is possible that there
are 5 or only 3 stationary states depends on parameters α, β, a, b. Zero is always a
stationary point of (1). If a

β−1 < α < b
β−1 , then there are 5 stationary states of (1):

0,± a
β−1 ,± b

β−1 (see Fig. 1), otherwise for every difference equation (1) exists at least

3 stationary states: 0,± b
β−1 or 0,± a

β−1 (see Fig. 2).
If all points of orbit belong to external parts of the graphic of the function (4) we

can get a set { b
β
,

b(1+β)
β2 , . . . ,

b(1+β+β2+···+βn)

βn+1 , . . .}, which consists of points, which are
eventually stationary state to 0 and in this case in the previous iteration we always get
xn = b

β
, n = 0, . . . , n and inequalities b

β
1+β+β2+···+βn

βn > b
β

≥ α hold. Analogy is in
a situationwhen the points lie on the negative external line of function (4), namely, the
points that are obtained from the equation h(x) = βx + b. In such waywe can obtain
those points which are eventually stationary state to zero, for example, considering
situations when all points lie on internal segments and other combinations.

3 Periodic Orbits of Period 2

Let us consider (1) with the signal function (2). Here we find all periodic orbits of
given initial point of period 2. Depends on parameters α, β and a, b the following
inequalities are satisfied. Six different cases are possible

(1) If a+bβ
β2−1 ≥ α and βa+b

β2−1 < α, then { a+bβ
β2−1 ,

βa+b
β2−1 } is a periodic orbit of period 2.

(2) If −a+bβ
β2−1 ≥ α and −α <

b−βa
β2−1 < 0, then {−a+bβ

β2−1 ,
b−βa
β2−1 } is a periodic orbit of

period 2.
(3) If α ≤ b

β+1 , then { b
β+1 , − b

β+1 } is a periodic orbit of period 2.
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Fig. 2 Existence of at least 3 stationary states

(4) If a
β−1 < α, then { a

β+1 , − a
β+1 } is a periodic orbit of period 2.

(5) If 0 <
βa−b
β2−1 < α and a−βb

β2−1 ≤ −α, then { βa−b
β2−1 ,

a−βb
β2−1 } is a periodic orbit of period

2.
(6) If −α <

−βa−b
β2−1 < 0 and −a−βb

β2−1 ≤ −α, then {−βa−b
β2−1 ,

−a−βb
β2−1 } is a periodic orbit

of period 2.

There are possible various combinations of these periodic orbitswith the same val-
ues of parameters α, β, a, b. These combinations depend on fulfillment of following
inequalities:

a + bβ

β2 − 1
>

−a + bβ

β2 − 1
>

b

β + 1
≥ α >

a

β + 1
>

−b + aβ

β2 − 1
> 0 >

−b − aβ

β2 − 1
> −α

−βb − a

β2 − 1
<

a − βb

β2 − 1
< − b

β + 1
≤ −α < − a

β + 1
<

b − βa

β2 − 1
< 0 <

b + βa

β2 − 1
.

For example, if βa > b and a
β+1 < α ≤ b

β+1 , then there exists 4 periodic orbits

of period 2, i.e., {−a+bβ
β2−1 ,

b−βa
β2−1 }, { b

β+1 , − b
β+1 }, { a

β+1 , − a
β+1 }, { βa−b

β2−1 ,
a−βb
β2−1 } and we

have an arrangement

−a + bβ

β2 − 1
>

b

β + 1
≥ α >

a

β + 1
>

−b + aβ

β2 − 1
> 0

a − βb

β2 − 1
< − b

β + 1
≤ −α < − a

β + 1
<

b − βa

β2 − 1
< 0.
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Fig. 3 Periodic orbits of period 2

As an example, if β = 2, a = 2, b = 3, α = 0.8, then we have 4 periodic orbits of
period 2: { 43 , − 1

3 }, {1,−1}, { 23 , − 2
3 }, { 13 , − 4

3 } (see Fig. 3).
If additionally a condition β > 2b

b−a is assumed it is possible to obtain six different
periodic orbits of period 2 together, e.g., choosingβ = 8, a = 2, b = 3,α = 0.32,we
obtain periodic orbits of period 2: { 2663 , 19

63 }, { 2263 , − 13
63 }, { 13 , − 1

3 }, { 29 , − 2
9 }, { 1363 , − 22

63 },
{− 26

63 , − 19
63 }.

3 2 1 1 2 3
x

3

2

1

1

2

3

h x

Fig. 4 Periodic orbits of period 4 of cases (1), (3), (4)
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Fig. 5 Periodic orbits of period 4 of cases (2)

4 Periodic Orbits of Period 4

Now we demonstrate some periodic orbits of period 4 of the difference equation
(1). There are many different options of orbits which can be obtained depending on
parameters α,β and a, b. We consider some of them

(1) {x0 = aβ+a
β2+1 , x1 = aβ−a

β2+1 , x2 = −aβ−a
β2+1 , x3 = −aβ+a

β2+1 } is a periodic orbit of period
4. In this case it is necessary thatα > x0 > x1 > 0 > x3 > x2 > −α. For exam-
ple, if we choose parameters β = 3, a = 2, b = 5, α = 1, we obtain a periodic
orbit { 45 , 2

5 , − 4
5 , − 2

5 } (see Fig. 4).
(2) {x0 = bβ−a

β2+1 , x1 = −aβ−b
β2+1 , x2 = −bβ+a

β2+1 , x3 = aβ+b
β2+1 } is a periodic orbit of period

4. In this case it is necessary that x0 ≥ α > x3 > 0 > x1 > −α ≥ x2. For exam-
ple, ifwe choose parametersβ = 3, a = 1, b = 8,α = 1.5,we obtain a periodic
orbit { 2310 ,− 11

10 ,− 23
10 ,− 11

10 } (see Fig. 5).
(3) {x0 = bβ+a

β2+1 , x1 = aβ−b
β2+1 , x2 = −bβ−a

β2+1 , x3 = −aβ+b
β2+1 } is a periodic orbit of period

4. In this case is necessary that x0 ≥ α > x1 > 0 > x3 > −α ≥ x2. For exam-
ple, if we choose parameters β = 3, a = 2, b = 5, α = 1, we obtain a periodic
orbit { 1710 , 1

10 , − 17
10 , − 1

10 } (see Fig. 4).
(4) {x0 = bβ+b

β2+1 , x1 = bβ−b
β2+1 , x2 = −bβ−b

β2+1 , x3 = −bβ+b
β2+1 } is a periodic orbit of period

4. In this case is necessary that x0 > x1 ≥ α > 0 > −α ≥ x3 > x2. For exam-
ple, if we choose parameters β = 3, a = 2, b = 5, α = 1, we obtain a periodic
orbit {2, 1,−2,−1} (see Fig. 4).

(5) {x0 = bβ3+bβ2+bβ−b
β4−1 , x1 = bβ3+bβ2−bβ+b

β4−1 , x2 = bβ3−bβ2+bβ+b
β4−1 ,

x3 = −bβ3+bβ2+bβ+b
β4−1 } is a periodic orbit of period 4. In this case is necessary

that x0 > x1 > x2 ≥ α > 0 > −α ≥ x3. If we take β = 3, a = 4, b = 6 and
α = 1, we get a periodic orbit { 5720 , 51

20 ,
33
20 , − 21

20 } (see Fig. 6).
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(6) {x0 = bβ3+bβ2+bβ−a
β4−1 , x1 = bβ3+bβ2−aβ+b

β4−1 , x2 = bβ3−aβ2+bβ+b
β4−1 ,

x3 = −aβ3+bβ2+bβ+b
β4−1 } is a periodic orbit of period 4. In this case is necessary

that x0 > x1 > x2 ≥ α > 0 > x3 > −α. If we take β = 3, a = 4, b = 6 and
α = 1, we get a periodic orbit { 238 , 21

8 ,
15
8 , − 3

8 } (see Fig. 6).
(7) {x0 = −bβ3−bβ2−bβ+a

β4−1 , x1 = −bβ3−bβ2+aβ−b
β4−1 , x2 = −bβ3+aβ2−bβ−b

β4−1 ,

x3 = aβ3−bβ2−bβ−b
β4−1 } is a periodic orbit of period 4. In this case is necessary

that α > x3 > 0 > −α ≥ x2 > x1 > x0. If we take β = 3, a = 4, b = 6 and
α = 1, we get a periodic orbit {− 23

8 , − 21
8 , − 15

8 ,
3
8 } (see Fig. 6).

(8) {x0 = −bβ3−bβ2−bβ+b
β4−1 , x1 = −bβ3−bβ2+bβ−b

β4−1 , x2 = −bβ3+bβ2−bβ−b
β4−1 ,

x3 = bβ3−bβ2−bβ−b
β4−1 } is a periodic orbit of period 4. In this case is necessary

that x3 ≥ α > 0 > −α ≥ x2 > x1 > x0. If we take β = 3, a = 4, b = 6 and
α = 1, we get a periodic orbit {− 57

20 , − 51
20 , − 33

20 ,
21
20 } (see Fig. 6).

(9) {x0 = aβ3+aβ2+aβ−a
β4−1 , x1 = aβ3+aβ2−aβ+a

β4−1 , x2 = aβ3−aβ2+aβ+a
β4−1 ,

x3 = −aβ3+aβ2+aβ+a
β4−1 } is a periodic orbit of period 4. In this case is necessary

thatα > x0 > x1 > x2 > 0 > x3 > −α. For example, if we choose parameters
β = 3, a = 2, b = 5, α = 1, we obtain a periodic orbit { 1920 , 17

20 ,
11
20 , − 7

20 } (see
Fig. 7).

(10) {x0 = aβ3+aβ2+aβ−b
β4−1 , x1 = aβ3+aβ2−bβ+a

β4−1 , x2 = aβ3−bβ2+aβ+a
β4−1 ,

x3 = −bβ3+aβ2+aβ+a
β4−1 } is a periodic orbit of period 4. In this case is necessary

thatα > x0 > x1 > x2 > 0 > −α ≥ x3. For example, if we choose parameters
β = 3, a = 2, b = 5, α = 1, we obtain a periodic orbit { 7380 , 59

80 ,
17
80 , − 109

80 } (see
Fig. 7).

(11) {x0 = −aβ3−aβ2+aβ+a
β4−1 , x1 = −aβ3−aβ2+aβ−a

β4−1 , x2 = aβ3−aβ2−aβ−a
β4−1 ,

x3 = aβ3−aβ2−aβ−a
β4−1 } is a periodic orbit of period 4. In this case is necessary

thatα > x3 > 0 > x2 > x1 > x0 > −α. For example, if we choose parameters
β = 3, a = 2, b = 5, α = 1, we obtain a periodic orbit {− 19

20 , − 17
20 , − 11

20 ,
7
20 }

(see Fig. 7).
(12) {x0 = −aβ3−aβ2−aβ+b

β4−1 , x1 = −aβ3−aβ2+bβ−a
β4−1 , x2 = −aβ3+bβ2−aβ−a

β4−1 ,

x3 = bβ3−aβ2−aβ−a
β4−1 } is a periodic orbit of period 4. In this case is necessary

that x3 ≥ α > 0 > x2 > x1 > x0 > −α. For example, if we choose parameters
β = 3, a = 2, b = 5, α = 1, we obtain a periodic orbit {− 73

80 , − 59
80 , − 17

80 ,
109
80 }

(see Fig. 7).

5 Periodic Orbits of Period 2k

In this section the sufficient conditions for existence or periodic 2k-periodic orbit are
obtained. But we can construct periodic orbits of an arbitrary period. We show in the
next two theorems this construction when all points of the orbit belong to external
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Fig. 6 Periodic orbits of period 4 of cases (5), (6), (7), (8)
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Fig. 7 Periodic orbits of period 4 of cases (9), (10), (11), (12)

lines of the function (4), i.e., points of the orbit are greater or equal to α or less or
equal to −α.

Theorem 1 If there exists a positive integer k such that

b(β2k − 2β2k−2 + 1)

(β2k − 1)(β + 1)
≥ α (5)

then the difference equation (1) has a periodic orbit of period 2k. So more each
periodic orbit is unstable.

Proof We construct a periodic orbit O(x0) of period 2k. Let us take
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x0 > α, x1 ≥ α, x2 < −α, x3 < −α,
(−1)i xi > α for i = 4, . . . , 2k − 1,
x2k = x0.

(6)

Then

x0 > α,
x1 = βx0 − b ≥ α,
x2 = β2x0 − bβ − b < −α,
x3 = β3x0 − bβ2 − bβ + b < −α,
x4 = β4x0 − bβ3 − bβ2 + bβ + b > α,
x5 = β5x0 − bβ4 − bβ3 + bβ2 + bβ − b < −α,
x6 = β6x0 − bβ5 − bβ4 + bβ3 + bβ2 − bβ + b > α,
. . .

x2k−1 = β2k−1x0 − bβ2k−2 − bβ2k−3 + bβ2k−4 + bβ2k−5 − bβ2k−6+
+bβ2k−7 − · · · + bβ − b < −α,

x2k = β2k x0 − bβ2k−1 − bβ2k−2 + bβ2k−3 + bβ2k−4 − bβ2k−5+
+bβ2k−6 − bβ2k−7 + · · · + bβ2 − bβ + b = x0 > α.

Since x2k = x0, then

x0 = b(β2k−1 + β2k−2 − β2k−3 − β2k−4 + β2k−5 − β2k−6 + · · · − β2 + β − 1)

β2k − 1
,

(7)
therefore

x0 = b(β2k + 2β2k−1 − 2β2k−3 − 1)

(β2k − 1)(β + 1)
. (8)

Then by (5) and (8)

x1 = βx0 − b = b(β2k+1 + 2β2k − 2β2k−2 − β)

(β2k − 1)(β + 1)
− b

= b(β2k+1 + 2β2k − 2β2k−2 − β − β2k+1 − β2k + β + 1)

(β2k − 1)(β + 1)

= b(β2k − 2β2k−2 + 1)

(β2k − 1)(β + 1)
≥ α.

We show that
min{x0, x1, x4, x6, . . . , x2k−2} = x1 ≥ α

or
α ≤ x1 < x0 and α ≤ x1 < x4 < x6 < · · · < x2k−2.

At first we notice that
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x1 = b(β2k − 2β2k−2 + 1)

(β2k − 1)(β + 1)
<

b(β2k + 2β2k−1 − 2β2k−3 − 1)

(β2k − 1)(β + 1)
= x0.

It is true because for all k = 2, 3, . . . and β > 1

2(β2k−1 − β2k−3 + β2k−2 − 1) > 0.

Further we show that x1 < x4. We notice that x4 = β3x1 − β2b + βb + b. Then

x1 < x4 = β3x1 − β2b + βb + b

⇔ 0 < (β3 − 1)x1 − β2b + βb + b

⇔ 0 <
b(β2k−2β2k−2+1)(β3−1)

(β2k−1)(β+1) − β2b + βb + b

⇔ 0 < β2k+3 − 2β2k+1 + β3 − β2k + 2β2k−2 − 1 − β2k+3 + β2k+2 + β2k+1−
−β2k+2 + β2k+1 + β2k + β3 − β2 − β + β2 − β − 1

= 2β2k−2 + 2β3 − 2β − 2 = 2β(β2k−3 − 1) + 2(β3 − 1)

because β > 1 and k ≥ 2. Finally we show that x2m−2 < x2m , 3 ≤ m < k. Indeed

x2m−2 = β2m−2x0 − bβ2m−3 − bβ2m−4 + bβ2m−5 + bβ2m−6 − bβ2m−7+
+bβ2m−8 − · · · − bβ + b

< x2m = β2m x0 − bβ2m−1 − bβ2m−2 + bβ2m−3 + bβ2m−4 − bβ2m−5+
+bβ2m−6 − · · · − bβ + b

⇔ 0 <(β2m −β2m−2)x0−bβ2m−1−bβ2m−2+2bβ2m−3+2bβ2m−4−2bβ2m−5

⇔ 0 <
β2m−2(β2−1)b(β2k+2β2k−1−2β2k−3−1)

(β2k−1)(β+1) −
−bβ2m−1 − bβ2m−2 + 2bβ2m−3 + 2bβ2m−4 − 2bβ2m−5

= 2bβ2m−5

β2k−1 (β3 − β2 − β + 1).

(9)

The function β3 − β2 − β + 1 is strictly increasing in the interval ]1,+∞[. If β = 1,
the function β3 − β2 − β + 1 is equal to 0 but if β > 1 it is greater than 0. Hence
we get

2bβ2m−5

β2k − 1
(β3 − β2 − β + 1) > 0.

We show that

x2 < −α and max{x3, x5, x7, . . . , x2k−1} = x2k−1 < −α.

Since (5) holds, then b(2β2k−2−β2k−1)
(β2k−1)(β+1) ≤ −α. At first we show that x2 < −α:
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x2 = β2x0 − bβ − b = β2b(β2k+2β2k−1−2β2k−3−1)
(β2k−1)(β+1) − b(β + 1)

= b(−β2k−2β2k−1+2β+1)
(β2k−1)(β+1) = b(2β2k−2−β2k−1−2β2k−2−2β2k−1+2β+2)

(β2k−1)(β+1)

≤ −α − 2b(β2k−2+β2k−1−β−1)
(β2k−1)(β+1) < −α.

By the construction x2k−1 = x0−b
β

, then

x2k−1 = b(β2k+2β2k−1−2β2k−3−1)
(β2k−1)(β+1)β − b

β

= b(2β2k−1−2β2k−3−β2k+1)

(β2k−1)(β+1)β = b(2β2k−2−2β2k−4−β2k)
(β2k−1)(β+1)

= b(2β2k−2−β2k−1+1−2β2k−4)

(β2k−1)(β+1) ≤ −α − b(2β2k−4−1)
(β2k−1)(β+1) < −α,

because β > 1 and k ≥ 2. Similar as (9) it is possible to show that x2m−3 < x2m−1

for all 3 ≤ m ≤ k.
If assumptions of Theorem 1 holds, the orbit O(x0) where x0 is defined by (8),

satisfies (6). Thus (1) has 2k-periodic orbit O(x0).

6 Periodic Orbits of Period 2k − 1

The following theorem give the sufficient conditions for existence of an arbitrary
odd periodic orbit of (1).

Theorem 2 If there exists a positive integer k such that

b(β2k+1 − 2β2k−1 − 1)

β2k+1 − 1
≥ α, (10)

then the difference equation (1) has a periodic orbit of period 2k + 1. This periodic
orbits are unstable.

Proof We will construct a periodic orbit O(x0) of period 2k + 1 such that

x0 ≥ α, x1 < −α, x2 < −α,
(−1)i xi < −α for i = 3, . . . , 2k,
x2k+1 = x0.

(11)

Then
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x0 ≥ α,
x1 = βx0 − b < −α,
x2 = β2x0 − bβ + b < −α,
x3 = β3x0 − bβ2 + bβ + b > α,
x4 = β4x0 − bβ3 + bβ2 + bβ − b < −α,
...

x2k = β2k x0 − bβ2k−1 + bβ2k−2 + bβ2k−3 − bβ2k−4 + bβ2k−5−
−bβ2k−6 + · · · + bβ − b < −α,

x2k+1 = β2k+1x0 − bβ2k + bβ2k−1 + bβ2k−2 − bβ2k−3 + bβ2k−4−
−bβ2k−5 + bβ2k−6 + · · · + bβ2 − bβ + b = x0 > α.

Since x2k+1 = x0, then

x0 = b(β2k − β2k−1 − β2k−2 + β2k−3 − β2k−4 + β2k−5 − · · · − β2 + β − 1)

β2k+1 − 1
,

therefore

x0 = b(β2k+1 − 2β2k−1 − 1)

(β2k+1 − 1)(β + 1)
. (12)

Since (10) holds, then x0 ≥ α.
We show that

α ≤ x0 < x2k−1 < x2k−3 < · · · < x5 < x3.

At first we show that

x0 < x2k−1 = β2k−1x0 − bβ2k−2 + bβ2k−3 + bβ2k−4 − bβ2k−5 + bβ2k−6 − · · · − bβ + b.

Because (12) holds we prove that

0 <
(β2k−1−1)b(β2k+1−2β2k−1 − 1)

(β2k+1 − 1)(β + 1)
− bβ2k−2+bβ2k−3 + bβ2k−4 − · · · − bβ + b.

The right side of the last inequality by the algebraic transformations is equal to

b(2β2k−1 − 2β2k−3)

(β2k+1 − 1)(β + 1)
= 2bβ2k−3(β − 1)

β2k+1 − 1
,

which is greater than 0 since β > 1 and k ≥ 2.
Secondly we show that x2m−1 < x2m−3, 3 ≤ m < k. Indeed
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(x2m−1 = β2m−1x0 − bβ2m−2 + bβ2m−3 + bβ2m−4 − bβ2m−5 + bβ2m−6−
−bβ2m−7 − · · · − bβ + b

< x2m−3 = β2m−3x0 − bβ2m−4 + bβ2m−5 + bβ2m−6 − bβ2m−7 + bβ2m−8−
−bβ2m−9 − · · · − bβ + b)

⇔ 0 <(β2m−3−β2m−1)x0+bβ2m−2−bβ2m−3−2bβ2m−4+2bβ2m−5

⇔ 0 <
β2m−3(1−β2)b(β2k+1−2β2k−1−1)

(β2k+1−1)(β+1) +
+bβ2m−2 − bβ2m−3 − 2bβ2m−4 + 2bβ2m−5

⇔ 0 <
2bβ2m−5(β−1)

β2k+1−1 .

(13)
Since β > 1 and m ≥ 3, the last inequality holds.

Now we need to show that

max{x1, x2, x4, . . . , x2k} < −α.

In this case it is possible to prove that x1 < x2k < x2k−2 < · · · < x2 < −α.
From (12) follows that

x1 = βx0 − b = bβ(β2k+1 − 2β2k−1 − 1)

(β2k+1 − 1)(β + 1)
− b. (14)

By the construction

x2k = x0
β

− b

β
= bβ(β2k+1 − 2β2k−1 − 1)

β(β2k+1 − 1)(β + 1)
− b

β
.

Inequality x1 < x2k is fulfilled, if the following inequalities holds

β2(β2k+1−2β2k−1−1)
(β2k+1−1)(β+1) − β <

β(β2k+1−2β2k−1−1)
(β2k+1−1)(β+1) − 1

⇔ β2k+3−2β2k+1−β2−β2k+3−β2k+2+β2+β
(β2k+1−1)(β+1) <

β2k+1−2β2k−1−1−β2k+2−β2k+1+β+1
(β2k+1−1)(β+1)

⇔ 0 <
2β2k1 (β2−1)

(β2k+1−1)(β+1) .

The last inequality holds since β > 1 and therefore x1 < x2k .
Now we show that x2 < −α. We note that from (10) follows that

b(2β2k−1 − β2k+1 + 1)

(β2k+1 − 1)(β + 1)
≤ −α. (15)

Then (considering (14) and (15))

x2 = βx1 + b = bβ2(β2k+1−2β2k−1−1)
(β2k+1−1)(β+1) − bβ + b

= b(β2k+3−2β2k+1−β2−β2k+3+β2k+1+β2−1)
(β2k+1−1)(β+1) = b(−β2k+1−1)

(β2k+1−1)(β+1)

= b(2β2k−1−β2k+1+1−2β2k−1−2)
(β2k+1−1)(β+1)

≤ −α − 2b(β2k−1+1)
(β2k+1−1)(β+1) < −α.
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Fig. 8 Periodic orbits of period 6 with α = 10
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Fig. 9 Periodic orbits of period 7 with α = 11

Similar as (13) it is possible to show that x2m < x2m−2 for all 2 ≤ m ≤ k.
If assumptions of Theorem 2 hold, the orbit O(x0) where x0 is defined by (12),

satisfies (11) and is periodic orbit of period 2k + 1 for (1).

We illustrate Theorems 1 and 2 with the following example. Let us take k = 3.
If β = 2, a = 23, b = 63, α = 10 then by Theorem 1 the point x0 = 37 gives a
periodic orbit of period 6 {37, 11,−41,−19, 25,−13} (see Fig. 8) and if β = 2,
a = 23, b = 127, α = 11 by Theorem 2 the point x0 = 21 gives a periodic orbit
of period 7 {21,−85,−43, 41,−45, 37,−53} (see Fig. 9). We can observe that the
values of points of these orbits are greater or equal to α or less or equal to −α, that
is, the points belong to external lines of the function h.
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We remark that these theorems find just some periodic orbits but not all. It is
possible to construct periodic orbit if all points of orbit belong to internal lines of
the function (4), i.e., points of orbits are in the set ]−α;α[ \ {0}. Furthermore we
remark that in the case β > 1 there exist infinitely many eventually periodic orbits.

7 Chaotic Behaviour

The fact that the difference equation (1) has periodic orbits of any period is one of
the indicators of its complicated dynamics. One more important reflection of this
complexity is sensitive dependence on initial conditions, which is the hallmark of
chaos. In this part we discuss chaotic behaviour of (4).

Sharkovsky’s Theorem (see for example, [8, 9, 11, 17]) is the basis of the Li and
Yorke proof ([13], (1975)). This Theorem shows that any one-dimensional system
which exhibits a regular cycle of period three will also display regular cycles of every
other length under assumption that used function is continuous. By Theorem 2 we
can find some values of parameters such that our model has a periodic orbit of period
3 for β > 1. But the function in our model (1) is not continuous. There are known the
another definitions of chaotic snapping in the case that function f is not a continuous
one. Frequently in literature is used the following definition given by Devaney ([7]).

Let (X, ρ) be a metric space.

Definition 10 The function f : X → X is chaotic if

(a) the periodic points of f are dense in X ,
(b) f is topologically transitive,
(c) f exhibits sensitive dependence on initial conditions.

Also mappings with one property—sensitive dependence on initial conditions—
frequently are considered as chaotic (see [10]).

Definition 11 The function f : X → X exhibits sensitive dependence on initial con-
ditions if

∃δ > 0 ∀x ∈ X ∀ε > 0 ∃y ∈ X ∃n ∈ N : ρ(x, y) < ε & ρ( f n(x), f n(y)) > δ.

Definition 12 The function f : X → X is topologically transitive on X if

∀x, y ∈ X ∀ε > 0 ∃z ∈ X ∃n ∈ N : ρ(x, z) < ε & ρ( f n(z), y) < ε.

Definition 13 Let A, B ⊆ X and A ⊆ B. Then A is dense in B if for each point
x ∈ B and each ε > 0, there exists y ∈ A such that ρ(x, y) < ε.

In particular case if a = 0, then, for example, with parameters β = 2, b = 6,
α = 3 in interval [0; 6] our function is a doubling map which is chaotic [1, 15–17].
This particular situation is shown in Fig. 10a.
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Fig. 10 Chaotic functions

In our case we use theorem from the book by Robinson [17].

Theorem 3 Assume that

(1) f is a function defined on a closed interval [a, b] ⊂ R with k discontinuities,
(2) f ([a, b]) ⊂ [a, b],
(3) the map f is differentiable at all points x different from the discontinuities points,

with a derivative that satisfies | f ′(x)| > 1 at all these points, with x different
from the discontinuities points.

Then f is a chaotic mapping.

Therefore we can formulate a following theorem.

Theorem 4 There exists parameters β, α, b and a such that the function

h(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βx − b, α ≤ x,
βx − a, 0 < x < α,
0, x = 0,
βx + a, −α < x < 0,
βx + b, x ≤ −α

is a chaotic mapping in some interval.

For example in case if b
β−1 = a = βα − a the interval is [− b

β−1 ,
b

β−1 ]. If β = 3,
a = 3, b = 6, α = 2 and the function h(x) is chaotic in the interval [−3, 3] (see
Fig. 10b).
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M-Theory as a Dynamical System
Generator

M. Axenides, E. Floratos, D. Katsinis, and G. Linardopoulos

Abstract We review our recent work on ellipsoidal M2-brane solutions in the large-
N limit of theBMNmatrixmodel. These bosonic finite-energymembranes live inside
so (3) × so (6) symmetric plane-wave spacetimes and correspond to local extrema of
the energy functional. They are static in so (3) and stationary in so (6). Chaos appears
at the level of radial stability analysis through the explicitly derived spectrum of
eigenvalues. The angular perturbation analysis is suggestive of the presence of weak
turbulence instabilities that propagate from low to high orders in perturbation theory.

Keywords Dynamical systems · Chaos · M-theory · BMN matrix model ·
Relativistic membranes

1 Introduction

M-theory By the end of the first superstring revolution (1984–1994), five seemingly
different 10-dimensional superstring theories had emerged:

Types I, II (IIA, IIB), Heterotic (so(32), E8 × E8).
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During the subsequent second superstring revolution (1994–2003), it was found
that the 5 superstring theories are connected via a web of dualities (T-duality, S-
duality, U-duality, mirror symmetry). What is more, it was realized that the five
10-dimensional superstring theories were just limiting cases of an 11-dimensional
theory. This theory was called “M-theory”; it is obtained in the strong-coupling limit
(gs → ∞) of IIA superstring theory. The letter “M” stands for “magic, mystery and
matrix” according to one of its founders, Witten [17]. Others have associated the
letter “M” with “membranes” [2].

Relativistic membranes The idea behind the theory of relativistic membranes is sim-
ple: replace 1-dimensional lines (strings) with 2-dimensional surfaces (membranes),
much like lines/strings replace 0-dimensional points/particles in the passage from
quantum field theory to string theory. Like point particles and strings, membranes
are Poincaré invariant objects that can be supersymmetrized. It has been proven
that supermembranes can only be defined consistently in 11 spacetime dimensions.
Higher-dimensional extended supersymmetric objects (Mp-branes) can be defined in
an analogous fashion. Nonetheless, there are reasons to believe that supermembranes
(or “M2-branes”) are the fundamental objects of the 11-dimensional M-theory, just
like strings are the fundamental objects of 10-dimensional string theory.

Matrix modelsAccording to thematrix theory conjecture of Banks, Fischler, Shenker
and Susskind (BFSS) [3], a theory of matrix-discretized supermembranes provides
a realization of M-theory in flat spacetime. In the language of matrix models, mem-
branes are fuzzy objects that are represented by N × N matrices. In the limit of
very large matrix dimensions (N → ∞), these matrix models are known to reduce
to supermembrane theories.

In 2002, Berenstein,Maldacena and Nastase (BMN) [4] proposed a reformulation
of the BFSS matrix model on a particular type of a background that consists of a
weakly curved spacetime that is known as a plane-wave, supported by a constant
(4-form) field strength:

ds2 = −2dx+dx− −
⎡
⎣μ2

9

3∑
i=1

xi xi + μ2

36

6∑
j=1

y j y j

⎤
⎦ dx+dx+ +

3∑
i=1

dxidxi+

+
6∑
j=1

dy jdy j , F123+ = μ. (1)

Briefly, the BMN matrix model is a deformation of the BFSS matrix model by mass
terms and a flux (aka Myers) term. In the large-N limit it is again known [5] that the
BMN matrix model reduces to a theory of supermembranes in the 11-dimensional
plane-wave background (1). Interestingly, M(atrix) theory has quite recently been
applied to the study of chaotic phenomena that take place on the horizons of black
holes.

Black holes Black holes (BHs) are regions of spacetime where the force of gravity is
so strong that nothing (not even light) can escape. The 2-dimensional surface beyond
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which it is (classically) impossible for matter or information to escape the gravita-
tional pull of a BH is known as the BH’s event horizon. In 1974 Stephen Hawking
predicted that it is (quantum-mechanically) possible for BHs to emit thermal radia-
tion and thus slowly evaporate. Because Hawking’s radiation is purely thermal, all
the information that is stored in BHs seems to get lost.

To resolve the ensuing BH information paradox we ultimately need to understand
the mechanisms with which information is being stored and processed in BHs. One
such mechanism is known as fast scrambling or ultra-fast thermalization [6]. More
generally, it is widely believed that chaotic phenomena are a dominant feature of BH
horizons. Because it is inherently nonlocal, M(atrix) theory turns out to be a valuable
tool in the study of information processing by BHs. More precisely, M(atrix) theory
can be used to model the dynamics of the microscopic degrees of freedom that are
present on BH horizons [7, 8].

2 General Setup

Our starting point is the Hamiltonian of a bosonic relativistic membrane in the 11-
dimensional maximally supersymmetric plane-wave background (1). The Hamilto-
nian reads, in the so-called light-cone gauge x+ = τ [5]:

H = T

2

∫
d2σ

[
π2
i + 1

2

{
xi , x j

}2 + 1

2

{
yi , y j

}2 + {
xi , y j

}2 + μ2x2

9
+ μ2y2

36
−

− μ

3
εi jk

{
xi , x j

}
xk

]
. (2)

From now on the indices of the coordinates xi will implicitly be taken to run from 1
to 3, while those of the coordinates y j will run from 1 to 6.1 In (2) T stands for the
membrane tension and

π2
i ≡

3∑
i=1

ẋi ẋi +
6∑
j=1

ẏ j ẏ j , x2 ≡
3∑

i=1

xi xi , y2 ≡
6∑
j=1

y j y j . (3)

The definition of the Poisson bracket { f, g} that we will be using is

{ f , g} ≡ εrs√
w (σ )

∂r f ∂sg = 1√
w (σ )

(∂1 f ∂2g − ∂2 f ∂1g) , (4)

1 Note also that there’s no distinction between upper and lower indices, so that these will be hence-
forth used interchangeably.
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where d2σ = √
w (σ ) dσ1 dσ2 is the spatial volume element of the worldvolume and

εrs is the 2-dimensional Levi-Civita symbol. In a flat worldvolume it’s w (σ ) = 1
and the usual definition of the Poisson bracket is retrieved.

The Lagrangian equations of motion for the spatial coordinates x and y corre-
sponding to the Hamiltonian (2) are:

ẍi = {{
xi , x j

}
, x j

} + {{
xi , y j

}
, y j

} − μ2

9
xi + μ

2
εi jk

{
x j , xk

}
(5)

ÿi = {{
yi , y j

}
, y j

} + {{
yi , x j

}
, x j

} − μ2

36
yi . (6)

The coordinates x and y can also be shown to obey the Gauss law constraint:

3∑
i=1

{ẋi , xi } +
6∑
j=1

{
ẏ j , y j

} = 0. (7)

3 The Spherical Ansatz

Let us make the following ansatz for the spatial coordinates x and y [9, 10]:

xi ≡ x1i = x̃1i (τ ) e1 (σ ) , i = 1, . . . , q1 (8)

xq1+ j ≡ x2 j = x̃2 j (τ ) e2 (σ ) , j = 1, . . . , q2 & q1 + q2 + q3 = 3 (9)

xq1+q2+k ≡ x3k = x̃3k (τ ) e3 (σ ) , k = 1, . . . , q3 (10)

and

yi ≡ y1i = ỹ1i (τ ) e1 (σ ) , i = 1, . . . , s1 (11)

ys1+ j ≡ y2 j = ỹ2 j (τ ) e2 (σ ) , j = 1, . . . , s2 & s1 + s2 + s3 = 6 (12)

ys1+s2+k ≡ y3k = ỹ3k (τ ) e3 (σ ) , k = 1, . . . , s3. (13)

The ansatz (8)–(13) splits the coordinates x and y into three groups

xai = x̃ai (τ ) ea & ybj = ỹbj (τ ) eb, (14)

where i = 1, . . . , qa, j = 1, . . . , sb, a, b = 1, 2, 3. Going over to spherical coordi-
nates, (σ1, σ2) → (θ, φ), we define2:

2 We use the volume element in (θ, φ) space which implies that
√

w (σ ) = sin θ should be used in
the definition (4) of the Poisson bracket. For alternative parametrizations such as

(e1, e2, e3) = (cn (φ|m) sn (θ |n) , sn (φ|m) sn (θ |n) , sn (θ |n)), (15)
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(e1, e2, e3) = (cosφ sin θ, sin φ sin θ, cos θ), φ ∈ [0, 2π), θ ∈ [0, π ]
(16)

{ei , e j } = εi jk ek,
∫

ei e j d
2σ = 4π

3
δi j . (17)

Note that the Gauss law constraint (7) is automatically satisfied by the ansatz (8)–
(13). Now consider the following solutions:

x̃1 (τ ) = eΩx1τ · x̃10, x̃2 (τ ) = eΩx2τ · x̃20, x̃3 (τ ) = eΩx3τ · x̃30 (18)

ỹ1 (τ ) = eΩy1τ · ỹ10, ỹ2 (τ ) = eΩy2τ · ỹ20, ỹ3 (τ ) = eΩy3τ · ỹ30. (19)

As in the case of flat space (worked out in [11]) it can be shown that the radii

r2x1 ≡ x̃21 =
q1∑
i=1

x̃10i x̃10i , r2x2 ≡ x̃22 = ∑q2
j=1 x̃20 j x̃20 j , r2x3 ≡ x̃23 =

q3∑
k=1

x̃30k x̃30k (20)

r2y1 ≡ ỹ21 =
s1∑
i=1

ỹ10i ỹ10i , r2y2 ≡ ỹ22 = ∑s2
j=1 ỹ20 j ỹ20 j , r2y3 ≡ ỹ23 =

23∑
k=1

ỹ30k ỹ30k (21)

of the ansatz (18)–(19) can be determined (for all the antisymmetric matrices Ωx1,
Ωx2, Ωx3, Ωy1, Ωy2, Ωy3) in terms of the conserved angular momenta

(�x1)i j ≡ ˙̃x1i x̃1 j − x̃1i ˙̃x1 j ,
(
�y1

)
i j ≡ ˙̃y1i ỹ1 j − ỹ1i ˙̃y1 j (22)

(�x2)i j ≡ ˙̃x2i x̃2 j − x̃2i ˙̃x2 j ,
(
�y2

)
i j ≡ ˙̃y2i ỹ2 j − ỹ2i ˙̃y2 j (23)

(�x3)i j ≡ ˙̃x3i x̃3 j − x̃3i ˙̃x3 j ,
(
�y3

)
i j ≡ ˙̃y3i ỹ3 j − ỹ3i ˙̃y3 j , (24)

by minimizing the corresponding effective potential of the membrane. This is com-
pletely equivalent to plugging the ansatz (18)–(19) into the equations of motion
(5)–(6) and determining the relation between the radii rx1, rx2, rx3, ry1, ry2, ry3 and
the components of the matricesΩx1,Ωx2,Ωx3,Ωy1,Ωy2,Ωy3 (which in turn always
combine to form the conserved angular momenta �x1, �x2, �x3, �y1, �y2, �y3).

where φ ∈ [0, 4K (m)) and θ ∈ [0, 2K (n)], the corresponding volume element is
√

w (σ ) =
sn (θ |n) dn (θ |n) dn (φ|m).
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4 Effective Potentials

The energy of the membrane (2) becomes:

E = 2πT

3

[
˙̃x21 + ˙̃x22 + ˙̃x23 + ˙̃y21 + ˙̃y22 + ˙̃y23 + x̃21 x̃

2
2 + x̃22 x̃

2
3 + x̃23 x̃

2
1 + ỹ21 ỹ

2
2 + ỹ22 ỹ

2
3+

+ ỹ23 ỹ
2
1 + x̃21

(
ỹ22 + ỹ23

) + x̃22
(
ỹ23 + ỹ21

) + x̃23
(
ỹ21 + ỹ22

) + μ2

9
x̃2+

+ μ2

36
ỹ2 − 2μεi jk x̃1i x̃2 j x̃3k

]
. (25)

We now proceed to the following decomposition of the coordinates:

˙̃x21 ≡ ˙̃x1i ˙̃x1i = ṙ2x1 + �2x1

r2x1
, ˙̃y21 ≡ ˙̃y1 j ˙̃y1 j = ṙ2y1 + �2y1

r2y1
(26)

˙̃x22 ≡ ˙̃x2i ˙̃x2i = ṙ2x2 + �2x2

r2x2
, ˙̃y22 ≡ ˙̃y2 j ˙̃y2 j = ṙ2y2 + �2y2

r2y2
(27)

˙̃x23 ≡ ˙̃x3i ˙̃x3i = ṙ2x3 + �2x3

r2x3
, ˙̃y23 ≡ ˙̃y3 j ˙̃y3 j = ṙ2y3 + �2y3

r2y3
. (28)

Plugging (20)–(21) and (26)–(28) into (25), we find that the energy of the membrane
becomes

E = 2πT

3

[
ṙ2x1 + ṙ2x2 + ṙ2x3 + ṙ2y1 + ṙ2y2 + ṙ2y3 + �2x1

r2x1
+ �2x2

r2x2
+ �2x3

r2x3
+ �2y1

r2y1
+ �2y2

r2y2
+

+ �2y3

r2y3
+ r2x1r

2
x2 + r2x2r

2
x3 + r2x3r

2
x1 + r2y1r

2
y2 + r2y2r

2
y3 + r2y3r

2
y1+

+ r2x1
(
r2y2 + r2y3

) + r2x2
(
r2y3 + r2y1

) + r2x3
(
r2y1 + r2y2

) + μ2

9
(r2x1+

+ r2x2 + r2x3) + μ2

36

(
r2y1 + r2y2 + r2y3

) − 2μεi jk x̃1i x̃2 j x̃3k

]
, (29)

so that the corresponding effective potential reads
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Veff = 2πT

3

[
�2x1

r2x1
+ �2x2

r2x2
+ �2x3

r2x3
+ �2y1

r2y1
+ �2y2

r2y2
+ �2y3

r2y3
+ r2x1r

2
x2 + r2x2r

2
x3 + r2x3r

2
x1+

+ r2y1r
2
y2 + r2y2r

2
y3 + r2y3r

2
y1 + r2x1

(
r2y2 + r2y3

) + r2x2
(
r2y3 + r2y1

) +

+ r2x3
(
r2y1 + r2y2

) + μ2

9

(
r2x1 + r2x2 + r2x3

) + μ2

36

(
r2y1 + r2y2 + r2y3

)−

− 2μεi jk x̃1i x̃2 j x̃3k

]
. (30)

The above potential (30) contains four different kinds of terms, either repulsive
or attractive: (1) kinetic/angular momentum terms (repulsive), (2) quartic interaction
terms (attractive), (3) mass terms (attractive), and (4) a cubic Myers flux term (repul-
sive). The last two kinds of terms (i.e. the mass terms (3) and the Myers term (4)) are
μ-dependent and so they drop out in the μ → 0 limit (flat space) that was studied in
[11]. In both cases (either μ = 0 or μ �= 0), it is the equilibration of attractive and
repulsive forces that determines the extrema of the potential. The two extra repul-
sive/attractive terms forμ �= 0 (induced by the plane-wave background) increase the
complexity of the resulting dynamical system, as it will become apparent below.

There are three ways to distribute the so (3) coordinates xi (i = 1, 2, 3) into the
three groups that are specified by the units ei in (16), so that we can generally
distinguish three main types of membrane configurations. The first two of them
(labelled types I and II below) describe rotating membranes (tops) that are point-like
(collapsed) in one or two so (3) directions and have a vanishing Myers flux term.
The third type (III) is probably the most interesting one as it contains all four kinds
of repulsive and attractive terms that we described above and extends into the full
geometric background of so (3) × so (6). Let us now introduce these three types of
configurations.

4.1 Type I: q1 = 3, q2 = q3 = 0

For q1 = 3, q2 = q3 = 0 we have

rx ≡ rx1, rx2 = rx3 = 0 & �x ≡ �x1, �x2 = �x3 = 0 (31)

and the flux term vanishes. The effective potential (30) of the membrane becomes:

Veff = 2πT

3

[
�2x

r2x
+ �2y1

r2y1
+ �2y2

r2y2
+ �2y3

r2y3
+ r2y1r

2
y2 + r2y2r

2
y3 + r2y3r

2
y1 + r2x

(
r2y2 + r2y3

)

+ μ2r2x
9

+ μ2

36

(
r2y1 + r2y2 + r2y3

) ]
. (32)
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Apart from the completely symmetric (single-radius) configuration r = rx = ry1 =
ry2 = ry3, � = �x = �y1 = �y2 = �y3, the radii and the momenta of the effective
potential (32) may be grouped into 5 different axially symmetric (2-radii) config-
urations and 4 more configurations with 3 different radii. Each of these potentials
possesses a local minimum that corresponds to a stationary top solution with time-
independent radius and nonzero total angular momentum. There are no static solu-
tions (i.e. having constant radius and zero angular momentum) in this case.

4.2 Type II: q1 = 2, q2 = 1, q3 = 0

For q1 = 2, q2 = 1 and q3 = 0,

rx3 = 0 & �x2 = �x3 = 0 (33)

and the flux term vanishes again. The effective potential (30) becomes:

Veff = 2πT

3

[
�2x1

r2x1
+ �2y1

r2y1
+ �2y2

r2y2
+ �2y3

r2y3
+ r2x1r

2
x2 + r2y1r

2
y2 + r2y2r

2
y3 + r2y3r

2
y1+

+ r2x1
(
r2y2 + r2y3

) + r2x2
(
r2y3 + r2y1

) + μ2

9

(
r2x1 + r2x2

)+

+ μ2

36

(
r2y1 + r2y2 + r2y3

) ]
. (34)

Although again this case does not lead to any static configuration (with constant
radius and zero angular momentum), we may construct one single-radius (r = rx1 =
rx2 = ry1 = ry2 = ry3, � = �x1 = �y1 = �y2 = �y3) solution, 13 axially symmetric
(2-radii) tops and 21 tops with 3 different radii.

For example let us consider a type II configuration with all the so (6) variables
set equal to zero:

x1 = x (τ ) · e1, x2 = y (τ ) · e1, x3 = z (τ ) · e2, yi = 0, i = 1, . . . , 6, (35)

where the time-dependent part has the form (18). In this case the effective potential
(34) becomes:

Veff = 2πT

3

[
�2

x2 + y2
+ (

x2 + y2
)
z2 + μ2

9

(
x2 + y2 + z2

) ]
, (36)

after setting �x1 = � for simplicity. The corresponding extremisation condition
∇Veff = 0 implies
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x z2 + μ2x

9
− x �2(

x2 + y2
)2 = y z2 + μ2y

9
− y �2(

x2 + y2
)2 = z

(
x2 + y2

) + μ2z

9
= 0,

which is solved by

x2 + y2 = 3�

μ
& z = 0. (37)

Complying with (18), we can choose e.g.:

x (τ ) =
√
3�

μ
cos

μτ

3
, y (τ ) =

√
3�

μ
sin

μτ

3
, z (τ ) = 0. (38)

Equivalently we could have directly plugged (35) into the equations of motion
(5)–(6):

ẍ · e1 = −x z2 · e1 − μ2x

9
· e1 + μ y z · e3 (39)

ÿ · e1 = −y z2 · e1 − μ2y

9
· e1 + μ x z · e3 (40)

z̈ · e2 = −z
(
x2 + y2

) · e2 − μ2z

9
· e2. (41)

It is easily seen that any solution of the type (18) will again satisfy (37).

4.3 Type III: q1 = q2 = q3 = 1

For q1 = q2 = q3 = 1, we write:

x1 = rx1e1, x2 = rx2e2, x3 = rx3e3 & �x1 = �x2 = �x3 = 0. (42)

Note that rx1, rx2, rx3 are not radii anymore, but coordinates. The effective potential
(30) of the membrane can be written as:

Veff = 2πT

3

[
�2y1

r2y1
+ �2y2

r2y2
+ �2y3

r2y3
+ r2x1r

2
x2 + r2x2r

2
x3 + r2x3r

2
x1 + r2y1r

2
y2 + r2y2r

2
y3+

+ r2y3r
2
y1 + r2x1

(
r2y2 + r2y3

) + r2x2
(
r2y3 + r2y1

) + r2x3
(
r2y1 + r2y2

)+

+ μ2

9

(
r2x1 + r2x2 + r2x3

) + μ2

36

(
r2y1 + r2y2 + r2y3

) − 2μrx1rx2rx3

]
.

(43)
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By combining the various radii (along with the corresponding angular momenta)
into groups of one, two or three, we obtain 30 different top configurations, one of
which corresponds to a completely symmetric top, 9 to axially symmetric (2-radii)
tops and 10 to tops that have 3 different radii.

5 Simple Type III Solutions

The so (3) × so (3) × so (3) ⊂ so (3) × so (6) invariant ansatz

xi = ũi (τ ) ei , y j = ṽ j (τ ) e j , y j+3 = w̃ j (τ ) e j , i, j = 1, 2, 3 (44)

was studied in [12]. The ansatz (44) is obviously of the form (42) (type III) and it
describes rotating andpulsatingmembranes of spherical topology.The corresponding
Hamiltonian

H = 2πT

3

(
p̃2u + p̃2v + p̃2w

) +U, (45)

is obtained by integrating out the worldvolume coordinates θ and φ. The potential
energy U reads

U = 2πT

3

[
ũ21ũ

2
2 + ũ22ũ

2
3 + ũ23ũ

2
1 + r̃21 r̃

2
2 + r̃22 r̃

2
3 + r̃23 r̃

2
1 + ũ21

(
r̃22 + r̃23

)+

+ ũ22
(
r̃23 + r̃21

) + ũ23
(
r̃21 + r̃22

) + μ2

9

(
ũ21 + ũ22 + ũ23

)+

+ μ2

36

(
r̃21 + r̃22 + r̃23

) − 2μũ1ũ2ũ3

]
, r̃2j ≡ ṽ2

j + w̃2
j , j = 1, 2, 3.

(46)

The manifest so (2) × so (2) × so (2) symmetry of the Hamiltonian (45)–(46)
with respect to the so (6) coordinates ṽi and w̃i implies that any solution of the
equations of motion preserves three so (2) angular momenta �i (i = 1, 2, 3). The
kinetic terms of the Hamiltonian (45) can be expressed in terms of the conserved
angular momenta �i as

p̃2v + p̃2w =
3∑

i=1

(
˙̃r2i + �2i

r̃2i

)
, (47)

leading to the effective potential

Veff = U + 2πT

3

(
�21

r̃21
+ �22

r̃22
+ �23

r̃23

)
. (48)
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5.1 The so (3) Symmetric Membrane

Let us now consider the simplest possible subsystem of (44) where the so (6) vari-
ables ṽi and w̃i are set to zero [12]:

ṽi = w̃i = 0, i = 1, 2, 3. (49)

Scaling out the mass parameter μ by setting

t = μτ, ũi = μui (50)

leads to the form

Veff = 2πTμ4

3

[
u21u

2
2 + u22u

2
3 + u21u

2
3 + 1

9

(
u21 + u22 + u23

) − 2u1u2u3

]
(51)

of the membrane effective potential (48) and the Hamilton equations of motion,

u̇1 = p1, ṗ1 = − [
u1

(
u22 + u23

) + u1
9 − u2u3

]
(52)

u̇2 = p2, ṗ2 = − [
u2

(
u23 + u21

) + u2
9 − u3u1

]
(53)

u̇3 = p3, ṗ3 = − [
u3

(
u21 + u22

) + u3
9 − u1u2

]
. (54)

The effective potential (51) is a particular instance of the generalized 3-dimensional
Hénon–Heiles potential that was introduced in [13],

VHH = 1

2

(
u21 + u22 + u23

) + K3 u1u2u3 + K0
(
u21 + u22 + u23

)2 +
+ K4

(
u41 + u42 + u43

)
, (55)

with K3 = −9, K0 = −K4 = 9/4. The critical points of the effective potential (51)
are:

u0 = 0, u1/6 = 1

6
· (1, 1, 1) , u1/3 = 1

3
· (1, 1, 1) . (56)

6 more critical points can be obtained by flipping the sign of exactly two ui ’s. This
is consistent with the manifest tetrahedral (Td ) symmetry of the potential (51). The
extrema u0 (point-like membrane) and u1/3 (Myers dielectric sphere) are global
degenerate minima of the potential while u1/6 is a saddle point:

Veff (0) = Veff

(
1

3

)
= 0, Veff

(
1

6

)
= 2πTμ4

64
. (57)



84 M. Axenides et al.

Table 1 Radial spectrum of the so (3) symmetric membrane

Critical point Eigenvalues λ2(#) Stability

u0 1
9 (3) , 1

36 (6) Center (S)

u1/6 − 1
18 (1) , 5

18 (2) , 1
12 (6) Saddle point

u1/3 1
9 (1) , 4

9 (2) , 1
4 (6) Center (S)

Radial spectrum [12] By radially perturbing the 9 critical points u0i in (56) as

ui = u0i + δui (t) , δui (t) =
6∑

k=1

cke
iλtξik, (58)

we may confirm the above conclusion by examining the corresponding Hessian
matrix. It turns out that u0 and u1/3 are global minima (positive-definite Hessian)
and u1/6 is a saddle point (indefinite Hessian). These results are summarized in the
following Table1.

Angular spectrum [14] We may also perform more general (angular/multipole)
perturbations of the following form:

xi (t) = x0i + δxi (t) , i = 1, 2, 3, (59)

where δxi is expanded in spherical harmonics Y jm (θ, φ) as

xi (t) = μui (t) ei , x0i ≡ μu0i ei , δxi (t) = μ ·
∞∑
j=1

j∑
m=− j

η
jm
i (t) Y jm (θ, φ) .

(60)

For the critical points u0, u1/6, u1/3 we find the eigenvalues [12]:

u0 : λ2
P = λ2

± = 1

9
, λ2

θ = 1

36
(61)

u1/6 : λ2
P = 0, λ2

+ = 1

36
( j + 1) ( j + 4) , λ2

− = j ( j − 3)

36
,

λ2
θ = 1

36

(
j2 + j + 1

)
(62)

u1/3 : λ2
P = 0, λ2

+ = 1

36
( j + 1)2 , λ2

− = j2

9
, λ2

θ = 1

36
(2 j + 1)2 , (63)

with multiplicities dP = 2 j + 1, d+ = 2 j + 3, d− = 2 j − 1 and dθ = 6 (2 j + 1),
respectively.

The critical point u0 (point-like membrane) is obviously stable. u1/3 has a zero
modeof degeneracy2dP while all its other eigenvalues are stable for j = 1, 2, . . .u1/6
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has one 2dP -degenerate zero mode for every j and a 10-fold degenerate zero mode
for j = 3. It is unstable for j = 1 (2-fold degenerate) and j = 2 (6-fold degenerate).
The above results were first obtained by [5] from the matrix model. In the flat-space
limit (μ → 0), we recover the results of [15, 16].

5.2 The so (3) × so (3) × so (3) Symmetric Membrane

Similar perturbative analyses can be carried out in the so (3) × so (6) sector. A solu-
tion of the corresponding equations of motion is given by

u0i = u0, v0
j (t) = v0 cos

(
ωt + ϕ j

)
, w0

j (t) ≡ v0
j+3 (t) = v0 sin (ωt + ϕk) ,

(64)

where (u0, v0) are the critical points of the axially symmetric potential

V ≡ Veff

2πTμ4
= u4 + 2u2v2 + v4 + u2

9
+ v2

36
− 2u3

3
+ �2

v2
(65)

and �μ3 ≡ �1 = �2 = �3. It can be proven that the critical points (u0, v0) always lie
within the interval:

1

6
≤ u0 ≤ 1

3
& 0 ≤ v0 ≤ 1

12
. (66)

Radial spectrum [12] To obtain the radial spectrum we set

ui = u0i + δui (t) , vi = v0
i (t) + δv′

i (t) , wi = w0
i (t) + δw′

i (t) , (67)

finding six zero eigenvalues and four nonzero ones (quadruply and doubly degener-
ate):

λ2
1± = 5u0

2
− 1

9
±

√
1

92
− u0

9
− 5u20

12
+ 4u30 (68)

λ2
2± = 5u0

2
− 5

18
±

√
52

182
− 35u0

18
+ 163u20

12
− 20u30. (69)

The plots of these eigenvalues can be found in the following Fig. 1.
Angular spectrum [14] Going further, we again set out to perform

angular/multipole perturbations of the form:

xi = x0i + δxi , i = 1, 2, 3 & yk = y0k + δyk, k = 1, . . . , 6, (70)
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Fig. 1 Radial spectrum of the so (3) × so (6) symmetric membrane

where the δxi , δyk are expanded around the classical solution,

x0i = μu0ei , i = 1, 2, 3, y0i = μv0
i (t) e1, i = 1, 2 (71)

y0k = μv0
k (t) e2, k = 3, 4 (72)

y0l = μv0
l (t) e3, l = 5, 6, (73)

in spherical harmonics Y jm (θ, φ):

δxi = μ ·
∑
j,m

η
jm
i (τ ) Y jm (θ, φ) , δyk = μ ·

∑
j,m

ε
jm
k (τ ) Y jm (θ, φ) (74)

δyl = μ ·
∑
j,m

ζ
jm
l (τ ) Y jm (θ, φ) , (75)

for i = 1, 2, 3, k = 1, 3, 5, l = 2, 4, 6. We find that one of the eigenvalues always
vanishes, two others are given by the following analytic expression

λ2
P = 1

2

(
j2 + j + 2

)
u0 − 1

18

(
1 + j ( j + 1) ±

± 3
√
144

(
j2 + j − 2

)
u30 − 12

(
j2 + j − 14

)
u20 − 24u0 + 1

)
,

(76)

while 6 more eigenvalues λ± are also known in closed forms but are too compli-
cated to be included here. The corresponding multiplicities of the eigenvalues are
dP = 2 j + 1, d+ = 2 j + 3, d− = 2 j − 1. For j = 1 four eigenvalues vanish, while
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two others coincide with the eigenvalues (68)–(69) that were found from radial per-
turbations:

λ2
P = 4u0 + 1

3
, λ2

+ = 5u0
2

− 1

9
±

√
1

92
− u0

9
− 5u20

12
+ 4u30 (77)

λ2
− = 5u0

2
− 5

18
±

√
52

182
− 35u0

18
+ 163u20

12
− 20u30. (78)

For j = 2 there’s one zero eigenvalue while λP > 0. We can also plot the j = 2
eigenvalues of λ± (Fig. 2):

• The squared nonzero j = 1 eigenvalues are all positive/stable in the interval
(66), except λ2

−(−) which is positive/stable only for ucrit < u0 < 1/3, where

ucrit ≡ 1
60

(
11 + √

21
)
.

• For j = 2, the λP , λ+ and one of the λ− squared eigenvalues are positive/stable in
the interval (66). The remaining λ2− eigenvalue is negative/unstable in the interval
1
6 ≤ u0 ≤ 0.207245 < ucrit.

• For j ≥ 3 all the squared eigenvalues are non-negative inside the interval (66) and
so the system is stable .

Here’s a summary of the angular/multipole spectrum (Table2):
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1.0

1.5

2.0

0.10 0.15 0.20 0.25 0.30 0.35

0.5

0.5

1.0

1.5

2.0

Fig. 2 λ2± for j = 2 as a function of u0

Table 2 Angular spectrum of the so (3) × so (6) symmetric membrane

Eigenvalues j = 1 j = 2 j ≥ 3 Degeneracy

λ2P 0, 0, + 0,+, + 0, +,+ dP =
2 j + 1

λ2+ 0, +,+ +,+, + +,+, + d+ =
2 j + 3

λ2− 0, +, {0, ±}(
positive foru0 > ucrit

) +,+, {0,±}(
positive foru0 > 0.207245

) +,+, + d− =
2 j − 1
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Higher-order perturbations [17] Beyond linearized perturbation theory (always
inside the interval (66)), we anticipate a cascade of instabilities that originates from
the j = 1, 2 multipoles and propagates towards all higher modes ( j = 3, 4, . . .). The
perturbative expansion becomes

xi =
∞∑
n=0

εnδxni = x0i +
∞∑
n=1

εnδxni , i = 1, 2, 3 (79)

yi =
∞∑
n=0

εnδyni = y0i +
∞∑
n=1

εnδyni , i = 1, . . . , 6. (80)

It follows that any given mode j at any given order n in perturbation theory couples
to all the modes of the previous orders 1, . . . , n − 1 through an effective forcing term
that emerges in the corresponding system of fluctuation equations. The perturbations
are expanded in spherical harmonics as

δxni = μ ·
∑
j,m

η
njm
i (τ ) Y jm (θ, φ) , η

njm
i (0) = 0, i = 1, 2, 3 (81)

δyni = μ ·
∑
j,m

θ
njm
i (τ ) Y jm (θ, φ) , θ

njm
i (0) = 0, i = 1, . . . , 6. (82)

For example it can be shown that the (n = 1, j = 1, 2) instabilities we found above
couple to every mode ( j = 1, 2, . . .) of the second order (n = 2) in perturbation
theory.
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Hopf Bifurcation Analysis for the
Fitzhugh-Nagumo Model of a Spiking
Neuron

Ilknur Kusbeyzi Aybar

Abstract The Fitzhugh-Nagumomodel, which describes a pulse transmission activ-
ity in a neuron, is first called the Bonhoeffer-van der Pol model since it is originally
transformed from the well-known van der Pol model. The complexity of the neural
dynamical models consist of multi-parameter nonlinear systems often allow study-
ing only a particular case for some given values of parameters and prevent obtaining
general results. In this study, we present general parameter regions for the existence
and the stability of Hopf bifurcation for the Fitzhugh-Nagumo model.

Keywords Fitzhugh-Nagumo model · Limit cycle · Stability · Periodic solutions

1 Introduction

Neurons, the smallest members of the brain, transmit information between each
other through electrical activities. The electrical activities of a single neuron can be
modeled and analyzed by dynamical systems. The communication among neurons
observed asfiring or spikes occurs as an oscillation formation or loss around a singular
point of the dynamical system, i.e., Hopf bifurcation, when a parameter exceeds a
threshold value.

The Fitzhugh-Nagumo model, which was proposed by R. Fitzhugh in 1961 and
simulated by J. Nagumo et al. in 1962, is governed by the ODE system

dx

dt
= x(x − a)(1 − x) − y = F(x, y),

dy

dt
= ε(x − γy) = G(x, y),

(1)
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where state variables x(t) and y(t) represent the change in the membrane voltage
(action potential) and the change in the number of open potassium channels on the
membrane of a single neuron, respectively, over time. In this model, the voltage
passes the threshold value a; spiking occurs, then it starts to decrease and stabilizes
at the neuron membrane’s resting potential. The parameter ε denotes the speed of
the change in the number of open ion channels. The parameter γ states how strongly
y depends on x . All system parameters are assumed to be positive, except for the
parameter a, which can be negative.

2 Dynamics of the Fitzhugh-Nagumo Model

The eigenvalues of the Jacobian matrix can be calculated at the singular points to
determine whether the system is stable or unstable at that point. The investigation
of the stability for a dynamical system is important because by this analysis it is
then possible to know if all nearby trajectories approach that point of singularity. If
the real parts of the eigenvalues of the system’s Jacobian matrix are all negative at
that point, the system is stable at this point of singularity; otherwise, it is unstable
at that point [8]. If the real parts of the eigenvalues of the Jacobian matrix are a
pair of pure imaginary values, then the phenomenon called Hopf bifurcation occurs
at that point, which implies that at that point, the system is oscillating, that is, this
singularity point is an oscillatory solution of the system. The limit cycle can be either
stable or unstable, depending on the behaviour of the system. If all nearby trajectories
approach the limit cycle inward and outward, it is a stable limit cycle. In order to
determine the parameter regions for the existence of a stable limit cycle, we calculate
the first Lyapunov coefficient [4]. This study contributes to the comprehension of
the electrical activities of neurons by using the dynamical analysis methods since
the spikes in the communication of neurons are mathematically stable oscillatory
solutions.

Proposition 1 System (1) has three singular points E0 = (0, 0),

E− =
(
1

2

(
1 + a −

√
(a − 1)2 − 4

γ

)
,
1

2γ

(
1 + a −

√
(a − 1)2 − 4

γ

))
,

and

E+ =
(
1

2

(
1 + a +

√
(a − 1)2 − 4

γ

)
,
1

2γ

(
1 + a +

√
(a − 1)2 − 4

γ

))
.
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2.1 System Dynamics at E0

At E0, the membrane voltage is zero, and the ion channels are all closed. The eigen-
values of the Jacobian matrix at E0, which is at the resting potential, are

λ1,2 = 1

2
(−a − εγ ±

√
(a − εγ)2 − 4ε). (2)

Proposition 2 The singular point E0 is a stable singular point when the system
parameters a, ε, and γ are all positive or

−γε < a ≤ 0.

Theorem 1 According to the eigenvalues given in (2), system (1) exhibits Hopf
bifurcation when

a < 0, ε > a2, a = −εγ. (3)

Proof To investigate Hopf bifurcation at E0, we accept conditions (3) and calculate
the first Lyapunov coefficient at this point. We look for a Lyapunov function of the
form

h(x, y) = αx2 + βxy + σy2 + h.o.t.

that satisfies
∂h

∂x
F(x, y) + ∂h

∂y
G(x, y) = g1(x

2 + y2)2 + · · · . (4)

By solving (4) together with (1), we obtain

α = βε

2a

and

σ = − β

2εγ
.

The quadratic form

4ασ − β2 = −4 + 4

εγ2

is positive-definite when we choose β = 2 because of condition (3) which reduces
to

ε > 0, 0 < γ <

√
1

ε

in this case. We calculate the first Lyapunov coefficient as
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g1 = 6 + 2γ(εγ(1 − 2εγ) − 2)

γ(3 + ε(2 + ε(3 + 4γ2)))
. (5)

Stable oscillations are indicated by a negative first Lyapunov coefficient. Therefore,
we study the case g1 < 0 together with the conditions given in (3) and we conclude
in the following Theorem.

Theorem 2 System (1) exhibits supercritical Hopf bifurcation when one of the fol-
lowing cases are satisfied:

(i) 0 < γ < 1,
1

4γ
+ 1

4

√
−3(

(5γ − 8)

γ3
) < ε <

1

γ2
,

(i i) 1 < γ ≤ 3

2
,
1

4γ
+ 1

4

√
−3(

5γ − 8

γ3
) < ε <

1

γ2
,

(i i i)
3

2
< γ ≤ 8

5
, 0 < ε <

1

4γ
− 1

4

√
−3(

5γ − 8

γ3
),

(iv)
3

2
< γ ≤ 8

5
,
1

4γ
+ 1

4

√
−3(

5γ − 8

γ3
) < ε <

1

γ2
,

(v) γ >
8

5
, 0 < ε <

1

γ2
.

(6)

Example 1 To demonstrate supercritical Hopf bifurcation at the origin we choose
the parameter set (a, ε, γ) = (−1.75, 0.5, 3.5). The eigenvalues of the Jacobian
matrix are λ1,2 = ±0.661438i . In Fig. 1, we illustrate that system (1) exhibits stable
oscillatory regime, i.e. limit cycle. The trajectories outside and inside approach to
the limit cycle. In Fig. 1a we have two initial points, one at the outside, and one at the
inside of the limit cycle. This is clearly obvious since the first Lyapunov coefficient
at this point is g1 = −0.0127119, as we obtain by (5). In Fig. 1b, we choose ten
different initial points.

2.2 System Dynamics at E− and E+

In this section, we investigate the local dynamics of system (1) at the singular point
E−. However, same results are obtained for the singular point E+. First, we make
assumption that the state variables and parameter values to be real numbers to rep-
resent realistic values, which means that the expressions in the root must be non-
negative. For this reason, we assume the square root terms in the singular points are
positive or at least zero. Hence, we begin our investigation for Hopf bifurcation at
E± by accepting the condition
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Fig. 1 aThe supercriticalHopf bifurcation of system (1)when (a, ε, γ) = (−1.75, 0.5, 3.5) around
the origin. b The trajectories moving towards the limit cycle from ten different initial points outside

Δ = (a − 1)2γ − 4 ≥ 0. (7)

The eigenvalues of the Jacobian matrix at E− are

λ1,2 = 1

4γ
(2 − Δ − 2εγ2 + (1 + a)

√
γΔ

± 1

2

√
−32εγ2(Δ − (1 + a)

√
γΔ) + 4(2 − Δ − 2εγ2 + (1 + a)

√
γΔ)2).

(8)

Proposition 3 E− is a stable singular point under one of the following cases:

i. a < 1,Δ = 0, ε >
2 − Δ

2γ2
,

i i. a < 1,Δ > 0, ε >
2 − Δ + √

γΔ(1 + a)

2γ2
,

i i i. a > 1,Δ = 0, ε >
2 − Δ

2γ2
,

iv. a > 1,Δ > 0, ε >
2 − Δ + √

γΔ(1 + a)

2γ2
.

(9)
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Fig. 2 a Stable spiral foci at E− = (−0.486458,−0.371342), and E+ = (0.486458, 0.371342)
for system (10). b Time series plots for the case given in (a). c The case given in (a) for different
initial points. d Time series plots of (c)

Example 2 As an example of Proposition 3, we consider the parameters (a, ε, γ) =
(−1, 0.32, 1.31). For this parameter set, system (1) is rewritten as

dx

dt
= x − x3 − y,

dy

dt
= 0.32x − 0.4192y.

(10)

The singular points of system (10) are E− = (−0.486458,−0.371342), E0 = (0, 0),
and E+ = (0.486458, 0.371342). The eigenvalues of the Jacobian matrix at E− and
E+ are λ1,2 = −0.0645618 ± 0.440717i . Since the real parts of the eigenvalues are
negative, E− and E+ are stable singular points. The origin is a saddle point with
a positive, λ1 = 0.718807, and a negative, λ2 = −0.138007, real eigenvalue. The
phase portrait for this parameter set is given in Fig. 2. The solid lines indicate the
voltage, x(t), and the dashed lines indicate the number of open channels, y(t). We
observe that the state variables end up at E− and E+, after little fluctuations.

Hopf bifurcation indicates the birth or death of a periodic solution at a singular
point under a small perturbation of a parameter. Hopf bifurcation occurs when a
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complex conjugate pair of eigenvalues of the Jacobian matrix at a singular point
becomes pure imaginary. In this case, a limit cycle, which is a stable (unstable)
isolated periodic orbit, exists, and the bifurcation is called supercritical (subcritical)
Hopf bifurcation.

Considering assumption (7), we find the conditions for the real part of (8) to be
zero and the expression inside the root to be negative so that the eigenvalues (8) are
pure imaginary.

Theorem 3 System (1) undergoes Hopf bifurcation at E− when a = −1 if

1 < γ <
3

2
, ε = 3 − 2γ

γ2
. (11)

Moreover, the Hopf bifurcation at E− is always supercritical (i.e. there exists a stable
limit cycle.).

Proof To investigate the existence and the stability of Hopf bifurcation, we apply a
change of variables to move E− to the origin by the linear transformation

x = u + 1

2

(
1 + a −

√
Δ

γ

)
,

y = v + 1

2γ

(
1 + a −

√
Δ

γ

)
,

and obtain the following system:

dx

dt
= 1

2γ
((2 − Δ + (1 + a)

√
γΔ)x + (−(1 + a)γ + 3

√
γΔ)x2 − 2γx3 − 2γy),

dy

dt
= ε(x − γy).

(12)
System (12) has Hopf bifurcation at the origin when a = −1. The eigenvalues of

the Jacobian matrix at the singular point at the origin are

λ1,2 = 1

2γ
(3 − γ(2 + εγ) + √

9 + γ(−12 + γ(4 + ε(2 + γ(−4 + εγ)))). (13)

The eigenvalues given in (13) are pure imaginary if

1 < γ <
3

2
, ε = 3 − 2γ

γ2
. (14)

Hence, system (12) exhibits Hopf bifurcation. Under these conditions, we have pos-
itive definite quadratic form.
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We observe that when Δ = 0, there is no Hopf bifurcation at the system. Hence,
we consider Δ > 0. We also consider a �= 1 for the system to be defined.

Calculating the first Lyapunov coefficient at this point we have

α = βεγ

−2 − Δ − (1 + a)
√

γΔ

ε = 2 − Δ + (1 + a)
√

γΔ

2γ2

σ = − be

2εγ

We assume the coefficient as β = 2. Then, we obtain

g1 = − 24(−1 + γ)γ3

27 + γ(−36 + γ(54 + γ(−52 + 19γ)))
(15)

for the first Lyapunov coefficient of system (1) at E−. When g1 given in (15) is
negative, then there exists a supercritical Hopf bifurcation for system (1). When we
solve

g1 < 0

and

1 < γ <
3

2
, ε = 3 − 2γ

γ2

together, we obtain again condition (14). Therefore, if there is Hopf bifurcation at
E− and E+, it is a supercritical Hopf bifurcation. Hence, there exists a stable limit
cycle.

We explain Theorem (3) with the following numerical example.

Example 3 As an example for Hopf bifurcation, we choose parameter values
(a, ε, γ) = (−1, 0.32, 1.25), satisfying (3). In this case, system (1) can be written as

dx

dt
= x − x3 − y,

dy

dt
= 0.32x − 0.4y.

(16)

System (16) has the singular points E− = (−0.447214,−0.357771), E0 = (0, 0),
and E+ = (0.447214, 0.357771). System (16) possesses Hopf bifurcation at the
singular points E− and E+, which are located symmetrically on the trajectory plot.
This result is due to the eigenvalues of the Jacobian matrix, which are λ1,2 = ±0.4i .
The stability of Hopf bifurcation is determined by the first Lyapunov coefficient is
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Fig. 3 a The stable limit cycle for Example 3 when (a, ε, γ) = (−1, 0.32, 1.25) around E+ =
(0.447214, 0.357771) and E− = (−0.447214,−0.357771). b The oscillations in the state vari-
ables, i.e. the voltage and the number of open channels given in (a). c The trajectories moving
towards the limit cycle. d The oscillations in the state variables, i.e. the voltage and the number of
open channels given in (c)

g1 = −1.04639 as calculated from (15).At the origin, E0 is a saddle point represented
by a positive (λ1 = 0.712311) and a negative (λ2 = −0.112311) real eigenvalues.
The stable limit cycle for this example is illustrated in Fig. 3. In Fig. 3a, the blue star
is at (−0.9, 0.19) and the red star is at (0.5,−0.2). The trajectories initiating from
the blue and the red star approach towards the limit cycle. In Fig. 3b, the voltage,
x(t), is represented by a solid line, and the number of open ion channels, y(t) is
represented by a dashed line. For the two initial points, the blue and the red star, we
see the oscillations in x(t) and y(t) for the phase portrait given in Fig. 3a. In Fig. 3c,
two points move along the limit cycle. In Fig. 3d, we observe the oscillations of the
state variables for the phase portrait given in Fig. 3c.
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Limit Cycles of the Schnakenberg
Chemical Reaction Model

I. Kusbeyzi Aybar, B. Ferčec, O. O. Aybar, and M. Dukarić

Abstract Dynamical systems contribute to the mathematical modeling of chemical
reactions of biological or ecological phenomena producing limit cycle oscillations.
In this study, we present a computational approach to examine the bifurcations of
limit cycles of the two-dimensional simple chemical reaction model known as the
Schnakenberg model. With our approach, we obtain conditions on parameters of
the system of the chemical reaction model which gives Hopf bifurcation. Using the
Lyapunov functionwe show the stability of Hopf bifurcation.We illustrate the results
with a numerical example.

Keywords Schnakenberg · Limit cycle · Chemical reaction · Lyapunov function

1 Introduction

During biochemical reactions, which are the transformations of molecules to other
molecules inside the cell, enzymes play roles of biological catalysts and change con-
centration rates [10]. Biochemical reactions enable cell functions such as digestion
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and respiration to reproduction and contribute tomaintaining the life processes of liv-
ing organisms. The biochemical reaction, named glycolysis, which is the destruction
of glucose to enzymatic acid with enzymes to generate energy, happens in all living
organisms. Moreover, in all living organisms, the same enzymes act in this reaction.
The fluctuations in the concentrations of the substances lead to glycolytic oscilla-
tions, which depend on the concentration rates. The glycolytic oscillations were first
observed experimentally by Duysens and Amesz [2]. This phenomenon is known
as a fascinating biochemical reaction represented mathematically by a generalized
version of the Schnakenberg model [13].

2 The Schnakenberg Model

In 1978, J. Schnakenberg introduced the simple chemical reaction systemwith a limit
cycle behaviour, the so called Schnakenberg model, an autocatalytic chemical reac-
tion model with oscillatory behaviour. This model is characterized by the following
three chemical reactions that involve two chemical components and two chemical
resources:

A � X, B → Y, 2X + Y → 3X.

The dynamical system for this chemical reaction is obtained by considering the state
variables x and y as the concentrations at a given time of the chemical substances X
and Y which leads to the following system of ordinary differential equations:

dx

dt
= x2y − x + b,

dy

dt
= −x2y + a.

(1)

Here, the parameters a > 0 and b > 0 denote the concentration rates of the chemical
resources A and B, respectively.

To demonstrate the oscillations in this model, Hwang et al. [4] showed that the
dimensionless systemof the Schnakenbergmodel possesses atmost one limit cycle in
R

2+. The nonexistence and existence of a positive non-constant steady-state solution
to the Schnakenberg systemare studied byLi, in 2011 [6]. In this paper,we investigate
Hopf bifurcation for the Schnakenberg model by computing the Lyapunov function
[12].

System (1) has one unique singular point at E = (a + b, a
(a+b)2 ), with the eigen-

values of Jacobian matrix given as

λ1,2 = −1

2
(1 + (a + b)2 ± √

k(a, b)), (2)
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where
k(a, b) = (−a + b + (a + b)3)2 − 4(a + b)4. (3)

It is obvious that these eigenvalues are pure imaginary if

1 + (a + b)2 = 0, k(a, b) < 0, a, b > 0,

which simplifies to the condition 0 < a < 1 and (a + b)3 = a − b. In this case the
singularity at E can either be a center (all trajectories are closed), or a focus (all
trajectories are spirals) [11]. When the condition

(a + b)(1 + (a + b)2) �= 0

is satisfied, the singular point at E is a focus, if (a + b)(1 + (a + b)2) < 0 all
trajectories in a neighborhood of E are moving towards the singularity E (sta-
ble focus) and if (a + b)(1 + (a + b)2) > 0 all trajectories in a neighborhood of
E are moving away the singularity at E . For instance, Fig. 1a shows stable limit
cycle of the system (1) with a = 0.6 and b = 0.17037459017229974 and eigenval-
ues are λ1,2 = −0.0178966 ± 0.77016668i and Fig. 1b shows stable limit cycle of
the system (1) with a = 0.6 and b = 0.15037459017229974 and eigenvalues are
λ1,2 = 0.01806962 ± 0.75015699i [9].

3 The Existence of Hopf Bifurcation

To study Hopf bifurcation for system (1), we first move the singular point E to origin
by the linear transformation

x → X + (a + b) and y → Y + a

(a + b)2
, (4)

and obtain

ẋ = 1

a + b
((a + b)x2y + ax2 + +2(a + b)2xy + (a − b)x + (a + b)3y) = F(x, y)

ẏ = −1

a + b
((a + b)x2y + ax2 + +2(a + b)2xy + 2ax + (a + b)3y) = G(x, y),

(5)

where X is rewritten as x , and Y as y. The necessary condition for the existence of
Hopf bifurcation at the origin for system (5) is when the trace of the linear approxi-
mation of system (5)
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Fig. 1 a Stable and b unstable foci of system (1)

a − b

a + b
− (a + b)2,

is zero. This condition also satisfies that the real part of the eigenvalues is zero.
The second necessary condition is for k(a, b) given in (3) to be negative. These
two conditions, with additional two on parameters a and b for the chemical system,
a, b > 0, form the following system of semi-algebraic equations:

(a > 0) ∧ (b > 0) ∧ ((a + b)3 − a + b = 0)∧
(((a + b)3 − a + b)2 − 4(a + b)4 < 0).

(6)
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System (16) can be solved using Mathematica routine Reduce [8] and we obtain

0 < a < 1 and (a + b)3 = a − b. (7)

A commonly used approach for the determination of Hopf bifurcation is the com-
putation of normal forms. However, in this work, we adopt an approach employing
the Lyapunov function which we describe now. For a system

ẋ = −y + P(x, y) = P1(x, y),

ẏ = x + Q(x, y) = Q1(x, y),
(8)

we can always find a function of the form

Ψ (x, y) = x2 + y2 +
∑

j+k=3

ψ jk x
j yk,

such that

∂Ψ

∂x
P1(x, y) + ∂Ψ

∂y
Q1(x, y) = g1(x

2 + y2)2 + g2(x
2 + y2)3 + · · · . (9)

Based on the Lyapunov Theorem of asymptotic stability [7], we determine the
type of the focus stability by using the first nonzero coefficient gi of the extension of

∂Ψ

∂x
P1(x, y) + ∂Ψ

∂y
Q1(x, y).

Then, a focus is stable if gi is negative, and unstable if gi is positive [1].
If the system is of the form

ẋ = a1x + b1y + P(x, y) = P1(x, y),

ẏ = c1x − a1y + Q(x, y) = Q1(x, y),
(10)

for which the trace of the linear approximation matrix is zero, the resulting expres-
sions involve radicals. To avoid this, we search for a positive-definite Lyapunov
function of the form

Ψ (x, y) = αx2 + βxy + γy2 +
∑

j+k=3

ψ jk x
j yk

which satisfies (9). This is the case if the conditions

α = −c1β

2a1
, γ = b1β

2a1
(11)
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hold, and it is known that the quadratic form

αx2 + βxy + γy2 (12)

is positive-definite if α > 0 and 4αγ − β2 > 0. Inserting (11) into the expression

4αγ − β2, (13)

we obtain 4αγ − β2 = −β2(a21+b1c1)
a21

, and when the origin is a center or a focus for
system (10), the quadratic form (12) is positive-definite [14].

Theorem 1 The singular point at the origin (or at E) of system (5) (or (1)) satisfying
conditions (7) is a stable focus.

Proof When (16) are satisfied, the eigenvalues of the linear approximation matrix
of system (1) are

λ1,2 = ±
√−4(a + b)4 + (−a + b + (a + b)3)2

2(a + b)
.

We look for a Lyapunov function up to degree 8,

Ψ8(x, y) =
8∑

k+s=2

ψks x
k ys (14)

satisfying the equation

∂Φ8

∂x
F(x, y) + ∂Φ8

∂y
G(x, y) = g1(x

2 + y2)2 + g2(x
2 + y2)3 + g3(x

2 + y2)4.

(15)
One can see that

α = aβ

a − b
and γ = β

2
.

This condition can be determined by equating the coefficients of the samemonomials
on both sides of equation (15).

Let β = 2, then α = 2a
a−b , γ = 1, and 4αγ − β2 = 4(a+b)

a−b > 0. For a > b, the
quadratic form (12) of (14) is positive-definite.

The first nonzero coefficient gi is
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g1 = 4a(a + b)2(12a14 + 168a13b + b6(1 + b2)(2b2 − 5)(1 + 2b2)(1 + 3b2)+
+ 2a12(546b2 − 1) + 6a11b(728b2 − 5) + 7a9b(5 − 110b2 + 3432b4)+
+ 2a10(1 − 99b2 + 6006b4) + a7(−57b + 300b3 − 3564b5 + 41184b7)+
+ a5b(−3 + 167b2 − 966b4 − 4356b6 + 24024b8) + ab3(3 + 5b2 − 123b4−
+ 325b6 − 90b8 + 168b10) + a3b(9 − 2b2 + 13b4 − 1860b6 − 1430b8+
+ 4368b10) + a8(−17 + 33b2(5 − 60b2 + 1092b4))+
+ a6(6 + b2(−13 + 924b4(−5 + 39b2)))+
+ a4(−3 + b2(−25 + 3b2(75 − 630b2 − 990b4 + 4004b6)))+
+ a2b2(−9 + b2(24 + b2(−167 + 42b2(−25 − 11b2 + 26b4)))))/

((a − b)(2a6 + 12a5b + b2(2 + b2)(1 + 2b2) + a4(30b2 − 3)+
+ a3(−4b + 40b3) + a2(2 + 6b2 + 30b4) + 4ab(−1 + 3(b2 + b4)))

(3a12 + 36a11b + b6(1 + b2)(3 + b2)(1 + 3b2)+
+ 10a9b(13 + 66b2) + a10(13 + 198b2) + 12a7b(9 + 130b2 + 198b4)+
+ a8(17 + 585b2 + 1485b4) + 2ab5(3 + 42b2 + 65b4 + 18b6)+
+ 4a3b3(5 + 113b2 + 390b4 + 165b6) + a2b4(5 + 248b2 + 585b4 + 198b6)+
+ a6(11 + 304b2 + 2730b4 + 2772b6) + a5(38b + 508b3 + 3276b5+
+ 2376b7) + 3a4(16 + 5b2(3 + 38b2 + 182b4 + 99b6)))).

The semi-algebraic system

(g1 ≥ 0) ∧ (a > 0) ∧ (b > 0) ∧ ((a + b)3 − a + b = 0)∧
(((a + b)3 − a + b)2 − 4(a + b)4 < 0).

(16)

is an unsolvable system (checked with Reduce of Mathematica). Since g1 < 0,
the derivative with respect to a vector field is negative-definite. Hence the focus is
stable [5].

Next theorem summarizes the conditions for the existence of Hopf bifurcation in
system (1).

Theorem 2 For the parameters, a and b, that satisfy the conditions given in (7),
Hopf bifurcation can occur at the singular point E = (a + b, a

(a+b)2 ) of system (1).
The bifurcation is always supercritical, i.e., a stable limit cycle is born from E.

Proof As demonstrated in the proof of the Theorem 1, the singular point that satisfies
conditions (7) is a stable focus. By slightly varying the parameter b, we slightly
perturb the system (1), changing the real parts of the eigenvalues (2) to positive.
Hence, point E becomes an unstable focus, and the results is a stable limit cycle [3].
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3.1 Numerical Example

To show the existence of stable limit cycles, we choose parameters a and b as a = 0.6
and b = 0.16037459017229974. The corresponding system (1) has singular point
at E = (0.760375, 1.03776), the eigenvalues given in (2) are λ1,2 = ±0.760375i
and the coefficient g1 of (15) is negative, g1 = −0.17187 < 0. As we can see in
Fig. 2a, the trajectories move towards the singular point E , i.e. E is stable focus.
Now, we perturb b slightly as b = 0.16037459017229974 − 1

100 = 0.150375. Then,
eigenvalues become λ1,2 = 0.0180689 ± 0.750157i with positive real parts. When
we choose initial point (0.7, 1.05), we see that the trajectory moves away from
singular point E , on the other hand, the second trajectory plotted from another initial
point (0.6, 0.6) moves towards the singular point E . Both trajectories approach to
the limit cycle as seen in Fig. 2b.

Note that if the eigenvalues are pure imaginary, the local phase portrait in the
neighbourhood of the singularity can not be a center, since g1 �= 0 for positive values
of a and b for system (1).

Fig. 2 a Stable focus for parameter values a = 0.6 and b = 0.16037459017229974. b A super-
critical Hopf bifurcation appearing for system (1) with a = 0.6 and b = 0.150375
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Fractality and the Internal Dirichlet
Problem
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Abstract In this chapter influence of fractality on solution of the two-dimensional
internal Dirichlet problem is analyzed. Two different situations are considered
namely the first of them deals with fractal boundary condition on the unit disk.
In this case exact solution of the Laplace equation proves to obey to some analog
of the de Rham functional equation. Also norm and the Dirichlet integral for this
solution has been estimated. In the second situation boundary condition is supposed
to be regular but boundary of the domain is fractally perturbed. For clarification of
this case both approximate conformal mapping technique and the Potapov concept
of physical fractals has been applied.
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1 The internal Dirichlet problem and fractality
of boundary condition

In this section we discuss the internal Dirichlet problem (IDP) on the unit disk �0.
First of all let us consider the two-dimensional Laplace equation:

∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2
∂2u

∂ϕ2
= 0, r < 1, (1)

where r and ϕ are polar coordinates on this disk;
u(r, ϕ) is unknown function.
Further Eq. (1) ought to be provided by boundary condition:

u(1, ϕ) = W (ϕ). (2)

A peculiarity of our point of view on IDP (1–2) is in consideration of fractality
of its boundary condition.

As a model of fractal boundary condition we take the well-known Weierstrass
function (WF):

W (ϕ) =
∞∑

n=1

an · cos(bn · ϕ), (3)

where a and b are its parameters.
To provide 2π-periodicity of this function over polar angle ϕ one is obliged to

choose function parameter b = 2, 3, 4, . . . .
If these parameters obey to inequalities 0 < a < 1 and a · b ≥ 1 then WF (3)

is a continuous but nowhere differentiable function (see [1] and references there in).
Moreover in this case WF possesses by the following fractal dimension:

DF = 2 + ln a

ln b
. (4)

Formula (4) demonstrates that one can vary fractal dimension of WF under fixed
b continuously from DF = 1 to DF = 2 by means of changing of its parameter a
from a = 1/b to a = 1. That is why we choose WF as the model of fractal boundary
condition for IDP (1–2).

General solution of the Laplace Eq. (1) without singulatity in the center of the
unit disk is equal to [2]:

u(r, ϕ) =
∞∑

m=0

rm · (Am · cos(m · ϕ) + Bm · sin(m · ϕ)). (5)
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Substituting r = 1 into series (5) and comparing the result with WF (3) it is easy
to find that exact solution of IDP (1–3) is equal to:

u(r, ϕ) =
∞∑

n=1

an · rbn · cos(bn · ϕ). (6)

In particular in the center of the disk u(0, ϕ) = 0.
Moreover one can check that function (6) obeys to the next functional equation:

u(r, ϕ) = a · rb · cos(b · ϕ) + a · u(rb, b · ϕ), (7)

expressing its self-similarity.
Substituting r = 1 into functional Eq. (7) and using formula (2) one can easily

obtain the de Rham functional equation for WF [1]:

W (ϕ) = a · cos(b · ϕ) + a · W (b · ϕ). (8)

Further let us calculate on the solution (6) the well-known Dirichlet integral:

I [u] =
¨

�0

(∇u)2rdrdϕ, (9)

where ∇ is the operator of two-dimensional gradient.
It is easy to see from functional series (6) that vector ∇u(1, ϕ) consists from

nowhere differentiable functions therefore it is convenient to calculate functional (9)
as the following limit:

I [u] = lim
r→1−0

2π∫

0

u(r, ϕ) · ∂u

∂r
(r, ϕ) · r · dϕ. (10)

Under b = 2, 3, 4, . . . functions {cos(bnϕ)}∞n=1 are orthogonal on the interval
[0, 2π ]:

2π∫

0

cos(bnϕ) · cos(bmϕ) · dϕ = π · δnm, (11)

hence using this relation one can obtain from (10) that the Dirichlet integral is
equal to:

I [u] = π ·
∞∑

n=1

(a2 · b)n. (12)
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It is obvious that numerical series (12) converges if a2b < 1 and diverges other-
wise. We underline that under growing value of parameter b length of segment of

convergence for a: a ∈ (1
/
b, 1

/√
b) tends to zero. One can rewrite condition of

convergence for sum (12) via fractal dimension (4) of WF:

I [u] =
{

π ·a2·b
1−a2·b , 1 ≤ DF < 3

2

∞, 3
2 ≤ DF < 2

. (13)

Formula (13) means that if boundary condition (2) of IDP in some sense is
“weakly” nondifferentiable then series (12) is convergent and if WF (3) is “strongly”
nondifferentiable then series (12) is divergent.

Let us now consider norm of function (6) in Hilbert space L2(�0):

||u|| =
√√√√
¨

�0

u2(r, ϕ) · rdrdϕ. (14)

Using formula (11) it is not difficult to find that value (14) is equal to:

||u|| =
√√√√π

2
·

∞∑

n=1

a2n

bn + 1
. (15)

Under b ≥ 2 numerical series contained in the right-hand side of the formula (15)

can be majorized by sum
∞∑
n=1

(a2b−1)n of convergent geometrical progression. Thus

norm (14) can be estimated as follows:

||u|| ≤
√

π

2
· a2

b − a2
. (16)

Upper bound (16) is valid under all admissible values of parameter a.
In practice to deal with solution (6) of IDP (1–2) with boundary condition (3)

possessing by fractal dimension (4) it is convenient to transfer from mathematical
fractals to physical ones [1]. The procedure of this transfer is presented on Fig. 1.
Of course this approach destroys relations (7) and (8) but it brings new advantages
namely let one take only a limited number N of terms of the series (3) then the
resulting function:

WN (ϕ) =
N∑

n=1

an · cos(bn · ϕ) (17)

will be differentiable as many times as required.
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FRACTALS

A Infinite Number 
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n ∞
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n
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Differentiable 

Function

Fig. 1 The Potapov scheme of division of fractals on mathematical and physical

Using inequality | cosϕ| ≤ 1 which is valid for all real ϕ it is not difficult to
establish that for any fixed δ > 0 inequality

|W (ϕ) − WN (ϕ)| < δ (18)

is true under

N >

[
ln δ(1 − a)

ln a

]
+ 1. (19)

In this casewe shall call function (17) as the truncatedWeierstrass function (TWF).
In other words if one takes number N for TWF obeying to condition (19) then such
TWF approximates WF in accordance with inequality (18).

Graph of the TWF under a = 0.75 and b = 2 with δ = 0.01 is presented on Fig.
In this case DF ≈ 1.58 and N = 21.

At last let us apply procedure of truncation for series (6) with the same number
of terms N as in condition (19):
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uN (r, ϕ) =
N∑

n=1

an · rbn · cos(bn · ϕ). (20)

Because of r < 1 it is easy to estimate that:

|u(r, ϕ) − uN (r, ϕ)| ≤ aN+1

1 − a
· rbN+1

. (21)

Inequality (21) means that in this case function (20) approximates function (6)
even better then TWF approximates WF. From this inequality one can see that in
fact fractality of exact solution (6) really exists only in narrow ring in the vicinity of
the unit circle �0 : |z| = 1 which is the boundary of the domain �0. Moreover it is
clear that under r << 1 it is enough only the first term of the series (6) to describe
behaviour of exact solution of IDP under consideration quite precisely.

Graph of function (20) with parameters corresponding to the TWF presented on
Fig. 2 is shown on Fig. 3.

Fig. 2 Graph of the boundary condition
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Fig. 3 Graph of exact solution

2 The Internal Dirichlet Problem on the Nearly Circular
Domain Bounded by Fractal Curve

In this section we consider IDP on the nearly circular domain:

∂2u

∂x2
+ ∂2u

∂y2
= 0, z = x + iy ∈ �ε, u|z∈�ε

= u0(z), (22)

where �ε is star-shaped domain on complex plane C containing the origin of
coordinates;

�ε = ∂�ε is boundary of domain �ε;
ε is a small parameter (0 < ε << 1) characterizing proximity of domain �ε to

the unit disk �0;
u(z, ε) is unknown function;
u0(z) is boundary condition.
Let one choose polar equation of �ε in the next form:

r(ϕ) = 1 − ε · χ(ϕ), ϕ ∈ [0, 2π ], (23)
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where χ(ϕ) is 2π-periodic function over polar angle ϕ and let one suppose that
χ ∈ C2([0, 2π ]) hence closed curve (23) differs slightly from the unit circle �0 both
its location and its curvature.

Further the Riemann theorem [3] claims that in this case there is a holomorphic
function w = f (z, ε) realizing conformal mapping of domain �ε on the unit disk
�0.

Moreover exact solution of IDP (22) can be written via this function f (z, ε) as
follows [4]:

u(z, ε) = Re

⎡

⎣ 1

2 · π · i
∮

�ε

u0(ζ ) · f (ζ, ε) + f (z, ε)

f (ζ, ε) − f (z, ε)
· f ′

ζ (ζ, ε)

f (ζ, ε)
· dζ

⎤

⎦. (24)

Generally speaking one may derive this mapping f (z, ε) explicitly in the frame-
work of formalism of the harmonic moments of exterior domain C\�ε [5] but this
way is too hard. On the other hand due to representation (23) of �ε we can restrict
ourselves by construction of approximate conformal mapping of the nearly circular
domain on unit disk.

In this case for function w = f (z, ε) realizing conformal mapping of domain �ε

on the unit disk �0 and obeying to conditions f (0, ε) = 0 and f ′
z (0, ε) > 0 the

following asymptotic formula is known to be valid [3, 6]:

w = f (z, ε) = z + ε · f1(z) + O(ε2), (25)

where

f1(z) = z ·
2π∫

0

χ(ϕ) · exp(iϕ) + z

exp(iϕ) − z
· dϕ

2π
. (26)

A feature of our approach is taking into account a fractality of domain’s boundary
�ε. On the other hand in accordancewithmethods developed in [3, 6] for derivation of
the desiredmapping the boundary�ε must be quite smooth. In order to overcome this
obstacle we apply concept of physical fractals (see Fig. 1) namely we use as function
χ(ϕ) TWF (17). Of course this TWF must contain enough terms in correspondence
with inequality (19) to approximate the input WF with fixed accuracy (18). Graph
of typical shape of such boundary is shown on Fig. 4, dotted line corresponding to
the unit circle �0.

Calculating integral (26) with function WN (ϕ) we obtain the next lacunary
polynomial of complex variable z:

f1(z) =
N∑

n=1

an · zbn+1. (27)
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Fig. 4 Graph of the domain with fractal boundary

Substituting expression (25) with function (27) into formula (24) and expanding
its integrand on ε one can find approximate solution of IDP (22–23) in the following
form:

u(z, ε) = u(0)(z) + ε · u(1)(z) + O(ε2), z ∈ �ε. (28)

In formula (28)

u(0)(z) = Re

⎡

⎣ 1

2 · π · i
∮

�ε

u0(ζ ) · ζ + z

ζ − z
· dζ

ζ

⎤

⎦ (29)

and

u(1)(z) = u(1)
1 (z) + u(1)

2 (z) + u(1)
3 (z), (30)

where
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u(1)
1 (z) = Re

⎡

⎣ 1

2 · π · i
∮

�ε

u0(ζ ) ·
(
f ′
1(ζ ) − f1(ζ )

ζ

)
· ζ + z

ζ − z
· dζ

ζ

⎤

⎦, (31)

u(1)
2 (z) = −Re

⎡

⎣2 · z · 1

2 · π · i
∮

�ε

u0(ζ ) · f1(ζ ) · dζ

ζ · (ζ − z)2

⎤

⎦ (32)

and

u(1)
3 (z) = Re

⎡

⎣2 · f1(z) · 1

2 · π · i
∮

�ε

u0(ζ ) · dζ

(ζ − z)2

⎤

⎦. (33)

Zero-order term in asymptotic expansion (28) looks like the well-known Poisson
integral for the unit disk �0 [3, 4], but we stress that integration in expression (29)
is performed along the curve �ε with polar Eq. (23) hence to calculate integral in
formula (29) one ought to substitute into this formula ζ(ϕ) = (1−ε ·χ(ϕ))·exp(i ·ϕ).

Integrals (31), (32) and (33) representing contribution of boundary roughness into
the first order term (30) in asymptotic expansion (28) must be estimated in the same
manner.

This calculation seems to be very awkward but in practice contour integrals in
formulae (31), (32) and (33) can be found as sums over residues of its integrands in
domain �ε.

To demonstrate this technique let us derive the influence of fractal roughness
of boundary of round cylindrical hole in conductor on distribution in it of elec-
trostatic potential and electric field strength. And let us remind that approximate
conformal mapping (25) of domain with fractal boundary is determined by function
(27) corresponding to TWF (17).

According to general principles of electrostatics let us set:

u0(z) = 1, z ∈ �ε. (34)

It is easy to check that in this case calculation in correspondence with formula
(29) gives us that:

u(0)(z) = 1, z ∈ �ε. (35)

Further let one consider the following function:

f ′
1(z) − f1(z)

z
=

N∑

n=1

(a · b)n · zbn . (36)
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Lacunary polynomial (36) is a holomorphic function of complex variable z on�ε

therefore the result of application of the theory of residues to integral in expression
(31) is equal to:

u(1)
1 (z) = 2 · Re

[
f ′
1(z) − f1(z)

z

]
. (37)

Function f1(z)
/
z also has no singularities in domain �ε hence using the Cauchy

formula for derivative one can obtain from formula (32) that:

u(1)
2 (z) = −2 · Re

[
z · d

dz

f1(z)

z

]
. (38)

At last in accordance with the Cauchy theorem after homotopy of curve �ε into
the unit circle �0 in integral (33) it is not difficult to see that

u(1)
3 (z) = 0. (39)

Thus combining formulae (37), (38) and (39) in correspondence with expression
(30) we obtain the following unexpected result:

u(1) (z) = 0, z ∈ �ε (40)

Formula (40) means that electrostatic potential of this domain varies only in the
second order on ε:

u(z, ε) = 1 + O(ε2), z ∈ �ε. (41)

It is immediately succeed from expression (41) that in any point z ∈ �ε electric
field strength is equal to:

�E(z, ε) = −∇u(z, ε) = O(ε2). (42)

Formula (42) gives us useful consequence for technique of electric measurements
namely under electrostatic screening using round cylindrical hole in conductor one
may not take care about precision of boundary processing.

After some generalization on three spatial dimensions the ideology of calculations
developed in this section may be useful for description of electrically charged fractal
core–shell nanoparticles and elastic tensions around such structures [7].
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Selective Transport of Suspending
Micro-Particles in an Oscillating Fluid
Through Micro-Channels

Philippe Beltrame

Abstract This paper analyzes the possibility to obtain selective transport of
microparticles depending their size. The particles are suspended in a fluid confined
in modulated channels and a periodic pumping moves back and forth the fluid with-
out net displacement. Using numerical simulation and bifurcation analysis tools, we
show the existence of particle drift under the Stokes assumption of the fluid flow.
For specific parameter ranges, the particle transport can be selective. The transport
solution and the selectivity are related to (de)synchronization transitions in forced
non-linear oscillators. We reveal that chaotic transitions are a key factor to drop from
a bounded dynamics to a net transport. This transport phenomenon can be relevant
for heavy particles in suspended in the air in microgravity environnement.

Keywords Particle transport · Synchronization · Chaotic dynamics · Bifurcation
analysis · Microfluidic

1 Introduction

Sorting suspended particles in a fluid is an issue in many domains such as the food
industry, medical analyses or wastewater treatment. Many processes are based on the
microfiltration using a membrane. However, at high permeation rates, this method
suffers from the accumulation of non-permeating particles above the membrane
surface, therebyblocking thepores [1]. In recent decades, alternative techniques using
flow in a periodic and asymmetric structure of micro-channels have been developed.
In these systems, the particles are drivenmainly by the viscous force.Micro-particles
may drift from the streamline mainly due to the lift force. In a confined geometry, the
lift effect is strongly dependent on the particle size and induces a selective trajectory.
Based on this principle, passive micro-fluidic devices to sort the particles have been
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developed such as branching channels, pinched flow fractionation, spiral channels
or media with a periodic pattern of micro-posts [2–6]. The particle sorting is done
using a continuous flow.

Such a method does not apply to the removal of specific particles from a basin.
Particle selection using an oscillating flow, i.e. without net displacement of the fluid,
is possible as shown in [7]. The particle transport occurs through a periodic structure
of triangular columns. For a range of particle sizes, the lift force acts asymmetrically
during the back and forth cycle of thefluidflow.This results in a drift that is orthogonal
to the oscillating flow for a parameter range. Therefore in all systems the lift force
is the key phenomenon of particle drift and sorting.

In contrast, the present paper focuses on longitudinal transport, i.e. the drift takes
place along the axis of fluid oscillations. Indeed few studies are devoted to the onset
of transport and to the kind of transition. These questions are useful for the design
optimization of these devices.

We consider a micro-device similar to [8] where two basins are connected via
modulated channels filled with a liquid. A periodic pumping confers a back and
forth fluid motion dragging the particles in suspension. For oscillating Stokes flow,
the 1D transport of particles is usually explained by the Stokes drift [9]. The particle
follows the flow drift due to the traveling wave. In our context, the fluid is, however,
driven by a standing wave which does not lead to fluid drift. The flow therefore
needs to be ratchet like. In the early 2000s, the transport of overdamped particles
in ratchets in many fields in physics was interpreted as a Brownian motor in which
transport results from the action of noise in an asymmetric potential [10, 11]. Such a
drift ratchet phenomenon may occur in the microfluidic context considered here [12]
and the experiment in [8] corroborated this theory. Nevertheless, further experiments
revealed that the thermal fluctuations are negligible and the experiment in [8] does
not evidence transport due to a Brownian ratchet.

Recently, we highlighted different 1D transport mechanisms in a Stokes flow,
called ratchet flow, for a simple model of inertial particle [13]. We showed that
the spatial variations of the fluid flow induce a ‘ratchet effect’. For instance, for
moderate damping chaotic dynamics are a key component of the transport. However,
the parameter domains of the transport require that the particle radius is not negligible
compared to the channel radius [14]. Therefore, the drag coefficient depends on the
channel walls and hence on the particle position. Such a variation may induce a
friction ratchet [10, 15].

The goal of this paper was to determine whether such 1D transport mechanisms
as in [13] exist for a particle radius comparable to the channel radius, and then to
determine a possible dependence of the transport direction on the particle size. To
answer these questions, we computed the friction for the 3D axisymmetric problem
and we used bifurcation analysis tools and continuation of periodic orbit to provide
a comprehensive overview of the dynamics in the phase space.
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2 Modeling

Let us consider a L-periodically modulated channel infinitely extended along the line
(Ox) throughwhich aNewtonianfluidwith the viscosityμ isT -periodically pumped.
We call ’cell’ the channel portion of length L (Fig. 1). The cell is axisymmetric and
its radius r(x) varies sinusoidally:

R(x) = Rm (1 + cr cos (2πx)) (1)

where Rm is the mean radius and cr is the channel camber. In this study, we fix
the channel geometry such as Rm = 0.14 · L and cr = 0.56 which corresponds to
the shape shown in Fig. 1. We assume that the flow is a quasi-static Stokes flow.
Then, a periodic pumping implies a periodic fluid velocity field in space and time.
Moreover, the time dependence of the velocity field is governed by the periodic
pumping v0(r, t) = u0(r)A(t), where A(t) is the pumping amplitude and u0(r) is
L-periodic. We note [p] the amplitude of the pressure difference between the cell
inlet and outlet. Pressure, length and time are scaled by [p], L and T respectively.We
consider spherical particle of massm with the adimensional radius rp. If, in addition,
we assume that the particle moves only along the axis and the particle does not rotate
then the particle position x(t) is governed by the dimensionless ODE:

ẍ + Pγ γ̂ (x)ẋ = PγPvγ̂ (x)ûeq(x)A(t). (2)

In the latter equation, we have introduced two bifurcation dimensionless parameters:

Pv = [p]T
μ

(3a)

Pγ = LTμ

m
. (3b)

Fig. 1 Sketch of the problem: the particle translates along the x-axis of a periodic modulated
channel. It is dragged by the periodic motion of a viscous fluid



126 P. Beltrame

Fig. 2 Profile of (left panel) ûeq (x) and (right panel) γ̂ (x) functions for two particle radii: (black
line) rp = 0.05 and (red dashed line) rp = 0.1

The field γ̂ (x) > 0 is the normalized drag coefficient of the particle. It depends on the
channel boundary and on the particle size [14, 16]. The field ûeq(x) is related to the
flow field velocity without particle and also to the particle radius rp. Figure2 displays
the fields ûeq(x) and γ̂ (x) for a sinusoidal cell profile such as cr = 0.56 rmin = 0.14.
The computation of these coefficients is detailed in [17, 18]. The particle size does
not notably affect the veolcity field ûeq (Fig. 2a) whereas the friction is very sensitive
to the particle radius (Fig. 2b). The friction is maximal in the narrow region of the cell
and minimal in the larger region. For rm = 0.1, the ratio between the maximum and
minimum value is large in contrast to rm = 0.05, for which γ̂ (x) is almost constant.
In the latter case, Eq.2 is similar to the ratchet flowmodel studied in [13, 19, 20] and
we expect similar transport dynamics. If rp = 0.1, the large friction contrast may
induce, in addition, a friction ratchet [10].

Note that the functions ueq(x) and γ (x) are 1-periodic and have the parity-
symmetry like the geometry of the problem. If, in addition, the pumping A(t) varies
sinusoidally, then the problem is invariant by the parity symmetry x → −x . More
precisely, if x(t) is a trajectory given by Eq.2 then −x(t + 1/2) is also the solu-
tion for a symmetric initial condition. In order to break of the parity-symmetry,
the back and forth phases of the pumping should be different, i.e. this means that
A(t + 1/2) �= −A(t). Let us introduce the parameterα such as 0 ≤ α < 1 and define
the function A(t):

A(t) =
∣
∣
∣
∣

1 − α , if 0 ≤ (t modulo 1) < α

cos
(

2π t−α
1−α

) − α , if α ≤ (t modulo 1) < 1
(4)

If α = 0 is zero, A(t) = cos(2π t) and the problem is symmetric. Otherwise, the
pressure difference is constant during the first step in the interval [t0, t0 + α[ followed
by a sinusoidal pumping in the interval [t0 + α, t0 + 1[. In this case A(t + 1/2) �=
−A(t). Note that the mean value of the pumping is still zero if α �= 0.

In this paper, we consider two particle sizes: rp = 0.05 or rp = 0.1. The transport
dynamics are explored in the parameter space using the time integration and the path-
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following method of the periodic solutions. The bifurcation parameters are Pγ ,Pv

and α. Branches of T -periodic solution on bifurcation diagrams are represented by
the norm ||.|| such as: ||s|| = [ 1

T

∫ T
0 (ẋ(t))2dt]1/2.

3 Drift at Large Drag Pγ

In this sectionwe analyze the transport solutionswhen the dragPγ is large.According
to [13], if Pv � 1 we can prove that there are two periodic solutions of the particle
motion which are centered at the extrema of the velocity field ueq noted s0 for the
maximum and sm for the minimum. In the symmetric case (α = 0), by increasingPv ,
we find out a third solution noted sa bifurcated from either s0 or sm via a spontenaeous
symmetry breaking. Figure3 shows the time evolution of the three solutions s0, sm
and sa . As in [13], one of the three solutions are stable and attracts all of the dynamics
if α = 0. Therefore, the transport solutions can occur only if α �= 0.

3.1 Transitions to Transport Solutions

We follow the periodic branches of solutions s0 and sm by varying α and we fix
Pv = 1350 (Fig. 4). The branches s0 and sm annihilate in a saddle-node bifurcation
for α � 0.2807. A similar scenario arises starting from α = 1 for which the pumping
is zero: a pair of saddle orbits annihilate in a saddle-node for α � 0.8143. In the large
range [0.3; 0.8], no solution is found. The saddle-node bifurcations correspond to
the intermittent bifurcation type-I [21] as explained in [13]. The stroboscopic time
evolution of the particle position at every period (Fig. 5) displays a regular descending

Fig. 3 Time evolution of the
periodic solutions s0, sm and
sa for rp = 0.05,
α = 0,Pγ = 79 and
Pv = 676
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Fig. 4 Continuation of
1-periodic solutions for
rp = 0.05,
Pv = 1350,Pγ = 79 by
varying α. Plain [dashed]
line indicates stable
[unstable] orbit. Black dots
indicate pitchfork
bifurcations

Fig. 5 Discrete particle
positions xn = x(n), n ∈ N

near the onset. Different
values of α =
0.283; 0.285; 0.3; 0.4; 0.5,
other parameters as in Fig. 4

staircase for different values of α. The plateaux correspond to oscillations close to the
threshold. The plateaux become longer when α approaches the onset of bifurcations.
Such a dynamics is similar to the phase slip of a desynchronisation transition [13].
A well-known consequence is that the drift velocity vanishes as the square root of
the threshold distance: c ∝ √

α − αc,where αc is the threshold value [22].
According to the time integration, the drift velocity increases with α till α � 0.5

and remains almost constant till 0.6. By further increasing α the velocity decreases to
zero when α approaches the critical value of the second saddle node. Consequently,
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the optimal transport is about α = 0.5. In the next section, we fix α at 0.5 and we
seek the parameter domains of particle transport.

Note that according to the discussion in [13], the particle drift phenomenon is
part of a class of dissipative rocking ratchets for which the transport direction is
determined by the asymmetry [23, 24]. In the current problem, it means that the
direction of transport depends only on the sign of the α parameter, i.e. the kind of
pumping. The particle drifts to negative values of x if α > 0, otherwise the particle
drifts to positive values.

3.2 Domain of Intermittent Drift

We explore the transport domain by varying the parameters Pv and Pγ . We trace
the saddle-node loci of the periodic solutions, in the (Pγ ,Pv) plane (Fig. 6) which
represents the possible onset of transport. By varying Pγ the two saddle-nodes form
a vertical band which ends at a minimal value of Pγ except if Pv is about 1000 (see
Fig. 6). The transport arises in the region outside these bands and when the bands
do not overlap (gray region in Fig. 6). Therefore, the transport domain is roughly a
sector in the (Pv,Pγ ) plane. Then, the transport occurs ifPv is large enough, in other
words, if the pumping amplitude is large. There is additional tapered vertical spaces
for specific values of Pv for which transport may occur for large Pγ values. The
specific Pv values are only slightly affected by the particle size: the tapered region
occurs for Pv about 1500, 2200 and 2900 regardless of rp.

In general, the domains of intermittent drift are qualitatively similar by varying rp.
However, the existence domain differs quantitatively, which allows to find specific
parameters for which the drift arises while for the other particle size the dynamics
is still periodic and so bounded. Therefore, the transport only occurs for specific
particle sizes.

Fig. 6 Saddle-node loci of
1-periodic solutions in the
(Pγ ,Pv) plane for rp = 0.1.
The gray region displays the
domain of intermittent drift
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4 Transport for Moderate Pγ

In this section, we consider smaller values of Pγ . Thus, the particle damping is
smaller implying a larger desynchronization between fluidmovement and the particle
trajectory. This leads to more complex dynamics especially chaotic dynamics.

4.1 Synchronized Transport

Westudy the behavior of the intermittent drift whenPγ is decreasing.Weobserve that
the drift velocity c increases and the discrete dynamics presents shorter and shorter
plateaus as in Fig. 5. According to Fig. 7, the plateausmay disappear and the transport
occurs almost with a constant velocity. The representation of the dynamics in the
co-moving frame (c = −1) points out an intermittent and a regular behavior. Indeed,
the dynamics in the co-moving frame is due to the phase slip at a synchronization
transition for weakly nonlinear oscillator. It is a similar scenario as described in
Sect. 3 but in the co-moving frame. The threshold is a saddle-node from which a
pair of periodic solutions emerge. In the laboratory frame: these periodic solutions
correspond to a synchronized transport solution: after a entire number n of time
periods the particle moves by an entire number of spatial periodsm, then the velocity
is a rational c = m/n. This result is typical of phase locking (here is the c velocity)
of a forced non-linear oscillator [22]. In the example of Fig. 7, we have c = −1, but
we found also other velocities for other parameters: c = −1/2 and c = −2.

Another difference with the intermittent drift is that the synchronized transport
can be not an attractor especially if Pγ is not large. For instance, for Pγ = 7.46,
we plotted the bifurcation diagram of the synchronized transport by varying the Pv

parameter (Fig. 8). The transport emerges via a saddle-node bifurcation related to a

Fig. 7 [left] Discrete particle trajectory xn near the onset of the synchronized transport c = −1.
[right] The same discrete particle trajectory represented in the comoving frame xn + n. Parameters
are: rp = 0.1, α = 0.5,Pγ = 24.2,Pv = 2250
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Fig. 8 Continuation of synchronized transport c = −1 with Pγ = 7.46 and rp = 0.1. Plain
[dashed] lines indicate stable [unstable] solutions. Black dots indicate period-doubling bifurcations

synchronization phenomenon at about Pv = 1628. From this saddle, two branches
display zigzags with further saddle-nodes and period-doubling bifurcations. Due to
the period doubling, the branch changes its stability. According to Fig. 8, there exist
Pv ranges for which the transport c = −1 is a stable solution. From the period-
doubling bifurcations a cascade of period-doubling bifurcations occurs leading to a
chaotic dynamics. This dynamics being bounded in the co-moving frame the transport
velocity remains equal to c = −1. The scenario is similar to the one described in [13]
in this context and it involves universal results of (de)synchronization of periodic
oscillators by periodic external action [22]. As a result, in the range delimited by
period-doubling, there may exist chaotic transport solutions without locked velocity.
The transport velocity is then lower than in the synchronized transport case but the
transport does not vanish.

4.2 Chaotic Transitions

The synchronization transition at the saddle-node of Fig. 8 (Pv = 1628,Pγ = 7.46)
differs from the synchronization at Pγ = 24.1. The dynamics is no longer quasi-
periodic but chaotic. In [13], we found intermittency occuring at chaotic time inter-
vals: this behavior is typical of large forcing of an oscillator [22]. However, the
particle dynamics displayed in Fig. 10b does not corroborate the existence of inter-
mittency. We guess that the coexistence of attractors hides the intermittency.

Now, we detail the transitions from the periodic solutions to the synchronized
transport by increasing Pv when Pγ = 7.46. Indeed, we retrieve all the bifurca-
tions scenario explained in detail in [13]. The route to synchronized transport is
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Fig. 9 Route to synchronized transport: dynamics and transitions by increasing Pv for moderate
Pγ

Fig. 10 Chaotic dynamics rp = 0.1,Pγ = 7.46, α = 0.5 for two different values of Pv . a near
the crisis of the unbounded dynamics (Pv = 1458.3). b near the syncrhonization transition (Pv =
1467.5)

sketched in Fig. 9. The periodic solutions s0 or sm (Fig. 2), by increasing Pv , involve
a period-doubling cascade leading to a chaotic unbounded dynamics. A merging cri-
sismay appears and because of the spatial periodicity the strange attractor is no longer
bounded. If the problem does not have the parity symmetry (α �= 0), we expect a
preferential direction. In Fig. 10a, the dynamics of the particle near the onset displays
a drift to negative values in a intermittent manner. However, the intermittency is not
quasi-periodic but chaotic. By increasing further Pv , the drift velocity increases and
the dynamics is still chaotic (Fig. 10b).

4.3 Chaotic Drift

The previous transport solutions are obtained for α = 0.5 and we find only transport
to negative direction. A non-zero value of α is required for the existence of intermit-
tent and quasi-periodic drift. However, if Pγ is not large, unbounded dynamics and
also synchronized transport may exist for α = 0. The scenario from periodic solu-
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Fig. 11 Stroboscopic
particles positions xn at
entire times for radii
rp = 0.05 (black lines) and
rp = 0.1 (red lines) for
eleven initial conditions
(x0, v0) = (0, i/10) with
i = 0, 1, . . . , 10. Other
parameters are α =
0.1,Pγ = 6.7,Pv = 2000
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tion to the unbounded dynamics in Fig. 9 involves, this time, spontaneous symmetry
breaking. The chaotic dynamics has diffusion like behavior: no prefential direction
is observed. When there is a synchronized transport then the synchronized transport
solution in the opposite direction exists too. To have an effective transport, we need
to slightly breaks the parity symmetry. As explained in [19], the transport solutions
still exist but for slightly different parameter ranges when α is small. Therefore, we
expect there is parameter domains for which the transport direction depends on the
particle size.

We found forα = 0.1,Pγ = 6.7 andPv = 2000 different drift directions depend-
ing on the particle size: a net drift appears for rp = 0.1 and while, for rp = 0.05, a
slight drift to positive direction occurs (Fig. 11). The dynamics is chaotic and notably
it depends on the initial conditions. For rp = 0.05, the mean value over the initial
conditions of the velocity transport is slightly positive (c � 0.04). In addition, there is
a diffusive-like behavior too: the trajectory deviation increases with the time. Indeed,
the chaotic dynamics results from the competition between opposite transport solu-
tions c = ±1 which are unstable. For rp = 0.1 the diffuse behavior is weak and the
mean velocity remains close to c = −2/5. A possible explanation is that we are in
the vicinity of the onset of the synchronized transport c = −2/5. The multiplicity of
solutions makes it difficult to find this synchronized transport.

5 Concluding Remarks

We have shown using time-integration and bifurcation analysis that a selective trans-
port of micro-particles is possible depending on the particle size.

For large drag Pγ , the possible slow drift is quasi-periodic and determined by the
pumping asymmetry, i.e. the parameter α. Then, the drift requires a non zero value of
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α typically a value about 0.5. By decreasing the drag Pγ we found out synchronized
transport solutions. The velocity is then locked to a rational value. If α is about 0.5,
the transport velocity is negative. Therefore, forα about 0.5, we found either bounded
periodic solutions or transport in the negative direction. However, if the selectivity
is possible, we do not find a change of transport direction depending on the particle
size.

Such a propertywas found formoderate value ofPγ < 10 andα about 0.1. Indeed,
for this parameters values, the asymmetry of the problem is no longer required. We
retrieved the scenarios of the ratchet problem of a point-like particle. In particular, the
dynamics can be chaotic. We found parameters such as the direction of the parameter
drift depends on the particle size.

This theoretical study may have application of heavy particles in the air in micro-
gravity environment [25]. Indeed, the small value of Pγ requires a low density fluid
and the gravity could break the phenomena transport. Because of the chaotic dynam-
ics could be strongly influenced by the noise [20], a further work would be to study
the influence of noise on the transport selectivity.
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Application of New 4-D Chaotic Map for
Secure IP-Communications

Belqassim Bouteghrine, Camel Tanougast, and Said Sadoudi

Abstract Chaos systems have been studied for decades due to their applications
in several domains such as: economy, communications, cryptography, etc. In recent
years, designing and proposing new and higher dimensional chaotic systems become
an increased tendency in particular for chaotic systems applied in network security
domain. In this paper, we propose a new 4-dimension chaotic map with four (04)
control parameters and five (05) non-linear terms. Then, we investigate the chaotic
behaviors of the proposed system by considering the bifurcation and the Lyapunov
exponents (LE) theories. The proposed map is applied for generating cipher keys to
perform data encryption and secure an Internet Protocol (IP) communication.

Keywords Chaotic · Dimension · Bifurcation · Lyapunov exponents · Network
security · Encryption · IP-communication

1 Introduction

Chaos systems have been studied for decades due to their applications in several
domains such as: electronic circuits [1, 2], network security [3, 4], encryption domain
[5, 6] and in power control [7]. In one hand, chaotic systems’ properties have been
studied and investigated using the bifurcation and the Lyapunov exponents theories
[8, 9]. In the other hand, among the existing chaotic systems, researchers have inves-
tigated for new and more complex systems. By combining two coexisting attractors,
in [10] the evolution of a new 4-dimension chaotic system is presented and analyzed
by using bifurcation diagrams and Lyapunov exponents’ spectrum. In [11] authors
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proved that using only sine or cosine functions and modifying two (02) variables
in the function, n-scroll attractors can be generated. Moreover looking for higher
dimension, a new 4-D hyperchaotic continuous time system is introduced in [12]
and its main specifications are analyzed by means of equilibrium points, stabilities
and power spectrum. In [13] authors showed that, using 4-DLorenz system for secure
TCP communicationonl, consume a huge amount of ressources and computations.

Consequently, we present through this paper an optimized new 4-dimensional
discrete time system for encryption purpose. Then, the chaotic behavior of the pro-
posed map is investegated based on the bifurcation and Lyapunov exponent theories.
The rest of this paper is structured as follows. The 4-D map is introduced and the
chaotic behavior is investigated in Sect. 2. In Sect. 3, software implementation of
secure communication is illustrated using the proposed map. Finally, a conclusion is
given in Sect. 4.

2 The Proposed 4-D Map

2.1 System Description

The proposed 4-D map with (04) bifurcation parameters and (05) non-linear terms
is given as follows:

X (n + 1) = 1 − a ∗ X (n)2 + (Y (n) ∗ Z(n) ∗ P(n))

Y (n + 1) = 1 − b ∗ Y (n)2 + (X (n) ∗ Z(n) ∗ P(n))

Z(n + 1) = c ∗ (X (n) ∗ Y (n) ∗ P(n))

P(n + 1) = d ∗ X (n)

(1)

where X , Y , Z and P are the state variables and a, b, c, d are the control parameters
or the bifurcation parameters.

2.2 Chaos Behavior Investigation

Following the lines given in [12, 13], the chaotic behavior of the proposed system (1)
is investigated by considering mainly the bifurcation and the Lyapunov exponents
(LE) theories.
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2.2.1 Bifurcation Process

Bifurcation theory is concerned with changes in the solutions’ behavior of the pro-
posed system (1) as the parameters a, b, c and d are varying.

Figure 1 shows that chaotic behavior appears in several intervals of the param-
eters a ∈ [0.22, 1.00], b ∈ [0.90, 2.00], c ∈ [−0.95, 0.95] and for the values of the
parameter d ∈ [−1.05, 2.5].

2.2.2 LE Process

Computing the LE values gives a possibility not only to detect all resonances in the
response function, but also to detect the presence of chaos [14]. To search for strange
attractors or for chaos in the proposed model (1), we proceed as follows:

First, we select the values of the parameters a, b, c and d calculated in the previous
step (bifurcation process). Then we iterate equations (1) repeatedly until the Lya-
punov exponent becomes small or negative, in which case the solution is probably a
fixed point or limit cycle. In either event, we choose a different combination of a, b,
c, d and start over the process.

Fig. 1 The bifurcation graphs of the proposed 4-D map (a-b-c-d)



140 B. Bouteghrine et al.

Fig. 2 The LE graph of the proposed 4-D map

If, after a few thousand iterations, the solution is bounded (not enormous) and
the Lyapunov exponent is positive, then it is likely that you have found a strange
attractor that corresponds to the chosen values of a, b, c and d (Fig. 2).

As a final result, the chaotic behavior is obtained and illustrated by the trajectory
graphs and the signal graphs in Figs. 3 and 4, respectively.

3 Software Implementation of Secure Communication

Chaotic systems have been introduced in the network communication security
domain since that they are characterized by their sensitivity, unpredictability and
their widespread spectrum. Hence; we propose to introduce the 4-D chaos map for
securing Client-Server Communication. In the first order, we prepare the Client-
Server platform composed of two (02) client stations connected through an Ethernet
network to one (01) server machine (Fig. 5).

The proposed platform works considering the following steps:

– The server listens for client connections;
– The client initiates the connection;
– The connection is established;
– The key-Generator load the first random sequence and the next sample;
– The client uses the first key to encrypt and send data to the server;
– The server use the same key to decrypt and send confirmation of receiving data.

Finally, the client terminates the communication by closing the channel, and the
key-Generator module saves samples for next use with the server.
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Fig. 3 The trajectory graphs of the proposed 4-D map

In the second order, we develop a C# software application for exchanging securely
messages between connected computers (Fig. 6). The developed application includes
a chaos-based cryptosystem using the proposed 4-D map which is described by the
system (1); with a = 1.55; b = 1.7; c = 1.6; d = 0.40.

Considering that we are targeting to generate a 32-bit key using the chosen map,
then we have the key space of the cryptosystem 232∗(4+4) = 2256 which is considered
very good value in for encryption since that the required value should be more than
2100 to satisfy the encryption requirements for key space [16].

4 Conclusion

In recent years; researching and developping new and higher dimensional chaotic
systems become a rising trend in perticular for secure communication purposes.

In this paper, we propose new 4-Dimensional chaotic map in first order. Sec-
ondly, the chaotic behavior of the proposed system is investigated using an algo-
rithm based on the bifurcation and the Lyapunov exponents properties. Finally, we
apply the proposed system to generate random keys in order to perform a secure
IP-communication.
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Fig. 4 The signal graphs of the proposed 4-D map

Fig. 5 The platform test bench
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Fig. 6 The developped application’s interface

As future work, statistical and security tests of the proposed system will be con-
sidered as well as the hardware implementation of the proposed scheme.
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Liutex-Based Investigation of Vortex
in Multiphase Flow Past 2-D Cylinder
Using GPU-Accelerated LBM

Pengxin Cheng, Nan Gui, Xingtuan Yang, Jiyuan Tu, Shengyao Jiang,
and Haijun Jia

Abstract Multiphase flow past obstacles is extensively applied in industries, under
which condition the interplay of different phases associated with impact of solid
renders the flow characteristics and vortex field sophisticated. In this paper, we
employ the GPU-accelerated Lattice Boltzmann Method to study the process of
multiphase flow past a 2-D cylinder. The drag force components induced by contin-
uous and dispersed phase respectively as well as the total force are illustrated
and the underlying mechanisms are interpreted. The vortex-identification methods
based on traditional approaches and Liutex is compared. The relationship between
the extremums of disparate vortex identification variables and bubble deformation
process is investigated.

Keywords Flow past cylinder · Two-phase flow · Vortex identification · Liutex ·
Lattice Boltzmann Method (LBM)

1 Introduction

Flow past obstacles is a prevailing phenomenon widely encountered in various fields
of engineering. In the past decades, a multitude of experiments and simulation were
conducted concerning lift and drag force, flow-induced vibration, vortex separation,
etc. The multiphase flow past obstacles is of significant importance in practice, for
example the heat exchangers in power engineering.
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In view of the influence of bubbles on the solid, the involvement of bubbles
into the vortex as well as the impact of bubble migration on vortex shedding, the
interaction in two-phase cross flow between three phases is complexly coupled,
where the conventional computational fluid dynamics approaches may probably face
difficulties.

TheLatticeBoltzmannmethod (LBM) has enjoyed steady development in the past
years, especially in the domain of multiphase flow as well as flow in complicated
geometry. LBM provides a powerful new method with efficient algorithm and solid
physics background from the perspective of mesoscopic scale. Since computation is
mostly restricted to the local nodes, LBM is inherently suitable for implementation
on parallelized hardware such as GPU, which manifests an obvious advantage over
CPU in High Performance Computing. The LBM running on GPU could remarkably
accelerate calculation with reliable performance.

As a fundamental research target, the vortex is of crucial significance for an
intuitive understanding of turbulence. Up to now, there still exist plentiful ambiguous
issues waiting to be settled, for instance with no agreement on a widely-adopted
definition of vortex. Over the past decades, the vortex identification method has
evolved from the first generation intuitive method based on vorticity that fails to
distinguish rotational motion from a shear layer in viscous turbulent flow, to the
second generation that depend on other parameters based on eigenvalue including
�,λ2, λci , etc., which unfortunately rely on uncertain case-related threshold and
unable to evaluate the vortical strength to some degree.

Lately Liu and Gao et al. proposed the third generation Liutex method [1, 2],
which presents a precise perspective of mathematical vortex definition. In essence,
the vorticity could break down into the non-rotational portion, mainly shear, as well
as the rotational portion named Liutex, i.e. �ω = �S + �R. The magnitude of R is
utilized to capture the local rotational strength.Wang et al. [3] put forward an explicit
formula to determine it in a simple way. The direction of Liutex vector could be
determined by real eigenvector of velocity gradient tensor, which characterizes the
local rotational axis. With the aid of Liutex, ongoing research has been conducted
on various applications including vortex in swirling jets [4, 5] and the hairpin vortex
[6].

In this paper we will present a detailed investigation on the vortex and flow field
of two-phase flow past cylinder. Then we will analyze the alteration of multiphase
drag force corresponding to the movement of fluid. Afterwards we will discuss the
evolutionof the parameters during thebubble deformation for a deepunderstandingof
the relationshipwith vortex development. Finally, wewill investigate the relationship
between bubble deformation process and extremums of different variables including
Liutex.
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2 Models and Methods

2.1 Fundamentals of Lattice Boltzmann Method

Lattice Boltzmann Method could be derived from the Boltzmann equation that is
based on kinetic molecular dynamics.

∂ f

∂t
+ �ξ · ∇�x f + �a · ∇ξ f = �( f ),

where f (�x, �ξ, t) represents the particle distribution function indicating the density
of particles at position �x and time t with velocity �ξ . According to single-relaxation-
time approximation put forward byBhatnagar–Gross–Krook (BGK) [7], the collision
operator � f could be simplified as follows.

�( f ) = − f − feq
τ

By discretizing in the physical space, time and specially velocity space, one could
derive the discrete Lattice Boltzmann Equation (LBE).

fi
(�x + −→ci δt, t + δt

) − fi (�x, t) = (�(�x, t) + Fi (�x, t))δt

where −→ci denotes the discrete velocity direction, fi (�x, t) is the particle distribution
function along −→ci . DdQm is the widely adopted discretization model, where d and
m represent number of dimensions and velocities respectively. For 2-D simulation
D2Q9 is usually employed.

We could calculate the macroscopic parameters including density and velocity
via moments of discrete distribution function. under the limitation of small Mach
number, theLBGKmodel could recover continuity equation aswell asNavier–Stokes
equation at macroscopic scale using the multi-scale Chapman-Enskog expansion.

2.2 Multi-Component Multiphase Lattice Boltzmann
Methods

In terms of multiphase flow simulation, Shan and Chen [8] proposed a concise model
incorporating the Shan-Chen force,which does not require explicit interface tracking.
Among the multiphase model, the Shan-Chen model has desirable performance in
accuracy and efficiency, which is adopted in this paper.

Considering a multiphase fluid system consisting of n components, the multi-
component LBE is as follows,
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f σ
i (�x + �ciδt, t + δt) − f σ

i (�x, t)

= f eq(σ )

i − f σ
i

τσ
δt +

(
1 − δt

2τσ

)
Fσ
i (�x, t)

One could calculate the total interaction force exerting on the σ component can
by adding the force inflicted by all the components.

Fσ
SC(�x) = −ψσ (�x)

∑

σ ′
Gσσ ′

∑

i

wiψ
σ ′(�x + −→ci δt

)−→ci δt

where ψ(ρ) denotes pseudo-potential and G(�x, �x ′) represents Green function used
to evaluate the range and strength of interaction.

In this paper the two-component multiphase case is studied with no phase change,
i.e. n = 2 and Gσσ = 0. For repulsive force between disparate components Gσσ ′ is
positive. One could compute the overall density, average velocity as well as pressure
as follows.

ρ =
∑

σ

ρσ , �u =
∑

σ (ρσ �uσ /τσ )
∑

σ (ρσ /τσ )
, p = c2s (ρσ + ρσ ′) + c2s Gρσ ρσ ′

2.3 Bounce-Back Method and Momentum Exchange
Algorithm

In LBM the Bounce-Back method is the prevailing method to implement the no-
slip wall boundary condition, with advantage of simplicity in implementation and
guaranteedmass conservation. Traditional Bounce-Backmethod in the regular lattice
could merely approximate arbitrary boundaries with staircase shapes, which might
introduce large errors at cells nearby boundaries. While by increasing the mesh
resolution the error could be reduced and the results approaches precise solution.

In the context of Bounce-Back scheme, in this paper we adopt the Momentum
Exchange Algorithm (MEA) to calculate the force. The fundamental idea of MEA
is to firstly recognize the populations across boundary and then compute the net
momentum transfer including two items, i.e. the momentum transferred from fluid
to wall f ini as well as the momentum transported in the opposite direction f out

i
[9].

The drag forces, which are opposed to direction of flow, are evaluated using
MEA by the components of total force in the vertical direction. Because the force
is calculated based on the populations f , considering the multi-component case, we
could attain the force of the σ component from the populations of corresponding
component f σ .
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2.4 Parallel Implementation of LBM with GPU

In practice, a widespread option is to decompose the main procedure of computation
of LBE into two steps, i.e. collision and streaming.With the features of ‘non-linearity
is local’ in collision step and ‘non-locality is linear’ in streaming step, LBM is ideal
for computation on parallel architecture such as GPU. GPU is capable of executing a
large number of threads in parallel, which couldmake full use of thousands of cores in
GPU and notably accelerate the computation. The implementation of LBM on GPU
has aroused worldwide interest and delivered satisfactory acceleration performance.
In the present work, we adopt the open-source LBM software Sailfish for simulation
[10] and run calculation on GPU of NVIDIA Tesla K20.

2.5 Vortex Identification Method and Liutex

Several widely adopted identification parameters are chosen including the vorticity
ω [11], Liutex R [4], Q [12], Omega � [13, 14], Omega-Liutex �R [15],which are
defined by:

ω = ‖ω‖ = ‖∇ × u‖,
R = Rr =

(
〈ω, r〉 −

√
〈ω, r〉2 − 4λ2

ci

)
r,

Q = 0.5
(‖B‖2F − ‖A‖2F

)
,

Ω = ‖B‖2F
‖A‖2F+‖B‖2F = b

a+b ,

ΩR = β2

α2+β2+ε

(1)

The details of definiation could refer to prior work [16]. In this paper, we will
adopt these criteria for analysis of vortex in comparison.

3 Validation

In the present section, we firstly validate the LBM model against 2-D single-phase
flow past a cylinder to verify the precision of force evaluation. Then we conduct the
multi-component Laplace test to inspect the multiphase model.

For two-dimensional case, the drag and lift coefficient and the Strouhal number
are calculated as follows. The characteristic length equals the obstacle’s diameter.

CD = FD
1
2ρDu2

,CL = FL
1
2ρDu2

,St = f D

u
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Table 1 Validation of flow past a 2-D cylinder

Re 20 100

CD CL Cmax
D Cmax

L St

Present result 5.5499 0.0118 3.2877 0.9842 0.3062

Benchmark lower bound 5.57 0.0104 3.22 0.99 0.295

Benchmark upper bound 5.59 0.0110 3.24 1.01 0.305

(a) Density contour (b) Data fitting

Fig. 1 The validation of multi-component Laplace test

The comparison of simulation results with validation reference is displayed in
Table 1.As awhole, the results show in good agreementwith benchmark inSchaefer’s
paper [17].

As for the Laplace test, we initialize a circular droplet with radius R of one phase
that is surrounded by the another phase. As shown in Fig. 1, the relationship between
�p and 1/R is linear, in desirable conformity with Laplace Law, i.e. �p = σ/R.

We completed the validation of two-phasemodel in previous paper [18] and tested
the performance of LBM on GPU in another prior paper [19]. On the whole, we have
comprehensively validated the LBM model, GPU acceleration performance as well
as two-phase scheme.

4 Results and Discussion

4.1 Numerical Setup

The discretized flow domain consists of 256 × 1024 mesh grids. A two-dimensional
cylinder with the diameter of 100 nodes is set in the center of channel, which is
called cylinder later. At the upper side of channel, a bubble of the dispersed phase
is initialized with the diameter equal to 100 nodes, which is referred to as bubble in
the subsequent sections. The remaining field is occupied by continuous phase. It is
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noteworthy that the density contour represents that of continuous phase. Referring
to prior LBM research [20], G is determined via Gρ = 1.8 and same viscosities are
set for the two phases. The initial velocity of the bubble and the force is downward.

4.2 The Evolution of Two-Phase Flow

As shown in Fig. 2, the typical cases during evolution of density contour are selected.
The bubble moves downwards to the cylinder as a consequence of initial velocity and
imposed force. As the bubble approaches the cylinder, the hindrance from cylinder
flattens the bottom of bubble (at T = 6300). Subsequently it is split by the solid (at T
= 7600) and stretched a great deal (at T = 10,400) Subsequently it decomposes into
several daughter bubbles when the filament turns unstable (at T = 10,800). The four
small bubbles move along the periphery of cylinder and successively detach from
the solid (at T = 12,300). Influenced by the vortex field behind the obstacle, bubbles
move towards center-line and become closer (at T = 14,000). They coalesce in pairs
for the first time (at T = 15,600) and eventually merge into one large bubble (at T =
18,100).

Fig. 2 The contour of density
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Fig. 3 The evolution of
component and total drag
force

4.3 The Evolution of Drag Force

The evolution of drag force is shown in Fig. 3. With the bubble approaching the
cylinder, the drag force component of continuous phase Fc

D increment steadily while
that of the disperse phase Fd

D declines inversely, leading to the increase of total drag
force Ftotal

D . This variation results from the compression of the fluid between solid
and bubble due to the motion of the bubble. This trend continues until Fc

D attains its
maximum at T = 7625 and Fd

D arrives at the minimum at T = 7689, when the bubble
surrounds nearly the upper half part of cylinder. Then the bubble covers the majority
of cylinder periphery and the tendency of the curves converts into the opposite,
namely Fc

D declines till its minimum at T = 10,751 and Fd
D increases conversely till

it attains maximum at T = 10,766. Ftotal
D plunges and attained its minimum at T =

10,741. With the portion of bubble coverage of cylinder periphery increasing, Fd
D

consequently enhances and Fc
D reduces, until the bubble is over stretched and break

up into pieces. Therewith the continuous phase regains the contact with cylinder and
Fc
D boosts, arriving at a local maximum at T = 11,633. In contrast Fd

D drops towards
a local minimum at T = 11,617. Afterwards the curves gradually flatten out.

4.4 The Evolution of R, S, ω

According to the relation of �R + �S = �ω, the evolution of vorticity ω and R, S are
shown in Figs. 4 and 5.

The evolution of breakup process is shown in Fig. 4. As the bubble brings into
contact with solid and deformation influences the distribution of R, there exist zones
with negative R in the center and zones with positive R on the lateral at T = 7600.
When the break-up of bubble occurs at T = 10,800, magnitude of Liutex near the
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Fig. 4 The evolution of ω, R, S of breakup process
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Fig. 5 The evolution of ω, R, S of coalescence process
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position of fracture is relatively high in positive or negative value. There exist zones
with positive R between and ahead of the stretched bubbles, as well as zones with
negative R laterally adjacent to them. As the bubbles evolve into a nearly round shape
due to surface tension at T = 12,300, there exist zones with negative R inside the
bubbles.

As for the evolution of coalescence process in Fig. 5, when the small bubbles
merge together, the distortion results in zones with high level of R both around and
inside the bubble. Taking the coalescence of two bubbles in the right as an example,
at T = 15,500 there appear negative Liutex zone near the line of bubble contact.
At T = 15,600, there are positive Liutex zone inside the bubble and alternatively
positive and negative Liutex outside the bubble. At T = 15,700, the negative Liutex
zones have disappeared and the positive zones also shrink in area and decrease in
magnitude.

On the whole, S and � show similarity with one another in magnitudes and
distributions. Shear deformation plays the dominating role on the vortex development
characteristics owing to the relatively low velocity. The influence of variations of R
is fairly secondary. However, the sheer rotational motion indicated by R also shows
conspicuous features dominated by the evolvement of bubbles during deformation,
breakup as well as coalescence.

4.5 The Evolution of Rmax and Smax

The evolution of statistics of primary variables of the dispersed and continuous phases
will be examined. The blue and red marks in the figures denote the local minimums
and maximums.

Firstly, the maximum value of R (namely Rmax ) is displayed in Fig. 6. Note
that data of Rmax

d is merely selected from dispersed phase, i.e. the interior of the
bubble. There exist three distinct peaks at T = 10,830, T = 15,480 and T = 18,050.
Data of Rmax

c is sampled from continuous phase, i.e. the exterior of the bubble. The
remarkable peaks locate at T = 10,770, T = 15,460 and T = 18,030.

For the continuous phase, the distinct increase of Rmax
c at about T = 10770 corre-

sponds to the very moment the bubble starts to split into daughter bubbles, whereas
the peak of Rmax

c at T = 15460 is close to the moment when daughter bubbles merge
together for the first time. Similarly, the peak of Rmax

c at T = 18030 is adjacent to the
moment when bubbles eventually merge into a large one. For the dispersed phase,
the evident peaks of Rmax

d coincide with that of Rmax
c correspondingly. The slight

differences of peak times between Rmax
c and Rmax

d results from the small differences
between rotational movement of vortices in the two phases.

Moreover, as shown in the figures, the peaks of Rmax
d are later than that of Rmax

c .
One may deduce that the vortical motion could possibly be spread from the exterior
towards the interior of the bubble, that is to say the external rotational or shearmotions
is likely to induce the vortex inside the bubble.
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Fig. 6 The evolution of Rmax and Smax

Regarding the evolution of Smax
d for the dispersed phase, the curve manifests three

remarkable peaks at T = 11,010, T = 15,500 and T = 18,080, with the location
approximate to that in figure of Rmax

d . As to Smax
c for the continuous phase, a distinct

peak locates at T = 11,000 and a minor peak at T = 18,050.
Comparing subfigures in Fig. 6, it is also clear that the peaks of Rmax are close to

that of Smax . In terms of traditional applications, we always use vorticity to identify
the vortex. In the present case it ismainly dominated by shear instead of pure rotation.
However, like in Fig. 6, since the peaks of real vortex indicated by Rmax is adjacent
to the peaks of shear Smax , using conventional vorticity identification methods could
be acceptable in some degree when one doesn’t need the most precise description of
vortex.

However, the first peak of Rmax is closer to the moment of bubble break-up than
that of Smax . Besides there is no peak near the first coalescence of bubbles in Figs.
(6d). Therefore, it is mostly encouraged to adopt R to evaluate the pure rotational
vortex in two-phase flows, no matter for vortices in continuous phase or in dispersed
phase.
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Fig. 7 The evolution of Qmax

4.6 The Evolution of Qmax

Figure 7 shows the evolution of Qmax . Respecting the maximum of Qmax
d , there exist

three distinct peaks located at T = 10,830 and the other two at T = 15,480 and T
= 18,050. Comparing with prior figures, these peaks are on the location close to the
bubble coalescence or break-up. In subfigure of Qmax

c , two peaks lie at T = 15,550
and T = 18,030, while the curve reaches minimum at T = 10,880 and experiences
drastic fluctuations.

In summary, Qmax could manifest the multiphase vortical motion, which is a
usable indicator for rotational motion of fluids as well as shape deformation of
bubbles to some extent, yet not as good as Rmax .

4.7 The Evolution of Ωave and Ωave
R

The evolution of�ave and�ave
R are displayed in Fig. 8. Concerning�ave

d of dispersed
phase, it first climbs to a maximum at T = 6180. Subsequently it falls back yet rises
again and exhibits dramatic fluctuations afterwards. The variation of�ave

d apparently
signifies the variation of vortical motion in the bubbles, which is more smoothly and
varied more slowly than that of �ave

c . As a whole, neither �ave of the dispersed
phase nor that of the continuous phase could well indicate the instantaneous change
of vortex motion of two-phases, inferior to using Rmax .

The subfigures show the variations of �ave
R for respective phases. Compared with

�ave, the variation of �ave
R shows much distinct characteristics. In other words, �ave

R
is always fluctuating more intermittently and obviously than �ave. In addition, the
peaks of �ave

R is adjacent to that of previous vortex identification parameters, e.g.
Rmax or Qmax , such as the peaks at T = 11,050, T = 15,920 and T = 18,470.

Referring to Eq. (1), the mechanism may result from the definition of parame-
ters. Generally speaking, in terms of defining mere rotational motion, α and β are
preferable to A and B. α and β are adopted to define the absolute rotational vortical
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Fig. 8 The evolution of �ave and �ave
R

motion, namely R. In contrast A and B are unable to represent the pure rotational
motion characteristics. Consequently, using α and β, thus �ave

R , is more suitable to
evaluate the magnitude of rotational motion.

5 Conclusions

In this work, we presented the features of drag force and vortex of two-phase flow
past a two-dimensional cylinder utilizing Liutex-based analysis viamulti-component
multiphase LBM model on GPU computation. The following are the main findings
in brief:

(1) Regarding the evolution feature, the bubble could be stretched and deformed till
the final breakup during the flow past the cylinder. Subsequently, the daughter
bubbles might gradually merge in the downstream to constitute bigger ones
successively.

(2) Affected by the bubble behavior, the components of drag force induced by the
continuous phase and dispersed phase show the opposite trend. Themechanism
of variation in force components results from the change of density and velocity
of the two phases.
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(3) The vortex identification method Liutex R successfully characterizes sheer
rotation of fluids in two-phase flow, though compared to the shear itsmagnitude
is relatively small.

(4) Via averaging over each phase fields, �R manifests evident superiority
compared with �, because �R is not obscured by averaging procedure, while
�ave fails to show such type of characteristics.
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Generalised Univariable Fractal
Interpolation Functions

Vasileios Drakopoulos, Du Yong Pak, and SongIl Ri

Abstract We show how to construct a generalised iterated function system whose
graph is the attractor, a fractal set, of some continuous function which interpolates
a given set of data. Moreover, Rakotch contractions and vertical scaling factors as
(continuous) ‘contraction functions’ are used in order to obtain generalised fractal
interpolation functions with extensive practical applications, including data fitting
and approximation of functions. A special generalised fractal interpolation func-
tion is introduced as an explicit illustrative example to show the effectiveness of
the proposed method as compared to other existing methods. In particular, fractal
interpolation functions which are widely presented in the literature can be obtained
as particular cases of our construction.

Keywords Iterated function system (IFS) · Fractal interpolation function (FIF) ·
Rakotch contraction · Function vertical scaling factors

Mathematics Subject Classification: 37C45 · 28A80 · 37L30

1 Introduction

The concept of fractal interpolation functions (FIFs) was introduced by Barnsley
[1] on the basis of the theory of iterated function systems (IFSs). Barnsley defined
a fractal interpolation function (FIF) in 1986 and presented a construction of frac-
tal functions by fractal interpolation. In the developments of theory of FIFs, many
researchers have generalized the notion of FIFs in different ways. The fractal inter-
polation functions have been discussed in detail in the literature (see [1–4, 6–11]).
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Fractal interpolation functions have become a powerful tool for modeling many nat-
ural objects and have wide applications in mathematics and several other areas of
applied sciences. For example, the fractal interpolation functions have been widely
used in approximation theory, image compression, computer graphics and modeling
of natural functions (or surfaces) such as rocks, metals, terrains and so on. As we
know, a fractal interpolation function is generated by an IFS that consists of a finite
set of some continuous functions on a complete metric space. Vertical scaling factors
in the continuous functions have a decisive influence on the shape of the correspond-
ing FIF because the vertical scaling factors uniquely determine the corresponding
FIF provided that the interpolation points are prescribed in advance (see [14]).

How to construct fractal functions (rough functions) and analyse their complexity
has become one of the most important topics in fractals (see [11]). The graph of a
fractal interpolation function is an attractor of some iterated function system (see [1]).
The concept of iterated function system was introduced as a natural generalization
of the well-known Banach contraction principle (see [1], see [14], cf. [11]). Iterated
function systems have become powerful tools for construction and analysis of new
fractal interpolation functions. In order to ensure more flexibility in modeling natural
shapes and phenomena or in image processing, researchers proposed many types of
fractal interpolation functions by using iterated function systems (see [1, 2, 11, 14]).

The connectivity of attractors of iterated function systems is very important in the
construction of fractal interpolation functions. The graphs of linear one variable frac-
tal interpolation functions are always continuous functions. In usual approaches, the
existence of linear FIFs follows fromBanach’s fixed point theorem (see [1]). Further-
more, in almost all the papers, the various types of FIFs are limited within the cases
of constant vertical scaling factors and Banach’s fixed point theorem. In 2011, to get
the FIFs with more flexibility and diversity in a more general sense, Wang and Fan
introduced a natural generalization of Barnsley’s affine fractal interpolation function
by using special function vertical scaling factors and Banach’s fixed point theorem
(see [5]). In order to construct new iterated function systems and fractal interpolation
functions, one can use the well-known fixed point results obtained in the fixed point
theory (see [4, 10, 11, 13]). As far as we know, the first significant generalization of
Banach’s principle was obtained by Rakotch in 1962 (see [6], p. 124).

In 2017, Ri presented a method to generate generalized fractal interpolation func-
tions by using the Rakotch fixed point theorem [8] instead of the Banach fixed point
theorem in certain concrete case (see [11]). However, results of [11] do not directly
apply to the general case which often occurs in practical applications. In fact, in
general case, the methods of proof of results in [11] fail because generalized trans-
formations can involve special function vertical scaling factors that are not constant
vertical scaling factors. The results of [5] and [11] inspire us to find possible vertical
scaling factors (not necessarily constant vertical scaling factors) and contractions
(not necessarily Banach contractions) for the existence of generalized FIFs. In this
paper, in order to obtain generalized fractal interpolation functions, we use Rakotch
contractions and special function vertical scaling factors. Dealing with generalized
fractal interpolation functions is better than the one provided by [11]. In particular,
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we give an explicit illustrative example to demonstrate the effectiveness of obtained
results.

This paper is organized as follows. In Sect. 2 we recall some results needed in
constructing general FIFs. In Sect. 3 we introduce a new type of iterated function
systems that will be used in our discussion for a special class of FIFs with function
vertical scaling factors. In Sect. 4 we give a generalized FIF with special function
vertical scaling factors as the fixed point of certain Read-Bajraktarević operator. In
Sect. 5 we ensure that a generalized iterated function systems with special function
vertical scaling factors has a unique invariant set. In Sect. 6 we give an explicit
illustrative example to demonstrate the effectiveness of the preceding theory. Finally,
in Sect. 7 we draw our conclusions.

2 Preparatory Facts

In this section, we describe some basic notions and theorems on fixed point theory.
The following results will be the key in the proof of our main results.

Definition 1 (see [13], p. 100, see [8], see [6], p. 144) (1) If for some function
ϕ : (0,+∞) → (0,+∞) and a self-map f of a metric space (X, d), we have

∀x,y∈X d( f (x), f (y)) ≤ ϕ(d(x, y)),

then we say that f is a ϕ-contraction. (2) If f is a ϕ-contraction for some function
ϕ : (0,+∞) → (0,+∞) such that for any t > 0, α(t) := ϕ(t)

t < 1 and the func-

tion (0,+∞) � t → ϕ(t)
t is non-increasing, then we call such a function a Rakotch

contraction.

Remark 1 (see [6], p. 144, diagram) Each Banach contraction is a Rakotch con-
traction, since a map f : X → X is a Banach contraction if it is a ϕ-contraction for
a function ϕ(t) = αt , for some 0 ≤ α < 1.

Theorem 1 (see [8], cf. [13], cf. [4], cf. [6]) (1) Let X be a complete metric space
and f : X → X be a Rakotch contraction. Then there is a unique fixed point k ∈ X
of f , and for each x ∈ X,

lim
n→+∞ f n(x) = k.

(2) Let X be a complete metric space and {X; f1, . . . , fN } be an iterated function
system consisting of Rakotch contractions. Then there is a unique non-empty compact
set K ⊂ X such that

K =
N⋃

i=1

fi (K ).

Now we describe some basic results on fractal interpolation theory. Let N be
a positive integer greater than one and I := [x0, xN ] ⊂ R. Let a set of data points
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{(xi , yi ) ∈ I × R : i = 0, 1, 2, . . . , N } be given, where {x0, x1, . . . , xN } is a parti-
tion of I (i.e., x0 < x1 < x2 < · · · < xN ) and y0, y1, . . . , yN are given real numbers.
Set Ii := [xi−1, xi ] ⊂ I and let li : I → Ii for i = 1, 2, . . . , N be contractive home-
omorphisms such that

li (x0) = xi−1, li (xN ) = xi ,

|li (x ′) − li (x
′′)| ≤ λ|x ′ − x ′′| whenever x ′, x ′′ ∈ I

for some 0 ≤ λ < 1. Furthermore, letmappings Fi : I × R → R be continuouswith,
for some k ≥ 0 and 0 ≤ α < 1,

Fi (x0, y0) = yi−1, Fi (xN , yN ) = yi .

|Fi (x ′, y′) − Fi (x
′′, y′′)| ≤ k|x ′ − x ′′| + α|y′ − y′′|

for all x ′, x ′′ ∈ I , y′, y′′ ∈ R, and i = 1, 2, . . . , N .
Now define functions wi : I × R → I × R for i = 1, 2, . . . , N by

wi := (li (x), Fi (x, y)).

Barnsley presented the following famous result.

Theorem 2 (cf. [1], p. 306) The IFS{I × R, wi : i = 1, 2, . . . , N } defined above
has a unique nonempty compact set G ⊂ R

2 such that

G =
N⋃

i=1

wi (G).

Then G is the graph of a continuous function f : I → R which obeys

f (xi ) = yi f or i = 0, 1, . . . , N .

The function f whose graph is the attractor of an IFS is called a fractal interpola-
tion function , or FIF for short, corresponding to the data {(xi , yi ) : i = 0, 1, . . . , N }
(cf. [1], p. 306).

Remark 2 In accordance with the idea of Barnsley, researchers proposed many
types of FIFs. In [1, 11, 14],

li (x) := xi − xi−1

xN − x0
x + xN xi−1 − x0xi

xN − x0
.

(1) In [1, 2, 14], the maps wi (x, y) are chosen so that functions Fi (x, y) are Banach
contractions with respect to the second variable.
In the affine fractal interpolation function (cf. [1], p. 308),
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Fi (x, y) := ci x + di y + fi ,

where |di | < 1, and in the fractal interpolation function with function vertical scaling
factors (see [5], see [14], p. 3–4, cf. [2]),

Fi (x, y) := di (x)y + qi (x),

where supx∈I |di (x)| < 1. (2) In [11], one type of fractal interpolation functions
is considered, where the maps wi (x, y) are chosen so that functions Fi (x, y) are
Rakotch contractions with respect to the second variable. In the nonlinear fractal
interpolation function (see [11]),

Fi (x, y) := ci x + si (y) + fi ,

where si is a Rakotch contraction.

3 A Certain Generalised IFS

In this section, we introduce a new type of IFSs that will be used in our discussion for
a special class of FIFs with function vertical scaling factors. Barnsley’s functional
condition for existence of a fractal interpolation function can be replaced by another
functional conditions (see [11]). In order to obtain a new generalized fractal inter-
polation function, we use Rakotch contractions and special function vertical scaling
factors in the construction of a generalized IFS (cf. [11], cf. [14]).

Let N be a positive integer greater than one and I := [x0, xN ] ⊂ R. We will
work in the complete metric space I × R, with the Euclidean metric d0. Let a set of
data points {(xi , yi ) ∈ I × R : i = 0, 1, 2, . . . , N } be given, where x0 < x1 < x2 <

· · · < xN and y0, y1, y2, . . . , yN ∈ R. Set Ii := [xi−1, xi ] ⊂ I and define contractive
homeomorphisms li : I → Ii by

li (x) := ai x + ei ,

where for all i = 1, 2, . . . , N , the real numbers ai , bi are chosen to ensure that
li (I ) = Ii . Let ϕ : (0,+∞) → (0,+∞) be a non-decreasing continuous function
such that for any t > 0, α(t) := ϕ(t)

t < 1 and the function (0,+∞) � t → ϕ(t)
t is

non-increasing. Let di : I → R be a continuously differentiable function such that

max
x∈I |di (x)| ≤ 1.

Then by the differential mean value theorem and the existence theorem of maximum
value and minimum value of continuous function, we can see that for some Ldi > 0,
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|di (x ′) − di (x
′′)| ≤ Ldi |x ′ − x ′′|,

where x ′, x ′′ ∈ I . Hence di is Lipschitz function defined on I satisfying
maxx∈I |di (x)| ≤ 1. Consider an IFS of the form {I × R;wi , i = 1, 2, . . . , N } in
which the maps are generalized transformations of the special structure

wi

(
x
y

)
=

(
li (x)

Fi (x, y)

)
=

(
ai x + ei

ci x + di (x)si (y) + fi

)
,

where the transformations are constrained by the data according to

wi

(
x0
y0

)
=

(
xi−1

yi−1

)
, wi

(
xN
yN

)
=

(
xi
yi

)

for i = 1, 2, . . . , N , and si are some Rakotch contractions (with the same function
ϕ). Then for all (x, y′), (x, y′′) ∈ I × R,

|Fi (x, y′) − Fi (x, y
′′)| = |di (x)||si (y′) − si (y

′′)|
≤ |si (y′) − si (y

′′)| ≤ ϕ(|y′ − y′′|).

That is, each wi (x, y) is chosen so that function Fi (x, y) is Rakotch contraction
with respect to the second variable. Also, analytically, we obtain (compare with ai ,
ei , ci , fi of [11]).

ai = xi − xi−1

xN − x0
,

ei = xN xi−1 − x0xi
xN − x0

ci = yi − yi−1

xN − x0
− di (xN )si (yN ) − di (x0)si (y0)

xN − x0
,

fi = xN yi−1 − x0yi
xN − x0

− xNdi (x0)si (y0) − x0di (xN )si (yN )

xN − x0
.

Remark 3 (1) Our bivariable function di (x)si (y) is a generalization of bivariable
function di (x)y in the fractal interpolation functionwith function vertical scaling fac-
tors (see [5], see [14], p. 3–4, cf. [2]). In fact, in the casewhen 0 < maxx∈I |di (x)| < 1
(see [14], p. 3), obviously,

di (x)y = di (x)

maxx∈I |di (x)| max
x∈I |di (x)|y.

Let si (y) := maxx∈I |di (x)|y and d∗
i (x) := di (x)

maxx∈I |di (x)| . Then di (x)y = d∗
i (x)si (y),

maxx∈I |d∗
i (x)| = 1 and si is a Banach (or Rakotch) contraction.



Generalised Univariable Fractal Interpolation Functions 167

(2) Our functional condition maxx∈I |di (x)| ≤ 1 is the essential condition to show
the difference between Banach contractibility of Fi (·, y) and Rakotch contractibility
of Fi (·, y) (compare with [14]). In fact, since ϕ(t) < t for any t > 0,

|Fi (x, y′) − Fi (x, y
′′)| = |di (x)||si (y′) − si (y

′′)|
≤ max

x∈I |di (x)||si (y′) − si (y
′′)|

≤ max
x∈I |di (x)|ϕ(|y′ − y′′|)

≤ max
x∈I |di (x)||y′ − y′′|,

where (x, y′), (x, y′′) ∈ R
2.

Hence, if maxx∈I |di (x)| < 1, as can be seen, notwithstanding each si is a Rakotch
contraction that is not Banach contraction, each Fi is Banach contractionwith respect
to the second variable because

|Fi (x, y′) − Fi (x, y
′′)| ≤ max

x∈I |di (x)||y′ − y′′|.

On the other hand, if maxx∈I |di (x)| = 1, then we can conclude that each Fi is
Rakotch contraction (that is not Banach contraction) with respect to the second
variable whenever each si is a Rakotch contraction (that is not Banach contraction)
because

|Fi (x, y′) − Fi (x, y
′′)| ≤ max

x∈I |di (x)|ϕ(|y′ − y′′|).

4 Fixed Point of a Certain Operator

In this section, we introduce a generalized FIF with as continuous ‘contraction func-
tion’ vertical scaling factors as the fixed point of certain Read-Bajraktarević operator
(see [7]). By using Rakotch fixed point theorem, we show that the graph of a gen-
eralized FIF with as continuous ‘contraction function’ vertical scaling factors is the
invariant set of some generalized IFS.

Denote by C(I ) the set of continuous functions f : I = [x0, xN ] → R. Let
C∗(I ) ⊂ C(I ) denote the set of continuous functions f : I → R such that f (x0) =
y0 and f (xN ) = yN , that is,

C∗(I ) := { f ∈ C(I ) : f (x0) = y0, f (xN ) = yN }.

LetC∗∗(I ) ⊂ C∗(I ) ⊂ C(I ) be the set of continuous functions that pass through the
given data points {(xi , yi ) ∈ I × R : i = 0, 1, 2, . . . , N }, that is,

C∗∗(I ) := { f ∈ C∗(I ) : f (xi ) = yi , i = 0, 1, . . . , N }.
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Define a metric dC(I ) on C(I ) by

dC(I )(g, h) := max
x∈[x0,xN ] |g(x) − h(x)|

for all g, h ∈ C(I ). Then (C(I ), dC(I )), (C∗(I ), dC(I )) and (C∗∗(I ), dC(I )) are com-
plete metric spaces. For all f ∈ C∗(I ), define a mapping T : C∗(I ) → C(I ) by

T f (x) : = Fi (l
−1
i (x), f (l−1

i (x)))

= ci l
−1
i (x) + di (l

−1
i (x))si ( f (l

−1
i (x))) + fi

for x ∈ [xi−1, xi ] and i = 1, 2, . . . , N . Obviously, T is a form of Read-Bajraktarević
operator as defined in [7].

Lemma 1 T f ∈ C∗∗(I ) for all f ∈ C∗(I ). That is, T : C∗(I ) → C∗∗(I ) and T n :
C∗∗(I ) → C∗∗(I ) for all n ≥ 2.

Proof Since

wi

(
x0
y0

)
=

(
xi−1

yi−1

)
, wi

(
xN
yN

)
=

(
xi
yi

)

for i = 1, 2, . . . , N , we obtain li (x0) = xi−1, li (xN ) = xi , l
−1
i (xi−1) = x0, l

−1
i (xi ) =

xN , Fi (x0, y0) = yi−1 and Fi (xN , yN ) = yi for i = 1, 2, . . . , N . Hence if xi ∈
[xi−1, xi ] for i = 1, 2, . . . , N , then since f ∈ C∗(I ), we obtain

T f (xi ) = Fi (l
−1
i (xi ), f (l−1

i (xi )))

= ci l
−1
i (xi ) + di (l

−1
i (xi ))si ( f (l

−1
i (xi ))) + fi

= ci xN + di (xN )si ( f (xN )) + fi
= Fi (xN , f (xN )) = Fi (xN , yN ) = yi

and if xi ∈ [xi , xi+1] for i = 0, 1, 2, . . . , N − 1, then since f ∈ C∗(I ), we obtain

T f (xi ) = Fi+1(l
−1
i+1(xi ), f (l−1

i+1(xi )))

= ci+1l
−1
i+1(xi ) + di+1(l

−1
i+1(xi ))si+1( f (l

−1
i+1(xi ))) + fi+1

= ci+1x0 + di+1(x0)si+1( f (x0)) + fi+1

= Fi+1(x0, f (x0)) = Fi+1(x0, y0) = yi .

So f (xi ) = yi for all i = 0, 1, 2, . . . , N and T f (x) is continuous at each of the points
x1, x2, . . . , xN−1. By definition of themapping T , T f (x) is continuous on the interval
[xi−1, xi ] for all i = 1, 2, . . . , N . Hence T f ∈ C∗∗(I ) and T n : C∗∗(I ) → C∗∗(I )
for all n ≥ 2. �

Using Lemma 1 and the technique introduced in [11], we can obtain the following
Theorem that will be used in our discussion for a special class of FIFs with function
vertical scaling factors.
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Theorem 3 Let N be a positive integer greater than one. Let {I × R;wi , i =
1, 2, . . . , N } denote the IFS defined above, associated with the set of data

{(xi , yi ) : i = 0, 1, . . . , N }.

Then the operator T is a Rakotch contraction (considered as a map T : C∗(I ) →
C∗(I )). Hence there is a unique continuous function f : I → Rwhich is a fixed point
of T . In particular, f (xi ) = yi for i = 0, 1, . . . , N. Moreover, the graph G of f is
invariant with respect to {I × R;w1, . . . , wN }, i.e.,

G =
N⋃

i=1

wi (G).

Proof Since maxx∈I |di (x)| ≤ 1, we obtain that for all g, h ∈ C∗(I ) ⊂ C(I ),

dC(I )(Tg, Th) = max
x∈[x0,xN ] |Tg(x) − Th(x)|

= max
i=1,2,...,N

max
x∈[xi−1,xi ]

|Tg(x) − Th(x)|

= max
i=1,2,...,N

max
x∈[xi−1,xi ]

|ci l−1
i (x) + di (l

−1
i (x))si (g(l

−1
i (x))) + fi

− ci l
−1
i (x) + di (l

−1
i (x))si (h(l−1

i (x))) + fi |
= max

i=1,2,...,N
max

x∈[xi−1,xi ]
|di (l−1

i (x))si (g(l
−1
i (x))) − di (l

−1
i (x))si (h(l−1

i (x)))|

≤ max
i=1,2,...,N

max
x∈[xi−1,xi ]

|si (g(l−1
i (x))) − si (h(l−1

i (x)))|

≤ max
i=1,2,...,N

sup
x∈[xi−1,xi ]

ϕ(|g(l−1
i (x)) − h(l−1

i (x))|),

where ϕ : (0,+∞) → (0,+∞) is some non-decreasing function such that ϕ(t) < t
for t > 0 and t → ϕ(t)

t is non-increasing. Since ϕ : (0,+∞) → (0,+∞) is non-
decreasing continuous function and l−1

i : [xi−1, xi ] → [x0, xN ] for all
i = 1, 2, . . . , N , we obtain that for i0 ∈ {1, 2, . . . , N } and x0 ∈ [xi0−1, xi0 ],

ϕ(|g(l−1
i0

(x0)) − h(l−1
i0

(x0))|) ≤ϕ( max
x∈[xi0−1,xi0 ] |g(l

−1
i0

(x)) − h(l−1
i0

(x))|)
≤ϕ( max

x∈[x0,xN ] |g(x) − h(x)|)
=ϕ(dC(I )(g, h)).

Since x0 was arbitrary,

sup
x∈[xi0−1,xi0 ]

ϕ(|g(l−1
i0

(x) − h(l−1
i0

(x))|) ≤ϕ(dC(I )(g, h))
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and since i0 was arbitrary,

max
i=1,2,...,N

sup
x∈[xi−1,xi ]

ϕ(|g(l−1
i (x) − h(l−1

i (x))|) ≤ϕ(dC(I )(g, h)).

Hence we obtain

dC(I )(Tg, Th) ≤ max
i=1,2,...,N

sup
x∈[xi−1,xi ]

ϕ(|g(l−1
i (x) − h(l−1

i (x))|)

≤ϕ(dC(I )(g, h)) = ϕ(dC(I )(g, h)).

So we conclude that T : C∗(I ) → C∗∗(I ) ⊂ C∗(I ) is a same function ϕ) on the
complete metric space (C∗(I ), dC(I )). Theorem 1 (1) implies that T possesses a
unique fixed point in C∗(I ). That is, there exists a continuous function f ∈ C∗(I )
such that for all x ∈ [x0, xN ],

T f (x) = f (x).

Since T : C∗(I ) → C∗∗(I ) (by Lemma 1), we have f = T f ∈ C∗∗(I ).That is, there
is a continuous function f that passes through the given data points {(xi , yi ) ∈
I × R : i = 0, 1, 2, . . . , N }. Let G denote the graph of f ∈ C∗∗(I ), that is, G :=
{(x, f (x)) : x ∈ [x0, xN ]}. Since f is a fixed point of the operator T and if x ∈
[xi−1, xi ], then

T f (x) = Fi (l
−1
i (x), f (l−1

i (x))),

we obtain that for all x ∈ [x0, xN ],
f (li (x)) =T f (li (x))

=Fi (l
−1
i (li (x)), f (l−1

i (li (x))))

=Fi (x, f (x)).

Since wi (x, y) = (li (x), Fi (x, y)) for all for i = 1, 2, . . . , N , we obtain that

wi (G) =wi ({(x, f (x)) : x ∈ [x0, xN ]})
={wi (x, f (x)) : x ∈ [x0, xN ]}
={(li (x), Fi (x, f (x))) : x ∈ [x0, xN ]}
={(li (x), f (li (x))) : x ∈ [x0, xN ]}
={(x, f (x)) : x ∈ [xi−1, xi ]}.

Hence
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G ={(x, f (x)) : x ∈ [x0, xN ]}

=
N⋃

i=1

{(x, f (x)) : x ∈ [xi−1, xi ]}

=
N⋃

i=1

wi (G).

This completes the proof. �

Remark 4 In the case where the vertical scaling factor parameters are constants,
Barnsley investigated the existence of affine FIFs by using the Banach fixed point
theorem (see [1]), andWang andFan introduced a natural generalisation ofBarnsley’s
affine FIFs by using special function vertical scaling factors and Banach’s fixed point
theorem (see [5]). Here, we study the existence of generalized FIFs with function
vertical scaling factors by using the Rakotch fixed point theorem, and the techniques
used in Theorem 3 is completely different from those used in [1, 2]. But Theorem 3
does not ensure that the IFS{I × R;wi , i = 1, 2, . . . , N } has a unique invariant set.
The uniqueness of invariant set is determined explicitly in Theorem 4.

5 Attractor of a Certain IFS

In this section, we ensure that a generalized IFS{I × R;wi , i = 1, 2, . . . , N } with
special function vertical scaling factors has a unique invariant set (attractor). Theorem
4 that is our main theorem in this paper improves upon a result proved by [11], and
the proof of Theorem 4 is based on arguments first applied in [11]. If we combine the
both of Theorem 3 and Theorem 4 into a party, we can easily know that the graph of
a generalized FIF with special function vertical scaling factors is a unique attractor
of a certain IFS.

Theorem 4 Let N be a positive integer greater than one. Let each si be a bounded
Rakotch contraction. Let {I × R;wi , i = 1, 2, . . . , N } denote the IFS defined above,
associated with the set of data

{(xi , yi ) : i = 0, 1, . . . , N }.

Then there is a metric dθ on I × R, equivalent to the Euclidean metric d0, such that
for all i = 1, . . . , N, wi are Rakotch contractions with respect to dθ . In particular,
there exists a unique nonempty compact set G ⊂ I × R such that

G =
N⋃

i=1

wi (G).
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Proof We define a metric dθ on I × R by

dθ ((x
′, y′), (x ′′, y′′)) := |x ′ − x ′′| + θ |y′ − y′′|,

where θ is a positive real number which is specified below. Since |di (x ′) − di (x ′′)| ≤
Ldi |x ′ − x ′′| and Fi (x, y) := ci x + di (x)si (y) + fi ,

|Fi (x ′, y′) − Fi (x
′′, y′′)| =

= |ci x ′ + di (x
′)si (y′) + fi − (ci x

′′ + di (x
′′)si (y′′) + fi )|

≤ |ci ||x ′ − x ′′| + |di (x ′)si (y′) − di (x
′′)si (y′′)|

≤ |ci ||x ′ − x ′′| + |di (x ′)||si (y′) − si (y
′′)| + |si (y′′)||di (x ′) − di (x

′′)|
≤ |ci ||x ′ − x ′′| + |si (y′) − si (y

′′)| + supy′′∈D(si )
|si (y′′)||di (x ′) − di (x

′′)|
≤ (|ci | + supy′′∈D(si ) |si (y′′)|Ldi )|x ′ − x ′′| + |si (y′) − si (y

′′)|,

where D(si ) ⊂ R is the domain of definition of si . Let

k := max
i=1,2,...,N

(|ci | + sup
y′′∈D(si )

|si (y′′)|Ldi ),

Then for all (x ′, y′), (x ′′, y′′) ∈ I × R,

|Fi (x ′, y′) − Fi (x
′′, y′′)| ≤ k|x ′ − x ′′| + ϕ(|y′ − y′′|),

where ϕ : (0,+∞) → (0,+∞) is some non-decreasing function such that ϕ(t) < t
for t > 0 and t → ϕ(t)

t is nonincreasing. That is, each Fi, j is a Rakotch contraction
(with the same function ϕ) with respect to the second variable, and Lipschitz with
respect to the first variable. Hence we obtain for all (x ′, y′), (x ′′, y′′) ∈ I × R,

dθ (wi (x
′, y′), wi (x

′′, y′′)) =dθ ((li (x
′′), Fi (x ′, y′)), (li (x ′′), Fi (x ′′, y′′)))

=|li (x ′) − li (x
′′)| + θ |Fi (x ′, y′)) − Fi (x

′′, y′′)|
≤|ai ||x ′ − x ′′| + θ(k|x ′ − x ′′| + ϕ(|y′ − y′′|))
=|ai ||x ′ − x ′′| + θk|x ′ − x ′′| + θϕ(|y′ − y′′|)
≤(|ai | + θk)|x ′ − x ′′| + θϕ(|y′ − y′′|).

Let (x ′, y′), (x ′′, y′′) ∈ I × R and (x ′, y′) �= (x ′′, y′′). Since ϕ : (0,+∞) →
(0,+∞) is non-decreasing continuous function and ϕ(t) < t for all t > 0, we obtain
that

dθ (wi (x
′, y′), wi (x

′′, y′′)) ≤ (|ai | + θk)|x ′ − x ′′| + θϕ(|y′ − y′′|)
= (|ai | + θk)|x ′ − x ′′| + θ

ϕ(|y′−y′′ |)
|x ′−x ′′ |+|y′−y′′ | (|x ′ − x ′′| + |y′ − y′′|)

= (|ai | + θk + θ
ϕ(|y′−y′′ |)

|x ′−x ′′ |+|y′−y′′ | )|x ′ − x ′′|
+θ

ϕ(|y′−y′′ |)
|x ′−x ′′ |+|y′−y′′ | (|y′ − y′′|)

≤ (|ai | + θk + θ
ϕ(|x ′−x ′′ |+|y′−y′′ |)

|x ′−x ′′ |+|y′−y′′ | )|x ′ − x ′′|
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+θ
ϕ(|x ′−x ′′ |+|y′−y′′ |)

|x ′−x ′′ |+|y′−y′′ | (|y′ − y′′|)
≤ (|ai | + θk + θ)|x ′ − x ′′| + θ

ϕ(|x ′−x ′′ |+|y′−y′′ |)
|x ′−x ′′ |+|y′−y′′ | |y′ − y′′|)

≤ max{|ai | + θk + θ,
ϕ(|x ′−x ′′ |+|y′−y′′ |)

|x ′−x ′′ |+|y′−y′′ | }(|x ′ − x ′′| + θ |y′ − y′′|)
= max{|ai | + θk + θ,

ϕ(|x ′−x ′′ |+|y′−y′′ |)
|x ′−x ′′ |+|y′−y′′ | }dθ ((x ′, y′), (x ′′, y′′))

≤ max{maxi=1,2,...,N |ai | + θk + θ,
ϕ(|x ′−x ′′ |+|y′−y′′ |)

|x ′−x ′′ |+|y′−y′′ | }dθ ((x ′, y′), (x ′′, y′′)).

Since N > 1, we obtain 0 < ai := xi−xi−1

xN−x0
< 1 for all i = 1, 2, . . . , N .

Let

θ := 1 − n = 1, 2, . . . , N |ai |
2(k + 1)

.

Then 0 < n = 1, 2, . . . , N |ai | + θk + θ < 1 and since k ≥ 0, we obtain 0 < θ < 1.
Let for all t > 0,

β(t) := max{ max
i=1,2,...,N

|ai | + θp + θ,
ϕ(t)

t
}.

Then because α(t) := ϕ(t)
t and α : (0,+∞) → [0, 1) is a non-increasing, we can

see that β : (0,+∞) → [0, 1) is a non-increasing and for each (x ′, y′), (x ′′, y′′) ∈
I × R, (x ′, y′) �= (x ′′, y′′),

dθ (wi (x
′, y′), wi (x

′′, y′′)) ≤ β(d((x ′, y′), (x ′′, y′′)))dθ ((x
′, y′), (x ′′, y′′)),

where d((x ′, y′), (x ′′, y′′)) := |x ′ − x ′′| + |y′ − y′′|. Since 0 < θ < 1, for all
(x ′, y′), (x ′′, y′′) ∈ I × R, (x ′, y′) �= (x ′′, y′′),

|x ′ − x ′′| + θ |y′ − y′′| ≤ |x ′ − x ′′| + |y′ − y′′|.

That is,
dθ ((x

′, y′), (x ′′, y′′)) ≤ d((x ′, y′), (x ′′, y′′)).

Since β : (0,+∞) → [0, 1) is a non-increasing, we can see that

dθ (wi (x
′, y′), wi (x

′′, y′′)) ≤β(d((x ′, y′), (x ′′, y′′)))dθ ((x
′, y′), (x ′′, y′′))

≤β(dθ ((x
′, y′), (x ′′, y′′)))dθ ((x

′, y′), (x ′′, y′′)).

Hence wi are Rakotch contractions in (I × R, dθ ). On the other hand, metric dθ

is equivalent to the Euclidean metric d0 on I × R (see [11]). So (I × R, dθ ) is
a complete metric space. Hence wi : I × R → I × R is a Rakotch contraction in
(I × R, dθ ) and by Theorem 1 (1), there exists an unique fixed point in I × R. By
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Theorem 1 (2), for the completemetric space (I × R, dθ ), there is a unique nonempty
compact set G ⊂ I × R such that

G =
N⋃

i=1

wi (G).

By the definition of Hausdorff metric, equivalence of two metrics implies the equiv-
alence of Hausdorff metrics generated by them (see [10], p.91, Lemma 3.6). Hence
for (I × R, d0), there is a unique nonempty compact set G ⊂ I × R such that

G =
N⋃

i=1

wi (G).

This completes the proof. �

Remark 5 The boundedness of si is the essential condition to establish a unique
invariant set of an iterated function system.

In the fractal interpolation function with function vertical scaling factors, 0 <

maxx∈I |di (x)| < 1 (see [5], see [14], p. 3–4, cf. [2]). Let M := maxx∈I |ci x + fi |
and h ≥ M

1−maxx∈I |di (x)| . Then for all y ∈ [−h, h],

|Fi (x, y)| = |ci x + di (x)y + fi |
≤ M + max

x∈I |di (x)||y|
≤ M + max

x∈I |di (x)|h ≤ h.

So for all (x, y) ∈ I × [−h, h], we can see that Fi (x, y) ∈ [−h, h]. That is, an iter-
ated function system,

{I × [−h, h];wi : i = 1, 2, . . . , N },

has been constructed (cf. [3], p. 1897). Thus D(si ) = [−h, h] and
si (y) := maxx∈I |di (x)|y is bounded in D(si ) (see Remark 3). Hence the bound-
edness of si in D(si ) is the essential condition to establish a unique invariant set of
an iterated function system (see the proof of Theorem 4, cf. [3], p. 1897, the proof
of Theorem 2.1).

Remark 6 Our result is a substantial generalization of [1, 11, 14]. The function
whose graph is the attractor of an IFS as described in Theorem 3 and Theorem 4
generalizes the affine fractal interpolation function (see [1]), the fractal interpolation
function with function vertical scaling factors (see [5], see [14]) and the nonlinear
fractal interpolation function (see. [11]). (1) In the affine fractal interpolation function
(cf. [1], p.308, Example 1), for all t > 0,
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ϕ(t) := max
i=1,2,...,N

|di |t,

where |di | < 1 for all i = 1, 2, . . . , N .
(2) In the fractal interpolation function with function vertical scaling factors (cf. [5],
cf. [14], p. 3), for all t > 0,

ϕ(t) := max
i=1,2,...,N

max
x∈I |di (x)|t,

where di (x) is Lipschitz function defined on I satisfying supx∈I |di (x)| < 1 for all
i = 1, 2, . . . , N . (3) In the nonlinear fractal interpolation function (cf. [11]), di (x) ≡
1 and ϕ : (0,+∞) → (0,+∞) is a non-decreasing continuous function such that for
any t > 0, α(t) := ϕ(t)

t < 1 and the function (0,+∞) � t → ϕ(t)
t is non-increasing.

Thus, we improve upon results proved by [1, 11, 14].

6 A Certain Generalized Fractal Interpolation Function

In this section we focus on generalized FIFs with a special structure by means of
results obtained in the previous sections. For this purpose, we give an extremely
explicit simple example to demonstrate the effectiveness of the preceding theory. We
may assume, without loss of generality, that [x0, xN ] = [0, 1]. This special case can
always be achieved by means of an affine transformation (which does not change the
existence of FIF) (see [2]).

Letϕ(t) := t
1+t for t ∈ (0,+∞). Thenϕ : (0,+∞) → (0,+∞) is a non-decreasing

continuous function and t → ϕ(t)
t is non-increasing continuous function.

Let a set of data {(xi , yi ) : i = 0, 1, . . . , N } be given, where xi , yi ∈ [0, 1] for all
i = 0, 1, . . . , N . Let for all i = 1, 2, . . . , N ,

di (x) := 22i x i (1 − x)i .

Then
max

x∈[x0,xN ] |di (x)| = 1

and by differential mean value theorem, for all x ′, x ′′ ∈ [0, 1], there is Ldi > 0 such
that

|di (x ′) − di (x
′′)| ≤ Ldi |x ′ − x ′′|.

Let for y ∈ [0,+∞) and i = 1, 2, . . . , N ,

si (y) := y

1 + iy
.



176 V. Drakopoulos et al.

Then, for y′, y′′ ∈ [0,+∞),

|si (y′) − si (y
′′)| = | y′

1 + iy′ − y′′

1 + iy′′ | ≤ |y′ − y′′|
1 + i |y′ − y′′|

≤ |y′ − y′′|
1 + |y′ − y′′| = ϕ(|y′ − y′′|).

That is, each si is Rakotch contraction (with the same function ϕ) that is not Banach
contraction on [0,+∞) (see [11], cf. [12], p. 848, cf. [9], p. 262).
Let for all i = 1, 2, . . . , N ,

wi (x, y) := (ai x + ei , ci x + di (x)si (y) + fi ),

where

ai = xi − xi−1, ei = xi−1,

ci = yi − yi−1, fi = yi−1.

Then, by Theorems 3 and 4, there exists a continuous function f : [0, 1] → R that
interpolates the given data {(xi , yi ) : i = 0, 1, . . . , N }. Moreover, the graph G of f
is invariant with respect to {[0, 1] × R;w1, w2, . . . , wN }, i.e.,

G =
N⋃

i=1

wi (G).

This clearly shows that our method is much more effective than the method due to
[1, 11].

Remark 7 We refer to f as a generalized fractal interpolation functionwith function
vertical scaling factors. The reason for this name is that the functions Fi take the form

Fi (x, y) = ci x + di (x)si (y) + fi ,

where maxx∈I |di (x)| ≤ 1 and each si is Rakotch contraction.
That is, each Fi , in general, is generalized with respect to the second variable y

(cf. [11]).
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In fact, in [1, 14], since 0 < |di (x)| ≡ |di | < 1 or 0 < maxx∈I |di (x)| < 1 and

di (x)y = di (x)

maxx∈I |di (x)| max
x∈I |di (x)|y,

we can see that

Fi (x, y) = ci x + di (x)y + fi
= ci x + d∗

i (x)si (y) + fi ,

where d∗
i (x) := di (x)

maxx∈I |di (x)| and si (y) := maxx∈I |di (x)|y, and thus each si is a spe-
cial Banach contraction and linear. That is, each Fi (x, y) is a special Banach contrac-
tion and linear with respect to the second variable y. Then the corresponding FIF is
an affine FIF introduced by Barnsley (see [1]) or a FIF with function vertical scaling
factors (see [5], see [14], cf. [2]). Obviously, we can say that the generalized FIFs
with function vertical scaling factors may have more flexibility and applicability.

In below, we give the graph of an affine FIF, the graph of a nonlinear FIF of [11]
that is not an affine FIF, and the graph of a generalized FIF that is not a FIF of [11]
(see Figs. 1, 2, 3). Here we omit their details to avoid the repetition.

Fig. 1 An affine FIF
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Fig. 2 A nonlinear FIF of [11] that is not an affine FIF

Fig. 3 A generalized FIF that is not a FIF of [11]

7 Conclusions

The FIFs have been widely used in approximation theory, image compression, com-
puter graphics and modeling of natural surfaces such as rocks, metals, terrains and
so on. In order to get more flexibility and diversity in modeling natural shapes and
phenomena or in image processing, we introduced new generalized FIFs which gen-
eralize widely used linear FIFs. In order to obtain new generalized FIFs, we use
Rakotch contractions and special function vertical scaling factors, and we have pre-
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sented the principle and the method of generalized fractal interpolation in detail.
Dealing with generalized fractal interpolation functions is better than the one pro-
vided by [11]. Theorems 3 and 4 ensure that an attractor of constructed generalized
IFS is a graph of some continuous function which interpolates the given data. In
particular, an explicit illustrative example shows that our result remains still true
under essentially weaker conditions on the maps of IFS. Comparing linear FIFs with
function vertical scaling factors and generalized FIFs with function vertical scaling
factors, we can know that the FIFs considered in this paper have more flexibility and
diversity and are more suitable to the fitting and approximation of many complicated
functions.
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Abstract In this work we investigate the limits to the possibility to reveal the exis-
tence of weakmicrowave signals through Josephson junctions. Even if the Josephson
element is capable to reveal the electromagnetic field, thermal noise is to be quanti-
fied by means of signal theory, as a confounding factor that limits the detection. We
show how the decision problem can be embedded in the frame of signal detection. As
a consequence, the optimization of the detection probability and the minimization of
the false alarm probability give a guide to select the Josephson junction parameters
that best suit the purpose.
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1 Introduction

When Josephson junctions (JJ) are employed as detectors of microwave signals, they
can reach a very high response (of the order of kV/W [32]), close to the quantum
sensitive limit [14, 15, 26]. Moreover, as superconducting elements, the devices
can work no matter how the temperature is lowered, thus allowing to minimize
thermal noise, at least until the contribution to the escapes through quantum tunneling
processes becomes statistically dominant. These premises are, in a nutshell, the basis
for the intensity of the efforts devoted to the development of highly-sensitive detectors
based on JJ [3], as well as Josephson calorimeters [16, 35]. To reveal even very weak
electromagnetic signals, the energy to induce the transition between two states of
the JJ should be close to the single photon energy. As the interaction between the JJ
and the signal is generally mediated by a resonant cavity, also the latter excitation
should be on the same energy scale [20]. Thus, for a more detailed description of the
device potentialities and limits, it is necessary to embed the problem in the context
of microwave photon manipulation through superconducting electronics [1, 13]. In
doing so, the energy landscape of the device, as well as the antenna interaction with
the microwave photon field, are essential for a device description [4]. It is in fact the
JJ potential that dictates the disturbing switches due to thermal escapes and quantum
tunneling [4, 33]. A model for the detector consists of a current drive that perturbs
the JJ dynamics and favors the switches to a finite voltage state; the statistics of the
escape times are analyzed to highlight the presence of the perturbation.

Several remarkable achievements have been reached so far. The minimum photon
content that can be revealed through JJ has been estimated in the order of 102, a limit
that can be possibly lowered [36]. It has also been demonstrated that it is possible
to resolve the number of photons in a propagating mode [11]. Quite naturally, to
decide about the presence of a weak signal, it is necessary to achieve a silent enough
state, that is a device capable to stay quite if no signal is applied. Some schemes that
exploit the phase diffusion regime have been recently proposed with such purpose
[31]. However, for the purpose to exploit the high sensitivity of JJ in the search for
photons resulting from elusive particles as axions [3, 7–10, 22, 29, 37], it is necessary
to set up a different detection scheme to ascertain the existence of extra photons, above
and beside the background [5]. The purpose of this work is to analyze a scheme for
the detection of such excess photons through the analysis of the JJ switching currents
[2, 30], embedded in the frame of signal detection [12]. In fact, as the Josephson
phase is of quantum nature it is not directly accessible, detection is possible only
if the photons cause a switch, a passage from the superconducting state to a finite
voltage state (mathematically, the problem amounts to determine the first passage
time across the separatrix of a potential well [17]). As the passage also occurs because
of thermal fluctuations, a careful analysis is necessary to prove that the passages are
a consequence of some external field. The framework of signal detection allows to
make simple estimates of the temperature constraints and of the experimental set-up.
As a consequence, the optimization of the detection probability (and theminimization
of the false alarm probability) gives a guide to select the JJ parameters that best suit to



Analysis of Thermal and Quantum Escape Times … 183

reveal weakmicrowave signals. In brief, detection amounts to the following question:
how is it possible to infer the presence of microwave extra photons, apart the thermal
ones, from the analysis of the switches to the finite voltage of a JJ? A tentative answer
to this question is the subject of the present paper, organized as follows: in Sect. 2
the problem will be extensively formulated, alongside with the description of an
electrical model for the dynamics of a JJ and of a perturbation. In Sect. 3 the signal
analysis indications for the performances of the detection will be recounted. Last
Sect. 4 concludes.

2 The Problem

We shall consider a small tunnel JJ coupled to the environment through the bias
current:

C
�

2e

d2ϕ

dt ′2
+ 1

R

�

2e

dϕ

dt ′
+ I0 sinϕ = Ib + IN (t ′) + IS(t

′) (1)

The right hand side of this equation summarizes the current supplied to the junction. In
this formulation, therefore, one assumes that the impedance of the Josephson element
is much lower than the impedance of any source, and consequently the external world
is seen as a current source (although other configurations are possible, in which a
voltage bias is more appropriated [24]). Equation (1) includes inertia (determined
by the capacitance C), dissipation (as governed by the dissipative element R) and
fluctuations (the random current IN (t ′) supplied by the resistance), the nonlinear
periodic term (the oscillating Josephson current of amplitude I0), a constant bias
current Ib, and the signal current IS(t) (that summarizes the effects of the photon
field). Fluctuations are assumed to be Gaussian with:

〈IN (t ′)〉 = 0, (2)

〈IN (t ′)IN (t ′ − s ′)〉 = 2kBT

R
δ(t ′ − s ′). (3)

where kB is the Boltzmann constant, T is the absolute temperature, δ the Dirac
function, 〈·〉 is the expectation operator.

The usual normalized units [6, 34] are as follows (here, as usual, � is the reduced
Planck constant, and e is the elementary charge):

• The current is normalized to the critical current I0:

γ = Ib
I0

. (4)

• Time is normalized to ω−1
J , where ωJ = √

�C/2eI0 is the frequency of the linear
oscillator:

t = t ′ωJ . (5)
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Introducing the normalized temperature D = kBTωJ
/
RI 20 and the normalized con-

ductance 1
/
βc = (1/R)

√
�
/
(2eI0C), leads to the normalized versions of (1), (2),

(3):

d2ϕ

dt2
+ 1

βc

dϕ

dt
+ sinϕ = γ + γN (t) + γS(t), (6)

〈γN (t)〉 = 0, (7)

〈γN (t)γN (t − s)〉 = 2Dδ(t − s), (8)

where γ’s indicate the normalized current terms. The dynamics of the JJ is charac-
terized by the bias-dependent small oscillation frequency:

ω0(γ) = (
1 − γ2

)1/4
(9)

and the energy barrier that cages the dynamics is:

ΔU (γ) = 2
[√

1 − γ2 − γ cos−1(γ)
]
. (10)

Finally, the photon field γS is supposed to be modeled as a succession of normalized
impulses of amplitude A and duration δτ that arrive regularly with a period T . The
response of a JJ to such a field, and how the response can be exploited to infer the
existence of the field, is the problem dealt with in this paper. Some indications are
presented in the next Section.

3 Results

A JJ described by (6), (7), (8) can undergo switches between the zero voltage and
the finite voltage, as shown in Fig. 1. When the system switches, the phase difference
increases and, according to the a.c. Josephson relation V = (h/2e)dϕ/dt [18, 19],
a voltage drop across the junction can be measured. The switches can occur either
because of thermal current (7), (8), or because of the current pulse train. The starting
point is therefore to collect the sequence of times at which a passage has occurred in
the absence of the photon field drive:

t01 , t
0
2 , . . . , t

0
N . (11)

For this case, one expects that, on average, the escapes (the passages across the
separatrix between the localized oscillations and unbound runaways) occur with a
rate given by the Kramers approximation [17]:
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Fig. 1 Time dependent dynamics of the phase ϕ and the voltage dϕ/dt . The dashed lines denote
the time at which a passage to the finite voltage is detected

r0(γ, D) = ω0

2π
e− ΔU (γ)

D (12)

(for the Gaussian noise; other kinds of noise give pretty different results [25]).
In the presence of a signal, which mimics the absorption of some photons that

is capable to induce a current into the JJ, the sequence of switches is presumably
altered, and the photons can be possibly revealed through deviations from the purely
thermal sequence (11); let us call the sequence of the escapes in the presence of the
extra-photons:

t11 , t
1
2 , . . . , t

1
N . (13)

This sequence is expected to have a larger number of events in the same observation
time respect to the unperturbed case (11). An example of two histograms for {t0}
(no signal) and {t1} (with signal) are shown in Fig. 2. We underline that, at variance
with the cases in which one is interested in counting the number of photons (e.g.,
[20]), to reveal a source of photons (e.g., the presence of an axion field [3]) it suffices
to statistically determine if an observed collection of switches is more likely drawn
from sequence (11) or from sequence (13).

In the simplest approximation, one expects that the rate r1 associated to the escapes
(13) in the presence of photons is just the sum of the unperturbed rate r0 and an
additional rate rA due to the photons:

r1(γ, D, γS) = r0(γ, D) + rA. (14)

In our settings, where the photons are modeled as current pulses with a period T , we
have rA = 1/T for a most efficient detector.

Apart the analytical approximations embodied in (14), for our line of reasoning
it is important to underline that the rates r0 and r1 are statistical averages, for (12)
and (14) predict what happens on average. Thus, in a given measurement time P
one expects 1

/〈t0i 〉 = n0 = Pr0 escapes in the purely thermal case, and 1
/〈t1i 〉 =

n1 = Pr1 escapes in the presence of the extra photons, with the obvious inequality
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Fig. 2 Histograms of N = 104 switching times. Parameters of the simulations are: γ = 0.8, D =
0.1, 1

/
βc = 0.025. The impulses that mimic the photon fields are of amplitude A = 0.5, duration

δτ = 10, and arrive regularly with a period T = 100

n1 > n0. In an actual measurement, one observes a certain number of switches, say
n, and a decision is to be made: in which sense the measured number favors an
hypothesis (the switches are just due to thermal activation) or the other (there are
extra switches due to the photon field)? Naturally, the more the two rates are apart,
the more likely is that the measurement is a clear cut decision. Also, no matter how
close they are, with a sufficiently long measurement time P it is always possible to
discriminate the two conditions. To make these ideas quantitative is the objective of
the next Section.

3.1 Statistical Analysis of the Switching Times

To quantify the efficiency of the detection of a photon field one can introduce the
Kumar-Caroll (KC) index dKC [21], in analogy with the detection of continuous
sinusoidal signals [2, 12]:
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Fig. 3 Observation time P , according to estimate (16), as a function of rA at a fixed r0 = 0.001
(solid red curve) and as a function of r0 at a fixed rA = 0.001 (dashed blue curve)

dkc =
∣∣∣〈t1〉 − 〈t0〉

∣∣∣
√

1
2

[
σ2

(〈t1〉) + σ2
(〈t0〉)

] (15)

where 〈t0,1〉 is the average switching time in the absence (presence) of the signal,
and σ2

(〈t0,1〉) the corresponding variances of the average. This index is a proxy for
the Signal-to-Noise-Ratio (SNR) [21], and as such will be used in this paper.

Assuming a large number of events in the observation time P , and that the escapes
due to the photons are an additional rate independent of the thermal rate, and that a
reliable detection requires at least dKC = 1, one obtains the relation [27]:

P r2A − 1

2
rA − r0 = 0, (16)

between the rate of the photons rA, the thermal escape rate r0, and the observation
time P . Inspection of (16) reveals that the observation time P is positively related
to the thermal rate r0, see Fig. 3.

Some further elaborations of the estimate (16) are relevant. To begin with, one
can define a ratio between the photon arrivals and the thermal spontaneous escapes:

r0 = x rA

that allows to explicitly observe that:

dKC =
√

2PrA
2x + 1

. (17)

This equation confirms the intuitive scaling between the observation time P , the
photon arrival rate, and the ratio between the thermal and photon rates. In particular,
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Fig. 4 Relation between the thermal escape rate as a function of the photon arrival time, according
to estimate (16), for different values of P

one can insert thematching condition P = 1/rA in (17) to obtain the relation between
the observation time, the temperature and bias point through (9)–(12).

In Fig. 3 it is displayed the behavior of the observation time P , calculated accord-
ing to (16), as a function of the inverse photon rate, r−1

A (see the red solid curve). If the
photon rate is low, e.g. around 10−3 Hz, the measurement time for a dKC = 1 reads
∼1500 s. It is also noticeable that the dependence is quadratic. Should the photon
rate be much smaller than the assumed mHz, the detection could prove unfeasible.
Conversely, if the photon arrival rate is relatively high, one can considerably increase
also the thermal rate, and hence higher temperatures are allowed.

In Fig. 4 it is displayed the behavior of the thermal escape rate, r0, as a function of
the photon arrival time, rA, for different values of the observation time P . It is evident
that the thermal escape rate (that is, the temperature of the system) can be increased
as the photon rate increases. However, for any value of P , there is a threshold value of
rA (e.g., rA � 103 for P = 500) below which thermal escapes to achieve a dKC = 1
become vanishingly small. The latter condition entails extremely low temperatures.

In brief, if some SNR is to be reached, the trade-off between the parameters of
the experiment can be evaluated. A more detailed analysis of the problem requires to
retrieve the index (15) from numerical simulations of the model equations (6), (7),
(8), as we shall do below.

3.2 An Example of the Kumar-Carrol Index Usage

To illustrate an application of the signal-to-noise index (15), let us suppose that the
index has been computed for several values of the bias current γ to optimize the bias
level. To fix the ideas, let us suppose that the highest value of dKC corresponds to
γ = 0.8; the escapes retrieved for such choice are shown in Fig. 2. The index reads
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Table 1 Statistics of the escape times of Fig. 2. Here N is the number of switches, 〈ti 〉 the average
escape time, σ(ti ) the standard deviation, σ(〈ti 〉N ) the standard deviation of the average. The
resulting KC-index reads dKC = 20.8

Signal N 〈ti 〉 σ(ti ) σ(〈ti 〉N )

Absent 104 182.7 151 1.51

Present 104 154.0 124 1.24

dKC = 20.8, that indicates a very good SNR—would it be possible to collect 104

escapes, the average of the exit times could give a clear cut indication of the presence,
or not, of the excess photons. In fact the statistics of the escapes can be summarized
in Table1.

It is evident that for the case under examination the detection performs extremely
well.With aKC-index around 20 the SNR is extremely high, and also intuitively there
is no doubt that, if the average escape time decreases from∼180 to∼150, something
has happened and a signal is present. This is quite reasonable, for the switches occur
on average with the same rate as in the incoming pulses period T = 100; therefore
the efficiency is very high (almost each pulse causes a switch) and the number of
data is conspicuous (N = 104). Under these circumstances, the statistical analysis is
just a confirm of the intuition. However, the approach proves useful for the design of
an experiment if it is not possible to collect as many as 104 switches. Let us suppose,
ceteris paribus, that the rate of arrival of the pulses is extremely low, say 1

/
rA ∼ 1h,

and therefore the number of events that can be collected in a day of measurements
is around N = 20. A principal question would be: how many days of data collection
should be planned to decide, with good confidence, about the existence of the pulses?

Let us thus suppose that the actual sample of data to be analyzed consists of M
escape times, M � N , say M = 20 to fix ideas. A collection of 500 average escape
times (overM = 20 events) retrieved binning the 104 data of Fig. 2, is shown in Fig. 5.
In a single measurement run in which 20 switches are collected, a single average
escape time would be obtained, and not always the same value for the statistical
fluctuations. Let us summarize the data in Table2.

In the first place, let us remind of a subtle difference between Figs. 2 and 5, as
perhaps better explained in the corresponding Tables1 and 2. Figure2 is a collection
of all data, any single switch that has occurred. Figure5 is a collection of hypothetical
repetition of the average over 20 switches. The statistical test to decide about the
presence of the signal is to be performed on the average over all data in the case of
Fig. 2, and hence the very high SNR, compared to the test on a single event of Fig. 5,
to which pertains a much smaller SNR.

For the central limit theorem one can assume that the distribution of the averages
is approximately Gaussian, centered on the population average (that is estimated
through the average of the N = 104 data) and with a standard deviation which is
smaller than the population standard deviation.

Applying the signal analysis means to determine the error of the first type α
and of the second type β when a decision on the existence of the photon field is
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Fig. 5 Histograms of the average over 20 switching times, for the same data of Fig. 2, and thus
consisting of N ′ = 500 data. The other parameters are therefore the same as in Fig. 2

Table 2 Statistics of the escape times of Fig. 5, that is the escape times averaged over M = 20
events. Here N ′ = N/M = 500 is the number of means, 〈ti 〉 the average escape time over N ′ × M
escapes, σ (〈ti 〉N ′ ) the standard deviation of the N ′ means, σ

(〈ti 〉N ′×M
)
the standard deviation of

the overall average. Naturally, 〈ti 〉 and σ
(〈ti 〉N ′×M

)
coincide with Table1, as they are computed on

the same set of data. The resulting KC-index for a single measurement (that is, an average over 20
data) reads dKC = 0.93

Signal N ′ 〈ti 〉 σ (〈ti 〉N ′ ) σ
(〈ti 〉N ′×M

)

Absent 500 182.7 33.8 1.51

Present 500 154.0 27.7 1.24

to be made, on the basis of the escape time average. Let us do so with the help
of the Gaussian approximation, that is to assume that the histogram of the average
escape time of Fig. 5 is Gaussian distributed, as schematically illustrated by Fig. 6.
To decide between the hypothesis one usually places a threshold for the measured
average escape time, 〈t〉th , see Fig. 6. The decision will favor the hypothesis “1” (the
photon field is there) if the actualmeasured time is below the threshold, and obviously
the complementary hypothesis (there is no photon field) will be selected if the actual
measured time is above. The choice of the threshold reflects on the decision errors:
either the probability of false alarm (type I error α), or the probability of missing
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Fig. 6 Application of the detection scheme to the averaged data assumed to be Gaussian distributed

Fig. 7 Application of the detection scheme to the averaged data assumed to beGaussian distributed.
The circles (left axis) indicate the SNR ratio estimated by the index dKC . The triangles (right axis)
indicate the α = β level of the errors in the detection through the sample average as a function of
the number of switches M of the average. The solid line is the estimate obtained assuming that the
standard deviations scale as the square root of the number of points N . The other parameters are
the same as in Fig. 2

a signal (type I I error β). These features are combined in the so-called receiver
operator characteristic of the test statistic, that is, of the combination of the errors α
andβ for each particular choice of the threshold. It is natural, if there are not particular
reasons to do otherwise, to choose the case α = β that unequivocally individuates a
threshold and hence the errors. The features of the detection can thus be obtained by
a straightforward application of the central limit theorem with the data of histogram
of Fig. 2: it suffices to notice that the standard deviation σ (ti ) that appears in the
definition of dKC (15) is smaller of a factor ∼ √

M � 4.5, as it is confirmed by
Tables1 and 2. In this manner one can connect the SNR estimated through dKC to
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the size of type I and I I errors, as illustrated in Fig. 7. In the figure, we show the dKC

index as a function of the sample size M (open circles and solid line). From each
estimated dKC index, according to the condition α = β, we can uniquely determine
the size of the errors of the test (triangles), see Fig. 6. In the same figure, the solid line
displays the dKC behavior estimated assuming that the standard deviations in (15)
decrease as the square root of the number of data in a sample,

√
M . It is clear that

such behavior scales nicely for M � N . Therefore, if a sufficiently long simulation
is available, it is possible to carefully design the experiment to achieve the desired
error bound.

Let us summarize how it is possible to put to a good use the definition of the
SNR through the KC-index (15). First, it is useful to select the most appropriated
parameter values to achieve the best SNR; in the present case we have supposed
that the optimization of the SNR has given the best bias point γ = 0.8. For such
parameter, a consistent number of events has been collected, N = 104. From the
data so collected, it has been possible to determine the number of experiments that
could suffice to achieve the desired level of error (type I and I I , chosen to be
identical).

4 Conclusions

We have demonstrated that the application of signal analysis to switching event of a
Josephson junction subject to a periodic train of current pulses can be used to carefully
plan experiments devised to decide about the existence of the perturbation. If the pulse
train is to be interpreted as a photon field that irradiates the junction, this scheme
can be applied to decide about the existence of elusive particles [3]. In particular the
scheme can be useful if the arrival frequency of the pulses is very low, and therefore
it is particularly cumbersome to collect a large number of events to distinguish the
signal from the external field from spontaneously, thermally activated, events. Under
these circumstances, it is necessary to resort to statistical test. When this is the case,
the SNR to be reached for a significant test is the guideline for an accurate experiment
design. As the estimate of the SNR calls for extensive simulations, both to optimize
the parameters and to collect a statistically relevant number of events, it is probably
necessary to resort to parallel simulations, possibly with CUDA architecture [28].

Let us add aword of caution. The analysis here presented is based on samplemean,
detection can be improved with maximum likelihood estimators [2], that exploit the
full information content of the escape distribution. However, the analytical estimate
of the distribution of the escapes is a relatively complicated problem [23] to give a
reliable solution for the estimate evaluation.
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Control for Set-Valued Movements
of Dynamical Systems Under Uncertainty
with Applications

Tatiana F. Filippova

Abstract The guaranteed control problems for nonlinear dynamical systems with
uncertainty in initial states and parameters are studied. The case is investigate when
only the bounding sets for initial system states and for system parameters are given
without any additional statistical or probabilistic information on these values. Apply-
ing the previously developed approaches and new results developed here to evalu-
ating trajectory tubes and reachable sets, we study the properties of optimal control
that solves the problem of control for the trajectory tube of a dynamic system with
uncertainty and nonlinearity of a quadratic type.

Keywords Nonlinear dynamics · Control · Estimation · Uncertainty · Ellipsoidal
calculus · Funnel equations

1 Introduction

The paper investigates the problems associated with the study of reachable sets of a
nonlinear control dynamical system (and of a corresponding differential inclusion)
with incomplete information on the initial states of the system or on other system
parameters, limited by specifying only some special sets containing the unknown
elements (Kurzhanski [14], Kurzhanski and Varaiya[16], Allgöwer and Zheng [1],
Milanese et al. [18], Scweppe [22], Walter and Pronzato [23]). As indicated in many
studies, the geometry of the reachable sets of nonlinear dynamical systems may be
very complicated. In these cases, the approximation of reachable sets by domains of
a certain canonical form is of interest. As such canonical figures, the most natural
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are ellipsoids, parallelepipeds, polyhedra and some other canonical figures. A num-
ber of important approaches are relevant for assessing the unknown states of control
systems and corresponding trajectory tubes of differential inclusions through approx-
imation by canonical sets and tubes of motions with an accurate description of their
parameters and dynamic characteristics (Kurzhanski and Valyi [15], Chernousko [5],
Kostousova [12], Polyak et al. [21]).

Currently the principal facts and results of the theory of linear differential systems
with uncertain parameters are well developed, a number of important and computa-
tionally useful algorithms have been constructed for finding the external and internal
(with respect to the inclusion of sets) approximations of the set-valued states of
dynamical systems in the case of a linear system dynamics. However the presence
of nonlinear terms in the state velocities of the control systems causes a loss of
the convexity of the reachable sets and, therefore, raises many theoretical questions
and therefore requires the development of related mathematical tools and algorithms
that are adequate to the indicated problems of nonlinear analysis. Some ideas and
approaches to the study of set-valued motions (trajectory tubes) for a number of
differential systems with nonlinearity and uncertainty in dynamics were presented
earlier in Filippova [7], Filippova and Lisin [8], Filippova and Matviychuk [9] (see
also references in the indicated publications).

In this paper we assume that in a dynamic system there are two types of non-
linearity, namely, we have a combination of bilinear and quadratic functions in the
state velocities. Earlier, we examined the problems of evaluating the reachable sets
of systems under study taking into account all possible controls at once. Knowing
the areas of reachability with respect to all parameters of the system under study
(for all possible initial states, disturbances, controls) is very useful, since it helps
to evaluate the capabilities of the system. However, it seems important to have a
description of the trajectory tube generated by a specific choice of a control func-
tion, it will allow solving optimization problems for set-valued movements of the
considered systems under uncertainty. Note that in this paper we consider a special
class of control systems with nonlinearity and uncertainty under other informational
assumptions than was done in a recent paper Filippova and Matviychuk [10]. Thus,
this research continues and complements developments in the field of mathematical
control theory related to the study of the dynamics of multivalued states of nonlinear
control systems. The approaches and algorithms presented here may be applied in
the study of models with nonlinearity and uncertainty in real systems in robotics,
economics, biology and other fields (considered e.g. in Allgöwer and Zheng [1],
Bayen and Rapoport [2], Cecarelli et al. [4], Keller et al. [11]).
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2 Problem Formulation

2.1 Basic Notations

The main notations used in the paper are basic; however, we define here some addi-
tional, most frequently used and important constructions.

We denote by R
n the n-dimensional vector space and by compRn the set of all

compact subsets of Rn . Also Rn×m denotes the set of all n × m-matrices.
The usual inner product of x, y ∈ R

n is x ′y = (x, y) = ∑n
i=1 xi yi with prime as

a transpose and also the

‖x‖ = ‖x‖2 = (x ′x)1/2, ‖x‖∞ = max
1≤i≤n

|xi |

are corresponding norms for x ∈ R
n .

For the identity matrix we use the symbol I ∈ R
n×n . Denote by Tr(A) a trace (a

sumof diagonal elements) ofn × n-matrix A. Let B(a, r) = {x ∈ R
n : ‖x − a‖ ≤ r}

be a ball in Rn with a center a ∈ R
n and with a radius r > 0.

We use here also the notation

E(a, Q) = {x ∈ R
n : (Q−1(x − a), (x − a)) ≤ 1}

for the ellipsoid inRn , where a ∈ R
n is its center and a n × n-matrix Q is symmetric

and positive definite.

2.2 Main Problem

We study here the nonlinear control system

ẋ = A(t)x + f (x)d + u(t),

x0 ∈ X0, t0 ≤ t ≤ T,
(1)

here x, d ∈ R
n , ‖x‖ ≤ K (K > 0), the function f (x) is quadratic in x , that is f (x) =

x ′ Bx, with a positive definite and symmetric n × n-matrix B.
Functions u(t) (“controls") in (1) are assumed to be Lebesgue measurable on

[t0, T ] and
u(t) ∈ U , f or a.e. t ∈ [t0, T ].

We assume that the constraint set U is given and U ∈ compRn . The n × n-matrix
function A(t) in (1) has the form

A(t) = A0 + A1(t), (2)
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where the n × n-matrix A0 is given and the measurable n × n-matrix A1(t) is
unknown but bounded, A1(t) ∈ A1 for t ∈ [t0, T ], namely we have

A(t) ∈ A = A0 + A1,

A1 = {
A={ai j }∈Rn×n : |ai j |≤ci j , i, j=1, . . . n

}
, (3)

where ci j ≥ 0 (i, j = 1, . . . n) are given numbers. The latter relations mean that all
elements of the matrix A(t) are known only up to certain errors, the values of which
are given (this does not exclude the case when some elements of the matrix can be
known exactly, this corresponds to the situation when some ci j = 0).

Assume that we have the ellipsoid as an initial set X0 in (1), that is

X0 = E(a0, Q0),

with a symmetric and positive definite matrix Q0 ∈ R
n×n and with a center a0.

If it will be necessary we will use also a notation x(t; u(·)) = x
(
t; u(·), A(·), x0

)

with indication of additional parameters A(·), x0 for an absolutely continuous func-
tion x(t) which is the solution to (1)–(3) with initial state x0 ∈ X0, with admissible
control u(·) and with a matrix A(·) satisfying (2)–(3).

Due to the fact that some quantities are unknown but bounded, we are forced
to consider all possible versions of motions compatible with additional data as a
generalized solution to the control system, that is, we need to replace a single-valued
trajectory by a bundle or tube of motions of the following form X (t; u(·)).
Definition 1 For each admissible control u(·) the generalized solution tube
X (t; u(·)) (with t ∈ [t0, T ]) of system (1)–(3) is defined as follows,

X (t; u(·)) = {x ∈ R
n : ∃ x0∈X0, ∃ A(·)∈A,

x = x(t) = x
(
t; u(·), A(·), x0

)}.

Let us consider the following main problems.

Problem 1 For each feasible control u(·)∈U , find the optimal external ellipsoidal
estimate E(â, Q̂; T, u(·)) of the reachable set X (T ; u(·)) of the system (1)–(4), such
that

X (T ; u(·)) ⊂ E(â, Q̂; T, u(·)).

Remark 1 Here we understand the optimality of the desired ellipsoidal estimate,
bearing in mind the closest operation with respect to inclusion of related sets.

Problem 2 Given a vector x∗ ∈ Rn find the feasible control u∗(·) ∈ U such that the
related ellipsoidal estimate is optimal, that is we have

d(x∗, E(â∗, Q̂∗; T, u∗(·))) = inf
u(·)∈U

d(x∗, E(â∗, Q̂∗; T, u(·))) = ε∗.
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3 Main Results

First, we define an auxiliary parameter k, which is required to formulate the main
result (see also Filippova [7]). To do this, consider thematrix B1/2Q0B1/2 and denote
its maximal eigenvalue as k2, that is we have

E(a0, Q0) ⊆ E(a0, (k
+
0 )2B−1), (4)

and k+
0 is the smallest positive number for which this estimate (4) is true.

Theorem 1 The upper ellipsoidal estimate is true

X (t0 + σ ; u(·)) ⊆ E(a∗(t0 + σ), Q∗(t0 + σ) | u(·)) + o(σ )B(0, 1) (5)

with σ−1o(σ ) → 0 for σ → +0 and

a∗(t0 + σ) = ã(t0 + σ) + σ(â + a′
0Ba0 · d + k2d) + σu(t0), (6)

and with functions ã(t), Q∗(t) satisfying the following equations

˙̃a = Ã0ã, t0 ≤ t ≤ T, ã(t0) = a0, (7)

Q̇∗ = Ã0Q∗ + Q∗( Ã0)′ + q Q∗ + q−1G, Q∗(t0) = Q0, t0 ≤ t ≤ T, (8)

where
Ã0 = A0 + 2d · a′

0B, q = (
n−1 Tr ((Q∗)−1G)

)1/2
, (9)

G = diag
{
(n − v)

[ n∑

i=1

c ji |ãi | + (
max

σ={σi j }

n∑

p,q=1

Q∗
pqc jpc jqσ j pσ jq

)1/2]2
}
, (10)

with a maximum in (10) calculated over numbers σi j = ±1, i, j = 1, . . . , n, such
that we have ci j = 0 and v is a number of such indices i for which ci j = 0 for all
j = 1, . . . , n.

Proof The relation (5) is established along the main lines and ideas presented in
Filippova [7]. Indeed, from the funnel equation Panasyuk [20] we have

X (t0 + σ ; u(·)) ⊆
⋃

x̃∈E(0,k+
0
2

B−1)

(a0 + x̃ + σ(A0 + A1)(a0+

x̃) + σ(a0 + x̃)′ B(a0 + x̃)) + σu(t0) + o(σ )B(0, 1). (11)
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We remind that we may use here the property that at the boundary points x̃ of the
ellipsoid E(0, (k+

0 )2B−1) we have the equality x̃ ′ Bx̃ = (k+
0 )2 (for a more simple

case detailed explanations of the last property may be found also in Filippova [7]).
With this property and rearranging the terms in (11), we come to the formulas
(5)–(10).

Remark 2 We see here that the ellipsoidal estimates of the tube X (t; u(·)) for each
fixed control u(·) are under investigation here and therefore the parameters of the
estimation procedures dependonu(·).We can complicate the problembyadditionally
assuming the presence of state constraints or by considering a slightly more general
class of uncertainty, e.g. in the coefficients of the matrix of linear terms of the state
velocities.

Remark 3 It follows from Theorem 1 that we can construct a discrete tube
E(â, Q̂; T, u(·)) with ellipsoidal cross-sections that solves Problem 1 and for which
we have the inclusion

X (T ; u(·)) ⊆ E(â+(T ), Q̂+(T ); u(·)) + o(ε)B(0, 1). (12)

We emphasize that this discrete construction may be used as a basis for related com-
putational schemes and algorithms allowing to find the trajectory tubes numerically.

Using the results Filippova and Matviychuk [9], we may derive the following
result.

Theorem 2 Let ε∗, u∗(·) be the optimal values of the Problem 2. Then we have the
relations

ε∗ = min
u(·)∈U

max||l||=1
{r+(T ; u(·))(l ′ B−1l)1/2+

l ′(a+(T ; u(·)) − x∗)} = max||l||=1
{r+(T ; u∗(·))(l ′ B−1l)1/2+ (13)

l ′(a+(T ; u∗(·)) − x∗)}.

Proof First, we find the minimal positive number ε such that the following inclusion
is true

E(a+(T ), Q+(T ); T, u(·)) ⊆ B(x∗, ε),

or equivalently

ρ(l|E(a+(T ), Q+(T ); T, u(·)) ≤ ρ(l|B(x∗, ε)), ∀l ∈ R
n.

Appling the result of Theorem 1, we get the relation

l ′a+(T ) + (l ′ Q+(T )l)1/2 ≤ l ′x∗ + ε||l||,
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and from the above relations we conclude that

ε∗ = min
u(·)

max||l||=1
((l ′ Q+(T )l)1/2 + l ′(a+(T ) − x∗)).

Taking into account the equality Q+(T ) = r+(T )B−1 we get the
equations (13).

The proposed results may be used as the basis for the development of compu-
tational algorithms for solving applied problems of controlling and estimating the
movements of real systems operating in conditions of uncertainty and nonlinearity, in
particular, in the fields of robotics, economics and finance, biology and other fields.
Related algorithms with computational examples (for lower dimensional systems)
that illustrate the approach may be found e.g. in Filippova and Matviychuk [9]. In
the next section a more complicated example of a dynamical system in the space R3

is given and discussed.

Fig. 1 Projections Proj1,2E+(t) of ellipsoids E+(t) = E(a+(t), Q+(t)) (blue color) and pro-
jections Proj1,2X (t) of reachable sets (black color) X (t) at the plane of {x1, x2, t}-coordinates
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4 Numerical Simulations

Example. Consider the following control system

⎧
⎨

⎩

ẋ1 = −x1 + x2
1 + x2

2 + 2x2
3 + u1(t),

ẋ2 = x2 + u2(t),
ẋ3 = x3 + u3(t),

(14)

Assume that U = B(0, 1), x0 ∈ X0 = B(0, 1) and t ∈ [0, T ] with T = 0.4. The
projections of reachable sets X (t) togetherwith related estimating ellipsoids E+(t) =
E(a+(t), Q+(t)) onto the planes of state coordinates (related planes are (x1, x2),
(x1, x3) and (x2, x3), respectively) are shown in Figs. 1, 2, and 3 for time grid t =
0.1; 0.15; 0.2; 0.25; 0.3; 0.35; 0.4 (we need to specify here that for simplicity we
put u(t) = 0 here, in other cases calculations and pictures are similar).

The last Fig. 4 shows the upper estimating ellipsoid E+(t) = E(a+(t), Q+(t))
and the reachable set X (t) as they are in the related space R

3 of state variables
{x1, x2, x3} for t = 0.4.

Note that the evaluating ellipsoid touches the reachable set (that is, the external
estimate is “tight"), which implies that without changing the structure of parameters

Fig. 2 Projection Proj1,3E+(t) of ellipsoids E+(t) = E(a+(t), Q+(t)) (blue lines) and projec-
tions Proj1,3X (t) of reachable sets (black lines) X (t) at the plane of {x1, x3, t}-coordinates
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Fig. 3 The projections Proj2,3E+(t) of estimating ellipsoids E+(t) = E(a+(t), Q+(t)) (indi-
cated in blue lines) and projections Proj2,3X (t) of reachable sets (indicated in black lines) X (t) at
the plane of {x2, x3, t}-coordinates

(for example, without changing the main matrix of coefficients), it cannot be reduced
to a smaller ellipsoid.

5 Further Theoretical Directions and Possible Applications

Theoretical schemes and related numerical algorithms for evaluating trajectory tubes
andmethods for solving control problems for set-valuedmotions based on Theorems
1–2 can be developed further in many directions, among them we note the following
areas:

• studies of optimization and robust stabilization problems for uncertain nonlinear
systems with impulsive control functions,

• problems of viability and control for dynamical systems described by nonlinear
differential equations and differential inclusions,

• improvement and development of new numerical methods for estimating set-
valued motions of nonlinear dynamical systems (ensembles of trajectories) based
on the proposed ideas for high-dimensional systems,

• researchof new,more complex classes of nonlinearity in the dynamics of controlled
systems with uncertain factors,
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Fig. 4 Reachable set X (t) and its upper ellipsoidal estimate E+(t) = E(a+(t), Q+(t)) for t = 0.4
(3d-picture in the plane of state variables {x1, x2, x3})

• development of theoretical approaches to the estimation of set-valued motions
using approximations for set-valued motions based on the use of discrete schemes
of the theory of differential inclusions with a large order of accuracy.

The applications of the problems discussed here are in the nonlinear control and
estimation theory and related nonlinear models with unknown but bounded errors.
Numerous applicationmodels can be noted here, in particular, realmodels in robotics,
in transportation systems, in biology, medicine and economics. In these aspects, we
would like to highlight, in particular, the studies and results obtained earlier by Bayen
and Rapoport [2], Cecarelli et al. [4], Koller et al. [11]), Filippova and Matviychuk
[9], Kuntsevich and Volosov [13], Malyshev and Tychinskii [17], Ovsyannikov [19].

6 Conclusion

The paper deals with the state estimation problems for uncertain dynamical control
systems for which we assume that the initial state is unknown but boundedwith given
constraints. We consider here a special case of uncertainty and nonlinearity when
the matrix parameters in state velocities are unknown but bounded.
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The system nonlinearity under study is generated also by the presence of bilinear
terms and quadratic forms in related differential equations. The problem is reformu-
lated as the control problem for the motion of related set-valued states.

Using the ideas developed earlier for some classes of uncertain systems we solve
here the control problem with a new class of uncertainty and with a special structure
of nonlinearity. So we construct the external ellipsoidal estimates of reachable sets
for the system under study and find the solution of the related optimization problem.

Acknowledgements The study was partially supported by the Russian Foundation for Basic
Researches (RFBR Project No.1̃8-01-00544).
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Interacting Populations: Dynamics
and Viability in Bounded Domains Under
Uncertainty

Tatiana F. Filippova

Abstract Nonlinear control systemswhich describe the dynamics of the interactions
of predators and their preys under assumption of uncertainty in related initial condi-
tions are studied. It is assumed that the interaction of populations occurs in limited
areas, estimated by corresponding ellipsoids. The possible presence of uncertainty
or errors in determining the parameters of these ellipsoids and the uncertainty in the
initial conditions of the moving objects and also in some parameters of dynamical
systems are taken into account. Procedures and algorithms for evaluating the move-
ments of upper estimates of reachable sets of the system under indicated conditions
of uncertainty are proposed. Numerical simulation results related to the proposed
techniques and illustrating the results are also included.

Keywords Nonlinear systems · Control · Uncertainty · Ellipsoidal calculus ·
Viability · State estimation

1 Introduction

In 1920 Alfred Lotka initiated the study of a predator-prey model and showed that
the populations could oscillate permanently, he further developed his researches in
this direction and published a book (Lotka [20]). In 1926 the Italian mathematician
Vito Volterra happened to become interested in the same model (Volterra [31]). Now
the classical Lotka–Volterra equations have a long history of use and researches in
different branches of theory and applications, in this field it is worth to mention
some recent approaches and results (e.g. Skiadas [29], Filippova and Matviychuk
[16]) related to this class of problems.
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We consider the modification of this classical problem and study it under con-
ditions of uncertainty in initial system states and maybe also under uncertainty in
some other parameters. We study the case when there is no precise description of the
uncertain data (noises and errors) in the model, but only some bounds on these values
are specified. This situation arises whenwe are trying to create amathematical model
that takes into account the absence of probabilistic data on uncertain parameters of
the studied phenomenon, or these data are not reliable enough and therefore cannot be
taken into account. To study problems of this class, we use the set-membership esti-
mation approach which deals with a set of all feasible parameters vectors, consistent
with the model structure, current measurements and uncertainty features (Bertsekas
andRhodes [3], Kurzhanski andValyi [18], Kurzhanski andVaraiya [19], Kurzhanski
and Filippova [17], Milanese et al. [23], Schweppe [28], Walter and Pronzato [32],
Chernousko [7–9], Brockett [6], Dontchev and Lempio [10], Veliov [30],Mazurenko
[22], Polyak [26]).

In this paper we continue the study initiated in Filippova [13–15], Filippova and
Matviychuk [16] and construct the estimating procedures for reachable sets of nonlin-
ear dynamical control systems of Lotka-Volterra type under conditions of uncertainty
and in the complicating assumption of the presence of state constraints on the system
trajectories. It should be noted that the study of control systems with state constraints
is closely related to the techniques and results of the theory of survival, or, using the
already well-established term, viability theory (Aubin and Cellina [1], Bayen and
Rapaport [2], Kurzhanski and Filippova [17], Bonneuil and Mullers [5], Filippova
[11]).

The viability theory presents additional convenient instruments to design and to
develop mathematical and algorithmic techniques for investigating and adapting to
viability constraints the complex dynamical systems under uncertainty which may
be found in many domains from biology to economics, financial markets, control
theory, robotics etc. Basing on above mentioned approaches we formulate here new
theoretical schemes and construct new algorithms for determining upper ellipsoidal
estimates of reachable sets of the studied control system with uncertainty. Numer-
ical examples and simulation results related to the proposed techniques and to the
presented algorithms are also included.

2 Problem Formulation

2.1 Preliminary Constructions

We will continue to use the notations defined earlier in Filippova and Matviychuk
[16] but for the convenience of the reader we will nevertheless recall some basic
concepts. So Rn will be the n–dimensional Euclidean space, compRn is the set
of all compact subsets of Rn , Rn×n stands for the set of all n × n–matrices and
x ′y = (x, y) = ∑n

i=1 xi yi be the usual inner product of x, y ∈ Rn with prime as a
transpose, the Euclidean norm is ‖x‖ = (x ′x)1/2.We denote as B(a, r) the ball in Rn ,
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B(a, r) = {x ∈ Rn : ‖x − a‖ ≤ r}, I is the identity n × n-matrix, diag{a1, . . . , an}
is the diagonal n × n–matrix with elements ai at the main diagonal and with zero
entries outside it.

Denote the ellipsoid E(a, Q) = {x ∈ Rn : (Q−1(x − a), (x − a)) ≤ 1} with a
center a ∈ Rn and with a symmetric positive definite n × n–matrix Q. Let T r(Y )

denote the trace of n × n–matrix Y (the sum of its diagonal elements).
Consider the following system

ẋ = Ax + f (x)d + u(t), x0 ∈ X0, t0 ≤ t ≤ T, (1)

where x, d ∈ Rn , ‖x‖ ≤ K (K > 0), f (x) is the nonlinear function, which is
quadratic in x ,

f (x) = x ′ Bx, (2)

with a given symmetric and positive definite n × n-matrix B. Control functions u(t)
in (1) are assumed to be Lebesgue measurable on [t0, T ] and satisfying the constraint

u(t) ∈ U, for a.e. t ∈ [t0, T ], (3)

here U is a given set, U ∈ compRm . The n × n–matrix A in (1) is assumed to be
also given.

We will assume that the bounding set X0 for initial system states x0 in (1) is an
ellipsoid, X0 = E(a0, Q0), with a symmetric and positive definite matrix Q0 and
with a center a0.

Let the absolutely continuous function x(t) = x(t; u(·), x0) be a solution to
dynamical system (1)–(17) with initial state x0 ∈ X0 and with admissible control
u(·).
Definition 1 The reachable set X (t) at time t (t0 < t ≤ T ) of system (1)–(3) is
defined as

X (t) = { x ∈ Rn : ∃ x0 ∈ X0, ∃ u(·) ∈ U, such that

x = x(t) = x(t; u(·), x0) }, t0 < t ≤ T .
(4)

Remark 1 We can also interpret the control functions u(·) in (1)–(4) as unknown
perturbations in the model dynamics. Thus, the tube X (t) can play the role of a
set-valued state of the system (1) under conditions of uncertainty in its dynamics.

2.2 Evolution Equations for Dynamical Models with
Set-Valued States

The further notions are closely related to the concepts and definitions of set-valued
analysis in general and in particular to a solution notion of a differential inclusion
(Aubin and Cellina [1])
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ẋ ∈ F(t, x) (5)

where F(t, x) is a set-valued function reflecting the variety of models under uncer-
tainty conditions.

Assume that the initial condition to the differential inclusion (5) is unknown but
bounded

x(t0) = x0, x0 ∈ X0 ∈ compRn (6)

Denote by h(A, B) the Hausdorff distance between sets A, B ⊆ Rn , namely,

h(A, B) = max {h+(A, B), h−(A, B)},

with h+(A, B), h−(A, B) being the Hausdorff semidistances between the sets A, B,
namely,

h+(A, B) = sup{d(x, B) | x ∈ A},
h−(A, B) = h+(B, A), d(x, A) = inf {‖ x − y ‖ | y ∈ A}.

Assuming a set X0 ∈ comp Rn to be given, denote as x[t] = x(t, t0, x0) (t ∈ [t0, T ])
a solution to (5) (an isolated trajectory) that starts at point x[t0] = x0 ∈ X0.

We take here the Caratheodory–type trajectory x[·], i.e. an absolutely continuous
function x[t] that satisfies the inclusion

d

dt
x[t] = ẋ[t] ∈ F(t, x[t]) (7)

for almost every t ∈ [t0, T ]. We assume that all the solutions {x[t] = x(t, t0, x0) |
x0 ∈ X0} are extendable up to T that is possible under some additional assumptions,
Filippova [12]. Let us consider the equation

lim
σ→+0

σ−1h( X [t + σ ], ⋃

x∈X [t]
(x + σF(t, x)) ) = 0,

t0 ≤ t ≤ T, X [t0] = X0.

(8)

Theorem 1 (Panasyuk [25], Kurzhanski and Filippova [17]) The multifunction
X [t] = X (t, t0, X0) is the unique set–valued solution to the equation (8).

2.3 State Constraints and Viability

Themain problemof the paper is to find external ellipsoidal estimates of the reachable
set X (t) (t0 < t ≤ T ) and to apply these results to find the upper bounds of reachable
sets for nonlinear dynamical control systems of Lotka-Volterra type considered now
with the following viability (or state) constraint



Interacting Populations: Dynamics and Viability … 211

x[s] ∈ Y (s), s ∈ [t0, t] (9)

where Y (t) ∈ conv Rn for t ∈ [t0, T ].
This viability constraint may be induced by state restrictions defined for a given

plant model or by the so-called measurement equation

y(t) = G(t)x + w, (10)

where y is the measurement, G(t) is a given matrix function, w is an unknown but
bounded “noise” with a given bound,

w ∈ Q∗(t), Q∗(t) ∈ comp R p,

(here Q∗(t) is a given set-valued function).
To start the analysis of the above problem consider the analogy of the funnel (8)

but now for the viable trajectory tubes X [t] = X (t, t0, X0):

lim
σ→+0

σ−1h
(

X [t + σ ], ⋃

x∈X [t]
(x + σF(t, x))

⋂
Y (t + σ)

)
= 0,

t0 ≤ t ≤ T, X [t0] = X0.

(11)

The following result is valid (under some additional assumptions on F(t, x) and
Y (t)).

Theorem 2 (Kurzhanski and Filippova [17]) The set-valued function X [t] =
X (t, t0, X0) is the unique solution to the equation (11).

3 Main Results

We apply here the approaches described above to study the classical model of the
Lotka-Volterra type, but now we consider these approaches with two complications.
Namely, first, we assume that we have uncertain initial states, and second, we assume
that we have an additional constraint on the current states of the system. In the recent
paper Filippova and Matviychuk [16], we considered only the first problem; a more
complicated case of two simultaneous constraints is being investigated here.

3.1 Lotka-Volterra Control Systems Under Uncertainty
and State Constraints

Consider the following control system of Lotka-Volterra type which describes the
classical ecological predator-prey (or parasite-host) model with additional control
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functions (Bayen and Rapaport [2], Bonneuil and Mullers [5], Lotka [20], Murray
[24], Prostyakov [27]):

{
ẋ1(t) = ax1 − bx1x2 + u1,

ẋ2(t) = −cx2 + dx1x2 + u2,
x(t0) = x0, t0 ≤ t ≤ T . (12)

Here a, b, c, d > 0 are given and we assume that initial state vector x0 is unknown
but bounded, that is we have the inclusion x0 ∈ X0, where X0 is a given compact
subset of R2. This assumption may be interpreted for example in such a way that
we do not know exactly the initial states (or amounts) of predators and prey. Control
functions u(t) in (12) are assumed to be Lebesgue measurable on [t0, T ], they satisfy
the constraint

u(t) ∈ U, for a.e. t ∈ [t0, T ], (13)

where U is given, U ∈ compR2. The choice of control can influence, in particular,
the rate of change in the number of predators and prey.

Using diagonalization procedures of matrix analysis described in details in Filip-
pova and Matviychuk [16], we transform the system (12) to the following one (here
a parameter ε > 0)

ż = A∗z + f (1)
ε (z) · d(1) + f (2)

ε (z) · d(2) + w(t),

z0 ∈ Z0, w ∈ W, t0 ≤ t ≤ T,
(14)

where

A∗ =
(

A −C
−C A

)

,

functions f (1)
ε (z) and f (2)

ε (z) are positive definite quadratic forms with matrices
B(1)

ε = diag{1, ε2} and B(2)
ε = diag{ε2, 1}, respectively. The following result may

be used to produce the upper estimate of a reachable set X (t) of the system (12) of
Lotka-Volterra type with ellipsoidal constraints on the control function.

Theorem 3 (Matviychuk [21]) For all σ > 0 and for reachable set X (t0 + σ) =
X (t0 + σ, t0, X0) of the system (12) we have the following upper estimate

X (t0 + σ) ⊆E(a(1)(σ ), Q(1)(σ ))
⋂

E(a(2)(σ ), Q(2)(σ )) + o(σ )B(0, 1),

σ−1o(σ ) → 0 when σ → +0, (15)

where



Interacting Populations: Dynamics and Viability … 213

a(1)(σ ) = Z−1(a(σ ) + σk2
1λ

2
12d(2)) + σ â,

a(2)(σ ) = Z−1(a(σ ) + σk2
2λ

2
21d

(1)) + σ â,

a(σ ) = (I+σ Z AZ ′)Za0+σ(Za0)
′ B(1)

ε Za0d(1)+σ(Za0)
′ B(2)

ε Za0d(2),

Q(1)(σ ) = Z−1((p−1
1 + 1)(I + σ R)k2

1(B(1)
ε )−1(I + σ R)′+

+ (p1 + 1)σ 2(||d(2)||2k4
1λ

4
12 · I + Z Q̂ Z ′)

)
(Z−1)′,

Q(2)(σ ) = Z−1
(
(p−1

2 + 1)(I + σ R)k2
2(B(2)

ε )−1(I + σ R)′+
+ (p2 + 1)σ 2(||d(1)||2k4

2λ
4
21 · I + Z Q̂ Z ′)

)
(Z−1)′,

R = Z AZ ′ + 2d(1)(Za0)
′ B(1)

ε + 2d(2)(Za0)
′ B(2)

ε ,

where B(1)
ε = diag{1, ε2}, B(2)

ε = diag{ε2, 1}, k2
1 , k2

2 , λ2
12 and λ2

21 are the maximal
eigenvalue of the matrices

(B(1)
ε )1/2Z Q0Z ′(B(1)

ε )1/2, (B(2)
ε )1/2Z Q0Z ′(B(2)

ε )1/2,

(B(1)
ε )−1/2B(2)

ε (B(1)
ε )−1/2, (B(2)

ε )−1/2B(1)
ε (B(2)

ε )−1/2,

respectively, numbers p1, p2 are the unique positive solutions of related algebraic
equations

n∑

i=1

1

p1 + αi
= n

p1(p1 + 1)
,

n∑

i=1

1

p2 + βi
= n

p2(p2 + 1)

with αi , βi ≥ 0 (i = 1, . . . , n) being the roots of the following equations

det
(
(I+σ R)k2

1(B(1)
ε )−1(I+σ R)′−ασ 2(||d(2)||2k4

1λ
4
12 · I+Z Q̂ Z ′)

)=0,

det
(
(I+σ R)k2

2(B(2)
ε )−1(I+σ R)′−βσ 2(||d(1)||2k4

2λ
4
21 · I+Z Q̂ Z ′)

)=0.

Because the above formulas look too complicated, before to apply themwe slightly
modify the system (12) in the same way as it was done in Bratus [4, pp. 44–45]. After
this transformation we come to the system

{
v̇1 = v1 − v1v2 + u1,

v̇2 = −αv2 + v1v2 + u2,
v(t0) = v0, t0 ≤ t ≤ T . (16)

Here α > 0 and initial state vectors v0 are unknown but bounded,

v0 ∈ B(0, μ) = {v = {v1, v2} : v2
1 + v2

2 ≤ 1}

and control functions u(t) satisfy the following constraint (with r > 0)
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u(t) ∈ B(0, r), for a.e. t ∈ [t0, T ]. (17)

Replace here ones again the variables as w1 = v1 + v2, w2 = v1 − v2 and consider
the system

ẇ = Dw + d(1) f1(w) + d(2) f2(w),

w(t0) = w0 ∈ B(0, r), r = 2−1/2, t0 ≤ t ≤ T,
(18)

with f1(w) = 2w2
1 + w2

2, f2(w) = w2
1 + 2w2

2,

D =
(

1−α
2

1+α
2

1+α
2

1−α
2

)

(19)

and with related trajectory tube denoted as W (·) = W (·, t0, X0).

Theorem 4 For all σ > 0 and for W (t0 + σ) = W (t0 + σ, t0, X0) the following
upper estimate is true

W (t0 + σ) ⊆ E(a(1)(σ ), Q(1)(σ ))
⋂

E(a(2)(σ ), Q(2)(σ )) + o(σ )B(0, 1), (20)

where σ−1o(σ ) → 0 when σ → +0 and parameters of the estimating ellipsoids
E(a(1)(σ ), Q(1)(σ )) and E(a(2)(σ ), Q(2)(σ )) are defined in Theorem 3 with the fol-
lowing simplifications

k2
1 = k2

2 = 2/r2, λ2
12 = λ2

21 = 2, a = â = 0,

d(1) = −d(2) = −(0, 1)′, Q̂ = r2 I,

B(1) =
(
2 0

0 1

)

, B(2) =
(
1 0

0 2

)

.

Proof The proof of the above upper estimates follows the scheme used in Filippova
and Matviychuk [16].

3.2 Iterative Algorithm and Numerical Simulation

The following iterative algorithm may produce the external ellipsoidal tube for the
reachable set X (t), t ∈ [t0, T ] in numerical modelling. Note that, in comparison
with the algorithm given in Filippova and Matviychuk [16], it is somewhat more
complicated in calculations, since additional steps appeared here.

Algorithm. Subdivide the time segment [t0, T ] into subsegments [ti , ti+1] where
ti = t0 + ih (i = 1, . . . , m), σ = (T − t0)/m, tm = T .
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• Given X0 = E(a0, Q0), find ellipsoids E(a(1)(σ ), Q(1)(σ )) and
E(a(2)(σ ), Q(2)(σ )) from Theorems 3, 4.

• Find the smallest (with respect to some criterion [7, 18]) ellipsoid E(a1, Q1)which
contains the intersection

E(a(1)(σ ), Q(1)(σ ))
⋂

E(a(2)(σ ), Q(2)(σ )) ⊆ E(a1, Q1).

• Find the new ellipsoid E(a2, Q2) such that we have

E(a1, Q1)
⋂

Y ⊆ E(a2, Q2)

(this is a correction taking into account state constraints)
• Consider the system on the next subsegment [t1, t2] with E(a2, Q2) as the initial
ellipsoid at the next instant t1.

• Further steps repeat above iterations. At the end of the process we will get the
external estimate E(a+(t), Q+(t)) of the tube X (t) with accuracy tending to zero
when m → ∞.

Example 1 Consider the following control system of Lotka–Volterra type:

{
ẋ1(t) = x1 − x1x2 + u1,

ẋ2(t) = −x2 + x1x2 + u2,

x0 ∈ X0, t0 ≤ t ≤ T .

(21)

Here we take t0 = 0, T = 1, X0 = B(0, 1) and U = B(0, 0.1). We assume also that
we have the following additional state constraint

x[s] ∈ E(d, D), s ∈ [t0, t]

with d = (0.1, 0) and

D =
(
2.25 0

0 0.56

)

.

The trajectory tube X (t) and some reachable sets are shown in the Figs. 1 and 2.
Ellipsoidal estimates for the reachable set X (0.01) which were found on the basis of
results of Theorems 3, 4 are shown in Fig. 2. Several steps of the main Algorithm of
external ellipsoidal estimating the reachable set X (t) with the resulting ellipsoidal
tube E(a+(t), Q+(t)) are shown in the Fig. 2.
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Fig. 1 Estimates of X (t) of the system (21)

Fig. 2 Steps of the Algorithm of ellipsoidal estimating process for the trajectory tube X (t) (σ =
0.01)
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4 Conclusions

We considered the problems of state estimation for dynamical control systems with
unknown but bounded initial state. The solution was studied through the techniques
of trajectory tubes of related differential inclusions.

The problem of estimating reachable sets of nonlinear dynamical control systems
ofLotka-Volterra typewhichdescribe the dynamics of the interactionof predators and
their preys under uncertainty conditions and state constraints was studied. Applying
results of the theory of trajectory tubes of control systems we found upper ellipsoidal
estimates of related reachable sets.

The algorithms of constructing ellipsoidal estimates are given, numerical simu-
lation results related to the proposed techniques and illustrating the algorithms are
included.
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Battle of Salamis: Greeks Were Destined
to Win

Konstantina Founta and Loukas Zachilas

Abstract In this paper we present a new non–linear, discrete, dynamical system
trying to model the historic battle of Salamis (480 BC) between Greeks and Persians.
The model describes the most effective strategic behavior between two participants
during a battle or in a war. Moreover, we compare the results of the dynamical
analysis to Game Theory, considering this conflict as a dynamic game.

Keywords Battle of salamis · Discrete systems · Modeling strategic behavior ·
Game theory

1 Introduction

Themodel approaches short–termconflicts between twoparticipants (players),where
one is weaker than the other opponent. Also, the parameters (that we use in Eq. 1, see
below) are the most crucial factors in order to highlight the optimal way to achieve
a decisive victory.

The solution of the equations of the dynamical system (called equilibrium point)
showswhat kind of behavior each player should adopt, i.e. an aggressive or defensive
one. In this way, according to Game Theory, the optimum strategic behavior is called
Nash Equilibrium [8].

One of the most representative games of Evolutionary Game Theory is the so-
called game “Hawk—Dove”, which was originally developed by Smith and Price
[9] to describe animal conflicts and is quite similar to our attempt. We will present
below the game and its results.

The game “Hawk—Dove” has many applications in everyday life. There are two
animals (or two players) fighting for the same resource. Each of them can behave

K. Founta (B) · L. Zachilas
Department of Economics, University of Thessaly, Volos, Greece
e-mail: kfounta@uth.gr

L. Zachilas
e-mail: zachilas@uth.gr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
C. H. Skiadas et al. (eds.), 13th Chaotic Modeling and Simulation International
Conference, Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-70795-8_17

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70795-8_17&domain=pdf
mailto:kfounta@uth.gr
mailto:zachilas@uth.gr
https://doi.org/10.1007/978-3-030-70795-8_17


220 K. Founta and L. Zachilas

Fig. 1 The results of “Hawk—Dove” game

either as a hawk (i.e. fight for the resource) or as a dove (i.e. abandon the resource
before the conflict escalates into a fight). Individuals have a benefit B if they win and
a cost C if lose.

If a Hawk meets a Hawk, they will fight and one of them will win the resource;
average payoff is (B-C)/2. If a Hawkmeets a Dove, the Dove immediately withdraws,
so the payoff of the Dove is zero, while the payoff of the Hawk is B. If a Dove meets
a Dove, the one who first gets hold of the resource keeps it, while the other does not
fight for it; average payoff B/2. The strategic form of the game is given by the payoff
matrix:

Payof f H,D =
(

(B − C)/2 B
0 B/2

)

2 Solution of the Game “Hawk—Dove”

We set the benefit B = 2 if a player wins, and the cost C = 1 if a player loses. Using
the Gambit1 software (16.0.1), we find Nash equilibriums and the dominant strategy.

Figure 1 shows us the payoffmatrix and the twoNash equilibriums. If both players
behave as a Hawk, the one who first injures the other wins. We set the player 1 starts
and injures the player 2, thus player 1 wins. If someone behaves as a Hawk and the

1 McKelvey, Richard D., McLennan, Andrew M., and Turocy, T. L., 2014.



Battle of Salamis: Greeks Were Destined to Win 221

Fig. 2 Dominant strategy

other behaves as a Dove, then the player with the aggressive behavior (Hawk) wins
and takes all the resource. If both players behave as a Dove, then they share the
resource.

Regarding Nash equilibriums, there are two pure strategies. On the one hand, both
players behave as Hawks and on the other hand, player 1 behaves as a Hawk and
player 2 as a Dove. Moreover, we can observe that player 1 behaves as a Hawk in
both cases and player 2 behaves either as a Hawk or as a Dove, but in each case
player 1 wins.

We should note that if player 2 injures first player 1, the Nash equilibriums would
be different.

Figure 2 shows the dominant strategy of the game, where player 1 behaves as a
Hawk independently of the player’s 2 behavior (i.e. Hawk or Dove). Therefore, the
first dominant strategy may not be effective, because both players behave as Hawks
and player 1 wins the half of the resource and does not maximize his profit. Although,
if the player behaves as a Hawk, knowing that the other player behaves as a Dove,
then he takes all the resource (maximum profit). Thus, we believe that the second
Nash equilibrium is more effective and optimum strategy.

3 The Dynamical Model

It is widely acknowledged that the military strategy is the combination of ends, ways
and means [6]. In our attempt to study the strategic behavior of two warring parties,
we developed a new non-linear discrete system of two equations based on the above



222 K. Founta and L. Zachilas

phrase. The main objective of the model is to simulate the way by which the two
opponents behave strategically, where the one is weaker than the other.

At the same time, in Game Theory, the war is considered as a dynamic game
where the strategies of the players are studied by calculating their optimal strategy
(Nash equilibrium). In this research, we tried to compare the results of the Game
Theory with those from the analysis of the discrete dynamical system. At the end of
the analysis, the optimum and effective strategy for both participants (players) will
be suggested.

The model, which is applied in short-term conflicts and describes the strategic
behavior of each participant, is given by Eq. 1:

{
xt+1 = Px + T Nx − G · (Dy + Ex

) · 4yt · (1 − yt )
yt+1 = Py + T N y − (1 − G) · (

Dx + Ey
) · 4xt · (1 − xt )

(1)

where:
xt : The strategic behavior of any form of social organization x (state, country,

etc.) at the time t.
yt : The strategic behavior of any form of social organization y (state, country,

etc.) at the time t.
xt+1: The optimal strategic behavior of any form of social organization x at the

(next moment of) time t + 1.
yt+1: The optimal strategic behavior of any form of social organization y at the

(next moment of) time t + 1.
We consider xt , yt , xt+1, yt+1 ∈ [0, 1], because the logistic equation is defined

in [0,1], which is derived from the study of biological populations reproduced in
discrete time [5]. It’s the evolution of the population model of Malthus [7] and
shows that the exponential growth cannot tend to infinity, but there is a critical point,
i.e. a saturation. In other words, it is not possible for someone to win and the other
to lose continuously. Also, each optimal strategic behavior, at the time t, affects the
next move—strategic behavior, at the time t + 1, of the opponent.

In addition, we can interpret the values of variables (and parameters, as shown
below) as percentages or probabilities, which help us to explain the results; these are
also explained through the Game Theory.

Moreover, if the value of xt+1 (or yt+1, respectively) equals to 0, it indicates the
fully defensive strategic behavior of participant x (or y respectively), while if it equals
to 1, then it indicates the fully aggressive behavior of participant x (or y respectively).

The parameters of Eq. 1 are the main and most important factors that could affect
the strategic behavior of x (or y, respectively). In particular:

The parameter Px represents the strength (economic, military, population, terri-
torial) of x and P y is the strength of y, respectively. These two parameters indicate
the substance of each form of social organization compared to the other.

TNx and TN y represents the Technological Naval capability and evolution of x
and y, respectively. These two parameters are also defined in comparison with the
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technological capability and evolution of the other participant and describe themeans
mentioned by [6].

The parameter G represents the geographical location (geophysical terrain) of the
area where the battle or the war is taking place. We believe that this is another part
of the military strategy, namely the ways [6]. Trying to emphasize the importance of
this parameter and how it can be an advantage or disadvantage for each participant,
we set in the first equation as G and in the second equation as 1—G. The closer to
the 1 the value of the parameter, the easier the geophysical terrain of the area is.

The parameter Dx represents the damages caused by x to y and respectively, Dy

represents the damages that y brings to x. The damages which we refer to may be
economic, territorial, military, etc. or even deception and damaging of the psycho-
logical part of the opponent. Moreover, these two parameters complete the last part
of the military strategy, namely the ends [6].

The parameter Ex represents the expenses of participant x and E y the expenses
of participant y, respectively. In other words, these denote the preparation costs of
each participant for a battle (or war), compared to each other.

All the parameters that have been presented above should belong to [0,1]. Namely,
Px , Py, T Nx , T N y,G, Dx , Dy, Ex , Ey ∈ [0, 1].

In the next section, we present the dynamic analysis and the results from the
application of Eq. 1 in naval battle of Salamis.

4 The Case of (Naval) Battle of Salamis

The naval battle of Salamis was an important battle of the second Persian invasion
in Greece and has been estimated to being held on September 28th, 480 BC in the
Salamis straits (in the Saronic Gulf near Athens). The two warring parties were the
Greeks (Hellenic alliance) and the Persian Empire [2].

After the fall of Thermopylae, the Persians proceeded to Athens. The Greeks had
been advised by the Oracle of Delphi, that only the “wooden walls” would save them
and they considered that this referred to a fight in the sea [5].

A few days before the battle, the meeting of the Greek admirals had to decide the
geographic location of the battle. On the one hand, the Spartan General Evriviades
proposed to fight in the Isthmus of Corinth, under the main argument that in case
of failure it would be possible for them to continue to fight into the center of the
Peloponnese. On the other hand, the Athenian General Themistocles insisted to
fight in Salamis straits. He believed that if he forced the Persians to attack there, the
numerous Persian ships couldn’t extent highlighting their dominance. Ultimately, the
council considered that Themistocles’ argument was better and decided to support
it [1].

The Greek fleet was estimated by Herodotus in 380 triremes and Aeschylus gave
a round 300 triremes, but we can’t be certain for the exact number. On contrary, the
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Persian fleet was estimated in 500–600 triremes.2 Herodotus describes the Persian
ships as “better sailing”, when compared to the Greek fleet. This may be attributable
to a combination of factors such as lightness of materials and structure of the ship,
better seamanship and more extensive naval experience. The triremes of Hellenic
alliance were heavier and more durable. However, Herodotus reports that these ships
were equipped with an embolism, with which they sank the enemy ships. They used
two attacking maneuvers: diekplous, (i.e. attack from the rear or sides with a sharp
turn) and periplous, (flanking or enveloping move, which generally gave an extra
benefit against superior numbers in open water). The purpose of both was to ram the
enemy in the side. In this way, they achieved serious damages or even the complete
destruction of the Persians ships. On the contrary, the Persian tactic was “ramming
and boarding” [10].

At dawn (if the date of the battle was indeed 28th Sept.), the two fleets were ready
for the naval conflict. Xerxes, sure of his victory, sat on a throne onmountainAigaleo,
to enjoy the war spectacle. The narrowness of the space and the limited extent of the
sea did not allow the Persians to use the major of their force in the front line. Thus,
the number of ships was approximately equal. In this naval battle, the bravery and
dexterity of the Greek fleet played an important role. They fought aggressively to
defend their moral values and their freedom [1].

Herodotus reports that “theGreeks foughtwith discipline and held their formation,
but the Persians did not seem to be following any plan, so things were bound to turn
out for them as they did”. Also, Aeschylus mentions that Themistocles must be given
the credit for their battle and the winning tactics. The turning point of the battle came
as the Persians “suffered their greatest losses when the ships in their front line were
put to fight and those following, pressing forward to impress the King (i.e. Xerxes)
with their deeds, became entangled with them as they tried to escape”, as Herodotus
comments [10].

The naval battle evolved rapidly and by the noon it was visible that the Greeks
would win. The Persian fleet had crushed, while the Greek fleet continued to haunt
them, killing the helpless, non–swimming soldiers. This brought the battle to an end,
leaving the Greek force in full control of the straits [1].

When the battle was over, a Roman source mentions that Greeks lost more than
40 triremes and Persians more than 200 ones [10]. The victory of the Greek force
was of major importance, since they managed to cause the collapse of the Persian
morale, which is evidenced by the abandonment of the battle. In addition, the right
decision of Themistocles for the geographic location of the naval battle was one of
the most intelligent movements to bring the Greek victory.

2 Aeschylus, writing decades earlier, also gives 1,207 triremes, but Herodotus writes, shortly before
battle took place, that the Persian fleet wasn’t much bigger than Greek. Because of a weather
phenomenon (storms) 600 ships sank (400 at the coast of Magnesia, north of Artemisium and 200
in Euboea).
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Fig. 3 The battle of Salamis. Source: Burn,A. R. (1962). Persia and theGreeks, NewYork:Minerva
Press

5 Applying the Model in Naval Battle
of Salamis—Approaching the Reality

Starting the dynamical analysis of the naval battle of Salamis, we set the initial
conditions in Eq. 1, which represent as much as possible the historical events of the
battle. Specifically:

(a) We set Greeks as the weak participant—player (x) and Persians as the powerful
participant—player (y).

(b) The strength ofHellenic alliance, Px = 0.25 and the strength of Persian empire,
Py = 0.8.

(c) The technological naval capability ofGreeks, T Nx = 0.7 and the technological
naval capability of Persians,T N y = 0.35.

(d) The geographic location of the naval battle, G = 0.4, i.e. the Salamis straits,
which are an advantage point for the Greek fleet.

(e) Thedamage caused toPersian sidewas huge, sowe set Dx = 0.8 and Dy = 0.2.
(f) The preparation costs of this battle for each participant: Ex = 0.3, Ey = 0.7,

respectively. According to Kyriazis and Zouboulakis [5], 100 new Athenian
triremes were built under the Athenian Naval Law of Themistocles. Each one
cost one talent (6000 ancient drachmae), so the total cost was 100 talents (or
600.000 ancient drachmae). In 480 BC, the Athenian fleet was comprised of
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200 triremes, equivalent to the two thirds of the total Greek strength. However,
the Persian ships were similar in shape, so we assume that the cost of each ship
was similar. Thus, it is obvious that the Persians spent more money to support
their expedition to the Greek territories than the Greeks.

With these initial conditions, we solve the system (Eq. 1), by using the mathemat-
ical software Maxima3 (5.39.0), calculating the equilibrium points. Then, we study
more extensively the behavior of the model and we present bifurcation diagrams and
timeseries diagrams using the software E&F Chaos.4

Solving the system (Eq. 1), there are two equilibrium points: E1 (x* = 0.75, y*

= 0.475) and E2 (x** = 0.96, y** = 1.012). According to Game Theory, these two
fixed points are considered as Nash Equilibriums [8]. Below, the stability of the fixed
points will be examined.

The Jacobian matrix is:

J = (
0 0.8y − 0.8(1 − y)

3.6x − 3.6(1 − x) 0
)

We calculate the Jacobian matrix at the equilibrium point E1:

J ∗ =
(

0 0.038
1.803 0

)

The determinant of J* is det (J*) = 0.069 > 0.
The trace of J* is trace(J*) = 0.
The eigenvalues of J* is (0.264i, -0.264 i); two complex roots.
The discriminant = � = trace(J ∗)2 − 4 · det (J ∗) 0.2788 < 0.
Therefore, the equilibrium point E1 is a stable—center.
Studying the second fixed point E2, the Jacobian matrix at the equilibrium point

is:

J ∗∗ =
(

0 0.82
3.314 0

)

The determinant of J** is det (J**) = 2.718 < 0.
The trace of J** is trace(J**) = 0.
The eigenvalues of J** is (1.648, 1.6487); two real roots.
The discriminant is � = trace(J ∗∗)2 − 4 · det (J ∗∗) 10.874 > 0.
Therefore, the equilibrium point E2 is a saddle point.
Consequently, we accept the fixed point E1 (x* = 0.75, y* = 0.475) and reject E2

(x** = 0.96, y** = 1.012), because the value of y** is greater than 1.

3 https://sourceforge.net/projects/maxima/files/Maxima-Windows/5.39.0-Windows/
4 E & F Chaos: written by Diks, C., Hommes, C., Panchenko, V., van der Weide, R., (2008).

https://sourceforge.net/projects/maxima/files/Maxima-Windows/5.39.0-Windows/
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Fig. 4 Time series diagram—x (Greeks; blue) and y (Persians; red)

Thus, we continue the analysis for the fixed point E1. Interpreting this equilibrium
point, we confirm the aggressive (strategic) behavior of Greeks; since the value of
x* is close to 1 and the mild (strategic) behavior of Persians; since they thought it
would be an “easy win”.

Indeed (historically), the courage of the Greeks, their technological naval skills,
and the advantageous geographical location contributed in this aggressive behavior.
As far as the Persians are concerned, their mild (strategic) behavior is due to the fact
that they underestimated their enemy, since they regarded that the Greeks are an easy
target, and they would achieve a decisive victory.

Connecting the game “Hawk—Dove” to the naval battle of Salamis, player 1 (red)
is “Persians” and player 2 (blue) is “Greeks” (Fig. 4). The Hellenic alliance had an
aggressive behavior (Hawk) and the Persians behaved as a Dove. According the Nash
equilibriums that have been mentioned above (See 2), the Greeks (player 2) should
behave as a Hawk (i.e. aggressive), regardless of Persian’s behavior, so as to win this
battle.

Figure 4 shows us how the twowarring parties behave (strategically). In particular,
it represents the optimal strategic behavior of Greeks and Persians in Salamis straits
for a time interval of 24 h. We can observe an oscillation, at the beginning, until t =
6 h. (both lines) and then it is normalized and balanced. That means that the duration
of the main battle was approximately 6 h. Indeed, according to historical documents,
the battle started at dawn (approximately at 06:00 am) and the Greek victory was
visible at noon.

Figure 5 presents the strategic behavior of Greeks (blue) and Persians (red) as
the parameter G changes. We observe for the positive values of G, the blue line is
above the red untilG= 0.64 (critical value) and forG > 0.64 the red line is above the
blue. The increase of the value of parameter signifies the change of the geographical
location (a more open sea), which becomes more difficult for Greeks and in contrary
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Fig. 5 Bifurcation Diagram for different values of G. x (Greeks; blue) and y (Persians; red)

easier for Persian. Thus, we approve that if the location of the naval battle was in an
open sea, the Persians would have a crucial advantage, which would possibly lead
to win this conflict.

Although we did not study the negative values of parameter G, we believe that
there are some unpredictable geophysical factors (e.g. meteorological phenomena
to influence the outcome of the conflict), which are surprisingly interesting. Specif-
ically, we refer to weather conditions, such as air, ripple, etc., which can affect the
geophysical terrain of the area. Due to these weather phenomena, period doubling
bifurcations and chaos appear and we cannot predict what could happen in the battle
for these values of G.

Figure 6 depicts the technological evolution and capability of x (Greeks; blue) and
y (Persians; red), respectively. In the left diagram (Fig. 6a), for the negative values of
parameter T Nx , we can distinguish a pair of bubble bifurcations, while afterwards
we have the well-known period-doubling scenario to chaos. A possible interpretation
of this chaotic scenario is the uncertainty of Greeks in technological capability—first
attempts to construct ships. The first ships, as Krasanakis [4] mentions, were floating
planks and carved tree trucks only with oars. Since the ships were primitive, the
situation was unstable (there is chaos in this range of values) because they were not
capable to fight in naval battles. Later, the sails were invented, which gave high speed
to ships, and they were consisted no more than wood but iron. For this reason, we
have bubble bifurcations, which indicate the technological alternatives that existed
for the construction of the ships. In the interval of positive values of T Nx , there is
stability with two fixed points. Here, it’s the beginning of better shipbuilding ability
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Fig. 6 Bifurcation diagrams for different values of parameters TNx and TN y. (a) x (Greeks; blue)
and (b) y (Persians; red)

and new expertise ship construction. Finally, there is one equilibrium point which
shows the better version of ships, of that period, namely Triremes. Triremes were
wooden warships which move either with sails or oars. Moreover, in the positive
values of the parameter T Nx , the increasing of the slope of the curve is visible,
which, on the one hand, it means that in 480 BC the triremes were an innovation
in shipbuilding and on the other hand, it shows the excellent naval capability of the
Greeks.

Persians, through the years, developed technological equipment because of their
expansive mania to conquer Greece. Comparing the Figs. 6a and 6b, it seems that
Persians had a lower technological development than Greeks, since they focused
more on land army than on warships. Their ships were mainly used as troopships
rather than battleships [10].

6 Conclusions

In this article, a new non—linear discrete model has been presented, which simulates
the optimum strategic behavior of two warring parties for short–term battles. In
addition, we try to compare this model with the game “Hawk—Dove”, applying
this attempt in the naval battle of Salamis. Based on the results we have extracted,
we (mathematically) proved the historical events of this conflict. Specifically, the
Greek’s strategic behavior fits with the aggressive behavior of the Hawk and as well
as the Persian’s strategic behavior fits with the more defensive behavior of the Dove
in the game. Moreover, the estimated duration of the battle was proved as well as the
dominance of the Greek fleet in the Salamis straits. Finally, the technological naval
capability of the Greek alliance was able to cause serious damages to the opponent
and led them to a crashing defeat.
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Atoms and Pseudo-atoms in Quantum
Measure Theory

Alina Gavriluţ

Abstract In this paper, different results concerning (pseudo)-atomicity are obtained
from the Quantum Measure Theory mathematical perspective and several physical
applications are given. Precisely, the mathematical concept of atomicity (and, par-
ticularly, that of minimal atomicity) is extended, based on the non-differentiability
of the motion curves associated to the motions of the structural units of a complex
system on a fractal manifold.

Keywords Atom · Pseudo-atom · Minimal atom · Non-differentiability · Fractal
manifold

1 Introduction

Although classical measure theory imposes strict additivity conditions, in the recent
decades, a rich theory of non-additive measures developed. Precisely, modifica-
tions of traditional Measure Theory (Pap [12, 13]) led to Quantum Measure Theory
(Gudder [7, 8], Salgado [15], Sorkin [17–19] and Surya and Wallden [20]). An
extended notion of a measure has been introduced and its applications to the study
of interference, probability, and spacetime histories in Quantum Mechanics have
been discussed (Schweizer and Sklar [16]). Introduced by Sorkin [17–19], quantum
measures are an useful tool which enables us to describe Quantum Mechanics and
its applications to Quantum Gravity and Cosmology (Hartle [9, 10], Phillips [14],
Salgado [15]).

Quantum Measure Theory indicates a wide variety of applications, as its math-
ematical structure is used in the standard quantum formalism. In [17–19], Sorkin
proposed a history-based framework, which can accommodate both standard Quan-
tumMechanics and physical theories beyond the quantum formalism. Recently, since
Quantum Mechanics can be assimilated with a particular model of Fractal Mechan-

A. Gavriluţ (B)
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ics at a given scale resolution in the form of Scale Relativity Theory in a constant
fractal dimension and arbitrary (Mercheş and Agop [11]), fundamental concepts of
Quantum Mechanics can be extended to similar concepts, but on fractal manifolds.

This paper refers to certain aspects concerning atomicity,which is a very important
property in (non)-additivemeasure theory (Gavriluţ [1], Gavriluţ andCroitoru [3, 4]).
This property concerns sets which, from a mathematical “measurement” viewpoint
have the property that each subset is either “negligible” or it is almost like the
considered set. Precisely, we consider here atomicity, pseudo-atomicity and minimal
atomicity from the Quantum Measure Theory mathematical perspective. Several
physical applications and considerations are provided and the concept of fractal
atomicity is introduced.

2 Atomicity in Quantum Measures Theory

Unless stated otherwise, all over this paper, T denotes an abstract non-empty set and
L a lattice of subsets of T . Suppose (V,+, ·) is a real vector space with the origin θ.

In what follows, we give certain key-concepts from Quantum Measure Theory,
with slight modifications of the corresponding ones from Gavriluţ et al. [2], Gavriluţ
and Agop [5, 6]:

Definition 2.1 Let m : L → V be a set function, with m(∅) = θ.

(I) m is said to be:

(i) finitely additive (or, grade-1-additive) if m(
p∪

i=1
Ei ) =

p∑

i=1
m(Ei ) holds, for any

arbitrary pairwise disjoint sets (Ei )i∈{1,2,...,p} ⊂ L, p ∈ N
∗;

(ii) a grade-2-measure if

m(E ∪ F ∪ G) + m(E) + m(F) + m(G) = m(E ∪ F) + m(F ∪ G) + m(E ∪ G)

holds, for any pairwise disjoint sets E, F,G ∈ L;
(II) Two sets E, F ∈ L are called m-compatible (denoted by EmF) if

m(E ∪ F) + m(E ∩ F) = m(E) + m(F)

holds (i.e.,m-compatible sets are those two sets for which the set functionm behaves
like a grade-1-measure);

(III) An arbitrary fixed set E ∈ L which is m-compatible with any set F ∈ L is
called a macroscopic set.

Remark 2.2 (Gavriluţ et al. [2],Gavriluţ andAgop [5, 6]) (i) Somequantumobjects
interfere with each other, but others do not. Consequently, one can justify the name
of a “macroscopic set” by the fact that it does not interfere with any set and thus it
behaves like a non-quantum object in the macroscopic world.
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(ii) One can immediately check that m-compatibility generates a relation which
is reflexive, symmetric but it is not transitive.

(iii) Evidently, if m is grade-1-additive, then it is also a grade-2-measure, but the
converse does not hold.

(iv) If E ∈ L is arbitrarily chosen, then E and ∅ are m-compatible.
(v) Suppose ti ,where i ∈ {1, 2, ..., p}, p ∈ N

∗ represent quantumobjects or quan-
tum events and let be their collection T = {t1, t2, ..., tp}.One can need an interpreta-
tion of a “measure” on T , in situations when the additivity condition from Definition
2.1.-(ii) is not fulfilled.

For these reasons, in what follows we introduce several notions, that are weaker
than classical additivity and also than those from the above Definition 2.1. As before,
these notions generalize those from Gavriluţ et al. [2], Gavriluţ and Agop [5, 6]:

Definition 2.3 A set function m : L → V , with m(∅) = θ, is called:
(i) disjoint-null-additive ifm(E ∪ F) = m(E), for every disjoint E, F ∈ L, with

m(F) = θ;
(ii) null-additive if m(E ∪ F) = m(E), for every E, F ∈ L, with m(F) = θ;
(iii) null-null-additive if m(E ∪ F) = θ, for every E, F ∈ L, with m(E) =

m(F) = θ;
(iv) null-equal if m(E) = m(F), for every E, F ∈ L, with m(E ∪ F) = θ;
(v) a quantum measure (q-measure, for short) if it is a disjoint-null-additive and

null-equal grade-2-measure.

Definition 2.4 If, moreover, (V,≤) is an ordered vector space, then a set function
m : L → V , with m(∅) = θ, is called:

(i) null-monotone if for every E, F ∈ L, with E ⊆ F , if m(F) = θ , then m(E)

= θ;
(ii) monotone if m(E) ≤ m(F), for every E, F ∈ L, with E ⊆ F;
(iii) a submeasure if m is monotone and subadditive (i.e., m(E ∪ F) ≤ m(E) +

ν(F), for every (disjoint) E, F ∈ L).

Example 2.5 (i) It T is a nonempty metric space, then the Hausdorff dimension
dimHaus : P(T ) → R is a monotone real function. Evidently, dimHaus(∅) = 0.

(ii) For every d ≥ 0, the Hausdorff measure Hd : P(T ) → R is an outer measure,
so, particularly, it is a submeasure.

Definition 2.6 Suppose (V,≤) is an ordered vector space.
I) If m : L → V , with m(∅) = θ is an arbitrary set function, then:
(i) A set A ∈ L is called a pseudo-atom of m if m(A) > θ and B ∈ L, B ⊆ A

implies m(B) = θ or m(B) = m(A);
(ii) m is said to be non-pseudo-atomic (N PA, for short) if it has no pseudo-

atoms (i.e., for every A ∈ L with m(A) > θ , there exists B ∈ L, B ⊆ A, such that
m(B) > θ and m(A) �= m(B);
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(iii) A set A ∈ L is called to be a minimal atom of m if m(A) ≥ θ and for every
B ∈ C, B ⊆ A, it holds either m(B) = θ or B = A;

II) Suppose, moreover, that C is a ring of subsets of T and let m : C → V be a set
function, with m(∅) = θ .

(i) A set A ∈ C is called an atom of ν if m(A) > θ and for every B ∈ C, with
B ⊆ A, we have m(B) = θ or m(A\B) = θ;

(ii) m is said to be non-atomic (N A, for short) if it has no atoms (i.e., for every
A ∈ C withm(A) > θ , there exists B ∈ C, B ⊆ A, such thatm(B) > θ andm(A\B)

> θ );
(iii) m is said to be finitely purely atomic if there is a finite family (Ai )i∈{1,2,...,n}

of pairwise disjoint atoms of m so that T = n∪
i=1

Ai (in this case, the entire space is

assumed to be a finite collection of pairwise disjoint atoms).

In case when C is a ring of subsets of T and m : C → R+, with m(∅) = 0, is
an arbitrary set function, then (when they exist), its atoms and pseudo-atoms have
certain remarkable properties:

Proposition 2.7 (Gavriluţ and Croitoru [3, 4]) (i) (self-similarity of atoms) If m is
null-monotone, E ∈ C is an atom of m and F ∈ C, F ⊆ E is such that m(F) > 0,
then F is an atom of m and m(E\F) = 0.

(ii) (self-similarity of pseudo-atoms) If E ∈ C is a pseudo-atom of and F ∈ C,
F ⊆ E is such that m(F) > 0, then F is a pseudo-atom of m and m(F) = m(E).

(iii) If E, F ∈ C are pseudo-atoms of andm(E ∩ F) > 0, then E ∩ F is a pseudo-
atom of m and m(E ∩ F) = m(E) = m(F).

(iv) Let m : C → R+ be null-additive and let E, F ∈ C be pseudo-atoms of m.
1. If m(E ∩ F) = 0, then E\F and F\E are pseudo-atoms of m and m(E\F) =

m(E),m(F\E) = m(F).
2. If m(E) �= m(F), then m(E ∩ F) = 0,m(E\F) = m(E) and m(F\E) =

m(F).
(v) Let m : C → R+ be null-additive and let E, F ∈ C be pseudo-atoms of m. If

m(E ∩ F) > 0 and m(E\F) = m(F\E) = 0, then E ∩ F is a pseudo-atom of and
m(EΔF) = 0.

Definition 2.8 Suppose m : C → R+, with m(∅) = 0, is an arbitrary set function.
Let m : P(T ) → [0,∞], defined for every A ∈ P(T ) by:

m(A) = sup

⎧
⎨

⎩

p∑

i=1

m(Ai ); A = p∪
i=1

Ai , Ai ∈ C,∀i ∈ {1, ..., p}, Ai ∩ A j = ∅, i �= j

⎫
⎬

⎭
.

We say that m is of finite variation if m(T ) < ∞.
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3 Quantum Measures. Decoherence Functions

In Quantum Mechanics, when a wavefunction becomes coupled to its environment,
the objects involved interacting with the surroundings, the decoherence phenomenon
occurs. It is also known as the “wavefunction collapse” and it allows the classical limit
to emerge on the macroscopic scale from a set of quantum events. After decoherence
has occurred, the system’s components can no longer interfere, so one could assign
a well-defined probability to each possible decoherent outcome.

Remark 3.1 In light’s classical theory, the intensity of the light in an arbitrary
point is determined by the square amplitude of the light. For instance, in Young’s
two-slit experiment, the intensity of the light on the detector screen is given by the
square amplitude of the wave obtained through the overlapping (superposition) of
the secondary waves originating from each slit. Of course, this classical wave theory
can not be used in this case since it ignores the corpuscular character of the light.
However, by analogy, it suggests that in Quantum Mechanics, it can be introduced
either a wavefunction which satisfies the Schrödinger equation. The wavefunction
is a complex quantity, while the states density is a real one. We expect then, that
the states density ρ(x, y, z, t) to find the particle in a given point from the volume
V, in a vecinity of the point of coordinates (x, y, z, t) at a momentum t should be
proportional with |Ψ |2, that is,

ρ(x, y, z, t) ≡ |Ψ (x, y, z, t)|2 (1)

LetΨ1 be the wavefunction in a given point from the screen where the interference
field is localized, corresponding to the waves propagated through the slit 1. Similarly,
letΨ2 be the wavefunction in the same point, corresponding to the waves propagated
through the slit 2. The two intensity distributions, corresponding to the “experiments”
performed with only one open slit are determined by the respective states densities
(probability distributions)

ρ1 ≡ |Ψ1|2, ρ2 ≡ |Ψ2|2 (2)

On the other hand, when both slits are open, the wavefunction is given by the sum
of the two contributions Ψ1 and Ψ2 :

Ψ ≡ Ψ1 + Ψ2 (3)

The corresponding states density (probability distribution)

ρ ≡ |Ψ1 + Ψ2|2 (4)

determines then the intensity of the “structure” from the interference field.
Let us explain in the following, Ψ1 and Ψ2 in the form

Ψ1 = √
ρ1e

iθ1 , Ψ2 = √
ρ2e

iθ2 (5)
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It results

ρ ≡ |Ψ |2 = |Ψ1|2 + |Ψ2|2 + 2Re{|Ψ1| · |Ψ2| exp[i(θ2 − θ1)]}
≡ ρ1 + ρ2 + 2

√
ρ1ρ2 cosΔθ,Δθ = θ2 − θ1.

(6)

Now, if the term cosΔθ is a time functional

cosΔθ ≡ cosΔθ(t) (7)

then the system is decoherent (the interference field does not exist). If

cosΔθ = const. (8)

then the system is coherent (there exists an interference field).

One can define functions related to interference, as shown in the following. Let
C be the family of complex numbers, “ ” the complex conjugate of a complex
number and “| · |”, the modulus of a complex number.

Definition 3.2 SupposeA is an algebra of subsets of T .A function D : A × A → C

is said to be a decoherence function if the following conditions hold:
(i) D(E, F) = D(F, E), for every E, F ∈ A;
(ii) D(E, E) ≥ 0, for every E ∈ A;
(iii) |D(E, F)| ≤ D(E, E) · D(F, F), for every E, F ∈ A;
(iv) D(E ∪ F,G) = D(E,G) + D(F,G), for every disjoint E, F ∈ A and every

G ∈ A.

Remark 3.3 (i) Since D(E, E) ∈ R, then the conditions (ii) and (iii) fromDefinition
3.2. are justified.

(ii) By (i), for arbitrary E, F ∈ A representing quantum objects, Re[D(E, F)]
can be interpreted as the interference between E and F , aswe remark inwhat follows:

Proposition 3.4 If D : A × A → C is a decoherence function, then the set function
M : A → C, M(E) = D(E, E) is a q-measure.

Example 3.5 If V is a pre-Hilbert space and if m : A → V is finitely additive, then
D : A × A → C,

D(E, F) =< m(E),m(F) >,

for every E, F ∈ A is a decoherence function.

Moreover, ifm : A → C is finitely additive (often interpreted as a quantum ampli-
tude), then one can define the decoherence function defined for every E, F ∈ A by

D(E, F) = m(E) · m(F).
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The corresponding q-measure is M : A → C,

M(E) = D(E, E) = m(E) · m(E) = |m(E)|2,

for every E ∈ A.

Remark 3.6 (i) If E, F ∈ A are disjoint, then M is not grade-1-additive. Indeed,

M(E ∪ F) = |m(E ∪ F)|2 = |m(E) + m(F)|2 =
= |m(E)|2 + |m(F)|2 + 2Re[m(E)m(F)] =
= M(E) + M(F) + 2ReD(E, F).

Also, M(E ∪ F) = M(E) + M(F) if and only if ReD(E, F) = 0 (this means inter-
ference is represented by the real part of a decoherence function).

(ii) If m : A → R is a real valued submeasure of finite variation m, then the set
function

D : A × A → R, D(E, F) =< m(E),m(F) >

is a decoherence function.

4 From the Standard Mathematical Atom to the Fractal
Atom by Means of a Physical Procedure

Let T be an abstract nonvoid set, L a lattice of subsets of T and m : L → R+ an
arbitrary set function with m(∅) = 0.

Remark 4.1 (i) The union of two sets A and B having the fractal dimensions DA,
respectively, DB has the fractal dimension DA∪B = max{DA, DB};

(ii) The intersection of two sets A and B having the fractal dimensions DA,
respectively, DB has the fractal dimension DA∩B = DA + DB − d, where d is the
embedding Euclidean dimension.

One can introduce then the following concept:

Definition 4.2 A pseudo-atom, a minimal atom, respectively, A ∈ L of m having
the fractal dimension DA is said to be a fractal pseudo-atom, a fractal minimal atom,
respectively.

One easily gets:

Proposition 4.3 If A, B ∈ L are fractal pseudo-atoms of m and if m(A ∩ B) > 0,
then A ∩ B is a fractal pseudo-atom of m and m(A ∩ B) = m(A) = m(B).
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11. I. Mercheş, M. Agop, Differentiability and Fractality in Dynamics of Physical Systems (World
Scientific Publishing Co., 2015)

12. E. Pap, Null-additive set functions, in Vol. 337 of Mathematics and Its Applications (Springer,
1995)

13. E. Pap, Some elements of the classical measure theory, inHandbook of MeasureTheory (2002),
pp. 27–82

14. A.C. Phillips, Introduction to Quantum Mechanics (Wiley, New York, NY, USA, 2003)
15. R.B. Salgado, Some identities for the q-measure and its generalizations. Mod. Phys. Lett. A

17(12), 711–728 (2002)
16. B. Schweizer, A. Sklar, Probabilistic Metric Spaces (Elsevier Science Publishing Co, 1983)
17. R.D. Sorkin, Quantummechanics as quantummeasure theory.Mod. Phys. Lett. A 9(33), 3119–

3127 (1994)
18. R.D. Sorkin, Quantum dynamics without the wavefunction. J. Phys. A: Math. Gen. 40(12),

3207–3221 (2007)
19. R.D. Sorkin, Quantummeasure theory and its interpretation, inQuantum Classical Correspon-

dence: Proceedings of the 4th Drexel Symposium on Quantum Non-Integrability, eds. by D.H.
Feng, B.-L.Hu (International Press, Cambridge, Mass, USA, 1997), pp. 229–251

20. S. Surya, P.Wallden,Quantum covers in q-measure theory, arxiv print arXiv:0809.1951 (2008)

https://doi.org/10.1155/2019/8298691
https://doi.org/10.1155/2019/8298691
https://doi.org/10.1007/978-3-030-29593-6
https://doi.org/10.1007/978-3-030-29593-6
http://arxiv.org/abs/0909.2203
http://arxiv.org/abs/0809.1951


Albert Einstein and the Doubling
of the Deflection of Light

Jean-Marc Ginoux

Abstract One of the three consequences of Einstein’s theory of general relativity
was the curvature of light passing near a massive body. In 1911, he published a first
value of the angle of deflection of light, then a second value in 1915, equal twice
the first. In the early 1920s, when he received the Nobel Prize in Physics, a violent
controversy broke out over this result. It was then disclosed that the first value he
had obtained in 1911 had been calculated more than a century before by a German
astronomer named Johann von Soldner. The aim of this article is therefore to compare
the methods used by Soldner and then by Einstein leading to this first value and to
explain the importance of the doubling of this value in the framework of Einstein’s
theory of general relativity. Such a consequence of this theory lies at the intersection
of several scientific fields such asMathematics, Physics, Astronomy and Philosophy.

Keywords General relativity · Deflection of light · Johann von Soldner

1 The Genesis of General Relativity and the Curvature
of Light

Two years after the publication of his article on special relativity, Albert Einstein
considered generalizing his theory. Thus, in 1907, he wrote an article entitled “Rel-
ativitätsprinzip und die aus demselben gezogenen Folgerungen” (“On the Principle
of Relativity and the Conclusions Drawn from it”), at the request of Johannes Stark,
editor of the Jahrbuch der Radioaktivität, in which he presented for the first time
one of the consequences of his theory. In paragraph V. entitled “The Principle of
Relativity and Gravitation”, he wrote:

From this it follows that those light rays that do not propagate along the ξ-axis are bent by
the gravitational field [5].
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At that time Einstein thought that the effect of gravitational field on rays of light
was too weak to be detected as evidenced by his conclusion:

Unfortunately, the effect of the terrestrial gravitational field is so small according to our
theory (because of the smallness of γx/c2) that there is no prospect of a comparison of the
results of the theory with experience [5].

During the autumn 1911, Einstein became full professor of theoretical physics
at the German Charles-Ferdinand University in Prague. Einstein lived more than a
year at number 7 Leniscka Street with his first wife Mileva Marić and their two
children Hans Albert and Eduard. Here he wrote a second article, considered as the
starting point of his theory of general relativity: “Einfluss der Schwerkraft auf die
Ausbreitung des Lichtes” (“On the influence of Gravitation on the Propagation of
Light”) in which he gave a first value of the deflection of light passing near a massive
body. In paragraph 4 entitled Curvature of light rays in the gravitational field, he
wrote:

By equation (4) a light-ray passing by a heavenly body suffers a deflection to the side of the
diminishing gravitational potential, that is, to the side directed toward the heavenly body, of
the magnitude

α = 1

c2

∫ ν=+ π
2

ν=− π
2

k M

r2
cos (ν) ds = 2k M

c2�

where k denotes the constant of gravitation, M the mass of the heavenly body,� the distance
of the ray from the center of the body (and r and ν are as shown in Fig. 3). A light-ray going
past the Sun would accordingly undergo deflection by the amount of 4.10−6 = 0.83 seconds
of arc. The angular distance of the star from the center of the Sun appears to be increased
by this amount. As the fixed stars in the parts of the sky near the Sun are visible during
total eclipses of the Sun, this consequence of the theory may be compared with experimental
evidence [6].

Then, he added:

It would be urgently wished that astronomers take up the question here raised, even though
the considerations presented above may seem insufficiently established or even bizarre. For,
apart from any theory, there is the question whether it is possible with the equipment at
present available to detect an influence of gravitational fields on the propagation of light [6].

In 1912 Einstein was appointed, on the recommendation ofMarie Curie andHenri
Poincaré, to a chair of mathematical physics at the Swiss Federal Polytechnic in
Zürich (later the Eidgenössische TechnischeHochschule, ETH)where he had studied
a few years earlier. The following year, he joined Berlin to become member of the
Prussian Academy. On November 1915, he submitted four papers to the journal of
the PrussianAcademy of Sciences [7–10]. Then, he published in 1916 inAnnalen der
Physik a 40-page article entitled “Die Grundlage der algemeinen Relativitätstheorie”
(“The Foundations of the General Theory of Relativity”) considered as the final and
complete version of his theory of general relativity. In the last section he presented the
three observable physical consequences of his theory and in particular the curvature
of the light rays and explained that this latter consequence could be verified by exact
astronomical experiments. Then, he provided a second value of the deflection of light
passing near a massive body:
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We examine the curvature undergone by a ray of light passing by a masse M at the distance
�. If we choose the system of co-ordinates in agreement with the accompanying diagram,
the total bending of the ray (calculated positively if concave towards the origin) is given in
sufficient approximation by1

B = κM

2π�

According to this, a ray of light going past the sun undergoes a deflexion of 1.7′′ …[11].

It is very surprising to notice that this second value of the angle of deflection of
light provided by Einstein is equal twice the first. It will be learned some years later
that the first value provided by Einstein in 1911 was in fact identical to that published
a century earlier by the German physicist and astronomer Johann Georg von Soldner.
This fact has been reported since bymany historians of science such as ThomasGlick
[20], Jean Eisenstaedt [14], Jürgen Renn [29] and Milena Wazeck [35] to name but
a few. Nevertheless, neither of these references contains any mathematical analysis
nor comparison of Soldner’s and Einstein’s results. According to Abraham Pais:

An Argentinian eclipse expedition which had gone to Brazil in 1912 and which had the
deflection of light on its experimental program was rained out. In the summer of 1914, a
German expedition led by Erwin Freundlich and financed by Gustav Krupp, in a less familiar
role of benefactor of humanity, headed for the Crimea to observe the eclipse of August 21.
(Russian soldiers and peasants were told by their government not to fear evil omens: the
forthcoming eclipse was a natural phenomenon.). When the war broke out, the party was
warned in time to return and some did so. Those who hesitated were arrested, eventually
returned home safely but of coursewithout results. Frustration continued also afterNovember
18, 1915, the day on which Einstein announced the right bending of 1′′74. […].
An opportunity to observe an eclipse in Venezuela in 1916 had to be passed up because
of the war. Early attempts to seek deflection in photographs taken during past eclipses led
nowhere. An American effort to measure the effect during the eclipse of June 1918 never
gave conclusive results. It was not until May 1919 that two British expeditions obtained
the first useful photographs and not until November 1919 that their results were formally
announced [28].

When the armistice was signed on November 11, 1918, two expeditions were
mounted, one to Sobral in Brazil, led by Andrew Crommelin from the Greenwich
Observatory, and one to Principe Island off the coast of Spanish Guinea, led by
Eddington. After the return of the expeditions, data analysis began. Einstein could
not hide his enthusiasm in the expectation of the results. On September 22, 1919,
Hendrik Lorentz sent a telegram to Einstein announcing:

Eddington found stellar shift at solar limb, tentative value between nine-tenths of a second
and twice that [13, p. 95].

On the afternoon of November 6, 1919, at Burlington House in Piccadilly, the
Astronomer Royal, Sir Frank Dyson, had the honor of presenting the results of the
two expeditions. He described in detail the equipment, the photographs, and the
complexities of the computations. His conclusion, however, was simple.

1 The value κ = 8πK/c2 where K = 6.67 × 10−11 m3 kg−1 s−2 is the Cavendish’s constant.
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The results of the expeditions to Sobral and Principe leave little doubt that a deflection of
light takes place in the neighbourhood of the sun and that it is of the amount demanded by
Einstein’s generalized theory of relativity.

Thus, it was considered that the astronomical observations had “demonstrated”
the curvature of space. The day after, Einstein’s name became legendary. The Lon-
don Times published an article entitled “Revolution in Science, New Theory of the
Universe, Newtonian ideas overthrown”. OnNovember 9, 1919, The New York Times
published the following article [18, 19]:

Diversion of light Rays Accepted as Affecting Newton’s Principles.

Thus, in 1919 the expedition led by Crommelin and Eddington “confirmed” Ein-
stein’s second prediction, that is to say, that the value of the deflection of the light
passing near the Sunwas equal to 1.7 s of arc. Eddington’s results for the solar eclipse
observation of the apparent displacement of stars of 1919 have been widely disputed
by many historians of science. See for example John Earman and Clark Glymour
[4]. See also the works of Daniel Kennefick [23, 24]. Moreover, the question, which
was the subject of intense controversy, was whether or not Einstein was aware of
Soldner’s work when he published his article in 1911.

2 Controversy Around the Curvature of Light

In the early Twenties, Einstein and his theory of relativity were subject to many
attacks of various natures [35]. The first, the most odious, had an anti-Semitic char-
acter. Then, in 1921, scientists such as Charles Lane Poor, a professor of astronomy,
a specialist in Celestial Mechanics at Columbia University, tried to prove that Ein-
stein’s theories of relativity were false. To this aim he published an article [27]
entitled “Is Einstein wrong?—A debate”. When Einstein was invited to the Collège
de France in 1922 by Paul Langevin, his theories were challenged by Édouard Guil-
laume who had worked with him as a patent examiner at the Swiss patent office in
Bern and had come purposely from Swiss in order to “destroy relativity”. Indeed,
he had published a few weeks beforehand an article entitled: “Y a-t-il une erreur
dans le premier mémoire d’Einstein ?” which let no doubt concerning his intentions
[21]. Unfortunately, this anti-relativistic attitude was shared by a part of the French
scientific community and more particularly by many Academicians of Sciences. It
has been initially convened that Einstein presents his work at the Academy but some
of the members of the Academy had decided as a protest against his presence to rise
and leave the hall as soon as he entered, Einstein had to renounce [1]. In August
1922, Einstein, who had received many death threats, decided to leave temporarily
Europe. On October 8, 1922, Albert Einstein and his second wife Elsa came aboard
the S. S. Kitano Maru in Marseille (south France) and reached then their final desti-
nation at Fukuoka in Japan where Einstein gave a lecture at the Daihaku Theater. On
November 15, during a stopover in an hotel of Shanghai, Einstein received a telegram
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from Sweden announcing him that he has been awarded the Nobel Prize of Physics
for “his contribution to theoretical physics and more particularly for his discovery
of the law of photoelectric effect” and not for his relativity theories [16]. This news
almost immediately triggered new reactions. Einstein’s most virulent opponent was
the German physicist Philipp Lenard, Nobel Prize in 1905 (the year of the relativity
theory) and active proponent of the Nazi ideology. Then, in April 1923 Professors
Ernst Gehrcke2 of Berlin, P. Lenard of Heidelberg, O. E. Westin3 of Stockholm
charged Einstein with downright plagiarism, saying:

From these facts the conclusion seems inevitable that Einstein cannot be regarded as a scien-
tist of real note. He is not an honest investigator.” Thus Westin protested to the Directorate
of the Nobel Foundation against the reward of Einstein.4

What were “theses facts” invoked by the three professors against Einstein? The
New York Times of April 13 provides the answer:

…in 1801 Dr. J. von Soldner, a German physicist of eminence in his day, actually derived
the formula recently used by Einstein. This was 122 years ago. Einstein never once mentions
Soldner in his writings. This is bad enough, but the worst is yet to come. It has been shown
by Professor Dr. E. Gehrcke, Director of the Imperial Physical and Technical Institute of
Berlin, a position first filled by Helmohltz and by Professor P. Lenard of Heidelberg, winner
of the Nobel Prize in Physics, that Soldner omitted a certain factor in his formula of l801,
which error Einstein also copied when he appropriated the Einstein-Soldner formula in the
Einstein paper of 1911. In a subsequent paper to the Berlin Academy of Science, 1915,
Einstein camouflaged this fraud as best he could, yet could not prevent its discovery and
exposure by Professors Lenard of Heidelberg, Gehrcke of Berlin and Westin or Stockholm.

To these three scientists was added the professor Arvid Reuterdahl, Dean of the
Engineering Department of the University of St. Thomas, St. Paul, Minnesota. He
sent a letter to the Editor of The New York Times published on June 3, 1923 and in
which he claimed:

There are two episodes in the Einsteinian development of the bending of light. In Einstein’s
1911 paper the value of the deflection is given as 0.83 of a second. Soldner’s value was 0.84
of a second. The two formulae are identical except in thematter of the convenient substitution
by Einstein of different letters than those used by Soldner. Compared, letter for letter, the
meanings are, however identical.5 In his 1916 paper Einstein modified his 1911 value to
read 1.7 of a second. Einstein has never taken the world into his confidence concerning the
reason of this change. He has never admitted that either one or the other of these values must
be erroneous.6

2 E. Gehrcke (1878–1960) was a German experimental physicist, Director of the Imperial Institute
of Berlin. He was a Privatdozent at the Friedrich-Wilhelms-Universität from 1904 to 1921 and an
außerordentlicher Professor (extraordinarius professor) from 1921 to 1946.
3 Oscar Edward Westin (1848–1930) was a Swedish engineer, professor of mechanical engineering
at the Royal Institute of Technology in Stockholm.
4 See The New York Times, April 13, 1923. This event is also mentioned in Philipp Frank [15, p.
202 and next].
5 See Sect. 3.
6 We will see in Sect. 3 that this statement is partially inaccurate.
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Indeed, in 1916, in his famous article entitled “The Foundations of the General
Theory of Relativity [11]”, Einstein realized that his earlier result on the bending of
light, he had presented in his previous article of 1911, was too small by a factor of 2.
This factor will be proved to be decisive because it enables to reveal a strict separation
betweenNewtonian andEinsteinian theory of gravitation. Thiswas due to the fact that
in his 1911paperEinstein hadnot taken into account in his computations the curvature
of space but, only included the effect of Newtonian gravitational interaction on the
four-dimensional space-time that he will express later in a Minkowskian metric.
According to Abraham Pais:

Let us briefly recapitulate Einstein’s progress in understanding the bending of light.
1907. The clerk at the patent office in Bern discovers the equivalence principle, realizes that
this principle by itself implies some bending of light, but believes that the effect is too small
to ever be observed.
1911. The professor at Prague finds that the effect can be detected for starlight grazing the
sun during a total eclipse and finds that the amount of bending in that case is 0′′87. He does
not yet know that space is curved and that, therefore, his answer is incorrect. He is still too
close to Newton, who believed that space is flat and who could have himself computed the
0′′87 (now called the Newton value) from his law of gravitation and his corpuscular theory
of light.
1912. The professor at Zurich discovers that space is curved. Several years pass before he
understands that the curvature of space modifies the bending of light.
1915. The member of the Prussian Academy discovers that general relativity implies a
bending of light by the sun equal to 1′′74, the Einstein value, twice the Newton value. This
factor of 2 sets the stage for a confrontation between Newton and Einstein [28].

3 Comparison of the Work of Einstein and Soldner

Such a comparison has been subject to many studies and several historians of science
have analyzed both works of Soldner and Einstein from amathematical point of view
during these last decades. In 1975, Hans Fuchs published an article entitled “On the
history of ideas about the effect of gravity on the light [17]” in which he presented
the proofs leading to the value of the deflection of light passing near a massive body
obtained by Soldner in 1801 and then by Einstein in 1911 and finally in 1915. After
comparing Einstein’s paper of 1911 with that of Soldner of 1801, Fuchs [17] wrote:

Man erhält also trotz Zuhilfenahme des Aquivalenzprinzips wieder den alten falschen klas-
sischen Wert! Wie ist das möglich?.7

Then, he explained:

Obwohl wir von der Erde aus eine Verlangsamung der Vorgänge feststellen, werden wir doch
mit gleichen Uhren auf der Sonne wie auf der Erde die gleichen Frequenzen und die gleiche
Lichtgeschwindigkeit messen, weil die Uhren in gleichem Masse wie die Naturvorgänge
verlangsamt werden! Diese logisch einwandfreie Sicht der Dinge erlangte Einstein erst

7 “Thus, despite the aid of the principle of equivalence, one gets the old false classic value again!
How is that possible?”



Albert Einstein and the Doubling of the Deflection of Light 245

durch das tiefere Verständnis, das durch die allgemeinen Relativitätstheorie gebracht wurde
(nach 1915)8.

By using the Fields Equations of Gravitation and the Schwarzchildmetric (includ-
ing the so-called Ricci tensors) Fuchs showed that Einstein was then able to give the
“der korrekte relativistische Wert” (“the correct relativistic value”). He also com-
pared the relativistic and classical calculations and stated that the two results differ
by a factor of two. However, his proof is different from those presented in this paper.
In 1978, Stanley Jaki published an article inwhich he recalled the historical context of
the bending of light [22]. Starting from the seminal works of Newton and Laplace, he
presented the controversy triggered out by Lenard, Gehrcke and Westin (see Sect. 2
above). Then, he proposed an English translation of Soldner’s article allowing histo-
rians of science to study and compare hisworkswith those of Einstein. He givesmany
details and references concerning Soldner’s life but didn’t provide any mathematical
analysis of his article.9 In 1980, John Earman and Clark Glymour [4] published a
long article in which they compared Einstein’s results of 1911 and 1915. As Fuchs,
they recalled:

Einstein had not by 1911 yet absorbed the four-dimensional geometrical way of viewing
space-time urged by Minkowski. In certain respects his thinking about space-time was still
classical [4].

Then, they explained:

Einstein gave two arguments for the deflection of light passing near a massive body such as
the sun; one argument, given in 1911 before the general theory was in hand, relied on his
“principle of equivalence,” while the other, given in 1916, used Einstein’s own approximate
solution to his gravitational field equations together with Huygens’ principle from classical
optics. The former derivation gave a value for the deflection at the limb of the sun of 0.83′′
of arc, the latter 1.7′′ of arc [4].

They concluded that:

By 1916 Einstein had obtained two different expressions for the angular deflection of a
light ray by a massive gravitational source, both giving the angle as a hyperbolic function
of distance of closest approach to the massive body. The two expressions, one from the
principle of equivalence and the other from the general theory, differ only by a factor of two
[4].

Nevertheless, they didn’t compare Einstein’s results with Soldner’s. In 1981,
Hans-Jürgen Treder and Gerhard Jackisch published an article in which they con-
sidered that “A factor 2, which had been the occasion for misinterpretation, has to
be attributed to the terminology used by German physicists and astronomers of that
time [33].” They concluded that:

8 “Although we observe a slowing down of the earth from the earth, we will measure the same
frequencies and the same speed of light with the same clocks on the sun as on the earth, because the
clocks are slowed down to the same extent as the natural processes! Einstein achieved this logically
correct view of things only through the deeper understanding that came with the general theory of
relativity (after 1915).”
9 See also Eisenstaedt [14].
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Soldner did nowhere draw false inferences but fell a victim to the printer’s devil, and it is
indisputable that Soldner obtained the Newtonian value of the deflection of light, which with
respect to the constants of his times amounts to 0′′84, and not to Einstein’s value [33].

Hence, it is obvious that they compared Soldner’s result with that provided by
Einstein in 1915 and not with that of 1911. Moreover, their conclusion has been
challenged by historians of science such as Ledo Stefanini [32] who wrote: “Some
scholars attribute the numerical errors appearing in Soldner’s memoir (correctly
pointed out by Lenard in 1921 republication) to typographical errors,10 but this does
not suffice to clear the issue.” This point will be clarified in the Sect. 3.2.

So, the aim of this work is to mathematically compare the formula obtained
by Soldner with the one stated by Einstein in his paper of 1911 and to verify if
they are identical or not. By using a simple first-order series expansion, it will thus
be proved (to our knowledge for the first time) that both Soldner’s and Einstein’s
formula are perfectly identical. Then, a mathematical analysis of the second formula
concerning the bending of light established by Einstein in 1915 will enable to explain
the importance of the doubling of this value in the framework of Einstein’s theory
of gravitation.

3.1 Value of Deflection of Light by Soldner in 1801

Johann Georg von Soldner (1776–1833) was a German physicist, mathematician
and astronomer. He first worked in the Berlin Observatory (Berliner Sternwarte) and
later in 1808 in Munich where he became a member of the Academy of Sciences and
the director of the observatory in Bogenhausen. In a paper written in March 1801
and published in 1804, he calculated the amount of deflection of a light ray by a star
based on Newton’s corpuscular theory of light and wrote:

It is, of course, true that already through observations and otherwise one was aware of
considerable deviations from an assumed law; such as was the case with the aberration of
light. There can, however, be deviations which are so small that it is difficult to decide
whether they are true deviations or errors of observation. There can also be deviations which
are considerable but, being combined with magnitudes one has not yet succeeded in clearly
identifying, escape the observer. Of the latter kind may be the deviation of a light ray from
straight line when it passes close by a celestial body and is considerably exposed to its
attraction [30].

Soldner then presented the following diagram (see Fig. 1).
Then, he indicated that “C (Fig. 1) is the center of the attracting body, A is the

location at its surface. From A, a light ray goes into the direction AD or in the
horizontal direction, by a velocity with which it traverses the way ν in a second. Yet
the light ray, instead of travelling at the straight line AD, will forced by the celestial
body to describe a curved line AMQ, whose nature we will investigate (…) g be the

10 Stefanini quotes Hans-Jüurgen Treder and Gerhard Jackisch [33].
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Fig. 1 Soldner’s diagram for
deflexion of a light ray [30]

gravitational acceleration at the surface of the body. Furthermore C P = x , M P = y
and the angle ϕ.” Then, he explained:

The force with which the light ray at M will be pulled by the body in the direction MC,

will be 2gr−2. This force can be decomposed into two others,
2g

r2
cos (ϕ) and

2g

r2
sin (ϕ)

according to the directions x and y; and therefore one obtains the following two equations
(s. Traité de mécanique céleste par Laplace, Tome I, p. 21)

d2x

dt2
= 2g

r2
cos (ϕ)

d2x

dt2
= 2g

r2
sin (ϕ)

(1)

…[30].

These two equations correspond to the projection along the x and y directions of
Newton’s second law according to which the product of the mass by the acceleration
(left hand side) is equal to Newton’s gravitational force (right hand side). Here g
represents the acceleration of gravity on the surface of a celestial body (e.g., of the
sun, see Remark below). Soldner’s simplification of the “mass of a ray of light” on
either side of this equality is consistent with Newton’s theory of light then considered
as made up of small discrete particles called “corpuscles”. Indeed, it is only in 1803,
three years after the writing of Soldner’s article, that Thomas Young (1773–1829)
performed his famous double-slit experiment from which he proposed a wave theory
of the light. Thus, starting from the two preceding equations and after a demonstration
which does not present any great difficulties, Soldner draws the following conclusion:

The light ray, however, comes in the direction DA to the eyes of the observer; thus ADB will
be the angle of perturbation. If one calls this angle ω then one has, since the triangle ABD
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at A is a right triangle

tanω = AB

AD
(2)

If one puts these values for AB and AD in the expression for tanω, then one has

tanω = 2g

ν
√

ν2 − 4g
(3)

If one substitutes in the formula for tan ω the acceleration of gravity on the surface of the
sun, and one takes the radius of that body for unity, then one finds ω = 0′′.84. If one could
observe the fixed stars very close to the sun, then one would have to take this very much into
account. But since this is not known to happen, the perturbation caused by the sun can also
be neglected [30].

At the time, such observations were impossible; Soldner therefore concluded that
these effects were minute. He ended his article as follows:

Hopefully, no one would find it objectionable that I treat a light ray as a heavy body. That
light rays have all the absolute [basic] properties of matter one can see from the phenomenon
of aberration which is possible only because light rays are truly material. And furthermore,
one cannot think of a thing which exists and works on our senses that would not have the
property of matter [30].

Thus, it appears that Soldner based his computations on the Newton’s emission
theory, according to which light is made up of particles. As far as Einstein is con-
cerned, he made use of the Huygens principle, that is to say, the variation of the
direction of the wavefront as a function of the luminous frequency, as will be seen
in the next section.

3.2 Clarifying the Misinterpretations of Factor 2 in Soldner’s
Computation

During these last decades, Soldner’s value of deflection of light has been challenged
by many historians of science. In the beginning of the eighties, Tredder and Jackisch
[33] pointed out that the factor 2 before the acceleration of gravity g on the surface
of the considered body (earth, moon and sun) investigated by Soldner was resulting
from a different definition of acceleration at Soldner’s time. Thus, they explained:

Accordingly SOLDNER’s “acceleration of gravity” is only one half of the value required by
the analytical definition, g = d2s/dt2. About the year 1800, whenever LAGRANGE’s and
LAPLACE’s exact analytic mechanics was to be brought together with the usage of Ger-
man physicists and astronomers this became occasionally a cause of error. In SOLDNER’S
theory, however, everthing is correct in the sense of NEWTON in spite of the factor 2, as
could also be confirmed by inspecting the first edition of SOLDNER’S treatise of 1801
in BODE’s Jahrbuch of 1804 and its reproduction by LENARD (1921) in “Annalen der
Physik” of 1921. By no means did SOLDNER give double the Newtonian amount of the
deflection of light (which then would be EINSTEIN’s). Nevertheless SOLDNER’s paper
contains two misprints, to which LENARD rightly called attention. In the present exemplar
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of “Astronomisches Jahrbuch” of the Berliner Sternwarte of 1804 those two misprints have
for generations been corrected by hand (it is unknown if by BODE himself). Both misprints
consist in that now a factor 2 is missing although the deduction and the context do require it
[33].

First of all, let’s notice that such a mistake or misprint in Soldner’s had already
been reported in 1923 by the famous Swiss-American astronomer Robert Julius
Trumpler in a paper which has not been quoted by Tredder and Jackisch [33]. Half
a century before them, Trumpler clearly explained that:

In setting up the differential equations for the motion of the particle he erroneously used for
the gravitational force the expression

2gr−2

where g = acceleration at the surface of the attracting body, and r = distance from the center
of the attracting body (adopting the radius of this body as unit distance). The factor 2 has no
justification and should be omitted. Designating by ω the angular deflection of light from a
star at infinity until it reaches the surface of the attracting body, Soldner derived the formula

tanω = 2g

ν
√

ν2 − 4g
(ν = speed of light)

which he applied to the earth and the sun. On account of the mistake mentioned his result
for the Sun

(half deflection) ω = 0.′′84

is twice too large [34].

Thus, according to Trumpler [34] and Tredder and Jackisch [33], it appears that a
factor 2 has been erroneously introduced in the right hand side of Soldner’s equation
(3) while a factor 2 is missing in the left hand side of his equation which should be
correctly rewritten as follows:

tan
ω

2
= g

ν
√

ν2 − 2g
(4)

In order to verify if this modified formula (4) is correct, let’s test it with the
“tutorial examples” of deflection of light by massive bodies, i.e., earth and sun used
by Soldner. Before, it is important to notice that the translation of Soldner’s article
by Stanley Jaki [22] also contain a mistake. Soldner [30] wrote:

Unter der Voraussetzung, dass das Licht 564′′, 8 DecimalSekunden Zeit brauche, um von
der Sonne zur Erde zu kommen, findet man, dass es in einer Decimaleskunde 15,562085
Erdhalbmesser durchlauft.

Jaki [22] translated as:

On the presupposition that light needs 564′′.8 decimal seconds of time to come from the sun
to the earth, one finds that it traverses in one-tenth of a second 15.562085 earth radii.

In fact, Soldner [30] distinguished decimal seconds from angular seconds while
Jaki [22] made a confusion in the above sentence which should be translated as:
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On the presupposition that light needs 564′′.8 decimal seconds of time to come from the sun
to the earth, one finds that it traverses in one-decimal second 15.562085 earth radii.

Thus, Soldner [30] first applied his formula (3) to the deflection of light by the
earth. He wrote:

On the presupposition that light needs 564′′.8 decimal seconds of time to come from the
sun to the earth, one finds that it traverses in one-decimal second 15.562085 earth radii.
Thus v = 15.562085. If one takes among the geographical latitudes that whose square of the
sine is 1/3 (corresponding to a latitude of 35o 16’), the earth’s radius as 6,369,514 meters,
and the acceleration of gravity there as 3.66394 meters (see Traité de mécanique céleste by
Laplace, Vol. I, p. 118), then expressed in earth radii g = 0.000000575231. I make use of
this set of units so that without special reductions I may take from the Traité de mécanique
céleste the newest and most available determinations of the magnitude of the earth radius
and of the acceleration of gravity. Thereby nothing will change concerning the final results,
for here only the relation of the speed of light to the velocity of a body falling to the earth is
concerned. The earth’s radius and the acceleration of gravity must therefore be taken at the
specified degree of latitude, because the earth-spheroid is, with respect to bodily content,
similar to a globe which has for its radius the earth’s radius, or 6,369,514 meters. When one
puts these values for v and g into the equation for tan ω, then one obtains, in sexagesimal
seconds, ω = 0′′.0009798, or in round figures, ω = 0′′.001.

From these paragraph and these data, it is possible to rebuild Soldner’s computa-
tion. Concerning the time the light needs to come from the sun to the earth, Soldner
seems to have used another book from Laplace entitled Exposition du système du
monde in which he wrote [25, p. 103]: “Il en résulte que la lumière emploie 571′′
pour venir du soleil à la terre.” Soldner used the value 564′′.8 which is very close
to that of Laplace. As regards of the values of earth’s radius, he effectively used
the value coming from the first volume of the Traité de mécanique céleste of Pierre
Simon de Laplace [26, p. 119]: “ce rayon est égal à 6369514me.” Concerning the
acceleration of gravity, he recalled that he used the acceleration of gravity taken at
the specified degree of latitude whose square of the sine is 1/3 (corresponding to
a latitude of 35o 16′) and he expressed it in earth radii following Laplace [26, p.
118 and next]. Soldner also used an estimation of the speed of light. According to
Carl Boyer [2, p. 39]: “In German books the velocity generally was expressed in
round figures as 40,000 geographic miles—about 184,000 statute miles—per sec-
ond, although other values up to 42,000 also appeared.” Thus, Soldner seems have
used the value of 184,800 miles per second which corresponds to 46.68 earth radii
and which is approximately equal to 15.56 at the specified degree of latitude λwhose
square of the sine is 1/3. So, Soldner’s approach seems to have been the following.
First, he may have posed:

g = gλ

Rearth

ν = νλ

Rearth
(5)

For the earth, Soldner used gλ = 3.66394 m s−2, Rearth = 6369514 m and νλ =
46.68Rearth/3m s−1. So, he obtained: g = 3.66394/6369514=0.000000575231 s−2
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and ν = νλ/Rearth = 46.68/3 = 15.562085 s−1 since he has taken “the radius of that
body for unity [30]”. By replacing in Soldner’s formula (3), we find that tan ω ≈
4.75 × 10−9, from which we deduce that ω ≈ 0.0009785, that is the value obtained
by Soldner. By replacing these values in Soldner’s corrected formula (4), we obtain
for ω/2, of course, half Soldner’s value and so, exactly the same value for ω.

Then, Soldner [30] applied his formula (3) to the deflection of light by the sun.
He wrote:

If one substitutes in the formula for tan ω the acceleration of gravity on the surface of the
sun, and one takes the radius of that body for unity, then one finds ω = 0′′.84.

For the sun, Soldner didn’t give any value for acceleration of gravity on its surface
nor for its radius. Nevertheless, we can make the reasonable assumption that he
followed the same approach as those he has used for the earth. Thus, he may have
used the various data established by Laplace in his books [25, 26] such as sun’s
parallax, the ratio of sun’s mass to earth’s mass, and Kepler’s laws to deduce them.
Moreover, at that time Soldner was working under the German astronomer Johann
Elert Bode, director of the Berlin observatory. So, Bode, who had “accepted his paper
for publication in “Astronomisches Jahrbuch” [33],” could have provided to him the
necessary data for his computation. However, by reformulating (5) we have:

g = gS

Rsun

ν = 46.68Rearth

Rsun
(6)

By using gS = 274m s−2 for the gravity at the sun’s surface and Rsun = 6.9634 ×
108 m for its radius, we found that g = gS/RSun ≈ 3.93 × 10−7 s−2 and that the
speed of light is ν = 46.68Rearth/Rsun ≈ 0.43 s−1. Then, by replacing these values
in Soldner’s original formula (3), we obtain that tanω = 4.25 × 10−6 and so, thatω ≈
0′′.87 which is consistent with Soldner’s value and seems to confirm our assumption.
By replacing these values in Soldner’s corrected formula (4), we obtain for ω/2, of
course, half Soldner’s value and so, exactly the same value for ω ≈ 0′′.87.

Let’s notice that according to Trumpler:

Lenard, it should be said, recognizes the error in Soldner’s work to which attention is called
in this paper and gives correctly the value for the deflection to which Soldner’s theory leads.
In these comments (page 603) Lenard transforms Soldner’s formula into a notation and form
similar to those employed by Einstein [34].

In Soldner’s formula (3), Lenard corrected themissing factor 2 in the left hand side
of this equation and removed the factor 2 erroneously introduced in the right hand
side. He obtained the previous formula (4). Then, he replaced in (6) the acceleration
of gravity on the surface of the sun by the well-known formula gS = K M/R2 where
K is the Cavendish’s constant (see footnote 1 above), M and R are respectively
the mass and radius of the sun. Following Soldner’s approach, Lenard obtained the
following formula:
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Fig. 2 Einstein’s diagram for deflexion of a light ray [6]

tan
ω

2
= K M

cR
√

c2 − 2K M/R
(7)

where c is the speed of light in vacuum. Then, while using a first order series expan-
sion, he gave the following approximation of ω:

ω = 2K M

c2R
(8)

Finally, he explained [31]:

Soldner berechnet weiter nach der erhaltenen Formel die Ablenkung für Erde, Mond, Sonne
und findet sie sehr klein. Für die Sonne ω = 0′′.84. (S. 170) (während in wirkliclilreit nach
seiner Formel ω/2 = 0′′.84, was mit der Erfahrung, so weit dieselbe heute geht, auch zu
stimmen scheint, wie es in der Vorbemerkung erläutert wurde)11

Let’s notice that according to Tredder and Jackisch:

So on page 170, for example, of BODE’s Jahrbuch a factor 2 should precede the angle [ω in
Soldner’s formula (3)]; but, as the context proves, this is a mere misprint [33].

But contrary to what they claimed, this is a factor 1/2 and not 2 that should precede
the angle ω in Soldner’s formula as highlighted in (4) and as it has been stated by
Lenard [31], Trumpler [34], Stefanini [32] and previously in this work.

3.3 Value of Deflection of Light by Einstein in 1911

In his 1911 paper, Einstein [6] first established that “the velocity of light in the
gravitational field is a function of the location.” Then, by using Huygens’s principle,
he stated that “light-rays propagated across a gravitational field undergo deflection.”

From Fig. 2, Einstein stated that the direction of the wave front changes by an
amount equal to ∂c/∂n′ per unit of distance along the direction of the wave (where

11 Soldner further calculates the deflection for the earth, moon, and sun using the formula obtained
and finds it very small. For the sun ω = 0′′.84. (p. 170) (while in fact, according to his formula
ω/2 = 0′′.84, which seems to be consistent with experience, as far as the same goes today, such as
it was explained in the preliminary remark).
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Fig. 3 Deflection of a light ray in polar coordinates [6]

c is the velocity of light) and the “angle of deflection per unit of path of the light-ray

is −1

c

∂c

∂n′ ”. Finally, he obtained for the deflection α, which a light-ray experiences

toward the side n′ on any path (s) the expression

α = − 1

c2

∫
∂�

∂n′ ds (9)

where the integral goes from−∞ to+∞ and� = k M/r is the gravitation potential.
Then, Einstein changed variables to polar coordinates as highlighted on the following
figure (see Fig. 3a). In order to simplify the understanding of his approach, let’s pose
in what follows: n′ = y, s = x and S = R (see Fig. 3b).12

According to Fig. 3b, we have r = √
x2 + y2. Thus, the gravitation potential

reads:

� = k M√
x2 + y2

(10)

It follows that
∂�

∂n′ = ∂�

∂y
= ∂

∂y

(
k M√

x2 + y2

)
= −k M

r3
y. Einstein then consid-

ers that nearly all of the deflection occurs within some reasonable proximity of the
gravitating body. So, we can simply set y = R in the integral which reads:

α = 1

c2

∫ +∞

−∞
k M

r3
yds = k M R

c2

∫ +∞

−∞
1

r3
dx (11)

The following variable changes x = R tan (υ), y = R leads Einstein to:

12 See also Kevin Brown [3].
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α = k M R

c2

∫ +∞

−∞
1(

x2 + y2
)3/2 dx

= k M R

c2

∫ +π/2

−π/2

Rdυ/ cos2 (υ)(
R2 tan2 (υ) + R2

)3/2

= k M

c2R

∫ +π/2

−π/2
cos (υ) dυ = 2k M

c2R

(12)

Then, Einstein [6] ended his 1911 paper by this sentence:

By equation (9) a light-ray passing by a heavenly body suffers a deflection to the side of the
diminishing gravitational potential, that is, to the side directed toward the heavenly body, of
the magnitude

α = 1

c2

∫ ν=+ π
2

ν=− π
2

k M

r2
cos (ν) ds = 2k M

c2�
, (13)

where k denotes the constant of gravitation, M the mass of the heavenly body,� the distance
of the ray from the center of the body (and r and υ are as shown in Fig. 3). A light-ray going
past the Sun would accordingly undergo deflection by the amount of 4.10−6 = 0.83 seconds
of arc.

Let’s notice that although the reasonings and the computations are different, the
result of Einstein is exactly the same as that of Soldner (as shown in the next section).
In other words, a light ray passing near the sun will undergo a deflection of nearly
0.83′′.

3.4 Comparison of Einstein and Soldner Formulas

This section aims to prove that both formulas established by Soldner in 1801 and
Einstein in 1911 are identical except in the choice of letters. Soldner’s corrected
formula (4) which reads:

tan
ω

2
= g

ν
√

ν2 − 2g
.

Thus, by using (6), we pose g = gS/� and ν = c/� where � is the radius of the
considered body (in the case of the Sun � = Rsun = R with respect to the notations
of Einstein, Soldner and Lenard.). Soldner’s formula can be rewritten as

tanω = 2g

ν
√

ν2 − 4g
= 2g

ν2

1√
1 − 4g

ν2

= 2g

ν2

[
1 − 4g

ν2

]−
1

2 (14)
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But since, according to Soldner g � ν, a first-order13 series expansion can be
made and reads:

tanω = 2g

ν2

[
1 − 4g

ν2

]−
1

2 = 2g

ν2

[
1 + 2g

ν2
+ . . .

]
≈ 2g

ν2
+ O

(
ν−4

)
(15)

The angle ω is considered as infinitely small, so we deduce that ω ≈ 2g

ν2
.

Then, by posing g = gS/� and ν = c/�, we have:

ω ≈ 2gS�

c2
(16)

In 1911, Einstein proposed the following formula: α = 2k M

c2�
where

• k is the constant of gravitation (Cavendish’s constant),
• M is the mass of the heavenly body,
• � is the distance of the ray from the center of the body, i.e., its radius.

In the case of the Sun, we have: gS = k M

�2
. So, it gives

α = k M R

c2�
= 2�

c2

(
k M

�2

)
= 2gS�

c2
(17)

Thus, both Soldner and Einstein’s formulas are identical.

ω = α = 2gS�

c2
(18)

Let’s notice that this value is exactly the same as those obtained by Lenard [31]
(see (8) in Sect. 3.2).

3.5 Value of Deflection of Light by Einstein in 1915

During the autumn 1915, Einstein completed his general theory of relativity. He
thus modified his gravitation potential � while taking into account as previously the
Newton’s gravitational interaction (see (10) in Sect. 3.3) but also the curvature of
space near a massive body.14 Then, he expressed the gravitation potential � as

13 In his 1911 and 1915 articles Einstein also made use of first-order approximations as well as
Lenard [31] in 1921.
14 See Kevin Brown [3].
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� = k M√
x2 + y2

+ k Mx2

(
x2 + y2

)3/2 (19)

In this case
∂�

∂n′ = ∂�

∂y
= ∂

∂y

(
k M√

x2 + y2
+ k Mx2

(
x2 + y2

)3/2
)

= −4x2 + y2

r5
k My.

The integral reads then:

α = 1

c2

∫ +∞

−∞
4x2 + y2

r5
k Myds = k M R

c2

∫ +∞

−∞
4x2 + R2

r5
dx (20)

By using the same variable changes x = R tan (υ), y = R, Einstein obtained:

α = k M R

c2

∫ +∞

−∞
4x2 + R2

r5
dx

= k M R3

c2

∫ +π/2

−π/2

4 tan2 (υ) + 1

(R/ cos (υ))5
Rdυ

cos2 (υ)
= 4k M

c2R
(21)

In his publication of 1916 Einstein [11] provided for the deflection of a light ray

the value
k M

2π�
which results of the previous integration. He defined at the page 818

of this same article the constant κ = 8πk

c2
(see (69)). By replacing into the value of

B, we have:

B = 4k M

c2R
= 2α (22)

Einstein wrote in his conclusion:

According to this, a ray of light going past the sun undergoes a deflexion of 1.7′′…

Thus, it appears that Einstein’s computation of the value of deflection of a light
ray performed in 1915 led him to twice the amount derived in his 1911 paper.

Where does this doubling come from? How did Einstein justify it?

In fact, contrary to what Arvid Reuterdahl (see Sect. 2) claimed, Einstein has
really “taken the world into his confidence concerning the reason of this change”.
Indeed, as early as 1915, Einstein wrote:

By use of the Huygens principle, one finds through a simple calculation, that a light ray from
the Sun at distance � undergoes an angular deflection of magnitude 2α/�, while the earlier
calculation had given the value α/�. A corresponding light ray from the surface rim of the
Sun should give a deviation of 1.7′′ (instead of 0.85′′) [9].

In 1920, in the Appendix 3 of the third edition of his book written in 1916, he
explained:
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As a result of this theory, we should expect that a ray of light which is passing close to a
heavenly body would be deviated towards the latter. For a ray of light which passes the sun
at a distance of � sun-radii from its centre, the angle of deflection (α) should amount to

α = 1.7 seconds of arc

�
(23)

It may be added that, according to the theory, half of this deflection is produced by the
Newtonian field of attraction of the sun, and the other half by the geometrical modification
(“curvature”) of space caused by the sun [12].

4 Conclusion

The author of one of Einstein’s most famous biographies, Ronald Clark had written
that he was “the man who had bent the light”. One would be led to believe that
the concept of “curvature of light” which was conceived by Soldner in the early
nineteenth centurywas rediscovered a century later by Einstein. In fact, many authors
have shown that this idea was already present in the works of Isaac Newton. Indeed,
in the first of the famous Queries of his work entitled Opticks, Newton wrote in 1704:

Do not Bodies act upon Light at a distance, and by their action bend its Rays, and is not this
action (caeteris paribus) strongest at the least distance?

It thus appears that neither Soldner nor Einstein is the inventor of the concept
of “curvature of light”. One can then ask whether Einstein had any knowledge of
Soldner’s work. It is naturally very difficult to answer this question. The elements
we have today allow us only to affirm that the values of the deflection of light rays
passing near a massive body obtained by Soldner in 1801 and by Einstein in 1911 are
perfectly identical, although the computations of Soldner were based on Newton’s
corpuscular theory, while those of Einstein were based on the Huygens’s principle.
According to Trumpler:

From this conclusion the deflection of light could be calculated by using Soldner’s method.
Einstein, however, follows an entirely different course. For the Sun, Einstein findsω = 0′′.83,
but with more accurate data the value

ω = 0′′.87

is obtained. This formula, which is based on the principles:

1. Light is subject to gravitation

2. Gravitation follows Newton’s law, is equivalent to Soldner’s formula, but more general.

The increase of this value over that in Einstein’s 1911 paper is not due to any mistake in
calculation in the earlier paper but is an effect of the difference between Einstein’s and
Newton’s law of gravitation, as the 1916 deflection is essentially based on the principles:
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1. Light is subject to gravitation

2. Gravitation follows Einstein’s law instead of Newton’s [34].

First, it is important to note that the impossibility of measuring the deflection
of light during the eclipses of 1912 and 1914 was an extraordinary opportunity for
Einstein. Indeed, without this providential rain and without the declaration of war the
observations of the astronomers would have absolutely not confirmed the first value
that it had provided in 1911 and they would certainly have invalidated his theory.
Note then that the method of computing the deflection of light that Einstein used in
1915 is exactly the same one he used in 1911. The only difference is the expression of
gravitation potential which took into account the curvature of the space in the vicinity
of a massive body. Thus, in his article in 1915, Einstein provided a value (1.7′′) which
was well contained within the range of values observed by the expeditions led by
Crommelin and Eddington in 1918 (0.9′′ to 1.8′′). It is clear from this analysis that
the plagiarism accusations against Einstein which are part of an anti-relativist and
anti-Semitic movement are absolutely baseless. Even if it has been established that
the values of the deflection of a light ray provided by Soldner in 1801 and Einstein
in 1911 are identical, they are both wrong because they don’t take into account the
curvature of space and so, are not consistent with those “obtained” by Crommelin
and Eddington and confirmed after by more accurate astronomical observations.
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Effects of Thermal and Lévy Noise
Sources on the Switching Current
Distributions of a Josephson Junction

Claudio Guarcello, Giovanni Filatrella, Bernardo Spagnolo, Vincenzo Pierro,
and Davide Valenti

Abstract We discuss the combined effect of Gaussian and α-stable Lévy noise
sources on the switching current distribution of a short tunnel Josephson junction,
while an external bias current flowing through the junction is linearly swept. At a
fixed temperature, if the bias current is repeatedly ramped up from zero, and the
value of the bias current at which the system switches to the finite voltage state is
recorded, we obtain the distribution of the current values associated to escape events,
i.e., the probability distribution of the bias currents at which the junction switches to
the finite voltage state from the superconducting zero-voltage state. This information
content is promptly available in experiments on Josephson junctions.We demonstrate
that a Lévy noise current added to the linearly increased bias current clearly modi-
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fies the switching current distribution due to the sole Gaussian-distributed thermal
fluctuations. Albeit both Gaussian and Lévy components contribute to the overall
noise level, they do not interfere, because they produce switching at different bias
levels: the Lévy noise in the lower-current portion of the distribution, the Gaussian
noise when the energy barrier becomes comparable to the noise energy. Finally, the
analytical expression of the cumulative distribution function of Josephson switching
currents can be compared with an analytical estimate.

Keywords Conference · CHAOS · Josephson junction · Lévy noise · Switching
current distributions

1 Introduction

Josephson junctions (JJs) have alreadydemonstrated to be a reliable tool to investigate
non-Gaussian noise signals [1–6], also embedded in a thermal noise background.

A JJ set-up is a threshold device working on an activation, or switching, mecha-
nism, and this makes Josephson devices nowadays often employed for sensing and
detection applications [7–13]. In particular, an additional noise source, added to the
thermal fluctuations, can be revealed through the appearance of premature “anoma-
lous” switches from the superconducting to the resistive state, which produce a mea-
surable voltage across the junction. In this regard, the application of JJs for both the
detection and the characterization of a specific type of non-Gaussian fluctuations, i.e.,
the α-stable Lévy noise source, has recently proved particularly effective [14–16].
This type of stochastic processes can drive the degree of freedom associated to the
Josephson phase difference ϕ over a very long “distance” in a single displacement,
namely, a flight. In fact, the electrical response of a JJ is determined by the behavior
of a quantum variable, that is the gauge invariant phase difference ϕ between the
macroscopic phases of the two superconductors forming the device. Its dynamics
is described by the celebrated Josephson equations [17, 18] and is not accessible
directly, but only indirect electrical measurements, basically of current and voltage,
can be indeed monitored. Thus, approaches based on measurements of switching
current distributions (SCDs), in the case of a linearly ramping bias current [15] and
average voltage drops across a junction biased by a constant current [16], have been
recently proposed to investigate the effects of Lévy noise sources. The method of
analysis of unknown noise sources through the study of SCDs offers some evident
advantages when the noise is characterized by fat tails, i.e., by a finite probability of
an infinite-amplitude fluctuation. In principle, this type of noise can pose a serious
difficulty to the experimentalists, since it should requires extremely long times to
reconstruct the behavior of rare events. Thus, determining the value of the parame-
ter α, which characterizes the noise distribution, demands for long experiments (or
simulations) to explore extreme values. In contrast, sweeping the bias current is very
effective, because the bias increase lowers the trapping energy barrier, and in a given
ramp time, i.e., when the bias current approaches the critical value, the energy barrier
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vanishes and a switch event is indeed recorded, i.e., the escape is inevitable in a ramp.
Moreover, the inspection methods through Josephson devices are demonstrated to be
viable in both the cases of intrinsic [14] or extrinsic [15] unknown additional noise
signals.

The fact that an additional Lévy noise source can affect the dynamics of a tunnel JJ
was extensively studied theoretically in both the short [19, 20] and the long [21–26]
junction case. The strategies used to study Lévy-induced “premature” switches from
the superconducting metastable state depends on the junction type. In fact, in short
JJs, the mean first-passage time as a function of the Lévy characteristics is studied,
whereas in the long JJs the quantity of interest is the nonlinear relaxation time and
the interplay between Lévy and thermal noise and the generation of solitons [27, 28]
was also investigated [22, 23, 29].

The paper is organized as follows. In Sect. 2, the theoretical background used
to describe the phase behavior of a short tunnel JJ is presented. Both the statistical
properties of a Lévy and a Gaussian noise source and the power-law asymptotic
behavior of the mean escape time, in the case of Lévy-distributed fluctuations, are
briefly reviewed. In the same section, the theoretical results are shown and analyzed.
Finally, we give the analytical estimate of the distributions of switching currents in
the presence of a Lévy-noise source. In Sect. 3, conclusions are drawn.

2 Model and Results

As said in Introduction, the aim of this paper is to demonstrate how the combined
action of Lévy-distributed and thermal current fluctuations can influence the distribu-
tion of the switching currents of a current-biased short Josephson tunnel junction [14,
15]. In the short junction regime the dimensions of the device are smaller than the
characteristic length scale of the system, i.e., the Josephson penetration length [30],
λJ , and the response of a Josephson junction (JJ) can by studied through the resistively
and capacitively shunted junction (RCSJ) model for the Josephson phase difference
ϕ, which reads as follow [24, 25, 31]

(
Φ0

2π

)2

C
d2ϕ

dt2
+

(
Φ0

2π

)2 1

R

dϕ

dt
+ d

dϕ
U =

(
Φ0

2π

)
IN , (1)

where C and R are the capacitance and the normal-state resistance of the device,
respectively, and Φ0 is the flux quantum. In the previous equation, IN is the sum of
the thermal noise, Ith , and the Lévy noise source, IL . The term U is the so-called
washboard potential

U (ϕ, ib) = U0 [1 − cos(ϕ) − ibϕ] , (2)
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where ib is the bias current normalized to the critical current Ic of the junction and
U0 = (Φ0/2π) Ic. This potential contains a sequence of minima and maxima, so that
the phase is “confined” in a superconducting metastable state by the potential barrier

ΔU(ib) = ΔU (ib)

U0
= 2

[√
1 − i2b − ib arccos(ib)

]
. (3)

The current bias flowing through the junction represents the slope of the potential
U (ϕ, ib). As the bias current is lower than the critical value, that is if ib < 1, the phase-
particle remains confined within a potential well, until a noise fluctuation pushes it
out. When this occurs, the phase derivative increases, that is the device switches to
the voltage state, since a voltage drop across the junction appears, according to the
a.c. Josephson relation V = (Φ0/2π)dϕ/dt [17, 18]. If the bias current is increased
slowly, the value at which the escape process occurs is called switching current, iSW .
Since this phenomenon is intrinsically stochastic, by repeating the measurement
many times, we obtain a distribution of switching currents, which depends on the
noise features affecting the switching dynamics of the phase. Indeed, we demonstrate
in this work that the presence of a Lévy noise source significantly reshapes the
switching current distribution (SCD) with respect to the pure Gaussian noise case.

We observe that the RCSJ model in (1) can be conveniently cast as

m
d2ϕ

dt2
+ mη

dϕ

dt
+U0

d

dϕ
u = U0iN , (4)

where the equivalent mass reads m = (Φ0/2π)2 C , the friction is η = 1/(RC), and
iN is the current IN normalized to the critical current IC . In these units, the res-
onant frequency of the junction is ωp = √

U0/m and the characteristic Josephson
frequency [30] can be written as ωc = ω2

p/η. The normalized bias current is assumed
to linearly increase, ib(t) = vbt , at a constant velocity vb = t−1

max, with tmax being the
maximummeasurement time, so that when t = tmax the bias current reaches the crit-
ical value and the switching occurs also in the absence of noise. Specifically, in the
following we assume η = 0.1ωp, vb = 10−7ωp, and the switching current distribu-
tions consist of a sequence of N = 104 bias current ramps.

In this work we consider the contemporaneous presence of a thermal noise source,
with the usual Gaussian white-noise statistics, and a Lévy noise source Sα(σ,β,λ).
The notation Sα(σ,β,λ) is usually adopted for the Lévy distributions [21–25], where
α ∈ (0, 2] is called stability index, β ∈ [−1, 1] is the asymmetry parameter, and
σ > 0 and λ are a scale and a location parameter, respectively. The stability index
characterizes the asymptotic long-tail power law for the distribution, which forα < 2
is of the |x |−(1+α) power type, while for α = 2 coincides with the Gaussian distribu-
tion. In this work we consider only symmetric (β = 0), bell-shaped, standard (σ = 1
and λ = 0), stable distributions Sα(1, 0, 0), with α ∈ (0, 2]. A Lévy noise source
corresponds to stochastic processes that can exhibit very long distance in a single
displacement, namely, aflight. In fact, the heavy tails that characterize aLévydistribu-



Effects of Thermal and Lévy Noise Sources on the Switching … 265

tion cause the occurrence of events with large values of the variable of interest, whose
probability is not negligible. These events correspond to the Lévy flights previously
mentioned. Lévy noise, a generalization [32] of the Gaussian noise source [33–36],
can be invoked to describe transport phenomena in different natural phenomena [37,
38], condensed matter systems [39, 40] and interdisciplinary applications [41, 42].
Results on the dynamics of systems driven by Lévy flights have been reviewed in
[43, 44], and in [15] it is possible to find an extensive bibliography on examples and
applications in which Lévy-distributed fluctuations are observed.

The statistical properties of the thermal current fluctuations, ith = Ith/Ic, in nor-
malized units, are given by

〈
ith(t̃)

〉 = 0, and
〈
ith(t̃)ith

(
t̃ + t̃ ′

)〉 = 2γG(T )δ
(
t̃ ′

)
, (5)

where the amplitude of the normalized correlator is connected to the physical tem-
perature T through the relation

γG(T ) = kBT

R

ωp

I 2c
= η

ωp

kBT

U0
. (6)

It is worth stressing that, with the time normalization used in this work, the noise
intensity γG is proportional to the ratio between the thermal energy and the Josephson
coupling energy U0.

Figure1 shows the probability distribution functions (PDFs) and the cumulative
distribution functions (CDFs) of the switching currents, computed in the presence
of both Gaussian and Lévy noise contributions, at different values of the stability
index α ∈ (0, 2]. Here, the Gaussian and Lévy noise amplitudes are γG = 10−3 and
γL = 5 × 10−7, respectively.

First we look at the PDF for the pure Gaussian noise case, indicated by a red
thick curve in Fig. 1a, which is characterized by a peak at high values of the bias
current. In this case Lévy flights are missing and the Gaussian noise source induces
switching events only at current values close to the critical current. Two key attributes
of the SCDs due to thermally induced switching processes are the position and the
width of the peak, both depending on the value of the noise intensity γG , that is,
according to (6), on the value of the temperature T at which the junction resides. In
fact, if thermal noise is taken into account, the phase particle can “hop out” of the
washboard potential well and slip down the potential profile, with an escape rate Γ

at temperature T , according to the Kramers theory [45], given by

Γ (ib, T ) = ωA

2π
e− ΔU (ib )

kB T , (7)

where ωA is an attempt frequency. The dependence of ωA on the dissipation is weak,
and to a good approximation the rate can be simplified into
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Γ (ib, T ) = 1

2π

(
ωc

4

√
1 − i2b

)
e− ΔU (ib )

kB T , (8)

where the attempt frequency is reduced by the applied bias current. Thus, for any
finite value of the bias current ib an escape from themetastable superconducting state
is inevitable, although it happens sooner for a shallow well.

The typical experimental procedure to measure activation events in JJ is to sweep
the bias current upward from zero. Early in the sweep, the washboard potential well
is deep; conversely, late in the sweep the well becomes shallow and the thermal
activation is easier. In addition, as the bias current is swept, the plasma frequency
decreases and so does the attempt rate. The interplay of the two factors determines
the net escape rate as a function of the bias current.

The switching mechanism from a potential well depends on the temperature, so
that at the so-called crossover temperature Tcr [46, 47] thermal activation becomes
comparable to macroscopic quantum tunneling (MQT) rate. As MQT rate is temper-
ature independent, the position and width of SCD peaks must both saturate at low
temperatures, i.e., the SCD peaks at temperatures T < Tcr are practically superim-
posed and are placed at a bias value close to the critical current. Instead, at higher
temperatures, T > Tcr, thermally activated processes drive the switching dynamics,
so that the SCD peaks shift to lower bias current values and become broader. For a
thorough discussion about SCDs in both thermally activated and quantum tunneling
regimes see [47]. In the following, we assume to work at a temperature high enough
that thermal activation dominates and MQT processes can be altogether neglected.

When a Lévy noise component withα < 2 is considered, the SCDs deviate signif-
icantly from the pure thermal noise case, see Fig. 1a. In fact, in this case Lévy flights
can drive “premature” switches from the superconducting metastable state: while
α decreases the low-current tail of the SCDs grows, i.e., the switching probability
becomes sizable, at the expense of the SCD peak at high ib values, which is indeed
depleted. The position of this SCD peak is unaffected by the change of the Lévy
parameter α, thus underlining its thermal origin.

The behavior of the CDFs, which represent the probability that iSW takes a value
less than or equal to ib, highlights even more clearly the discrepancies with respect
to the pure Gaussian case, see Fig. 1b. The CDFs for different α values are clearly
arranged in well distinct curves: at a given bias ib the CDFs increase while reducing
α. In particular, while increasing ib the CDF curves saturate at the value 1 as soon
as the thermally activated switching events enter into play.

The numerical results presented so far can be supplemented by an analytical
estimate for both the PDF and the CDF, in the case of a Lévy noise. To do this, first
we recall that, for arbitrary spatial and energy scale, by rescaling time, energy, and
space, the mean escape time τ for the Lévy statistics can be written in terms of the
noise parameters as [15, 48]

τ (α, D) = Cα

Dμα
, (9)
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Fig. 1 a Probability distribution function (PDF) and b cumulative distribution function (CDF)
for α ∈ [0.1, 2]. The parameters of the simulations are: γG = 10−3, γL = 5 × 10−7, Nexp = 104,
tmax = 107, and η = 0.1ωp . The legend in panel a refers to both panels

where both the power-law exponent μα and the coefficient Cα depend on α and are
supposed to have a universal behavior for overdamped systems [48–52].

By assuming μα � 1 in the prefactor [48], the previous equation becomes

τ (α, D) =
(

Δx

2

)α Cα

Dμα
, (10)

that is, the mean escape time only depends on the distanceΔx between the minimum
andmaximum of the potential profile. This is remarkably different from the Gaussian
noise case, where the probability to overcome the barrier depends exponentially on
the barrier energy, see (8). In the specific case of a washboard potential, Δx depends
on ib according to the relation Δx = π − 2 arcsin ib. The CDF of iSW as a function
of ib for a generic initial value of the bias ramp, i0, can be therefore written as

CDF(ib|i0) = 1 − Prob [iSW > ib|i0] . (11)
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Recalling also that the distribution of the escape times is exponential with rate 1/τ (ib)
also for Lévy-flight noise [49], following the same logic of [53], the PDF associated
to (11) as a function of the average escape time τ (ib) reads

P(ib|i0) = N 1

vb

1

τ (ib)
exp

[
− 1

vb

∫ ib

i0

1

τ (i)
di

]
. (12)

Inserting in (12) the expression of τ (α, D) given in (10), for the Lévy statistics (at
the first order in ib) we obtain the relation

P(ib|i0) ∝ exp

[
−

(
2

π

)α ibDμα

Cαvb

]
. (13)

The PDF of a current-biased JJ can be expressed in a closed compact form as

P(ib|i0) = 1

N
dFα

dib
exp

{
− Dμα

Cαvb

[
Fα(ib) − Fα(i0)

]}
. (14)

Here, the nonlinear function Fα reads

Fα(ib) = 2α

{
cosh−1 (ib)

2 [π − 2 arcsin (ib)]
α

[
Eα

(
cosh−1 (ib)

)

−Eα

(
− cosh−1 (ib)

)]
+ i

π1−α

4

[
Eα

(
− iπ

2

)
− Eα

(
iπ

2

) ]}
, (15)

where Eα( ) is the exponential integral with α argument, andN is a proper normal-
izing factor

N = 1 − exp

[
− Dμα

Cαvb

(
Fα(1) − Fα(i0)

)]
. (16)

Thus, the corresponding CDF is

CDF(ib|i0) = 1

N
{
1 − exp

[
− Dμα

Cαvb

(
Fα(ib) − Fα(i0)

)]}
. (17)

This equation connects a property of the Lévy flights, i.e., the exponent α, with the
accessible quantity of the switching-current distribution.

The validity of this analytical approach can be verified comparing the curves
obtained via (17) and those numerically calculated in the case of a pure Lévy noise,
that is imposing γG = 0. Thus, Fig. 2 shows a comparison between the Lévy induced
“marginal” CDFs, i.e., restricted to the maximum bias value ib = 0.6, obtained by
solving (4) numerically (solid lines) and that analytically estimated from (17) (dashed
line), for α ∈ [0.1–1.1] and γL = 5 × 10−7. In the considered limited range of ib
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Fig. 2 Comparison between
the curves obtained by fitting
(17) (dashed gray lines) and
the marginal CDFs, i.e., for
ib ≤ 0.6, obtained by solving
numerically (4) (solid lines).
The values of the other
parameters are:
α ∈ [0.1, 1.1],
γL = 5 × 10−7, γG = 0,
Nexp = 104, tmax = 107, and
η = 0.1ωp
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values, the effects of the Gaussian noise contribution could be in any case safely
ignored. This is why we set the Gaussian noise intensity to zero. Markedly, the
agreement between computational and analytical results for α ≤ 1 is quite accurate.

3 Conclusions

In this work we investigate theoretically the switching current distributions in a short
Josephson tunnel junction affected by both a Lévy and a Gaussian noise source, the
latter depending on the temperature at which the system resides. If the bias current is
linearly swept upward, the current value at which the system switches to the resistive
state can be recorded. By repeating the measurement several times, a distribution of
switching currents can be collected. We demonstrate that the analysis of both the
PDFs and the CDFs of the switching current distributions allows to recognize the
presence of a Lévy noise source, revealed by the appearance of anomalous premature
switches in the low-current part of the distributions. Moreover, we show that it is
possible to infer the specific characteristics of the Lévy noise source from the shape
of the SCDs, also in the case of a thermal noisy background. Numerical simulations
confirm the validity of the analytical expressions of both the PDF and the CDF, in
the case of an escape process, from a metastable state of the washboard potential,
driven by Lévy distributed fluctuations.
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A Fractional-Order Model of the Cardiac
Function

Adrian-Josue Guel-Cortez and Eun-jin Kim

Abstract Improving the mathematical model of the cardiovascular system is an
important aspect of the control and design of ventricular assist devices. In this work,
through numerical simulations, we analyse the usage of fractional-order operators as
a way to improve the circulation model. More specifically, we show that the use of
fractional-order derivatives in the lumped circulationmodel can create different types
of heart anomalous behaviours. This includes aortic regurgitation, mitral stenosis and
ischaemic cardiomyopathy.

Keywords Cardiovascular system · Fractional derivatives · LVAD

1 Introduction

In 2015, 17.9 million people died around the world caused by cardiovascular disease
and rose by 12.5% between 2005 and 2015 with a specific increase of ischaemic
heart disease by 16.6% [1]. Even though heart transplantation is considered as the
best therapy for patients with end-stage congestive heart failure [2], it is usually a
delayed process that could last around 300 days or more on the average for potential
recipients. For this reason, the medical community has increased emphasis on the
use of ventricular assist devices (VADs) that can enhance the function of the natural
heart while patients wait for heart transplantation. These ventricular assists devices
are mechanical devices that help the heart with the pumping of the blood through the
circulatory system (left ventricular assists device (LVAD)) or through the pulmonary
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system (right ventricular assist device (RVAD)) [3–5]. There are currently different
types of VADs [6, 7], but the usual consists of a rotary pump applied to the left
ventricle [6].

To design proper VADs, different mathematical models for the cardiovascular
system have been considered (for instance, see [8, 9]). These are categorised as zero-
dimensional (0-D) or lumped parameter models and distributed parameter models
or 1-D, 2-D and 3-D models [10]. The mathematical model must be able to properly
characterise the cardiac cycle but also important aspects like heart failure (usually
studied by pressure-volume (PV) loop analysis [11]), which is a relevant element
in VADs’ control design [12, 13]. Besides, even though higher dimension models
may better describe the heart dynamics, we have to consider that it is a challenge
to analyse control strategies for VADs when using such models [3]. Therefore, we
require a mathematical model that could represent the heart complex dynamics while
being as simple as possible.

An elementary way to describe the heart dynamics (including VADs) is by the
use of Windkessel models which are represented through electrical or mechani-
cal networks [3, 14]. Nonetheless, such simplicity has its drawbacks, for instance,
the basic two-element Windkessel model explains aortic pressure decay in diastole,
but it fails shortly in systole [10]. A way to overcome such drawback consists of
adding more elements to the electrical representation [15–17]. Recently. in [18] a
different approach has been proposed to solve this problem, it consists in the use of
fractional-order operators (derivatives or integrals of non-integer order [19]) in the
arterial Windkessel model. When talking about fractional-order operators, heteroge-
neous systems and phenomena exhibiting anomalous diffusion can be well fitted by
using fractional-order derivatives [20, 21]. Examples of such systems are biological
tissues [22] and large-scale complex networks [23, 24]. It is important tomention that
fractional-order operators does not complicate control design, since there are numer-
ous approaches for control of fractional-order systems that can be implemented (for
instance, see [25]). This implies that fractional order operators, when added to the
cardiovascular model are a feasible option that may better describe a wider range of
real-case scenarios.

Considering the previous lines, in this work, we provide a qualitative analysis of
the use of fractional-order operators in the lumped circulatory model by considering
two different mathematical models from the literature. This analysis demonstrates
that fractional-operators extend the capabilities of such models in the PV loop anal-
ysis. Specifically, we add fractional-order operators to modify the rate of change of
the aortic, atrial and arterial pressures in the circulation model. These changes per-
mit us to create different anomalous behaviours in the PV loops that resemble aortic
regurgitation, mitral stenosis or ischaemic cardiomyopathy dynamics. The remain-
der of this paper is organised as follows: Sect. 2 presents the basic concepts and their
connection with this work. In Sect. 3, our main results are provided. Finally, Sect. 4
contains our concluding remarks.
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2 Preliminary Results

In the following subsections, we offer a description of the background knowledge
that will be useful to the reminder of this work.

2.1 The Mathematical Model

We base our analysis on the mathematical models of the cardiovascular system with
LVAD presented in [4, 5].

Firstly, in [4], a fifth-order lumped parameter electric circuit to reproduce the
left ventricle hemodynamics of the heart is used. This model assumes that the right
ventricle and pulmonary circulation are healthy and normal. Also, a simple first-
order forced differential equation to represent the LVAD is considered (see Fig. 1).
Furthermore, [4] uses a time-varying capacitance (compliance), which is derived by
system identification procedures, to describe the contractual state of the left ventricle.
On the other hand, [5, 26] presents a mathematical model of the cardiac function
that integrates mechanical, electric and chemical activity on micro-scale sarcomere
and macro-scale heart. More specifically, this model includes the fifth-order lumped
parameter electric circuit as well as the electrical model for the LVAD from [4] but
presents a different mathematical model of the mechanical, electric and chemical
activity to describe the behaviour of the contractual state in the left ventricle.

Recalling from [5], the governing equations of the electric circuit shown in Fig. 1
are given by

dV

dt
= 1

Rm
(PR − PV )Θ (PR − PV ) − 1

RA
(PV − m)Θ (PV − m) − δpn,

dm

dt
= − 1

CA
Fa + 1

CARA
(PV − m)Θ (PV − m) + δp

n

CA
,

dFa
dt

= m − PS

LS
− RC Fa

LS
,

dPR

dt
= −PR + PS

CRRS
− 1

CRRM
(PR − PV )Θ (PR − PV ) ,

dPS

dt
= PR − PS

CS RS
+ Fa

CS
. (1)

where V stands for the left ventricular volume,m is the aortic pressure, n corresponds
to the pump flow, Fa is the aortic total flow, PR stands for the atrial pressure and PS is
the arterial pressure. Besides, the function Θ(u) is a Heaviside function which takes
the non-zero value of 1 for u > 0 or 0 otherwise. Moreover, the equation governing
the pump flow is

dn

dt
= 1

L∗

[
PV − m − R∗n + βω2

]
. (2)
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Fig. 1 Lumped parameter electric circuit used to reproduce the left ventricle hemodynamics of the
heart and LVAD

In this work, we will consider no pump support. This can be set up by using δp = 0.
In addition, we use the same set of parameter values presented in [4] for its model
and the same set for [5]’s model when considering a case that shows ectopic PV loop
oscillations using μ1 = 0.0024 and μ2 = 0.1584 on its electric activity model.

2.1.1 Fractional-Order Windkessel Model

As we have mentioned in Sect. 1, the goal of this work is to study the addition of
fractional order operators in the lumped parameter circulation model (1). Recently,
[18, 27] proposes a fractional-order Windkessel model as an alternative to improve
the systolic phase model description. Inspired on the same approach, in Fig. 2a, we
introduce a two-element Windkessel model that uses a fractance element Cα

F . This
fractance element is equivalent to an infinite tree of capacitors and resistors [28].
When this infinite tree is binary, it is proved to be of order α = 1

2 (for further details,
see [23, 24, 29]). To change α’s value, we can use the procedure described in [30]
which consists of allowing more complicated fractal networks or recursive trees to
be constructed (see Fig. 2b). Hence, using a fractional-order capacitor is equivalent
to adding a fractal network in the circuit.
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Fig. 2 Two-element fractional-order

For a better understanding of the mathematical description behind a fractional-
order capacitor, consider the model for the fractional-order circuit shown in Fig. 2a.
This model is given by

0Dα
t Pa = Qa

Cα
F

− Pa
RCα

F

. (3)

Taking in to account expression (3). We have the following result

Proposition 1 By using the Caputo definition of the fractional derivative operator
0Dα

t of order 0 < α < 1 [31]. The time response of system (3) is given by

Pa(t) = Pa(0)t
α−1Eα,α(− 1

RCα
F

tα)+
1

Cα
F

∫ t

0
Qa(t − τ )τα−1Eα,α(− 1

RCα
F

τα)dτ , (4)

where Eα,α(z) is the Mittag-Leffler function of the complex value z [32].

Proof The proof follows by applying the Laplace transform to (3) and obtaining the
inverse Laplace transformL −1 [Pa(s)].

An important conclusion from Proposition 1 is that (4) describes the arterial
pressure as a power low equation with a diffusive term. This kind of representation
implies some challenges that have been recently discussed through various works
(for instance, see [33, 34] and the references therein). Taking the previous lines into
consideration, it is important to mention that instead of finding an analytical solution
to our set of differential equations, in this work, wewill offer a qualitative analysis by
numerically solving our set of fractional order differential equations. The numerical
solution will be computed by using the methods presented in [35], which consider
that the fractional derivative of order 0 < α ≤ 1 of a continuously differentiable
real-valued function x(t) is found by taking x(t) = 0 for all t < 0.
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2.2 Pressure-Volume Loop Analysis in Cardiology

Since our analysis will focus on the behaviours obtained using fractional-order
derivatives in left ventricular PV loops, it is important to define why PV loops are a
critical feature to study. We can describe PV loop analysis as a reference method that
offers unique insights into mechanical cardiac efficiency. This includes the under-
standing of the pathophysiology, diagnosis, and treatment of myocardial ischaemia,
mitral and aortic regurgitation, mitral and aortic stenosis, and others (for further
details, see [36, 37]).

In summary, as shown in Fig. 3, a PV loop plots the changes in ventricular pres-
sure associated with the changes in volume occurring during a cardiac cycle. A full
description of the different concepts related to volumes, pressures, and areas in a
PV loop (shown in Fig. 3) can be found in [38]. Below, we describe some of the
pressure-volume concepts that will be of main interest in this work

• The end-diastolic pressure volume relationship (EDPVR) (black dashed line). The
slope of this line gives the elastance of the ventricle. An important value over this
line corresponds to the End-diastolic volume (EDV) or preload, which helps to
determine the initial value of the arterial elastance line (shown as a red dashed line
in Fig. 3).
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• The stroke volume. This is the difference between the end-diastolic volume and
the end-systolic volume. It is also known as the ejection fraction, i.e. the amount
of blood to be ejected by the left ventricle to the circulatory system.

• Arterial elastance line (red dashed line). This line allow us tomeasure the afterload
which is technically given by the pressure-volume relationship throughout the
entire of ejection, but assumed to be the slope of such a line drawn from the x-axis
value of EDV to the end systolic pressure value in point A.

• The slope of the End-systolic pressure volume-relationship (ESPVR) also known
as contractility (blue dashed line). It also represents the elastance at end-systole
Ees .

• The stroke work, which corresponds to the green shaded area of the PV loop.
• The four stages in the PV loop given by: A-Aortic valve closing, B-Mitral valve
opening, C-Mitral valve closing and D-Aortic valve opening.

3 Main Results

In this section, we present themain results of our analysis.We start by describing how
we modify (1) to include fractional-order dynamics. Then, we vary the fractional-
order derivative orders and comment on their individual and grouped effects. Finally,
we simulate the behaviour of the fractional-order circulation model when changing
other parameters in the circuit.

3.1 The Fractional-Order Circulation Model

Consider the use of fractances in the left atrial, aortic and systemic compliances of the
lumped parameter electric circuit shown in Fig. 1. Thus, equations for the left atrial
pressure PR , the aortic pressurem and the arterial pressure PS in (1) are rewritten as

dαmm

dtαm
= − 1

CA
Fa + 1

CARA
(PV − m)Θ (PV − m) + δp

n

CA
,

dαR PR

dtαR
= −PR + PS

CRRS
− 1

CRRM
(PR − PV )Θ (PR − PV ) ,

dαS PS

dtαS
= PR − PS

CS RS
+ Fa

CS
. (5)

where αm,αR,αS ∈ (0, 1] are the fractional orders of the time derivatives form, PR

and PS , respectively.
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3.2 The Role of αS

To understand the role of αm,αR and αS in the circulation model, we linearly vary
these parameters in [4]’s and [5]’s models. First, we analyse the effect of αS . If we
let αm,αR = 1 and only vary αS ∈ (0, 1], in mathematical terms, we are adding an
infinite memory and non-local operator to describe the rate of the arterial-pressure.
Physically speaking, since the capacitor for the arterial compliance in the circuit tries
to model the biggest part of the cardiovascular system, when adding a fractance (an
infinite network of resistors and capacitors), we are trying to improve the description
of the arterial system by implicitly adding an infinite number of elements.

Figure4a, b show the process of decreasingαS from 1 to 0.2. This process scarcely
changes the stroke work but creates an attractor that shows a right-shift of the PV
loop in both model’s responses (with a greater factor in [5]’s model). Such a shift
to the right is presented in ischaemic cardiomyopathy [37]. Besides, the slope of the
ESPVR remains almost the same and the afterload slope shows small increments.

Moreover, a specific analysis in [5]’s model (Fig. 4b) shows that PV loops with
ectopic behaviours using αm = αR = αS = 1 completely change when αS < 0.6.
This change shows a little increase in afterload and EDV which is quite similar to
the one presented in aortic regurgitation. Finally, when α < 0.3, the PV loop shows
a progressive right-shifting greater than in [4]’s model.

3.3 The Role of αR

The value of αR and αm mathematically contain the same properties than αS , but
their role in the circulation model is different. If we consider αR , this affects the
rate of change in the atrial pressure. Here, Fig. 5 presents the simulations when
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Fig. 4 Changes in αS with αm = αR = 1 using the models of [4, 5]
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Fig. 5 Changes in αR with αm = αS = 1 using the models of [4, 5]

changing αR in the models of [4, 5] while fixing αm = αS = 1. First, from Fig. 5a,
we can see that for αR < 1 there is a gradual right-shift of the PV loop as in the case
of αS , but there is also a monotonically increasing preload that is a characteristic
feature of aortic regurgitation. Analysing Fig. 5b, [5]’s model initially presented an
anomalous behaviour usingαR = αm = αS = 1which is normalisedwhenαR < 0.7
while showing a behaviour similar to the case of [4]’s model but in small proportions.

3.4 The Role of αm

Since the aorta is the main artery that carries blood away from the heart to the rest
of the body, aortic pressure plays an imperative role in the cardiovascular system.
Also, the aortic pressure is affected by the ventricular pressure whose behaviour is
modified by using different mechanic-electric models (to describe the ventricular
contraction) or by the mitral valve functioning. In this context, the value of αm plays
a crucial role, because it directly affects the rate of change in the aortic pressure.

Here, we perform simulations of both [4, 5] models when changing αm and
fixing αR = αS = 1 (Fig. 6). For both models, we have an erratic PV loop behaviour
that includes negative diastolic pressures when αm < 0.6. The presence of negative
diastolic pressure values is a phenomenon that has been studied since long ago as an
effect of mitral stenosis [39]. Nonetheless, since the simulation stops working when
αm < 0.47, this erratic performance seems to be caused by numerical errors in both
models. Such numerical inconsistencies may be fixed by using a smaller integration
step but paying a high computational cost.
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Fig. 6 Changes in αm with αR = αS = 1 using the models of [4, 5]

3.5 Changing Fractional-Orders Equally and the Effect
of Other Parameters

As we have seen from previous sections, changing αm , αR and αS separately while
fixing the other parameters give an insight about their effect on the cardiovascular
model. Here, in Fig. 7, we show the influence of adding equal and unequal fractional-
order values. Such simulations show the presence of a slight right-shifting over time
but with no highly anomalous behaviours. In this case, the use of fractional-order
operators seems to transform the PV loop into a quasi-periodic attractor for [4]’s
model and erase the ectopic oscillations while increasing the stroke volume for [5]’s
model.
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Fig. 7 Changes in αm ,αR,αS using the models of [4, 5]
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a Changes in RS . b Changes in Rm.

Fig. 8 Changes in RS and Rm with αm = αR = αS = 0.7 using [4]’s model

Finally, some of the parameters in the circulation model (1) are known to produce
certain effects. For example, the value of Rm decrease/increase the stroke volume
by changing the ESV and EDV positions while fixing ESPVR and changing RS

decrease/increase the stroke volume by fixing ESPVR but changing the afterload.
Since this effect has been studied using [4]’s model, Fig. 8 only shows the effects of
Rm and RS on this model while using fixedαm = αR = αS = 0.7. These simulations
show that the effects of Rm and RS prevail while the fractional-order derivatives
continue adding a right-shifting.

4 Concluding Remarks

In this work, we have introduced a qualitative analysis of the use of fractional-order
operators in two cardiovascular models with distinct left ventricular contractile ele-
ment models, by adding fractances instead of capacitors to represent aortic, atrial
and arterial compliances. Moreover, through PV loop analysis, we have demon-
strated that fractional-order derivatives can help to characterise heart anomalous
behaviours. Specifically, it may help at describing aortic regurgitation, mitral steno-
sis and ischaemic cardiomyopathy. Future work includes the design of a parameter
identification technique to fit the parameter’s using real data, the inclusion of the
LVAD model in the analysis and a controller’s design methodology for the LVAD
that considers the use of fractional-order derivatives in the model.
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Substochastic Matrices, and Design
of Multi-networks to Reduce the Spread
of Epidemics
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Abstract Cities have long served as nucleating centers for human development and
advancement, c.f. (Smith in Cities: The First 6,000 Years, Penguin Books, London,
2020). Cities have facilitated the spread of both human creativity and human disease,
and at the same time, efforts to minimize the spread of disease have influenced the
design of cities, c.f. ( E. Stinson, Health andDiseaseHaveAlways ShapedOur Cities.
What Will Be the Impact of COVID-19? Architectural Digest, https://www.archit
ecturaldigest.com/story/how-will-coronavirus-impact-cities, 2020. Accessed 2020-
November 2.). The purpose of this paper is to explore the dynamics of epidemics
on networks in order to help design a multi-network city of the future aimed at
minimizing the spread of epidemics. In order to do this, we start with the SIR model
(susceptible, infected, removed) on a network in which nodes represent cities or
regions and edges areweighted byflows between regions. Since the goal is to stabilize
the zero infections steady state, we linearize the discrete-time SIR model yielding
difference equations for the dynamics of infections at each node and then include
flows of infections from other nodes. This yields a vector difference equation vnew =
Mv for the spread of infections. We then generalize the concept of stochastic matrix
in order to quantify the dynamics of this update equation. The entries of the update
matrixM may vary in time, even discontinuously as flows between nodes are turned
on and off. This may yield useful design constraints for a multi-network composed of
weak and strong interactions between pairs of nodes representing interactions within
and among cities.
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1 Introduction

Cities have long served as nucleating centers for human development and advance-
ment, c.f. [3–5, 21, 24, 28] and references therein. As Bettencourt et al. state: “Cities
have long been known to be society’s predominant engine of innovation and wealth
creation, yet they are also its main source of crime, pollution, and disease. … Many
diverse properties of cities from patent production and personal income to elec-
trical cable length are shown to be power law functions of population size with
scaling exponents, β, that fall into distinct universality classes. Quantities reflecting
wealth creation and innovation have β ≈ 1.2 > 1 (increasing returns), whereas those
accounting for infrastructure display β ≈ 0.8 < 1 (economies of scale).” [5]

Schläpfer et al. “show that both the total number of contacts and the total communi-
cation activity grow superlinearlywith city population size, according towell-defined
scaling relations and resulting from a multiplicative increase that affects most citi-
zens. Perhaps surprisingly, however, the probability that an individual’s contacts are
also connected with each other remains largely unaffected. These empirical results
predict a systematic and scale-invariant acceleration of interaction-based spreading
phenomena as cities get bigger … a microscopic basis towards understanding the
superlinear increase of different socioeconomic quantities with city size, that applies
to almost all urban systems and includes, for instance, the creation of new inventions
or the prevalence of certain contagious diseases.” (emphasis added) [21].

Although Arcaute et al. [3] question these scaling rules, citing both the role
of density and notable exceptions, e.g., the enormous intellectual productivity of
Cambridge UK, they also support the central role of cities.

Finally, the there is a two-way relationship between cities and disease: as Stinson
[26] observed, “Health and Disease Have Always Shaped Our Cities.” For example,
Olmstead and Vaud’s development of Central Park (an 843 acre/ 341 hectare park)
in New York City was in part driven by cholera epidemics in the early to mid-1800’s.

Stinson then asked “What Will Be the Impact of COVID-19?”, a question which
motivated the thrust of the present paper. Perhaps the city of the future and the
inter-urban network of the future will be in part physical, in part virtual, thus a
milti-network.

We start with the SIRmodel (susceptible, infected, removed) (c.f. [23] for a review
on a network. The SIR model has been widely used to stud the spread of Covid-19
(c.f. [9] and references therein). Biswas was et al. explored the early spread of Covid-
19 in China with the SIR model on a network [6], obtaining a power law fit to the
contacts. Here we develop a simple matrix/network extension of the SIR model near
the desired zero infections steady state.

The SIRmodel considers three states: susceptible, infected, removed.We shall not
distinguish here between “infected” and “infectious,” since this distinction does not
affect dynamics near the desired zero infections steady state. In addition, we simplify
the model by assuming that infected individuals either gain long-term immunity or
pass away.Under our simplifying assumptionswe have a simple flowdiagram (Fig. 1,
below) and differential equation for the number infected (Eq. 1, below). (If immunity
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Fig. 1 Flow diagram for the SIR model. Arrows represent flows from susceptible infected (as
susceptible individuals become infected), from infected to removed (as infected individuals become
no longer infected, some of whom pass away and others recover), and from removed to susceptible
(recovered individuals who lose or never had immunity). Since Covid-19 appears to show long-term
immunity in most recovered individuals [11, 22], wemay ignore flows from removed to susceptible.
Flows into the infected compartment depend upon interactions between susceptible and infected
individuals, parametrized by an effective transmission rate b; flows out of the infected department
scale inversely with and the duration D of infection. See text, Eq. (1)

were only temporary, some of the immune populationwould become susceptible, and
wewould add aflow from the removed compartment to the susceptible compartment.)

Flows into and out of the infected state (compartment in engineering language)
are given by the standard SIR equation

d I/dt = bI S − I/D (1)

Here I denotes the number infected, S the number susceptible, b an effective
transmission rate (described below) and D the duration of infection. Our goal here
to make the steady state with zero infected (I = 0) Lyapunov stable equilibrium as
in May and Anderson [20]. As they observed, “simple mathematical models of the
transmission dynamics of HIV help to clarify some of the essential relations between
epidemiological factors.” We shall rewrite the flow from susceptible to infected in
terms of probability p that a contact yields an infection, and the effective contact rate
c between susceptible individuals and the probability s that a contact is susceptible,
that is, bS = pcs. As illustrated in Fig. 2 below, the SIR model for infections then
becomes

d I/dt = pcs I − I/D = (pcs − 1/D)I (2)

We shall now explore the role of controls (masking, distancing, travel limits,
shutdowns, etc.) aimed at controlling the cascading spread of Covid-19 through the
use of a robust, simple model, namely a matrix/network extension of the above SIR
model.

Fig. 2 Graphical representation of the SIR model (2). Flows are pcsI (into the infected
compartment) and (1/D)I (out of the infected compartment) for a net flow of (pcs − 1/D)I
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2 Linearizing the SIR Model

In order to develop the matrix model, we first linearize the SIR model (Eq. (2)) by
assuming that the probability s that a contact is susceptible is constant. We then
discretize the linearized SIR model by the Euler method, obtaining the difference
equation

I (t + Dt) = I (t) + (pcs − 1/D)I (t)�t = (1 + (pcs − 1/D)�t)I (t) (3)

Remarks.

(1) The parameter Rt (c.f. the basic reproductive rate R0 in [20]) is readily obtained
by setting the time step �t in Eq. (3) equal to the duration of infection D. The
following simple calculation then implies that

Rt = pcsD (4)

is the growth rate of infections over the duration of infection D as the natural time
scale:

I (t + D) = (1 + (pcsD − 1)I (t) = pcsD I (t) (5)

(2) Eq. (6) yields a condition for herd immunity, namely, that the growth rate

Rt = pcsD < 1 (6)

in which case the number of infected, I, decreases at least exponentially as

(pcsD)t/D (7)

The required limit in growth rate Rt (Eq. (6)) can be can be achieved in several
ways or by an appropriate combination thereof:

a. Reducing the probability p that a contact results in an infection throughmasking
and/or physical (misnamed social) distancing. Of course, relaxing masking
and/or physical distancing will increase p, potentially causing the growth rate
Rt to increase above 1, ending (apparently temporary) herd immunity.

b. Reducing the effective contact rate c between susceptible and infected individ-
uals, for example bymaking some contacts virtual and/or by otherwise reducing
the incidence of “superspreading”/ “spreading” events in amulti-networked city
of the future. May and Anderson [20] emphasized the role of the distribution of
contact rates in determining the effective contact rate (for the spread of HIV in
a male homosexual population):
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c = μ + σ 2/μ (8)

the mean + the ratio of the variance to the mean, which we rewrite perhaps more
simply as

c = μ(1 + (σ/μ)2) (9)

The effective contact rate is thus increased by the square of the coefficient of
variation, similarly emphasizing the role of variability in contact rates. Of course,
eqns. (8) and (9) “blow up” if the contact rate has a fat tailed distribution with infinite
variance.

Similarly, reducing contacts through travel restrictions (the effects of travel
modeled by off-diagonal elements in a matrix update equation (eqns. (10ff), below).

c. Reducing the proportion of susceptibles s by vaccination.

3 Substochastic Matrices, Products with Non-negative
Vectors and a Matrix/Network Model.

In this section we extend the linearized, discrete-time SIR model (Eq. (4)) to
networks.

Notation. Since the symbol i is typically used for indexing vectors and matrices,
we write v for the vector whose entries denote the number of infected individuals in
nodes (cities, regions). We shall also follow standard notation I the identity matrix
from here on, andM for the matrix of rate coefficients in our matrix/ network model.
Thus diagonal entries are given by rate coefficients in the SIR model (Eq. (4)). Off-
diagonal entries in M represent rates at which infections in one node/city/region
generate infections in another node/city/region; see Fig. 3, below.

We obtain an update rule v(t + �t) = v(t) + Mv(t), or more simply

vnew = (I + M�t)v (10)

Here the diagonal elements represent local (within node/city/region) SIR interac-
tions

Mii = pici si − 1/D (11)

and the off-diagonal elements Mij represent the rate at which infections at node i
generate additional infections at node j. Figure 4, below, is a graphical representation
of the matrix/network SIR model.

Interpretation and consequences. Suppose v is the unit vector with a 1 in the jth
row, representing one infection in node j of the network. Then Mv is simply the jth
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Fig. 3 Infections generated by connections in the matrix/network model. This small, “toy”
model consists of two nodes, representing cities or regions. In this representation M21 represents
the rate at which one infection in node 1 generates new infections at node 2, that is M21�t new
infections at node 2 after one time step �t. Analogously M12 represents the rate at which each
infection at node 2 generates new infections at node 1

Fig. 4 Graphical representation of the matrix/network SIR model. This small, “toy” model
consists of two nodes, representing cities or regions. As in Fig. 2,M21 represents the rate at which
one infection in node 1 generates new infections at node 2, that isM21�t new infections at node 2
after one time step �t, analogously forM12. In addition, the rate of change v1, the number infected
at node 1 is simply (p1c1s1 − 1/D)v1 + M12v2

column ofM: (Mv)i =Mij. The jth column sum�iMij is the “rate constant” at which
infections at node j drive a change in the number of infections throughout the entire
network. As a consequence, if all column sums of the update matrixM are negative,
then the total number of infections in the network will decrease after a time step
�t. This observation suggests that the column sums play a role in quantifying the
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growth or decay of infection in a matrix/network model analogous to the role of Rt

in quantifying local dynamics: (column sums < 0) ~ (Rt < 1).
The analogy (column sums < 0) ~ (Rt < 1) can be simplified by rewriting the

update equation vnew = (I + M�t)v (Eq. (10)) as

vnew = (I + M�t)v = Av (12)

where

A = I + M�t (13)

In the case of a trivial network (one node, no connections), and time step �t =
D, the duration of infection, A becomes a scalar and A = Rt (Eq. (4), above). The
stability criterion Rt < 1 then suggests the following definition (generalization).

Definition 1. Anon-negativematrix is column-substochastic if itsmaximumcolumn
sum is less than 1.

Thus, whenever the update matrix M in the update rule is column-stochastic, one
infection yields < 1 infections in total at the next time step, irrespective of location.

Note. The �1 norm of a non-negative vector is simply the sum of its entries. Here
the �1 norm of v is simply the total number of infections.

We need a relatively straight-forward theorem on left multiplication by a column-
substochastic matrix. We give a short proof (a straight-forward calculation) here
since we did not find a proof in the literature.

Theorem 1. Left multiplication by a column-substochastic matrix with maximum
column sum ≤ k reduces the �1 norm of a non-negative vector by a factor ≤ k.

Proof. Let v be a non-negative vector and A a column-substochastic matrix. We
calculate the �1 norm of Av, namely �i (Av)i as follows.

�i (Av)i = �i (� j Ai jv j ) = �i j Ai jv j = � j (�i Ai j )v j≤� j kv j = k� jv j (14)

namely k times the �1 norm of the non-negative vector v.Done.

Remarks. The Gerschgorin circle theorem yields an analogous bound for the eigen-
values of a non-negative matrix, based on row sums. However, in the spirit of Cohen
and Newman’s results for products of random matrices [7, 8], Theorem 1 has the
advantage that it can be generalized to products of column-stochasticmatrices, which
themselves may vary in time.
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Corollary 1. Repeated application of the update rule vnew = Av to a non-negative
vector v, represented by the product of a sequence of column-substochastic matrices
{A(i)}, which may vary in time, and all with maximum row sum ≤ k < 1, namely.

v(t + n�t) = A(n)A(n − 1) . . . A(2)A(1)v(t) (15)

reduces the �1 norm of v by a factor of at most k.n.

Corollary 2. Thus, near the zero-infections steady state, absent introduction of
infections from outside the network, the total number of infections decays at least as
fast as k.n = k.t/�t (exponentially), that is, with time scale.

τ ≤ �t ln k (16)

More generally we have the following.

Corollary 3. Repeated application of the update rule vnew =Av (A= I +M) to a non-
negative vector v, represented by the product of a sequence of column-substochastic
matrices which may vary in time, as in Eq. (15) above, reduces the �1 norm of v
by a factor of at most kg.m.

n where kg.m. is the geometric mean of the corresponding
maximum column sums.

Corollary 4. Thus, near the zero-infections steady state, provided that.

kg.m. < 1 (17)

and absent introduction of infections from outside the network, the total number of
infections decays exponentially at least as fast as kg.m.

n = kg.m.
t/�t , that is, with time

scale

τ ≤ �t ln kg.m. (18)

Of course, Theorem 1 its corollaries approximate converses, based upon the
following definition of column-superstochastic matrices. Since details are similar,
here we simply state the converse and resulting time scales for growth without proof.

Definition 2. A non-negative matrix is column-superstochastic if its minimum
column sum is greater than 1.

Theorem 2. Left multiplication by a column-superstochastic matrix with minimum
column sum ≥ K increases the 1 norm of a non-negative vector by a factor ≥ K.
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Thus, repeated application of the update rule vnew = Av to a non-negative vector
v, represented by the product of a sequence of column-substochastic matrices which
may vary in time, and all with minimum row sum ≥ K > 1, as in Eq. (15) above,
causes the number of infections to grow at least as fast as Kn (exponentially), that is
with time scale

τ ≤ �t ln K (19)

If we relax the criterion and consider only the geometric mean Kg.m. of the corre-
sponding maximum column sums, the number of infections grows at least as fast as
Kg.m.

n (exponentially), that is with time scale

τ ≤ �t ln Kg.m. (20)

4 Discussion

In Sects. 2 and 3 we extended a linearized SIR model to a corresponding matrix
network model, and extended the usual criterion Rt < 1 for infections to decline,
ultimately stabilizing the zero infection steady state to a corresponding criterion for
in the matrix/network model (Corollaries 1 and 2). Here we discuss that criterion
and its consequences.

Recall the update rule (Eq. 12)

vnew = (I + M�t)v = Av,

where v for the vector whose entries denote the number of infected individuals in
nodes (cities, regions) in the network, the diagonal entries

Mii = pici si − 1/D

represents SIR dynamics at node i, and the off-diagonal entries parametrize flows
between regions.We developed a variety of stability criteria for driving the infections
to 0, of which Corollary 1 is the simplest: the update matrices A = I + M�t are
uniformly substochastic, with all column sums of all update matrices A uniformly
bounded by a constant k < 1. This criterion combines the generation of new infections
at each node with infection “exported” to other nodes: the following analog of Rt ,
namely 1 + the total number of infections generated throughout the network by a
single infection at any node, less the recovery rate 1/D, given by the corresponding
column-sum of M, must be uniformly bounded by a constant k < 1. The bound on
column sums can be considered as a granular version of a bound on Rt .
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4.1 Consequences for Control and Network Design

We first discussed controlling the spread of coronavirus locally (at one node) by
making Rt = pcsD < 1 at that node, through the combined effects of (a) Slowing
the spread by reducing the probability that a contact results in an infection through
masking and/or physical (misnamed social) distancing, (b) Reducing the effective
contact rate between susceptible and infected individuals, for example by making
some contacts virtual and/or by otherwise reducing the incidence of “superspread-
ing”/ “spreading” events in a multi-networked city of the future, and (c) reducing the
proportion of susceptibles by vaccination.

Ourmatrix/networkmodels introducemore granularity: for stability an increasing
rate of infections at a node, namely pjcjsj, must be balanced by a similar reduction the
rate of infections generated by infections at that node, the latter parametrized by the
sum of off-diagonal elements in the corresponding column ofM (or A since A=M +
I), for example, through localizing or virtualizing interactions, restrictions on travel,
or reduction of the size of events where interactions occur. Similar considerations
apply in reducing the rate of growth of infections in cases where infections are
growing (column sums of update matrices A > 1, analogs of Rt > 1) to reduce the
strain on resources by “flattening the curve.”

Moreover, the spread of Covid-19 seems to have the hallmarks of a cascading
failure [10], here initially localized loci of infection which spread more rapidly than
the system reacts to contain or mitigate the spread (described for example in [14]).
Decentralized (modular) organization has been shown to promote survivability from
“cascading failures in power grids.” [16] discussed how decentralized (modular)
organization and “reciprocal altruism” promote survivability from “cascading fail-
ures in power grids.” The modular organization of the US (and perhaps any other)
power grids, and lessons learned from cascading failure leading to the Northeast US
blackout of 2003 [18] may provide ideas for a modular organization of networks
in cities of the future, in which case signals provided by matrix models such as
those discussed above (e.g., Eq. (9)) might provide fast enough warning signals to
contain the spread of future epidemics from hot spots. For example, one might seek
to avert the transition from substochastic dynamics (decay of infection) to super-
stochastic dynamics (growth of infection), both throughout the network, by intro-
ducing travel restrictions, reducing off-diagonal elements in the update matrix. See
also the discussion of the “smart electric grid of the future” [2].

4.2 Limitations, Future Work and Conclusions

In the present paper have discussed only the simplest matrix/network extension of
the classic SIR model, and looked only for qualitative correspondence to the data. In
the future one should explore extensions to more general models and explorations of
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fitting data (and explanations for failure to fit the data, e.g., evolving social behavior,
c.f. [9].

Moreover, one might explore what might be interesting non-linear extensions to
the present discussion. The May-Wigner transition from instability to stability as a
function of the strength of interactions in a network with linear interactions [1, 7, 8,
19] has also been observed in nonlinear dynamical systems [12, 17, 25]. Network
structure also plays a role in stability, both small-world organization [27] and more
complex network structures (c.f. [15]), and should be considered in understanding
the role of social behavior and urban design in the spread of epidemics.

We also plan to extend our matrix/network model to a stochastic model to study
the propagation and growth of random infections in a matrix/network model (c.f.
[13]), and to develop a criterion for “circuit breakers” to limit cascading spread (see
the discussion of the power grid, above). Both projects project may help in “flattening
the curve” to help avoid overrunning the limits of medical resources.

5 Summary

In summary, we have developed a model for the spread of epidemics which over
networks, which includes both local (within node/city/region) SIR dynamics and
flows of infections between nodes. We have also provided a natural criterion for the
zero infections steady state to be stable: expressed mathematically that all column
sums are less than 1 (substochastic), and interpreted that one infection anywhere in
the network yields less than one new infection (on average) over the entire network.
This approachmay be a small step towardsmodels to help design “smart cities” of the
future with an idea of preventing, containing, or at least mitigating future pandemics.
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Dynamics of the Charge Transfer
Through a Memristor Between Two
Initially Charged Cells

Aliyu Isah, A. S. Tchakoutio Nguetcho, Stéphane Binczak,
and Jean-Marie Bilbault

Abstract In this paper, the behaviour of a memristor involved in CNN neighbour-
hood connection is investigated. The modified model of a charge-controlled mem-
ristor is considered, which gives us the desired continuity allowing to observe the
behaviour ofmemristor for all initial conditions q0. Detailed description of the system
and analytical solution are provided.

Keywords Memristor · CNN · Neighborhood connection

1 Introduction

The discovery of the fourth basic circuit element—called Memristor—[1] unveiled
numerous possibilities that are promising in overcoming the current challenges facing
electronic designs and fabrication processes. The memory resistor or memristor in
short, is postulated in 1971 but only realized in 2008 [2] as a two-terminal solid state
device with its modeling description as:

V (t) = M(x) I (t), (1a)

dx

dt
= κ F (x) I (t), (1b)
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M(x) = Rof f − δR x ; x ∈ [0, 1]. (1c)

Here: V (t) and I (t) are the voltage across and current through the device, respec-
tively, M(x) is the memristance as a function of the normalized state variable x ,
κ = μvRon

D2 is a technological constant, F (x) is a window function for modeling the
nonlinear dopant drift and δR = Rof f − Ron .

The diversity of a memristor is a result of its nano-scaleability and memory capa-
bility. The most common reported and reliable application of a memristor is in the
memory development [3, 4]. Moreover, other possible applications of a memristor
include for example, but not only, cellular nonlinear networksCNNs [5, 6], neuromor-
phic computing [7], memristor as synapse using memristor bridge [8–10] and logic
circuits [11, 12]. As memristor can be charge-controlled φ = φ̂(q) or flux-controlled
q = q̂(φ) depending on the nature of its input [13], a flux-controlled memristor is
often used in the hitherto reported memristor based CNN applications. In this paper
we consider rather a charge-controlled memristor in the CNN neighbourhood con-
nection with the main focus on the memristor behaviour.

2 Memristor Models

In an ideal charge-controlled memristor, the state variable is a function of the charge
flowing through it [3, 13, 14] and the instantaneousmemristanceM(q) is determined
by the charge as well. Hence, we have:

Port equation: V (t) = M(q) I (t) and state equation:
dq

dt
= I (t).

Settingqd = D2

μvRon
as the charge scaling factor [15, 16], then the normalized state

variable canbe expressed as x = q

qd
and the equivalent expressionof thememristance

is defined from (1), as:

M(q) =

⎧
⎪⎨

⎪⎩

Rof f , if q ≤ 0

Rof f − δR q
qd

, if 0 < q < qd
Ron, if q ≥ qd

(2)

Note that q(t) =
∫ t

−∞
i(t ′)dt ′ = q0 +

∫ t

0
i(t ′)dt ′, where q0 =

∫ 0

−∞
i(t ′)dt ′ is the ini-

tial charge reflecting thememory effect of thememristor [17]. Thememristance func-
tion M(q) of a charge–controlled memristor is analyzed with respect to the flowing
charge through it. The memristance of a memristor varies between two extreme
resistance limits—called the lower conducting region Rof f and the higher conduct-
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ing region Ron , thus the device exhibits bipolar resistance switching characteristics.
Hence, the resistance does not change for q ≤ 0 and q ≥ qd and for a real memristor
device this phenomenon is often modeled by using a window function imposing zero
drift at the two extreme boundaries (i.e. q = 0 and q = qd ). In addition, it further
affirms the passivity nature of memristance whereby:

PM ≥ 0 ⇒ M > 0,

where PM is the power in the memristor whose memristance is M . However, (2)
has discontinuities for the first derivative with respect to q at q = 0 and q = qd
which cause angulation at these specific q values, see [18]. Furthermore, the study of
memristance dynamics in theCNNneighborhood connection between pixels requires
M(q) and its derivativewith respect to q to be continue at q = 0 or qd in order to solve
the system analytically. Hence, the idea is tomodify the conventional TiO2 memristor
model given in (2) and to let it become suitable for all possible values of q.

As will be seen in Sect. 3, the memristance function must be continuous at q = 0
and q = qd , this case is briefly described in [18]. However the detailed description
is recalled in the following. The new model is deduced from a cubic polynomial
function in q, having a continuous first derivative with respect to q, given by:

M(q) = a + b q + c q2 + d q3, f or q ∈ [0, qd ]. (3)

Moreover, the derivative of M(q) with respect to q i.e. dM(q)

dq must be 0 for q ≤ 0
and q ≥ qd . So, we get:

dM(q)

dq
= b + 2c q + 3d q2, (4)

where a, b, c and d are constants determined by applying the conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f or q < 0 : M(q) = a = Rof f ,

f or q = 0 : dM(q)

dq

∣
∣
∣
q=0

= 0 ⇒ b = 0,

f or q = qd : dM(q)

dq

∣
∣
∣
q=qd

= 0 and M(q)

∣
∣
∣
q=qd

= Ron.

(5)

From (3)–(5), we get the constant coefficients as follows:

a = Rof f , b = 0, c = −3 δR

q2
d

and d = 2 δR

q3
d

Hence, the model becomes:

M(q) =

⎧
⎪⎨

⎪⎩

Rof f , if q(t) ≤ 0

Rof f − 3 δR
q2
d

q2 + 2 δR
q3
d

q3, if 0 ≤ q(t) ≤ qd

Ron, if q(t) ≥ qd

(6)
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with its charge derivative given by:

dM(q)

dq
=

{− 6 δR
q2
d
q + 6 δR

q3
d

q2, if 0 ≤ q(t) ≤ qd

0, if q ≤ 0 or q ≥ qd
(7)

To determine the point of inflexion, the first and second derivatives of M(q) with
respect to q are obtained from (6), thus:

dM(q)

dq
= 6

δR

qd

(
q2

q2
d

− q

qd

)

and
d2M(q)

dq2
= 6

δR

qd

(
2q

q2
d

− 1

qd

)

. (8)

Therefore, one can see that
d2M(q)

dq2
= 0 if q = qd

2
, which is used in (8) to get:

dM(q)

dq
= −3

2

δR

qd
,

and the corresponding memristance is obtained from (6), to be:

M(q)

∣
∣
∣
q= qd

2

= 1

2

(
Rof f + Ron

)
.

-50 0 50 100 150
0

2

4

6
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10

12

14

16

Point of inflexion

Fig. 1 Results comparison of memristances versus charge according to (2) and (6), as depicted
by model 1 and 2 respectively. The parameter values used are [2]: μv = 10 f m2/V .s, D = 10nm,
Rof f = 16K� and Ron = 100� which gives qd = 100μC . The charge q(t) may sometimes be

negative or greater than qd . Thus,
dM(q)
dq in (2) has discontinuity at q = 0 and q = qd as can be

seen with angulation points in the black curve while dM(q)
dq in (6) is continuous for all q(t)
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The response of M(q) according to (2) and (6) is given in Fig. 1. The red curve is for
(6) which shows a rather better result due to its continuity for its first derivative at

q = 0 and q = qd . The system is normalized by calling X = q(t)

qd
and M = δRM .

Therefore, (6) becomes:

M (X) =

⎧
⎪⎨

⎪⎩

Rof f

δR , if X (t) ≤ 0
Rof f

δR − 3 X2 + 2 X3, if 0 ≤ X (t) ≤ 1
Ron
δR , if X (t) ≥ 1

(9)

3 Neighbourhood Connection with Memristor

The idea of considering a memristor in the CNN neighbourhood connections is
reported [19, 20], where a flux-controlled model is used.Moreover, memristor-based
CNNs have been proposed [5, 6], once again, using a flux-controlled memristor in
the cell constitution. Cellular nonlinear network is implemented [21] where the cell
composition is made of a linear capacitor and a nonlinear resistor RNL (such as
Fitzhugh-Nagumo), meanwhile the neighborhood connection is achieved using a
linear resistor, see Fig. 2.

Memristor based CNNs have so many advantages which include fault tolerance
[5], high pixel density and low power consumption due its nano nature in size. We
consider a charge-controlledmemristor in the neighbourhood connection (see Fig. 3),

Fig. 2 2D CNN using
resistor in the neighbourhood
connection [21]
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Fig. 3 2D CNN using memristor in the neighbourhood connection

Fig. 4 Two cells system made up of master and slave cells coupled by a charge-controlled mem-
ristor. Initially, the cells are charged while the switches S1 and S2 are opened. However, by closing
the switches, charges flow from one cell to the other according to the potential difference across
them, until the system stabilizes when Vm(t) = Vs(t) = constant

simply as a replacement of the linear resistor in Fig. 2. Here we rather focused on
the memristor behaviour. Thus, we consider two cells, namely: master and slave
with setup as shown in Fig. 4. The method is accompanied by the study of memristor
behaviour on the system response, such as the effect of initial charge q0 on the system
dynamics [17].

Closing the switches S1 and S2 simultaneously, we get the following Kirchhoff
relationships:

i(t) = −Cm
dVm(t)

dt
− Vm(t)

Rm
, (10)

i(t) = Cs
dVs(t)

dt
+ Vs(t)

Rs
, (11)
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Vm(t) − Vs(t) = M(q) q̇(t) , (12)

while
i(t) = q̇(t), (13)

The time evolution of the voltage for each cell as well as the charge evolution can be
obtained analytically from the system of equations (10)–(12). Therefore, the voltage
evolution is obtained from (10)–(13), as follows:

d

dt
(CmVm + CsVs) + CmVm

RmCm
+ CsVs

RsCs
= 0. (14)

Hence, we consider the case where the values of the parameters Rm , Rs , Cm and Cs

would yield the time constant of the cells to be the same, so that τc = RmCm = RsCs .
Then (14) can be integrated and yield:

CmVm + CsVs = λ e− t
τc , (15)

where λ = CmVm0 + CsVs0 is a constant given by the initial conditions at time t = 0.
Once again, (10) and (11) could be rewritten as:

Rm i(t) = −RmCm
dVm

dt
− Vm, (16)

Rs i(t) = RsCs
dVs

dt
+ Vs, (17)

with i(t) = dq
dt = q̇(t), Vm − Vs = M(q) q̇ given by (12) and letting R0 = Rm + Rs ,

then from (16) and (17) we get:

dVm

dt
− dVs

dt
= − R0

τc

dq

dt
− 1

τc

(

M(q)
dq

dt

)

. (18)

Equation (18) can be solved in 2 ways. Firstly, the equation can be solved directly,
then taking into account (15), we find explicit expressions of Vm(t) and Vs(t) as
function of the charge q(t) flowing through the memristor. Secondly, (18) is solved
using (12) for the study of charge transfer from one cell to the other through the
memristor. With the same approach, and by taking into account the initial conditions
Vm0 , Vs0 and q0, and integrating (18), it gives:

Vm − Vs = (Vm0 − Vs0) − R0

τc
(q − q0) − ð

τc
, (19)

where:

ð =
∫ q

q0

M(q ′) dq ′. (20)
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Solving (15) and (19) simultaneously, we get:

Vm = λ

C0
e− t

τc + Cs

C0

(
Vm0 − Vs0

) − Cs R0

τcC0
(q − q0) − Cs

τcC0
ð. (21)

and

Vs = λ

C0
e− t

τc − Cm

C0

(
Vm0 − Vs0

) + CmR0

τcC0
(q − q0) + Cm

τcC0
ð. (22)

where C0 = Cm + Cs .
To obtain the charge evolution, (18) is rewritten as:

d

dt

(
Vm − Vs

) = − R0

τc

dq

dt
− 1

τc

(

M(q)
dq

dt

)

,

and using (12), it becomes:

(
R0 + M(q)

) dq

dt
+ τc

d

dt

[
M(q)

] dq

dt
+ τc M(q)

d2q

dt2
= 0.

With the identity:
dM(q)

dt
= dM(q)

dq
× dq

dt
, then:

(
R0 + M(q)

) dq

dt
+ τc

dM(q)

dq

(
dq

dt

)2

+ τc M(q)
d2q

dt2
= 0. (23)

It is easier to handle normalized system. Therefore, (23) is normalized by considering

τ = t

τc
while Y = Ẋ = dX

dτ
and Ẏ = Ẍ = d2X

dτ 2
are the first and second derivatives

of X with respect to τ . Then (23) is to be studied in the phase plane (X,Y) using its
normalized form:

(
R0

δR
+ M

)

Y + dM

dX
Y 2 + M Ẏ = 0, (24)

where M is given in (9). Henceforth (9) and (24) are considered. For each case of
M in (9), then (24) is solved to give the analytical expression required to obtain the
phase portraits.

I f X ≤ 0, M (X) = Rof f

δR
, then (24) becomes:

⎧
⎨

⎩

Ẏ = −γ1

γ2
Y ,

Ẋ = Y,

(25)
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where γ1 = Rt

2δR
, γ2 = Rof f

2δR
, Rt = R0 + Rof f and

Rt

Rof f
= γ1

γ2
. Then (25) is solved

to give:
H(X,Y ) = γ2Y + γ1X = h, (26)

where h is a constant corresponding to the conservative quantity H(X,Y ) determined
by the system initial conditions: X0, Vm0 and Vs0 , meanwhile Y0 is obtained from
(12), as:

Y0 = τc
(
Vm0 − Vs0

)

qd · δR · M (X0)
. (27)

With Y = dX

dτ
, then (26) becomes:

X (τ ) =
(

X0 − h

γ1

)

e− γ1
γ2

τ + h

γ1
. (28)

where X0 = X (τ = 0) and the normalized time for this case can be expressed from
(28) as:

τ = −γ2

γ1
ln

(
X (τ ) − h

γ1

X01 − h
γ1

)

, τ ∈ [ − ∞, τ1
]
. (29)

where τ1 is the time when X (τ ) = 0, and is given by:

τ1 = −γ2

γ1
ln

(
h

h − γ1X01

)

. (30)

I f 0 ≤ X ≤ 1, M (X) = Rof f

δR
− 3X2 + 2X3, then (24) becomes:

⎧
⎪⎨

⎪⎩

Ẏ = −
(
X3 − 3

2 X
2 + γ1

)
Y + 3(X2 − X)Y 2

X3 − 3
2 X

2 + γ2

Ẋ = Y

(31)

Thus, (31) becomes:

H(X,Y ) =
(

X3 − 3

2
X2 + γ2

)

Y + 1

4
X4 − 1

2
X3 + γ1X = h. (32)

Similarly, with Y = dX

dτ
, then the analytical solution of (32) is given by:

P3(X)

P4(X)
dX = −dτ

4
⇒ (33)
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τ = τ1 − 4

[

ln

[(
X1 − X

X1

)α1
(
X2 − X

X2

)α2
]

+ ln

[
X2 + β1X + β2

β2

] α4
2

+ 2α3 − α4β1
√

4β2 − β2
1

(

arctan
2

(
X + β1

2

)

√

4β2 − β2
1

− arctan
β1

√

4β2 − β2
1

)]

, (34)

where:

P3(X) = X3 − 3

2
X2 + γ2, P4(X) = X4 − 2X3 + 4γ1X − 4h,

β1 = X1 + X2 − 2, β2 = −4h

X1X2
,

α1 = X3
1 − 3

2 X
2
1 + γ2

(X1 − X2)(X2
1 + β1X1 + β2)

,

α2 = X3
2 − 3

2 X
2
2 + γ2

(X2 − X1)(X2
2 + β1X2 + β2)

,

α3 = γ2 + α1β2X2 + α2β2X1

X1X2
,

α4 = 1 − α1 − α2.

Meanwhile X1 and X2 are the two real roots of P4(X) given by

X1 = 1

2

(

1 +
√

3 −U + 2
(4γ1 − 1)√

U
− √

U

)

,

X2 = 1

2

(

1 −
√

3 −U + 2
(4γ1 − 1)√

U
− √

U

)

,

where U = 1 + 2
3

√√
� − Q − 2

3

√√
� + Q, � = Q2 + 8

27 P
3, P = 2h − γ1 and

Q = h − γ2
1 . The other two roots P4(X) are complex numbers. Recall that τ1 is

eventually the time where X (τ ) = 0, therefore at X (τ ) = 1, τ = τ2 and is obtained
from (34).

I f X ≥ 1, M (X) = Ron

δR
, then (24) becomes:
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⎧
⎪⎨

⎪⎩

Ẏ = −2γ1 − 1

2γ2 − 1
Y

Ẋ = Y
(35)

Then, (35) becomes:

H(X,Y ) =
(

γ2 − 1

2

)

Y +
(

γ1 − 1

2

)

X + 1

4
= h. (36)

With Y = dX

dτ
, it becomes:

X (τ ) = 2h − 1
2

2γ1 − 1
+

(
2γ1 − 2h − 1

2

2γ1 − 1

)

e− 2γ1−1
2γ2−1 (τ−τ2). (37)

4 Discussion

The analytical solution gives the phase portraits characterizing the nature of the
flowing charge through a memristor. An example of phase portraits for the described
system is given in Fig. 5. The results are obtained for Rof f = 16K�, Ron = 100�,
D = 10nm andμv = 10 f m2/V .s. Then, it gives qd = 100μC , γ1 = 6.792 and γ2 =
0.503. Each trajectory in Fig. 5 corresponds to a specific initial conditions set (X0,
Vm0 , Vs0 ). The arrows point the direction of the system towards equilibrium and
saturation. Therefore, for any given X0, Vm0 and Vs0 , then Y0 is to be obtained from
(27). Hence, for Y0 > 0 the system evolves from left to right and for Y0 < 0 it goes
from right to left as indicated by the arrow direction.

X0 plays a significant role in the system dynamics because it determines the time
evolution for any of the instances: X ≤ 0, 0 ≤ X ≤ 1 and X ≥ 1. It is important to
note that the state X0 marks the history of the memristor. To capture all the possible
occurrences of X0, twelve possible scenarios are established [18] as enumerated
underneath. Unfortunately, it is not possible for us to carry out the details analysis of
each case due to length constraints. However, the description of each case is given
in [18], as well as some comparison of system evolution with SPICE and numerical
solution.

(1) Y0 > 0:

A1. X0 ≤ X < 0.
A2. X0 < 0 and X (t → ∞) < 1.
A3. X0 < 0 and X (t → ∞) > 1.
A4. 0 < X0 ≤ X < 1.
A5. 0 < X0 and X (t → ∞) > 1.
A6. 1 < X0 ≤ X .
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Fig. 5 Phase portraits showing the nature of charge transfer through a memristor for Y0 > 0 (indi-
cated by arrows from left to right) and Y0 < 0 (indicated by arrows from right to left). Similar phase
portraits are fully described in [18]

(2) Y0 < 0:

B1. 1 < X ≤ X0.
B2. X0 > 1 and 0 < X (t → ∞) < 1.
B3. X0 > 1 and X (t → ∞) < 0.
B4. 0 < X ≤ X0 < 1.
B5. X0 < 1 and X (t → ∞) < 0.
B6. X ≤ X0 < 0.

5 Conclusion

The nature of charge transfer through a charge-controlled memristor is investigated
via a nonlinear equation characterizing the system dynamics. We provide a law for
M(q) which respects the continuity as required by the Kirchhoff’s relationships.
The new model avoids the use of a window function whose physical meaning is not
intuitive. Additionally, we highlight the fundamental role of the memristor history,
in showing that if all parameters are changed except q0, the system behaviour is
however quite different according to q0.
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Further study is ongoing to explore more contributions of memristor in cellular
nonlinear networks reliable for image processing techniques.
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Effect of Synchronization on the Fractal
Basin Boundary of the Duffing Oscillator

Aliasghar Janalizade and Mohammad R. Kolahchi

Abstract The forceddampedDuffing equation is proven to have fractal basin bound-
aries given a particular set of parameters.We couple an oscillator in the regular region
to one in the fractal region. This requires each equation to have its own parameters.
We look for synchronization. For our particular coupling, the type of synchroniza-
tion we find gives a particular relation in time between the positions, as well as the
velocities. For the synchronized motion we find that the basin boundary could be
smooth or fractal. As the coupling becomes stronger, the basin boundary becomes
less fractal. Considering the coupling as part of the perturbation to the homoclinic
orbits, we test the Melnikov criterion for having fractal basin boundaries, and find
good agreement.

Keywords Synchronization · Fractal basin boundary · Homoclinic · Melnikov

1 Introduction

A chaotic attractor (cf. strange attractor) is formed when the dynamics is sensitive to
the initial conditions (Grebogi et al. [1]). It was discovered that in driven dissipative
systems, it is possible to have fractal basin boundaries so that sensitivity to the
initial conditions remains, even when the dynamics is not chaotic (Moon and Li
[2]). When the boundary is fractal, and not smooth, the sensitivity comes as the
result of the uncertainty in the distance to the boundary (McDonald et al. [3]). The
study of basins of attraction and the boundaries defining their territory have brought
interesting results, the fractal character is one of them (Nusse and Yorke [4]).
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The idea pursued by [2] was that the fractal basin boundaries develop, at least
for the model of their study, en route to chaos. Their two-well potential was in fact
what is present in the Duffing equation. They found in their numerical experiments
that as the fractal basin boundary comes about, the stable manifold grows a finger
that touches the unstable manifold. This is what the study of homoclinic orbits and
homoclinic points entail, and has led to a theory for chaos (Smale [5]). The presence
of transverse homoclinic points is needed for chaos, according to this theory. There
is a method due to Melnikov that shows the existence of such points by defining a
distance function between the stable manifold and the unstable function (Melnikov
[6]). It is based on the perturbations of the homoclinic orbit (Brunsden and Holmes
[7]). The result of Melnikov is used as a bound for the presence of fractal boundaries.

The notion of fractal boundaries is also present in conservative scattering sys-
tems, and undriven (i.e. autonomous) dissipative systems. In the latter case, the basin
boundaries are as usual, and formed since the trajectory can converge to one of many
fixed points. It is shown that in the necessarily transient dynamics, the basin bound-
aries can have several complex properties, among them being fractal (Motter et al.
[8]). In the former Hamiltonian case with the total energy being conserved, attrac-
tors and their basin boundaries do not exist. For Hamiltonian systems instead, exit
basins and their boundaries are defined. For two or more escapes fractal boundaries
are possible (Bleher et al. [9]). For particular Hamiltonians, the boundary can have
intricate properties, among them being fractal (Aguirre et al. [10]).

Here, we study the character of the fractal basin boundaries from a different
standpoint–synchronization. Studying a phenomenon using synchronization as a
novel tool is not new (Botha and Kolahchi [11]). In this study, the dynamics is
governed by the Duffing equation. We know the parameters that result in fractal
basin boundaries. We choose such parameters, and take an oscillator in the fractal
basin boundary. This means that the initial conditions for the trajectory belong to
the fractal space. For the set of parameters giving smooth boundaries, we take the
same initial conditions. We study the possibility of the two trajectories becoming
synchronized. For this we need to have a coupling between the two equations. We
study the character of the synchronous basin boundary phase space as the strength of
the coupling is varied. We also check the onset of the fractal basin boundaries with
Melnikov’s prediction, after calculating it for our particular coupling as part of the
perturbation.

2 The Duffing Equation

The Duffing oscillator is given by (1),

ẍ + δẋ + 1

2
(−x + x3) = g cos(ωt). (1)
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Fig. 1 The phase space
according to (2) and (3) of
the Duffing equation with a
smooth and b fractal basin
boundary with dimension
1.68

Here, we have a one dimensional oscillator with position x , under external force with
amplitude g, and experiencing dissipation with strength δ [2]. The Hamiltonian is
has a two-well potential, one with minimum at x = 1 (the right well), and the other
with minimum at x = −1 (the left well). There is a peak separating them placed at
x = 0. The separatrix for the two wells defines the homoclinic orbit too. There is
a saddle point at the origin, and the homoclinic orbit connects the saddle to itself.
The external force and dissipation disrupt the Hamiltonian. Equation (1) can also be
written in this way,

ẋ = y, (2)

ẏ + δy + 1

2
(−x + x3) = g cos(ωt). (3)

We can now think of (x, y) as the two dimensional phase space, and define the initial
condition in terms of it.

In this velocity-position space, we find the locus of points that starting from them,
are attracted to the right well, and so define the basin of attraction for the right
potential well. Similarly, one can define the basin of attraction for the left potential
well. We see this in Fig. 1a, green region attracted to the right well, and red to the
left. The basin boundary is clearly seen as the boundary of the two regions. The
unperturbed homoclinic orbit is the dotted line in Fig. 1a.

3 The Fractal Basin Boundary

For the dynamics given by (1), or equivalently by (2) and (3), there is a proof showing
the presence of transverse homoclinic orbits, and hence chaos [7]. It is also possible
to change the parameters of the dynamics so that the boundary is not smooth as in
Fig. 1a, but is fractal as in Fig. 1b.A fractal is distinguished by its self-similarity under
different scales. Now, to imagine a boundary with this property is a bit questioning.
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Inside the fractal boundary which is not a simple smooth contour, and is spread
on an area, we have a red region next to any green region, and vice versa. This
already suggests sensitivity to the initial conditions. In a sense, the border separating
the red basin from the green basin is not so clear. We can first determine the fractal
dimension of the boundary, 1 < d < 2. Thismaybe given by the correlation exponent
of Grassberger and Procaccia [12]. Then we ask how well we can know our distance
to the boundary, ε. The question then becomes, what volume of space will this take
up so that the number of initial conditions in this volume will result in uncertain
solutions, and this is given by,

f ∼ εD−d . (4)

For the smooth boundary on the plane, we have d = 1, and D = 2, so that the volume
of initial conditions goes as ε, but for the fractal boundary with D − d < 1 this can
become much larger–much higher sensitivity arises (Iansiti et al. [13]).

The fractal basin boundary brings sensitivity to the dynamics with no chaotic
attractor present. We can ask about the synchronization properties of such basins of
attraction, and study the phase space from this vantage point.

4 Synchronization

Systems with the notion of synchronization are either under the spell of each other,
or an external agent. We study two Duffing oscillators which interact with each
other as if a spring were connecting them. The important point is that one of the
oscillators comes from the fractal basin boundary, and so has its parameters taken
from the particular dynamics leading to it, as we have explained. The question we
ask is whether the two oscillators can synchronize, and we take their motion in synch
if they move keeping a constant relation with each other. The simplest such relation
is if they move together. The constant relation means, in general, that if we define
an order parameter for the interacting system, this parameter will have a given time
dependence which repeats in time. Such cases are known, but for different systems,
and under different conditions (Choi et al. [14]).

The two oscillators are given as,

ẍ1 + δ1 ẋ1 + 1

2
(−x1 + x31) = g1 cos(ωt) + k(x2 − x1), (5)

ẍ2 + δ2 ẋ2 + 1

2
(−x2 + x32) = g2 cos(ωt) + k(x1 − x2). (6)

The new parameter is k denoting the strength of coupling. The basins of attraction
for the synchronized state is what we need to find, and this requires us to start both
oscillators from the same initial conditions for position and velocity. That is, we need
to know whether one point in the phase space leads to a synchronized state, and if
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so sweep the phase space in a similar fashion and find the basins of attraction for the
two oscillators moving in synch. The basin boundary will eventually tell us whether
sensitivity to initial state can exist when the two oscillators are synchronized. The
coupling strength is the parameter to consider first, and indeed we find that both
cases can happen, both smooth basin boundary as well as fractal basin boundary.
The question of the condition to have synchronous behavior, and reasons for the
details of the synchronous state, we shall take up elsewhere.

5 Results and Discussion

We have not been interested in ω, it seems. The Duffing equation is a crude approxi-
mation to the Josephson equation, which naturally brings the frequency of the driving
force into play. We can then talk about the synchronizing effects between the exter-
nal periodic force, and the internal periodic force; i.e. the sin(x) now approximated
by its first two Fourier components. If we couple the junctions, as in an array, then
the synchronizing effect can become much larger, resulting in constant voltage steps
much larger than in case of a single Josephson junction. Such steps are called Shapiro
steps (Benz et al. [15]).

Now, for our two coupled oscillators, the linear coupling is in fact adjusting
the Duffing internal potential. For a single oscillator we know that increasing the
amplitude of the force relative to friction can extend the fractal basin boundary, and
bring its dimension d closer to an integer, here for the planar dimension we have
D = 2. The uncertainty becomes much larger. We can compare Fig. 2a where the
boundary is smooth, and Fig. 2b with larger amplitude and fractal basin boundary. It
looks as if the fractal boundary had occupied the whole phase space. The amplitude
of the applied force is much larger than the strength of dissipation, and only very
close to the point attractors do we find areas where this fractal nature is not present.
So the question is how the coupling can affect this response.

The oscillator from the phase spacewith no fractal boundary can synchronizewith
one from the phase space with fractal boundary. This may not be surprising. But can
we move in the phase space and keep this character of synchrony with sensitivity to
the initial condition; that is, keep the fractal boundary alive? The answer is positive,
but it depends on the relative strength of the various interactions. In Fig. 2c, the
coupling strength k is small enough to keep the fractal structure despite interaction
with the oscillator from the smooth basin boundary phase space. If the coupling is
stronger, the boundary becomes smooth; this we see in Fig. 2d, all other parameters
are kept the same.

Before turning to theMelnikov method for a quantitative estimate, it helps to have
an argument that emphasizes the role of synchronization. When synchronized, the
two motions are correlated. To see this correlation in another way, we again look at
Fig. 2. In Fig. 2a we have no coupling, and the strength of force is so that no fractal
boundaries develop.When the coupling is strong enough, the correlation between the
two oscillators in synch, Fig. 2d, has turned the basins with fractal boundaries, Fig.
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Fig. 2 In a with g = 0.05 and b with g = 0.12 and with dimension 1.75, there is no interaction;
that is, the phase space shows the basin boundaries with k = 0. We then choose an oscillator from
eachwith the same initial conditions, and after synchronizing them, we find in cwith k = 0.4 fractal
basin boundaries with dimension 1.65, and in d with k = 0.9 smooth boundaries. The phase space
is defined as in Fig. 1

2b, into a map very similar to Fig. 2a. Now, if the coupling is made weaker, Fig. 2c,
we see some of the fractal boundaries to have survived. This has happened very close
to the single motion boundaries, where the uncertainty f is larger by comparison.
So the correlation remains, but the influence of the oscillators on each other has
switched roles. So overall, the uncertainty has lowered, or even disappeared, when
a correlated motion has emerged.

Now, in the Melnikov method, the idea is to have an estimate for the distance
between the stable manifold, and the unstable manifold. This is after the perturbation
has disjointed the homoclinic orbit. So we need to add our interaction to the rest of
the terms that have perturbed the Hamiltonian. Equation (7) gives the homoclinic
orbits for the two oscillators, and the distance function comes as (8) (Moon [6]).
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Fig. 3 Melnikov integral results considered with δ = 0.15 for single oscillator, and coupled system
with different values of A in (9)

{
x = ±√

2sech(t/2) , dx = ∓
√
2
2 sech(t/2)tanh(t/2),

x ′ = ±√
2sech( t−t ′

2 ) , dx ′ = ∓
√
2
2 sech( t−t ′

2 )tanh( t−t ′
2 ).

(7)

M(λ, t ′) = −
√
2

2
g

∫ ∞

−∞
sech(t/2)tanh(t/2) cos(ω(

t − λ

2
))dt

− 1

2
δ

∫ ∞

−∞
sech2(t/2)tanh2(t/2)dt

− k
∫ ∞

−∞
sech(t/2)tanh(t/2)(sech(

t − t ′

2
) − sech(t/2))dt.

(8)

The last term in (8) gives the dependence on coupling k, and is denoted below
as A. Setting the distance function equal to zero gives a lower bound as a necessary
condition to have chaos, and it is also used as a bound for having fractal boundaries
[2].

g >

√
2( 13δ + A)cosh( πω√

2
)

πω
. (9)

We can plot (9) for different values of A; i.e., effectively for different couplings.
(In finding the lower bound, λ and t ′ are determined.)

In Fig. 3 we have the Melnikov function for various couplings. For a given ω, it
shows that as the coupling increases the threshold for fractal boundaries increases.
This means that we need to start from a more fractal basin boundary if any of it is to
survive after the coupling. As the amplitude g increases, the fractal dimension also
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increases, giving us a chance to have a higher coupling and still keep some of the
fractal character for the basin boundaries of the synchronized system. In this sense,
we find good agreement with the Melnikov analysis.

Finally, we give an enlarged view of Fig. 2c that shows the fractal basin boundaries
for the coupled oscillators (Fig. 4).

6 Conclusions

For non-chaotic dynamics, usually when we look at the phase space for the basins
of attraction, it clearly shows that an oscillator living in a given region is attracted to
a given attractor, providing a way of labeling that oscillator. An oscillator living in

Fig. 4 Figure 2c, only enlarged
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the fractal basin boundary of the phase space is not easy to label. This is because of
the sensitivity to the placement of the oscillator, as it has become difficult to define
the place of the border itself. So we have sensitivity to initial conditions even with
no chaotic attractors. Here, we consider the coupling of two oscillators, one coming
from the fractal basin boundary, the other coming from the motion with no fractal
basin boundary. In other words, we have two Duffing equations, one with parameters
resulting in fractal basin boundaries, the other not. The question is, what effect can
synchronizing the two have on the basin boundaries? We find that the correlated
motion brought about by synchronization can have a strong influence on the basin
boundaries. When the coupling is weak enough, the fractal basin boundaries can still
exist, but to a much less extent. This means the sensitivity has lowered to a great
deal. It is also possible to have no fractal basin boundary, if the coupling is strong,
so that the correlated motion is dictated by the oscillator from the dynamics with
smooth boundaries.

Acknowledgements This paper was presented at the (virtual) Chaos2020 Conference in Florence,
Italy. We thank Yury Shukrinov for helping us to participate in this virtual conference. We also
thank André Botha for suggestions on the manuscript.

References

1. C.Grebogi, E.Ott, A.Yorke, Chaos, strange attractors, and fractal basin boundaries in nonlinear
dynamics. Science 238(4827), 632–638 (1987)

2. F.C. Moon, G.-X. Li, Fractal basin boundaries and homoclinic orbits for periodic motion in a
two-well potential. Phys. Rev. Lett. 55(14), 1439–1442 (1985)

3. S.W. McDonald, C. Grebogi, E. Ott, J.A. Yorke, Fractal basin boundaries. Physica 17D, 125–
153 (1985)

4. H.E. Nusse, J.A. Yorke, Basins of attraction. Science 271, 1376–1380 (1996)
5. S. Smale, Bull. Am. Math. Soc. 73(6), 747–817 (1967). S.H. Strogatz, Nonlinear Dynamics

and Chaos (Addison-Wesley, 1995)
6. V.K. Melnikov, Trans. Mosc. Math. Soc. 12, 1–57 (1963). F.C. Moon, Chaotic and Fractal

Dynamics (Wiley-VCH, 2004)
7. V. Brunsden, P. Holmes, Power spectra of strange attractors near homoclinic orbits. Phys. Rev.

Lett. 58(17), 1699–1702 (1987)
8. A.E. Motter, M. Gruiz, G. Károlyi, T. Tél, Doubly transient chaos: generic form of chaos in

autonomous dissipative systems. Phys. Rev. Lett. 111, 194101 (2013)
9. S. Bleher, C. Grebogi, E. Ott, R. Brown, Fractal boundaries for exit in Hamiltonian dynamics.

Phys. Rev. A 38, 930 (1988)
10. J. Aguirre, J.C. Vallejo, Miguel A.F. Sanjuán, Wada basins and chaotic invariant sets in the

Hénon-Heiles system. Phys. Rev. E 64, 066208 (2001)
11. A.E. Botha, M.R. Kolahchi, Analysis of chimera states as drive-response systems. Sci. Rep. 8,

1830 (2018)
12. P. Grassberger, I. Procaccia, Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349

(1983)
13. M. Iansiti, Qing Hu, R.M.Westervelt, M. Tinkham, Noise and chaos in a fractal basin boundary

regime of a Josephson junction. Phys. Rev. Lett. 55(7), 746–749 (1985)



322 A. Janalizade and M. R. Kolahchi

14. M.Y. Choi, Y.W. Kim, D.C. Hong, Periodic synchronization in a driven system of coupled
oscillators. Phys. Rev. E 49(5), 3825–3832 (1994)

15. S.P. Benz,M.S.Rzchowski,M. Tinkham,C.J. Lobb, Fractional giant Shapiro steps and spatially
correlated phase motion in 2D Josephson arrays. Phys. Rev. Lett. 64(6), 693–696 (1990)



Anomalous Scaling in the Kinematic
MHD Turbulence Under the Influence
of Helicity

Eva Jurčišinová, Marian Jurčišin, and Richard Remecky

Abstract In the framework of the field theoretic renormalization group approach
and the operator product expansion technique, the influence of the helicity (the spatial
parity violation) on the anomalous dimensions of the leading composite operators,
which drive the anomalous scaling of correlation functions of themagnetic field deep
inside the inertial range, is investigated in the kinematic magnetohydrodynamic tur-
bulence, i.e., in the model in which the Lorentz term is omitted in the stochastic
Navier-Stokes equation and the magnetic field behaves as a passive vector quantity.
It is shown that there is a quantitative difference between the role of the helicity
in the problem of the passive magnetic (vector) field in the kinematic magnetohy-
drodynamic turbulence and the analogous problem of a passive vector advection in
the Kazantsev-Kraichnan model with prescribed statistics of the velocity field. The
analysis shows that under the influence of helicity the anomalous scaling is more
pronounced, i.e. the anomalous dimensions are more negative, in the model of the
kinematic magnetohydrodynamic turbulence driven by the stochastic Navier-Stokes
equation.
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1 Introduction

One of themain and still open questions in the theory of fully developed turbulence is
the problem of a fundamental understanding of the existence of deviations from the
scaling predictions of the classical phenomenological Kolmogorov-Obukhov (KO)
theory (see, e.g., Kolmogorov [1], Monin and Yaglom [2], McComb [3], Frisch [4],
Sreenivasan andAntonia [5], Falkovich et al. [6], or Antonov [7]) in the framework of
well-defined microscopic models. In this respect, it seems that very suitable models
for such investigation are various microscopic models of the passive advection of
some scalar or vector quantities, e.g. temperature, concentration of an impurity,
magnetic field, etc., in turbulent environmentswhich aremodeled by randomvelocity
fields defined in a proper mathematical way.

According to KO theory the statistical properties of random fields deep inside
inertial interval are independent of the outer scale L (a typical scale at which the
energy pumping into the dissipative system is continuously performed to maintain
the steady state) as well as the inner scale l (a typical scale at which the strong energy
dissipation starts). The assumption of the validity of these hypotheses (known as the
first and the secondKolmogorovhypothesis) togetherwith dimensional analysis leads
to the scaling behavior of various correlation functions with well-defined scaling
exponents. Note also that deep inside the inertial interval l � r � L the system is
fully random with very high values of the Reynolds number (in principle Re → ∞)
and some symmetries of the flow, lost during the transition from laminar to turbulent
flow, are restored in the statistical way (Frisch [4]).

As an example, consider the following experimentally measured single-time two-
point structure functions of the velocity field

SN (r) = 〈[vr (t, x) − vr (t, x′)]N 〉, r = |x − x′|, (1)

where vr denotes the component of the velocity field directed along the vector
r = x − x′. Following the hypotheses of the KO theory, the dimensional analysis
leads to the scale invariant representation of these structure functions in the follow-
ing simple form

SN (r) = C × (ε̄r)N/3, (2)

where ε̄ is the mean dissipation rate and C is a constant.
On the other hand, it is well known that both natural experiments as well as

numerical simulations show the existence of some deviations from the simple scaling
behavior presented in (2). The existence of deviations from the scaling behavior (2)
is related to the nontrivial dependence of the structure functions (1) on the integral
scale L , in contradictionwith the first Kolmogorov hypothesis. As a result, the scaling
behavior of the structure functions in the inertial range must be modified into the
following form (see, e.g., Falkovich et al. [6] and Antonov [7] and references cited
therein)

SN (r) = (ε̄r)N/3RN (r/L), (3)
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with some unknown scaling functions RN (r/L). It is standardly assumed that the
scaling functions RN (r/L) have power like asymptotic behavior in the region r � L
in the form

RN (r/L) ∼ (r/L)qn . (4)

An effective technique to study such a problem is to use the so-called operator
product expansion (OPE), also known as the short distance expansion, in the frame-
work of the field theoretic renormalization group approach (see, e.g., Antonov [7],
Zinn-Justin [8] and Vasil’ev [9], Adzhemyan et al. [10]). Application of the OPE
technique leads to the following powerlike representation of the scaling functions
(4)

RN (r/L) =
∑

F

CF (r/L)ΔF , (5)

where the summation is implied over some class of composite operators F , ΔF are
their critical dimensions and CF are some coefficients regular in L−1. The singu-
lar dependence of the structure functions on L in the limit L → ∞ together with
nonlinearity of the exponents qn as functions on N is called the anomalous scaling
and it is evident that in the framework of the OPE technique the anomalous scaling
behavior of the correlation functions must be related to the existence of the so-called
“dangerous” composite operators in the OPE with negative critical dimensions since
their presence leads to the singular behavior of the correlation functions in the limit
L → ∞. At the same time, the final asymptotic anomalous behavior is then deter-
mined by the most negative critical dimensions.

In this respect, themain aimof the present paper is to start the systematic investiga-
tion of the influence of the spatial parity violation (helicity) on the anomalous scaling
behavior of the magnetic field correlation functions in the framework of the kine-
matic magnetohydrodymanic (MHD) turbulence, namely, to find the corresponding
critical exponents that drive the scaling behavior of the single-time two-point cor-
relation functions of a weak magnetic field (see, e.g., Antonov et al. [11], Antonov
et al. [12], Hnatich et al. [13], Jurčišinová et al. [14], Antonov and Gulitskiy [15],
Jurčišinová and Jurčišin [16], Jurčišinová and Jurčišin [17], Jurčišinová and Jurčišin
[18], Jurčišinová et al. [19], or Jurčišinová et al. [20], as well as references cited
therein).

2 The Kinematic MHD Turbulence

The advection of a passive (weak) magnetic field b ≡ b(x), where x ≡ (t, x), in the
framework of the kinematic MHD turbulence is described by the following system
of two stochastic equations for the fluctuating parts of the magnetic field and the
velocity field v ≡ v(x), respectively:
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∂tb + (v · ∂)b = ν0u0Δb + (b · ∂)v + fb, (6)

∂tv + (v · ∂)v = ν0Δv − ∂P + fv, (7)

where∂t ≡ ∂/∂t ,∂ ≡ ∂/∂xi , andΔ ≡ ∂2 is theLaplace operator.We follow the stan-
dard notation where the subscript 0 always denotes bare parameters of the unrenor-
malized theory with ν0 as the bare viscosity coefficient, ν0u0 = c2/(4πσ) represents
the magnetic diffusivity, c is the speed of light, σ is the conductivity, and P is the
pressure. Due to the assumption of incompressibility both fields b and v are supposed
to be divergence free vector fields, i.e., ∂ · b = 0 and ∂ · v = 0, respectively.

The last terms fb and fv in the system of equations (6)–(7) represent random forces
of the stochastic model. The random force of the magnetic field fb represents the
source of the magnetic field fluctuations to maintain the steady state of the system.
On the other hand, the random force of the velocity field fv simulates the energy
pumping into the system on large scales. We assume the Gaussian statistics with
zero mean for both random forces with correlation functions in the following form

Db
i j (x; x ′) ≡ 〈 f bi (x) f bj (x

′)〉 = δ(t − t ′)Ci j (|x − x′|/L), (8)

Dv
i j (x; x ′) ≡ 〈 f v

i (x) f v
j (x

′)〉 = δ(t − t ′)
∫

ddk
(2π)d

D0k
4−d−2εRi j (k)eik·(x−x′), (9)

where Ci j in (8) is a tensor function finite in the limit L → ∞ and, in what follows,
its detailed form is not essential while it satisfies the only condition thatCi j decreases
rapidly for |x| 
 L . On the other hand, the correlation function (9) of the random
force fv is taken in the specific powerlike form suitable for the field theoretic renor-
malization group analysis. In (9), k is the wave vector, d is the spatial dimension,
the positive amplitude D0 is taken in the form D0 ≡ g0ν

3
0 > 0, where g0 represents

the bare coupling constant of the model, and the physical value of the formally small
parameter 0 < ε ≤ 2, which control the powerlike form of the energy pumping into
the system, is ε = 2.

The geometric properties of the energy pumping to the system is described by the
form of the transverse (due to the assumption of incompressibility) tensor projector
Ri j (k) in the correlator (9) and, in our case with the assumption of the presence of the
spatial parity violation, it contains two terms. The first term Pi j (k) = δi j − ki k j/k2

is the standard isotropic transverse projector and the second part, taken in the form
ıρεi jl

kl
|k| , describes the presence of the helicity, where εi jl is the Levi-Civita symbol of

rank 3 and parameter 0 ≤ |ρ| ≤ 1 controls the amount of the spatial parity violation
in the system. Thus, in what follows, the projector Ri j (k) has the following explicit
form

Ri j (k) = δi j − ki k j/k
2 + ıρεi jl

kl
|k| . (10)
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3 Field Theoretic Formulation of the Model

Using the well-known theorem (Martin et al. [21]) the stochastic problem given
by (6) and (7) with correlators of the random forces given in (8) and (9) can be
transformed into the corresponding field theoretic model with double set of fields
� = {v, b, v′, b′} and with the action functional of the following form

S(�) =1

2

∫
dt1d

dx1dt2d
dx2

[
v′
i (x1)Dv

i j (x1, x2)v
′
j (x2)+

+ b′
i (x1)Db

i j (x1, x2)b
′
j (x2)

]
+

+
∫

dtddx
{

v′[−∂tv + ν0Δv − (v · ∇)v]+

+ b′[−∂tb + ν0u0Δb + (b · ∇)v − (v · ∇)b]
}
. (11)

where xi = (ti , xi )with i = 1, 2, v′ and b′ are auxiliary transverse fields and Db
i j , D

v
i j

are given in (8) and (9), respectively. The corresponding summations over dummy
indices are performed.

The field theoretic model given by the action functional (11) corresponds to a
standard Feynman diagrammatic technique with nonzero bare propagators for the
magnetic field (in the momentum-frequency representation)

Δb′b∗
i j = Δbb′

i j = Pi j (k)

(−ıωk + ν0u0k2)
, (12)

Δbb
i j = Ci j (k)

| − ıωk + ν0u0k2|2 (13)

and for the velocity field

Δv′v∗
i j = Δvv′

i j = Ri j (k)

(−ıωk + ν0k2)
, (14)

Δvv
i j = g0ν

3
0k

4−d−2εRi j (k)

| − ıωk + ν0k2|2 , (15)

given by the quadratic part of the action functional (11), where Ci j (k) is the Fourier
transform of the function Ci j (|x − x′|/L) in (8).

On the other hand, the model has two interaction vertices in the form

−b′[(b · ∂)v − (v · ∂)b] = b′
iVi jlv j bl , (16)

−v′(v · ∂)v = v′
iWi jlv jvl , (17)

where tensor structures Wi jl , Vi jl are given as follows (again in the momentum-
frequency representation)
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Vi jl = ı(δil p j − δi j pl), (18)

Wi jl = ı(δi j pl + δil p j ). (19)

The graphical representation of all propagators and vertices of the model can be
found, e.g., in [22].

The field theoretic renormalization group analysis of the model defined by the
action functional (11) was performed in detail in [23]. There, the coordinates of the
stable infrared (IR) fixed point of the model, which drives the scaling behavior of the
model deep inside the inertial range, was found and discussed at the two-loop level
of approximation. These results will be used in the next sections for the analysis of
the influence of the helicity on the anomalous dimensions of the leading composite
operators that drive the anomalous scaling of the magnetic field correlation functions
in the inertial range.

4 Anomalous Dimensions of the Leading Composite
Operators and the Anomalous Scaling

In the kinematicMHD turbulence phenomenologically interesting is the investigation
of the inertial range behavior of the following single-time two-point correlation
functions of the magnetic field

BN−m,m(r) ≡ 〈
bN−m
r (t, x)bmr (t, x′)

〉
, r = |x − x′|, (20)

built of two composite operators bN−m
r (t, x) and bmr (t, x), where br denotes the com-

ponent of the magnetic field directed along the vector r = x − x′. After applying
a general scaling representation for the two-point single-time quantities (see, e.g.,
Jurčišinová et al. [14] and references cited therein) together with the OPE technique
one comes to the following final asymptotic inertial-range expression for the corre-
lation functions (20):

BN−m,m(r) ∼ rγ∗
N ,0−γ∗

N−m,0−γ∗
m,0 , (21)

for even values of N and m,

BN−m,m(r) ∼ rγ∗
N ,0−γ∗

N−m,1−γ∗
m,1 , (22)

for even value of N and odd value of m, and

BN−m,m(r) ∼ rγ∗
N ,1−γ∗

N−m,0−γ∗
m,1 , (23)

for odd values of N and m, where γ∗
N ,p are the fixed point values of the anomalous

dimensions of the corresponding composite operators
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FN ,p = [n · b]p(b · b)l , N = 2l + p, (24)

constructed solely from the magnetic field b(x), which give the most singular con-
tributions in the OPE. Note also that the constant unit vector n defines the uniaxial
anisotropy of the system (see, e.g., Antonov et al. [11] or Jurčišinová et al. [14] for
details) represented, e.g., by a constant large-scale external magnetic field B = |B|n
and introduced through the explicit form of the correlator (8) for the random force fb.

Thus, to be able to study the influence of the helicity on the anomalous scaling of
the correlation functions of the magnetic field, it is necessary to calculate the anoma-
lous dimensions of the composite operators (24). Here, it is important to stress that,
due to tensor structure of the corresponding single Feynman diagram (Jurčišinová et
al. [14]), the anomalous dimensions γN ,p of the composite operators (24) are inde-
pendent of the helicity at the one-loop level of approximation. It means that, to be
able to study the influence of spatial parity violation on the scaling properties of the
correlation functions (20), it is necessary to perform, at least, two-loop calculations.
Namely, this is the aim of the present study.

In the two-loop level of approximation, the anomalous dimensions γN ,p can be
written in the following general form

γN ,p = γ(1)
N ,pε + γ(2)

N ,pε
2 + O(ε3) , (25)

where γ(1)
N ,p is the one-loop contribution to the anomalous dimension γN ,p, which

is independent of the helicity parameter ρ and γ(2)
N ,p = γ(2)

N ,p(ρ) is the corresponding
helicity dependent two-loop correction.

The simple one-loop contribution γ(1)
N ,p was calculated, e.g., in Jurčišinová et al.

[14] and has the following explicit form taken at the fixed point of the model

γ∗(1)
N ,p = − (d + 1)(N − p)(d + N + p − 2) − 2N (N − 1)

3(d − 1)(d + 2)
. (26)

It is important to stress here that this one-loop result is completely the same not only
for the helical and non-helical cases of the model but is also the same as that obtained
in the case of the analogous passive scalar problem [24], although the corresponding
leading composite operators are different. It means that the problems of the anoma-
lous scaling of passively advected scalar and vector (magnetic) field are completely
equivalent at the one loop level of approximation even in the presence of the spatial
parity violation of the turbulent Navier-Stokes velocity field. However, as our anal-
ysis shows, the situation is significantly different when the two-loop corrections are
taken into account. As was shown in Gladyshev et al. [25], the anomalous dimen-
sions of the leading composite operators, which drive the scaling behavior of the
correlation functions of the scalar field passively advected by the helical stochastic
Navier-Stokes equation, are independent of the helicity even at the two-loop level
of approximation. On the other hand, as was already mentioned, the two-loop cor-
rections to the anomalous dimensions of the leading composite operators γ(2)

N ,p in
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the studied vector problem are helicity dependent. We shall not present their explicit
form here since their general form is given by huge expression (even when taken at
the fixed point) and therefore will be discussed elsewhere. Instead, the influence of
the helicity on the fixed point values of the most important anomalous dimensions
γ∗
N ,0 for even values of N and γ∗

N ,1 for odd values of N , which directly determine
the asymptotic behavior of the correlation functions (20), is demonstrated in Figs. 1
and 2, where the explicit dependence of the total two-loop anomalous dimensions
γ∗
2,0, γ

∗
3,1, γ

∗
4,0, and γ∗

5,1 on the helicity parameter ρ is shown for the spatial dimension
d = 3 and for physically the most important value ε = 2. Of course, one can also
expect serious influence of the helicity on the scaling behavior of the correlation
functions (20). However, this problem will be analyzed elsewhere.

As follows from Figs. 1 and 2, the presence of the spatial parity violation in
the turbulent environment significantly decreases the anomalous dimensions of the
leading composite operators that drive the inertial range asymptotic behavior of the
magnetic field correlation functions. This result is in qualitative accordance with
that obtained in the framework of the helical Kazantsev-Kraichnan model of the
kinematic MHD turbulence with the Gaussian statistics of the velocity field (see
Jurčišinová and Jurčišin [18] and Jurčišinová et al. [19]), where it was shown that
the presence of the helicity also leads to the more pronounced anomalous scaling of
the passively advected magnetic field. However, the quantitative comparison of the
two-loop results for the anomalous dimensions of the leading composite operators
obtained in the present study to those obtained in the framework of the Kazantsev-

Fig. 1 The dependance of
anomalous dimensions γ∗

2,0
and γ∗

3,1 on the parameter of
helicity ρ for the spatial
dimension d = 3 and ε = 2
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Fig. 2 The dependance of
anomalous dimensions γ∗

4,0
and γ∗

5,1 on the parameter of
helicity ρ for the spatial
dimension d = 3 and ε = 2

Kraichnan model shows that stronger dependence on the helicity parameter ρ is
observed in the genuine kinematicMHD turbulence investigated in the present paper.
Again, a detailed full comparison of these two models will be given elsewhere.

5 Conclusion

Using the field theoretic renormalization group approach we have investigated the
influence of the spatial parity violation (helicity) on the anomalous dimensions of the
leading composite operators that drive the asymptotic inertial range scaling behavior
of the correlation functions of the magnetic field in the model of fully developed
kinematic MHD turbulence driven by the stochastic Navier-Stokes equation.

The influence of the helicity was investigated to the second order of the corre-
sponding perturbation theory (the two-loop approximation) using the standard Feyn-
man diagrammatic technique for the spatial dimension d = 3. The dependence of
some anomalous dimensions on the parameter of helicity is demonstrated in Figs. 1
and 2, respectively.

The analysis shows stronger dependence of the total two-loop anomalous dimen-
sions on the parameter of the helicity in the present kinematic MHD model in com-
parison to the analogous dependence obtained in the framework of the Kazantsev-
Kraichnanmodel (see Jurčišinová and Jurčišin [18] and Jurčišinová et al. [19]), where
the statistics of the velocity field is given directly by a specific Gaussian correlation
function.



332 E. Jurčišinová et al.

Acknowledgements The authors gratefully acknowledge the hospitality of the Bogoliubov Labo-
ratory of Theoretical Physics of the Joint Institute for Nuclear Research, Dubna, Russian Federation.
The work was supported by the VEGA grants No. 2/0065/17 and No. 2/0058/19 of Slovak Academy
of Sciences and by the grant APVV-17-0020.

References

1. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR, 30 301 (1941). (AN Kolmogorov, Dokl. Akad.
Nauk SSSR 31 538 (1941), A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 32 16 (1941))

2. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2 (MIT
Press, Cambridge, 1975)

3. W.D. McComb, The Physics of Fluid Turbulence (Clarendon, Oxford, 1990)
4. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cam-

bridge, 1995)
5. K.R. Sreenivasan, R.A. Antonia, Ann. Rev. Fluid Mech. 29, 435 (1997)
6. G. Falkovich, K. Gawedzki, M. Vergassola, Rev. Mod. Phys. 73, 913 (2001)
7. N.V. Antonov, J. Phys. A Math. Theor. 39, 7825 (2006)
8. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Oxford, 1989)
9. A.N. Vasil’ev, Quantum-Field Renormalization Group in the Theory of Critical Phenomena

and Stochastic Dynamics (Chapman and Hall, Boca Raton, FL, 2004)
10. L.D. Adzhemyan, N.V. Antonov, A.N. Vasil’e, Phys. Rev. E 58, 1823 (1998)
11. N.V. Antonov, A. Lanotte, A. Mazzino, Phys. Rev. E 61, 6586 (2000)
12. N.V. Antonov, M. Hnatich, J. Honkonen, M. Jurčišin, Phys. Rev. E 68, 046306 (2003)
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Pattern Formation of Limit Cycles
for 2-D Generalized Logistic Maps

Shunji Kawamoto

Abstract The pattern formation of discrete limit cycles with chaotic dynamics is
considered, for two-dimensional (2-D) generalized logistic maps. Firstly, the time-
dependent chaos function with an amplitude function is proposed, and a 1-D gener-
alized logistic map is presented as a population growth model. In particular, the
number of newly infected people, due to the COVID-19, is modeled by the 1-D
logistic map. Secondly, 2-D generalized logistic maps with a system parameter and
amplitude functions are derived by extending the 1-D logistic map, and stable limit
cycles with entrainment and synchronization are numerically calculated. Finally,
the pattern formation of limit cycles is discussed for the 2-D generalized logistic
map, which is restricted by the system parameter and amplitude functions, as one of
non-equilibrium open systems.

Keywords Logistic map · 2-D logistic map · Time-dependent chaos function ·
Population growth · Limit cycle · Pattern formation · Non-equilibrium open system

1 Introduction

Over a long period of time, nonlinear dynamic phenomena, such as soliton, chaos
and fractals, have been considered in the field of physics, chemistry, biology and
engineering, and the papers and the books have appeared, in order to descrive the
nonlinear science [1]. In the meantime, the nonlinear systems have been widely
extended tomedicine, optics, living systems, life science, neuro science and nonlinear
demography [2–7].

In particular, one-dimensional (1-D) nonlinear difference equations have been
shown to possess a rich spectrum of dynamical behaviors as chaos in many respects
[8, 9], and strange attractor, limit cycle, entrainment and synchronization have been
discussed, as chaotic dynamics [10–13].At the same time, the limit cycle in 2-D space
has been proposed for predator–prey populations in communities and in the field of
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theoretical biology [14], and is reported to play a key role for chaotic dynamics of non-
equilibrium open systems [15]. In addition, stable limit sycles have been observed in
nonlinear oscillations [16], such as heart beating [17], daily rhythms in human body
temperature [3], chemical reactions [18–20] and self-excited mechanical vibration
[21].

Furthermore, the pattern formation in reaction–diffusion model has been studied
[22], and the chaotic behaviors in predator–prey systems are considered with pattern
formation conditions based on the bifurcation analysis [23].

During this decade, 1-D, 2-D and 3-D time-dependent solvable chaos maps
and a nonlinear expansion method have been presented from the standpoint of
chaos functions [24, 25]. After that, the 2-D maps corresponding to the FitzHugh-
Nagumo (FHN) model, the Belousov-Zhabotinsky (BZ) reaction and reaction–diffu-
sion systems are derived, and the bifurcation diagrams have been considered to
descrive the chimera states and the generation of discrete limit cycles for population
growth, neural cells and chemical cells [26–29]. Recently, a limit cycle analysis and
the interaction of limit cycles for 2-D maps have been presented, as non-equilibrium
open systems [30, 31].

The aim of this paper is to introduce amplitude functions and to consider the
effect to the pattern formation of stable limit cycles with chaotic dynamics, for 2-D
generalized logistic maps. In Sect. 2, the time-dependent chaos function with an
amplitude function is proposed, and a 1-D generalized logistic map is presented as a
population growth model. In particular, the number of newly infected people, due to
the COVID-19, is modeled by the 1-D logistic map, and the MATLAB program is
shown in Appendix. In Sect. 3, 2-D generalized logistic maps are derived from the
1-D generalized logistic map, and stable limit cycles with entrainment and synchro-
nization are illustrated. Moreover in Sect. 3, the effect of the system parameter and
the amplitude functions to the pattern formation of stable limit cycles is numeri-
cally considered, for the 2-D logistic map as one of non-equilibrium open systems.
Conclusions are summarized in the last Section.

2 1-D Generalized Logistic Maps

From the following time-dependent chaos function;

xn(t) = a(t) sin2(2nt), (1)

t �= ± mπ/2l (2)

with an amplitude function a(t) and finite positive integers {l, m}, we find a one-
dimensional (1-D) solvable chaos map;

xn+1(ti+1) = 4a(ti ) sin
2(2nti ) cos

2(2nti )
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= 4xn(ti )

(
1 − 1

a(ti )
xn(ti )

)
, (3)

where the discrete time ti satisfies the condition (2), and the time step �t is given by
�t ≡ ti+1 − ti = π /431 ≈ 0.0073, in order to avoid the accumulation of round-off
error and the periodicity caused by the iteration [26].

Then, the 1-D map (3) can be rewritten into a 1-D generalized time-dependent
logistic map as

xn+1(ti+1) = αxn(ti )

(
1 − 1

a(ti )
xn(ti )

)
(4)

with a system parameter α, 0 < α ≤ 4.0 and the amplitude function a(ti) �= 0 of the
chaos function (1).

As is known, the logistic map xn+1 = αxn (1 − xn) is a mapping with chaotic
dynamics, and has been well discussed as a population growth model [32, 33], and
in part as a discrete-time demographic model [34]. However, the logistic map has
the pathological problem as a demographic model, and the Ricker model xt+1 = xt
exp[r(1 − xt /k)] with two parameters {r, k} is proposed for a number of fish and
invertebrate populations, and has been considered for a population growth regulated
by an epidemic disease [35, 36].

Recently, it is known that the COVID-19 caused by severe acute syndrome coro-
navirus has resulted in a pandemic, and the government of each country has adopted
various measures to mitigate the outbreak [37]. In the following part of this section,
we attempt to model the number of newly infected people, for example, in Japan
[38], on the basis of the 1-D generalized time-dependent logistic map (4) with α and
a(ti), which has the solution xn(ti) consisting of chaotic time series.

In Fig. 1, a numerical result of the chaos function solution (1) and (2) to the 1-D

(a) Case 1                                     (b)  Case 2

nx

nx
ny

ny

Fig. 1 The chaos function solution (1) with (2) to the 1-D map (3); Solution xn(ti) with a(ti)= 1.0,
b Exponential amplitude function a(ti), c Solution xn(ti) with a(ti), and d The number of newly
infected people in Japan [38]
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map (3) is compared with the number of newly infected people, due to the COVID-
19; (a) Solution xn(ti) with a(ti) = 1.0, (b) Exponential amplitude function a(ti), (c)
Solution xn(ti) with a(ti), and (d) The number of newly infected people in Japan [38].
Here, it is important to note that the a(ti) of (b) is an exponential function, and has
two peaks caused by external factors, such as the cruise ship called at the port on Feb.
3, 2020 and the termination of the state of emergency onMay 25, 2020, respectively.
Therefore, the two peaks arise after a fewweeks, as shown in Fig. (d). TheMATLAB
program for Fig. 1a−c is presented in Appendix.

Furthermore, we show the numerical result obtained by iterating the 1-D gener-
alized logistic map (4), at the system parameter α = 4.0, 3.9, 3.7, 3.6, in Fig. 2.
It is found that the stable time series in (a)-(d) are transformed from chaotic to
non-chaotic, that is, chimera states, as α decreases [27].

(a) Case 1 

(b) Case 2 

ny

nx

nx

ny

Fig. 2 Numerical solutions to the 1-D generalized time-dependent logistic map (4) with the ampli-
tude function a(ti) and the system parameter α; a α = 4.0, b α = 3.9, c α = 3.7 and d α =
3.6
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3 2-D Generalized Logistic Maps and Limit Cycles

In this section, we derive 2-D generalized time-dependent logistic maps by extending
the 1-D generalized logistic map (4) with α and a(ti), and consider the effect of a
system parameter and amplitude functions to the pattern formation of limit cycles,
for the 2-D logistic maps.

According to the derivation of the 1-D solvable logistic map (3) with (1) and (2),
we begin with the following chaos function solution;

xn(ti ) = a1(ti ) sin
2(2nti ) (5)

with an amplitude function a1(ti) �= 0, where the discrete time ti satisfies.

the condition (2). Then, we have

xn+1(ti+1) = 4a1(ti ) sin
2(2nti ) cos

2(2nti )

= 4xn(ti )

(
1 − 1

a1(ti )
xn(ti )

)
, (6)

and by defining

yn(ti ) ≡ a2(ti ) cos(2
nti ) (7)

with an amplitude function a2(ti) �= 0, we find a condition from (5) and (7) as

1

a1(ti )
xn(ti ) + 1

a22(ti )
y2n (ti ) = 1. (8)

By substituting (8) into the 1-D logistic map (6), and from the solutions (5) and
(7), we find a 2-D generalized solvable logistic map;

xn+1(ti+1) = 4

(
1

a22(ti )

)
xn(ti )y

2
n (ti ), (9)

yn+1(ti+1) = a2(ti )(1 −
(

2

a1(ti )

)
xn(ti )), (10)

and by introducing a system parameter α, 0 < α ≤ 4.0 in (9), we arrive at a 2-D
generalized logistic map;

xn+1(ti+1) = α

(
1

a22(ti )

)
xn(ti )y

2
n (ti ), (11)
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yn+1(ti+1) = a2(ti )

(
1 −

(
2

a1(ti )

)
xn(ti )

)
(12)

with amplitude functions a1(ti) and a2(ti). Therefore, the 2-D map (11) and (12) has
chaos function solutions (5) and (7) at α = 4.0. Here, it is important to note that the
2-D logistic map corresponds to the FHNmodel for neural cells, the BZ reaction and
reaction–diffusion systems for chemical cells [26–29].

For limit cycles of the 2-D logistic map (11) and (12) with the system parameter
α and amplitude functions a1(ti) and a2(ti), we show the following three Cases on
a1(ti) and a2(ti) at α = 2.4 in Fig. 3;

Case 1 : a1(ti ) = 1.0, a2(ti ) = 1.0, (13)

Case 2 : a1(ti ) = 1.5, a2(ti ) = 0.5, (14)

Case 3 : a1(ti ) = 2.0, a2(ti ) = 0.2, (15)

where the amplitude functions are constants for simplicity. In Fig. 3a, discrete limit
cycles of Case 1 (13) are illustrated as orbit solutions and sequential points, which
converge to the limit cycle from an outside initial point for entrainment and an inside
initial point for synchronization, respectively. Then, in Fig. 3b−c, limit cycles ofCase
2 (14) and Case 3 (15) at α = 2.4 are shown numerically. In order to compare the
pattern of limit cycles for Cases 1, 2 and 3, and to understand about how the pattern
formation depends on the system parameter and the amplitude functions, the limit
cycles presented in Fig. 3 are shown on the same xn − yn plane in Fig. 4. Similarly,
Cases 1–3 at α = 2.6 are illustrated in Figs. 5 and 6, for the pattern formation of
stable limit cycles obtained by iterating the 2-D logistic map (11) and (12).

4 Conclusions

The 1-D generalized logistic map (4) is presented on the basis of the time-dependent
chaos function solution with an amplitude function a(ti), and is modeled on the
number of newly infected people, due to the COVID-19, as a population growth
model. Moreover, the 2-D generalized logistic map (11) and (12) with a system
parameter α and two amplitude functions a1(ti) and a2(ti) are derived by extending
the 1-D logistic map (4). Then, we have found by iterating the 2-D map that the
pattern of stable limit cycles depends on α, a1(ti) and a2(ti) essentially, as shown in
Figs. 3–6. Particularly, as a restriction on stable limit cycles, the amplitude functions
effect to the pattern formation of the limit cycles, and therefore the functions may
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= 9.2α = 0.3α

= 3.3α = 5.3α

= 6.3α = 7.3α

= 9.3α = 0.4α

Stable fixed point
Stable fixed points

Stable fixed points Stable fixed points

Real root points

Stable fixed points
Real root points

Fig. 3 Limit cycles of the 2-D logistic map (11) and (12) at α = 2.4, and with amplitude functions:
a Case 1 (13), b Case 2 (14) and c Case 3 (15)
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= 1.2α = 2.2α

= 3.2α = 4.2α

= 6.2α = 7.2α

= 0.3α = 0.4α

Stable fixed point
Stable fixed points

Limit cycle Limit cycle

Limit cycle
Limit cycle

Stable fixed points
Real root points

Fig. 4 The pattern formation of limit cycles shown in Fig. 3 for the 2-D logistic map (11) and (12),
with amplitude functions of Cases 1–3 at α = 2.4, and on the same xn-yn plane
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n=150

n=151
n=200

n=152 n=153
n=154

n=155
n=156

Fig. 5 Limit cycles of the 2-D logistic map (11) and (12) at α = 2.6, and with amplitude functions:
a Case 1 (13), b Case 2 (14) and c Case 3 (15)

Limit cycle

Example 1

Example 2

Fig. 6 The pattern formation of limit cycles shown in Fig. 5 for the 2-D logistic map (11) and (12),
with amplitude functions of Cases 1–3 at α = 2.6, and on the same xn-yn plane

correspond to the boundary conditions in physics. In addition, the stability analysis
of the 2-D logistic map (11) and (12) may be a research subject to be born.
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Appendix
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Interaction of Limit Cycles
for the FitzHugh-Nagumo Model

Shunji Kawamoto

Abstract The interaction of discrete limit cycles related to the FitzHugh-Nagumo
(FHN) model is discussed in this paper, from the standpoint of time-dependent chaos
functions. Firstly, a two-dimensional (2-D) solvable chaos map corresponding to the
FHN model is derived on the basis of chaos functions, and 2-D chaotic maps with
one system parameter are presented for generating limit cycles. Secondly, two limit
cycles of 2-D systemsA andB are located on the xn-yn plane as nonlinear dynamics of
neural cells, and the propagations are illustrated with a constant velocity in opposite
direction. Finally, the interaction of two limit cycles is numerically considered by
adding interaction terms in a 2-D system A&B composed of the 2-D systems. Then,
the 2-D system A&B with two stable limit cycles is shown to have chaotic dynamics
depending on the interaction terms, as a complex system of non-equilibrium open
systems.

1 Introduction

For the study of nonlinear science [1], nonlinear dynamics have been considered
widely in the field of physics, chemistry, biology, engineering and social sciences [2,
3]. In particular, one-dimensional (1-D) nonlinear difference equations are known
to possess a rich spectrum of dynamical behavior as chaos in many respects, and
the chaotic modeling and the chaos theory have been extended to medicine, optics,
living systems, life science and neuro science [4–8].

In themeantime, the state of havingmany parts and being difficult to understand or
to find an answer is called complexity, and how single parts organize spontaneously
into complicated structures has been studied [9]. Later, complex system is stated
to be a system composed of many components which may interact with each other
[10]. As examples of complex systems, large scale natural systems such as atmo-
sphere, climate, human brain and economic organizations have been presented, and
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infrastructures such as power grids, transportation systems, information systems and
communication networks have been considered [11–14]. The coexistence of coher-
ence and incoherence in coupled phase oscillations has been proposed as chimera
states [15, 16]. Moreover, the optimization of complex systems is presented, and the
theory, algorithms and its applications are widely discussed.

In recent years, 2-D and 3-D chaos maps have been presented for the analysis
of population growth, electrical oscillation, atmospheric convection and chemical
reaction [17]. Then, the time-dependent chaos functions are introduced and applied
to engineering with a nonlinear time series expansion [18]. After that, the FitzHugh-
Nagumo (FHN) model [19, 20] has been considered from the standpoint of chaos
functions for neural cells [21, 22], and the functions have been applied to bifurcation
diagrams proposed in [23, 24] and the generation of limit cycles [25, 26] for reaction–
diffusion systems [27, 28].

In this paper, Sect. 2 presents the derivation of 2-D chaotic maps with a system
parameter corresponding to the FHN model, and Sect. 3 illustrates two limit cycles
obtained numerically by iterating the 2-D maps on the xn-yn plane for chaotic
dynamics, such as synchronization and entrainment, for neural cells. In Sect. 4,
the propagation and the interaction of stable limit cycles with a constant velocity in
opposite direction are considered by adding linear interaction terms with coupling
constants in a combined 2-D system A&B, as a complex system based on the FHN
model. Conclusions are summarized in the last section.

2 The FHN Model and 2-D Chaotic Maps

The forced Van der Pol oscillator is given by

ẍ − ε(1 − x2)ẋ + x = E0 sin(ωt), (1)

which represents a model for simple vacuum tube oscillator circuit with an external
voltage source as a heart beating model, where x = x(t) is the proposition coordinate
function of time t, and {ε �= 0, E0, ω} are the system parameters [29]. By the Liénard
transformation, we find a 2-D model as

ẋ = ε

(
x − 1

3
x3 − y

)
, (2)

ẏ = 1

ε
x − 1

ε
E0 sin(ωt), (3)

which is known to have chaotic behaviors in the equivalent circuit with sinusoidal
forcing [30]. Moreover, the FHN model [19, 20] is a 2-D simplification of the
Hodgkin-Huxley model [31] of spike generation in squid giant axons, and is derived
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from (1) and expressed by

v̇ = v − 1

ε
v3 − w + I (t), (4)

ẇ = 1

τ
(v + a − bw), (5)

which has an electric circuit as one of a large class of nonlinear systems showing
excitable and oscillatory behaviors, with the membrane potential v, the recovery
variable w, the stimulus external current I(t) and model parameters {a, b, τ �= 0}.
Here, it should be noticed that the 2-D model (2) and (3) of the forced Van der Pol
oscillator has the external voltage term in (3), and the FHN model (4) and (5) has
the stimulus external current term in (4) [21].

On the other hand, from the following chaos solutions consisting of time-
dependent chaos functions;

xn(t) = a1 sin
2(2nt) + b1(t), (6)

yn(t) = a2 cos(2
nt) + b2(t), (7)

1

a1
(xn(t) − b1(t)) + 1

a22
(yn(t) − b2(t))

2 = 1 (8)

t �= ± mπ/2l (9)

with nonzero coefficients {a1, a2}, functions {b1(t), b2(t)} of time t > 0, then we
have a 2-D solvable chaos map from (6–9) as

xn+1(ti+1) = 4

a22
(xn(ti ) − b1(ti ))(yn(ti ) − b2(ti ))

2 + b1(ti ), (10)

yn+1(ti+1) = −2

(
a2
a1

)
xn(ti ) + a2 + b2(ti ) + 2

(
a2
a1

)
b1(ti ), (11)

where the discrete time ti satisfies the condition (9), and the passage from a point
(xn(ti), yn(ti)) to the next one (xn+1(ti+1), yn+1(ti+1)) with the time step �t ≡ ti+1 −
ti can be considered as a 2-D mapping. It is interesting to note that the third-order
nonlinear term of (10) is involved in (2) and (4), the terms b1(t) in (6) and b2(t) in (7)
play a role of coodinate transformation for the solutions xn(t) and yn(t). Therefore,
the term b1(ti) in (10) is equivalent to the external current term I(t) in (4), and the
term (b2(ti) + 2(a2/a1)b1(ti)) in (11) is found to correspond to the external voltage
source E0 sin(ωt) in (3) [21].
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3 Stable Limit Cycles

In this Section, we rewrite the 2-D solvable chaos map (10) and (11), by introducing
a system parameter ε, into the following 2-D chaotic systems A and B;

System A : x1,n+1(ti+1) = ε1

(
1

a22

)
x1,n(ti )y

2
1,n(ti ), (12)

y1,n+1(ti+1) = −2

(
a2
a1

)
x1,n(ti ) + a2, (13)

System B : x2,n+1(ti+1)

= ε2

(
1

a22

)
(x2,n(ti ) − b1(ti ))(y2,n(ti ) − b2(ti ))

2 + b1(ti ), (14)

y2,n+1(ti+1) = −2

(
a2
a1

)
x2,n(ti ) + a2 + b2(ti ) + 2

(
a2
a1

)
b1(ti ) (15)

with system parameters ε1, 0 < ε1 ≤ 4.0 and ε2, 0 < ε2 ≤ 4.0. Then, we obtain discrete
limit cycles LC-A and LC-B for System A and System B, respectively.

Here,we set theLC-Aand theLC-Bon the xn − yn plane as illustrated in Fig. 1a−b
with initial points: (a) Inside initial points (x1,0, y1,0) = (0.2, 0.3) and (x2,0, y2,0) =
(0.5, 0.3) for synchronization, and (b) Outside initial points (x1,0, y1,0) = (0.2, 0.4)
and (x2,0, y2,0)= (0.5, 0.4) for entrainment, where the initial point of cell is indicated
by a cross × (black) in Fig. 1. Then, we find that the distance b1(t0) of initial points
between LC-A and LC-B is given by b1(t0) ≡ x2,0 – x1,0 = 0.3 in Fig. 1a−b, and
the limit cycles, which are shown by orbits and sequential points, possess chaotic
dynamics of synchronization and entrainment, depending on the initial points. Here,
we set ε1 = ε2 = 2.3, a1 = 1.0, a2 = 0.5 and the time step �t = π /431 ≈ 0.0073 for
the numerical calculation [26].

Additionary, in the case of LC-B shifted on the Yn axis from yn = 0.3 to yn = 0.4,
the limit cyclesLC-AandLC-Bare locatedwith the following initial points: (a) Inside
initial points (x1,0, y1,0) = (0.2, 0.3) and (x2,0, y2,0) = (0.5, 0.4) for synchronization,
and (b) Outside initial points (x1,0, y1,0) = (0.2, 0.4) and (x2,0, y2,0) = (0.5, 0.5) for
entrainment as illustrated in Fig. 2a−b, where the initial point of cell is indicated
by a cross × (black) in Fig. 2. Thus, it is found that we can locate limit cycles at
any point on the xn − yn plane, by setting initial points {(x1,0, y1,0), (x2,0, y2,0)} and
external forces {b1(t0), b2(t0)}, in order to combine System A (12–13) and System
B (14–15) in the next Section.
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(a) Solution orbits and sequential points for synchronization
LC-A (blue)          LC-B (red) LC-A (blue)           LC-B (red)

(b) Solution orbits and sequential points for entrainment
LC-A (blue)        LC-B (red) LC-A (blue)         LC-B (red)

× ×

× × × ×

× ×

Fig. 1 Limit cycles LC-A (blue) and LC-B (red) located on the xn-yn plane: a Inside initial points
(x1,0, y1,0) = (0.2, 0.3) and (x2,0, y2,0) = (0.5, 0.3), and b Outside initial points (x1,0, y1,0) = (0.2,
0.4) and (x2,0, y2,0)= (0.5, 0.4), and the initial point of cell indicated by a cross× (black) in (a) and
(b)

4 Propagation and Interaction

We consider System A and System B with conditions b1(t0) ≡ x2,0 –x1,0 = 0.3 and
b2(ti) = 0 for simplicity in this Section, and discuss the nonlinear dynamics of limit
cycles LC-A and LC-B, which propagate and interact in opposite direction on the xn
− yn plane.

Under the conditions, we combine System A and System B into the following
System A&B, in order to discuss the propagation and the interaction of limit cycles
LC-A and LC-B by introducing a one-step propagation distance v(�t) in opposite
direction with the constant velocity v and the time step �t = ti+1 − ti. Then, we find
a combined system from (12–15) as.

System A&B:

x1,n+1(ti+1) = ε1(
1

a22
)(x1,n(ti ) − b1(ti ))y

2
1,n(ti ) + b1(ti ) + c1(x2,n(ti ) − x1,n(ti )),

(16)

y1,n+1(ti+1) = −2(
a2
a1

)x1,n(ti ) + a2 + 2(
a2
a1

)b1(ti ), (17)
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(a) Solution orbits and sequential points for synchronization
LC-A (blue)          LC-B (red) LC-A (blue)           LC-B (red)

(b) : Solution orbits and sequential points for entrainment
LC-A (blue)        LC-B (red) LC-A (blue)         LC-B (red)

× ×

×

× ×

× ×
×

Fig. 2 Limit cycle LC-B (red) shifted on the yn axis: a Inside initial points (x1,0, y1,0) = (0.2, 0.3)
and (x2,0, y2,0) = (0.5, 0.4), and b Outside initial points (x1,0, y1,0) = (0.2, 0.4) and (x2,0, y2,0) =
(0.5, 0.5), and the initial point of cell indicated by a cross x (black) in (a) and (b)

x2,n+1(ti+1) = ε2

(
1

a22

)(
x2,n(ti ) − (b0 − b1(ti ))

)
y22,n(ti ) + (b0 − b1(ti ))

+ c2
(
x1,n(ti ) − x2,n(ti )

)
, (18)

y2,n+1(ti+1) = −2(
a2
a1

)x2,n(ti ) + a2 + 2(
a2
a1

)(b0 − b1(ti )), (19)

here we set ε1 = ε2 = 2.3, a1 = 1.0, a2 = 0.5,b0 ≡ b1(t0) = x2,0 − x1,0 =
0.3, inside initial points (x1,0, y1,0) = (0.2, 0.3) and (x2,0, y2,0) = (0.5, 0.3), and
outside initial points (x1,0, y1,0) = (0.2, 0.4) and (x2,0, y2,0) = (0.5, 0.4), for the
numerical calculation. Therefore, it should be noticed that b1(t0) = 0.3 gives the
travel distance for six steps of limit cycles LC-A and LC-B from the initial states
{LC-A1, LC-B1} to the last ones {LC-A7, LC-B7} in opposite direction with one
step distance v(�t) = 0.05 and �t = π/431 ≈ 0.0073, and coefficients {c1, c2} of
linear interaction terms in (16) and (18) are coupling constants, respectively. Here,
at each state of limit cycles; {LC-A1,…, A7} and {LC-B1,…, B7}, we carry out 200
iterations of System A&B, and the last points for the limit cycles at each state given
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by (x1,200, y1,200) and (x2,200, y2,200) are equal to the initial points for the next state
of limit cycles, by adding one-step propagation distance v(�t) = ±0.05 to the last
points of limit cycles. TheMATLAB program for System A&B (16–19) is presented
in Appendix.

The propagation of limit cycles LC-A andLC-Bwith no-interaction {c1 = 0, c2 =
0} is firstly shown in Fig. 3a−b: (a) Inside initial points for synchronization and (b)
Outside initial points for entrainment are presentedwith six steps;A1 →A2 →· · · →
A7 (blue) and B1 →B2 → · · · →B7 (red) for solution orbits and sequential points of
limit cycles. It is found that the limit cycles propagate forwardor backward in opposite
direction, keeping the pattern and chaotic properties of limit cycle, respectively.

The interactionwith coefficients {c1 = 0.07, c2 = 0.07} is presented in Fig. 4a−b.
As the System A&B has coefficients {c1 = 0.07, c2 = 0.07} but different initial
points (x1,0, y1,0) = (0.2, 0.3) and (x2,0, y2,0) = (0.5, 0.3), LC-A and LC-B depend
on the difference of interaction terms c1(x2,n(ti )−x1,n(ti )) and c2(x1,n(ti )−x2,n(ti )),
and the limit cycles are found to have a slight effect at each step.

Furthermore, for the case of coefficients {c1 = 0.0, c2 = 0.1}, LC-A (blue) has
no interaction from LC-A1 to LC-A7 as shown in Fig. 5a−b. However, LC-B (red)
has an effect at each step, and loose the pattern and chaotic properties of limit cycle
from LC-B1 to LC-B7 gradually, in (a) Synchronization and (b) Entrainment.

5 Conclusions

In this paper, we derive a 2-D solvable chaos map based on time-dependent chaos
functions, and present 2-D chaotic System A (12–13) and System B (14–15) with
system parameters ε1 and ε2 for generating two limit cycles LC-A and LC-B, respec-
tively. From the numerical result of the combined System A&B (16–19), it is found
that we can locate LC-A and LC-B initially at any point on the xn-yn plane, and
obtain the essential dynamics, that is, how LC-A and LC-B propagate in opposite
direction and interact with each other in the complicated system, depending on the
system parameters, the interaction coefficients and the velocity of limit cycles. In
this regard, System A&B is a 2-D chaotic system with two limit cycles and being
difficult to find an answer for the interactions, which may be a complex system on
the basis of the FHNmodel for neural cells, as one of non-equilibrium open systems.
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(a) c1=0.0, c2=0.0: Solution orbits and sequential points for synchronization
LC-A1→A2→…→A7 (blue)   

LC-B7←…←B2←B1 (red) 

(b) c1=0.0, c2=0.0: Solution orbits and sequential points for entrainment
LC-A1→A2→…→A7 (blue)   

LC-B7←…←B2←B1 (red) 

× ×

× ×

× ×

Fig. 3 Propagation of limit cycles LC-A (blue) and LC-B (red) with no-interaction {c1 = 0.0, c2 =
0.0}: a Inside initial points (x1,0, y1,0) = (0.2, 0.3) and (x2,0, y2,0) = (0.5, 0.3) for synchronization,
b Outside initial points (x1,0, y1,0) = (0.2, 0.4) and (x2,0, y2,0) = (0.5, 0.4) for entrainment, and the
initial point of cell indicated by a cross × (black) in (a) and (b)
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(a) c1=0.07, c2=0.07: Solution orbits and sequential points for synchronization
LC-A1→A2→…→A7 (blue)   

LC-B7←…←B2←B1 (red) 

(b) c1=0.07, c2=0.07: Solution orbits and sequential points for entrainment
LC-A1→A2→…→A7 (blue)   

LC-B7←…←B2←B1 (red) 

× ×

× ×

× ×

Fig. 4 Propagation of limit cycles LC-A (blue) and LC-B (red) with interaction {c1 = 0.07, c2 =
0.07}: a Inside initial points (x1,0, y1,0) = (0.2, 0.3) and (x2,0, y2,0)= (0.5, 0.3) for synchronization,
b Outside initial points (x1,0, y1,0) = (0.2, 0.4) and (x2,0, y2,0) = (0.5, 0.4) for entrainment, and the
initial point of cell indicated by a cross × (black) in (a) and (b)
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(a) c1=0.0, c2=0.1: Solution orbits and sequential points for synchronization
LC-A1→A2→…→A7 (blue)   

LC-B7←…←B2←B1 (red) 

(b) c1=0.0, c2=0.1: Solution orbits and sequential points for entrainment
LC-A1→A2→…→A7 (blue)   

LC-B7←…←B2←B1 (red) 

×

×

×

Fig. 5 Propagation of limit cycles LC-A (blue) and LC-B (red) with interaction {c1 = 0.0, c2 =
0.1}: a Inside initial points (x1,0, y1,0) = (0.2, 0.3) and (x2,0, y2,0) = (0.5, 0.3) for synchronization,
b Outside initial points (x1,0, y1,0) = (0.2, 0.4) and (x2,0, y2,0) = (0.5, 0.4) for entrainment, and the
initial point of cell indicated by a cross × (black) in (a) and (b)
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Appendix

% MATLAB program for propagation and interaction of limit cycles by S. Kawamoto
% Initial conditions
X1=zeros(10, 199, 199);
Y1=zeros(10, 199, 199);
XX1=zeros(1, 200);
YY1=zeros(1, 200);
XXX1=zeros(10);
YYY1=zeros(10);
X0=zeros(10);
Y0=zeros(10);
X2=zeros(10, 199, 199);
Y2=zeros(10, 199, 199);
XX2=zeros(1, 200);
YY2=zeros(1, 200);
XXX2=zeros(10);
YYY2=zeros(10);
XX0=zeros(10);
YY0=zeros(10);
X10=0.2;
Y10=0.3;
X20=0.5;
Y20=0.3;
A1=1.0;
A2=0.5;
B=0.3;
C1=0.0;
C2=0.0;
EPSI1=2.3;
EPSI2=2.3;
VDELTAT=0.05;
% System parameters EPSI1 and EPSI2, and two limit cycles
figure(‘Position’, [100 100 350 100])
for J=1

X0(J)=X10;
Y0(J)=Y10;
XX0(J)=X20;
YY0(J)=Y20;
for I=1:199

for N=1
X1(J, I, N)=EPSI1*X0(J)*(Y0(J))^2/(A2)^2+C1*(XX0(J)-X0(J)); 
Y1(J, I, N)=-2*(A2/A1)*X0(J)+A2;
X2(J, I, N)=EPSI2*(XX0(J)-B)*(YY0(J))^2/(A2)^2+B+C2*(X0(J)-XX0(J)); 

Y2(J, I, N)=-2(A2/A1)*XX0(J)+A2*(1+2*B/A1); 
end
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                  X2(J, I, N)=EPSI2*(X2(J, I, N-1)-B)*(Y2(J, I, N-1))^2/(A2)^2+B 
+C2*(X1(J, I, N-1)-X2(J, I, N-1));

                  Y2(J, I, N)=-2*(A2/A1)*X2(J, I, N-1)+A2*(1+2*B/A1); 
end

end
for I=1
     XX1(J, I)=X0(J);

YY1(J, I)=Y0(J);
XX2(J, I)=XX0(J);
YY2(J, I)=YY0(J);

end
for I=2:200

XX1(J, I)=X1(J, I-1, I-1); 
YY1(J, I)=Y1(J, I-1, I-1); 
XX2(J, I)=X2(J, I-1, I-1); 
YY2(J, I)=Y2(J, I-1, I-1); 

end
for I=1:200

XX1(I)=XX1(J, I);
     YY1(I)=YY1(J, I);
     XX2(I)=XX2(J, I);
     YY2(I)=YY2(J, I);
end
plot(XX2, YY2, ‘-r.’,’MarkerFaceColor’,’r’,’MarkerSize’,7); hold on
plot(XX1, YY1, ‘-b.’,’MarkerFaceColor’,’b’,’MarkerSize’,7); hold on
% The last points are the next initial points
XXX1(J)=XX1(200)+VDELTAT;
YYY1(J)=YY1(200);
XXX2(J)=XX2(200)-VDELTAT;
YYY2(J)=YY2(200);

end
% Limit cycles LC-A and LC-B
for J=2:7

X0(J)=XXX1(J-1);
Y0(J)=YYY1(J-1); 
XX0(J)=XXX2(J-1); 
YY0(J)=YYY2(J-1); 
for K=1:199

for N=1
X1(J, K, N)=EPSI1*(X0(J)-(J-1)*VDELTAT)*(Y0(J))^2/(A2)^2 

+(J-1)*VDELTAT+C1*(XX0(J)-X0(J)); 
Y1(J, K, N)=-2*(A2/A1)*X0(J)+A2*(1+2*(J-1)*VDELTAT/A1);

for N=2:I
                  X1(J, I, N)=EPSI1*X1(J, I, N-I)*(Y1(J, I, N-1))^2/(A2)^2+C1* 

(X2(J, I, N-1)-X1(J, I, N-1)); 
                  Y1(J, I, N)=-2*(A2/A1)*X1(J, I, N-1)+A2;
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*(Y1(J, K, N-1))^2/(A2)^2+(J-1)*VDELTAT
+C1*(X2(J, K, N-1)-X1(J, K, N-1)); 

Y1(J, K, N)=-2*(A2/A1)*X1(J, K, N-1)+A2*(1+2*(J-1)*VDELTAT/A1);
X2(J, K, N)=EPSI2*(X2(J, K, N-1)-(B-(J-1)*VDELTAT))

*(Y2(J, K, N-1))^2/(A2)^2+(B-(J-1)*VDELTAT)
                                    +C2*(X1(J, K, N-1)-X2(J, K, N-1)); 

Y2(J, K, N)=-2*(A2/A1)*X2(J, K, N-1)+A2*(1+2*(B-(J-1)*VDELTAT)/A1);
end

end
for K=1

XX1(J, K)=X0(J);
YY1(J, K)=Y0(J);
XX2(J, K)=XX0(J);
YY2(J, K)=YY0(J);

end
for K=2:200

XX1(J, K)=X1(J, K-1, K-1);
YY1(J, K)=Y1(J, K-1, K-1);
XX2(J, K)=X2(J, K-1, K-1);
YY2(J, K)=Y2(J, K-1, K-1);

end
for K=1:200

XX1(K)=XX1(J, K);
YY1(K)=YY1(J, K);
XX2(K)=XX2(J, K);
YY2(K)=YY2(J, K);

end
plot(XX2, YY2, ‘-r.’,’MarkerFaceColor’,’r’,’MarkerSize’,7); hold on
plot(XX1, YY1, ‘-b.’,’MarkerFaceColor’,’b’,’MarkerSize’,7); hold on
% The last points are the next initial points
XXX1(J)=XX1(200)+VDELTAT;
YYY1(J)=YY1(200);
XXX2(J)=XX2(200)-VDELTAT;
YYY2(J)=YY2(200);

end
xlabel(‘Xn(ti)’); ylabel(‘Yn(ti)’) 

X2(J, K, N)=EPSI2*(XX0(J)-(B-(J-1)*VDELTAT))*(YY0(J))^2/(A2)^2 
+(B-(J-1)*VDELTAT)+C2*(X0(J)-XX0(J));

Y2(J, K, N)=-2*(A2/A1)*XX0(J)+A2*(1+2*(B-(J-1)*VDELTAT)/A1);
end
for N=2:K

X1(J, K, N)=EPSI1*(X1(J, K, N-1)-(J-1)*VDELTAT)
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Stochastic Properties of an Inverted
Pendulum on a Wheel on a Soft Surface

O. M. Kiselev

Abstract We study dynamics of the inverted pendulum on the wheel on a soft
surface and under a proportional-integral-derivative controller. The behaviour of such
pendulum is modelled by a system with a differential inclusion. If the system has
a sensor for the rotational velocity of the pendulum, the tilt sensor and the encoder
for the wheel then this system is observable. The using of the observed data for
the controller brings stochastic perturbations into the system. The properties of the
differential inclusion under stochastic control is studied for upper position of the
pendulum. The formula for the time, which the pendulum spends near the upper
position, is derived.

1 Introduction

Thewheeled inverted pendulum (WIP) is a popularmodel for studies nor only dynam-
ics and the system of the control for robotics equipments near instability positions. A
list of contemporary works in this field is too large. Here we should mention studies
for the derivation of the mathematical model for the WIP and the control synthesis,
which one can see for example in the book [1], and the article [2]. The questions
concerned an stability and control for WIP with two wheels were considered in [3]
for the horizontal and in [4] for the inclined surface see Fig. 1.

We apply the proportional-integral-derivative (PID) controller to stabilize theWIP
at the upper point. We should mention the PID controller is often used to the objects
of different nature [5]. For example the PID controller can be used to stabilize the
WIP on the hard horizontal, see [6, 7] and a review [8]. But the soft surface is more
complicated to stabilize the WIP. The mathematical model for the WIP controlled
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Fig. 1 The inverted
pendulum on the wheel. Let
us denote r is the radius of
the wheel, l is the pendulum
length, α is the angle of the
pendulum turn, β is the angle
of the wheel turn and z is the
inclination angle of the
surface

by the PID controller on the soft surface was offered and detailed studied in [9] (see
also preprint [10]).

The major part of the PID controller is an observation value of the angle of
the pendulum position. This angle can be found by gyroscope sensor. Usually the
sensor obtains the value with a small stochastic error. The maximal amplitude and
the dispersion for the error is standardized by specification of the sensor, see for
example [11].

An additional sensor for theWIP is a tilt sensor. Such sensors are commonly used
and have a detailed specification in which the interval of errors and the dispersion
are pointed, see for example [12].

To obtain amount of the rotation of the wheel we use an encoder. If the wheel
does not slip, the errors of the digital encoder appear due to round up only. Slipping
brings additional errors to the value of the encoder. Therefore one of the problems
for the controller is to detect the slipping.

In this work we show that the gyroscope and tilt for the pendulum and encoder
for the wheel are enough to observe the state of the system in framework of the
mathematical model.

However the noise of the sensors and the slipping bring stochastic errors into the
value of the sensors. Therefore the controller which uses these values has stochas-
tic perturbations. Hence the mathematical model with the digital PID controller is
stochastic.

In Sect. 2 we describe the mathematical model ofWIP on the soft surface with the
PID controller. The dynamic model on the soft surface contains a rolling resistance.
Pure mathematically this resistance is described by the differential inclusion, see [9].

In Sect. 3 one can find the formulas for the current state of theWIP. These formulas
use the data obtained from the gyroscope, tilt sensor and encoder.
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In Sect. 4 we discuss the stochastic properties of the data for the PID controller.
The errors and dispersion of the data from the sensors are assumed as known form
the technical notes.

In Sect. 5 we consider the properties of the WIP under the PID controller with
stochastic perturbations. The perturbations appear in the control by using the data
with the stochastic errors.

2 Dynamical System for the WIP

Here we will consider the moving of the WIP with the additional control torque on
the wheel. The torque is denoted by u. Let us assume that the equipment moves on
soft surface with inclination z. The value of z depends on the traversed path by the
wheel and hence one can write z = z(β). The mathematical model of such moving
has the form (see [9], also preprint [10]):

α̈ = sin(α) − (cos(α − z)β̈ + sin(α − z)β̇2)ρ − 2
ρ

ζ
u,

(ζ + 2)ρ β̈ ∈ F(α, α̇, α̈, β̇). (1)

Let us denote

f = − sin(z) − (
α̈ cos(α − z) − α̇2 sin(α − z)

)
ζ + 2

ρ
u.

In formula (1) the map F(α, α̇, α̈, β̇) has the form:

F(α, α̇, α̈, β̇) =
⎧
⎨

⎩

f − ν sgn(β̇), {∀β̇ �= 0};
(−ν, ν), {β̇ = 0} ∪ {| f | ≤ ν};

f, {β̇ = 0} ∪ {{α, α̇, α̈} ∈ {| f | > ν}}.

Here the parameters of the mathematical model are following: α is an angle of the
pendulum turn, β is the angle of wheel turn, z is the current inclination of the soft
surface, ν is the torque of the friction resistant, ρ = r/ l is the ratio of the wheel
radius and the length of the pendulum, ζ is the ratio of pendulum mass and the rim
mass.

The system (1) can be simplify for hard (ν = 0) surface with the constant incli-
nation (z ≡ ε). As a result one gets the second order equation for α:

(sin2(ε − α)ζ + 2)α̈ = (2 + ζ ) sin(α) + sin(ε) cos(ε − α) +
1

2
ζ α̇2 sin(2(ε − α)) − 2

(
1

ρ
cos(ε − α) +

(
1 + 2

ζ

)
ρ

)
u. (2)

The particular case for the WIP on the hard horizontal (ε = 0) looks as follow:
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(sin2(α)ζ + 2)α̈ = (2 + ζ ) sin(α) − 1
2ζ α̇2 sin(2α) −

2
(

1
ρ
cos(α) +

(
1 + 2

ζ

)
ρ
)
u (3)

The control torque with the PID controller has the following form:

u = k1α + k2α̇ + k3A, where, A ≡
∫ t

α(t)dt.

In this case system (1) has a particular solution:

α ≡ 0, A = sgn(β̇)ζ νρ

(2k3ζ + 4k3) ρ2 + 2k3ζ
,

β =
{ β0 + β1(t − t0) − ζνρ sgn(β̇)

(2k3ζ + 4k3) ρ2 + 2k3ζ

(t − t0)2

2
, (t − t0) < T ;

β0 + β1T − ζνρ sgn(β̇)

(2k3ζ + 4k3) ρ2 + 2k3ζ

T 2

2
, (t − t0) ≥ T,

(4)

where

T = 1

β1

ζνρ sgn(β̇)

(2k3ζ + 4k3) ρ2 + 2k3ζ
, {t0, β0, β1} ∈ R.

There exists the set of the parameters ζ, ρ, k1, k2, k3 when solution (4) is an attractor
as (t − t0) < T [9] (see also preprint [10]).

In an ideal case the control should be defined by the current values of α, α̇, A, but
for real equipment these parameters can be obtained using the sensors at the moment
ti , where i ∈ N. As a result the control is a discrete function: u(t) = u(ti ) = ui .

At the interval t ∈ (ti , ti+1) the control torque ui is a constant. Such system has a
first integral and can be integrate in quadratures.

For example the moving on the hard surface with the constant inclination (2) has
a first integral at the interval t ∈ (ti , ti+1):

Ei = cos(α)(ζ + 2) + sin(ε) sin(ε − α) + (
1
2 sin2(ε − α)ζ + 1

)
α̇2 +

(
2

(
1 + 2

ζ

)
ρα − 2

ρ
sin(ε − α))

)
ui . (5)

This formula allows us to integrate α̇ at the interval t ∈ (ti , ti+1) and we can write
the parameters of the system at t = ti+1:

αi+1 = F1(αi , α̇i , ui , dt),

α̇i+1 = F2(αi , α̇i , ui , dt),

Ai+1 = F3(αi , α̇i , ui , dt)
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One can obtain the first integral for WIP on the hard horizontal surface (3) if one
assumes ε = 0.

The mathematical model for the WIP on the soft surface does not integrate obvi-
ously. Nevertheless this model can be written in the form:

Ȧ = α, α̇ = a,

ȧ = sin(α) − (cos(α − z)ḃ + sin(α − z)b2)ρ − 2
ρ

ζ
u,

β̇ = b, ḃ ∈ 1

(2 + ζ )ρ
F(α, a, ȧ, b).

One can obtain the numeric solution of this differential inclusion at the interval
t ∈ (ti , ti+1). Let us define the map:

(An, αn, an, βn, bn) → (An+1, αn+1, an+1, βn+1, bn+1).

Formally this map can be written like a discrete dynamical system:

Xn+1 = F(Xn), where Xn = (An, αn, an, βn, bn, un).

3 Observability of the Mathematical Model for WIP

In this section we consider the set of the data necessary for the observability of the
parameters of the mathematical model for WIP (1).

The angle of the tilt for the pendulum is defined by gyroscope. The gyroscope can
be work in two different cases. The first one it defines the angle of the pendulum and
the second one it define the angle velocity for the pendulum. In the second case one
should integrates the angle velocity to obtain the pendulum angle. Below we will
use the gyroscope in the mode of angle velocity. This means the value of the angle
velocity α̇ is known at the moment of the measurement.

Besides the gyroscope we assume as existing the tilt sensor. This sensor define
the linear acceleration of the pendulum in the plane of the moving of WIP.

Let us define the coordinates as (x, y), where x is the horizontal coordinate and y
is the vertical one. The projections of the acceleration vector on the coordinate axes
Ox and Oy one can write as follows:

ẍ = β̈r cos(z(β)) + α̈l sin(α),

ÿ = β̈r sin(z(β)) + α̈l cos(α) + g.

It is convenient to write these formulas in the form:
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α̈l cos(α + z) = −ẍ sin(z) + ÿ cos(z) − g sin(z),

β̈r cos(α + z) = ẍ cos(α) − ÿ sin(α) + g sin(α).

One more sensor is the encoder. This sensor allows us to define the turn of the
wheel. The data from the encoder allow to obtain themean value of the angle velocity
of the wheel as value of the difference between the current value of the turn angle of
the wheel and another one value at previous measurement:

β̇ ∼ β(t) − β(t − �t)

�t
.

Let us consider the system for WIP on the horizontal surface (i.e. z = 0):

α̈l cos(α) = ÿ

β̈r cos(α) = ẍ cos(α) − ÿ sin(α) + g sin(α).

The value a1 = α̇ is known from the sensor. Let us define by a2(t) = ÿ/ l, b2 = ẍ/r ,
γ = g/ l and b1 = β̇. Then the dynamical system (1) can be written as the system of
the trigonometric equation and the inclusion:

a2
cos (α)

= −
(
cos (α − z)

(
sin (α)γ

cos (α)ρ
− a2 sin (α)

cos (α)ρ
+ b2

)
+ b21 sin (α − z)

)
ρ

−2uρ

ζ
+ sin (α), (6)

(ζ + 2)

(
sin (α)γ

cos (α)ρ
− a2 sin (α)

cos (α)ρ
+ b2

)
ρ ∈

⎧
⎨

⎩

f − νsgn(b1), b1 �= 0;
(−ν, ν), b1 = 0 ∪ | f | < ν;

f, b1 = 0 ∪ | f | ≥ ν;
(7)

where

f = 2u

ρ
−

(
a2 cos (α − z)

cos (α)
− a21 sin (α − z)

)
ζ − sin (z).

The angle of the pendulum α and the control torque u are the unknown variables in
the system (6) and (7).

Ifb1 �= 0orb1 = 0 ∪ | f | ≥ ν then the inclusion (7) turn to the following equation:

(ζ + 2)

(
sin (α)γ

cos (α)ρ
− a2 sin (α)

cos (α)ρ
+ b2

)
ρ =

2u

ρ
−

(
a2 cos (α − z)

cos (α)
− a21 sin (α − z)

)
ζ − sin (z) − νsgn(b1).
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As a result one get the system of the equations for α, u. The control torque u
can be easy found through the trigonometric functions of α and hence one get the
trigonometric equation for α.

As {b1 = 0} ∪ {| f | < ν} the angle of the pendulum should be solution of the
inequality: −ν

ζ + 2
− b2ρ < (γ − a2) tan(α) <

ν

ζ + 2
− b2ρ.

Here one get the observed parameter u. To obtain the integral term A of the PID
controller one should use the following formula:

A = u − k1
k3

α − k2
k3
a1.

Theorem 1 Let one know the values of the acceleration (ẍ, ÿ), angle velocity of the
pendulum α̇ and angle velocity of the wheel β̇, then the observed dynamical system
is solution of the trigonometric equation (6) and the inclusion (7).

The equations for small values of ν, α, ÿ, α̇, ẍ, β̇ and (z ≡ 0) can be written in the
following form:

a2 ∼ −2ρu

ζ
+ (1 − γ ) α − ρ b2,

(ζ + 2)(ρ b2 + γα) ∈
⎧
⎨

⎩

∼ 2u
ρ

− ζa2 − sgn(b1)ν, b1 �= 0;
∼ (−ν, ν), b1 = 0 ∪ | − ζa2 + 2u/ρ| < ν;
∼ 2u

ρ
− ζa2, b1 = 0 ∪ | − ζa2 + 2u/ρ| ≥ ν.

(8)

Corollary 1 The important case for theWIP on the hard horizontal is more simplest.
In particular the angle α is the solution of the equation:

ρ2 sin (α) (2γ ζ − 2a2ζ + 4γ − 4a2) +
ζ sin (2α)

(−a21ρ
2 + b1

2ρ + γ − a2 − 1
) = (9)

ρ2 cos (α) (−2b2ζ ρ − 4b2 ρ − 2a2ζ ) −
b2 cos (2α)ζρ − b2ζρ − 2a2 ζ

For small values of ν, α, ÿ, α̇, ẍ, β̇ we get:

α ∼ −
(
ρ2 + 1

)
ζ a2 + ((

ρ3 + ρ
)
ζ + 2ρ3

)
b2((

ρ2 + 1
)
γ − 1

)
ζ + 2ρ2γ

,

u ∼ −
(
ρ ζ 2 + 2ργ ζ

)
a2 + (

ρ2 ζ 2 + 2ρ2ζ
)
b2((

2ρ2 + 2
)
γ − 2

)
ζ + 4ρ2γ

.
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4 The Observability and the Stochastic Properties

The value of the controlling torque at ti is defined by the measurement of observed
values of the parameters of the dynamic system. The obtained data from the sensors
and the computedobserveddata at ti will be denotedbyvariableswith upper symbol •̆.

The absolute errors and the dispersion are known for typical sensors. Below we
will assume that we know the standard deviation σ j of the measured data at t = t j .

Let the measured data be following:

ă1 = α̇ + δ(1), ă2 = ÿ/ l + δ(2), b̆ = β + δ(3), b̆1 = β̇ + δ(4), b̆2 = ẍ/r + δ(5).

Here δ(i) is stochastic error.
Let us consider theWIP on the hard horizontal (ν = 0 and z ≡ 0).Wewill assume

the errors are small and one can use a linear system for find observable values of
α, u.

a2
cos (α)

= −
(
cos (α)

(
sin (α)γ

cos (α)ρ
− a2 sin (α)

cos (α)ρ
+ b2

)
+ b21 sin (α)

)
ρ −

2uρ

ζ
+ sin (α)

(ζ + 2)

(
sin (α)γ

cos (α)ρ
− a2 sin (α)

cos (α)ρ
+ b2

)
ρ = 2u

ρ
− (

a2 − a21 sin (α)
)
ζ

One can derive the equation for α:

{((−γ + a21 cos(α) + a2)ζ − 2γ + 2a2)ρ2 −
b21 cos(α)ζρ + a2 cos(α)ζ } sin(α) =

(b2 cos(α)ζ + 2b2 cos(α))ρ3 + (sgn(b1) cos(α)ν + a2 cos(α)ζ )ρ2 +
b2 cos(α)2ζρ + a2ζ. (10)

For small ÿ, α, α̇, ẍ, β̇, ν we obtain the formulas for errors of the observed data
α and A:

ᾰ ∼ α − ((ζ + 2)ρ2 + ζ )ρ

(ζ + 2)γρ2 + (γ − 1)ζ
δ(5) + (ρ2 + 1)ζ

(ζ + 2)γρ2 + (γ − 1)ζ
δ(2)

ŭ ∼ u + (γ − 1)ζνρ

(2γ ζ + 4γ ) ρ2 + (2γ − 2) ζ
(sgn(b1 + δ4) − sgn(b1))

− (ζ 2 + 2γ ζ )ρ

(2γ ζ + 4γ ) ρ2 + (2γ − 2) ζ
δ(2) − (ζ 2 + 2ζ )ρ2

(2γ ζ + 4γ ) ρ2 + (2γ − 2) ζ
δ(5),

hence:
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Ă ∼ ŭ − k1
k3

ᾰ − k2
k3

(α̇ + δ(1)).

Remark While the WIP moves on the soft horizontal the stochastic layer appears
near the hyperplane β̇ = 0. The width of this layer is min{δ(4)} ≤ β̇ ≤ max{δ(4)}.
In this layer the stochastic error can be ±ν when | f | > ν. It is important the value
of this errors defines by value of the rolling resistance for the wheel and does not
depend on the error of the encoder.

The data with stochastic errors are used in the PID controller. As a result the
stochastic perturbations appear in the mathematical model for the WIP (3) and in the
systems (2) and (1). Therefore the mathematical model with the PID controller looks
like the stochastic differential inclusion (1). In partial the results for the observed
values of (β, β̇) and α with stochastic errors are showed in the Figs. 2 and 3.

The remark about filtering data
The current values of the parameters of the dynamic system for WIP one can obtain
by the different approaches.

The first one is the integration of the differential inclusion as the predetermined
process. Such approach gives the errors at any step of the integration because of
two causes. First of all this errors appear because of the errors in the initial data on
the first step of integration. One more cause of the appearance of the errors is the
inaccuracy of the mathematical model.

Fig. 2 The observed phase curve on the plane (β, β̇) are black. This curve is obtained using the
data from the sensors as z ≡ 0. The white line is the result of numeric solution for the system
for WIP on soft surface. The feedback controller use the tilt sensor and the gyroscope (1). The
parameters of the system are following: ρ = 0.2, ζ = 10, ν = 0.05, γ = 1, the PID coefficients
are: k1 = 1.7, k2 = 0.2, k3 = 0.02. The relative errors are uniform distributed data at the interval
(−0.02, 0.02). The dynamic system (1) solved at A ∼ 0.2385, α = 0.02, α̇ = 0, β = 0, β̇ = 0.5
by Runge-Kutta method of fourth-order method with the step 0.1
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Fig. 3 On the picture one can see the result of numeric modelling for the angle of the pendulum
of WIP on the soft horizontal. The horizontal axis defines values of the time and the vertical axis
defines the value of the angle of the pendulum. The curve 2 is the numeric value and the curve
1 shows the model of the observed data. The observed data ˘̈αi and ˘̇αi are modelled using current
values of α̈i and α̇i with the uniform distribution of the relative error at the interval (−0.05, 0.05).
The value of the angle ᾰi is defined as the observed calculated using the angle acceleration and
angle velocity from (10). The values ᾰ and ˘̇α were used to obtain Ă by integrating by the trapezoidal
rule. The value of the control torque ui+1 was obtained at the interval t ∈ (ti , ti+1). The system of
the equations was solved at the interval t ∈ (ti , ti+1) with the constant value of the control torque
u = ui+1 by Runge-Kutta fourth-order method with the step equals by 0.1

Another one approach is to use the observability of this system. This case does
not needed to integrate the differential inclusion. But the errors appears in the current
moment because of the errors of the measurement of the data using the sensors.

To minimize the quadratic deviation of the data one can combine the observed
data and the forecast data using the deterministic mathematical model. Such algo-
rithms are called as the filters. The filters for the linear system are well-knowing, see
[13–15]. For non-linear smooth systems like the WIP on the hard surface is conve-
nient the generalized Kalman’s filter, see [16, 17]. But for the considered here case of
WIP on the soft surface the generalized Kalman’s filter is not appropriated because of
non-linear the dynamical system in the neighbourhood of the hyper-surface β̇ = 0.
One of the opportunity to use filtering in such case is the sigma-point filter, see
[18, 19].

5 Stochastic Properties for WIP on Soft Horizontal

Let the interval dt between the moments of the measurements be small. Then one
can see at the dynamic system as a determined dynamic system (1) with stochastic
perturbation. The stochastic perturbation is contained in the control torque:
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ũi = k1α̃i + k2 ˜̇α + k0 Ãi .

In thework [9] (see also preprint [10]) itwas shown that the unperturbeddynamical
system with the PID controller has the attractor as sgn(β̇) = ±1. This attractor is a
line belonged the fifth-dimensional phase space: (A, α, α̇, β, β̇) = (A±, 0, 0, 0, β̇),
where

2

ρ
k0A± = ±ν.

On this line the system for WIP is unstable and due to the perturbations crosses to
the trajectory with changing of the sign of rotation of the wheel from sgn(β̇) = ±1
to sgn(β̇) = ∓1. As a result the numeric modelling gives the trajectory like the
hysteresis loop, see [9].

Let us consider here the impact of the stochastic perturbation on the stability for the
hysteresis loop. The typical trajectory for the system with the stochastic perturbation
is shown on the Fig. 4.

Theorem 2 The line (A±, 0, 0, 0, β̇)as sgn(β̇) = ±1 is the attractor for the stochas-
tic system (1).

Fig. 4 In this picture one can see the result of the numeric modelling for the behaviour of the angle
for the pendulum at ξ = 10, ρ = 0.2, ν = 0.05, γ = 1, k1 = 1.7, k2 = 0.2, k3 = 0.02. On the left
picture the horizontal axis shows the time variable t and the vertical axis shows the angle of the
pendulum α. On the right picture the horizontal axis shows β and the vertical axis shows β̇. The
step of the change of the control torque is 0.1. The line is the solution under the discrete control.

The results of the measurements ˘̈αi , ˘̇αi and ˘̇βi are modelled by the current values α̈i , α̇i and β̇i with
the uniform distribution of the relative errors at the interval (−0.003, 0.003). The value of the angle
ᾰi is defined as the observed data through the angle acceleration and the angle velocity using (1).
The value Ă is computed using ᾰ, ˘̇α integrating by the trapezoidal method. It allows to obtain the
control torque ui+1 at the interval t ∈ (ti , ti+1), where ti+1 − ti = dt . At t ∈ (ti , ti+1) the system
for the WIP on the soft horizontal is solved for the constant value the control torque u = ui+1 by
the Runge-Kutta method of the fourth order with the step equals 0.01
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This theorem is corollary from the results of [9] concerning the stability of the
line (A±, 0, 0, 0, β̇) as sgn(β̇) = ±1 for pure determined dynamical system forWIP
under the PID controller and the theorem about stability under constantly perturba-
tions [20].

The layer |β̇| ≤ max{δ(3)} appears in the stochastic system near the hyper-plane
β̇ = 0. In this layer the term νsgn(β̇) takes the random values ±ν at t ∈ (ti , ti+1).

There exists the small neighbourhood (�±) near the unstable lines (A±, 0, 0, 0,
β̇), where can be obtained four typical cases:

• Let β̇ > 0, A < A+

– and sgn ˘̇β = 1, then the trajectory is kept in the neighbourhood of the line
(A+, 0, 0, 0, β̇);

– and sgn ˜̇β = −1, then the trajectory is kept in the neighbourhood of the line
(A+, 0, 0, 0, β̇).

• Let β̇ < 0, A > A−

– and sgn ˘̇β = −1, then the trajectory is kept in the neighbourhood of the line
(A−, 0, 0, 0, β̇);

– and sgn ˘̇β = 1, then the trajectory is kept in the neighbourhood of the line
(A−, 0, 0, 0, β̇).

The sequence of the changes of the trajectories at the neighbourhoods of the lines
(A±, 0, 0, 0) leads to the appearance of the hysteresis loop at the phase plane (β, β̇),
see Fig. 2.

Here it is important for applications the average time,which the WIP spends in
the neighbourhood of the upper position.

The time between the sequence measurements is equal dt . Let the trajectory be
in the neighbourhood �± of the unstable line. The probability of sgn(δ(3)) = ±1 in
primary order as �± → 0 equals p± ∼ 1/2. The average time for trajectory in this
neighbourhood is following:

T0 = dt
∞∑

n=1

n

2n
= 2dt.

Theorem 3 The average time spending at �-neighbourhood of the unstable lines
(A±, 0, 0, 0, β̇) for the stochastic system (1) equals 2dt, where dt is the time between
the sequenced measurements of the state for the system.
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6 Conclusion

The system for the WIP with discrete control by the PID controller is stochastic due
to the errors of themeasurements. The stabilizing of theWIP on the soft surface leads
to the appearance of the hysteresis loop in the plane of the phase variables β, β̇. The
average time spending near the upper position was calculated.
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Electrodynamics of Planar Reflecting
Structures with Chiral Layers Based
on Thin-Wire Helices and Fractal
Elements

Dmitriy S. Klyuev, Anatoly M. Neshcheret, Oleg V. Osipov,
and Alexander A. Potapov

Abstract The paper considers methods for calculating the electrodynamic charac-
teristics of single and multi-layered planar chiral metamaterials based on thin-wire
perfectly conducting helices and fractal elements placed in a dielectric container. The
effective permittivity is determined by using the Maxwell Garnett model for a chiral
metamaterial. In this paper the dispersion dependences of material parameters for
the considered metamaterial are obtained. The problems of plane electromagnetic
waves reflection from metastructures based on one and two planar layers of a chiral
metamaterial are solved. The possibility of discrete-multi-frequency concentration
of incident microwave energy at a number of resonant frequencies is proved. The
matrix theory for the description of a multilayered chiral metamaterial is considered
and the relations for the transmission matrices of the chiral layer based on helixes
are obtained. It is proved that a two-layer chiral-dielectric metamaterial based on
thin-wire conducting helices near a predetermined frequency allows performing a
frequency-selective conversion of a normally incident electromagnetic energy flow
into azimuthal scattering in the plane of the metastructure.
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EMW Electromagnetic Wave
LCP Left-Circular Polarization
RCP Right-Circular Polarization
UHF Ultra-High Frequency

1 Introduction

Currently the research of so-calledmetamaterials, i.e. structureswith electromagnetic
properties atypical for natural media, is of great interest in the microwave and optical
ranges. One of the most interesting from the point of view of using metamaterials is
chiral media, which are composite structures consisting of a homogeneous container
and conducting elements of a mirror-asymmetric shape placed in it. Since the 90s.
XX century there is a huge number of scientific publications devoted to the studing
of chiral media and structures based on them. The examples of chiral elements are
flat helices, S-elements, gammadions, double open rings, Tellegen elements, etc.
Significant contributions to the development of the theory of chiral metamaterials
were made by S. A. Tretyakov, S. L. Prosvirnin, I. V. Semchenko, A. H. Sihvola,
A.D. Shatrov, V. V. Shevchenko, I. V. Lindell, B. Z. Katzenelenbaum, A. J. Viitanen,
A. Lakhtakia and many others [1–10]. The main applications of chiral media are
frequency and polarization-selective microwave devices, polarization converters,
low-reflection coatings, media with negative refraction, etc.

Interesting from the point of view of chiral elements using are thin-wire elements
in the form of open rings with protruding ends (the Tellegen element), multi-turn
helices, which represent a certain superposition of electric and magnetic dipoles.
We know the results of research on the diffraction of plane electromagnetic waves
on Tellegen elements (S. A. Tretyakov, F. Mariotte) [11], cylinders with helical
conductivity (B. Z. Katzenelenbaum, A.D. Shatrov et al.) [7], where it is shown
that polarizationally selective resonant phenomena are observed in structures in the
form of long helices of a small radius compared to the wavelength and lattices
based on them. Frequency and polarization selective properties of interaction with
electromagnetic radiation are revealed in chiral media based on such elements. In
most cases the theory of electric circuits is used to analyze the electromagnetic
properties of helical elements and there are a small number of papers that offer strict
electrodynamic methods. One of the problems is to build a dispersion model of a
chiral element and a meta-media based on a set of such elements.

In the proposed work, a chiral metamaterial (CM) based on thin-wire multi-turn
helices placed in a dielectric container is chosen as the research object. The interest is
the construction of a mathematical model of a helical element based on its electrical
characteristics (inductance and capacitance), as well as a model of the metamaterial
itself based on a matrix of helical elements. As a result of constructing such a model,
frequency dependences of the effective permittivity and the chirality parameter are
obtained. Another interesting aspect is the studing of multilayered and periodically
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inhomogeneous chiralmetastructures based on helix elements using a new dispersion
model. From a practical point of view, we have obtained results concerning the
possibility of using a chiral metamaterial for frequency selective redirection of the
incident microwave energy flow by converting it into radiation in the metastructure
plane at certain frequencies.

2 Metamaterial Dispersion Model

In [12], a mathematical model of a thin-wire ideally conducting helical element and
a metamaterial is constructed on the basis of a set of such elements, taking into
account the dispersion of material parameters and the interaction between neigh-
boring elements. Based on the theory of circuits, the resonant frequencies of a thin-
wire multi-turn chiral element were calculated through inductance and capacitance.
In contrast to other works, when calculating the capacity, corrections related to the
inter-turn capacity of the helix were calculated, and the interaction of the helix
with neighboring elements was taken into account by calculating the inter-element
capacity. Using such a low-frequency model of the element allowed us to take into
account an arbitrary number of turns of the helical element and also its electromag-
netic interaction with the surrounding helixes, which is extremely important due to
the presence of spatial dispersion of the chiral media. Also, unlikemost othermodels,
the wire is not considered infinitely thin. The geometry of the helix element is shown
in Fig. 1.

For Fig. 1 the following symbols are entered: N is number of turns; R is the radius
of the helix; h is step of a helix; l is length of the helix in the expanded state and r
is the radius of the thin wire.

After calculating the resonant frequency of the helical element, the metamaterial
was described by the Maxwell Garnett formula taking into account the dispersion
[10, 11]:

Fig. 1 Helix
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Fig. 2 Koch snowflakes

ε − εs

ε + 2εs
= α

εr − εs

εr + 2εs
; εs(ω) = εr + β20

ω2
0 − ω2

; χ(ω) = A
β20ω

c
(
ω2

0 − ω2
) , (1)

Where εr is the relative permittivity of the container; β0 is a parameter that has
a frequency dimension and is related to internal processes in the environment; c is
speed of light;A is a parameter having dimension of length;α is volume concentration
of micro-elements in the container.

By substituting an explicit expression for the resonant frequency ω0 in (1), we
obtain the values for the permittivity and the chiral parameter of the chiral meta-
material based on thin-wire helical elements with the dispersion in the framework
of the proposed model. Further calculations showed that the using of the proposed
low-frequency model is limited in frequency and the frequency limit of use is deter-
mined by the relationship between the linear dimensions of the helix elements and
the wavelength of incident microwave radiation.

When creating a metamaterial, elements with fractal geometry can also be used
instead of helices, such as Koch snowflakes (Fig. 2).

3 Solution of the Problem of Plane Electromagnetic Wave
Reflection from a Chiral Metamaterial

The solution of the problemof plane electromagneticwave (EMW)of linear polariza-
tion reflection from a planar layer of a chiral metamaterial based on a set of thin-wire
helix elements in the framework of the proposed dispersion model was considered.
The problem geometry is shown in Fig. 3. Region 2 in Fig. 3 is a planar layer of
a chiral metamaterial with parameters ε2(ω), μ2 and χ2(ω); regions 1 and 3 are
dielectric media. A plane EMWwith perpendicular polarization at an angle of θ falls
on the chiral layer. As a result of solving the electrodynamic problem, it is necessary
to determine the coefficients of reflection (ree, reh) and transmission (tee, teh) of the
main and cross-polarized components of the field. Here it is appropriate to note that
when the electromagnetic field (EMF) interacts with chiral media, there is always
cross-polarization, that is, radiation of the field with the components of vectors �E, �H,
which are absent in the EMF structure of the incident wave.
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Fig. 3 Problem geometry

To describe the chiral metamaterial, material equations were used, according to
the Lindell-Sivola formalism [1]:

�D = ε(ω) �E − iχ(ω) �H , �B = μ �H + iχ(ω) �E , (2)

where ε(ω), μ, χ(ω) are the relative permittivity and permeability, and the chiral
parameter of the metamaterial, taking into account the dispersion. The material (2)
are written in the Gaussian system for the right forms of chiral elements for the
harmonic dependence of the field vectors on time.

The problem was solved using the partial domain method. At the first stage,
Maxwell’s equations in differential form for EMF in chiral metamaterials were
reducedby awell-known substitutionmethod to theHelmholtz equationswith respect
to the so-called Beltrami fields:

∇2 �ER + k2R �ER = 0; ∇2 �EL + k2L �EL = 0, (3)

where �ER,L are the electric field vectors of waves with right and left-circular polar-
izations in a chiral media (Beltrami fields); kR,L are the wave numbers of the waves
of right-circular polarization (RCP) and left-circular polarization (LCP), defined as

kR,L = k0
(
ε1/2(ω)μ1/2 ± χ(ω)

)
(4)
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where k0 is the wave number for a plane EMW in a vacuum.
The solution of (3) determines the EMF in the chiral metamaterial layer:

�E = �ER + �EL, �H = i
√

ε

μ

(�ER − �EL

)
. (5)

The electromagnetic field in the chiral layer 2 will be a superposition of 4 waves: 2
waves refracted into the layer from region 1 with RCP and LCP and 2waves reflected
from region 3 with RCP and LCP.

At the next stage of solving the problem fromMaxwell’s equations, EMF vectors
in regions 1 and 2 are determined and then boundary conditions are used for tangential
components of vectors �E, �H at the two boundaries of the section “Region 1- Region
2” and “Region 2-Region 3”. When substituting expressions for component vectors
�E, �H in regions 1, 2, 3 in boundary conditions:

�E(1)
τ (y = 0) = �E(2)

τ (y = 0); �H(1)
τ (y = 0) = �H(2)

τ (y = 0);
�E(2)

τ (y = −h) = �E(3)
τ (y = −h); �H(2)

τ (y = −h) = �H(3)
τ (y = −h),

(6)

we obtain an inhomogeneous system of 8 linear algebraic equations with respect to
unknown reflection and transmission coefficients:

↔
A �T = �P, (7)

where
↔
A is a square matrix of size 8 × 8, the explicit type of elements of which is

not given in the paper due to their bulkiness;

�T = [
ree reh T (+)

R T (−)
R T (+)

L T (−)
L tee teh

];
�P = [

0 −1
√

ε1 cos θ
/√

μ1 0 0 0 0 0
]
.

The coefficients of matrix
↔
A are determined by the geometric parameters of the

container and helix elements; by the material parameters of the chiral layer and
regions 1 and 3, and also take into account the dispersion of ε2(ω) and χ2(ω), and,
as a result, the shape of inclusions.

4 Numerical Results

Figure 4 shows the frequency dependence of the reflected and transmitted power
of the main and cross-polarized components of the field in the range from 1 to
10 GHz. The solid curves in Fig. 4 shows the dependencies of the transmitted main
components power (10 lg |tee|2); dashed line are reflected main components power
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Fig. 4 Frequency dependence of capacity

(10 lg |ree|2); dash-dotted lines are transmitted power of the cross-polarized compo-
nents (10 lg |teh|2); dotted lines are of the reflected power of cross-polarized compo-
nents (10 lg |reh|2). The incidence of the wave on the metastructure was considered
normal. The calculation was performed for the following structure parameters:

R = 0.01m, N = 3, r = 0.002m, H = 0.05m, d = 0.05m

At a frequency of 1.88 GHz is observed that the conditions for a better energy
concentration of the incident radiation, as the levels of transmitted power main
and cross-polarized components of the field are closely spaced in frequency local
minimum (the attenuation levels of past capacity in the main and cross-polarized
field more than 20 dB). Figure 4 shows that near the frequency of 1.88 GHz, reso-
nant minima of the coefficients of transmission and reflection of the main component
are observed on the characteristic. In this case the normally incident EMF energy flow
is converted into an energy flow in the plane of the meta-material. At other frequen-
cies the metastructure is completely transparent and the incident radiation passes
through it almost without attenuation (near 0 dB). Thus, the structure can be inter-
preted as a frequency-selective microwave energy concentrator (hub) in the region
near 1.88 GHz frequency.We also note that the studied metastructure is equivalent in
properties to a natural crystal (or artificial Bragg lattice) in the optical range, namely,
the frequencies of resonant minima of attenuation of the transmitted power of the
main component of the field are calculated from theWulf-Bragg condition. Thus, the
possibility of discrete-multi-frequency concentration of incident microwave energy
at a number of resonant frequencies is achieved.
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5 Multilayered Metastructure

If the structure consists of several layers of metamaterial, each of which is described

by the transfer matrix
↔
Zi (ω), then the transfer matrix of the entire metastructure as

a whole is represented as a product of the matrices of individual layers:

↔
Z(ω) =

N∏

i=1

↔
Zi (ω), (8)

where N is the number of layers of the metamaterial.
Expressions for the elements of the surface impedance tensor of a chiral meta-

material based on a set of thin-wire helical elements are obtained. The well-known
Fresnel formulas for the chiral media without taking into account the dispersion
are obtained as the use of the surface impedance tensor for CM and proof of their
applicability.

The surface impedance tensor for CM has the following form:

↔
Z =

( − iχ(ω)

ε(ω)
− kz

k0ε(ω)

− k0n2c (ω)

kzε(ω)
− iχ(ω)

ε(ω)

)

, (9)

where n2c(ω) = ε(ω)μ − χ2(ω); kz are the longitudinal component of the wave
vector �k in the metamaterial.

Also using approximate boundary conditions for a thin chiral layer from [6, 14],
we obtained a matrix of CM transmission that is infinitely extended along one of the
coordinate axes. The matrix for a thin chiral layer has the following form:

↔
Z(ω) =

⎡

⎢⎢
⎣

1 −k0hχ(1 − β2) 0 −iμk0(1 − β2)

−k0hχ 1 iμk0h 0
0 −iεk0h(1 − β2) 1 −k0hχ(1 − β2)

−iεk0h 0 −k0hχ 1

⎤

⎥⎥
⎦, (10)

where β = kx
/(

k0nc
)
; kx are x is the component of the wave vector in CM.

As an example, the solution to the problem of reflection of plane electromagnetic
waves linear polarization from a planar bilayer chiral-dielectric metamaterial based
on helical elements within the dispersion model obtained in Chap. 1. In Fig. 5 the
geometry of the problem is shown. Region 2 in Fig. 4 is a planar layer of a chiralmeta-
material with parameters ε2(ω), μ2 and χ2(ω); region 3 is a homogeneous dielectric
layer; regions 1 and 4 are dielectric media. A plane EMW with perpendicular polar-
ization at an angle of θ falls on a two-layered structure. As a result of solving the
electrodynamic problem, it is necessary to determine the coefficients of reflection
(ree, reh) and transmission (tee, teh) of the field main and cross-polarized components.
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Fig. 5 Multilayered metastructure

The transmission matrix of the chiral layer 2 is determined by the ratio (10), while
the transmission matrix of the dielectric layer 3 is obtained from (10) at χ = 0. The
transfer matrix of the entire metastructure is obtained by multiplying the matrices of
the two layers (8).

At the last stage, the solution of the problem is reduced to a system of 12 linear
algebraic equations with respect to unknown coefficients of reflection and transmis-
sion of waves in the outer regions and inner layers. All coefficients are shown in
Fig. 5. The index “e” refers to the field of the main component, the index “h”—to
the field of the cross-polarized component.

Figure 6 shows the frequency dependence of the reflected and transmitted power
of the main component of the field in the range from 1 to 6 GHz. The dashed curves
in Fig. 6 show the dependences of the transmittes power of the main component
(α f orw = 10 lg

∣∣t (4)ee

∣∣2); solid lines show the reflected power of the main component

(αrev = 10 lg
∣
∣r (1)

ee

∣
∣2). The insidence of thewave on themetastructurewas considered

normal in order for the degree of cross-polarization of the field to be insignificant. The
dielectric layer has material parameters ε = 1.8, μ = 1 and a thickness of 3 mm.
The chiral layer is based on a 5 mm thick dielectric container: ε = 1.8 − i · 0.1,
μ = 1. Chiral helical elements consist of 2 turns with a radius of 1 cm and are
located at a distance of 5 cm from each other. The outer regions were considered
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Fig. 6 Frequency dependence of the reflected and transmitted power

vacuum. As can be seen from Fig. 6, the dependencies show narrow resonant maxima
of energy attenuation in the forward direction, at which it is possible to effectively
convert normally incident microwave radiation into side scattering in the plane of
the structure. From Fig. 6, it follows that at frequencies 2.7, 3.25, 3.6, 3.8 GHz, a
situation is possiblewhen the attenuation levels in the forward direction reach -30 dB.

In conclusion we will list the main conclusions from the results of research on
the electromagnetic characteristics of planar chiral structures based on thin wire
perfectly conducting elements of a helical shape:

1. A mathematical model based on the Maxwell–Garnett formula is proposed and
the dispersion dependences of the permittivity and the chiral parameter for a
chiral metamaterial based on a set of thin-wire ideally conducting elements of
a helical shape are obtained.

2. It is proved that in a single-layer chiral metamaterial based on thin-wire multi-
turn helical elements, it is possible to transform a normally incident microwave
energy at certain frequencies into azimuthal scattering in themetamaterial plane.

3. The paper theoretically predicts the possibility of discrete-multi-frequency
concentration of incident microwave energy using a single-layer chiral metas-
tructure at a number of resonant frequencies.

4. It is proved that a two-layer chiral-dielectric metamaterial based on thin-wire
conducting helices near a predetermined frequency allows for a frequency-
selective conversion of a normally incident flow of electromagnetic energy into
azimuthal scattering in the plane of the metastructure.
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Characteristics of a Chiral Metamaterial
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and Alexander A. Potapov

Abstract The paper considers the solution of the problem of plane linearly polar-
ized electromagnetic wave reflection from a planar layer of metamaterial, which
is a matrix of thin-wire perfectly conducting elements in the form of two mutu-
ally orthogonal helix and fractal elements. A dispersion model is constructed for
the considered metamaterial. The problem was solved using by the partial domain
method and its solution was reduced to a system of linear algebraic equations with
respect to unknown reflection and transmission coefficients. As a result of numerical
analysis frequency-selective properties of the studied metamaterial were revealed.
In particular, it is proved that the metastructure at certain frequencies may be used
as a frequency selective screen for microwave radiation.
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1 Introduction

Currently, a significant interest in the microwave and optical ranges is the study of
various types of metamaterials, that is, structures that have non-standard (for natural
media) properties that occur when they interact with incident radiation [1]. In the
microwave range metamaterials are composite structures consisting of a container
and conductive elements. Of particular interest are the so-called chiral metama-
terials based on a mirror-asymmetric shape elements [2]. Such elements can be
three-dimensional or flat (helixes, S-formed elements, gammadions, double open
rings, Tellegen elements, etc.). It is possible to create frequency and polarization-
selective microwave devices, polarization converters, low-reflection coatings, media
with negative refraction based on f chiral structures.

In 1948 Tellegen suggested that a new type of material could be created based
on a combination of electric and magnetic dipoles [3]. The simplest element that
has this property is an open ring with protruding ends (Tellegen element, canonical
helix). We know the results of research on the diffraction of plane electromagnetic
waves on Tellegen elements (S. A. Tretyakov, F. Mariotte) [4], cylinders with helical
conductivity (B. Z. Katzenelenbaum, A.D. Shatrov et al.) [5], where it is shown that
polarizationally selective resonant phenomena are observed in structures in the form
of long helices of a small radius compared to the wavelength and lattices based on
them. The possibility of usingmetamaterials based on thin-wire perfectly conducting
helical elements for converting normally incident microwave radiation of a given
frequency into scattering in the plane of the metamaterial was studied in detail.

In this paper we analyze the reflection of a plane electromagnetic wave of linear
polarization from a planar layer of a metamaterial based on a double perpendicular
thin-wire helix elements and also construct a dispersionmodel of such ametamaterial.

2 The Problem of Wave Reflection from a Planar
Metamaterial

Consider the problem of determining the reflection and transmission coefficients
when a plane electromagnetic wave incidents on a planar layer of a chiral metama-
terial that is infinitely extended along the Oz axis. The problem geometry is shown
in Fig. 1. Let a plane electromagnetic wave of linear perpendicular polarization inci-
dents on a chiral metamaterial from a semi-infinite dielectric region 1 (ε1 and μ1 are
relative dielectric and magnetic permittivity) at an angle θ .

Region 2 in Fig. 1 is a planar layer of a chiral metamaterial of thickness h (ε2
andμ2 are relative permittivity and permeability; χ2 is the relative chiral parameter).
The frequency dependencies of material parameters ε2 and χ2 are determined by the
type of resonant elements and will be obtained in the next section.

A chiral metamaterial consists of doublemutually orthogonal multi-turn thin-wire
helices that are evenly placed in a planar container (Fig. 2). The set of two mutually
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Fig. 1 Problem geometry

Fig. 2 Geometry of the metamaterial based on helices (a) and on fractal elements (Koch’s
Snowflake) (b)
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orthogonal helices is called a combined helical element (Fig. 2a) and the set of two
fractal elements is called a combined fractal element (Fig. 2b). It is assumed that
two elements in a combined element may have different geometric parameters. In
the case of a chiral media it is assumed that elements are oriented randomly in the
container. The combined elements are evenly spaced in the container at a distance d
from each other. For Fig. 2 shows examples of combined helical and fractal elements.

Region 3 in Fig. 1 is a dielectric (ε3 and μ3 are the relative permittivity and
permeability).

The task is to derive the relations for calculating the reflection coefficients of
the main (ree) and cross-polarized (reh) components of the field in region 1, as well
as formulas for the transmission coefficients of the main (tee) and cross-polarized
(teh) components of the field in region 3. It is appropriate to note that when the
incident microwave radiation interacts with the chiral medium, the phenomenon of
cross-polarization occurs [6], that is, in the structure of the reflected and transmitted
waves, field components orthogonal to the components of the incidentwave arise. In a
chiralmetamaterial, twowaveswith right (RCP) and left-circular (LCP) polarizations
propagate [2, 6].

The chiral metamaterial 2 is described by material equations that simultaneously
link the inductions and strengths of the electric and magnetic fields [2, 6]:

�D(2) = ε2(ω) �E (2) ∓ i χ2(ω) �H (2) ,

�B(2) = μ2 �H (2) ± i χ2(ω) �E (2),
(1)

where the upper and lower signs correspond to helix elementswith right and left-hand
twists, respectively. The material (1) are written in the Gaussian system.

The electromagnetic field in a chiral metamaterial is determined from a system
of two related 2nd-order differential equations [1, 2]:

∇2 �E (2) + k20
(
ε2μ2 + χ2

2

) �E (2) − 2ik20μ2χ2 �H (2) = 0 ;
∇2 �H (2) + k20

(
ε2μ2 + χ2

2

) �H (2) + 2ik20ε2χ2 �E (2) = 0 ,
(2)

where k0 = ω/c is the wave number for a plane wave in free space; ω is the circular
frequency; c is the speed of light.

System of (2) using the standard representation in the form of Beltrami fields [2]

�E (2) = �ER + �EL; �H (2) = i

√
ε2

μ2

( �ER − �EL

)
, (3)

is reduced to two homogeneous Helmholtz equations for waves RCP and LCP in
a chiral metamaterial:

∇2 �ER,L ± k2R,L
�ER,L = 0, (4)
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where �ER is the electric field of the RCP wave; �EL is the electric field of the LCP
wave; the wave numbers for RCP and LCP waves in a boundless chiral media are
defined as follows:

kR,L(ω) = ω

c

[√
ε2(ω)μ2 ± χ2(ω)

]
. (5)

The following expressions are obtained from solving (4) using representations (3)
for the longitudinal components of the field vectors in a chiral metamaterial:

E (2)
z = T (−)

R e−ikR(�sR ,�r) + T (+)
R eikR(�sR ,�r)+

+T (−)
L e−ikL (�sL ,�r) + T (+)

L eikL (�sL ,�r);

H (2)
z = i

η2

[
T (−)
R e−ikR(�sR ,�r) + T (+)

R eikR(�sR ,�r)−
−T (−)

L e−ikL (�sL ,�r) − T (+)
L eikL (�sL ,�r)

]

,

(6)

where �s(−)
R,L = {

sin θR,L ,− cos θR,L
}
are the unit vectors along which the refracted

waves propagated in the metamaterial 2; �s(+)
R,L = {

sin θR,L , cos θR,L
}
are the unit

vectors for reflected waves from region 3; θR,L are the angles of refraction of waves

RCP and LCP, respectively; η(2) =
√

μ2
/
ε2 is the impedance of the chiral metama-

terial; T (−)
R and T (−)

L are the transmission coefficients (on the field) waves of RCP
and LCP in the metamaterial 2; T (+)

R and T (+)
L are reflection coefficients (on the field)

waves of RCP and LCP from region 3 in the chiral layer.
For the case of an incident of a plane electromagnetic wave with perpendicular

(s-) polarization, the following expressions are valid for the components of the field
in the dielectric region 1, written taking into account cross-polarization:

E (1)
z = e−ik1(�sr ,�r) + reee

−ik1(�sr ,�r);
H (1)

x = −cos θ

η(1)
e−ik1(�sr ,�r) + ree

cos θ

η(1)
e−ik1(�sr ,�r);

H (1)
z = rehe

−ik1(�sr ,�r);
E (1)
x = −rehη

(1) cos θ e−ik1(�sr ,�r),

(7)

where �sr = {sin θ, cos θ} is a unit vector that defines the direction of propagation of
the reflected wave in region 1; ree is reflection coefficient of main components; reh is
the reflection coefficient of cross-polarized components; k1 = k0

√
ε1μ1 is the wave

number for plane wave in dielectric region 1; η(1) =
√

μ1
/
ε1 is an impedance of the

region 1.
When solving the problem it is assumed that a wave with a single amplitude of

the electric field intensity incidents on the chiral layer.
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For the components of the electromagnetic field vectors in region 3, taking into
account cross-polarization, the following expressions can be written:

E (3)
z = teee

−ik3(�s3,�r);
H (3)

z = tehe
−ik3(�s3,�r);

E (3)
x = tehη

(3) cos θ3 e
−ik3(�s3,�r);

H (3)
x = −tee

cos θ3

η(3)
e−ik3(�s3,�r);

(8)

where �s3 = {sin θ3,− cos θ3} is a unit vector that defines the direction of propa-
gation of transmitted wave in region 3; tee is the transmission coefficient of main
components; teh is the transmission coefficient of cross-polarized components;

η(3) =
√

μ3
/
ε3 is an impedance of region 3; k3 = k0

√
ε3μ3 is wave number for

plane wave in dielectric region 3.
At the last stage the boundary conditions are used for the tangential components

of the electric and magnetic field vectors at the interface at y = 0 and y = −h:

�E (1)
τ (y = 0) = �E (2)

τ (y = 0);
�H (1)
τ (y = 0) = �H (1)

τ (y = 0);
�E (2)

τ (y = −h) = �E (3)
τ (y = −h);

�H (2)
τ (y = −h) = �H (3)

τ (y = −h).

(9)

As a result of substituting expressions (6), (7) and (8) into boundary conditions
(9) with respect to unknown reflection and transmission coefficients we obtain a
non-uniform system of linear algebraic equations (SLAE):

↔
A �T = �P, (10)

where
↔
A is a square matrix of size 8 × 8, the explicit form of elements of which is

not given in the article due to their bulkiness;

�T = [
ree reh T (+)

R T (−)
R T (+)

L T (−)
L tee teh

];
�P = [

0 −1 cos θ1
/
η(1) 0 0 0 0 0

]
.

The coefficients of matrix
↔
A are determined by the geometric parameters of the

container and the combined helical elements; by the material parameters of the chiral
metamaterial and regions 1 and 3.
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Similarly, the case of awave incidencewith parallel (p-) polarization is considered
and the solution of the problem is reduced to a SLAE (10) with other coefficients of

the matrix
↔
A and a vector column �P .

3 Dispersion Model of a Metamaterial Based on Combined
Helical Elements

Let’s consider a chiral metamaterial based on combined helical elements (Fig. 3).
Each of the two subelements of the combined element is a thin-wire conducting
helix consisting of N turns. Helix in combined dual element describes the following
geometric parameters: Ni is number of turns; Ri is the radius of the helix loop; hi
is step of a helix; li is length of the helix in the expanded state; ri is the radius of
the wire; αi is angle of winding of the helix; i = 1, 2 is the number of helices in the
element.

To calculate the resonant frequency of the combined element, we use the Thomson
formula:

ω0 = 1√
LC

, (11)

where L is the inductance of the combined element; C is capacity of the combined
element.

The inductance and capacitance of the combined element are determined by the
corresponding characteristics of the single helices as follows:

C = C1 + C2; L = L1L2

L1 + L2
, (12)

Fig. 3 Cross section of a
single helix from a combined
element
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where Li is the inductance of one of the helices; Ci is the capacitance of one of the
helices.

The capacity of a single helix is defined as follows:

Ci = Cwire i + Cinc i + Cine i , (13)

that is, as the sum of the wire capacity, inter-coil capacity, and inter-element capacity,
and as a result is expressed as follows:

Ci = εc2

⎡

⎢⎢⎢⎢
⎣

li

18 ln
(
2li
ri

)
− 1

· 10−11 +

+ π
[
(Ri + 2ri )2 − R2

i

]
(Ni − 1)

hi
+ 1

d

Ni (Ri + ri )

cosαi
ri

⎤

⎥⎥⎥⎥
⎦

. (14)

The inductance of a single helix is calculated using the formula:

Li = μc2
πN 2

i R
2
i

li
. (15)

In formulas (14) and (15) εc2, μc2 are relative permittivity and permeability of
the dielectric container.

Substituting the ratios (14), (15) in (12) and then in (11), we get the formula for
the resonant frequency of the combined element.

The dispersion of the permittivity and the chirality parameter are determined by
the following expressions [7]:

ε2(ω) = εc2 + β2
0

ω2
0 − ω2

; χ2(ω) = A0
β2
0ω

c
(
ω2
0 − ω2

) , (16)

where A0 and β0 are parameters defined by the dimensions of the combined elements
and the distance between them, respectively.

Substituting the expression for the resonant frequency of the combined element
(11) in formulas (16), we obtain dispersion relations for the permittivity and rela-
tive chirality parameter for metamaterial based on thin-wire perfectly conducting
elements in the form of mutually orthogonal helices.

4 Numerical Results

When analyzing the numerical characteristics, the main interest was the calculation
of frequency dependencies of reflected (10 lg |ree|2 and 10 lg |reh |2) and transmitted
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(10 lg |tee|2 and 10 lg |teh |2) power (in dB). The containerwasmodeled on styrofoam
with a relative permittivity of εc2 = 1.5.

Figure 4 shows the frequency dependence of the reflected and transmitted power of
the main and cross-polarized components of the field in the range from 1 to 10 GHz.

The dashed curves in Fig. 4 show the dependences of the transmitted power of
the main component (10 lg |tee|2); solid lines show the reflected power of the main
component (10 lg |ree|2). The incidence of the plane wave on the metastructure was
considered normal. The calculation was performed for the following values of the
structure parameters:

R1 = 2R2 = 0.01m, N1,2 = 3, r1 = 2r2 = 0.002m,

H1 = 2H2 = 0.05m, d1 = 2d2 = 0.05m
.

In this case both helices that are part of the structure of the combined element are
identical.

The level of reflection and transmission of cross-polarized field components does
not exceed −25 dB at normal incidence and is not shown on the graphs.

At a frequency of 1.18 GHz there is a sharp local decrease in the level of power
transmitted through the metamaterial, that is, there is mainly a lateral scattering of
normally incident electromagnetic energy.At this frequency themetastructure can act
as a frequency-selective shield. At other frequencies the metastructure is completely
transparent and the incident radiation penetrates through it almostwithout attenuation
(near 0 dB).

Fig. 4 Frequency dependences of the transmitted and reflected power for the case of identical
helices in a combined element
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It can be noted that the studied metastructure at a single frequency can serve as
a frequency-selective protective screen that is not transparent to radiation near the
main resonant frequency.

Let’s now consider the case of different values of geometric parameters of helixes
in the structure of the combined element.

Figure 5 shows the frequency dependence of the reflected and transmitted power of
the main and cross-polarized components of the field in the range from 1 to 10 GHz.

The dashed curves in Fig. 5 show the dependences of the transmitted power
of the main component (10 lg |tee|2); solid lines show the reflected power of the
main component (10 lg |ree|2). The incidence of the wave on the metastructure
was considered normal. The calculation was performed for the following structure
parameters:

R1 = 2R2 = 0.01m, N1,2 = 3, r1 = 2r2 = 0.002m,

H1 = 2H2 = 0.05m, d1 = 2d2 = 0.05m
.

As can be seen from Fig. 5, in the case of an asymmetric double helical element,
there is a sharp frequency selectivity of the transmission of electromagnetic radiation
through the metamaterial. In contrast to a symmetrical double helical element, a
strong chirality occurs here and, as a result, a set of discrete frequencies occurs at
which the electromagnetic wave does not penetrate through the metamaterial and is
converted into lateral scattering. It can also be noted that in this case, the reflection
and transmission of cross-polarized components of the field also increases to −15–
18 dB. In addition, there are no frequencies starting from 2 GHz at which the level of
attenuation of the main component of the field is close to 0 dB, which is associated
with an increase in cross polarization. At resonant frequencies, the structure can play
the role of a microwave shield.

Fig. 5 Frequency dependences of the transmitted and reflected power for the case of not identical
helices in a combined element
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It was also proved that the studied metastructure is equivalent in properties to
a natural crystal (or an artificial Bragg lattice) in the optical range, namely, the
frequencies of resonant minima of attenuation of the passed power of the main
component of the field are calculated from the Wulf-Bragg condition, taking into
account the refraction of electronic waves in the crystal [8]:

2d
√(

ε2μ2 − χ2
2

) − cos2 θ = νλ, (17)

where ν is the order of resonance; λ is wavelength; θ is angle of wave incidence.

5 Conclusion

Thus, based on the results of the work, the following conclusions can be drawn:

1. The presence of two identical thin-wire helices in the combined element reduces
the effect of chirality and, as a result, the frequency selectivity of the entire
metamaterial to almost zero.

2. The presence of two different geometric dimensions of helices in the combined
element increases the degree of chirality of the entire metamaterial as a whole
and there is a frequency selectivity of the transmission of a plane electromagnetic
wave through the metamaterial and a sufficiently large cross-polarization of the
field.

3. The studiedmetastructure in the case of various helices in the combined element
is equivalent in properties to a natural crystal (or an artificial Bragg lattice) in
the optical range.

4. The metastructure in the case of different helices in the combined element can
serve as a frequency selective microwave shield.
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On the Asymptotics of the Solution
of a Klein–Gordon–Fock Equation
with a Variable Coefficient of the
Laplacian

Maria V. Korovina, Ilya N. Smirnov, and V. Yu. Smirnov

Abstract The problem of wave propagation in the medium whose velocity char-
acteristics change under an external impact is considered. We investigate a three-
dimensional case. The asymptotics of the solution for the Klein–Gordon–Fock oper-
ator with a variable coefficient of the Laplacian at infinity have been constructed.
The case of holomorphic coefficients have been considered.

Keywords Asymptotic · Holomorphic coefficient · Laplace–Borel transform ·
Weighted spaces

1 Introduction

In this paper, the problem ofwave propagation in dispersive three-dimensional media
whose velocity characteristics change under an external impact is considered. The
problem of this type and its physical applications were considered in [1, 17].

In this study, we consider the Klein–Gordon–Fock operator with a variable time-
dependent coefficient in the term that contains the Laplacian:

(
d

dt

)2

u(x, t) − a0(t)�u(x, t) + c0(t)u(t, x) = 0. (1)
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Let us apply the variable separation method: u(x, t) = Y (x)v(t). We get

�Y (x) + λY (x) = 0, (2)

((
d

dt

)2

+ c0(t)

)
v(t) − a0(t)λv(t) = 0. (3)

Equation (2) is a classical Sturm–Liouville problem for theLaplace operator. Accord-
ing to [13], it can be reduced to solving a homogeneous Fredholm equation of the
second kind with a symmetric weakly polar kernel. In the general case, the solution
Y (x) can be represented by using the Green’s function

Y (x) = λ

∫
D

G(x, x̂)Y (x̂)dVx̂ ,

where G(x, x̂) is the Green’s function corresponding to our problem. Such a rep-
resentation allows us to consider that problem (2) is solved and proceed to solving
equation (3), namely, to the problem of constructing the asymptotics of solutions to
equation (3) in the neighborhood of a point infinitely distant in time.

Here, functions a0(t), c0(t) are regular at infinity, which means that there is the
exterior of a circle |t | > R such that the functions a0(t), c0(t) can be expanded in it
into the divergent power series

a0(t) =
∞∑
j=0

a j

t j
, c0(t) =

∞∑
j=0

c j
t j

.

The aim of our study is constructing the asymptotics of the solution to equation
(1) at t → ∞.

Let us make the substitution of variable t = 1
r .

We get
d

dt
v(t) = dv

dr

dr

dt
= − 1

t2
dv

dr
= −r2

dv

dr
.

Then, we rewrite equation (3) in the form:

(
−r2

d

dr

)2

v(r) + (c(r) − a(r)λ) v(r) = 0. (4)

Generally speaking, infinity is an irregular singular point of equation (4). In the
particular case where infinity is considered to be a regular singular point, the problem
of constructing the asymptotics of solutions is solved. As is known, the asymptotics
in the neighborhood of regular singular points are conormal (see, for example, [5]);
namely, they have the form
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∑
j

t s j
k∑

i=0

a j
i ln

i 1

t
, (5)

where a j
i , s j are some complex numbers.

The problem of constructing the asymptotics of solutions to ordinary differential
equations in the neighborhood of an irregular singular point was ultimately formu-
lated by Poincare [14] and remains unsolved in the general form until now.

The singular point for equation (4) is the point r = 0. It was shown in [3] that any
homogeneous ordinary differential equation with holomorphic coefficients of order
n can be represented in the form

Ĥu = H
(
r,−rk

d

dr

)
u = 0, (6)

where Ĥ is a differential operator with holomorphic coefficients with the symbol

H(r, p) =
n∑

i=0

ai (r)p
i .

Here, ai (r) are holomorphic functions; an(0) �= 0; a formula for calculating the
minimum integer nonnegative value of k is obtained in [4]. Depending on this min-
imum value of k, the solutions of equation (6) have asymptotics of different types.
If k = 0, equation (6) does not have singular points. In this case, the solutions are
holomorphic functions. If k = 1, equation (6) has a singularity at the point r = 0;
this singularity is regular. In other words, equation (6) in this case is the equation
of Fuchsian type. At all other integer nonnegative k, the point r = 0 is an irregular
singularity. Such singularities are called the cuspidal singularities.

Let us call the function H0(p) = H(0, p) the principal symbol of the differential
operator Ĥ . Nowadays, the most investigated equations are those whose principal
symbol H0(p) has only simple roots. Let us call such equations the non-Fuchsian
equations of the first type. All other equations are the non-Fuchsian equations of the
second type.

The non-Fuchsian equations of the first type are considered, for instance, in [15]
and in many other papers. It was shown in those studies that the asymptotics of
solutions of non-Fuchsian equations of the first type can be represented in the form

n∑
j=1

e
α j
rk

+
k−1∑
i=1

a
j
k−i

rk−i
rσ j

∞∑
i=0

b j
i r

i , (7)
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where α j , j = 1, . . . , n are the roots of polynomial H0(p); a
j
k−i and σ j are some

complex numbers. The power series
∞∑
i=0

b j
i r

i is asymptotic (generally speaking, diver-

gent) power series.
In the case when the asymptotic expansion

u ≈ u1 + u2 + . . . + un = e
α1
r rσ1

∞∑
i=0

bi1r
i + e

α2
r rσ2

∞∑
i=0

b2i r
i + . . . + e

αn
r rσn

∞∑
i=0

bni r
i

(8)
contains more than two terms, i.e., n ≥ 2, then, the problem of interpretation of such
an expression arises. There is the Stokes phenomenon whose gist is as follows: in
any of the sectors of the complex plane, one of the terms of sum (7) is the dom-
inant term of the asymptotics, while other terms are recessive; on another sector,
the dominant term may become recessive and vice versa. At the boundary between
the sectors, it is not clear which of the terms is dominant. Therefore, the recessive
terms of asymptotics of the form (7) cannot be neglected. Hence, to construct uniform
asymptotics of solutions, it is necessary to introduce a regular method for summation
of divergent series. Summing up the asymptotic series obtained, we get an uniform
asymptotics, namely, the asymptotic expansion that is valid in the entire vicinity of
the irregular singular point. A more detailed consideration of uniform asymptotics
and the summation method can be found in [16].

The method for summation of asymptotic series of the form (7) was proposed for
the first time by Ecalle [2]. Summation is carried out with the help of the integral
Laplace–Borel transform. Ecalle has invented resurgent analysis which provides a
method for summation of formal power series. To clarify the concept of resurgent
analysis, let us introduce the designation

The formal Laplace–Borel transform ũ1(p), ũ2(p) . . . are the power series with
respect to the dual variable p, which converge in the neighborhood of one of the
roots p = p j of the principal symbol. At that, the inverse Borel transform provides a
regular method for summing up these series. However, application of this transform
in practice requires proving the fact that the functions ũ j (p) are infinitely extendable
or, in other words, that the function u j (r) is resurgent (the definition of infinite
extendability is presented below). To apply the methods of resurgent analysis, it is
necessary to prove the resurgence of the solution. The infinite extendability of a
solution is a differential equation with holomorphic coefficients under the condition
of holomorphy of its right-hand side was proved in [6, 9]. This result makes it
possible to use the resurgent analysis methods to construct uniform asymptotics of
solutions to linear differential equations with holomorphic coefficients in the spaces
of functions of exponential growth.

Using the result above, the authors of [6, 7, 9] have succeeded in constructing
uniform asymptotics of solutions for equations such that the roots of the polynomial
H0(p) = H(0, p) are simple. So, the problem of constructing uniform asymptotics
of solution of the equations of this class for any order has been solved. Namely, the
following theorem was proved.
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Theorem 1 Let function f be resurgent. Then all the solutions of the equation

H
(
r,−rk

d

dr

)
u = f

are resurgent functions. If the polynomial H0(p) has simple roots at points
p1, . . . , pm, then the asymptotics of a solution of a homogeneous equation has the
form

n∑
j=1

e
α j
rk

+
k−1∑
i=1

a
j
k−i

rk−i
rσ j

∞∑
i=0

b j
i r

i ,

where summation is carried out over all roots of polynomial H0(p).

The results of this theorem will be used in our study.
We also note papers [10–12], in which an asymptotic expansion of solutions

of the basic boundary-value problems for the elasticity system and the biharmonic
(polyharmonic) equation in the exterior of a compact set and in a half-space, including
that in the form of a co-normal asymptotics, is obtained.

2 Definitions and Auxiliary Statements

In this section, we give definitions of some notion of resurgent analysis, which will
be used below.

Let us designate by SR,ε the sector SR,ε = {r | − ε < arg r < ε, |r | < R}.
Definition 1 Let us say that a function f is analytical on SR,ε and is of exponential
growth with a rate of growth of at most k, if there are nonnegative constants C and
α such that in the sector SR,ε, the inequality

| f | < Ce
a 1

|r |k .

is fulfilled.

Let us designate by Ek(SR,ε) the space of functions that are holomorphic in the
domain SR,ε and of k-exponential growth at zero; by E(Ω̃R,ε) the space of holo-
morphic functions of exponential growth in the domain Ω̃R,ε; by E(C), the space of
entire functions of exponential growth.

The Laplace-Borel transform is the main technique used for constructing the the-
ory of resurgent functions. Let us give the definition of the Laplace-Borel transform
in such a form that is necessary for the purposes of this study.
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Theorem 2 Formulas

f̃ = Bk f =
r0∫
0

e−p/rk f (r)
dr

rk+1

and

B−1
k f̃ = k

2πi

∫
γ̃

ep/r
k
f̃ (p)dp

define the mutually inverse mappings in the spaces

Bk : Ek(SR,ε) → E(Ω̃R,ε)/E(C)

and
B−1
k : Ek(Ω̃R,ε)/E(C) → Ek(SR,ε).

Here, r0 denotes an arbitrary point in the domain SR,ε.

More details about the Laplace–Borel transform can be found in [16]. Now we
can give a definition of a resurgent function. The contour γ̃ is shown in Fig. 1 in [6].

Note that for the k-Laplace–Borel transform, the following formulae are true:

Bk ◦
(

−1

k
rk+1 ∂

∂r

)
f (r) = pBk f,

∂

∂ p
◦ Bk f = −Bk

(
1

rk
f (r)

)
.

It was shown in [8] that if k ∈ N , then the equality

Bkr
k B−1

k

[
f̃
]

= −1

k

p∫
p0

f̃ (p′)dp′

is satisfied. Now we can define a k-resurgent function.

Definition 2 The function f̃ is called infinitely extendable, if for any number R,
there is a discrete set of points ZR in C such that the function f̃ can be analytically
extended from the initial domain of definition along any path with a length < R,
which does not pass through ZR .

Definition 3 The element f of the space Ek(SR,ε) is called the k-resurgent function,
if its k-Laplace–Borel transform f̃ = Bk f is infinitely extendable.
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Theorem 3 Let f be a resurgent function, then the solution of the equation

H

(
−r2

d

dr
, r

)
u = f

is a resurgent function. If the polynomial H0(p) has simple roots at the points
p1, . . . , pm, then the asymptotics of the solution of the homogeneous equation has
the form

u(r) ≈
m∑
j=1

exp
( p j

r

)
rσ j

∞∑
i=0

b j
i r

i , (9)

where the sum is taken by the union of all the roots of the polynomial H0(p).

For equations with k + 1-order degeneracy, where k ∈ N , namely, for equations
of the form

H

(
r,−1

k
rk+1 d

dr

)
u = 0

in the case when the roots of the principal symbol are simple, the asymptotics have
the form

u(r) ≈
m∑
j=1

exp

(
p j

rk
+

k−1∑
i=1

α
j
k−i

r k−i

)
rσ j

∞∑
i=0

b j
i r

i . (10)

In the case when k + 1 = m
n , m ∈ N , k ∈ N , m > k, the asymptotics of the solu-

tion will be

u(r) ≈
∑
j

exp

(
p j

r
m
k −1

+
m−k−1∑
i=1

α
j
m−k−i

r
m−i
k −1

)
tσ j

∞∑
i=0

b j
i t

i . (11)

The proof of this theorem can be found in [6, 7, 9].

Property 1

Bkr
σ =

r0∫
0

e−p/rk rσ dr

rk+1
=

=
r0∫
0

e−p/t t
σ
k
dr

t2
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π

�
(

σ
k

)
sin π σ

k

p
σ
k −1, ∀σ

k
/∈ Z ,

�
(
1 − σ

k

)
p

σ
k −1,

σ

k
= 0,−1, . . . ,

(−1)
σ
k
p

σ
k −1 ln p(
σ
k − 1

)! ,
σ

k
∈ N

(12)
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3 The Main Results

Let us introduce designations b j = c j − λa j , then (c(r) − a(r)λ) = b0 + rb1 +
r2

∞∑
j=0

b j+2r j and equation (3) can be rewritten as follows:

(
−r2

d

dr

)2

v(r) + b0v(r) + rb1v(r) + r2g(r)v(r) = 0. (13)

Here, g(r) =
∞∑
j=0

b j+2r j . Let λ be such that b0 = c(0) − a(0)λ �= 0. Then, the prin-

cipal symbol of the operator at the left-hand side of equation (3) is p2 + b0. Let us
denote by pi i = 1, 2 the roots of this polynomial. These roots are simple, therefore
Theorem3 is applicable; the asymptotics of the solution has the form (9). Let us
construct it.

Let us find the asymptotics at the non-zero simple root p1. Let us shift the root
p1 to zero by using the substitution of variables v = e

p1
r v1 .

Since the equality

(
−r2

d

dr

)2

v + b0v = e
p1
r

((
r2

d

dr

)2

− 2p1

(
r2

d

dr

)
+ p21 + b0

)
v1

holds, we can rewrite equation (13) in the form:

(
−r2

d

dr

)2

v1 + 2p1

(
−r2

d

dr

)
v1 + rb1v1(r) + r2g(r)v1(r) = 0.

Let us perform one more substitution v1 = rσ1v2.
Since the equality

(
r2

d

dr

)2

v1 = rσ1

(
σ1(σ1 + 1)r2 + 2σ1r

(
r2

d

dr

)
+

(
r2

d

dr

)2
)

v2

is satisfied, we get the equation

(
−r2

d

dr

)2

v2 + 2p1

(
−r2

d

dr

)
v2 + (2p1σ1 + b1)rv2(r) + r2g(r)+

+
(

σ1(σ1 + 1)r2 − 2σ1r

(
−r2

d

dr

))
v2 = 0. (14)
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Let us set

σ1 = − b1
2p1

= −c1 − λa1
2p1

, (15)

Equation (13) can be rewritten as follows:

(
−r2

d

dr

)2

v2 + 2p1

(
−r2

d

dr

)
v2 + r2g(r)+

+
(

σ1(σ1 + 1)r2 − 2σ1r

(
−r2

d

dr

))
v2 = 0.

Let us perform the Laplace–Borel transform. Using the designation v̂ = Bv, we
get

p2v̂2 + 2p1 pv̂2 + 2σ1

∫
pv̂2dp + σ1(σ1 + 1))

p∫
1

p2∫
1

v̂2(p1)dp1dp2+

+
p∫

1

p2∫
1

(B1(g(r)v2(r))(p1)dp1dp2 = f (p).

Here, f denotes an arbitrary holomorphic function. The principal symbol of the
differential operator in equation (14) is p(p + 2p1). The asymptotics of the solution
of equation (15) in the neighborhood of the root p = 0 is constructed by the method
of successive approximations (see [9]), which shows that the asymptotic behavior of
the solution in the vicinity of the simple root p = 0 can be represented as follows:

A

p
+ ln p

∞∑
i=0

mi p
i . (16)

Here, A is some constant; the series
∞∑
i=0

mi pi converges in some neighborhood of

the point p = 0.
Let us find the inverse Laplace–Borel transform of function (16). We obtained

from (12)

B−1
1

(
A

p
+ ln p

∞∑
i=0

mi p
i

)
=

∞∑
i=0

A1
i r

i . (17)

Here,
∞∑
i=0

A1
i r

i stands for the corresponding asymptotic series. It follows from (17)

that the asymptotic term for the function v1(r) corresponding to the root c1 of the
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principal symbol in the neighborhood of r = 0 has the asymptotics rσ1

∞∑
i=0

A1
i r

i ; for

the function v(r), the corresponding asymptotic term has the form

e
p1
r rσ1

∞∑
i=0

A1
i r

i .

The asymptotic term corresponding to the root of p2 is found in a similar way.
Thus, we have obtained that under the condition b0 = c(0) − a(0)λ �= 0, the

asymptotics of the solution of equation (3) in a neighborhood of the point r = 0
has the form:

v ≈ e
p1
r rσ1

∞∑
i=0

A1
i r

i + e
p2
r rσ2

∞∑
i=0

A2
i r

i .

Here, the numbers pi , i = 1, 2 are the roots of the polynomial p2 + b0; the num-

bers σi , i = 1, 2 are determined by formula (13);
∞∑
i=0

A j
i r

i , i = 1, 2 are the corre-

sponding asymptotic series.
Now, let b0 = c(0) − a(0)λ = 0. Then, equation (3) can be rewritten as follows:

(
−r2

d

dr

)2

v + b1rv + r2g2(r)v = 0. (18)

Here b1 = c1 − λa1, g2(r) =
∑∞

j=2(c j−λa j )r j

r2 =
∞∑
j=2

(c j − λa j )r j−2.

Unlike the previous case, the principal symbol of (18) is equal to p2 and has a
multiple root at zero. Therefore, Theorem3 is not applicable to this case. To use
Theorem3, it is necessary to transform equation (18).

Let b1 �= 0. We will construct the asymptotics for this case.
Since the equality

(
−r2

d

dr

)2

= r

(
r

3
2
d

dr

)2

+ 1

2
r1+

1
2

(
r

3
2
d

dr

)

is satisfied, equation (18) can be rewritten as follows:

(
r− 3

2
d

dr

)2

v − 1

2
r

1
2

(
r− 3

2
d

dr

)
v + b1v + rg2(r)v = 0. (19)

Let us apply Theorem3. The asymptotics of the solution has the form (11). In the
same way as it was done above, we make a substitution of variables v = rσv1.
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It is easy to show that equation (19) can be rewritten in the form

(
−2r

3
2
d

dr

)2
v1 + 2

(
1

2
+ 2σ

)
r
1
2

(
2r

3
2
d

dr

)
v1 + 4b1v1 + 4r(g2(r) + σ(σ + 1))v1 = 0.

Let us set σ = − 1
4 . Then the equation will take the form:

(
−2r

3
2
d

dr

)2

v1 + 4b1v1 + 4r

(
g2(r) − 3

16

)
v1 = 0. (20)

The principal symbol of the differential operator in equation (20) is p2 + 4b1.
We denote its roots by pi , i = 1, 2. Let us apply Theorem3. The asymptotics of the
solution has the form (11). Since the roots of the principal symbol are simple, the
asymptotics of the solutions can be constructed as in the previous case and have the
form:

v ≈ e
p1√
r r− 1

4

∞∑
i=0

A1
i r

i
2 + e

p2√
r r− 1

4

∞∑
i=0

A2
i r

i
2 .

Now let b1 = 0, then equation (11) takes the form:

(
−r2

d

dr

)2

v + r2g2(r)v = 0. (21)

In this case, the principal symbol is p2 and has a multiple root of the second
order at zero. Therefore, the method used previously is not applicable here. Since
the equality

r2
d

dr
r2

d

dr
= r2

(
r
d

dr

) (
r
d

dr

)
+ r3

d

dr
,

holds, we can rewrite equation (21) in the form:

(
r
d

dr

)2

+ r
d

dr
+ g2(r)v = 0. (22)

This is a Fuchsian-type equation. The point r = 0 is a regular singular point
of equation (22). The problem of constructing such solutions is well studied (see,
for example, [5]). It is reasonable to search for the solution to this equation in the
Sobolev weighted spaces Hk,σ(0,∞). The asymptotics of its solution is conormal.
The reasoning above allows us to state the following theorem.

Theorem 4 If c0 − a0λ �= 0, then all the asymptotics of the solutions to equation
(1) in the space of functions of exponential growth in the neighborhood of infinity
with respect to variable t (at t → ∞) have the form:
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u(x, t) ≈
(
expp1t t

σ1

∞∑
i=0

A1
i t

−i + expp2t t
σ2

∞∑
i=0

A2
i t

−i

)
Y (x),

where numbers pi , i = 1, 2 are the roots of the polynomial p2 + c0 − a0λ. If c0 −
a0λ = 0, c1 − λa1 �= 0, then the asymptotics of the solution has the form:

u(x, t) ≈ t
1
4

(
expp1

√
t

∞∑
i=0

A1
i t

− i
2 + expp2

√
t

∞∑
i=0

A2
i t

− i
2

)
Y (x),

where the numbers pi , i = 1, 2 denote the roots of the polynomial p2 + 4(c1 −
λa1);

∞∑
i=0

A j
i r

i , j = 1, 2 are the corresponding asymptotic series. If c0 − a0λ = 0,

c1 − λa1 = 0, then the asymptotic behavior of the solution of equation (1) can be
represented as the product of the function Y (X) by the corresponding conormal
asymptotics.

Remark 1 If equation (2) has the form

(
d

dt

)2

v + a2λv = 0,

where a �= 0 is a real constant, then all asymptotics of solutions to this equation in
the space of the functions of exponential growth in the neighborhood of infinity with
respect to variable t can be represented in the form

u(x, t) = (A1e
c1t + A2e

c2t )Y (x).

Here, ci , i = 1, 2, are the roots of the polynomial p2 + a2λ; Ai are arbitrary constants.

The results of the article are presented at the 13th International Conference
Chaotic Modeling, Simulation and Applications (CHAOS2020, June 9–12, 2020,
Florence, Italy).
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(1984)
3. D.S. Kats, Computation of the asymptotics of solutions for equations with polynomial degen-

eration of the coefficients. Differ. Equ. 51(12), 1589–1594 (2015)
4. D.S. Kats, Coefficients of series in asymptotic expansions of solutions of equations with degen-

erations. Int. J. Open Inf. Technol. 4(9), 1–7 (2016). (in Russian)
5. V.A. Kondrat’ev, Boundary value problems for elliptic equations in domains with conical or

angular points. Trudy Moskov. Mat. Obshch. [Trans. MoscowMath. Soc.] 16, 209–292 (1967)



On the Asymptotics of the Solution of a Klein-Gordon-Fock Equation … 411

6. M.V. Korovina, Existence of resurgent solutions for equations with higher-order degeneration.
Differ. Equ. 47(3), 346–54 (2011)

7. M.V. Korovina, Asymptotics solutions of equations with higher-order degeneracies. Doklady
Math. 83(2), 182–184 (2011)

8. M.V. Korovina, Asymptotics of solutions of equations with higher degenerations. Differ. Equ.
48(5), 717–729 (2012)

9. M.V. Korovina, V.E. Shatalov, Differential equations with degeneration and resurgent analysis.
Differ. Equ. 46(9), 1267–1286 (2010)

10. O.A. Matevossian, Solutions of exterior boundary-value problems for the elasticity system in
weighted spaces. Sb. Math. 192(12), 1763–1798 (2001)

11. H.A. Matevossian, On solutions of mixed boundary-value problems for the elasticity system
in unbounded domains. Izvestiya Math. 67(5), 895–929 (2003)

12. H.A. Matevossian, On the mixed Neumann–Robin problem for the elasticity system in exterior
domains. Russ. J. Math. Phys. 27(2), 272–276 (2020)

13. I.G. Petrovskii, Lectures on Partial Differential Equations (GIFML, Moscow, 1961). (in Rus-
sian)

14. H. Poincare, Sur les integrales irregulieres des equations lineaires. Acta math. 8, 295–344
(1886)

15. W. Sternberg, Uber Die Asymptotische Integration von Differencialgleichungen (Verlag von
Julius Spriger, Berlin, 1920)

16. B. Sternin, V.E. Shatalov, Borel-Laplace Transform and Asymptotic Theory. Introduction to
Resurgent Analysis (CRC Press, London, 1996)

17. V.I. Talanov, On self-focusing of wave beams in nonlinear media. Pis’ma Zh. Eksp. Teor. Fiz.
2(5), 218–222, 1964. (in Russian)



AModel of Stabilization of Chaotic Wave
Processes in Complex Dynamical
Systems from the Point of View
of the Matrix Decomposition Theory

Alexander M. Krot

Abstract A general model of the origin and evolution of chaotic wave processes in
complex systems based on the proposed method of matrix decomposition of opera-
tors of nonlinear systems is developed in the article. The proposed model shows that
the effect of self-organization in complex systems of different physical nature (for
example, hydrodynamic, electronic and physiological ones) is based on the inter-
action of nonlinear processes of higher orders leading to stabilization (to the finite
value) of the amplitude of chaotic wave process. Mathematically, this means the
synchronous “counteraction” of nonlinear processes of even and odd orders in a
general vector–matrix model of a complex system being in a chaotic mode. The
implementation of the vector–matrix decomposition by means of computational
experiments shows that the model of L. D. Landau describes the scenario of the
occurrence of chaotic modes in complex systems quite well. It is noted that the
regime of hard self-excitation of nonlinear oscillations in complex systems leads
to the appearance of a chaotic attractor in the state-space. Moreover, the proposed
vector–matrixmodel permits to findmore general conditions for the origin and evolu-
tion of chaotic wave processes and, as a result, to explain the appearance of coherent
nonlinear phenomena in complex systems.

Keywords Complex nonlinear dynamical system · State-space · Chaotic
attractor · Matrix series in state-space · General vector–matrix model of chaotic
wave processes · Mode of hard self-excitation of nonlinear oscillations ·
Stabilization of the amplitude of chaotic process

1 Introduction

The development of the theory of chaotic wave processes (in particular, the theory
of turbulence in aerohydrodynamic flows) is important from the point of view of
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understanding the processes of self-organization in complex dynamic systems. L.
D. Landau in his article “To the problem of turbulence” [1] developed the theory of
initial turbulence, within the framework of which he showed that the initial instability
of the laminar motion of a fluid is determined by a small perturbation of its velocity

�v1 = A(t) �f (x, y, z), (1)

where the time function A(t) has the form:

A(t) = const · e−i� t , (2)

and� determines the spectrumof «eigen frequencies» (generally speaking, complex-
valued ones, i.e.� = ω + iγ ). Moreover, he emphasized [1]:

Expressions (1), (2) for the corresponding function �v1(x, y, z, t) (when� = �1) are suitable,
however, only for a short period of time after the instant of failure of the stationary state,
since the multiplier eγ1t grows rapidly with time. In reality, of course, the amplitude modulus
|A| of non-stationary motion does not grow unlimitedly, but tends to some finite limit.

As a continuation of this idea, a model of a discrete quasistationary linear dynam-
ical system was proposed in [2] based on a generalized spectral representation in
the basis of eigenfunctions corresponding to the eigenvalues of the operator of this
system. As shown in [2], the class of such quasistationary dynamical systems and
processes is characterized by operators invariant to the generalized shift represented
by powers of the Frobenius matrix. Let us note that the term “invariance to the gener-
alized shift” was first introduced by the founder of cybernetics Norbert Wiener to
analyze non-stationary and non-linear dynamical systems and processes [3].

E. Lorenz [4], studying the behavior of a viscous fluid under convection (the
Rayleigh–Benard flow), reduced the system of Navier–Stokes equations and thermal
conductivity to a dynamical model using the Galerkin’ method. As a result, the
Lorenz model (described by three ordinary nonlinear differential equations) revealed
a chaotic (strange) attractor in the state-space. Mathematically, the concept of a
“chaotic attractor” has been formulated by D. Ruelle and F. Takens [5] as a key
element in the interpretation of irregular behavior described by deterministic equa-
tions for understanding mainly turbulence. This led to a new area of researches
called deterministic chaos. Subsequently, I. Prigogine [6], H. Haken [7] have been
shown that a new order (self-organization) in a complex system of various physical
nature arises through deterministic chaos (fluctuations), i.e. by a chaotic mode of
functioning complex system. The progress in this area has contributed to intensive
studies of various scenarios of the transition of the dynamics of complex systems
from a periodic to a chaotic mode through quasiperiodicity, subharmonic cascade,
intermittency, etc. (see, for example, [8]).

At the same time, despite the achieved results, problems remain concerning the
stabilization of chaotic wave processes in complex systems during a long time under
unchanged the control parameters (for example, characteristic Reynolds Re and
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Rayleigh Ra numbers, etc. in the case of aerohydrodynamic systems). Indeed, as
noted above, the amplitude modulus |A| of unsteady motion does not grow unlim-
itedly, but tends to a certain finite limit [1, 9]. In this connection, the aim of this
work is to study the mechanisms of amplitude stabilization and evolution of chaotic
wave processes [10] in complex systems of various physical nature (mainly, in
hydrodynamic, electronic and electrochemical systems).

2 Interrelation of Landau and Lorenz Models
of Turbulence Description

So, according to the Landau model of initial turbulence “for the smallest times, when
it is still applicable (2)”, we have

d|A|2/dt = 2γ1|A|2.

“This expression is essentially only the first term in the expansion in powers of
A and A∗. As the modulus increases, the following terms of this expansion must be
taken into account” [1]. This means that the amplitude equation of the form is valid:

d|A|2/dt = 2γ1 |A|2 − αL |A|4, (3)

where |A|2 = A · A∗, γ1 is a damping constant, and αL is the Landau constant
[9]. In the case of αL > 0, the amplitude (3) describes such dynamical states of a
moving fluid, when γ1 > 0, i.e. if Re > Rec, for the first time, an arbitrarily small
disturbance becomes unstable against the background of the main motion (a system
with soft self-excitation).

In the case of αL < 0, two terms is no longer enough in the expansion (3), so the
following generalization [9] is true:

d|A(t)|2
dt

= 2γ1|A|2 − αL |A|4 − βL |A|6, (4)

where βL > 0 is a constant. So, in the case of αL < 0, βL > 0, the amplitude (4)
characterizes such dynamical states that under Re > Rec a stationary motion cannot
exist at all, since if Re = Rec then a perturbation jumps up to a finite amplitude. In
the interval Re′

c < Re < Rec, the main motion is metastable, i.e. it is stable with
respect to infinitesimal perturbations, but unstable relative to perturbations of finite
amplitude (a system with hard self-excitation [9]).

Following the Landau model (4) (after disruption of the stationary mode of fluid
flow) having designated by S = |A|2 the square of the amplitude of unsteady process,
the equation is valid up to the third-order terms:
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Ṡ = 2γ1S − αL S2 − βL S3 − ..., (5)

where γ1 is a damping coefficient, αL is the Landau constant, and βL is a positive or
negative constant.

As already mentioned, the model of convection turbulence is described by the
Lorenz system:

⎧
⎪⎨

⎪⎩

u̇1 = au2 − au1;
u̇2 = −u1u3 + cu1 − u2;
u̇3 = u1u2 − bu3,

(6)

where a = Pr, b = 4π2/(π2 + q2), c = Raq2/(π2 + q2)3 are the given parameters,
Pr is the characteristic Prandtl number, Ra is the characteristic Rayleigh number, q
is an integer [4, 8]. For example, in the case of a = 10, b = 8/3 under the value of
the control parameter c = 24.27 [8], a chaotic attractor is observed in the state-space
(u1, u2, u3) ∈ U .

In the particular case, it is possible to pass from system (6) to one nonlinear
equation with respect to the variable u1, if the variable u3 is considered by a constant,
i.e. u̇3 = 0. Expressing from the third equation u3 = u1u2/b and substituting this
value in the second, and then u2 in the first equation, we get:

u̇1 = −au̇2 − au2
1u2/b + acu1 − au1. (7)

If we additionally assume a weak dependence of the variable u2 on time, leading
to the condition u̇2 ≈ 0, then (7) takes the form:

u̇1 ≈ a(c − 1)u1 − (a/b)u2u2
1. (8)

As follows from (8), the first equation from theLorenz system (under the condition
that the second u2 (t) and third variables u3 (t) are fixed in time) has the same form
as the Landau (5) with βL = 0. This means that the vector equation describing the
Lorenz system generalizes the scalar Landau equation.

3 Development of a General Model of the Origin of Chaotic
Wave Processes Using the Matrix Decomposition Method

The Landau theory, based on the intuitive logical conclusions and the results of
Reynolds hydrodynamic experiments, is suitable for explaining the initial turbu-
lence origin in a moving viscous fluid. However, generally speaking, chaotic wave
processes occur in complex systems of various physical nature (for example, elec-
trodynamic, chemical or physiological systems [6]). In this connection, we will try
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to build a general model of the origin and stabilization of chaotic wave processes
using the matrix decomposition method in the state-space of a complex system. As
known [6], the mechanisms of the occurrence of spatial and temporal structures in
complex nonlinear dynamical systems (NDS) can be revealed from the analysis of a
system of nonlinear partial differential equations of the form:

∂ui

∂t
= fi

({u j }, {∇u j }, {∇2u j }, ..., {cl}
)
, i, j = 1, 2, ..., N , (9)

where fi is a nonlinear function, and ui = ui (t, �r) is a function of temporal and
spatial variables, satisfying the initial and boundary conditions, ∇ is the Hamilton
differential operator, and cl are the system parameters.

Using the Galerkin method, the system of nonlinear partial differential equations
can be reduced to a system of nonlinear ordinary differential equations [8], so that
in the future we will not take into account the explicit dependence ui on the spatial
vector �r, assuming that ui = ui (t).

It is often necessary to study the behavior of the solution of (9) near a specific
standard state {u∗

i }, moreover, u∗
i = u∗

i (t) is considered as an unperturbed solution
(9), constantly disturbed by external influences or internal fluctuations by the value
vi = vi (t) [6]. As a result, a new solution becomes instead u∗

i :

ui = u∗
i + vi . (10)

From relations (9) and (10) we obtain a system of equations for {vi }:
dvi

dt
= fi

({u∗
j + v j }

) − fi
({u∗

j }
)
. (11)

Near the reference pointwhen
∣
∣vi

/
u∗

i

∣
∣ << 1, it is possible to linearize the function

fi in the vicinity of zero values vi = 0, using the first terms of the multiple Taylor
series [6]. Lyapunov’s theorem establishes a connection between the stability of
systems of (9) and (11): if the trivial solution (vi = 0) of (11) is asymptotically
stable, then u∗

i is an asymptotically stable solution to (9). However, the linear theory
of stability does not allow us to predict the dynamics in the case of complex NDS.

In the vector–matrix form, the system of ordinary differential equations (obtained
from (9)) can be considered as the Cauchy problem in the N -dimensional state-space
U of complex NDS:

�̇u = �f (�u(t), �u0, {cl}), �u(0) = �u0, �u(t) ∈ U, (12)

where �u(t) = (u1(t), . . . , uN (t))T , T is the transposition symbol, �u0 is a vector of
initial data, {cl} is a set of system parameters. The solution �u(t) of (12) defines a
certain curve in the state-space (phase space) U = �N , called the phase trajectory.
Similarly, we can write system (11) in the vector–matrix form:
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�̇v = 	 �f (�v(t), �u∗, {cl}
)
, (13)

where �v(t) = (v1(t), . . . , vN (t))T , 	 �f is an increment of the vector function, �u∗ is
a vector of the unperturbed (standard) state, {cl} is a set of system parameters.

In [11–16], a matrix decomposition method for complex NDS operators based on
a matrix series in the state-space has been developed, and numerous examples of the
application of this method for the analysis of complex systems have been considered.
Among them are attractors of complex NDS [13, 14], as well as the Hopfield artificial
neural network and Chua circuit [15, 16]. According to this method, the increment
of the vector function 	 �f of a complex NDS in the state-space is described by a
matrix series of the form [11–13]:

	 �f (�v, �u∗) = �f (�u∗ + �v) − �f (�u∗)

= L(1)
N×N �v + 1

2! L(2)
N×N 2(�v ⊗ �v) + 1

3! L(3)
N×N 3(�v ⊗ �v ⊗ �v) + . . .

=
∞∑

k=1

1

k! L(k)

N×N k · �v⊗k, (14)

where L(k)

N×N k = (
∂

∂ �vT
⊗ (

∂

∂ �vT
⊗ . . . ⊗ (

∂

∂ �vT
︸ ︷︷ ︸

k

⊗ �f ) . . .))�u∗ are the matrix kernels of

the homogeneous nonlinear system operators, �v⊗k = (�v ⊗ �v ⊗ . . . ⊗ �v
︸ ︷︷ ︸

k

) is the k-th

Kronecker degree of the perturbation vector �v, and �u∗ is considered as the standard
state vector belonging to �N .

Application of matrix expansion (14) to the right-hand side of (13) allows us to
formulate the following theorem:

Theorem 1. The equation of dynamics of the perturbation vector �v of a smooth NDS
near the standard state �u∗ ∈ �N is described by the vector–matrix expansion:

�̇v =L(1)
N×N �v + 1

2! L(2)
N×N 2(�v ⊗ �v) + 1

3! L(3)
N×N 3(�v ⊗ �v ⊗ �v)

+ . . . + 1

k! L(2)
N×N k · �v⊗k + �Rk(�v),

�̇v =L(1)
N×N �v + 1

2! L(2)
N×N 2(�v ⊗ �v) + 1

3! L(3)
N×N 3(�v ⊗ �v ⊗ �v)

+ . . . + 1

k! L(k)

N×N k · �v⊗k + �Rk(�v), (15)

where �Rk(�v) is the remainder term of the Lagrange’s form:
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�Rk(�v) = 1

(k + 1)! L(k+1)
N×N k+1

∣
∣�u∗ + θ(�v − �u∗) · �v⊗k+1, 0 < θ < 1.

Corollary (the synchronization condition in a complex system). If the mode of
stochastic dynamics is theoretically reached in a complex system, then the following
relation holds:

∞∑

m=1

1

(2m)! L(2m)

N×N 2m · �v⊗2m = −
∞∑

m=1

1

(2m + 1)! L(2m+1)
N×N 2m+1 · �v⊗2m+1,

where the upper line means the ensemble averaging.

Proof when a complex system demonstrates the chaotic dynamics like a stochastic
system then following the stochastic processes theory can rewrite (15) in the form
of Ito stochastic differential equation [7]:

d −→v = L(1)
N×N

−→v dt + 1

2! L(2)
N×N2 (

−→v ⊗ −→v )dt + 1

3! L(3)
N×N3 (

−→v ⊗ −→v ⊗ −→v )dt + . . . + 1

k! L(k)

N×Nk · �v⊗k dt + ... (15a)

Then in Eq. (15a)−→v can be considered as a stochastic vector process−→v (α, t)where
α is a state parameter of stochastic system (elementary event) [3], i.e., α ∈ [0, 1]
and t is time, t ∈ [0,+∞[, and the mathematical expectation of increment of the

stochastic process is equal to zero: M[d−→v (α, t)] = d−→v (α, t) = 0. In this case
the complex system generates fluctuations, for which the average value of the state

vector increment d−→v = 0. Taking into account the right-hand side of Eq. (15a) we
obtain the corollary.

Comment. Under the incomplete compliance with the stochastic dynamics mode
in a complex system, which is characteristic for a deterministic chaotic system, an
approximate equality of the averaged signals from the outputs of kernels of even and
odd orders occurs:

∞∑

m=1

1

(2m)! L(2m)

N×N 2m · �v⊗2m ≈ −
∞∑

m=1

1

(2m + 1)! L(2m+1)
N×N 2m+1 · �v⊗2m+1.

It is easy to see that the obtained (15) generalizes the Landau model (5) of initial
turbulence; therefore, it can be considered as a general model for the emergence and
evolution of chaotic wave processes in complex systems.

4 Implementation of a General Model for the Origin
and Amplitude Stabilization of Chaotic Wave Processes

The performed computational experiments using the general model (15) of the
appearance of chaotic wave processes for specific types of complex NDS indicate
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the fact that chaotic oscillations are observed only at certain relations between the
linear L(1)

N×N , quadratic L(2)
N×N 2 , and cubic L(3)

N×N 3 , etc. kernels of the matrix series
into the overall dynamics of a complex system.

Indeed, the model (15) of the appearance of chaotic wave processes in the above
mentioned Lorenz NDS (6) has a rather simple form:

�̇v = L(1)
3×3�v + 1

2! L(2)
3×9(�v ⊗ �v) = �̇v(1) + �̇v(2)

. (16)

In other words, the dynamics of the Lorenz system is described on the basis of
only linear and quadratic kernels [12–14]:

L(1)
3x3(�u∗) =

⎡

⎢
⎣

−a a 0
−u∗

3 + c −1 −u∗
1

u∗
2 u∗

1 −b

⎤

⎥
⎦ (16a)

L(2)
3x9(�u∗) =

⎡

⎢
⎣

0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 −1 0 0
0 1 0 1 0 0 0 0 0

⎤

⎥
⎦ (16b)

Moreover, according to Corollary and Comment the computational modeling of
signals from the outputs of linear and quadratic kernels in a chaotic state (when
a = 10, b = 8/3, c = 24.27; u∗

1 = u∗
2 = u∗

3 = 0) of Lorenz’s NDS revealed a
similarity of their evolution in time, but with the opposite sign and unequal amplitude
(Fig. 1). In other words, when the Lorenz system operates in a chaotic mode, the
output signals from the linear and quadratic kernels, being in antiphase, partially
compensate each other, so that, as a whole, it leads to stabilization of the amplitude
of the chaotic wave process to a finite value [10].

A similar study of the general model (15) of the origin of chaotic wave processes
in Chua’s electronic circuit [15, 16]:

⎧
⎪⎨

⎪⎩

u̇1 = αu2 − Aαu3
1 − Cαu1;

u̇2 = u1 − u2 + u3;
u̇3 = −βu2,

(17)

when the system parameters are equal α = 15.6, β = 28, A = 0.002, C = −1.3,
u∗
1 = −1.5, it has been shown [16] that the dynamics of the Chua system are precisely

described on the basis of only linear, quadratic and cubic kernels:

L(1)
3×3(�u∗) =

⎡

⎢
⎣

−(3Aαu∗2
1 + Cα) α 0
1 −1 1
0 −β 0

⎤

⎥
⎦; (17a)
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Fig. 1 Examples of signals generated by linear L(1)
3x3 and quadratic L(2)

3x9 kernels in accord with the
model (16) of origin of chaotic wave processes in the complex NDS of Lorenz

L(2)
3×9(�u∗) =

⎡

⎢
⎣

−6Aαu∗
1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤

⎥
⎦; (17b)

L(3)
3×27(�u∗) =

⎡

⎣
−6Aα 00000000000000000000000000
0 00000000000000000000000000
0 00000000000000000000000000

⎤

⎦, (17c)

so, in this connection, the model (15) of chaotic wave processes in Chua system takes
the form:

�̇v = �̇v(1) + �̇v(2) + �̇v(3) = L(1)
3×3�v + 1

2! L(2)
3×9(�v ⊗ �v) + 1

3! L(3)
3×27(�v ⊗ �v ⊗ �v). (18)

Like theLorenz system,when theChua circuit is functioning in a chaoticmode, the
output signals from the cubic and quadratic kernels, being in antiphase, also partially
compensate each other (Fig. 2). This manifests the effect of self-organization of
processes in the Chua scheme [10]. Following to Corollary and Comment it consists
in the interaction of nonlinearities of the 2nd and 3rd orders with their subsequent
synchronization.
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Fig. 2 Examples of signals generated by quadratic L(2)
3×9 and cubic L(3)

3×27 kernels in accord with
the model (18) of origin of chaotic wave processes in complex NDS of Chua’s type

Let us justify the synchronization effect of nonlinear oscillations in the Chua
scheme within the framework of the general model (15). To this end, substituting
(17a)–(17c) into (18), we write the equation for the evolution of the first component
v1 of a vector variable �v from the state-space �3 of the Chua scheme:

v̇1 = αv2 − α(3Au∗2
1 + C)v1 − 3Aαu∗

1v
2
1 − Aαv3

1 . (19)

Introducing the notation, as in (5) for the Landau model:2γ1 = −α(3Au∗2
1 + C),

αL = 3Aαu∗
1, βL = Aα, we can write (19) in the form:

v̇1 = αv2 + 2γ1v1 − αLv2
1 − βLv3

1 . (20)

Given the above modeling parameters, we obtain the inequalities: 2γ1 =
−α(3Au∗2

1 + C) > 0, αL = 3Aαu∗
1 < 0, βL = Aα > 0, which fully correspond to

the conditions for the hard self-excitation of the system within the framework of the
Landau initial turbulence model [1, 9].

Under such conditions, a jump-like transition from a stationary regime of a
complex NDS to an unsteady one is observed, accompanied by the appearance of
two frequencies ω1 and ω2 defining two cycles in the state-space of the Chua system
(Fig. 3). The obtained result also finds its explanation from the point of view of the
Ruelle–Takens theory [5, 8]. Following this theory the power spectrum of signal from
a complex NDS (as a function of the control parameter α in the case of Chua scheme)
contains one frequencyω1 after the first Hopf bifurcation, then after the second Hopf
bifurcation it has two frequenciesω1 andω2 but sometimes three frequencies (ω1,ω2

and ω3), although the third frequency ω3 may not detect before chaos identified [8].
When an additional frequency arises, insignificant perturbations can destroy regular
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u3

u2 u1

Fig. 3 Example of chaotic double-scroll attractor in the state-space of Chua scheme

cycles forming the torus T3 and transform it into a chaotic attractor [5] (for example,
the “double-scroll” attractor in the state-space of the Chua scheme (see Fig. 3)).

Let us note that, compared with the initial Landau turbulence model (5), the
proposed model (15) applied to Chua circuit (18) gives a more general scalar (20)
for the evolution of the first component v1 of a vector variable �v, since it contains
an extra term αv2. This additional term characterizes the influence of the second
component v2 of the vector variable from the state-space �3 which allows us to find
more general conditions for the origin and evolution of chaotic wave processes in
comparison with the Landau model even in the case of 2γ1 < 0 [10], for example,
when α = 15.6, β = 28, A = 0.5131, C = −0.9255, u∗

1 = −0.75.
Thus, despite the difference in the physical phenomena described by the Lorenz

and Chua systems, the dynamics of their behavior in the state-space has a similar
scenario expressing in the synchronous “counteraction” of nonlinear processes of
even and odd orders (see Figs. 1 and 2) generated by the corresponding kernels
L(2k)

N×N 2k and L(2k+1)
N×N 2k+1 in the general vector–matrix model (15) of complex NDS in a

chaotic mode.
Now let us consider the general model (15) in the case of complex NDS of

FitzHugh–Nagumo [17, 18]:

⎧
⎪⎨

⎪⎩

u̇1 = cu1 − c

3
u3
1 + c u2 + cg;

u̇2 = a

c
+ b

c
u2 − 1

c
u1,

(21)

where a, b, c are the parameters of a complex NDS describing the active media
of the nerve fiber (in particular, a = 0.7, b = 0.8, c = 3.0), g is a bifurcation
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characteristic, moreover, −1.4023 < g < −0.3452.Similarly to the Chua system,
the dynamics of the complex FitzHugh–Nagumo system is also described by linear,
quadratic and cubic kernels [12, 13]:

L (1)
2x2(�u∗) =

[
c − c u∗2

1 c
− 1

c
b
c

]

, (21a)

L(2)
2x4(�u∗) =

[−2cu∗
1 0 0 0

0 0 0 0

]

, (21b)

L(3)
2x8(�u∗) =

[−2c 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

]

, (21c)

so that the model of the occurrence of chaotic wave processes in the FitzHugh–
Nagumo system has the form:

�̇v = �̇v(1) + �̇v(2) + �̇v(3) = L(1)
2×2�v + 1

2! L(2)
2×4(�v ⊗ �v) + 1

3! L(3)
2×8(�v ⊗ �v ⊗ �v). (22)

Taking into account (21a)–(21c), (22), the equation for evolution of the first
component v1 of the vector variable �v ∈ �3 for FitzHugh–Nagumo NDS takes
the form [10]:

v̇1 = cv2 + c(1 − u∗2
1 )v1 − cu∗

1v
2
1 − 1

3cv3
1 . (23)

Introducing notations similar to (5) of the Landau model: 2γ1 = c(1 − u∗2
1 ),

αL = cu∗
1, βL = c/3, for given parameters a = 0.7, b = 0.8, c = 3.0, and

u∗
1 = −0.45 we obtain the inequalities 2γ1 > 0, αL < 0, βL > 0, corresponding to

the condition of hard self-excitation of the system [9].
Figure 4 shows the attractors of FitzHugh–Nagumo NDS formed on the basis of

the limit cycle for the above parameters and restored on the basis of directly numerical
integration of system (21) and matrix decomposition (22).

Moreover, an additional control parameter u∗
1 opens up new possibilities

for studying the dynamics of FitzHugh–Nagumo NDS [10]. Indeed, at u∗
1 =

1.942908996, a qualitatively different chaotic attractor is observed in the state-space
of the FitzHugh–Nagumo system (see Fig. 5). Indeed, as seen from Fig. 5, with a
set of parameters b = 0.8, c = 3.0, u∗

1 = 1.942908996, an aperiodic mode arises
similar to the aperiodic regime in the Belousov–Zhabotinsky chemical model [8].

Thus, computational experiments carried out with two parameters u∗
1 = −0.45

and u∗
1 = 1.942908996 show that a limit cycle in the first case and a chaotic attractor

in the second case can be observed (see Figs. 4 and 5).
Following Corollary and Comment the signals from the outputs of kernels of

the matrix decomposition of the FitzHugh–Nagumo system must demonstrate the
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Fig. 4 Attractors of FitzHugh–Nagumo NDS built on the basis of matrix decomposition (a) and
without its use (b)

Fig. 5 The Fitz-Hugh chaotic attractor obtained under parameter values b = 0.8, c = 3.0, u∗
1 =

1.942908996

general property of a complex NDS in the chaotic regime, i.e. the synchronous
“counteraction” of nonlinear processes of even and odd orders (see Fig. 6).

Indeed, according to Fig. 6, the derivative of the first component v̇1 of the vector
variable �v ∈ �3 for the NDS of FitzHugh–Nagumo evolves in such a way that the
output signals from the linear and cubic kernels are in-phase added to synchronously
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Fig. 6 Examples of signals generated by linear L(1)
2×2, quadratic L(2)

2×4 and cubic L(3)
2×8 kernels of

the model (23) of origin of chaotic wave processes in the complex NDS of FitzHugh–Nagumo

“counteract” the output signal from the quadratic kernel. More precisely, during the
period the signals from the kernels of odd orders L(1)

2×2, L(3)
2×8 add up and compen-

sate for the signal from the even (second) kernel L(2)
2×4 which, as a whole, leads to

stabilization of the amplitude of the chaotic wave process [10].
Thus, the application of the matrix decomposition method permits us to obtain

new knowledge, for example, despite the difference in the physical phenomena
described by the FitzHugh–Nagumo’s, Chua’s and Lorenz’s systems, the dynamics
of their behaviour in the state-space has a similar scenario. Moreover, using the
matrix decomposition method for the NDS of FitzHugh–Nagumo a qualitatively
different chaotic attractor has been revealed at u∗

1 = 1.942908996 (Fig. 6) than the
one presented in Fig. 4(a) when u∗

1 = −0.45. To find out the reason for this, let us
prove the following theorem:

Theorem 2 (a necessary condition for self-organization in 2D NDS). For a two-
dimensional complex system, the following necessary conditions of instability
(leading to self-organization in 2D NDS) are valid:

SpL(1)
2×2 > 0, i f det L(1)

2×2 > 0 (24a)

SpL(1)
2×2 < 0, i f det L(1)

2×2 < 0, (24b)
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where L(1)
2×2 is a matrix of linearized 2D NDS, Sp and det are the trace and the

determinant of this matrix.

Proof we apply the bifurcation analysis technique to the kinetic model of FitzHugh–
Nagumo, for which we rewrite (21) in general form:

{
u̇1 = f1(u1, u2);
u̇2 = f2(u1, u2).

(25)

Let us consider the matrix of the linearized system L(1)
2×2 corresponding to (21a):

L(1)
2×2 =

[
l11 l12
l21 l22

]

, (26)

where l(1)i j =
[

∂ fi

∂u j

]

u∗
j

, i, j = 1, 2, are elements of the matrix L(1)
2×2. The trace

and the determinant of linearized matrix (26) are found according to well-known
formulas:

SpL(1)
2×2

(
u∗
1

) = l11 + l22; det L(1)
2×2

(
u∗
1

) = l11l22 − l12l21. (27)

It is known [6] that non-trivial solutions of a linearized system of equations exist
when the condition is carried out:

det
[

L(1)
2×2 − ωE2×2

]
= 0.

It defines the following characteristic equation:

ω2 − SpL(1)
2×2ω + det L(1)

2×2 = 0. (28)

To lose stability when the system leaves the stationary state, it is necessary that
at least one root of (28) has a positive real part, i.e.

Reωi > 0, (29)

where

ωi = 1

2
SpL(1)

2×2 ±
√

(
1

2
SpL(1)

2×2

)2

− det L(1)
2×2 i = 1, 2. (30)

As shown in [6], this occurs if the stationary state on the phase plane is described
by an unstable node or focus, and this singular point is usually surrounded by a phase
trajectory of the type of limit cycle. If inequality det L(1)

2×2 > 0 is fulfilled, then it
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follows from (28), (30) that in order to take place (29), the following condition must
hold: SpL(1)

2×2 > 0. This inequality determines the necessary condition for instability
leading to the origin of the phenomenon of self-organization in the active medium
[19]. As follows from (30), in the case of det L(1)

2×2 < 0 condition (29) is also satisfied

if SpL(1)
2×2 < 0, i.e. the necessary condition for self-organization takes the form (24b)

which proves the theorem.
So, according to Theorem 2, the above mentioned reason is that, taking into

account the diagonal elements l11 = c
(
1 − u∗2

1

)
and l22 = b/c of the linearized

matrix and, NDS of FitzHugh—Nagumo for given parameters a = 0.7, b = 0.8,
c = 3.0, and u∗

1 = 1.942908996 satisfies the second necessary instability condition
(24b) which leads to a change in inequalities in the Landau model: γ1 < 0, αL > 0,
βL > 0. In contrast, with the initial choice of the parameters a = 0.7, b = 0.8,
c = 3.0, and u∗

1 = −0.45, FitzHugh–Nagumo NDS satisfies the first necessary
instability condition (24a) corresponding to the condition of hard self-excitation of
the system according to the Landau model: γ1 > 0, αL < 0, βL > 0 [9].

5 Conclusion

Despite the great interest in the processes of self-organization in complex systems,
there is still no universal theoretical apparatus for their study which required the
development of new mathematical models of NDS and fairly general methods of
nonlinear analysis of their dynamic behavior.

In the present work, using the matrix decomposition of complex NDS operators
[11–16], a general model (15) for origin and evolution of chaotic wave processes
in complex systems is proposed. The proposed model shows that the effect of self-
organization in a complexNDSof various physical nature (hydrodynamic, electronic,
and electrochemical systems as examples) consists in the interaction of higher-order
nonlinear processes leading to stabilization (to a finite value) of the amplitude of the
chaotic wave process [10].

Mathematically, this is expressed in the synchronous “counteraction” of nonlinear
processes of even and odd orders (see Figs. 1, 2, 6) generated by the corresponding
kernels L(2k)

N×N 2k and L(2k+1)
N×N 2k+1 in the general vector–matrix model (15) of complex

NDS in a chaotic mode (see Theorem 1, Corollary and Comment). In addition,
the proposed vector–matrix model permits us to find more general conditions of
the origin and evolution of chaotic wave processes in comparison with the Landau
initial turbulence model (for example, if γ1 < 0). In other words, when the second
necessary condition of instability (24b) is fulfilled in accordance with Theorem 2,
an additional condition can be found for the appearance and evolution of chaotic
wave processes in a complex NDS. Thus, upon attaining the complex NDS the
chaotic mode, self-synchronization of oscillations is observed as a self-organization
phenomenon.
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Application of Ultrawideband Chaotic
Signals for Wireless Ranging

Lev Kuzmin and Elena Efremova

Abstract The results of an experimental estimation of the propagation time of ultra-
wideband chaotic radio pulses occupying frequency band 2.5–3.5GHz through a
multipath wireless channel are described. Accuracy of the time of the arrival mea-
surement of ultra-wideband chaotic radio pulses by their envelope is assessed in
industrial and office environment, in order to solve the problem of wireless ranging
and localization of objects in space.

Keywords Ultra-wideband signals · Chaotic signals · Chaotic radio pulses ·
Multipath propagation · Multipath fading · Localization · Time of arrival
measurement

1 Introduction

Chaotic oscillations have a number of properties that permanently attract the attention
of researchers. The use of chaotic signals as noise-like information carrier is inter-
esting from the practical point of view in wireless communication systems Andreyev
et al. [1], radar systems Liu et al. [2] and in the problem of wireless measurement of
the distance between objects Beal et al. [3].

Measuring the time of radio signals propagation through a wireless channel is a
vital scientific andpractical taskZafari et al. [4].Oneof the reasons is the development
of robotic systems inwhich the objectsmust be localized using omni-directional radio
systems in the unlicensed frequency range 2–10GHz (centimeter wavelength range).
Such systems are intended for use in industrial, residential and urban infrastructure,
where the effects of multipath propagation are strong, which has significant effect on
the accuracy. So, the problem of the accuracy of measuring radio signal propagation
time in multipath channels is critical Hölzl et al. [5], Alarifi et al. [6]. In addition to
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traditional narrowband (NB) technologies Hölzl et al. [5] (WiFi, Bluetooth, ZigBee,
where the distance is determined by the power of the received signal or the angle at the
emitter), good candidates for solving this problem are noise-like and ultra-wideband
(UWB) signals Alarifi et al. [6]. Their two useful basic features are the short time
of coherence (narrow autocorrelation function of chaotic signal) and a large signal
gain. Due to these features, one can to achieve potentially large processing gain in
the receiver and high accuracy of estimating signal parameters (power or phase) after
propagation through the channel.Moreover, the signal gain can very simply be varied
technically during the chaotic signal formation, and it can be involved in the receiver.

Technical methods of evaluating signal parameters ultimately determine the capa-
bilities of specific wireless technologies. In NB systems, the location accuracy does
not exceed 1m Hölzl et al. [5].

Theoretical estimates Skolnik [7], Cardinali et al. [8] show that for UWB signals
the potentially achievable accuracy is rather high. Namely, with a 1.5GHz bandwidth
the ranging error varies (in order of magnitude) from 10−7 to 10−4 m for the distances
up to 10m Cardinali et al. [8]. From the physical viewpoint, the maximum distance
is determined by the signal-to-noise ratio at the receiver input. For example, for the
signal with 3GHz central frequency (7.5cm wavelength) and 1GHz bandwidth, this
corresponds to sub-millimeter measurement accuracy. Actually, this is the accuracy
of optical directional measuring instruments.

At the same time, it is not always possible to implement theoretical limits in prac-
tice, both for technical reasons and for the reasons related with the signal propagation
conditions in real wireless communication channels, such as the receiver noise and
multipath propagation, which limit the ability of determining the real time of signal
propagation.

An attempt to improve accuracy by means of the use of UWB signals encounters
the effect of multipath propagation, which, in the case of ultra-short (US) pulses,
manifests itself in distortion of the shape, amplitude and phase of the pulses. This
restricts the potentially very high measurement accuracy of propagation time of US
pulses (∼100 ps). In UWB systems with US pulses, e.g., in UWB Decawave DWM-
1000 or Ubisense modules, the indoor localization accuracy does not exceed 10cm
at distances up to 10m Zafari et al. [4], Alarifi et al. [6], Poulose et al. [9], Wijaya et
al. [10], Schroeer [11].

Therefore, it seems more appropriate to use a different approach based on mea-
suring the signal propagation time by means of analyzing its envelope. Of course, in
this case it is impossible to count on the sub-millimeter measurement accuracy, but
technically it is much simpler. Moreover, in this case the restrictions imposed by the
signal propagation conditions are also much weaker.

In the framework of this problem UWB chaotic radio pulses seem to be free from
disadvantages of UWB US pulses in multipath channels. The envelope of UWB
chaotic radio pulses changes only slightly when passing through amultipath channel,
because of its noise-like nature Kuz’min et al. [12], Efremova et al. [13], and the
pulse duration can be chosen much longer than the duration of the multipath channel
response. This allows us to measure the signal propagation time by measuring the
parameters of the envelope, not the carrier wave.
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The goal of the work is to experimentally confirm the possibility of measuring
time and distance using UWB chaotic microwave pulse envelope in real multipath
channels and to propose a corresponding method.

2 Experimental Setup

The experiment was carried out in a laboratory room using UWB direct chaotic
transceivers Dmitriev et al. [14] in accordance with the scheme in Fig. 1a. In the
emitter TX , a chaotic oscillation generatorGC formed Dmitriev et al. [15] a sequence
s(t) of chaotic radio pulses of duration TP = 166 ns, power PP = 50 mW, frequency
band2.5–3.5GHzand repetition period2TP , according to themodulation signalm(t).
After the channel C , the signal sC(t) was fed to the receiver ED , which formed the
envelope e(t) of the signal sC(t). The distance d between the emitter and receiver
was varied from 25 to 150cm. In oscilloscope Osc the signal waveforms m(t) and
e(t) were recorded from the moment of the leading-edge arrival of the m(t) signal
first pulse.

Following the procedure of Skolnik [7], let us estimate the distance measurement
accuracy attainable at distance d. The shape of the chaotic radio pulse envelope is
adequately approximated with a rectangular or trapezoidal pulse. Let us consider the
rectangular pulse approximation.

Fig. 1 Experimental setup
(a) for measuring the time of
chaotic radio pulse
propagation from emitter Tx
to receiver Rx at distance di
(from d0 = 25 cm to
d8 = 150 cm): m(t) is the
signal that modulates chaotic
oscillator GC , e(t) is
envelope of chaotic radio
pulses at log-detector output
ED , C is wireless channel.
Transceiver module (b)
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The error δd in determining the distance is expressed by expression δd = cδt ,
where c is the light speed in vacuum and δt is the RMS measurement error of the
pulse arrival time. According to Skolnik [7]

δt =
(

τ

2BE/N0

) 1
2

=
(

τN0

2BPdτ

) 1
2

=
(

N0

2BPd

) 1
2

where B is the bandwidth, E is the energy of one received pulse, N0 is the noise
spectral density, τ is the transmitted pulse duration, Pd = E/τ is the pulse power at
distance d.

Let Qd ∼ 1/dn be the signal attenuation at distance d between the receiver and
the emitter, and n be the attenuation index of the real wireless channel. Then Qd (in
decibel) can be calculated as Qd = Q0 + 10n lg d/d0, where Q0 is the attenuation
of the signal at a distance d0.

Then the pulse power Pd [dB] at distance d from the emitter is determined by
the following expression: Pd [dB] = Prad [dB] −Qd [dB] = Prad [dB] −Q0 [dB]−
10n lg d/d0.

Due to antenna losses Qant [dB] and the use of low-noise-amplifier (LNA) with
power gain Qamp [dB] in the receiver, the expression should be supplemented:
Pd [dB] = Prad [dB] − Q0 [dB] − Qant [dB] + Qamp [dB] − 10n lg d/d0.

Hence,

δt (d) =
(
N0

2B
10−(Pd [dB]/10)

)1/2

.
In the experiments, a transmitter Fig. 1b with 17-dBm (50 mW) emission power

and 19-dB attenuator are used, so the emitted power Prad = −2 dBm. The anten-
nas losses are assumed to be Qant = 6 dB, the LNA power gain Qamp = 20 dB.
The distance d0 was taken as 1m. Attenuation in free space at a 1-m distance is
Q0 = −41.3 dB. Let us take the entire frequency band of the chaotic signal be
B = 1 GHz, assuming there is no additional filtering in the receiver. Noise power
spectral density at temperature 290K is N0 = 4 · 10−21 W/Hz. For example calcula-
tions give accuracy values of about 4cm at 100m. For a distance of 1.5m, as in the
experiment, the theoretical accuracy is about 0.6mm.

The chaotic radio pulse propagation time is measured by means of comparing the
signal waveformsm(t) and e(t). The time difference of the leading edges of the pulse
envelopes of the transmitter signal m(t) and the receiver signal e(t) was evaluated
for each pair of transmitted and received pulses. This method is the most attractive
from the technical viewpoint and it is extensively discussed D’Andrea et al. [16],
Dardari et al. [17], Liu et al. [18], Zwirello et al. [19].

Modulation signal m(t) controls the base-emitter junction of the transistor gen-
erator GC of UWB chaotic radio pulses. The transistor oscillator GC gives chaotic
radio pulses, the initial pieces of which are nearly identical Dmitriev et al. [15], so
in the receiver, the leading edges of all pulse envelopes are similar for the same
propagation conditions, to within the effect of noise.



Application of Ultrawideband Chaotic Signals for Wireless Ranging 435

The receiver is based on a UWB log-detector [20] and a low-noise amplifier with
the signal gain 102. The receiver sensitivity is 3 · 10−9 mW. Instantaneous value of
envelope e(d, t) at the receiver output is proportional to logarithm of instantaneous
power of UWB chaotic signal at the receiver input. The envelope amplitude obeys
e(d, t) = 10αlgP(d, t)/P0, where P0 = 1 mW is reference power; α is log-detector
slope; P(d, t) is the signal power that came from the transmitter at distance d.

For the incoming power within the range 3 · 10−9 to 10mW, the detector gives
the output signal amplitude e(d, t) within the range 0.5 to 2V, respectively. This is
enough to have technical opportunity to receive UWB chaotic radio pulses with the
power varying from50mWat the transmitter output (d = 0) to 0.05mW(d = 25 cm)
or to 0.0025mW (d = 150 cm) at the receiver input. These power values correspond
to the receiver SNR for which the negative effect of noise is negligibly small and
only the interference due to multipath propagation must be taken into account.

For each transmitter pulse, the emission moment was determined by the leading
edge as the moment τM the modulating signal m(t) exceeded the threshold value
VM Fig. 2a. In the receiver, the pulse arrival time was recorded at the moment τE the
signal e(t) exceeded the value VE , i.e., m(τM) = VM and e(τE ) = VE , respectively.
The difference τE − τM between these moments is equal to the pulse propagation
time from the moment it was formed in the transmitter to the moment it appeared
at the receiver output. This difference includes the processing time TC for which
the signal passes through the output circuits of the transmitter, the processing time
of the receiver circuits and the propagation time through the space from antenna to
antenna:

TD = τE − τM = TS + TC

3 Results of the Experiment

Waveforms mi (t) and ei (t), i = 0...8, for distances di ={25, 30, 37.5, 50, 62.5, 75,
100, 125, 150} cm between the emitter and receiver were recorded in the experiment.
Thewaveformsmi (t) and ei (t)were sampled in the oscilloscope, sampling frequency
fS = 2.5 GHz. The time step 0.4 ns between the samples corresponds to 12cm
accuracy of distance.

To determine the pure pulse propagation time TS through the wireless channel
(from antenna to antenna) it is necessary to exclude the unknown time value TC . To
do this, the propagation times TS(Δdi ) through distance Δdi = di − d0 correspond-
ing to the difference TS(Δdi ) = TD(di ) − TD(d0) = (τE − τM)i − (τE − τM)0 =
T (i)
S − T (0)

S between the propagation time TD(d0) for distance d0 and TD(di ) for
di were evaluated.

Initial fragments of pulse waveforms ei (t) and mi (t) are depicted in Fig. 2b for
distances d0 = 25 and d8 = 150 cm. The leading edge of the pulse rises for approx.
15 ns (Fig. 2b). The more the distance between the emitter and the receiver, the
smaller the envelope amplitude. The trailing edge of the pulses is formed by the
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Fig. 2 Signal waveforms (a), (b) in the emitter and receiver: m(t) is curve 1, e(t) is curves 3 and 4
for d0 = 25 cm and for d8 = 150 cm, respectively; line 2 marks the threshold voltage to determine
the emission moment; lines 5 and 6 are threshold voltage values for pulse envelopes in the receiver
for d0 = 25 cm and for d8 = 150 cm, respectively; lines 7 and 8 mark the mean amplitude of pulse
envelopes for distances d0 = 25 cm and d8 = 150 cm, respectively
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Fig. 3 Distribution of time of arrival values P
(
ΔT ( j)

i

)
for distances d0 = 25 cm (curve 1),

d4 = 50 cm (curve 2), d6 = 75 cm (curve 3), d9 = 150 cm (curve 4). Vertical lines mark aver-
age propagation time values ΔTi = 〈ΔT ( j)

i 〉

delayed paths. Values VM and VE were set at the half of the average amplitudes
of pulse envelopes: VM = V (i)

M = A(i)
M /2 and VE = V (i)

E = A(i)
E /2. It allows us to

compare the pulse propagation time for different distances by the time moments
corresponding to the same pulse phase, namely, themomentswhen the pulse achieves
half of its maximum amplitude. The envelope pulse amplitude is proportional to its
power; the mean pulse amplitude corresponds to half the pulse power at a given
distance from the source.

Moments τ
( j)
i (VM) of the leading edge of each pulse of signal m(t) and moments

τ
( j)
i (VE ) for the signal e(t)were determined in the experiment, where j = 1 . . . 1000
corresponds to pulse numbers in signals mi (t) and ei (t). Distributions of time dif-
ferences ΔT ( j)

i (di ) estimated in the experiment are depicted in Fig. 3: ΔT ( j)
i (di ) =

τ
( j)
i (VE ) − τ

( j)
i (VM). Vertical black lines denote the average values ΔTi = 〈ΔT ( j)

i 〉,
where angle brackets mean averaging by j .

Distances DS(di , d0) were estimated using average propagation time values ΔTi
(Fig. 4a): DS(di , d0) = c(ΔTi − ΔT0), where c is light speed. Solid line corresponds
to actual distance values. Errors of distance estimation ES(Δdi ) = DS(di , d0) −
(di − d0) are presented in Fig. 4b; errors vary from 1 to 15cm.

The described method of measuring propagation time requires the knowledge
of the threshold VE = A(i)

E /2, that depends on the amplitude of pulse envelope.
Practically it is not convenient and it is much more interesting to measure the sig-
nal propagation time referring to a constant threshold value VE = TE that does not
depend on the pulse envelope amplitude A(i)

E .
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Fig. 4 Distance estimate DS(Δdi ) (a) and average error ES(Δdi ) (b) as functions of true distance
Δdi calculated from: average time delay between emitted and received pulses (diamonds) being
in phase; average time delay between emitted and received pulses for constant threshold (crosses);
minimum time propagation delay for the packet of pulses (squares); maximum cross-correlation
function between emitted and received signals (circles)

Estimation of moments τ
( j)
i (TE = 0.5 V ) and corresponding distances DS(di −

d0) for a constant threshold value VE = TE = 0.5 V , that is not changed in the
experiment for different sets of pulses, gives biased estimates (Fig. 4a, crosses). This
result agrees with Zwirello et al. [19], where it was also shown that energy detection
of UWB ultra short pulses with constant threshold gave biased propagation time.

Application of “threshold” method under condition of correct choice of signal
reception phase solves the problem of estimating chaotic pulse propagation time by
its envelope, but there arises a question: is it possible tomeasure the pulse propagation
time for a series (a packet) of pulses, but not for each separate pulse? This approach
seems to give more precise estimates. The following method is proposed.

Consider a value
(
τ

( j)
i (VE ) − Δ

) − τ
( j)
i (VM), where Δ is parameter. If Δ is

exactly equal to the pulse propagation time, then above value is equal to zero:(
τ

( j)
i (VE ) − Δ

) − τ
( j)
i (VM) = 0. The sum of modules

T (Δ) =
N∑
j=1

| (
τ

( j)
i (VE ) − Δ

) − τ
( j)
i (VM) |

is equal to zero T (Δ) = 0, if the pulse propagation time for each pulse is equal to
Δ; otherwise, in case of measurement errors, it is greater than zero. Let us find Δopt ,
that is the value minimizing T (Δ):
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Fig. 5 Time-aligned envelope e(t) and modulating m(t) signal waveforms for the maximum of
cross-correlation function for distances d0 = 25 cm (curve 1), d4 = 50 cm (curve 2), d6 = 75 cm
(curve 3) and d8 = 150 cm (curve 4)

Δopt = argmin
Δ

N∑
j=1

| (
τ

( j)
i (VE ) − Δ

) − τ
( j)
i (VM) |

.
The found value Δopt is an estimate of pulse propagation time based on the series

of N pulses. The results are depicted in Fig. 4a, b. The achieved accuracy is better
than that based on the single pulse.

Finally, it is interesting to consider another limiting case. Let estimate the pulse
propagation time using the cross-correlation technique widely accepted in physics.
The propagation time TD equals to the time shift between signals m(t) and e(t) for
which the correlation function achieves the maximum:

TD = argmax
t

+∞∫
−∞

m(t − τ)e(τ )dτ

.
Results of distance estimations based on the calculations of TD are depicted in

Fig. 4a, b. Here also, the bias of the pulse propagation time attracts attention. This is
due to the amplitude properties of the correlated signals, i.e. the correlation function
achieves the maximum if the correlated signals fit in shape, but the shape itself in
the context of determining the propagation time has no physical meaning (Fig. 5).
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4 Conclusion

The results confirm that application ofUWBchaotic radio pulses inmultipath channel
allows us to achieve centimeter precision in wireless ranging. This precision is worse
than the theoretical limit, but it is better than the oscilloscope precision. The described
approaches to wireless ranging can be applied in real wireless transceiver based on
UWB chaotic signals.

The obtained results show that the estimation error is essentially less than typical
path delays of the multipath channel, that is about ≈1 m in terms of distance.

Authors thank Itskov V. V. and PetrosiyanM.M. for the help with the experiment.
This work is supported by the State Assignment of the Kotelnikov Institute of

Radio Engineering and Electronics.

References

1. Yu.V. Andreyev, A.S. Dmitriev, E.V. Efremova, A.D. Khilinsky, L.V. Kuzmin, Qualitative
theory of dynamical systems, chaos and contemporary communications. Int. J. Bifurc. Chaos
15(11), 3639–3651 (2005)

2. L. Liu, R.X. Ma, H. Xu, W.K. Wang, B.J. Wang, J.X. Li, Experimental investigation of a UWB
direct chaotic through-wall imaging radar using Colpitts oscillator, in IET International Radar
Conference, Hangzhou (2015), pp. 1–6

3. A.N.Beal, S.D.Cohen, T.M. Syed,Generating and detecting solvable chaos at radio frequencies
with consideration to multi-user ranging. Sensors 20(3), 774–796 (2020)

4. F. Zafari, A. Gkelias, K.K. Leung, A survey of indoor localization systems and technologies.
IEEE Commun. Surv. Tutor. 21(3), 2568–2599 (2019)

5. M. Hölzl, R. Neumeier, G. Ostermayer, Localization in an industrial environment: a case study
on the difficulties for positioning in a harsh environment. Int. J. Distrib. Sens. Netw. 11(8),
1–11 (2015)

6. A. Alarifi, A. Al-Salman, M. Alsaleh, A. Alnafessah, S. Al-Hadhrami, M.A. Al-Ammar, H.S.
Al-Khalifa, Ultra wideband indoor positioning technologies: analysis and recent advances.
Sensors 16(5), 707–742 (2016)

7. M.I. Skolnik, Theoretical accuracy of radar measurements. IRE Trans. Aeronaut. Navig. Elec-
tron. ANE-7 4, 123–129 (1960)

8. R. Cardinali, L. De Nardis, M.-G. Di Benedetto, P. Lombardo, UWB ranging accuracy in high-
and low-data-rate application. IEEE Trans. Microw. Theory Tech. 54(4), 1865–1875 (2006)

9. A. Poulose, O.S. Eyobu, M. Kim, D.S. Han, Localization error analysis of indoor positioning
system based on UWB measurements, in Eleventh International Conference on Ubiquitous
and Future Networks (ICUFN), Zagreb, Croatia (2019), pp. 84–88

10. B. Wijaya, N. Deng, K. Jiang, R. Yan, D. Yang, Real-time adaptive UWB positioning system
enhanced by sensor fusion for multiple targets detection, in IEEE Intelligent Vehicles Sympo-
sium (IV), Paris, France (2019), pp. 1239–1246

11. G. Schroeer, A real-time UWB multi-channel indoor positioning system for industrial scenar-
ios, in International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes
(2018), pp. 1–5

12. L.V. Kuz’min, A.V. Grinevich,Method of blind detection of ultrawideband chaotic radio pulses
on the background of interpulse interference. Tech. Phys. Lett. 45, 831–834 (2019)

13. E.V. Efremova, A.S. Dmitriev, L.V. Kuzmin, Measuring the distance between an emitter and a
receiver in the wireless communication channel by ultrawideband chaotic radio pulses. Tech.
Phys. Lett. 45, 853–857 (2019)



Application of Ultrawideband Chaotic Signals for Wireless Ranging 441

14. A.S. Dmitriev, E.V. Efremova, A.V. Kletsov, L.V. Kuz’min, A.M. Laktyushkin, V.Yu. Yurkin,
Wireless ultrawideband communications and sensor networks. J. Commun. Technol. Electron.
53, 1206–1216 (2008)

15. A. Dmitriev, E. Efremova, L. Kuzmin, N. Atanov, Forming pulses in non-autonomous chaotic
oscillator. Int. J. Bifurc. Chaos 17(10), 3443–3448 (2007)

16. A.N. D’Andrea, U. Mengali, R. Reggiannini, The modified Cramer-Rao bound and its appli-
cation to synchronization problems. IEEE Trans. Commun. 42(234), 1391–1399 (1994)

17. D. Dardari, C. Chong, M. Win, Threshold-based time-of-arrival estimators in UWB dense
multipath channels. IEEE Trans. Commun. 56(8), 1366–1378 (2008)

18. W. Liu, H. Ding, X. Huang, Z. Liu, TOA estimation in IR UWB ranging with energy detection
receiver using received signal characteristics. IEEE Commun. Lett. 16(5), 738–741 (2012)

19. L. Zwirello, T. Schipper, M. Jalilvand, T. Zwick, Realization limits of impulse-based local-
ization system for large-scale indoor applications. IEEE Trans. Instrum. Meas. 64(1), 39–51
(2015)

20. Analog Devices, Data Sheet 1 MHz to 4 GHz, 80 dB, Logarithmic Detector/Controller, http://
www.analog.com/media/en/technical-documentation/data-sheets/ADL5513.pdf

http://www.analog.com/media/en/technical-documentation/data-sheets/ADL5513.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADL5513.pdf


The St Elmo’s Fire: Its Formation
and Measurement on Both Natural
and Artificial Structures

V. J. Law and D. P. Dowling

Abstract Since the beginning of recorded history Saint Elmo’s fire (SEF) has been
observed and experienced by humans in and close to thunderstorms which are dissi-
pating in strength, either at sea level or in mountainous regions. The systematic study
of SEF in nature has proved difficult due to inadequate measurement equipment and
the understanding of high-voltage circuit requirements for partial gas breakdown
measurement. The understanding of how SEF is generated is not only important in
developing protection systems for shipping and aircraft flying at high altitudes and
landing, but also for bioelectronics. Arguably our understanding of SEF is largely
based on historical events and the empirical mathematical construct of Peek’s Law,
which attempts to identify the visual inception voltage in terms of the minimum
electrical field stress required for the generation of corona discharge at sharp protru-
sions. This paper examines how SEF is formed around water–ice particles (graupel),
as well on the surface of dirigible airships and airplanes. The paper also compares
these ‘natural’ mechanisms to those which are recreated under laboratory conditions,
using high-voltage direct-current, (HVDC-), high voltage alternating-current HVAC
(50 Hz), as well as using a Tesla coil (0.3 to 30MHz). SEF has also been investigated
for the stimulation of living insects; it can also be used for their eradication. The Tesla
coil circuit has been demonstrated to be suitable for the creation of a minimum visual
inception voltage on both these living insects (moths and beetles), as well as on larger
artificial objects such as ship models.
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1 Introduction

The objective of this paper is to help explain the nature and impact of Saint Elmo’s
fire (SEF), which is a naturally occurring discharge observed in the Earth’s lower
atmosphere. A further objective is to compare the effect of this electrification process
on both living andmanmade objects. Human observations of SEF have been reported
from ancient times to the present day. For example the ancient Greek’s described eye-
witness accounts of naturally occurring atmospheric luminous disturbances, within
thunderstorms and volcanic eruptions. At the time these events were called Helena
where one was seen, and Caster and Pollux (the twin brothers of Helen) when two
appeared. In Roman times these ‘brothers’ were regarded as the patrons Saints of
Mediterranean sailors, to whom they appeared as SEF on the masts and spars of
sailing ships as the electrical storm disturbance, began to dissipate. These good
omens being manifest as characteristic cracking or hissing sound with a blue/violet
flame-like glow. Between the years 1610–1611, art emulates real life when William
Strachey’s account of the ill-fated ‘Sea adventure’ voyage from the new world in
1610, is retold byWilliamShakespearewithin the play ‘The Tempest’ [1]. In this play,
SEF takes on a more sinister role as the spirit ‘Arial’ who manipulates the mariners
off the ship. Further on in time, in the summer of 1786, Britain and mainland Europe
experienced a major dust cloud, caused by a plume of ash that was carried by the
prevailing Atlantic winds when the Icelandic volcanic Laki erupted. This led to an
extronary number of violent lighting storms. Eye-witness accounts from the time,
detailed how ball-lighting (BL) and fireball’s (FB’s) occurred. At least 17 events
were recorded during the period from June 30th to August 31st in Britain and Ireland
alone [2]. Modern measurements of the volcanic ash, from a Icelandic eruption in
2010, showed that the ash particles were typically SiO2 with particle sizes in the
nano and micron range [3, 4]. These particles spread over Scotland and mainland
Europe, with larger particles falling closer to the source. In 1886, these atmospheric
phenomenon started to be systematically complied and reported [5] as SEF [6],
BL [7] and FB [8]. The latter two types proving to be more life threatening when
compared to SEF. It is clear however that many of the eye-witness accounts from
that time, were not scientifically formulated and possibly some were embellished. In
addition it has become clear that BL has the ability to interfere with radio broadcasts
and to transfer part of its information through a glass window pane with and without
damage to the glass [4, and 8−11]. In the period 1899 to 1900, while working on
wireless power transmission at Colorado Springs Nikola Telsa performed a series of
electrical and photographic studies, aimed at artificially generated FB [12]. In his
notes Tesla proposed two hypotheses, firstly, that a ‘fireball is produced by sudden
heating, to high incandescence, of a mass of air or other gas as the case may be,
by the passage of a powerful discharge’. And secondly, maintenance of the FB may
come from an external source such as stray, or a second cooperating electric field.
Today the term cooperating has become equivalent to a resonance condition. By
1928, the term for this electrical phenomenon began to be classified under the term
‘plasma’ (Greek:meaningmouldable substance),which considers an assembly of gas
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molecules that has some of its atoms or molecules temporally ionized or excited [13].
The optical emissions obtained from plasmas are related to the relaxation processes
of the ionized and excited species. By 1952 the subclass ‘plasmoid’ was added by
Winston H. Bostick, which defines a separate plasma-magnetic entity that may be
ejected from the parent plasma [14].

More recent (1978), Challahan and Makin, in an attempt to partly explain
nocturnal observations (1965–1968) of unidentified flying object (UFO) in the Utah
Deseret-USA, performed a series of electrification experiments on moths and beetles
that are naturally found in the Uintah basin [15]. From their experiments they
proposed that a mass swarm of glowing (blue) insect could help explain some UFO
sightings in the Utah basin.

Grigor’ev et al. [16] and Donoso et al. [17] have statically shown that buoyant and
mobile BL and surface attached SEF originate from thunderstorm activity, but there
is a need to differentiate between their electrification mechanisms. Today, there is a
renewed need to look at SEF, in particular due to impact on aircraft static discharge, as
well as the online misinterpretation of cockpit window Precipitation-static (P-Static)
discharges as SEF.An experimentally generated examplewas formed through the use
of single, dual and multiple array metal (1−2 mm diameter) aerial-antenna igniter
obtained using a converted domestic microwave oven plasma reactors (DMOPR).
This equipment was fabricated for the production of hydrogen [18], as well as func-
tional carbon-based nanostructures [19]. Within these systems, dielectric heating of
the liquid and microwave aerial-antenna igniter generate bubbles and as the bubbles
grow (under enhanced electric field stress at the igniter tips) they become detached
from the metal surface and become buoyant. Fast camera imaging of water bubble
growth and calculation also suggest as the interface liquid film dries, electrification
(gas breakdown) of the bubble gas occurs producing a plasmoid at approximately
0.1−0.3 kV cm−1 in the pressure range of 7−20 kPa. This electrification transi-
tion from bubble to plasmoid has many similarities to electrification of graupel in
thunderclouds and insects flying through high electric fields near thunderclouds.
Improving the understanding of these electrification processes is part of the motiva-
tion of this paper. A further objective is to examine the complexity of terminology
of BL, plasmoid, and SEF which describe electrification around point-like objects
that are either metal conductors or living biological entities, in this case insects. In
addition to help to differentiate SEF, from the 2-dimenational surface Streamers that
forms on insulating surfaces. This paper reviews atmospheric corona disturbance
and nitrogen chemistry (Sect. 2), SEF formation via of graupel and electrification of
thunderclouds (Sect. 3); Peek’s Law that determines the visual inception electrical
field strength for SEF production prior to gas breakdown (Sect. 4); storm activity
leading to dirigible airship disasters (Sect. 5); aircraft encounter with atmospheric
pressure electric fields (Sect. 6). Section 7 considers HVDC-, HVAC and Tesla coil
stimulation of model sailing ships in the length range of 1 to 10 cm. Section 8 reports
on how electric fields can be used to stimulation of in sects (Sect. 8.1) as well as to
annihilate them (Sect. 8.2). Finally Sect. 9 provides discussion and summary of this
work.
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2 Atmospheric Corona Disturbance and Nitrogen
Chemistry

Saint Elmo’s fire (sometimes called brush discharge) is generally regarded to be
produced at regions of high electrical stress around the tip of conducting tips and
protrusions due to the geometric field enhancement where equal-potential lines
become bunch up [19–21]. These partial discharges occur on elevated structures
on the earth surface (Fig. 1) and beyond the cruising altitude of normal commercial
aircraft (typically 10−12 km), close to the upper limit of the earth’s troposphere.
It is now accepted that the energy that initiates these discharges originate for the
dc potential difference between thunderclouds and ground and, ac electrical fields
generated by lighting within cloud-to-cloud and cloud-to-ground/sea [8–11]. Within
this atmospheric altitude range, mathematical models that estimate the corona visible
inception voltages are generally normalized to pressure. For example, fair weather air
atmospheric pressure conditions (20 °C and 101.3 kPa) at sea level are normalized to
1 atm and decreases with altitude (10−12 km corresponding to 0.24 to 0.18 atm). An
example of this normalization process can be found in Peek’s Law [20], see Sect. 4.

Statistical analysis of over 200 SEF eyewitness observations under different
geographical locations which indicated that approximately 62% of the observa-
tion had a blue/violet appearance, 20% appear to be white and 13% were red
[15, 16]. Optical emission spectroscopy (OES) of SEF on aircraft reveals a similar
blue/violet emission that can be attributed to the 2nd positive system of nitrogen (N2)(
C3�+

u − B3�+
g

)
: < 18 eV [21–23]. In the laboratory at sea/ground level, the authors

of this work has measured the OES of the 2nd positive N2 system within a flowing
air arc afterglow as a function of axial distance and determined the gas temperature
varied from 500−300 K in the near-afterglow to >300 K in the far-afterglow [24].

3 SEF Formation via Graupel

In order to interpret the formation of SEF and to differentiate it from BL, their
origins within the earth’s weather system is considered as function optical emission
of atmospheric air (mainly a mixture of N2 and oxygen (O2)) and graupel (a mixture
of water and ice particles) surface chemistry.

First consider the convection of warmed air from the earth as it expands adiabat-
ically as it rises through the troposphere until it reaches the stratosphere, where the
sun’s energy reheats the circulated air. This natural convection process allows the
cloud to capture positive charged particles resulting in a initial electrification of the
cloud. With increasing electrification a negative charge begins to be formed on the
upper cloud boundary which then flows down outside to the base of the cloud. The
accumulation of negative charge at the base of the cloud, now by convention called
cumulonimbus, reinforces the cloud-ground/sea electric field. The electric field in this
region is known to be of the order of 1−3 kV cm−1 that is not sufficient to overcome
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the dielectric strength of air. To achieve the required field strength an inductive charge
process within clouds has been considered [25, 26] where water moisture (H2O) is
propelled to high altitudes by updroughts and cools to form graupel that undergoes
a continuous dissociation–recombination process forming hydronium ions (H3O+)
and hydroxyl ions (OH−) intermediate products. This reversible reaction process is
given in (1) where approximately 20% of the intermediate product ions are available
for electrification.

2H2O
graupel↔ H3O+ + OH− (1)

Under natural background acidic conditions, charge separation of the available
ions then follows, where the H3O+ ions move into the vapor phase, and due to
their buoyancy are lifted by updroughts to the top of the cloud leaving the larger
and denser OH− charged graupel to fall under gravity to bottom of the cloud. This
dynamic process generates a potential difference between the top and bottom cloud
boundaries. With increasing gravitational separation, the negative charged graupel
forms a negative space-charge that enhances the pre-existing fairweather electric field
between the cloud and ground/sea. When the charge attraction between the cloud
bottom boundary and ground strengthens, electrons and negative charged ions shoot
down from the cloud as stepped leaders to meet upward positive charged streamers
to produce a lighting channel. As the enhanced electric field subsides, sufficient
energy still remains to partially ionize N2 molecules at the enhanced electrical fields
at metal protrusions, at or, near ground level to produce the characteristic blue/violet
appearance of SEF.

It has been proposed [26], that where a cluster (10 or more) of charged graupel
particles fall to the ground in the absence of a metal protrusion SEF does not occur
but a collective discharge action occurs breaking down the surrounding atmospheric
air causing the production of buoyant BL. The characteristic optical emission of
which ranges from yellow, through orange, to red λ = 550−780 nm) as indicated.
The associated atomic and molecular ion spectra are: atomic-H-Balmer-α line ( λ =
656 nm), the 1st positive system nitrogen (λ = 580 and 654 nm), the O (3p5P− 3s5S)
(λ = 777 nm) and the excited NO2

* molecule continuum (λ = 450−800 nm). Plus
metastable neutral oxygen (λ = 557.7 nm). The emission lines and bands quenching
as the graupel finally melts.

4 Peek’s Law for a Single Metal Electrode (Protrusions
and Tips)

Increasing the electrical stress around a single metal electrode tip (or protrusions)
ultimately results in local air breakdown around the electrode. At this level of stress,
the local air volume is weakly ionized followed by a rapid electron recombination
back to the ground state discharge. On themilliseconds time scale the outer boundary
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of this volume, the ionization frequency (vi) just balances the electron loss frequency
(va) by attachment [27], see (2), and Fig. 3. Under these condition a static corona
discharge, or SEF, appears attached to the electrode with the visual inception voltage
being higher than the visual extinction voltage because, once started there are always
electrons to ionize gas molecules [28].

Vi − Va ≈ 0 (2)

Upon increasing the voltage stress level further (~5 kV cm−1), the discharge
extends outward to formmultiple streamers flowing from the electrode, where break-
down is enhanced by the production of electrons at the head of streamer. If the
voltage becomes large or a counter electrode is close by (1−10 cm) a conducting
trail or channel may form producing a flashover discharge. If the applied voltage
is maintained then sparks may be also formed. Increasing the voltage stress still
further, creates bidirectional leaders are formed, which involve; space-charge and a
gas heating (≥500 K) mechanisms, rather than corona onset alone.

Fig. 1 Engraving of SEF on the spars and masts of a sailing ship. Dr. G. Hartwig. (The Aerial
World. (London 1886) [6]
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Fig. 2 A Diagrammatic representation of graupel falling, under gravity onto a conducting tip;
b SEF formed around this conducting tip: The relaxation reaction (the blue/violet optical emission)
is shown in the annotation box b. Vertical electric field conditions: cloud to ground/sea

Fig. 3 Schematic of corona discharge boundary limits (gv and go) for a single electrode and drift
zone

From this sequence of increasing discharge energy states, it is reasonable to
assume that SEF influences streamer and leader production. Table 1 (adopted from
Gibson [30]) provides a guide to the inception voltage for the three different discharge
types. The data shows that although the corona inception voltage for lighting rods
has the lowest value for the three discharges (where the variation in the values is due
to physical structure orientation of the rods [31]).

Peek’sLawwasoriginally proposed as an empirical formula for coaxial cylindrical
configurations, parallel wires and spheres in the 1920s [19] and is still used today

Table 1 Corona inception electrical field values and characteristic temperature (K) for atmospheric
discharge at ground/sea level

Parameter Corona discharge 1−2 cm
diameter grounded lighting
rods

Streamer discharge Leader discharge

Electric field (kV cm−1) 0.2−2.7 ~5 ~1−5

Gas temperature (K) ~300 ~300 ≥3000 K
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[28–36]. Peek’s empirical formula utilizes the local atmospheric condition and the
surface condition of a conductor to estimate the corona visual inception voltage at
local gas breakdown. For a manmade ac voltage source, see (3).

gv = goδm

(
1 + k√

δro

)
Measured in units o f kV cm−1 (3)

In (3), gv is the voltage gradient (kV cm−1) at the visual corona inception
voltage; go is the disruptive electric gradient, for an ac voltage the value varies
from: 27.2 k.cm−1 for a sphere, 30 kV.cm−1 for parallel wires, and 31 kV cm−1 for
coaxial geometries. The parameter δ is the local relative air density (at sea level, δ =
1 under fair weather conditions and 0.9 to 0.8 for storm conditions),m is the surface
roughness factor (m = 1 represents dry and smooth clean surface under laboratory
conditions). For wet conditions, Peek found that the gv fell sharply and considered
this as a special case for m by substituting it with go = 9 kV cm−1. The param-
eter k is an empirical dimension factor (0.301 to 0.308) and ro is the tip geometry
radius (cm). As energy is required to start a corona discharge the single electrode
surface-to-space boundary limits requires that the surface electrical stress is raised to
gv so that at a finite distance away in space where k

√
ro is go air breakdown occurs.

This conducting medium increases in volume beyond which ions and neutral drift to
infinity causing an ionic wind. A simple schematic of this scenario for a single metal
electrode is shown in Fig. 3.

Natural occurring disruptive electric gradients formed by near thunderstorms are
generally accepted to be driven by direct current voltage source [20], therefore (3)
may be rewritten as follows -

gv = 21.9δm

(
1 + k

δro

)
Measured in units o f kV cm−1 (4)

where 21.9 is the route mean square (RMS) of the ac disruptive electric gradient
for air (go). The parameters: gv, k and r0 having the same meaning as in (3).

Given that Peek’s Law, in its different forms, is an empirical mathematical
construct for ac and dc applied voltages, parameters δ m k and ro are varied to fit
experimental observations. For example Mombello et al. [33] characterized contam-
inated conductors using the following parameters values: go = 21.9 and a range
of m values: m = 0.6 (low), m = 0.4 (severe) and m = 0.2 (very severe) with a k
value of 0.308. When studying lightning initiation, Bazelyan et al. [34, 35] used the
following parameter values go, k and ro value of 27.8, 0.54 and 1 cm, respectively.
In 2018, Riba et al. [36] republished values of m based on the work of a Cigré report
[37]. These values are given in Table 2, along with the Mombello et al. surface sand
contamination index, where m for clean surface = 1, and decrease with the amount
of surface sand contamination.

Again in 2018, Riba et al. [36] followed Peek’s original work by reducing param-
eters goδ m to a single global parameter (b) for fitting purposes for metal spheres
suspended above a ground plane. Such a data reduction technique limits the number
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Table 2 Surface irregularity
factor m

Surface irregularity
factor

Surface classification Surface
contamination
index

m = 1 Smooth and polished
surface

Clean

m = 0.8−0.6 Dry weather Low

m = 0.6−0.3 Extreme pollution,
snowflakes,
raindrops

Severe

m = 0.25 Heavy Rain Very severe

of mechanism that can be modeled in this field of research. However the reduc-
tion technique does open up new fields of research where the radius of conducting
objects, effects corona production. One such use of (3 and 4) is their application to
the study of the dielectric extremities of month and beetle exoskeleton under which
a conductive medium is held [15].

5 Storm and Thunderstorm Activity Leading to Airship
Disasters

Another source of SEF has been extensively recorded in conjunction with airships
filled with the lift gas hydrogen and helium. This section looks at some notable
airships disasters betweenWorld War I (1914–1918) andWorld War (1939 to 1945).
At the beginning of the inter war era, German’s war reparations to the winning
side supercharged the wide spread dirigible airship technology in both the militarily
and commercial travel sectors even though airship susceptibility to ground-handling
damage was well known. For example: hydrogen fires while the lift gasbags were
being inflated; damage due to uncontrolled movement within the hangar; or lost
from their mooring stations during stormy weather [38, 39]. Three airship disasters
attributed to storm and thunderstorm activity are considered here; the French Navy
Dixmude, originally built by Luftschiffbau Zeppelin as LZ-114 for the Imperial
German Navy; the United States Navy Akron ZRS-4; and the Hindenburg LZ-129
that ended the dirigible airship adventure.

5.1 Dixmude Airship 1923

The French Navy Dixmude airship was the third and final 1918 ‘Height Climber’
X-class Zeppelin design (working altitude 6000−6,400 m). To achieve the design
altitude these airships required a significant weight lost by removal of part of the
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original R-class airframe, and removal of one of the original seven engines from the
rear gondola. At the French naval air base Cuers-Pierrefeu near Toulon, the airship
underwent a three-year reconstruction for low level flight, alongwith the replacement
of its now perished H2 lift goldbeater’s skin gasbags.

After a number of trial flights in 1923, the Dixmude made its last flight in
December, a return flight from Toulon-France to the Algerian oasis of Ain Salah. On
her return, at 8.00 am on Thursday (some 50 h of flying time) the airship reported
violent winds to the north and as the ship fought the winds further reports where sent
stating that fuelwas running lowand two engines had broken down.TheDixmudehad
now become a ‘free-balloon’ and at the mercy of the winds. Her last radio message
(02:08 Saturday morning 21st December) reported that they were following standard
operating procedures to reel-in its radio antenna due to thunderstorm activity. Soon
afterwards (02:30) railway workers and a hunter near Sciacca—Sicily reported a red
flash in theWestern night sky followed by burning objects falling in to the sea. In the
morning, burnt airship wreckage was found and the charged corpse of the Dixmude
Commandant and radio operator was found on the 26th December. With this news,
many newspapers speculated that the Dixmude was struck by lightning causing the
death of its 52 crew and passengers [40].

A year later, Hugo Eeckener (Manger of Luftschiffbau Zeppelin and later
Commandant of the Graf Zeppelin) wrote in the ‘Luftfahrt’ on the Dixmude disaster.
In his article he states that theDixmudewas built to withstand routine lighting strikes,
particularly at the nose and rear of the ship [41]. Furthermore, the burnt condition of
the wreckage and corpse were consistent with a gasoline fire (i.e. that the hydrogen
in the gas cells was not set on fire by a flash of lightning). He goes on to state that
by the time of the disaster (some 60 h flying time) the Maybach engines would
have been working well beyond their maintenance schedule (the military specifi-
cation was 1–2 days (24−48 h)). Indeed Maybach refused to guarantee more than
48 h continuous use, especially for the crankshafts. In closing his report, Eeckener
notes that the airship should not have be used for such a prolonged flight as both the
airframe and the 6 engines were not originally intended for long duration flight, in
particular flying in serve storms that are associated within the Mediterranean region
in the winter months. It is most likely that the true cause of the airframe sudden and
catastrophic failure be know, but high altitude automatic hydrogen valveing due to a
violent up draft in connection with a lighting strike cannot be ruled out.

5.2 Akron Airship 1933

On the 4th April 1933, the worst airship disaster unfolded as the United States Navel
helium filled dirigible flying aircraft carrier airship ‘Akron’ crashed at sea off the
coast of New Jersey with the loss of 73 out of 76 crew. The great death toll being due
to drowning or hypothermia as there was on life jacket on board [38]. The disaster
happened whilst the airship was navigating at low altitude through a thunderstorm
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when tail section hit the water. Eeckener’s comments on storm conditions comes to
mind here, not only for this disaster, but also for its first (1932) crash [39].

5.3 Hindenburg Airship1937

At 3.27 EST onMay 6th 1937 the 2ndworst dirigible airship disaster, with the lost 36
lives, unfolded at Lakehurst, New Jersey when the Hindenburg commenced its teth-
ering procedure at the airshipmooringmast. HerbertMorrison andCharlesNehlson’s
sound recording of the Hindenburg disaster, transmitted on the following day of the
disaster, imprinted such public reflective memories (Hindenburg syndrome [43])
that would not allow hydrogen gas to be used in public transport for many decades.
Both the US and German board of inquiries into the Hindenburg disaster picked out
from the many ignition theories that a static discharge (spark) due the inclement
weather at the time ignited the hydrogen gas. This partial conclusion may have been
influenced by the knowledge that since the early 1900s static discharge was known
to disrupt both aircraft radio and avionics. In addition an electric charge generated
on the airframe can lead to exogenous charging. This electrical disturbance under all
weather conditions has become known as P-Static. Alexander J. Dessler’s critic of
the incendiary-paint theory of the Hindenburg disaster [44] suggests that the water
soaked outer surface skinmaterial may have be factor in the spark ignition theory [48,
49] and by extension the Dixmude airship disaster: specifically the formation of SEF
on the outer dielectric skin fabric which can allow an electrical capacitance leakage
pathway(s) to the internal duralumin airframe, thereby providing the necessary condi-
tions for P-static ignition. For the readers interest, Table 3 provides the maximum
length and diameter, the calculated entire cylinder surface area and cylinder surface
capacitance (C = [(8 + 6.95(l/d)0.76]ε0d/2, where ε0 = 8.85 × 10–12 F m−1) for all
three airships. Note however that the physical data does not reflect the electric field
variation on individual panels or electrical stress points at the nose and the cruciform
rear section of the airships.

A final note on note on Dixmude and Hindenburg disasters: Considering that,
there was thunderstorm electrical activity present at the time it is surprising however,
that neither Bain [40] nor Dressler et al. [44, 45] discussed or compared the two H2

Table 3 Length (l), diameter (d) and entre surface area (A) and capacitance of the Dixmude, Akron
and the Hindenburg

Airship Max length (l = m) Max diameter (d =
m)

Entire cylinder
surface area (A =
km2)

Right cylinder
surface
capacitance (F)

Dixmude 226.5 23.9 17.8 4.8 × 10–9

Akron 239.3 40.5 33.4 6.2 × 10–9

Hindenburg 245.3 41.2 36.2 6.3 × 10–9
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filled airships disasters. Moreover neither mentions Eeckener’s Luftfahrt article [41].
Dressler only relies on physical chemistry evident and concludes with the possibility
of corona discharge (brush discharge or SEF) was an energy ignition source. This
line of thought is supported by Professor Mark Heald’s eye witness accounting of
seeing blue SEF-like flicking along the Hindenburg’s top ridge minutes before the
fire started.

6 Aircraft Encounter with Atmospheric Electric Fields

In order to quantify the level of electrical field the international Civil AviationOrgani-
zation has listed SEFwithin the aircraft encounter severity index at a value of 0,where
the range of severity increases from 0 to 5. Index values of 4 to 5 are associated with
encounters with volcanic ash, where an index value of 5 equates to engine failure or
other damage leading to a crash [52]. Under these increasing severity conditions ash
particles induce an electrostatic negative surface charge on the airframe surface, effect
engine operation and interfere with radio communications. These in-flight charging
conditions come under the generic term of P-static, see Fig. 4 and [53]. Over the
years static discharger structures (or static wicks) installed at the wing trailing edge,
and empennage, have been developed to alleviate charge build-up. This electrostatic
surface phenomenon is mainly due to triboelectric charging as the aircraft moves
through the ash cloud and is proportional to the drag presented by the aircraft frontal
area and airspeed (typically ~10−400 μ Am2 at 475–500 knots (880–926 km/h) for
design purposes [25]), see Fig. 4. Ash cloud-aircraft interactions may occur near a
volcanic eruption source, or some 100 s km away from the eruption [4].

Fig. 4 Aircraft P-static locations and BL path (drawing modified from Nunes [53]). BL genially
enters at the front aircraft and exits at the wings and the empennage
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Table 4 Main parameter characteristics of SEF and surface streamer discharge

Parameter SEF Surface streamer discharge

Visual inception voltage field 0.2−2.7 kV cm−1 3−5 kV cm−1

Friction (induced by air flow) No Yes

Bonded metal protrusions Yes No

Insulator surface No Yes

Appearance and color Blue glow Blue and white spider-like appearance,
mobile

On the Web, videos and commentary can be found that describes mysteriously
rapidly moving spider-like discharges on aircraft cockpit windows. Generally these
discharges are misinterpreted as SEF rather than surface streamer discharge, even
though they have different visual properties. As previously stated in this work, SEF
appears as a static glow attached to an electrical conducting tip or protrusion. The
main characteristics that differentiate SEF from a surface streamer discharge on an
insulator surface are listed in Table 4. The differentiation between these two types of
discharge is that SEF occurs at aircraft extremities (wingtips, tail fins, and aerials),
whereas surface streamer discharge occur on insulating surfaces (dielectric cockpit
windows and non-electro-magnetic protected regions of the radome where each have
high bulk resistivity > 1012 �–m). The application of metal diverter strips on radome
protect the radar system by dissipating the received electrical charge onto the aircraft
fuselage faraday cage, and then normally dissipated from the aircraft via the engine(s)
and static wicks. However windows and radome may have low local surfaces resis-
tivity due to contamination that enhance the local electrical field promoting streamers
that can propagate or track along weaknesses to cause irreversible surface damage
in accordance with an aircraft encounter severity index 2–3. At ground level and
within research laboratories, similar surface damage caused by streamer and sparks
are known to occur in atmospheric N2 dielectric barrier discharge plasma, operated
with a peak voltage of 2−8 kV in the 17−25 kHz range [49].

Since the 1940s, accounts of SEF horns on aircraft composite radome or as a
streamer on cockpit windows have been documented, both of which may initiate BL
formation within the Faraday cage of an aircraft and exiting via the wing or rear of
the aircraft [10, 16, 55–57]. Reference [10] describes a thunderstorm accouter with a
LockheedC-130Hercules transport plane, alongwith thin cloud encounter (~4500m)
with a Douglas C-133A Cargomaster plane, while [55] describes a thunderstorm
encounter with an all metal airliner (Eastern Airlines EA539. In addition [56, 57]
report on an in-flight (4500m) encounter with a BoeingKC-97 Stratofreigther tanker.
The wittiness’s to all of these encounters describe seeing a luminous (gold or yellow-
white) ball of approximately size 10–20 cm in diameter that slowly (5–10 s) passes
horizontally from front to rear of the fuselage isle.

A commonly discussed cockpit BL window penetration mechanisms is observed
for high flying aircraft is driven by and formed by atmospheric ions impinging and
collecting on the dielectric window surface. In this a surface charge can produce an



456 V. J. Law and D. P. Dowling

electric field on the other side of the window that is sufficient to sustain BL that is
transient and a separate entity from the outside surface charge. Once established the
BL is attracted (without coming into contact with any surface) to surface electric
currents flowing within the electrically charged aircraft. The BL passes through
the aircraft and may be dissipated at the static wicks located at the trailing edge
of the wings and on the empennage. Under these formation conditions, BL can be
considered to fulfill the criteria for being a plasma-magnetic entity or plasmoid.

By 2000, Varas and Rokne [58] uses the term plasmoid to describe BL when
developing physics based software that color renders and sizes a plasmoid whilst it
passes through a small opening.More recently Egrovo et al. [59] andDubowsky et al.
[60, 61] produced hydrated plasmoidswith sub-second lifetimes using a high-voltage
triggered impulse circuit. Their experiments shed light on the luminous colors of the
plasmoids, but left open questions regarding the prolonged lifetimes observed in
aircraft the fuselage.

7 Laboratory HVDC-, HVAC and Tesla Coil Stimulation
of Model Sailing Ship Experiment

Section 5 considered large scale manmade object (100 s of meter in length). This
section now considers the work by Tonmitr and Kaewrawang who used classical
sailing ship models that where scaled down by 1:500 cm to give artificial cloud-to-
ship length of 1–10 cm [21]. The aim of their research being the study early streamer
air terminal devices to protect tall structures from lightning strike. For electrifica-
tion purposes HVDC-, HVAC (50 Hz), and a Tesla coil (0.3 to 30 MHz) were used.
Although little information on the high voltage circuit is given, the operational prin-
ciples of the HVDC and Tesla circuit are similar to. The electrode is constructed as
an upside-down cup with an open lattice to represents a thunder cloud and the gap
distance is measured from the center of the electrode to the tip of the mast top of
the ship model. The classical sailing ships are designed with three masts and are
electrically boned to earth: however no detail of the ship’s material is given.

UsingTonmitr andKaewrawang’s original inception voltage date and their respec-
tive computed voltage electric fields, the experiment outcome is analyzed using
Peek’s Law. Table 5 shows the original inception voltages with the new computed
electric fields.

Figure 5 shows the inception voltages supplies as a function of electrode-mast gap
distance for each circuit. Microsoft excel linear fitting for all three power supplies
is also shown in Table 6. The trend line regression (goodness of fit) and backward
extrapolation to the Y-axes origin are listed in Table 5. The linear fit assumes that the
electric field is uniform throughout the measured gap distance. However, the real-
world asymmetric geometry of the electrode-ship arrangement (voltage stress on the
electrode with the ships mast at ground potential) the electric field becomes focused
at short gap distance (0−5 cm) [20, 21]. Hence aMicrosoft Excel linear fit algorithm
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Table 5 HVDC-, HVAC and Tesla coil inception voltage as a function of electrode-mast gap
distance, normalized electric field stress reference to kV cm−1

Test subject Electrode-to-ship gap
(cm)

Corona inception voltage (kV) and electric field stress
(kV cm−1)

DC- AC (50 Hz) Tesla coil

Model ship
Scale = 1:500

5 19.5 (3.90) 24.4 (4.88) 10.10 (2.02)

10 25.9 (2.59) 43.8 (4.38) 11.69 (1.16)

15 32.8 (2.18) 57.4 (3.82) 19.94 (1.32)

20 39.1 (1.95) 67.2 (3.36) 25.43 (1.27)

25 45.7 (1.82) 73.0 (2.92) 23.93 (0.95)

30 64.4 (2.14) 82.7 (2.75) 33.85 (1.12)
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Fig. 5 Tonmitr and Kaewrawang’s inception voltage date [21]. The trend lines are used as a guide
and show the Y-axes intercept constant (Table 6)

Table 6 Figure 5 Excel line
fittings parameters,
goodness-of-fit (R2) and line
equation

Fitting
parameter

Power supply Excel
regression
(R2)

Excel line
equation

Linear fit HVDC- 0.945 y = 1.6583x +
8.880

Linear fit HVAC (50
Hz)

0.960 y = 2.2223x +
19.93

Linear fit Tesla coil 0.925 y = 0.9198x +
4.727
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is used to aid the reader’s eye to show the theoretical intercept constant on the Y-axes.
Given this, the HVAC supply provides the greatest inception voltage over the given
gap distance (2.22 kV cm−1 between 5 to 30 mm), followed by the HVDC- circuit
that provides electric field of 1.65 kV cm−1 over the same gap distances.Whereas the
Tesla coil provides the least visual inception voltage with a radio frequency electric
field of 0.91 kV cm−1, again over the same gap distance.

The lower voltage disruptive gradient of the HVDC—supply may be partially
understood by comparing the two Peek’s Law (3 and 4) where a HVDC- (50 Hz)
would be expected to produces a disruptive gradient a RMS (0.707) of the AC
supply voltage gradient. As for the Tesla coil gradient, Tonmitr and Kaewrawang has
suggested that this maybe due to a higher field utilization factor at radio frequency
[21].

8 Laboratory Electric Field Stimulation and Annihilation
of Insect Experiment

This section considers SEF formation on insects that have a characteristic length in
the range of a few cm.

Specifically, the focus is on the analysis of live insects, which are subjected to
electrification experiments, such as performed by Challahan andMankin [15] as well
as by Morar et al. [63].

8.1 Callahan and Mankin Experiments

Callahan and Mankin evaluated how an electric field stress when applied to living
insects, would induce a visible glow on the dielectric exoskeleton which surrounds
the conducting medium of the insect’s body without causing death. The second aim
was to determine whether a swarm of glowing insects could be seen in the night sky.
Within the journal ‘Applied Optics’ Tha Paw questions the validity of Callahan and
Mankin’s experiments and calculations [64], whom follow-upwith rebuttals [65, 66].
In the discussion the focus was on whether a Tesla coil that operates in the medium
to high frequency band (0.3 to 30 MHz) is suitable to mimic atmospheric electric
fields induced by a thunderstorm, Callahan contest the electric fields produced by
nearby thunderclouds is not pure dc in origin, but is also partly supported by energy
absorption from radio or other electromagnetic energy form thundercloud region.
In support of Callahan’s use of the Tesla coil it is should be noted that in Peek’s
original atmospheric spark-over (flashover) experiments [20] used a similar spark gap
transformer circuit that operates in the 100 kHz frequency range for the evaluation
thunderstorms activity. Recently (2012) aircraft in-flight encounters with lighting
and thunderstorms cause interference in the 10 MHz range [67].
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The Paw also questioned the validity of the insect luminosity calculations.Mankin
responses [66] by agreeing with Tha Paw that although the insects-swarm hypothesis
is plausible, it is by no means completely validated, and may never be completely
validated to everyone’s satisfaction. The entomologist May Berebaum writing in
American Entomologist some 34 years later, reopened Callahan andMankin’s insect
swarm hypothesis by citing 2012 Television reports and numerous internet reports
on possible insect swam seen at night [68]. For this reason this current work only
examines the first aim of Callahan and Mankin’s electrification experiments.

The first circuit used a Molectron HVDC supply provides a 0−20 kV impulse
voltage across a capacitor consisting of 2 aluminum plates, each having an area of A
= 20 cm2 and a separation distance d = 1.9 cm in which the insects were suspended
between the plates using Duro rubber cement. However the circuit produced arcing
(flashover) that resulted in the death of the insect. Therefore HVDC circuit was not
deemed suitable for the purpose of SEF stimulation of living insects and no further
experiments were performed. The second circuit used a Cenco Tesla coil: 0−10 kV
operating at a resonant frequency with the medium to high frequency band where the
resonant frequency is adjusted by altering the spark gap. The operating difference
between circuit 1 and circuit 2 is that the HVDC produces high-voltage and high to
medium current, while the Tesla coil produces a high-voltage and low-current that
produces a lower energy transfer due to the loosely-coupled nature of the windings.

For the second circuit (Cenco Tesla coil) the insect was attached using approxi-
mately 1 cm of Duro rubber cement to the secondary winding tip of the Tesla coil
(Fig. 6). The 2MHz self-tuning bandwidth of the circuitwas found sufficient to stimu-
late glowon living insects at electric field stress levels of approximately 2−3 kVcm−1

and continued as the voltage stress was reduced to 200−300 kV cm−1.
The entomologists did not explain fully how electrical turning was performed.

From an electrical engineering perspective, it is assumed that without an iron core
the transformer primary and secondary windings are loosely coupled. The loose
coupling efficiency means that 5–20% of the magnetic field of the primary winding
passes through the secondarywhen it is open circuited. Thereby slowing the exchange
of energy between the primary and secondary windings, which allows the oscillating

Fig. 6 A schematic of the Cenco Tesla coil, with a topload moth on the secondary winding tip
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Table 7 Tesla coil experiment matrix

Insect species description Reason for SEF
susceptibility

Visible inception
electric field (kV
cm−1)

Trichoplusia ni
(Hübner); (Cabbage
looper)

Moth (33−37 cm
wingspan)

Insect ε′ ~2−3 [71],
high static charge. 4
Mass night flights

2.1

Choristoneura
fumiferana; (Eastern
spruce budworm)

Moth (21−30 m
wingspan)

2.1

Euthyrhynchus
floridanus; (Stink bug)

Beetle (12−17 mm) pointed projections on
its elytra

2.1*

Tylocerina nodosus;
(long-horned beetle)

Beetle (12−17 mm) 2 long antennae 2.1

Conotrachelus
nenuphar; (Plum
curculio)

Beetle (6−9 mm) control 2.7

*The stink bug produced emission in the 350−450 nm (blue) spectral range at distance of 18 cm

energy to stay in the secondary longer before it returns to the primary and dissipate
in the spark. At this point the topload capacitance (rubber and insect) frequency pulls
the operating frequency downwards, but still remaining within the design frequency
bandwidth of the circuit [69, 70].

Table 7 provides amatrix of the experiment variables (species name,main descrip-
tion of insect, reason for SEF susceptibility and SEF visible inception electric field
strength. The tabulated data shows that the test species (except the Plum curculio)
exhibited a visible inception electric field of 2.1 kV cm−1. The luminesce originating
at discrete external locations on insects body such as the distal tip of mandibles,
ovipositors, antennae, and leg joints. Following on fromBostick’swork these discrete
luminesce regions may be classed as plasmoids as they originate from body of the
host insect.

The Plum curculio however exhibited a higher visible inception electric field of
2.7 kV cm−1. Although the authors give no reason for the higher visible inception
electric field, they imply that insects of small body size and minimal protrusions are
least susceptible to SEF; whereas insects with extensive protrusions (antennae, legs
and wings etc.,) are more susceptible to SEF. However, in flight mode the authors
suggested that a triboelectric (ancient Greek tribo meaning to ‘rub’) mechanism on
the Lepidoptera (ancient Greek lepís ‘scale’+ pterón ‘wing’) would greatly enhance
the production of SEF. In all cases insects survived the test and lived a nature full life
span after the experiment. However when dead and dry insects underwent the same
electrical stimulation no glow was observed, and it was only after these insect were
immersed in water did a temporality glow occur.
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8.2 Morar Et Al Corona Discharge Insect Annihilation
Experiments

The aim of Morar et al. laboratory corona experiments was to identify the voltage
levels that would annihilate pest insects using a HVAC (50 Hz) circuit [63]. Typically
in this type of circuit an iron-core step-up transformer provides the high-voltage along
with associated high-current. Therefore the necessary increase in voltage beyond the
survivable voltage levels indentified by Callahan andMankin needed to be surpassed
implying additional current being supplied. In these annihilation experiments the
HVAC was either directly applied to the insect that was positioned between the two
electrodes separated a distance of 4 cm apart within a glass bell jar, or indirectly
where the insects are exposed to ionized air within the same bell jar.

The insects studied where Phorodum humuli (Green malt bug, typically 2 to
2.6 mm in length) and where subject to various high voltage stress levels (10, 11.5,
and 13 kV) and exposure times (10, 15 and 30 s). Table 8 provides a summarized
matrix of the experimental variables and evaluation of the experimental outcome in
terms of mortality as a function of time after the stimulation.

The results of this work showed that mortality rates for direct exposure to 2.5 to
3.25 kV cm−1 is observed, and for indirect exposure higher stress levels (4.7.5 to
5.25 kV cm−1) is required. The authors also suggest ozone generated by the corona
discharge within a sealed bell jar is reasonable for the annihilation of the Green malt
bugs, although no ozone measurement levels was reported in this work.

Table 8 HVAC direct and indirect corona discharge experiments matrix [58]

Insect species kV cm−1 Exposure time
(min)

Mortality (%)
after 2 h

Mortality (%)
after 24 h

Mortality (%)
after 48 h

Direct exposure

Phorodum
humuli; (Green
malt bug)

2.5 30 70 80 90

Phorodum
humuli; (Green
malt bug)

3.25 15 64 90 100

30 75 100 100

Indirect exposure

Phorodum
humuli; (Green
malt bug)

4.27 30 70 80 90

Phorodum
humuli; (Green
malt bug)

5.25 15 80 92 96

30 96 100 100
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9 Discussion

Since the beginning of recorded history SEF has been observed and experienced by
humans that are close to thunderstorms, both at sea level and in mountain regions:
many of which have been reenacted in the performing arts. Systematic study of
naturally occurring SEF has proved difficult due to both the unpredictable timing
of the event and the understanding of high voltage circuit requirements for partial
air breakdown. The understanding of SEF generation is important for high power
transmission line design, the developing protection system for marine shipping and
airships and airplanes (flying at high altitude and when coming into land).

The three dirigible Airships discussed in this paper represent the worst airship
disasters in term of life lost. With a high degree of certainty SEF, or another form of
static discharge, did not have part in the helium filled USS Akron disaster. However,
it cannot be said with certainty that SEF or another form of static discharge was the
energy source for the ignition of the H2 lift gas in the Dixmude and Hindenburg
airships disasters.

Arguably our understanding of the complexity and interconnectivity of SEF and
BL is largely based on observations of natural atmospheric disturbances and the
interaction with living and non-living objects at, or near, ground level as well at
high altitudes. The application OES, triboelectric charging, and Peek’s empirical
mathematical construct to these events provide an insight to the physical mechanism
that generates SEF and BL. Bostick’s generic term ‘plasmoid’ is found useful when
describing the generation and motion of BL in aircraft fuselage and discrete SEF
formations on insects.

This work highlights the use of different high-voltage sources for generating SEF.
For example, when comparing the application of HVDC-, HVAC (50 Hz) circuits
and the Tesla coil on test subject (model sailing ships and insect) the Tesla coil
provides the lowest SEF visual inception voltage in terms of electric field stress
(0.91 and 2.7 kV cm−1 depending on the test subject) before sufficient corona elec-
trical current is drawn to cause flashover. The HVAC (50 Hz) circuit provides both
the highest inception voltage and is shown to annihilate insect pest (Green malt
bug). Paw’s objection to the use of non dc high-voltages for SEF stimulation has
been considered. However over the past 100 years it has been well known within
the aircraft industry that the combination of BL and lightning introduce radio inter-
ference to dc electric field within cumulonimbus and the region between the cloud
and ground level where, electrical stimulation of insect swarms have been observed.
Thus, the use of HVAC and the Tesla coil is considered here. The use of the Tesla
coil is of particular importance because HVDC and HVAC circuits normally employ
a tightly-coupled soft-iron core in their step-up transformer which becomes fully
magnetized when polarity reversal occurs at every half-cycle of the input waveform:
resulting in large current flow at the switching point [72] that detrimental to the
sensitivity of the inception voltage measure. The Tesla coil uses a loosely coupled
primary and secondary winding thus avoiding magnetic saturation; therefore the coil
can provide an extremely high voltage with low power output, which is a perquisite
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when indentifying the minimum SEF visible inception voltage. Furthermore the
Tesla coil windings, with respect to tightly-coupled soft-iron core transformers, have
an open construction that can be easily altered to the requirement of the applica-
tion. A further feature of the Tesla coil is the medium to high frequency band of
operation corresponds well with the electromagnetic interference emanating from
the ionization and relaxation processes within the SEF and corona discharge. This
would suggest that the Tesla coil is more suitable for inception voltagemeasurements
when compared to HVDC or HVAC (50 Hz) circuits.

Acknowledgements The Authors declare that there is no conflict of interest regarding the
publication of this paper.
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Application of Microwave Oven Plasma
Reactors for the Formation
of Carbon-Based Nanomaterials

V. J. Law and D. P. Dowling

Abstract This paper reviews the literature on the formation of carbon-based nano-
materials using converted domestic microwave oven plasma reactors. The carbon-
based compounds range from single and multi-walled carbon nanotubes, to onion-
like nanostructures, fullerene, and graphene sheets. The microwave plasma process
is performed using in-liquid containing plasma bubble (plasmoids) generated at an
aerial-antenna igniter, susceptor surface ignition within gaseous plasma as well as
the use of conventional gaseous plasmas. Based on the literature reports, the thermo-
dynamic and kinetic plasma processing conditions are reviewed, along with process
input criteria that include: appliedmicrowave, hydrocarbon precursor, aerial-antenna
igniter design, and susceptor material and sample collection. The use of microwave
oven drilling (local thermal runaway) and reverse drilling that lead to the ejection
of plasmoids which may give rise to the formation dusty plasma or fireball as a
processing route for the formation of nanomaterials.

Keywords Aerial-antenna igniter · Plasmoids · Ball-lighting · Fireball ·
Microwave oven · Carbon-based nanoparticles

1 Introduction

Carbon-based particles may be manufactured in a variety of allotropes, but to be
classed as nanoparticles (NP) the grain size <100 nm in at least one dimension. A
brief list of the carbon-based allotropes includes fullerene and graphene, single and
multi-walled carbon nanotubes (SWCNT and MWCNT), onion-like nanostructure’s
(OLNs) and carbon nanosheets [1, 2]. Their functionality and high-value is derived
from their unique combination of chemical and physical properties (i.e., thermal
and electrical conductivity, high mechanical strength, magnetic and optical proper-
ties) that have applications in structural engineering, lubrication, electronics, and the
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biomedical sector. The aim of this paper is two-fold; firstly, to review how func-
tional carbon-based nanomaterials (NMs) are selectively formed within a domestic
microwave oven plasma reactor (DMOPR). Secondly to review the NMs formed
within an ejected plasmoid that usually leads to the formation of a dusty plasma or
‘fireball’, which is generated by microwave ‘drilling’ using an open ended co-axial
applicator, within a multi-mode cavity [3, 4].

To simplify the complex manufacturing processes of functional carbon-based
allotropes the paper is divided into the following sections. Section 2 reviews 15 papers
reporting the formation carbon-based NMswithin the DMOPR. Sections 2.1 through
to Sects. 2.5 considers the role of: microwave power, hydrocarbon precursors, aerial-
antenna igniters, bubble formation and their transition to plasmoid at the electrode
surfaces within microwave irradiated liquid, susceptors, chemical catalyst. Section 3
looks at NP formation at atmospheric pressure within microwave-excited plasmoid
operating in a fireball mode. Section 4 provides a list of hydrogen and NM collection
processes. Finally, Sect. 5 provides an overall summary of this paper.

2 Carbon-Based NMs Formed Within DMOPR

Batch syntheses of carbon-based NMs within converted DMOPRs have been widely
reported [5–19]. Closely aligned to these plasma processes is hydrogen (H2) gener-
ation within a DMOPR. The NMs and H2 process may be formed in-liquid by the
plasma [5, 6, and 15–19], on a solid-state susceptor surface (placed either within, or
without a glass vial) exposed to microwave irradiation [7–11], or simply placed on
a glass slide and then exposed to plasma [12–14]. For further reading the authors of
this work have published three review papers on the following subjects: converting
domestic microwave ovens into a plasma reactor [20], microwave plasma processing
of organic compounds and biomaterials [21] and the use of the DMOPR as a rapid
prototyping tool [22]. Before considering the above processes it is worth reviewing
how the domesticmicrowave oven heatsmaterials and how this viewmay bemodified
for the DMOPR.

For the domestic microwave oven it is recognized that the synthesis of organic
materials is more rapid when compared to classic heating methods that rely on
conduction and convection from the vessel wall, to center of the material that is
being heated. In the microwave oven, the heating mechanism is through electromag-
netic waves (microwave irradiation); causing molecular agitation and intermolecular
friction generating heat within the material, so raising the temperature more rapidly
compared conventional heating. This is practically true for polar liquids such as
water (H2O), methanol (CH3OH) and ethanol (C2H5OH), whose chemical bonds are
between atoms with very different electro negativities. In contrast microwave energy
is absorbed weakly by hydrocarbons such as Toluene and Xylene, along with most
organic polymers, all of whom exhibit low molecular polarity. These materials are
said to be microwave transparent. To quantify molecule polarity of a material, in its
ground state, the complex relative permittivity (εr = εr’–jεr”) is used. Where the
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real part (εr’) is a dimensionless number and is a measure of a materials ability to
couple with microwave energy. The relationship of ε’ to the effective wavelength
within a material at a given frequency is given in (1) [2, 20–23].

λ′ = c

fo
√

ε′ (1)

In this equation, c is the speed of light (3 × 108 m.s−1) and f o is the magnetron
frequency (2.45 × 109 Hz). From this relationship it becomes apparent that non-
uniform heating ofmaterials due to their size and geometry is an issue. The imaginary
part (εr”) of the complex permittivity is also a dimensionless number that is used
as a measure of the materials ability to be heated by absorb microwave energy (via
direct current or Ohmic heating) and turned into heat. The ratio of εr”/εr’is called
the dielectric loss tangent (tan δ) and describes the ability of the material to dissipate
electromagnetic energy within a microwave cavity.

Since the early 2000s, it has been postulated that transition state (TS) of a chemical
reaction that is subjected to microwave irradiation is effected by a combination of
thermal effects (thermal runaway, hot spots and selective heating) and dielectric
volume heating, plus species mobility and diffusion [2, 23]. One or more of these
effects may enhance reactivity by reducing the activation energy (�G). In addition
the ability to turn-on and -off dielectric volume heating enables product (P) selectivity
to be controlled. See Fig. 1.

In this work the plasma domain is added to microwave domain effects detailed
earlier. A generic process for the formation of NPs from a hydrocarbon precursor
in microwave plasma is represented in (2). The transition state is represented by
the subscript operator (arc or plasma depending upon the nature of the discharge)
that contains thermal, microwave and plasma effects: any one, or more, may rate
limit nano-compound selectivity and hence alter product yield. Under microwave
plasma conditions, gas molecules undergo ionization and dissociation to form single
charged species, the deposition of which becomes kinetically favorable. Microwave
plasma experimental studies have also shown that the carbon particle size and rela-
tively narrow particle size distribution is controlled (limited with respect to thermal

GS

TS

Thermal domain

P

ΔGT
GS

TS

Microwave domain

P

ΔGM

ΔGM < ΔGT

Fig. 1 A simple comparison the thermal and microwave reaction coordinates, where GS is the
ground state, TS is the transition state and P is the product. The figure also infers that the enthalpy
of the reactions have a negative change (�H < 0)
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chemical phase deposition), by the action of ion bombardment, which tends to inhibit
particle coagulation and agglomeration [1].

Hyrodcarbon →
plasma

Carbon nanomaterial (2)

Mukasa [24] and Hattori et al. [25, 26] have demonstrated that for an open-end
transmission-line microwave reactor operating at 2.45, GHz, that 300W and 40W of
input power is required to generate a plasma in n-dodecane and water, respectively.
In Hattori’s experiments the corresponding electric field breakdown was of the order
of 10–30 kV.m−1. Furthermore, the electrification process was found to occur in
bubbles at a dielectric heated metal surface. As the bubbles are liberated from this
surface, they float upwards due to their buoyancy. This process it repeated many
times until the microwave power is turned-off.

Table 1 provides an overview of typical microwave power and chemical parame-
ters reported for use in chemical synthesis from the literature. For ease of discussion
the tabulated data is grouped into four broad phase states: classifications: In-liquid
chemistry, ice/liquid chemistry, solid-state chemistry, and gaseous plasma chemistry.
Common to all four classifications is that a chemical catalyst is sometime used; this
is annotated with a superscript C (C) alongside the reference number.

2.1 Microwave Power

Within most DMOPRs, a packaged cavity-magnetron (operating at a free-running
frequency of f o = 2.45± 0.1 GHz (λo ~ 12.2 cm) is rectified at ACmains frequency
(50/60 Hz) to produces a negative going pulsed square-wave DC voltage. Thus the
duty-cycle (D) = 50%, where the on-period (ton), is equal to the off-period (tof f ).
To alter the time averaged power delivered to the oven’s multi-mode cavity this
rectified waveform is further pulse width modulated with Ton and Toff time periods
of typically 30 and 30 to 60 s. Thus the applied power is at a maximum when using
a continuously rectified waveform and a lower time averaged power level, when the
pulse width modulation waveform envelope is used [20–22, and 27].

Table 1 (column 2) lists the reported powers levels which were reported in the
reviewed papers. Power levels were reported in the range 300 to 1800W, However as
with all datasets collected from different research sources, experimental conditions
are not reported in a consistence manner. In the body of work referenced here it
would be expected that full power conditions would correspond to continuous mode,
and power levels below this upper limit would be in the pulse width modulated
mode. For example, references [6, 15, 17, 18 and 19] do differentiate between the
oven’s rated input power and the rated microwave maximum power output level,
but none of the referenced papers report if continuous wave (CW) or pulse width
modulated conditions is used. Moreover, reference [10] states a power of 1.8 kW
is used, this power level would be expected to be the total rated AC mains input
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Table 1 Typical examples from the literature microwave oven processing conditions used for
chemical synthesis [5–19]

Reference Stated
power

Hydrocarbon
precursor

Electrode
/susceptor

Support
substrate

Product Rate or
process time

In-liquid chemistry

5 500 W n-dodecane Dual × 6 N/A H2 ~ 25 ml.s−1

5 500 W CH3-OH
C2H5-OH
( 95:5)

Dual × 7 Silicon Diamond
film

10 min
plasma time

6C 750 W n-dodecane Single × 7 Silica 1 L H2 +
Carbides 22
vol%

~ 37.1 ml/s

6C 750 W Cyclohexane Single × 7 Silica +
Mo & Co

1 L H2 +
Carbides 22
vol%
+ MWCNT

~ 37.1 ml/s

15 750 W n-dodecane Single × 6 N/A 1 L H2 +
Carbides 22
vol%
+ CNT

~ 26 ml.s−1

16 500 W n-heptane
Isooctane
Decane
Hexadecane

Single × 1 Bubble varigrained
NP

HC–CH
Swan bands

17 750 W n-dodecane Single × 7* Bubble H2 +
carbides
and
graphite

~ 10 ml.s−1

Ice/liquid chemistry

18 750 W Cyclopentane
hydrate

Single × 7 N/A 0.55 L H2
+ carbides
9 vol%

~ 18 ml.s−1

19 700 W Methane
hydrate

Single × 7 N/A 0.55 L H2
+ carbides
55.5 vol%

~ 11 ml.s−1

Solid-state chemistry

7C 700 W Magnetite NP
&
Polystyrene

Aluminum
or Graphite

N/A Fe3O4 NP ~ 90 s
plasma time

8 700 W Polystyrene Aluminum Quartz tube OLNs ~ 120 s
plasma time

8 700 W Polyethylene Aluminum Quartz tube NS ~ 120 s
plasma time

9C 600 W Polyethylene Aluminum
foil

Silicon SWCNT &
MWCNT

~ 1 h
process time

(continued)
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Table 1 (continued)

Reference Stated
power

Hydrocarbon
precursor

Electrode
/susceptor

Support
substrate

Product Rate or
process time

10C 1.8 kW Naphthalene Graphite Glass vial OLNs 15 to 120 s
plasma time

11C 600 W Rice husks
(powder)

Aluminum
foil

Quartz tube CNT 38 min
plasma time

Gaseous plasma

12C 900 W Ethanol Zinc salts Glass slide ZnO & Zn
NP

60 to 120 s
plasma time

13C 700 W Ethanol Zinc salts Glass slide ZnO
NP

60 to 120 s
plasma time

14 1 kW Ethanol Single × 1 Borosilicate
glass

CNT Not given

14 1 kW Xylene
Toluene

Single × 1 Borosilicate
glass

OLNs Not given

c= chemical catalyst used. * curved multiple aerial-antenna igniters used. N/A = Not applicable

power of a microwave oven that includes a grill. It should be also noted that many
of the reported applied powers in Table 1 are considerably lower than those used
in open-end transmission-line microwave reactors [24–26]. The authors therefore
suggest that the stated power should be used as guide and further details should be
sourced from the original reference.

2.2 Hydrocarbon Precursors

Liquid, clathrates, solid-state and gases hydrocarbon precursors listed in column 3 of
Table 1 have all been used in DMOPR processing. This section provides an overview
of carbon based nanomaterials synthesized from these precursors.

2.2.1 Liquid Hydrocarbon

In 2009 Normura et al. [6] reported DMOPR cracking of n-dodecane (C12H26;
εr’ ~ 2 at 2.45 GHz) for the simultaneous production of H2, low-grade gaseous
carbides (methane, ethylene and acetylene) plus the deposition of graphite. Using
the percentage of each gas from chromatography product analyses allows a repre-
sentative balance stoichiometric reaction equation to be written where a quantity
of atomic hydrogen is trapped as interstitial impurities in solid graphite or between
graphene sheets and where the cracking process proceeds by C–C bond β-scission
(~408 kJ.mol−1) rather than C-H bond cleavage (~418 kJ.mol−1) [28, 29], see (3).
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4C12H26 →
I n−liquid plasma

37H2 + CH4 + C2H4 + 10C2H2 + 25C ·H2 graphite

(3)

In the same paper and [15] the authors used cyclohexane (C6H12; εr’ ~ 2 at
2.45 GHz) resulting in SWCNT and MWCNT products. By 2013, Toyota et el [5]
made further modifications to the method of generating H2 from n-dodecane, in
addition to forming diamond like films from a vapor mixture (95:5 ratio) of CH3OH
(tan δ = 0.659 at 2.45 GHz) and C2H5OH (tan δ = 0.941 at 2.45 GHz) [30]. The
details of the metal aerial-antenna igniters used in [5, 6, 15 and 16] and the curved
aerial-antenna igniter reported by Mochtar et al. [17], is described in Sect. 2.3.

Yu. A. Lebedvi et al. has used optical emission spectroscopy to study In-liquid
plasma C7-C16 alkanes (C2Hnn2+2) [16]. They found that just after solid NP forma-
tion (typically 100 nm in size) the In-liquid plasma emission contained Swan band
emissions that are associated with ionized diatomic carbide fragments (C2) that are
potentially dissociated from the starting liquid alkane molecules. Using this infor-
mation an estimated rotational and vibration temperature of 1700 ± 200 K and 7000
± 2000 K were obtained. The addition of argon was also found to decrease the
rotational gas temperature to 700 ± 100 K.

2.2.2 Hydrocarbon Clathrates

Hydrocarbon clathrates can form an important fuel resource for replacing petroleum
and natural gas. Recently research into DMOPR batch processing cyclopetane
hydrate [18] and methane hydrate [19] and have both been used to generate H2

within DMOPR. These materials are composed of host ice/liquid water with an ice
framework that has a stoichiometric number of n within which a guest hydrocarbon
molecule is encapsulated, and where framework size varies to accommodate the
guest molecule. For the methane (CH4) guest molecule the water framework is a
cubic structure with n = 5.8 to 6.1 H2O molecules and is designated as a sI or CS-I
structure [19]. For the larger cyclopentane (C5H10) guest molecule the host water
framework is enlarged to n = 17 H2O molecules and forms a sII or SC-II structure.

It can be surmised that the microwave plasma decomposition of the hydrates has
two main reaction pathways. The first is by rapid plasma formation within bubbles
that are directly for aerial-antenna igniter surfaces, and second by the slowmicrowave
dielectric volume heating of water within the hydrate compound, which if unchecked
will ultimately melt, to release hydrocarbons to the surface without going through
the plasma process. This second decomposition pathway may explain the increase
in carbides byproducts (9% by vol for C5H10 and 55.5% by vol % for CH4): within
these carbide byproducts diatomic C2H4 molecule being the most abundant.
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2.2.3 Solid-State Hydrocarbon

In this section, examples of where DMOPRs have been used for the fabrication
of NMs from solid hydrocarbons precursors are described. For example, using
aluminum foil (5× 5mm2) as a plasma igniterwith the polymer polystyrene (C8H8)n:
εr’ = 2.5–2.6 at 2.45 GHz) has been used for synthesis of carbon NP, in addition to
fibers with lengths of 100 s of nanometers, when magnetite is added to polystyrene
[7]. When replacing polystyrene with polyethylene beads (C2H4)n; εr’ = 2.25 at
2.45 GHz) a 2-dimensional reduced graphene oxide (RGO) nanosheet is produced
with a typical thickness of 3 nm [8]. This ability to select between 2-dimentional
and 3-dimentional nanostructure has been attributed to the increase in the H/C ratio
(1:1 to 2:1) per polymer unit, but these linear formula do not take into account the
structural alteration of the polymer unit. In this case, an exchange of a phenyl group
per polymer unit for a H atom. This structural change produces a reduction of the
hydrocarbon precursor dielectric constant (2.5–2.6 to 2.25). Therefore it’s reasonable
to say that precursor structural effects need further investigation.

SWCNT and MWCNT have been synthesized using a DMOPR, from polyethy-
lene resins (100 mg), placed on an aluminum foil (25 × 25 mm2) in conjunc-
tion with a silicon substrate coated with the catalyst iron (III) nitrate nonahydrate
(Fe(NO3)3·9H2O). The resulting particles had diameters of 1.03–25.00 nm with a
length of about 0.85 μm. [9]. The resin chemical structure was not reported and as
resins are commonly used for coating extruded wire, it is reasonable to assume a
copolymer was present. Under these complex conditions (resin and catalyst) it is
again reasonable to assume the tan δ properties of the mixture are high to allow rapid
volume heating and therefore decomposition of the resin and catalyst. It is also worth
noting that the final product had iron catalyst particles embedded within the tubes
walls.

Naphthalene (C10H8) mixed with graphite has been reported to produce OLN that
range from 10 s nm to a few microns in size within a DMOPR where the graphite is
used as a microwave absorber and naphthalene as the hydrocarbon source [10]. To
minimize arcing within the oven, 200 mg of the 1:2 graphite-naphthalene mixture
is placed within a quartz vial and then placed in the oven cavity and irradiated for
1 min, where upon arcing occurs. Reaction (4) provides a representative reaction for
this process. Outside the quartz vial they were able to deposit onion-like rings onto
ceramic substrates.

C10H8
arc−plasma

OLN (4)

It is been estimated that over 100 million tons per year of agriculture waste rice
husk (RH) is generated from the production of rice, the majority of which is incin-
erated. This agriculture waste is rich in cellulose and lignin which may qualify it as
an economic source of hydrocarbon precursor for the manufacture of carbon-based
NMs. Initial prototype DMOPR studies have used RH (ground to a size 20 microns)
mixed with a catalyst (FeO4) placed on aluminum foil (25 × 25 mm2) and then
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placed inside a DMOPR for processing to form and mixture of NP (typically 0.5 nm
in size), SWCNT or possibly MWCNT, and tubular structures (fibers) with length
of 100 s nm [11]. It is worth noting that raw rice husks have typical values of εr’ =
2.982, εr” = 0.283 and tan δ = 0.094 at 12.4 GHz, and increase when mixed with
CNT [31].

2.2.4 Gaseous Plasma

In this section the use of gaseous precursors are described for use in chemical
synthesis in conjunction with DMOPR. In 2010, Irzh et al. reported DMOPR
synthesis of Zinc oxide (ZnO) and its refinement to Zinc metal (Zn) NP with a
size of 15 to 35 nm [12]. Their starting material is an ethanol solution of zinc nitrate
(Zn(NO3)2) of 0.03, 0.5 and 1Mmixed with a carrier gas of argon (Ar) which is irra-
diated with microwaves that results in the production Ar+ bombardment and volume
dielectric heating the zinc compound. For example Zinc nitrate compound is reduced
to ZnO (reaction 5a). Upon furthermicrowave irradiation zincmetal NP are produced
(reaction 5b). Product selectivity between ZnO and Zn appears to be by prolonged
plasma irradiation rather than volume dielectric heating as the temperature at the
oven walls reaches 230–250 °C, which below that of the thermal decomposition of
ZnO to Zn [12].

Zn(NO3)2 →
Ar+ plasma

ZnO N P + 2NO2 (gas) + O2 (gas) (5a)

ZnO →
Ar+ plasma

Zn metal N P + O (gas) (5b)

In 2012, Raj et al. [13] reported on the remote plasma deposition of ZnO particles
within a MOPR. Using oxygen (O2) as the carrier gas, they found the morphology
of the nano-compound can be altered by selecting the substrate material (glass–Si–
Al2O3/Si), or by changing the Zinc salt concentration (0.03 to 0.16 M).

Singh et al. [14] demonstrated that using different liquid hydrocarbon solvents:
ethanol (C2H5OH; H/C = 2.5:1), xylene (C6H4(CH3)2; H/C = 1.24:1) and toluene
(C7H8; H/C = 1.14:1) mixed with H2 at low pressure, can selectively produce either
CNT or OLN. See reaction (6, 7 and 8).

C2H5OH (l) →
H2 plasma

CNT (6)

C6H4(CH 3)2 (l) →
H2 plasma

OLN (7)

C7H8 l →
H2 plasma

OLN (8)
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2.3 Passive Metal Plasma Igniters

This section provides a general description as to the absorption of microwave energy
within the oven’s cavity when empty (unloaded) and when heating water in the
cavity (loaded cavity). The terms ‘unloaded’ and ‘loaded’ refer to theQ-factor of the
cavity [18–20]. Using this background information the role of passive metal plasma
aerial-antenna igniters is expanded upon in Sects. 2.3.2 to 2.3.5.

2.3.1 Unloaded and Loaded Cavity Behavior

First consider what happens when irradiating thin metal objects, like (aluminum
foil [7–11] and zinc pellets [12, 13], in an empty microwave oven. Under these
near ‘unloaded’ conditions a number of reactions generally occur. Firstly, a portion
of the wave energy penetrates the metal (typically 2 to 4 μm) and interacts with
free elections with this surface region causing electrical currents to flow. For thin
metals, the current that may produce sufficiently high voltage stress at sharp edges
and surface irregularities of the metal to cause free electrons to be liberated and
cause local gas breakdown, in the form of sparks and streamers, that produce high
temperature hotspots. Secondly, the rest of the wave energy is reflected from the
metal surface back into cavity. Thirdly, if the microwave irradiation continues, the
reflected microwave energy can help to reinforce the microwave standing waveform
within the cavity, to such a level that the reflected energy disrupts the operation of
the magnetron, thus causing the oven to stop working, or in the extreme case setting
fire to oven’s internal circuits.

Now consider a polar organic solvent (in this case water) contained in a smooth-
walled glass vessel that is placed in the oven’s cavity and the microwave energy
turned on. Under these ‘loaded’ cavity conditions, the water under goes rapid dielec-
tric volume heating, that leads to superheating in the absence of any stirring of
the organic liquid solvents and retardation of bubble nucleation sites at the vessel
surface [23]. [N. B. In mono-mode cavity reactors ceramic boiling chips that produce
nucleation sites at their sharp edges and surfaces irregularities are used to prevent
superheating effects (23)]. Replacing the ceramic boiling chips with aluminum foil
alters the surface-liquid reaction dynamics by limiting the superheating effect due to
the addition of surface hotspots that initiate bubble nucleation, within which, and at
sufficiently high voltage stress levels, gas breakdown occurs.

2.3.2 Microwave Aerial-Antenna Igniters

To extend the pressure ignition range within both gas and liquids, aluminum foil can
be replaced with wires that have circular or rectangular cross-sections and have a
microscopically rough surface that act as nucleation sites for bubble formation. The
length of the wire is then (λm) matched to the oven’s cavity magnetron output free
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Fig. 2 a–d Examples of aerial-antenna plasma igniters

running frequency and wavelength (f o = 12.4 ± 0.1 GHz; λo ≈ 12.2 cm) at the
characteristic εr’of the medium that the microwave radiation is passing through. The
physical length of the wire becomes matched to the electrical wavelength (λm) at f o,
see (9).

λm ≈ C

fo
√

ε
′
r

(9)

The approximate expression in (5) is used as the cavity magnetron has a free
running frequency bandwidth of 0.1 GHz, and C is the speed of light (2.99792 ×
108 m.s−1). In general three type of metal aerial-antenna igniter have been reported:
U-shaped electrode with two exposed tips (Fig. 2a) [5], a wire with single exposed
tip constructed perpendicular to a local ground plane (Fig. b) [14, 16], and an array of
wires constructed perpendicular to a local ground plane (Fig. 2c) [6, 15 and 17–19].
See also Law and Dowling [20] and Satio et al. [32]. For single tip igniters placed
within liquid n-dodecane (εr’= 1.78 to 2), λm approximates to 88.5 mm. However, it
is found that a wire having a local ground plane the optimal wire length approximates
to λm/4 (20 to 22 mm). The accepted assumption here is that a quarter wavelength
structures generatesmaximumelectrical stress as there is a 90 degree phase difference
between the wire tip that forms and open circuit and the local ground. Lebedev, et al.
[16] have estimated that these resonance ¼ wavelength structures can reach voltage
stress levels of 2400 V. cm−1.

Within references [5–7, 15, 17–22] it is generally considered that the electrodes
have three well-defined roles: to confine the plasma to the immediate proximity of
the electrode(s) tip, to function as a source for bubble and then plasmoid formation
in which the heterogeneous reaction can take place, and in the case of manufacturing
carbon nanomaterials, to provide a substrate on which the carbon material can grow
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on. Regarding the first role, Toyota et al. [5] has shown that the efficiency of plasma
decomposition of n-dodecane increaseswith the number (n) of aerial-antenna igniters
that have a separation of ¼ wavelength spacing up to n = 6 and falls at n = 7. A
number of mechanisms have been proposed for this behavior: electromagnetic power
loss by the resonant structure [5], and a rate-limiting process due to competing mass
transport in and out of the aerial-antenna igniter reaction zone [20] (Fig. 2d). Both
mechanismshave adegree globevolume, but donot includediscrete bubble formation
and their electrification. This aspect is explored further in Sect. 2.3.3.

2.3.3 Bubble Formation and Its Electrification at a Microwave
Aerial-Antenna Igniter Surface

In 2007, Mukasa et al. reported upon fast camera (Photron Fastcam-512PCI: 400
fps) imaging of n-dodecane plasma bubbles at a pressure of to 100 hPa [24]. Later in
2010 [25] and 2013 [26] Hattori el al used a high-speed camera (GX-1 NAC: 2000
fps) to investigate bubble formation in water at 7 and 20 kPa. In each investigation
an open-end coaxial microwave transmission-line was used to inject the microwave
power. In reference [25–26] the open-end coaxial transition-line that had an inner
metal conductor diameter of a = 0.3 to 1.1 cm and a dielectric of b = 0.9 cm to
1.5 cm diameter. Their water electric field stress calculations for 1 W and measured
bubble radius are reconstructed in Fig. 3 using units of V.cm−1 and cm, respectively.

y = -19647x5 + 66579x4 - 87959x3 + 56674x2 - 17897x + 2364.5
R² = 0.998
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Fig. 3 Electric field stress at open-end transmission-line electrode as a dependency of bubble radius
Hattori et al.[26]. Reported here as data points corresponding the following conditions: open circles
= no plasmoid, and black circles = plasmoid. The plasmoid visual inception point is at 0.5 cm
bubble radius. Annotated over the data points is an Excel polynomial 5th order curve fitting where
R2 = 0.988
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Fig. 4 a–cBubble formation on aerial-antenna igniter (a), additive bubble formation on and through
antenna (b), and additive bubble formation using the large area, porous quartz bubble control plate
(c)

To represent the graph data points mathematically the Microsoft Excel curve fitting
toolkit is used, and where it was found that a polynomial function with a order of
4–5 gave the best fit (R2 = 0.952 and 0.998, respectively). Using this treatment it
is seen that initial phase of water bubble growth the electric field rapidly falls is
a point where the bubble becomes electrified to a produce a plasmoid. This visual
plasmoid inception point approximates to 0.5 cm bubble diameter with a calculated
electric field stress of the order of 150 V.cm−1. Beyond this point the bubble growth
rate slowly increases with reducing electric field. A number of possible mecha-
nism leading to this electrification have been put forward [6, 15 and 24–26] which
includes the following a number development stages. Firstly, in the initial stage of
bubble growth where it adheres to the aerial-antenna igniter via a water film (bubble
membrane) the bubble is heated by dielectric heating, leading a second stage that
involves the internal vapor becoming supersaturated with respect to the surrounding
liquid temperature. Thirdly, upon further dielectric heating the bubble membrane is
vaporized (Fig. 4a) thereby allowing the supersaturated vapor to directly react with
the rough metal surface, at which point the electric flied is of sufficient strength to
breakdown the gas into electrons and ions that form the plasmoid.

2.3.4 Carbon-Based Nanoparticle Formation at a Microwave
Aerial-Antenna Igniter Surface

When microwaves are used to irradiate a hydrocarbon liquid in the presence of an
aerial-antenna igniter the production of H2 and its low carbon carbides is obtained
along with the condensation of carbon-based NMs on the metal igniter surface [5, 6,
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and 15–17]. The formation pathway of both gas and solid may be broadly understood
by including a heterogeneous phase to the bubble-to-plasmoid transition process as
outlined in Sect. 2.3.3. This multi-phase description is not intended to provide a
conclusive picture, but rather a starting point for further experimentation. Given
this caveat, it is generally acknowledged that within the vapor phase where rapidly
changing vapor supersaturation conditions occur, particle nucleation is thermody-
namically favorable for molecules to condense in the vapor and at solid surfaces,
where on ongoing collisions lead to particle growth at these locations [33]. In the
plasma state, the ionization and dissociation of the parent NM becomes kinetically
favorable [23].

2.3.5 Additive or Supplementary Bubble Use

To improve power efficiency and stability of the targeted In-liquid reaction within a
DMOPR, additive, or supplementary bubbles may be induced and where the buoy-
ancy of the gas bubbles provides a means of gas–liquid mixing. For example, in
2014 Lebedev et al. [16] injected argon gas into the liquid hydrocarbon precursor
through the aerial-antenna igniter to produces a stream of gas bubbles (Fig. 4b).
Another approach is to re-circulate the hydrocarbon precursor liquid, with an initial
charge of helium carrier gas, into a large area porous quartz bubble control plate [17]
(Fig. 4c). This second (bubble control plate) approach provides a greater degree of
bubble–liquid mixing and was originally investigated for a metal slot-antenna at the
end of TE10-mode waveguide for the production of bubbles within water [34].

2.4 Microwave Susceptors

The incorporation of susceptors into a microwave process is often termed ‘Hybrid
heating’ [22]. This is because microwave susceptors have the ability to absorb elec-
tromagnetic radiation in the 2.45 GHz range and covert this energy into heat by
re-emitting the energy in the form of conduction or infrared radiation. Table 1
demonstrates that the hybrid heating process is employed in the solid-state chemistry
domain. Typically two microwave susceptor materials are used: aluminum block
and foil (σ = 3.69 × 107 �. m−1 at 2.45 GHz) and graphite (σ ~ 3.69 × 106 �.
m−1 at 2.45 GHz [35, 36]). Placing microwave transparent hydrocarbon precursor
on aluminum block/foil or graphite provides a simple indirect thermal mechanism.
However, the advantage of mixing the susceptor with the hydrocarbon precursor is
that it enhances direct heating within the hydrocarbon precursor, but at the expense
of chemical contamination, which may require post-process decontamination. To
prevent susceptor contamination, separation between these materials by placing the
precursorwithin a glass vial [10]. The use of a susceptor can lead to a thermal runaway
due to the continuous increase of the microwave energy absorption with temperature
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rise, to avoid this scenario a system tailored to solid or powdered susceptor needs to
be used.

2.5 Chemical Catalyst

Table 1 reveals that chemical catalysts are commonly used in the solid-state chemistry
production of carbon based nanostructures. The catalyst material include: Magnetite
(Fe3O4) [7], (Fe(NO3)3·9H2O) [9], and Ferrocene (Fe(C5H5)) [10, 11]. Magnetite
also strongly interacts with the microwave electromagnetic field and therefore is also
classed as a susceptor (tan δ = 0.02 [32]. These materials not only provide nucleation
sites for carbon growth but are also incorporated into the final nanostructure product
which may [5], or not be desirable. In addition, porous silica, coated with transition
metals Mo and Co have been used in cyclohexane In-liquid plasma production of H2

and MWNCT [9].

3 Nanoparticles Formation Due to Drilling Within Single
and Multi-Mode Cavity

In this section NP formation within a fireball generated in a purpose built multi-
mode cavity plasma reactor [3, 37–41] and DMOPR [4] is considered as a sepa-
rate microwave technology from that used for the synthesis of functional carbon-
based nanostructures within the DMOPR. The difference in these two processing
approaches is that a localized hot-spot (plasma) is produced by using an open-end
coaxial transmission line (deployed as a monopole antenna), within a mono-mode
microwave cavity to drill holes in a concrete, glass and metal surfaces [3, 4, 37 and
39] and subsequently within a DMOPR to drill into bone [4]. In references [3, 4,
and 40–41] it has been proposed that the drilling action is caused by thermal runway
process in the hot-spot; that is the energy released in the reaction has a positive feed-
back (Fig. 5a). It is also observed that when the drill bit is pulled out of the drilled
hole [40, 41], a plasmoid is ejected (Fig. 5b) which subsequently forms a buoyant
fireball as long the microwave irradiation is turned-on (Fig. 5c).

For a silicon substrate, fireballs are observed to have self-sustaining lifetimes of
the order of 0.03 s that contains NPs with a mean size of 50 nm and mass density
of 10–4 mg cm−3 as measured by synchrotron X-ray scattering. In addition these
self-sustaining lifetimes are also consistent with dc generated water based plasmoids
[42, 43], but are well beyond normal atmospheric plasma relaxation times (typi-
cally microseconds or less). However it is noted that that the self-sustaining lifetime
are much shorter than self-sustaining lifetimes of naturally occurring ball-lighting,
typically 1–2 s [44, 45].
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Fig. 5 a–cMicrowave plasma drilling (a), microwave reverse drilling with the ejection of plasmoid
(b), and the formation of buoyant self-sustaining fireball (c)

To account for the microwave generated fireball self-sustaining lifetime, Mitchell
et al. [41] has invoked Abrahamson and Dinniss model of ball-lighting striking the
ground inwhich silicon and carbonmaterial are converted into an assortment of fused
NP and dendrimer-like structure that contain silicon metal, silicon monoxide, and
silicon carbide [46]. A fireball formed in this way may be considered to be classed as
a dusty-plasma where the particles undergo an exothermic oxidation reaction (�H
< 0, see Fig. 1), the heat from which sustains the fireball. In the microwave fireball
case however, the self-sustaining lifetime arises due to the oxidation reaction starts
in the microwave illumination period and hence the fireballs lifetime is shortened
accordingly.

4 Hydrogen and Nanomaterials Collection

In 2004, Sabot and Schlabach [1] considered that for advance commercial microwave
plasma reactors, that the collection and purification stage after NM syntheses was
poorly developed and was the main bottle neck in achieving high NM product yields.
For the DMOPR processing papers [5–15 and 17–19] discussed here their primary
aim was to present the proof-of-principle of H2 and/or carbon-based NM synthesis.
Thus emphasis on the collection and the purification stagewas limited. For complete-
ness this section provides brief overview of the collection processes reported in above
papers.

In the case of DMOPR generation of H2 and its low-carbon carbides, the gas
was collected by displacement above the hydrocarbon precursor liquid [5, 6, and
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15–19]. Chemical analyses of the gas was performed and reported upon, but drying
and purification of the gas was not remarked upon.

For the extraction of Fe3O4 NP from the microwave plasma irradiated solid-phase
magnetite -polystyrene mixture, the collection process is more complex. In this case,
the raw product was ultrasonically washed in acetone for 5 min to allow the NP to
disperse in the solvent and removed by filtering [7].

Post microwave irradiation extraction of nanosheets from solid polyethylene
required an ethanol ultrasonic bath step for 10 min to allow the product to disperse
in the solvent and be removed [6]. The NM was found to be unstable and require
thermal treatment under an inert atmosphere to stabilize the crystallinity of the final
product.

The DMOPR processed ZnO-Zn NP reported by Irzh et al. [12] where removed
from their glass substrates washed in a 2-propanol ultrasonic bath for 30 min using
under an argon atmosphere to disperse thefinal product in the solvent prior to analysis.

Extensive nanostructure the characterization ofNMsmicrowave plasma treatment
of naphthalene [10], RH [11], ZnO [13] and carbon-based NM [14], however little
detail off the collection process was reported. It is also note that no NP collection
process was reported in [36–39] as all particle size measurements were performed
by Synchrotron X-Ray scattering.

5 Summary

This paper has reviewed the fundamental principles of rapid prototyping of functional
carbon-based nanomaterials within converted DMOPRs. The nanomaterials have a
grain size of < 100 nm, in at least one dimension, and range from single and multi-
walled carbon nanotubes, onion-like nanostructures, fullerene, and graphene sheets.
Based on reports from the technical literature; the review highlights the following
complex heterogeneous reaction pathways:

• Liquid linear chain hydrocarbons (i.e. n-dodecane) preferentially undergo C–
C β-scission to simultaneously produce H2 and low-grade carbides and solid
graphite at themetal aerial-antenna igniters. This observation differs from thermal
(850–1100 K) cracking of n-dodcane where CO products are formed [28, 29].
Altering the hydrocarbon precursor from a linear structure to cyclo-, or phenyl
group carbon-based structures (i.e. cyclohexane) produces CNT and MWCNT
at the surface of metal aerial-antenna igniters. Electrification of the hydrocarbon
precursors originate by vaporization of the liquid to produce gaseous bubbles
at the surface at the metal aerial-antenna and then produces plasmoids cracked
hydrocarbon reactive species that form gaseous and solid nanomaterials. Collec-
tion of the gaseous by-product is performed by displacement above the liquid
hydrocarbon precursor.

• The production of nanomaterials by microwave irradiation of solid-state hydro-
carbon mixed with catalyst and susceptors may be performed within a glass vial
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where the plasma reaction takes place. The process is limited by the amount reac-
tant within the sealed vial. In addition product collection and separation from the
catalyst and susceptors requires further processing.

• Direct plasma interaction with solid-state hydrocarbon precursor that is mixed
with catalyst and susceptors may be performed within plasma. As with the sealed
vial process, product collection and separation requires further processing.

• Microwave plasma (DMOPR or single-mode waveguide) drilling and reverse
drilling lead to a local thermal runaway and the ejection of plasmoid (fireball)
with self-sustaining lifetimes of 0.03 s.
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The Relationship Between the Euler
Characteristic and the Spectra of Graphs
and Networks

Michał Ławniczak, Pavel Kurasov, Szymon Bauch, Małgorzata Białous,
and Leszek Sirko

Abstract A relationship between the Euler characteristic of a quantum graph and its
spectrum is a very new subject of the theoretical and experimental investigations. The
Euler characteristic χ = |V | − |E |, where |V | and |E | are the numbers of vertices
and edges of a graph, determines the number β of independent cycles in it. The
most important features of the graph spectrum, the number and density of the energy
eigenvalues are determined by the graph total length L according to the Weyl’s law.
In the recent paper M. Ławniczak et al., Phys. Rev. E 101, 052320 (2020), have
shown theoretically and experimentally that to determine the Euler characteristic
of a simple quantum graph without knowing its number of vertices and edges it is
enough to measure a finite sequence of the lowest eigenenergies λ1, . . . , λN . In this
article the above investigations are supported by the new theoretical calculations of
the Euler characteristic.

1 Introduction

The very beginning of the graph theory is connected with the article [1] of Leonhard
Euler, published in 1736, in which the problem of seven bridges in Konigsberg
was considered. In 1936 Pauling [2] introduced the idea of graphs to physics to
describe the motion of a quantum particle in a physical network. Now this approach
is known as the quantum graph model. Quantum graphs are used to simulate e.g.
mesoscopic quantum system [3, 4], quantum wires [5] and optical wave guides [6].
12 years latter Feynman [7] introduced diagrams (graphs) as pictorial representation
of themathematical expressions describing the behavior and interaction of subatomic
particles.
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The theory of quantumgraphs is still being developed, see, e.g., [8–12]. Themetric
graph� = (V, E) consist of edges e ∈ E connected at the vertices v ∈ V . Each edge
is an interval on the real lineR having the length le and the vertices are defined as the
unions of edge endpoints. The Laplace operator L(�) = − d2

dx2 acting in the Hilbert
space of square integrable functions on the metric graph � is uniquely determined by
this graph. If the graph has only Neumann (called also standard, natural, Kirchhoff)
vertex boundary conditions: functions are continuous at vertices and the sums of their
oriented derivatives at vertices are equal zero, then the Laplacian is self-adjoint and
its spectrum is pure discrete [11]. The operator is also non-negative and has constant
as the eigenvalue zero eigenfuction.

In this article we continue the presentation of the results on topology of quantum
graphs and microwave networks, initiated in [13]. We will confirm that recovering of
Euler characteristic of the graph without seeing it, i.e. knowing number of its edges
and vertices, is possible on the basis of measuring a small number of the lowest
eigenenergies of such a graph. It may be also possible to determine whether the
graph is planar or fully connected. Our statements are supported by new theoretical
calculations.

The measurements were done using microwave networks that simulate quantum
graphs [14–19]. This is possible because the one-dimensional Schrödinger equation
describing quantum graphs is formally equivalent to the telegrapher’s equation for
microwave networks [14, 17]. It should be noted that microwave networks are unique
as they allow for the experimental simulation of quantum systems having, respec-
tively, all three symmetry types considered in random-matrix theory (RMT): systems
with preserved time reversal symmetry (TRS) represented by Gaussian orthogonal
ensemble (GOE) [13–16, 18, 20]; systems with preserved TRS and half-spin repre-
sented by Gaussian symplectic ensemble (GSE) [21]; systems without TRS repre-
sented by Gaussian unitary ensemble (GUE) [14, 19, 22–26].

Recently, in experiments with the use of microwave networks, the usefulness
of missing level statistics [25] and the existence of the graph that do not obey the
standard Weyl’s law, non-Weyl graphs, have been demonstrated [20].

2 The Spectrum Formula for the Euler Characteristic

The total length L = ∑
e∈E le and the Euler characteristic χ = |V | − |E | are the

most important features of a metric graph� = (V, E). The total lengthL determines
asymptotically eigenvalues of a graph according to Weyl’s law:

λn =
(π

L
)2
n2 + O(n) , (1)

where λn = k2n (square of the wave vector) andO(n) is a function which in the limit
n → ∞ is bounded by a constant times n.
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The Euler characteristic χ allows determining another important quantity char-
acterizing the graph, which is the number of independent cycles β in it:

β = |E | − |V | + 1 ≡ 1 − χ , (2)

The number of independent cycles tells how much the graph differs from a tree
and is equal to the number of the edges that must be removed to turn the graph into
a tree.

It might seem that determining the total length and the Euler characteristic would
require knowing of the whole spectrum, all eigenenergies of the graph. This natural
mathematical approach leads to the following precise formulas [27, 28]:

L = π lim
n→+∞

n

kn
(3)

χ = X (t)|t≥t0 := 2 + 8π2
∑

kn �=0

sin(kn/t)

(kn/t)[(2π)2 − (kn/t)2] , (4)

where t0 = 1/2lmin , and lmin is the length of the shortest edge of a graph.
The knowledge of the whole spectrum allows reconstructing the metric graph if

the lengths of its edges are rationally independent [29–31] and thus ensures a positive
answer to the question posed by Kac [32] modified for quantum graphs as “Can one
hear the shape of a graph?” [16, 29, 30].

In the real world of the physical measurements it is not possible to determine the
entire spectrumof the tested system. In the case ofmicrowave networks, the openness
and internal absorption of the system limit the number of eigenfrequencies available
in measurement to well below a thousand. There is also generally no guarantee that
edge lengths are rationally independent, so it is very important to investigate whether
the total length L and the Euler characteristic can be reconstructed directly from the
limited experimental spectrum without precise information about the graph. This is
much easier for the Euler characteristic because it is an integer (often negative) thus
to determine it accurately it is enough to know the right-hand side of (4) with an
accuracy better than 1/2. Therefore, in the rest of the article we will focus on the
Euler characteristic.

The explicit formulas connecting the Euler characteristic with the spectrum of a
quantum graph were derived in the articles [27, 28]. It turned out, however, that they
converge very slowly requiring too much eigenenergies from the experimental point
of view. The series in formula (4) converges much faster, what was shown together
with the derivation of this formula in [13].

To estimate a minimum number of eigenenergies of the graph (resonances in the
microwave networks) ensuring that the calculated value of χ will be within the limit
±1/2 of its true value we will analyze the following formula:
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ε = |X (t) − XK (t)||t=t0
=

∣
∣
∣
∣
∣
8π2

∞∑

n=K+1

sin(kn/t0)

(kn/t0)[(2π)2 − (kn/t0)2]

∣
∣
∣
∣
∣
, (5)

where

XK (t) = 2 + 8π2
K∑

n=1

sin(kn/t)

(kn/t)[(2π)2 − (kn/t)2] . (6)

To avoid any problem with the denominator in (5) we need

kK+1 > 2π t0 (7)

Taking into account the obvious inequality (see (1))

k2n ≥ (π

L
)2

(n + 1 − |V |)2, (8)

we get that the condition (7) is fulfilled if

K > |V | − 1 + L
�min

. (9)

Now ε can be estimated by

ε = |X (t0) − XK (t0)| ≤ 8π2
∞∑

n=K+1

|sin(kn/t0)|
(kn/t0)[(kn/t0)2 − (2π)2]

≤ 8
(Lt0)3

π

∞∑

n=K+1

1

(n + 1 − |V |)[(n + 1 − |V |)2 − 4L2t20 ]
≤ 8

(Lt0)3
π

∫ ∞

K

dx

(x + 1 − |V |)[(x + 1 − |V |)2 − 4L2t20 ]
= Lt0

π
log

(K + 1 − |V |)2
(K + 1 − |V |)2 − 4L2t20

,

(10)
and finally we get:

K > |V | − 1 + 2Lt0
[

1 − exp

(−επ

Lt0

)]−1/2

. (11)

When the total length L of the graph is much greater than its shortest edge the
inequality (11) can be approximated by

K > |V | − 1 + 2√
επ

( L
2lmin

)3/2

. (12)
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3 Experimental Setup and Methodology of Measurements

To test the formula for the Euler characteristic (4) we carried out the one-port mea-
surements of the scattering matrices S(ν) for planar and non-planar microwave net-
works simulating simple quantum graphs. A graph is simple if there is only one edge
between any two vertices.

Figure1 shows the pictures of the investigated microwave networks and the
schemes of the quantum graphs that they simulate. The planar graph � = (4, 6)with
|V | = 4 and |E | = 6 (Fig. 1a) is simulated by the microwave network (Fig. 1b) of
the total optical length L = 1.494 ± 0.006 m and lmin = 0.155 ± 0.001 m. Accord-
ing to the definition its Euler characteristic χ = |V | − |E | = −2, and t0 = 1

2lmin
≈

3.23 m−1.
In the panels (c) and (d) of Fig. 1 we present a scheme of the quantum graph

� = (5, 10) and simulating it microwave network. The Euler characteristic χ =
|V | − |E | = −5. The network total optical length is L = 3.949 ± 0.010 m and the
length of the shortest edge is lmin = 0.202 ± 0.001 m, so t0 = 2.48 m−1.

In Fig. 2a the experimental setup is shown. This is a typical setup for such mea-
surements and consists of the Agilent E8364B vector network analyzer (VNA) and

Fig. 1 Panels a and b show the schemes of a planar quantum graph � = (4, 6) with |V | = 4
vertices and |E | = 6 edges and a microwave network with the same topology. Panels c and d show
the schemes of a non-planar quantum graph � = (5, 10) with |V | = 5 vertices and |E | = 10 edges
and a microwave network with the same topology. The microwave networks were connected to the
vector network analyzer with the flexible microwave cable, denoted in the figure by L∞ which is
equivalent to attaching an infinite lead to a quantum graph. The shortest edges of the graphs are
also shown
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Fig. 2 a The experimental setup consisting of the microwave network simulating the quantum
graph � = (4, 6) connected by the high class flexible cable to the VNA. Fragments of the measured
moduli of the scattering matrix |S(ν)| for the networks � = (4, 6) with the total length L = 1.494m
and� = (5, 10)withL= 3.949m are shown in the upper and lower parts of the panel b, respectively.
The increasing of the resonance density for the longer network is clearly seen

the HP 85133-616 high class flexible microwave cable that connects the VNA with
measured network and is equivalent to attaching an infinite lead to the quantum graph
[20]. Before eachmeasurement, theVNAwas calibratedwith anAgilent 4691-60004
electronic calibration module to eliminate the cable influence on the measurement
result.

Microwave networks are made of coaxial cables and junctions corresponding to
edges and vertices of simulated quantum graphs. The coaxial cables consist of an
inner conductor of a radius r1 = 0.05 cm surrounded by dielectric material (Teflon)
and an outer concentric conductor with an inner radius r2 = 0.15 cm. The measured
Teflon dielectric constant is ε = 2.06. Thus υcut = c

π(r1+r2)
√

ε
= 33 GHz is the cut-

off frequency of the TE11 below which only the fundamental TEM can propagate in
the cable [33, 34]. The physical length of the cables determine their optical length,
which is also the edges length of the simulated quantum graphs, through relationship
lopt = √

εl ph .
The measurements of the scattering matrix S(ν) were performed as function

of the frequency (energy) in the range 0.2 − 11 GHz. However, for the inves-
tigated networks, it was possible to identify the complete set of resonances in
smaller, depending on their absorption, different ranges. To check the completeness
of resonances sets the fluctuating part of the integrated spectral counting function
N f l(υi ) = N (υi ) − Nav(υi ), that is the difference of the number of eigenfrequencies
N (υi ) = i for ordered frequencies υ1 ≤ υ2 ≤ · · · and the average number of eigen-
frequencies Nav(υi ) calculated for the analyzed frequency range. The resonances
frequencies directly determined the real part of the wave vectors Re kn = 2π

c νn . The
examples of the measured scattering matrix module |S(ν)| are shown in Fig. 2b.
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4 Results

In Fig. 3 we present the calculation of the Euler characteristic performed for the
planar graph � = (4, 6) (Fig. 1a) which was simulated by the microwave networks
(Fig. 1b) as a function of t for K equals 28 (solid red line), 106 (green broken line)
and 171 (orange squares). In the calculation the formula (6) was applied. Since
the identification of resonance positions in the experimental spectrum was possible
up to the first 106 resonances (10.76GHz) the results for K = 171 are obtained
using numerically calculated spectrum of the graph � = (4, 6). The black full line
denotes the value of the Euler characteristic χ = −2 and two black broken lines
show the limits of the expected error of χ ± 1

4 . The brown vertical marker shows t0
value. K = 28 was estimated from the inequality (11) as the minimum number of
resonances needed to obtain the value of the Euler characteristic with the error within
the limits ε = ±1/4. It is easy to see that in fact 28 resonances are enough to get the
correct value of the Euler characteristic. The red curve for K = 28 exhibits the clear
plateau near the value−2 in the range 3 m−1 < t < 6 m−1. The Euler characteristics
calculated for higher number of resonances exhibit such plateaus up to much bigger
value of t, but it is irrelevant from the point of view of obtaining a correct value
of it. This result is very important for experimental practice because it means that

Fig. 3 The approximation function for the Euler characteristic XK (t) calculated for a planar
microwave network with |V | = 4 vertices and |E | = 6 edges. The solid red line and broken green
and red lines show the function XK (t) calculated from the formula (4) for the first K = 28 and
K = 106 experimental, and K = 171 numerical (orange squares) resonances, respectively. The
brown vertical marker shows the value of t0 = 1

2lmin
used for the evaluation of the required number

of resonances K = 28 (see the formula (11)). For the comparison we also show the functions XK (t)
(grey dot-dash and blue dot line) calculated from a much slowly converging formula (3) in [13]
using the first K = 28 experimental and K = 171 numerical resonances. The black full line shows
the expected value of the Euler characteristic χ = −2. The black broken lines show the limits of
the expected errors χ ± 1/4
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it possible to gain significant information about quantum graphs topology from the
measurements of a small number of theirs lowest eigenenergies. It should be also
noticed that we don’t need to know the total length L of the graph and the length of
its shortest edge lmin , which are necessary to determine the convergence of (6), for
the proper calculation of the Euler characteristic. In fact, until the plateau of XK (t)
near certain integer is not observed we know that the number of resonances taken to
calculation is insufficient and should be increased.

For comparison, in Fig. 3 we also show the Euler characteristic calculated using
the formula (3) in [13], which is converging much more slowly. The grey dot-dash
line denotes the XK (t) calculated using 28 experimental resonances and blue dot line
is for 171 numerically calculated resonances. As expected these results approach the
Euler characteristic value χ = −2 of this graph definitely slower.

Another, crucial information about the quantum graph that can be obtained by
analyzing the result of applying formula (4) concerns its planarity. According to
Kuratowski’s theorem [35] every non-planar graph contains as subgraphs K5—the
complete five-vertex graph or K3,3—the complete bipartite graph with 3 plus 3 ver-
tices. Such graphs have 6 or 4 cycles. The considered graph � = (4, 6) has, formula
(1), β = 1 − χ = 3, so without seeing or having information about the number of its
vertices and edges we know that the graph and the network simulating it are planar.

In Fig. 4 we demonstrate the calculation of the Euler characteristic performed for
the non-planar graph � = (5, 10) (Fig. 1c) which was simulated by the microwave
network (Fig. 1d) as a function of t for K equals 74 (solid red line), 132 (green broken
line) and 450 (orange squares). In this case we were able to determine the position
of the first 132 resonances, up to about 5GHz. A fragment of the network spectrum
is shown in the lower part of Fig. 2b. Since the total length of this network is greater
than the length of the planar network also the resonance density is greater in this
case.

As in the case of Fig. 3, the black full line indicates the value of the Euler charac-
teristic χ = -5, this line, and two black broken lines show the limits of the expected
error of χ ± 1

4 . The brown vertical marker shows t0 value. The resonances used in
the calculations for K = 74 and 132 were taken from the measurements while for
K = 450 they were obtained numerically. The value K = 74 was estimated from
the inequality (11) as the minimum number of resonances necessary to obtain the
value of the Euler characteristic with the error ε = ±1/4. The examination of Fig. 4
shows that, similarly to the previous case, the minimum number of the resonances
(K = 74) estimated from the inequality (11) is quite sufficient to determine the real
value of the Euler characteristic.

Again, for comparison, we also show the Euler characteristic calculated using the
formula (3) in [13]. The grey dot-dash line denotes the XK (t) calculated using 74
experimental resonances and blue dot line is for 450 numerically calculated reso-
nances. It can be seen that in the case of the more complicated graph/network, it
would be very difficult to obtain the real value of the Euler characteristic from this
formula on the basis of experimental spectra. The calculation which used K = 450
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Fig. 4 The approximation function for the Euler characteristic XK (t) calculated for a non-planar
microwave network with |V | = 5 vertices and |E | = 10 edges. The solid red line and broken green
and red lines show the function XK (t) calculated from the formula (4) for the first K = 74 and
K = 132 experimental, and K = 450 numerical (orange squares) resonances. The brown vertical
marker shows the value of t0 = 1

2lmin
used for the evaluation of the required number of resonances

K = 74 (see the formula (11)) For the comparison we again show the functions XK (t) (grey dot-
dash and blue dot line) calculated from the much slowly converged formula (3) in [13] using the first
K = 28 experimental and K = 171 numerical resonances. The black full line shows the expected
value of the Euler characteristic χ = −2. The black broken lines show the limits of the expected
errors χ ± 1/4

eigenvalues, which barely allows this, would mean for this network that one has to
identify all resonances in the frequency range 0–17GHz,what taking into account the
openness and absorption of microwave networks, is rather impossible. This indicates
how crucial is to find a quickly converging formula.

Since the analyzed graph � = (5, 10) is K5 (five-vertex, fully connected) so
according to Kuratowski’s theorem it is non-planar. For both types, planar and non-
planar, fully connected quantum graphs and microwave networks simulating them,
it can be shown that:

|V | = 3 + √
9 − 8χ

2
. (13)

Applying this formula to the investigated graphs we found that both of them are
fully connected. In the case of the planar graph the Euler characteristic χ = −2
and we get |V | = 4 and for K5, χ = −5, so |V | = 5. Thus knowing experimentally
determined Euler characteristic we can find out whether the graph/network is fully
connected without any additional information.
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5 Conclusions

We extended our analysis of the Euler characteristic presented in [13] to higher
frequency range using numerically calculated spectra of the analyzed graphs. On
the basis of [13] and this work one can state that the Euler characteristic can be
determined using a limited sequence of the lowest resonances of the microwave
networks simulating quantum graphs. We show that from the experimental point of
view the convergence of the formula for theEuler characteristic is a critical parameter.
Moreover, we demonstrate that obtained in this way Euler characteristic may allow
for identification whether a completely unknown graph/network is planar and also
whether it is fully connected. In the case of the fully connected graphs and networks it
is possible also to specify the number of their vertices and edges. Our results clearly
show that the Euler characteristic is a new powerful tool for studying of simple
quantum graphs and microwave networks.
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Mathematical Definition of Vortex
Boundary and Boundary Classification
Based on Topological Type

Xiang Li, Qun Zheng, and Bin Jiang

Abstract Recently, new progress has been made in vortex recognition, and the defi-
nition of Liutex (Rortex) based on eigenvectors has established a relation between
rotation axis and eigenvectors of velocity gradient tensor. Based on this relation, the
mathematical condition of vortex boundary is given: the set of points with multiple
roots in the characteristic equation of velocity gradient tensor in a flow field. In this
way, the topological structure of critical point theory is applied to vortex boundary.
According to whether the velocity gradient tensor can be diagonalized, there are
shear boundary and non-shear boundary, while according to the positive, negative
and zero of the double root, there would be stable boundary, unstable boundary
and degenerate boundary. In order to define and classify the boundary, a mapping
method is proposed, andwe establish the relation between particle and fluidmicroele-
ment. Under different decomposition modes, we can analyze the superposition of
fluid deformation behavior more clearly by mapping image space, which can be
used to compare Helmholtz decomposition with Liutex velocity gradient decompo-
sition. Moreover, considering the simple shear, geometric meaning of Liutex can be
explained through geometric relations, and it is believed that the dominant quantity
rotation described by Liutex is circular symmetry. (National Science and Technology
Major Project (2017-II-0006–0019, 2017-I-0009–0010))
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1 Introduction

The definition vortex of vortex involves the issue of a rigorous definition of vortex,
which is not united yet. Wu proposed that the general goal of vortex definition
should reflect its tubular motion pattern [1]. Among commonly used vortex criterion,
including theQ criterion, theDelta criterion and the Lambda_ci criterion, only Liutex
theory [2–4] satisfies the necessary conditions not to be broken by criterion [5].
Liutex, however, has not concentrated on the outer boundary of the vortex. There
is always a simple shear component in the rotation represented by the vorticity [2,
6]. Liu points out that Lambda_ci is a measure of the absolute strength of the net
rotation, in the plane perpendicular to eigenvector, and argues that the non-orthogonal
coordinates do not describe the rotational momentum [12–15]. In this paper, the
geometric and physical meanings of Liutex models are given, and it is believed that
Liutex magnitude measures the symmetric rotation strength. We propose a mapping
method, which can simulate the two-dimensional topology evolution to give the flow
pattern evolution theory, and then give the definition and classification of vortex
boundary.

2 Mapping Method

A mapping method is given in this paper to denote 2D fluid behaviors including
rotation and deformations as points in a 2D space, which also holds in the plan
perpendicular to eigenvector. Similarly, 3D behaviors as points in a 3D space. To
be more specific, the method aims to map strain rate state onto particles behaviors.
On the other hand, this method can explain directly by which Liutex magnitude is
obtained through orthogonal rotation.

It is known that velocity tensor is decomposed into four behaviors of fluid
mass, expansion, shear, rotation and angular deformation based on Stocks-Helmholtz
decomposition (Fig. 1). However, this mapping is a built to reinterpret them, taking
non-diagonal elements as the preimage, while the neighbor space of a point as the
image. To achieve it, the expansion is out of consideration and we substitute the
rest of three cases with the displacements of A and B (Fig. 1). Then supposing that

Fig. 1 Deformation of fluid mass
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Fig. 2 Neighbor space of image D

time deviation is close to zero, then the strain rates can be expressed by displace-
ments. Namely, combination of displacements of A and B is associated with velocity
gradient tensor. Also, even though the expansion is out of consideration, it is enough
to analyse Helmholtz decomposition.

Based on parallelogram law, image D is obtained (Fig. 2a). So all deformations
now are combined and expressed. The image neighbor space of D is obtained, where
the deformation is limited. It is a one-to-one mapping method in 2D from preimage
onto image. For 3D, it’s easy to develop as the law holds in every direction (Fig. 2b).

This method compares different decomposition and builds a connection between
particles and a fluid mass. If points O, A, B is regarded as three typical particles of a
fluid mass, it would explain how fluid particles represent a fluid mass, consequently
to review the priority of continuum mechanics over particle mechanics.

The strain rates tensor and velocity tensor under Helmoholtz decomposition are
mapped onto the neighber space of D, in Fig. 3a. The rotation axle and symmetry
angular deformation axle divide the plane into four quadrants,where P get projections
using Helmoholtz decomposition. However, when considering about other velocity
decomposition, for example in some condition, deformations are contaminated by
each other as mentioned before [2, 6]. In this condition, if it regards the simple
shear as an independent basic deformation, namely the shear axis is considered, then
there would be eight parts in the plane (Fig. 3b) where shaded region means rotation

Fig. 3 Image space of the mapping with (a) and without (b) shear axles
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component. Here, image points like Q are only projected on two closest axis. Thus,
every point in the shaded area is consisted of rotation and simple shear.

This image spacemakes the components of behaviorsmore clearly under different
decompositionmanners. It makeswhich decomposition ismore natural is an artificial
selection.

3 Vortex Boundary Definition

In this paper, vortex boundary definition deduced from the geometry and physical
meaning of Liutex magnitude given by mapping method. It begins with 2D plane
perpendicular to eigenvector, a direction defined as the vortex axle in Liutex theory.

3.1 Physical Meaning of Liutex Magnitude

Liutex magnitude is a Galilain invariant obtained from two orthogonal rotation
matrix, Q and P rotation acting on velocity tensor. Here P rotation is an orthog-
onal rotation on the plane perpendicular to left eigenvector, acting on velocity tensor
as

∇ →
v
θ

= P∇ →
v P−1

After the orthogonal transforming, themagnitude of Liutex is defined on the plane
as the extreme value of non-diagonal element,

∂U

∂Y
|θ = α sin (2θ + ϕ) − β

∂V

∂X
|θ = α sin (2θ + ϕ) + β

∂U

∂X
|θ = α cos (2θ + ϕ) + 1

2

(
∂U

∂X
+ ∂V

∂Y

)

∂V

∂Y
|θ = −α cos (2θ + ϕ) + 1

2

(
∂U

∂X
+ ∂V

∂Y

)

while the main diagonal elements are the equal, corresponding to rotation and
isotropic expansion, respectively.

Both linear and shear strain rate are circular symmetry from the view of circular
direction. As a result, Liutex extracts the same character in circular direction, called
circular symmetry in 2D, and cylindrical in 3D, the physical meaning of Liutex.
The circular symmetry is a kind of typical physical character of vortex, emphasizing
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circular direction rather than the position of each flow particle. So this paper claim
that circular symmetry is the physical meaning of Liutex.

3.2 Geometry Meaning of Liutex Magnitude

From the mapping method above, it is easy to generate the physical meaning of α,
deviation of circular symmetry. If one the axle (Fig. 3b) is changed to α, all cases
of discriminant of Liutex magnitude can be obtained, as shown in Fig. 4a, where β

axle is for rotation, shear axle for simple shear, and α axle for two cases: an isotropic
expansion and asymmetry of angular deformation. While Liutex the magnitude of
Rortex can be obtained by

R = 2(β − α),

where

α = 1

2

√
(
∂v

∂x
+ ∂u

∂y
)2 + (

∂u

∂x
− ∂v

∂y
)2

β = 1

2
(
∂u

∂y
− ∂v

∂x
)

The geometricmeaning of Liutexmagnitude in shaded area is the length of projec-
tion on β axis., because of geometric relation shown in Fig. 4b, the projection of Q on
β axle is β-α measuring the rotation. Thus, the mapping method considering about
the simple shear help explain Liutex magnitude.

3.3 Vortex Boundary Definition

To consider about vortex boundary definition, the mathematical definition of vortex
or rotation need to be given, which is not unified statement. Based on Liutex identi-
fication theory [12–23, 23–30], this part will give the mathematical discriminant of
vortex boundary.

There are twocharacters of a gradient tensor, diagonalizable andundiagonalizable.
For the first case, the gradient tensor is not diagonalizable to real diagonal matrix,
when the velocity gradient tensor has one real eigenvalue and two complex conjugate
eigenvalues.According to the eigenvector-based definition of Liutex, the 2× 2matrix
on the plane perpendicular to the left eigenvector has the identical complex conjugate
eigenvalues as the original velocity gradient tensor which can be expressed as

λ1 = λcr + iλci , λ2 = λcr − iλci
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where [3],

λ2
ci = β2 − α2

Second, the gradient tensor is diagonalizable to real diagonalmatrixwhen there are
three real distinct eigenvalues which means three linearly independent eigenvectors,
main directions of compression and tension. Namely, there is an orthogonal rotation
that transforms the deformation to simple expansion.

However, when β2 − α2 = 0, there are two or three same eigenvalues of velocity
gradient tensor, so there are also above two cases,. To be exact, the velocity is diago-
nalizable if geometric multiplicity is less than algebraic multiplicity, and if equal, it
is not diagonalizable. The boundary of above two cases is the case of multiple root,
including double or triple root of characteristic equation.

Correspondingly, in the image plane of the mappingmethod in Fig. 3b, the shaded
area is for one real and two complex eigenvalues, the unshaded area for 3 real eigen-
values, and shear axle for same eigenvalues. Thus, the boundary of vortex is defined
as the condition of multiple roots with β2 − α2 = 0, as a result of admitting the Liutex
theory. The boundary type can be classified more specifically using topology type of
shear axle.

3.4 Vortex Boundary Classification of Topology Type

Establishing coordinates on moving points in the flow field, the origin of these coor-
dinates are singular points on these local coordinates, for which the critical point
theory is locally suitable. This part will classify every points topology type through
a manner of critical points theory [8], so the classification of topology can be used
on vortex boundary.

First, differential equations can be given as

dx

dt
= X (x, y),

dy

dt
= Y (x, y)

where

X (x, y),Y (x, y) ∈ C0(D),D ⊆ R2

Equations has different characters on singular points and ordinary points [9]. If
P0(x0,y0)is a singular point, the velocity is zero, otherwise, is not zero. However,
every point can be transformed to a singular point through minus its velocity and
establishing local coordinates on points. As a result of d−→v = ∇−→v · dr , the velocity
tensor is substituted into
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Fig. 4 Schematic diagram of Liutex (Rortex) magnitude

dx

dt
= ax + by,

dy

dt
= cx + dy

where a, b, c and d are real numbers of velocity tensor. And the characteristic equation
is

D(λ) = λ2 + pλ + q = 0

where

p = −(a + d), q = ad − bc,� = p2 − 4q

The Fig. 5 is the topology of trace line of critical points as well as a kind of stream
patterns of ordinary points with local coordinates. The topology doesn’t change with
the coordinate transformation, since they are determined by p, q and discriminant
� while the discriminant of multiple roots in the above image space (Fig. 6) is
�′ = α2 − β2. So axles of the image makes the different cases of eigenvalues
clearly.

From Fig. 6, on shear axle, there is �′ = � = 0, where the vortex boundary is
classified into two cases in terms of topology type. According to whether diagonal-
ization can be, there are shear and non-shear boundary, for example, Fig. 6a, b. And
according to the positive and negative of the double root, it can be classified into
stable boundary and unstable boundary, as shown in Fig. 6c, d. In addition, if the
multiple root is zero, the topology is degenerate; it is degenerate boundary, as shown
in Fig. 6e, f.

4 Conclusion

Firstly, amappingmethod, the foundation of the paper, is given to analyzefluid behav-
iors, and compare different velocity decomposition trying to explain how Liutex
conflict with Helmholtz decomposition and showing how a fluid particle represent a
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Fig. 5 Classification of
critical points in
two-dimensional linear
systems [7]

Fig. 6 Stream patterns of
ordinary points and singular
points in local coordinates

fluid mass. Secondly, circular symmetry in 2D, and cylindrical in 3D is the physical
meaning of Liutex. It is a kind of typical physical character of vortex, emphasizing
circular direction. And it explain the geometricmeaning of Liutexmagnitude through
geometric relation by themappingmethod. So,which velocity decomposition ismore
natural is an artificial selection.

We define the boundary of vortex as the condition of multiple roots of velocity
gradient tensor with β2 − α2 = 0, as a result of admitting the Liutex theory. The
boundary type can be classified more specifically using topology type, by classifying
every points topology type through a manner of critical points theory. According
to whether diagonalization can be, there are shear and non-shear boundary. And
according to the positive, negative and zero of the double root, there are stable
boundary, unstable boundary and degenerate boundary.
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On a Singular System of Coupled
Nonlocal Fractional Boundary Value
Problems

Rodica Luca

Abstract We study the existence and multiplicity of positive solutions for a system
of Riemann-Liouville fractional differential equations, subject to coupled nonlocal
boundary conditionswhich containRiemann-Stieltjes integrals andvarious fractional
derivatives, and the nonlinearities of the system are nonnegative functions and they
may be singular at some points. We use the Guo-Krasnosel’skii fixed point theorem
in the proofs of the main results.

Keywords Systems of Riemann-Liouville fractional differential equations ·
Nonlocal coupled boundary conditions · Singular nonlinearities · Existence of
solutions · Multiplicity

1 Introduction

We consider the nonlinear system of fractional differential equations

{
Dα

0+u(t) + f (t, u(t), v(t)) = 0, t ∈ (0, 1),

Dβ

0+v(t) + g(t, u(t), v(t)) = 0, t ∈ (0, 1),
(1)

supplemented with the coupled nonlocal boundary conditions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u( j)(0) = 0, j = 0, . . . , n − 2, Dγ0
0+u(1) =

p∑
i=1

∫ 1

0
Dγi

0+v(t) dHi (t),

v(k)(0) = 0, k = 0, . . . ,m − 2, Dδ0
0+v(1) =

q∑
i=1

∫ 1

0
Dδi

0+u(t) dKi (t),

(2)
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where α, β ∈ R, α ∈ (n − 1, n], β ∈ (m − 1,m], n, m ∈ N, n ≥ 3, m ≥ 3, p, q ∈
N, γi ∈ R for all i = 0, . . . , p, δ j ∈ R for all j = 0, . . . , q, 0 ≤ γ1 < γ2 < · · · <

γp ≤ δ0 < β − 1, δ0 ≥ 1, 0 ≤ δ1 < δ2 < · · · < δq ≤ γ0 < α − 1, γ0 ≥ 1, Dk
0+

denotes theRiemann-Liouville derivative of order k (for k = α, β, γi , i = 0, . . . , p,
δ j , j = 0, . . . , q), the nonnegative functions f and gmay be singular at t = 0 and/or
t = 1, and the integrals from the boundary conditions (2) are Riemann-Stieltjes inte-
grals with Hi for i = 1, . . . , p and K j for j = 1, . . . , q functions of bounded vari-
ation.

In this paper we present sufficient conditions for the nonlinearities f and g such
that problem (1) and (2) has at least one or two positive solutions. In the proofs of
the main results we use the Guo-Krasnosel’skii fixed point theorem of cone expan-
sion and compression of norm type (see [13]). A positive solution of problem (1)
and (2) is a pair of functions (u, v) ∈ (C([0, 1],R+))2 satisfying (1) and (2), and
u(t) > 0 for all t ∈ (0, 1] or v(t) > 0 for all t ∈ (0, 1], (R+ = [0,∞)). The problem
(1) and (2) is a generalization of the problem studied in [16]. Indeed, if p = 1, q = 1,
γ0 = p1, γ1 = q1, δ0 = p2, δ1 = q2, H1 is a step function given by H1(t) = {0, t ∈
[0, ξ1); a1, t ∈ [ξ1, ξ2); a1 + a2, t ∈ [ξ2, ξ3); . . . ;∑N

i=1 ai , t ∈ [ξN , 1]}, and K1

is a step function given by K1(t) = {0, t ∈ [0, η1); b1, t ∈ [η1, η2); b1 + b2, t ∈
[η2, η3); . . . ;∑M

i=1 bi , t ∈ [ηM , 1]}, then the boundary conditions (2) become the
multi-point boundary conditions (BC) from [16]. In recent years, fractional differ-
ential equations and systems of fractional differential equations, subject to various
multi-point or Riemann-Stieltjes integral boundary conditions have been intensively
studied (see for example, the papers [1–5, 14, 15, 17–19, 22, 23, 29, 31–33].We also
mention the books [7, 8, 20, 21, 26–28], and the papers [6, 9–12, 24, 25, 30], which
present various applications of the fractional calculus in scientific and engineering
fields.

2 Auxiliary Results

We consider the system of fractional differential equations

{
Dα

0+u(t) + ϕ(t) = 0, t ∈ (0, 1),
Dβ

0+v(t) + ψ(t) = 0, t ∈ (0, 1),
(3)

with the boundary conditions (2), where ϕ, ψ ∈ C(0, 1) ∩ L1(0, 1). We denote

Δ = �(α)�(β)

�(α − γ0)�(β − δ0)
−

(
p∑

i=1

�(β)

�(β − γi )

∫ 1

0
sβ−γi−1 dHi (s)

)

×
(

q∑
i=1

�(α)

�(α − δi )

∫ 1

0
sα−δi−1 dKi (s)

)
.

(4)
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By using similar arguments as those used in the proof of Lemma 2.2 from [31],
we obtain the following lemma.

Lemma 1 IfΔ �= 0, then the unique solution (u, v) ∈ C[0, 1] × C[0, 1] of problem
(3) and (2) is given by

⎧⎪⎪⎨
⎪⎪⎩
u(t) =

∫ 1

0
G1(t, ϑ)ϕ(ϑ) dϑ +

∫ 1

0
G2(t, ϑ)ψ(ϑ) dϑ, ∀ t ∈ [0, 1],

v(t) =
∫ 1

0
G3(t, ϑ)ϕ(ϑ) dϑ +

∫ 1

0
G4(t, ϑ)ψ(ϑ) dϑ, ∀ t ∈ [0, 1],

(5)

where

G1(t, ϑ) = g1(t, ϑ) + tα−1

Δ

(
p∑

i=1

�(β)

�(β − γi )

∫ 1

0
sβ−γi−1 dHi (s)

)

×
(

q∑
i=1

∫ 1

0
g1i (τ, ϑ) dKi (τ )

)
,

G2(t, ϑ) = tα−1�(β)

Δ�(β − δ0)

p∑
i=1

∫ 1

0
g2i (τ, ϑ) dHi (τ ),

G3(t, ϑ) = tβ−1�(α)

Δ�(α − γ0)

q∑
i=1

∫ 1

0
g1i (τ, ϑ) dKi (τ ),

G4(t, ϑ) = g2(t, ϑ) + tβ−1

Δ

(
q∑

i=1

�(α)

�(α − δi )

∫ 1

0
sα−δi−1 dKi (s)

)

×
(

p∑
i=1

∫ 1

0
g2i (τ, ϑ) dHi (τ )

)
,

(6)

for all (t, ϑ) ∈ [0, 1] × [0, 1] and

g1(t, ϑ) = 1

�(α)

{
tα−1(1 − ϑ)α−γ0−1 − (t − ϑ)α−1, 0 ≤ ϑ ≤ t ≤ 1,
tα−1(1 − ϑ)α−γ0−1, 0 ≤ t ≤ ϑ ≤ 1,

g1i (τ, ϑ) = 1

�(α − δi )

⎧⎨
⎩

τα−δi−1(1 − ϑ)α−γ0−1 − (τ − ϑ)α−δi−1,

0 ≤ ϑ ≤ τ ≤ 1,
τ α−δi−1(1 − ϑ)α−γ0−1, 0 ≤ τ ≤ ϑ ≤ 1,

g2(t, ϑ) = 1

�(β)

{
tβ−1(1 − ϑ)β−δ0−1 − (t − ϑ)β−1, 0 ≤ ϑ ≤ t ≤ 1,
tβ−1(1 − ϑ)β−δ0−1, 0 ≤ t ≤ ϑ ≤ 1,

g2 j (τ, ϑ) = 1

�(β − γ j )

⎧⎨
⎩

τβ−γ j−1(1 − ϑ)β−δ0−1 − (τ − ϑ)β−γ j−1,

0 ≤ ϑ ≤ τ ≤ 1,
τ β−γ j−1(1 − ϑ)β−δ0−1, 0 ≤ τ ≤ ϑ ≤ 1,

(7)

for all i = 1, . . . , q and j = 1, . . . , p.
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Based on the properties of the functions g1, g2, g1i , i = 1, . . . , q, g2 j , j =
1, . . . , p given by (7) (see Lemma 3 from [15], or Lemma 2.4 from [31]), we obtain
below the following properties of the functions Gi , i = 1, . . . , 4.

Lemma 2 Assume that Δ > 0, Hi , i = 1, . . . , p, K j , j = 1, . . . , q are nonde-
creasing functions. Then the functions Gi , i = 1, . . . , 4 given by (6) have the prop-
erties:

(a) Gi : [0, 1] × [0, 1] → [0,∞), i = 1, . . . , 4 are continuous functions;
(b) G1(t, ϑ) ≤ J1(ϑ) for all (t, ϑ) ∈ [0, 1] × [0, 1], where

J1(ϑ)=h1(ϑ) + 1

Δ

( p∑
i=1

�(β)

�(β − γi )

∫ 1

0
sβ−γi−1dHi (s)

)( q∑
i=1

∫ 1

0
g1i (τ, ϑ)dKi (τ )

)
, ∀ϑ ∈

[0, 1],

h1(ϑ) = 1
�(α)

(1 − ϑ)α−γ0−1(1 − (1 − ϑ)γ0), ∀ϑ ∈ [0, 1];
(c) G1(t, ϑ) ≥ tα−1J1(ϑ) for all (t, ϑ) ∈ [0, 1] × [0, 1];
(d) G2(t, ϑ) ≤ J2(ϑ), for all (t, ϑ) ∈ [0, 1] × [0, 1], where

J2(ϑ) = �(β)

Δ�(β − δ0)

p∑
i=1

∫ 1

0
g2i (τ, ϑ)dHi (τ ), ∀ϑ ∈ [0, 1];

(e) G2(t, ϑ) = tα−1J2(ϑ) for all (t, ϑ) ∈ [0, 1] × [0, 1];
(f) G3(t, ϑ) ≤ J3(ϑ) for all (t, ϑ) ∈ [0, 1] × [0, 1], where

J3(ϑ) = �(α)

Δ�(α − γ0)

q∑
i=1

∫ 1

0
g1i (τ, ϑ)dKi (τ ), ∀ϑ ∈ [0, 1];

(g) G3(t, ϑ) = tβ−1J3(ϑ) for all (t, ϑ) ∈ [0, 1] × [0, 1];
(h) G4(t, ϑ) ≤ J4(ϑ) for all (t, ϑ) ∈ [0, 1] × [0, 1], where

J4(ϑ)=h2(ϑ) + 1

Δ

( q∑
i=1

�(α)

�(α − δi )

∫ 1

0
sα−δi−1dKi (s)

)( p∑
i=1

∫ 1

0
g2i (τ, ϑ)dHi (τ )

)
, ∀ϑ ∈

[0, 1],

h2(ϑ) = 1
�(β)

(1 − ϑ)β−δ0−1(1 − (1 − ϑ)δ0), ∀ϑ ∈ [0, 1];
(i) G4(t, ϑ) ≥ tβ−1J4(ϑ), for all (t, ϑ) ∈ [0, 1] × [0, 1].
Lemma 3 Assume that Δ > 0, Hi , i = 1, . . . , p, K j , j = 1, . . . , q are nonde-
creasing functions, and ϕ, ψ ∈ C(0, 1) ∩ L1(0, 1) with ϕ(t) ≥ 0, ψ(t) ≥ 0 for all
t ∈ (0, 1). Then the solution (u, v) of problem (3) and (2) given by (5) satisfies the
inequalities u(t) ≥ 0, v(t) ≥ 0 for all t ∈ [0, 1]. Moreover, we have the inequalities
u(t) ≥ tα−1u(ν) and v(t) ≥ tβ−1v(ν) for all t, ν ∈ [0, 1].
Proof Under the assumptions of this lemma, by using relations (5) and Lemma 2,
we deduce that u(t) ≥ 0 and v(t) ≥ 0 for all t ∈ [0, 1]. Besides, for all t, ν ∈ [0, 1],
we obtain the following inequalities
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u(t) =
∫ 1

0
G1(t, ϑ)ϕ(ϑ) dϑ +

∫ 1

0
G2(t, ϑ)ψ(ϑ) dϑ

≥ tα−1

(∫ 1

0
J1(ϑ)ϕ(ϑ) dϑ +

∫ 1

0
J2(ϑ)ψ(ϑ) dϑ

)

≥ tα−1

(∫ 1

0
G1(ν, ϑ)ϕ(ϑ) dϑ +

∫ 1

0
G2(ν, ϑ)ψ(ϑ) dϑ

)
= tα−1u(ν),

v(t) =
∫ 1

0
G3(t, ϑ)ϕ(ϑ) dϑ +

∫ 1

0
G4(t, ϑ)ψ(ϑ) dϑ

≥ tβ−1

(∫ 1

0
J3(ϑ)ϕ(ϑ) dϑ +

∫ 1

0
J4(ϑ)ψ(ϑ) dϑ

)

≥ tβ−1

(∫ 1

0
G3(ν, ϑ)ϕ(ϑ) dϑ +

∫ 1

0
G4(ν, ϑ)ψ(ϑ) dϑ

)
= tβ−1v(ν).

�

3 Existence and Multiplicity of Positive Solutions

In this section we investigate the existence and multiplicity of positive solutions for
problem (1) and (2) under various assumptions on the nonlinearities f and g which
may be singular at t = 0 and/or t = 1. We present now the basic assumptions that
will be used in our main results:

(H1) α, β ∈ R,α ∈ (n − 1, n],β ∈ (m − 1,m], n, m ∈ N, n ≥ 3,m ≥ 3, p, q ∈
N, γi ∈ R for all i = 0, . . . , p, δ j ∈ R for all j = 0, . . . , q, 0 ≤ γ1 < γ2 <

· · · < γp ≤ δ0 < β − 1, δ0 ≥ 1, 0 ≤ δ1 < δ2 < · · · < δq ≤ γ0 < α − 1, γ0 ≥ 1,
Hi : [0, 1] → R, i = 1, . . . , p and K j : [0, 1] → R, j = 1, . . . , q are nonde-
creasing functions, and Δ > 0 (Δ is given by (4)).

(H2) The functions f, g ∈ C((0, 1) × R+ × R+,R+) and there exist the func-
tions ζi ∈ C((0, 1),R+) and ϕi ∈ C([0, 1] × R+ × R+,R+), i = 1, 2, with 0 <∫ 1
0 (1 − τ)α−γ0−1ζ1(τ ) dτ < ∞, 0 <

∫ 1
0 (1 − τ)β−δ0−1ζ2(τ ) dτ < ∞ such that

f (t, x, y) ≤ ζ1(t)ϕ1(t, x, y), g(t, x, y) ≤ ζ2(t)ϕ2(t, x, y), ∀ t ∈ (0, 1), x, y
∈ R+.

By using Lemma 1, the pair (u, v) is a solution of problem (1) and (2) if and only
if (u, v) is a solution for the nonlinear system of integral equations

⎧⎪⎪⎨
⎪⎪⎩
u(t) =

∫ 1

0
G1(t, ϑ) f (ϑ, u(ϑ), v(ϑ)) dϑ +

∫ 1

0
G2(t, ϑ)g(ϑ, u(ϑ), v(ϑ)) dϑ,

v(t) =
∫ 1

0
G3(t, ϑ) f (ϑ, u(ϑ), v(ϑ)) dϑ +

∫ 1

0
G4(t, ϑ)g(ϑ, u(ϑ), v(ϑ)) dϑ,

for all t ∈ [0, 1].
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We introduce theBanach spaceY = C[0, 1]with supremumnorm‖x‖ = supt∈[0,1]
|x(t)| and the Banach spaceZ = Y × Y with the norm ‖(x, y)‖Z = ‖x‖ + ‖y‖. We
define the cone Q ⊂ Z by

Q = {(u, v) ∈ Z, u(t) ≥ 0, v(t) ≥ 0, ∀ t ∈ [0, 1]}.
We consider now the operators A1, A2 : Z → Y and A : Z → Z defined by

A1(u, v)(t) =
∫ 1

0
G1(t, ϑ) f (ϑ, u(ϑ), v(ϑ)) dϑ +

∫ 1

0
G2(t, ϑ)g(ϑ, u(ϑ), v(ϑ)) dϑ,

A2(u, v)(t) =
∫ 1

0
G3(t, ϑ) f (ϑ, u(ϑ), v(ϑ)) dϑ +

∫ 1

0
G4(t, ϑ)g(ϑ, u(ϑ), v(ϑ)) dϑ,

for all t ∈ [0, 1] and A(u, v) = (A1(u, v),A2(u, v)), (u, v) ∈ Z .
The pair (u, v) is a solution of problem (1) and (2) if and only if (u, v) is a fixed

point of operator A.

Lemma 4 Assume that (H1) and (H2) hold. Then A : Q → Q is a completely
continuous operator.

Proof We denote by M1 = ∫ 1
0 J1(s)ζ1(s)ds, M2 = ∫ 1

0 J2(s)ζ2(s)ds, M3 =∫ 1
0 J3(s)ζ1(s)ds, M4 = ∫ 1

0 J4(s)ζ2(s)ds. Using (H2) and Lemma 2, we obtain
M1 > 0, M2 ≥ 0, M3 ≥ 0, M4 > 0, and

M1 =
∫ 1

0
J1(s)ζ1(s) ds =

∫ 1

0

[
h1(s) + 1

Δ

(
p∑

i=1

�(β)

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
(

q∑
i=1

∫ 1

0
g1i (τ, s) dKi (τ )

)]
ζ1(s) ds

≤
∫ 1

0

[
1

�(α)
(1 − s)α−γ0−1 + 1

Δ

(
p∑

i=1

�(β)

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
(

q∑
i=1

∫ 1

0

1

�(α − δi )
τα−δi−1(1 − s)α−γ0−1 dKi (τ )

)]
ζ1(s) ds

=
[

1

�(α)
+ 1

Δ

(
p∑

i=1

�(β)

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
(

q∑
i=1

∫ 1

0

1

�(α − δi )
τα−δi−1 dKi (τ )

)]∫ 1

0
(1 − s)α−γ0−1ζ1(s) ds < ∞,
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M2 =
∫ 1

0
J2(s)ζ2(s) ds =

∫ 1

0

�(β)

Δ�(β − δ0)

(
p∑

i=1

∫ 1

0
g2i (τ, s) dHi (τ )

)
ζ2(s) ds

≤
∫ 1

0

�(β)

Δ�(β − δ0)

(
p∑

i=1

∫ 1

0

1

�(β − γi )
τ β−γi−1(1 − s)β−δ0−1 dHi (τ )

)
ζ2(s) ds

= �(β)

Δ�(β − δ0)

(
p∑

i=1

∫ 1

0

1

�(β − γi )
τ β−γi−1 dHi (τ )

)∫ 1

0
(1 − s)β−δ0−1ζ2(s) ds

< ∞,

M3 =
∫ 1

0
J3(s)ζ1(s) ds =

∫ 1

0

�(α)

Δ�(α − γ0)

(
q∑

i=1

∫ 1

0
g1i (τ, s) dKi (τ )

)
ζ1(s) ds

≤
∫ 1

0

�(α)

Δ�(α − γ0)

(
q∑

i=1

∫ 1

0

1

�(α − δi )
τα−δi−1(1 − s)α−γ0−1 dKi (τ )

)
ζ1(s) ds

= �(α)

Δ�(α − γ0)

(
q∑

i=1

∫ 1

0

1

�(α − δi )
τα−δi−1 dKi (τ )

)∫ 1

0
(1 − s)α−γ0−1ζ1(s) ds

< ∞,

M4 =
∫ 1

0
J4(s)ζ2(s) ds =

∫ 1

0

[
h2(s) + 1

Δ

(
q∑

i=1

�(α)

�(α − δi )

∫ 1

0
τα−δi−1 dKi (τ )

)

×
(

p∑
i=1

∫ 1

0
g2i (τ, s) dHi (τ )

)]
ζ2(s) ds

≤
∫ 1

0

[
1

�(β)
(1 − s)β−δ0−1 + 1

Δ

(
q∑

i=1

�(α)

�(α − δi )

∫ 1

0
τα−δi−1 dKi (τ )

)

×
(

p∑
i=1

∫ 1

0

1

�(β − γi )
τ β−γi−1(1 − s)β−δ0−1 dHi (τ )

)]
ζ2(s) ds

=
[

1

�(β)
+ 1

Δ

(
q∑

i=1

�(α)

�(α − δi )

∫ 1

0
τα−δi−1 dKi (τ )

)

×
(

p∑
i=1

∫ 1

0

1

�(β − γi )
τ β−γi−1 dHi (τ )

)]∫ 1

0
(1 − s)β−δ0−1ζ2(s) ds < ∞.

By Lemma 2 we also deduce that A maps Q into Q.
We prove now thatAmaps bounded sets into relatively compact sets. We assume

S ⊂ Q is an arbitrary bounded set. Then there exists L1 > 0 such that‖(u, v)‖Z ≤ L1

for all (u, v) ∈ S. By using the continuity of ϕ1 and ϕ2, we find that there exists L2 >

0 such that L2 = max{supt∈[0,1], x,y∈[0,L1] ϕ1(t, x, y), supt∈[0,1], x,y∈[0,L1] ϕ2(t, x, y)}.
By Lemma 2, for any (u, v) ∈ S and t ∈ [0, 1], we obtain

A1(u, v)(t) ≤
∫ 1

0
J1(ϑ) f (ϑ, u(ϑ), v(ϑ)) dϑ +

∫ 1

0
J2(ϑ)g(ϑ, u(ϑ), v(ϑ)) dϑ
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≤
∫ 1

0
J1(ϑ)ζ1(ϑ)ϕ1(ϑ, u(ϑ), v(ϑ)) dϑ +

∫ 1

0
J2(ϑ)ζ2(ϑ)ϕ2(ϑ, u(ϑ), v(ϑ)) dϑ

≤ L2

∫ 1

0
J1(ϑ)ζ1(ϑ) dϑ + L2

∫ 1

0
J2(ϑ)ζ2(ϑ) dϑ = L2(M1 + M2),

A2(u, v)(t) ≤
∫ 1

0
J3(ϑ) f (ϑ, u(ϑ), v(ϑ)) dϑ +

∫ 1

0
J4(ϑ)g(ϑ, u(ϑ), v(ϑ)) dϑ

≤
∫ 1

0
J3(ϑ)ζ1(ϑ)ϕ1(ϑ, u(ϑ), v(ϑ)) dϑ +

∫ 1

0
J4(ϑ)ζ2(ϑ)ϕ2(ϑ, u(ϑ), v(ϑ)) dϑ

≤ L2

∫ 1

0
J3(ϑ)ζ1(ϑ) dϑ + L2

∫ 1

0
J4(ϑ)ζ2(ϑ) dϑ = L2(M3 + M4).

Then ‖A1(u, v)‖ ≤ L2(M1 + M2), ‖A2(u, v)‖ ≤ L2(M3 + M4) for all (u, v) ∈ S,
and hence A1(S), A2(S) and A(S) are bounded.

Wewill show next thatA(S) is equicontinuous. By using Lemma 1, for (u, v) ∈ S
and t ∈ [0, 1] we find

A1(u, v)(t) =
∫ 1

0

[
g1(t, ϑ) + tα−1

Δ

(
p∑

i=1

�(β)

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
(

q∑
i=1

∫ 1

0
g1i (τ, ϑ) dKi (τ )

)]
f (ϑ, u(ϑ), v(ϑ)) dϑ

+
∫ 1

0

tα−1�(β)

Δ�(β − δ0)

(
p∑

i=1

∫ 1

0
g2i (τ, ϑ) dHi (τ )

)
g(ϑ, u(ϑ), v(ϑ)) dϑ

=
∫ t

0

1

�(α)
[tα−1(1 − ϑ)α−γ0−1 − (t − ϑ)α−1] f (ϑ, u(ϑ), v(ϑ)) dϑ

+
∫ 1

t

1

�(α)
tα−1(1 − ϑ)α−γ0−1 f (ϑ, u(ϑ), v(ϑ)) dϑ

+ tα−1

Δ

(
p∑

i=1

�(β)

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
∫ 1

0

(
q∑

i=1

∫ 1

0
g1i (τ, ϑ) dKi (τ )

)
f (ϑ, u(ϑ), v(ϑ)) dϑ

+ tα−1�(β)

Δ�(β − δ0)

∫ 1

0

(
p∑

i=1

∫ 1

0
g2i (τ, ϑ) dHi (τ )

)
g(ϑ, u(ϑ), v(ϑ)) dϑ.

Then for any t ∈ (0, 1) we deduce
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(A1(u, v))′(t) =
∫ t

0

1

�(α)
[(α − 1)tα−2(1 − ϑ)α−γ0−1 − (α − 1)(t − ϑ)α−2]

× f (ϑ, u(ϑ), v(ϑ)) dϑ +
∫ 1

t

1

�(α)
(α − 1)tα−2(1 − ϑ)α−γ0−1 f (ϑ, u(ϑ), v(ϑ)) dϑ

+ (α − 1)tα−2

Δ

⎛
⎝ p∑
i=1

�(β)

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

⎞
⎠

×
∫ 1

0

⎛
⎝ q∑
i=1

∫ 1

0
g1i (τ, ϑ) dKi (τ )

⎞
⎠ f (ϑ, u(ϑ), v(ϑ)) dϑ

+ (α − 1)tα−2�(β)

Δ�(β − δ0)

∫ 1

0

⎛
⎝ p∑
i=1

∫ 1

0
g2i (τ, ϑ) dHi (τ )

⎞
⎠ g(ϑ, u(ϑ), v(ϑ)) dϑ.

Hence for any t ∈ (0, 1) we obtain

|(A1(u, v))′(t)| ≤ 1

�(α − 1)

∫ t

0
[tα−2(1 − ϑ)α−γ0−1 + (t − ϑ)α−2]

×ζ1(ϑ)ϕ1(ϑ, u(ϑ), v(ϑ)) dϑ + 1

�(α − 1)

∫ 1

t
tα−2(1 − ϑ)α−γ0−1

×ζ1(ϑ)ϕ1(ϑ, u(ϑ), v(ϑ)) dϑ

+ (α − 1)tα−2

Δ

(
p∑

i=1

�(β)

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
∫ 1

0

(
q∑

i=1

∫ 1

0
g1i (τ, ϑ) dKi (τ )

)
ζ1(ϑ)ϕ1(ϑ, u(ϑ), v(ϑ)) dϑ

+ (α − 1)tα−2�(β)

Δ�(β − δ0)

∫ 1

0

(
p∑

i=1

∫ 1

0
g2i (τ, ϑ) dHi (τ )

)
ζ2(ϑ)ϕ2(ϑ, u(ϑ), v(ϑ)) dϑ.

Therefore we find

|(A1(u, v))′(t)| ≤ L2

[
1

�(α − 1)

∫ t

0
[tα−2(1 − ϑ)α−γ0−1 + (t − ϑ)α−2]ζ1(ϑ) dϑ

+ 1

�(α − 1)

∫ 1

t
tα−2(1 − ϑ)α−γ0−1ζ1(ϑ) dϑ

+ (α − 1)tα−2�(β)

Δ

(
p∑

i=1

1

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
∫ 1

0

(
q∑

i=1

∫ 1

0
g1i (τ, ϑ) dKi (τ )

)
ζ1(ϑ) dϑ

+ (α − 1)tα−2�(β)

Δ�(β − δ0)

∫ 1

0

(
p∑

i=1

∫ 1

0
g2i (τ, ϑ) dHi (τ )

)
ζ2(ϑ) dϑ

]
.

(8)
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We denote

Ξ1(t) = 1

�(α − 1)

∫ t

0
[tα−2(1 − ϑ)α−γ0−1 + (t − ϑ)α−2]ζ1(ϑ) dϑ

+ 1

�(α − 1)

∫ 1

t
tα−2(1 − ϑ)α−γ0−1ζ1(ϑ) dϑ,

Ξ2(t) = Ξ1(t) + (α − 1)tα−2�(β)

Δ

(
p∑

i=1

1

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
∫ 1

0

(
q∑

i=1

∫ 1

0
g1i (τ, ϑ) dKi (τ )

)
ζ1(ϑ) dϑ

+ (α − 1)tα−2�(β)

Δ�(β − δ0)

∫ 1

0

(
p∑

i=1

∫ 1

0
g2i (τ, ϑ) dHi (τ )

)
ζ2(ϑ) dϑ.

We compute the integral of function Ξ1, by exchanging the order of integration, and
we deduce∫ 1

0
Ξ1(t) dt = 1

�(α)

∫ 1

0
(1 − ϑ)α−γ0−1(1 + (1 − ϑ)γ0)ζ1(ϑ) dϑ

≤ 2

�(α)

∫ 1

0
(1 − ϑ)α−γ0−1ζ1(ϑ) dϑ < ∞.

For the integral of the function Ξ2, we obtain

∫ 1

0
Ξ2(t) dt =

∫ 1

0
Ξ1(t) dt + α − 1

Δ

(∫ 1

0
tα−2 dt

)

×
(

p∑
i=1

�(β)

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
∫ 1

0

(
q∑

i=1

∫ 1

0
g1i (τ, ϑ) dKi (τ )

)
ζ1(ϑ) dϑ

+α − 1

Δ

(∫ 1

0
tα−2 dt

)
�(β)

�(β − δ0)

∫ 1

0

(
p∑

i=1

∫ 1

0
g2i (τ, ϑ) dHi (τ )

)
ζ2(ϑ) dϑ

≤ 2

�(α)

∫ 1

0
(1 − ϑ)α−γ0−1ζ1(ϑ) dϑ + 1

Δ

(
p∑

i=1

�(β)

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
(

q∑
i=1

1

�(α − δi )

∫ 1

0
τα−δi−1 dHi (τ )

)∫ 1

0
(1 − ϑ)α−γ0−1ζ1(ϑ) dϑ

+ �(β)

Δ�(β − δ0)

(
p∑

i=1

1

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
∫ 1

0
(1 − ϑ)β−δ0−1ζ2(ϑ) dϑ.
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Then we deduce

∫ 1

0
Ξ2(t) dt ≤

[
2

�(α)
+ �(β)

Δ

(
p∑

i=1

1

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
(

q∑
i=1

1

�(α − δi )

∫ 1

0
τα−δi−1 dHi (τ )

)]∫ 1

0
(1 − ϑ)α−γ0−1ζ1(ϑ) dϑ

+ �(β)

Δ�(β − δ0)

(
p∑

i=1

1

�(β − γi )

∫ 1

0
τβ−γi−1 dHi (τ )

)

×
∫ 1

0
(1 − ϑ)β−δ0−1ζ2(ϑ) dϑ < ∞.

(9)

We obtain that Ξ2 ∈ L1(0, 1). Thus for any τ1, τ2 ∈ [0, 1] with τ1 ≤ τ2 and (u, v) ∈
S, by relations (8) and (9), we conclude

|A1(u, v)(τ1) − A1(u, v)(τ2)| =
∣∣∣∣
∫ τ2

τ1

(A1(u, v))′(t) dt
∣∣∣∣ ≤ L2

∫ τ2

τ1

Ξ2(t) dt. (10)

By (9) and (10) and the property of absolute continuity of the integral function,
we deduce that A1(S) is equicontinuous. By a similar technique, we obtain that
A2(S) is also equicontinuous, and then A(S) is equicontinuous. We apply now the
Ascoli-Arzela theorem and we find that A1(S) and A2(S) are relatively compact,
and so A(S) is also relatively compact. Hence A is a compact operator. In addition,
we can prove thatA1,A2 andA are continuous onQ (see Lemma 1.4.1 from [14]).
Therefore A is a completely continuous operator on Q. �

We define now the cone

Q0 = {(u, v) ∈ Q, min
t∈[0,1] u(t) ≥ tα−1‖u‖, min

t∈[0,1] v(t) ≥ tβ−1‖v‖}.

Under the assumptions (H1) and (H2), by using Lemma 3, we obtain thatA(Q) ⊂
Q0, and thenA|Q0 : Q0 → Q0 (denoted again byA) is also a completely continuous
operator.

Theorem 1 Assume that (H1) and (H2) hold. If the functions f and g also satisfy
the conditions

(H3) There exist τ1 ≥ 1 and τ2 ≥ 1 such that

ϕ10 = lim
x+y→0
x,y≥0

sup
t∈[0,1]

ϕ1(t, x, y)

(x + y)τ1
= 0 and ϕ20 = lim

x+y→0
x,y≥0

sup
t∈[0,1]

ϕ2(t, x, y)

(x + y)τ2
= 0;

(H4) There exists [θ1, θ2] ⊂ [0, 1], 0 < θ1 < θ2 < 1 such that



520 R. Luca

fi∞ = lim
x+y→∞
x,y≥0

inf
t∈[θ1,θ2]

f (t, x, y)

x + y
= ∞ or gi∞ = lim

x+y→∞
x,y≥0

inf
t∈[θ1,θ2]

g(t, x, y)

x + y
= ∞,

then problem (1) and (2) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].
Proof We consider the coneQ0. By (H3), if M2 > 0 and M3 > 0, we obtain that for

ε1 = min
{

1
4M1

, 1
4M3

}
and ε2 = min

{
1

4M2
, 1
4M4

}
, there exists R1 ∈ (0, 1) such that

ϕi (t, x, y) ≤ εi (x + y)τi , ∀ t ∈ [0, 1], x, y ≥ 0, x + y ≤ R1, i = 1, 2. (11)

For r > 0 we denote by Br = {(u, v) ∈ Z, ‖(u, v)‖Z < r}, and by ∂Br and Br its
boundary and its closure, respectively.

Then by (11) and Lemma 2, for any (u, v) ∈ ∂BR1 ∩ Q0 and t ∈ [0, 1], we find

A1(u, v)(t) ≤
∫ 1

0
J1(ϑ)ζ1(ϑ)ϕ1(ϑ, u(ϑ), v(ϑ)) dϑ

+
∫ 1

0
J2(ϑ)ζ2(ϑ)ϕ2(ϑ, u(ϑ), v(ϑ)) dϑ

≤ ε1

∫ 1

0
J1(ϑ)ζ1(ϑ)(u(ϑ) + v(ϑ))τ1 dϑ + ε2

∫ 1

0
J2(ϑ)ζ2(ϑ)(u(ϑ) + v(ϑ))τ2 dϑ

≤ ε1M1‖(u, v)‖τ1
Z + ε2M2‖(u, v)‖τ2

Z ≤ ε1M1‖(u, v)‖Z + ε2M2‖(u, v)‖Z
≤ 1

4‖(u, v)‖Z + 1
4‖(u, v)‖Z = 1

2‖(u, v)‖Z ,

A2(u, v)(t) ≤
∫ 1

0
J3(ϑ)ζ1(ϑ)ϕ1(ϑ, u(ϑ), v(ϑ)) dϑ

+
∫ 1

0
J4(ϑ)ϕ2(ϑ)ϕ2(ϑ, u(ϑ), v(ϑ)) dϑ

≤ ε1

∫ 1

0
J3(ϑ)ζ1(ϑ)(u(ϑ) + v(ϑ))τ1 dϑ + ε2

∫ 1

0
J4(ϑ)ζ2(ϑ)(u(ϑ) + v(ϑ))τ2 dϑ

≤ ε1M3‖(u, v)‖τ1
Z + ε2M4‖(u, v)‖τ2

Z ≤ ε1M3‖(u, v)‖Z + ε2M4‖(u, v)‖Z
≤ 1

4‖(u, v)‖Z + 1
4‖(u, v)‖Z = 1

2‖(u, v)‖Z .

So, we deduce ‖A1(u, v)‖ ≤ 1
2‖(u, v)‖Z , ‖A2(u, v)‖ ≤ 1

2‖(u, v)‖Z for all (u, v) ∈
∂BR1 ∩ Q0, and then

‖A(u, v)‖Z ≤ ‖(u, v)‖Z , ∀ (u, v) ∈ ∂BR1 ∩ Q0. (12)

IfM2 = 0 andM3 �= 0, thenwe choose ε1 = min{ 1
4M1

, 1
4M3

} and ε2 = 1
2M4

; ifM2 �= 0

and M3 = 0, then we choose ε1 = 1
2M1

and ε2 = min{ 1
4M2

, 1
4M4

}; if M2 = M3 = 0,

then we choose ε1 = 1
2M1

and ε2 = 1
2M4

. In all these cases we obtain as above the
inequality (12).

Next, in (H4), we suppose that fi∞ = ∞. Then for ε3 = 2(θα−1
1 m1 min{θα−1

1 ,

θ
β−1
1 })−1 > 0, where m1 = ∫ θ2

θ1
J1(s) ds > 0, there exists C1 > 0 such that
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f (t, x, y) ≥ ε3(x + y) − C1, ∀ t ∈ [θ1, θ2], x, y ≥ 0. (13)

Then by (13), for any (u, v) ∈ Q0 and t ∈ [θ1, θ2], we find

A1(u, v)(t) ≥
∫ θ2

θ1

G1(t, ϑ) f (ϑ, u(ϑ), v(ϑ)) dϑ +
∫ θ2

θ1

G2(t, ϑ)g(ϑ, u(ϑ), v(ϑ)) dϑ

≥
∫ θ2

θ1

G1(t, ϑ) f (ϑ, u(ϑ), v(ϑ)) dϑ ≥ θα−1
1

∫ θ2

θ1

J1(ϑ) f (ϑ, u(ϑ), v(ϑ)) dϑ

≥ θα−1
1

∫ θ2

θ1

J1(ϑ)[ε3(u(ϑ) + v(ϑ)) − C1] dϑ

≥ θα−1
1 ε3m1 minϑ∈[θ1,θ2](u(ϑ) + v(ϑ)) − θα−1

1 m1C1

≥ θα−1
1 ε3m1(minϑ∈[θ1,θ2] u(ϑ) + minϑ∈[θ1,θ2] v(ϑ)) − θα−1

1 m1C1

≥ θα−1
1 ε3m1(θ

α−1
1 ‖u‖ + θ

β−1
1 ‖v‖) − θα−1

1 m1C1

≥ θα−1
1 ε3m1 min{θα−1

1 , θ
β−1
1 }‖(u, v)‖Z − C2

= 2‖(u, v)‖Z − C2, C2 = θα−1
1 m1C1.

Then we deduce ‖A1(u, v)‖ ≥ 2‖(u, v)‖Z − C2 for all (u, v) ∈ Q0. We can choose
R2 ≥ max{C2, 1} and then we obtain

‖A(u, v)‖Z ≥ ‖A1(u, v)‖ ≥ ‖(u, v)‖Z , ∀ (u, v) ∈ ∂BR2 ∩ Q0. (14)

We consider now in (H4) that gi∞ = ∞. Then for ε̃3 = 2(θβ−1
1 m4 min{θα−1

1 ,

θ
β−1
1 })−1 > 0, where m4 = ∫ θ2

θ1
J4(s) ds > 0, there exists C̃1 > 0 such that

g(t, x, y) ≥ ε̃3(x + y) − C̃1, ∀ t ∈ [θ1, θ2], x, y ≥ 0. (15)

Then by (15), for any (u, v) ∈ Q0 and t ∈ [θ1, θ2], we obtain

A2(u, v)(t) ≥
∫ θ2

θ1

G3(t, ϑ) f (ϑ, u(ϑ), v(ϑ)) dϑ +
∫ θ2

θ1

G4(t, ϑ)g(ϑ, u(ϑ), v(ϑ)) dϑ

≥
∫ θ2

θ1

G4(t, ϑ)g(ϑ, u(ϑ), v(ϑ)) dϑ ≥ θ
β−1
1

∫ θ2

θ1

J4(ϑ)g(ϑ, u(ϑ), v(ϑ)) dϑ

≥ θ
β−1
1

∫ θ2

θ1

J4(ϑ)[̃ε3(u(ϑ) + v(ϑ)) − C̃1] dϑ

≥ θ
β−1
1 ε̃3m4 minϑ∈[θ1,θ2](u(ϑ) + v(ϑ)) − θ

β−1
1 m4C̃1

≥ θ
β−1
1 ε̃3m4(minϑ∈[θ1,θ2] u(ϑ) + minϑ∈[θ1,θ2] v(ϑ)) − θ

β−1
1 m4C̃1

≥ θ
β−1
1 ε̃3m4(θ

α−1
1 ‖u‖ + θ

β−1
1 ‖v‖) − θ

β−1
1 m4C̃1

≥ θ
β−1
1 ε̃3m4 min{θα−1

1 , θ
β−1
1 }‖(u, v)‖Z − C̃2

= 2‖(u, v)‖Z − C̃2, C̃2 = θ
β−1
1 m4C̃1.

Then we conclude ‖A2(u, v)‖ ≥ 2‖(u, v)‖Z − C̃2 for all (u, v) ∈ Q0. We can
choose R2 ≥ max{C̃2, 1} and we obtain

‖A(u, v)‖Z ≥ ‖A2(u, v)‖ ≥ ‖(u, v)‖Z , ∀ (u, v) ∈ ∂BR2 ∩ Q0. (16)
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By Lemma 4, (12) and (14) (or (16)) and the Guo-Krasnosel’skii fixed point
theorem, we deduce that A has a fixed point (u, v) ∈ (BR2 \ BR1) ∩ Q0, that is
R1 ≤ ‖(u, v)‖Z ≤ R2 and u(t) ≥ tα−1‖u‖ and v(t) ≥ tβ−1‖v‖ for all t ∈ [0, 1].
Then ‖u‖ > 0 or ‖v‖ > 0, that is u(t) > 0 for all t ∈ (0, 1] or v(t) > 0 for all
t ∈ (0, 1]. Hence (u(t), v(t)), t ∈ [0, 1] is a positive solution of problem (1) and
(2). �

Theorem 2 Assume that (H1) and (H2) hold. If the functions f and g also satisfy
the conditions

(H5) ϕ1∞ = lim
x+y→∞
x,y≥0

sup
t∈[0,1]

ϕ1(t, x, y)

x + y
= 0 and ϕ2∞ = lim

x+y→∞
x,y≥0

sup
t∈[0,1]

ϕ2(t, x, y)

x + y
= 0;

(H6) There exist [θ1, θ2] ⊂ [0, 1], 0 < θ1 < θ2 < 1, ς1 ∈ (0, 1] and ς2 ∈ (0, 1]
such that

fi0 = lim
x+y→0
x,y≥0

inf
t∈[θ1,θ2]

f (t, x, y)

(x + y)ς1
= ∞ or gi0 = lim

x+y→0
x,y≥0

inf
t∈[θ1,θ2]

g(t, x, y)

(x + y)ς2
= ∞,

then problem (1) and (2) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].
Proof We consider again the cone Q0. By (H5) we deduce that for ε4 ∈(
0, 1

2(M1+M3)

)
and ε5 ∈

(
0, 1

2(M2+M4)

)
, there exist C3 > 0 and C4 > 0 such that

ϕ1(t, x, y) ≤ ε4(x + y) + C3, ϕ2(t, x, y) ≤ ε5(x + y) + C4, ∀ t ∈ [0, 1], x, y ≥ 0.
(17)

By using (17) and (H2), for any (u, v) ∈ Q0, we find

A1(u, v)(t) ≤
∫ 1

0
J1(ϑ)ζ1(ϑ)ϕ1(ϑ, u(ϑ), v(ϑ)) dϑ

+
∫ 1

0
J2(ϑ)ζ2(ϑ)ϕ2(ϑ, u(ϑ), v(ϑ)) dϑ

≤
∫ 1

0
J1(ϑ)ζ1(ϑ)(ε4(u(ϑ) + v(ϑ)) + C3) dϑ

+
∫ 1

0
J2(ϑ)ζ2(ϑ)(ε5(u(ϑ) + v(ϑ)) + C4) dϑ

≤ (ε4‖(u, v)‖Z + C3)M1 + (ε5‖(u, v)‖Z + C4)M2
= (ε4M1 + ε5M2)‖(u, v)‖Z + C3M1 + C4M2, ∀ t ∈ [0, 1],
A2(u, v)(t) ≤

∫ 1

0
J3(ϑ)ζ1(ϑ)ϕ1(ϑ, u(ϑ), v(ϑ)) dϑ

+
∫ 1

0
J4(ϑ)ζ2(ϑ)ϕ2(ϑ, u(ϑ), v(ϑ)) dϑ

≤
∫ 1

0
J3(ϑ)ζ1(ϑ)(ε4(u(ϑ) + v(ϑ)) + C3) dϑ

+
∫ 1

0
J4(ϑ)ζ2(ϑ)(ε5(u(ϑ) + v(ϑ)) + C4) dϑ

≤ (ε4‖(u, v)‖Z + C3)M3 + (ε5‖(u, v)‖Z + C4)M4
= (ε4M3 + ε5M4)‖(u, v)‖Z + C3M3 + C4M4, ∀ t ∈ [0, 1].
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Then we deduce

‖A1(u, v)‖ ≤ (ε4M1 + ε5M2)‖(u, v)‖Z + C3M1 + C4M2,

‖A2(u, v)‖ ≤ (ε4M3 + ε5M4)‖(u, v)‖Z + C3M3 + C4M4,

and so
‖A(u, v)‖Z ≤ [ε4(M1 + M3) + ε5(M2 + M4)]‖(u, v)‖Z

+C3(M1 + M3) + C4(M2 + M4)

< ‖(u, v)‖Z + C5, C5 = C3(M1 + M3) + C4(M2 + M4).

We can choose R3 > 1 such that

‖A(u, v)‖Z ≤ ‖(u, v)‖Z , ∀ (u, v) ∈ ∂BR3 ∩ Q0. (18)

In (H6), let us first consider fi0 = ∞. We deduce that for ε6 = (θα−1
1 m1 ×min

{θα−1
1 , θ

β−1
1 )−1 > 0, wherem1 = ∫ θ2

θ1
J1(s) ds > 0, there exists R4 ∈ (0, 1] such that

f (t, x, y) ≥ ε6(x + y)ς1 , ∀ t ∈ [θ1, θ2], x, y ≥ 0, x + y ≤ R4. (19)

Then by using (19), for any (u, v) ∈ ∂BR4 ∩ Q0 and t ∈ [θ1, θ2] we obtain

A1(u, v)(t) ≥
∫ θ2

θ1

G1(t, ϑ) f (ϑ, u(ϑ), v(ϑ)) dϑ +
∫ θ2

θ1

G2(t, ϑ)g(ϑ, u(ϑ), v(ϑ)) dϑ

≥ tα−1
∫ θ2

θ1

J1(ϑ)ε6(u(ϑ) + v(ϑ))ς1 dϑ ≥ θα−1
1

∫ θ2

θ1

J1(ϑ)ε6(u(ϑ) + v(ϑ)) dϑ

≥ θα−1
1 ε6

∫ θ2

θ1

J1(ϑ)

(
min

s∈[θ1,θ2]
(u(s) + v(s))

)
dϑ

≥ θα−1
1 ε6 min

s∈[θ1,θ2]
(u(s) + v(s))

∫ θ2

θ1

J1(ϑ) dϑ

≥ θα−1
1 ε6m1

(
min

s∈[θ1,θ2]
u(s) + min

s∈[θ1,θ2]
v(s)

)
≥ θα−1

1 ε6m1(θ
α−1
1 ‖u‖ + θ

β−1
1 ‖v‖)

≥ θα−1
1 ε6m1 min{θα−1

1 , θ
β−1
1 }(‖u‖ + ‖v‖) = ‖(u, v)‖Z .

Therefore ‖A1(u, v)‖ ≥ ‖(u, v)‖Z for all (u, v) ∈ ∂BR4 ∩ Q0, and then

‖A(u, v)‖Z ≥ ‖A1(u, v)‖ ≥ ‖(u, v)‖Z , ∀ (u, v) ∈ ∂BR4 ∩ Q0. (20)

In the case in which gi0 = ∞ in (H6), we deduce that for ε̃6 = (θ
β−1
1 m4 ×

min{θα−1
1 , θ

β−1
1 })−1 > 0, where m4 = ∫ θ2

θ1
J4(s) ds > 0, there exists R4 ∈ (0, 1]

such that

g(t, x, y) ≥ ε̃6(x + y)ς2 , ∀ t ∈ [θ1, θ2], x, y ≥ 0, x + y ≤ R4. (21)

Then by using (21), for any (u, v) ∈ ∂BR4 ∩ Q0 and t ∈ [θ1, θ2] we obtain
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A2(u, v)(t) ≥
∫ θ2

θ1

G3(t, ϑ) f (ϑ, u(ϑ), v(ϑ)) dϑ +
∫ θ2

θ1

G4(t, ϑ)g(ϑ, u(ϑ), v(ϑ)) dϑ

≥ tβ−1
∫ θ2

θ1

J4(ϑ)̃ε6(u(ϑ) + v(ϑ))ς2 dϑ ≥ θ
β−1
1

∫ θ2

θ1

J4(ϑ)̃ε6(u(ϑ) + v(ϑ)) dϑ

≥ θ
β−1
1 ε̃6

∫ θ2

θ1

J4(ϑ)

(
min

s∈[θ1,θ2]
(u(s) + v(s))

)
dϑ

≥ θ
β−1
1 ε̃6 min

s∈[θ1,θ2]
(u(s) + v(s))

∫ θ2

θ1

J4(ϑ) dϑ

≥ θ
β−1
1 ε̃6m4

(
min

s∈[θ1,θ2]
u(s) + min

s∈[θ1,θ2]
v(s)

)
≥ θ

β−1
1 ε̃6m4(θ

α−1
1 ‖u‖ + θ

β−1
1 ‖v‖)

≥ θ
β−1
1 ε̃6m4 min{θα−1

1 , θ
β−1
1 }(‖u‖ + ‖v‖) = ‖(u, v)‖Z .

Hence ‖A2(u, v)‖ ≥ ‖(u, v)‖Z for all (u, v) ∈ ∂BR4 ∩ Q0, and then

‖A(u, v)‖Z ≥ ‖A2(u, v)‖ ≥ ‖(u, v)‖Z , ∀ (u, v) ∈ ∂BR4 ∩ Q0. (22)

By Lemma 4, (18) and (20) (or (22)) and the Guo-Krasnosel’skii fixed point
theorem, we conclude thatA has at least one fixed point (u, v) ∈ (BR3 \ BR4) ∩ Q0,
that is R4 ≤ ‖(u, v)‖Z ≤ R3, which is a positive solution of problem (1) and (2). �

Theorem 3 Assume that (H1), (H2), (H4) and (H6) hold. If the functions f and
g also satisfy the condition

(H7) D0

(
max

i=1,...,4
Mi

)
< 1

4 , where M1=∫ 1
0 J1(s)ζ1(s) ds, M2=∫ 1

0 J2(s)ζ2(s) ds,

M3 = ∫ 1
0 J3(s)ζ1(s) ds, M4 = ∫ 1

0 J4(s)ζ2(s) ds, and

D0 = max

{
max

t,x,y∈[0,1] ϕ1(t, x, y), max
t,x,y∈[0,1] ϕ2(t, x, y)

}
,

then problem (1) and (2) has at least two positive solutions (u1(t), v1(t)),
(u2(t), v2(t)), t ∈ [0, 1].
Proof If (H1), (H2) and (H4) hold, then by the proof of Theorem 1, we deduce
that there exists R2 > 1 such that

‖A(u, v)‖Z ≥ ‖(u, v)‖Z , ∀ (u, v) ∈ ∂BR2 ∩ Q0. (23)

If (H1), (H2) and (H6) hold, then by the proof of Theorem 2, we find that there
exists R4 < 1 (we can choose R4 < 1) such that

‖A(u, v)‖Z ≥ ‖(u, v)‖Z , ∀ (u, v) ∈ ∂BR4 ∩ Q0. (24)

We consider now the set B1 = {(u, v) ∈ Z, ‖(u, v)‖Z < 1}. By (H7), for any
(u, v) ∈ ∂B1 ∩ Q0 and t ∈ [0, 1], we obtain
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A1(u, v)(t) ≤
∫ 1

0
J1(ϑ)ζ1(ϑ)ϕ1(ϑ, u(ϑ), v(ϑ)) dϑ

+
∫ 1

0
J2(ϑ)ζ2(ϑ)ϕ2(ϑ, u(ϑ), v(ϑ)) dϑ

≤ D0

∫ 1

0
J1(ϑ)ζ1(ϑ) dϑ + D0

∫ 1

0
J2(ϑ)ζ2(ϑ) dϑ = D0M1 + D0M2 <

1

2
,

A2(u, v)(t) ≤
∫ 1

0
J3(ϑ)ζ1(ϑ)ϕ1(ϑ, u(ϑ), v(ϑ)) dϑ

+
∫ 1

0
J4(ϑ)ζ2(ϑ)ϕ2(ϑ, u(ϑ), v(ϑ)) dϑ

≤ D0

∫ 1

0
J3(ϑ)ζ1(ϑ) dϑ + D0

∫ 1

0
J4(ϑ)ζ2(ϑ) dϑ = D0M3 + D0M4 <

1

2
,

and so ‖A1(u, v)‖ < 1
2 and ‖A2(u, v)‖ < 1

2 for all (u, v) ∈ ∂B1 ∩ Q0. Then

‖A(u, v)‖Z = ‖A1(u, v)‖ + ‖A2(u, v)‖ < 1 = ‖(u, v)‖Z , ∀ (u, v) ∈ ∂B1 ∩ Q0.

(25)
Therefore, by (23) and (25) and the Guo-Krasnosel’skii fixed point theorem, we

deduce that problem (1) and (2) has one positive solution (u1, v1) ∈ Q0 with 1 <

‖(u1, v1)‖Z ≤ R2. By (24) and (25) and the Guo-Krasnosel’skii fixed point theorem,
we conclude that problem (1) and (2) has another positive solution (u2, v2) ∈ Q0 with
R4 ≤ ‖(u2, v2)‖Z < 1. So problem (1) and (2) has at least two positive solutions
(u1(t), v1(t)), (u2(t), v2(t)), t ∈ [0, 1]. �

4 Examples

Let α = 10
3 (n = 4), β = 9

2 (m = 5), p = 1, q = 2, γ1 = 1
2 , δ0 = 5

4 , δ1 = 1
3 , δ2 =

6
5 , γ0 = 9

4 , H1(t) = {1, t ∈ [0, 1/3); 3, t ∈ [1/3, 1]}, K1(t) = 4t , t ∈ [0, 1], and
K2(t) = {1/5, t ∈ [0, 1/2); 8/15, t ∈ [1/2, 1]}.

We consider the system of fractional differential equations

{
D10/3

0+ u(t) + f (t, u(t), v(t)) = 0, t ∈ (0, 1),
D9/2

0+ v(t) + g(t, u(t), v(t)) = 0, t ∈ (0, 1),
(26)

with the coupled nonlocal boundary conditions

⎧⎨
⎩
u(0) = u′(0) = u′′(0) = 0, D9/4

0+ u(1) = 2D1/2
0+ v

(
1
3

)
,

v(0) = v′(0) = v′′(0) = v′′′(0) = 0,
D5/4

0+ v(1) = 4
∫ 1
0 D1/3

0+ u(t) dt + 1
3D

6/5
0+ u

(
1
2

)
.

(27)

We obtain here Δ ≈ 12.905008 > 0, so assumption (H1) is satisfied. In addition,
we find
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g1(t, s) = 1

�(10/3)

{
t7/3(1 − s)1/12 − (t − s)7/3, 0 ≤ s ≤ t ≤ 1,
t7/3(1 − s)1/12, 0 ≤ t ≤ s ≤ 1,

g11(τ, s) = 1

2

{
τ 2(1 − s)1/12 − (τ − s)2, 0 ≤ s ≤ τ ≤ 1,
τ 2(1 − s)1/12, 0 ≤ τ ≤ s ≤ 1,

g12(τ, s) = 1

�(32/15)

{
τ 17/15(1 − s)1/12 − (τ − s)17/15, 0 ≤ s ≤ τ ≤ 1,
τ 17/15(1 − s)1/12, 0 ≤ τ ≤ s ≤ 1,

g2(t, s) = 1

�(9/2)

{
t7/2(1 − s)9/4 − (t − s)7/2, 0 ≤ s ≤ t ≤ 1,
t7/2(1 − s)9/4, 0 ≤ t ≤ s ≤ 1,

g21(τ, s) = 1

6

{
τ 3(1 − s)9/4 − (τ − s)3, 0 ≤ s ≤ τ ≤ 1,
τ 3(1 − s)9/4, 0 ≤ τ ≤ s ≤ 1,

h1(ν) = 1
�(10/3) [(1 − ν)1/12 − (1 − ν)7/3], ν ∈ [0, 1],

h2(ν) = 1
�(9/2) [(1 − ν)9/4 − (1 − ν)7/2], ν ∈ [0, 1],

G1(t, s) = g1(t, s) + t7/3�(9/2)
81Δ

[
4
∫ 1
0 g11(τ, s) dτ + 1

3g12
(
1
2 , s

)]
,

G2(t, s) = 2t7/3�(9/2)
Δ�(13/4) g21

(
1
3 , s

)
,

G3(t, s) = t7/2�(10/3)
Δ�(13/12)

[
4
∫ 1
0 g11(τ, s) dτ + 1

3g12
(
1
2 , s

)]
,

G4(t, s) = g2(t, s) + 2t7/2

Δ

[
2�(10/3)

3 + �(10/3)
3�(32/15)217/15

]
g21

(
1
3 , s

)
,

for all (t, s) ∈ [0, 1] × [0, 1].
In addition we have

J1(ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

h1(ν) + �(9/2)
81Δ

{
2
3 (1 − ν)1/12 − 2

3 (1 − ν)3 + 1
3�(32/15)

×
[(

1
2

)17/15
(1 − ν)1/12 − (

1
2 − ν

)17/15]}
, 0 ≤ ν < 1

2 ,

h1(ν) + �(9/2)
81Δ

[
2
3 (1 − ν)1/12 − 2

3 (1 − ν)3 + 1
3�(32/15)

× (
1
2

)17/15
(1 − ν)1/12

]
, 1

2 ≤ ν ≤ 1,

J2(ν) = �(9/2)
81Δ�(13/4)

{
(1 − ν)9/4 − (1 − 3ν)3, 0 ≤ ν < 1

3 ,

(1 − ν)9/4, 1
3 ≤ ν ≤ 1,

J3(ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�(10/3)
Δ�(13/12)

{
2
3 (1 − ν)1/12 − 2

3 (1 − ν)3 + 1
3�(32/15)

×
[(

1
2

)17/15
(1 − ν)1/12 − (

1
2 − ν

)17/15]}
, 0 ≤ ν < 1

2 ,

�(10/3)
Δ�(13/12)

[
2
3 (1 − ν)1/12 − 2

3 (1 − ν)3 + 1
3�(32/15)

× (
1
2

)17/15
(1 − ν)1/12

]
, 1

2 ≤ ν ≤ 1,

J4(ν) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h2(ν) + 1
Δ

[
2
3�(10/3) + �(10/3)

3�(32/15)

(
1
2

)17/15]
× 1

81

[
(1 − ν)9/4 − (1 − 3ν)3

]
, 0 ≤ ν < 1

3 ,

h2(ν) + 1
Δ

[
2
3�(10/3) + �(10/3)

3�(32/15)

(
1
2

)17/15]
× 1

81 (1 − ν)9/4, 1
3 ≤ ν ≤ 1.

Example 1 We consider the functions
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f (t, x, y) = (x + y)c

t�1(1 − t)�2
, g(t, x, y) = (x + y)d

t�3(1 − t)�4
, t ∈ (0, 1), x, y ≥ 0,

(28)
with c, d > 1 and �i ∈ (0, 1), i = 1, . . . , 4. We have f (t, x, y) = ζ1(t)ϕ1(t, x, y),
g(t, x, y) = ζ2(t)ϕ2(t, x, y), where ζ1(t) = 1

t�1 (1−t)�2 , ζ2(t) = 1
t�3 (1−t)�4 for all t ∈

(0, 1), andϕ1(t, x, y) = (x + y)c,ϕ2(t, x, y) = (x + y)d for all t ∈ [0, 1], x, y ≥ 0.
Besides we have

0 <

∫ 1

0
(1 − τ)α−γ0−1ζ1(τ ) dτ =

∫ 1

0
(1 − τ)1/12

1

τ�1(1 − τ)�2
dτ

= B
(
1 − �1,

13
12 − �2

)
< ∞,

0 <

∫ 1

0
(1 − τ)β−δ0−1ζ2(τ ) dτ =

∫ 1

0
(1 − τ)9/4

1

τ�3(1 − τ)�4
dτ

= B
(
1 − �3,

13
4 − �4

)
< ∞.

Therefore assumption (H2) is satisfied. In addition, in (H3), for τ1 = τ2 = 1, we
obtain ϕ10 = ϕ20 = 0, and in (H4) for [θ1, θ2] ⊂ (0, 1), we have fi∞ = ∞ (and gi∞ =
∞). Then by Theorem 1, we deduce that problem (26) and (27) with the singular
nonlinearities (28) has at least one positive solution (u(t), v(t)), t ∈ [0, 1].
Example 2 We consider the functions

f (t, x, y) = c0(t + 2)

(t2 + 9)
√
t

[
(x + y)α1 + (x + y)α2

]
, t ∈ (0, 1], x, y ≥ 0,

g(t, x, y) = d0(3 + cos t)

(t + 2)4 3
√
1 − t

(
xβ1 + yβ2

)
, t ∈ [0, 1), x, y ≥ 0,

(29)

where c0 > 0, d0 > 0, α1 > 1, 0 < α2 < 1, β1 > 0, β2 > 0. Here we have

ζ1(t) = 1√
t
, t ∈ (0, 1]; ϕ1(t, x, y) = c0(t+2)

t2+9 [(x + y)α1 + (x + y)α2 ];
ζ2(t) = 1

3√1−t
, t ∈ [0, 1); ϕ2(t, x, y) = d0(3+cos t)

(t+2)4 (xβ1 + yβ2),

for all t ∈ [0, 1], x, y ≥ 0, and

∫ 1

0
(1 − τ)α−γ0−1ζ1(τ ) dτ =

∫ 1

0
(1 − τ)1/12

1

τ 1/2
dτ = B

(
1

2
,
13

12

)
≈ 1.905 < ∞,

∫ 1

0
(1 − τ)β−δ0−1ζ2(τ ) dτ =

∫ 1

0
(1 − τ)9/4

1

(1 − τ)1/3
dτ = 12

35
< ∞.

Then assumption (H2) is satisfied. For θ1 = 1
5 and θ2 = 4

5 , we find fi∞ = ∞, and if
we consider ς1 > α2, ς1 ≤ 1, we have fi0 = ∞, and then assumptions (H4) and
(H6) are satisfied. By some computations we obtain M1 ≈ 0.33178183, M2 ≈
0.00112407, M3 ≈ 0.18026609, M4 ≈ 0.00939684; in addition we have D0 =
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max
{ 3c0

10 (2α1 + 2α2), d0
2

}
. If c0 < 5

6Mi (2α1+2α2 )
for all i = 1, . . . , 4, and d0 < 1

2Mi
for

all i = 1, . . . , 4, then the inequalities D0Mi < 1 for all i = 1, . . . , 4 are satisfied
(that is, assumption (H7) is satisfied). For example, if α1 = 4

3 and α2 = 3
4 , and

c0 ≤ 0.59 and d0 ≤ 1.5, then the above inequalities are satisfied. By Theorem 3, we
conclude that problem (26) and (27) with the singular nonlinearities (29) has at least
two positive solutions (u1(t), v1(t)), (u2(t), v2(t)), t ∈ [0, 1].
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Energy Efficiency of Cortical Action
Potential at Different Temperatures

Zheng Luo , Linyao Li, Dong Liang, Mengmeng Du, and Ying Wu

Abstract The brain is a complex system that generates human intelligence, whose
information processing is remarkably energy consuming. The human brain accounts
for merely 2% of body weight, yet consumes about 20% of metabolic energy. The
issue of energy efficiency is therefore vital and worth studying, as abnormal energy
metabolism of the brain will seriously impair physical health. Here we use the
method of numerical simulation to quantitatively describe the energy consumption
of the nervous system, especially that of cortical action potential generation. We add
impacts of White Gaussian Noise and external stimulation current to the Hodgkin-
Huxley-Style cortical neuronal model in order to simulate the noisy internal environ-
ment and synaptic transmission, derive formulas formeasuring energy efficiency, and
finally discuss three indicators including InformationRate (IR), EnergyConsumption
(EC) and Energy Efficiency (EE) affected by different factors. Our results indicate
that the optimal temperatures at which cortical neurons’ IR and EE reach amaximum
both occur from 36.5 to 36.7 °C. The consistency between this temperature and the
normal temperature of the human brain provides a strong theoretical support for the
idea of optimization of the brain mechanism during human evolution.

Keywords Cortical neuronal model · Energy efficiency · Entropy of information ·
Energy consumption

Z. Luo · L. Li · D. Liang · M. Du · Y. Wu (B)
State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong
University, Xi’an 710049, China
e-mail: wying36@xjtu.edu.cn

Z. Luo
e-mail: 3326653221@qq.com

M. Du
e-mail: dumm119@163.com

Z. Luo · D. Liang · M. Du · Y. Wu
School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China

L. Li
School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
C. H. Skiadas et al. (eds.), 13th Chaotic Modeling and Simulation International
Conference, Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-70795-8_39

531

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70795-8_39&domain=pdf
https://orcid.org/0000-0003-4080-687X
mailto:wying36@xjtu.edu.cn
mailto:3326653221@qq.com
mailto:dumm119@163.com
https://doi.org/10.1007/978-3-030-70795-8_39


532 Z. Luo et al.

1 Introduction

Mechanism of central nervous system diseases has always been a global hot issue
ever since the beginning of the American BRAIN Project in 2013. These diseases are
usually accompanied by abnormal energy expenditure and brainmetabolic disorders,
for example, epilepsy often happens with higher energy consumption [1], while lack
of energy supply might cause the stroke [2]. Describing the energy consumption
of neurons theoratically can not only reveal the mechanism of electrophysiological
activities, but also provide a deeper understanding of the abnormal situations of the
brain and nervous system.

Factors on the excitation of nervous system also attract lots of researchers. Noises
from the internal environment as well as the internal environmental features such as
temperature influences the ion channels directly [3, 4]. It is believed that quantitative
measurements and numerical simulations of a single cortical neuron can lay the
foundation for further researches.

2 Method

2.1 Neuronal Model

According toYu’sHodgkin-Huxley-StyleCorticalNeuronalmodel [5], the following
equations describes the excitation of the cortical axon:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cm
dV

dt
= −gL(V − VL) − gNamh3(V − VNa) − gKn

4(V − VK ) + Ie(t)

τm
dm

dt
= −m + m∞, τm = 1

αm + βm
,m∞ = αm

αm + βm

τh
dh

dt
= −h + h∞, τh = 1

αh + βh
, h∞ = 1

1 + e
V+60
6.2

τn
dn

dt
= −n + n∞, τn = 1

αn + βn
, n∞ = αn

αn + βn

(1)

where
V = the membrane voltage (mV );
Ie= the external membrane current density (μA/cm2);
m,n,h = the sodium activation, the potassium activation, the sodium inactivation

(dimensionless)[varying between 0 and 1];
Cm= 0.75 (μF/cm2);
gNa = 1500, gK = 400, gL = 3.3 (pS/μm2);
VNa = 60, VK = −90, VL = −70 (mV ).
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As the opening and closing of ion channel are affected by temperature, here is Φ

to describe the effect:

φ = Q(T−Tbase)/10
10

αm(V ) = φ · 0.182(V + 30)

1 − e− V+30
8

, βm(V ) = −φ · 0.124(V + 30)

1 − e
V+30

8

,

αh(V ) = φ · 0.028(V + 45)

1 − e− V+45
6

, βh(V ) = −φ · 0.0091(V + 70)

1 − e
V+70

6

,

αn(V ) = φ · 0.01(V − 30)

1 − e− V−30
9

, βn(V ) = −φ · 0.002(V − 30)

1 − e
V−30

9

.

(2)

where
Q10 = 2.3;
Tbase= 23 °C.
In the actual living environment of neurons, internal noises from different sources

are prevalent, including random opening and closing of ion channels, impacts of
neighboring neurons and changes of internal environment etc. Therefore, we choose
White Gaussian Noise (WGN) to simulate the internal noises.

Also, in order to simulate the synaptic input of the neuron,we consider a pulse-type
stimulus current whose spiking follows a Poisson distribution, that is

Istim =
∑

j

I j
syn(t) (3)

inside which a single nerve impulse has the following form:

I j
syn(t) =

⎧
⎨

⎩

I0
(
t − t js

)
e− t−t

j
s

τ , t js ≤ t ≤ t jc
0, t js ≥ t or t ≥ t jc

(4)

where j represents the jth impulse, I0 is the stimulus current intensity (μA/(cm2 ·
ms)), and represent the beginning and ending of the single impulse respectively, each
impulse lasts for 8 ms, and τ = 2 ms.

So the external current is the sum of WGN ξ(t) and the pulse-type stimulus
current.

Ie(t) = ξ(t) + Istim(t) (5)

When there is no synaptic input,
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Ie(t) = ξ(t) (6)

By integrating the model mentioned using Euler’s Method, we simulate the
excitation of cortical neurons successfully and obtain the spike trains(see in Sect. 3.1).

2.2 Indicators

Next, we design a series of indicators similar toWang et al. [6] to measure the energy
efficiency of cortical neurons.

(1) Information Rate (IR)

According to Strong [7], after getting a neural spike train, we can first discretize it
into time bins in the size of �τ (= 2 ms). If the part of membrane potential is higher
than the set threshold potential, we indicate that part of spike trains as a letter 1; if
not, we name it letter 0. Here we get a binary letter train consisting of only 0 and 1.

Thenwe separate the letter train intowords, for example, every 7 letters as aword,
and calculate the probability of occurrence of each different word. We assume that
the number of letters each word contains is k, so each word has a length of Ts = k�τ .
For a spike train of T ms, there are [T/TS] complete words in total.

Finally we try to use this formula below to get the entropy of information H.

Htotal = − 1

Ts

n∑

i=1

Pi log2 Pi (7)

It describes all the information encoded into the train, including that from noise
and useful information from other neurons.

If the adjacent words are irrelevant, we can use the formula (7) directly. However,
there still exists information among the relativity of adjacent words, thus making the
calculated entropy lower than the actual entropy. In order to weaken the relativity,
we should lengthen the words as much as possible. Yet as the overall experiment
time is limited, too long word length will decrease the number of words sharply,
thus making the statistics of the data meaningless. According to the knowledge of
statistics, the entropy is proportional to 1/Ts in the case of a large Ts .Consequently,
we choose to draw a H - 1/Ts diagram and use the method of linear extrapolation to
obtain the actual entropy.

Htotal = − lim
Ts→∞

1

Ts

∑

i

Pi log2 Pi (8)

To measure useful information amount, we repeat the experiment twice and get
two neural spike trains. One with both noise and synaptic input, and one with only
noise. The difference between the two is IR.
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Fig. 1 The equivalent circuit
of a Hodgkin-Huxley-Style
neuron

I = Htotal − Hnoise (9)

(2) Energy Consumption (EC)

It is now generally granted that a Hodgkin-Huxley-Style neuron has an equivalent
circuit as shown in Fig. 1.

Moujahid et al. [8] put forward a method using this equivalent circuit to calculate
the consumed energy. In the circuit, the total energy can be divided into two parts:
energy stored in the battery and stored in the capacitor.

E(t) = 1

2
CV 2 + ENa + EK + EL (10)

Considering the change caused by ion currents and external stimulus current, we
have

dE(t)

dt
= V Ie(t) − gNam

3h(V − VNa)
2 − gK n

4(V − VK )2 − gL(V − VL)
2 (11)

where theminus signs represent the energy consumption, and Ie is assumed to provide
energy for the neuron. After integrating the above formula over t, and then calculating
its mean value, we can get the energy consumption rate Etotal. When there is WGN
only, we can get Enoise using the same method. Finally, the total energy consumption
rate is

E = Etotal − Enoise (12)

(3) Energy Efficiency (EE)

Here we define EE as the information encoded by the consumption of unit energy
per unit time during the excitation of a single cortical neuron, that is, the ratio of the
information rate and the energy consumption. This indicator can effectively measure
the neuron’s working efficiency.

ε = I

E
(13)
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Fig. 2 a A spike train obtained with both the synaptic input and WGN b A spike train obtained
with only WGN

3 Results and Discussion

3.1 Spike Trains

The spike trains of cortical neurons obtained by numerical simulation are shown as
follows:

When regular external stimulus current and noise simultaneously occur, the
cortical neuron acts in a orderly manner (Fig. 2a), but the frequency of excitation is
different from the frequency of the regular synaptic input. This is because cortical
neurons require a certain recovery time for each correspondence, which is called a
refractory period, and as the synaptic input follows a Poisson distribution, the actual
intervals between stimulus are not rigorously equal as well.

When there is noise only (Fig. 2b), the excitation of the neuron will become very
irregular, and there might even be cases when no action potential is generated during
the experiment at all. This is because WGN is irregular and is not strong enough to
make the neuron generate action potentials frequently.

3.2 IR, EC and EE

After thousands of experiments, we summarize nine results as below, showing the
effects of three factors on the indicators: IR, EC and EE (Fig. 3).

(1) IR
(a) Effect of Noise Intensity

Standard deviation of WGN can represent the magnitude of noise intensity. And
WGNmakes the results of each repeated experiment vary. Therefore, we choose two
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Fig. 3 The structure of results derived from experiments and the conditions of experiments

sets of digital features to reflect the dispersion of data, inwhich the standard deviation
can be used to compare the degree of dispersion between the same indicators, while
the coefficient of variation eliminates the influence of the measurement scale and
dimension, and is suitable for the comparison of the degree of dispersion between
different indicators. The coefficient of variation is defined as the ratio of the standard
deviation of the original data to the average value of them, and is a normalized
measure of the degree of dispersion.

From Table 1, it is easy to conclude that in general, the dispersion of IR increases
as the noise intensity goes higher, yet it reaches the minimal value at the noise
intensity of 10, which indicates the existence of a suitable noise intensity range
makes the indicator most stable. The phenomenon coincides with the mainstream

Table 1 Effect of noise intensity on IR in ten repeated experiments

Noise intensity 0.1 1 10 100

Standard deviation of IR 18.97 26.77 15.94 26.95

Coefficient of variation of IR (%) 7.68 9.86 7.58 22.42

*Conditions: I0 = 600μA/(cm2 · ms), T0 = 37 °C
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stochastic resonance theory: noise with appropriate intensity has a positive effect on
the information processing of neurons.

(b) Effect of Stimulus Current Intensity

The stimulus current intensity I0 can represent themagnitude of the external stimulus
current. As can be seen in Fig. 4, I0 has a significant effect on the information rate.
IR at different temperatures is significantly layered with the change in the external
stimulus current. The stronger the external stimulus, the higher the information rate
at different temperatures. As the intensity of external stimulation current increases
by 200 µA/(cm2 · ms), the overall information rate will increase by 30 bits/ms or so.
This is because as the external stimulus current increases, the amount of information
encoded also increases.

(c) Effect of Temperature

As is shown in Table 2, we sort the temperature by the order of information rate,
and define the three temperature which is corresponding to the top three IR(the three
highest IR) as the Best Temperature. In this table, the range of 36.5–36.7 °C is most
frequently seen. Therefore by this measure, the optimal temperature in the normal
range of the human body is 36.5–36.7 °C.

(1) EC
(a) Effect of Noise Intensity

From Table 3, it is easy to conclude that in general, the dispersion of EC increases
as the noise intensity goes higher, yet it reaches the minimal value at the noise

Fig. 4 Effect of stimulus current intensity on IR
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Table 2 Best temperatures of IR in ten repeated experiments

IR Current intensity Best temperatures

X = 10 600 36.5 36.7 36.6

800 36.6 43.0 36.1

1000 36.6 36.5 36.4

X = 100 600 36.5 36.6 36.0

800 36.5 36.9 36.1

1000 36.5 30.0 36.1

Table 3 Effect of noise intensity on EC in ten repeated experiments

Noise intensity 0.1 1 10 100

Standard deviation of EC 49.22 58.51 45.75 128.98

Coefficient of variation of EC (%) 1.31 1.56 1.23 3.50

*Conditions: I0 = 600μA/(cm2 · ms), T0 = 37 °C

intensity of 10, which indicates the existence of a suitable noise intensity range
makes the indicator most stable. The phenomenon coincides with the mainstream
stochastic resonance theory: noise with appropriate intensity has a positive effect on
the information processing of neurons.

(b) Effect of Stimulus Current Intensity

As can be seen in Fig. 5, I0 has a significant effect on the energy consumption. EC at
different temperatures is significantly layeredwith the change in the external stimulus
current. The stronger the external stimulus, the higher the Energy Consumption at
different temperatures. As the intensity of external stimulation current increases
200 µA/(cm2 · ms), the overall information rate will increase by about 600 mV ·
µA/cm2. The increased external stimulus current will consume more energy,which
is unfavorable to the information processing.

(c) Effect of Temperature

As is shown in Table 4, we sort the temperature by the order of energy consumption,
and define the three temperature which is corresponding to the top three EC(the three
lowest EC) as theBest Temperature. In this table, the frequency of temperature does
not have an obvious tendency, which can also be proved by Fig. 5. As the temperature
changes, the energy consumption rate always fluctuates around a certain value.

(3) EE
(a) Effect of Noise Intensity

From Table 5, it is easy to conclude that in general, the dispersion of EE increases
as the noise intensity goes higher, yet it reaches the minimal value at the noise
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Fig. 5 Effect of stimulus current intensity on EC

Table 4 Best temperatures of EC in ten repeated experiments

EC Current intensity Best temperatures

X = 10 600 30.0 34.0 36.0

800 36.6 36.7 37.0

1000 36.4 36.1 36.9

X = 100 600 36.8 36.3 40.0

800 35.5 36.3 36.6

1000 36.7 43.0 34.0

Table 5 Effect of noise intensity on EE in ten repeated experiments

Noise intensity 0.1 1 10 100

Standard deviation of EE(x10−2) 0.52 0.69 0.38 0.77

Coefficient of variation of EE (%) 7.28 9.46 5.03 23.47

*Conditions: I0 = 600μA/(cm2 · ms), T0 = 37 °C

intensity of 10, which indicates the existence of a suitable noise intensity range
makes the indicator most stable. The phenomenon coincides with the mainstream
stochastic resonance theory: noise with appropriate intensity has a positive effect on
the information processing of neurons.
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Fig. 6 Effect of stimulus current intensity on EE

(b) Effect of Stimulus Current Intensity

We define the highest stimulus current intensity at different temperatures as the
optimal EE. As can be seen in Fig. 6, the stronger the external stimulus, the
lower the optimal EE. As the intensity of external stimulation current increases
200 μA/ (cm2·ms), the overall energy efficiency will increase by about 0.002
bits · cm2/(mV · μA · ms). The increased external stimulus current is unfavorable
to the efficiency of the information processing.

∗Conditions : σ = 10

(c) Effect of Temperature

As is shown in Table 6, we sort the temperature by the order of EE, and define the
three temperature which is corresponding to the top three EE(the three highest EE)
as the Best Temperature. In this table, the range of 36.5–36.7 °C is most frequently
seen. Therefore by this measure, the optimal temperature in the normal range of the
human body is 36.5–36.7 °C.

Table 6 Best temperature EE in ten repeated experiments

EE Current intensity Best temperatures

X = 10 600 36.5 36.7 36.6

800 36.6 36.5 43.0

1000 36.6 36.5 36.3

X = 100 600 36.5 36.6 36.0

800 36.5 36.1 36.7

1000 36.7 36.5 30.0
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4 Conclusions

Based on the Hodgkin-Huxley-Style Cortical Neuronal model withWGN and pulse-
type stimulus current, we deduce the formula of measuring Energy Efficiency (EE),
study the impacts of internal noises and the synaptic input of nervous system, and
discuss the variation of different indicators. The results well reflects the actual
situation of the electrophysiological activity of cortical neurons.

Via numerical simulation, we find that the best temperature range for Information
Rate (IR) and Energy Efficiency (EE) is 36.5–36.7 °C,which is consistent with the
normal temperature of the brain. The results gives a strong theoretical support for
the optimization of the brain mechanism during human evolution. In general, the
dispersion of data increases as the noise intensity goes higher, yet they all reach the
minimal value at the noise intensity of 10, which indicates a result that coincides
with stochastic resonance theory: the existence of a suitable noise intensity range
which makes the indicators most stable. Meanwhile, the impact of stimulus current
intensity is apparent: the larger stimulus current intensity is, the higher IR, the higher
EC and the lower optimal-EE is.

Central nervous system diseases are usually accompanied by abnormal energy
expenditure and brain metabolic disorders. We can effectively study a variety of
dynamic processes of abnormal nervous system and try to reveal the mechanism of
the onset or treatment of neurological diseases using the model given. For example,
abnormal expression levels of Voltage-gated sodium channel (VGSC) is believed to
be the cause of various kinds of primary epilepsy, and sodium ion channel inhibitors
account for a large proportion of clinical antiepileptic drugs [9]. By adjusting the
parameters including sodium ion channel conductance gNa in themodel, it is possible
to realize phenomena such as excessive depolarization of the membrane potential
and thus trying to explain the mechanism behind. Also, clinical experiments have
shown that electrical stimulation has a significant effect on the rehabilitation of stroke
patients. By changing the external stimulus current in this model and adjusting the
neuronal membrane potential, it is also feasible to do further researches over the
particular therapy [10].
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Traveling Waves and Spatio-Temporal
Chaos in Nonlinear Partial Differential
Equations

Nikolai Magnitskii

Abstract It is considered some nonlinear partial differential equations having phys-
ical, chemical or biological turbulence regimes, such as the Ginzburg–Landau,
Kuramoto–Sivashinsky, Schrödinger, FitzHugh–Nagumo equations. It is shown, that
all such systems of partial differential equations can have an infinite number of
different stable wave solutions, travelling along the space axis with arbitrary speeds,
and also an infinite number of different states of spatio-temporal chaos. These chaotic
(turbulent) solutions are generated by cascades of bifurcations of cycles or tori and
singular attractors according to the universal bifurcation Feigenbaum–Sharkovsky–
Magnitskii (FShM) theory in the three-dimensional or four-dimensional systems of
ordinary differential equations, to which the systems of partial differential equations
can be reduced by self-similar change of variables. Examples of application of the
theory to the description of processes of physical, chemical and biological turbulence
are considered

Keywords Nonlinear PDE · Traveling waves · Spatio-temporal chaos ·
Turbulence · FShM-theory

1 Introduction

Wide class of physical, chemical, biological, ecological and economic processes
and phenomena is described by reaction–diffusion systems of partial differential
equations

ut = D1uxx + f (u, v, μ), vt = D2vxx + g(u, v, μ), 0 ≤ x ≤ l, (1)
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depending on scalar or vector parameter μ . Such system is very complex system.
Behavior of its solutions depends on coefficients of diffusion and their ratio, length of
space area and edge conditions. A special case of systems of the reaction–diffusion
equations is the FitzHugh–Nagumo type system of equations

ut = Duxx + f (u, v, μ), vt = g(u, v, μ), (2)

describing the processes of chemical and biological turbulence. To the system of
equations of the form (1) can also be reduced the well-known Kuramoto–Tsuzuki
(or Time Dependent Ginzburg–Landau) equation

Wt = W + (1 + ic1)Wxx − (1 + ic2)|W |2W (3)

with complex-valued function W (x, t) = u(x, t) + iv(x, t).
It is well-known, that systems (1)–(3) can have periodic solutions, switching

waves, travelingwaves and traveling impulses, dissipative spatially nongomogeneous
stationary structures, and also spatio-temporal chaos—irregular nonperiodic nonsta-
tionary nongomogeneous structures. The analysis of traveling waves and spatio-
temporal chaos in systems (1)–(3) can be carried out by replacement ξ = x − ct
and transition to three-dimensional or four dimensional systems of ordinary differ-
ential equations with respect to the variable ξ . Thus the switching waves in the
systems (1)–(3) are described by separatrixes of systems of ordinary differential
equations going from their one singular point into another singular point, traveling
waves and traveling impulses of the systems (1)–(3) are described by limit cycles
and separatrix loops of singular points of systems of ordinary differential equations.
And spatio-temporal chaos in the systems (1)–(3) is described by singular attractors
of systems of ordinary differential equations in full accordance with the universal
bifurcation Feigenbaum-Sharkovsky-Magnitskii (FShM) theory [1–5]. The greatest
interest represents the fact that c is a bifurcation parameter, describing a speed of
wave distribution along an axis x,which is not included obviously into initial system.
Thismeans, that system of a kind (1)–(3)with the fixed parameters can have infinitely
number of various autowave solutions of any period traveling along a spatial axiswith
various speeds, and infinite number ofmodes of spatio-temporal chaos. Some of such
systems including Kuramoto–Tsuzuki (3), a system describing chemical turbulence
in autocatalytic chemical reaction

ut = uxx − 1
ε
u(1 − u)

(
u − b+v

a

)
, vt = f (u)v,

f (u) =
⎧
⎨

⎩

0, 0 ≤ u < 1/3,
1 − 6.75u(1 − u)2, 1/3 ≤ u ≤ 1,
1, 1 < u,

and a system describing distribution of nervous impulses in a cardiac muscle
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ut = uxx + 1

ε
u(1 − u)

(
u − 0.06 + v

0.75

)
, vt = u3 − v,

are studied in Magnitskii [2, 3] and Karamysheva and Magnitskii [6]. In this paper,
we apply the described above approach to the analysis of traveling waves and space–
time chaos in the Kuramoto–Sivashinsky equation and in the generalized nonlinear
Schrödinger equation.

2 Traveling Waves and Spatio-Temporal Chaos
in the Kuramoto–Sivashinsky Equation

The one-dimensional Kuramoto–Sivashinsky equation can be written in the differ-
ential form

ut + uux + uxx + uxxxx = 0 (4)

or in more general form

ut + uux + αuxx + βuxxx + uxxxx = 0 (5)

Equation (4) is widely used in many papers to describe wave processes in active
and dissipative media when modeling the simplest turbulence processes, studying
waves on the interface between two viscous liquids, describing wave phenomena in
plasma in toroidal devices, analyzing the flame front behavior, etc [7].

2.1 Reduction to an ODE System by a Self-Similar Change
of Variables

Consider (5) on the entire real line u(x, t) : R × R → R. We analyze its regular
solutions by using the self-similar change of variables ξ = x − ct reducing the (5)
to the nonlinear ordinary differential equation

−cu′ + (
u2

)′
/2 + αu′′ + βu′′′ + u′′′′ = 0, (6)

where the derivatives are taken with respect to the variable ξ . Integrate (6) we obtain
the equation

u′′′ + βu′′ + αu′ − cu + (
u2

)
/2 + δ = 0, (7)
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where δ is an arbitrary constant. We reduce (7) to the nonlinear system of three
ordinary differential equations

u
′ = v, v

′ = −αu − w,w
′ = (−c − βα)u + u2/2 − βw + δ. (8)

2.2 Dissipativity Domain and Singular Points

If Fi is the right-hand side of the i th equation of system (8), then

divF(u, v,w) = ∂F1/∂u + ∂F2/∂v + ∂F3/∂w = −β.

Consequently, system (8) is everywhere dissipative for β > 0. Equating the right-
hand side of system (8) to zero, we find that for δ ≥ 0 and c >

√
2δ, system (8) has

two singular points

O±(c ±
√
c2 − 2δ, 0,−α(c ±

√
c2 − 2δ))

2.3 Analysis of Stability and of the Type of Singular Points

Matrix of the linearized right-hand side of the system (8) has the form

A =
⎛

⎝
0 1 0

−α 0 −1
−c − αβ + u∗ 0 −β

⎞

⎠,

where u∗ = c ± √
c2 − 2δ, and its characteristic equation is.

det(A − λI ) = −
(
λ3 + βλ2 + αλ ±

√
c2 − 2δ

)
= 0.

For c2 − 2δ = 0 the characteristic equation becomes λ
(
λ2 + βλ + α

) = 0 and

has the roots λ1 = 0, λ23 = −β/2± √
β2/4 − α. The latter two roots are either real

negative (forβ2/4 ≥ α) or complex conjugatewith negative real part (forβ2/4 < α),
and one has

λ2λ3 = (−β/2 −
√

β2/4 − α)(−β/2 +
√

β2/4 − α) = α > 0.
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Since the product of roots of the characteristic equation is λ1λ2λ3 =
−(±√

c2 − 2δ) by the Vieta theorem, we see that for small c2 −2δ > 0 the root λ1 at
the singular point O+, where the product of roots λ1λ2λ3 = −√

c2 − 2δ is negative,
is real negative as well, and hence O+ is a stable node or a stable focus depending on
which of the inequalities β2/4 ≥ α or β2/4 < α holds. In a similar way, the root λ1

at the singular point O−, where the product of roots λ1λ2λ3 = √
c2 − 2δ is positive,

is real positive, and hence the point O− is a saddle-node or a saddle-focus with a
two-dimensional stable manifold and a one-dimensional unstable manifold.

It follows from this that it is most interesting to study possible cascades of bifur-
cations of the stable singular point O+ for the case in which it is a stable focus and
its first bifurcation is an Andronov–Hopf bifurcation of birth of a stable limit cycle.
It is in this case that in system (8) there may exist all three cascades of bifurcations
of stable limit cycles and infinitely many chaotic singular attractors in accordance
with the Feigenbaum–Sharkovsky–Magnitskii universal bifurcation theory. And the
Kuramoto–Sivashinsky (5) may have an infinite family of most complicated periodic
and nonperiodic (chaotic) traveling waves or even traveling pulses.

Theorem 1 Let the parameters α and β be positive and satisfy β2/4 < α. Then the
Andronov–Hopf bifurcation of a stable limit cycle from the stable focus O+ occurs
for c > c∗ = √

β2α2 + 2δ.

Proof A sufficient condition for the Andronov–Hopf bifurcation of a stable limit
cycle from the stable singular focus O+ is the passage of two complex conjugate
roots of the characteristic equation at the singular pointO+ through the imaginary axis
of the complex plane from left to right. At the transition point (bifurcation point), the
real parts of the two complex conjugate roots of the characteristic equation are zero,
and the third root remains real and negative. Therefore,λ1 < 0, λ2 = iω, λ3 = −iω
at the bifurcation point. Then

λ1(iω)(−iω) = −
√
c2 − 2δ, λ1(iω) + λ1(−iω) + ω2 = α, λ1 = −β

by the Vieta theorem, and we obtain ω = √
α, c∗ = √

β2α2 + 2δ. The proof is
complete.

It follows from Theorem 1 that the bifurcation parameter in system (8) is the
parameter c which characterizes the perturbation propagation velocity along the
x-axis in the Kuramoto–Sivashinsky equation and does not explicitly occur in the
original (5). It is an extremely difficult problem to study the subsequent bifurcations
occurring for large c by analytical methods, starting from the period doubling bifur-
cation of the limit cycle borned by the Andronov–Hopf bifurcation. To this end, one
needs to determine the cycle multipliers analytically, which is possible in very rare
cases, and determine the value of the parameter c at which all three multipliers are
real numbers, two of them being + 1 and − 1 and the third one lying in the interval
(−1, 0). Therefore, the subsequent complication of the dynamics of solutions of
system (5) and (8) will be investigated by numerical methods.
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2.4 Scenario of Transition to Space–Time Chaos

We study system (8) numerically for the fixed parameter values α = 1.6, β =
0.57, δ = 0 and for increasing values of the bifurcation parameter c >

√
2δ = 0.

For c ∈ (0, c∗), c∗ = αβ = 0.912, the singular point O+ of system (8) is a stable
focus; at c = 0.912, a stable (asymptotically orbitally stable) limit cycle is created
from this point as a result of an Andronov–Hopf bifurcation. This cycle exists until
c ≈ 1.567, at which a stable limit cycle of double period is created from it. As the
parameter c increases, one observes a Feigenbaum cascade of cycle period doubling
bifurcations in system (8). A cycle of period 4 is created at c ≈ 1.6786, a cycle of
period 8 is created at c ≈ 1.7025, etc. For c ≈ 1.71, system (8) has the simplest
singular (chaotic) attractor, the Feigenbaum attractor, i.e., a nonperiodic trajectory
that is the limit of cycles in the Feigenbaum cascade. As the parameter c increases
further, one can see a sequence of stable cycles in accordance with the Sharkovskii
order and then in accordance with the Magnitskii homoclinic order. For example, a
cycle of period 6 of the subharmonic cascade is discovered for c = 1.7235; a cycle
of period 7 for c ≈ 1.7405; and a cycle of period 5 for c = 1.75 (Fig. 1a). The stable
cycle C4 of the homoclinic cascade, which makes four conditional revolutions about
the saddle-focus, is discovered for c = 1.7953; the cycleC5 for c = 1.8189 (Fig. 1b).
It is well known (see Magnitskii [1, 2]) that the sequence of cycles of a complete
homoclinic cascade must converge to the separatrix loop of the saddle-focus, but for
this particular set of system parameter values there apparently exists no separatrix
loop. Todiscover it in the space of four systemparameters (α, β, δ, c) is a complicated
problem, because the manifold on which the loop exists has codimension two or even
three.

Fig. 1 Cycles of period 5 of the subharmonic (a) and homoclinic (b) cascades; singular attractors
near the saddle-focus separatrix loop of ODE system (8) (c)
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Fig. 2 Traveling periodic and chaotic waves in the Kuramoto–Sivashinsky (5) corresponding to
the cycles and attractor of system (8) from Fig. 1

To the cycles thus discovered in system (8), there correspond traveling waves in
the Kuramoto–Sivashinsky (5). Figure 2 illustrates such waves corresponding to the
cycles and the singular attractor shown in Fig. 1.

3 Traveling Waves and Spatio-Temporal Chaos
in Generalized Nonlinear Schrödinger, Equation

Consider the generalized nonlinear Schrödinger equation

i
∂ψ

∂t
+ c1

∂2ψ

∂x2
+ c2ψ + c3|ψ |2ψ = 0 (9)

with complex, in general case, parameters c1, c2, c3. (9) describes, in particular, the
propagationdynamics of surface plasmonpolaritons on ametal- dielectric surface [8].
In this paper,we consider (9) in the case c3 = −c2. It is shown that, at certain values of
parameters, (9) has an infinite number of different stablewave solutions running along
the spatial axis with arbitrary velocities, and an infinite number of different modes
of space–time chaos in full accordance with the universal Feigenbaum-Sharkovsky-
Magnitskii theory. Moreover the bifurcation parameter is the value of the speed of
propagation of traveling waves along the spatial axis, which is not explicitly included
in the original equation.

3.1 Reduction to an ODE System Using Self-Similar Variable
Substitution.

We present ψ(x, t) = u(x, t) + iv(x, t), c1 = a + ib, c2 = d + ie, c3 = −c2 and
consider (9) on the whole number axes: u(x, t) : R× R → R, v(x, t) : R× R → R.
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The analysis of regular and chaotic solutions of (9) will be carried out using a self-
similar change of independent variables ξ = x − ct , thereby reducing the original
(9) with partial derivatives to a system of nonlinear ordinary differential equations

{
cv′ + au′′ − bv′′ + (du − ev)

(
1 − (

u2 + v2
)) = 0,

−cu′ + av′′ + bu′′ + (eu + dv)
(
1 − (

u2 + v2
)) = 0,

(10)

where the derivative is taken over ξ. Solving system (10) with respect to the second
derivatives u′′, v′′, we obtain the system of equations

{
u′′ = (

bcu′ − acv′ + ((ad + be)u − (ae − bd)v)
(
u2 + v2 − 1

))
/
(
a2 + b2

)
,

v′′ = (
bcv′ + acu′ − ((bd − ae)u − (ad + be)v)

(
u2 + v2 − 1

))
/
(
a2 + b2

)
,

which we reduce to a nonlinear system of four ordinary differential equations

⎧
⎪⎪⎨

⎪⎪⎩

u
′ = z,

z
′ = (bcz − acw + ((ad + be)u − (ae − bd)v)

(
u2 + v2 − 1

)
)/(a2 + b2),

v
′ = w,

w
′ = (bcw + acz − ((bd − ae)u − (ad + be)v)

(
u2 + v2 − 1

)
)/(a2 + b2).

(11)

3.2 Dissipativity Domain and Singular Points

If Fi is the right-hand side of the i th equation of system (11), then

divF(u, z, v,w) = ∂F1/∂u + ∂F2/∂z + ∂F3/∂v + ∂F4/∂w = 2bc/(a2 + b2).

Consequently, as c > 0, then system (11) is everywhere dissipative for b < 0.
Equating the right-hand side of system (11) to zero, we find that for bd 
= ae system
(11) has a unique zero singular point O(0, 0, 0, 0). To find the stability region of the
singular point O , it is necessary to calculate the linearization matrix of system (11)
at this point:

A =

⎛

⎜⎜⎜
⎝

0 1 0 0
− (ad+be)

a2+b2
bc

a2+b2 − (bd−ae)
a2+b2 − ac

a2+b2

0 0 0 1
(bd−ae)
a2+b2

ac
a2+b2 − (ad+be)

a2+b2
bc

a2+b2

⎞

⎟⎟⎟
⎠

.

The characteristic equation corresponding to matrix A has the form:
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det(A − λI ) = λ4 − 2bc

a2 + b2
λ3 + 2(ad + be) + c2

a2 + b2
λ2 − 2ec

a2 + b2
λ + d2 + e2

a2 + b2
= 0.

(12)

The necessity of the condition b < 0, e < 0 of stability of the singular point O
follows from the necessary condition for the positivity of all the coefficients of the
characteristic polynomial (12). If this condition is satisfied, then, by virtue of the
Routh-Hurwitz criterion, a necessary and sufficient condition for the stability of the
singular point O is the fulfillment of two inequalities:

�2 = − 2bc

a2 + b2
2(ad + be) + c2

a2 + b2
+ 2ec

a2 + b2
> 0,

�3 = − 2ec

a2 + b2
�2 −

(
2bc

a2 + b2

)2 d2 + e2

a2 + b2
> 0.

It follows from the first inequality that c2 > (
(
b2 − a2

)
e + 2abd)/(−b), and

from the second inequality that c2 >
(
bd − ae)2/(be

)
. And since (bd − ae)2 >

−e
((
b2 − a2

)
e + 2abd

)
, the necessary and sufficient condition for the stability of

the singular point O is

b < 0, e < 0, c >

√(
bd − ae)2/(be

)
. (13)

Of greatest interest is the study of possible cascades of bifurcations of the singular
point O in the case when the stability condition (13) is violated and the first bifurca-
tion is the Andronov–Hopf bifurcation of the birth of a stable limit cycle. Exactly at
this case, the secondAndronov–Hopf bifurcation of birth of a stable two-dimensional
torus, a cascade of two-dimensional torus bifurcations and the existence of an infi-
nite number of chaotic singular toroidal attractors in accordance with the universal
Feigenbaum–Sharkovsky–Magnitskii bifurcation theory are possible in system (11).
In this case, the generalized nonlinear Schrödinger (9) can have an infinite family of
the most complex periodic and non-periodic (chaotic) traveling waves up to traveling
pulses.

3.3 Andronov–Hopf Bifurcation

Let us prove that if condition (13) is violated in system (11), the Andronov–Hopf
bifurcation actually occurs, that is, the soft birth of a stable limit cycle from the
singular point O .
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Theorem 2 For bd 
= ae and fixed negative values of the parameters b < 0, e < 0,
the birth of a stable limit cycle from a stable focus O as a result of theAndronov–Hopf

bifurcation occurs for c <

√(
bd − ae)2/(be

)
.

Proof We will search a periodic solution to system (11) in the form

u = rcos(ωt), v = rsin(ωt), r = const. (14)

Substituting the expected form of the solution in the system of (10), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

−rω2cos(ωt) = (−bcrωsin(ωt) − acrωcos(ωt)+
((ad + be)rcos(ωt) + (bd − ae)rsin(ωt))(r2 − 1))/(a2 + b2),

−rω2sin(ωt) = (−acrωsin(ωt) + bcrωcos(ωt)+
((ad + be)rsin(ωt) + (bd − ae)rcos(ωt))(r2 − 1))/(a2 + b2).

Equating the coefficients for cos(ωt) and sin(ωt), we obtain a systemof equations
for r and ω

−rω2 = (−acrω + (ad + be)r(r2 − 1))/(a2 + b2),

−bcrω + (bd − ae)r
(
r2 − 1

) = 0.

Expressing r2 − 1 = bcω/(bd − ae) from the second equation, we obtain from
the first equation ω2 − ceω/(bd − ae), which implies

ω = −ce/(bd − ae), r2 = 1 − bec2/(bd − ae)2.

Thus, for c <

√(
bd − ae)2/(be

)
, system of (11) has as its solution a stable

limit cycle (14), softly generated from the zero singular point, stable for c >√(
bd − ae)2/(be

)
. The theorem is proved.

It follows from Theorem 2 that the bifurcation parameter in the system of (11)
is parameter c, which characterizes the magnitude of the velocity of propagation
of perturbations along the x axis in the generalized nonlinear Schrödinger equa-
tion. The parameter c is not explicitly included in the original (9). The study of
the following bifurcations in (11) with decreasing parameter values using analyt-
ical methods, starting with the bifurcation of the birth of a two-dimensional torus,
doubling of its period and further bifurcations of the two-dimensional torus of a
doubled period in accordance with the Feigenbaum-Sharkovsky-Magnitskii theory,
is an extremely difficult task. To do this, it is necessary to find analytically the cycle
multipliers, which is possible in very rare cases, and determine the value of the
parameter c at which one of the multipliers is + 1, two complex conjugate multi-
pliers lie on the unit circle, and the fourth real multiplier lies in the interval (–1, +
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1). Therefore, a further study of the complication of the dynamics of solutions of
system (9) and (11) will be carried out by numerical methods.

3.4 Scenario of Transition to Space–Time Chaos

We carry out a numerical study of system (11) for fixed values of the parameters
a = 2, b = −1, e = −1, d = 0 and a decrease in the values of the bifurcation

parameter c. For c >

√(
bd − ae)2/(be

) = 2, the singular point O of system (11)
is a stable focus; for c = 2, a stable (asymptotically orbitally stable) limit cycle is
generated as a result of Andronov–Hopf bifurcation, which exists up to the value
c ≈ 1.367, at which a stable two-dimensional torus is born from it as a result of
the second Andronov–Hopf bifurcation. With a further decrease in the values of the
parameter c in system (11), a Feigenbaum cascade of period doubling bifurcations
of stable two-dimensional tori is observed. A stable two-dimensional torus of period
two is born at c ≈ 1.243, a two-dimensional torus of period 4 is born at c ≈ 1.223, a
two-dimensional torus of period 8 is born at c ≈ 1.218 etc. At c ≈ 1.215, in system
(11) there is the first simplest singular (chaotic) attractor—the Feigenbaum toroidal
attractor—a nonperiodic trajectory lying on themanifold that is theCartesian product
of the limit cycle and the Feigenbaum cyclic attractor. With a further decrease in the
values of the parameter c, a sequence of stable two-dimensional tori is revealed
in accordance with the Sharkovsky subharmonic order and then in accordance with
Magnitskii homoclinic order. For example, a stable two-dimensional torus of period 6
of a subharmonic cascade is found at c = 1.2141, a two-dimensional torus of period
5—at c = 1.2094(Fig. 3a), a two-dimensional torus of period 3—at c = 1.2046
(Fig. 3b). A stable two-dimensional torus T4 of the homoclinic cascade is detected

Fig. 3 Projections of Poincare sections: two-dimensional tori of periods five (a) and three (b) of
a subharmonic cascade, a two-dimensional torus of period four of a homoclinic cascade (c) and a
complex toroidal singular attractor (d) of the ODE system (11)
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Fig. 4 Traveling periodic waves in the generalized nonlinear Schrödinger (9), corresponding to
two-dimensional tori of periods two (a) and three (b) of a subharmonic cascade of bifurcations

at c = 1.1883 (Fig. 3c). As is known (see Magnitskii [1–3]), a sequence of two-
dimensional tori of a complete homoclinic cascade of bifurcations must converge
to a toroidal separatrix manifold, which is the Cartesian product of the limit cycle
and the saddle-focus separatrix loop. However, for a given set of system parameter
values, this separatrix manifold does not seem to exist. Its detection in the space of
five system parameters (a, b, c, d, e) of the system is a separate difficult task, since
this separatrix manifold has a codimension greater than unity. Figure 3 shows the
projections of the Poincaré sections v = 0 onto the (z, u) plane: two-dimensional
tori of periods five (a) and three (b) of a subharmonic bifurcation cascade, a two-
dimensional torus of period four (c) of a homoclinic bifurcation cascade, and a
complex toroidal singular attractor (d) of ODE system (11) lying in a neighborhood
of a toroidal separatrix manifold.

Thus, it has been numerically established that, as the parameter c decreases after
two Andronov–Hopf bifurcations in system (11), there realized a cascade of the
Feigenbaum period doubling bifurcations of stable two-dimensional tori, a complete
subharmonic cascade of bifurcations of stable two-dimensional tori in accordance
with the Sharkovsky order and then incomplete homoclinic cascade of bifurcations
of stable two-dimensional tori. The found two-dimensional tori of system (11) corre-
spond to travelingwaves in the generalized nonlinear Schrödinger (9). Figure 4 shows
such waves corresponding to two-dimensional tori of period two at c = 1.225 and
period three at c = 1.2046 of a subharmonic cascade of bifurcations.

4 Conclusions

An analytical and numerical analysis of the dynamics of wave solutions in the
Kuramoto–Sivashinsky equation and the generalized nonlinear Schrödinger equa-
tion is performed in the paper. The birth conditions are found and solutions of the
equations in the form of periodic and chaotic travelingwaves are obtained. It is shown
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that the transition to space–time chaos in all cases is carried out in full accordance
with the Feigenbaum-Sharkovsky-Magnitskii universal bifurcation theory through
the subharmonic and homoclinic cascades of bifurcations of stable cycles and two-
dimensional tori of systems of ordinary differential equations obtained from the
original equations by self-similar change of variables. It is proved that the bifurca-
tion parameter is the magnitude of the speed of propagation of traveling waves along
the spatial axis, which is clearly not included in the original equations.

Paper is supported by Russian Foundation for Basic Research (grants 18-29-
10008mk, 20-07-00066a).

References

1. N.A. Magnitskii, Theory of dynamical chaos. URRS, M. (2011) (in Russian)
2. N.A. Magnitskii, Universality of transition to chaos in all kinds of nonlinear differential equa-

tions, in Nonlinearity, Bifurcation and Chaos - Theory and Application (InTech, Rijeka, 2012),
pp. 133–174

3. N.A. Magnitskii, Bifurcation theory of dynamical chaos, in Chaos Theory (InTech, Rijeka,
2018), pp. 197–215

4. N.M. Evstigneev,N.A.Magnitskii, FSM scenarios of laminar-turbulent transition in incompress-
ible fluids, in Nonlinearity, Bifurcation and Chaos, Theory and Applications (InTech, 2012),
pp. 251–280

5. N.M. Evstigneev, N.A. Magnitskii, Numerical analysis of laminar-turbulent bifurcation
scenarios in Kelvin-Helmholtz and Rayleigh-Taylor instabilities for compressible flow, in
Turbulence (InTech, Rijeka, 2017), pp. 29–59

6. T.V. Karamysheva, N.A. Magnitskii, Traveling waves, impulses and diffusion chaos in excitable
media. Commun. Nonlinear Sci. Numer. Simul. 19, 1742–1745 (2014)

7. N.A. Magnitskii, Traveling waves and space-time chaos in the Kuramoto-Sivashinsky equation.
Differ. Equ. 54(9), 1266–1270 (2018)

8. D.A. Burov, N.M. Evstigneev, N.A. Magnitskii, On the chaotic dynamics in two coupled partial
differential equations for evolution of surface plasmon polaritons. Commun. Nonlinear Sci.
Numer. Simul. 46, 26–36 (2017). ELSEVIER



Study of Turbulent Transport
in Magnetized Plasmas with Flow
Using Symplectic Maps

Julio J. Martinell, Carolina A. Tafoya, and Jorge Torres

Abstract Test particle E × B transport due to a discrete spectrum of drift waves in
two dimensions is studied using a Hamiltonian approach, which can be reduced to
a 2D mapping. Finite Larmor radius (FLR) effects are included taking an average
over the gyroperiod. The presence of poloidal flows is included in order to have the
possibility of transport barrier formation. For large wave amplitudes regular particle
orbits become chaotic which represents a type of Lagrangian turbulence leading
to loss of particle confinement. Poloidal flows tend to decrease the chaos in some
regions thus forming transport barriers. FLR effects also reduce chaos facilitating
the formation of a barrier. This implies that fast particles are better confined. It is
shown that when the particles have a thermal distribution, FLR effects lead to a
non-Gaussian particle spatial distribution function, indicating an influence of non-
locality. However, the transport preserves its diffusive scaling when there is no flow
but including flow there can be a ballistic scaling of transport in poloidal direction
if the flow is strong enough. When the background flow varies linearly with radius,
the transport can be studied with a symplectic single-step map and the transport
properties are given by the KAM theory. For non-monotonic flows a two-step map
should be used and this leads to the appearance of transport barriers. The threshold
of transport barrier formation is explored for different types of flow.

Keywords Symplectic maps · Chaotic transport · Transition to chaos · Fusion
plasmas

J. J. Martinell (B) · C. A. Tafoya · J. Torres
Instituto de Ciencias Nucleares, UNAM, A. Postal 70-543, México D.F., Mexico
e-mail: martinel@nucleares.unam.mx

C. A. Tafoya
e-mail: carolinaatt@ciencias.unam.mx

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
C. H. Skiadas et al. (eds.), 13th Chaotic Modeling and Simulation International
Conference, Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-70795-8_41

559

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70795-8_41&domain=pdf
mailto:martinel@nucleares.unam.mx
mailto:carolinaatt@ciencias.unam.mx
https://doi.org/10.1007/978-3-030-70795-8_41


560 J. J. Martinell et al.

1 Introduction

Transport in magnetically confined plasmas is due mainly to turbulence produced by
some type of drift waves. Unstable waves grow until saturation thus creating a distri-
bution of frequencies characterized by a spectrum. Wave-particle interactions affect
the dynamics of plasma particles producing cross-field transport. This turbulent or
anomalous transport is the cause of the limited confinement observed in toroidal
magnetic devices. The self-consistent study of transport and turbulence is a compli-
cated process and it is usually done using gyro-kinetic equations. However the main
properties of the transport can be deduced by assuming a given state of turbulence
and following the particle dynamics in the turbulence fields. The wave-particle inter-
action for a test particle, which does not affect the background fields, can be used as
indicator of what a plasma particle will experience in this turbulent field. For elec-
trostatic turbulence, the most important effect on charged particles is the E × B drift
and thus, the lowest order approximation is to follow the guiding center under the
action of the E fields produced by the electrostatic turbulence. Given the spectrum
of drift waves this study can be performed using a Hamiltonian approach [1, 2].

In addition to turbulence, nearly constant, larger scale electric fieldsmaybepresent
which usually are associated with macroscopic plasma flows. A radial electric field
produces poloidal flows and if they have a radial shear they are known to have an
effect on the level of turbulence. Then, under the E × B approach the combined effect
of waves and flows can be studied. The type of wave spectrum is determinant for the
resulting particle trajectories. A simple case that already retains the basic nonlinear
interactions considers just two waves with different phase velocities. This has been
studied previously in presence of a poloidal zonal flow, where the conditions for the
establishment of global chaos, identified with turbulent transport, were analyzed [3].

The guiding center approximation can be improved by including finite Larmor
radius effects (FLR) which is important to take into account the actual fields that
the particles feel. This can be done by taking an average over the gyro-orbit and
it has been shown that the principal effect is to produce chaos reduction [3]. This
implies that the high energy particles, which have larger Larmor radius, have a slower
transport than thermal particles.

While the turbulence problem has been studied widely using different approaches
with various levels of complexity, the test particle model followed here is simple
enough to understand the actual physics behind and captures the essential phenomena
involved in the transport. This model has been used for a long time in plasmas
and fluids [1, 4]. The main feature is that wave-particle interactions give rise to
deterministic chaos in the particle orbits which can be interpreted as Lagrangian
turbulence. This approach is suitable to study sheared flows which, in geostrophic
fluids, has been used to study zonal flows [4]. These flows are concentrated in latitude
and are known to reduce cross-flow transport leading to transport barrier formation.
In the Hamiltonian description the transport barrier is identified with a surface in
phase-space that is resilient to chaos and occurs around the maximum of the velocity
profile where the shear vanishes [3]. This robust surface keeps its integrity until
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the turbulence level is large enough. In fusion plasmas, the concept of zonal flow
is analogous in the sense that is refers to radially localized poloidal flows of zero
frequency and independent of poloidal and toroidal angles. They usually allude to
self-generated flows by the turbulence. However, in our not self- consistent study we
will consider that a zonal flow is simply a poloidal velocity with a radial variation
that is non-monotonic.

In this work we adopt the Hamiltonian test particle model, considering a special
type of wave spectrum that has not been studied in this context. It contains an infinite
number of waves with a uniform distribution of discrete frequencies. In addition it
depends on the twodimensions across themagnetic field direction.Thismakes itmore
general than the two-wave spectrum studied previously [3]. This particular choice
reduces the equations for the particle time evolution to a symplectic mapping when
there are nomacroscopic plasma flows [1]. In this conditions, it is quite convenient to
study the statistical properties of transport by following an ensemble of particles for
a period of time. Under certain conditions the transport can become non-diffusive as
a result of FLR effects. When macroscopic flows are included the maps are modified
in a way that in general they are no longer symplectic. Only for linear shear the
map can be symplectic. For shear flows that have non-monotonic radial variation,
we show here that the description has to be made in terms of two-step mappings.
In the nomenclature of mapping theory, monotonic flows produce twist maps while
non-monotonic flows give rise to non-twist maps. With this approach, the study of
the appearance and destruction of transport barriers associated to sheared poloidal
flows can be performed quite naturally, following the methods of nonlinear maps.
For twist maps it is related with the stability of KAM tori in Hamiltonian systems.
However, for non-twist flows KAM theory does not apply and they have to be studied
with a different approach [5]. Since the presence of transport barriers is of uttermost
importance in fusion these studies are most relevant.

The paper is organized as follows. In Sect. 2 the test particle model used is
described in the E × B approximation and the corrections due to FLR are intro-
duced. The representation for the waves is described leading to the iterative mapping
for the particle evolution. The properties of the map without macroscopic flow are
studied in Sect. 3 showing that the effect of FLR is to reduce the chaotic regions
in the particle trajectories. Then, in Sect. 4 a macroscopic poloidal flow that is lin-
early increasing in the radial direction is introduced; it turns out that the transport
parallel to the flow can become super-ballistic and it is shown that this is because
the flow keeps increasing radially; for a radially limited flow the transport is only
super-diffusive. Section 5 analyzes the effect of non-monotonic flows that can have
a maximum at some radial position. It is shown that the transport can be strongly
affected by the flow which can produce transport barriers that would lead to better
plasma confinement. The properties of the barriers are studied in Sect. 6 both for
monotonic and non-monotonic flows. Finally, the conclusions and a discussion of
further work is presented in Sect. 7.
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2 Test Particle Model

The guiding center velocity for a particle in a magnetized plasma in presence of
an electric field is vE = E × B/B2 for which the equation of motion produces the
following time evolution equation for the particle position

dr
dt

= E × B
B2

Taking a uniform magnetic field as an approximation, B = B0ẑ, we can focus on the
perpendicular motion since the velocity along the field is constant. Then, r = (x, y)
is the test particle position in 2D. For an electrostatic field E = −∇φ(x, y, t) the
equation has the structure of a Hamiltonian dynamical system with H = φ

dx

dt
= −∂φ

∂y
,

dy

dt
= ∂φ

∂x
,

The approximation of zero Larmor radius is not good for energetic particles. FLR
effects are included by taking the average over the gyro-orbit

dx

dt
= −

〈
∂φ

∂y

〉
θ

,
dy

dt
=

〈
∂φ

∂x

〉
θ

where the average, for the Larmor radius ρ, is defined as

〈Ψ 〉θ ≡ 1

2π

∫ 2π

0
Ψ (x + ρ cos θ, y + ρ sin θ) dθ .

For the wave spectrum we assume a distribution with an infinite number of waves
having the same wavenumber and amplitude A, given by

φ = A
∞∑

n=−∞
cos(x + θn) cos(y + θn − nt) . (1)

Using the identity for the Fourier representation of the delta function,∑∞
n=−∞ cos(nt) = 2π

∑∞
m=−∞ δ(t − 2πm), the equations of motion in terms of the

new variables x± = x ± y reduce to [1]

dx+
dt

= 2πA
∞∑

m=−∞
sin(x−)δ(t − 2πm) .

dx−
dt

= −2πA
∞∑

m=−∞
sin(x+)δ(t − (2m + 1)π).
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This can be expressed as a two-step map

x+(t+2m) = x+(t−2m) + 2πA sin(x−(t−2m))

x−(t+2m) = x−(t−2m)

x+(t+2m+1) = x+(t−2m+1)

x−(t+2m+1) = x−(t−2m+1) − 2πA sin(x−(t+2m+1)) (2)

This map first produces a displacement along the line x − y = cons and in the
second step it displaces along the line x + y = cons. Identifying t+2m with t−2m+1 it
can be reduced to a one-step map

xn+1
+ = xn+ + 2πA sin(xn−)

xn+1
− = xn− − 2πA sin(xn+1

+ )

Notice that this iterative map is exact and totally equivalent to solving the differential
equations, since no discretization has been applied.

After gyro-averaging it takes the form

xn+1
+ = xn+ + 2πAJ0(

√
2ρ) sin(xn−)

xn+1
− = xn− − 2πAJ0(

√
2ρ) sin(xn+1

+ ) (3)

where J0(x) is Bessel function of zero order.

3 Orbit Topology and Transport Properties Without Flow

Themap (3) has been studied in [2] where it was shown that the phase space structure
of the particle orbits is formed by periodic closed orbits as presented in Fig. 1 for
a low amplitude A = 0.01 and zero Larmor radius zero. In this case most orbits
are closed but actually there is always some level of chaos for any finite A near
hyperbolic points, even though it may be unnoticed for very small wave amplitudes.

3.1 Topology of Phase-Space

The main results regarding the topological properties found in [2] are summarized
here. When A increases, chaotic regions around X-points get larger. Eventually,
the chaotic orbits dominate the whole phase space and only few closed orbits might
remain around elliptic points. Figure2(left) shows a casewith A = 0.55, ρ = 0where
chaos permeates everywhere although some regions with closed orbits remain. This
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Fig. 1 Phase space diagram for the particle orbits with A = 0.01, ρ = 0

corresponds to large transport losses since the central part of the confined plasma
(left side) is chaotically connected to the edge (right side).

Now, the effect of FLR can be seen in Fig. 2(right) in which the Larmor radius ρ
is increased (A = 0.55, ρ = 0.9). It is apparent that some closed orbits are reestab-
lished. Then, FLR has the effect of reducing chaos and thus the transport, implying
that particles with larger Larmor radius are better confined.

Another feature is that, as chaos increases there is O-point bifurcation which
occurs for A = Ac = Ac0

J0(
√
2ρ)

≈ Ac0(1 + ρ2

2 ), where Ac0 = 0.318. It means that an
orbit around the elliptic point becomes doubly periodic, jumping between two new
O-points. This can be appreciated comparing Figs. 1 and 2.

3.2 Distribution Functions (PDF)

For A 	 Ac there is global chaos in phase space and the particles experience random
walk-like trajectories. In this conditions the collective transport can be describedwith
statistical tools, following an ensemble of particles with random initial positions
around a starting point. Recording the positions of all particles after a given time (i.e.
number of iterations) one can construct histograms of the spatial particle distributions
which represent the particle distribution function (PDF) in the 2D space. As for any
random process the transport is diffusive, characterized by a Gaussian PDF along
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Fig. 2 Phase space diagrams for the particle orbits showing the effect of finite Larmor radius (left)
with A = 0.55, ρ = 0 (right) with A = 0.55, ρ = 0.9

each coordinate: e−x2/σx for x coordinate, where the variance scales with time as
σx ∼ t . Similarly, the variance for the y coordinate σy ∼ t . This result is obtained
when all the particles have the same Larmor radius, which is shown in Fig. 3. The
diffusion coefficient can be calculated from the map as

S ≡
n∑
j=1

〈(x j+1 − x j )2〉p = (A(ρ)2/4)n.

with A(ρ) = 2πAJ0(
√
2ρ). Therefore, taking the iteration number n as proxy for

time, the diffusion coefficient for a given ρ is D(ρ) = 1
2 (πAJ0(

√
2ρ))2, the quasi-

linear value. To next order of approximation, D(ρ) shows oscillations [6, 7] which
in our case can be represented by D = π2A(ρ)2(1 + 2J0(2πA(ρ))).

Now, in a plasma the particles have different velocities an therefore different
Larmor radii. Thus, if the initial conditions for the Larmor radius are taken from a
2D Maxwellian distribution of the form

f (ρ) = (2ρ/ρ2th) exp[−(ρ/ρth)
2]. (4)

the PDF is no longer Gaussian; it is found to be characterized by a kurtosis of about
5–7 (quite larger than 3 for a Gaussian). But the scaling σy ∼ t still holds. This
means that the thermal distribution of FLR produces a non-local transport, but still
with diffusive scaling. The underlying reason for the non-Gaussian PDF is that the
superposition of two Gaussian functions of different width is no longer a Gaussian.
Composing the ρ-dependent Gaussian with (4) one can find an analytical form for
the non-Gaussian PDF. This can be compared with the numerically obtained PDF
and the agreement is almost perfect as seen in Fig. 4a for A = 1 (see [2] for details).



566 J. J. Martinell et al.

Fig. 3 a PDF of the poloidal (y) propagation in log scale showing the non-Gaussian distribution.
b Time scaling of the variance displaying a diffusive scaling σ ∼ t

Fig. 4 a Numerical (continuous) and analytical (dotted) PDFs for A = 1 in linear scale. b Self-
similar curves for y propagation PDF at various times for ρth = 0.1 in log scale

It is found that the PDF has the property of self-similarity;

P(y, t) = (〈D〉t)−1/2Gρth (y/(〈D〉t)1/2) (5)

where the self-similar function G depends on the thermal radius ρth . The self-similar
behavior can be seen in Fig. 4b for ρth = 1 which displays that the PDF at different
times all have the same shape.

4 Presence of Poloidal Flows

A macroscopic poloidal flow along y is now included by adding a function of x to φ
representing a radial electric field (i.e. replace φ(x, y) → φ0(x) + φ(x, y). It turns
out that for the map to be symplectic it has to be kept as a two-step map as in (2).
Adding the flow function φ0(x) to φ the resulting two-step map is
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x ′
+ = xn+ + π�(xn)

x ′
− = xn− + 2πAJ0(

√
2ρ) sin(x ′

+) − π�(xn)

xn+1
− = x ′

− − π�(x ′)

xn+1
+ = x ′

+ − 2πAJ0(
√
2ρ) sin(xn+1

− ) + π�(x ′) (6)

where �(x) = φ′
0(x) is the flow velocity profile.

Depending on the form of function φ0(x) the flow can be monotonic or non-
monotonic. When �(x) is linear the map (6) has a non-zero Jacobian everywhere
which implies that this is a twist map. If the variation of �(x) is non-monotonic, it
has maxima or minima, where the derivative is zero. Thus the Jacobian is zero there
and therefore the map is non-twist.

4.1 Linear Shear Flow

The simplest sheared flow is for a linear velocity profile,�(x) = Cx (obtained from
φ0(x) = Cx2/2). The phase-space structure includes invariant tori which have the
effect of transport barriers when chaos starts developing. The tori depicted in Fig. 5
are actually the streamlines produced by the flow combined with the waves. The
presence of flow destroys the symmetry in x and y; now the transport along the
poloidal direction, y, is expected to be faster. The radial transport is hindered by the
KAM tori. Only when they are destroyed, as global chaos is established, transport
can be effective in taking particles to the plasma edge. This of course happens as A
increases, as shown in Fig. 5.

The fixed points, x∗±, can be obtained by solving the equations when xn+1
± =

xn± which gives that they are located at x∗ = 0, y∗ = kπ. It can also be seen that
hyperbolic points become elliptic when C3/8 < A(ρ)[A(ρ) − C + C2/4]. Now, O-
point bifurcation occurs at smaller values of A than before.

The streamlines that cross from top to bottom in Fig. 5 are the invariant KAM
tori which are identified by a rotation number. According to KAM theory the tori
with rational rotation numbers are destroyed first and the most robust are those with
irrational rotation number. A transport barrier will subsist until the last KAM torus
is destroyed. In the next section we address this problem.

The PDF of an ensemble of particles with an initial Maxwellian distribution of
Larmor radii can be obtained as before. To proceed, one has to consider the regime
where chaos has already destroyed the transport barriers, i.e. when global chaos is
established. For the x propagation the results are the same as when there is no flow,
for both the type of PDF and the transport scaling with time. Regarding the transport
parallel to the flow, there are some differences. On the one hand, the thermal PDF is
also non-Gaussian and has a self-similar property, according to the scaling [2]

P(y, t) = (〈D〉t)−3/2Gρth (y/(〈D〉t)3/2). (7)
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Fig. 5 Phase space of
particle orbits with linear
flow with c = 0.5 for
ρ = 0.03 and A = 0.02
(left), A = 0.1 (right)

On the other hand, the scaling of the variance of the particle distribution is not
diffusive. It scales as σ ∼ t3 in the direction of the flow. This may be surprising
because it is super-ballistic which would imply some kind of acceleration. This
cubic scaling is the reason for the different scaling in the self-similarity relation in
(7) as compared with that in (5). The apparent acceleration is due to the fact that
there is a cooperative effect between diffusive transport along x which takes particles
to larger “radial” distances and y transport which gets faster at large x . Thus, the
particles increase the velocity (“accelerate”) as they move away from x = 0 and
these dominate the statistics.

This is not physical since the velocity tends to infinity as |x | → ∞. But this
problem can be corrected when the shear is terminated at a given distance like in the
flow depicted in Fig. 6. For this velocity profile the resulting scaling is intermediate
between ballistic and diffusive (but still super-diffusive) σ ∼ tα with 1 < α < 2.
The actual value of α depends on the width of the shear region. When the width
gets narrower the transport is more diffusive-like (α = 1) but wider velocity profiles
produce ballistic-like transport.

5 Non-monotonic Shear Flow

In order to deal with non-monotonic flows one can either combine linear flows or
use a single function with maxima or minima. In the following we consider both
choices.

(a) Piecewise linearmap. A non-monotonic flow can be constructedwith piecewise
linear functions.This is a direct extension of the linear flow although the problem
is that at the border points there is a jump in the derivative. The type of profile that
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Fig. 6 Velocity profile for a truncated linear shear flow

Fig. 7 a Triangular velocity profile. b Phase space diagram for this nonlinear shear flow

canmodel a zonal flowhas amaximumat x = 0 andhas a triangular shape.This is
non-zero just in a region−M < x < M and is defined by�(x) = C(M − |xn|)
when x < M and zero otherwise. The velocity profile and the resulting phase
space orbits are given in Fig. 7. It is seen that streamlines are now in the central
region and these can act as transport barriers. They cannot be dealt with as KAM
tori since now the map is non-twist and KAM theory does not apply. As usual,
increasing A increments the chaotic region area and eventually the whole space
is chaotic.

(b) Gaussian profile. A “zonal flow” can be represented by a Gaussian function
�(x) = C exp(−x2) which is now continuous everywhere as well as its deriva-
tive. It is non-twist since the Jacobian J = 0 at x = 0. The velocity profile and the
resulting phase space orbits are given in Fig. 8 which is similar to the triangular
flow, as expected.
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Fig. 8 a Gaussian velocity profile. b Phase space diagram for the two-step map with this shear
flow

6 Transport Barriers

The presence of a sheared flow naturally introduces KAM surfaces which are the
particle orbits that are carried by the flow and are seen as the lines in phase space dia-
grams crossing from the upper to the lower boundary. These act as transport barriers
since no orbits can go radially (x direction) traveling across the KAM surfaces. In the
chaotic regime some of the KAM surfaces remain stable usually separating chaotic
regions completely. Only when an increase of A produces a large enough chaos level,
the most robust surfaces can break down and the transport barriers cease to exist. In
the case of the linear shear flows of Sect. 4 KAM theory can be used to determine the
conditions for transport barrier break up. Criteria like Chirikov resonance overlap or
Greene residue theorem allow to find the parameter threshold values for the estab-
lishment of global chaos and hence barrier destruction [7]. For the non-twist maps of
non-monotonic flows, KAM theory does not apply; the relevant theory for this case
tell us that the most robust surface is located by the velocity maximum, where the
shear vanishes [5]. Then the destruction of this shearless surface is what determines
establishment of global chaos, when transport barriers disappear. The level of chaos
needed for its destruction can be determined using some established method such as
the indicator points [8].

A more straightforward procedure (although less formal) to determine the exis-
tence and stability of a barrier is to evolve two initial points on both sides of the
“barrier” (blue, red in Fig. 9). They are iterated for 105 steps. When the barrier is
present and chaotic motion dominates, they fill the space on each side of barrier but
they do not interpenetrate. As A is raised a value is reached where the two colors mix
meaning that the barrier is broken. In this way one can determine the threshold val-
ues of the parameters A, ρ and C . The procedure can be used for twist ans non-twist
maps.

For the case of twist map the destruction of KAM tori has to be considered. The
most robust one is usually the one with a rotation number equal to the golden ratio.
Figure10 shows an example of central chaotic orbits, having the barriers on the
sides. In the twist map there can be resurgences i.e. when the barrier disappears for
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Fig. 9 Some cases for local chaos separated by transport barriers and their disappearance. a Pres-
ence of a central barrier, b no barrier present, c central and side barriers (banded chaos) and d only
side barriers. This is for Gaussian flow

Fig. 10 Transport barriers
for a monotonic flow are
present on both sides of the
central trapped orbits. These
prevent particles from
crossing radially to the
plasma edge

a critical value of A = Ath it can appear again for some A > Ath . The method we
used has some weaknesses since sometimes it seems that the barrier is present but
when the number of iterations is increased there is an apparent barrier penetration.
This is due to the Aubry-Mather theorem which says that KAM surfaces become
Cantori allowing a very small number of points to cross. Therefore, once a possible
threshold value has been found we have to increase the number of iterations to make
sure it still holds.

For non-monotonic flows the criterion is related to the robustness of the shearless
curve. These barriers are more robust than in twist maps. Figure9 shows different
situations that can arise in these maps. The first panel displays the case of a central
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Fig. 11 Phase-space plots for a Gaussian velocity profile when ρ = 0, A = 0.2. The chaotic central
region does not hold a barrier in panel a for C = 0.3, while in panel b, where C = 0.8, the barrier
is present, identified by the white gap

barrier, while in the second panel the barrier has disappeared. There is also an addi-
tional pair of barriers that was not anticipated to occur; they appear as side barriers.
This is seen in the lower panel of Fig. 9 where there is a coexistence of a central
barrier and the two side barriers. This has been termed banded chaos in [5]. In the
last panel the side barriers are preserved but not the central one.

Even though the physical behavior is expected to be the same for a Gaussian and a
triangular velocity profile, it has been found that the behavior of the for the Gaussian
flow is more regular because it does not have singular derivatives. The presence of
a barrier can be more apparent in phase space plots for the Gaussian profile, like
the one in Fig. 11 which shows the chaotic central region for two flow parameters
(C). For C = 0.3, the flow is slow and the barrier is not present, while a barrier is
clearly seen for a stronger flow (C = 0.8). A more formal analysis of the transport
like the method of indicator points as applied to non-twist Hamiltonians [3, 8, 9]
could be applied for the present case in order to obtain the exact threshold values of
C for which the barrier is destroyed, for fixed A and ρ. It would be possible to build
threshold diagrams plotting two map parameters, taken from (A, ρ,C) in this case,
that display the regions with an without transport barriers. These diagrams usually
have a fractal boundary between the two regions (bird wing diagrams) [8]. In order
to do that one should apply the formal methods for a systematic study. We deter that
study for a future work.

7 Conclusions

The study of anomalous transport in plasmas due to a discrete spectrum of drift waves
in two dimensions has been performed including sheared flows by means of a test
particle model. The description is reduced to a symplectic iterative map which can
be efficiently used to simulate the evolution of an ensemble of particles in relatively
short times. The wave spectrum chosen (1) has been used previously in [1] to predict
the scaling D ∼ A2 of the diffusion coefficient with wave amplitude. Then, in [2]
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we studied the statistical properties of transport predicted by this spectrum including
FLR effects, showing that these effects lead to non-local behavior indicated by non-
Gaussian PDF. In the present study we extended the analysis for the cases where a
shear flow is also present, analyzing the appearance of transport barriers.

Background flows modify the particle dynamics changing in turn the chaotic
properties that produce the transport. A large poloidal shear flow drags the particles
along the poloidal direction hindering the chaotic motion produced by the waves.
The chaos reduction decreases the transport through a given surface and this is what
is identified with a transport barrier. This is different from the usual concept of
barrier formation based on shear flow turbulence reduction due to stretching and
fragmentation of vortices. We have found that, although one would expect from the
above argumentation to have stronger barriers for larger flows, in reality they are
almost not affected by a velocity increment because the chaos level is also sensible
to this parameter, tending to lessen the change. In addition, the type of transport
can be modified by the flow; we show that the radial transport is still diffusive, alas
non-local, as in the case without flow, but the poloidal transport becomes ballistic
(for low chaos) or super-diffusive (for large chaos). However, the poloidal transport
has no effect on the confinement and therefore it has no direct relevance on fusion
experiments.

To study the transport barriers, which are extremely important for fusion plasmas,
we considered two types of shear flows: (1) those for which the velocity increases
linearly with radius (monotonic) and (2) those localized around some radial position
where the velocity has a maximum (non-monotonic).We identify the later with zonal
flows, although the full concept of a zonal flow ismore extensive. In general, presence
of flow requires the process to be described by a two-stepmapping. For the twistmaps
(monotonic flow), feeble barriers can appear corresponding to the KAM surfaces that
are more resilient. We showed qualitatively the presence of such barriers, showing
themselves as boundaries separating chaotic regions, disappearing for large enough
wave amplitude A. On the other hand, non-twist maps (non-monotonic flow) have a
robust barrier near the shearless curve of the velocity. We have analyzed the behavior
of this barrier as function of the relevant parameters (A,C, ρ) showing that it can
appear when the velocity C is larger than a threshold value. We also found that there
are two other barriers which were not expected a priori that can appear as side bands.
This is related to the so-called banded chaos found in [4]. The next step is to study
the threshold for transport barriers appearance in terms of the parameters of the flow
and the waves using formal methods of nonlinear dynamics. For twist maps there
are several criteria that can be used such as the Chirikov resonance overlap or the
Greene’s residue criterion [7]. For non-twist maps other methods like the indicator
points which is based on symmetries of the map written as involutions [8] will be
studied in a future work.
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Abstract In the present paper we study some properties of solutions of biharmonic
problems. Namely, we study the Steklov, Steklov-type and Neumann boundary value
problems for the biharmonic equation. For solving these biharmonic problems with
application, in particular, to radar imaging, we need to solve the Dirichlet, Neumann
and Cauchy boundary value problems for the Poisson equation using the scattering
model. In order to select suitable solutions, we solve the Poisson equation with the
corresponding boundary conditions, that is, some criterion function is minimized in
the Sobolev norms. Under appropriate smoothness assumptions, these problemsmay
be reformulated as boundary value problems for the biharmonic equation.
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1 Introduction

Let Ω ⊂ R
n, n ≥ 2, be a bounded Lipschitz domain with connected boundary ∂Ω ,

and Ω ∪ ∂Ω = Ω is the closure of Ω .
In Ω we consider the following boundary value problems for the biharmonic

equation:
Δ2u = F, x ∈ Ω (1)

with the Steklov boundary conditions

{
u = g1 on ∂Ω,

Δu + τ ∂u
∂ν

= g2 on ∂Ω,
(2)

or the Steklov–type boundary conditions

{
∂u
∂ν

= h1 on ∂Ω,
∂Δu
∂ν

+ τ u = h2 on ∂Ω,
(3)

or the Neumann boundary conditions

{
Mu ≡ σΔu + (1 − σ) ∂2u

∂ν2 = f1 on ∂Ω,

Nu ≡ ∂Δu
∂ν

+ (1 − σ) 12 · ∂
∂ti j

(
∂2u

∂ν∂ti j

)
= f2 on ∂Ω,

(4)

where ν is the outer unit normal vector to the domain, and T = {ti j } various tan-
gential directions to the Lipschitz boundary ∂Ω , τ ≥ 0, τ �≡ 0, and τ > 0 on a set
of positive (n − 1) – dimensional measure on ∂Ω . The coefficient σ is a constant
known as the Poisson ratio, 1

n−1 < σ < 1. A unique solution u (modulo linear func-
tions) is obtained in the class of solutions with non-tangential maximal function
of the second-order derivatives in L p(∂Ω). The biharmonic Neumann problem in
Lipschitz domains was studied in detail in [36].

For n = 2, these problems and also the Neumann problem are related to the study
of the transverse vibrations of a thin plate with a free edge and which occupies at
rest a planar region of shape ∂Ω . The coefficient σ represents the Poisson’s ratio of
the material that the plate is made of. For more details on the physical interpretation
of the Neumann problem and on the Poisson’s ratio σ , we refer, for example, to [4].
Note the paper [5], where the author studies the dependence of the vibrational modes
of a plate subject to homogeneous boundary conditions upon the Poisson’s ratio
0 < σ < 1

2 , providing also a perturbation formula for the frequencies as functions
of the Poisson’s coefficient.

Elliptic problems with parameters in the boundary conditions are called Steklov
problems from their first appearance in [37]. In the case of the biharmonic operator,
these conditions were first considered in [3, 10, 33], who studied the isoperimetric
properties of the first eigenvalue.
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The standard elliptic regularity results are available in [7]. This monograph covers
higher order linear and nonlinear elliptic boundary value problems, mainly with the
biharmonic (polyharmonic) operator as leading principal part. Underlying models
and, in particular, the role of different boundary conditions are explained in detail.
As for linear problems, after a brief summary of the existence theory and L p and
Schauder estimates, the focus is on positivity. The required kernel estimates are also
presented in detail.

In [6] and [7], the spectral and positivity preserving properties for the inverse
of the biharmonic operator under Steklov and Steklov–type boundary conditions
are studied. These are connected with the first Steklov eigenvalue. It is shown that
the positivity preserving property is quite sensitive to the parameter involved in the
boundary condition.

In [34], the dependence of the eigenvalues of the biharmonic operator subject
to Neumann boundary conditions on the Poisson’s ratio σ is studied. In particular,
it is proved that the Neumann eigenvalues are Lipschitz continuous with respect to
σ ∈ [0, 1) and that all the Neumann eigenvalues tends to zero as σ → 1−. Moreover,
is showed that the Neumann problem defined by setting σ = 1 admits a sequence
of positive eigenvalues of finite multiplicity that are not limiting points for the
Neumann eigenvalueswith σ ∈ [0, 1) as σ → 1− and that coincidewith theDirichlet
eigenvalues of the biharmonic operator.

Boundary value problems for a biharmonic (polyharmonic) equation and for the
elasticity system in unbounded domains are studied in [12]–[28] in which the con-
dition of the boundedness of the following weighted Dirichlet integral of solution is
finite, namely ∫

Ω

|x |a|∂αu|2 dx < ∞, a ∈ R,

where a ∈ R is a fixed number and |∂αu|2 denotes the Frobenius norm of the Hessian
matrix of u. In particular, in these papers has been studied the dimension of the space
of the solutions to the boundary value problems for a biharmonic (polyharmonic)
equation and for the elasticity system, providing explicit formulas which depends on
n and a. This paper contains complete proofs of the results, partly presented in [29].

The behavior of solutions of the Dirichlet problem for the biharmonic equation
as |x | → ∞ was considered in [8, 9], where estimates for |u(x)| and |∇u(x)| as
|x | → ∞were obtained under certain geometric conditions on the domain boundary.

Notation: C∞
0 (Ω) is the space of infinitely differentiable functions in Ω with

compact support in Ω; Hm(Ω) is the Sobolev space obtained by the completion of
C∞(Ω) with respect to the norm

‖u; Hm(Ω)‖ =
⎛
⎝∫

Ω

∑
|α|≤m

|∂αu|2dx
⎞
⎠

1/2

, m = 1, 2,
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where ∂α ≡ ∂ |α|/∂xα1
1 . . . ∂xαn

n , α = (α1, . . . , αn) is a multi-index, αi ≥ 0 are inte-

gers, and |α| = α1 + · · · + αn;
◦
H

m
(Ω) is the space obtained by the completion of

C∞
0 (Ω) with respect to the norm ||u; Hm(Ω)||. ◦

H
m

loc (Ω) is the space obtained by
the completion of C∞

0 (Ω) with respect to the family of semi-norms

‖u; Hm(Ω ∩ B0(R))‖ =
⎛
⎜⎝ ∫

Ω∩B0(R)

∑
|α|≤m

|∂αu|2 dx
⎞
⎟⎠

1/2

for all open balls B0(R) := {x : |x | < R} in R
n for which Ω ∩ B0(R) �= ∅. Finally

H 1/2(∂Ω) is the usual trace space on the boundary and H−1/2(∂Ω) is its dual (see,
for ex., [1]).

2 Definitions and Auxiliary Statements

If we set σ = 1, the Neumann boundary conditions reads

{
Δu = f1 on ∂Ω,
∂Δu
∂ν

= f2 on ∂Ω.
(5)

Note that the differential operator associated with problem (1), (5) is not a
Fredholm operator. We also note that the boundary conditions (5) do not satisfy
the so–called complementing conditions (see [2] and [7] for details), which are
necessary conditions for the well–posedness of a differential problems.

Definition 1 A solution of the biharmonic equation (1) in Ω is a function u ∈
H 2(Ω) such that, for every function ϕ ∈ C∞

0 (Ω), the following integral identity
holds: ∫

Ω

Δu Δϕ dx =
∫

Ω

F ϕ dx, F ∈ L2(Ω). (6)

Definition 2 A function u is a solution of the Steklov problem (1), (2) with g1 =
g2 = 0 , if u ∈ H 2(Ω)∩ ◦

H
1

(Ω) such that for every function ϕ ∈ H 2(Ω)∩ ◦
H

1
(Ω),

the following integral identity holds

∫
Ω

Δu Δϕ dx +
∫

∂Ω

τ ∇u ∇ϕ ds = 0. (7)

Definition 3 A function u is a solution of the Steklov-type problem (1), (3) with
h1 = h2 = 0 , if u ∈ H 2(Ω), ∂u/∂ν = 0 on ∂Ω , such that for every function ϕ ∈
C∞
0 (Rn), ∂ϕ/∂ν = 0 on ∂Ω , the following integral identity holds
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Ω

Δu Δϕ dx −
∫

∂Ω

τ u ϕ ds = 0. (8)

Definition 4 A function u is a solution of the Neumann problem (1), (5) with
f1 = f2 = 0, if u ∈ H 2(Ω) such that the integral identity (6) holds for every function
ϕ ∈ C∞

0 (Ω).

3 A Scattering Model

In the sectionwederive themathematicalmodel used for describing the radar process.
In our parametrization the unknown is the height function H . As will be shown the
height function is determined in two steps. In the first step L(H), with L a certain
second-order differential operator, is determined. After retrieving H the equation
L(H) = f must be solved. To a good approximation the operator L can be replaced
by the Laplacian. So the second step simply consists of solving the Poisson equation
over some smooth bounded domain, usually a rectangular region in the plane. The
problem here is that no natural boundary conditions are available.

Here we will briefly discuss the mathematical inverse problem to be resolved in
order to recover the ground topography height function from radar data. First cylin-
drical coordinates (r, ϕ, z) are introduced according to Fig. 1, where it is understood
that the aircraft is flying at a constant speed along the z-axis. Further r denotes the
distance from a point on the ground surface to the z-axis and ϕ is the angle between
radius vector and a horizontal plane through the z-axis. Then the ground surface may
be described by a function H(r, z) through the equation

H(r, z)

r
− ϕ = 0. (9)

Fig. 1 The ground surface measured at a fixed aircraft position
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Fig. 2 The measuring geometry as seen from above

When r is large, H(r, z) is approximately a Cartesian height function. Figure2
shows a top view of the same scene. We have also indicated an aspect vector from
the aircraft to some point on the ground, forming an angle θ with a vertical plane
through the aircraft. Normalized to unit length, the aspect vector is denoted by n̂.
Accordingly

n̂ = cos θ r̂(ϕ) + sin θ ẑ. (10)

Here r̂(ϕ) denotes the cylindrical unit basis vector corresponding to the r -
coordinate for the ground point as shown in the Fig. 2. For a point on the ground
surface with coordinates (r, ϕ, z) we obtain, from (9), the following expression for
the ground surface normal m̄,

m̄ = grad

(
H(r, z)

r
− ϕ

)
= ∂(H/r)

∂r
r̂ + 1

r

∂H

∂z
ẑ − 1

r
ϕ̂. (11)

Let m̂ denote the normalized normal. Then

m̂ ◦ n̂ =
(
r cos θ

∂(H/r)

∂r
+ sin θ

∂H

∂z

)
/

√
1 + r2

(
∂(H/r)

∂r

)2

+
(

∂H

∂z

)2

. (12)

Note that (r, ϕ, z) in (12) are related to the ground surface point and not to the
position of the aircraft.

Let (z0, 0) be a position of the aircraft and R the distance to some point on the
surface. According to Fig. 3 the coordinates (r, z) are then equal to (R cos θ, z0 +
R sin θ). Next, to obtain a scattering model we will assume that the reflectivity from
a ground surface element (see Fig. 4) is

≈ m̂ ◦ n̂

R
dR dθ. (13)
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Fig. 3 The coordinate system used to describe an infinitesimal surface element, dS

Fig. 4 The infinitesimal surface element, dS, as it is seen from the aircraft

From Fig. 4, where a vertical plane through (z0, 0) (the aircraft) and the ground
point (R cos θ, z0 + R sin θ) is displayed, we conclude that the solid angle dΩ under
which the surface element dS is seen from the antenna is approximately

dR cosα Rd dθ

R2
= − m̂ ◦ n̂

R
dR dθ.

In expression (13) we are consequently assuming that the local reflectivity is propor-
tional to the solid angle occupied by the infinitesimal surface element dS. The total
reflected signal G(R, z0) from all points at a distance R from the antenna may now
be obtained by integration over the circle C(R, z0) = {(r, z) : r2 + (z − z0)2 = R2}
in Fig. 3.
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G(R, z0)dR = c
∫ π

−π

m̂ ◦ n̂(R sin θ, z0 + R cos θ)

R
dθdR

i.e.

RG(R, z0) = c
∫ π

−π

m̂ ◦ n̂(R sin θ, z0 + R cos θ)dθ. (14)

Assuming that m̂ ◦ n̂ is small (12) may be replaced by

m̂ ◦ n̂ = r cos θ
∂(H/r)

∂r
+ sin θ

∂H

∂z
.

By inserting this into (14) we get, after multiplying by R,

R2G(R, z0) = c
∫ π

−π

(
r R cos θ

∂(H/r)

∂r
+ R sin θ

∂H

∂z

)
dθ.

Using the parametrization

r = Rcosθ, z = z0 + Rsinθ,

this may be rewritten as a curve integral over C(R, z0), with dz = R cos θdθ and
dr = −R sin θdθ ,

R2G(R, z0) = c
∫
C(R,z0)

(
r
∂(H/r)

∂r
dz − ∂H

∂z
dr

)
. (15)

By applying Green’s formula we get

R2G(R, z0) = c
∫∫

D(R,z0)
L(H)(r, z) dz dr, (16)

where D is the disc,

D(R, z0) = {(r, z) : r2 + (z − z0)
2 ≤ R2}

and

L(H) = ∂

∂r

(
r
∂(H/r)

∂r

)
+ ∂2 H

∂z2
. (17)

The problem of finding the height function H from radar data G(r, z) may now
be divided into two parts:

(i) First solve the integral equation (16) for L(H)(r, z) = f (r, z).
(ii) Next solve the partial differential equation

L(H) = f (18)
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for H . We note that if r is large and if m̂ ◦ n̂ is small it is reasonable to make the
approximation

L(H) ≈ ∂2H

∂r2
+ ∂2H

∂z2
= ΔH

so that (18) becomes Poisson’s equation. To consider the first problem (i), both
members in (16) are differentiated with respect to R. Then we get

1

R

d

dR
(R2G(R, z0)) = c

∫ π

−π

L(H)(z0 + R cos γ, R sin γ ) dγ,

where the right-hand side is proportional to the average of L(H) over the circle
C(R, z0). Hence,

L(H)(F,F)(σ, ω) ∼ |ω|
[
1

R

d

dR
{R2G(r, z)}

](F,H0)

(σ,
√

ω2 + σ 2). (19)

Here the notation (F, F)means that we have taken the Fourier transformwith respect
to both the variables and (F, H0) means that we have taken Fourier transform with
respect to the first variable and the Hankel-zero transform with respect to the second.
After some calculations (19) may be rewritten

L(H)(F,F)(σ, ω) ∼ |ω|
√

ω2 + σ 2[RG(r, z)](F,H1)(σ,
√

ω2 + σ 2). (20)

Formula (20) may now be used in order to recover the function L(H) in spatial
coordinates. Approximating L(H) by ΔH we could rewrite (20) as

H (F,F)(σ, ω) ∼ |ω| 1√
ω2 + σ 2

[RG(r, z)](F,H1)(σ,
√

ω2 + σ 2), (21)

where H1 denotes that we have taken the Hankel-one transform with respect to the
second variable. Then we could obtain H directly by a two timensional Fourier
transform. However, our solution might be expected to have errors caused by, e.g.
noisy radar data and errors caused by the particular numerical implementation of the
inversion formula (19) (or (20)) and therefore we would rather prefer to divide the
solution procedure into the two steps described above and to use the second step, the
solution of Poisson’s equation, so that we perform some kind of regularization of the
final solution. Note also that by using (21) as our solution formula we have tacitly
assumed periodic boundary conditions for the Poisson equation.

In the following we will treat part (ii) of the problem, where we wish to define a
solution H to the equation

ΔH = f.
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4 Solution Concepts for the Poisson Equation

In this section we discuss different possibilities of defining a unique height function.
Essentially our approach consists in minimizing some norm of the solution provided
that it also satisfies the Poisson equation. In particular we consider the L2- and H 1-
norms. We also show how these two optimization problems may be reformulated as
boundary value problems for the biharmonic equation. Note that the corresponding
Poisson problem is well-posed unless σ = 1.

In the domain Ω for the Poisson equation we consider the following boundary
value problems

Δu = f, x ∈ Ω (22)

with the Dirichlet boundary condition

u = g on ∂Ω, (23)

or the Neumann boundary conditions

∇u · ν = h on ∂Ω, (24)

and the Cauchy boundary conditions

{
u = g on ∂Ω,

∇u · ν = h on ∂Ω,
(25)

where ν is the outer unit normal vector to ∂Ω .
The boundary operators are independent of any particular choice of orientation

for the rectangular coordinate systems. Finally, for Ω a rectangular region in, e.g.,
the plane

Ω = {(x, y) : a < x < b, c < y < d},

there may be the following boundary conditions

u(a, y) = u(b, y), u(x, c) = u(x, d), (26)

and with the periodic boundary conditions

ux (a, y) = ux (b, y), uy(x, c) = uy(x, d), (27)

{
u(a, y) = u(b, y), u(x, c) = u(x, d),

ux (a, y) = ux (b, y), uy(x, c) = uy(x, d).
(28)
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Provided g is smooth enough boundary conditions (23) define a unique solution of
(22). For (24) and (25) the solution is determined up to a constant. It is also possible
to use different mixtures of these three types of boundary conditions. Note that for
cases (24) and (28) the following consistency conditions must hold, respectively:

∫
Ω

f dx =
∫

∂Ω

h ds for (24),
∫

Ω

f dx = 0 for (25).

Wenowconsider a differentway to select a solution to (22).Herewe use a criterion
function and optimize this criterion over the set of solutions to the Poisson equation.
Scattering model of Sect. 3 shows the physical interpretation of function u(x, y) is
a surface function. We need to pick out the smoothest surface (in some sense) that
fulfills (22), using the Sobolev space norms as criterion functions. Denote by V f,i

the following set:

V f,i = {u ∈ Hi (Ω) : Δu = f, f ∈ L2(Ω)}, i = 0, 1, 2, (29)

where H 0(Ω) = L2(Ω).
The equality Δu = f is to be interpreted in the sense of distributions. i.e.,

Definition 5 A solution of the Poisson equation (22) inΩ is a function u ∈ H 1(Ω)

such that the following integral identity holds:

∫
Ω

u Δϕ dx =
∫

Ω

f ϕ dx, ∀ϕ ∈ C∞
0 (Ω).

Lemma 1 V f,i is a closed, convex and nonempty set of Hi (Ω).

Proof. The convexity is due to the linearity of Δ. To verify that V f,i , i = 0, 1, 2, is
nonempty it suffices to verify that V f,2 is nonempty.

We assume that Ω ⊂ (0, 2π)n . Extend f by taking f = 0 in (0, 2π)n\Ω . Then
V f,2 contains the function

u = f0|x |2/(2n) −
∑
m �=0

eimx/|m|2

assuming f = ∑
fmeimx and thatm denotes amulti-index. To show thatV f,i is closed

we select a sequence {un}∞1 ⊂ V f,i , such that un → u in Hi (Ω). Then un → u in
L2 and, by Cauchy’s inequality

∣∣∣ ∫
Ω

f ϕ dx −
∫

Ω

u Δϕ dx
∣∣∣ =

∣∣∣ ∫ (un − u)Δϕ dx
∣∣∣ ≤

≤
∫

Ω

|un − u|2 dx
∫

Ω

|Δϕ|2 dx → 0, ∀ϕ ∈ C∞
0 ,

i.e.
∫
Ω

f ϕ dx = ∫
Ω
u Δϕ dx and u ∈ V f,i ��
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We recall some facts about Green’s formula and of the normal derivatives of
H 1 -functions [1]:

Preposition 1 [1] If v ∈ H 1(Ω), Δv ∈ L2(Ω) (in the sense of distribution), and
ϕ ∈ H 1(Ω), then (∇v · ν) ≡ ∂v/∂ν ∈ H−1/2(∂Ω) is defined by

(
∂v

∂ν
, ϕ

)
H−1/2(∂Ω),H 1/2(∂Ω)

=
∫

Ω

Δv ϕ dx +
∫

Ω

∇v ∇ϕ dx .

This definition is justified by the fact the right hand site of the last above equality
defines a bounded linear functional on H 1(Ω) and by the the following lemma:

Lemma 2 If v ∈ H 1(Ω) and Δv ∈ L2(Ω), then

∫
Ω

Δv ϕ dx +
∫

Ω

∇v ∇ϕ dx = 0 for all ϕ ∈ ◦
H

1
(Ω).

Proof. Since C∞
0 (Ω) is dense in

◦
H

1
(Ω), it suffices to prove last equality for all

ϕ ∈ C∞
0 (Ω). Then byGreen’s formula and the definition of distributional derivatives,

we have ∫
Ω

Δv ϕ dx +
∫

Ω

∇v ∇ϕ dx =
∫

Ω

Δv ϕ dx −
∫

Ω

v Δϕ dx .

��
Note also the following well known lemmas for the Dirichlet and Neumann prob-

lems in Ω [11], i.e.

Lemma 3 [11] Suppose g ∈ H 1/2(∂Ω), f ∈ L2(Ω). Then there exists a unique
function u ∈ H 1(Ω) such that

{
Δu = f in Ω,

u = g on ∂Ω.

Lemma 4 [11] Suppose that g ∈ H−1/2(∂Ω), f ∈ L2(Ω) and that

(g, 1)H−1/2(∂Ω),H 1/2(∂Ω) =
∫

Ω

f dx .

Then there exists a unique function u ∈ H 1(Ω) such that

{
Δu = f in Ω (in the sense of distributions),

u = g on ∂Ω (in the sense of Prepos. 1),
∫
Ω
u dx = 0.
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Let α be a multi-index and β1 > 0 a given parameter. We consider the following
optimization problems:

I0(u) ≡ min
u∈V f,0

∫
Ω

|u|2 dx, (30)

and

I1(u) ≡ min
u∈V f,1

∫
Ω

|u|2 dx + β1

∫
Ω

∑
|α|=1

|∂αu|2 dx . (31)

Theorem 1 Problems (30) and (31) have unique solutions u0 and u1, respectively.

Proof. The proof follows from Lemma 1 and the fact that we are minimizing Hilbert
norms. ��

For problems (30) and (31) we have the following results characterizing the
solutions.

Theorem 2 Let uo = Δv. For the solution u0 of the problems (30), where v ∈
H 2(Ω, ∂Ω)∩ ◦

H
1

(Ω) is the unique solution of the Steklov biharmonic problem

{
Δ2v = f in Ω,

v = Δv + τ ∂v
∂ν

= 0 on ∂Ω.
(32)

Proof. By a standard variational method, u0 ∈ L2(Ω) solves problem (30) if and
only if Δu0 = f and

∫
Ω

u0 ϕ dx = 0 for all ϕ ∈ L2(Ω), Δϕ = 0.

Assume first that u0 solves problem (30). Let v be defined as the unique solution of
the Dirichlet problem, {

Δv = u0 in Ω,

v = 0 on ∂Ω.

If ϕ, v ∈ H 1(Ω) and Δϕ, Δv ∈ L2(Ω), we have the Green formula∫
Ω

Δv ϕ dx −
∫

Ω

v Δϕ dx =
∫

∂Ω

(∇v · ν) ϕ ds −
∫

∂Ω

v (∇ϕ · ν) ds.

Now let ϕ ∈ H 1(Ω) be a harmonic function, Δϕ = 0. Then we have
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0 =
∫

Ω

u0 ϕ dx =
∫

Ω

Δv ϕ dx =
∫

∂Ω

(∇v · ν) ϕ ds −
∫

∂Ω

v (∇ϕ · ν) ds +
∫

Ω

v Δϕ dx,

that is ∫
∂Ω

(∇v · ν) ϕ ds = 0 for all such ϕ.

Since there exists a unique function u ∈ H 1(Ω) such that

{
Δu = f, f ∈ L2(Ω) in Ω,

u = g, g ∈ H 1/2(∂Ω) on ∂Ω,

and ϕ
∣∣
∂Ω

may be chosen arbitrary in H 1/2(Ω), we conclude that 0 = (∇v · ν) ∈
H−1/2(Ω). We have proved that u0 = Δv ∈ L2(Ω), where v satisfies the Steklov
biharmonic problem {

Δ2v = f in Ω,

v = Δv + τ ∂v
∂ν

= 0 on ∂Ω.
(33)

On the other hand we claim that (33) cannot have more than one solution v ∈ H 1(Ω)

with Δv ∈ L2(Ω). Indeed assume that (33) is satisfied and consider the function
ψ ∈ L2(Rn) defined by

ψ =
{

v(x) if x ∈ Ω,

0 if x /∈ Ω.

For arbitrary ϕ ∈ C∞
0 (Rn) we have

∫
Rn

ψ Δϕ dx =
∫

Ω

v Δϕ dx =

=
∫

∂Ω

v (∇ϕ · ν) ds −
∫

∂Ω

(∇v · ν) ϕ ds +
∫

Ω

ϕ Δv dx,

i.e. ∫
Rn

ψ Δϕ dx =
∫

Ω

ϕ Δv dx

for all ϕ ∈ C∞
0 (Rn).

Let now h ∈ C∞
0 (Rn) be dined by

h(x) =
{

Δv if x ∈ Ω,

0 if x /∈ Ω.
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We have proved that
Δψ = h

in the sense of distributions. Using the Fourier transformation it follows that ψ ∈
H 2(Rn). Therefore v ∈ H 2(Ω), and v must be the unique solution in H 2(Ω) of (33),

being the unique minimizer in
◦
H

2
(Ω) of the coercive quadratic functional

J (v) ≡
∫

Ω

(1
2
|Δv|2 − f v

)
dx .

The proof is complete. ��
Theorem 3 Let u1 = Δv. For the solution u1 of the problems (31), where v ∈
H 2(Ω), (∇v · ν) = 0, is the unique solution of the Steklov-type biharmonic problem

{
Δ2v = f in Ω,
∂v
∂ν

= ∂Δv
∂ν

+ τ v = 0 on ∂Ω.

Proof. Assume that u1 solves problem (31). Let v be defined as the unique solution
in the class {ψ ∈ H 1(Ω) : Δψ ∈ H 1(Ω)} of the following biharmonic problem

{
Δ2v = f in Ω,

v = β1Δv, ∇v · ν = 0 on ∂Ω.
(34)

By standard variational method, u1 ∈ H 1(Ω) solves problem (31), if and only if
Δu1 = f and ∫

Ω

(u1 ϕ + β1∇u1 · ∇ϕ) dx = 0

for all ϕ ∈ H 1(Ω) and Δϕ = 0 in Ω . Taking ϕ = 1, we observe that

∫
Ω

u1 dx = 0.

Let v ∈ H 1(Ω) be any solution of the Neumann problem

{
Δv = u1 in Ω,

∇v · ν = 0 on ∂Ω.
(35)

Applying Green’s formula we have,
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0 =
∫

Ω

ϕ Δv dx + β1

∫
Ω

∇(Δv)∇ϕ dx =

=
∫

Ω

v Δϕ dx +
∫

∂Ω

ϕ (∇v · ν) ds −
∫

∂Ω

v (∇ϕ · ν) ds+

+β1

∫
∂Ω

Δv (∇ϕ · ν) ds − β1

∫
Ω

Δv Δϕ dx,

i.e. ∫
∂Ω

(v − β1Δv) (∇ϕ · ν) ds = 0

for all ϕ ∈ H 1(Ω) and Δϕ = 0 in Ω .
Since (∇ϕ · ν) ∈ H−1/2(∂Ω) may be chosen arbitrarily (Lemma 4) apart from

the condition ∫
∂Ω

(∇ϕ · ν) ds = 0,

it follows that, for some C = const, v − β1Δv = C on ∂Ω .
Now the solution v is uniquely defined up to an additive constant. This constant

may be chosen so that C = 0.
We have proved that v defined by (35) satisfies (34), and that v,Δv ∈ H 1(Ω). It

remains only to prove that the solution v of (34) is unique. To this end we introduce
the function ϕ = β1Δv − v and observe that v satisfies (34) if and only if (v, ϕ) ∈
H 1(Ω)× ◦

H
1

(Ω) satisfies the system

{
β1Δv − v = ϕ,

β1Δϕ + ϕ = β2
1 f − v with (∇v · ν) = 0 on ∂Ω.

(36)

Next assume that v1, v2 satisfy (34), or (v1, ϕ1), (v2, ϕ2) satisfy (36). From the
previous argument it follows that u1 = Δv1 = Δv2 is the unique solution of problem
(31) so that Δ(v1 − v2) = 0. From (36) we have

{
β1Δ(v1 − v2) − (v1 − v2) = ϕ1 − ϕ2,

β1Δ(ϕ1 − ϕ2) + (ϕ1 − ϕ2) = v1 − v2.

This implies, v1 − v2 = ϕ1 − ϕ2 and Δ(ϕ1 − ϕ2) = 0 with ϕ1 − ϕ2 ∈ ◦
H

1
(Ω)

whence we conclude that ϕ1 − ϕ2 = 0 and v1 − v2 = 0. The proof is complete. ��
We conclude this section by a theorem relating the solution of problems (30) and

(31). First we recall the following definition.

Definition 6 Ω ⊂ R
n is called star-shaped, if there exists x0 ∈ Ω such that for all

x ∈ Ω the set {t ∈ R : x0 + t (x − x0) ∈ Ω} is an interval.
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Theorem 4 Assume that Ω ⊂ R
n is open, bounded and star-shaped. If u1,β1 ∈

H 1(Ω) denotes the solution of problem (31) with the parameter β1 > 0, and if
u0 ∈ L2(Ω) denotes the solution of problem (30), then

u1,β1 → u0 in L2(Ω) as β1 → 0 + .

Proof. For 0 < λ < 1 and x0 chosen as in the previous definition, we take

Ωλ = {x ∈ R
n : x0 + λ(x − x0) ∈ Ω},

u0,λ(x) = u0(x0 + λ(x − x0)), fλ = f (x0 + λ(x − x0)).

Then [11],
Δu0,λ = fλ in Ωλ, Ωλ ⊃ Ω, u0,λ ∈ H 2

loc(Ωλ).

Since H 2
loc(Ωλ) ⊃ H 2(Ω), it follows that u0,λ ∈ H 2(Ω). Further it is rather easy to

see that ∫
Ω

|u0,λ − u0|2 dx → 0,

and ∫
Ω

| fλ − f |2 dx → 0 as λ → 1.

Next define vλ ∈ ◦
H

1
(Ω) by

Δvλ = f − fλ in Ωλ.

Then ∫
Ω

|vλ|2 dx ≤ ||vλ||H 1(Ω) ≤ C
∫

Ω

| f − fλ|2 dx .

Consequently, taking wλ = u0,λ + vλ, we have first,

wλ ∈ H 1(Ω), Δwλ = f in Ω,

and hence, ∫
Ω

|wλ − u0|2 dx → 0 as λ → 1.

Now, if ε > 0 is given, we may choose a λ close enough to 1, so that

∫
Ω

w2
λ dx <

∫
Ω

u20 dx + ε/2.
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Further, by definition,

∫
Ω

u21,β1
dx + β1

∫
Ω

|∇u1,β1 |2 dx ≤
∫

Ω

w2
λ dx + β1

∫
Ω

|∇wλ|2 dx .

Since

||wλ||H 1(Ω) ≤ C
∫

Ω

| f |2 dx

we have, for sufficiently small β1,∫
Ω

u21,β1
dx + β1

∫
Ω

|∇u1,β1 |2 dx ≤
∫

Ω

u20 dx + ε.

It follows that,

lim
β1→0+

sup
∫

Ω

|u1,β1 |2 dx ≤
∫

Ω

|u0|2 dx .

Further, for some sub-sequence of β1, we have

u1,β1 → ũ in L2(Ω) (weakly),

Δũ = f in Ω,

and ∫
Ω

|̃u|2 dx ≤ lim
β1→0+

inf
∫

Ω

|u1,β1 |2 dx .

But then Δũ = f and ∫
Ω

|̃u|2 dx ≤
∫

Ω

|u0|2 dx

which, by definition of u0, implies that ũ = u0. So,

u1,β1 → u0 in L2(Ω) (weakly).

Next

lim
β1→0+

sup
∫

Ω

|u1,β1 − u0|2 dx =

= lim
β1→0+

sup
∫

Ω

|u1,β1 |2 dx − 2 lim
β1→0+

∫
Ω

u1,β1 u0 dx+

+
∫

Ω

|u0|2 dx ≤
∫

Ω

|u0|2 dx − 2
∫

Ω

|u0|2 dx +
∫

Ω

|u0|2 dx = 0.
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Finally, since this strong limit u0 is uniquely defined we may conclude, by a standard
argument that

u1,β1 → u0 in L2(Ω) as β1 → 0+

without restriction to any subsequence. The proof is complete. ��
Remark 1 All convex sets are star-shaped. Rectangles Ω appearing in our applica-
tions are thus star-shaped.

5 Appendix

Many complex engineering structures, such as the rotor blades of wind turbines and
helicopters, are non-prismatic beamlike structures, which may be tapered, twisted
and curved in their reference unstressed state and undergo large displacements of the
reference centre-line’s points, as well as in- and out-of-plane warping of the trans-
verse cross-sections. Continuous efforts to better predict the mechanical behaviour
of such structures, which are aimed at improving the performance in terms of struc-
tural efficiency and costs effectiveness, offer the opportunity to address some very
interesting, challenging problems in the field of continuum and solid mechanics [30].

An important point in developing rigorous yet application-oriented mathematical
models for such structures is an appropriate description of their motion. In general,
a non-prismatic beamlike structure can be considered as a collection of deformable
plane figures (referred to as the transverse cross-sections) along a suitable three-
dimensional curve (called the reference centre-line). Each cross-sectional point in
the reference state can moreover move to its position in the current state through
a global rigid motion on which a local warping motion can be superimposed. The
description of themotion of such structures can thus be performed by introducing two
kinematic maps, herein called RA and RB , to identify the positions of the points of
the mentioned structure in the reference and current states, as discussed in [30]–[32].
Specifically, the reference map RB can be defined as follows

RB(zi ) = R0B(z1) + xα(zi )bα(z1)

where R0B denotes the position of the centre-line’s points in the reference state, bα are
the vectors of the reference local frame in the plane of the reference cross-section,
xα identify the position of the points in the reference cross-section relative to the
reference centre-line, and finally, zi are three independent mathematical variables
which do not depend on time. In particular, z1 is equal to the reference arch-length
s, and zα belong to a bi-dimensional mathematical domain that is used to map the
position of the points, xα , of the cross-sections. Note that in this section α and β

assume values 2 and 3, i and j take values 1, 2 and 3, while repeated indices are
summed over their range.



594 H. A. Matevossian et al.

In a similar manner, the current map RA can be defined as follows

RA(zi , t) = R0A(z1, t) + xβ(zi )aβ(z1, t) + w j (z1, t)a j (z1, t)

where t is the considered evolution scalar real parameter (the time, for instance),
R0A denotes the position of the centre-line’s points in the current state, while w j are
the components of the warping displacement fields with respect to the current local
frames referred to as a j .

These maps can be used to determine the gradient of transformation between
the current and reference states and, successively, the Green–Lagrange strain ten-
sor, as discussed in [30]. Given such strain tensor and a constitutive model, it is
thus possible to determine the stress fields in the three-dimensional structure. The
problem unknowns, such as the displacements of the centre-line’s points and the
warping fields, can then be determined as the solution of a set of balance equations
deduced by a stationary condition of a suitable energy functional [30]. Specifically,
the result of this procedure is a mathematical problem based on partial differential
equations (PDEs) with Neumann-type boundary conditions the solution of which
enables obtaining all unknowns of the problem, such as the warping fields wk , the
displacements of the centre-line’s points, the Green–Lagrange strain fields and the
corresponding stress fields as well. Further details can be found in [30] and [32].

The results of the article are presented at the 13th InternationalConferenceChaotic
Modeling, Simulation and Applications (CHAOS2020, June 9–12, 2020, Florence,
Italy).
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with the Steklov and Steklov-Type
Boundary Conditions

Hovik A. Matevossian and Giovanni Migliaccio

Abstract We study the properties of generalized solutions in unbounded domains
and the asymptotic behavior of solutions of elliptic boundary value problems at
infinity. Moreover, we study the unique solvability of the mixed biharmonic problem
with the Steklov and Steklov-type conditions on the boundary in the exterior of a
compact set under the assumption that generalized solutions of this problem has a
boundedDirichlet integral with weight |x |a . Depending on the value of the parameter
a, we obtained uniqueness (non-uniqueness) theorems of this problem or present
exact formulas for the dimension of the space of solutions.

Keywords Biharmonic operator · Steklov and Steklov-type boundary conditions ·
Dirichlet integral · Weighted spaces

1 Introduction

LetΩ be an unbounded domain in R
n, n ≥ 2,Ω = R

n \ G with the boundary ∂Ω ∈
C2, whereG is a bounded simply connected domain (or a union of finitely many such
domains) in R

n , 0 ∈ G, Ω = Ω ∪ ∂Ω is the closure of Ω , x = (x1, . . . , xn) ∈ R
n

and |x | =
√
x21 + · · · + x2n .
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In Ω we consider the following problems for the biharmonic equation

Δ2u = 0 (1)

with the Steklov boundary condition on Γ1 and the Steklov-type boundary condition
on Γ2

u|Γ1 =
(

Δu + τ
∂u

∂ν

)∣∣∣∣
Γ1

= 0,
∂u

∂ν

∣∣∣∣
Γ2

=
(

∂Δu

∂ν
+ τ u

)∣∣∣∣
Γ2

= 0, (2)

where Γ 1 ∪ Γ 2 = ∂Ω , Γ1 ∩ Γ2 = ∅, mesn−1 Γ1 �= 0, ν = (ν1, . . . , νn) is the outer
unit normal vector to ∂Ω , τ ∈ C(∂Ω), τ ≥ 0, τ �≡ 0, and τ > 0 on a set of positive
(n − 1)—dimensional measure on ∂Ω .

Elliptic problems with parameters in the boundary conditions have been called
Steklov or Steklov-type problems since their first appearance in [30]. For the bihar-
monic operator, these conditions were first considered in [1, 10, 28], whose authors
the isoperimetric properties of the first eigenvalue were studied.

Note that standard elliptic regularity results are available in [4]. The monograph
covers higher order linear and nonlinear elliptic boundary value problems, mainly
with the biharmonic or polyharmonic operator as leading principal part. The underly-
ing models and, in particular, the role of different boundary conditions are explained
in detail. As for linear problems, after a brief summary of the existence theory and
L p and Schauder estimates, the focus is on positivity. The required kernel estimates
are also presented in detail.

In [3] and [4], the spectral and positivity preserving properties for the inverse of
the biharmonic operator under Steklov and Navier boundary conditions are studied.
These are connected with the first Steklov eigenvalue. It is shown that the positivity
preserving property is quite sensitive to the parameter involved in the boundary
condition. Moreover, positivity of the Steklov boundary value problem is linked
with positivity under boundary conditions of Dirichlet and Navier type.

In [2], the boundary value problems for the biharmonic equation and the Stokes
system are studied in a half space, and, using the Schwartz reflection principle in
weighted Lq -space, the uniqueness of solutions of the Stokes system or the bihar-
monic equation is proved.

As is well known, if Ω is an unbounded domain, one should additionally charac-
terize the behavior of the solution at infinity. As a rule, to this end, one usually poses
either the condition that the Dirichlet (energy) integral is finite or a condition on the
character of vanishing of the modulus of the solution as |x | → ∞. Such conditions
at infinity are natural and were studied by several authors (e.g., [8, 9]).

In the present note, this condition is the boundedness of the weighted Dirichlet
integral:

Da(u,Ω) ≡
∫

Ω

|x |a
∑
|α|=2

|∂αu|2 dx < ∞, a ∈ R.
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In various classes of unbounded domains with finite weighted Dirichlet (energy)
integral, one of the author [11]–[24] studied uniqueness (non-uniqueness) problem
and found the dimensions of the spaces of solutions of boundary value problems for
the elasticity system and the biharmonic (polyharmonic) equation.

By developing an approach based on the use of Hardy type inequalities [6, 8, 9],
in the present note, we obtain a uniqueness (non-uniqueness) criterion for a solution
of the mixed biharmonic problem with the Steklov and Steklov-type boundary con-
ditions. To construct the solution, we use a variational method, that is, we minimize
the corresponding functional in the class of admissible functions.

Notation: C∞
0 (Ω) is the space of infinitely differentiable functions in Ω with

compact support in Ω .
We denote by Hm(Ω, Γ ), Γ ⊂ Ω , the Sobolev space of functions in Ω obtained

by the completion of C∞(Ω) vanishing in a neighborhood of Γ with respect to the
norm

||u; Hm(Ω, Γ )|| =
⎛
⎝

∫

Ω

∑
|α|≤m

|∂αu|2dx
⎞
⎠

1/2

, m = 1, 2,

where ∂α ≡ ∂ |α|/∂xα1
1 . . . ∂xαn

n , α = (α1, . . . , αn) is a multi-index, αi ≥ 0 are inte-
gers, and |α| = α1 + · · · + αn; if Γ = ∅, we denote Hm(Ω, Γ ) by Hm(Ω).

◦
H

m
(Ω) is the space obtained by the completion of C∞

0 (Ω) with respect to the
norm ||u(x); Hm(Ω)||;

◦
H

m

loc (Ω) is the space obtained by the completion of C∞
0 (Ω) with respect to the

family of semi-norms

‖u; Hm(Ω ∩ B0(R))‖ =
⎛
⎜⎝

∫

Ω∩B0(R)

∑
|α|≤m

|∂αu|2 dx
⎞
⎟⎠

1/2

for all open balls B0(R) := {x : |x | < R} in R
n for which Ω ∩ B0(R) �= ∅.

Let
(n
k

)
be the (n, k) - binomial coefficient,

(n
k

)
=0 for k > n.

2 Definitions and Auxiliary Statements

Definition 1 A solution of the homogenous biharmonic equation (1) inΩ is a func-
tion u ∈ H 2

loc(Ω) such that, for every function ϕ ∈ C∞
0 (Ω), the following integral

identity holds: ∫

Ω

Δu Δϕ dx = 0.
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Lemma 1 Let u be a solution of equation (1) inΩ such that Da(u,Ω) < ∞. Then

u(x) = P(x) +
∑

β0<|α|≤β

∂αΓ (x)Cα + uβ(x), x ∈ Ω, (3)

where P(x) is a polynomial, ord P(x) < m0 = max{2, 2 − n/2 − a/2}, β0 = 2 −
n/2 + a/2, Γ (x) is the fundamental solution of equation (1), Cα = const, β ≥ 0 is
an integer, and the function uβ satisfies the estimate:

|∂γ uβ(x)| ≤ Cγβ |x |3−n−β−|γ |, Cγβ = const,

for every multi-index γ .

Remark 1 As is known [29], the fundamental solution Γ (x) of the biharmonic
equation has the form

Γ (x) =
{
C |x |4−n, i f 4 − n < 0 or n is odd,
C |x |4−n ln |x |, i f 4 − n ≥ 0 and n is even.

Proof of Lemma 1 Consider the function v(x) = θN (x)u(x), where θN (x) =
θ(|x |/N ), θ ∈ C∞(Rn), 0 ≤ θ ≤ 1, θ(s) = 0 for s ≤ 1, θ(s) = 1 for s ≥ 2, while
N � 1 andG ⊂ {x : |x | < N }. We extend v toRn by setting v = 0 onG = R

n \ Ω .
Then the function v belongs to C∞(Rn) and satisfies the equation

Δ2v = f,

where f ∈ C∞
0 (Rn) and supp f ⊂ {x : |x | < 2N }. It is easy to see that Da(v,Rn) <

∞.
We can now use Theorem 1 of [7] since it is based on Lemma 2 of [7], which

imposes no constraint on the sign of σ . Hence, the expansion

v(x) = P(x) +
∑

β0<|α|≤β

∂αΓ (x)Cα + vβ(x),

holds for each a, where P(x) is a polynomial of order ord P(x) < m0 = max{2, 2 −
n/2 − a/2}, β0 = 2 − n/2 + a/2, Cα = const and

|∂γ vβ(x)| ≤ Cγβ |x |3−n−β−|γ |, Cγβ = const .

Therefore, by the definition of v, we obtain (3). The proof of Lemma1 is complete.
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3 Main Results

Definition 2 By a solution of the mixed boundary value problem (1), (2) we mean a

functionu ∈ H 2
loc(Ω)∩ ◦

H
1

loc (Ω, Γ1), ∂u/∂ν = 0 onΓ2, such that, for every function

ϕ ∈ C∞
0 (Rn)∩ ◦

H
1

loc (Ω, Γ1), ∂ϕ/∂ν = 0onΓ2, the following integral identity holds:

∫

Ω

Δu Δϕ dx +
∫

Γ1

τ ∇u ∇ϕ ds −
∫

Γ2

τ u ϕ ds = 0. (4)

Theorem 1 The mixed problem (1), (2) with the condition D(u,Ω) < ∞ has n + 1
linearly independent solutions.

Proof For any nonzero vector A in R
n , we construct a generalized solution uA of

the biharmonic equation (1) with the boundary conditions

uA(x)
∣∣
Γ1

= (Ax)
∣∣
Γ1

,

(
ΔuA + τ

∂uA(x)

∂ν

)∣∣∣∣
Γ1

= τ
∂(Ax)

∂ν

∣∣∣∣
Γ1

,

∂uA

∂ν

∣∣∣∣
Γ2

=
(

∂ΔuA

∂ν
+ τ uA

)∣∣∣∣
Γ2

= 0,

(5)

and the condition

χ(uA,Ω) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫

Ω

( |uA|2
|x |4 + |∇uA|2

|x |2 + |∇∇uA|2
)
dx < ∞

for n > 4,
∫

Ω

( |uA|2
||x |2 ln |x ||2 + |∇uA|2

||x | ln |x ||2 + |∇∇uA|2
)
dx < ∞

for 2 ≤ n ≤ 4,

(6)

for A, x ∈ R
n , where Ax denotes the standard scalar product of A and x .

Such a solution of problem (1), (5) can be constructed by the variational
method [29], minimizing the functional

�(v) = 1

2

∫

Ω

|Δv|2 dx

in the class of admissible functions
{
v : v ∈ H 2(Ω), v(x)

∣∣
Γ1

= (Ax)
∣∣
Γ1

,(
Δv + τ ∂v(x)

∂ν

)∣∣∣
Γ1

= τ ∂(Ax)
∂ν

∣∣∣
Γ1

, v is compactly supported in Ω
}
.

The validity of condition (6) as a consequence of the Hardy inequality follows
from the results in [8, 9].
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Now, for any arbitrary number e �= 0, we construct a generalized solution ue of
equation (1) with the boundary conditions

ue
∣∣
Γ1

= e,

(
Δue + τ

∂ue
∂ν

)∣∣∣∣
Γ1

= 0,
∂ue
∂ν

∣∣∣∣
Γ2

=
(

∂Δue
∂ν

+ τ ue

)∣∣∣∣
Γ2

= 0, (7)

and the condition

χ(ue,Ω) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫

Ω

( |ue|2
|x |4 + |∇ue|2

|x |2 + |∇∇ue|2
)
dx < ∞

for n > 4,∫

Ω

( |ue|2
||x |2 ln |x ||2 + |∇ue|2

||x | ln |x ||2 + |∇∇ue|2
)
dx < ∞

for 2 ≤ n ≤ 4.

(8)

The solution of problem (1), (7) also is constructed by the variational method with
the minimization of the corresponding functional in the class of admissible functions
{v : v ∈ H 2(Ω), v

∣∣
Γ1

= e,
(
Δv + τ ∂v

∂ν

)∣∣
Γ1

= 0, v is compactly supported in Ω}.
The condition (8) as a consequence of the Hardy inequality follows from the

results in [8, 9].
Consider the function v = (uA − Ax) − (ue − e).
Obviously, v is a solution of problem (1), (2):

Δ2v = 0, x ∈ Ω,

v
∣∣
Γ1

=
(

Δv + τ
∂v

∂ν

)∣∣∣∣
Γ1

= 0,
∂v

∂ν

∣∣∣∣
Γ2

=
(

∂Δv

∂ν
+ τ v

)∣∣∣∣
Γ2

= 0.

One can easily see that v �≡ 0 and D(v,Ω) < ∞.
To each nonzero vector A = (A0, A1, . . . , An) in R

n+1, there corresponds a
nonzero solution vA = (vA0 , vA1 , . . . , vAn ) of problem (1), (2) with the condition
D(vA,Ω) < ∞, and moreover,

vA = uA − ue − Ax + e.

Let A0, A1, . . . , An be a basis in R
n+1. Let us prove that the corresponding

solutions vA0 , vA1 , . . . , vAn are linearly independent. Let

n∑
i=0

CivAi ≡ 0, Ci = const .

Set W ≡ ∑n
i=1 Ci Ai x − C0e. We have
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W =
n∑

i=1

CiuAi − C0ue,

∫

Ω

|x |−2|∇W |2 dx < ∞, n > 4,
∫

Ω

||x | ln |x ||−2|∇W |2 dx < ∞, 2 ≤ n ≤ 4.

Let us show that

W ≡
n∑

i=1

Ci Ai x − C0e ≡ 0.

Let T = ∑n
i=0 Ci Ai = (t0, . . . , tn), where A0 = −e. Then

∫

Ω

|x |−2|∇W |2 dx =
∫

Ω

|x |−2(t21 + · · · + t2n ) dx =∞, n > 4,
∫

Ω

||x | ln |x ||−2|∇W |2 dx =
∫

Ω

||x | ln |x ||−2(t21 + · · · + t2n ) dx = ∞, 2 ≤ n ≤ 4,

if T �= 0.
Consequently, T = ∑n

i=0 Ci Ai = 0, and since the vectors A0, A1, . . . , An are
linearly independent, we obtain Ci = 0, i = 0, 1, . . . , n.

Thus, the mixed problem (1), (2) with the condition D(u,Ω) < ∞ has at least
n + 1 linearly independent solutions.

Let us prove that each solution u of problem (1), (2)with the condition D(u,Ω) <

∞ can be represented as a linear combination of the functions vA0 , vA1 , . . . , vAn , i.e.

u =
n∑

i=0

CivAi , Ci = const .

Since A0, A1, . . . , An is a basis in R
n+1, it follows that there exists constants

C0,C1, . . . ,Cn such that

A =
n∑

i=0

Ci Ai .

We set

u0 ≡ u −
n∑

i=0

CivAi .

Obviously, the function u0 is a solution of problem (1), (2), and D(u0,Ω) < ∞,
χ(u0,Ω) < ∞.
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Let us show that u0 ≡ 0, x ∈ Ω . To this end, we substitute the function ϕ(x) =
u0(x)θN (x) into the integral identity (4) for the functionu0,where θN (x) = θ(|x |/N ),
θ ∈ C∞(R), 0 ≤ θ ≤ 1, θ(s) = 0 for s ≥ 2 and θ(s) = 1 for s ≤ 1; then we obtain

∫

Ω

(Δu0)
2θN (x) dx +

∫

Γ1

τ |∇u0|2θN (x) ds −
∫

Γ2

τ |u0|2θN (x) ds

= −J1(u0) − J2(u0) − J3(u0),
(9)

where

J1(u0) = 2
∫

Ω

Δu0 ∇u0 ∇θN (x) dx, J2(u0) =
∫

Ω

u0 Δu0 ΔθN (x) dx,

J3(u0) =
∫

Γ1

u0 ∇u0 ∇θN (x) ds.

By applying the Cauchy–Schwarz inequality and by taking into account the condi-
tions D(u0,Ω) < ∞ and χ(u0,Ω) < ∞, one can easily show that J1(u0) → 0,
J2(u0) → 0 and J3(u0) → 0 as N → ∞. Consequently, by passing to the limit as
N → ∞ in (9), we obtain

∫

Ω

(Δu0)
2 θN (x) dx +

∫

Γ1

τ |∇u0|2θN (x) ds −
∫

Γ2

τ |u0|2θN (x) ds → 0.

Using the integral identity

∫

Ω

(Δu0)
2 dx +

∫

Γ1

τ |∇u0|2 ds −
∫

Γ2

τ |u0|2 ds = 0,

we find that if u0 is a solution of the homogeneous problem (1), (2), then Δu0 = 0.
Therefore, we have

Δu0 = 0, x ∈ Ω,

u0
∣∣
Γ1

=
(

Δu0 + τ
∂u0
∂ν

)∣∣∣∣
Γ1

= 0,
∂u0
∂ν

∣∣∣∣
Γ2

=
(

∂Δu0
∂ν

+ τ u0

)∣∣∣∣
Γ2

= 0.

Hence, it follows [5, Chap. 2] that u0 = 0 in Ω . The relation

∫

∂Ω

τ (|∇u0|2 + |u0|2) ds = 0

implies that u0 ≡ 0 on a set of a positive measure on ∂Ω . The proof of the theorem
is complete.

Theorem 2 The mixed problem (1), (2) with the condition Da(u,Ω) < ∞ has:
(i) the trivial solution for n − 2 ≤ a < ∞, n > 4;
(ii) n linearly independent solutions for n − 4 ≤ a < n − 2, n > 4;
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(iii) n + 1 linearly independent solutions for −n ≤ a < n − 4, n > 4;
(iv) k(r, n) linearly independent solutions for −2r + 2 − n ≤ a < −2r + 4 − n,

r > 1, n > 4, where

k(r, n) =
(
r + n

n

)
−

(
r + n − 4

n

)
.

The proof of Theorem 2 is based on Lemma 1 about the asymptotic expansion of
the solutionof thebiharmonic equation and theHardy type inequalities for unbounded
domains [8, 9]. In case (iv), we need to determine the number of linearly independent
solutions of the biharmonic equation (1), the degree of which not exceed the fixed
number.

It is well know that the dimension of the space of all polynomials inRn of degree≤
r is equal

(r+n
n

)
[27]. Then the dimension of the space of all biharmonic polynomials

in Rn of degree ≤ r is equal to

(
r + n

n

)
−

(
r + n − 4

n

)
,

since the biharmonic equation is the vanishing of some polynomial of degree r − 4 in
R

n . If we denote by k(r, n) the number of linearly independent polynomial solutions
of equation (1) whose degree do not exceed r and by l(r, n) the number of linearly
independent homogeneous polynomials of degree r , that are solutions of equation
(1), then

k(r, n) =
r∑

s=0

l(s, n),

where

l(s, n) =
(
s + n − 1

n − 1

)
−

(
s + n − 5

n − 1

)
, s > 0.

Further, we prove that the mixed problem (1), (2) with the condition Da(u,Ω) < ∞
for −2r + 2 − n ≤ a < −2r + 4 − n has equally k(r, n) of linearly independent
solutions.

4 Appendix

Many complex engineering structures, such as the rotor blades of wind turbines and
helicopters, are non-prismatic beamlike structures, which may be tapered, twisted
and curved in their reference unstressed state and undergo large displacements of the
reference centre-line’s points, as well as in- and out-of-plane warping of the trans-
verse cross-sections. Continuous efforts to better predict the mechanical behaviour
of such structures, which are aimed at improving the performance in terms of struc-
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tural efficiency and costs effectiveness, offer the opportunity to address some very
interesting, challenging problems in the field of continuum and solid mechanics [25].

An important point in developing rigorous yet application-oriented mathemat-
ical models for such structures is an appropriate description of their motion. The
description of the motion of such structures can thus be performed by introduc-
ing two kinematic maps, herein called RA and RB , to identify the positions of the
points of the mentioned structure in the reference and current states, as discussed in
[25, 26].

These maps can be used to determine the gradient of transformation between
the current and reference states and, successively, the Green-Lagrange strain tensor,
as discussed in [25]. Given such strain tensor and a constitutive model, it is thus
possible to determine the stress fields in the three-dimensional structure. The problem
unknowns, such as the displacements of the centre-line’s points and the warping
fields, can then be determined as the solution of a set of balance equations deduced
by a stationary condition of a suitable energy functional [25]. As shown in [25, 26],
the results of this procedure is a mathematical problem based on partial differential
equations (PDEs) with Neumann-type boundary conditions the solution of which
enable obtaining all unknowns of the problem, such as the warping fields wk , the
displacements of the centre-line’s points, the Green-Lagrange strain fields and the
corresponding stress fields.

The results of the article are presented at the 13th InternationalConferenceChaotic
Modeling, Simulation and Applications (CHAOS2020, June 9–12, 2020, Florence,
Italy).
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Prediction of Qualitative Dynamics
in Population Models Through Holling’s
Functional Responses

Ashutosh Maurya and Anupam Priyadarshi

Abstract Natural ecosystems are complex network of biotic and abiotic interactions
of species and their biological, physical and chemical constituents. Over the century,
mathematical models have played primary roles in understanding themystery behind
the ecosystems processes and interesting dynamics of natural ecosystems. The di-
trophic predator-prey interactions are the basic building blocks for complex food
web models (multiple trophic interactions). The pioneering work of Lotka-Volterra
(Mem Accad Nazi LaIncci 2:31–113, 1926), explaining the abrupt deviations in
species abundance and existence of oscillations in a simple predator-prey interac-
tion. Studies in previous decades, it has been assumed that the functional responses
are the main cause for chaotic and non-chaotic behavior. In this paper, we investigate
how functional responses affect the system dynamics by using its different combi-
nations in a simple two prey-one predator population model. Based on our present
investigation, we concluded that the stabilizing properties of functional responses
dominate oscillatory behavior.

Keywords Controlling limit cycles · Two parameter bifurcation comparison ·
Holling type functional responses · Stabilizing property · Dominating oscillatory
property

1 Introduction

Food webs in ecosystems play a vital role to regulate species coexistence, species
interactions and carbon, nitrogen cycles in natural ecosystems. They often assumed
to be responsible for species control and ecosystem balance. The complex net-
works of biotic (predator-prey) and abiotic interactions in foodwebs are ubiquitously
exist within trophic levels. Among the biotic interactions, predator-prey interactions
exhibit very complex dynamics and hence, attracted the attention of theoretical,
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experimental and field ecologists from the last century. Experiments and field obser-
vations are the basis for the development of theoretical concepts of ecological pro-
cess through mathematical models. These mathematical models interpret the model
dynamics using differential equations and predict the future happening based on their
results [16]. The theoretical development of mathematical modeling assumed to be
started from the pioneering work of Lotka and Volterra [17, 22], which explained the
abrupt deviations in species abundance and predicted the existence of oscillations in
a simple predator-prey model. The di-trophic predator-prey interactions are the basic
building blocks for complex food web models of multiple trophic interactions [16].
The food-web systems exhibit more complex dynamics (quasi-periodicity, chaos)
on increasing the number of species in its chain [1–3] which cannot be obtained by
di-trophic food chain models [8].

Growth rates (prey increment with time [3, 4] and functional responses (the rela-
tionship between prey-capturing by per predator in unit time with prey density),
frequently used in theoretical predator-prey interactions, are the two important fac-
tors to control the overall dynamics of food webs. The term functional response
(FR) was first acknowledged by Soloman [12] and extensively deliberated by C.S.
Holling using the Disc equations based on predator’s handling (capturing, eating
and digesting) ability [1–3]. Based on terrestrial experiments and artificial lab exper-
iments [1–3], C.S. Holling proposed three types of functional responses namely
Holling types I, II and III. Later on, Holling type IV FR is coined and identified by
J.F. Andrews [7] in the culture of micro-organisms which is nonlinear and density
dependent function. There are several other FRs such as Leslie-Gower, Ivlev etc.,
which are also frequently used in predator-prey interactions besides Holling type FR.

The Holling type I (HI ) FR is the simplest, in which predator’s capture rate
increases directly proportional to prey density till saturation. HI F R has been used
in Lotka-Volterra’s predator-prey model which produced neutral stable limit cycles
[17, 22]. Experimentally, it is observed that the sea star’s predation traits on juvenile
scallops in aquatic region are HI [10, 11]. It is also used in the filter-feeding zooplank-
tonharvestingmodels. It’smathematical description is k(x, y) = min(w1x, w1).The
Holling type II (HI I ) is also similar in the sense that the rate of capture prey increases
with increasing prey density but its saturation reached out slowly in comparison of
HI . It is frequently used in the population estimation of insects and parasitoids [6, 17].
It’s mathematical description is k(x, y) = w1x

1+w1x+w2 y . The Holling type III (HI I I )

exhibits S-shaped in which at low prey density, the capture rate exceeds and goes
to saturation gradually like (HI I ). It is widely used on population estimation of ver-
tebrates [6, 17]. Its mathematical description is k(x, y) = w1x2

1+w1x2+w2 y2 . The Holling
type IV (HI V ) is dome-shaped and non-linearwhich is further proposed andmodified
by Sokol andHowell [23] and used for the population estimation onmicro-organisms
and mice estimations [6]. It’s mathematical description is k(x, y) = w1x

1+w1x2+w2 y2 .

The predator behaviour in the natural ecosystem is strongly associated with prey
availability and associated functional response by which predator predates on prey
[3, 5, 8, 14, 19, 20]. The functional response may induce oscillations in di-trophic
predator-prey interaction (or chaos) in multi-trophic systems [6, 13, 21]. In food web
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systems, the predation rate associated with prey may vary due to change in physical
habitat of species.

Studies of Holling’s FR convey that the HI gives the point stability and extinction
while HI I and HI V give periodic solution along with point stability and extinction
with suitable parameter choices. HI I I gives stability with persistence throughout
parameter choice (see Fig. 1). We have extended their studies with the combined
effects of different function responses in food web systems. We consider a simple
food web consisting of two bottom prey and one predator on which combination of
different functional responses are applied to infer the qualitative behaviour. We have
studied the following questions: (1) Is the combination of functional responses gives
oscillatory solutions with point stability and extinction? (2) What are the basic prop-
erties of this type of model? (3) What are the detailed of the dynamical behaviour of
these systems? (3) What are the two-parameter bifurcation analysis of these system?

2 Background (Terminology)

Assuming x and y prey densities and z predator density, a simple food web model of
one predator and two prey can be expressed with the following system of differential
equations:

x ′ = xg(x) − zk(x, y)

y′ = yi(y) − z j (x, y)

z′ = h(x, y, z)

(1)

Here, prey x grows logistically in the absence of predator z as follows:

g(x) = (1 − x) such that g(0) = 1 > 0, gx = −1,∀x ≥ 0 and g(1) = 0

i(y) = w4(1 − y) such that i(0) = w4, iy = −w4,∀y ≥ 0 and i(1) = 0

Wherew4 represent the maximum growth coefficient of prey y. The growth of preda-
tor z depends on several factors including prey availability, predator catching and
handling ability, prey searching ability etc. Here, we investigate the model dynam-
ics when predator grows according to Leslie-Gower type FR [8, 15] h(x, y, z) =
s4z(1 − s3z

1+s1x+s2 y ). Where s1, s2 and s3 are the coefficients of environmental car-
rying capacity which reduce predator population while is the intrinsic growth rate
of the predator z. The identical participation of male and female in the growth of
predator [9, 18, 19] gives h(x, y, z) = s4z2(1 − s3

1+s1x+s2 y ).
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3 Model Formulations

The model formulations are described based on the following assumptions:

3.1 Case 1: When both Preys Have the Same Functional
Response

Using identically HI , HI I HI I I and HI V F R in both bottom prey and keep-
ing Leslie-Gower type predator, following food web models are formulated in
(2–5) respectively. Many Authors studies propertise of these FR in their studies
[6, 13, 21]. The detailed one parameter analysis of functional response related
Models 2–5 is given in Fig. 1.

x ′ = x(1 − x) − w1xz

y′ = y(1 − y)w4 − w5yz

z′ = w6z2(1 − w7

1 + w8x + w9y
)

(2)

x ′ = x(1 − x) − w1xz

1 + w2x + w3y

y′ = y(1 − y)w4 − w5yz

1 + w2x + w3y

z′ = w6z2(1 − w7

1 + w8x + w9y
)

(3)

x ′ = x(1 − x) − w1x2z

1 + w2x2 + w3y2

y′ = y(1 − y)w4 − w5y2z

1 + w2x2 + w3y2

z′ = w6z2(1 − w7

1 + w8x + w9y
)

(4)

x ′ = x(1 − x) − w1xz

1 + w2x2 + w3y2

y′ = y(1 − y)w4 − w5yz

1 + w2x2 + w3y2

z′ = w6z2(1 − w7

1 + w8x + w9y
)

(5)

Where parameterw1 answ5 are maximum attack rate at prey x and prey y respec-
tively by predator z. Parameter w2 and w3 are half-saturation constant for prey x and
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prey y in absence of other prey respectively. Parameter w4 is the distinguished logis-
tic factor for prey y . Parameter w6 is the growth rate for the predator z. Parameter
w7 is reduction in predator in the severe scarcity of prey x and prey y. Parameter
w8 and w9 is prey preferences for predation of prey x and prey y respectively by the
predator.

3.2 Case 2: Different Functional Responses in Preys

Due to different predation behaviour is happened for different prey species for com-
mon predator and also it is documented that if the physical habitat is changed then
the same predator predation rate is altered on the same prey. Assuming HI and
HI I in the prey equation, the Model 1 becomes the Model 6. Similarly, the func-
tional response HI with combination HI I I and HI V is taken then Model 1 becomes
Model 7–8 respectively. The FR HI I with combination HI I I and HI V are taken in
the Model 1 becomes Model 9–10 and our last Model 11 has taken combination of
the HI I and HI V FR .

x ′ = x(1 − x) − w1xz

y′ = y(1 − y)w4 − w5yz

1 + w3y

z′ = w6z2(1 − w7

1 + w8x + w9y
)

(6)

x ′ = x(1 − x) − w1xz

y′ = y(1 − y)w4 − w5y2z

1 + w3y2

z′ = w6z2(1 − w7

1 + w8x + w9y
)

(7)

x ′ = x(1 − x) − w1xz

y′ = y(1 − y)w4 − w5yz

1 + w3y2

z′ = w6z2(1 − w7

1 + w8x + w9y
)

(8)

x ′ = x(1 − x) − w1xz

1 + w2x + w3y

y′ = y(1 − y)w4 − w5y2z

1 + w2x2 + w3y2

z′ = w6z2(1 − w7

1 + w8x + w9y
)

(9)



614 A. Maurya and A. Priyadarshi

x ′ = x(1 − x) − w1xz

1 + w2x + w3y

y′ = y(1 − y)w4 − w5yz

1 + w2x2 + w3y2

z′ = w6z2(1 − w7

1 + w8x + w9y
)

(10)

x ′ = x(1 − x) − w1x2z

1 + w2x2 + w3x2

y′ = y(1 − y)w4 − w5yz

1 + w2x2 + w3y2

z′ = w6z2(1 − w7

1 + w8x + w9y
)

(11)

4 Analysis

Theorem 1 All the model formulated in (2–11) are bounded and dissipative. Further,
all Model 2–11 are persistent.

Proof The proof for individual models Models 2–11 can be expressed on similar
lines. Taking h(x, y, z) explicitly as Leslie Gower type FR, the following set of
differential equations represent the Model 1 as:

x ′ = x(1 − x) − z f (x, y)

y′ = y(1 − y)w4 − zg(x, y)

z′ = w6z2(1 − w7

1 + w8x + w9y
)

(12)

From the above expression, we have x ′ ≤ x(1 − x) =⇒ x(t) ≤ 1
1+ke−t ∀t ≥ 0 Here

k = 1
x(0) − 1 is the constant of integration. Now, taking t → ∞ yield limx→∞ x(t) ≤

1∀t ≥ 0 similarly, we have y′(t) ≤ y(1 − y)w4 =⇒ y(t) ≤ w4
w4+k1exp(−w4t)∀t ≥ 0

with k1 = w4(
1

y(0) − 1) is the constant of integration. Now, taking t → ∞,

limy→∞ y(t) ≤ 1∀t ≥ 0 For predation functional response, Let φ(t) = x(t) +
y(t) + z(t)

κ3
;φ(0) ≥ 0, Then dφ

dt + k4φ(t) ≤ x(1 − x + κ4) + y(1 − y)w4 +
ζ(x, y, z) where ζ(x, y, z) = w6z2(1 − w7

1+w8x+w9 y ) + κ4z(t)
κ3

. Using the maximum

property of function, we get dφ

dt + k4φ(t) ≤ (1+w4)

4 + κ4 + ζ0 provided w6a > w7

and k3 = ak2
4∀t ≥ 0,



Prediction of Qualitative Dynamics in Population Models … 615

φ(t) = (1 + w4 + 4κ4 + 4ζ0)

4
− (1 + w4 + 4k4 − φ0)exp(−k4t)

4

=⇒ lim
t→∞ φ(t) = (1 + w4 + 4κ4 + 4ζ0)

4k4

This implies that solutions of system (12) are uniformly bounded for any initial value
of R+3. To show the system is dissipative, let there exist such that (γ1, γ2, γ3) > 0
such that �(x0, y0, z0) ⊂ R+3 = {(x, y, z) : 0 ≤ x ≤ γ1, 0 ≤ y ≤ γ2, 0 ≤ z ≤ γ3}
for all (x0, y0, z0) ≥ 0where�(x0, y0, z0) is the omega-limit set of the orbit initiating
at (x0, y0, z0). Thus, the general form of the Model 1 is dissipative and bounded.
Therefore, for any positive solution of the Model 1 can persist for longer time.
Hence allModels 2–11 are dissipative and persist.

Equilibrium Points and Models Behavior

Theorem 2 All Models 2–11 has the trivial equilibrium point E0(0, 0, 0) and the
axial equilibrium points E1(1, 0, 0), E2(0, 1, 0), and the planar equilibrium point
E3(1, 1, 0). The axial singularity E(0, 0, 1) is biologically unfeasible and hence
doesn’t exist due to absence of prey.

Theorem 3 In the absence of one prey in Model 2, the following equilibrium points
exist: E11(

w7−1
w8

, 0, 1−x̄
w1

) & E12(0,
w7−1
w9

,
(1−ȳ)w4

w5
) and in the positive octant, the non-

trivial equilibrium point E13(x̄, ȳ, z̄) exists, where x̄ = w7−1−w9 ȳ
w8

, ȳ = (1−ȳ)w4

w5
& z̄ =

1−x̄
w1

.

Theorem 4 In the absence of one prey in the Model 3, the following equilib-
rium points exist: E21(

w7−1
w8

, 0, 1+w2 x̄(1−x̄)

w1
) & E22(0,

w7−1
w9

,
(1−ȳ)w4(1+w3 ȳ)

w5
and in

the positive octant, the non-trivial equilibrium point E23(x̄, ȳ, z̄) exists, where
x̄ = w7−1−w9 ȳ

w8
, z̄ = (1−x̄)(1+w2 x̄+w3 ȳ)

w1
and ȳ can be calculated by a quadratic equation

w3 ȳ2 − w3 ȳ − (1 − ȳ)(1 + w2 x̄) + w5 z̄
w4

= 0.

Theorem 5 In the absence of one prey in the Model 4, the following equilib-

rium points exist: E31(
w7−1
w8

, 0, 1+w2 x̄2(1−x̄)

w1 x̄ ) & E32(0,
w7−1
w9

,
(1−ȳ)w4(1+w3 ȳ2)

w5 ȳ and in
the positive octant, the non-trivial equilibrium point E33(x̄, ȳ, z̄) exists, where
x̄ = w7−1−w9 ȳ

w8
, z̄ = (1−x̄)(1+w2 x̄2+w3 ȳ2)

w1 x̄ and ȳ can be calculated by a quadratic equa-

tion w3 ȳ3 − w3 ȳ2 + ȳ(1 + w2 x̄2) + w5 z̄
w4

− 1 − w2 x̄2 = 0.

Theorem 6 In the absence of one prey in the Model 5, the following equilib-
rium points exist: E41(

w7−1
w8

, 0, 1+w2 x̄2(1−x̄)

w1
) & E42(0,

w7−1
w9

,
(1−ȳ)w4(1+w3 ȳ2)

w5
and in

the positive octant, the non-trivial equilibrium point E43(x̄, ȳ, z̄) exists, where
x̄ = w7−1−w9 ȳ

w8
, z̄ = (1−x̄)(1+w2 x̄2+w3 ȳ2)

w1
and ȳ can be calculated by a quadratic equa-

tion w3 ȳ3 − w3 ȳ2 − (1 − ȳ)(1 + w2 x̄2) + w5 z̄
w4

− 1 = 0.
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Theorem 7 In the absence of one prey in the Mode 6, the following equilibrium
points exist:E51(

w7−1
w8

, 0, (1−x̄)

w1
) & E52(0,

w7−1
w9

,
(1−ȳ)w4(1+w3 ȳ)

w5
and in the positive

octant, the non-trivial equilibrium point E53(x̄, ȳ, z̄) exists, where x̄ = w7−1−w9 ȳ
w8

, z̄ =
(1−x̄)

w1
and ȳ can be calculated by a quadratic equation w3 ȳ2 + (1 − w3)ȳ + w5 z̄

w4
−

1 = 0.

Theorem 8 In the absence of one prey in the Model 7, the following equilibrium
points exist:E61(

w7−1
w8

, 0, (1−x̄)

w1
) & E62(0,

w7−1
w9

,
(1−ȳ)w4(1+w3 ȳ2)

w5 ȳ and in the positive

octant, the non-trivial equilibrium point E63(x̄, ȳ, z̄) exists, where x̄ = w7−1−w9 ȳ
w8

, z̄ =
(1−x̄)

w1
and ȳ can be calculated by a quadratic equation w3 ȳ3 − w3 ȳ2 + w5 z̄ ȳ

w4
+ ȳ −

1 = 0.

Theorem 9 In the absence of one prey in the Model 8, the following equilibrium
points exist:E71(

w7−1
w8

, 0, (1−x̄)

w1
) & E72(0,

w7−1
w9

,
(1−ȳ)w4(1+w3 ȳ2)

w5
and in the positive

octant, the non-trivial equilibrium point E73(x̄, ȳ, z̄) exists, where x̄ = w7−1−w9 ȳ
w8

, z̄ =
(1−x̄)

w1
and ȳ can be calculated by a quadratic equation w3 ȳ3 − w3 ȳ2 + w5 z̄

w4
+ ȳ −

1 = 0.

Theorem 10 In the absence of one prey in the Mode 9, the following equilib-
rium points exist:E81(

w7−1
w8

, 0, (1−x̄)(1+w2 x̄)

w1
) & E82(0,

w7−1
w9

,
(1−ȳ)w4(1+w3 ȳ2)

w5 ȳ and in
the positive octant, the non-trivial equilibrium point E83(x̄, ȳ, z̄) exists, where
x̄ = w7−1−w9 ȳ

w8
, z̄ = (1−x̄)(1+w2 x̄)

w1
and ȳ can be calculated by a quadratic equation

w3 ȳ3 − w3 ȳ2 + w5 z̄ ȳ
w4

+ ȳ − 1 = 0.

Theorem 11 In the absence of one prey in the Mode 10, the following equilib-
rium points exist:E91(

w7−1
w8

, 0, (1−x̄)(1+w2 x̄)

w1
) & E92(0,

w7−1
w9

,
(1−ȳ)w4(1+w3 ȳ2)

w5 ȳ and in
the positive octant, the non-trivial equilibrium point E93(x̄, ȳ, z̄) exists, where
x̄ = w7−1−w9 ȳ

w8
, z̄ = (1−x̄)(1+w2 x̄)

w1
and ȳ can be calculated by a quadratic equation

w3 ȳ3 − w3 ȳ2 + w5 z̄
w4

+ ȳ − 1 = 0.

Theorem 12 In the absence of one prey in the Model 11, the following equilibrium
points exist:E101(

w7−1
w8

, 0, (1−x̄)(1+w2 x̄2)

w1 x̄ ) & E102(0,
w7−1
w9

,
(1−ȳ)w4(1+w3 ȳ2)

w5
and in the

positive octant, the non-trivial equilibrium point E103(x̄, ȳ, z̄) exists, where x̄ =
w7−1−w9 ȳ

w8
, z̄ = (1−x̄)(1+w2 x̄2)

w1 x̄ and ȳ can be calculated by a quadratic equation w3 ȳ3 −
w3 ȳ2 + w5 z̄

w4
+ ȳ − 1 = 0.

The local behaviour of the above equilibrium points are stated in the following
theorems:

Theorem 13 The trivial equilibrium E0(0, 0, 0) in all Model 2–11 is always non-
hyperbolic and unstable. There exist unstable subspace along xy plane and center
subspace along z plane.



Prediction of Qualitative Dynamics in Population Models … 617

Theorem 14 The axial singularity E1(1, 0, 0) in all Model 2–11 is non-hyperbolic
and saddle point. The y plane of the system is an unstable subspace, x plane of the
system is stable subspace and z plane of the system is center subspace.

Theorem 15 The axial singularity E2(0, 1, 0) in all Model 2–11 is non-hyperbolic,
saddle point. The x plane of the system is an unstable subspace, y plane of the system
is stable subspace and z plane of the system is center subspace.

Theorem 16 The equilibrium E3(1, 1, 0) in all Model 2–11 is non-hyperbolic and
stable. The system has stable subspace along x − y plane and center subspace along
z plane.

Theorem 17 The equilibrium points E4(x̄, 0, z̄), E5(0, ȳ, z̄) and E6(x̄, ȳ, z̄) are
asymptotically stable in each Model 2–11 individually, if the Jacobian of each model
at the equilibrium point satisfies the following conditions

A1 = −(A11 + A22 + A33) > 0

A2 = A22 A33 + A11A33 + A11A22 − A12 A21 − A32 A33 − A31 A13 > 0

A3 = A11A23 A32 + A12 A21 A33 + A13 A31A22 − A11 A22 A33 − A12 A31A23

− A32 A21A13 > 0.

(13)

The proofs of the above theorems are quite easy and hence left. Here, proof of
Theorem 17 is stated:

Proof the general equilibrium point E6(x̄, ȳ, z̄) put in RHS of model 1 and taking
first order differentiation. We found the jacobian matrix Jx,y,z for the model system
(1) is ⎛

⎝
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠

where A11 = 1 − 2x − w1z, A12 = 0, A13 = −w1x, A21 = 0, A22 = w4 − 2w4y −
w5z , A23 = −w5y, A31 = w6w7w8z2

1+w8x+w9z

2
, A32 = w6w7w9z2

1+w8x+w9z

2
, A33 = 2w6z(1 −

w7
1+w8x+w9z ) The characteristic polynomial for the Jacobean Matrix λ3 + A1λ

2 +
A2λ + A3 = 0 where A1, A2, A3 are mentenioned in the (13). The system is asymp-
totically stable if the eigenvalues are negative and A1 > 0, A2 > 0, A3 > 0 and
A1A2 − A3 > 0.

5 Numerical Simulations and Results

Toobserve the impact of different functional responses ononeprey twopredator inter-
actionModel 2–11, the same parameters are used in each model simulations. Simu-
lations results suggest that the qualitative behaviour of models are structurally robust
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(testing with other various parameter combinations), therefore following parameter
combinations have been used to observe the global dynamics:

w1 = 3.6, w2 = 1.7, w3 = 1.8, w4 = 1.5, w5 = 3.2, w6 = 1, w7 = 2.1, w8 = 1.7,

w9 = 1.8
(14)

6 One-Parameter Bifurcation Diagrams

We extensively carried out the numerical simulations and using the continuation
algorithm,we drewone-parameter bifurcation diagramswith respect to the parameter
w4 for Model 2–11. The Model 2–4 are studied by many authors and our findings
are in line with them [6, 13, 21] (see Fig. 1). We carried out the simulation of the
Model 2–11 and found non- oscillation properties are found with persistency along
with extinctions. Details bifurcation point and persistency range of all model are
given in Table 1.

7 Two-Parameter Bifurcation Diagrams

The parameter region for the species coexistence, extinction of prey is observed in
two-parameter bifurcation diagram in Figs. 2 and 3. Model 4 with HI I I FR exhibit
stabilizing effect on system behaviour and a possibility of avoiding the extinction of
species. The extinction of prey or predator may not be possible in the Model 4 only
which is a significant criteria of using these functional responses in predator-prey
interactions. In the two-parameter bifurcation diagram for theModel 3, there are four
regions, two regions are extinction region where preys are extinct while in between
these two regions, all species survive and co-exists. In the middle of coexists region,
a periodic region exists where all the populations are periodic. Similar behaviour is
given by H-IV FR (Model 5) see in Fig. 2. While, the Model 2 shows three regions,
the first region and third region gives extinction of one of the prey and center region
gives coexistence. Similar behaviour is shown byModel 6, 8, 10. Model 7, 9, 11 give
only two regions one is coexistence and other is extinction.

8 Discussion and Conclusions

For understanding the significant effect of different functional response in two prey
and one predator, we applying a combination of functional response in the Model 1
and found there are only three significant qualitative behaviours which are well
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Fig. 1 One parameter bifurcation diagram for prey x, y and predator z with respect to the parameter
w4 forModel 2–4 are shown. Here red line is stable equilibrium point (SEP), green circle is stable
limit cycle (SLC), Black colour is unstable equilibrium point(UEP). BP1= first branch point, BP2=
second branch point, Model 2 is HI F R alone, Model 3 is HI I F R alone, Model 4 is HI I I F R alone.
Model 3 and Model 5 have similar qualitaive behaviour. Combination of FR (in Model 6–11) are
similar qualitative dynamics like Model 2

Table 1 List of all branch point (First branch point (BP1) and Second branch point (BP2)), Hopf
bifurcation point (First Hopf point (HB1) and Second Hopf point (HB2)), and persistence range
found in the respective model

Model BP1 BP2 HB1 HB2 Persistence range

2 0.3137 2.286 N.A. N.A. (0.3137–2.286)

3 0.3138 2.286 0.6805 1.235 (0.3138–2.286)

4 N.A. N.A. N.A. N.A. (0–4)

5 0.3138 2.286 0.6692 1.233 (0.3138–2.286)

6 0.3137 1.088 N.A. N.A. (0.3137–1.088)

7 0.8353 N.A. N.A. N.A. (0–0.8353)

8 0.3137 1.367 N.A. N.A. (0.3137–1.367)

9 0.8354 N.A. N.A. N.A. (0–0.8354)

10 0.6588 1.367 N.A. N.A. (0.6588–1.367)

11 0.8300 N.A. N.A. N.A. (0.8300–4)
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Fig. 2 Two-parameter bifurcation diagram with respect to w8 & w4 (left) and w9 & w4 right)
for the Model 2–7 respectively. Here, PyE=prey y extinct, PP= periodic populations,PxE= prey x
extinct
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Fig. 3 Two-parameter bifurcation diagram with respect to w8 & w4 (left) and w9 & w4 right)
for the Model 8–11 respectively. Here, PyE=prey y extinct, PxE= prey x extinct

explained in the result section. We have applied the combination of functional
responses and found co-existence is possible for a wide range of parameter in every
model but care should be taken as some parameter combination may lead to the
extinction of some species except HI I I F R (Model 4). The oscillatory behaviour
is observed in HI I F R (Model 3) and HI V F R (Model 5) with system persistence,
species co-existence in the form of limit cycles and extinction of one of the prey in
these systems.Weobserved that HI I F R (Model 3) and HI V F R (Model 5)most likely
to produce periodic solution through supercritical or subcritical Hopf-bifurcation.
Simple extinction and coexistence are observed in HI F R (Model 2).

The previous studies on FR in predator-prey models, provide an insight into sys-
tem dynamics with the individual functional response and many experimental results
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require the use of multiple FR in their Mathematical Models. Therefore, it is essen-
tial to observe the impact of the combination of functional responses on simple
predator-prey models and to compare the results. So, we have applied the combina-
tion of FRs in the same model and found that other FRs have stabilize the system
by dampening the oscillations. Any FR is combined with HI I F R (or HI V F R), the
oscillatory behaviour of the Model is disappeared and extinction of one of the prey
occurred through the branch point. When HI F R (or HI I I F R) is taken with HI I F R
(or HI V F R) then two threshold value is found with coalescing of both Hopf bifur-
cation point. Below the branch point, one prey y is extinct while above the branch
point another prey x is extinct, in between these, species co-existence is found. Some
distinguished differences like Hopf bifurcation points, branch points and specific
population with parameter value are shown in Table 1. Here, we observe non- linear
functional response HI I F R (or HI V F R) alone taken in system, model dynamics
grants oscillations with extinction while the different combination of FR offering
only stability and extinctions with the coalescence of Hopf bifurcation points. From
this argument, we can say that non- linearity of functional responses are not always
giving periodic solutions/ limit cycles. The FR HI , HI I or HI V alone produce two
branch point while the combination with HI I I F R destroy one branch point and
enhance the stability of the system. In overall systems, the prey’s equations are var-
ied through different functional response and predator’s equations are same but we
found the quantitative value of predator are varied rather than that of prey. i.e. shaping
of system dynamics is main rooted by FR. FR is also the main cause of a different
range of persistence value.

System equations deliberated above were kept very simple to make the effect
of functional responses easier to analyze. In our two prey and predator model, we
find HI , HI I , HI I I FR give distinguished qualitative behaviour and HI I and HI V F R
dynamical behaviour are similar. The combination of Holling FR in model produce
similar behaviour like Model 2. The combination of different FR in one model is
not studied by others (in my knowledge) but found in experimental studies and we
found non- linear FR have counter their oscillatry property and the model shows only
co-existence and extinction.
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Fractal Dimension of Braided Rivers
from Detailed Two-Dimensional
Hydrodynamic Simulations

Matteo Nicolini

Abstract As opposed to meandering or channelized fluvial beds, braided rivers are
characterized by a morphological activity starting at very low flows, since fluxes
are concentrated in a limited number of small channels. With increasing discharge,
more channels are involved, up to the situation in which the complete alluvial plain is
flooded. As a consequence, there is an intermediate range of flows for which pattern
complexity ismaximumandbraided indices are highest, representing essential condi-
tions for the coexistence of a large variety of habitats and for ecosystems prosperity.
In this paper, a new methodology for a quantitative assessment of the complexity of
braided rivers at a reach scale is introduced. It is based on the application of the box-
counting algorithm to flooded areas identified through a two-dimensional (shallow
water) hydrodynamic simulation model, in order to derive an estimate of the fractal
dimension with varying flow rate. The identification of the range of discharges for
which the fractal dimension is highest is of particular importance in river restoration
projects. An application to the River Tagliamento (North-East Italy) is illustrated.

Keywords Morphodynamics · River restoration · Formative discharge ·
Box-counting algorithm · River Tagliamento

1 Introduction

Braided rivers are complex, non-linear systems characterized by chaotic dynamics.
Their local properties, such as the solid transport and the number of channels in a
given section, are spatially and temporally variable, their prediction being precluded
in the mid-to-long term (Redolfi [16]).

Among others, the process of bifurcation plays a fundamental role in the formation
and development of a network of braided channels. Gravel bed rivers with small
width-to-depth ratio are characterized by stable equilibrium, while width-to-depth
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ratios above a critical threshold trigger an initial formation of alternate bars, which
determine a sinuous pattern and then a first bifurcation. In these last decades, such
processes have been investigated with analytical approaches, numerical simulations
and laboratory experiments (Parker [15]; Ikeda [9]; Jaeggi [10]; Colombini et al. [4];
Tubino et al. [21]; Lanzoni [13]).

In particular, experimental studies have demonstrated the importance of the pres-
ence of alternate bars in the formation of a braiding pattern (Federici and Paola [7];
Bertoldi and Tubino [2]; Jang and Shimizu [11]).

The morphodynamics of such systems is generally described by a statistical
approach, which identifies the dependence of some reach-averaged properties (like
width, total and active channels, solid transport) on main controlling factors, like
discharge, bed slope, sediment size and total river width (Ashmore [1]).

In the definition of reach-averaged properties, the most important issue is the
identification of a proper scale length. In line with previous research, some authors
have proposed at least ten times the river width (Egozi and Ashmore [6]), which is
a value much higher than those related to meandering or channelized fluvial beds,
typically of the order of the riverwidth (Ikeda [9]; Seminara andTubino [19]; Lanzoni
[13]).

The identification of a characteristic length is difficult due to the fact that
there are a lot of spatial and temporal scales coexisting together (Sapozhnikov
and Foufoula-Georgiou [18]). Accordingly, some researchers (Sapozhnikov and
Foufoula-Georgiou [17]; Walsh and Hicks [23]; Lane [12]) have proposed that
fluvial patterns in braided rivers resemble those of self-similar fractals (or self-affine
systems, if an isotropic character is not present).

One problem still open is the quantitative description of the pattern complexity: to
this end, specific indices have been introduced, like the average number of channels
in the characteristic length (Egozi and Ashmore [5]). Besides, not all channels are
simultaneously morphologically active, since solid transport takes place only in a
fraction of them. Bertoldi et al. [3] have shown that the total number of channels is
well correlated with the dimensionless discharge, while the number of active channel
is more dependent on the dimensionless stream power.

Another important controlling factor is the formation and growth of vegetation,
whose influence on the planimetric configuration depends on the ratio between the
growth time and the average interval of morphologically relevant inundations (Paola
[14]). Gurnell et al. [8] have shown that such role ismuchmore important in relatively
low energy systems.

In the present paper we aim at a different approach for a quantitative description
of such complex fluvial patterns, starting from detailed numerical simulations of the
flow field and then analyzing the braiding patterns with conventional fractal analysis
algorithms. An application to the River Tagliamento (North-East Italy) is presented.
The results show that the values for which the fractal dimension is highest correspond
to a narrow range of formative discharges.
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2 Materials and Methods

2.1 Materials

The River Tagliamento is located in the North-East part of Italy, with a drainage
basin of 2780 km2 and a length of 178 km. Its upper part is characterized by the
most extensive and connected length of dynamic and morphologically intact braided
pattern within the Alps, leading to the most important braided reference system of
the Alpine region (Tockner et al. [20]).

The area under investigation (Fig. 1) is between Venzone (where a historically
relevant gage station is present) and Pinzano gorge (where the corridor width shrinks
from 1 km down to 130 m), for a total length of 22.5 km and an area of nearly 30
km2. The 100-year discharge is 4500 m3/s.

Fig. 1 General view of the area under analysis, with color map indicating terrain elevations
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Lidar data available from Regione Autonoma Friuli Venezia Giulia with a reso-
lution of 2 points/m2 have been used for assigning elevations at mesh nodes, while
aerial photographs (0.2 m resolution) have been analyzed in order to determine an
estimate of water depths in those areas where water was present at the time of survey.
It is important to put into evidence that lidar data do not actually discriminate between
surfacewater elevation and underlying bottom elevation, thus not properly describing
the geometry of flooded channels.

Several field campaigns and investigations allowed to determine local geometric
characteristics of some defense structures (like groins, jetties and retaining walls) as
well as bridge piers, which have been included in the computational mesh.

2.2 Methodology

The software SRH-2D has been adopted for the implementation of the hydrodynamic
model. The software is free and can be downloaded from https://www.usbr.gov/. Last
version is 3.2.4 (June 2019).

The software SMS (Surface Modeling System, distributed by Aquaveo™) has
been used for the construction of the mesh, which is formed by 1,372,586 nodes
and 1,557,718 cells, due to the fine discretization of the computational domain (cell
sides range between 1 and 8 m). The inflow (upstream) boundary condition has
been kept constant in each hydrodynamic simulation, and results have been saved
after a sufficient transient time guaranteed steady-state conditions throughout the
computational domain.

The freeware software Fractalyse has been chosen for the fractal analysis of simu-
lated flooded areas (downloadable from https://www.fractalyse.org/). In particular,
the procedure adopted is the well-known box-counting algorithm (Turcotte [22]),
which allows to determine the fractal dimension of the braided patterns.

The overall methodology can be summarized in the following steps:

(1) Mesh generation and elevation assignment at nodes.
(2) Hydrodynamic simulations with very low discharges (typically 10–20 m3/s),

in order to identify the areas occupied by low flows.
(3) Subdivision of each aerial photograph image in RGB bands, and estimation of

the water depth, H, obtained as: H = a•ln(λR/λG), in which a is a calibration
parameter and λR and λG are the red and green band intensities, respectively.

(4) Creation of a ‘mask’ covering only the areas occupied by low flows; in this
way, mesh nodes affected by new elevation assignments are limited to those
calculated in step 2 (this step is necessary because the algorithm in step 3
identifies fictitious water depths in some dry, vegetated areas).

(5) Assignment of new elevation at mesh nodes identified by the ‘mask’ of step
4; this is achieved by subtracting the water depths calculated in step 3 to the
elevation originally present. In this way, only the wet areas as obtained by
numerical simulations are altered by elevation changes.

https://www.usbr.gov/
https://www.fractalyse.org/
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(6) Hydrodynamic simulations with updated mesh node elevations and varying
water discharges (from very low flows up to the condition in which the flood
plain is flooded).

(7) Analysis of the planimetric flow patterns with box-counting algorithm and
estimation of the fractal dimension of the flooded areas.

In particular, the calibration parameter a of step 3 has been determined starting
from measured water depths just upstream a water intake for irrigation purposes
(managed by Friulian Plain Bureau of Reclamation).

2.3 Box-counting Algorithm and Derivation of Fractal
Dimension

In Euclidean geometry, a point is zero-dimensional, a line is one-dimensional, a plane
is two-dimensional, and so on. The traditional meaning of the dimension of an object
is that of giving the number of values needed to specify the position of a point on the
object. Thus, one value needs to be given in order to specify the position of a point
on a line, two values need to be specified for obtaining the position of a point on a
plane, and so on.

Another meaning of ‘dimension of an object’ can be based on the idea of self-
similarity. Of course, this must reproduce the traditional values when applied to
classical Euclidean objects such as lines and planes. Consider how to give a self-
similar description of a one-dimensional object, that is, a line segment: one way to
do this is to say that a line segment of length, �, consists of two copies of itself,
each characterized by a length �/2. With the same reasoning, a filled-in square can
be thought as four copies of itself, each having a side of length �/2.

In this way, two quantities characterize each of the self-similar shapes of the
examples above:

– the number of self-similar copies, N;
– the edge length of the original relative to each copy, ε.

The following formula can be used to define the dimension D of an object:

D = logN

logε
(1)

Applying Eq. (1) to the examples introduced before, in the case of a line segment:
N = 2, ε = 2, D = 1; and for the filled square: N = 4, ε = 2, D = 2.

Equation (1) gives a formula for calculating the dimension also of a fractal object:
it is sufficient to know the number of self-similar copies,N, and the size of the original
relative to each copy, ε. For complicated objects, like the braiding pattern of rivers,
the box-counting algorithm can be summarized in the following steps:
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(1) ‘Cover’ all the points in the object with boxes of edge-length ε0, and count the
number of these boxes, denoted as N(ε0). In the case of braiding patterns, the
boxes are squares.

(2) Repeat step (1) using boxes with edge-length ε1 = ε0/2. Then repeat again
using ε2 = ε1/2, ε3 = ε2/2, and so on. Obviously, for each εi, there is also the
corresponding N(εi).

(3) Theoretically, the dimension D is the number for which

lim
ε→0

N (ε) = Aε−D (2)

where A is a constant. In practice, D may be estimated as

D = logN (εi+1)/N (εi )

logεi/εi+1
(3)

The only difficulty is in selecting the value of i, and generally it is selected as
large as possible in order to approximate the limit ε → 0. However, for real objects
the boxes cannot be infinitely small, like in the present case, since it is inappropriate
to make the covering boxes smaller than the size of a computational cell.

3 Results and Discussion

Several simulations have been run, with the discharge varying from 50 m3/s up to
3000m3/s, this last value determining the inundation of all the floodplain and adjacent
terraces.

For each discharge value, the simulation has been carried out for a sufficient
time in order to establish steady state conditions. Figure 2 shows some results of
the hydrodynamic model in terms of water depths obtained, respectively, for the
discharge of 50, 300, 500 and 900 m3/s.

Some level measurements allowed model calibration in the range of medium-
to-high discharges, considering that a stage-discharge relationship is available at an
intermediate section of the area under analysis. A previous physical model study
identified such relationship for a control section where a bridge is present. In this
way, Manning’s roughness coefficients have been defined in order to reproduce the
measured water levels within an acceptable tolerance.

From Fig. 2, it is evident how the number of flooded channels at low flows is quite
limited, and themorphology of braiding is not very articulated. For higher discharges,
the fluxes subdivide into more channels, and braiding complexity increases accord-
ingly, until it reaches a maximum. The further increase in discharge rapidly deter-
mines a situation for which all the floodplain is interested by waters, and braiding
complexity decreases.



Fractal Dimension of Braided Rivers from Detailed Two-Dimensional … 631

Fig. 2 Maps representing water depths for different discharge values, respectively 50 m3/s (top
left), 300 m3/s (top right), 500 m3/s (bottom left) and 900 m3/s (bottom right)

Such behavior is well described by the fractal dimension depicted in Fig. 3, as a
function of river discharge. In this case, themaximumvalue of nearly 1.29 is obtained
for 500 m3/s, corresponding to the return period of 4 months.

Figure 4 shows water depth maps for the southern zone of the area under study.
The phenomenon described above is clearly captured by detailed two-dimensional
hydrodynamic modelling.



632 M. Nicolini

Fig. 3 Fractal dimension calculated through the application of the box-counting algorithm, as a
function of varying river discharge

4 Conclusions

The paper has presented a methodology for quantifying the pattern complexity
of steady-state planimetric configuration of braided rivers. Starting from the
results obtained from detailed two-dimensional hydrodynamic simulations, the
box-counting algorithm allows to determine the fractal dimension of the braided
pattern.

The procedure is relevant for the a-priori evaluation of river management works,
in particular those aimed at excavation, extraction and widening. The maintenance
of a range of formative discharges at low-to-medium flows is very important for
preserving ecological stability and the possibility of habitat evolution, which could
be potentially endangered by failures in the restoration projects.
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Fig. 4 Water depths for the southern zone of the computational area for varying discharges: from
top to bottom, left to right: 50 m3/s; 200 m3/s; 300 m3/s; 400 m3/s; 500 m3/s; 600 m3/s; 700 m3/s;
800 m3/s
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Simulations on the Peridynamic
Equation in Continuum Mechanics

Sabrina Francesca Pellegrino

Abstract The peridynamic equation of motion consists in a second order in time
partial integro-differential equation and is largely used in elastodynamics as it is able
to model cracks avoiding the spatial partial derivatives. In this paper, we consider the
linear model of peridynamics in a one-dimensional spatial domain. We review some
numerical techniques to solve this equation and propose some new computational
methods of higher order in space. Several numerical tests are given in order to validate
our results.

Keywords Peridynamics · Non-local models · Quadrature formula ·
Trigonometric scheme

1 Introduction

Modeling fractures and damages is one of the major issue in the framework of con-
tinuum mechanics. The classical theory uses spatial derivatives to model the motion
of a material subject to elastic stresses. So, it is not able to describe discontinuous
phenomena like cracks and fractures, as partial derivatives are not defined on dis-
continuities, and, moreover, it cannot predict where the crack is located. Therefore,
there is the need to develop a non-local theory able to use a unique equation both on
or off a crack, see [3, 8, 9, 14, 23].

Recent studies show that differential operators of fractional orders may be intro-
duced in order to depict the nature of such phenomena, see for instance [6, 15–20].

The peridynamic theory is a non-local generalization of the elasticity theory
introduced by Silling in [34], and has attracted the attention of a growing num-
ber of researchers, as it addresses discontinuous problems. He proposed to model
the motion of a material body using integro-differential partial equations, without
involving spatial derivatives. The main assumption of the theory concerns the pres-
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ence of an interacting force f between the particle x and the particle x̂ belonging
to Vx , which represents the peridynamic neighborhood of x . This basic assumption
also suggests that peridynamics could be suitable for multiscale material modeling
([24, 32]).

We fix [0, T ], for some T > 0, as the time domain under consideration, and
let V ⊂ R be the rest configuration of a material body having mass density ρ :
V × [0, T ] → R+. Then, the peridynamic equation is given by

ρ(x)utt (x, t) =
∫
Vx

f (x̂ − x, u(x̂, t) − u(x, t))dx̂ + b(x, t), x ∈ V, T ∈ [0, T ], (1)

usually enriched by the initial conditions

u(x, 0) = u0(x), ut (x, 0) = v(x), x ∈ V, (2)

where u is the displacement field and b describes all the external forces acting on
the material body. The integrand f represents the force density that the particle x̂
exerts on the particle x and is called pairwise force function, see for instance [10,
34]. The interaction between x with all particle in the peridynamic neighborhood Vx

is called bond.
We set

ξ = x̂ − x, η = u(x̂, t) − u(x, t),

which denotes the relative position of two particles in the reference configuration
and the relative displacement, respectively. Thus ξ + η represents the current relative
position vector, and we can observe that the pairwise force function f has to satisfy
Newton’s third law and the conservation of the angular momentum:

f (−ξ,−η) = − f (ξ, η), η × f (ξ, η) = 0. (3)

It is reasonable to require the existence of a positive constant δ, called horizon,
such that there are no interactions among particles having relative distance greater
than δ, namely

f (ξ, η) = 0, for |ξ | > δ and for every η.

In what follows, we restrict our attention to the case of an homogeneous bar of
infinite length, and in particular we focus on the linear peridynamic model

ρ(x)utt (x, t) =
∫ x+δ

x−δ
C(x̂ − x)

(
u(x̂, t) − u(x, t)

)
dx̂ + b(x, t), x ∈ R, t ∈ [0, T ],

(4)
where the function C is a non-negative even function, i.e. C(−ξ) = C(ξ), called
micromodulus function.

In this paper, we survey some numerical techniques for the model and we propose
an accurate spatial discretization accompanied to a trigonometric scheme for time
integration. Additionally, we extend the methods to the non linear case.
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The paper is organized as follows. Section2 collects the main analytic results
for the problem. In Sect. 3 we present some quadrature formula for the space dis-
cretization of the model. Section4 is devoted to the time integration techniques. In
Sect. 5 we extend the proposed methods to the non linear case. Section6 shows the
numerical tests, and, finally, Sect. 7 concludes the paper.

2 Analytical Results

In this section we recall the main theoretical results concerning the peridynamic
equation. The well-posedness of the non linear model depends on the assumptions
on the pairwise force function f , see [6, 10, 11].

Theorem 1 ((see [10])) Assume that u0, v ∈ C(V ) and b ∈ C([0, T ]; C(V )). If the
pairwise force function f : Bδ(0) × R

d → R
d is a continuous function, such that

there exists a nonnegative function � ∈ L1(Bδ(0)) such that

| f (ξ, η̂) − f (ξ, η)| ≤ �(ξ)|η̂ − η|, for all ξ ∈ R
d and η, η̂ ∈ R

d ,

then, the integral operator in (1) is well-defined and Lipschitz continuous, and the
initial-value problem (1)-(2) is globally well-posed with solution u ∈ C2([0, T ];
C(V )).

For a microelastic material (see [34]), it is possible to derive the pairwise force
function f (ξ, η) from a scalar-valued function w(ξ, η) called pairwise potential
function (see [13]), such that

f (ξ, η) = ∇ηw(ξ, η), (5)

and the peridynamic equation (1) follows from the variational problem: find

u = arg min J (u) , J (u) =
∫ T

0

∫
V
e(x, u(x, t), t)dxdt, (6)

where e = ekin − eel − eext is the Lagrangian density, and incorporates the kinetic
energy density, the elastic energy density and the density due to the external force
density, given respectively by

ekin = 1

2
ρ(x) u2t (x, t),

eel = 1

2

∫
V

w(x̂ − x, u(x̂, t) − u(x, t))dx̂,

eext = −b(x, t)u(x, t).
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In particular, in the one-dimensional linear peridynamic model (4), the pairwise
force function is given by

f (ξ, η) = C(ξ) η, (7)

and the potential function is given by

w(ξ, η) = 1

2
C(ξ)η2. (8)

The following well-posedness result holds.

Theorem 2 ((see [13])) Let u0, v ∈ C0(R) be the initial conditions. If the micro-
modulus function C belongs to C2(R), then, for any T > 0, the initial value prob-
lem (4)-(2) is well-posed and the unique solution u belongs to C2([0, T ]; C(R)).

Moreover, if b is autonomous, namely b(x, t) ≡ b(x), we can prove the conser-
vation of the total energy of the system.

Theorem 3 If the external force b does not depend on time, the total energy associ-
ated to (4), given by

E(t) = 1

2

∫
V

ρ |ut (x, t)|2 dx + 1

2

∫
V

∫
V

w(x̂ − x, u(x̂, t) − u(x, t))dx dx̂, (9)

is preserved, namely
d

dt
E(t) = 0.

Proof. We set ξ = x̂ − x . Then, using (3) and (1) we have

d

dt
E(t) =

∫
V

ρ ut (x, t)utt (x, t) dx + 1

2

∫
V

∫
V

f (ξ, u(x, t) − u(x − ξ, t))ut (x, t) dx dξ

− 1

2

∫
V

∫
V

f (ξ, u(x, t) − u(x − ξ, t))ut (x − ξ, t) dx dξ

=
∫
V

ρut (x, t)utt (x, t) dx + 1

2

∫
V

∫
V

f (ξ, u(x, t) − u(x + ξ, t))ut (x + ξ, t) dx dξ

− 1

2

∫
V

∫
V

f (ξ, u(x, t) − u(x − ξ, t))ut (x − ξ, t) dx dξ

=
∫
V

ρut (x, t)utt (x, t) dx + 1

2

∫
V

∫
V

f (ξ, u(x, t) − u(x − ξ, t))ut (x, t) dx dξ

+ 1

2

∫
V

∫
V

f (ξ, u(x, t) − u(x − ξ, t))ut (x, t) dx dy

=
∫
V
ut (x, t)

(
ρutt (x, t) +

∫
V

f (ξ, u(x, t) − u(x − ξ, t)) dξ

)
dx = 0.

The following result is related to the case of non autonomous external force.

Theorem 4 ((see [13])) If the external force is not autonomous, then, theLagrangian
density associated to the linear problem (4) satisfies the following inequality
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ekin(t) + eel(t) + ν

∫ t

0
eν(t−s)eext (s)ds

≤ eνt (ekin(0) + eel(0)) + 1

2ν

∫ t

0

∫ ∞

−∞
eν(t−s)

ρ
|b(x, t)|2dxds,

for all ν > 0 and t > 0.

Additionally, in [6], the authors proved the well-posedness of the nonlinear peri-
dynamic equation assuming very general constitutive assumptions in the framework
of fractional Sobolev spaces.

Moreover, we can think to the linear one-dimensional peridynamic equation (4)
as a non local version of the classical linear one-dimensional wave equation, (see
for instance [4, 12]). Indeed, if we choose u0(x) = U exp[(−x/L)2], v(x) = 0, with
U and L suitable constants, as initial conditions and the following micromodulus
function

C(x̂ − x) = 4E exp[−(x̂ − x)2/ l2]/(l3√π), x̂, x ∈ R , (10)

where E denotes the Young modulus, and l > 0 a length-scale parameter, then for
l → 0, (4) becomes the wave equation of the classical elasticity theory:

ρ utt (x, t) = Euxx (x, t) + b(x, t), x ∈ R, t ≥ 0 , (11)

As a consequence, the parameter l can be seen as a degree of non locality.

3 Spatial Discretization of the Peridynamics

In this section we discretize in space the Eq. (4) by means of a quadrature formula.
Let N > 0 be an even integer and 	x > 0 be the spatial step size. We discretize

the spatial domain R by a compact set [−D, D], for some positive large constant
D, and such interval by means of the points x j = −D + j	x = −D + j 2DN , for
j = 0, . . . , N . We consider a quadrature formula of order s on these points:

∫ ∞

−∞
C(x̂ − x)(u(x̂, t) − u(x, t))dx̂ ≈ 	x

N∑
j=0

w j C(x j − x)
(
u(x j , t) − u(x, t)

)
,

(12)
where w j are the weights of the formula.

Then, at the collocation points x = xi for i = 0, . . . , N , we approximate the
Eq. (4) by
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ρutt (xi , t) ≈ 	x
N∑
j=0

w jC(x j − xi )(u(x j , t) − u(xi , t)) + b(xi , t), t ≥ 0.

(13)
We define the stiffness matrix K = (ki j ), for i , j = 0, . . . , N by

ki j = αiδi j − w jCi j ,

where Ci j = C(x j − xi ), αi = ∑N
k=0 wkCik , and δi j is the Kronecker Delta.

The stiffnessmatrix K is not symmetric, in general, unless theweights are constant
with respect to j , namely w j = w for every j = 0, . . . , N . In this case we obtain
the composite midpoint rule: we approximate the spatial domain (−∞,∞) by the
interval [−(N + 1)	x/2, (N + 1)	x/2] and the points of the discretization xMR

j
are taken as the midpoints of the sub-intervals [−(N + 1)	x/2 + j	x,−(N −
1)	x/2 + j	x], for j = 0, . . . , N . For sufficiently smooth assumptions on C and
u, this formula is of the second order of accuracy in space and the constant weights
are equal to 1, (see for instance [13, 33]).

The composite Gauss two points formula is of the fourth order of accuracy and
provides a symmetric stiffnessmatrix K .WefixM > 0 and consider a partition of the
interval [−D, D] given by the sequence x̃ j = −D + j	x for j = 0, . . . , M , where
	x = 2 D/M = (x̃M − x̃0)/M . Then on each sub-interval [x̃ j−1, x̃ j ], the formula
uses two points where the function ψ(x) is evaluated:

∫ x̃M

x̃0

ψ(x)dx ≈ 	x

2

M∑
j=1

[
ψ(m−

j ) + ψ(m+
j )

]
, (14)

where

m j = x̃ j−1 + x̃ j

2
, m−

j = m j − 	x

2
√
3
, m+

j = m j + 	x

2
√
3
, j = 1, . . . , M.

Setting

x j =
⎧⎨
⎩
m−

j+1
2

, if j is even,

m+
j+1
2

, if j is odd,
j = 0, . . . , N ,

with N = 2M − 1, then we can rewrite the quadrature formula (14) in the following
way ∫ xM

x0

ψ(x)dx ≈ 	x

2

M∑
j=1

[
ψ(m−

j ) + ψ(m+
j )

]
= 	x

2

N∑
j=0

ψ(x j ),

so, in this case the constant weights w j are equal to 1
2 , for j = 0, 1, . . . , N .
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Remark 1 Using the composite midpoint rule, or the composite Gauss two points
formula, the stiffness matrix K is a positive and semi-definite with non-negative
eigenvalues. In general K is not sparse because of the infinite horizon, however, in
case of finite horizon δ > 0 (see [5, 33]), that is C(x − x̂) = 0, when |x̂ − x | > δ,
then K has a banded structure, and, in particular, the size of the band r depends on
the horizon δ and on the space step 	x and is given by r = �δ/h.

3.1 The Semidiscretized Problem

Let x j be the spatial nodes for j = 0, . . . , N and

U (t) = [U0(t),U1(t), . . . ,UN (t)],

be an approximation of the solution, where Uj (t) ≈ u(x j , t) for j = 0, . . . , N .
We set

B(t) = 1

ρ
[b(x0, t), . . . , b(xN , t)]T .

Then, we can approximate the peridynamic equation (4) by the following second
order differential system

U ′′(t) + �2 U (t) = B(t), (15)

with �2 = 	x

ρ
K (or �2 = 	x w

ρ
K ′, for K ′ depending only on the micromodulus

functionC), where K is a positive semi-definitematrix, andwith the initial conditions

U0 = [u0(x0), . . . , u0(xN )]T and V0 = [v(x0), . . . , v(xN )]T .

The system (15) is equivalent to the following first order differential system

(
U ′
V ′

)
=

(
0 I

−�2 0

)(
U
V

)
+

(
0

B(t)

)
, (16)

where V = U ′, with the initial conditions U0 and V0. Therefore, we can write the
exact solution of (16) as

(
U (t)
V (t)

)
= exp(t A)

(
U0

V0

)
+

∫ t

0
exp[(t − s)A]

(
0

B(s)

)
ds, (17)

with A =
(

0 I
−�2 0

)
.
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Remark 2 In order to avoid computational problems, particularly, when we will
consider trigonometric schemes where the square root � of �2 is required or the
inverse of � is necessary, we can regularize the matrix �2 by adding a diagonal
matrix of the form (	x)s I , where s is the order of accuracy of the quadrature
formula used. In this way, the matrix �2 is symmetric and positive definite, so it
admits a unique symmetric and definite-positive square root �.

4 Time Discretization of the Peridynamics

In this section we consider the time discretization of the semidiscretized system (16)
obtained by applying a quadrature formula to the original problem. Let	t > 0 be the
time step and tn = n	t be the partition of the time interval [0, T ], for n = 0, . . . , NT ,
where NT = ⌊

T
	t

⌋
, and let Un ≈ U (tn) and Vn ≈ U ′(tn).

We describe standard time discretization schemes, such as the Störmer-Verlet
scheme, the implicitmidpointmethod, and anewprocedure basedon a trigonometric
approach.

4.1 Störmer-Verlet Scheme

This is a symplectic, second order in time, explicit scheme:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Vn+ 1
2

= Vn + 	t
2 [−�2Un + B(tn)],

Un+1 = Un + 	t Vn+ 1
2
,

Vn+1 = Vn+ 1
2
+ 	t

2 [−�2Un+1 + B(tn+1)].

(18)

Because of its geometric properties, Störmer-Verlet method is widely used in
the context of partial differential equations of wave propagation or peridynamic
problems, (see [7, 25, 36]).

In [30], the authors perform the von Neumann analysis to study the stability of
the Störmer-Verlet scheme.

Theorem 5 ((see [7])) Let	x,	t > 0 be the space and the time steps, respectively,
and let N > 0, even, be the points’ number used to discretize in space the linear
model (4). If

	t <

√
ρ

	x
∑N/2

j=−N/2Ci j

, (19)

where Ci j = C(xi − x j ), then the Störmer-Verlet method (18) is numerically stable.
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4.2 Implicit Midpoint Scheme

This is a symplectic implicit second order scheme:

⎧⎨
⎩
Un+1 = Un + 	t

2 (Vn+1 + Vn),

Vn+1 = Vn + 	t
2 [−�2(Un+1 +Un) + (B(tn) + B(tn+1))].

(20)

Since this scheme is implicit, it allows us to consider larger time step values, and, as
a consequence, it is linearly unconditionally stable.

4.3 Trigonometric Schemes

Thanks to the Variation of Constants formula, the solution in (17) can be rewritten
as

⎧⎪⎪⎨
⎪⎪⎩
U (t) = cos(t�)U0 + t sinc(t�)V0 +

∫ t

0
(t − s)sinc((t − s)�)B(s)ds,

V (t) = −� sin(t�)U0 + cos(t�)V0 +
∫ t

0
cos((t − s)�)B(s)ds,

(21)

where� is the unique positive definite square root of�2, seeRemark 2, and sinc(x) =
sin x
x .
Therefore, applying a discretization of the Variation of Constants formula to the

system (21), we find the following explicit numerical procedure

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Un+1 = cos(τ�)Un + τ sinc(τ�)Vn +
∫ τ

0
(τ − s) sinc((τ − s)�)B(tn + s)ds,

Vn+1 = −� sin(τ�)Un + cos(τ�)Vn +
∫ τ

0
cos((τ − s)�)B(tn + s)ds,

(22)
enriched by the initial conditions U0 and V0.

The scheme (22) requires the computation of the matrix functions cos(τ�) and
sinc(τ�). The evaluation of cos(τ�) can be done by using a MATLAB routine,
while, the computation of the sinc(τ�) matrix function is more delicate. A way to
overcome this difficulty is to employ the series expression for sinc(τ�) but this could
be too expensive or inaccurate [22]. So, one can try first to diagonalize the matrix
function. Moreover, the computation of products of functions of matrices by vectors
could be efficiently done by means of Krylov subspace methods, (see for instance
[21, 26, 27]).

In [7], the authors show that the trigonometric method is unconditionally stable.
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5 The One-Dimensional Non Linear Peridynamic Model

We propose a numerical approach to study the one-dimensional non linear model (1)
for an homogeneous bar of infinite length. This approach allows us to extend to the
non linear case the numerical methods proposed in the previous sections.

For an isotropicmaterial, the general form of the pairwise force function is given
by

f (ξ, η) = c s(|ξ |, |η|) η

|η| , (23)

where c is a positive constant depending on thematerial and the horizon. The function

s(|ξ |, |η|) = |η| − |ξ |
|ξ | ,

describes the relative change of the Euclidean distance of the particles. Since f
is discontinuous in the first argument, the order of accuracy of the implemented
numerical schemes will reduce.

In order to apply the results of the previous sections, we assume that |η| << 1 and
f (ξ, η) is sufficiently smooth. We consider the integral form of the function f (ξ, ·):

f (ξ, η) = f (ξ, 0) +
∫ η

0

∂ f (ξ, s)

∂η
(η − s)ds,

and then we apply an accurate quadrature formula

f (ξ, η) ≈ f (ξ, 0) +
m∑

r=1

wr
∂ f (ξ, sr )

∂η
(η − sr ),

where wr are the weights while sr are the nodes of this formula. In general this
approach leads to implicit methods, in fact, if we use the trapezoidal formula

f (ξ, η) ≈ f (ξ, 0) + η

2

[
∂ f (ξ, 0)

∂η
+ ∂ f (ξ, η)

∂η

]
, (24)

we derive a second order implicit method. Instead, if f (ξ, η) is sufficiently smooth,
we can derive an explicit scheme by using a Taylor expansion

f (ξ, η) ≈ f (ξ, 0) + C1(ξ)η + . . . + Cs(ξ)ηs, (25)

where

Ci (ξ) = ∂ i f (ξ, 0)

∂ηi
, i = 1, . . . , s.
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6 Simulations

In this section we present some numerical tests to confirm our results. We start
with the linear model (4), assuming that the material body is not subject to external
forces, namely b(x, t) = 0. For simplicity, we consider the case of a constant density
ρ(x) = 1. We take (10) as micromodulus function and we choose u0(x) = e−(x/L)2

x ∈ R and v = 0 as initial conditions.
The choice of this micromodulus function is justified by the fact that its decay

at infinity makes possible to consider a bounded computation domain. Moreover, in
this setting the exact solution for (4) is given by

u∗(x, t) = 2√
π

∫ ∞

0
exp (−s2) cos (2sx) cos

(
2t

√
1 − exp (−s2)

)
ds, (26)

see for instance [35].
Wedenote byu∗(t) = (u∗(x0, t), ..., u∗(xN , t))T the exact solution vector at time t

and at the points of the spatial discretized domain.
In order to perform an error study and to show the orders of accuracy of the

decribed methods, we define ek as

ek = ‖u(tk) − u∗(tk)‖∞ := max
{
|u(xi , tk) − u∗(xi , tk)| : i = 0, . . . , N ,

}
,

and then, for each method, we take the maximum error in the time interval [0, T ],
namely

||e||∞ := max {ek : k = 1, . . . , NT } .

We denote by MT, MSV, MMI and GT the methods consisting of the Mid-
point+Trigonometric method, the Midpoint+Störmer-Verlet method, the Midpoint+
Implicit Midpoint method and the Gauss two points+Trigonometric method, respec-
tively.

6.1 Test 1: Comparison Between MT, MSV, MMI and GT
Methods

In this section we study the performance of the MT, MSV, MMI and GT methods,
by varying the time and space steps, by computing the error between the exact and
the numerical solution and studying the rate of convergence.

Figure1 shows the numerical solution computed by MSV method, while Table1
summarizes the errors of the different methods by varying the spatial and time dis-
cretization steps. The term Rn denotes the ratio between the errors corresponding to
	x and 	x/2, thus, log2 (Rn) represents the convergence order of the methods.
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Fig. 1 With reference to Test 1: the numerical solution obtained by the MSV method. The param-
eters for the simulations are 	x = 	t = 0.1, N = 200, NT = 300

Table 1 With reference to Test 1: the comparison among MSV, MT, MMI and GT methods by
varying 	x , 	t , N and NT

Methods 	x = 	t N NT ||e||∞ log2 (Rn)

MSV 0.100 200 30 1.2911 × 10−3 –

0.050 400 60 3.2340 × 10−4 1.9971

0.025 800 120 8.0821 × 10−5 2.0004

MT 0.100 200 30 5.9276 × 10−3 –

0.050 400 60 1.1126 × 10−3 2.3959

0.025 800 120 2.1350 × 10−4 2.3992

MMI 0.100 200 30 2.5754 × 10−3 –

0.050 400 60 6.4621 × 10−4 1.9946

0.025 800 120 1.6106 × 10−4 2.0043

GT 0.100 400 30 1.4940 × 10−4 –

0.050 800 60 9.3380 × 10−6 3.9998

0.025 1600 120 5.8300 × 10−7 4.0015

The last column of Table1 confirms that the methods MSV, MT, MMI are of
the second order of accuracy while GT is of the fourth order. The method MSV is
computationally less expensive than the others, but it has a bounded stability region,
see Table2.
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Table 2 With reference to Test 1: the maximum error for the methods MSV, MT and MMI for
different choices of 	x , 	t , N and NT

Methods 	x 	t N NT ||e||∞
MSV 0.100 0.100 200 300 1.0543

0.050 0.200 400 150 2.6300 × 10168

0.025 0.400 800 75 4.3600 × 10131

MT 0.100 0.100 200 300 1.0941

0.050 0.200 400 150 1.1081

0.025 0.400 800 75 1.2987

MMI 0.100 0.100 200 300 1.0923

0.050 0.200 400 150 1.0925

0.025 0.400 800 75 8.2060 × 10−1

6.2 Test 2: Comparison Between MSV and MMI
in the Nonlinear Case

Nowwe focus on the non linear case. In particular,we assume that f has the following
form

f (ξ, η) =
{
c |ξ+η|−|ξ |

|ξ |
ξ+η

|ξ+η| , if 0 < |ξ | ≤ δ,

0, if |ξ | > δ,
c > 0,

which has a singularity in ξ = 0. One can find an exact solution for this problem
in [29].

Table3 depicts the maximum errors by varying the spatial and time discretization
steps. We can see how all methods reduce their order of accuracy to 1. The reason
of such reduction relies on the singularity of the pairwise force function f .

Table 3 With reference to Test 2: the comparison among the performance of MSV and MMI
methods in the nonlinear case by varying 	x , 	t , N and NT

Methods 	x 	t N NT ||e||∞ log2 (Rn)

MSV 0.1000 0.0100 10 1000 5.4590 × 10−2 –

0.0500 0.0050 20 2000 2.7285 × 10−2 1.0007

0.0250 0.0025 40 4000 1.3605 × 10−2 1.0007

MMI 0.1000 0.0100 10 1000 5.3895 × 10−2 –

0.0500 0.0050 20 2000 2.7281 × 10−2 0.9819

0.0250 0.0025 40 4000 1.3603 × 10−2 1.0036
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7 Conclusions and Perspectives

In this paper, we have reviewed numerical spatial discretization of higher order
together with time integration techniques applied to a linear peridynamic model.
Moreover, we have extended such techniques to the nonlinear model.

In future we would apply spectral techniques to both the linear and the nonlinear
model following the results obtained in [7, 25] and we will extend the results to
space domains of dimension greater than 1, using finite element or volume methods
or mimetic finite difference methods, see [1, 2, 28, 31].
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Mechanism of Formation for Fluctuation
Phenomena

E. Prozorova

Abstract The paper proposes a deterministicmechanism for the formation of Brow-
nianmotion.Themovement ofmolecules, evenunder equilibriumconditions, leads to
a constant displacement of the center of inertia, which creates a moment and leads to
the emergence of additional force. The result is a possible accumulation of molecules
in separate areas. Having arisen as a result of collisions of slower molecules than
average ones, they are forced to move together for some time, moellely no changing
their position. The action of the moment manifests itself in all known processes. In
the kinetic theory based on the Lagrange and Liouville equations, the motion of the
axis of inertia in the process of rearrangement and motion of particles is neglected.
The concept of a derivative in terms of finite values of such quantities as the mean
free path, time between collisions, etc. has features. At small mean free paths, the
motion of the center of inertia contributes to the equation of state. A new algorithm
is proposed for calculating the force entering the Langevin equation and the equation
of state for a liquid. The listed issues are.

Keywords Conference · CHAOS · Chaotic modeling · CMSIM style

1 Introduction

Fluctuations are called random deviations of physical systems from their equilibrium
state (or physical processes—from their steady flow). Fluctuations exist both in no
equilibrium states and in unsteady processes; in their absence, relaxation would be
a “smooth” process and they could be described by single-valued functions of time.
The presence of thermal fluctuations causes randomdeviations of real processes from
such a “smooth” flow [1–7]. Diffusion and Brownian motion occur due to the chaotic
thermal motion of molecules, and as a result are described by similar mathematical
rules.
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The difference between them is that during diffusion, a molecule always moves
in a straight line until it collides with another molecule, after which it changes its
trajectory. A Brownian particle does not “fly free”, but undergoes very small and
frequent, as it were, “tremors”, as a result of which it randomlymoves here and there.
Fluctuation effect was first explained by A. Einstein and then by M. Smolukhovsky.
The theoretical studies of M. Smoluchowski, which differed from the works of A.
Einstein only by a slightly less rigor, but greater clarity. It consisted in the fact that
the diffusion force should be equal to the viscous value Stokes drag force.

npFs
cs

= DE
∂np
∂x

Here Fs force, np—particle concentration,cs—mass concentration, De =
kT

(6πη2R0)
, R0−- particle radius, η2—viscosity. Later the theory was developed on the

basis of the Langevin and Fokker–Planck equations. The evolution of a Brownian
particle (fluctuation) is determined by its interaction with the environment, which is
always collective. In the kinetic representation, the evolution of a system ofBrownian
particles is described by a nonlocal equation for the n-particle distribution function.
Now the Langevin and Fokker–Planck equations are obtained from the Liouville
equation for specially selected models of integral kernels using of phenomenolog-
ical conservation laws [6, 7]. The Langevin and Fokker – Planck equations refer to
the stochastic approximation of particle motion. Since the equation contains a resis-
tance force arising during the translational individual movement of particles, then
the speed of movement of the particle in time τ will change. The visible part of the
particle motion will depend on the characteristics of the instruments. In addition,
collective effects will play a major role. Like the Liouville equation, the Langevin
equation does not take into account particle collisions. The possibilities of calculating
the motion of particles by these equations are limited.

In the general case, the connection betweenmacroscopically observable quantities
and fluctuations of the corresponding dynamical variables is established by solving
the dynamic Liouville equation. However, the equation does not take into account
possible dissipative processes associated with particle collisions. At the macrolevel,
equations are more consistently obtained for the distribution function (the Fokker–
Planck and Boltzmann equations).

In the kinetic theory based on the Lagrange and Liouville equations, the motion
of the axis of inertia in the process of rearrangement and motion of particles is
neglected. This means that the contribution of the angular momentum (force), which
leads to collective processes, is not taken into account [8–12] The influence of the
moment is confirmed by the work [13], which is devoted to the calculation of the
conductivity of a nonideal fully ionized plasma under the assumption that there are
no straight sections of the electron trajectory. The experimental data turned out to be
possiblesatisfy for the velocity correlator only with the involvement of the angular
momentum.
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The exact molecular theory, which gives results that are in satisfactory agreement
with experiment, can be applied only in the special case when the potential corre-
sponding to the force arising from the interaction of neighboring molecules depends
only on the distance between them. But this assumption is valid only for liquids
consisting of monoatomic molecules.

In recent years, the molecular modeling method has been widely used [7, 14, 15].
The main version of modern theory is random disturbances. The theory of Brownian
motion is approximate. And although in most practically important noted that cases
the existing theory gives satisfactory results, in some cases it may require refinement.
It should be the classical Boltzmann equation does not comply with the law of
conservation of angular momentum as and another equations of kinetic theory and
statistic mechanics. This is clearly seen if we multiply equation of speed on radius-
vector of the particle to get angular momentum. Even with central interaction we get
different values for the non-equilibrium conditions. In numerical calculations by the
difference scheme using the grid pitch that is smaller the mean free path and with
the ideology of a closed volume not obtain the influence of the angular momentum
due to the absence of collisions. A mechanism for the occurrence of fluctuations has
not been proposed. The work is limited to the case of “simple” media, by which we
mean gases and liquids, consisting of point molecules that do not contain internal
degrees of freedom. Now we suggest the reason of fluctuation effect.

2 Lagrangian Function for the Collective Interaction

In classicalmechanics, kinetic theory and statisticalmechanics, the role of the angular
momentum and, therefore, the moment of force is underestimated. Let us consider
three interacted among themselves (Fig. 1) particles

rc = m1r1 + m2r2 + m3r3
m1 + m2 + m3

rc+�c = m1(r1 + ṙ1�t) + m2(r2 + ṙ2�t) + m3(r3 + ṙ3�t)

m1 + m2 + m3

Fig. 1 Interaction of three
parts
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At the next moment in time, the position will change under the action of the force
arising in connection with the new position of the center of inertia. Thus, the new
position of the molecules will create a new force. The same result can be obtained
by counting the angular momentum, from which to determine the effective force and
speed of the center of inertia.

At equilibrium, or at small strains, but under no equilibrium thermodynamic
effects and perturbations lead to an uneven distribution of the physical parameters
and the role of collective effects, that determined by the growing influence of the
angular momentum. In addition, when these strains change position of the center of
mass of elementary volume, that is sign for changing Lagrangian function.

dL
dt = ∑

i

[
∂L
∂qi

q̇i + ∂L
∂q̇i

q̈i
]

+ ∑
i

[
∂L

∂(qi−a)
(q̇i − ȧ) + ∂L

∂(q̇i−ȧ)
(q̈i − ä)

]
,

a = ∑
i
mi r i
mi

, for electrical interaction a = ∑
i
ei r i
ei
. qi—generalized coordinate,

q̇i –generalized speed. The classical Liouville equation.
d
dt

∂L
∂q̇i

− ∂L
∂qi

= 0(i = 1, 2 . . . ), L = L(qi , q̇i , t) – Lagrange function. The whole

theory is developed for a force of the form F = − ∂U
∂R , U = U(R).R- radius vector.

In view of the time we are invited to consider force formula.
F = F0 + ∇(

(R − a) × ∂U
∂R

)
, R – the current radius. This formula is transformed

with the permutability derivatives and directions of forces in the formula

F = F0 + ∇
(

(R − a) · ∂U

∂R

)

.

For the N partial distribution function, it was [7]
∂FN
∂t + ∑N

i=1 ξ̇i · ∂FN
∂xi

+ 1
m

∑N
i=1

∂
∂ξi

· (Xi FN ) = 0. Now.
∂FN
∂t + ∂L

∂a ȧ + ∑N
i=1(ξ̇ i − ȧ) · ∂FN

∂(xi−a) + 1
m

∑N
i=1

∂

∂(ξi−ȧ)
· (Xi FN ) = 0.

Usually, however, such as the Hamiltonian system of two interacting molecules
after separation of the center of mass is represented as the sum of the Hamiltonians
of isolated molecules H0 = HA+HB operator and their electrostatic interaction [16]

H = H0 + HB

HB = −
nA∑

a=1

NB∑

j=1

Za

raj
−

nB∑

b=1

NB∑

j=1

Zb

rbj
+

NA∑

i=1

NB∑

j=1

1

ri j
+

nA∑

a=1

nB∑

b=1

Za Zb

Rab
,

where the indices A, B numbered core indices i, j—the electrons of molecules A,
B, respectively, the atomic units. In the rarefied gas unusual situation arises when for
describing the derivatives we use the limit of the ratio of the increment function to
the increment argument. It turns out that for recording the time derivative of the final
terms. We have mean free path (rarefied gas) taking into account only the high-speed
components, as slow collisions do not have time to occur.

It is interesting to compare the derivatives for discrete and continuous descriptions.
First, consider the relaxation process (in time).
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Here and then ξ i is the velocity of the molecule, u is the velocity of the elementary
volume pi =ξ i − u, is the intrinsic velocity of the molecule, r is the coordinate. The
velocity ξ i of molecules is included in the definition of the Boltzmann equation and
in the calculations for the models used as an independent variable.

f = f (t, r(t), ξ(t)). We represent the distribution function as.

f =
∑n

i=1 δ(r i−r)
∑N

i=1 δ(r i−r)
, that is.

f = n
N , where n is the number of molecules in an elementary volume, N is the

number of molecules in a perturbed volume. We considern ≤ N . Then

∂ f

∂t
|r=const = ∂

∂t

∑n
i=1 δ(r i−r)

∑N
i=1 δ(r i−r)

.

Let us consider the dependence δ(r i−r)- on t only as (r i−r).
Consideration gets more complicated when there are cross-border flows.
If there are no streams

F1

F3
− F2

F4
=

∑n
i=1 δ(r i−r) + ∑n

i �t ∂δ(r i−r)
∂t + . . .

∑N
i=1 δ(r i−r) + ∑N

i �t ∂δ(r i−r)
∂t + . . .

−
∑n

i=1 δ(r i−r)
∑N

i=1 δ(r i−r)
≈

≈ (

∑n
i=1 δ(r i−r) + ∑n

i �t ∂δ(r i−r)
∂t + . . .

∑N
i=1 δ(ri−r)

(

1 −
∑N

i �t ∂δ(r i−r)
∂t + . . .

∑N
i=1 δ(r i−r)

)

−
∑n

i=1 δ(r i−r)
∑N

i=1 δ(ri−r)
) ≈

∑n
i �t ∂δ(r i−r)

∂t + O((�t)2
∑N

i=1 δ(r i−r)
.

Thus, when solving the Boltzmann equation, we obtain the dependence of the
time derivative only through the derivatives of the macroparameters. This hypothesis
is used in the theory of rarefied gas when constructing a solution to the Boltzmann
equation by the Chapman-Enskiy method.

2. Taking into account flows across the border. We have

F1
F3

− F2
F4

=
∑n

i=1 δ
(
r i−r

) + ∑n
i �t

∂δ
(
r i−r

)

∂t + ∑
j

p j
m δ

(
r j−r

)
+ ∑

j
p j
m �t

∂δ
(
r j−r

)

∂t + . . .

∑N
i=1 δ

(
r i−r

) + ∑N
i �t

∂δ
(
r i−r

)

∂t + ∑
j

p j
m δ

(
r j−r

)
+ ∑

j
p j
m �t

∂δ
(
r j−r

)

∂ t + . . .

−
∑n

i=1 δ
(
r i−r

)

∑N
i=1 δ

(
r i−r

) .

1/�t, the time derivative begins to prevail. Thus, the role of borders is increasing.
The distribution function does not provide correct parameter values. Here, only the
molecular dynamics method with a very small time step is correct.
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2. Calculate the derivatives with respect to space in a rarefied gas

(F(t + �t) − F(t))/�t

≈
−div

(∑n2
j=1

p j

m δ(r i−r) + ∑n
i=1

p j

m δ(r i−r) + . . .
)

(
∑N

i=1 δ(r i−r) + ∑N1
j=1

p j

m �kδ
(
r j (t)−r

) + . . .)
.

n+�n∑

i=N

δ
(
r j−r

)
) = − div

n2∑

j=1

p j

m
δ
(
r j−r

)
.

3 Effect of Angular Momentum for a Discrete Environment

Knowledge of virial coefficients is necessary in various practical problems [25]. In
previousworks, the effect of angularmomentumon physical parameters in the kinetic
theory and continuummechanicswas discussed. It can be assumed that density fluctu-
ations are associated with inhomogeneity of the velocity distribution at temperatures
greater than zero Kelvin degrees, which in turn is associated with the movement of
the inertia axis of elementary volumes. Here we consider the algorithm for calcu-
lating the additional force associated with the action of the angular momentumin a
discrete medium. The formula for determining the center of gravity of the system of
material points.

rc =
∑k

i=1 mi r i
∑k

i=1 mi

.

Center of inertia at different times for identicalmolecules in an elementary volume

∑n
i=1 mδ(r i−rc)r i

Nm
= rc,

∑n
i=1 mδ(r i + �r i−rc + �rc)(r i + �r i )

(N + �N)m
≈ r̃ c.

Angular momentum is

p̃i × (r i + �r i − r̃ c) − pi × r i = Li ,
(
pi + � pi

) × (r i + �r i − rc − �rc) − pi × (r i − rc)

�t
= dLi

d t
.

dL
dt

= M, F = dM
dr

.
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dMi

dr
= d

dr
pi (�r i − �rc)

�t
= d

dr
pi

(
� pi − � pc

)
.

Then we get an additional force

Fad
i ≈

∑n
i=1((�r i − �rc) ∂δ

∂ r r i + �r iδ(r i−rc)r i )

N
� pki = Fad

i �t.

pk2i �t2+ pk2j �t2 ≤ (r + σ )k2i −(r + σ ) j
k2. The number of molecules that form

dimers.
pk2i �t2 + pk2j �t2 ≥ E. The number of dimers formed.

Here pkj is the contribution of the component k. Here we determine the number
of dimers that form equilibrium conditions. Pressure.

n∑

i=1

( pi + � pi )
2

m
+

n+�n∑

N

pi
2

m
= p.

The first term is responsible for the usual thermodynamic pressure, taking into
account the change in speed from the action of the moment, the second term is
responsible for the pressure caused by dimers. From this it can be seen that the pres-
sure change is non-monotonic. Langevin equation taking into account the influence
of the angular momentum is

dV
dt = − ζ′′

v

m v+ 1
m

dM
dr , where ζ ′′

v
—coefficient of friction of the selected particle, m

is the mass of the particle, M is the moment of force acting on the particle.
The classical Langevin equation for one particle.
dV
dt = − ζ′′

v

m + 1
m F(t), where F(t) is a random force

A Markov Gaussian process is considered with the condition that the average for
an ensemble of particles 〈F = 0. In our version, this condition is fulfilled by virtue of
the fulfillment of the theorem on the conservation of the moment in a closed volume.
For equallibrium condition, this is true.

In conclusion, we note that in the construction of statistical theories of an
equilibrium liquid in the Clausius theory, for pressure,

p − nkT = −1

6
ρ2

∫

v(r)g(r)d r,

where v(r) is the power of the intermolecular interaction force
(dϕ(r)) dln(r), ϕ(r)− potential,

g(r) = dϕ(r)/(dln(r)), and g(r) is the pair distribution function; i.e. the value
of the same structure (dimensional) as the term in the equations with allowance for
the angular momentum, that is M = (r − r0)× dϕ(r)

dr , r0. center of mass position. So

p − nkT = −1

6
ρ2

∫

(v(r) + r
dM

dr
)g(r)d r.
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The theoretical calculation of the binary correlative function for liquids by the
methods of statistical mechanics is associated with great difficulties that have not yet
been overcome. Calculation based on experimental studies of X-ray scattering is also
possible only for a small circle of simple liquids, themolecular structure of which has
been well studied. Nevertheless, using the existing relations of the statistical theory
of fine-structure fluctuations and the results of X-ray studies of simple liquids, one
can get an idea of a number of features that distinguish fine-structure concentration
fluctuations from thermodynamic ones.

Additional force should contribute at high temperatures. For inert gases atmedium
and low temperatures, the contribution is negligible. For rarefied gas the angular
momentum is value of first order. For the water molecules we have the potential
for interaction of dipole and so it have some maximum and minimum, but angular
momentum is main correlation effect for point molecules and another interaction
is values of smaller. Then it seems probable that for pressure is to be sufficient if
liquefied gases are simple, for example Ar, of two virial coefficients and binary
interaction of particles. The effect of a small distortion of circular orbits will be
small due to the incommensurability the time of the rotation and displacement times
of the molecules. For water, additional components will arise in connection with
the asymmetry of the molecules and the perturbation of the basic potential by the
interaction of the hydrogen parts with each other and with the nucleus of the second
molecule.

4 Boltzmann Kinetic Equation

For nonequilibrium states, the Boltzmann kinetic equation is widely used. The equa-
tion is derived in two ways. One—based on conservation laws, for the second, the
starting point is a chain of coupled equations proposed by Bogolyubov [17]. As a first
approximation, the Boltzmann equation is obtained. In this case considering fluctua-
tions, it is theoretically possible to take into account both collisions between particles
and collisions between particles and gas molecules, considering a mixture of two
components: particles and gas. Solving the equation even for a gas presents signif-
icant difficulties. In addition, the equilibrium distributin function does not satisfy
the equation [18] and it does not preserve the angular momentum [9]. The latter
is verified by vector multiplication of the moment for the velocity equation by the
radius vector.

The classical derivation of the Boltzmann equation consists in recording the
balance of particles through the relation for the single-particle distribution function.

f
(
t + dt, r + ξ jdt, ξ j + F jdt

)
drdξj = f

(
r, ξ j , t

)
d rdξ j + (

∂ f

∂t
)
coll

dt.

Often the latter is written in the form
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f
(
t + dt, r + ξ jdt, ξ j + F jdt

)
drdξ j = f

(
r, ξ j , t

)+
∼

(
∂f

∂t
)
coll

dt.

That is r , the radius vector; x- coordinate of the point; ξ- the velocity of the
point,m—the molecular weight, and, according to the definition of the distribution
function fN , the probability of finding the system at the points (x, ξ ) in the intervals
dxidξi is

fN (t, x1, . . . , xN , ξ1, , ξN )dx1 . . . dxNdξ1 . . . dξN .

The new Boltzmann equation can be written as follows with momentum

d f

dt
= ∂ f

∂t
+ ξ

i
·
[

∂ f

∂ r i

]

+ ξ i · ∂

∂ r i

[

r j
∂ f

∂ r j

]

− F

m

∂ f

∂ξ i
= I.

Where (
∂ f
∂t )coll ,

∼
(

∂ f
∂t )coll − are the collision integrals that record in different phase

spaces. Externally, these equalities are identical, but the second relation is satisfied
on the interaction times of the molecules and all interactions are correlated. For
gas dynamic problems, the characteristic length of an elementary volume for which
equality is written is equal to 10−8 cm, and the requirement of a large number of
particles in an elementary volume is not satisfied for altitudes of 120–300 km in the
terrestrial atmosphere. Indeed, the required minimum size is 10−3 cm. Since,N =
πR2 ·ξ ·τ ·n where R is the radius of the cylinder of elementary volume; τ is themean
time of free movement, then for statistical independence the number N of particles
must be at least 100.cm. Then πR2 · 104 · 1012 · 10−5 = 102, that is R = 10−3 cm.

Functionally, the Boltzmann equation is invariant with respect to the choice of
macro parameters of the distribution function. It is necessary to compare the equilib-
rium distribution function with macroparameters taken from the Euler and Navier–
Stokes equations. The difference will give us a small increment functions. We find
that for the Euler equations (zero approximation of the Chapman-Enskog) the differ-
ence is zero. There are differences to the first approximation. The first approxima-
tion is responsible for the tangential component (pi j tensor of viscous stresses).
Euler equations are obtained with the use of locally-equilibrium distribution func-
tion. Consequently, they are responsible for the normal component of the velocity
values regardless of macroparameters. Upon receipt of the first order correction of
the terms included in the final decision of the Chapman-Enskog leave only after
integration over the phase velocity ξ. The integrals are taken from f function, i.e. for
(ρu). Consider.

Df0
dt

= 1

n
f0

∂n

∂t
+ 3

2

1

T
f0

∂T

∂t
+ mc2

2kT 2
f0

∂T

∂t
+ f0

(
m

kT
(ξ − u)

∂u
∂t

)

+ ξ

·
{
1

n
f0

∂n

∂x
+

(

−3

2

)
1

T
f0

∂T

∂x
+ mc2

2kT 2
f0

∂T

∂x
+ f0

(
m

kT
(ξ − u)

∂u
∂x

)}
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= 2J
(
f0, f0ϕ

k
) = ∫ f0 f

0
1

(
ϕ

(k)′
1 + ϕ(k)′ − ϕ

(k)
1 − ϕ(k)

)
gbdbdεdξ1ξ = 0.

In classic case

∂ f0
∂t

|t=0 = f0

{
m

kT

(

ci c j − 1

3
c2δi j

)
∂ui
∂t

+ 1

2T

∂T

∂t
ci

[( m

kT

)
c2 − 5

]}

.

TheBoltzmann equationwaswrote for full function and have the local equilibrium
function and addition item. The tangent velocity component is obtained because off
ξ have arbitrary direction of velocity relative position of coordinate axes.

∫

n · (τ · f ξ)dsdξ =
∫

div(τ · f ξ)dxdξ

τ f give us addition item. Besides local equilibrium function f0 we have addition

item
pi j
2 p

(
m
2T

)
ci c j − qi

p

(
m
kT

)(
1 − c2

5
m
kT

)
ci ]. Main account gives derivatives of local

equilibrium function. These items definite the self-diffusion and thermo-diffusion
which were foretold by S. V. Vallander [19]. The second derivative is result item
ci · ∂f

∂ri
.

Examples from kinetic theory a) the problem of kinetic theory. Gas in stationary
force field with potential ϕ (analogue of the problem [20]):

ξi
∂f

∂xi
+ξi

∂

∂xi
xi

∂f

∂xi
− 1

m

∂ϕ

∂xi

∂f

∂ξi
= J(f, f).

ξi the phase velocity of the coordinates x , y.z; f—distribution function, J(f, f)−
the collision integral. Classic distribution isf = A(x)e−B(x)ξ2 . In this case, we have
the old results, B = Const. For A (x) we have the equation.

dA

dxi
+ d

dxi
xi
dA

dxi
+ 2

A · B
m

∂ϕ

∂xi
= 0.

Then we have f = n0( m
2πkT )

3/2e− ϕ

kT e− m
2kT ξ2 .

General Maxwell distribution has the form. f = n
(

m
2πkT

) 3
2 exp

{− m
2kT c

2
}
, c =

ξ − u.
The modified Boltzmann equation

ξi
∂f

∂xi
+ ξi

∂

∂xi
xi

∂f

∂xi
− gi

∂f

∂ξi
= J(f, f).

g = X

m
− accelerationofmolecules

Apply to the solution of the old algorithmlnf = γ0 + γiξi + γ4ξ
2..

Then we get the equation of the old and the new equation.
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∂γ0

∂t
+ giγi = 0,

∂γi

∂t
+ 2giγ4 + ∂γ0

∂xi
+ ∂γ0

∂xi
+ 1

2
xi

∂γ0

∂x2i

2

+ ∂

∂xi
xi

∂γ0

∂xi
= 0,

∂γ4

∂t
δij + 1

2

(
∂γi

∂xj
+ ∂γj

∂xi

)

+ 1

2

(
∂γi

∂xj
+ ∂γj

∂ξi

)

+ 1

2
∗ 1

2

(
xi + xj

)
(

∂γi

∂xj
+ ∂γj

∂xi

)
∂γ0

∂xi

+ 1

2

(
xi + xj

)1

2

(
∂

∂xj

(
∂γi

∂xj
+ ∂γj

∂xi

)

+ ∂

∂xi

(
∂γi

∂xj
+ ∂γj

∂xi

))

= 0,

as before ∂γ4
∂xi

= 0,T = const.
Thus, an exact solution of the modified Boltzmann equation was received.

5 Conclusion

Brownian motion (fluctuations) is a consequence and evidence of the existence of
thermal motion and is involved inmany physical processes. Themathematical theory
of describing such amotion is currently probabilistic in nature and says nothing about
the causes andmechanismof the phenomenon.Nowwe account for reason this effect.
On the example of the interaction of three particles, a new position of the center of
inertia is established. It is proposed to calculate the corresponding driving force using
the moment, which makes it possible to apply the procedure for calculating the force
in the interaction of many particles. A model is proposed for including this force to
calculate the virial coefficient and to calculate the force in the Langevin equation.
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Analysis of the Logistic and Skew Tent
Map for Smart Coupling over a Finite
Field

Zongchao Qiao, Ina Taralova, Mazen Saad, and Safwan El Assad

Abstract Chaotic maps have been proved to be efficient in the design of pseudo-
randomnumber generator (PRNG). However, the greatmajority of chaoticmaps uses
real numbers. Due to the high sensitivity of chaos and the finite feature of hardware,
when a PRNG based on real numbers is numerically implemented, quantization and
round-off errors may occur and lead to security breach. Besides, initial conditions
and parameters of chaotic maps constitute the seed of a PRNG and pseudo-chaotic
behavior has to be guaranteed for all initial conditions. Logistic map and skew tent
map are supposed to exhibit good chaos in well defined parameters, but in some
particular initial conditions, their trajectories will be trapped into the fixed points and
lose the chaos quality. For this, we analyze inverse maps to find all these unexpected
seeds (fixed points and their preimages) that should be avoided carefully. And to
overcome the drawbacks caused by real numbers, a robust PRNG scheme based on
a smart coupling of integer chaotic maps over a finite field is proposed in this paper.
Simulation results indicate the PRNG can produce pseudo-random numbers that can
be used in encryption systems or other engineering applications.
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1 Introduction

Pseudo-random number generators (PRNGs) are vital components for a plethora
of applications, from noise simulation in statics and control, to secure information
transmission and cryptography [1].

The pseudo-random feature implies that randomness is combined with perfect
reproducibility. The seed of a PRNG determines uniquely its output sequence, and
guarantees its reproducibility: the same seed will generate the same output sequence,
and a different seed is supposed to generate another uncorrelated sequence with
features close to true random numbers [2].

This property is crucial for most applications and it makes the PRNG appear
on the list of the most used tools in engineering, economics and physics, etc. As
an example, considering the application in control domain, the PRNG can be used
to simulate erroneous sensor measurements (external noise), un-modeled dynamics
(internal noise). The robustness of different control laws should be compared for
identical “noise” provided by the PRNG, otherwise the obtained results may be
biased and eventually unreliable. Equivalently, in cryptography, decryption must use
the identical key stream (pseudo-random numbers) as the encryption in order to
recover the same original message.

Numerical methods used in PRNG design are considered to be insecure and have
heavy calculation burden [3]. At the same time, the deterministic feature, random-
like behavior combinedwith a great sensitivity to the initial conditions render chaotic
maps perfect candidates for PRNG design [4]. The initial conditions and parameters
constitute the seed of a PRNG.

Designing a chaotic PRNG requires a careful and wise choice of the individual
maps to compose the generator. One-dimensional (1-D) chaotic maps have advan-
tages of simple structure and lower computational cost [5]. But they cannot be used
alone as PRNG owing to their not long enough periods, attainable map functions
and uneven distributions, etc. Hence, an efficient algorithm to make the most use
of the chaotic maps to design PRNGs is another important issue. In the open litera-
ture, based on multiple chaotic maps, some effective methods have been proposed to
enhance the chaos property, such as coupling different chaotic maps [6, 7], integrat-
ing chaotic maps [4, 8], multiplexing mechanism [9, 10], permutation approaches
[1, 11], linear feedback shift register operations [12].

However, most of the proposed PRNGs are defined by floating-point notation
expression, which are slow data transfer and inefficient resource utilization from a
hardware perspective [3]. Furthermore, because of the extremely sensitivity of the
chaotic systems to the initial conditions and parameters, the chaos properties are
also strongly affected by the data type of the chaotic systems when applied to hard-
ware implementation. Therefore, due to the finite nature of the machine number set,
these systems may lose the chaotic characteristics because quantization, truncation
or round-offs are required when they are numerically realized under a finite precision
[13]. Thus, they are not secure enough to be applied into practical situations.
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To overcome these drawbacks, Elmanfaloty andAbou-Bakr [3] brought out a solu-
tion of using fixed-point precision expression and proposed a binary chaotic PRNG
with 32-bits fraction length. Considering the integer arithmetic is more hardware
friendly with reduced resources utilization than the decimals arithmetic, we aim to
design PRNG using integer finite precision numbers.

Pseudo-random numbers play an important role in cryptosytems which demand
not only the randomness, but also a high sensitivity to its seed (secret key for a
cryptosystem), especially in the stream cipher whose security depends mainly on
its key stream (pseudo-random numbers provided by a PRNG) [14]. Thus, we can
propose a new PRNG from the perspective of cryptosystem, but note that the PRNG
is not limited to this kind of application.

In our previous works, we have proposed reliable PRNGs based on the 1-D integer
chaoticmaps for streamcipher and block cipher cryptosystems [15, 16]. They all have
avoided the degradation security problem caused by the finite field implementation
of the real field chaotic systems and have achieved high security and reliability. They
also can be used in other engineering applications.

In this paper, to pursue a new efficient and general couplingmethod to improve the
randomness of the 1-D logisticmap and skew tentmap,we introduce a smart coupling
algorithmbasedon integer chaoticmaps anddesign a robust PRNGschemeover anN-
bits (N=32) integerfinitefield. It is known that a chaotic attractor possesses an infinity
of unstable dense periodic orbits [17, 18]. In particular, the fixed pointsmay represent
a problem if the “randomly chosen” initial conditions coincide with a periodic point,
even though the latter is unstable. This is clearly the case, if starting from any point of
the unstable orbit, the trajectory will remain locked at the same periodic point. Both
logistic and skew tent maps are non invertible maps. But to overcome this unexpected
case and ensure pseudo-chaotic behavior for all initial conditions in PRNG design,
we can analyze their inverse maps just to reveal all the possible initial conditions and
their preimages that lead to the fixed points. Then, based on this analysis, the logistic
map and the skew tent map over an N-bits integer finite-state space are reformulated.
Meanwhile, in this process, the fixed point problem is solved. After that, a coupling
matrix, the kernel of the PRNG design, is applied to break the original orbits of
the 1-D chaotic maps for avoiding undesirable dynamic behavior and enhancing the
scheme complexity. Finally, statistical and security tests are applied to evaluate the
cryptographic properties of the PRNG.

The paper is organized as follows. Section2 analyzes the logistic map and skew
tent map from the inverse function point of view, reformulates their expressions over
an N-bits integer field and briefly investigates their qualities for PRNG design. The
proposed PRNG and the coupling performance are discussed in Sect. 3. Section4
analyzes the cryptographic properties of the proposed PRNG. Section5 gives the
conclusion.
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2 1-D Chaotic Map over Integer Finite Field

2.1 Logistic Map

Logistic map is a well-known classical chaotic map defined over a real number
domain ranging from 0 to 1, which is given as below:

x(n + 1) = μx(n) (1 − x(n)) (1)

where {x(n), n = 1, 2, 3...} represents the iteration state and x(0) ∈ (0, 1) is the ini-
tial condition; the parameter μ ∈ (0, 4] controls the chaotic behavior. The Lyapunov
exponent is the largest whenμ = 4, indicating the logistic map reaches the complete
chaos.

The delayed phase space of the logistic map when μ = 4 is shown in Fig. 1 (in
blue), where the solid red line means x(n + 1) = x(n). The intersections are two
unstable fixed points: 0, μ−1

μ
, which are 0 and 3

4 when μ = 4. If the initial value is
3
4 , even though the parameter μ equals 4, all the following iterations will be trapped
into the fixed point 3

4 . This is an undesirable case when one intends to use the chaos
features to design PRNG or encryption purposes. In addition to this, preimages
(backward iterates) of the fixed points can cause the fixed point problem as well,
which can be seen from Fig. 1. The preimages of 0 are 0, 12 and 1, while the preimages
of 3

4 are
1
4 and

3
4 . These values all lead to the fixed points. It also can be observed from

Fig. 2, which plots 800 iterations x(n) (n = 1, 2, ...800) versus the different initial
conditions x(0): for specific x(0)(0, 0.25, 0.5, 0.75, 1), the corresponding iterations
are locked into the fixed points, thus there exists no chaos even forμ = 4. To unearth
all preimages of the fixed points, we analyze the inverse map.

Fig. 1 Delayed phase space
and preimages of logistic
map over a real domain
(μ = 4)
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Fig. 2 Iterations x(n) of
logistic map versus its initial
conditions x(0) over a real
domain (μ = 4)
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In the literature, plenty of papers have investigated the logistic map, but very few
of them analyze the inverse map. However, it is very important to ascertain chaotic
behavior so that the trajectories don’t get locked into the fixed point. Because the
unstable fixed points for the iterated map behave as stable fixed points by the inverse
map. In other words, the preimages of the unstable fixed points converge towards the
fixed points under forward iterations. Therefore, not only the fixed points, but also
their preimages have to be avoided as a seed in order to guarantee chaotic behavior
for μ = 4.

The preimages of logistic map can be obtained by (2)

x(n − 1) = μ ± √
μ2 − 4μx(n)

2μ
(2)

The preimages (x(n − 1), x(n − 2), . . . ) of the fixed points (x(n) = 0, 3
4 ) are

summarized in Table1. We can find that, if ignoring the irrational numbers in the
range of (0, 1), the initial conditions to be avoided are 1

4 ,
1
2 and 3

4 .
Logistic map redefined over the N-bits integer finite filed when μ = 4 is given by

(3).

X (n + 1) =

⎧
⎪⎪⎨

⎪⎪⎩

2N − 1, X (n) ∈ [2N−1 − 16, 2N−1 + 16] or X (n) = 3
4 × 2N

⌊
X (n)×

(
2N−X (n)

)

2N−2

⌋

, otherwise
(3)

where symbol �·� means that each element in it rounds to the nearest integer less
than or equal to the element; {X (n), n = 1, 2, 3...} is the produced chaotic sequence
by iterations and all values are integers ranging in

[
1, 2N − 1

]
.

The delayed phase space of (3) is displayed in Fig. 3, where there obviously exist
two unstable fixed points: X (n) = 0, 3

4 × 2N . Similar to the analysis of Fig. 1, the
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Table 1 Preimages of the fixed points of logistic map

x(n) x(n − 1) x(n − 2) x(n − 3) · · ·
0 0 0 0 · · ·

1 · · ·
1 1

2 · · ·
1 · · ·

1 1
2

2±√
2

4 (irrational
value)

–

1 1
2 · · ·
1 · · ·

3
4

1
4

2±√
3

4 (irrational
value)

– –

3
4

1
4

2±√
3

4 (irrational
value)

–

3
4

1
4 · · ·
3
4 · · ·

Fig. 3 Delayed phase space
and preimages of logistic
map over the 32-bits integer
field (μ = 4)

preimages of the fixed points in the range of [1, 2N − 1] are 1
4 × 2N , 1

2 × 2N and
3
4 × 2N that should be avoided carefully. Considering 1

4 × 2N produces 3
4 × 2N after

one iteration, (3) just needs to deal with the value 3
4 × 2N . Due to the finite precision

definition, neighboring points of 1
2 × 2N in the range of [ 12 × 2N − 16, 1

2 × 2N + 16]
also can produce the value 2N which is not in the range of [1, 2N − 1], thus, these
neighboringpoints also need tobe avoided.This explains the reason for the expression
of (3).
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2.2 Skew Tent Map

Skew tent map is derived from the classical tent map but it achieves better statistical
performances. Skew tent map defined in real domain (0, 1) is given by (4).

x(n + 1) =
⎧
⎨

⎩

x(n)

p , 0 < x(n) < p
1−x(n)

1−p , p � x(n) < 1
(4)

where {x(n), n = 1, 2, 3...} represents the iteration state and p ∈ (0, 1) is the control
parameter.

The delayed phase space diagram of the skew tent map is shown in Fig. 4 where
the solid red line reveals the unstable fixed points: 0 and 1

2−p . From the inverse
function point of view, the preimages have the following iteration relation:

x(n − 1) = {p × x(n), 1 − (1 − p) x(n)} (5)

The skew tent map over the N-bits integer field is given by (6):

X (n + 1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⌊
2N × X (n)

P

⌋
, 0 < X (n) < P

⌊
2N × 2N−X (n)

2N−P

⌋
, P < X (n) < 2N

2N − 1, otherwise

(6)

where the iterated state is X (n) ∈ N+ and X (n) ∈ [1, 2N − 1]; P ∈ N+ is the control
parameter and P ∈ [1, 2N − 1].

Fig. 4 Delayed phase space
of skew tent map over a real
domain
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Fig. 5 Delayed phase space
of skew tent map over the
32-bits integer field
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The unstable fixed point 0 does not belong to the region of definition, while the
other fixed point in the mapping shown in Fig. 5 must satisfy one condition: the equa-

tion of X f ixedpoint = 2N × 2N−X f ixedpoint

2N−P should have integer solutions X f ixedpoint . It
is a bit complicated to analyze the preimages of the fixed point without restricting
the parameter P . We analyze the parameter P in the range of [1, 232 − 1] in turn and
find when using specific P , there exist preimages that can lead to the fixed point, for
instance, if P = 262140, X f ixedpoint = 2147549185. In order to prevent the trajec-
tory from being trapped into the fixed point, although this rarely happens, we add
the following statement in the algorithm:

X (n + 1) = X (n + 1) − 1, i f X (n + 1) = X (n) (7)

2.3 Analysis for Encryption Purposes

2.3.1 Lyapunov Exponent

The Lyapunov exponent characterizes the stability of a chaotic motion by measuring
the average exponential divergence between two nearby trajectories. If the Lyapunov
exponents have a positive value, the chaotic map shows chaotic behavior and the
larger this value is, the better the chaotic performances are [19].

The Lyapunov exponent of the logistic map (μ = 4) is 0.6931. Figure6 demon-
strates that the estimated Lyapunov exponents of the skew tent map are always
positive for the range of interest of parameter P , exhibiting the maximum 0.6939 for
P = 1

2 × 2N . At this parameter value, the chaoticity of skew tent map is equivalent
to that of the logistic map.
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Fig. 6 Estimated Lyapunov
exponents of skew tent map
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2.3.2 Histogram

Histograms of the chaotic maps (3), (6), and (7) defined over 32-bits integer field are
plotted in Figs. 7 and 8 in 1000 classes, where 2 × 106 values are generated for each
map but the first 106 are considered transient and removed; the red lines mean the
average values in every 10 classes.

We can observe that the piece-wise linear map (skew tent map) shows more
uniform distribution features than the logistic map, and therefore the skew tent map
appears more suitable for encryption purposes.

Fig. 7 Histogram of logistic
map
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Fig. 8 Histogram of skew
tent map

2.3.3 Key Space Contribution

In encryption applications, a large secret key space of PRNG is necessary to resist
the brute-force attack and it is considered to be secure if the key space is equal or
greater to 2128 [20]. Unlike the statistical and security performances, which only can
be tested after completing the design of PRNG, key space needs to be taken into
account when we are conceiving a new PRNG scheme for cryptosystems for secure
transmission or storage of information (medical data, etc.).

Initial conditions and parameters form the key space. For logisticmap, only N-bits
initial value can be taken into key space, while for the skew tent map, besides the
N-bits initial value, N-bits parameter P can be counted into key space as well. From
this point of view, skew tent is able to provides N more bits of key space than the
logistic map.

3 Proposed PRNG

In this section, we first give the proposed PRNG scheme whose core is a smart
coupling structure. This coupling is inspired by the idea of weak coupling over a real
number domain in our previous work [21, 22]. Then, we analyze the coupled effect
using logistic map and skew tent map. Considering the key space issue in encryption
system, two skew tent maps are chosen to construct the PRNG and the performance
analyses are given in Sect. 4.
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Fig. 9 The proposed PRNG
scheme

Chaotic maps coupling Alternate output control 

A×Secret key 

3.1 Proposed PRNG Scheme

The proposed PRNG scheme is shown in Fig. 9.
It mainly contains two operations: first, a new proposed smart chaotic maps cou-

pling is used to break the original chaotic orbits, enhance the complexity and improve
the chaotic property; the alternate output control aims to mix the coupled numbers
and increase the unpredictability.

The coupling matrix A is defined as follows:

A =
[
17 − e1 e1
2e1 31 − 2e1

]
(8)

e1 ∈ [1, 24 − 1] is a coupling control parameter.
The coupling process is described as below:

[
X1 (n)

X2 (n)

]
= A ×

[
F [X1 (n − 1)]
F [X2 (n − 1)]

]
(9)

where F represents the chaotic functions and it can be a similar type of chaotic map
or two different kinds of maps; X1(n − 1) and X2(n − 1) are the previous states of
the current states X1(n) and X2(n).

The final output chaotic sequence X is controlled by selecting the intermediate
outputs X1 and X2 alternately (another switching law is also possible):

X (n) =
{
X1 (n) , when mod (n, 2) = 1
X2 (n) , when mod (n, 2) = 0

(10)

3.2 Coupling Performance

The behavior of the final output sequence depends highly on the coupling perfor-
mance. Here, we first couple two different maps: logistic map (3) and skew tent map
(6 and 7), and analyze the coupling performance in terms of the statistical histogram
distribution and delayed phase space behavior.

From the histograms of intermediate outputs X1 and X2 with length of 3125000
(distributed in 1000 classes) shown in Figs. 10 and 11, we can observe that the
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Fig. 10 Histogram of X1

Fig. 11 Histogram of X2

sequence after the coupling algorithm is able to achieve a uniform distribution.
According to the delayed phase space diagrams shown in Figs. 12 and 13, the cou-
pling matrix can hide the generating function effectively, which is required for most
applications in security.

If logistic map and skew tent map are used to design the PRNG, the key space
contains the initial values of these two maps (each is in 32 bits), a parameter P
(32 bits) for the skew tent map and a control parameter e1 (4 bits) for the coupling
matrix A. Thus, the key space is 2100 in total, which is not large enough for encryption
purposes. Hence, this coupling combination can be used to design PRNG, but needs
to parallel the coupling scheme to expand the key space for encryption applications.

Skew tent map contributes more key space than logistic map. Apart from this
advantage, the skew tent map has an approximately uniform distribution, which
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Fig. 12 Delayed phase
space of X1

Fig. 13 Delayed phase
space of X2

outperforms most of the well-known chaotic maps. Thus, we use two skew tent
maps to design the PRNG for cryptosystem.

The secret key of this PRNG contains the initial conditions (Xs1(0), Xs2(0)), the
parameters (P1, P2) for skew tent maps, and the coupling control parameters e1.
Thus, the key size is :

|K | = |Xs1 (0)| + |P1| + |Xs2 (0)| + |P2| + |e1| = 132 bits (11)

where |Xs1 (0)| = |P1| = |Xs2 (0)| = |P2| = 32 bits and |e1| = 4 bits.
Therefore, the key space of this proposed PRNG is 2132, which is large enough to

make the brute-force attack infeasible if the PRNG is used for cryptography.
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The coupling performances of X1,X2 when using skew tent maps are as good
as when coupling the logistic map and skew tent map. The final output is the one
which will be exploited, so in the following analyses, we just give the performance
test results of the final output chaotic sequence X .

4 Performance Analysis

The seed and the output of PRNG are called also the secret key and key stream
respectively in encryption applications. To guarantee high security, the key stream
must be random enough to ensure no statistical information is exposed to hackers
so that unauthorized ones cannot deduce the inner states and even recover the secret
key. Thus, the PRNG should have random statistical performance and good security
property. This section analyzes these performances by delayed phase space graph,
histogram and χ2 test, key sensitivity and NIST test. In these tests, each sequence has
3125000values (3125000 × 32bits= 100 × 106 bits).All simulations are conducted
in MATLAB (R2017b) and each secret key is randomly created.

4.1 Delayed Phase Space

The delayed phase space of the final output sequence X is drawn in Fig. 14, where
3125000 values are generated and the last 106 values are plotted. Contrary to the
easily identified mapping function of the original chaotic map shown in Fig. 5, the
final output sequence is distributed randomly in the delayed phase space and shows
more complex dynamical behavior thanks to the coupling and alternate output control
operations. Thus, it is impossible for potential attackers to analyze the iteration
trajectory and they cannot find a hint of which chaotic map we use in the PRNG.

4.2 Histogram

A basic requirement for a robust PRNG is that the generated chaotic sequence have
a uniform distribution. The histogram of the chaotic sequence X with length of
3125000 is drawn in Fig. 15 in 1000 classes, which shows visually that the generated
sequence is uniformly distributed in the whole definition field.
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Fig. 14 Delayed phase
space of X

Fig. 15 Histogram of X

4.3 χ2 Test

To analyze the uniformity property more precisely, the χ2 test is applied. The exper-
imental value χ2

exp is calculated by (12):

χ2
exp =

K−1∑

i=0

(Oi − Ei )
2

Ei
(12)
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where K = 1000 is the number of classes, Oi is the number of observed values in the
i-th class and Ei is the expected number in a uniform distribution. The theoretical
value χ2

theo(K , α) equals to 1073.64 which is obtained for a threshold α = 0.05.
If χ2

exp < χ2
theo(K , α), the test sequence can be considered to have a uniform

distribution.
Here, we use 100 different secret keys to produce 100 chaotic sequences. Each

contains 3125000 values, hence, Ei = 3125000/1000. χ2
exp is calculated for each

sequence. The average χ2
exp = 1004.49 that is smaller than χ2

theo(K , α). Thus, χ2
exp

test has confirmed the uniformity of the output chaotic sequence.

4.4 Key Sensitivity

The generated chaotic sequence should show high sensitivity to the secret key (seed).
This property is necessary and important for resisting differential attack. The key
sensitivity can be measured by Hamming Distance (HD) given as follows:

HD (X,Y ) = 1

Nb
×

Nb∑

k=1

(X (k) ⊕ Y (k)) (13)

where X and Y are two output chaotic sequences from the proposed PRNG whose
secret keys are just one bit (randomly chosen) different; Nb is the bit length in a
sequence and ⊕ represents the XOR operator.

Here, we use 100 different secret keys to produce 100 pairs of X and Y . Then,
100 HDs are computed by (13). The average HD is 49.9989 which is very close
to the optimal HD value 50% (bit change probability). This result means the high
secret key sensitivity is achieved.

4.5 NIST Test

NIST (National Institute of Standard and Technology) test is a suite of tests which
is widely used to measure sequences for randomness. We apply the NIST test on the
produced sequence (3125000 ∗ 32 bits = 100 × 106 bits). The results in Table2
demonstrate the generated chaotic sequence has passed the NIST test successfully,
which verifies the output sequence of the PRNG is pseudo-random.
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Table 2 Results of NIST test

Test P-value Proportion Results

Frequency test 0.798 99.000 Passed

Block-frequency test 0.290 97.000 Passed

Cumulative-sums test 0.765 98.500 Passed

Runs test 0.679 99.000 Passed

Longest-run test 0.494 99.000 Passed

Rank test 0.475 100.000 Passed

FFT test 0.658 100.000 Passed

Nonperiodic-templates 0.502 98.973 Passed

Overlapping-templates 0.924 97.000 Passed

Universal 0.658 99.000 Passed

Approximty entropie 0.964 100.000 Passed

Random-excursions 0.441 98.182 Passed

Random-excursions-variant 0.328 98.788 Passed

Serial test 0.906 99.500 Passed

Linear-complexity 0.154 99.000 Passed

5 Conclusion

In this paper, a smart coupling of chaotic maps has been proposed to design a robust
PRNG. The specific coupling over a finite field has been inspired from the idea of
weak coupling in the case of infinite field maps. Combined with the output control
operation, the proposed PRNGstructure can break the orbits of original chaoticmaps,
enhance the nonlinear dynamics and increase the complexity effectively. In addition,
the used chaotic maps have been redefined over the N-bits finite field and the problem
of locking into a fixed point (or its preimages) has been solved thanks to the analysis
of the inverse maps, which overcome the degradation security problem caused by
applying the real domain defined chaotic maps into finite hardware implementations,
and thus, ensure a high reliability to use them inPRNGdesign.Conducted simulations
results have demonstrated that the proposed PRNG is able to produce pseudo-random
numbers with good randomness and cryptographic properties. Therefore, this PRNG
can be used in the design of cryptosystems or any other pseudo-random generator
required applications.
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Information Measures and
Synchronization in Regular Ring Lattices
with Discontinuous Local Dynamics

J. Leonel Rocha and S. Carvalho

Abstract We study information measures and synchronization in complete dynam-
ical networks of maps, with local identical chaotic dynamical systems. The network
topologies are regular ring lattices which are characterized by circulant matrices and
the conditional Lyapunov exponents are explicitly determined. For discontinuous
local dynamics, some properties of the mutual information rate and the Kolmogorov-
Sinai entropy are established, depending on the topological entropy of the individ-
ual chaotic nodes and on the synchronization interval. It is proved that as large as
the network topology is, measured by its network topological entropy and directly
relatedwith the network order, the informationmeasures studied increase or decrease,
according to the network order in relation to the synchronization interval. Some
numerical studies are included.

Keywords Mutual information rate · Kolmogorov-Sinai entropy ·
Synchronization · Complete networks · Discontinuous dynamics · Lyapunov
exponents · Topological order · Circulant matrix

1 Introduction

In the last decades, several authors have dedicated their investigation to the study
of the information theory and its applications. The amount of information pro-
duced by a network may be measured by the mutual information rate. This measure
togetherwith theKolmogorov-Sinai entropy are expressed in terms of the conditional
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Lyapunov exponents. On the other hand, it is well known that chaotic systems can
be synchronized. The recognized potential for communications systems has driven
this phenomenon to become a distinct subfield of nonlinear dynamics.

Information theory and synchronization are directly related in a network. Moti-
vated by the theoretical and practical connection between the information measures
and the phenomenon of synchronization, our purpose in this paper is to analyze the
relations between the mutual information rate, the Kolmogorov-Sinai entropy and
the synchronization in a space of complete dynamical network of maps of order
N ∈ N \ {1}. The discontinuous local dynamics considered at each node establish
the topological, metrical and chaotic complexity of the network that is being studied.
Discontinuous dynamical systems are recurrently found in physical systems, which
are also used in various applications in engineering, economic, biological and ecolog-
ical models, among others, see, for example, [1, 9, 16]. The study of discontinuous
dynamics in synchronization phenomena has also attracted the attention of several
researchers, see [10] and the other works of this same volume and issue.

The paper is organized as follows: In Sect. 2 are presented preliminar definitions
and results.We start Sect. 3 with the analysis of the case where the local dynamics are
given by discontinuous piecewise linear maps with slope s > 1. We obtain explicit
expressions for the synchronization interval and for the parallel and transversal Lya-
punov exponents. For this case it is proved that to stabilize the synchronized states,
it suffices to require that the transversal Lyapunov exponent is negative. Some prop-
erties of the mutual information rate and the Kolmogorov-Sinai entropy, depending
on the slope s and the synchronization interval are established. We also study the
approach to a topological invariant associated with the dynamics between the nodes
of the complete network: the network topological entropy. In this context is estab-
lished a topological order: it is proved that as large as the network topology, measured
by its network topological entropy and directly related with the network order, the
information measures studied increases or decreases, according to the network order
in relation to the synchronization interval. Numerical simulations are performed to
obtain more information and complement the theoretical results presented. Finally,
in Sect. 4, we discuss our work and provide some conclusions.

2 Preliminars

An active channel is usually described by an active network constructed using N ∈
N \ {1} elements that have some intrinsic dynamics and can be characterized by
classical dynamical systems, such as chaotic oscillators, neurons, phase oscillators,
and so on. Throughout this work we will consider a family of complex networks of
chaotic dynamical systems defined by complete networks of order N with N (N−1)

2
edges and discontinuous local dynamics. These networks of N identical chaotic
dynamical oscillators or units, are described by a connected and unoriented graph
G = (V, E), where V represents the vertices (nodes), and E the edges of G, with no
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loops and no multiple edges, where every vertex of G has degree N − 1. The space
of complete dynamical networks with N nodes will be denoted by KN .

Consider A the adjacency matrix of KN and D = diag(N − 1, . . . , N − 1), then
L = [li j ] = A − D represents the laplacian matrix of the complete graph and is
written in the following form,

L =

⎡
⎢⎢⎣

−(N − 1) 1 1 . . . 1
1 −(N − 1) 1 . . . 1
. . . . . . . . . . . . . . .

1 1 . . . 1 −(N − 1)

⎤
⎥⎥⎦ .

The dynamics of these N coupled oscillators can be expressed by the following
system of differential equations,

ẋi = f (xi ) + σ

N∑
j=1

li j x j , (1)

where f is a vector-valued map describing the dynamics of the nodes, σ > 0 is the
coupling strength or parameter and i = 1, 2, ..., N .

However, the state equations of the complex network given by (1), can be rewritten
in the discretized form as,

xi (k + 1) = f (xi (k)) + σ

N∑
j=1

li j f (x j (k)), (2)

which is also known as a complex dynamical network of maps, see, for example, [8,
12]. Let f ′ be the derivative of f , then the jacobian matrix of this dynamical network
KN is written as follows,

J =

⎡
⎢⎢⎣
f ′ − (N − 1)σ f ′ σ f ′ . . . σ f ′

σ f ′ f ′ − (N − 1)σ f ′ . . . σ f ′
. . . . . . . . . . . .

σ f ′ σ f ′ . . . f ′ − (N − 1)σ f ′

⎤
⎥⎥⎦ .

Every matrix associated with a complete network KN has a certain regularity,
so we are able to determine its spectra and the associated eigenspaces. Let μ1 <

μ2 ≤ . . . ≤ μN and λ1 < λ2 ≤ . . . ≤ λN be the eigenvalues of the laplacian and the
jacobian matrices of KN , respectively. Notices that the matrices A, L and J are
irreducible matrices.

1. Both matrices L and J are circulant matrices, so they are diagonalizable and have
the same eigenspaces. Let x (N ) = (1, 1, . . . , 1), this is an eigenvector of every
circulant matrix, and it is associated with the eigenvalue μ1 = 0 and λ1 = f ′,
respectively, that is equal to the row sum of each matrix.
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2. The other eigenvectors of a circulant matrix.
Let ωN = exp

2π i
N be one of the N -th complex roots of 1. It is known that, for

1 ≤ k ≤ N ,
x (k) =

(
ω0k
n , ω1k

n , . . . , ω
(N−1)k
N

)

is an eigenvector of every circulant matrix C where every row has the elements
{c1, . . . , cN }. In particular, if k = N we obtain x (N ) = (1, 1, . . . , 1). Moreover,
the eigenvalue associated with x (k), considering the regularity of C and ωk

N , is
equal to

∑N
j=1 c jω

jk
N .

Let us recall an important property of the sum of the N complex roots of the unit,
i.e.,

N∑
j=1

ω
jk
N =

{
N , if k ≡ 0 (mod N )

0, otherwise
.

We can also state that, the laplacian matrix L has exactly two eigenvalues μ1 = 0, a
simple root, and μ2 = −N , with multiplicity N − 1, and the jacobian matrix J has
also two eigenvalues λ1 = f ′, also a simple root, and λ2 = f ′(1 − Nσ), with mul-
tiplicity N − 1. Notice that, in the context of the study of information measures, the
eigenvalue λ1 measures the exponential divergence of nearby trajectories in the direc-
tion of the synchronization manifold and the eigenvalue λ2 measures the exponential
divergence of nearby trajectories in the direction transversal to the synchronization
manifold, see [2, 3].

In an active network, every pair of elements form a communication channel and
the rate with which information is exchanged between these elements, a transmit-
ter Si and a receiver Sj , is given by the mutual information rate, represented by
IC(Si , Sj ) = λ+

‖ − λ+
⊥, where λ+

‖ denotes the positive Lyapunov exponents, associ-
ated to the synchronization manifold, and λ+

⊥ denotes the positive Lyapunov expo-
nents, associated to the transversal manifold, see [2]. TheKolmogorov-Sinai entropy,
denoted by HKS , gives a suitableway of obtaining the entropy production of a dynam-
ical system. It also provides a global measure of the amount of information that can
be simultaneously transmitted among the network. For systems with a measurable
(the trajectory is bounded to a finite domain) and ergodic (average quantities can be
calculated in space and time) invariant (with respect to time translations of the system
and to smooth transformations) natural measure, that is smooth along the unstable
manifold, the Kolmogorov-Sinai entropy is obtained by the sum of the positive Lya-
punov exponents, see [2, 3, 6, 13]. Regarding the case of complete network KN ,
where every node is connected with all the others, each node is only one connec-
tion apart from any other and there is just one single transversal Lyapunov exponent.
Thus, according to the dynamical network given by (2) and [3], we have the following
definitions for the information measures analyzed in this paper,

IC =
{

λ‖ − λ⊥, if λ⊥ > 0

λ‖, if λ⊥ ≤ 0
(3)
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and

HKS =
{

λ‖ + λ⊥, if λ⊥ > 0

λ‖, if λ⊥ ≤ 0
. (4)

Other central point of our investigation is related with the synchronization in the
space of complete networks KN and its relations with the information measures IC
and HKS , just mentioned in (3) and (4), respectively. Following the results presented
in [8], a dynamical network given by (2), having in each node identical chaotic nodes
(χ( f ) > 0), synchronizes in the following interval,

σ1 = 1 − e−χ( f )

|μ2| < σ <
1 + e−χ( f )

|μN | = σ2, (5)

where 0 = μ1 < |μ2| ≤ . . . ≤ |μN | are the eigenvalues of the laplacianmatrix L and
χ( f ) is the Lyapunov exponent of each individual n-dimensional node, see also [5,
6]. Notice that, if each local dynamical node is chaotic, then the Lyapunov exponent
χ( f ) is positive. Throughout this work, the synchronization interval of KN will be
denoted by Iσ =]σ1, σ2[.

3 Local Dynamics: Discontinuous Piecewise Linear Maps
with Slope s > 1

In this section we consider the space of all the complete dynamical network of
maps KN , given by (2), where the local dynamics in each node is defined by a dis-
continuous piecewise linear one-dimensional (1D) map, f : I = [b1, b2] ⊂ R → I ,
with |I | = 1 represents the amplitude of the interval I , such that there exist points
b1 = d0 < d1 < . . . < dp < dp+1 = b2, where f has constant slope s > 1 every-
where in each subinterval Ii =]di , di+1[, i = 0, . . . , p. Generally, the discontinuous
piecewise linear map is defined by,

f (x) = s x + ai (mod 1), ∀x ∈ Ii and ai ∈ R. (6)

In this context the map f has p − 1 discontinuity points: d1, d2, . . . , dp, see Fig. 1.
Thus, throughout this section we consider the following parameters space,

�+ = {
(N , s, σ ) ∈ R

3 : N ∈ N \ {1} , s > 1, σ > 0
}
. (7)

Since each complete dynamical network KN has identical chaotic nodes and
|μ2| = |μN | = N , then the synchronization interval is nonempty, for all s > 1.More-
over, from (5), the synchronization interval may be expressed in terms of the topolog-
ical entropy of f , i.e., the chaoticity of the dynamics of the node map f is measured
by htop( f ) = χ( f ) = log |s|, see [5, 11].
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Fig. 1 Graphics of discontinuous piecewise linear 1D map f (x) = 4x + ai , x ∈ [0, 1]
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Property 1 Consider the (KN , �+) space of complete dynamical networks, given
by (2). Let f be the discontinuous piecewise linear map with slope s > 1 everywhere,
given by (6). The synchronization interval of KN , defined by (5), is given by,

σ1 = s − 1

Ns
< σ <

s + 1

Ns
= σ2, ∀s > 1. (8)

Consequently, if the dynamics of the individual nodes, defined by f , of the com-
plete dynamical network KN are fixed, then the amplitude of the synchronization
interval |Iσ | decrease, as larger is the order N of the complete dynamical network.

3.1 Synchronization and Information Measures

Establishing that the local dynamics f is a discontinuous piecewise linear map with
slope s > 1 everywhere, given by (6), we have noticed that the jacobian matrix J has
only two distinct eigenvalues, λ1 = s and λ2 = s(1 − Nσ), with multiplicity N − 1.
So, the parallel Lyapunov exponent is given by,

λ‖ =
∫
I
ln |λ1| dμ̄ = ln(s), (9)

where |I | = 1 represents the amplitude of the interval I and μ̄ is a measurable and
ergodic invariant natural measure. The transversal Lyapunov exponent is given by,

λ⊥ =
∫
I
ln |λ2| dμ̄ = ln |s(1 − Nσ)| . (10)

Notice that for each complete dynamical network KN , there is a single transversal
Lyapunov exponent.

The following proposition stablishes that to stabilize the synchronized states, it
suffices to require that the transversal Lyapunov exponent is negative, with piecewise
linear maps f with slope s > 1 as local chaotic dynamics.

Proposition 1 Consider the (KN , �+) space of complete dynamical networks, given
by (2). Let f be the discontinuous piecewise linear map with slope s > 1 everywhere,
given by (6), Iσ be the synchronization interval, given by (8), and Iλ−

⊥ be the interval
where λ⊥ < 0, with λ⊥ given by (10). ∀s > 1, it is verified that:

(i) Iσ ≡ Iλ−
⊥ �= ∅;

(ii) there exists σ > 0 such that the synchronized states of (2) stabilize exponentially,
i.e., x1(k) = x2(k) = . . . = xN (k) → s(k), as k → ∞.
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Proof Consider (N , s, σ ) ∈ �+ and λ⊥ ∈ Iλ−
⊥ , according to (10) we have that,

ln |s(1 − Nσ)| < 0 ⇔ |s(1 − Nσ)| < 1 ⇔
−1 ≤ s(1 − Nσ) < 1 ⇔ s − 1

Ns
< σ <

s + 1

Ns
, ∀s > 1.

Thus, from Property 1 the result of item (i) is proved, see Fig. 2.
Given that the chaoticity of the node map f is measured by χ( f ) = log(s) > 0,

∀s > 1, from condition given by (5), it follows that the inequality

1 − e−χ( f )

|μ2| <
1 + e−χ( f )

|μN | ⇔ s − 1

Ns
<

s + 1

Ns

should be satisfied for the existence of a coupling strenght σ > 0. In this context can

be defined a ratio
1

R
:= μ2−μN

μ1−μ2
, where 0 = μ1 < |μ2| ≤ . . . ≤ |μN | are the eigenval-

ues of the laplacian matrix L , which measures the distance from the first eigenvalue
to the main part of the spectral density ρ(μ) normalized by the extension of the main
part, see [8]. From straightforward and simple calculations it is proved that,

2e−χ( f )

1 − e−χ( f )
>

1

R
⇔ 2

s − 1
> 0, ∀s > 1.

Thus, considering the previous conditions, we can state that for all s > 1 there exists
a coupling strenght σ > 0 such that the synchronized states of (2) stabilize exponen-
tially. Proposition 1 is thus proved. �

The results in Proposition 1 bring up to the discussion the complete synchroniza-
tion versus the negativity of the conditional or transversal Lyapunov exponents. For
more details on this classic discussion, see, for example, [6–8, 12, 15] and refer-
ences therein. The negativity of the conditional Lyapunov exponents is a necessary
condition for the stability of the synchronized state, see also [4]. To illustrate these
results see the numerical cases shown in Fig. 2.

Taking into account the expressions of the parallel Lyapunov exponent and the
transversal Lyapunov exponent, given by (9) and (10), respectively, the information
measures defined by (3) and (4) are explicitly written by the following expressions:

IC =
{
ln

(
1

|1−Nσ |
)

, if λ⊥ > 0

ln(s), if λ⊥ ≤ 0
(11)

and

HKS =
{
ln

(
s2|1 − Nσ |) , if λ⊥ > 0

ln(s), if λ⊥ ≤ 0
. (12)
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Fig. 2 Numerical simulation for Propositions 1 and 2, where to stabilize the synchronized states of
the dynamical network, given by (2), it suffices to require that all transversal Lyapunov exponents
be negative

The next proposition establishes some properties of the mutual information rate
and the Kolmogorov-Sinai entropy, depending on the synchronization interval Iσ .

Proposition 2 Consider the (KN , �+) space of complete dynamical networks, given
by (2). Let f be the discontinuous piecewise linear map with slope s > 1 everywhere,
given by (6), Iσ be the synchronization interval, given by (8), and Iλ−

⊥ be the interval
where λ⊥ < 0, with λ⊥ given by (10). ∀s > 1, it is verified that:

(i) if σ ∈ Iσ , then IC = HKS;
(ii) if σ /∈ Iσ and σ < σ1, then IC increases and HKS decreases;
(iii) if σ /∈ Iσ and σ > σ2, then IC decreases and HKS increases.
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Proof Considering the definitions of IC and HKS , given by (11) and (12), respec-
tively, it is verified that IC = HKS if and only if λ⊥ ≤ 0. On one hand, we have
proved, in Proposition 1 (i), that Iσ ≡ Iλ−

⊥ �= ∅, ∀s > 1. Thus, item (i) is proved.
The result of item (ii) is a consequence of the previous argumentation, i.e., if

σ /∈ Iσ and σ < σ1, then follows that IC �= HKS , ∀s > 1. In this region, considering

the monotony of logarithmic function, we also have that IC = ln
(

1
|1−Nσ |

)
increases,

for all coupling strenght σ > 0 under the conditions required by hypothesis, and
HKS = ln

(
s2|1 − Nσ |) decreases, for all σ under the same conditions. This proves

the claim (ii).
The proof of item (iii) is similar to the proof of item (ii), the monotony of IC

and HKS follows as discussed above, ∀σ /∈ Iσ and σ > σ2. See also Fig. 2. This
completes the proof of Proposition 2. �

Under the conditions of Proposition 2, we can establish that IC ≤ HKS , ∀σ > 0,
see also [2].

3.2 Topological Order and Information Measures

To end this section we will approach a topological invariant associated with the
dynamics between the nodes of the complete dynamical network KN : the network
topological entropy. In thisworkweuse the network topological entropy concept used
in [13, 14]. Let G be the connected and unoriented graph associated to the complete
dynamical network KN of order N ∈ N \ {1}. Considering that the adjacency matrix
A of the complete dynamical network KN is irreducible, then the Perron-Frobenius
Theorem states that the network topological entropy of KN is given by,

htop(KN ) = htop(G) = ln(λA) = ln(N − 1), (13)

whereλA is the Perron eigenvalue of A. Clearly, the topological entropy of a complete
dynamical network KN is characterized by its order N .

Proposition 3 Let (KN , �+) be the space of complete dynamical networks, given
by (2), with a fixed local dynamics given by a discontinuous piecewise linear map f
with slope s > 1 everywhere, given by (6). It is verified that if the network topological
entropy htop(KN ) increases, such that σ /∈ Iσ , then:

(i) the mutual information rate IC increases;
(ii) the Kolmogorov-Sinai entropy HK S decreases.

Proof Consider that the local dynamics of two complete dynamical networks KN

and KN+1 are fixed, i.e., χ( f ) = log(s) > 0 is constant, ∀s > 1. Considering the
definition of the mutual information rate IC , given by (11), with σ /∈ Iσ , let uN =
ln

(
1

|1−Nσ |
)
, with N ∈ N \ {1}. The following statements holds,
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uN+1 − uN = ln

(
1

|1 − (N + 1)σ |
)

− ln

(
1

|1 − Nσ |
)

= ln

∣∣∣∣
1 − Nσ

1 − (N + 1)σ

∣∣∣∣ > 0.

This means that the mutual information rate IC increases, if the network topological
entropy htop(KN ) increases. Now under the same assumptions, if we consider the
definition of the Kolmogorov-Sinai entropy HKS , given by (12) with σ /∈ Iσ and let
vN = ln

(
s2|1 − Nσ |), with N ∈ N \ {1}. It can be easily verified that,

vN+1 − vN = ln
(
s2|1 − (N + 1)σ |) − ln

(
s2|1 − Nσ |) = ln

∣∣∣∣
1 − (N + 1)σ

1 − Nσ

∣∣∣∣ < 0.

This proves that the Kolmogorov-Sinai entropy HKS decreases, when the network
topological entropy htop(KN ) increases. Thus, the desired results are proved. �

It is interesting to note that this result is related with the structural complexity of
the dynamical network analyzed, this means that as larger as the network topology
is, measure by its network topological entropy htop(KN ) and directly related with
the network order N ∈ N \ {1}, the mutual information rate IC and the Kolmogorov-
Sinai entropy HKS increases or decreases, according to order N in relation to σ /∈ Iσ ,
see Fig. 3.

Remark 1 Under the conditions of Proposition 3 and according to Property 1, we
can establish that the amplitude of the synchronization interval |Iσ | decrease, as larger
is the network topological entropy htop(KN ) of the complete dynamical network.

10 20 30 40 50
N

1

2

3

Fig. 3 Numerical simulation for Proposition 3: blue points are htop(KN ), red squares are IC , green
lozenges are HKS , where it is considered s = 2 and N ∈ {2, 3, . . . , 50}
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4 Conclusion and Discussion

In this paper we have considered the space of complete dynamical networks KN , an
extreme case of a ring lattice with maximal degree, of identical chaotic dynamical
oscillators or nodes, in which each oscillator is coupled linearly and symmetrically
with their neighbours, see (2). The topology of the networks KN is characterized by
a circulant matrix of order N ∈ N \ {1}, which provides a certain regularity in the
network. Furthermore, we consider discontinuous local dynamics: piecewise linear
maps f with positive slope s > 1. The chaoticity of the local dynamics is mea-
sured by the topological entropy of f , i.e., htop( f ) = log |s|. Several measures have
been considered in the field of information theory. In our paper we have considered
the mutual information rate and the Kolmogorov-Sinai entropy. However, the syn-
chronization is vital for modern methods of digital communication that rely on the
synchronous operation of many subsystems. So, our main concern was to determine
explicit expressions for these measures, properties between them and relations with
the synchronization interval Iσ . The results presented in Propositions 1 and 2 fully
serve this purpose. Finally, in Proposition 3 it is addressed the structural complex-
ity of the complete dynamical networks KN , using the network topological entropy
htop(KN ). We proved that as large as the network topological entropy htop(KN ) is,
the mutual information rate IC and the Kolmogorov-Sinai entropy HKS increase
or decrease, according to the network order N in relation to σ /∈ Iσ . Therefore, a
topological order was established regarding the studied information measures.

Clearly, with the fixed coupling topology in the networks KN and variation of
the discontinuous local dynamics f in the nodes, the complexity of our analysis
increases due to measure theory issues. For future work, on one hand we would like
to generalize our study for the case where |s| > 1 dependening on the amplitudes of
the subintervals with slope s > 1 and slope s < −1. On the other hand, we would
like to analyze this problem in other networks of regular lattices rings, starting with
the minimal degree, the cycles of order N . In this context, we finish this work with
some open questions: There are sufficient conditions to guarantee the negativity of the
conditional Lyapunov exponents, for different slopes of f ?Underwhat conditions the
chaotic signals transmitted through filters produce an output with higher dimension,
due to the appearance of a fractal set?
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How Chaotic Dynamics Drive a Vintage
Grill-Room Spit

Julio Rodriguez and Max-Olivier Hongler

Abstract In 1943 Yves Rocard published an amazing book entitled “Dynamique
Générale des Vibrations”. Among a collection of mechanical devices that are studied
with great care in the book, the so-called Bouasse-Sarda’s “tournebroche” (rotary
grill spit) is a fascinating two degrees of freedom device. What makes it interesting
is that it stylises a wide class of forced parametric oscillators exhibiting a rich range
of complex dynamical behaviours including fully deterministic chaos, a dynamic
concept not popular in the forties and hence not yet discussed in Y. Rocard’s book.
Today’s numerical tools offer a new possibility to revisit this amazingly simple but
rich dynamical system.

Highlights: In the present paper, we propose an extensive, didactical and updated
investigation of the nonlinear dynamical system studied by Y. Rocard more than 75
years ago.

1 Preliminary

Our study starts in the Spring of 2006 on a sunny Saturday, when one of the authors
(MOH) rambled through Geneva’s flea market. Among a chaotic pile of secondhand
books, suddenly a well-stocked pile of scientific and engineering publications stuck
out. The bookseller was so happy to get rid of such “boring material” that the whole
stock was purchased for virtually nothing. Among them, “Optique Géométrique
Supérieure” by H. Bouasse (1917), a version of the “Vibration Problems in Engineer-
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ing” by S. Timoschenko (1937) and a remarkable contribution entitled “Dynamique
Générale des Vibrations” by Y. Rocard published in Laval (Mayenne, France) 1943,
during the French occupation. In Rocard’s opus, we discovered a truly intriguing two
degrees of freedom device called the “tournebroche” (i.e. rotating spit) de Bouasse-
Sarda.More than 75 years afterRocard’s publication,we revisit this pretty fascinating
“tournebroche” dynamics and show how it naturally offers the possibility to exhibit
chaotic evolution.

2 Introduction

The dynamic response of mechanical devices driven by external energy sources is
often discussed under the implicit assumtion that the energy source itself is fully
insensitive to behaviour of the driven device. It is assumed that the energy source
is large enough to ensure that all feedback response of the driven system to the
source are negligible. While such approximation is fully legitimate when a clear
energy-scale distinction between the system itself and its driver can be made,1 in
many other circumstances the system-driver’s retro-actions may generate complex
and unsuspected responses that cannot be ignored. The suggestive Bouasse-Sarda (B-
S) “tournebroche” device sketched in Fig. 1 which is also called the B-S regulator
offers a rich and intuitive illustration of the underlying complexity of the clear and
consistent distinction between a system and its driving unit. From Fig. 1, we may
view the spring as the driven system and the mass m together with the pulley as
playing the role of an energy source driving the oscillatory mechanism. Depending
on the size of the crankshaft a in the B-S device, there is a simple way to continuously
increase the spring-pulley retro-action and hence infer the resulting evolution. As we
shall discuss, this a-priori deceptively simple system uncovers a very rich variety
of dynamical behaviours which include limit cycles, bistability, the now famous
Feigenbaum cascade with period-doubling bifurcations ultimately leading to a fully
developed deterministic chaos and antimonotonicity.

3 Equations of the Motion

The dynamical system sketched in Fig. 1 consists of a shaft or a rotating spit with,
on one side, a crank of radius a and, on the other side of the shaft, a drum of radius
ρ with inertial moment I. A cable is fastened around the drum on which suspends a
massm. A massM is attached to a spring with stiffness K. The spring is then fixed to

1 As a paradigmatic illustration, you may invoke the thermodynamic model of someone diving
into a pool: the diver’s body temperature is lowered by the pool’s environment, yet one usually
neglects the temperature increase of the pool’s content. From a mechanical perspective, this idea
of the interaction between a system and the force acting on it, is studied in Roseau [17], and as an
illustration to the theoretical framework, the B-S regulator is used.
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Fig. 1 The Bouasse-Sarda’s
rotary spit drawn by Y.
Rocard in his 1943 book
entitled: “Dynamique
Générale des Vibrations”

the crank. For this two degrees of freedom device (θ(t), x(t)) ∈ R
2, the Lagrangian

L = T (θ̇ , ẋ) − V (θ, x) is given by:

T (θ̇ , ẋ) = (I + mρ2)
θ̇2

2
+ M

ẋ2

2
,

V (θ, x) = −(mgρθ + Mgx) + K(x − a sin(θ))2

2
,

(1)

leading to the time evolution2:

{
(I + mρ2)θ̈ + hθ̇ = mgρ + K(x − a sin(θ))a cos(θ),

Mẍ + f ẋ = Mg − K(x − a sin(θ)).
(2)

Equation (2) involves a set of nine positive control parameters
(I,m,M, ρ,K, f, h, g, a), with gravitational acceleration g. Energy dissipation
is implemented via a couple of viscous damping mechanisms adjusted by the
parameters f ≥ 0 and h ≥ 0. We emphasise that in Y. Rocard’s book Rocard [15],
the dynamical system involves only friction on the spring (i.e. h = 0). The second
equation in (2) is simply a θ(t) forced harmonic oscillator for which the response is
explicitly calculable provided that signal θ(t) itself is given. In particular, for small
damping parameter f , one expects a resonance peak at frequency ω0 := √

K/M,
which arises whenever ω0 belongs to the Fourier spectrum of the signal θ(t).

To proceed, we rewrite (2) in terms of the (dimensionless) coordinate x(t) =
au(t) + (Mg/K) and obtain:

2 For detailed calculations, see Appendices 7.1 and 7.2.
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⎧⎪⎨
⎪⎩

Jθ̈ + hθ̇ = g(Ma cos(θ) + mρ)︸ ︷︷ ︸
=:H (1)

a (θ)

+Ka2(u − sin(θ)) cos(θ),︸ ︷︷ ︸
=:H (2)

a (θ,u)

Mü + f u̇ = −K(u − sin(θ)),

(3)

with J := I + mρ2.

Note that for vanishing crankshaft (i.e. a = 0), the system (3) degenerates into
a couple of independent one degree of freedom dynamics. For a small crankshaft
a � 0 (i.e. up to first order in a and thus omitting the H (2)

a (θ, u) term), the (θ, u)

variables are partially coupled. Indeed, we have a special two degrees of freedom
system for which the θ(t) evolution can be calculated independently of u(t). Observe
that up to first order in a, the θ(t) evolution describes either the dynamics of a point
particle evolving inside a tilted washboard potential or, alternatively, an anharmonic
pendulum subject to a constant external torque. Finally, for general a, the action of
the feedback type term H (2)

a (θ, u) drastically modifies the evolution. The u variable
now affects the driving mechanism θ(t) itself in (3).

4 Study of the Dynamics

4.1 Static Equilibrium and Associated Stability Issues

The fixed points P∗ := (θ∗, u∗) of the dynamics (3) read:

(θ∗, u∗) = (
cos−1(−mρ

Ma ), sin(cos−1(−mρ

Ma ))
)
,

= (
cos−1(−mρ

Ma ),
√
1 − (

mρ

Ma )
2
)
,

(4)

and hence Ma � mρ is required for the existence of P∗. Observe that P∗ does not
depend on g.

Stability ofP∗: The stability ofP∗ is studied via the linearisation of the dynamics in
the P∗-neighbourhood. By adding a couple of conjugate variables (η, v) := (θ̇ , u̇),
we rewrite the coupled second-order differential system (3) as an equivalent set of
four first-order differential equations, and hence the first variational equation is:

⎛
⎜⎜⎝

ε̇θ

ε̇η

ε̇u
ε̇v

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0
−J−1(Mgas∗ + K(ac∗)2) −J−1h J−1Ka2c∗ 0

0 0 0 1
M−1Kc∗ 0 −M−1K −M−1 f

⎞
⎟⎟⎠

︸ ︷︷ ︸
:=DF(θ∗,u∗)

⎛
⎜⎜⎝

εθ

εη

εu
εv

⎞
⎟⎟⎠ (5)
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with c∗ := cos(θ∗) and s∗ := sin(θ∗) and perturbations εθ , εη, εu, εv around (θ∗, 0,
u∗, 0). The characteristic polynomial P(λ) relevant to infer the stability property of
P∗ is given by:

P(λ) := Det
[
DF(θ∗, u∗) − λI4

] = 0, (6)

with I4 standing for the (4 × 4) identity matrix. A direct calculation yields:

P(λ) = λ4 + (J−1h + M−1 f )λ3+
(J−1M−1h f + M−1K − DF2,1(θ

∗, u∗))λ2+
(J−1M−1hK − M−1 f DF2,1(θ

∗, u∗))λ+
J−1Kga sin(θ∗).

Note that all coefficients of P(λ) are positive. Provided we have:

(J−1h + M−1 f ) > 0,

direct application of the Routh-Hurwitz criterion shows that all real parts of the
eigenvalues of the linearised dynamics around P∗ are negative and hence P∗ is
stable.

In summary, whenMa � mρ, a fixed point P∗ given by (4) exists and its stability
(i.e. stable focus) is ensured by the viscous dampers (and this even if only a single
damper is active).

4.2 Dissipation Free Dynamics–Harmonic Undamped
Oscillations

In the absence of dissipation (i.e. f = h = 0), the characteristic polynomial P(λ) is
bi-quadratic, yielding a couple of eigenfrequencies (ν−, ν+):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ν± = 1
2

[
r1 ±

√(
r21 − 4r2

)]
,

r1 = M−1K − DF2,1(θ
∗, u∗),

r2 = J−1Kga sin(θ∗).

(7)

and the fixed pointP∗ is a center. For large inertial moment J (i.e. J >> M and J >>

K), one verifies that r2 → 0, and we obtain in this limiting case an oscillation with
frequency ν+ ∼= √

K/M ofM, together with a very low frequency ν− ∼= 0 oscillation
of m around the stationary point P∗.3

3 Remember that the linearising assumption is valid only for motions close to P∗ = (θ∗, u∗). For
arbitrary J,K,M,m, the resulting 2-D harmonic system may enter into resonance, thus precluding
the possibility to use linear approximations.
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4.3 “Washboard”-Like Dynamics

For a small crankshaft parameter a, we may approximately neglect H (2)
a (θ, u) in

(3), which is of order a2. In this subsection, h > 0. The resulting dynamics for
the variable θ(t) describes a classical particle evolving with friction inside a tilted
washboard potential. Alternatively, it can also be viewed as an anharmonic pendulum
subject to constant external torque Coullet et al. [4]:

θ̈ (t) + h

J
θ̇ (t) = Mag

J
cos(θ(t)) + mgρ

J
. (8)

The time rescaling τ(t) :=
√

Mag
J t together with the phase shift φ(τ(t)) := θ(t) − π

2
enable us to write:

φ′′ + βφ′ + sin(φ) = γ, (9)

where ′ now stands for the τ -derivative andβ := h√
JMag

and γ := mρ

Ma . The dynamical

system given by (9) is currently discussed in the context of Josephson’s junctions
dynamics.4

In particular, the trade-off between the damping factor β and the external torque
γ is summarised in Fig. 2.5 Note that in (9), one has explicitally γ = mρ

Ma and this
is coherent with the condition for the existence of P∗) (i.e. 1 >

mρ

Ma ). Hence, when
γ > 1, only periodic solutions exists, consistent with the fact that are no fixed points.

We emphasise that since (9) describes a single degree of freedom system, then
up to first order in a (i.e. small crankshafts), no chaotic behaviour can possibly
be observed for the θ(t)-evolution. As a consequence, the u(t)-motion itself, which
describes the evolution of a forced harmonic oscillatorwith damping, does not exhibit
a chaotic behaviour either. This follows from the fact that the θ(t) motion results
from simple quadratures.6 Summarising, for small crankshafts a, the two degrees of
freedom (θ, u) system does not exhibit chaotic behaviour. As a consequence, up to
first order in a, the largest Lyapunov exponent always remains negative.

4.4 The Rocard’s Quasi-uniform Regime

We now focus on the general situation (i.e. also considering the influence of the
retro-action H (2)

a (θ, u)). We follow the lines originally drawn by Y. Rocard himself
and note that this quasi-uniform regime has been later re-discussed in Panovko and
Gubanova [14] forh = 0 and inBlekhmanandDzhanelidze [2],Colombo [3],Roseau
[17], Fridman [6], Fridman [7] for h > 0. Rocard assumed that θ(t) ∼= ωt , and so the

4 See, for example, the recent review Blackburn et al. [1].
5 Figure2 is directly reproduced from Fig. 6 in Coullet et al. [4].
6 See, for example, Chap.2 in Lakshmanan and Rajasekar [11].
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Fig. 2 Evolution regimes as
a function of the damping β

and the external torque γ : A
= only the stationary solution
is stable, B = both the
stationary and the periodic
solution are stable, C = only
the periodic solution is
stable. This diagram is
reproduced from Coullet et
al. [4]

u(t)-motion follows the permanent regimeof an harmonically driven linear oscillator,
namely:

u(t) = K
M sin(ωt+ϕ)√

( K
M−ω2)2+(

f
M )2ω2

=: A sin(ωt + ϕ), (10)

with tan(ϕ) = − f
Mω

K
M−ω2 . The pulsation

7 ω (i.e. the dominant frequency at which both

drum and spring oscillate) is determined by solving the polynomial equation explic-
itly given by:

2M2(mgρ − hω)

f (Ka)2
= ω

( K
M − ω2)2 + (

f
M )2ω2

. (11)

For the sake of completeness, (11) is re-derived in Appendix 7.3. The solutions to
(11) are the roots of a polynomial of degree 5 (for h > 0) or degree 4 (for h = 0),
namely

for h > 0 : 0 = hω5 − mgρω4 + h(p2 − 2q)ω3 − (p2 − 2q)mgρω2

+(q2(h + a2 f
2 ))ω − q2 mgρ,

and

for h = 0 : 0 = ω4 + (p2 − 2q)ω2 − q2a2 f
2mgρ ω + q2,

(12)

with p = f
M and q = K

M . Depending on the value of a � 0, (11) may have up to three
real solutions for h > 0, or two for h = 0. To see this, start with the RHS of (11) and
define the function

α(ω) := f (Ka)2

2M2

( ω

( K
M − ω2)2 + (

f
M )2ω2

)
(13)

for positive ω. As such, the function α is positive and exhibits a resonance-like
curve shape: it takes on the value zero at ω = 0, increases to its maximum value at

7 Adopting Rocard’s terminology (the French-English translation is the authors’).
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ω = ω0 (in the neighbourhood of
√

K
M ), and then, as ω increases further, converges

asymptotically to zero. The solutions of (11) are the intersections between the curve
given by α and the line mgρ − hω (i.e. a decreasing line for h > 0 or a straight line,
parallel to the ω-axis, for h = 0). See, for example, Fig. 3a (for h > 0) and Fig. 3b
(for h = 0). One still needs to prove that there is only one point of inflection after α

attained its maximum. This is done in Appendix 7.4.
For small values of a, there is only one real root for h > 0 and only complex

roots for h = 0. As a increases, there exists a particular value of a for which the
line mgρ − hω intersects α not far from its maximum value. In the case h = 0, the
intersection is at the maximum value of α itself. This a0 and the corresponding ω0

are explicitly given by

a0 =
√
2mgρ

f q2

(
4ω3

0 + 2(p2 − 2q)ω0
)
,

with ω0 = (−(p2−2q)+
√

(p2−2q)2+12q2

6

) 1
2 . See Appendix 7.5 for details. Table1 (for

h > 0) and Table2 (for h = 0) present a summary of the different possible real roots
for the polynomial in (12) according to the value of a.

Having determined how many real solutions (11) has with respect to a, the next
question is: under Rocard’s assumption, towards which solution of (11) does the B-S
system converge?

Table 1 Real roots of the polynomial in (12) for h > 0 with respect to a � 0 and for positive
parameters m,M, ρ,K, f and g

a = 0 ω3 = mgρ
h ∈ R

]0, a1[ ω3 ∈ R

a = a1 ω1 = ω2

ω3 	= ω1, ω j ∈ R, j = 1, 2, 3

]a1, a2[ ω1 	= ω2, ω2 	= ω3,

ω3 	= ω1, ω j ∈ R, j = 1, 2, 3

a = a2 ω1 	= ω2

ω2 = ω3, ω j ∈ R, j = 1, 2, 3

]a2,+∞[ ω1 ∈ R

Table 2 Real roots of the polynomial in (12) for h = 0 with respect to a � 0 and for positive
parameters m,M, ρ,K, f and g

[0, a0[ No real roots

a = a0 ω0 = ω1 = ω2 ∈ R

]a0,+∞[ ω1 	= ω2, ω j ∈ R, j = 1, 2
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Fig. 3 In black, function α as defined in (13) with respect to ω. The red dashed line is mgρ − hω.
In a a = 0.05 and in b a = 0.04, while the values of the other parameters are those of the first line
in Table4 for (a) and the third line in Table4 for (b)

To answer this question, let us focus on the case h = 0 and follow Rocard’s rea-

soning (here a > a0). For this, let ω1 <

√
K
M and ω2 >

√
K
M be the two real solutions

of (11). Since ω1 solves (11), we have α(ω1) = mgρ. On the other hand, from (3),
the quasi-uniform assumption θ(t) ∼= ωt implies:

Jθ̈ ∼= 0 = mgρ + gMa cos(θ(t)) + H (2)
a (θ(t), u(t)),

with u(t) given by (10) and θ(t) ∼= ωt , so that:

−α(ω1) = −mgρ = gMa cos(θ(t)) + H (2)
a (θ(t), u(t)).

Hence,
Jθ̈ ∼= 0 = mgρ − α(ω1),

that is, the drum’s angular acceleration is approximatelymgρ − α(ω1). Suppose now
that the drum is slightly accelerated (i.e. ω1 → ω1 + δ, with δ > 0). By the shape of
the “resonance” curve α, we have α(ω1) < α(ω1 + δ), implying thatmgρ − α(ω1 +
δ) < 0, and therefore Jθ̈ ∼= mgρ − α(ω1 + δ) < 0. This implies that the angular
velocity decreases and so the nominal pulsation ω1 tends to be recovered. The same
reasoning holds when the drum is slightly decelerated. A similar analysis for the
solutionω2 can be performed. Table3 summarises the results for the four possibilities.

Table 3 Summary of the perturbation analysis on the theoretical pulsations ω1 and ω2

ω1 + δ α(ω1 + δ) ↑ Jθ̈ ∼= mgρ − α(ω1 + δ) < 0 ω1 recovered

ω1 − δ α(ω1 − δ) ↓ Jθ̈ ∼= mgρ − α(ω1 − δ) > 0 ω1 recovered

ω2 + δ α(ω2 + δ) ↓ Jθ̈ ∼= mgρ − α(ω2 + δ) < 0 ω2 not recovered

ω2 − δ α(ω2 − δ) ↑ Jθ̈ ∼= mgρ − α(ω2 − δ) > 0 ω2 not recovered
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Therefore, the pulsation ω1 persists under slight perturbations, which is not the
case forω2. A similar analysis is also presented in Panovko andGubanova [14].When
h > 0 and depending on the initial conditions, the dynamical system may converge
towards two different pulsations ω, thus allowing for bistability. See Roseau [17] for
further details.

4.5 Route to Chaotic Evolution–Feigenbaum Cascade
of Period-Doubling Bifurcations

In the general case where not only the H (2)
a (θ, u) retro-action is active but also

θ(t) 	= ωt , the previous Rocard’s quasi-uniform regime becomes unstable itself.
Therefore, further discussions are to be based on numerical solutions, i.e. an impos-
sible approach at Y. Rocard’s time.8 As will be shown in the next section, for a
whole range of control parameters, the B-S dynamics may exhibit a determinis-
tic chaotic evolution, a behaviour obviously not presented in Rocard’s 1943 opus.
Specifically, we shall numerically unveil that for a sequence of critical crankshaft
values ak for k = 1, 2, 3, . . . , a nowadays classic Feignebaum’s cascade of period-
doubling bifurcations emerge from the dynamics. The sequence of {ak} converges to
an accumulation point a∞ with the Feigenbaum’s universal constant F :

F := lim
k→∞

ak−1 − ak−2

ak − ak−1

∼= 4.6692 . . . . (14)

5 Numerical Simulations

All simulations numerically integrate (2) with initial conditions:

x(0) = A sin(ϕ) + Mg
K ẋ(0) = ωA cos(ϕ)

θ(0) = 0 θ̇ (0) = ω
(15)

with A = Ka
M√

( K
M−ω2)2+(

f
M )2ω2

, tan(ϕ) = − f
Mω

K
M−ω2 , and ω the smallest real solution of (11),

if not otherwise stated. These initial conditions correspond to Rocard’s approxi-
mated solution in (10), expressed here in the coordinates for (2). The values for the
parameters are in Table4.

Parameter a [m] is given according to the numerical experiment. The value of
g = 1.625 corresponds to the gravity acceleration on the moon.

8 For an overview of historical events concerning chaotic dynamical systems see Chap.4 in Lorenz
[12], Sect. 2.5 in Skiadas [18] or in Sect. 10.4 in Ginoux [8].
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Table 4 Numerical values of the parameters for different numerical experiments

I [kg][m]2 m [kg] M [kg] ρ [m] K [N]/[m] f h g [m]/[s]2
0.03 0.1 0.02 0.01 12.5 0.15 0.000125 9.8

0.0001 0.5 0.5 0.1 50 0.01 0.03 9.8

0.0001 0.1 0.03 0.016 2.5 0.2 0 1.625

5.1 Numerical Analysis of the Quasi-uniform Regime

We investigate how θ̇ behaves with respect to a once the B-S system converges to
its equilibrium state. For this, the value of the parameters are as in the first line of
Table4 and for each a ∈ { 6 j

1000 | j = 0, . . . , 50} (i.e. 51 equidistant point in the interval
[0, 0.30]), we run the numerical simulation for a time length of T = 500. The max,
min and mean value of θ̇ for the last 50 time unites are calculated. The results are
presented in Fig. 4: the 51 equidistant values of a (on the x-axis) are plotted with
their corresponding mean value of θ̇ (dots in red), and max and min values (dots in
gray). The underlying black line is the predicted pulsation, calculated by Rocard’s
method (i.e. solving (11)). In Fig. 4a, the smallest real solution of (11) is taken for
the initial conditions in (15). On the other hand, in Fig. 4b, the largest real solution
of (11) is taken for the initial conditions, as long as (11) has three real solutions,
and then, as a increases, the smallest real solution is used to determine the initial
conditions.

One can clearly appreciate the precision of Rocard’s method to predict the
pulsation ω, and this even for the case h > 0. The prediction is accurate before
“l’accrochage” (i.e. for small a) and still valid for a large range of frequencies (form
approximately 20 to 5). As a increases, θ̇ oscillates with increasing amplitude around
the mean value, hence the increasing difference between max and min values of θ̇ .
For a larger than approximately a = 0.26, the B-S stops oscillating. Hence the red
dots with value zero for both plots in Fig. 4. Here, the predicated pulsation is no
longer valid.

5.2 Period-Doubling Bifurcations with h > 0

We chose here the crank’s length a as control parameter and observe the period-
doubling bifurcations on variable x . This case h > 0 has the advantage that one can
clearly visualize period-doubling bifurcationswith variables x and ẋ .With parameter
values as in the second line of Table4, Fig. 5 shows, in its first column (a, c, e and
g), the last 7 time units of the numerical integration on [0, 40] for the variables x
and ẋ . The second column in Fig. 5b, d, f and h displays (also for the last 7 time
units) variables x in black and sin(θ) in dashed blue (with an appropriate amplitude
and additional constant for comparison’s sake). For both columns, each plot shows
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Fig. 4 Mean (red dots) and max&min (gray dots) of θ̇ against parameter a and predicted pulsation
(black line) with parameters as in the first line of Table4. The black line is the pulsation determined
by solving (11)

a specific value of a. Clearly, as a increases, the x variable bifurcates: for a = 0.06,
x is qualitatively similar to a sin curve and the pair (x, ẋ) converges towards a limit
cycle (i.e. a closed curve without any intersection on the x − y plan). For a = 0.07,
the variable x bifurcates to a period-two oscillating regime: the pair (x, ẋ) converges
towards a closed curve inR2 with one intersection. This continues for a = 0.08 with
a period-four oscillating regime, and for a = 0.081 with a period-eight oscillating
regime, and so on. Note that in Fig. 5a, the variable θ is already in a period-two
oscillating regime.
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Fig. 5 Time evolution of the x − y representation and of variables x (black) and sin(θ) (dashed
blue),with parameter valuea = 0.06 (a and b),a = 0.07 (c and d),a = 0.08 (e and f) anda = 0.081
(g and h). The numerical values of the parameters are those of the second line in Table4
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Fig. 6 Time evolution of the x − y representation and of variables x (black) and sin(θ) (dashed
blue), with parameter value a = 0.083 (Figures (a) & (b)). The numerical integration is also on
time t ∈ [0, 40] but, in order to appreciate the non-periodicity of this regime better, the last 14 time
units are shown. The numerical values of the parameters are those of the second line in Table4

As a increases further, the system becomes chaotic. This is numerically shown in
Fig. 6 when a = 0.083. The numerical integration is also on [0, 40] but, in order to
appreciate the non-periodicity of this regime better, the last 14 time units are shown.

In Fig. 7a, the Feigenbaum’s cascade of period-doubling bifurcation is displayed
for the B-S systemwith h > 0. The different values of the crank a are shown on the x-
axis, while the y-axis shows the x values (when ẋ = 0) for which the B-S converges
to (for the corresponding crank value a). Figure7b shows a zoom out from Fig. 7a,
so one can observe how the x variable (basically the amplitude) depends on a.

5.3 Period-Doubling Bifurcations with h = 0

As in Sect. 5.2, period-doubling bifurcationsmay also appear for B-Swith h = 0.We
again chose here the crank’s length a as control parameter and observe the period-
doubling bifurcations on variable x . Figure8a shows yet another Feigenbaum’s cas-
cade of period-doubling bifurcation, and here for a B-S system with h = 0 as given
in Y. Rocard’s book Rocard [15]. The numerical values of the parameters are those
of the third line in Table4. As in Fig. 7, the different values of the crank a are shown
on the x-axis, while the y-axis shows the x values (when ẋ = 0) for which the B-S
converges to (for the corresponding crank value a). To the best of the authors’ knowl-
edge, this is the first observation of deterministic chaos in a B-S system for h = 0.
Period-doubling bifurcations in the case for h > 0 (as discussed in Sect. 5.2) have
already been observed in Rodriguez [16].

Figure8b zooms out from Fig. 8a and one can see how the variable x depends on
parameter a, suggesting an antimonotonicity behaviour: the creation and annihilation
of periodic orbits. This feature is further developed in the next section.
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Fig. 7 In a, x (when ẋ = 0) is plotted against parameter a. b is a zoom out to show the dynamical
behaviour before the the period-doubling cascade (i.e. for smaller values of a). The numerical values
of the parameters are those of the second line in Table4

5.4 Antimonotonicity with h = 0

The phenomenon of antimonotonicity, as reported in the seminal works of Kan and
Yorke [9], Dawson et al. [5] and Kan et al. [10]), is observed for a B-S with parameter
values as in the third line of Table4, and for which the inertia I is taken as the second
control parameter. In Fig. 9, similar bifurcation diagrams as in Fig. 8 are presented,
while here each plot has a different value for I . Figure9a has the largest I value and
one can see a period-two bifurcation being created and then annihilated as parameter
a gets larger. Further decreasing the value of I shows, in Fig. 9b, yet another period-
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Fig. 8 In a, x (when ẋ = 0) is plotted against parameter a. b is a zoom out to show the dynamical
behaviour beyond the period-doubling cascade (i.e. for larger values of a). The numerical values of
the parameters are those of the third line in Table4

two bifurcation: that is, the x variable goes from a period-one, to a period-two, to a
period-four and then back to a period-two and finally to a period-one, as a increases
in value. This phenomenon continues on as I decreases as shown in Fig. 9b, c.
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Fig. 9 In all four Figures, x (when ẋ = 0) is plotted against parameter a. In a I = 0.000115, in
b I = 0.000109, in c I = 0.0001078 and in d I = 0.000107. The other numerical values for the
parameters are those of the third line in Table4

5.5 Numerical Estimation of Feigenbaum’s Universal
Constant

In our numerical experiments, we numerically determine the locations of the first six
bifurcations thresholds. These are presented inTable5 (when h > 0 and for parameter
values as in the second line of Table4) and in Table6 (when h = 0 and for parameter
values as in the third line of Table4).

Table 5 Numerically determined bifurcation points for parameter a for Fig. 7a (when h > 0 and
for parameter values as in the second line of Table4)

n Period Bifurcation parameter (an) Ratio ak−1−ak−2
ak−ak−1

1 2 0.06367045 –

2 4 0.07569875 –

3 8 0.08059755 2.455356

4 16 0.08106015 10.589710

5 32 0.08115485 4.884900

6 64 0.08117475 4.758794

7 128 0.08117895 4.738095
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Table 6 Numerically determined bifurcation points for parameter a for Fig. 8a (when h = 0 and
for parameter values as in the third line of Table4)

n Period Bifurcation parameter
(an)

Ratio ak−1−ak−2
ak−ak−1

1 2 0.04009785 –

2 4 0.04123185 –

3 8 0.04151235 4.042781

4 16 0.04157945 4.180328

5 32 0.04159425 4.533784

6 64 0.04159745 4.625000

7 128 0.04159815 4.571429

6 Conclusions

Yves Rocard used to say: “La physique c’est toujours un petit peu faux”.9 Indeed,
Rocard’s idea to determine the pulsation being an approximation is “a bit wrong”—
however, onemust recognise thatRocard’smethod is remarkably accurate over awide
range of parameters! Let us emphasise that Rocard had the right intuition despite the
fact that numerical simulations were not available in his time. Today’s tools not only
enable us to confirm Rocard’s result, but allow us to study the dynamical system
when one relaxes the assumption θ(t) ∼= ωt .

In this contribution, we have numerically shown that the B-S system exhibits
period-doubling bifurcations when increasing the values of parameter a and this,
even when h = 0. Furthermore, we have shown that for small a, the B-S follows
“washboard”-like dynamics, implying that it will converge only towards a periodic
regime. Only once a is large enough may the B-S have chaotic behaviour.

There are several questions that could be treated as follow up: (1) for what value
of a do both systems (drum and spring) converge towards a common pulsation ω for
arbitrary initial conditions, and, (2), howdoes the accuracy of the predicated pulsation
ω depend on the inertia I , in particular, in what way does friction h influence the
quality of Rocard’s method to predict ω.

Acknowledgements The authors would like to thankDr.M. Anderegg for his constructive remarks
that were very helpful to this contribution.

9 See, for example, Lurçat [13]. In English: “Physics is always a bit wrong”.
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7 Appendix

7.1 Euler-Lagrange Equations

Applying the Euler-Lagrange equations to L(θ, x, θ̇ , ẋ) = T (θ̇ , ẋ) − V (θ, x)

d

dt
(
∂L

∂θ̇
) = ∂L

∂θ
,

d

dt
(
∂L

∂ ẋ
) = ∂L

∂x
,

we have

∂L
∂θ̇

(θ, x, θ̇ , ẋ) = ∂T
∂θ̇

(θ̇ , ẋ) = (I + mρ2)θ̇ ,
∂L
∂ ẋ (θ, x, θ̇ , ẋ) = ∂T

∂θ̇
(θ̇ , ẋ) = Mẋ,

∂L
∂θ

(θ, x, θ̇ , ẋ) = − ∂V
∂θ

(θ, x) = −( − mgρ + K(x − a sin(θ))(−a cos(θ))
)
,

∂L
∂x (θ, x, θ̇ , ẋ) = − ∂V

∂x (θ, x) = −(
K(x − a sin(θ)) − Mg

)
,

and so the dynamical system is given by

(I + mρ2)θ̈ + hθ̇ = mgρ + K(x − a sin(θ))a cos(θ),

Mẍ + f ẋ = −K(x − a sin(θ)) + Mg.

7.2 Deriving the Equations of Motion

We assume the reader is familiar with the modelling of a spring of stiffness K on
which a mass M is attached to it:

Mẍ + f ẋ = −Kx + Mg,

and the modelling of a drum on which a constant torque mgρ is applied on it:

(I + mρ2)θ̈ + hθ̇ = mgρ.

To derive the equations of motion of the B-S regulator, we must adapt the force
of the spring and add an additional torque to the drum, both terms accounting for
the coupling. Figure10 shows the radius of the crank a on to which the spring is
attached. The referential for the spring’s position is given for θ = 0 (i.e. the doted
line for which, by definition, x = 0). By definition, upwards from the referential line
is considered as a negative displacement and downwards from the referential line is
a positive displacement. For θ , clockwise direction is defined as positive. As one can
see, for different values of θ , one mus readjust x’s reference position. Accordingly,
the force of the spring on the mass M is given by −K(x − a sin(θ)).
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Fig. 10 Determining the
force of the spring on mass
M according to the value of θ

Fig. 11 The additional
torque acting on the drum

The drum (viewing the flat surface of the cylinder) is sketched in Fig. 11. The
force of the spring on massM acts on the drum. The component of this force that acts
on the drum as a torque is determined by elementary geometry, as shown in Fig. 11.
In Panovko and Gubanova [14], a similar derivation is presented.

7.3 Deriving (11)

Wehere derive (11). By hypothesis, in this regime θ(t) ∼= ωt , then θ̈ (t) ∼= 0, enabling
us write:

0 = H (1)
a (ωt) + H (2)

a (ωt, u(t)) − hω.

Since we are in a stationary regime, the dissipation due to damping has to be coun-
terbalanced by the potential energy delivery over one cycle. Accordingly, over a full
cycle, we have:



How Chaotic Dynamics Drive a Vintage Grill-Room Spit 715

0 =
∫ 2π

ω

0
H (1)
a (ωt) + H (2)

a (ωt, u(t)) − hωdt,

=
∫ 2π

ω

0
H (1)
a (ωt) + H (2)

a (ωt, u(t))dt − (hω)
2π

ω
.

For the two other integrals, we have

∫ 2π
ω

0
H (1)
a (ωt)dt =

∫ 2π
ω

0
g(Ma cos(ωt) + mρ)dt,

= g
(
Ma [ sin(ωt)

ω
] 2π

ω

0︸ ︷︷ ︸
=0

+mρ
2π

ω

)
,

= mgρ
2π

ω
.

∫ 2π
ω

0
H (2)
a (ωt, u(t))dt =

∫ 2π
ω

0
Ka2

(
A sin(ωt + ϕ) − sin(ωt)

)
cos(ωt)dt,

= Ka2
( ∫ 2π

ω

0
A sin(ωt + ϕ) cos(ωt)dt −

∫ 2π
ω

0
sin(ωt) cos(ωt)dt︸ ︷︷ ︸
[ sin(ωt)22ω ] 2πω0 =0

)
,

= AKa2
∫ 2π

ω

0
sin(ωt + ϕ) cos(ωt)dt,

= AKa2
∫ 2π

ω

0
sin(ωt) cos(ϕ) cos(ωt) + cos(ωt)2 sin(ϕ)dt,

and so we have:

AKa2 cos(ϕ)

∫ 2π
ω

0
sin(ωt) cos(ωt)dt = AKa2 cos(ϕ)[ sin(ωt)

2

2ω
] 2π

ω

0 = 0,

and

AKa2 sin(ϕ)

∫ 2π
ω

0
cos(ωt)2dt = AKa2 sin(ϕ)[ t

2
+ sin(2ωt)

4ω
] 2π

ω

0 ,

= AKa2 sin(ϕ)

2π
ω

2
.

Therefore, we have



716 J. Rodriguez and M.-O. Hongler

(hω − mgρ)
2π

ω
= AKa2 sin(ϕ)

2π
ω

2
,

(hω − mgρ) = 1

2
AKa2 sin(ϕ) =

(Ka)2

M sin(ϕ)

2
√

( K
M − ω2)2 + (

f
M )2ω2

,

2M(hω − mgρ)

(Ka)2
= sin(ϕ)√

( K
M − ω2)2 + (

f
M )2ω2

.

At this stage, let us note that for the above equation to be consistent (i.e. so that
sin(ϕ) is defined), one must satisfy (for given m,M, ρ, K, f , h, g, a and ω)

∣∣∣2M(hω − mgρ)

(Ka)2

√
(
K
M

− ω2)2 + (
f

M
)2ω2

∣∣∣ � 1.

Now, since

sin(ϕ) = − f
Mω√

( K
M − ω2)2 + (

f
M )2ω2

,

we finally end with

2M2(mgρ − hω)

f (Ka)2
= ω

( K
M − ω2)2 + (

f
M )2ω2

.

7.4 Point of Inflections Analysis

For ω � 0, the function to analyse is (see (13))

α(ω) = f (Ka)2

2M2

( ω

(q − ω2)2 + p2ω2

)

with p = f
M > 0, q = K

M > 0 and a > 0. Proving that there is only one point of
inflection after α attained its maximum is equivalent to showing that the function α′′
changes sign only once in ]ω0,+∞[, where ω0 is the unique positive number such
that α(ω0) is the maximum value of α in R�0.

The first derivative of α with respect to ω is

α′(ω) = f (Ka)2

2M2

(−3ω4 − (
p2 − 2q

)
ω2 + q2(

(q − ω2)2 + p2ω2
)2 )
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and with the substitution ω(s) := √
sq (i.e. sq = ω2) and r = p2

q , we have

α′(ω(s)) = f (Ka)2

2M2q2

(−3s2 − (r − 2)s + 1

(s2 + (r − 2)s + 1)2

)
.

Define the function β as β(s) := α′(ω(s)) as well as βn(s) := −3s2 − (r − 2)s + 1
and βd(s) := s2 + (r − 2)s + 1 so that

α′(ω(s)) = β(s) = f (Ka)2

2M2q2

βn(s)

βd(s)2
.

Differentiating the above expression with respect to s leads to

d
(
α′(ω(s))

)
ds

= α′′(ω(s))ω′(s) = β ′(s)

where α′′ is the second derivative with respect to ω, and ω′ and β ′ are, respectfully,
the first derivative with respect to s. Since ω′(s) =

√
q

2
√
s
and

β ′(s) = f (Ka)2

2M2q2

(
βd(s)β ′

n(s) − 2βn(s)β ′
d(s)

)
βd(s)3

= f (Ka)2

2M2q2

(6s3 + 3(r − 2)s2 + ((r − 2)2 − 10)s − 3(r − 2)

(s2 + (r − 2)s + 1)3

)

then the second derivative of α with respect to ω is

α′′(ω(s)) = (2√s√
q

) f (Ka)2

2M2q2

(6s3 + 3(r − 2)s2 + ((r − 2)2 − 10)s − 3(r − 2)

(s2 + (r − 2)s + 1)3

)
.

With theses calculations, we show that α has a unique maximum for ω � 0. Setting
the first derivate of α to equal zero (i.e. α′(ω) = 0) and with the substitution x := ω2,
we have

0 = 3x2 + (p2 − 2q)x − q2 (16)

giving the two roots

x1,2 = −(p2 − 2q) ± √
(p2 − 2q)2 + 12q2

6
.

Since ω � 0, we are only interested in the positive root, namely:

ω0 := √
x1 = (−(p2 − 2q) + √

(p2 − 2q)2 + 12q2

6

) 1
2
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We still need to show that α′′(ω0) < 0. For this, let s0 such that ω(s0) = ω0. Then

β(s0) = 0 and by (16), βn(s0) = 0. This leads to s0 = −(r−2)+
√

(r−2)2+12
6 . Therefore,

β ′(s0) = f (Ka)2

2M2q2

β ′
n(s0)

βd(s0)2

and since β ′
n(s) = −6s − (r − 2), then β ′

n(s0) = −√
(r − 2)2 + 12 < 0. Hence, the

function α has one maximum for ω � 0.
We now analyse the inflections points. For this we need to analyse the signs of

α′′(ω) for ω � 0. This means, we need to study the signs of β ′(s). There are two
cases for r − 2 to investigate. For both cases s � 0.

Case :r � 2. Here the denominator of β ′ is strictly positive because (r − 2) is pos-
itive (i.e. s2 + (r − 2)s + 1 > 0). According to Descartes’ rule of signs, the numer-
ator of β ′ has only one positive root. Therefore, β ′ changes sign only once in R�0.
Since the function α has a its maximum attained by ω0 > 0 and has 0 as asymptote
when ω tends towards +∞, then this unique change of sign for β ′ corresponds to
the one point of inflection of α taking place after ω0.

Case :0 < r < 2. Here the denominator of β ′ is strictly positive because it has no
real roots: the discriminant of s2 + (r − 2)s + 1 is (r − 2)2 − 4 < 0. According to
Descartes’ rule of signs, the numerator of β ′ may either have

(a) two positive roots or
(b) no roots at all.

Case (b) is not possible, since the function α possesses a maximum and has 0 as
asymptote (i.e. the function α must have at least one inflection point since α′ is zero
at ω0, decreases in value and then converges to zero when ω tends towards +∞).
In case a), since there are two positive roots, these must be on either side of ω0 (the
positive number that maximises the value of α), since atω0, the function α′′ is strictly
negative (i.e. α′′(ω0) < 0) and the sign of the dominant term of the polynomial in
the numerator is positive. Hence, one point of inflection after ω0 (i.e. after attaining
the maximum of α).

7.5 Determining the Particular a0 with h = 0

From Appendix 7.4, we know that the function α (see (13)) attains its maximum
value for

ω0 =
√

−(p2 − 2q) + √
(p2 − 2q)2 + 12q2

6
.

Substituting the values a0 and ω0 in (11), leads to:
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2mgρK2

f (Ka0)2
= ω0

ω4
0 + (p2 − 2q)ω2

0 + q2
,

2mgρK2
(
ω4
0 + (p2 − 2q)ω2

0 + q2
) = ω0( f K2)a20,

a20 = 2mgρ

f q2

(ω4
0 + (p2 − 2q)ω2

0 + q2

ω0

)
.

Since 3ω4
0 + (p2 − 2q)ω2

0 − q2 = 0 (see (16)), then

a20 = 2mgρ

f q2

(ω4
0 + (p2 − 2q)ω2

0 + (
3ω4

0 + (p2 − 2q)ω2
0

)
ω0

)
,

= 2mgρ

f q2

(4ω4
0 + 2(p2 − 2q)ω2

0

ω0

)
,

= 2mgρ

f q2

(
4ω3

0 + 2(p2 − 2q)ω0
)
.

Therefore, the critical crankshaft is

a0 =
√
2mgρ

f q2

(
4ω3

0 + 2(p2 − 2q)ω0
)
,

with ω0 = (−(p2−2q)+
√

(p2−2q)2+12q2

6

) 1
2 .
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Localized Waves in Silicates. What Do
We Know from Experiments?

F. Michael Russell, Juan F. R. Archilla, and Santiago Medina-Carrasco

Abstract Since the latest review about solitary localized waves in muscovite, called
quodons, (F.M. Russell in Quodons in Mica. Springer, Cham, pp. 475–559, 2015a
[1], F.M. Russell in Quodons in Mica. Springer, Cham, pp. 3–33, 2015b [2]) there
have been many developments, specially from the point of view of experiments,
published in several journals. The breakthrough hypothesis that was advanced in
that review that dark tracks were produced by positive electrical charge moving in a
localized wave, either transported by swift particles or by nonlinear localized waves,
has been confirmed by experiments in muscovite and other silicates. In this paper we
review the experimental results, some already published and some new, specially the
phenomenon of charge transport without an electric field, called hyperconductivity.
We also consider alternative explanations as phase transitions for other tracks. We
also attempt to describe numerical simulations that have confirmed the order of mag-
nitude of quodons energy and calculations underway to determine more properties
of electron and hole transport by quodons.

1 Introduction

The existence of localized waves in silicates layers were first proposed in 1994 [3].
This was an important step in a long story of research about the nature of tracks
in muscovite mica since 1967 [4, 5]. A scientific review [2] and a longer historical
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review [1] were published in 2015. The hypothesis that quodons, i.e., quasi on-
dimensional lattice excitations, transport electric charge was proposed in those
reviews but not developed.

This hypothesis was a fundamental change that led to new theory, new interpre-
tation of previous results about tracks in muscovite, and specially to experiments
that confirmed and modified the theory. Therefore, we have thought that it was time
for a new review that provided a comprehensive and brief summary of the state of
knowledge and the challenges in front of the research.

The research can be divided in three stages that are interconnected.

1. Tracks: Tracks by swift particles.
2. Quodons: Tracks by lattice excitations or quodons.
3. Hyperconductivity: Quodons with electric charge and hyperconductivity.

Here we present the beginning and end of the three stages and some of the high-
lights. Later, we will explain in detail some key aspects.

1.1 Tracks by Swift Particles

This stage starts in 1967 with the observation in mica of dark tracks of charged
particles from neutrino interactions [4] and finishes in 1993 with an explanation of
track formation by release of lattice energy [6] and the description of semi-transparent
tracks in mica related with positron dark tracks [7]. Dark tracks are made out of
magnetite and some shorter semi-transparent tracks are made out of the mineral
epidote.

Note that tracks are also the result of experiments similar to particle tracks in a
bubble chamber. They are experiments that nature hasmade and have been conserved
as a fossil in muscovite crystals. They have been done at temperatures, pressure and
specially time scales outside of the possibilities of physicists.

1.2 Tracks by Lattice Excitations or Quodons

From the very beginning [4] it has been observed that only 0.1% of the dark tracks in
muscovite were produced by swift particles, while the rest lie along the close-packed
direction within the cation layers and therefore are related with the crystal structure.
This second stage starts with the calculation of nonlinear forces between potassium
ions and using them to obtain an approximateKdVequation for lattice displacements.
The KdV equation supports soliton solutions [8], therefore the majority dark lines
in muscovite could be produced by lattice-solitons. These results were presented at
a conference in 1994 [3] and extended the following year [9, 10].

Interestingly, in the same year 1994, it was attempted to observe lattice-solitons
by bombarding silicon with 0.8MeV Ar+ and detecting the ejection of an atom [11].
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The experiment failed, perhaps among other reasons because it used silicon which is
not layered and have a complicated structure for soliton propagation as the nearest
neighbours do not form straight lines.

These lattice excitations were named qodons in 1995 [10] and later quodons in
1998 [12]. This was an acronym for quasi one-dimensional excitations, a descriptive
term which also recognized that the actual type of excitation was not well known. It
is worth noting that the term lattice-soliton was changed to breather. Breathers differ
from solitons in having an internal vibration and smaller energy and were starting to
be thoroughly studied [13, 14].

The highlight of this stage is probably the success of another experiment in
2007 [15] similar in design to the previous one [11]. In this case a mica monocrystal
was bombarded with alpha particles and it was possible to detect the ejection of
atoms at the opposite side of the sample along the direction of close-packed lines
within the cation layers.

This stage finishes in 2015with two comprehensive reviews, a shorter and scientif-
ically oriented one [2] and a longer historical review oriented to the non-specialist [1].
But in these two reviews the next stage is also hinted.

1.3 Quodons with Electric Charge and Hyperconductivity

It was well known that most tracks in muscovite were produced by the recoil of
potassium atoms after beta decay [16]. In 2015, a thorough analysis of the decay
modes of 40K [17–19] showed that 90% of decays left a charge behind, and this
charge was positive except in 0.001% of positron decays, when it was negative.
Then, it was realized that dark tracks by swift particles were produced only by
positive particles and that the thickness of, for example, positron tracks, at sonic
speed, when they were about to stop, were similar to quodon tracks. These two
observations led to the deduction that quodons have electric charge, and dark tracks,
positive charge [20]. This hypothesis was already introduced at the previous reviews
and it was later extended in [21].

This profound change in the quodon concept provided something to measure eas-
ily, electric current, when quodons were excited by particle bombardment without an
electric field, a phenomenon called hyperconductivity. Experiments were successful
and also were able to explain new properties of quodons [22, 23] in muscovite and
other layered silicates.

2 Important Points

In this section we concentrate in some important points which illustrate either fossil
tracks or experimental results or experiment setup.
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Fig. 1 A sheet of mica muscovite showing many majority tracks due to lattice excitations within
the hexagonal structure of the cation layer and a muon track in an unrelated direction

2.1 First Encounter with Dark Tracks in Muscovite

It is important to emphasize that the main author of this research F.M. Russell has
been all his career dedicated to high energy physics, first at Harwell Laboratory,1

then at Oak Ridge National Laboratory (ORNL) in the U.S.A, and thereafter at the
Rutherford Appleton Laboratory (RAL) in the U.K. In this way, when in 1963 at a
museum in North Caroline,2 he found himself in front of a specimen of muscovite
with abundant dark tracks, he recognized the striking similarity with the tracks of
swift particles in bubble chambers. A similar sheet is presented in Fig. 1.

1 Atomic Energy Research Establishment near Harwell, Oxfordshire, U.K.
2 Museum of North Carolina Minerals, Spruce Pine, North Caroline, U.S.A.
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2.2 How Were the Swift Particles Identified?

There were different methods, but perhaps the clearest is the kinkiness of those dark
tracks. Charged swift particles when entering in matter experience scattering with
the matter ions. The probability of scattering at a given angle can be calculated by
Rutherford law and the angles can be can be seen and measured with a microscope
and the results compared with given particles. An example can be seen in Fig. 2,
comparing the second difference, basically the scattering angle, of some track in
mica with positrons in photographic film [25], taking into account the difference in
mass and density of the scattering ions.

2.3 Which Particle Tracks Were Identified?

The particles that produce dark tracks in muscovite and could be identified were
positive muons, i.e., antimuons, which are the particles that can be produced deep
underground after neutrino interaction [4, 5, 16, 26], positrons from 40K decay and
antimuon decay [7, 16, 27–29]. Protons can be recognized by the short length of

Fig. 2 Probability of
scattering at given angles for
tracks corresponding to
positrons in muscovite [+],
compared with positrons in
photographic film [�] and by
Wolfendale’s group [◦]. The
results fit closely to the
Rutherford Law, thus
strongly supporting the
hypothesis that the lines are
tracks of charged particles.
Data from [16, 24, 25] for
VP, CMW and FMR,
respectively. Reproduced
with permission from:
Russell [16] Copyright ©
1988, Elsevier
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the tracks corresponding to non-relativistic speed [2, 30]. Also, alpha particles can
be discriminated from the multiple scattering events, proof of their large energy and
mass [2, 26].

The remarkable fact that all the particles that produce dark tracks were positive
was used in 2015 to recognize that the large majority of quodons that produce dark
tracks have also positive charge [1, 2, 20].

2.4 How Were the Tracks Produced?

There is not enough energy to produce the dark tracks, this means that the source of
energy is already in the lattice, in the form of a metastable state [10, 11, 28, 29].

Natural crystals of muscovite mica contain various impurities, especially iron,
incorporated during their growth. It has been found that this can lead to a unique
situation, as a crystal cools following growth, during which minute perturbations of
the crystal can be recorded and stored indefinitely. Although muscovite is a common
mineral in rocks, large crystals grow only in pegmatites associated with magmas at
temperatures of about 500◦Candunder high pressure at about 5kmunderground [31].
Inevitably, large single crystals of good quality are rare but they are of special interest
because of the information they have been found to contain. A common feature of
micas is their ease of cleavage, in the (001)-plane. The black material forming the
patterns is the iron oxide mineral magnetite, so named because it is ferro-magnetic.

As a crystal cools slowly at high temperature it tries to reach a lower energy
state by expelling the magnetite at the weakest part of the lattice, the cleavage plane.
The magnetite grows epitaxially, centred in the potassium sheet and grows in the
directions of structural weakness. These are the principal crystallographic directions,
which are easily determined by percussion figures [1]. This has been confirmed by
both optical and electron microscopy. In fact, the distortion of the lattice is readily
seen by observing the local region of the intrusive magnetite by reflected light or by
surface interferometry. Contrary to the basic assumption in [32] of global bi-stability
of structure there is no evidence for this in the observed patterns involving magnetite.

2.5 Two Different Recording Processes

It has been found that there are two different recording processes leading to the
observed patterns, involving different impurities. The dominant process leading to
magnetite is triggered by passage through the crystal of a positive charge in the
vicinity of the potassium sheets. This can result from a positively charged, high-
energy,muoncreated in a neutrino interactionwithin theEarth or bydirect penetration
of a cosmic ray. Another source is from electron-positron showers arising from a
high-energy gamma interaction. The flight-paths of these particles are influenced
by channelling and diffraction scattering due to the pronounced layered structure
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of muscovite [16]. The most informative source, however, is from the rare decay
channel of 40K creating positrons [7]. Study of the fossil tracks of these positrons has
shown that the origin of the nucleation sites for triggering magnetite growth does not
involve ionization of the lattice. For relativistic positrons from this source a fossil
track results evenwhen the rate of energy loss is less than 1eVper 10,000 atoms along
the flight path. The rate of energy loss increases as a positron slows down, leading to
an increase in the amount of magnetite formed. Due to anisotropy of the mechanical
properties of the layered structure this increase shows as a widening of the magnetite
ribbon delineating the flight-path. This suggests that the recording process is of a
chemical nature, with the probability for an impurity ion migrating to the flight path
increasing as the positron’s speed decreases.The dominant source of the long ribbons
of magnetite arising from moving positive charges is the dominant decay channel of
40K, in which an electron is emitted. These energetic electrons do not initiate fossil
magnetite tracks. However, they leave a positive charge at the decay site that can
be trapped and carried by a mobile lattice excitation arising from the recoil motion
of the decayed nucleus. These mobile, non-dissipative, highly localized excitations
move at slightly sub-sonic speed, leading to magnetite ribbons of width of similar
width to those due to nearly stopped positrons [2]. The last known source of swift
positively-charged ions is from atomic cascades arising from nuclear scattering of
relativistic particles.

The second and much rarer recording process involves formation of the mineral
epidote, which requires an excess of calcium during crystal growth. These fossil
tracks arise from the emission of a positron, leaving a negative charge at the decay
site, which is trapped and transported by the mobile recoil excitation. This leads to
a ribbon of transparent epidote that is not intrusive in the potassium sheets [7]. The
formation process of the epidote is poorly understood and might involve a bi-stable
crystal state [32]. It is hoped that this explanation of the origin of the fossil magnetite-
ribbon tracks might encourage study of the formative process for the fossil epidote
tracks, as this has the potential for ballistic, low-loss, transport of electrons in layered
insulators [7, 22, 23, 33].

3 How Was the Experiment in Lattice-Excitations
or Quodons Done?

The highlight of the research on lattice excitations, sometimes called lattice-solitons,
breathers or quodons in this context was the experiment in 2007 [15]. Alpha particles
were sent at an angle with the muscovite sheet and therefore with the potassium
layer to prevent the possibility of transmission and it was detected at the other side
of the monocrystal corresponding to low Miller indexes, the ejection of an atom
from the surface. The atom was detected because it was ionized by an electric field
and the charge detected. Ejection of atoms from a silicate surface needs energies of
7–8eV, however, it is not necessary that a quodon had that energy as the passage of a
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Fig. 3 Left: Setup of the quodon experiment. A: alpha source,M:micamonocrystal, ECM: electron
channel multiplier, G: grid, B: alternative position for the alpha source. Right: Outcome of the
quodon experiment: Plot of the angular dependence of the ECM count rate. T: test, S: sputtering
from the front face, E: peak from ejected atoms at the rear face in the [0 1 0] direction. Reproduced
with permission from: Russell and Eilbeck [15]. Copyright © 2007, EPLA

vibrational energy in the vicinity of the surface is enough to increase the probability
of ejection [34]. Both the setup and the outcome can be seen in Fig. 3.

4 How it Was Demonstrated Hyperconductivity,
i.e., that Quodons Carry Charge?

Hyperconductivity is defined as the transport of charge in absence of an electric field.
The charge is transported by nonlinear excitations which have their own energy and
momentum from the cause that created them. Due to the combination of nonlinearity
and discreteness they travel long distances in atomic terms with little attenuation.

An experiment was set up quite similarly to the previous ones. The way to excite
lattice excitations or quodonswas also by sending alpha particles, due to its simplicity.
The hypothesis was that alpha particles would produce many quodons and some
proportion of them would propagate to the other side of the sample and in this way
a current could be measured. Muscovite is a very good insulator but there was the
possibility that the surface and certainly the ionized air would transport charge. To
discard this effect the two sides of the sample were connected and therefore the
potential difference among both contacts would be zero and also the electric field
would be zero. Lattice excitation or quodons would travel due to their initial energy
and momentum.

The experiment was a success but with some unexpected results. Instead of a
steady current after the alpha gate was open, the current showed a peak, but then
it would diminish to a small limiting value. The phenomenon was soon explained:
there are not free carriers in muscovite band structure, the available charge is the
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Fig. 4 Left: Plot of the hyperconductivity current, the time intervals marked in black at the top
correspond to the opening of the alpha gate. Right: Hypercurrent as a function of the accumulated
timeof alpha exposure, showing an exponential decrease corresponding to the depletionof the charge
reservoir from 40K beta decay. Reproduced with permission from: Russell et al. [22]. Copyright ©
2017, EPLA

one obtained after beta decay of 40K, mainly positive after β−, i.e., the emission of
an electron is the dominant branch, but also some negative charge after β+ positron
emission. This reservoir is depleted in some minutes, and the remaining current is
exactly the flux of electric charge brought by the alpha flux [22]. The current peaks
and their decrease can be seen in Fig. 4.

5 What Properties of Hyperconductivity and Quodons
Were Deduced from Experiments?

More experiments in hyperconductivity [23] were able to deduce a number of facts:

• Other layered silicates as lepidolite, phlogopite, chrysolite and both natural and
synthetic fluorphlogopite supported hyperconductivity and thus the propagation
of quodons. However, a layered silicate as biotite with similar structure does not
support it. It was not found in unrelated materials that could be used in quodon
technology as PTFE, quartz, borosilicate glass and epoxy resin.

• Hyperconductivity is not sensitive to minor crystal defects and can even anneal
some of them. It can also pass through some interfaces.

• Hyperconductivity is not affected by magnetic fields up to 1.1T.
• Quodons have very long flight paths, this can be deduced by comparing the drop
in hypercurrent when the alpha bombardment is stopped. In a good crystal the
hypercurrent continues to flow some seconds, while in a crystal with many defects,
the hypercurrent stops almost immediately as can be seen in Fig. 5
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Fig. 5 Plot of the hypercurrent corresponding to two intervals of alpha exposure in a previously
depleted crystal. Left: Crystal of lepidolite of good quality. Note the soft decay of the hypercurrent
after the alpha flow is stopped.Right: Crystal of phlogopite of bad quality. Note the abrupt decrease
of the hypercurrent after alpha irradiation is stopped. Reproduced with permission from: Russell,
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6 What Types of Quodons Are There?

There is no clear information from the experiments, however from the fossil tracks
as seen in Fig. 6, it can be deduced:

• There are positive quodons, negative quodons and probably neutral quodons. Neg-
ative quodons can be seen as an epidote track in exactly the opposite direction from
a positron track and therefore corresponding to the recoil of the nucleus of 40K
after β+ decay. Neutral quodons can be deduced from intermittent dark tracks,
which seem like quodons loosing an regaining positive charge.

Fig. 6 A sheet of mica muscovite showing a quodon primary track and many secondary tracks
scattered from it. Also it is possible to see the intermittency in the secondary tracks along the close
packed direction of the cation layer. This is interpreted as a quodon loosing and regaining a positive
charge. Reproduced with permission from: Russell and Eilbeck [30]. Copyright © 2011, AIMS
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• There are some more energetic quodons that produce straighter and thicker dark
tracks and some less energetic quodons because they appear often as weaker dark
tracks scattered from a primary track. As both types are dark, it is deduced that
both have positive charge. They might have different nature, maybe primary tracks
could be crowdions or kinks as they transport charge in an ionic crystal and have
large energies of 20–30eV [17, 35–38]. Secondary tracks, could be interpreted
as breathers, because they have good mobility in mica models with little or no
radiation, with energies of 0.2–0.3eV [12, 39, 40] and recently they have been
shown to scatter in different close-packed directions [41]. However, breathers do
not transport charge and if they couple to a charge their properties and physical
description change completely. Certainly, breathers could correspond to neutral
quodons. A model for lattice excitations coupled to a hole or electron has been
constructed for muscovite, but the properties of localized excitations using it are
still under study [42, 43].

7 Alternative Explanations of Tracks

There have not beenmany alternative explanations of tracks inmuscovite. It was sug-
gested that the majority of dark lines corresponds to dislocations because they lie in
the close-packed directions, but without further proof [24]. Arguments against dislo-
cations are that they should appear along crystal fractures, which does not occur [16]
and that dark tracks do not continue to the edge of the crystal specimen as it should
occur with dislocations [2]. Recently an interesting explanation based on phase tran-
sition in a bistable lattice has been proposed [32]. The research was based on the
observation3 that the pitch of the on-site potential and the equilibrium distance of
the interatomic potential should be different in a real material. This bring about the
existence of different stable configurations, and the authors found a switching wave
between configurations that propagates longitudinally along the direction of atomic
chains. They used a Frenkel-Kontorova 2D system with morse interaction poten-
tial. There was no attempt to relate their findings with physical magnitudes and to
explain the coloration of lines or the kinkiness of the swift particle tracks. Also, the
hyperconductivity experiments were not explained and the charge of the ions in the
cation layer were not taken into account as explained in the article. Nevertheless, it
opens a new path to understand some of the phenomena observed in muscovite and
other layered silicates, particulary epidote tracks, which are not produced by swift
particles.

3 J.F.R. Archilla, private communication (2019).
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8 Summary

In this article we have tried to present an updated review of the research in nonlinear
waves in layered silicates, particularly, but not only, in mica muscovite. We have
attempted to make clear for the non specialist which are the main experimental facts
and their interpretation, leaving many details to the references. The main results are
that some dark tracks in muscovite can be related to swift positive particles, that
many other tracks along atom chain direction of the cation layers can be interpreted
as lattice excitations, called quodons. Most quodons carry positive charge although
somemayhave negative charge or none. Thiswas demonstrated by hyperconductivity
experiments, that is, the transport of charge in the absence of an electric field. Variants
of hyperconductivity experiments allowed for the deduction of many properties of
quodons. Other interpretations of dark tracks may be complementary and be useful
to understand some of the tracks.
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Software Realization, Analysis
and Experimental Investigation
of Equivalent Inductance

Volodymyr Rusyn, Christos H. Skiadas, and Aceng Sambas

Abstract Circuit realization of the inductance equivalent that contains two opera-
tional amplifiers, one capacitor, and four resistors is presented. The mathematical
equation that allow convert inductor value to resistance of potentiometer is shown.
Computer modeling results of the algorithm for calculate inductance was realized in
the modern software LabView. Experimental results of realization of the equivalent
of inductance are presented. The designed layout was applied for chaotic Chua’s
generator.

1 Introduction

Chaotic theory used in many areas, such as biology [1–3], ecology [4, 5], economy
[6–8], optics [9], mathematics [10, 11], memristor [12, 13], security communication
systems [14, 15], etc. Many different electronics circuits generated chaotic oscilla-
tions [16–28]. One of the circuit element must be used inductor. However, there are
many problems with product or buying inductor with non-standard nominal values.

In Fig. 1 shows electrical scheme that allows change inductor to operational
amplifier realization.

The equation that allow convert equivalent inductance can be computed as
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Fig. 1 Operational amplifier realization of simulated inductor

Leq = R1R3R4C1

R2
, (1)

where R1-R4—values of resistances, C1—value of capacitance.
In this work, by using the Laboratory Virtual Instruments Engineering Work-

bench (LabVIEW), we developed an algorithm that automatically convert value of
inductance to value of resistance of potentiometer R4.

The paper is organized as follows. In Sect. 2, algorithm that realize inductance
equivalent, LabView software interface and practical realization are presented. In the
following section, the result of experimental investigation is presented. Inductor-free
simplified Chua’s chaotic circuit is easily extended, and similar dynamical behav-
iors are exhibited through the corresponding numerical simulations and hardware
experiments. The conclusionsare summarized in the last section.
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2 Software and Practical Realization of the Equivalent
of Inductance

Algorithm of equivalent of inductance was realized in LabView. This is a graphical
programming platform that helps engineers implement all stages of development of
large and small projects: from prototype creation to final testing. In this development
environment, the best integration of software and hardware components with the
latest computer technologies is combined today.

LabView contains all the tools for solving currentand upcoming challenges with
enormous potential forinnovation, future success and effectiveness.

LabView includes powerful multi-function tools forconducting any types of
measurements and development of any applications. With these tools, engineersand
scientists can work in the widest range of applications and spend much less time
developing. Thanks to this, LabView is a development environment for solving a
wide range of research, performance enhancementsand innovations.

Figure 2 demonstrate algorithm of equivalent of inductance that was realized in
LabView.

Figure 3 shows program interface for calculate of resistance of resistor R4.

Fig. 2 Software realization of algorithm
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Fig. 3 Software interface for calculate of resistance of resistor R4

For example, we have next values of components:R1 = R2 = R3 = 1000 �,
capacitor C = 10 nF, L = 18 mH. These values we inserted in special windows of
L-EQ calculator and get value for resistor R4 = 1800 �. Practical realization and
results are shown in Fig. 4, i.e. inductance Leq= 17.9 mH and R0= 0.23�. Voltage
source−12 V. For power supply of the circuit was used laboratory DC power supply
Hantek HT3003PB. For measurementof inductance was used LCR meter UNI-T.

If we changed resistance of resistor R4, we get inductance equivalent equal 20
mH. This experimental result shows in Fig. 5.

3 Experimental Investigation of the Equivalent
of Inductance

After the advent of Chua’s chaotic circuit, numerous works have been reported on
different realization schemes of this circuit. We consider a realization of the double
scroll chaotic Chua’s attractor given by the following set of (rescaled) three coupled
ODEs:
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Fig. 4 Practical realization
of the equivalent of
inductance (L = 17.9 mH)

Fig. 5 Practical realization
of the equivalent of
inductance (L = 19.92 mH)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx

dt
= α(y − x − g(x)),

dy

dt
= x − y + z,

diL
dt

= −βy,

(2)

where α = 10, β = 14.87, g(x)—piecewise linear function.
The circuit realization of the above is displayed in Fig. 6, with component values:

capacitors C1 = 100 nF, C2 = 10 nF, DA1—operational amplifier TL082, powered
by a 12 V, GB –voltage source, inductor L1 = 18 mH, resistors R1 = 1.71 k�, R2
= 47 k�, R3 = R4 = 3.3 k�, R5 = 47 k�, R6 = R7 = 290, R8 = 1.2 k�, diodes
VD1, VD2–1N4148.

The experimental results are captured by TektronixTDS 1002 digital oscilloscope.
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Fig. 6 The classical chaotic Chua’s generator

Fig. 7 Chaotic attractor

Figures 7 and 8 shows chaotic attractor and timeseries thatwas realized practically.
Figures 9 and 10 shows spectra of the classical chaotic Chua’s generator.

4 Conclusions

Designed L-EQ calculator allows convert of inductance values to resistance using
some algorithm. Circuit realization of the inductance equivalent that contains two
operational amplifiers, one capacitor, and four resistors is presented. The mathe-
matical equation that allow convert inductor value to resistance of potentiometer is
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Fig. 8 The x-signal (upper)
and the y-signal (lower)
timeseries realized
practically. Their
non-periodic nature is
evident

Fig. 9 The spectral
distribution of VC1

Fig. 10 The spectral
distribution of VC2
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shown. Computer modeling results of the algorithm for calculate inductance was
realized in the modern software LabView. Experimental results of realization of the
equivalent of inductance are presented. The designed layout was applied for chaotic
Chua’s generator. Chaotic attractor, timeseries and s spectral distributions are also
presented.
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Dynamics of a Bertrand Duopoly Game
with Differentiated Goods,
Heterogeneous Expectations and Relative
Profit Maximization

Georges Sarafopoulos and Kosmas Papadopoulos

Abstract In this article the authors investigate the dynamics of an oligopoly game
in which, they consider a nonlinear Bertrand-type duopoly game with differentiated
goods and heterogeneous expectations. In this study the case, where managers have
a variety of attitudes toward relative performance that are indexed by their type is
investigated. In this game they suppose a linear demand and cost functions. The
game is modeled with a system of two difference equations. Existence and stability
of equilibria of the system are studied. It is revealed that the models gives more
complex, chaotic and unpredictable trajectories, as a consequence of change in the
parameter k of speed of the player’s adjustment, the parameter d of the horizontal
product differentiation and the relative profit parameter μ. The chaotic features are
justified numerically via computing Lyapunov numbers and sensitive dependence on
initial conditions.

.

Keywords Bertrand duopoly game · Relative profit maximization · Discrete
dynamical system · Nash equilibrium · Stability · Bifurcation diagrams ·
Lyapunov numbers · Strange attractors · Chaotic Behavior

1 Introduction

AnOligopoly is amarket structure betweenmonopoly andperfect competition,where
there are only a few number of firms in themarket producing homogeneous products.
The dynamic of an oligopoly game is more complex because firms must consider
not only the behaviors of the consumers, but also the reactions of the competitors
i.e. they form expectations concerning how their rivals will act. Cournot, in 1838
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has introduced the first formal theory of oligopoly. In 1883 another French math-
ematician Joseph Louis Francois Bertrand modified Cournot game suggesting that
firms actually choose prices rather than quantities. Originally Cournot and Bertrand
modelswere based on the premise that all players follow naive expectations, so that in
every step, each player (firm) assumes the last values that were taken by the competi-
tors without estimation of their future reactions. However, in real market conditions
such an assumption is very unlikely since not all players share naive beliefs. There-
fore, different approaches to firm behavior were proposed. Some authors considered
duopolies with homogeneous expectations and found a variety of complex dynamics
in their games, such as appearance of strange attractors [2, 6, 10, 27, 36, 39, 52].
Also models with heterogeneous agents were studied [3, 5, 6, 20, 48, 51].

In the real market producers do not know the entire demand function, though
it is possible that they have a perfect knowledge of technology, represented by the
cost function. Hence, it is more likely that firms employ some local estimate of the
demand. This issue has been previously analyzed by Baumol and Quandt [9], Puu
[35], Naimzada and Ricchiuti [32], Askar [7, 8]. Bounded rational players (firms)
update their strategies based on discrete time periods and by using a local estimate
of the marginal profit. With such local adjustment mechanism, the players are not
requested to have a complete knowledge of the demand and the cost functions [4,
33, 51, 8], Sarafopoulos [39, 40], Sarafopoulos et al. [41–44].

In this paper we study the dynamics of a Bertrand- type duopoly with differenti-
ated goods where each firm behaves with heterogeneous expectations strategies. We
show that the model gives more complex chaotic and unpredictable trajectories as
a consequence of change in three parameters, the speed of players’ adjustment, the
parameter of horizontal product differentiation and the relative profit parameter. The
paper is organized as follows: In Sect. 2, the dynamics of the duopoly game with
heterogeneous expectations, linear demand and cost functions for two players are
analyzed.We set first player as bounded rational and the second as a naïve player. The
existence and local stability of the equilibrium points are also analyzed. In Sect. 3
numerical simulations are used to verify the algebraic results of Sect. 2 plotting the
bifurcation diagrams of the game’s system and to show the complex dynamics via
computing Lyapunov numbers, and sensitive dependence on initial conditions.

2 The Game

2.1 The Construction of the Game

In this study we assume that in the two companies there is a separation between
ownership and management, so there is a possibility that the managers who make
decisions for the company to decide at the expense of their company trying to increase
the profits of the competitor. Also, we consider heterogeneous players and more
specifically, we consider that the Firm 1 chooses the price of its product in a rational
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way, following an adjustmentmechanism (bounded rational player), while the Firm 2
decides with naïve way by selecting a price that maximizes its output (naïve player).
We consider a simple Bertrand-type duopoly market where firms (players) produce
differentiated goods and offer them at discrete-time periods on a common market.
Price decisions are taken at discrete time periods t = 0, 1, 2,… At each period t,
every firm must form an expectation of the rival’s strategy in the next time period in
order to determine the corresponding profit-maximizing prices for period t + 1. We
suppose that q1, q2 are the production quantities of each firm. Also, we consider that
the preferences of consumers represented by the equation:

U (q1, q2) = α(q1 + q2) − 1

2

(
q2
1 + q2

2 + 2dq1q2
)

(1)

where α is a positive parameter (α > 0), which expresses the market size and
d ∈ (−1, 1) is the parameter that reveals the differentiation degree of products.
For example, if d = 0 then both products are independently and each firm partic-
ipates in a monopoly. But, if d = 1 then one product is a substitute for the other,
since the products are homogeneous. It is understood that for positive values of the
parameter d the larger the value, the less diversification we have in both products. On
the other hand negative values of the parameter d are described that the two products
are complementary and when d = −1 then we have the phenomenon of full compe-
tition between the two companies. The inverse demand functions (as functions of
quantities) coming from the maximizing of (1) are given by the following equations:

p1(q1, q2) = α − q1 − dq2 and p2(q1, q2) = α − q2 − dq1 (2)

The direct demand functions (as functions of prices):

q1(p1, p2) = α(1 − d) − p1 + dp2
1 − d2

and q2(p1, p2) = α(1 − d) − p2 + dp1
1 − d2

(3)

In this work we suppose that both players follow the same linear cost function,
which is described by the following equation:

Ci (qi ) = c · qi (4)

and c > 0 is the same marginal cost for two firms.
With these assumptions the profits of the firms are given by:

�1(p1, p2) = p1q1 − C1(q1) = (p1 − c) · α(1 − d) − p1 + dp2
1 − d2

(5)

and
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�2(p1, p2) = p1q1 − C2(q2) = (p2 − c) · α(1 − d) − p2 + dp1
1 − d2

(6)

Then the marginal profits at the point of the strategy space are given by:

∂�1

∂p1
= α(1 − d) + c − 2p1 + dp2

1 − d2
,
∂�1

∂p2
= d(p1 − c)

1 − d2
(7)

and

∂�1

∂p2
= α(1 − d) + c − 2p2 + dp1

1 − d2
,

∂�2

∂p1
= d(p2 − c)

1 − d2
(8)

As it is noticed both managers care about the maximization of a utility function
that contains a percentage of opponent company’s profits (generalized relative profit
function), which is given by:

Ui = (1 − μi ) · �i + μi · (�i − � j ) = �i − μi · � j (9)

where μ ∈ [0, 1] is the percentage that the player i takes into account the opponent
company’s prifots. So, the marginal utility of the player i is given by the following
equation:

∂Ui

∂pi
= ∂�i

∂pi
− μi · ∂� j

∂pi
(10)

and the marginal utilities for each player are:

∂U1

∂p1
= α(1 − d) + c(1 + μd) − 2p1 + d(1 − μ)p2

1 − d2
(11)

and

∂U2

∂p2
= α(1 − d) + c(1 + μd) − 2p2 + d(1 − μ)p1

1 − d2
(12)

The first player is characterized as bounded rational player. According to the
existing literature it means that he decides his price following a mechanism that is
described by the equation:

p1(t + 1) − p1(t)

p1(t)
= k · ∂U1

∂p1
, k > 0 (13)
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Through this mechanism the player increases his level of adaptation when his
marginal utility is positive or decreases his level when his marginal utility is negative,
where k is the speed of adjustment of player, it is a positive parameter (k > 0), which
gives the extend variation of price of the company 1, following a given utility signal.

The second player chooses this price that maximizes his utility function (naïve
player). So, his strategy is given by the equation:

p2(t + 1) = argmax
y

U2(p1(t), p2(t)) (14)

The dynamical system of the players is described by:

⎧
⎪⎪⎨

⎪⎪⎩

p1(t + 1) = p1(t) + k · p1(t) · ∂U1

∂p1

p2(t + 1) = α(1 − d) + c(1 + μd) + d(1 − μ) · p1(t)
2

(15)

We will focus on the dynamics of this system to the parameter k, d and μ.

2.2 Dynamical Analysis

The dynamical analysis of the discrete dynamical system involves finding equilib-
rium positions and studying them for stability. The ultimate goal of this algebraic
study is to formulate a proposition that will be the stability condition of the Nash
Equilibriumposition. Finally, these algebraic results are verified and visualized doing
some numerical simulations using the program of Mathematica.

2.2.1 The Equilibrium Positions

The equilibriums of the dynamical system (15) are obtained as the nonnegative
solutions of the algebraic system:

⎧
⎪⎪⎨

⎪⎪⎩

p∗
1 · ∂U1

∂p1
= 0

p∗
2 = α(1 − d) + c(1 + μd) + d(1 − μ) · p∗

1

2

(16)

which is obtained by setting: p1(t + 1) = p1(t) = p∗
1 and p2(t + 1) = p2(t) = p∗

2 .

• If p∗
1 = 0 and ∂U2

∂p2
= 0 then: p∗

2 = α(1−d)+c(1+μd)

2 and the equilibrium position is
the point:



750 G. Sarafopoulos andK. Papadopoulos

E1 =
(
0,

α(1 − d) + c(1 + μd)

2

)
(17)

• If ∂U1
∂p1

= ∂U2
∂p2

= 0 then the following system is obtained:

{
α(1 − d) + c(1 + μd) − 2p∗

1 + d(1 − μ)p∗
2 = 0

α(1 − d) + c(1 + μd) − 2p∗
2 + d(1 − μ)p∗

1 = 0
(18)

and the nonnegative solution of this algebraic system will give the Nash Equilibrium
position E∗ = (

p∗
1, p

∗
2

)
where:

p∗
1 = p∗

2 = (2 + d − μd) · [α(1 − d) + c(1 + μd)]

4 − d2(1 − μ)2
(19)

2.2.2 Stability of Equilibrium Points

To study the stability of the equilibrium positions we need the Jacobian matrix of the
dynamical system (15) which is the matrix:

J
(
p∗
1, p

∗
2

) =
[
f p1 f p2
gp1 gp2

]
(20)

where:

f (p1, p2) = p1 + k · p1 · ∂U1

∂p1

g(p1, p2) = α(1 − d) + c(1 + μd) + d(1 − μ) · p1
2

(21)

and as a result the Jacobian matrix of game’s discrete dynamical system (15) is the
following matrix:

J
(
p∗
1, p

∗
2

) =
[
1 + k ·

(
∂U1
∂p1

+ p∗
1 · ∂2U1

∂p21

)
k · p∗

1 · ∂2U1
∂p1∂p2

d(1−μ)

2 0

]

(22)

For the E1 the Jacobian matrix becomes as:

J (E1) =
[
1 + k · ∂U1

∂p1
0

d·(1−μ)

2 0

]
A=1+k· ∂U1

∂p1=
B= d·(1−μ)

2

[
A 0
B 0

]
(23)
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with Tr = A and Det = 0.
From the characteristic equation of J (E1), we find the nonnegative eigenvalue:

r1 = Tr = 1 + k · ∂U1

∂p1
(24)

it’s clearly seems that |r1| > 1 and the E1 equilibrium is unstable.
For the E∗ the Jacobian matrix becomes as:

J (E∗) =
[
1 − 2k · (1 + c) · q∗

1 −k · (1 − μ) · q∗
1

μ−1
2(1+c) 0

]

(25)

with

Tr = 1 − 2k · (1 + c) · q∗
1 and Det = −k · (1 − μ)2

2(1 + c)
· q∗

1 (26)

To study the stability of Nash equilibriumwe use three conditions that the equilib-
rium position is locally asymptotically stable when they are satisfied simultaneously:

(i)
(i i)
(i i i)

1 − Det > 0
1 − Tr + Det > 0
1 + Tr + Det > 0

(27)

It’s easy to find that the first condition (i) is always satisfied:

1 − Det > 0 ⇔ 1 + k · p∗
1 · d

2 · (1 − μ)2

2
(
1 − d2

) > 0 (28)

Also, the condition (ii) gives:

1 − Tr + Det > 0 ⇔ k · p∗
1 ·

[
4 − d2 · (1 − μ)2

]

2
(
1 − d2

) > 0 (29)

and it’s always satisfied because [4−d2·(1−μ)2]
2(1−d2)

> 0.

Finally, the condition (iii) becomes as:

1 + Tr + Det > 0 ⇔ k · p∗
1 ·

[
4 + d2 · (1 − μ)2

]

2
(
1 − d2

) − 2 < 0 (30)

Proposition The Nash equilibrium of the discrete dynamical system (15)is locally
asymptotically stable if:
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k · p∗
1 ·

[
4 + d2 · (1 − μ)2

]

2
(
1 − d2

) − 2 < 0

where

p∗
1 = (2 + d − μd) · [α(1 − d) + c(1 + μd)]

4 − d2 · (1 − μ)2

3 Numerical Simulations

3.1 Stability Spaces

At first the 3D stability space Fig. 1 is made including the main three parameters we
will focus on, the parameters k (speed of adjustment), the parameter d (product’s
differentiation degree) and μ (relative profit parameter). This three-dimensional
space is obtained by the stability condition that is described above in Proposition,
setting specific values for the other parameters α = 5 and c = 1. Also, the two-
dimensional stability region for a couple of these three parameters are presented that

Fig. 1 Three-dimensional stability space between the parameters k, d and μ for α = 5 and c = 1
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Fig. 2 Two-dimensional stability region between the parameters k (horizontal axis) andμ (vertical
axis) for α = 5, c = 1 and d = 0.50

is resulted setting specific values of for one of the three main parameters. Specifi-
cally, the stability regions between the parameters k and μ Fig. 2 also, between the
parameters d and μ Fig. 3 and between the parameters k and d Fig. 4 are presented.
A useful result using the Fig. 2 is that for small values of the parameter k (speed of
adjustment) there is a locally asymptotically stable Nash Equilibrium for every value
of the parameter μ (relative profit parameter) into the interval [0,1]. It means that for
these values of the other parameters α, c, d and k the parameter μ cannot destabilize
the economy.

3.2 Focusing on the Parameter k

In this section some numerical simulation including bifurcation diagrams, strange
attractors, Lyapunov numbers graph and Sensitive dependence on initial conditions
are presented focusing on the parameter k when the other parameters are fixed taking
the values: α = 5, c = 1, μ = 0.30 and d = 0.50. At first, the Nash Equilibrium for
the values of these parameters becomes as:

p∗
1 = p∗

2 � 2.21 ⇒ E∗
(
p∗
1, p

∗
2

) ≡ E∗(2.21, 2.21) (31)

and for the stability condition it means that the parameter k must take values into
the interval:
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Fig. 3 Two-dimensional stability region between the parametersμ (horizontal axis) and d (vertical
axis) for α = 5, c = 1 and k = 0.315

Fig. 4 Two-dimensional stability region between the parameters k (horizontal axis) and d (vertical
axis) for α = 5, c = 1 and μ = 0.20
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k ∈ (0, 0.32) (32)

This algebraic result is verified by the bifurcation diagrams of p∗
1 Fig. 5 and p∗

2
Fig. 6 with respect to the parameter k. As it seems there is a locally asymptotically
stable orbit until the value of 0.32 for the parameter k and after this value doubling
period bifurcations are appeared and finally, for higher values of the parameter k the
system’s behavior becomes chaotic and unpredictable.

.
This chaotic trajectory can create strange attractors Fig. 8 for a higher value of

the parameter k like 0.47, outside the stability space. Also, computing the Lyapunov
numbers Fig. 9 for this value of the parameter k and setting the same fixed values for
the other parameters α, c, μ and d it seems that they are getting over the value of 1
as an evidence for the chaotic trajectory.

Fig. 5 Bifurcation diagram with respect to the parameter k against the variable p∗
1 with 400

iterations of the map (15) for α = 5, c = 1, d = −0.50 and μ = 0.30

Fig. 6 Bifurcation diagram with respect to the parameter k against the variable p∗
2 with 400

iterations of the map (15) for α = 5, c = 1, d = −0.50 and μ = 0.30
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Fig. 7 The two previous bifurcation diagrams of Figs. 5 and 6 in one

Fig. 8 Phase portrait (strange attractor) of the orbit of (0.1, 0.1) with 8000 iterations of the map
(15) for α = 5, c = 1, d = −0.50, μ = 0.30 and k = 0.47

This chaotic trajectory makes the system sensitive on initial conditions, which
means that only a small change on a coordinate may change completely the system’s
behavior. For example, choosing two different initial conditions (0.1, 0.1) Fig. 10 and
(0.101,0.1) Fig. 11 with a small change at the p∗

1-coordinate and plotting the time
series of system it seems that at the beginning the time series are indistinguishable,
but after a number of iterations, the difference between them builds up rapidly.
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Fig. 9 Lyapunov numbers of the orbit of (0.1, 0.1) with 8000 iterations of the map (15) for α = 5,
c = 1, d = −0.50, μ = 0.30 and k = 0.47

Fig. 10 Sensitive dependence on initial conditions for p∗
1-coordinate plotted against the time: the

orbit of (0.1, 0.1) of the system (15) for α = 5, c = 1, d = −0.50, μ = 0.30 and k = 0.47

Fig. 11 Sensitive dependence on initial conditions for p∗
1-coordinate plotted against the time: the

orbit of (0.101, 0.1) of the system (15) for α = 5, c = 1, d = −0.50, μ = 0.30 and k = 0.47
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3.3 Focusing to the Parameter d

Using the stability region of Fig. between the parameters μ (horizontal axis) and d
(vertical axis) for α = 5, c = 1 and k = 0.315, it seems that when the parameter d
takes values into a close interval there is a stable Nash equilibrium for every value
of the parameter μ. For example, setting the value of 0.20 to the parameter μ, a
stable Nash Equilibrium is appeared into the interval (−0.20,0.55) for the parameter
d. This indication is verified by the following bifurcation diagrams of p∗

1 Fig. 12 and
p∗
2 Fig. 13 with respect to the parameter d.
Setting large and small values to the parameter d, strange attractors Figs. 15 and 19

and Lyapunov numbers Figs. 16 and 20 higher than the number of 1 are appeared
showing the chaotic trajectories and unpredictable behavior of the system of (15) for
these values of the parameter d = 0.79 and d = −0.50 outside the stability space.

Fig. 12 Bifurcation diagram with respect to the parameter d against the variable p∗
1 with 400

iterations of the map (15) for α = 5, c = 1, k = 0.30 and μ = 0.20

Fig. 13 Bifurcation diagram with respect to the parameter d against the variable p∗
2 with 400

iterations of the map (15) for α = 5, c = 1, k = 0.30 and μ = 0.20



Dynamics of a Bertrand Duopoly Game with Differentiated Goods, … 759

Fig. 14 The two previous bifurcation diagrams of Figs. 12 and 13 in one

Fig. 15 Phase portrait (strange attractor) of the orbit of (0.1, 0.1) with 8000 iterations of the map
(15) for α = 5, c = 1, k = 0.30, μ = 0.20 and d = 0.79

Finally, for these values of the parameter d the system becomes sensitive on initial
conditions a result that is revealed by the sensitive dependence on initial conditions
with a small change at the first coordinate and plotting the time series of system of
(15) for d = 0.79 Figs. 17 and 18 and for d = −0.50. Figures 21 and 22.

3.4 Focusing to the Parameter µ

Using the same methods of numerical simulations focusing to the parameter μ (rela-
tive profit parameter) it is shown that small values of this parameter can destabilize
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Fig. 16 Lyapunov numbers of the orbit of (0.1, 0.1) with 8000 iterations of the map (15) for α =
5, c = 1, k = 0.30, μ = 0.20 and d = 0.79

Fig. 17 Sensitive dependence on initial conditions for p∗
1-coordinate plotted against the time: the

orbit of (0.1, 0.1) of the system (15) for α = 5, c = 1, k = 0.30, μ = 0.20 and d = 0.79

Fig. 18 Sensitive dependence on initial conditions for p∗
1-coordinate plotted against the time: the

orbit of (0.101, 0.1) of the system (15) for α = 5, c = 1, k = 0.30, μ = 0.20 and d = 0.79
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Fig. 19 Phase portrait (strange attractor) of the orbit of (0.1, 0.1) with 8000 iterations of the map
(15) for α = 5, c = 1, k = 0.30, μ = 0.20 and d = −0.50

Fig. 20 Lyapunov numbers of the orbit of (0.1, 0.1) with 8000 iterations of the map (15) for α =
5, c = 1, k = 0.30, μ = 0.20 and d = −0.50

the economy through doubling bifurcation diagrams Figs. 23, 24 and 25 and strange
attractors Fig. 26 and Lyapunov numbers Fig. 27 higher than the number of 1 are
appeared. Also, the system of (15) becomes sensitive on small changes of initial
conditions for small values of the parameter μ (μ = 0.05) and it is revealed by the
Figs. 28 and 29 of time series at first setting to the system the initial conditions of
(0.1,0.1) and secondly of (0.101,0.1). As it seems, at the beginning the time series
are indistinguishable, but after a number of iterations, the difference between them
builds up rapidly.
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Fig. 21 Sensitive dependence on initial conditions for p∗
1-coordinate plotted against the time: the

orbit of (0.1, 0.1) of the system (15) for α = 5, c = 1, k = 0.30, μ = 0.20 and d = −0.50

Fig. 22 Sensitive dependence on initial conditions for p∗
1-coordinate plotted against the time: the

orbit of (0.101, 0.1) of the system (15) for α = 5, c = 1, k = 0.30, μ = 0.20 and d = −0.50

Fig. 23 Bifurcation diagram with respect to the parameter d against the variable p∗
1 with 400

iterations of the map (15) for α = 5, c = 1, k = 0.315 and d = 0.74
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Fig. 24 Bifurcation diagram with respect to the parameter d against the variable p∗
2 with 400

iterations of the map (15) for α = 5, c = 1, k = 0.315 and d = 0.74

Fig. 25 The two previous bifurcation diagrams of Figs. 23 and 24 in one

4 Conclusions

In this paper we analyzed the dynamics of a differentiated Bertrand duopoly with
heterogeneous expectations, linear demand and cost functions. By assuming that at
each time period each firm maximizes its expected relative profit under different
expectations, a discrete dynamical system was obtained. Existence and stability of
equilibrium of this system are studied. We showed numerically that the model gives
chaotic and unpredictable trajectories. The main result is that a lower and higher
degree of product differentiation relative may destabilize the Bertrand–Nash equi-
librium. Also, this instability can be appeared for higher values of the speed of
adjustment and lower values of the relative profit parameter. Finally, we showed also
that for lower values of the speed of adjustment the equilibrium is stable for each
value of the relative profit parameter.
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Fig. 26 Phase portrait (strange attractor) of the orbit of (0.1, 0.1) with 8000 iterations of the map
(15) for α = 5, c = 1, k = 0.315, d = 0.74 and μ = 0.05

Fig. 27 Lyapunov numbers of the orbit of (0.1, 0.1) with 8000 iterations of the map (15) for α =
5, c = 1, k = 0.315, d = 0.74 and μ = 0.05
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Fig. 28 Sensitive dependence on initial conditions for p∗
1-coordinate plotted against the time: the

orbit of (0.1, 0.1) of the system (15) for α = 5, c = 1, k = 0.315, d = 0.74 and μ = 0.05

Fig. 29 Sensitive dependence on initial conditions for p∗
1-coordinate plotted against the time: the

orbit of (0.101, 0.1) of the system (15) for α = 5, c = 1, k = 0.315, d = 0.74 and μ = 0.05
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On a Cournot Dynamic Game with Cost
Uncertainty and Relative Profit
Maximization

Georges Sarafopoulos and Kosmas Papadopoulos

Abstract In this paper, a Cournot duopolymodel with homogeneous goods is exam-
ined with uncertain cost function. A random linear cost function is introduced in this
model for the first player. The case of homogeneous expectations is studied. The exis-
tence and uniqueness of the equilibrium are obtained. The asymptotic behavior of
the equilibrium point is also investigated. Complete stability and bifurcation analysis
are provided. The obtained theoretical results are verified by numerical simulations.

Keywords Cournot duopoly game · Cost uncertainty · Relative profit
maximization · Discrete dynamical system · Nash equilibrium · Stability ·
Bifurcation diagrams · Lyapunov numbers · Strange attractors · Chaotic behavior

1 Introduction

AnOligopoly is amarket structure betweenmonopoly andperfect competition,where
there are only a few number of firms in themarket producing homogeneous products.
The dynamic of an oligopoly game is more complex because firms must consider
not only the behaviors of the consumers, but also the reactions of the competitors
i.e. they form expectations concerning how their rivals will act. Cournot, in 1838
has introduced the first formal theory of oligopoly. In 1883 another French math-
ematician Joseph Louis Francois Bertrand modified Cournot game suggesting that
firms actually choose prices rather than quantities. Originally Cournot and Bertrand
modelswere based on the premise that all players follow naive expectations, so that in
every step, each player (firm) assumes the last values that were taken by the competi-
tors without estimation of their future reactions. However, in real market conditions
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such an assumption is very unlikely since not all players share naive beliefs. There-
fore, different approaches to firm behavior were proposed. Some authors considered
duopolies with homogeneous expectations and found a variety of complex dynamics
in their games, such as appearance of strange attractors (Agiza [1]; Agiza et al. [4];
Agliari et al. [5, 6]; Bischi and Kopel [11]; Kopel [18]; Puu [23]; Sarafopoulos [24,
25]; Sarafopoulos et al. [28]; Zhang et al. [32]). Also models with heterogeneous
agents were studied (Agiza and Elsadany [2, 3]; Den Haan [12]; Fanti and Gori [15];
Hommes [17]; Sarafopoulos et al. [26, 27, 29]; Tramontana [30]; Zhang et al. [31]).

In the real market producers do not know the entire demand function, though
it is possible that they have a perfect knowledge of technology, represented by the
cost function. Hence, it is more likely that firms employ some local estimate of
the demand. This issue has been previously analyzed by Baumol and Quandt [9];
Puu [22]; Naimzada and Ricchiuti [20]; Askar [7]; Askar [8]. Bounded rational
players (firms) update their strategies based on discrete time periods and by using
a local estimate of the marginal profit. With such local adjustment mechanism, the
players are not requested to have a complete knowledge of the demand and the cost
functions (Agiza and Elsadany [2]; Naimzada and Sbragia [21]; Zhang et al. [32];
Askar [8]; Bischi et al. [10, 11]).

In this paperwe study the dynamics of a Cournot-type duopolywith homogeneous
goods where each firm behaves with homogeneous expectations. We show that the
model gives more complex chaotic and unpredictable trajectories as a consequence
of change in the speed of players’ adjustment. The paper is organized as follows: In
Sect. 2, the dynamics of the duopoly game with homogeneous expectations, linear
demand and cost functions and relative profit functions for two players are analyzed.
A cost uncertainty is introduced into first player’s utility function.We set both players
as bounded rational players. The existence and local stability of the equilibriumpoints
are also analyzed. In Sect. 3 numerical simulations are used to verify the algebraic
results of Sect. 2 plotting the bifurcation diagrams of the game’s system and to show
the complex dynamics via computing Lyapunov numbers, and sensitive dependence
on initial conditions.

2 The Game

2.1 The Construction of the Game

In this study we assume that in the two companies there is a separation between
ownership and management, so there is a possibility that the managers who make
decisions for the company to decide at the expense of their company trying to increase
the profits of the competitor. Also, we consider homogeneous players and more
specifically, we consider that both firms choose the quantity of their productions in
a rational way, following an adjustment mechanism (bounded rational players). We
consider a simple Cournot-type duopoly market where firms (players) produce the
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same good and offer it at discrete-time periods on a common market. Production
decisions are taken at discrete time periods t = 0, 1, 2,… At each period t, every firm
must form an expectation of the rival’s strategy in the next time period in order to
determine the corresponding profit-maximizing prices for period t + 1. We suppose
that q1, q2 are the production quantities of each firm. Also, we consider that the
preferences of consumers represented by the equation:

U (q1, q2) = α(q1 + q2) − 1

2

(
q2
1 + q2

2 + 2dq1q2
)

(1)

where α is a positive parameter (α > 0), which expresses the market size and
d ∈ [−1, 1] is the parameter that reveals the differentiation degree of products
[13]. For example, if d = 0 then both products are independently and each firm
participates in a monopoly. But, if d = 1 then one product is a substitute for the
other, since the products are homogeneous. It is understood that for positive values
of the parameter d the larger the value, the less diversification we have in both prod-
ucts. On the other hand negative values of the parameter d are described that the two
products are complementary and when d = −1 then we have the phenomenon of
full competition between the two companies. The inverse demand functions (as func-
tions of quantities) coming from the maximizing of (1) are given by the following
equations (assuming d = 1):

p1(q1, q2) = α − q1 − q2 and p2(q1, q2) = α − q2 − q1, (d = 1) (2)

In this workwe suppose that the first player’s cost function contains an uncertainty
by which the marginal cost (linear cost function) is equal to the combination between
the parameters:c1, c2 > 0, which is described by the following equation:

C1(q1) = [p · c1 + (1 − p) · c2] · q1 (3)

where p ∈ [0, 1], is the positive uncertainty cost parameter.
On the other hand the second player uses a simple linear cost function that its

marginal cost is equal to c1 > 0 and it is described by the equation:

C2(q2) = c1 · q2 (4)

With these assumptions the profits of the firms are given by:

�1(q1, q2) = p1 · q1 − C1(q1) = [α − q1 − q2 − p · c1 − (1 − p) · c2] · q1 (5)

and

�2(q1, q2) = p2 · q2 − C2(q2) = [α − c1 − q1 − q2]q2 (6)
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Then the marginal profits at the point of the strategy space are given by:

∂�1

∂q1
= α − p · c1 − (1 − p) · c2 − 2q1 − q2,

∂�1

∂q2
= −q1 (7)

and

∂�2

∂q2
= α − c1 − q1 − 2q2,

∂�2

∂q1
= −q2 (8)

As it is noticed both managers care about the maximization of a utility function
that contains a percentage of opponent company’s profits (generalized relative profit
function), which is given by:

Ui = (1 − μi ) · �i + μi · (�i − � j ) = �i − μi · � j (9)

where μ ∈ [0, 1] is the percentage that the player i takes into account the opponent
company’s prifots. So, the marginal utility of the player i is given by the following
equation:

∂Ui

∂qi
= ∂�i

∂qi
− μi · ∂� j

∂qi
(10)

and the marginal utilities for each player are:

∂U1

∂q1
= α − p · c1 − (1 − p) · c2 − 2q1 − (1 − μ)q2 (11)

and

∂U2

∂q2
= α − c1 − (1 − μ)q1 − 2q2 (12)

Both players are characterized as bounded rational players. According to the
existing literature it means that they decide their productions following a mechanism
that is described by the equation:

qi (t + 1) − qi (t)

qi (t)
= k · ∂Ui

∂qi
, k ≤ 0 (13)

Through this mechanism the player increases his level of adaptation when his
marginal utility is positive or decreases his level when his marginal utility is negative,
where k is the speed of adjustment of player, it is a positive parameter (k > 0), which
gives the extend variation of production quantity of the each company, following a
given utility signal.
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The dynamical system of the players is described by:

⎧
⎪⎪⎨

⎪⎪⎩

q1(t + 1) = q1(t) + k · q1(t) · ∂U1

∂q1

q2(t + 1) = q2(t) + k · q2(t) · ∂U2

∂q2

(14)

We will focus on the dynamics of this system to the parameter k.

2.2 Dynamical Analysis

The dynamical analysis of the discrete dynamical system involves finding equilib-
rium positions and studying them for stability. The ultimate goal of this algebraic
study is to formulate a proposition that will be the stability condition of the Nash
Equilibriumposition. Finally, these algebraic results are verified and visualized doing
some numerical simulations using the program of Mathematica.

2.2.1 The Equilibrium Positions

The equilibriums of the dynamical system (14) are obtained as the nonnegative
solutions of the algebraic system:

⎧
⎪⎪⎨

⎪⎪⎩

q∗
1 · ∂U1

∂q1
= 0

q∗
2 · ∂U2

∂q2
= 0

(15)

which is obtained by setting:q1(t + 1) = q1(t) = q∗
1 andq2(t + 1) = q2(t) = q∗

2 .

• If q∗
1 = q∗

2 = 0 then the boundary equilibrium position is the point:

E0 = (0, 0) (16)

• If q∗
1 = 0 and ∂U2

∂q2
= 0 then: q∗

2 = α−c1
2 and the equilibrium position is the point:

E1 =
(
0,

α − c1
2

)
(17)

• If q∗
2 = 0 and ∂U1

∂q1
= 0 then: q∗

1 = α−p·c1−(1−p)·c2
2 and the equilibrium position is

the point:
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E2 =
(

α − p · c1 − (1 − p) · c2
2

, 0

)
(18)

• If ∂U1
∂q1

= ∂U2
∂q2

= 0 then the following system is obtained:

{
α − p · c1 − (1 − p) · c2 − 2q∗

1 − (1 − μ) · q∗
2 = 0

α − c1 − (1 − μ) · q∗
1 − 2q∗

2 = 0
(19)

and the nonnegative solution of this algebraic system will give the Nash
Equilibrium position E∗ = (

q∗
1 , q

∗
2

)
where:

q∗
1 = α(1 + μ) + (1 − μ − 2p) · c1 − 2(1 − p) · c2

4 − (1 − μ)2
(20)

and

q∗
2 = α(1 + μ) − (2 − p + p · μ) · c1 + (1 − p) · (1 − μ) · c2

4 − (1 − μ)2
(21)

This means that:

α(1 + μ) + (1 − μ − 2p) · c1 − 2(1 − p) · c2 > 0 (22)

and

α(1 + μ) − (2 − p + p · μ) · c1 + (1 − p) · (1 − μ) · c2 > 0. (23)

2.2.2 Stability of Equilibrium Points

To study the stability of the equilibrium positions we need the Jacobian matrix of the
dynamical system Eq. (15) which is the matrix:

J
(
q∗
1 , q

∗
2

) =
[
fq1 fq2
gq1 gq2

]
(24)

where:

f (q1, q2) = q1 + k · q1 · ∂U1

∂q1

g(q1, q2) = q2 + k · q2 · ∂U2

∂q2

(25)
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and as a result the Jacobian matrix of game’s discrete dynamical system Eq. (14)
is the following matrix:

J
(
q∗
1 , q

∗
2

) =
⎡

⎣
1 + k ·

(
∂U1
∂q1

+ q∗
1 · ∂2U1

∂q2
1

)
k · q∗

1 · ∂2U1
∂q1∂q2

k · q∗
2 · ∂2U2

∂q2∂q1
1 + k ·

(
∂U2
∂q2

+ q∗
2 · ∂2U2

∂q2
2

)

⎤

⎦ (26)

For the E0 the Jacobian matrix becomes as:

J (E0) =
[
1 + k · ∂U1

∂q1
0

0 1 + k · ∂U2
∂q2

]
A=1+k· ∂U1

∂q1=
B=1+k· ∂U2

∂q2

[
A 0
0 B

]
(27)

with Tr = A + B and Det = A · B.
From the characteristic equation of J (E0), we find the nonnegative eigenvalues:

r1 = A = 1 + k · ∂U1

∂q1
and r2 = B = 1 + k · ∂U2

∂q2
(28)

it’s clearly seems that |r1|, |r2| > 1 and the E0 equilibrium is unstable.
For the E1 the Jacobian matrix becomes as:

J (E1) =
[

1 + k · ∂U1
∂q1

0

−k · (1 − μ)q∗
2 1 − 2k · q∗

2

]
C=1+k· ∂U1

∂q1=
E=1−2k·q∗

2

[
C 0
D E

]
(29)

with Tr = C + E and Det = C · E .
From the characteristic equation of J (E1), we find the nonnegative eigenvalue:

r1 = C = 1 + k · α(1 + μ) + (1 − μ − 2p) · c1 − (1 − p) · c2
2

(30)

it’s clearly seems that |r1| > 1, because:
α(1 + μ)+(1 − μ − 2p) ·c1−2(1 − p) ·c2 > 0 Eq. (22) and the E1 equilibrium

is unstable.
For the E2 the Jacobian matrix becomes as:

J (E2) =
[
1 − 2k · q∗

1 −k · (1 − μ)q∗
1

0 1 + k · ∂U2
∂q2

]
F=1−2k·q∗

1=
H=1+k· ∂U2

∂q2

[
F G
0 H

]
(31)

with Tr = F + H and Det = F · H .
From the characteristic equation of J (E2), we find the nonnegative eigenvalue:

r2 = H = 1 + k · α(1 + μ) − (2 − p + p · μ) · c1 + (1 − p) · (1 − μ) · c2
2

(32)



776 G. Sarafopoulos andK. Papadopoulos

it’s clearly seems that |r2| > 1, because:
α(1 + μ) − (2 − p + p · μ) · c1 + (1 − p) · (1 − μ) · c2 > 0 Eq. (23) and the E2

equilibrium is unstable.
For the E∗ the Jacobian matrix becomes as:

J (E∗) =
[
1 + k · q∗

1 · ∂2U1

∂q2
1

k · q∗
1 · ∂2U1

∂q1∂q2

k · q∗
2 · ∂2U2

∂q2∂q1
1 + k · q∗

2 · ∂2U2

∂q2
2

]

(33)

with

Tr = 2 − 2k · q∗
1 − 2k · q∗

2 (34)

and

Det = 1 − 2k · q∗
1 − 2k · q∗

2 + [
4 − (1 − μ)2

] · k2 · q∗
1 · q∗

2 (35)

To study the stability of Nash equilibriumwe use three conditions that the equilib-
rium position is locally asymptotically stable when they are satisfied simultaneously
[14, 16, 19]:

(i)
(i i)
(i i i)

1 − Det > 0
1 − Tr + Det > 0
1 + Tr + Det > 0

(36)

The condition (i) gives:

1 − Det > 0 ⇔ 2k
(
q∗
1 + q∗

2

) − [
4 − (1 − μ)2

] · k2 · q∗
1 · q∗

2 > 0 (37)

It’s easy to find that the first condition (i) is always satisfied:

1 − Tr + Det > 0 ⇔ [
4 − (1 − μ)2

] · k2 · q∗
1 · q∗

2 > 0 > 0 (38)

because:
[
4 − (1 − μ)2

]
> 0.

Finally, the condition (iii) becomes as:

1 + Tr + Det > 0 ⇔ [
4 − (1 − μ)2

] · q∗
1 · q∗

2 · k2 − 4
(
q∗
1 + q∗

2

) · k + 4 > 0
(39)

Proposition: The Nash equilibrium of the discrete dynamical system Eq. (15) is
locally asymptotically stable if:

2k
(
q∗
1 + q∗

2

) − [
4 − (1 − μ)2

] · k2 · q∗
1 · q∗

2 > 0
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and

[
4 − (1 − μ)2

] · q∗
1 · q∗

2 · k2 − 4
(
q∗
1 + q∗

2

) · k + 4 > 0.

3 Numerical Simulations Focusing on the Parameter k

From the condition (i) focusing on the parameter k we take the following inequality:

0 < k <
2
(
q∗
1 + q∗

2

)

[
4 − (1 − μ)2

] · q∗
1 · q∗

2

(40)

The condition (iii) is the following:

[
4 − (1 − μ)2

] · q∗
1 · q∗

2 · k2 − 4
(
q∗
1 + q∗

2

) · k + 4 > 0

And its discriminant is positive:

� = 16
[(
q∗
1 − q∗

2

)2 + (1 − μ)2
]

> 0 (41)

so the condition (iii) is satisfied if:

k ∈ (0, k1) ∪ (k2,+∞) (42)

where:

k1,2 = 4
(
q∗
1 + q∗

2

) ± √
�

2
[
4 − (1 − μ)2

] · q∗
1 · q∗

2

(43)

are its two positive roots.
To provide some numerical evidence for the chaotic behavior of the system

Eq. (14), as a consequence of change in the parameter k (the speed of adjustment),
we present various numerical results here to show the chaoticity, including its bifur-
cations diagrams, strange attractors, Lyapunov numbers and sensitive dependence
on initial conditions.

In order to study the local stability properties of the equilibrium points, it is
convenient to take specific values for the other parameters: α = 5, c1 = 1, c2 = 0.5
and p = μ = 0.5. So, as a result we find that q∗

1 	 1.73 and q∗
2 	 1.57 and the

stability condition becomes as:

0 < k < 0.48 (44)
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This algebraic result is verified by the bifurcation diagrams of q∗
1 (Fig. 1) and q∗

2
(Fig. 2) with respect to the parameter k. As it seems there is a locally asymptotically
stable orbit until the value of 0.48 for the parameter k and after this value doubling
period bifurcations are appeared and finally, for higher values of the parameter k the
system’s behavior becomes chaotic and unpredictable (Fig. 3).

Fig. 1 Bifurcation diagram
with respect to the parameter
d against the variable q∗

1 with
400 iterations of the map
Eq. (15) for α = 5, c1 = 1, c2
= 0.50, p = 0.50 and μ =
0.50

Fig. 2 Bifurcation diagram
with respect to the parameter
d against the variable q∗

2 with
400 iterations of the map
Eq. (15) for α = 5, c1 = 1, c2
= 0.50, p = 0.50 and μ =
0.50

Fig.3 The two previous
bifurcation diagrams of
Figs. 1 and 2 in one
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This chaotic trajectory can create strange attractors (Fig. 4) for a higher value of
the parameter k like 0.675, outside the stability space. Also, computing the Lyapunov
numbers (Fig. 5) for this value of the parameter k and setting the same fixed values
for the other parameters α, c1, c2, p andμ it seems that they are getting over the value
of 1 as an evidence for the chaotic trajectory.

This chaotic trajectory makes the system sensitive on initial conditions, which
means that only a small change on a coordinate may change completely the system’s
behavior. For example, choosing two different initial conditions (0.1,0.1) (Fig. 6) and
(0.101,0.1) (Fig. 7) with a small change at the q∗

1 -coordinate and plotting the time
series of system it seems that at the beginning the time series are indistinguishable,
but after a number of iterations, the difference between them builds up rapidly.

Fig. 4 Phase portrait
(strange attractor) of the
orbit of (0.1,0.1) with 8000
iterations of the map Eq. (15)
for α = 5, c1 = 1, c2 = 0.50,
p = 0.50, μ = 0.50 and k =
0.675

Fig. 5 Lyapunov numbers
of the orbit of (0.1,0.1) with
8000 iterations of the map
Eq. (15) for α = 5, c1 = 1, c2
= 0.50, p = 0.50, μ = 0.50
and k = 0.675
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Fig. 6 Sensitive dependence
on initial conditions for
q∗
1 -coordinate plotted against
the time: the orbit of
(0.1,0.1) of the system
Eq. (15) for α = 5, c1 = 1, c2
= 0.50, p = 0.50, μ = 0.50
and k = 0.675

Fig. 7 Sensitive dependence
on initial conditions for
q∗
1 -coordinate plotted against
the time: the orbit of
(0.101,0.1) of the system
Eq. (15) for α = 5, c1 = 1, c2
= 0.50, p = 0.50, μ = 0.50
and k = 0.675

4 Conclusions

In this paper we analyzed the dynamics of a differentiated Cournot duopoly with
homogeneous expectations, linear demand and cost functions. An uncertainty of the
first firm’s cost function is introduced. By assuming that at each time period each
firm maximizes its expected relative profit under the same expectations, a discrete
dynamical systemwas obtained. Existence and stability of equilibrium of this system
are studied. We showed numerically that the model gives chaotic and unpredictable
trajectories. The main result is that higher values of the speed of adjustment may
destabilize the Cournot–Nash equilibrium.
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Driven Intrinsic Localized Modes in Soft
Nonlinear Microscopic and Macroscopic
Lattices
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Abstract The possibility that large amplitude, localized vibrational excitations can
exist in periodic physical lattices with nonlinear intersite forces was discovered over
thirty years ago. The energy profiles of these intrinsic localized modes (ILMs)
resemble those of localized vibrational modes at defects in a harmonic lattice.
Described here are a variety of experiments on driver locked ILMs for two soft
nonlinear lattices: an atomic spin array and an electrical nonlinear transmission
line. CW locked ILMs in the quasi-1D antiferromagnet (C2H5NH3)2CuCl4 have
been found at frequencies below the antiferromagnetic resonance by employing
four-wave mixing emission. A discrete step structure is observed in the emission
signal as well as repeatable nonlinear ILM switching and hysteresis. These findings
are compared with locked ILMs and large amplitude lattice spatial modes (LSMs)
that have been measured for a driven 1-D nonlinear cyclic electric transmission
line, where the nonlinear element is a saturable capacitor. Interestingly, by tuning
the driver frequency away from the modal spectrum an LSM can be continuously
converted into ILMs and vice versa. As a consequence, the resultant electrical energy
distribution for the experimental soft nonlinear cyclic array can be either balanced
or unbalanced.
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1 Introduction

Although vibrational impurity modes in lattices have a long history [1], a major
advance in the subject of excitations in discrete nonlinear lattices was the discovery
that, even in the absence of impurities, some localized vibrations can be stabilized
by lattice discreteness [2]. These excitations which, like impurity modes, extend
only over the lattice constant scale are generically called “intrinsic localized modes”
(ILMs) since they involve no disorder but come inmany different shapes [3]. They are
also called “lattice solitons” [4] or “discrete breathers” [5] because of similarities to
some exact soliton solutions in nonlinear continuum theories. These excitations have
been formalized in terms of a number of useful existence and stability criteria [6].
Both theory and a variety of experiments have been reviewed in the literature [7, 8]
with experiments on microscopic antiferromagnetic lattices [9–14] and macroscopic
electrical nonlinear transmission lines (ENTL) [15–21] playing important roles. At
first glance experiments on these two kinds of nonlinear systems would appear to be
unrelated since the antiferromagnet is a quantum system while the ENTL is a clas-
sical one, but in certain cases both can be treated with classical equations of motion.
The resulting dynamics is that both systems transmit energy over specific frequency
bands. For the antiferromagnet it is spin wave energy that is transmitted, while for the
ENTL it is electromagnetic. With regard to nonlinear properties of the two dynam-
ical systems they can be designed to match as well. For the antiferromagnetic lattice
both the spin exchange energy and the magnetic anisotropy energy have soft inter-
site and onsite nonlinearities so that the uniform antiferromagnetic resonance mode
frequency decreases with increasing spin amplitude. By introducing a soft nonlinear
capacitor in each cell of the ENTL, such as MOS-FETs, the low frequency uniform
electromagnetic mode of this band pass filter will also decrease in frequency with
increasing driving amplitude.

The purpose of this review is to examine the observed ILMfindings for two driven,
soft nonlinear latticeswith damping, one amagnetic crystalwith amicroscopic lattice
constant and the other an ENTL with a macroscopic one. From these very different
experimental techniques on different systems come ILMfindings that are remarkably
similar.

2 Observation of Driven Antiferromagnetic ILMs

2.1 Spin Wave Dynamics of (C2H5NH3)2CuCl4

How can an antiferromagnetic spin 1/2 system be compatible with a classical dynam-
ical description? Below a Neél temperature of TN = 10.2 K the spin 1/2 Cu2+ ions of
(C2H5NH3)2CuCl4 are oriented along the a-crystal axis, in alternate sheets of strong
ferromagnetically coupled spinswithweak antiferromagnetic couplingbetween adja-
cent sheets as illustrated in Fig. 1. [12] At 1.4 K the ratio of the interlayer spin
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Fig. 1 Lattice and spin structure of (C2H5NH3)2CuCl4. Circles denote Cu2+ ions and arrows
indicate the spin configuration within the antiferromagnetic state. Only Cu2+ ions are shown for
this layered, face centered, orthorhombic compound. The easy, second easy, and hard spin axes are
labeled the a, b, and c crystal directions, respectively [12]

exchange field to the intralayer one is 1.5 × 10−3 so the spins in a given layer are
strongly aligned in the same direction, thus the low frequency spin dynamics can be
approximated by a 1D two sublattice antiferromagnet with each layer represented by
a macroscopic classical spin. Due to the easy axis anisotropy and the weak antifer-
romagnetic interaction between these classical spins the lower and upper frequency
antiferromagnetic resonance (AFMR)modes are polarized along the c- and b- crystal
axes, respectively.

The classical equation of motion for the normalized spin �Sn at the nth sheet site,
including damping and driving terms, is [9]

d

dt
�Sn = −γ Sn × Hn − γ λ�Sn ×

(�Sn × �Hn

)
(1)

whereγ is the gyromagnetic ratio andλ theLandaudampingparameter. Themagnetic
field acting on the nth macroscopic spin is

�Hn = −2J
(�Sn−1 + �Sn+1

)
− 2

↔
A · �Sn + hc0êc cosωt (2)

with J the nearest neighbor antiferromagnetic exchange constant,
↔
A the anisotropy

field tensor, and hc0 the amplitude of the ac driving field along the c axis crystal
direction. For this easy plane anisotropy case the two small amplitude dispersion
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Fig. 2 Spin-wave dispersion
curve for the antiferromagnet
(C2H5NH3)2CuCl4. Upper
and lower branches along the
c axis. The inset shows the
uniform mode spin motion
for the lower AFMR mode,
which has a net ac
magnetization only along the
c axis. ILMs may be
expected to occur below the
minimum frequency of the
dispersion curve [12]
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curves are shown in Fig. 2 with the resulting uniform mode frequencies in the GHz
range.

The insert shows the polarization of the lowest frequency AFMR mode with a
linearly polarized transverse ac moment generated in the 1–3 direction but not in the
2–4 direction. It is the rod-shaped sample that has been studied in pulse and CW
experiments.

2.2 Experimental Procedure

In magnetic solids with the AFMR involving spins on the order of 1022 per cc the
question is how to distinguish ILM dynamics from this background? The answer is
not to rely on a linear experimental technique but, since ILMs are nonlinear, to make
use of a detection technique that involves a nonlinearity. Both pulse and CW four-
wave techniques have been used to observe magnetic ILMs in this antiferromagnet
[11–14]. The CW technique is outlined here. To illustrate the experimental approach,
consider the AFMR absorption spectra shown in Fig. 3.

A weak probe with frequency f p is swept across the AFMR absorption line,
which occurs at about 1.38 GHz at t = 0. Next the powerful driver with frequency
fD nearby is switched on as shown in Fig. 3a. This driver pulls the absorption line
to lower frequencies. The closer the driver frequency is to the AFMR the larger the
effect as shown in Fig. 3b. Figure 3c illustrates the point where the AFMR becomes
unstable. So far allwe see is the linear absorption spectrum.To access the nonlinearity
associated with the ILM a four-wave mixing technique was employed. The resulting
power emitted by the ILMalone, P (3)

I LM , is detected at the spectrumanalyzer frequency
fsp = 2 fD − f p. Further analysis shows that among other elements the four wave
mixing signal has the form [12]

√
P (3)
I LM ∝ nI LM PD, (3)
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Fig. 3 Pulling the AFMR
absorption frequency and
capturing ILMs with a cw
driver. a Initially the AFMR
absorption line is at
1.38 GHz and the driver,
1.325 GHz, is switched on at
t = 0. The frequency gap,
� f , between them
continuously changes over a
15-ms time interval. b In this
case � f is now small
enough so that the change in
the AFMR frequency now
occurs over 3 ms. c Here � f
is sufficiently small that the
AFMR mode becomes
unstable and ILMs are
transferred to the driver
frequency [22]

where nI LM is the number of ILMs emitting and PD is the driving power. Because
nI LM has integer values this relation will identify steps in the square root of
the emitted power as the ILMs appear and disappear. Figure 4 illustrates the
appearance of such a step.

Fig. 4 Illustrates the turn on of the emissionwhen theAFMRbecomes instable. Both the absorption
spectrum and the emission spectrum are superimposed on the same figure. Here the breakup of
the absorption pattern occurs at around 9 ms while simultaneously the emission grows rapidly in
strength, as ILMs become locked at the driver frequency [14]
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2.3 Observing Steady State Magnetic ILMs

A time sweep of the emission spectrum does not have sufficient resolution to pick
out individual ILMs so a more refined technique is required. With ILMs locked to
the driver it is also possible to change the frequency gap, � f , between the AFMR
and the driver, by changing the AFMR frequency. Described here is the technique
of tuning by changing the sample temperature. Since the anisotropy energy depends
on the sublattice magnetization it depends on the temperature so both positive and
negative manipulation of the frequency gap � f is possible by simply sweeping the
sample temperature.

By monitoring the four-wave emission as a function of sample temperature vari-
ation one finds the data shown in Fig. 5a. It maps out two hysteresis loops, each for a
single ILM [14]. Slowly increasing the sample temperature decreases the sublattice
magnetization, decreases � f and generates a locked ILM as shown by the dotted
curve (arrow pointing to the right). Increasing the sample temperature produces the
solid curve, arrow to the left, ending with the destruction of the ILM. In Fig. 5a the

Fig. 5 Observation of locked ILM switching by tuning sample temperature. (a) Increasing the
temperature decreases the frequency gap, � f (dotted lines for three different driving powers).
Solid lines are for decreasing temperatures. (b) Comparison of the 50 mW data with those expected
for a driven nonlinear oscillator (thick solid line) [14]
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results for three different driver power levels are displayed with the lowest tempera-
ture emission steps up and down for a 50 mW driver. Figure 5b presents an expanded
view of the lowest temperature sweep described in (a). Superimposed on that trace
is the amplitude pattern for the switching of a nonlinear oscillator model to qualify
the hysteretic switching that has been observed. Interestingly it is found that the step
heights do not change significantly as the power of the locking driver is changed.

3 Electric Lattice with Soft, Saturable, Nonlinearity

3.1 Experimental Setup

Figure 6a shows the components within a unit cell of a 32 element electric nonlinear
transmission line (ENTL). The nonlinear capacitor consists of two anti-paralleled
N-channel MOS-FETs (IRFU-120). When the gate is negatively biased, holes in a
P-semiconductor (for the N-channel FET) are accumulated below the gate between
an oxide and semiconductor, and the boundary works as a conductive sheet. The
capacitance between the gate and source electrodes is large with its value limited by
the thickness of the oxide. When the gate is positively biased, the semiconductor is
inverted to N-type and the boundary layer forms a conductive sheet. The capacitance
between the drain and the gate is again large with its value limited by the thickness
of the oxide. The two anti-paralleled capacitances together, identified as C(V ), are
plotted as 1/C versus the applied DC bias in Fig. 6b. Since the capacitance increases
with absolute voltage, the resonance frequency decreases with increasing ampli-
tude (soft nonlinearity); however, the decrement saturates abruptly when the voltage
becomes large [23, 24]. One might consider a drawback of the MOS-FET to be its
saturation property; however, we suggest that such behavior gives rise to an electrical

Fig. 6 Design of the nonlinear element for ENTL. Two MOS-FETs (IRFU-120) equal a nonlinear
capacitor together with coil L1(200 μH) to form a resonant circuit. L2(200 μH) provides coupling
to the next element. The driver for each element is via coupling capacitor Cd(70pF). b Inverse versus
capacitance of the element illustrating the nonlinearity. Small AC voltage applied together with the
DC bias voltage
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Fig. 7 Linear dispersion
curve for the ENTL lattice.
The circuit contains the
element in Fig. 6a. ILMs are
expected below the
minimum frequency of the
dispersion curve

analogue of a well studied mechanical nonlinear system containing piecewise linear
springs in which the restoring force has a change in slope.

For this cyclic ENTL with an onsite capacitive nonlinearity C(Vn) the dynamical
equation of motion for the lattice voltage Vn as a function of time becomes

(C(Vn) + Cd)
d2Vn

dt2
+ dC(V )

dV

∣∣∣∣
Vn

(
dVn

dt

)2

+ Vn

L1
+ L1ω0

Q

dVn

dt

+ 1

L2
(2Vn − Vn+1 − Vn−1) = Cd

d2

dt2
Vd (4)

where Q is the quality factor and C(Vn) is the differential capacitance C(V ) =
dq

/
dV and q is the stored charge. The other parameters are defined in Fig. 6a.

Figure 7 shows the linear band frequencies as a function of wave number. Because
of the soft nonlinearity, an ILM can be generated below the bottom of the extended
wave band. This shape is similar to that of the lower spin wave dispersion curve
shown in Fig. 2.

3.2 Experimental Results

Figure 8 shows the driver frequencydependence of twokinds of nonlinear excitations:
large amplitude lattice spatial modes [25] (LSMs) and ILMs for the soft nonlinear
lattice containing the nonlinear element of Fig. 6a. At each driver frequency, a snap
shot of the spatial voltage pattern at the maximum voltage versus time was captured.
Those snapshots were ordered as a function of frequency resulting in Fig. 8a–d.
Arrows indicate sweep direction of the driver frequency. Panel (e) demonstrates how
the amplitude increases with decreasing driving frequency. At a frequency larger
than 350 kHz in panels (a) and (b), a noisy pattern is observed. As the frequency is
lowered, a 4 peak-LSM appears, followed by a noisy pattern, then a 3 peak-LSM, a
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Fig. 8 Measured frequency dependence of driver locked LSMs and ILMs for the soft saturable
32 element nonlinear lattice. Four panel sweeps illustrate conversions. Driver frequency decreases
in panels (a) and (b), and increases in panels (c) and (d). Snap shots at a moment when voltage
is the maximum are mapped as a function of the driver frequency. Panel (e) displays maximum
voltage as a function of frequency. Single excitation profiles such as in panel (a) 265–255 kHz, and
(c) 255–317 kHz are due to ILMs. Other strip patterns at higher frequencies are due to LSMs

2 peak-LSM, and finally a single ILM is observed. LSM patterns are made from a
few cyclic component waves, so that their peaks are mostly equidistance.

In addition, the LSM widths are observed to increase with decreasing frequency.
This width dependence is causes by the saturable nonlinearity. Because of the lattice
discreteness, the widening accompanies symmetry change of the peak from cite-
center to bond-center or vise-versa. For example, the transition from cite-centered
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to bond-centered shapes is observed at 297.5 kHz. Panel 8(b) shows a sequential
measurement. Similar patterns to those in 8(a) are observed.

Panels 8(c) and 8(d) display scan-up measurement results starting from the single
ILM state. Hysteresis is observed for ILM and LSM generation. Panels (c)−(d)
indicate that a single ILM is stable at frequencies around 255–317 kHz, while an
LSM is stable at frequencies larger than 317 kHz. At a frequency below 317 kHz,
there may be a stable two ILM state. Two peaks in panels (a)–(b) at these frequencies
may be an LSM seeded ILM array.

The noisy pattern and 4-peaked LSM are very similar between Fig. 8a–d. This
signature indicates that thewave position is strongly influenced by lattice irregularity,
because thewave samples the entire lattice.On the other hand, the single ILMposition
shifts, because the ILM feel only nearby impurities.

3.3 Analysis

To illustrate how the LSM is generated the multi-channel oscilloscope voltage data
has been transformed in (time, space) domain into the (frequency, wavenumber)
domain. Figure 9a, b, c show the results for driver frequencies indicated by the
horizontal arrows in the panels and also identified by the three vertical arrow heads
at bottom of Fig. 8a. The 2D-FT log amplitude is displayed (gray-scale), where
darker indicates larger amplitude. The solid curves (red) in frame (a)–(b) represent
the superimposed linear dispersion curve. Excitation point is at k= 0 (uniformmode)
in this wavenumber-frequency space. Because of the low Q of the system it is not
necessary that this frequency and the driver frequency be coincident. In addition,
the nonlinearity and uniformly excited lattice ensures that the rest of the dispersion
curve is shifted down as well. All other displayed intensities come from this one
driving source. In panels (a) and (c), a faint gray intensity curve is apparent across
the (k, ω) range (dashed red curve in (a) is a guide to eye). This intensity display is
from the shifted nonlinear dispersion curves, excited by the noisy pattern displayed
in Fig. 8a. The two dark spots that appear on the dashed curve at the driver frequency
in Fig. 9a are from secondary excitation waves generated by a four-wave mixing
process 2(k = 0,�) ⇒ (k+,�) + (k−,�). This determines the number of LSM
peaks in real space. For example, the spot locations are at k = ±4 × (2π/32) in
panel (a), producing a 4 peak-LSM by mixing with the k = 0 uniform excitation,
where (2π/32) is the k-space unit for the N = 32 lattice. All other spots are excited
by successive nonlinear wave generation processes.

In panel 9(b), the intensity spots are only at the driver frequency. In real space, a
clean 4 peak-LSM is found. Here it is hard to identify a nonlinearly shifted dispersion
curve in the absence of the noisy pattern. The secondary spot positions are the same as
those in panel (a). In panel (c), the secondary spots are shifted to k = ±3× (2π/32).
These are for 3-peaked LSM. A clean 3-peaked LSM is observed at the slightly lower
frequency 330 kHz.
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Fig. 9 2D-Fourier transformmaps of voltage records for the ENTL system. 32 channel oscilloscope
data from Fig. 8a are transformed into the frequency and wavenumber domain by time- and spatial-
Fourier transform. Three panels are identified by driver frequencies: a 380 kHz, b 343.8 kHz
and c 340 kHz. (See horizontal arrows.) Same driver frequencies are also identified at the bottom
of Fig. 8a. Log amplitude is displayed to emphasis small signals. Solid curves (red) in panels
(a)–(b) are the superimposed linear dispersion curve. In panel (a) and (c), intensity from shifted
dispersion curve is faintly observed. (Dashed red in (a) is a guide to the eye.) Because of random
excitation in Fig. 8a at those frequencies, normal modes on the cyclic dispersion curve are excited
and observed in this 2D-FT figure. In panel (b), the shifted nonlinear dispersion curve is not seen,
since there are no such random noise vibrations. The wave number spots are produced by LSM
formation at the driver frequency. Such wavenumber spots are seen also in panels (a) and (c)
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The number of LSM peaks decreases with decreasing driver frequency, because
the shift of the nonlinear dispersion curve relative to the driver frequency becomes
smaller, and two secondary spot spacing in k-space becomes smaller. With a large
number of lattice elements the transition from an LSM to an ILM array could happen
at a still lower frequency, as the interaction decreases between neighboring peaks.
In this case, many ILMs may remain. In Fig. 8, because of the saturation of the
nonlinearity the peak widths become wider as the frequency decreases. To maintain
the driver excitation, the frequency difference between the LSM (or ILMs) and the
driver must be compensated by the nonlinearity.

The number of LSM peaks is roughly lattice size divided by wavelength deter-
mined by the secondary excitation wave. The maximum number of LSM peaks
depends on the largest wavenumber of the four-wave mixing process, that is, the
larger the wavenumber, the more peaks. The rule of thumb is the larger the spectral
band width, the smaller the secondary wave number, if the frequency shift remains
the same.

4 Discussion and Conclusions

Both soft nonlinear lattices described here, the antiferromagetic and the electric
transmission line, are essentially simple 1D systems, one with a microscopic lattice
constant and the other with a macroscopic one. Although in each case the exper-
imental techniques used to observe and explore the properties of ILMs have been
quite different fundamentally similar results have been observed. In both systems
the experiments consisted of frequency locking an ILM to a driver. For the magnetic
system, because these excitations are strongly nonlinear, four-wave mixing emission
spectroscopy is an ideal way to enhance the ILM signal over that produced by the
more numerous plane wave spin excitations. The result is countable ILMs for an
atomic spaced system. Experimentally, it is easiest to keep track of the difference
between the AFMR and driver frequency as the important ILM parameter, since one
had the flexibility to vary either the AFMR frequency, via the sample temperature,
or to vary directly the driver frequency. Precision measurements allow the properties
of single ILMs to be studied and their hysteresis curves to be measured. Surprisingly
the step heights do not change significantly with locking driver power.

More extensive information about the general dynamic properties of a soft
nonlinear 1D lattice has been obtained by studying a cyclic ENTL where each
lattice element is monitored. Such a driven nonlinear transmission line, with peri-
odic boundary conditions and elements that contain a saturable nonlinear capacitor,
has been used to generate ILMs below the modal spectrum. An ILM switching
hysteresis signature, similar to that observed for the antiferromagnet, is a natural
feature. An additional finding is the observation of LSMs within the spectrum. The
most dramatic feature is that by simply changing the driver frequency the spectrum
can evolve continuously from an LSM pattern distributed around the ring, with a
successive decrease in the number of LSM-peaks, to multiple ILMs localized on a
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few sites, and finally to a single ILM. A four-wave mixing process plays a key role in
determining the resulting LSM signature. As a consequence, the resultant AC energy
distribution for the experimental soft nonlinear cyclic array can either be balanced
or unbalanced.
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Abstract In nonparametric statistics the tilting techniques are sustainably used for
adjusting an empirical distribution by replacing uniform distribution of weights by
general multinomial distribution. In this paper a tilting approach has been used for
minimizing “the distance” to an infinite order (IO) regression estimator, a comparator
regression function estimator.Wealso provide the simulation study results illustrating
the tilted version of the Nadaraya-Watson (N-W) estimator performs better than its
classical analog (the N-W estimator) in terms of Median Integrated Squared Error
(MISE). In addition, the performance of the tilted N-W regression function estimator
has been examined using the Italy’s COVID-19 deaths data.
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1 Introduction

Let the regression model be

Yi = r(Xi ) + εi , 1 ≤ i ≤ n,

where (Y1, X1), (Y2, X2), ..., (Yn, Xn), are the data pairs, the designvariable X ∼ fX ,
X and ε are independent, εi ’s are independent and identically distributed (iid) errors
with zero mean E(ε) = 0 and variance E(ε2) = σ2. The regression function r(x) is
unknown. The kernel, local polynomial regression and orthogonal series methods
are commonly used for estimating an unknown regression function. The kernel and
local polynomial regression function estimators are also known as smoothers, see
Wasserman [1], Fan and Gijbels [2], Hall and Racine [3] and the references within.

In this paper, we propose a tilting method which represents an optimised
modification of Nadaraya-Watson estimator. An estimator r̂n of r is a linear
smoother if

l(x) = (l1(x), ..., ln(x))
T

and
r̂n = l(x)T Y =

∑n

i=1
li (xi )Yi ,

where li are weights and for all x ,
∑n

i=1li (x) = 1. The li (x) for Nadaraya-Watson
estimator is defined as

li (x) = K ( Xi−x
h )

∑n
j=1K (

X j−x
h )

, h > 0. (1)

In (1), K is the weighting function that assigns the values to the design points Xi

according to proximity to x . The Nadaraya-Watson (N-W) estimator, which is the
kernel estimator, depends on the bandwidth parameter h > 0, so-called smoothing
parameter. As the bandwidth increases the kernel estimator tends to a flat function,
due to this property the N-W estimator is often referred to as the locally constant
estimator.

In the tilting approach, the empirical distribution is being adjusted by replacing
the equal weights 1/n by pi , where pi ≥ 0 and

∑n
i pi = 1, [4]. The tilting method

is sustainably used for an unknown density function estimation. Grenander [5] pro-
posed tilting-based method by imposing some restrictions on density estimators.
The empirical likelihood-based methods and distance measure approach are used for
estimation of tilting parameters within regression function estimators. The empirical
likelihood-based method is a semi-parametric method that allows to find a parameter
through estimating equations. Owen [6] was the first who proposed the empirical
likelihood method as an alternative to likelihood ratio tests. Chen [7], Zhang [8],
Müller et al. [9] used the empirical likelihood-based methods for estimating tilting
parameters. In the distance measure approach, the tilted estimator is obtained by



Tilted Nadaraya-Watson Regression Estimator 799

minimizing some distance, subject to constraints. Hall and Presnell [10], Carroll et
al. [11], Doosti and Hall [12], Doosti et al. [13] used various distance measures for
estimating density functions. Namely, in Doosti et al. [13] have introduced a cross-
validation function tailored to this estimation problem. They had shown that the
proposed density function estimator performs better than the conventional kernel-
based estimators.

The aim of this study is to introduce the tilted nonparametric N-W regression
function estimator which is obtained by minimizing the distance to a comparator
estimator. In this paper, an infinite order flat-top kernel estimator is selected as the
comparator estimator. The infinite order flat-top kernel estimator, also known as the
trapezoidal kernel, can be defined through Fourier transform which is flat near the
origin and is infinitely differentiable.

2 Notation and Preliminary Results

Definition 1 Let λ be the Fourier transform of kernel K , and we select g (g is not
unique) to make λ(s), λ2(s), ans sλ(s) integrable. For a fixed constant c > 0

λ(s) =
{
1, | s |≤ c

g(| s |), | s |> c
.

The flat-top kernel is

K (x) = 1

2π

∫ ∞

−∞
λ(s)e−isxds. (2)

The infinite order regression estimator was introduced by McMurry and Politis [14]
in the form of linear smoother

řn =
∑n

i=1
ľi (xi )Yi ,

ľi (x) = KIO(
Xi−x
h )

∑n
j=1KIO(

X j−x
h )

.

KIO refers to any kernel which fulfils the definition 1. The idea behind using an
infinite order kernel for estimating rn is that these type of kernels reduce the bias
asymptotically at the rate O(hk), [14]. The trapezoidal kernel satisfies Definition 1

KT (x) = 2(cos(x/2) − cos(x))

πx2
.
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The Fourier transform of the trapezoidal kernel KT is

λ(s) =

⎧
⎪⎨

⎪⎩

1 | s |≤ 1/2,

2(1− | s |) 1/2 <| s |≤ 1,

0 | s |> 1.

We denote r̂n(.|θ), the tilted estimator, where θ = (h, p) is the vector of unknown
parameters. Our objective is to estimate θ by minimizing the distance measure
between r̂n(.|θ) and ř . For preserving the convergence rate of řn , in this paper, we
use the L2-metric as the distance between these two estimators, [12].

3 Numerical Study

This section contains the results of the numerical study carried out for analysing
the performance of the tilted N-W estimators. The exponential regression func-
tion, r(x) = x + 4exp(−2x2)/

√
2π, has been used with the uniform design density

and normally distributed error terms for generation of 500 data sets. The relative
performance of the tilted N-W estimator has been assessed with respect to varying
sample sizes and standard deviation levels. The assessment has been made by com-
paring the Median Integrated Squared Error (MISE) and ISE, the latter belonging
to [−2,2]. The cross-validation function method has been employed for an optimal
bandwidth selection for Nadaraya-Watson estimator, [1]. For an infinite order esti-
mator, the bandwidths were selected using the rule of thumb introduced byMcMurry
and Politis in [14] which is available form R-package ’iosmooth’. In fact, the band-
width for tilted N-W estimator has been estimated within the proposed numerical
procedure.

In Table 1, we provides the MISEs for the simulated data. Evidently, for fixed
sample size, as the variance increases the tilted N-W estimators perform better than
others. For larger sample sizes, in contrast, the N-W estimator, outperforms the
tilted N-W estimator. However, for smaller sample sizes and the moderate standard
deviation levels, the tilted N-W estimator remains, at some extent, superior to the
conventional estimators.

4 Real Data

In this section, the tilted N-W estimator along with two other kernel-based estimators
are being used for a curve fitting to real data. We shall apply the tilted N-W estimator
approach to Italy’s COVID-19 daily deaths data from 23 February 2020 to 6 May
2020 downloaded from https://www.ecdc.europa.eu.

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
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Table 1 MISE for the Infinite Order (IO) estimator with the trapezoidal kernel, N-W estimator and
tilted N-W estimator with 4 (p4) and 10 (p10) weighting nodes

n σ IO NW NW p4 NW p10

60 0.3 0.1559 0.0663 0.1308 0.1529

0.5 0.1980 0.1398 0.1724 0.1953

0.7 0.2515 0.2152 0.2316 0.2492

1 0.3588 0.3697 0.3418 0.3650

1.5 0.6530 0.6281 0.6197 0.6520

2 1.0524 0.9892 0.9871 1.0597

100 0.3 0.1195 0.0442 0.1034 0.1191

0.5 0.1432 0.0914 0.1253 0.1426

0.7 0.1781 0.1443 0.1607 0.1766

1 0.2490 0.2324 0.2305 0.2469

1.5 0.4165 0.4366 0.4041 0.4144

2 0.6487 0.6780 0.6107 0.6371

200 0.3 0.0991 0.0232 0.0891 0.0997

0.5 0.1089 0.0470 0.0993 0.1086

0.7 0.1256 0.0822 0.1172 0.1253

1 0.1577 0.1299 0.1533 0.1589

1.5 0.2401 0.2542 0.2386 0.2416

2 0.3568 0.3878 0.3464 0.3534

1000 0.3 0.0801 0.0058 0.0776 0.0800

0.5 0.0823 0.0125 0.0790 0.0825

0.7 0.0853 0.0207 0.0801 0.0845

1 0.0922 0.0356 0.0830 0.0917

1.5 0.1080 0.0716 0.0972 0.1074

2 0.1294 0.1286 0.1209 0.1308

Table 2 MSEs for Nadaraya-Watson, infinite order, and tilted Nadaraya-Watson estimators

Infinite order estimator Nadaraya-Watson
estimator

Tilted
Nadaraya-Watson
estimator

MSE 3819.803 3778.425 3667.398

The interest in COVID-19 death rate modelling among scientists is growing
rapidly since the outbreak of the pandemic began [15–17]. Along with the tilted
N-W estimator, we applied the N-W, and IO estimators. The tilted N-W estimator
performed the best in terms of the Mean Square Errors (MSE). Table2 provides the
MSE for each estimator. In terms of minimising the MSE, the tilted N-W estimator
ranked first, followed by N-W and IO estimators resulting in the relative improve-
ment of 3% and 4%, respectively. Slightly, improved performance of the tilted N-W
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Fig. 1 Fitting N-W, IO, and
tilted N-W regression curves
to the logarithm of the
COVID-19 deaths data

estimator is attributed to the lowerMSE components at the edges versus other kernel-
based regression function estimators which are generally known for so-called “edge
effect”, [19] (Fig. 1).
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Is Weather Chaotic? Coexisting Chaotic
and Non-chaotic Attractors Within
Lorenz Models

Bo-Wen Shen, R. A. Pielke Sr., X. Zeng, J.-J. Baik, S. Faghih-Naini, J. Cui,
R. Atlas, and T. A. L. Reyes

Abstract The pioneering study of Lorenz in 1963 and a follow-up presentation in
1972 changed our view on the predictability of weather by revealing the so-called
butterfly effect, also known as chaos. Over 50 years since (Lorenz in J. Atmos.
Sci. 20:130–141, [1]) study, the statement of “weather is chaotic” has been well
accepted. Such a view turns our attention from regularity associated with Laplace’s
view of determinism to irregularity associated with chaos. Here, a refined state-
ment is suggested based on recent advances in high-dimensional Lorenz models
and real-world global models. In this study, we provide a report to: (1) Illustrate
two kinds of attractor coexistence within Lorenz models (i.e., with the same model
parameters but with different initial conditions). Each kind contains two of three
attractors including point, chaotic, and periodic attractors corresponding to steady-
state, chaotic, and limit cycle solutions, respectively. (2) Suggest that the entirety of
weather possesses the dual nature of chaos and order associated with chaotic and
non-chaotic processes, respectively. Specific weather systems may appear chaotic
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or non-chaotic within their finite lifetime. While chaotic systems contain a finite
predictability, non-chaotic systems (e.g., dissipative processes) could have better
predictability (e.g., up to their lifetime). The refined view on the dual nature of
weather is neither too optimistic nor pessimistic as compared to the Laplacian view
of deterministic unlimited predictability and the Lorenz view of deterministic chaos
with finite predictability.

1 Introduction

Is weather chaotic? A view that weather is chaotic was proposed and is recognized
based on the pioneering work of Lorenz [1] who first introduced the concept of
deterministic chaos. Defined as aperiodic solutions that display sensitive dependence
on initial conditions (ICs), chaos is also known as the butterfly effect. In a follow-up
conference presentation in 1972 [2], the concept of sensitivity to ICs was further
discussed by addressing whether a butterfly’s flap may lead to a chain of responses
that remotely generates a tornado. Since then, the butterfly effect has come to be
known as a metaphor for indicating the huge impact of a tiny perturbation on the
formation of a tornado. The original [1, 3] study and the 1972 presentation, as well
as the 1969 study [4], laid the foundation for chaos theory that is viewed as the
third scientific achievement in the twentieth century, after relativity and quantum
mechanics, inspiring numerous studies in multiple fields, including earth science,
mathematics, philosophy, physics, etc. [5].

While periodic solutions were a main focus until the [1] study, non-periodic solu-
tions have increasingly received attention over the past 50 years. Lorenz’s discovery
has led to the statement of “weather is chaotic” and to a paradigm shift in the view of
finite predictability from the Laplacian view of unlimited deterministic predictability.
The idea of finite predictability for chaotic weather has prompted a search for the
upper limit of predictability that was determined as 2 weeks based on analyses of
unstable solutions from simplified models and data [4]. With the above being said,
our current view on the chaotic nature of weather and a predictability limit of 2 weeks
are based on the understanding of chaotic (as well as unstable) solutions obtained
from elegant but simple models. To facilitate discussions, we define two kinds of
predictability, including (1) intrinsic predictability that is dependent only on flow
itself and (2) practical predictability that is limited by the imperfect initial conditions
and/or (mathematical) formulas [6, 7].

Chaotic solutions are just one type of solution that occurs over finite intervals
of time-independent parameters within the Lorenz model. To reveal the true nature
of weather, we should take into consideration other types of solutions within orig-
inal Lorenz models and newly developed generalized Lorenz models [7–24]. For
example, in addition to chaotic solutions, two types of non-chaotic solutions indeed
appear over different intervals of parameters within the Lorenz model [21]. Further-
more, recent studies using a generalized high-dimensional Lorenzmodel [16, 25–27]
showed that chaotic and non-chaotic solutions may coexist within the same model
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parameters but for different ICs [28, 29]. Thus, it is important to understand whether
or not and how other types of solutions and their coexistence may help illustrate
a more comprehensive view on the nature of weather, and to improve our under-
standing of predictability associated with different types of solutions. Specifically,
we may ask whether the statement of “weather is chaotic” that exclusively considers
chaotic solutions is scientifically precise.

To address the above, here, we first provide a review of major solutions using the
Lorenz model (LM), including three types of solutions or three attractors in Sect. 2.
In this study, a specific type of solution is referred to as an “attractor”, defined as
the smallest attracting point set that cannot be decomposed into two or more subsets
with distinct regions of attraction [22]. We then summarize our recent findings for
two kinds of attractor coexistence (i.e., with the same model parameters but with
different initial conditions) using a newly developed, generalized, high-dimensional
LM (GLM) [26] in Sect. 3. Section 4 is presented in order to support the findings for
two kinds of attractor coexistence using the original LM with different parameters.
Based on an analysis of the LM and the GLM and a brief review of previous studies
(e.g., regarding 40-day intra-seasonal oscillations, coexisting solutions at two time
scales, etc.), we suggest a refined view on the dual nature of weather in Sect. 5.
Additional support for this view is also presented by the review of prior studies.
Concluding remarks are provided in Sect. 6.

2 The Lorenz Model [1]

In his 1963 study, Prof. Lorenz presented an elegant systemof three ordinary differen-
tial equations (ODEs) derived from the governing equations for the Rayleigh–Benard
convection [1, 30]. The system describes the time evolution of three variables, X, Y,
and Z, as follows:

d X

dτ
= σY − σ X, (1)

dY

dτ
= −X Z + r X − Y, (2)

d Z

dτ
= XY − bZ . (3)

Here,τ is the dimensionless time. Three time-independent parameters include the
Prandtl number (σ), the normalized Rayleigh number (r), also called the heating
parameter, and a function of the ratio between the vertical and horizontal scales of
the convection (b). (X,Y,Z) represent the amplitudes of the three Fourier modes for
dynamic and thermodynamic variables. The system contains three types of physical
processes, including buoyancy/heating terms (represented by σY and rX), dissipative
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terms (represented by −σX, −Y, and −bZ), and nonlinear processes (indicated
by −XZ and XY). With the exception of the heating parameter (r), the following
parameters are kept constant: σ = 10 and b = 8/3. Control and parallel runs are
performed in order to reveal the difference (or divergence) of two solutions. The
only difference between control and parallel runs is that a parallel run includes tiny
perturbations (∈= 10−10) or finite perturbations (∈= −0.9) in initial conditions.

Using the state variables X, Y, and Z as coordinates, a phase space can be
constructed for an analysis of solutions. An orbit or a trajectory is defined as the
time varying components of solutions within the phase space. The dimension1 of
the phase space is equal to the number of time-dependent variables or to the number
of ODEs. Thus, Eqs. (1), (2) and (3) with three variables are referred to as a three-
dimensional Lorenzmodel (3DLM). High-dimensional LMs containmore than three
variables.

2.1 Lorenz’s Chaotic and Non-chaotic Attractors

Depending on the competitive or collective impact of nonlinear processes and linear
buoyancy/heating and dissipative processes, various types of solutions (i.e., different
attractors) appear within the Lorenz model. Historically, the dependence of their
appearance on the strength of heating measured by the parameter (r) has been a
focus. Steady-state, chaotic, and nonlinear oscillatory solutions have been shown to
occur under conditions of weak, moderate, and strong heating, respectively [21, 33].2

In Fig. 1, the three different types of solutions are shown using r = 20, 28, and 350,
respectively. The top panels display solutions for control runs within the X-Y space,
while bottom panels display the time evolution of the Y components for both control
and parallel runs. For a steady-state solution, its orbit eventually approaches a single
point, that is, a non-trivial equilibrium point within theX-Y space (Fig. 1a), appearing
as a point attractor; and its amplitude remains constant over time after arriving at
the equilibrium point. Mathematically, equilibrium points, also called critical points,
are defined as solutions of the time-independent nonlinear system (e.g., no time
derivatives in Eqs. (1), (2) and (3) [35].3 When the heating parameter exceeds the
critical value of rc = 24.74, the 3DLM with r = 28 displays the so-called chaotic
solution or a chaotic attractor with irregular oscillations. The solution’s boundary
within the X-Y space appears as a tilted “8” pattern. Interestingly, when heating
becomes larger (e.g., r = 350), the system produces a nonlinear periodic solution
known as a limit cycle solution or a periodic attractor, as shown in Fig. 1c and f.

1 The term “dimension” is conventionally used for a system of ODEs [31, 32]. In this study, the
5DLM, 7DLM, and 9DLM are referred to as high-dimensional or high-order Lorenz models [12].
2 Similar findings for the dependence of various solutions (i.e., chaotic and limit cycle solutions) on
the strength of heating were also reported using a two-layer, quasi-geostrophic model that describes
the finite-amplitude evolution of a single baroclinic wave by Pedlosky and Frenzen [34].
3 In our 5D-, 7D-, and 9DLMs, we can obtain closed form solutions of trivial and non-trivial
equilibrium points and use them to verify the numerical solutions of equilibrium points.



Is Weather Chaotic? Coexisting Chaotic and Non-chaotic ... 809

Fig. 1 Three types of solutions within the 3DLM. Left, middle, and right panels displays steady-
state, chaotic, and limit cycle solutions at small, moderate, and large heating parameters (i.e., r = 20,
28, and 350), respectively. The solutions are categorized into a point attractor, a chaotic attractor,
and a periodic attractor, respectively. Top panels show orbits within the X-Y space and bottom
panels depict the time evolution of Y. Blue lines provide solutions from control runs. To display
results from parallel runs, red lines are added in the bottom panels. Sensitive dependence on initial
conditions is shown in panel (e) with two visible lines. Two panels, b and e, are reproduced from
Shen [38]

Additional details on the characteristics of nonlinear oscillatory solutions may be
found in earlier studies [21, 36, 37] and/or recent studies [16, 26, 38]. Below, the
impact of a tiny initial perturbation on three attractors, including a point attractor, a
chaotic attractor, and a periodic attractor, is further discussed.

Parallel runs with a tiny initial perturbation (∈= 10−10) are compared to control
runs in order to reveal the difference of initial, nearby trajectories within the phase
space. For steady-state and nonlinear oscillatory solutions, control and parallel runs
produce almost identical results, only appearing in red, for example, in Fig. 1d and f.
The runs indicate insignificant impacts by a tiny initial perturbation. In other words,
steady-state and nonlinear oscillatory solutions are insensitive to a tiny change in
ICs. In comparison, within the chaotic regime, two solution orbits whose starting
points are very close to each other display very different time evolutions, as clearly
shown in blue and red in Fig. 1e. The phenomenon is called the sensitive dependence
of solutions on ICs and only appears within a chaotic solution.

2.2 Boundedness and Divergence of Chaotic Trajectories

Within the chaotic regime, a sensitive dependence of solutions on ICs is referred to as
the butterfly effect (BE, e.g., [39, 40]). As shown in Fig. 2a, the term “butterfly” was
partly used due to its geometric pattern within the Y-Z space [39]. A butterfly pattern
with a finite size and varying curvatures within the phase space also qualitatively
suggests an important feature of solution boundedness. Therefore, BE means that a
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Fig. 2 Chaotic solutions in the X-Y-Z phase space within the 3D, 5D, 7D, and 9D Lorenz models
(LMs). Panels a–c use the same initial conditions with Y= 1 and the remaining as zero, while panel
d uses an IC with 100 for all variables. Variables (X, Y, Z) are normalized by 2

√
r − 1, 2

√
r − 1,

and (r − 1), respectively. A larger heating parameter is required for the onset of chaos in a higher-
dimensional LM. Also see the detailed analysis of solutions in Shen [38, 41]

tiny change in an IC can produce a very different time evolution of a solution for three
variables (X, Y, Z). However, the separation (or divergence) of two orbits should be
bounded by the size of a butterfly pattern.

The average separation rate (i.e., an average rate of divergence) of nearby trajec-
tories has been quantitatively measured using the Lyapunov exponent (LE, [42–
44]). A positive LE suggests an exponential rate in the averaged separation of two
infinitesimally nearby trajectories over an infinite period of time (e.g., Eqs. (25) and
(26) of [7]). Chaotic solutions within the 3DLM, as well as high-dimensional LMs,
have a positive LE. Since the LE is defined as a long-term averaged separation,
researchers often misinterpret the divergence of two nearby, but finitely separated,
chaotic trajectories within the 3DLM as continuing over time and lasting forever.
The misunderstanding also makes people believe that an unconstrained solution is
due to the divergent nature of chaos [45]. In fact, in addition to a positive LE, solution
boundedness is another major feature of a chaotic system. Due to solution bounded-
ness, a trajectory should recurve within the phase space [45] Therefore, time-varying
(local) growth rates along a chaotic orbit are observed [44] andmay become negative,
as indicated by a negative finite time LE [46–49]. In other words, the infinite-time
limit in the definition of an LE does not imply a monotonically increasing separa-
tion between two nearby trajectories over a long period of time. Two initial nearby
trajectories can quickly separate and reach the bound of their separation.
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3 The Generalized Lorenz Model

The 3DLM produces three different attractors and each attractor exclusively appears
within the phase space, depending on the interval of system parameters. The 3DLM
with a single-type solution suggests that either chaos or order exclusively exists. By
comparison, two different solutions may coexist and dominate system dynamics in
a separate region (i.e., a different subspace) within the phase space within the same
model, and with the same parameters, but with different ICs. Attractor coexistence
has mainly been studied using conservative Hamiltonian systems [45], but can also
be found in the forced dissipative 3DLM [33, 50, 51]. Below, we first discuss two
kinds of attractor coexistence using the GLM, and then apply the GLM to understand
whether the 3DLM can also possess two kinds of attractor coexistence.

Based on our recent studies [7, 26], we successfully developed a GLM that: (1) is
derived based on partial differential equations for the Rayleigh–Benard convection;4

(2) allows a large number of modes, sayMmodes, whereM is an odd number greater
than three; and (3) produces aggregated negative feedback5 that is accumulated from
the feedback of various smaller-scale processes, yielding a larger effective dissipation
in higher dimensional LMs [26, 38]. As a result of aggregated negative feedback, a
higher-dimensional LM requires a larger critical value for the Rayleigh parameter
(rc) for the onset of chaos. For example, the rc for the 5DLM, 7DLM, and 9DLM
are 42.9, 116.9, and 679.8, respectively, as compared to a rc of 24.74 for the 3DLM
[26]. Figure 2 displays chaotic solutions obtained from the 3D, 5D, 7D, and 9D LMs
with different heating parameters. Therefore, an initial tiny perturbation with the
same strength may play a different role within the GLM with a different value of
M. Such a feature shows a dependence on the number of selected modes. Namely,
it depends on the degree of spatial complexity associated with a various number of
modes of the GLM.

3.1 Two Kinds of Attractor Coexistence

The GLMwith M= 5 or M= 7 (i.e., 5DLM or 7DLM) also produces three different
types of solutions, including a steady-state, chaotic, and limit cycle/torus.6 More
importantly, the GLM with M = 9 (i.e., 9DLM) displays two kinds of attractor
coexistence, each with two different attractors. For the first kind of coexistence,
both chaotic and steady-state solutions occur concurrently using the same model

4 By comparison, chaotic models in Lorenz [52–54] were not derived from physics-based partial
differential equations.
5 Negative feedback can be foundwithin the so-called Lorenz-Stenflo system that extends the 3DLM
with one additional ODE containing one additional mode that takes rotation into consideration
[55–57].
6 A torus is defined as a composite motion with two (or more) oscillatory frequencies whose ratio
is irrational [8].
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and the same parameters. The only difference is their ICs. Such a coexistence shares
properties similar to that of the 3DLM but appears over a wider range of the Rayleigh
parameter (e.g., 679.8 < r < 1,058), as compared to the small interval (e.g., 24.06 <
r < 24.74) for the 3DLM.

In addition to the first kind of attractor coexistence, the 9DLM is able to produce
the second kind of attractor coexistence, consisting of nonlinear, periodic (i.e., limit
cycle) orbits, and steady-state solutions at largeRayleigh parameters (e.g., r= 1,600).
The new kind of coexistence was recently documented in Reyes and Shen [16], Shen
[26] and Shen et al. [27]. Additionally, coexisting two periodic solutions were docu-
mented using the 9DLM with r = 1,120 [26]. As a result, when system parameters
change at a large time scale (e.g., at climate time scales), different kinds of attractor
coexistence may alternatively or concurrently appear, leading to complexities that
better resemble real weather and climate.

3.2 Two Kinds of IC Dependence and Final State Sensitivity

Depending on system parameters, ICs and the dimension of the model (say the value
of M within the GLM), a modeling system may contain one or more attractors7

within the phase space. Since different attractors coexist, we expect different kinds
of solution dependence on ICs, as illustrated using the 9DLM with r = 680 that
produces the coexistence of chaotic and non-chaotic orbits. Control runs apply three
sets of ICs at different locations within the phase space: close to the non-trivial
equilibrium point, near the origin (i.e., a saddle point), and at point (100, 100, 100,
100, 100, 100, 100, 100, 100). For parallel runs, a finite-amplitude perturbation (∈
= -0.9) is added into the ICs. In Fig. 3, solutions of the control runs are shown
in blue, while results of parallel runs are displayed in green, red, or orange. Top
panels display the time evolution of the Y components, while bottom panels present
solutions within the X-Y space. The model with r = 680 produces the coexistence
of steady-state and chaotic orbits, displaying a dependence on ICs. For the first case
(Fig. 3a and d) with the IC that is close to the non-trivial equilibrium point, the orbit
moves toward the equilibrium point, producing steady-state solutions. Since the orbit
spirals into the non-trivial equilibrium point within the X-Y space, it is also called
a spiral sink solution. For the second case (Fig. 3b and e) where an IC is close to a
saddle point at the origin but away from the non-trivial equilibrium point, solutions
still approach the same non-trivial equilibrium point as a steady-state solution, while
initially displaying a different time evolution as compared to the first case. On the
other hand, for the third case (Fig. 3c and f), the model produces a chaotic solution,
different from the steady-state solution. A comparison between control and parallel
runs suggests that an initial perturbation only has a short-term impact on the initial

7 The coexistence of chaotic and quasi-periodic orbits has been recently documented in a modified
Lorenz system by Saiki et al. [58].
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Fig. 3 Solutions of the GLM with M = 9 and r = 680. Initial conditions for the three cases are
placed near the non-trivial critical point (a, d), the origin (i.e., trivial critical point) (b, e), and at
(100, 100, 100, 100,100, 100, 100, 100,100) (c, f). Top panels show the time evolution of Y for
t ∈ [0, 2.5], while bottom panels display the corresponding solutions t ∈ [0, 10] within the
X-Y space. Control and parallel runs are denoted by ‘C’ and ‘P’, respectively. A finite-amplitude
perturbation (∈ = −0.9) is added into the parallel runs. Two panels, (c) and (f), are reproduced
from Shen [38]

transient evolution of steady-state solutions but can lead to a very different evolution
for chaotic solutions.8

When coexisting chaotic and regular attractors from 256 different initial condi-
tions are plotted within the X-Y phase space, Fig. 4 clearly shows that chaotic and
non-chaotic orbits occupy two different regions (or two different subspaces). Addi-
tional details on the spatial distribution of 256 initial conditions may be found in
Shen et al. [27]. As a result of the different regions of attraction for coexisting attrac-
tors, final state sensitivity may appear [59] when ICs begin near the boundary of two
different attractors. Such a sensitivity creates a different challenge for prediction.

3.3 Finite and Deterministic Predictability

The rate of a growing initial error with time has been used to determine predictability,
suggesting a finite predictability in chaotic (or unstable) systems. Such a growth

8 Such a dependence on initial conditions, close to (or away from) the non-trivial equilibrium point,
can be shown by the following YouTube video for a double pendulum (between 1:00 and 1:20).

https://www.youtube.com/watch?v=LfgA2Auyo1A.

https://www.youtube.com/watch%3Fv%3DLfgA2Auyo1A
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Fig. 4 Coexistence of chaotic and non-chaotic orbits starting with 256 different initial conditions
(ICs) for T ∈ [0.625, 5]. Chaotic orbits recurrently return back to the saddle point at the origin.
Non-chaotic orbits eventually approach one of two stable critical points as shown in large blue dots.
Chaotic and non-chaotic orbits occupy different regions of attraction within the phase space

rate is proportional to the divergence of two nearby trajectories measured using a
Lyapunov exponent.Within chaotic regimes of the 3DLM, aswell as within theGLM
that contains one positive LE and solution boundedness, time-varying divergence and
convergence of nearby trajectories yields time-varying growth rates and, thus, time-
varying predictability. Estimated predictability over a short period should display a
dependence on various initial states.9 By comparison, when non-chaotic (i.e., steady-
state or nonlinear periodic) solutions appear as a single type of solution or coexist
with another type of solution, their predictability should be deterministic (unlimited).
Stated conservatively, the non-chaotic solution should remain predictable until it is
changed by time varying parameters that represent heating or dissipations. As a
result, very different intrinsic predictability may appear and depend on ICs within a
system that possesses the coexistence of chaotic and non-chaotic attractors.

4 Attractor Coexistence Within the 3DLM

Within chaotic solutions of the 3DLM that has no stable equilibrium points, a tiny
perturbation can always lead to a very different time evolution. Stated alternatively,
within the chaotic regime, the system, in the absence of energy sinks for steady-
state solutions, does not have a mechanism for completely removing the impact
of a tiny perturbation on state variables. By comparison, within the GLM with M
= 9, or higher, that possesses coexisting chaotic and steady-state solutions, a tiny
initial perturbation may play a very different role. A tiny perturbation may have no

9 As a result, we agree with Prof. Arakawa that the predictability limit is not necessarily a fixed
value [46].
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long-term impact when it appears to be associated with a steady-state solution that
approaches one of the stable equilibrium points, suggesting that the perturbation
eventually dissipates. On the other hand, a tiny perturbation may lead to a large
impact on the time evolution of the chaotic solution. As a result, the 9DLM with a
dual role for a tiny initial perturbation over a wide range of the heating parameter,
as well as other features such as hierarchical scale dependence, is more realistic
than the classical 3DLM with typical parameters. On the other hand, we may ask
whether the 3DLMwith different parameters may also produce two kinds of attractor
coexistence, providing additional support to the findings of the GLM.

Next, we first discuss the coexistence of the 3DLM with typical parameters that
include σ = 10. We then address the question of whether σ = 10 is a magic choice.
As simply shown in the animation, https://goo.gl/scqRBo, the 3DLM with the same
parameters, including r= 24.4, σ = 10, and b= 8/3, but with different ICs, produces
two types of solutions that include chaotic or steady-state solutions, yielding the first
kind of attractor coexistence. However, such a coexistence only appears over a very
small range of r, giving the length of an interval less than 0.7 (i.e., 24.06 < r < rc
= 24.74), and, thus, its characteristics and potential role in revealing the nature of
weather has not been well appreciated.

For the past 50 years, although various types of solutions for Lorenz [6] have
been documented, chaotic solutions have been the main focus. As discussed in the
main text, since chaotic solutions appear over a finite range of parameters, their
applicability in revealing the nature of weather depends on the realism of not only
the models employed but also model parameter values. In his book in 1993, Lorenz
humbly expressed that it may not have been possible for him to discover the butterfly-
pattern solution if a realistic value of σ = 1 was used, as shown below:

I was lucky in more ways than one. An essential constant of the model is the Prandtl number
– the ratio of the viscosity of the fluid to the thermal conductivity. Barry had chosen the value
10.0 as having the order of magnitude of the Prandtl number of water. As a meteorologist, he
might well have chosen to model convection in air instead of water, in which case he would
probably have used the value 1.0. With this value the solutions of the three equations would
have been periodic, and I probably would never have seen any reason for extracting them
from the original seven.

Therefore, onemaywonder how fortunate Prof. Lorenzwas andwhether a realistic
value of σ = 1 may have influenced our view on the nature of weather. We make an
attempt of addressing the question by analyzing a GLM with M = 9 and examining
a 3DLM with σ = 1. As discussed in Shen [26], the GLM with M = 9 has stable,
non-trivial equilibrium points for all r > 1 when σ = 10 and b= 8/3. To have stable,
non-trivial equilibrium points for σ = 1 within the 3DLM, we chose b = 2/5. Such
a choice leads to two kinds of attractor coexistence, a unique feature first identified
within the 9DLM [26]. With σ = 1 in the 3DLM, the first kind of coexistence
includes chaotic and steady-state solutions at a moderate heating parameter (e.g., r
= 170, as shown in Fig. 5). Table 1 lists initial conditions for the results provided in
Fig. 5. Thus, chaotic solutions may still appear within the 3DLM for a realistic value
of σ = 1, but they coexist with steady-state solutions. The appearance of chaotic
solutions depends not only on the range of the heating parameter but also on the

https://goo.gl/scqRBo
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Fig. 5 A co-existence of chaotic (c, d) and non-chaotic (a, b, e, f) solutions using the same
parameters for σ = 1, b = 0.4, and r = 170 within the 3DLM. Blue and red lines display solutions
from the control and parallel runs, respectively. Initial conditions for the results in six panels are
listed in Table 1

Table 1 Initial conditions
(ICs) for revealing the
coexistence of two attractors
for σ = 1, b = 0.4, and r =
170 within the 3DLM.
Xc = Yc =√

b(r − 1) and Zc = (r − 1).
The six rows provide the ICs
for Fig. A1

X Y Z

Xc Yc + 1 Zc

−Xc −Yc + 1 Zc

0 1 0

−76.72346293 37.62433028 −146.96230812

−27.75526885 167.67883615 3.66782724

136.44623635 99.45689394 −19.76741851

ICs. Additionally, the second kind of coexistence that consists of a limit cycle and a
steady-state solution appears at a large heating parameter (e.g., r = 250, not shown).

Both traditional and new model configurations with (σ, b) = (10, 8/3) and
(1, 2/5), respectively, can produce chaotic solutions. For the traditional configuration
that has been well applied in numerous studies since Lorenz [1], all three equilibrium
points are unstable when r > 24.74. The stability of the three equilibrium points
for σ = 10, as well as for σ = 1, is illustrated in Fig. 6. The non-existence of
stable equilibrium points within the chaotic regime makes it easier to obtain chaotic
solutions. However, no tiny, initial perturbation can completely lose its impact within
the chaotic regime. We may interpret this as a finding that a tiny, initial perturbation
cannot completely dissipate (before leading to a large impact). By comparison, for
the new configuration of σ = 1, while the origin is still a saddle point, the two,
non-trivial equilibrium points are stable (Fig. 6b). The existence of stable equilib-
rium points enables the coexistence of chaotic and steady-state solutions, the latter
of which has no long-term memory regarding a tiny, initial perturbation.

As a result of coexistence for σ = 1 within the 3DLM, a proper choice of initial
conditions is required in order to simulate a chaotic solution. Without knowing this,
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Fig. 6 Local behavior near the two non-trivial critical points for the 3DLM with σ = 10 (a) and
σ = 1 (b). Lighter blue dots indicate the locations of orbits at earlier times. A red dot indicates the
origin, which is a saddle point. Orbits in panel (a) spiral away from the non-trivial critical points
while orbits in panel (b) spiral toward the non-trivial critical points

Prof. Lorenz thought it may have been impossible to obtain a “strange” solution if
σ = 1was first used in the Saltzman [30]model, giving nomotivation for him towork
on the 3DLM. In other words, the value of σ = 10 used in the original study [30]
was indeed a “fortunate” choice so that an unexpected irregularly oscillatory solution
could be revealed, inspiring Prof. Lorenz to develop the 3DLM in order to discover
interesting chaotic features. However, on the other hand, we now understand that
such a configuration can only depict a partial picture for the nature of weather. Based
on our results and analysis, a realistic system should include physical processes for
(some of) the tiny disturbances in order to completely dissipate. Since it produces the
coexistence of chaotic and steady-state solutions and since the steady-state solution
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has no long-termmemory of tiny perturbations, the 3DLMwith the new configuration
of σ = 1 satisfies the objective. Such a system, which is similar to the 9DLM that
produces two kinds of coexisting attractors, provides amore realistic view on the true
nature of weather than the original 3DLM with a typical configuration. The above
results support the idea that two kinds of attractor coexistence should be taken into
consideration to reveal the nature of weather.

5 A Refined View on the Nature of Weather

Within the forced dissipative 3DLM, chaotic solutions appear within a finite range
of parameters (e.g., heating parameter), bounded on one side by stable, steady-state
solutions and on the other side by nonlinear periodic solutions. Since climate and
weather involve open systems [60], an assumption of constant parameters within
numerical simulations using the 3DLM, as well as high-dimensional LMs, is not
realistic [61]. Time varying parameters that lead to different attractors should be used
inmodels for realistic climate orweather [19]. For example, when amoderate heating
becomes weaker (or stronger), a steady-state solution (or a limit cycle) may appear.
Since regular and chaotic solutions may alternatively appear, chaotic solutions alone
may not be able to represent the entirety of weather.

Additionally, our results show that chaotic and non-chaotic solutions may coexist
and two kinds of attractor coexistence may alternatively appear within the 9DLM
using time varying parameters. The analysis suggests a need to refine our view of
weather by taking the dual nature associatedwith attractor coexistence into considera-
tion. To this end, we suggest, contrary to the traditional view that weather is chaotic,
that weather is, in fact, a superset that consists of both chaotic and non-chaotic
processes, including both order and chaos.

5.1 Vacillation, Coexisting Two LCs, and Coexisting Two
Time-Scale Orbits

The (potential) occurrence of a regular nonlinear periodic solution (i.e., limit cycle)
in the atmosphere was first illustrated by laboratory experiments using dishpans.
Based on experiments by Lorenz [39], Fultz [62] and Hide [63] suggested three
types of solutions, including: (1) steady state solutions, (2) irregular chaotic solutions,
and (3) vacillation. “Amplitude vacillation” is defined as a solution whose amplitude
grows and periodically decays in a regular cycle [3, 64, 65]. Studies by Pedlosky [66],
Smith [67], and Smith and Reilly [68] found that amplitude vacillation can be viewed
as a limit cycle solution. By conducting a study for observational characteristics of
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low-frequency variability, Ghil and Robertson [69] suggested that 40-day, intra-
seasonal oscillations may arise from a bifurcation off the blocking flow and may be
represented by a limit cycle with a period of 40 days.

As discussed earlier, we showed that the 3DLM with a realistic value of σ = 1
also generates two kinds of attractor coexistence. Additionally, the coexistence of
two stable limit cycle solutions was documented using the Lorenz 1984 model [15,
70–75] that also contains three types of solutions, including steady state, periodic
solutions, and chaotic solutions. Using a seasonally varying forcing term with a time
scale of 12 months, Lorenz [71] showed that chaos appears during winter (within
a specific range of parameters) and two coexisting LCs during summer (within a
different range of parameters). Such numerical results also support the view of the
dual nature of chaos and order that alternatively appear. The above results suggest that
once summer begins and has been observed, a better predictability for a limit cycle
solution may be expected during each cycle of the solution in summer, as compared
to that in winter. More recently, Lucarini and Bodai [76] applied a multistable system
with coexisting attractors to reveal the bistability of the climate system with both
positive and negative feedback [76, 77].

Coexisting solutions at two time scales, that are not the same as the coexisting
attractors discussed above, have also been documentedwithin the scientific literature.
Related studies additionally support the refined view on the nature of weather. For
example, co-existence of fast and slow manifolds has been discussed by Curry et al.
[78], Lorenz [79, 80] and Lorenz and Krishnamurthy [81]. Both types of solutions in
Lorenz [79] are non-chaotic.Bycomparison, fast and slow“variables” that are chaotic
may also coexist within coupled systems [82, 83] In fact, an analysis using a singular
perturbation method [84] indicates that the GLM also possesses the coexistence of
slow and fast variables that correspond to large and very small spatial modes (e.g.,
Eqs. (2) and (4) of [27] in a high-dimension phase space). A current trend is to
include time-varying parameters to increase the complexities of low order systems
[85]. It can be shown that a higher dimensional Lorenz model (e.g., 7DLM) can be
viewed as a lower-dimensional Lorenz model (e.g., 5DLM) with a periodic forcing,
suggesting that the complexities of spatial mode–mode interaction may lead to the
temporal complexities.

5.2 Error Saturations and Computational Chaos

In real-world weather models, the appearance of (fully) chaotic solutions may be
indicated by error saturations, defined as follows. A logistic equation has been used to
describe the evolution of root mean square (rms) average forecast error for ensemble
runs [52, 86–89]. Given an initial condition with a small value, the solution of the
logistic equation has time varying, non-negative growth rates (e.g., growing at an
initial larger growth rate, then at a nonlinear smaller growth rate, and eventually
approaching a constant defined as a saturated error that has a zero growth rate).
The occurrence of error saturation at a fully nonlinear stage indicates a comparable
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number of members with positive and negative error growth rates at a given time.
Such a result is consistent with the features of a positive LE and solution boundedness
associated with a specific chaotic solution.

The error growthmodelwith non-negative growth ratesmaydescribe the statistical
behavior of the system within which the majority of small errors tends to grow. By
comparison, the error growth model cannot accurately represent the initial, transient
evolution of the rms averaged forecast error associated with large ensemble members
with periodic or decaying components whose growth rates are small. For periodic
solutions such as vacillation [87], an ensemble averaged error may grow (or decay)
with time when a large (or small) ensemble number of growing errors and a small (or
large) ensemble number of decaying errors are averaged.As a result, when oscillatory
waves were simulated, their rms errors may oscillate with time rather than become
saturated. For example, oscillatory rms errors appeared after 40-day simulations in
Fig. 5 of Liu et al. [90] who performed global simulations using the Community
Atmosphere Model [91]. An additional example can be found in 30-day simulations
of multiple African Easterly Waves (AEWs) using a global mesoscale model that
produced oscillatory correlation coefficients [38].

On the other hand, it should be noted that error saturations may appear in associa-
tion with computational chaos that is a numerical artifact. For example, Lorenz [92]
presented several cases in order to show that while differential equations of a model
may possess nonlinear limit cycle solutions, the corresponding discrete version of
the model with large time steps produces a sensitive dependence of solutions on the
initial condition, referred to as computational chaos. As a result, the appearance of
error saturations (as well as positive LE) that appear within numerical models does
not necessarily represent the chaotic nature of weather. Due to the appearance of
computational chaos, an estimate of a practical predictability limit using saturation
errors should be interpreted with caution, as it does not necessarily represent an
intrinsic predictability limit for real weather.

6 Concluding Remarks

The statement of “weather is chaotic” has been introduced to indicate the chaotic
nature of weather with a finite intrinsic predictability. The statement has also been
cited to embrace a practical predictability limit of 2 weeks [93]. The finite intrinsic
and practical predictability are indeed largely derived from the chaotic and unstable
solutions of Lorenz models [1, 4]. In other words, the current view of “weather
is chaotic” does not take into consideration other types of solutions within orig-
inal Lorenz models and new types of solutions within newly developed generalized
Lorenz models.

In this study, we first applied the aforementioned models in order to reveal
three types of solutions and two kinds of attractor coexistence, indicating different
intrinsic predictability for different solutions. We then suggested a refined view on
the dual nature of chaos and order in weather. In contrast to the current view that
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focuses on chaotic solutions with a predictability limit (of 2 weeks), our refined
view suggests that coexisting chaotic and non-chaotic systems can have different
intrinsic predictability. The refined view may unify the theoretical understanding of
different predictability within Lorenz models with recent numerical simulations of
advanced global models that can simulate large-scale tropical waves beyond two
weeks [38, 94].

The refined view with a duality of chaos and order is fundamentally different
from the Laplacian view of deterministic predictability and the Lorenz view of
deterministic chaos. The refined view that is not too optimistic nor too pessimistic
suggests both potential and challenges. For non-chaotic processes with steady-state
or nonlinear periodic solutions [95, 96], their intrinsic predictability is deterministic
(e.g., up to the lifetime of a dissipative solution or the time scale of the forcing) and
their practical predictability can be continuously increased by improving the accu-
racy of the model and the initial conditions. For limit cycle solutions that may be
associated with computational chaos, accurate simulations with better predictability,
as compared to chaotic solutions, can be obtained by increasing temporal resolutions
and/or removing redundant dissipations. To reveal longer predictability or better esti-
mates on predictability in model and observation data, we will focus on developing
schemes for the detection of chaotic and non-chaotic solutions [16, 28, 97] and exam-
ining the roles of butterfly effects in multiscale simulations using high-resolution
global models.

In addition to the chaotic nature of weather with a finite predictability, another
major influential impact of the 3DLM is that the sensitive dependence on initial
condition, referred to as the butterfly effect of the first kind, has been inaccurately
metaphorized to indicate the ability of a butterfly flap in creating a tornado [98],
referred to as the butterfly effect of the second kind [7]. To understand their roles
in reality and numerical models, the two different kinds of butterfly effects are
being analyzed based on a comprehensive review of historical literature and recent
understanding of chaos dynamics.
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Abstract In contrast to the conventional view that weather is chaotic, a revised
view on the dual nature of chaos and order in weather and climate has recently
been proposed. The revised view is based on the findings of attractor coexistence
using the classical and generalized Lorenz models, as well as promising 30day
simulations using a high-resolution global model. To provide additional support, this
study further illustratesmathematical universalities between theLorenz andPedlosky
models whose solutions represent very different physical processes, including small-
scale convection and large-scale quasi-geostrophic baroclinic waves. A comparison
amongst the non-dissipative Lorenz model, the inviscid Pedlosky model, the KdV
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1 Introduction

Over a span of 50 years, pioneering studies by Prof. Lorenz of MIT [20, 22, 23] have
changed our view on the predictability of weather by revealing the so-called butterfly
effect, also known as chaos [1, 10, 24]. Studies by Prof. Lorenz and other chaos
researchers have yielded a paradigm shift in fundamental research activity: from
regularity associated with Laplace’s view of determinism to irregularity associated
with Lorenz’s view of chaos, indicating finite predictability and a potential role for
free will. The statement of “weather is chaotic” has been well accepted within the
scientific community.However, in contrast to the above, a revisedview that focuses on
the dual nature of both order and chaos in weather and climate has been proposed [46,
48, 52, 53]. Such a view is based on publications using a real-world, high-resolution
global model over the past 10 years (e.g., [47, 54–56]), and recent findings using
the theoretical Lorenz model [20] and various generalized Lorenz models (e.g., [5,
7, 13, 16, 27, 28, 35, 37, 41–46, 48]), as well as real-world data analysis (e.g.,
[47, 49, 50, 64]). Major findings include: (1) realistic short-term climate (30-day)
simulations that are beyond two weeks and (2) the coexistence of chaotic and non-
chaotic processes.

The revised view suggests the potential for extending predictability beyond the
Lorenz theoretical limit of two weeks and calls for a need to revisit predictability
problems by analyzing both chaotic and regular solutions (i.e., weather systems).
Previous studies have demonstrated that theoretical mathematical models are power-
ful tools for revealing the nature of real weather and for understanding the impact of
new model components on system stability. By extending earlier studies, my main
goal here is to provide additional support to the revised view on the duality of weather
by comparing the Lorenz model [20] and the Pedlosky model [31–34], which are
derived from very different physical models. I, also, present mathematical univer-
salities amongst the non-dissipative versions of the two models and four additional
physical systems, including the Korteweg-de Vries (KdV) equation (e.g., [2–4, 18,
19, 26, 63]) and the Nonlinear Schrodinger (NLS) equation (e.g., [12]) in order to
propose a generic system for predictability studies. I then illustrate how the inclusion
of multiple dissipative terms into the generic system may lead to chaotic responses.

The concept of duality in weather is supported by attractor coexistence within the
Lorenz model [52, 53, 65] and the generalized Lorenz model [46, 47]. However,
mathematical simplicity and the specific physical nature of the convection problem
within Lorenz-type models still makes people wonder about the reality and appli-
cability of the revised view. To provide additional support for the revised view, a
comparison of differences and similarities in the Lorenz and Pedlosky models is pro-
vided. As discussed in Sect. 2 and Appendix A, the Pedlosky model that consists of
a 2nd-order ordinary differential equation (ODE) and a first-order ODE was derived
from a set of partial differential equations (PDEs) for a two-layer quasi-geostrophic
(QG) flow. Here, quasi-geostrophic dynamics indicate a significant impact due to
Earth’s rotation measured by the Coriolis parameter. As compared to convection that
appears at small temporal and spatial scales, quasi-geostrophic flows possess very
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different physical processes at large temporal and spatial scales. Despite different
physical processes at small and large scales, here, I show that the two systems of
ODEs for the Lorenz and Pedlosky models are mathematically identical when sys-
tem parameters are properly selected. Such mathematical universalities indicate the
applicability of findings using Lorenz models within the Pedlosky model, a system
governed by QG dynamics.

While chaotic solutions have been a focus over the past several decades, the revised
view reiterates the importance of regular solutions. As discussed in earlier studies
(e.g., [46–48] and references therein), regular steady-state and limit cycle solutions
may appear within the three-dimensional Lorenz model (3DLM, [20]) and two types
of oscillatory solutions within the non-dissipative Lorenz model (3D-NLM, e.g.,
[45]). The latter (i.e., 3D-NLM) may qualitatively represent characteristics of the
former (i.e., 3DLM) at sufficiently large heating parameters (e.g., [45, 59]). Addi-
tionally, homoclinic orbits that connect stable and unstable manifolds at a saddle
point can be found in both the 3DLM and 3D-NLM. Within the 3D-NLM, analyt-
ical solutions of homoclinic orbits that represent a separatrix that separates small-
and large-cycle oscillations were obtained. The results suggest that the existence of
homoclinic orbits may be a good indicator for the existence of two families of regu-
lar oscillations within non-dissipative systems. On the other hand, while homoclinic
orbits may coexist with oscillatory orbits, depending on the initial conditions, their
presence tends to introduce irregular responses and chaos within non-dissipative
and/or dissipative systems (e.g., [11, 48]).

Earlier studies (e.g., [9]) suggested that improving our understanding of homo-
clinic orbits and nonlinear oscillatory solutions has the potential to address the transi-
tion between two types of symmetric and unsymmetric vacillations.Vacillationswere
discovered using dishpan experiments in the laboratory during the 1950s [8, 14] and
may be viewed as a limit cycle solution (e.g., [32, 57, 58]). In comparison, for reg-
ular weather systems, roll clouds may appear in the form of solitary-type solutions.
The solitary-wave solution appears as a result of the balance between nonlinear-
ity and dispersion (e.g., [36, 38, 66, 67]). A recent study (e.g., [48]) demonstrated
that solitary-type solutions in a traveling-wave coordinate, appearing in the form of
hyperbolic secant (sech) and hyperbolic secant squared (sech2) functions, can be
found in the two different components of homoclinic orbits within the 3D-NLM.
Additionally, mathematical universalities amongst the 3D-NLM, the KdV, and the
NLS equations were presented. Here, all of the features (i.e., solutions and ODEs)
are reviewed and compared to those of the Pedlosky model, as well as a simplified
nonlinear pendulum equation, in order to propose a generic system for predictability
studies.

The paper is organized as follows. In Sect. 2, a review of the Lorenz and Ped-
losky models is first provided. Mathematical similarities for equations and solutions
amongst the non-dissipative Lorenz model (3D-NLM), the inviscid Pedlosky model,
theNLS, theDuffing, theKdV, and simplified pendulum equations are then presented
in order to propose a generic system, which is a conservative, 2nd-order ODE. In
Sect. 3, a stability analysis of the generic system with zero or multiple dissipative
terms is performed to reveal the impact of additional terms (e.g., nonlinear and/or
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dissipative terms) on the system’s stability. Concluding remarks are provided at the
end. Appendix A presents a two-layer, quasi-geostrophic system that provides a
foundation for the Pedlosky model. A brief introduction to the nonlinear pendulum
equation is provided in Appendix B.

2 The Lorenz and Pedlosky Models and Other Systems

In this section, I first show that the full version of the Lorenz and Pedlosky models
produces the same set of ODEs when their parameters are properly selected. I then
present mathematical universalities amongst the 3D-NLM, the inviscid Pedlosky
model, the NLS, the Duffing, the KdV, and the simplified pendulum equations (e.g.,
[15, 60–62]).

2.1 The Lorenz Model and Its Non-dissipative Version

The Lorenz model consists of the following three first-order ODEs [20]:

dX

dτ
= σY − σX, (1)

dY

dτ
= −X Z + r X − εY, (2)

dZ

dτ
= XY − bZ . (3)

Here, X , Y , and Z are the state variables. The above system contains four time-
independent parameters: ε, σ, r , and b. Compared to the original Lorenz model
with three parameters, an additional parameter ε is introduced to illustrate the role
of positive or negative dissipation in changing the stability of the system (to be
discussed in Sect. 3.3). When ε = 1, the above system becomes the original 3DLM.
The second and third parameters are called the Prandtl number and the normalized
Rayleigh number [40], also referred to as a heating parameter. The fourth parameter
“b” represents the ratio of the horizontal and vertical scales of the convection cell.

By retaining one dissipation termof (−εY ) and neglecting the other twodissipative
terms (i.e.,−σX and−bZ ), Eqs. (1)–(3) can be transformed into the following single
ODE for X :

d2X

dτ 2
+ ε

dX

dτ
+

(
X2

2
− (σr + Ce)

)
X = 0, (4)
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and the ODE for a conservative quantity of Ce:

dCe

dτ
= 0. (5)

Here, Ce = C(X2/2 − σZ) = constant even when ε �= 0. Such a constant can be
determined by its initial value, yielding Ce = Cic. Below, Eq. (4) with ε = 0 is first
analyzed in order to examine Eq. (4) with ε �= 0 in Sect. 3.3. With ε = 0, Eq. (4) that
represents the 3D-NLM (e.g., [29, 30, 48]) becomes:

d2X

dτ 2
+

(
X2

2
− (σr + Cic)

)
X = 0. (6)

Additional details can be found in [45, 48].
A general form of the 2nd order ODE that represents Eq. (6) is written as follows:

d2U

dτ 2
+ G(U ) = 0, (7)

here, G(U ) represents a function of U .
Multiplying both sides by U ′ and integrating with respect to τ , we can obtain:

1

2

(
dU

dτ

)2

+
∫

G(U )dU = E0; (8)

here, E0 is an integration constant. The first and second terms on the left side may
be viewed as mathematical kinetic energy and potential energy, respectively [17].
As a result, Eq. (8) represents a conservative quantity for total energy. To facilitate
discussions below, Eq. (8) is referred to as the energy form of Eq. (7). Applying the
same idea, we can derive the following equation from Eq. (6):

(
dX

dτ

)2

− (σr + Cic)X
2 + X4

4
= E1, (9)

where E1 is constant. Note that based on classifications of domain average potential
energy and available potential energy (APE) within the 3DLM and 3D-NLM (e.g.,
[42, 48], the mathematical energy in Eq. (9) may represent the sum of the rescaled
domain average kinetic energy and APE, the latter of which is not the same as the
domain average potential energy.

As a result of Z = Cic − X2/(2σ) in Eq. (5), the following equation can be
obtained from Eq. (6) of the 3D-NLM with Cic = 0:

d2Z

dτ 2
+ 3σZ2 − 4σr Z = 0. (10)
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Fig. 1 Two types of oscillatory solutions within the 3D-NLM. Panels (a)–(c) illustrate small-cycle
solutions with an initial condition of (X, Y, Z) = (5, 0, 0). Panels (b)–(d) show large-cycle solutions
with an initial condition of (X, Y, Z) = (0, 5, 0)

Note that such a Cic is selected for a comparison with the KdV equation below.
As discussed in a previous study [45], the 3D-NLM produces three different types

of solutions, including two kinds of oscillatory solutions and homoclinic orbits.
Numerical solutions for oscillations with small and large cycles are displayed in
Fig. 1, indicating that the X component of the large-scale oscillation varies between
positive and negative values, and that the small-scale cycle is of one sign.

In comparison, an analytical solution of the homoclinic orbit that connects unsta-
ble and stablemanifolds at the saddle point is provided in Fig. 2. Here, the homoclinic
orbit is decomposed into two components (i.e., the “contracting component” and
“expanding component”) in order to obtain their analytical solutions. The “contract-
ing component” of the homoclinic orbital solution is defined for τ ∈ [0,∞), with an
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Fig. 2 Solutions of the homoclinic orbit for X (a), Y (b), and Z (c) within the 3D-NLM for
σ = r = 10. The homoclinic orbit within the X − Y space is shown in panel (d). Blue and red
lines represent the monotonically decreasing and increasing components of X (as well as Z ) for the
homoclinic orbit, respectively

initial condition of (X,Y, Z) = (2
√

σr , 0, 2r). The solution is written as follows:

X (τ ) = 4
√

σr

e
√

σrτ + e−√
σrτ

= 2
√

σrsech(
√

σrτ ), (11a)

Y (τ ) = −4r
e
√

σrτ − e−√
σrτ

(
e
√

σrτ + e−√
σrτ

)2 = −(2r)tanh(
√

σrτ )sech(
√

σrτ ), (11b)

Z(τ ) = X2(τ )

2σ
= (2r)sech2(

√
σrτ ). (11c)

From the above equations, the X and Z components are expressed in terms of hyper-
bolic secant and secant squared functions, respectively.

Since the first derivative of the X (as well as Z ) solution is non-positive (i.e.,
dX/dτ ≤ 0) for τ ∈ [0,∞), the solution in Eqs. (11a) (as well as (11c)) indeed
represents the monotonically decreasing component of the homoclinic orbit. As a
result, the term “contracting component” is used to describe the solution in the X − Y
phase space, since Y is not a monotonic function for τ ∈ [0,∞). The contracting
component begins at (X,Y, Z) = (2

√
σr , 0, 2r) for τ = 0 and approaches the origin

for τ → ∞.
The solution for the expanding component of the homoclinic is obtained using the

invariant property, as follows. Since the 3D-NLM is invariant under τ → −τ and
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Y → −Y (e.g., [61]), the above solution (X (τ ),−Y (τ ), Z(τ )) in backward time
τ ∈ (−∞, 0] represents the expanding component of the homoclinic solution. As
shown in red in Fig. 2, such a component begins at the origin for τ → −∞ and then
moves to the point (X,Y, Z) = (2

√
σr , 0, 2r) for τ = 0. The corresponding X and

Z components are monotonically increasing functions of time.

2.2 The Pedlosky Model

In this subsection, I mainly compare the inviscid Pedlosky model (e.g., Eqs. 2.12a,
b of [32]) and the non-dissipative Lorenz model, while Appendix A presents the
viscid version of the Pedlosky model and compares it with the dissipative Lorenz
model. As discussed in Appendix A, the Pedlosky model was derived from partial
differential equations (PDEs) for a two-layer quasi-geostrophic system that possesses
baroclinic instability [30–34, 39]. Such an instability appears in the presence of large-
scale horizontal temperature (density) gradients associated with the vertical shear of
horizontal winds. Although the Lorenz and Pedlosky models were derived from
very different PDEs with different physical processes, Appendix A shows that two
systems ofODEs can bemathematically identicalwhen time-independent parameters
are properly selected, as listed in Table1.

Below, major features of the inviscid Pedlosky model and the 3D-NLM are pre-
sented and compared. The inviscid version with η = 0 in Eqs. (30)–(31) of Appendix
A is written as:

Table 1 Mathematical similarities of the Lorenz and Pedlosky models that refer to Eqs. (25)–(27)
of [20] and Eq. (6.9) of [31], respectively. The two models are documented in Eqs. (1)–(3) and Eqs.
(30)–(31), respectively, in this study. [30–32], and [34] are denoted as P70, P71, P72, and PF80,
respectively. The Pedlosky model was proposed for studying nonlinear baroclinic waves with finite
amplitudes
Model The Lorenz model The Pedlosky model References

Dynamics of
the PDEs

Rayleigh-Benard convection Nonlinear Baroclinic wave

dissipative or
viscid

dX
dτ = −σX + σY d2R

dτ2
+ αη dR

dτ − R + R(R2 − D) = 0 Eq.6.9 of P71;

dY
dτ = −X Z + r X − Y dD

dτ + ηD + βηR2 = 0 Eq.2.11a, b
dZ
dτ = XY − bZ of PF80

r = 1+σ
σ R2 = X2

2 ; D = 1
2 X

2 − σZ

α = 1+σ
b ;β = 2σ−b

b ; η = b

non-dissipative
or inviscid

d2X
dτ2

− (σr + C1
Co

)X + X3
2 = 0 d2R

dτ2
− (1 + Do)R + R3 = 0 Eq.6.8 of P70

dD
dτ = 0(

dX
dτ

)2 − (σr + C1
Co

)X2 + X4
4 = 0 ( dRdτ )2 − (1 + Do)R2 + R4

2 = E2 Eq.3.7 of P72

C1 and C2 are constants Do and E2 constants
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d2R

dτ 2
− (D0 + 1)R + R3 = 0, (12)

dD

dτ
= 0. (13)

Here, D0, that denotes an initial value of D, is a constant. The two ODEs are now
decoupled and the coefficient of the linear (forcing) term becomes time independent.
Interestingly, Eq. (12) is mathematically identical to Eq. (6) of the 3D-NLM that
produces three types of solutions. Below, without loss of generality, we may assume
a non-negative Cic in Eq. (6) and D0 in Eq. (12) (e.g., any initial value for X and a
zero value for Z ). As compared to the viscid version, the linear term that represents
the forcing term has a negative constant coefficient, yielding a negative stiffness
under the inviscid condition, indicating instability. Note that “stiffness” is defined as
the “coefficient” of the linear term (i.e., Λ in Eq. (32)).

Following discussions that derive Eq. (8) from Eq. (7), the energy form of Eq.
(12) is written as follows:

(
dR

dτ
)2 − (1 + Do)R

2 + R4

2
= E2; (14)

here, E2 is an integration constant. Equation (14) for the Pedlosky model is mathe-
matically equivalent to Eq. (9) of the 3D-NLM. The above equation was documented
as Eq. (3.7) in [32], who obtained solutions as the elliptic functions (dn) and (cn)
for E2 < 0 and E2 ≥ 0, respectively. The two elliptic functions are displayed in
Fig. 3. Since dn is a one sign function, a 2D R − R′ phase portrait (i.e., R = dn
versus R′ = d(dn)/dτ ) only appears in the first and fourth quadrant, referred to as
solutions with small cycle oscillations. In comparison, for the solution of the cn
function, a 2D R − R′ phase portrait displays orbits appearing in all of the four
quadrants, classified as large cycle oscillations. As a result, the solutions provided in
Fig. 3 are consistent with the solutions in Fig. 1. Since the limit for both the cn and
dn functions is a hyperbolic secant function (sech), a homoclinic orbit in the R − R′
space can be obtained within the Pedlosky model. Such an orbit is a separatrix that
separates the small-cycle (e.g., dn) and large-cycle (e.g., cn) solutions.

2.3 The NLS, Duffing, and KdV Equations

The above discussions presented mathematical similarities between the 3D-NLM
and the inviscid Pedlosky model, as well as similarities between the full 3DLM and
Pedlosky models. A recent study [48] that demonstrated mathematical universalities
amongst the 3D-NLM, the Duffing, the KdV, and the NLS is summarized below for
a comparison.
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Fig. 3 Jacobi elliptic functions dn (a, c) and cn (b,d) representing solutions of the inviscid Pedlosky
model for “negative” and positive energy, respectively. Top panels show time evolutions of dn and
cn, respectively. Bottom panels show the phase portrait in the two-dimensional V − V̇ phase space,
here, V is either dn or cn and V̇ represents the time derivative of V

Table 2 A comparison of the 3D-NLM, the invisid Pedlosky model, the Duffing, the NLS, and
the KdV equations. cn and sech represent the Jacobi elliptic and hyperbolic secant functions,
respectively. Please see details in the main text
3D-NLM Other models Solutions

The Equation for X ′′ The invisid Pedlosky Model
d2X
dτ2

− (σr + C1
Co

)X + X3
2 = 0 d2R

dτ2
− (1 + D0)R + R3 = 0 cn and dn

The Equation for X ′′ The Duffing Equation

the same as the above d2g

dτ2
+ δ dg

dτ + αg + βg3 = γcos(ωτ ) cn

δ = 0, γ = 0, α = −(σr + C1
Co

), β = 1/2

The Equation for (X ′)2 The Nonlinear Schrodinger Equation(
dX
dτ

)2 − σr X2 + X4
4 = 0

(
dh
dx

)2 + δh2 + γ
2 h

4 = 0 sech

δ < 0, γ > 0

The Equation for Z ′′ The Korteweg-de Vries Equation

d2Z
dζ2

+ 3Z2 − 4r Z = 0 d2 f
dξ2

+ 3 f 2 − c f = 0 sech2

ζ = √
στ c = 4r
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As listed in Table2, the 1st order ODE (Eq.9) and the 2nd order ODE (Eq.6) for
the X component share similarities with the following two mathematical systems,
respectively:

(i) the Nonlinear Schrodinger equation:

(
h′)2 + δh2 + γ

2
h4 = 0, δ < 0, γ > 0; (15)

(ii) the Duffing equation (with no dissipation nor external forcing):

g′′ + αg + βg3 = 0, α < 0,β > 0. (16)

For the Z component of the 3D-NLM, its 2nd order ODE (e.g., Eq. 10 of the 3D-
NLM with Cic = 0) is mathematically identical to the following KdV equation in a
traveling wave coordinate (e.g., [12, 60]):

(iii) the KdV equation:
f ′′ + 3 f 2 − c f = 0, c ∈ R. (17)

In addition, [48] previously illustrated how analytical solutions of the homoclinic
orbit for the Z component of the 3D-NLM (Eq.11c) can aid in obtaining solutions
of the KdV equation in the form of a hyperbolic sech squared function.

Based on the above discussions of various physical systems, which are summa-
rized in Tables1 and 2, Eq. (6) of the 3D-NLM may be viewed as a generic system
that represents the above systems (i.e., the inviscid Pedlosky, the Duffing, the NLS,
as well as the KdV equations). Below, I further illustrate similarities between Eq. (6)
and a nonlinear pendulum equation near its unstable equilibrium point.

2.4 A Simplified Nonlinear Pendulum Equation

In this subsection, I present a simplified version of the nonlinear pendulum equation
and compare it with the aforementioned systems in order to propose a generic system
that retains commonmathematical features. Then, the dynamics of the pendulum sys-
tem can be applied in order to understand the major dynamics of the aforementioned
systems.

The mathematical equation of a nonlinear pendulum and a stability analysis of
a stable equilibrium point are provided in Appendix B. Here, I further analyze the
stability of the unstable equilibrium point within the pendulum system. By introduc-
ing a new variable (Θ) with a phase lag of 180o, Θ = θ − π, I obtain the following
equation from Eq. (36) with no damping term:

d2Θ

dτ 2
− sin(Θ) = 0. (18)
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When sin(Θ) is approximated by a Taylor series expansion of (Θ − Θ3/6), the
above equation becomes:

d2Θ

dτ 2
− Θ + Θ3

6
= 0. (19)

Equation (19) shares the same mathematical form as that in Eq. (6) of the 3D-NLM,
as well as in Eq. (12) of the inviscid Pedlosky model.

Following discussions that lead to Eq. (8) from Eq. (7), we have the following
potential energy (PE) functions for the full system in Eq. (18) and the simplified
nonlinear system with a cubic term in Eq. (19), respectively:

PE f ull =
∫

G(Θ)dΘ =
∫

−sin(Θ)dΘ = cos(Θ) + K1, (20)

PEcubic =
∫ (

−Θ + Θ3

6

)
dΘ = −1

2
Θ2 + 1

24
Θ4 + K2. (21)

Similarly, the potential energy for the linear version of the equation (i.e., no cubic
term) is written as follows:

PElinear = −1

2
Θ2 + K3. (22)

Here, K1, K2, and K3 are integration constants and set to zero in order to simplify
discussions.

Here, the potential energy functions are used to qualitatively reveal the relation-
ship between the extrema of potential energy and the stability of equilibrium points.
As shown in Fig. 4, all of the three PE functions display one local maximum that
corresponds to an unstable equilibrium point. Within the full and nonlinear systems,
their PE functions additionally include two local minima, yielding two stable equilib-
rium points. The appearance of stable and unstable equilibrium points is consistent
with those in Figs. 1 and 3.

The simplified nonlinear system (i.e., Eq. 19) shares dynamics that are fundamen-
tally similar to that within the full system (i.e., Eq.18). However, as shown in Fig. 4,
differences in the exact location of the stable equilibrium points yield different peri-
ods within the two systems. Despite minor differences, it can be said that the linear
system (with no cubic term) produces locally unstable solutions that lead to global
instability and that the (simplified) nonlinear system enables the coexistence of local
instability and global stability.
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Fig. 4 Potential energy
functions for the full and
simplified pendulum
equations near the unstable
equilibrium point in Eqs.
(20–22)

3 Discussions and Analysis

Based on the above discussions, a generic system is proposed representing all of
the aforementioned systems, including the 3D-NLM, the inviscid Pedlosky model,
the Duffing, the NLS, the KdV, and the simplified pendulum equations. The generic
system is then used to reveal the role of nonlinearity and its collective role with
dissipations, as well as the forcing term, in changing system stability.

3.1 A Generic System and Its Stability

Mathematical universalities amongst the aforementioned systems indicate that the
Lorenzmodel (in particular the non-dissipative version) is representative for different
physical systems. Here, by considering conservative systems, I propose the following
nonlinear 2nd order ODE as a generic system:

d2 V

dτ 2
− pV + qV 3 = 0, (23)

here, p and q are assumed to be non-negative constants. In general, p may also
depend on a systems’ initial state (e.g., Cic in Eq. (6) for the 3D-NLM and D0 in
Eq. (12) for the inviscid Pedlosky model). With a comparison to dissipative systems,
Appendix A presents the condition under which parameter p may vary with time.

The “alternative form” of Eq. (23) in terms of total energy is written as follows:

(
dV

dτ

)2

− pV 2 + q
V 4

2
= EV ; (24)

here, EV is an integration constant. Equations (23) and (24) are equivalent to Eqs.
(6) and (9) of the 3D-NLM, respectively. Equation (24) represents the relationship
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Fig. 5 Contour lines of total
energy defined on the left
hand side of Eq.24. Contour
lines with positive and
negative values correspond
to large- and small-cycle
oscillations

between the state variable V and its derivative V ′. Since it is common to view
both of these variables as state variables in order to construct a 2D V − V ′ phase
space, a contour analysis of Eq. (24) may qualitatively illustrate major features of the
solutions. As shown in Fig. 5, the left hand side of Eq. (24) produces 2D contour lines
with positive and negative values that are associated with large-cycle and small-cycle
oscillations, respectively. Zero contour lines (that begin at the origin and return back
to the origin) are associated with homoclinic orbits that act as boundaries between
two types of oscillatory solutions.

By tracing the energy source in the aforementioned systems, we can show that
the linear term (pV ) comes from one or more of the following:

(1) the heating term within the 3D-NLM;
(2) baroclinic instability within the inviscid Pedlosky model;
(3) initial conditions within the KdV equation; and
(4) (gravitational) potential energy (with a local maximum) within the pendulum

equation.

The above are consistent with the fact that a generic system containing only the linear
term produces unstable and stable solutions with exponential growth and decay,
respectively (i.e., exp

(√
pτ

)
and exp

(−√
pτ

)
). Below, a summary on a linear

stability analysis using eigenvalues of the system’s Jacobian matrix is provided in
order to reveal the impact of nonlinearity and dissipation on the local stability of
critical points.



Solitary Waves, Homoclinic Orbits, and Nonlinear Oscillations … 841

3.2 Destabilization by Nonlinearity Within the Generic
System

One common approach for analyzing the stability of Eq. (23) is discussed below.
First, we convert the equation into a system of the first-order ODEs as follows:

dV

dτ
= W (25)

dW

dτ
= −pV + qV 3 (26)

Defined as steady state solutions to the system, the three critical points are (V,W ) =
(0, 0) and

(±√
p/q, 0

)
. When the nonlinear cubic term (qV 3) is neglected, the

reduced system is linear and only contains the trivial critical point. Secondly, we
compute the so-called Jacobian matrix and determine its eigenvalues at each of the
critical points. Finally, by analyzing the eigenvalues, we classify all of the critical
points as (spiral) sources, (spiral) sinks, or saddle points. Such a procedure is referred
to as a linear stability analysis. For the system in Eqs. (25)–(26), the trivial critical
point can be shown to be a saddle with positive and negative eigenvalues and the two
non-trivial critical points can be shown to be centerswith pure imaginary eigenvalues.

Although an unstable solution may begin near the saddle point as a result of the
instability associated with the linear term, the growth of the unstable solution may
be constrained by stable centers introduced by inclusion of the nonlinear term. In
other words, the nonlinear term produces new stable critical points in order to limit
the growth of solutions. As a result, an orbit of Eq. (23) may be locally unstable (near
the saddle point) but still remains globally stable. Features of local instability and
global stability are supported by the appearance of three types of solutions in Figs. 1
and 2, and the potential energy extrema in Fig. 4.

As a brief summary, the above analysis suggests that the linear term acts as a
forcing term to produce (local) instability, and the nonlinear term introduces new
stable critical points to limit the growth of the solution, leading to global stability.

3.3 The Role of Dissipations: A Comparison of the Generic
System with the Lorenz and Pedlosky Models

Here, applying the generic system as a baseline, I discuss how to examine the impact
of additional terms and/or components on the stability of the new system. The generic
system in Eq. (23) represents the same dynamics in the 3D-NLM, the inviscid Ped-
losky model, the KdV equation, etc. While two regular, oscillatory solutions with
small and large cycles dominate the system, homoclinic orbits that appear as a sep-
aratrix for the two types of oscillatory solutions possess an interesting feature of
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sensitive dependence on initial conditions (SDIC), as shown in Fig. 4 of [48]. How-
ever, such a feature may be viewed as limited chaos in contrast to the full chaos
within dissipative systems, as discussed by [24]. Below, the impact of dissipations
on chaotic responses (i.e., full chaos) are examined by comparing the 3D-NLM (i.e.,
the generic system) and the 3DLM.

The 3DLM in Eqs. (1–3) includes three different dissipative terms, (i.e., −σX ,
−εY , and−bZ ). Interestingly, as discussed inAppendixB, the viscid Pedloskymodel
in Eqs. (A3)-(A4) also contains “three” dissipative terms that are linear functions of
the scaled dissipative coefficient η. Below, by comparing the control case with no
dissipative term, I discuss the following three parallel cases with ε = 1:

(1) only one dissipative term −εY (i.e., −Y ) retained;
(2) three dissipative terms retained with b = 2σ; and
(3) three dissipative terms that satisfy the inequality σ > b + 1.

The first case with a single positive dissipative term produces three critical points
that remain in the same locations as those within the non-dissipative system (i.e., 3D-
NLM). Under this condition, the quantity

(
1
2 X

2 − σZ
)
is still conservative (i.e., Eq.

(5)). (Note that this quantity indeed represents the sumof the domain averaged kinetic
and potential energy (which is different from available potential energy) [41, 42].)
While the trivial critical point is still a saddle point, two non-trivial critical points
remain stable but become spiral sinks. As a result, additional dissipation further
stabilizes the system. Specifically, (locally) unstable solutions may begin near the
saddle point but eventually approach the spiral sinks, becoming steady-state point
attractors. Since the appearance of non-trivial critical points depends on the inclusion
of nonlinearity (as well as the linear forcing term), the stabilization associated with
spiral sinks is indeed caused by the collective impact of the dissipative and nonlinear
terms (as well as the linear forcing term).

For the second case that includes three dissipative terms with a special choice of
b = 2σ, we obtain the following equation by simplifying X× Eq. (1) − σ× Eq. (3):

d

dt

(
1

2
X2 − σZ

)
= −2σ

(
1

2
X2 − σZ

)
. (27)

The above suggests that the quantity
(
1
2 X

2 − σZ
)
exponentially decays with time.

As a result, the 3DLM with b = 2σ produces stable solutions, consistent with the
analysis in Appendix A.

Finally, for the third casewithσ > b + 1 that presents the condition for the appear-
ance of the Hopf bifurcation, the system produces a pair of complex eigenvalues with
a positive real part, leading to unstable spiral points when r > 24.74 with the choice
of σ = 10 and b = 8/3. Under such conditions, all of the critical points within the
3DLM are indeed unstable, as listed for a comparison with the control case and
the first case in Table3. As a result, chaotic orbits appear in the presence of the
instability associated with unstable critical points. Interestingly, given the fact that
individual orbits may grow with time, boundedness of the solutions, as well as the
structural stability of the system (i.e., a global property), still exists at the chaotic
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Table 3 The stability of critical points within the 3D-NLM (i.e., the generic system) and 3DLM.
Locations of the non-trivial critical points (CP) are the same for the control and first parallel cases
(i.e., in the second and third columns), but are different for the third parallel case (i.e., in the fourth
column)

Critical points 3D-NLM 3D-NLM & ε �= 0 3DLM

trivial CP saddle saddle saddle

non-trivial CPs center (spiral) sinks unstable spiral points

regime. Note that the location of non-trivial critical points is changed when all three
of the dissipative terms are added into the 3D-NLM. The Y component at each of the
non-trivial critical points is no longer zero within the 3DLM, while it is zero within
the 3D-NLM.

The above discussions lead to the following key point: the inclusion of multiple
dissipative terms candestabilize a system.As a result, I hypothesize that aftermultiple
dissipative terms or a new stable modeling component is added into a system, the
new system is not necessarily more stable than the original system.

4 Concluding Remarks

Based on recent studies that documented promising 30-day simulations using a real-
world global model and two kinds of attractor coexistence using classical and gen-
eralized Lorenz models, a revised view on the dual nature of chaos and order in
weather and climate has been proposed [46, 52, 53]. To provide additional support to
the revised view, I presented mathematical universalities amongst the dissipative and
non-dissipative Lorenz, the Pedlosky, and othermodels. Various types of non-chaotic
solutionswere reviewed and analyzed using differentmethods in order to reveal dual-
ity within the theoretical models. Additionally, based on common dynamics amongst
the selected systems, a generic conservative system with a nonlinear 2nd-order ODE
was proposed in order to reveal the role of nonlinearity and additional dissipative
terms in stabilizing or destabilizing systems. Major findings are summarized below.

I first presented mathematical universalities between the Lorenz and Pedlosky
models that were derived from different PDEs for small-scale convection and large-
scale, quasi-geostrophic baroclinic waves, respectively. As a result, findings discov-
ered in one model (e.g., the Lorenz model with attractor coexistence) are applicable
to the other model (e.g., the Pedlosky model).

The revised view challenges the validity of the statement “weather is chaotic” and
suggests a new research direction for detecting both regular and chaotic solutions
in model simulations and real-world observations. This study reviewed non-chaotic
solutions of the non-dissipative Lorenz model and the inviscid Pedlosky model and
compared them to the solutions of the Duffing, the NLS, and the KdV equations.
The non-dissipative or inviscid model represents the full version of the model with
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sufficiently strong forcing (i.e., a large heating parameter for the Lorenz model, e.g.,
[59]). As summarized in Tables1 and 2, mathematical universalities include the same
ODE amongst different systems, the same solution between the X component of the
3D-NLM and the scaled amplitude of the inviscid Pedlosky model, and the same
solution between the Z component of the 3D-NLM and the KdV equation.

Non-chaotic solutions and theirmajor featureswere also analyzed and represented
using various methods, including numerical integrations of the model, a calculation
of the Jacobi elliptic functions, an analysis of the potential energy functions, a con-
tour line analysis of total energy, and a linear stability analysis near each of the
critical points. Derived from the above analysis, major features of solutions within
the selected systems include:

(i) three types of solutions, including two families of oscillatory solutions with
small and large cycles and homoclinic orbits (e.g., in Figs. 1 and 2);

(ii) large-cycle oscillations associated with elliptic cn functions and small-cycle
oscillations associated with elliptic dn functions that are of one sign (e.g., in
Fig. 3);

(iii) an unstable saddle point appearing in association with the maximum of the
potential energy and two stable points associated with the minimum of potential
energy (e.g., in Fig. 4);

(iv) homoclinic orbits obtained as the limit of the elliptic cn and dn functions,
appearing as a separatrix that separates small- and large-cycle oscillations;

(v) theX component of homoclinic solutionswithin the 3D-NLMand the amplitude
of the solitary wave envelope within the NLS that share the same mathemat-
ical form of the hyperbolic secant (sech) function; and the Z component of
homoclinic solutions within the 3D-NLM and the solitary solution of the KdV
that have the same mathematical form of the hyperbolic secant squared (sech2)
function.

The aforementioned common features amongst the selected systems lead to a
generic conservative system that possesses two important physical processes: a lin-
ear forcing and nonlinearity (i.e., Eq. 23). The generic system was compared to a
simplified nonlinear pendulum equation in order to reveal the role of nonlinearity
in stabilizing the system and was then compared to the dissipative Lorenz model
(and the viscid Pedlosky model as well) in order to examine the impact of one or
more dissipative processes on system stability. A linear stability analysis of Eq. (23)
within the generic system indicated that the linear term (−pV ) is associated with the
presence of a saddle point at the origin and that the inclusion of the nonlinear cubic
term (qV 3) introduces two, non-trivial, stable critical points that limit the growth of
unstable solutions and, thus, leads to global stability. However, as illustrated using
a “different” system in Appendix B, inclusion of the nonlinear term may produce
global unphysical instability. In comparison, the impact of dissipation was exam-
ined using the generic system (i.e., 3D-NLM) and the 3DLM that only contains one
or three dissipative terms. For the control case (with no dissipative terms) and the
three parallel cases presented in Sect. 3.3, the first two parallel cases revealed a sta-
bilization role by additional dissipative terms, while the third parallel case with three
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dissipative terms that satisfy the inequality σ > b + 1 displayed a destabilization
role in producing non-trivial unstable points and, thus, chaotic responses.

In summary, (i) the inclusion of nonlinearity may stabilize or destabilize the sys-
tem by introducing additional stable or unstable critical points, respectively; and (ii)
when multiple dissipative terms are added into the system, their collective impact
may stabilize or destabilize the new system. An implication of the findings is that
when additional nonlinearity and/or dissipative components are added into a real
world modeling system, the new system may produce regular simulations at short
time scales but yield irregular or even chaotic simulations associated with the pres-
ence of new unstable critical points at long time scales. As a result, developing
a systematic approach for examining the collective impact of multiple dissipative
terms and nonlinearity on both local and global stability is desired, and will be the
subject of a future study.

Acknowledgements I thank anonymous reviewers, M. Dunster, M. Ghil, B. Hunt, and J. Ped-
losky for valuable comments and discussions, and Ms. S. Faghih-Naini for her help in verifying
derivations.

Appendix A: The Pedlosky Model and a Two Layer
Quasi-geostrophic System

Here, I provide a brief introduction to the Pedlosky model that is based on the
following two-layer quasi-geostrophic (QG) system for studying weakly nonlinear
baroclinic wave-mean interactions [31–33]:

[
∂

∂t
+ ∂Ψ1

∂x

∂

∂y
− ∂Ψ1

∂y

∂

∂x

] (∇2Ψ1 − F(Ψ1 − Ψ2)
) = γ∇2Ψ1 (28)

[
∂

∂t
+ ∂Ψ2

∂x

∂

∂y
− ∂Ψ2

∂y

∂

∂x

] (∇2Ψ2 − F(Ψ2 − Ψ1)
) = γ∇2Ψ2 (29)

The above system is applied to a three-dimensional domain that consists of a channel
in the two-dimensional x − y plane and two layers with an initially equal depth in the
vertical direction. The 2D channel is periodic in the x direction and has a finite width
of L in the y direction. Two vertical layers are denoted by different subscripts (i.e., 1
and 2). A constant but different density is applied in each of the layers. The difference
of densities (i.e., the vertical gradient of density) leads to a baroclinicity that may
act as an energy source for unstable solutions. Ψ1 and Ψ2 represent streamfunctions
that define velocities in the x and y directions for layers 1 and 2, respectively. F is
a rotational Froude number that is a function of the Coriolis parameter, (reduced)
gravitational acceleration, the length of the domain, and the depth of the layer, all of
which are constants. In this study, an assumption of a constant Coriolis parameter is
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made in order to simplify discussions. The two terms that involves γ and appear on
the right hand side represent dissipative terms.

In a series of studies by Prof. Pedlosky, the following Pedloskymodel was derived
(e.g., Eqs. 2.12a, b of [32]):

d2R

dτ 2
+ αη

dR

dτ
− (D + 1)R + R3 = 0, (30)

dD

dτ
+ ηD + βηR2 = 0. (31)

The above system includes one second-order ODE and one first-order ODE for two
state variables are R and D. R represents the scaled amplitude of the streamfunction
(or wave solution). While the mathematical definition of the state variable D was
given in Eq.2.13 of [32], its physical impact on the system’s solution is provided
below in order to facilitate discussions. Three time-independent parameters include
α and β, which are functions of horizontal wavenumbers of the solutions, and η that
is a rescaled dissipative coefficient. As a result, three terms that involve αη, η, and
βη represent the dependence of dissipation on scales.

An Alternative Form of the Lorenz Model by Marzec and
Spiegel

Marzec and Spiegel [25] transformed the Lorenz model into the following system
with 2nd-order and 1st-order ODEs [6]:

d2X

dτ 2
+ (σ + 1)

dX

dτ
+ ΛX + 1

2
X3 = 0, (32)

dΛ

dτ
= −bΛ − bσ(r − 1) + (σ − 1

2
b)X2, (33)

where Λ = σ(Z − r + 1) − 1
2 X

2. By comparing this system to Eqs. (30)–(33), we
define D = 1

2 X
2 − σZ and R = X/

√
2, leading to Λ = −(D + σr − σ). Further-

more, Eqs. (32) and (33) become:

d2R

dτ 2
+ (σ + 1)

dR

dτ
− (D + σr − σ)R + R3 = 0, (34)

dD

dτ
+ bD + (2σ − b)R2 = 0. (35)
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Under a proper choice of parameters (i.e., b = η, (2σ − b) = βη, (σ + 1) = αη,
and (σr − σ) = 1), also listed in Table 1, the Pedlosky model with Eqs. (30) and
(31) is mathematically identical to the Lorenz model with Eqs. (34) and (35). On the
other hand, the model requires different intervals of parameters for the onset of chaos
(e.g., a smaller σ). Additionally, a special case with b = 2σ decouples Eq. (35) from
Eq. (34) and yields an exponential decaying solution of D = D0exp(−bτ ), here D0

is an initial condition. This special case is further discussed in Sect. 3.3.
Following the interpretation of [25], the solution of Eq. (30) may be viewed as

oscillations of a damped spring whose time varying stiffness −(D + 1) is governed
by Eq. (31). Here, the time evolving stiffness, appearing as the coefficient of the
linear term in Eq. (30), may be positive or negative, indicating the competing impact
of forcing, dissipation, and nonlinearity, as discussed in the main text.

Appendix B: A Nonlinear Pendulum Equation

Here, I provide a brief introduction to the nonlinear pendulum equation and a short
note on the stability of a stable equilibrium point in the system. Figure6 displays
a pendulum consisting of a weightless rod of length L with an attached bob with
a mass of m. The other end of the rod is supported at a point on a wall. The point
of support is denoted as the origin. As a result, the mass of the pendulum is free
to oscillate or rotate. The time varying position of the mass is determined by the
angle, θ, between the rod and the downward vertical direction. As shown in Fig. 6,
such an angle is measured in the counterclockwise direction. As a result, the natural
position is θ = 0 and the inverted position where the pendulum bob is vertical, with
the weight in the up position, is θ = π. The two positions are referred to as the lower
and upper equilibrium point, respectively, and classified as either stable or unstable
equilibrium points, respectively.

The time varying angle (θ) of the nonlinear pendulum with a dissipative term is
governed by the following equation:

d2θ

dτ 2
+ k

dθ

dτ
+ sin(θ) = 0; (36)

here, k represents the dissipative coefficient. For the non-dissipative system (i.e., k =
0), the above system has a stable and unstable point at θ = 2nπ and θ = (2n + 1)π,
respectively. Here n is an integer.

While the stability of the unstable critical point at θ = π is analyzed in the main
text, the stability of the stable critical point at θ = 0 is discussed below. Using
a Taylor series expansion with sin(θ) = θ or sin(θ) = θ − θ3/6, Eq. (36) can be
approximated by:

d2θ

dτ 2
+ θ = 0, (37)

or
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d2θ

dτ 2
+ θ − θ3

6
= 0. (38)

Within Eq. (37) that contains a linear term, only one critical point at (θ, dθ/dτ ) =
(0, 0), which is a center, is found. The critical point is stable and is associated
with a simple harmonic oscillation. In comparison, within Eq. (38) that includes a
cubic nonlinear term, twoadditional critical points appear at (θ, dθ/dτ ) = (±√

6, 0).
These non-trivial critical points are saddle points that are unstable. As a result, the
simplified nonlinear system that has a limited degree of nonlinearity may be locally
stable but globally unstable when initial kinetic energy is sufficiently strong. The
features are illustrated in Fig. 7. Global instability in the simplified nonlinear system
(Eq. (38)) is not consistent with that in the full pendulum system in Eq. (36), since

Fig. 6 A pendulum
consisting of a weightless
rod of length L and a bob
with a mass of m. The bob
and the point of support are
marked with a red and black
dot, respectively. The
parameter “g” denotes the
gradational force. The angle
θ is measured in the
counterclockwise direction.
Stable and unstable
equilibrium points appear at
θ = 0 and θ = π,
respectively

Fig. 7 Potential energy
functions for the full and
simplified pendulum
equations near the stable
equilibrium point in Eqs.
(37)–(38)
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the successive appearance of stable and unstable critical points within the full system
(i.e., at θ = 2nπ and θ = (2n + 1)θ) can still limit growth of the unstable solution,
yielding global stability. However, such an issue with global instability may appear
within a complicated system (e.g., climate models).
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Overview of Scenarios of Transition
to Chaos in Nonideal Dynamic Systems

Aleksandr Shvets

Abstract Anumber of deterministic dynamic systems that are nonideal according to
the Sommerfeld-Kononenko classification are considered. In particular, pendulum,
hydrodynamic, and electroelastic systems with limited excitation are considered.
The scenarios of transitions to chaos that are possible in the above systems are
analyzed. We study both the transitions “regular attractor - chaotic attractor” and
the transitions “chaotic attractor of one type - chaotic attractor of another type”.
In particular, the “chaos - hyperhaos” and “hyperhaos - hyperhaos” transitions are
studied. Ten scenarios of transition to chaos are analyzed in detail. Some of the
scenarios were widely known, while others are very unusual and are revealed only
in nonideal dynamic systems.

Keywords Nonideal dynamic system · Scenario of transition to chaos · Chaotic
attractor

1 Introduction

A prominent place among dynamical systems is occupied by so-called nonideal
systems or systems with limited excitation. For the first time such systems originated
in the experiments of A. Sommerfeld in the early twentieth century [1, 2]. But
as a established scientific direction, the theory of systems with limited excitation
was formed after the publication Kononenko [3] in which he introduced a clear
axiomatics and constructed mathematical models for a wide range of problems.
The theory of systems with limited excitation explores the interaction of vibrational
systems with excitation sources of their oscillations. Within the framework of this
theory, it is assumed that oscillation excitation sources have a power comparable to
the power consumed by the oscillatory load. In this case, the operation of the energy
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source depends on the regime of oscillation load and influence of the source cannot
be expressed as a predetermined explicit time function. Whereas in the traditional
mathematical modeling of the oscillatory system, idealized sources of excitation of
unlimited power are considered. Inmany cases, the “ideal” approach is fundamentally
wrong, which in practice leads to gross errors in describing the dynamics of both the
oscillatory system and the source of excitation [4–7]. The use of limited excitation
models becomes even more relevant in our time, when humanity faces the problems
of global energy conservation, which requires the maximum minimization of the
power of the applied excitation sources.

The discovery of deterministic chaos stimulated the emergence of a new direction
in theory of systems with limited excitation associated with the search for chaotic
modes of interaction of oscillatory systems with sources of excitation. Of particular
interest are those chaotic regimes whose appearance is associated with a nonlinear
interaction between the oscillatory system and the excitation source, and not with
their autonomous properties.

In the papers [8–11] describe the occurrence of chaotic attractors in a number
of deterministic nonideal dynamical systems whose chaotization is fundamentally
impossible when considering cases of ideal (unlimited) excitation.

2 Mathematical Models of Considered Nonideal Systems

In studying the occurrence of deterministic chaos in dynamical systems, it is of great
interest to identify and describe scenarios of transition to chaos. Moreover, both
scenarios of transitions from regular attractors to chaotic, and scenarios of transitions
between chaotic attractors of different types. Some of these scenarios are widespread
and implemented inmany dynamic systems. Such scenarios include, for example, the
Feigenbaum’s scenario and the Manneville-Pomeau scenario. Other scenarios were
described relatively recently and the question of their prevalence requires further
study.

In this paper, we analyze the scenarios of transition to chaos identified and
described in a number of nonideal dynamical systems. The implementation of tran-
sitions to chaos considered in such systems: a pendulum—an excitation source,

dy1
dτ

= Cy1 − y2y3 − 1

8
(y21 y2 + y32),

dy2
dτ

= Cy2 + y1y3 + 1

8
(y31 + y1y

2
2 )+ 1,

dy3
dτ

= Dy2 + Ey3 + F,

(1)

a spherical pendulum—an excitation source,
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dy1
dτ

= Cy1 − [y3 + 1

8
(y21 + y22 + y24 + y25 )]y2 −

3

4
(y1y5 − y2y4)y4 + 2y2,

dy2
dτ

= Cy2 + [y3 + 1

8
(y21 + y22 + y24 + y25 )]y1 −

3

4
(y1y5 − y2y4)y5 + 2y1,

dy3
dτ

= D(y1y2 + y4y5)+ Ey3 + F,

dy4
dτ

= Cy4 − [y3 + 1

8
(y21 + y22 + y24 + y25 )]y5 +

3

4
(y1y5 − y2y4)y1 + 2y5,

dy5
dτ

= Cy5 + [y3 + 1

8
(y21 + y22 + y24 + y25 )]y4 +

3

4
(y1y5 − y2y4)y2 + 2y4,

(2)

an analog generator—a piezoceramic transducer,

dξ

dτ
= ζ,

dζ

dτ
= −ξ + α1ζ + α2ζ

2 − α3ζ
3 + α4β,

dβ

dτ
= γ,

dγ

dτ
= α5ξ + α6ζ − α0β − α7γ,

(3)

a tank with a liquid—an excitation source,

dp1
dτ

= αp1 −
[
β + A

2
(p21 + q2

1 + p22 + q2
2 )

]
q1 + B(p1q2 − p2q1)p2,

dq1
dτ

= αq1 +
[
β + A

2
(p21 + q2

1 + p22 + q2
2 )

]
p1 + B(p1q2 − p2q1)q2 + 1,

dβ

dτ
= N3 + N1β − μ1q1,

dp2
dτ

= αp2 −
[
β + A

2
(p21 + q2

1 + p22 + q2
2 )

]
)q2 − B(p1q2 − p2q1)p1,

dq2
dτ

= αq2 +
[
β + A

2
(p21 + q2

1 + p22 + q2
2 )

]
p2 − B(p1q2 − p2q1)q1.

(4)

The derivation of systems of (1)–(4) is given in monograph [12], in which phase
variables and parameters of these systems are described in detail. Note that the
techniques for detecting, classifying, and investigating the properties of attractors of
systems (1)–(4) are described in [13, 14].
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3 Scenarios of Transition to Chaos

Furtherwe enumerate and describe the scenarios for the transition to chaos in systems
(1)–(4).

3.1 Feigenbaum’s Scenario

The most widespread scenario of transition to chaos through an infinite cascade of
bifurcations of doubling the period of limit cycles [15–17]. The transition to chaos in
the Feigenbaum’s scenario is observed in almost all dynamic systems. In particular,
the appearance of chaotic attractors according to the Feigenbaum’s scenario takes
place in all systems (1)–(4).

3.2 Intermittency by Manneville–Pomeau

Another widespread scenario of transition to chaos was first described in papers
[18–20]. The transition from the limit cycle to the chaotic attractor occurs in one
bifurcation. As a result of this bifurcation, the limit cycle disappears and a chaotic
attractor arises in the system. The motion of trajectories along the attractor consists
of two phases—laminar and turbulent. In the laminar phase, the trajectory makes
quasiperiodic movements in a small neighborhood of the disappeared limit cycle,
and in the turbulent phase, it moves away to distant (relatively the disappeared cycle)
regions of the phase space. Note that the transition from the laminar phase to the
turbulent one and vice versa is unpredictable. The described transition to chaos
through intermittency is also observed in all systems (1)–(4).

Next,we consider scenarios that are generalizations and combinations of a cascade
of bifurcations of period doubling and intermittency.

3.3 Generalized Intermittency “Chaos–Chaos”

The Manneville–Pomeau’s scenario describes the transition “limit cycle – chaotic
attractor”. A natural complication of this scenario is the scenario of transition “a
chaotic attractor of one type – a chaotic attractor of another type”. This scenario
was first described in [13] and later called “generalized intermittency”. In further
publications [14, 21], this scenario was analyzed and substantiated in more details.

Briefly, this scenario can be described as follows. A some chaotic attractor exists
in the system, which disappears when the bifurcation parameter reaches a certain
value and a chaotic attractor of another type of is born in the system. The motion
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Fig. 1 Generalized intermittency

of the trajectories along the new attractor consists of two alternating phases. At one
of these phases, the trajectory makes chaotic walks in a small neighborhood of the
trajectories of the disappeared attractor. Then, at an unpredictable point in time, the
trajectory leaves the region of localization of the disappeared attractor and leaves
in the remote regions of the phase space. After some time, the movement of the
trajectory again begins to resemble movement near of trajectories the disappeared
chaotic attractor. The first of these phases was called coarse-grained (rough) laminar
phase. The second is as before called turbulent phase. Note the duration of both
the coarse-grained (rough) laminar and turbulent phases is unpredictable as are the
moments of times of transition from one phase to another. An illustration of such a
scenario is Fig. 1. Here in Fig. 1a shows the projection of the phase portrait before the
bifurcation point, and in Fig. 1b after the bifurcation point. The densely black part of
the projection in the central region of Fig. 1b is the laminar phase of intermittency,
and the more “sparse” part of this figure is the turbulent phase.

In fact, in this scenario a disappearing chaotic attractor plays the role of a disap-
pearing limit cycle from the classical intermittency scenario.

3.4 Generalized Intermittency “Hyperchaos–Hyperchaos”

Recall that an attractor is called hyperchaotic if it has at least two positive Lyapunov’s
characteristic exponents. That is, in the phase space there are at least two directions
along which the trajectories belonging to the hyperchaotic attractor diverge. Hyper-
chaotic attractors can exist only in dynamical systems whose phase space dimension
is at least four.
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This scenario was discovered and described in detail in the papers [22–24]. This
scenario is similar of the scenario described in item 3.3. The only difference is that
the transitions from a hyperchaotic attractor of one type to a hyperchaotic attractor
of another type are considered. Also, in such scenarios, transitions of the “chaos–
hyperhaos” type are possible.

3.5 Symmetry and Intermittency in Feigenbaum’s Scenario

This scenario is an unusual combination of Feigenbaum’s scenario and intermittency.
We briefly describe this scenario based on the results of the papers [21, 22].

First, there are two stable limit cycles in the system. These cycles are symmetric
with respect to one or another coordinate axis. Each of the limit cycles has its own
basin of attraction. Then, with a change of the bifurcation parameter, infinite cas-
cades of bifurcations of doubling the periods of these cycles simultaneously begin.
Moreover, all bifurcations of doubling of each of the cycles occur at the same value of
the bifurcation parameter. This cascade of doubling bifurcations ends with the simul-
taneous appearance of two symmetric chaotic attractors. Each of these attractors has
its own basin of attraction.

With a further change of the parameter of bifurcation, phase portraits are “glued
together” and only one chaotic attractor remains in the system. The arising chaotic
attractor has a symmetric structure of the phase portrait. The motion of a typical
trajectory of a chaotic attractor can be conditionally divided into two phases. In the
first of these phases, the trajectory is located in the localization region of one of the
disappeared chaotic attractors from time to time approaching the boundary of such
a region. That is, in this phase, the trajectory is in one of the symmetric parts of the
arising chaotic attractor. Then, at an unpredictable moment of time, the trajectory
passes into the localization region of the second of the disappeared chaotic attractors,
that is, into another symmetric region of the arising chaotic attractor. This is the
second phase of the trajectory. At an unpredictable moment of time, the trajectory
again returns to the first symmetric region of the chaotic attractor. This process of
transition from one symmetric region of the attractor to another is repeated an infinite
number of times. Note that the duration of stay the trajectory in one of the symmetric
regions of the attractor is unpredictable.

Thus, an unusual combination of the Feigenbaum’s scenario (an infinite cascade
of bifurcations of doubling of limit cycles) and intermittency (unpredictable intermit-
tency between symmetric parts of the phase portrait of the arising chaotic attractor)
takes place.
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3.6 Intermittency with Two Laminar Phases

Wewill describe such a scenario schematically. A necessary condition for the imple-
mentation of this scenario of transition to chaos is the simultaneous existence in the
system of two symmetric stable limit cycles. Further changes in any parameter of
bifurcation lead to the disappearance of both limit cycles and the birth of a chaotic
attractor. In this case, the contours of the arising chaotic attractor in their form are
two “united” symmetric limit cycles. The onset of chaos has many features typi-
cal of intermittency. However, in this case, moving the trajectory in the attractor
includes three phases, two laminar and one turbulent. In the first laminar phase, the
trajectory makes quasiperiodic movements in a small neighborhood of one of the
“stuck together” limit cycles. At an unpredictable moment of time, a turbulent surge
occurs and the trajectory leaves for a region of the phase space that is distant from
the neighborhood of the disappeared cycle. Moreover, after the completion of the
turbulent phase, the trajectory can either return to the first laminar phase of motion
or go to the second laminar phase, which corresponds to quasiperiodic movements in
a small neighborhood of the second of the disappeared limit cycles. Such a process
of motion of a trajectory along an attractor of the form “one of the laminar phases
– the turbulent phase – one of the laminar phases” is repeated an infinite number of
times. Moreover, both the time moments of the transition of the trajectory into the
turbulent phase and the “switching” between two laminar phases are unpredictable.
Thus, the transition to chaos resembles the classic scenario of Manneville-Pomeau.
However, unlike the classical scenario, we have not one, but two laminar phases of
trajectory moving.

A graphic illustration of this scenario is shown in Fig. 2. In Fig. 2a, b show pro-
jections of symmetric limit cycles. In Fig. 2c shows the distribution of the invariant
measure in the projection of the phase portrait of a chaotic attractor. Bold sections
Fig. 2c correspond to two laminar phases of the trajectory motion. The paler areas in
Fig. 2c correspond to the turbulent phase.

Note that for the first time such a scenario was described in paper [22].

3.7 Generalized Intermittency with Two Coarse-Grained
(Rough) Laminar Phases

This scenario is in many ways similar to the scenario described in item “3.5. Sym-
metry and intermittency in Feigenbaum’s scenario”. For describing the beginning of
this scenario, we can simply repeat the description of the scenario adduced in item
3.5. The differences begin from the moment of arising two symmetric chaotic attrac-
tors, which arise at the same value of the bifurcation parameter and have different
attraction basins. With a further change in the bifurcation parameter, two symmetric
chaotic attractors are combined into one chaotic attractor. The most significant dif-
ference from the scenario from item 3.5. is that the motion of the trajectory along
the attractor consists of three phases. At two of these phases, the trajectory makes
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Fig. 2 Intermittency with two laminar phases

chaotic walks in a small neighborhood of the trajectories of the disappeared symmet-
ric chaotic attractors. Such phases of movement are called coarse-grained (rough)
laminar. The third phase of the movement is the departure of the trajectory into
remote areas—this is the turbulent phase. The description of the sequence of tran-
sitions from one phase to another almost literally repeats such a description given
in item “3.6. Intermittency with two laminar phases” . Only everywhere should the
word “laminar” be replaced by “coarse-grained (rough) laminar”.

A graphic illustration of ending this scenario is shown in Fig. 3a–c. In Fig. 3a, b
are shown projections of phase portraits of symmetric chaotic attractors. Figure 3c is
shown a chaotic attractor, which occurs after the disappearance of a pair of symmetric
chaotic attractors. Three phases of the trajectory of the attractor are clearly visible.
These are two coarse-grained (rough) laminar phases (two dark regions in the upper
right and lower parts of the figure) and a turbulent phase (the lighter region in the
left part of the figure).
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Fig. 3 Intermittency with two rough laminar phases

3.8 Generalized Intermittency “Hyperchaos–Hyperchaos”
with Two Coarse-Grained (Rough) Laminar Phases

This scenario has been discovered and described relatively recently and published
in [23, 24]. Qualitatively, this scenario is similar to the scenario given in the previ-
ous item “3.7. Generalized intermittency with two coarse-grained (rough) laminar
phases”. It begins with the appearance of two symmetric stable limit cycles. As a
result of further changes in the bifurcation parameter, two hyperchaotic symmetric
attractors arise, which then disappear and a combined hyperchaotic attractor is born
in the system. The disappearing symmetric hyperchaotic attractors form two coarse-
grained (rough) laminar phases of the final hyperchaotic attractor of this scenario.
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Probably twomore varieties of such a scenario are possible. The arising symmetric
attractors will be chaotic, and the final attractor will be hyperchaotic. Conversely,
symmetric attractors will be hyperchaotic, the final attractor will be chaotic.

We emphasize that the implementation of the scenarios described in items 3.3–3.8
was found only for systems with a five-dimensional phase space.

3.9 Atypical Change of Sequences Scenarios

The Feigenbaum’s scenario and intermittency by Manneville-Pomeau are the main
scenarios of the transition to chaos in dynamical systems. Moreover, in majority of
dynamic systems, both of these scenarios are observed. As a rule, with an increase
(decrease) in the value of the bifurcation parameter, the following sequence of tran-
sitions to chaos takes place. Cascade of bifurcations of period doubling—chaos—
windowofperiodicity—cascadeof bifurcations of perioddoubling—chaos—window
of periodicity and so on. On the other hand, with a decrease (increase) in the
value of the bifurcation parameter, the following sequence takes place: window of
periodicity—chaos through intermittency—window of periodicity—chaos through
intermittency—window of periodicity and so on [25, 26]. In systems (1), (3), (4) the
situation was observed when, with an increase (decrease) in the value of the bifur-
cation parameter, transition to chaos is possible both according to the Feigenbaum’s
scenario and through intermittency.

We illustrate this with help of the phase-parametric characteristic of system (3)
is shown in Fig. 4. In system (3) there are numerous transitions from limit cycles to
chaotic attractors, as well as the destruction of chaotic attractors and the occurrence
of limit cycles. All such transitions are clearly visible on the built bifurcation tree.
Separate “branches” of this tree correspond to limit cycles, and densely dark areas
correspond to chaotic attractors. The splitting points of the branches of the bifurcation
tree are clearly visible in Fig. 4. In these points the bifurcations of the period doubling
of the limit cycle occur. The threshold points are also clearly visible, during the
passage of which an endless cascade of period doubling bifurcations ends with the
appearance of a chaotic attractor, that is, a transition to chaos occurs according to
the Feigenbaum’s scenario. In turn, here is also possible a hard transition to chaos,
in only one bifurcation, through Manneville-Pomeau intermittency. As can be seen
from Fig. 4, the transition to chaos according to the Feigenbaum’s scenario occurs
both with increasing and decreasing values of the bifurcation parameter. A similar
situation occurs for the transition to chaos through intermittency. Thus, there is some
symmetry in the alternation of scenarios of transition to chaos. Such symmetry is
atypical for dynamical systems.

Note that a similar symmetry effect of the scenarios of transition to chaos was
established for nonideal systems (1), (4) in papers [27, 28].
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Fig. 4 Symmetry in transition to chaos

4 Conclusion

The considered nonideal dynamic systems (1)–(4) are characterized by extremely
diverse dynamic behavior. In these systems, there are possible all types of regular
attractors: equilibrium positions, limit cycles, invariant tori. Also, various types of
chaotic attractors were found in these systems, and various types of hyperchaotic
attractorswere revealed in systems (3), (4). In addition to all the scenarios of transition
to chaos inherent in nonlinear dynamics as a whole, a number of unusual scenarios of
transition to chaos were discovered and described in these systems. In further studies,
the construction and study of the attraction basins of attractors of such systems can
be of great interest. No less interesting will be an attempt to discover the described
unusual scenarios of the transition to chaos in other dynamical systems.
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Identification of Hidden and Rare
Attractors in Some Electroelastic
Systems with Limited Excitation

Aleksandr Shvets and Serhii Donetskyi

Abstract Mathematical models of a deterministic dynamic system of the type ana-
log generator–piezoelectric transducer are considered taking into account the influ-
ence of delay. A technique for searching for hidden and rare attractors of such system
is proposed. Two approaches to the study of systems with delay are analyzed. The
transformations of hidden attractors into self-excited ones, and rare attractors into
non rare ones and vice versa are studied. The pairs of regular attractor—chaotic
attractor are studied in point of view of their qualifications in terms of “hidden” and
“rare”. Symmetry was revealed in the scenarios of the transition from regular attrac-
tors to chaotic attractors. The effect of delay on the regular and chaotic dynamics of
the system is investigated.

Keywords Hidden attractor · Rare attractor · Scenario of transition to chaos ·
Delay

1 Introduction

Adynamic systemconsisting of a piezoceramic transducer excited by an vacuum tube
generator of limited power is considered. Such systems are widely used in various
technical devices. Many aspects of the dynamic behavior of such systems were
studied in papers [1–4, 6–9]. The existence of various types of steady-state modes
of interaction between the generator and the converter was revealed. In particular,
chaotic and hyperchaotic regimes of interaction were discovered and the features
of transitions from regular regimes to chaotic one were described. It was shown
that dynamic chaos in that systems arise solely due to the interaction between the
generator and the converter, and their individual characteristics.
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However, earlier studies almost did not take into account such an important factor
as the delay in the impact of the generator on transducer and delay of the inverse effect
of the transducer on generator. Note that delay may be present in real systems due to
limited speed signals: waves of compression, tension, bending, current and electrical
voltage, as well as many other factors. In some cases influence of delay does not lead
to significant changes in the dynamic behavior of researched systems. In other cases
delay leads not only to significant quantitative changes of characteristics steady-
state movement, but to completely qualitatively changes in the type of steady-state
regimes.

2 The Mathematical Model

Consider a system consisting of a piezoceramic transducer, the source of excitation of
which is an analog vacuum tube generator. Assume that the piezoceramic transducer
has the shape of a circular cylinder and placed in an acoustic environment. Transducer
and generator form an electrical circuit through a transmitting transformer. Let eg

and Eg be the variable and constant components of the grid generator lamp voltage,
accordingly. Denote by V (t) the electric voltage applied to the electrodes of the
transducer. Introduce variable ψ(t) by the formula

ψ(t) =
∫ t

0
(eg + Eg)dt

Then, the equation describing the electrical oscillations of the generator has the
form [6–8]:

ψ̈(t) + ω2
0ψ(t) = a1ψ̇(t) + a2ψ̇

2(t) − a3ψ̇
3(t) − a4V (t − ρ), (1)

here

ω2
0 = Ra + Rc

RcLcCc
; a0 = a1 − M2Rc

LcCcLR2
a

; a2 = 3Mc I3Eg

LcCc
; a3 = McI3

LcCc
;

a4 = 2MMc

LRaLcCc
; a1 = Mc

LcCc
(I1 − Ra RcCc − Lc

Ra(Mc − DLc)
+ RcL1

R2
aMc

− 3I3E
2
g ).

(2)

A detailed description of all the electromagnetic parameters of the generator, con-
tained in the equation (2) is given in [7, 8, 10]. Constant non-negative parameter
ρ introduced for accounting delay of influence the impact of the transducer on the
generator.

In turn, the equation describing the voltage oscillations V (t), taking into account
the delay of the signal of the generator on transducer, can be written as [6–8]:

V̈ (t) + ω2
1V (t) = a5ψ(t − ρ) + a6ψ̇(t) − a7V̇ (t), (3)
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here,

ω2
1 = 2h

LSε33(1 − k2)
; a5 = −Mω2

1Rc(Ra + Rc)

2McRaLc
; a6 = −Mω2

1Rc

2McRa
;

a7 = k2

η0hS(1 − k2)
; k = d33√

ε33s33
, .

(4)

The parameters d33, s33 and ε33 are constant coefficients of the theory of lon-
gitudinal deformations of a piezoelectric element described in [10]. Note that the
presence of delay in real devices “generator–piezoceramic transducer” may be asso-
ciated with territorial remoteness, sometimes quite significant, subsystems of the
specified device. This leads to a delay feedback from one subsystem to another for
the reasons stated in the Introduction.

Thus, the system of equations with retarded argument (1, 3) describes the inter-
action process of a piezoceramic transducer with a source of its excitation, an analog
generator. We pass to the new system with the dimensionless variables according to
the following formulas:

ξ(τ ) = ψ(τ )ω0

Eg
,
dξ(τ )

dτ
= ζ(τ ), β(τ ) = V (τ )

Eg
;

dβ(τ )

dτ
= γ(τ ), τ = ω0t.

(5)

Then we get the following system of equations

dξ(τ )

dτ
= ζ(τ );

dζ(τ )

dτ
= −ξ(τ ) + α1ζ(τ ) + α2ζ

2(τ ) − α3ζ
3(τ ) − α4β(τ − δ);

dβ(τ )

dτ
= γ(τ );

dγ(τ )

dτ
= −α0β(τ ) + α5ξ(τ − δ) + α6ζ(τ ) − α7γ(τ ).

(6)

here

α0 = ω2
1

ω2
0

, α1 = a0
ω0

, α2 = a2Eg

ω0
, α3 = a3E2

g

ω0
,

α4 = a4
ω0

, α5 = a5
ω3
0

, α6 = a6
ω2
0

, α7 = a7
ω0

, δ = ω0ρ.

(7)

The function β(τ ) corresponds to the signal propagated transducer into the acous-
tic medium, and the function ξ(τ ) describes internal processes in the generator.
Delays that are present in the system of equations (6) may lead to qualitative changes
of the steady-state regimes of interaction. Particularly, delay can lead, as to emer-
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gence of new regular and chaotic attractors, as to disappearance of such attractors,
existing in the system in the absence of delay. Consider these processes in some
concrete examples.

3 Simulation at Absence of Delay

Firstly, consider the case of absence of delay in system (6), i.e. δ = 0. In such case
the system (6) is a nonlinear system of differential equations of fourth order, so all
researches were carried out by means of various numerical methods. The technique
for such calculations was developed and described in detail in [5, 6, 11–13].

Recently, new classification of attractors of dynamic systems has been proposed,
which give the definition of self-excited, hidden and rare attractors [14–16]. We
briefly recall the definitions of such types of attractors. An attractor is called self-
exciting if there is an equilibrium position such that any neighborhood of it intersects
with basin of attraction of the attractor. An attractor is called hidden if it is not self-
excited.

For most dynamic systems, the main focus is the study of self-excited attractors.
This is due to the fact that currently detection of the existence of hidden attractors is,
generally speaking, extremely challenging.However, attractors of dynamical systems
are not limited by self-excited attractors. Occurrence in specific dynamic system
(device, structural element) of a hidden attractor can completely change the expected
behavior of the system and make it impossible to perform its intended operational
functions. Moreover, developers of a particular system may not guess that they are
functioning of the system occurs in the regime of a hidden attractor.

The attractor is called rare if it is located in the phase space nearby to other
attractor herewith phase volume (measure) of its basin of attraction significantly less
compared to the basin of attraction of attractor near which it is located. Or simply
rare attractor is attractor that has an extremely small basin of attraction. It is clear
that the probability of a trajectory entering this attractor is small.

The main goal of this work is to detect attractors of the system (6) and to identify
their types, taking into account the classification proposed in [14–16]. Note that the
study of rare attractors of system (6) was started in paper [17].

For revealing hidden attractors of the system (6), following algorithm can be pro-
posed. Firstly, the trajectory of system is calculated using the Runge-Kutta method
with correction of a variable step of numerical integration according to Dormand-
Prince [18], at that is selected relatively large local error O(10−4) − O(10−5) for
Dormand-Prince procedure and any initial conditions for the system (6) are specified.
Next, for chosen trajectory, after ending of transition process, Lyapunov’s charac-
teristic exponents (LCEs) are calculated [19]. On the basis of LCEs identification of
type of attractor are made. However, a paradoxical situation may arise. In our case
such situation is absence of zero exponent in LCE spectrum for an attractor, which is
not an equilibrium position. This situation may happen due to presence in the system
hidden (rare) attractor. After decreasing the local error up to O(10−7) − O(10−8)
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the problemwith absence of non zero LCE goes away and trajectories of system over
time might belong to hidden (rare) attractors.

Let parameters of the systembe equalα0 = 0.995,α1 = 0.0535,α3 = 9.95,α4 =
0.103,α5 = −0.0604,α6 = −0.12,α7 = 0.01 and leave parameterα2 as bifurcation
one. For so chosen values the parameters, system (6) has single unstable equilibrium
position

ξ = 0, ζ = 0,β = 0, γ = 0,

so-called zero equilibrium position [6, 8, 17].
At α2 = 8.925 chaotic attractor is the only attractor of the system in the neigh-

borhood of the zero equilibrium position. This attractor is self-excited attractor. At
increasing value of bifurcation parameter up to α2 = 8.94 another attractor arises,
namely, the limit cycle. In system (6), in the neighborhood of the zero equilibrium
position, two attractors begin to exist simultaneously. One of them is a chaotic attrac-
tor, and the second is a limit cycle. Phase portrait projections of coexisting attractor
are presented in Fig. 1a. Moreover, the chaotic attractor (black attractor) is still a
self-excited attractor. In turn, the limit cycle (red attractor) is both a hidden attractor
and a rare attractor. The limit cycle is a hidden attractor because it is not a self-excited
attractor. And it is rare attractor, because it has very small basin of attraction.

In the future, one of the attractors of a pair of simultaneously existing attrac-
tors will be conventionally called black attractor, and the other—red. A part of the
phase-parametric characteristics of the coexisting pair of attractors (black and red)
is shown in Fig. 2. For both attractors, as for black attractor as for red attractor, sep-
arate “branches” of this trees correspond to limit cycles. The densely black regions
correspond to chaos of the black attractor, and the densely red regions correspond
to the quasiperiodic regimes of the red attractor. In Fig. 3 an enlarged fragment of
the middle part of the phase-parametric characteristics is shown. Figures2 and 3
give a clear view of bifurcations in system (6) in a selected region of the space of
its parameters. So there are numerous bifurcations of the black attractor of the type

Fig. 1 Phase portrait projections at: α2 = 8.958 (a); α2 = 8.959 (b)
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Fig. 2 Phase-parametric
characteristic for
α2 ∈ [8.925; 9.1]

Fig. 3 Phase-parametric characteristic in window of periodicity at α2 ∈ [8.958; 8.9595]

“cycle–chaos–cycle–chaos”, etc. However, in such transitions, the black attractor
will always be a self-excited attractor. In turn, for the red attractor, in fact, there is
only one rigid bifurcation “cycle–invariant torus”. Moreover, the red attractor, both
being a limit cycle and an invariant torus, also constantly remains a hidden attractor
and a rare attractor.
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Fig. 4 Phase portrait projections at: α2 = 9.04 (a); α2 = 9.07 (b)

Another interesting feature of the alternation of scenarios of transition to the
chaos of the black attractor is visible in Fig. 3. The transition to chaos according
to the Feigenbaum’s scenario through the endless cascade of periods doubling of
limit cycles, occurs at increasing of bifurcation parameter α2 and at decreasing of
bifurcation parameter α2. The same feature is inherent in the transition to chaos
through intermittency. That is, there is some symmetry in the alternation of scenarios
of transition to chaos. This situation, in general, is atypical for dynamical systems
[19], however it seems to be natural for the system (6), since similar symmetry were
already found before in paper [17].

We also illustrate these bifurcations using phase portraits of attractors. At α2 =
9.02 the black chaotic attractor turns into limit cycle through one rigid bifurcation.
In turn red attractor remains periodic. This situation holds until α2 = 9.06 when new
bifurcation occurs with red limit cycle which turns it into invariant torus and remains
up so to its disappearance at α2 = 9.072. As we have already noted, a black attractor
will always be a self-excited attractor. The red attractor will always be a hidden
attractor and at the same time will be a rare attractor. Projections of phase portraits
of pairs “self-exited limit cycle—hidden and rare limit cycle” and “self-exited limit
cycle—hidden and rare invariant torus” are pictured in Fig. 4a, b correspondingly.

4 Methods of Transformation Systems with Delay

We considermethods for transforming systemswith a delayed argument into systems
of ordinary differential equations. First one is based on assumption that delay factor
δ is sufficiently small, so that we can write
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β(τ − δ) ≈ β(τ ) − δ · dβ(τ )

dτ
= β(τ ) − δ · γ(τ );

ξ(τ − δ) ≈ ξ(τ ) − δ · dξ(τ )

dτ
= ξ(τ ) − δ · ζ(τ ).

Substituting the obtained expressions into the system of equations (6), we obtain

dξ(τ )

dτ
= ζ(τ );

dζ(τ )

dτ
= −ξ(τ ) + α1ζ(τ ) + α2ζ

2(τ ) − α3ζ
3(τ ) − α4β(τ ) + α4δ · γ(τ );

dβ(τ )

dτ
= γ(τ );

dγ(τ )

dτ
= −α0β(τ ) + α5ξ(τ ) − α5δ · ζ(τ ) + α6ζ(τ ) − α7γ(τ ).

(8)

The system of equation (8) is transformed in a system of ordinary differential equa-
tions. Delay δ is in the system (8) as additional parameter. This approach is applicable
for systems with constant delay and with variable delay.

A more accurate approximation method is applicable only to systems with a
constant delay of δ. Let us divide segment [−δ; 0] into m equal parts and introduce
such new functions.

β

(
τ − iδ

m

)
= βi (τ ), ξ

(
τ − iδ

m

)
= ξi (τ ), i ∈ {0, . . . ,m}.

Then, using difference approximation of derivative, we turn system (6) into system

dξ0(τ )

dτ
= ζ0(τ );

dζ0(τ )

dτ
= −ξ0(τ ) + α1ζ0(τ ) + α2ζ

2
0 (τ ) − α3ζ

3
0 (τ ) − α4βm(τ );

dβ0(τ )

dτ
= γ0(τ );

dγ0(τ )

dτ
= −α0β0(τ ) + α5ξm(τ ) + α6ζ0(τ ) − α7γ0(τ );

dξi (τ )

dτ
= m

δ
·
(
ξi−1(τ ) − ξi (τ )

)
, i ∈ {1, . . . ,m};

dβi (τ )

dτ
= m

δ
·
(
βi−1(τ ) − βi (τ )

)
, i ∈ {1, . . . ,m}.

(9)

System (9) is a system of ordinary differential equations of (2m + 4)-th order.
The delay δ is introduced as additional parameter of this system.
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It should be noted that solutions ξ, ζ,β, γ of the system (6) are approximated by
solutions ξ0, ζ0,β0, γ0 of the system (9) respectively. And ξ0 → ξ, ζ0 → ζ, β0 →
β, γ0 → γ as m → ∞.

Thus, we can study the influence of delay on the dynamic behavior of the
generator-transducer system using either a system of equations (8) or a system of
equations (9). Such studies are carried out using a number of numerical methods
according to the technique described in [6, 11, 13]. The application of the second
approach to reduce the system of differential equations with delay to the system of
differential equations without delay allows, generally speaking, to obtain more accu-
rate results at studying the dynamics of the “generator-transducer” system. However,
this significantly increases the duration of computer calculations and complicates the
procedure for creating the appropriate computer programs. So theremust be a balance
between computational speed and accuracy.

Wewill find suchbalance for a number of concrete cases.Assume thatα0 = 0.995,
α1 = 0.0535, α3 = 9.95, α4 = 0.103, α5 = −0.0604, α6 = −0.12, α7 = 0.01. As
bifurcation parameters we use the parameters α2, δ.

Comparison results for the two used methods are shown in Fig. 5.
In Fig. 5a the projection of the phase portrait of the limit cycle of system (8), con-

structed at α2 = 9.075, δ = 0.01 is shown. Accordingly, in Fig. 5c, e the projection
of the phase portrait of the limit cycle of system (9), constructed at the same values
of α2, δ are shown. Figure5c is constructed at m = 3 and the Fig. 5e is constructed
at m = 30. In Fig. 5b, d, f the projections of the phase portrait of the chaotic attrac-
tor constructed at α2 = 9.075, δ = 0.04 are shown. In Fig. 5b the chaotic attractor
of system (8) is shown. Accordingly in Fig. 5d the chaotic attractor of system (9)
(m = 3) is shown and in Fig. 5f the chaotic attractor of system (9) (m = 30) is shown.

Note that the identification of the type of attractor (limit cycle or chaotic attractor)
was carried out on the basis of calculation and analysis of the LCE spectrum. As
can be seen in Fig. 5, all constructed phase portraits almost coincide. However, the
duration of computer calculations increases significantly when applying the second
method of transformation a system with delay (6) to a system without delay (9). At
m = 30, the duration of computer calculations by the second method is more than
5000 times the duration of computer calculations by the first method. Moreover,
the constructed phase portraits and Lyapunov’s characteristic exponents practically
coincide. Therefore all further analysis of influence of the delay was carried out by
the first method.

5 Influence of the Delay on the Type of Attractor

We investigate the influence of delay on the appearance and disappearance of various
attractors of the “generator-transducer” system.As in the previous section,we assume
that α0 = 0.995, α1 = 0.0535, α2 = 9.075, α3 = 9.95, α4 = 0.103, α5 = −0.0604,
α6 = −0.12, α7 = 0.01. As bifurcation parameters we use the delay δ.
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Fig. 5 Phase portrait projections for system (8) at: delta = 0.01 (a), delta = 0.04 (b); for system (9)
at m =3, delta = 0.01 (c), delta = 0.04 (d); for system (9) at m = 30, delta = 0.01 (e), delta = 0.04 (f)
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In Fig. 6, phase parametric characteristics of a pair of attractors coexisting in the
system (6) are constructed. As previously conditionally we will call them black and
red attractor.

In the absence of delay in the system, there is only oneblack attractor. This attractor
is a stable limit cycle. In addition, this attractor will be the self-excited attractor.
However, even at a negligible value of the delay δ = 0.0015, another attractor is
born in the system, namely, the invariant torus (red region in Fig. 6). This invariant
torus is both a hidden attractor and a rare attractor. At increasing delay, at δ = 0.005
for red attractor the bifurcation “torus–cycle” is taken place. The invariant torus is
destroyed and a resonant limit cycle is born in the system. With a further increase
of the delay, in the selected interval of the change of the delay, no red attractor
bifurcations occur anymore. The new resonant limit cycle will continue to be both a
hidden attractor and a rare attractor.

Next, we consider the bifurcations of the black attractor. As can be seen from
Fig. 6 at δ = 0.032 through one rigid bifurcation the limit cycle disappears and a
chaotic attractor arises in the system. Such a chaotic attractor exists at the vast
majority of δ > 0.032. To this chaotic attractor corresponds the densely black region
in Fig. 6 and this attractor is self-excited attractor in this region. In addition, small
“slots” are visible in this thickly black area. As a rule, such “slots” correspond to
periodicity windows in chaos. However, here the situation is much more interesting.
At the values of delay corresponding to such “slots”, the chaotic attractor does not
disappear and does not turn into a limit cycle. It will still be chaotic attractor, but
not self-excited attractor. This attractor turns into hidden attractor, since trajectory
that starts in the neighborhood of equilibrium position skips black attractor and
approach to red limit cycle. Moreover, the phase portrait of such hidden attractor

Fig. 6 Phase-parametric
characteristic at α2 = 9.075
for δ ∈ [0; 0.1]
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Fig. 7 Phase portrait projections at: δ = 0.0015 (a); δ = 0.01 (b); δ = 0.035 (c)

is not practically distinguishable from the phase portraits of self-excited chaotic
attractor. Thus, at the values of delay corresponding to the “slots” in Fig. 6, a rare
and self-excited limit cycle and a hidden chaotic attractor simultaneously exist in the
system.

Projections of phase portrait of mentioned pairs of attractor (“limit cycle–torus”,
“limit cycle–limit cycle”, “limit cycle–chaos”) are shown in Fig. 7.

6 Conclusion

In the space of parameters of the “generator-piezoceramic transducer” system,
regions were discovered in which two attractors coexist simultaneously. Moreover,
these attractors can be both regular and chaotic. These attractors are located in close
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proximity to one another. At absence of delay one of the coexisting attractors is
always a self-excited attractor, and the second attractor is always hidden and rare. It
is shown that the presence of delay in the system can contribute to the appearance
and disappearance of attractors of various types. The possibility of simultaneous
coexistence in the system of a hidden chaotic attractor and a rare and self-excited
limit cycle is established.
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Rules and Regulations of Potential
Impact of Acoustic Factors
from High-Speed Railway Lines
on Environment and Human Body
During Construction of New Facilities

Vladimir Yu. Smirnov, Oksana I. Kos, and Elena A. Eseva

Abstract High speeds on railway lines have a negative impact on the environment
and the human body, primarily due to the vibration effect. For a comfortable stay
of a person, it is necessary that the vibration effect does not exceed the maximal
admissible effect. It was carried out analysis of standard technical documents, estab-
lishing standards in the area of vibration impact on the environment. The main
direction of improvement of the regulatory documentation is the harmonization of
sanitary-hygienic and technical complexes.

Keywords High-speed railway lines · Vibration impact · Sanitary norms ·
Sanitary-epidemiological rules · Engineering and environmental surveys

1 Introduction

Railway transport is traditionally consideredoneof themost environmentally friendly
types of transport. In recent years, Russia has been developing projects for the
construction of high-speed railway lines (HSRL), including in the direction of the
Ural region, to Kazan and to Saint Petersburg. The speed of trains on the HSRL will
be from 250 to 400 km/h, while keeping a low cost of transportation. Currently, the
President of the Russian Federation has approved the project of high-speed highway
Moscow—Saint Petersburg.
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2 Documents Establishing the Requirements
for the Regulation of Vibration

High speeds on railway lines have a negative impact on the environment and the
human body, primarily due to the vibration effect. In this regard, more attention is
paid to the evaluation and regulation of vibration impact.

In accordance with Article 26 of the federal law of December 30, 2009, N384-
FZ “in the design documentation of a civil building and structure, measures must
be provided, so that vibration in the building and structure does not harm people’s
health” [1].

GOSTR2041-2012 establishes terms and definitions, used in the field of vibration
evaluation [2].

Vibration sources in accordance with GOST R ISO 14837-1-2007 are “vehicle,
wheels, rails, track, support structure” rail vehicles, wheels, track, support structure
GOST R ISO 14837-1-2007 [3], artificial structures during the passage of a rail
vehicle GOST 31185-2002 [4].

The propagation paths of vibration in accordancewithGOSTRISO14837-1-2007
are the condition of the soil, the distance to the object of impact.

The object of impact in accordance with GOST R ISO 14837-1-2007 is “the
foundation, type of construction”.

One of the propagation paths of vibration is that the soil can be represented by an
infinitely rigid elastic medium.

In infinite solid elastic media, vibration is propagated through the following
mechanisms:

– compression waves (longitudinal waves) with the movement of particles in the
form of oscillations in the direction of motion;

– shear waves (transversal waves) with the movement of particles in the form of
oscillations in the plane perpendicular to the direction of wave propagation;

– Rayleigh waves, which are surface waves with elliptic motion of particles in a
vertical plane extending in the direction of wave propagation;

– Love waves (surface waves), propagating in the direction of motion.

As the train speed increases, the vibration impact on the environment increases
[5].

The main document establishing the requirements for the regulation of vibra-
tion are the federal sanitary norms CH 2.2.4/2.1.8.562-96 [6]. Since January 1,
2017 sanitary-epidemiological rules and standards SanPiN 2.2.4.3359-16 are put
into effect [7], improved vibration requirements in workplaces, including public
buildings.

It distinguishes sanitary and technical standardization.
In the first case, the vibration parameters of the workplaces and the surface of

contact with the limbs of workers are limited, based on physiological requirements,
which redxuce the possibility of vibration disease.
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In the second case, the vibration parameters are limited, taking into account not
only the specified requirements, but technically achievable level of vibration for this
type of machines to date.

The main direction of improving the regulatory documentation is to establish
compliance with sanitary and technical complexes. Rationing vibration from subway
trains is carried out in accordance with the code of rules SP 120.13330.2012 [8]. The
methodology for vibrations evaluation from the subway (metro trains) is given in the
code of rules SP 23-105-2004 [6]. Measurement of vibration generated internally in
railway tunnels by the passage of trains GOST 31185-2002 [4].

Themain calculated normalized vibration parameters (root-mean-square values of
vibration accelerations) determined during testing of high-speed trains are performed
taking into account the temporary nature of the vibrations acting.

3 The Vibration Parameters

To assess the value of vibration acceleration and vibration velocity, the rms charac-
teristic was taken, since other power-law averages do not reflect the real effect of
vibration acceleration and vibration velocity on the environment and the human body,
for example, the arithmetic mean is close to zero. Root mean square value vibration
acceleration takes into account both the peak value and the vibration acceleration
value fluctuating around zero.

1. For acceptance tests

In the case of integral assessment of frequency, the normalized parameter is the
corrected value of vibration velocity Lϑ or their logarithmic levels (LU), measured
using correction filters or calculated by the formulas:

Lϑ =
√
√
√
√

n
∑

j=1

L2
ϑ j t j

T
(1)

where
Lϑ j—root-mean-square value of vibration velocity or general vibration at the j-th

measurement;
j = 1, 2,…, n, where n—number of measurements;
tj—the duration of the j-th dimension;
T—total measurement time.
Causes of errors in measuring the rms values of vibration velocity and vibration

acceleration: cable connections, the influence of electromagnetic fields, triboelectric
phenomena, zero level shift.

Let us determine the average error of the root-mean-square value of the vibration
velocity:



882 V. Yu. Smirnov et al.

m = δ√
n

(2)

δ2 = L2
ϑ j − (

Lϑ j
)2

(3)

δ2 =
∑

L2
ϑ j ∗ t j

T
−

⎛

⎝

√
∑

L2
ϑ j ∗ t j

T

⎞

⎠

2

(4)

m =

√
∑

L2
ϑ j∗t j
T −

(√∑

L2
ϑ j t j
T

)2

√
T

(5)

where
Lϑ—root-mean-square value of vibration velocity or general vibration at the j-th

measurement;
j = 1, 2,…, n, where n—number of measurements;
tj—the duration of the jth dimension;
T—total measurement time.
Let’s perform interval estimation of the general arithmetic mean. Interval

boundaries Lϑ jτeH relatively Lϑ j we will calculate by the formula:

Lϑ j − tα ∗ m < Lϑ jτeH < Lϑ j + tα ∗ m, (6)

where
j = 1, 2,…, n, where n—number of measurements;
tα—the tabular value of the Student’s criterion,
m—root-mean-square error.
Since the values of the local vibration velocity LV, m s vibration differ greatly in

intensity, it is much more convenient to consider the equivalent logarithmic levels of
the root mean square values of vibration acceleration, LVw (w) dB is determined by
the formula:

Lϑ = 10lg
n

∑

j=1

100,1Lu j (7)

where
Lϑ j—weighting factors for the i-th frequency band, respectively, for absolute

values or their logarithmic levels, determined for local vibrations,
n—is the number of frequency bands (1/3 or 1/1 octaves) in the normalized

frequency range.
Root-meansquare of local vibration acceleration ahw and whole-body vibration

aw, m/s2 is determined by the formula:
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ahw(w) =
√
√
√
√

1

T

n
∑

j=1

a2hw(w) j ∗ t j (8)

where ahw(w)j—root-meansquare of local vibration acceleration or whole-body
vibration at the j-th measurement;

i = 1, 2,…, n, where n—number of measurements;
tj—the duration of the j-th dimension;
T—total measurement time.
Let’s determine the mean error of the root-mean-square value:

m = δ√
n

(9)

δ2 = a2hw(w) j −
(

a2hw(w) j

)2
(10)

δ2 =
∑

a2hw(w) j ∗ t j

T
−

⎛

⎝

√
∑

a2hw(w) j ∗ t j

T

⎞

⎠

2

(11)

m =

√
∑

a2hw(w) j∗t j
T −

(√∑

a2hw(w) j t j
T

)2

√
T

, (12)

Let’s perform interval estimation of the general arithmetic mean. Interval
boundaries ahw(w)τeH relatively ahw(w) we will calculate by the formula:

ahw(w) − tα ∗ m < ahw(w)τeH < ahw(w) + tα ∗ m (13)

where
j = 1, 2,…, n, where n—number of measurements;
tα—the tabular value of the Student’s criterion,
m—root-mean-square error.
Since the values of the vibration acceleration of the local ahw, ms2 vibrations

differ greatly in intensity, it is much more convenient to consider the equivalent
logarithmic levels of the root-mean-square values of vibration accelerations, Lahw (w)

dB is determined by the formula:

Lahw(w) = 10 ∗ lg

(
ahw(w)

a0

)2

(14)

where ahw(w)—root-mean-square value of vibration acceleration of local or general
vibration, m/s2;

a0—reference level, a0 = 10-6 m/s2.
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2. For periodic tests

Equivalent corrected value of vibration acceleration of local ahw and general
vibration aw, m/s2, for an 8-h working day

Al = kl

[
1

T0
∫
T0
a2hw j (t)dt

]1/2

(15)

where ahwj—root-mean square value of the vibration acceleration of the total
vibration during the i-th working operation);

i = 1, 2,…, n, where n is the number of working operations;
j—index indicating the direction of measurement (evaluation) of vibration (x, y

or z);
kj = 1, 4 in x- and y- directions and kj = 1 for z-direction;
Ti—time of i-th working operation;
T0—basic working day duration equal to 8 h.
Let’s determine the mean error of the root-mean-square value:

m = δ√
n

(16)

δ2 = a2hw,8h(w) j − (

āhw,8h(w) j
)2

(17)

δ2 =
∑

a2hw,8h(w) j ∗ t j

T
−

⎛

⎝

√
∑

a2hw,8h(w) j ∗ t j

T

⎞

⎠

2

(18)

m =

√
∑

a2hw,8h(w) j∗t j
T −

(√∑

a2hw,8h(w) j t j
T

)2

√
T

, (19)

Let’s perform interval estimation of the general arithmetic mean. Interval
boundaries ahw(w)τeH relatively ahw(w) we will calculate by the formula:

ahw,8h(w) − tα ∗ m < ahw,8h(w)τeH < ahw,8h(w) + tα ∗ m (20)

where
j = 1, 2,…, n, where n—number of measurements;
tα—the tabular value of the Student’s criterion,
m—root-mean-square error.
The equivalent corrected level of vibration acceleration ahw,8h dB is determined

by the formula:
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ahw,8h = k j ∗
√
√
√
√

1

T0

n
∑

j=1

a2w j ∗ Tj (21)

where ahwj—root-mean-square of vibration acceleration of local vibration during the
ith working operation, calculated by the formula (21);

j = 1, 2,…, n, where n is the number of working operations;
kj = 1.4 for the x and y directions and kj = 1 for the z direction;
Tj—time of the i-th work operation;
T0—basic working day duration equal to 8 h.
Equivalent corrected level of vibration acceleration Lahw(w),8 h, dB is determined

by the formula:

Lahw(w),8h = 10 ∗ lg

(
ahw(w)

a0

)2

(22)

where ahw(w)—root-mean-square value of vibration acceleration of local or general
vibration, m/s2;

a0—reference level, a0 = 10-6 m/s2.

4 Indicators of Normative Values

The calculated root-mean square of the vibration acceleration, equivalent corrected
vibration acceleration values, Corrected values of vibration accelerations in octave or
third-octave band or their logarithmic levels are rated as unsatisfactory if one of the
indicators exceeds the standard value. Threshold limit values of equivalent corrected
vibration accelerations in accordance with Sanitary Rules and Norms 2.2.4.3359-16
[7] are presented in Table 1 and Table 2, maximum permissible values of corrected
vibration accelerations for local vibration in accordance with SN 2.2.4/2.1.8.566-
96 [10] are presented in Table 3, maximum permissible values for the whole-body
vibration in accordance with SP 2.5.1336-03 [11] for transport operating conditions
are presented in Table 4, for transport and technological operating conditions are in
Table 5.

Vibration can cause discomfort to people, depending on its frequency: through
the vibration of its body and its parts in the range from 1 to 80 Hz. A person, in
addition to feeling the vibrations of his body, can perceive vibrations also tactilely
in a wider range of frequencies.

Sanitary regulations SP 2.5.1336-03 [11] set vibration levels on the floor and on
the surface of the seats in passenger and service compartments of coach-sleeping car,
on the floor and the surface of the seats in passenger compartment with seats should
not exceed the parameters in Table 6.

Measurement of total vibration and analyze of its effects on humans. Part 2.
Vibration in buildings 31191.2-2004 [12].
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Table 1 .

Average geometric frequencies of octave bands (Hz) Weighting coefficient values

For vibration
acceleration

For vibration
velocity

Ki Lkr Ki Lkr

8 1.0 0 0.5 −6

16 1.0 0 1.0 0

31.5 0.5 −6 1.0 0

63 0.25 −12 1.0 0

125 0.125 −18 1.0 0

250 0.063 −24 1.0 0

500 0.0315 −30 1.0 0

1000 0.016 −36 1.0 0

Table 2 .

Type of
vibration

Category of
vibration

Direction Correction Regulatory equivalent
corrected values and
levels of vibration
acceleration

m/s2 dB

Local X L, Y L, Z L Wh 2.0 126

General Transport Zwb Wk 0.56 115

Xwb, Ywb Wd 0.4 112

Transport and
technological

Zwb Wk 0.28 109

Xwb, Ywb Wd 0.2 106

Table 3 .

Centre frequencies of octave
bands (Hz)

Maximum permissible vibration acceleration of local vibration
in XL, YL, ZL -directions

Root-mean square of vibration
acceleration (m/s2)

Logarithmic levels (dB)

8.0 1.4 123

16.0 1.4 123

31.5 2.8 129

63.0 5.6 135

125.0 11.0 141

250.0 22.0 147

500.0 45.0 153

1000.0 89.0 159
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Table 4 .

Centre frequencies
of octave bands
(Hz)

Maximum permissible vibration levels for transport operating conditions

Vertically in Z0—directions Horizontally in X0, Y0—directions

Root-mean
square of
vibration
acceleration
(m/s2)

Logarithmic
levels, dB

Root-mean
square of
vibration
acceleration
(m/s2)

Logarithmic
levels, dB

1.0 0.63 116 0.23 107

1.25 0.56 115 0.23 107

1.6 0.5 114 0.23 107

2.0 0.45 113 0.23 107

2.5 0.40 112 0.28 109

3.15 0.36 111 0.36 111

4.0 0.32 110 0.45 113

5.0 0.32 110 0.56 115

6.3 0.32 110 0.71 117

8.0 0.32 110 0.90 119

10.0 0.36 111 0.70 117

12.5 0.40 112 0.50 114

16.0 0.45 113 0.40 112

20.0 0.50 114 0.36 111

25.0 0.56 115 0.40 112

31.5 0.63 116 0.45 113

40.0 0.71 117 0.50 114

It is convenient to use integral weighted It is convenient to use integral weighted
characteristics to assess the vibration inside buildings in terms of living comfort and
the likelihood of complaints from their inhabitants. The obtained vibration parameter
allows us to characterize a specific accommodation inside the building from the
standpoint of its suitability for living.

5 Conclusions

The study of the physical factor (vibration impact) is an integral part of complex
engineering and environmental studies, which are performed to assess the state of the
environment, the forecast of possible changes in the environment under the influence
of anthropogenic impact, the environmental study for construction of high-speed rail
lines and to ensure favorable conditions for people.
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Table 5 .

Centre frequencies of 1/3 octave
bands (Hz)

Maximum permissible levels of vibration for transport and
technological operating conditions in X0, Y0,
Z0—directions

Root-mean square of vibration
acceleration (m/s2)

Logarithmic levels (dB)

1.6 0.25 108

2.0 0.224 107

2.5 0.20 106

3.15 0.178 105

4.0 0.158 104

5.0 0.158 104

6.3 0.158 104

8.0 0.158 104

10.0 0.20 106

12.5 0.25 108

16.0 0.315 110

20.0 0.40 112

25.0 0.50 114

31.5 0.63 116

40.0 0.80 118

50.0 1.00 120

63.0 1.25 122

80.0 1.60 124

Rules and regulations, governing the assessment of the impact of the acoustic
factor on the environment and the reaction of people, need to be improved.

The main direction of improvement is the harmonization of sanitary-hygienic and
technical complexes of regulatory and legal documentation [9].
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Table 6 Maximum permissible vibration levels in passenger cars (on the floor and on the surface
of the seat)

Centre frequencies of 1/3 octave
bands (Hz)

Root-mean square of vibration acceleration (m/s2)

Vertically in Z—directions Horizontally in X, Y—directions

1.0 0.22 0.10

1.25 0.20 0.10

1.6 0.18 0.10

2.0 0.16 0.10

2.5 0.14 0.12

3.15 0.12 0.16

4.0 0.11 0.20

5.0 0.11 0.25

6.3 0.11 0.31

8.0 0.11 0.40

10.0 0.14 0.50

12.5 0.18 0.63

16.0 0.22 0.80

20.0 0.28 1.00

25.0 0.35 1.25

31.5 0.45 1.60

40.0 0.56 2.00

50.0 0.71 2.50

63.0 0.90 3.15

80.0 1.12 4.00
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Connecting Bernoulli and Schrödinger
Equations and Its Impact
on Quantum-Mechanic Wave Function
and Entanglement Problems

Siavash H. Sohrab

Abstract An invariantmodel of Boltzmann statisticalmechanics is applied to derive
invariant Schrödinger equation of quantummechanics from invariant Bernoulli equa-
tion of hydrodynamics. The results suggest new perspectives regarding quantum
mechanics wave function and its collapse, stationary versus propagating wave func-
tions, and wave-particle duality. The invariant hydrodynamic model also leads to the
definition of generalized shock waves in “supersonic” flows at molecular-, electro-,
and chromo-dynamic scaleswith (Mach, Lorentz, and Michelson) numbers exceeding
unity. The invariant internal hydro-thermo-diffusive structure of such generalized
“shock” waves are described.

1 Introduction

It is well known that our universe involves statistical fields at fivemajor scales that are
approximately separated by a factor of 10–17, beginning at exceedingly small Planck
scale of 10–35 m, electrodynamics 10−17 m, molecular-dynamics 100 m, astrophysics
1017 m, and finally cosmology 1035 m, with each statistical field having a charac-
teristic “atomic” particle graviton, electron, molecule, star, and galaxy. Schematic
diagram in Fig. 1 shows hierarchies of such statistical fields from photonic to cosmic
scales. Under the assumption of weak interactive forces known as ideal gas, Boltz-
mann statistical mechanics governs the generalized thermodynamics associated with
such statistical fields of diverse scales. Studies on generalized Boltzmann statistical
mechanics and turbulent phenomena that are common universal features shared by
stochastic quantum fields [1–17] and classical hydrodynamic fields [18–30] resulted
in recent introduction of a scale-invariant model of statistical mechanics and its
applications to thermodynamics [31, 32], fluid mechanics [33, 34], and quantum
mechanics [35–37] at intermediate, large, and small scales.
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Fig. 1 A scale-invariant model of statistical mechanics. Equilibrium-β-Dynamics on the left-hand-
side and non-equilibrium Laminar-β-Dynamics on the right-hand-side for scales β = g, p, h, f,
e, c, m, a, s, k, and t as defined in [35]. Characteristic lengths of (system, element, “atom”) are
(Lβ,λβ, �β) and λβ is the mean-free-path

In the present study, after a brief description of a scale-invariantmodel of statistical
mechanics, the invariant forms of conservation equations are presented. Next, deriva-
tion of invariant Schrödinger equation from invariant Bernoulli equation for potential
incompressible flow is discussed. The nature of quantum mechanics wave functions
for both time-independent and time-dependent Schrödinger equations respectively
associated with time-periodic stationary versus propagating states are identified.
Also, the objective (real) versus subjective (imaginary) aspects of wave function
[3] in connection to particle localization and Born probabilistic interpretation are
studied.

The invariant forms of conservation equations result in introduction of an invariant
definition of Mach number leading to a hierarchy of generalized normal “shock”
waves from photonic to cosmic scales. The internal hydro-thermo-diffusive structure
of such shock waves is examined and some of its implications to dissipation in
quantum gravity and black holes are discussed.
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2 Scale–Invariant Model of Boltzmann Statistical
Mechanics

The scale-invariant model of statistical mechanics for equilibrium galactic-,
planetary-, hydro-system-, fluid-element-, eddy-, cluster-, molecular-, atomic-,
subatomic-, kromo-, and tachyon-dynamics corresponding to the scale β = g, p,
h, f, e, c, m, a, s, k, and t is schematically shown on the left hand side of Fig. 1.

For each statistical field, one defines particles that form the background fluid
and are viewed as point-mass or “atom” of the field. Next, the elements of the field
are defined as finite-sized composite entities composed of an ensemble of “atoms".
Finally, ensemble of a large number of “elements” is defined as the statistical “system”
at that particular scale. The most-probable element of scale β is identified as the
“atom” (system) of the next higher β + 1 (lower β − 1) scale.

Following the classical methods [19, 38–42], the invariant definitions of the
density ρβ, and the velocity of atom uβ, element vβ, and system wβ at the scale
β are given as [36]

ρβ = nβmβ = mβ

∫
fβduβ, uβ = vwβ−1 (1)

vβ = ρ−1
β mβ

∫
uβfβduβ, wβ = vw β+1 (2)

Similarly, the invariant definitions of the peculiar and diffusion velocities are
introduced as

V′
β = uβ−vβ , Vβ = vβ−wβ , Vβ = V′

β+1 (3)

Following the classical methods [19, 38–40], the scale-invariant forms of mass,
thermal energy, linear and angular momentum conservation equations at scale β are
given as [33, 34]

∂ρi β

∂tβ
+ ∇.(ρi βvβ) = �i β (4)

∂εiβ

∂tβ
+ ∇.(εiβvβ) = 0 (5)

∂piβ

∂tβ
+ ∇.(piβvβ) = −∇.Pijβ (6)

∂πiβ

∂tβ
+ ∇.(πiβvβ) = ρiβωβ.∇vβ (7)
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involving the volumetric density of thermal energy εiβ = ρiβ h̃iβ, linear momentum
piβ = ρiβ viβ, and angularmomentumπiβ = ρiβ ωiβ. Also,�iβ is the chemical reaction
rate and h̃β is the absolute enthalpy [32].

It is noted that the time coordinates in (4–7) also have a scale subscriptβ. In a recent
study [43], the nature of physical space and time was investigated and the concepts
of internal spacetime versus external space and time were introduced. Assuming
that a statistical field at scale β is in thermodynamic equilibrium with the physical
space at scale (β − 1) within which it resides, both fields will have a homogenous
constant temperature Tβ = Tβ−1 defined in terms of Wien wavelength of particle
thermal oscillations as [32]

mβu
2
β = mβ−1v

2
wβ−1 = kTβ−1 = kλwβ−1 (8a)

Hence, constant internal measures of (extension λwβ, duration τwβ) will be asso-
ciated with every “point” of space at temperature Tβ = Tβ−1. For example, at cosmic
scale β = g one employs internal (ruler, clock) of the lower scale of astrophysics β

= s to define external space and time coordinates defined as [43]

(xβ, yβ, zβ) = (Nxβ, Nyβ, Nzβ)λwxβ−1, tβ = Ntβτwβ−1 (8b)

with the four numbers (Nxβ, Nyβ, Nzβ, Ntβ) being independent numbers.

3 Derivation of Invariant Schrödinger Equation
from Invariant Bernoulli Equation

The connection between energy spectrum of photon gas given by Planck [44] distri-
bution and both energy and dissipation spectrum of isotropic stationary turbulence
has been recognized [35, 36]. In a recent study [35], the gap between problems of
quantum mechanics and turbulence was investigated through connections between
Cauchy, Euler, Bernoulli equations of hydrodynamics, Hamilton–Jacobi equation
of classical mechanics, and Schrödinger equation of quantum mechanics. In a more
recent investigation on foundation of classical thermodynamics [32] itwas shown that
stochastic definitions of Planck h = hk ≡ mkλrkc and Boltzmann k = kk ≡ mkνrkc
universal constants involve the speed of light identified as root-mean-square speed
of photons c = vrk in Casimir [45] vacuum. The new insights into the statistical
nature of both Planck and Boltzmann universal constants as well as the definition
of absolute temperature [32] suggest a slightly modified derivation of Schrödinger
equation [35, 46] discussed in the following.

For potential flow ∇ × vβ = 0 with velocity vβ = −∇�β [35], (6) leads to
invariant Bernoulli equation
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−∂m�β

∂t ′ + (∇m�β)
2

2m
+ Ṽβ = 0 (9)

where the atomic potential energy is Ṽβ = (pβ/ρβ)mβ = pβ/nβ = pβv̂. By (3), local
velocity in an arbitrary direction is expressed in terms of the most probable or Wien
velocity of the lower scale and peculiar velocity as perturbation

vxβ = uxβ − εV′
xβ = vwx β−1 − εV′

xβ, ε � 1 (10)

In absence of vorticity ∇ × vβ = ∇ × vwβ−1 = ∇ × V′
β = 0 equation (10) gives

mβ�β = mβ�wβ−1 − εmβ�
′
β (11)

Comparison of (9) with Hamilton–Jacobi equation of classical mechanics [2]
leads to the definition of invariant action [36]

Sβ(x ′
β, t ′

β) = −mβ�β = −mβ�w β−1 + εmβ�
′
β = Sw β−1 − εS′

β (12)

and quantum mechanics wave function �β defined as

�β(x ′
β, t ′

β) = −S′(x ′
β, t ′

β)/mβ = �′
β (13)

Substitution from (12)–(13) into Bernoulli equation (9) and separation of zeroth
and first power of ε leads to [35]

∂Swβ

∂t ′
β

+ (∇Swβ)2

2m
+ Ṽβ = 0 (14)

∂�β

∂t ′
β

+ (vwx′)β−1∇�β + ε

2
(∇�β)

2 = 0 (15)

To reveal the “stationary states” of the system one moves to coordinate system
moving at the most-probable speed

z′
β = x ′

β − (vwx′)β−1t ′
β (16)

The solution of (14) results in conservation of energy due to internal and peculiar
translational motions

Ẽt β = T̃t β + Ṽβ (17)

where
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Ẽt β ≡ mβv
2
wx β−1, T̃t β ≡ mβv

2
wx β−1/2, Ṽβ ≡ pv̂ = mβV ′ 2

xβ/2 (18)

The equality of translational kinetic and potential energies T̃tβ = Ṽtβ is in accor-
dance with Boltzmann equipartition principle. In (18) the velocities refer to peri-
odic motions in direction of a single translational coordinate say (x+, x−) and (17)
corresponds to atomic translational enthalpy [32]

ĥtβ = ûtβ + pβv̂β = 2kTβ (19)

where ûtβ = mv2wx = mv2wx+/2+mv2wx−/2 = mv2wx+ is atomic internal translational
kinetic energy [32].

As described in [32], the conventional assumption of particle undergoing trans-
lational motion along three degrees of freedom (x, y, z) is not appropriate since
particle cannot simultaneously move in three independent coordinate directions.
Also, according to Clausius [47], the kinetic energy due to random rotational and
vibrationalmotions of particles cannot be properly neglected. Therefore, as discussed
in [32], the conventionally assumed random translational kinetic energy in (y+, y−)
and (z+, z−) directions are instead respectively attributed to particle rotational (θ+,
θ−) and vibrational (r+, r−) kinetic energies [32]

ûtyβ ≡ mβv
2
wyβ ⇒ ûrβ ≡ Iβ	

2
θβ = kTβ (20a)

ûtzβ ≡ mβv
2
wzβ ⇒ ûvβ ≡ kβr

2
β = kTβ (20b)

According to (19–20), particles have four simultaneously independent degrees
of freedom namely, translational, rotational, vibrational, and potential. Boltzmann
principle of equipartition of energy requires that all four degrees of freedom have
the same energy resulting in atomic internal energy and atomic enthalpy of ideal gas
respectively defined as [32]

Ẽβ = ûβ = ûtβ + ûrβ + ûvβ = 3kTβ (21)

H̃β = ĥβ = ûβ + pβv̂β = 4kTβ (22)

Total internal energy, potential energy, and enthalpy are respectively Nβ Ẽβ =
Nβûβ = Uβ, NβṼβ = pβVβ, and Nβ H̃β = Nβĥβ = Hβ such that [32]

Hβ = Uβ + pβVβ (23)

In summary, by the above procedure Bernoulli equation in “three dimension”
accounts for three types of internal kinetic energies Ẽβ as well as potential energy
Ṽβ = pβv̂β that is also a kinetic energy due to random external peculiar motion of
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particles. Another perspective concerning the results in (19) and (20) is to view the
particle as a small cylindrical object with periodic oscillations in axial (z+, z−),
angular (θ+, θ−), and radial (r+, r−) directions in a cylindrical coordinate (z, θ, r)
system.

Next, Bernoulli equation in the first order of ε is considered. In the limit ε → 0,
taking time derivative of (15) and substituting for ∂�β/∂t ′

β in the resulting equation
from (15) itself leads to the wave equation [35]

∂2�β

∂t ′ 2
β

= v2w β−1∇2
z′�β (24)

Since wave function in (24) guides the motion of “particle” that is a singularity
on the wave, one moves to the adjacent lower scale (β−1) and introduces space and
time coordinates [35, 43]

ζ = (z′
β − z′

o)/ε, τ = (t ′
β − t ′

o)/ε (25)

It is important to emphasize that the time and space coordinates (25) are based
on internal spacetime governed by thermodynamic temperature Tβ−1 as discussed
in [43]. Internal wavelength and frequency are not independent and wave number
kβ ≡ 2π/λβ and angular frequency ωβ ≡ 2πνβ must follow the relations

kwβ = 3krβ, ωwβ = √
3ωrβ (26)

in order to satisfy the relationship between root-mean–square and most-probable
speeds vr+β = √

3vwβ [43]. Therefore, one introduces the scaled space and time
coordinates

ξβ = 3ζβ, tβ = √
3τβ (27)

Substitution from (27) into (24) leads to the wave equation

∂2�β

∂t2β
= c2β−1∇2

ξ�β (28)

with root-mean-square speed or speed of “sound” defined as c2β = v2r+β = 3v2wβ.
The separated product solution of (28) is the complex wave function

�β = �′
β(ζ, τ) = ei3kr ζ e−i

√
3ωrτ = �′

β(ξ, t) = eikr ξe−iωrt (29)

with frequency ωrβ−1 associated with stationary state thus the vanishing of time
dependence. In other words, because at stationary state the mean velocity must be
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zero, the frequency relation �
2ω2

r = 2�
2ω2

r+ must hold in order to maintain the
stationary internal kinetic energy given by the relation from (21).

The wave (28) and the solution in (29) after substitution from (23) for internal
energy Ũβ result in the invariant time-independent Schrödinger equation [35, 37,
48]

�
2

2mβ

∇2
ξψβ + (H̃β − Ṽβ)ψβ = 0 (30)

By equations (13, 27–30) ψβ represent stationary state of spatial geometry of
velocity potential �′

β(ξ) governing the peculiar motion of particles. Clearly, any
interference with the stationary field by a measuring device will disturb the velocity
potential and hence lead to “collapse of the wave function” ψβ .

The time-independent Schrödinger equation is next employed to define a new
time-dependent wave function

�β(ξ, t) = �′
β(ξ, t) = ψβ(ξ)e

−2iωrt ′
β = ψβ(ξ)e

−(4/3)iωr+tβ (31)

involving a new time coordinate t ′
β = (2/3)1/2τβ = (

√
2/3)tβ. The multiplicative

factor of two in frequency is because the period of traveling wave is half of that
of stationary wave. The wave function in Eq. (31) with the factor of (4/3) multi-
plying the frequency ωr+β results in total atomic thermal energy or atomic enthalpy
(4/3)�ωr+β = (4/3)mv2r+β = 4mv2wβ = 4kTβ = H̃β. In view of the definition
of invariant Planck constant hβ = mβλrβvrβ = h [32], Eq. (31) gives energy and
momentum operators [49]

i�β

∂�β

∂tβ
= H̃β�β (32a)

−i�β

∂�β

∂ξβ

= prβ�β (32b)

where prβ = mβvrβ is the root-mean-square momentum.Multiplying (30) by the new

time-dependent part e−(4/3)iωr+tβ = e−iH̃ tβ/� from (31) and substitution from (32a)
leads to the invariant time-dependent Schrödinger equation [35, 48]

i�β

∂�β

∂tβ
+ �

2
β

2mβ

∇2
ξ�β − Ṽβ�β = 0 (33)

Therefore, the energy in (32a) corresponding to the classical Hamiltonian is the
atomic enthalpy H̃β = (4/3)mc2β = (4/3)(3mv2wβ) = 4kTβ that is the sum of

the atomic internal energy Ẽβ = mv2r+β = mc2β = 3mv2wβ = 3kTβ and atomic

potential energy Ṽβ = mV′ 2
xβ = pβv̂β = Ũβ/3 = kTβ . Hence, enthalpy as the sum
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Fig. 2 Macroscopic wave
functions �β or de Broglie
guidance waves at (ECD),
(EMD), and (EAD) scales
that guide particles identified
as wave-packets or de
Broglie matter-waves [46]
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of kinetic or “electromagnetic” energy Ũβ and potential or “gravitational” energy
Ṽβ of equilibrium radiation in enclosures is in exact agreement with the pioneering
prediction of Hasenöhrl [50, 51]

H̃β = Ẽβ + Ṽβ = mc2β + (1/3)mc2β = (4/3)mc2β (34)

However, as opposed to Ẽβ = (p2x + p2y + p2z)/2m in classical model [49], the
atomic internal energy is now defined as the kinetic energy associated with internal
translational, rotational, and vibrational degrees of freedom [32] in accordance with
(21).

Since the most probable element at scale β is the entire system of statistical field
at lower scale β−1 (see Fig. 1), once again one finds a velocity potential�′

β−1 hence
a new wave function �β−1 = �′

β−1 Therefore, in harmony with de Broglie [2, 3]
picture of quantum mechanics, motion of “particle” or “wave-packet” is guided by
an external wave function as shown in Fig. 2.

As an example, let us consider stationary fluid corresponding to the field of equi-
librium cluster-dynamics β = c where the “atom” is a cluster uc = vwm that by (2)
is the most-probable element of the adjacent lower scale of equilibrium molecular-
dynamics β − 1 = m. The random motion of clusters accounts for the phenomena
of Brownian motions as discussed in [35]. The molecules as sub-particles of β = c
field are confined within the most-probable molecular cluster that is stabilized by
an external force induced by Poincaré stress [35] and follow the wave (28) hence
Schrödinger (30). It is important to emphasize that the wave (28) for quantum
mechanics wave function �c by definition (13) is the velocity potential of the pecu-
liar particle velocity in ECD field. Therefore, in harmony with de Broglie picture of
quantum mechanics [2, 3], the “outer” scale β = c wave function �β = �c guides
the motion of particle or molecule identified as wave-packet as shown in Fig. 2.

In order to connect the quantummechanics wave function to particle localization,
one moves to the stationary coordinates in (16) and obtains for the first perturbation
of density ρ′

β = ρoβ + ερβ from continuity (4) in the absence of chemical reactions



900 S. H. Sohrab

∂ρβ

∂τβ

+ vw.∇ζρβ = 0 (35)

Taking time derivative of (35) and substituting for ∂ρβ/∂τβ in the resulting equa-
tion from (35) itself one obtains the wave equation propagating at vwβ−1 similar to
(24) that after the introduction of scaled coordinates in (27) leads to the density wave
equation [52]

∂2ρβ

∂t2β
= c2β−1∇2

ξ ρβ (36)

Hence, under stationary states, density hence particle localization correlate with
quantum mechanics wave function �β. Indeed, by (35) and (36) it can be shown
that ρ

1/2
β also satisfies a wave equation similar to (36) that when combined with

(28) through cross-multiplication result in a new solution hence a modified quantum
mechanics wave function �β = ρ

1/2
β �β such that �β�

∗
β = ρβ in harmony with

the classical result [49]. Therefore, both objective and subjective aspect of quantum
mechanics wave function discussed by de Broglie [3] are clarified. This is because
density is the real hence objective part of �β that accounts for particle localization.
On the other hand, the complex i.e. imaginary part of �β is its subjective part that
accounts for normalization hence success of Born [53] probabilistic interpretation
of �β.

The results shown in Fig. 2 and the objective versus subjective aspects of
�β discussed above also resolve the wave-particle duality problem in quantum
mechanics. This is because particle that appears as a local singularity is actually
a de Broglie wave packet at scale β − 1 that is embedded within and is guided by an
“external” complex hence virtual wave function �β associated with velocity poten-
tial of peculiar atomic motions in the background space composed of atoms of the
same scale. The adjective “external” is because the velocity potential�β = �′

β refers
to peculiar motion at outer scale β.

According to the new paradigm of physical foundation of quantum mechanics,
each equilibrium statistical field is composed of a spectrum of cluster or wave-packet
sizes containing “atoms” with velocity, speed, and energy respectively following
Gauss, Maxwell–Boltzmann, and Planck distribution functions. For example, the
statistical field of equilibrium-electro-dynamics ESD (Fig. 1) takes place within and
is in thermodynamic equilibrium with the background physical space that is the field
ofEKDorCasimir vacuum. In viewofMaxwell–Boltzmanndistribution function, the
spectrum of “atomic” clusters must remain stochastically stationary by the principle
of detailed balance. Transition of an electron from a small fast-oscillating “atom”
(high energy-level-j) to a large slowly-oscillating “atom” (low energy-level-i) will
results in emission of a “sub-particle” that is a photon γji to carry away the excess
energy given by Bohr [54] frequency formula εjiβ = h(νjβ − νiβ)as schematically
shown in Fig. 3a,
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(a) (b)

Fig. 3 Transition of electron sij from atom-j to atom-i leading to emission of photon kij (b)
Generalized transitions [36]

Therefore, stochastically stationary sizes of particle clusters (energy levels) are
identified as Bohr stationary-states of quantum mechanics [54] and must satisfy the
stationarity criteria imposed by Maxwell–Boltzmann distribution. A generalized
scale-invariant concept of “atomic” transitions is shown in Fig. 3b. For example, at
cosmic scales β = g (Fig. 1), transition of an “atom” i.e. galaxy from a small rapidly-
oscillating galactic cluster (high-energy-level j) to a large slowly-oscillating cluster
(low-energy-level i) results in emission of a star sij that constitutes a “subatomic”
particle of cosmic field [43]. Such quantum transitions between spectrums of particle
clusters (Fig. 3) are in harmony with quantum transitions between different “cells”
in recent cellular automaton model of quantum mechanics [55].

Finally, we examine the influence of the nonlinear term in (15) by taking the time
derivative of (15) and substituting for ∂�β/∂τβ in the result from (15) itself, and
introducing internal coordinates from (25) to obtain the non-linear equation

∂2�

∂τ2
= v2wβ−1∇2

ζ � + 2vwβ−1∇ζ�∇2
ζ � + (∇ζ�)2∇2

ζ � (37)

Comparisons of numerical analysis of (37) for double-slit problem with results
obtained from non-linear Schrödinger equations involving what de Broglie called
quantum potential in de Broglie-Bohm [56] model of quantum mechanics will be
most interesting.

4 Scale-Invariant Model of Normal Shock and Its
Hydro-Thermo-Diffusive Structure

The wave (28) and (36) correspond to “stochastically stationary” equilibrium state
with coordinate system z′

β = x ′
β − vw βt′β involving the most probable speed vwβ

.
Parallel to density wave in (36), one obtains a momentum wave equation from
momentum conservation (6) that after introduction of coordinates in (27) results
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in

∂2vβ

∂t2β
= c2β−1∇2

ξ vβ (38)

The momentum waves in (38) propagate at the speed of “sound” or root-mean-
square speed cβ−1 = vr+β−1 = √

3vwβ−1 of molecules [32]. Similar procedures
applied to conservation (4)–(5) lead to density, temperature (thermal), and pressure
waves [52]

∂2fβ
∂t2β

= c2β−1∇2
ξ fβ, fβ = ρβ,Tβ, pβ (39)

The derivation of (39) involves the assumption of ideal gas pβ = ρβ RβTβ with
gas constant as ratio of universal gas constant and molecular weight Rβ = Ro/w̃β

and the absence of mass and heat diffusivities.
Since each statistical field in the hierarchy (Fig. 1) has a root-mean-square speed

vrβ and usually a much faster “atomic” speed uβ, in view of (39) one may associate
a “wave” and a “particle” speed with each statistical field [43, 52]

vr+β = cβ Wave speed (40a)

uβ = vwβ−1 Particle emission speed (40b)

For example, in statistical field of ECD at scale β + 1 = c the sound waves occur
at the adjacent lower LMD scale β = m and follow (39) and hence

vr+m = cm Acoustic speed (41a)

um = vwa Particle emission speed (41b)

where the speed of “sound” waves in standard atmospher is about vr+β = vr+m =
cm ≈ 340m/s[57]. The velocity of particle emission in (41b) on the other hand is
the speed of single molecule um = vwa ≈ 1200m/s that is the speed of typical
detonation wave [58].

At the scale LKD (Fig. 1) physical space is identified as Casimir vacuum [45] and
is considered to be a compressible fluid, Planck compressible ether [59] as discussed
in [60]. Lorentz perceptions about the medium of space as Aristotle or Huygens ether
[60] is further described in the following quotation by Verhulst [61] from Lorentz
1915 lecture at the Royal Academy of Sciences in Amsterdam:

Why can we not speak of the ether instead of vacuum? Space and time are not symmetric;
a material point can at different times be at different spots, but not in different places at the
same time
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Therefore, it is reasonable to anticipate that densitywaves in (35)will be connected
towaves of space curvature thus corresponding to the recently observed gravitational
waves first discussed by Poincaré [62]. It is ironic that in their 1935 paper submitted
to Physical Review, Einstein and Rosen denied the existence of gravitational waves
but later changed their opinion due to discovery of the error by Robertson [63].
Although gravitational waves travel at the speed of light vgw = vr+k = ck = c =
2.9978×108 m/s, gravitational emission (gravitational radiation) [52] propagates at
exceedingly larger speed of tachyon waves estimated as ct = 7.7×1013 c making the
entire universe causally connected [52, 60]. This is in harmony with the perceptions
ofLaplacewho, aswas noted byPoincaré [64], believed that the speed of gravitational
signal is a million times faster than that of light. Such superluminal signals could
resolve the entanglement problem by providing for ontological description of long-
distance correlations between entangled particles such as photons [55].

The scale-invariant definition of the speed of “sound” waves described above
leads to invariant dimensionless number vβ/cβ called (Mach, Lorentz, Michelson)
numbers (Ma = v/cm, Lo = v/ce, Mi = v/ck) associated with (supersonic, super-
electronic, and superluminal) flows [43]. Thus, supersonic flow of gas (Ma > 1),
super-electronic flow of plasma (Lo > 1), and superluminal flow of gravitons
(Mi > 1) lead to the formation of (Mach, Lorentz, and Poincaré-Minkowski) cones
as illustrated in Fig. 4 [43, 65].

As a result, statistical field of scale β will be separated from the statistical field at
adjacent lower scale of β − 1 by a surface of discontinuity called shock wave [65]
as schematically shown in Fig. 5.

In Fig. 5, a stationary body at B is being approached by supersonic flow from the
left. Hence, the fluid with properties (cβ−1, ρβ−1,Tβ−1, pβ−1) to the left of the shock
is “supersonic” and that to the right of the shock with properties (cβ, ρβ,Tβ, pβ) is
subsonic. For example, gaseous supersonic flow at LAD scale β = awith signal speed
vr+a = ca > cm arrives at point A of the shock and a subsonic flow v ≤ cm at LMD
scale β = m leaves the shock wave at point C. Similarly, but at much higher speeds
encountered in cosmology, a superluminal flow at LTD scale β = t with wave speed

Fig. 4 “Supersonic” flows at
(molecular-, chromo-, and
electro-dynamics) scales
leading to the formation of
(Mach, Poincaré-Minkowski,
Lorentz) cones [43]

m m rm mv u 3v 3c∞ = = =
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Fig. 5 Shock in polyatomic
gas with thin and thick layers
corresponding to type C
shock structure of Taniguchi
et al. [66]

vr+t = ct > ck = c arrives at point A of the event-horizon or “shock” surrounding a
black hole at point B and a luminal flow with wave speed vr+k = ck at LKD scale β

= k leaves the shock at point C. This invariant model of generalized shock waves is
in harmony with Unruh [67] “dumb-hole” model of black hole.

The nature of jump-like transition across diverse types of generalized “shock
waves” is interesting. In classical gas dynamics, the hydro-thermo-diffusive structure
of normal shock will be governed by (39), with the reduced temperature � profile
predicted as [65]

� = −erf(ξ) = erf(0.2 − y) (42)

in close agreement with the experimental data [68] shown in Fig. 6.
It is reasonable to anticipate that similar error-function type profiles (Fig. 6) would

govern the dimensionless velocity, density, pressure, and temperature inside gener-
alized “shock” waves in the hierarchy of statistical fields shown in Fig. 1. We next

Fig. 6 Comparison between
measured normalized wire
temperature � versus
position (0.2–y) in normal
shock [68] and theory [65]
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examine the nature of a superluminal shock wave at stochastic chromodynamics
scale.

As discussed in Sect. 2, absolute thermodynamic temperature identified as Wien
wavelength Tβ = λwβ of thermal oscillations [32] also defines the internal measures
of extension and duration (λwβ, τwβ) called spacetime [43]. For example, crossing
a shock wave from supersonic laminar-atomic-dynamic (LAD) side with Ta = λwa

to the subsonic laminar-molecular-dynamic (LMD) side Tm = λwm corresponds to
transition from one Euclidean space with larger λwa (high temperature) to another
Euclidean space with smaller λwm(low temperature). However, the description of
shock internal structure necessarily involves varying temperatures (Fig. 5) hence
variable-measure or non-Euclidean geometry.

Following Poincaré [69] description of hyperbolic space, one expresses temper-
ature as Tβ = (R2 − r2)1/2 with square root added to account for the dimension
of absolute temperature (meter) as Wien wavelength of thermal oscillations [32].
If one postulates that space “curvature” be inversely related to absolute tempera-
ture κβ ∝ 1/Tβ it will lead to (κ → 0, κ → ∞) at Tβ = (∞, 0) resulting in
formation of (white hole, black hole) at (center, circumference) of Poincaré disk
[43, 69]. Also, as discussed in Sect. 2, thermodynamic temperature defines internal
spacetime leading to Poincaré [62] and Minkowski [70] 4-dimesional spacetime
(xβ, yβ, zβ, tβ). However, 6 additional compactified dimensions could be associated
with 3-rotational and 3-vibrational internal degrees of freedom in (20a, 20b). There-
fore, the total number of dimensions required for the description of each statistical
field (Fig. 1) including the physical space or Casimir [45] vacuum will be 4 + 6 =
10 in harmony with models of superstring theories [71].

By the equation of state pβ = ρβ RβTβ at constant pressure, density is also inversely
related to absolute temperature. Because pressure can be viewed as volumetric poten-
tial energy density of the field [32], negative values of pressure, often assumed in
inflationary models of cosmology, are expected to be nonphysical. In view of finite
value of Casimir [45] zero-point energy, it is reasonable to anticipate a finite positive
pressure of Casimir vacuum in accordance with modified van der Waals equation of
state [72]

prg = pra − prv = 1

Zc

[
Tr

ṽr − 1/3
− 9

8ṽ2r
+ Zc − 3

8

]
(43)

Since critical compressibility factor of all substances are smaller than that of van
der Waals fluid Zc,vdw = 3/8, in the limit ṽr → ∞ (43) leads to positive reduced
vacuum pressure [72]

prv = (3/8)/Zc − 1 ≥ 0 (44)
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o 1 2 3-3 -1-2

Fig. 7 Different degrees of rarefaction and compression of Casimir vacuum identified as a
compressible fluid. (−3) White hole ρWH = 0(−2, −1) Anti-matter ρAM < ρv (0) Casimir vacuum
ρ = ρv (1, 2) Matter ρMA > ρv (3) Black hole ρBH = ∞ [43, 60]

A schematic diagram of physical space as states of a compressible fluid from
infinite rarefaction (white hole WH) to infinite compression (black hole BH) corre-
sponding to pressure range 0 = pWH < pam < pv < pm < pBH = ∞ is shown in
Fig. 7.

Therefore, if one introduces the concept of space “scalar curvature” as devi-
ation of space density from the density of Casimir [45] vacuum κ ≡ ρ − ρv,
one finds that (κ > 0 , κ = 0 , κ < 0) could be respectively associated with
(Riemannian, Euclidian, Lobachevskian) space. The hydrodynamic model of
chromodynamics shock waves in compressible space (Fig. 7) is in harmony with the
perceptions of ‘t Hooft [73] concerning quantumgravity as a dissipative deterministic
dynamic system. The application of the model to derive Schrödinger (33) at photonic
scale of Casimir vacuum β = k suggests that density waves in (39) correspond to
gravitational waves that propagate at the speed of light [32, 43, 52, 60].

5 Concluding Remarks

A scale-invariant model of Boltzmann statistical mechanics was applied to derive
invariant Schrödinger equation from invariant Bernoulli equation by way of
Hamilton–Jacobi equation of classical mechanics. The nature of time-dependent and
time-independent Schrödinger equations and the corresponding quantum mechanics
wave functions in connection to stationary states of the system were described.

The invariant hydrodynamicmodel resulted in generalized shockwaves and intro-
duction of a scale-invariant definition of Mach number vβ/cβ. Hence, “supersonic”
flows at molecular-, electro-, and chromo-dynamics scales result in formation of (…,
Mach, Lorentz, Poincaré–Minkowski, …) cones separating “super-sonic” from “sub-
sonic” sides. The internal hydro-thermo-diffusive structure of generalized shock
waveswere discussed. Finally, amodel of space curvature as deviationof density from
Casimir vacuumdensity κ = ρβ−ρv was introduced leading to (κ > 0, κ = 0, κ < 0)
corresponding to (Riemannian, Euclidean, Lobachevskian) space. The results are
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in harmony with quantum gravity considered as dissipative deterministic dynamic
system [73].
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The Physics of Evolution and Breaking
Symmetry

Vyacheslav Somsikov

Abstract Paper is devoted to explaining the nature of symmetry breaking of dynam-
ical classical and quantum systems in the framework of evolutionary physics. A
brief explanation of the deterministic mechanism of irreversibility is presented. The
nature of the non-potential forces, which leads to symmetry breaking, is analyzed.
The concept of evolutionary nonlinearity and the deterministic symmetry breaking
based on the motion equation for the structural particle and modified Schrödinger
equation is discussed. The nature of the potential, which follows from evolutionary
nonlinearity and leads to violation of symmetry in classical and quantum systems,
is considered.

Keywords Symmetry · Irreversibility · Evolution · Principle of least action ·
Entropy · Quantum systems · Mechanics · Dynamics

1 Introduction

The world is a collection of open nonequilibrium dynamic systems. Therefore, this
world is characterized by the evolutionary processes of the emergence of new struc-
tures of matter, phase transitions, the appearance and disappearance of objects of
the Universe, catastrophic phenomena on Earth, the climate change, and so on. To
understand these processes, it is necessary to have a theoretical foundation to answer
questions such as how, why and in what direction nature is developing. For this, first
of all, it is necessary to understand the essence of the physical nature of evolution
[1–5]. However, there is a big obstacle to this understanding [5]. It is a fact that
the basic laws of physics, its formalisms are reversible. Therefore, modern physics
describes the stationary world rather well, but does not always adequately describe
the irreversible processes of evolution. This is also the reason for the lack of unity
in various fields of physics, for example, mechanics, thermodynamics, statistical
physics, quantum mechanics.
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The search for an explanation of irreversibility first led to its probabilistic mech-
anism. It is based on the property of exponential instability of phase trajectories of
Hamiltonian systems and the hypothesis of the existence of random external fluc-
tuations [4]. The probabilistic mechanism of irreversibility significantly helped in
the development the kinetical and statistical methods of irreversible processes, in
understanding the nature of chaos, in explaining spontaneous symmetry breaking in
quantum systems [6].

The need to describe irreversible processes occurring in different forms of matter
with symmetry breaking forces us to develop empirical methods for their description.
Today thesemethods are based primarily on the Hamilton formalism. Although these
methods are extremely complex and diverse, their essence reduces to perturbation
theory by adding the corresponding empirical terms to the Hamiltonian [6, 7]. In
addition, In addition, empirical equations of physical kinetics and statistical physics
are actively used today to describe nonequilibrium evolutionary systems.

Although good agreementwith experimentswas obtained based on thesemethods,
they do not reveal the nature of symmetry breaking and the mechanism of irre-
versibility. Moreover, these methods encounter problems in determining the scope of
their use, in explaining the correctness of applying theHamilton reversible formalism
to solve irreversible problems in explaining cause-effect relationships in the corre-
sponding processes [6, 8]. It does not answer key questions about the evolution of the
picture of the world. For example, the following questions remain open: how does
order emerge from chaos, how does nature choose the path “from simple to complex,”
how symmetry breaking leads to evolution, where evolution is directed. This is due,
in particular, to the fact that probabilistic laws and principles are incompatible with
the fundamental laws of physics. Indeed, the solution of problems concerning with
the construction of an evolutionary picture of the world cannot but rely on the ideas
of determinism, the cognoscibility of the world, its uniqueness, and also the close-
ness of the laws of physics. However, these ideas exclude probability in their starting
positions. Therefore, the search for themechanism of irreversibilitywithin the frame-
work of the determined laws of physics did not stop even after the discovery of the
probabilistic mechanism of irreversibility [4, 5].

Only taking into account the role of the body structure in its dynamics, the deter-
ministic mechanism of irreversibility (DMI) was discovered [9]. DMI has opened
up the possibility of building a “physics of evolution”. The task of the « physics of
evolution” is to describe the key processes of evolution: the emergence, development
and destruction of systems, the definition of the principles for constructing an evolu-
tionary picture of the world “from simple to complex” based on the fundamental
laws of the physicist.

A method for constructing the physics of evolution was found as follows. First of
all, the model of a structured particle (SP) replaced the unstructured material point
model in classical mechanics, where the SP is an equilibrium system of potentially
interacting material points. Then, according to the principle of dualism of symmetry,
the energy of the system was presented as the sum of the energy of motion and
internal energy. After that, from this form of energy, the equation of motion of the
systemwas obtained. This equation is irreversible. Irreversibility is determined by the
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nonlinear terms of this equation, which are proportional to the gradients of external
forces. These terms provide the linking of the elements of the symmetry groups of
micro andmacro variables, which determine the change in the internal energy and the
system’s motion energy respectively. Thanks to these conditions, the motion energy
is converted into internal energy when the total energy is conserved. Thus, due to
the interaction of dynamic symmetry groups arising in the presence of gradients of
external forces, irreversibility appears. In turn, DMI has opened the possibility of
building a “physics of evolution”.

In this paper, based on the deterministic mechanism of irreversibility in clas-
sical mechanics, an alternative explanation of the nature of symmetry breaking for
quantum mechanics is proposed. For this, the properties of the equation of motion
for a system of material points are first explained. Then the DMI mechanism and
the concept of evolutionary nonlinearity is analyzed. It is shown how the free energy
function follows from the evolutionary nonlinearity and how symmetry breaking
in classical and quantum systems follows from this function. Then, the universal
nature of symmetry breaking for nonequilibrium dynamical systems of classical and
quantum mechanics is discussed.

2 System’s Motion Equation

The key idea that led to the emergence of DMI was the idea of the need to take into
account the influence of body structure on its dynamics. This idea arose as a result
of studying the interaction of the simplest systems of elastically colliding disks [9,
10]. As a result of studying disks systems, the question arose of how to take into
account the role of the body structure in its dynamics. As it turned out, this should
be done based on the principle of dualism of symmetry. According to this principle,
the motion of the structured bodies is determined not only by the symmetry of space,
as in the case of an unstructured material point, but also by the internal symmetry
of the body. The second question was how to take into account that these types of
symmetry determine the motion of the system. As it turns out, this question is solved
by representing the total energy of the system as the sum of the motion energy and
internal energy. The body’s motion equation was found from this form of energy
when its model was represented in the form of systems of potentially interacting
material points [9, 10]. The generality of this representation of the body model
follows from the fact that, as a rule, all bodies with a good degree of approximation
can be represented by a set of potentially interacting material points. As a result,
the system’s motion equation was obtained in the framework of the laws of classical
mechanics without using Hamilton’s reversible formalism, since this formalism is
not applicable to the description of dissipative systems [11, 12].

Thus, the equation of motion of the system was obtained based on fundamental
laws and principles. These laws and principles include the laws of conservation of
energy, momentum, the Galileo principle, and the principle of dualism of symmetry.
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Using the principle of dualism of symmetry solved two problems. Firstly, this prin-
ciple took into account the role of system symmetry in its dynamics. Secondly, its
use made it possible to understand that symmetry breaking within the framework of
formalisms of classical mechanics is impossible. This approach to the derivation of
the system’s motion equation completely has justified himself.

The system’s motion equation and the DMI mechanism resulting from it were
explained in sufficient detail in previous works [9, 10]. Therefore, the key stages of
its construction were emphasized below, and then its main properties are described.

In accordance with the principle of dualism of symmetry, there are exists two
groups of variables that determine the total energy of the system [10]. Variables that
define internal energy are micro variables. The variables that determine the energy of
motion SP are macro variables. These micro and macro variables belonging to two
different symmetry groups are independent [12]. As it turned out, the total energy in
these variables breaks down into the internal energy of the system and its energy of
motion.

In accordance with the law of conservation of energy, the sum of the energy of
the system’s motion and internal energy is invariant along its trajectory, but each of
these types of energy is not an invariant of the system’s motion. A violation of the
symmetry of time is associated with a violation of the invariance of the system’s
motion energy.

The system’s motion equation is obtained by differentiating the energy with
respect to time, and then by summing the scalar values of the changes in the energies
of each material point. This equation has the form [12, 13]:

MN V̇N = −F0
N − μVN , (1)

where F0
N = −∑N

i=1 F
0
i ; F

0
i —is external force acting on the i-th material point;

μ = Ė int
N /(Vmax

N )2; Fi j—is the strength of interaction i and j material points; F0
i j =

F0
i − F0

j ; Ė
int
N = ∑N−1

i=1

∑N
j=i+1 ṽi j (m ˜̇vi j + F0

i j + NFi j ); Vmax
N + Ė int

N /F0
N = 0.

The first term on the right side of (1) determines the potential external forces that
act on the center of mass. These forces change the system’s velocity.

The second term is nonlinear and bisymmetric, since it depends on micro and
macro variables simultaneously. This term determines non-potential forces that
change of the system’s internal energy. The work of these forces is non-equal to
zero only when the field of external forces is non-homogeneous. This term is called
evolutionary nonlinearity [14]. It is responsible for the origin of the DMI. In the
general case, this term links two symmetry groups of micro- and macro variables
and determines the mutual transformation of the system’s motion energy and internal
energy.

Equation (1) is true for systems consisting from any number of material points.
In the approximation of a solid body, (1) becomes the reversible Newton’s motion
equation.

The canonical Lagrange and Hamilton equations do not take into account evolu-
tionary nonlinearity and therefore these equations are reversible and cannot be used
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to analyze the dissipative dynamics of a body [11, 15]. This is due to the use of
golonomic restrictions in obtaining them. However, extended Hamiltonian, which
was constructed based on (1), can be used to analyze the SP’s dissipative dynamics.
The phase trajectory can be determined in the dual phase space [10, 16].

In the general case, from (1) we will have that the body is at rest or motion at a
constant velocity if the nonlinear forces are equal to external forces.

In according with the principle Galilee, in evenly moving system it is impossible
to determine the fact of its motion, because dynamic equations do not depend from
the choice of an inertial coordinate system. In according with (1) a similar situation
arises at the system’s motion in the homogeneous field of forces, when we have:
F0
i j = 0. For clarification this statement, let us take as example a star system with

planets moving with uniform acceleration in an external gravitational field of forces.
If someone moves in the gravitational field of one of the planets, then by the nature
of these motions it is impossible to establish inside the system that system as a whole
moves with acceleration. This conclusion is consistent with the D’Alembert equation
and Einstein’s ideas [11].

Analysis of system dynamics using (1) performed in micro and macro variables.
As a result, the role of the body structure in its dynamics was taken into account.
Therefore, we will say that (1) gives a “complete description” of the dynamics of
bodies in an inhomogeneous force field.

Of course, solving (1) for a system with a large number of elements is a difficult
task. However, studying the properties of this equation makes it possible to deter-
mine the general properties of the behavior of dissipative systems and establish how
statistical and thermodynamic laws follow from the basic laws of classical mechanics
[9, 12].

3 Irreversibility of the Nonequilibrium Systems

Below we consider the processes of equilibrating nonequilibrium systems using (1).
In the approximation of local thermodynamic equilibrium with a sufficient degree
of generality, the nonequilibrium system can be specified by a set of SP’s moving in
relative to each other [8, 17]. In this case, SP is already playing the role of system
elements. The motion of each SP in an inhomogeneous field of forces, created by all
SP is determined by (1) [11]. In this case, the proof of equilibration is reduced to the
proof that the energy of the relative motions of the SP is irreversibly converted into
their internal energy. Thus, in order to prove irreversibility, it is necessary to show
that such transformations take place. To do this, we estimate the energy flows for SP
[8, 14].

Obviously, for the nonequilibrium system consisting from a set of SP, the mecha-
nism of the formation of direct and reverse energy flows is associated with the mutual
transformation of the energies of the relativemotions of the SP and their internal ener-
gies. Hence, the proof of the irreversibility of the dynamics of the nonequilibrium
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system is reduced to the proof that the influx of internal energy of the SP is greater
than the outflow.

Let us �Etr is the energy of the relative motion of the SP, which is transformed
into its internal energy.According to (1),�Etr is determined by a bilinear termwhose
value is equal to the second order of smallness. Therefore we can write:�Etr ∼ χ2,
where χ is any small parameter. If it so, then �Etr/E int � 1 and the equilibrium
violation of the SP can be neglected. Let us notice that the value �Etr has a second
order of smallness also in according with the estimations of an increment of entropy
[18].

Thus, as it follows from (1), the SP dynamics in a weak inhomogeneous field of
external forces is irreversible. Indeed, in such a field of force the changes of SP’s
internal energy is a second order smallness, and the violation of the SP equilibrium
can be neglected. However, according Galileo principle, the system’s motion energy
cannot increase due to of internal energy of the system, which is in equilibrium.
Therefore, we have the decreases of the SP’s motion energy along its trajectory. In
this case, irreversibility takes place. The internal motions of the material points that
determine the internal energy are also irreversible due to the dependence of internal
energy from the time.

If theSP’s interaction forces or their gradients are the great enough, the equilibrium
of the SP can be disturbed. Then each SP, like a nonequilibrium system, can be
represented as a set of equilibrium subsystems moving relative to each other. In this
case, for increment of the SP’s internal energy one can write:�Etr = �Etr

ins +�Eh ,
where �Etr

ins is the increment of the energy of the relative motions and �Eh is the
increment of the subsystem’s internal energies. That is, �Etr

ins < �Etr .
The energy of the equilibrium subsystems cannot be transformed into their motion

energy.Therefore,wewill consider that only energyof relativemotions of subsystems
can be transformed back into the motion energy of the SP. Let us denote this reverse
flow of the SP’s internal energy, as �Etr

ret . According to (1), the value �Etr
ret is

determined by the bilinear function of the subsystems variables, which determined
its motion energies and the internal energies. These are terms of the second order
of smallness of their micro and macro variables. But because: �Etr ∼ χ2, we will
have that�Etr

ret ∼ χ4. Thus, the reverse flow of the internal energy of the SP,�Etr
ret ,

Fig. 1 The graph of the
formula 2
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into of its motion energy during their strong interactions cannot to be more, than the
fourth order of smallness. In this case, a potential, which corresponds to the change
of the SP motion energy, can be defined by the next equation:

H = αχ2 − βχ4 (2)

Here the α, β constants can be determined using of (1).
Figure 1 shows a graph of (2). For values:|χ | ≺ χ0, where ±χ0 are the roots of

(2), the irreversibility or violation of symmetry of time takes place. For stationarity
of the non-equilibrium system it is necessary to fulfill the equality: H = 0.

If to take any complex system with a large number of hierarchical levels, then for
its stationarity this equality should hold for each hierarchical level [13]. The study of
these conditions goes beyond the laws of classical mechanics, because for this study
it is necessary to take into account Planck radiation and different quantum effects
[8].

To prove and understand the nature of system’s equilibration, we studied the
change in the internal energy of the system during its motion in a stationary external
inhomogeneous field of forces depending on the number of particles in the system.
This was done numerically based on (1) [16, 19].

It turned out that for some initial conditions and for sufficiently small systems, the
internal energy could not only increase, but also decrease. The calculations showed
that for an oscillator with N = 2 which moved in an inhomogeneous field of external
forces, depending on the initial phase of its oscillations, the internal energy can be
converted into energy of motion [13]. With an increase in the number of particles
in the system, the part of internal energy, which can be converted into the energy
of movement of the system decreases, and when N > 100, internal energy can only
increase.

When N > 103 there is no increase in the increase in internal energy [19]. Thus,
N ~ 103 determines the range of applicability of the thermodynamic description for
the system. This is in consistent with [15] where stated, that the irreversibility is
qualitative: the more particles in the system, the more irreversibly it behaves.

The calculations showed that the magnitude of fluctuations of the internal energy
of the system due to a changes in the initial conditions for given energy values and
for a given number of elements in the system obeys the law: δEtr ~ 1/

√
N [19].

This corresponds to the statistical law of fluctuations of quadratic functions [18].
Because the above statistical laws for dynamical systems are derived basing on the
deterministic (1), it can be argued that they follow from the deterministic laws of
physics. A similar conclusion was made in [20]. It follows that the fundamental laws
of physics determine the scope of statistical laws. And if it so, then probabilistic laws
can be considered as possible simplifications for analysis of the complex systems.
This view coincides with the well-known position of Leibniz and Einstein [21].

Thus, in accordance with (1) from a mathematical point of view, the DMI mecha-
nism can be explained by the fact that there is a connection for vectors from different
symmetry groups. For SP, these are the groups of symmetry SP and space symmetry.
This linking is determined by bilinear terms since these terms depend on variables
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belonging to different symmetry groups. These bilinear terms determine the conver-
sion of the body’s motion energy into its internal energy and lead to a violation of the
conservation law of the motion energy, when the sum of the internal energy and the
motion energy is preserved. Bilinear terms arise when the body moves in an external
inhomogeneous field of forces. The forces between SPs play the role of these forces
in nonequilibrium systems. Thus, the energy of the relative motion SP is transformed
into the internal energy of the chaotic motion of the elements SP. This is the essence
of the second law of thermodynamics. Equation (2) characterizes the efficiency of
converting the energy of movement of the system into internal energy.

The existence of dissipation is a necessary condition for the formation of attractors
[22]. However, dissipation is possibly only for structured bodies due to the transfor-
mation of the motion energy into their internal energy. Hence the conclusion about
the infinite divisibility of matter [10, 23]. This means that according to the laws of
classical mechanics, matter should be an infinite hierarchy of systems. That is, any
selected part of the matter is a system.

Let us accept the condition of the matter’s infinite divisibility, demand the unity
of the picture of the world and the evolutionary origin of matter. In this case, the
basic element of matter should be an open nonequilibrium dynamic system [12]. If
this is so, then the following explanation of the Heisenberg uncertainty principle can
be proposed [24, 25]. In according with (1), the trajectory of an element depends
on its structure. This means that its trajectory, determined based on the canonical
formalism of classical mechanics, has uncertainty. This uncertainty is determined
by the value: �Etr

N �t > 0. In any interaction of particles, or in any measurement
process, this uncertainty will occur. The attractiveness of this explanation is that it
reinforces the position of the principle of know ability of the world [26].

Below we consider how to explain the spontaneous symmetry breaking for
quantum systems.

4 DMI and Spontaneous Symmetry Breaking

The modern theory of quantum systems is based on the canonical Hamiltonian
formalism. The scope of this formalism is limited to holonomic systems that are
invariant with respect to the direction of time. Therefore, within the framework of
theHamiltonian formalism, only non-dissipative reversible systems can be studied [4,
15, 27, 28]. Indeed, how it is follows from (1), the dissipation is due to the nonlinear
conversion of itsmotion energy into internal energy.However, the use of the condition
of the holonomicity of connections in deriving the Lagrange and Hamilton equations
precludes the possibility of describing such a transformation. Therefore, the search
for an explanation of the mechanisms of the spontaneous symmetry breaking for
phase transitions led to aphenomenologicalmodel that describes the thermodynamics
and kinetics of superfluidity [29].

The explanation of the mechanism of spontaneous symmetry breaking was based
on the so-called order parameter. Using this parameter, the empirical type of the free
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energy function in the phase transition region was determined. Thus, the restriction
of the canonical Hamiltonian formalism related to its reversibility is circumvented
empirically, for example, taking into account the additional terms of the expansion
of the potential function in the Hamiltonian. The final solution to the problem is
based on the idea of the existence of an external infinitely small influence on the
system [6, 29, 30]. Therefore, in this case we also have a probabilistic explanation of
spontaneous symmetry breaking. Let us briefly recall the essence of this explanation
of the nature of symmetry breaking in the theory of phase transitions.

Landau and Ginsburg offered the mathematical description of spontaneous viola-
tion of symmetry in 1937 [29]. They explained this effect to infinitesimal fluctua-
tions in the values of operating parameters near an unstable line of phase transitions.
They called these parameters scalar order parameters. They themselves determined
symmetry breaking due to the expansion of free energy, representing it in the phase
transition region as follows [6, 29]:

F(ϕ) = F0 + V (a2ϕ
2/2 + a4ϕ

4/4 − hϕ), (3)

where F(ϕ) is the thermodynamic potential (Gibbs energy); ϕ is the scalar order
parameter; a2, a4, h are the empirical coefficients.

Equation (3) is similar as (2). This expression is sometimes called the “Mexican
hat”, based on its graphic form (see Fig. 1). To explain the spontaneous symmetry
breaking in superfluidity and superconductivity, Ginzburg andLandau used the effec-
tive electron wave function. It performed the role of a two-component order param-
eter: ψ(r) = |ψ(r)| exp[iφ(r)] [6]. In accordance with this, properties of the super-
conductor were specified by the wave function, which depends on the magnetic field,
B(r). It was determined by the functional of the free energy [6]:

F(ψ) =Fn0 +
∫

dr
{|B|2/(8π) + a

∣
∣ψ2

∣
∣ + b

∣
∣ψ4

∣
∣

+
∑

α

1/(2m)
∣
∣(−i�∇α − (q/c)Aα)ψ(r)2

∣
∣

}

(4)

Here Fn0 is the free energy in the normal state, B(r) = rot (A), q,m is the
effective charge and mass of superconducting electrons.

Bogolyubov proposed an explanation of the physical nature of the two-component
wave function, as well as the theory of superconductivity and superfluidity. He
showed the unity of the phenomena of superfluidity and superconductivity, which
was subsequently confirmed experimentally [6]. As it turned out later, a similar
scalar potential as formula (2) is acceptable not only for spontaneous symmetry
breaking during phase transitions. A similar type of expansion of thermodynamic
potentials or scalar functions is also used to describe the violation of superflu-
idity, superconductivity, particle formation processes, the appearance of mass, etc.
[2, 6, 27, 31].
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Let us consider how a deterministic explanation of symmetry breaking in quantum
systems can be introduced. The dynamics of quantum systems is determined by
the canonical Schrödinger equation. This equation, like Newton’s equation of
motion, is reversible. To describe the irreversible dynamics of quantum systems,
the Schrödinger equation was modified [25]:

{i� ∂

∂t
+ �

2

2M
∇2

R −U (r̃1, r̃2, . . . r̃N , R, t)

+
∑N

i=1
[ �

2

2m
∇2
r̃i − Wint(r̃i )]}ψ(r̃1, r̃2, . . . r̃N , R, t) = 0 (5)

Here R—coordinates of the center of mass of system; r̃i—these are coordinates
i—particles concerning the center of mass of system; i = 1, 2, 3 . . . N ; N—is a
number of particles; M—is a system’s mass; m—is a mass of i-th particle; U,Wint

external and internal potential energy consequently; wave function ψ represents
work of wave functions for each particle and for all system when the external field
is homogeneous.

Equation (5) was obtained in the same way as in classical mechanics, using the
principle of dualism of symmetry. In connection with this principle, the energy of a
quantum system should be represented by the sum of the motion energy and internal
energy. For this, the Hamiltonian in (5), in accordance with the complete description
method, was written in micro and macro variables, as the sum of the Hamiltonians
for the internal dynamics of the elements of the system and for the dynamics of the
system as a whole. In this case, irreversibility in quantum systems will be explained
by evolutionary nonlinearity.

It is important that in the complete description of the extended Schrödinger equa-
tion there is no singular bifurcation point for (2), since this point is a region of the
space of micro variables. In this point, the motions of the body’s elements affect on
the system’s motion. From this, it is clear that with a macroscopic description of the
system’s motion in the bifurcation point, which was used in the general Schrödinger
equation, we lose the determinism of the description [9, 13]. Thus, spontaneous
symmetry breaking can be explained due to the linking of micro- and macro vari-
ables through the terms of evolutionary nonlinearity and due to instability of the
system’s motion at the bifurcation point, where the motions of the body’s elements
determine the system’s motion. This allows us to conclude that, despite the differ-
ence in the processes of symmetry breaking in classical and quantum mechanics,
its nature is universal, and the mechanism of spontaneous symmetry breaking in
quantum mechanics can be explained in the same way as in classical mechanics.
This conclusion is based on the condition of infinite divisibility of matter [26, 27].
Therefore, symmetry-breaking processes can be studied using the complete descrip-
tion. This description can be implemented based on the motion (1) for classical
systems or based on (5) for quantum systems [25].

In accordancewith (1), micro andmacro variables are linked due to the inhomoge-
neous field of external forces. This will be determined by the terms of evolutionary
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nonlinearity, should depend simultaneously on micro and macro variables. These
terms leads to a violation of symmetry of time, since the motion energy of the
system due to these terms is converted into internal energy of the elements.

The conclusion that the nature of irreversibility in quantum mechanics should
be similar to the nature of irreversibility in classical mechanics is confirmed by the
similarity of the form of potential (2) for classical mechanics and the potential in (3),
used to explain spontaneous symmetry breaking in quantum mechanics.

Thus, the differences between explanation of the symmetry breaking in quantum
systems and DMI for systems of classical mechanics are as follows. To explain the
spontaneous symmetry breaking in quantum systems for superconductivity, super-
fluidity, etc., the method of second quantization of systems was used. It was assumed
that the state of the system is determined by the available statistical states of its
elements. Therefore, due to the empirical shape of the transition matrix, used to
explain spontaneous symmetry breaking, it was necessary to use the hypothesis of
the existence of external arbitrarily small oscillations.

To explain the symmetry breaking in classical mechanics the method of complete
description was used. In this explanation of symmetry breaking, the deterministic
motions of system elements play the role of random external influence. Due to the
instability in the bifurcation point, the micro processes leads to macro processes.

The advantage of a complete description of quantum systems is that it basically
takes into account the role of the internal dynamics of quantum systems in their
dynamics and canhelp to understand andfind analytically the creation anddestruction
operators of the corresponding particles, for example, in the case of supersymmetres
[30].

5 Conclusions

The canonical Hamiltonian formalism is built based on Newton’s reversible
mechanics, when the conditions of holonomic restrictions and the potentiality of all
collective forces acting on the systems are met [32, 33]. Therefore, this formalism is
reversible [34]. In this case, the irreversibility problem is usually solved by adding
a small perturbing term to the Hamiltonian [17, 18]. Such an empirical solution of
the irreversibility problem does not follow from closed equations of dynamics and is
equivalent to a probabilistic explanation of symmetry breaking processes. However,
in the framework ofmechanics of structured bodies, a deterministicway of describing
these processes becomes possible.

The motion equation of a structured body is obtained by representing the body as
a system of potentially interacting material points. In according with the principle
of dualism of symmetry, the dynamics of this system is determined not only by the
symmetry of space, but also by symmetry of the system. Therefore, to determine its
dynamics, the system’s energy should be presented in the formof sumsof the system’s
motion energy and its internal energy. Such representation is realized in the spaces of
two independent groups of micro and macro variable. Micro variables determine the
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system‘s internal energy, and macro variables determine the system’s motion energy
in space. The violation of symmetry for the system is caused by the conversion of
the system’s motion energy into its internal energy, when the system moves in an
inhomogeneous field of forces. Such a transformation is defined by bilinear terms of
evolutionary nonlinearity, which connects the dynamics of the elements of the system
with its dynamics, as a whole. In according with the extended Schrödinger equation,
violation of symmetry in quantum systems will also be determined by bilinear terms
of evolutionary nonlinearity.

It turned out that evolutionary nonlinearity for systems of classical mechanics is
determined by the potential, which coincides with the potential that determines the
spontaneous symmetry breaking in quantum systems. This allows us to conclude that
the symmetry breaking mechanism is universal for classical and quantum systems.
If so then the nature of symmetry breaking in quantum and classical systems can be
studied as a result of a complete description of the dynamics of systems using micro-
and macro-descriptions of dynamics based on the principle of dualism of symmetry.

In mathematical language, this means that for deterministic irreversibility or, in
other words, for breaking deterministic symmetry, at least two symmetry subgroups
are needed. These two subgroups of symmetry form a complete symmetry group,
which determines the dynamics of the body. In this case, the invariant of motion is
the total energy, which is equal to the sum of the energies corresponding to these two
subgroups of symmetry. When a body moves in an inhomogeneous field of forces
between these subgroups of symmetry, an interaction occurs, that is, the engagement
of the elements of the symmetry from different subgroups. As a result, the motion
energy is converted into internal energy. This means a violation of symmetry or
irreversibility.
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Problems of Creating an Evolutionary
Picture of the World

Vyacheslav Somsikov and Svetlana Azarenka

Abstract The paper is devoted to study, how the physics of evolution allows devel-
oping an evolutionary picture of the world. Here we briefly examine the basic
concepts of the world’s picture and how these concepts can find development based
on the physics of evolution. For this purpose, the next questions will be analysed:
how physics of evolution leads to the conclusion about the infinite divisibility of
matter; how nature solves the problem of the static state of matter, when motion is a
way of existence of matter; how symmetry and its violation determine the evolution
of matter; what are the principles of building “from simple to complex”, etc. As
a result, we show how taking into account the structure of matter in its dynamics
leads to the possibility of describing evolutionary processes in nature. This means the
possibility of constructing a deterministic evolutionary picture of the world within
the framework of the laws of physics.

Keywords Irreversibility · Entropy · Chaos · Phase space · Physics of evolution

1 Introduction

Creating a picture of the world is the main task of science. However, many problems
arise on the way to its creation. The most important of them is the problem of
knowability of nature. This problem is most clearly manifested in the clash of ideas
of reductionism and holism.

Proponents of reductionism believe that all phenomena in nature are knowable
in principle, and there is a finite set of fundamental laws, the knowledge of which
allows you to create a picture of the world, moving from “simple to complex” [1, 2].
Proponents of holism, on the contrary, believe that the properties of the “whole” do
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not follow from the properties of its elements. In addition, there was even an opinion
that the “golden age” of science was over, and its further development is possible
only on the path of expanding knowledge without intensification. As evidence, they
use examples such as a misunderstanding of the relationship between the laws of
inert matter and living matter. In their opinion, these relations cannot be established
within the framework of the laws of physics. All this causes heated debate between
supporters of reductionism and holism [3–5].

The problem of the cognizability of nature is directly related to the problem
of the principle of causality in physics. Here the development of a picture of the
world is faced with a problem related to the fact that the causality principle is still
not even among the fundamental principles of physics. This occurs mainly because
the fundamental laws of physics are reversible, and natural processes are usually
irreversible [6]. Consequently, not only the physical picture of the world does not
correspond to the principles of causality and its unity, but also physics itself represents
a multitude of separate areas of knowledge that are weakly interconnected. These
are, for example, classical mechanics, thermodynamics, and quantummechanics. As
a result, physics explains how the world works, but does not answer questions about
how the world develops, in what direction the processes of its evolution are going,
and what determines these directions [6–8].

The problem of irreversibility has arisen since the creation of Newtonian
mechanics. In the process of solving this problem,Boltzmann et al., Scientists discov-
ered its probabilistic mechanism, according to which evolutionary processes are
random [9, 10]. If this is so, then it is not clear how to build a physical picture of the
world based on the laws of physics, how to understand the emergence of organized
structures of matter from chaos. It also means that on the way to the development of
knowledge, insurmountable epistemological problems arise [11–13]. Therefore, the
search for a solution to the problem of irreversibility within the framework of the
laws of physics was continued.

Finally, a deterministic irreversibility mechanism (DMI) has been proposed.
DMI has opened up the possibility of building physics of evolution. The task of
“physics of evolution” is to study the processes of evolution of matter and to
develop methods for constructing its evolutionary models within the framework of
the fundamental laws of physics [14].

In a previous paper, we examined the question of how DMI strengthens the posi-
tions of determinism in physics and the cognoscibility of a picture of the world [11].
The purpose of this paper is to show how the physics of evolution opens up oppor-
tunities for constructing a deterministic evolutionary picture of the world, how it
affects the development of philosophical concepts that underlie the modern picture
of the world.
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2 Basic Concepts of a Picture of the World and Physics
of Evolution

Here we briefly examine the fundamental concepts of the picture of the world that are
related to the physics of evolution, and how these concepts can find their development
on the basis of physics of evolution.

The key concepts on which the picture of the world is based arose in antiquity.
One of the first fundamental concepts was related to the question of what everything
consists of. Many ancient philosophers, as a result of observations of nature, came to
the conclusion that matter consists of elementary particles or indivisible bricks. The
father of this idea can be considered Democritus [13, 15]. He claimed that matter
is composed of atoms. Subsequently, modern ideas appeared for discretizing the
structure of matter, its fractality and self-similarity [16]. Today we are witnessing
the discovery of an increasing number of components of matter, and so far this limit
has not been discovered. In this regard, we will show here how the physics of
evolution leads to the conclusion about the infinite divisibility of matter.

On the one hand, theUniverse, theMilkyWay, stars, aswe see, are static.However,
on the other hand, according to Heraclitus, we have, that “everything flows, every-
thing changes” [15]. That is, the world is evolving. In connection with it there was
an opinion that motion is a way of existence of matter. It was strengthened in the
works of Galilee, Newton, and Leibniz. They found the fundamental laws of motion.
They introduced modern concepts of energy, acceleration, angular momentum, etc.,
characterizing matter in its dynamics [17]. Here we show how nature solves the
problem of the static nature of matter, when motion is a way of existence of
matter.

The rate of change in the position of matter in space is determined by the concept
of time. Therefore, it is impossible to describe matter without using space-time
concepts. The relationship between the concepts of matter, dynamics, space and time
is established using the concept of symmetry. The concept of symmetry appeared
in connection with Plato [18]. According to Plato, symmetry is the cornerstone of
the picture of the world. Thanks to the dynamics, matter takes such diverse forms
that are determined by the interaction of the elements of matter in accordance with
the symmetry of space and time. The problem of conformity of form and content,
provided that both form and content are in constant evolution, stands in the
way of the further development of the picture of the world.

However, the violation of symmetry is also characteristic of nature, as well as
its conservation. Apparently, the second law of thermodynamics is the first law in
the history of physics, which is associated with the violation of symmetry. In recent
decades, it has been discovered that in quantum physics spontaneous symmetry
breaking also occurs. Until recently, these symmetry violations, one way or another,
were explained in a probabilistic manner. But this contradicts the principle of
causality. Moreover, in quantum mechanics there is the Heisenberg uncertainty prin-
ciple, which actually means the existence of a limit to the cogniscability of a picture
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of the world [19]. These problems lead to questions: how symmetry, its violation,
determine the evolution of matter, what is the nature of symmetry breaking.

Wefind the first fundamental laws of logical thinking, fundamental concepts about
the world around us, such as matter, force, motion, space and time, at Aristotle [15].
He believed that the world is one, and the laws of its development are universal.
But how to connect the unity of the world and the universality of the laws of its
development with the existence of many weakly coordinated sections of physics?
Here we discuss, how this problem is related to the physics of evolution by the
example of the relationship of the laws of classical mechanics, thermodynamics
and quantum mechanics.

A millennium after Aristotle, the laws of classical mechanics were discovered.
These laws determine the motion of material objects. They also define concepts
such as acceleration and energy [15]. According to Galileo, Descartes, Newton, not
the velocity of the body is proportional to the force, as Aristotle claimed, but to its
acceleration [17, 20]. However, experience shows that the acceleration of the body
becomes equal to zero when the force acting on it, becomes equal to the force of
friction. This corresponds to the irreversible mechanics of Aristotle. Newton, on the
contrary, sought to eliminate friction in order to reveal the essence of the law of
motion, regardless of the various properties of bodies and the environment. Thanks
to a model of a body in the form of an unstructured particle, he discovered that
acceleration, not speed, is proportional to force. A natural question arises, how to
combine the mechanics of Aristotle and Newton?

An important problem in the development of knowledge concerns the principles of
constructing a scientific picture of theworld and the limitations of cognizability of the
world. Two points of view can be distinguished here. From the point of view of those
who adhere to the positions of cognizability of the picture of the world, there must
be principles that allow movement in the direction of construction of knowledge
from “simple to complex”. In this case, the whole picture of the world should be
based on fundamental laws that give rise to the whole variety of known empirical
laws. Reductionists support this view [1, 2]. In particular, Weinberg believes that the
“theory of everything” should be based on laws that make it possible to understand
the whole picture of the world. Holists hold the opposite point of view [3, 4]. They
argue that the whole contains “new”, not arising from the laws of its elements. They
say: “The whole is not the sum of its parts” [20]. This raises important questions: is
it possible to build a holistic picture of the world within the framework of the
laws of physics, are there physical principles for building a picture of the world
“from simple to complex”.

That is, we approach the problem of the existence of principles for constructing
systems based on their elements in the framework of the fundamental laws of physics.

Below we will try to show how the problems that were shown in this chapter are
related to the physics of evolution.
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3 DMI and Physics of Evolution

It is hardly possible to understand how the physics of evolution expands the possi-
bilities of developing a picture of the world, if we do not briefly explain the nature
of DMI. It is most convenient to begin an explanation of the nature of DMI based on
the concepts of symmetry. Indeed, without breaking the symmetry of time that leads
to DMI, evolution itself is impossible [18, 21].

1. Principle of dualism of symmetry. As already noted, symmetry is a key
concept for a picture of the world [18]. Indeed, the principle of least action, which
determines the harmony of theworld, follows from the types of symmetries of bodies.
This is because the different types of symmetry of time and space correspond to the
invariants of dynamics, in particular energy, momentum. These invariants determine
the properties and laws of the dynamics of bodies. For example, the dynamics of a
structurelessmaterial point (MP) as the simplest model of a body that Newton used
to reveal the essence of the laws of dynamics is determined only by the symmetries
of space and time. MP energy is determined in accordance with their symmetries.
The motion equation of MP follows from its energy [14].

Boltzmann showed that the body model, within the framework of the laws of
classical mechanics, is well approximated by a system of potentially interacting
MPs. And knowing the energy of the MP system, in principle, you can find the
system’s motion equation.

Usually, the system’s motion equation is determined using the canonical
formalisms of classical mechanics. Canonical formalisms were built on the assump-
tion that all collective forces are potential, since the forces between elements of the
system are potential. This assumption is confirmed by the fact that the total forces
of moving systems are potential. But it turned out that the dynamics of systems
determined by the canonical formalisms of classical mechanics is reversible, as is
the motion of a single MP [22]. Any search for a solution to the problem of irre-
versibility within the framework of canonical formalisms led to a probabilistic mech-
anism of irreversibility. However, this mechanism is excluded the existence of causal
relationships. Therefore, the search for a deterministic solution of the problem of
irreversibility was continued.

A study of the simplest systems of elastically colliding disks led to the conclusion
that irreversibility is possible only for systems interactingwith each other and that the
fundamental laws of physics did not prohibit irreversibility. This led to the assumption
that the reversibility of Hamiltonian systems, which follows from the formalisms of
classical mechanics, is associated with the restrictions used in their construction.
This assumption was confirmed. It became clear why all attempts to find DMN in
the framework of formalisms of classical mechanics were unsuccessful [21, 23].

Thus, the first key idea providing a breakthrough in solving the problem
of irreversibility was the idea of the need to take into account the role of the
body structure in its dynamics. The essence of this idea is easy to understand by
the example of body motion on a surface with friction. Aristotle was guided by this
example. Boltzmann also tried to find the mechanism of irreversibility. He relied on
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the statistical methods he developed. However, these methods are incompatible with
the deterministic laws of classical mechanics.

Systems, unlike MP, also have symmetry. Then the equation of motion of the
system should also depend on their symmetry. This means the need to take into
account the symmetry of bodies in their dynamics. The fact that the dynamics of
bodies is determined by the symmetries of the body and the symmetries of
the surrounding space was the second idea necessary to solve the problem of
irreversibility. It was called the principle of dualism of symmetry (PDS). The
essence of PDS is that the state of the body, the nature of its interaction with external
objects, its dynamics and evolution are determined by both the symmetries of the
external world and the symmetries of the body. Based on the PDS and the dual
representation of energy, as a sum of internal energy and of the motion energy,
the body’s motion equation was obtained. This equation is irreversible, and DMI
follows from this equation. Thus, it turns out that the property of the irreversibility
of their system arose from the reversible properties of the dynamics of elements in
a deterministic way. The question arises: how can the irreversibility of the MP’s
system motion arise when the motion of each MP is reversible?

It was shown that irreversibility is connected with the fact that the motion energy,
which determines the trajectory of the system in space, is transformed into the internal
energy [21]. The system’s motion energy we will call the energy of “order”. We will
call the internal energy of an equilibrium body the energy of “chaos”. That is, the
system’s motion energy turns into “chaos” energy in an inhomogeneous space, but
the energy of “chaos” cannot be converted into energy of the “order”. This is a process
of breaking the symmetry of time, since the invariance of the body’s motion energy
is violated. But why this process is irreversible? The answer on this question is
hidden in the nature of the forces, which transform the system’s motion energy
into internal energy.

The dissipative nature of the forces that transform the energy of motion into
internal energy follow from the MP’s system motion equation. For each MP, forces
are determined through the efficiency of the transformation of potential energy into
its kinetic energy. The fact that these forces are potential ensures the reversibility
of this energy conversion. For a structured body, forces are determined through the
efficiency of the transformation of external energy. In this case, the external energy
is transformed into both the motion energy and internal energy. Consequently, in the
case of a structural body, forces are divided into two classes: forces that determine
the change in the energy of motion of the body, and forces that determine the change
in internal energy. The forces performing the work on moving the system are equal
to the sum of the external forces acting on the elements of the system. They are
potential. This corresponds to classical mechanics [22]. It should be emphasized that
here the internal energy is associated with dynamic parameters, and not with the
thermodynamic, as temperature and pressure of the body at rest

The forces that change the internal energy of a system are made up of two parts.
One part is the potential forces of interaction of the elements of the system. Another
part of the forces performing work on changing internal energy is proportional to the
gradients of external forces. Non-potential friction forces arise as a gradient of
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potential external forces! This is the mechanism of the emergence of non-potential
friction forces from potential forces [23]. The difference in the collective forces
that determine the system’s motion and the change in internal energy is related to
the difference between internal energy and the motion energy. Internal energy also
exists if the system is at rest, due to the continuous motions of the elements relative
to its center of mass. The system’s motion energy exists only when it moves in space.
This energy does not depend on the internal motion of the system’s elements. The
internal energy of an equilibrium system is the energy of “pure chaos”. The word
“pure” means that when a system is divided into subsystems, these subsystems are
in equilibrium and do not have the energy of relative motions.

Without taking into account the role of body structures in their dynamics, irre-
versibility cannot be explained. But without dissipation, attractors and structures do
not arise [16]. And if the world evolved “from simple to complex”, then this
means that the primary element of matter had to have a structure. The assump-
tion of the need to take into account the structural nature of bodies already at the first
stages of describing open systems also follows from statistical considerations [24].

The development of nonlinear dynamics has shown that the appearance of various
forms of matter or attractors is possible only in the presence of dissipation. The dissi-
pation occurs only in the interaction of systems. Therefore, to describe the evolu-
tionary processes, it is necessary to take into account the openness of bodies [12,
16]. If we also take into account the infinity of divisibility of matter and accept its
evolutionary origin, we conclude that the structureless elements of matter cannot
arise and exist. This inevitably leads to the conclusion that the main element of
matter should be an open nonequilibrium dynamic system (ONDS), and the
matter itself is a hierarchy of ONDS [23].

The dynamics of the ONDS is described using the extended formalism of clas-
sical mechanics, which takes into account the role of the structure of systems
in their dynamics. Such a formalism is obtained in the same way as canonical
formalisms from the D’Alembert equation, but instead of the Newton’s motion
equation, equations of motion for systems of MP is used [14, 25].

The most important concept that derives directly from PDS is D-entropy. D-
entropy determines how internal energy changes due to change of the motion energy.
Unlike the thermodynamic concept of entropy, D-entropy is applicable for both large
and small systems. D-entropy can be used to analyze the processes of occurrence,
evolution, destruction of new systems. D-entropy reveals the epistemological signif-
icance of existing types of entropy, since it directly connects the dynamics and states
of the system, implements the relationship of “order” and “chaos”.

For a deeper understanding of the role of the body’s structure in the mechanism of
violation of time symmetry, the oscillatormotion in an inhomogeneous force field has
been numerically studied [26]. As a result, a previously unknown effect of passage
of an oscillator through a potential barrier was discovered. The effect occurs when
its motion energy is less than the energy of the barrier, but when the sum of internal
energy and the motion energy is greater than the energy of the barrier. It turned out
that such a passage of an oscillator through a potential barrier is determined by its
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phase. The nature of this effect cannot be established without taking into account the
PDS [14, 27].

2. Physics of evolution in the world picture. Below we discuss the contribution
that the “physics of evolution” can make to the evolutionary picture of the world.

The simplest ONDS can be represented by a set of equilibrium subsystems, which
we called SP, and SP, in turn, can be represented by a set of potentially interacting
MPs. Thus, ONDS is the third step in bringing the body model closer to reality.
SP mechanics arise from MP mechanics, and mechanics of ONDS arise from SP
mechanics. This means that there are principles for constructing a model of
matter “from simple to complex.” Here are some of these principles [23].

1. The principle of the relationship of the laws of systems and their elements.
ONDS mechanics are built based on fundamental laws that apply to their elements.
These are the laws of conservation of energy, momentum. The energy of structureless
particles has only the motion energy. However, the ONDS energy consists from the
motion energy and internal energy. Changes in these energies occur so that their sum
is conserved. The nature of the change in the internal energy of the ONDS obeys the
second law of thermodynamics. That is, from the fundamental laws of element
dynamics follows the empirical law of the dynamics of ONDS.

The presence of a nonlinear interrelation between the laws of adjacent hierarchical
levels for MP, SP, ONDS, determined by the “evolutionary nonlinearity” of the SP
motion equation [23], suggests that such a relationship should exist for all hierarchical
levels ofmatter. It means opportunity of constructing the entire hierarchical picture of
matter for all its hierarchical levels, if the laws of behavior of one of the hierarchical
levels of matter are known. Thus, the reductionism is valid for any hierarchical level
of matter.

2. The parameters of the upper hierarchical levels of ONDS are determined based
on the parameters of the lower levels. The parameters of the upper hierarchical level
are constructed based on the parameters of the lower hierarchical level. For example,
parameters characterizing the dynamics of MP systems are based on parameters that
determine the dynamics of MP. MP parameters are coordinates, velocity, mass. For
ONDS, there are also these parameters, but for ONDS, the mass is the sum of theMP
masses. TheONDS coordinates are determined by its center ofmass. The coordinates
and speeds of the ONDS center of mass are determined through the coordinates and
velocities of the MPs included in them.

New concepts also appear for ONDS. For example, dissipative forces are deter-
mined by gradients of external potential forces. They lead to the concept ofD-entropy,
which characterizes the change in the internal energy of the ONDS. D-entropy leads
to the concept of entropy in thermodynamics. The concepts of the thermodynamics
and statistical physics are appeared from here: temperature, pressure, density, distri-
bution function. The emergence of new concepts for ONDS leads to a modification
of the methods and techniques for their description. For example, instead of the
phase space, it is more convenient to use the SD-space for ONDS analysis. This
modification of the phase space is dictated by PDS.

3. The evolution of ONDS is the result of double symmetry breaking. At each
hierarchical level of ONDS, evolution is determined by breaking the symmetries of
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this level and the symmetry of the lower hierarchical level. That is, the violation of
symmetry is always associated with the interaction of the adjacent hierarchical level
of matter.

The process of symmetry breaking in quantum systems is characterized by bifur-
cation [16, 23]. The essence of bifurcation is that a change in the topology of the
system occurs at special points in the phase space. Probabilistic laws were used
to solve bifurcation problems. However, according to the mechanics of the SP, an
analytical method for solving them follows from the condition of infinite divisibility
of matter [23]. Indeed, if we take into account the infinite divisibility of matter, then
the bifurcation point will become a region of micro variables.The description of the
system at the micro level eliminates the peculiarity of the macro-description of
the dynamics of the body at the bifurcation point! The possibility of a determin-
istic micro-description of the dynamics of a system at the bifurcation point means
that the use of probabilistic models can be considered as coarsening of models of
bodies and theories. This coarsening allows us to describe processes in the absence
of knowledge about the initial data’s. The physical laws themselves determine the
region of permissible coarsening. Thismechanism of symmetry breaking at the bifur-
cation point indicates its universality, both for classical and for quantum mechanics,
since it is always associated with the interaction of the upper level with the lower
level [23].

3. The conditions of the ONDS existence. Although “motion is the way of exis-
tence of matter”, in practice we often deal with stationary objects. Let us assume that
the ONDS is stationary if the characteristic time of its existence is much longer
than the characteristic times of internal processes that ensure this existence.
From the point of view of physics, stationarity means that at all physical points of
the ONDS, the values of its parameters do not change during the characteristic times
of internal processes.

Theway inwhich stationaryONDS exists is the balance of incoming and outgoing
flows of matter, energy, entropy at all hierarchical levels [21, 28]. Bernard’s convec-
tion cell is one of the simplest stationary objects. It exists due to the flow of matter,
which transfers energy from the heated region to the cold region. This flow is created
by the temperature difference at the boundaries of the gas or liquid [7]. The larger the
temperature gradient, the smaller the structure of convective cells. With a sufficient
value of the gradient, turbulence appears.

The stationarity of the complex ONDS requires stationarity at all its hierarchical
levels. If for the existence of a Bernard’s cell it is sufficient to maintain a temperature
gradient, then for the existence of more complex ONDS, for example, a living cell,
a balance of flows of various types of matter and energy is necessary. In this case,
the flow of matter entering the ONDS is a similar of combination of ONDS lower
hierarchical levels. Therefore, all levels of ONDS can exist only through interactions
between themselves and with the outside world. It follows from PDS that these
interactions are determined by the symmetries of both body and space.

In fact, the stationarity of the ONDS cannot be absolutely. During a time long
enough, its structure will change. This time, which determines the ONDS lifetime,
can be called evolutionary. For complex systems, the lifetimewill be determined by
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the existence of various channels of energy conversion between different hierarchical
levels of ONDS. The connection between the steps of this hierarchical ladder of
the ONDS is determined by evolutionary nonlinearity, which also responsible for
symmetry breaking.

Then, the greater the gradient of external forces, the deeper the hierarchy of
systems is violated [21]. This corresponds to the established by Einstein and other
laws, according towhich, the deeper the energy levels of an atom, themore short-wave
photon it can be excited.

The existence and evolution of two adjacent hierarchical levels of matter, MP and
SP, can be described in the framework of the laws of classical mechanics. However,
the processes connecting themore distant hierarchical levels ofmatter aremuchmore
complicated. Since the number of hierarchical levels of matter is infinite, a complete
descriptionof evolution is a task of enormous complexity.Nevertheless, the existence
of deterministic interrelations of laws for the two adjacent hierarchical levels
allows us to state that such relationships exists for all hierarchical levels of
matter.

One of important example for used of the physics of evolution is the problem of
the Universe. Indeed, the physics of evolution can be directly used to solve some
problems of astrophysics, since it allows one to calculate the energy fluxes in the
Universe during the motion of galaxies, stars, planets, in inhomogeneous fields of
gravity forces, particles flows. Today, astrophysics is based on the Newtonian motion
equation and on the Einstein equation, which is a relativistic analogue of the Newton
motion equation. In many ways, the contradictions between the results of observa-
tions and these equations compel us to introduce hypotheses about hidden matter,
about dark energy, etc. This may be because Newton’s motion equation does not
take into account the role of matter structures in their dynamics. This disadvantage
can be eliminated by using the equations of physics of evolution [27]. For example,
taking into account changes in the internal energy of a star when this star moves
in inhomogeneous gravitational fields will give corrections to the energy balance of
stars due to gravitational friction [23, 29]. According to the physics of evolution, for
the existence of a nonequilibrium Universe, it must expand. This will provide it with
the negentropy necessary to maintain nonequilibrium processes, for organize new
structures and compensate for the growth of D-entropy in the Universe.

Thus, the physics of evolution includes the mechanics of systems, the extended
formalisms of classical mechanics, the principles of the relationship of the hierar-
chical steps of the ONDS, obtained from the analysis of the properties of the SP’s
motion equations [14, 23].

4 Physics of Evolution and Philosophical Principles

The essence of the physics of evolution has been explained in previous sections. In
this section we will consider the philosophical problems associated with the physics
of evolution.
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1. Unity and the struggle of opposites. A search for DMI led to PDS. From PDS
we came to the dualism of energy, according to which the invariant of the body’s
motion is the sum of the body’s motion energy and the internal energy. Thus, each
of these energies can change, but its sum is invariant. The concept of “symmetry
of ideal chaos” is associated with the internal energy of an equilibrium system.
This symmetry corresponds to the absence of relative motion for all subsystems, the
combination of which can represent this system. It follows that the equilibrium of the
system means that the sum of the moments of the subsystems relative to the center
of mass of this system is always zero. Thus, we have “chaos”, which we associate
with the internal energy of the equilibrium system. In addition, we have an “order”,
which we associate with the body’s motion due to the body’s motion energy.

That is, the nature of DMI is due to the transition of the body’s motion energy
into the internal energy of the chaotic motion of their elements. Hence, the evolution
of matter, the formation of its structures are due to the struggle of two opposites—
“chaos” and “order”. Chaos plays the role of a “black hole”, providing the absorption
of the body’s motion energy. This is the destructive role of chaos. However, on the
other hand, the existence of “chaos” is necessary for the emergence of a new order.
That is, the process of evolution occurs according to the law of unity and struggle
of opposites “chaos” and “order”.

The measure of the transformation of “order” energy into energy of “chaos”
is characterized by D-entropy. That is, D-entropy plays the role of a measure of
increasing “chaos” [30]. The violation of the symmetry of time is also associated
with the transformation of the motion energy into internal energy. This allows us
proposing a measure of “evolutionary time”, defined as the rate of change of D-
entropy. There is no perfect “chaos” or “order” in nature and entropy does not reach
an absolute maximum. This means that the body’s motion energy and internal energy
cannot be equal to zero [31]. That is, matter cannot be in a state of absolute motion
or absolute chaos! “Chaos” and “order” can only coexist.

The “birth” of new systems is inextricably linked with the destruction of previous
systems and occurs in accordance with the laws of conservation of energy and matter
of both systems and the world around them. This is reflected in the principle of
dualism of symmetries, according to which the evolution of the world proceeds in
the unity and struggle of “chaos” and “order”.

2. The unity of the world’s picture and the universality of the fundamental
laws of physics. The unity of nature follows from the condition of openness. This is
extremely important for building a physical picture of theworld. TheUniverse cannot
be divided into independent parts that is always done for itsmathematical description.
This is a huge flaw in mathematical models. Dirac suggested that it can be eliminated
if one knows the principles of interaction of system elements and evolution [32]. This
assumption is confirmed by the existence of principles for constructing a hierarchical
structure of matter “from simple to complex”, as well as the fact that matter is an
ONDS hierarchy. Thus, these principles are consistent with evolutionism, with the
idea of unity, interconnection and interdependence of all structures of the Universe.

If the world develops in accordance with deterministic physical laws, then in
nature there is nothing that does not arise from a simpler one [12]. Thus, the physics
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of evolution confirms the integrity and uniqueness of the picture of the world, as well
as the universality of the laws of physics for the Universe.

Let us to give a historic fact. Aristotle, not knowing the concepts of energy and
acceleration, found of the body’s motion equation, based on observations. According
to his equation, the velocity of bodies is proportional to the force. This result is
fundamentally contrary to Newtonian mechanics. However, as follows from the
mechanics of SP, the Aristotle motion equation is true in the limiting case, when
the body’s velocity reaches its maximum value due to friction. The SP motion equa-
tion contains these two, at first glance, mutually exclusive limit cases. As follows
from this equation, when the role of the structure of the body in its dynamics is small,
then Newtonian mechanics is valid. However, when the work of external forces goes
only for increase in internal energy due to the friction, the Aristotle equation is valid
[14]. It follows that the lack of unity in the existing physical picture of the world
may be due to the use of restrictions in the creation of a particular theory. If these
restrictions are removed, then the contradictions may disappear, and the lost unity
will be restored.

Thus, the physics of evolution reinforce the principles of the unity of the world’s
picture and the universality of the fundamental laws of physics [14].

3. Intensive way of constructing new knowledge. The main method for the
development of physics is the study of new phenomena, objects, the identification
of new laws and their explanation in the framework of existing fundamental theo-
ries. But in the process of the development of science, the limitations that were used
in their construction began to appear. This can be seen in the example of elemen-
tary particle physics and cosmology. For example, here theories are faced with the
problems of spontaneous symmetry breaking in understanding theHeisenberg uncer-
tainty principle. In astrophysics there is a problem of dark matter. A similar difficulty
existed to explain the problem of irreversibility in the framework of theories of clas-
sical mechanics [31]. This difficulty was overcome by the expansion of formalisms
of classical mechanics as a result of taking into account the role of the structure
of bodies in their dynamics. Thanks to such accounting, DMI was found, which
opened the way to the physics of evolution. It follows that there is a possibility of the
development of physics by identifying and eliminating the limitations on which its
theories were based. This demonstrated that physical theories can go the intensive
way if existing theories are improved using more realistic models.

Newton found new laws of classical mechanics, thanks to the simplest model
of the body in the form of MP, which excludes from consideration the structure of
bodies. However, as it turned out, to describe the processes of evolution in nature,
it is necessary to take into account the structure. This has led to the possibility of
constructing evolutionary physics based on the fundamental laws of physics. In turn,
the physics of evolution has opened up the possibility of studying nature during its
evolution.

The construction of the physics of evolution has revealed the need to develop new
approach to the construction of a mathematical apparatus that allows us to describe
the universal processes of symmetry breaking in physics. The essence new approach
lies in the description of the interaction of symmetry groups arising from the motion
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of the ONDS in inhomogeneous external force fields. The interaction of symmetry
groups leads to a violation of the symmetry of time and then toDMI. These violations
are associated with “evolutionary nonlinearities” that describe the transformation of
energies between independent spaces of variables from different symmetry groups
[21, 23].

4. Nonlinear reductionism, the principle of causality and holism. Reduc-
tionism plays an important role in the development of science. Today this principle
collideswith the great difficulties. These difficulties, as a rule, indicate that the further
development of knowledge about nature along the path of “primitive reductionism”
and the extension of theory based on its existing foundation, is no longer a suffi-
ciently effective way of understanding the world, as it was in the initial stages of the
development of science.

Let us call by the “primitive reductionism” or linear reductionism such reduc-
tionism for which the sum of information about the elements gives complete infor-
mation about the entire system. This reductionism does not take into account a qual-
itative leap in information due to the transition of quantity into quality. However,
the processes of evolution in nature are impossible without these leaps. Therefore,
in “primitive reductionism” it is impossible to search for laws and principles that
establish a nonlinear relationship between the properties and laws that characterize
the upper hierarchical level of matter, with the properties and laws of the elements
of the lower level.

DMI, which establishes the causality principle in the physics of evolution, is non-
linear. This suggests a nonlinear relationship of qualitatively new laws of system
behavior based on the laws of the dynamics of their elements. Therefore, this also
speaks of the nonlinearity of reductionism and the principle of causality.

In connection with the physics of evolution, it is necessary to use as we call
“nonlinear reductionism” to study the evolutionary process. “Nonlinear reduc-
tionism” may be one of the promising ways to develop a picture of the world. This
path is justified by the existence of general principles for the synthesis of knowledge
about the laws of ONDS behavior, based on knowledge of physical laws that deter-
mine the dynamic and evolutionary characteristics of their elements. Using these
principles, you can build a picture of the world, climbing the hierarchical ladder of
matter.

A pre-existing explanation of irreversibility is based on probabilistic principles.
However, it is one thing to use the concept of randomness for a statistical description
of systems, and another when it is a principle that determines the evolution of the
world. If the concept of randomness belonged to the fundamental principles of nature,
this would mean the absence of determinism [32]. And this, in turn, would mean the
absence of “nonlinear reductionism”, according to which there is the possibility
of knowledge developments from “simple to complex” due to the universality and
self-consistency of the physics laws.

The absence of “nonlinear reductionism” will mean the triumph of holism, an
alternative to the principle of reductionism, which has deep roots in ancient Eastern
philosophy. A brief definition of holism: “the whole is greater than the sum of its
parts” [20]. For example, according to holism, life has properties that do not follow
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from the properties of inanimate matter. These are the properties of reproduction,
homeostasis, regeneration, etc. However, if the properties of the whole are not related
to the properties of its parts, this means the unknowability of nature. Consequently,
the question of the validity of reductionism is a question of the cognoscibility of the
world and the possibility of constructing its closed, self-consistent picture. Thus, the
physics of evolution has expanded the position of the principle of cognitive ability
of nature due to the “nonlinear reductionism”, since it demonstrates the possibility
of constructing a hierarchical structure of matter based on the fundamental laws of
physics.

Reductionism is impossible without the principle of causality. DMI, which under-
lies the physics of evolution, establishes the principle of causality in evolution.
Indeed, DMI made it possible to connect evolution with the fundamental laws of
physics, taking into account the influence of the structure of bodies on their dynamics.

According to principles of the physics of evolution, there is a causal relationship
between the laws of different hierarchical steps of matter because the laws of the
dynamics of elements determine qualitatively new laws of evolution of their systems.
For example, the second law of thermodynamics, reflecting the irreversibility of
processes in the system, follows from the reversible laws of the dynamics of the
elements of system. This led to the possibility of a deterministic description of
evolutionary processes [16, 30].

Without taking into account evolution, determined by the processes of organi-
zation, development and destruction of natural systems, the evolution picture of the
world not only cannot be complete, it cannot be constructed in principle. The fact that
the physics of evolution satisfies the causality principle opens the way to building an
evolutionary picture of the world.

Thus, in the frame of the “nonlinear reductionism” it became possible to unite
different fields of science in accordance with the principles of the unity of the picture
of the world and the universality of the laws of nature.

5. Transition of quantity into quality. DMI was found due to the possibility of
establishing the physical properties of systems based on knowledge of the properties
of their elements. For example, if we build ONDS from the MP set, then it will
have the irreversibility property, while the MP motion is reversible. Therefore very
existence of DMI in the framework of the laws of physics indicates the deterministic
way transition of quantity to quality.

DMI follows from the ONDS motion equation. According to this equation, DMI
is associated with the conversion of motion energy into internal energy [14]. This
transition is characterized by D-entropy. An analysis of D-entropy for systems with
different number of elements moving in an inhomogeneous space showed that key
statistical laws, for example, the law of fluctuations of quadratic functions [21],
follow from the fundamental laws of physics.

Using methods of numerical calculations of the dynamics of systems in an inho-
mogeneous force field, it was found that for the number of elements in the system N
> 100, the D-entropy can only be positive. This number characterizes the transition
of the system to a new quality, in which the laws of statistics are applied. When N
> 1000, the behavior of D-entropy ceases to depend on an increase in the number of
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elements. This number determines the area of validity of thermodynamics. That is,
the fundamental laws of physics determine the scope of the empirical laws [11]. For
example, take the Boltzmann equation [28]. Its importance for physics is difficult to
overestimate. But this is an empirical equation, and therefore it has a number of limi-
tations and even contradictions. For example, this equation contradicts the Poincare
reversibility theorem, although formally, like the Poincare theorem, it is constructed
based on theHamiltonian formalism. These shortcomings are eliminated if the Boltz-
mann equation is directly derived from the extended Liouville equation [25]. Even
when solving the problem of N-bodies, it is impossible to do without taking into
account the fact that the energy of ONDS always consists of internal energy and the
motion energy of its structures.

6. The unity of the micro and the macro world. The basic laws of physics,
regardless of their field of application, must be closed, self-agreements and satisfy
the causality principle if the world has evolved from simple to complex. This is true
for objects of classical mechanics. However, in quantum mechanics, these condi-
tions are violated due to the Heisenberg uncertainty principle. According to this
principle, it is impossible to simultaneously determine the position and momentum
of microparticles [19, 33]. This violates the causality principle in the micro world
and therefore, excludes the possibility of constructing an evolutionary picture of the
world. However, based on the conditions of the infinite divisibility of matter and the
fulfillment of PDS, a deterministic explanation of the uncertainty principle can be
proposed. If matter is divisible infinitely, it should be a combination of ONDS and
possess internal energy. In this case, the principles of the formation macrosystems
from microsystems are valid.

Using the canonical Schrödinger equation to describe their dynamics will lead
to the uncertainty of their trajectory. Indeed, the canonical Schrödinger equation is
obtained from the Hamilton formalism of classical mechanics, which does not take
into account the role of the structure of the system in its dynamics.

This uncertainty is similar to the trajectory uncertainty that will arise when
describing the dynamics of a system using the Newton equation since this equation
does not take into account the influence of the body structure on its dynamics. Thus,
the uncertainty in the description of dynamics based on the canonical Schrödinger
equation can also be explained by the fact that it does not take into account the
influence of the structure of quantum particles on their dynamics. As in classical
mechanics, this uncertainty will be determined by changes in internal energy.

It is known that in quantum mechanics the internal energy of a system cannot be
equal to zero. Therefore, as in classical mechanics, this will give uncertainty in the
calculations of the volume of the phase space of interacting quantum systems, which
is comparablewith the value of the Planck constant. To eliminate this uncertainty, one
needs to use the extended Schrödinger equation. This equation takes into account the
role of changes in internal energy in the dynamics of quantum particles during their
interaction [34]. Therefore, the Heisenberg uncertainty principle can be associated
with existing methods for describing quantum systems that do not take into account
the role of their structures in dynamics, but not because it is dictated by the nature of
the microworld. This conclusion is confirmed by the above calculation results of the
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passage of a classical oscillator through a potential barrier. Only taking into account
the role of internal energy in the dynamics of the system, we take into account this
effect [26]. If this dependence is not taken into account, we will come to the problem
of Aristotelian dichotomy between potentiality and relevance, which Heisenberg has
deeply studied and which is still controversial [19, 35].

If so, the problem of substantiating the possibility of constructing physics of
evolution, associated with the principle of uncertainty in quantum mechanics, is
removed. This testifies in favor of the unity of the laws of physics and in favor of the
existence of a “theory of everything”.

5 Conclusion

The physics of evolution is based on the mechanics of structural particles. The
mechanics of structural particles arose as a result of taking into account the influ-
ence of the structure of bodies on their dynamics. This mechanics is based on the
motion equation of structural particles arising from the laws of classical mechanics
and the principle of dualism of symmetry. From the motion equation of structural
particles, it became possible to establish how non-potential dissipative forces arise
from potential external forces. This allowed us to create the physics of evolution.
The task of evolutionary physics is to describe the evolutionary processes of the
appearance, development, and disappearance of physical systems in the framework
of the fundamental laws of physics.

According to the physics of evolution, matter is infinitely divisible and represents
an infinite hierarchy of open nonequilibrium dynamical systems. There are principles
that allow you to climb the hierarchical levels of the structure of matter, getting the
laws of the dynamics of the upper levels of matter according to the laws of the
dynamics of the lower level. As a result, you can go “from simple to complex”,
relying on the fundamental laws of physics, without involving any probabilistic laws.
This allows you to build a hierarchical picture of matter, if the laws of behavior of
only one of the hierarchical levels of matter are known.

Obviously, the number of principles that determine the relationship of hierarchical
levels will increase with the development of knowledge. New principles will dictate
new laws, such as the laws of evolution of living beings: the laws of self-reproduction,
homeostasis, the adaptation of the body and its elements to external conditions. For
example, if we stand on the position of Marx, according to which consciousness is a
property of matter, which reflects itself, and not a separate, independent entity, then
in principle we can develop the physics of consciousness. Thus, in the process of
developing knowledge, new laws of behavior of higher hierarchical levels of matter
will becomeknown.However, since new laws are built on the basis of thewell-known,
none of these new laws should contradict the well-known ones, which corresponds
to the principle of “common foundations”.

The physics of evolution reveals the essence of the law of unity and struggle of
opposites, as is seen in the example of dualism “chaos” and “order”. Chaos and
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order coexist only together. The mediator of these opposites is D-entropy, which
determines the relationship of “chaos” and “order”.

The physics of evolution strengthens the positions of those philosophical concepts
that confirm the possibility of constructing an evolutionary picture of the world based
on the fundamental laws of physics. In particular, this applies to reductionism.

The very possibility of constructing evolutionary physics testifies in favor of the
existence of the causality principle within the framework of the basic laws of physics.
As Einstein said: “God does not play dice.” Indeed, according to the physics of
evolution, the future arises from the present in a deterministic way. In general, the
physics of evolution opens up the possibility of building a picture of the world within
the framework of universal evolutionism, climbing the hierarchical ladder of matter
from “simple to complex.”

In accordance with the physics of evolution, the possibility of constructing an
evolutionary picture of the world does not mean at all that someday in a very distant
future, humanity will create the final picture of the world. The fact is that the number
of hierarchical levels of matter is infinite, and the complexity of the process of cogni-
tion rapidly increases with the growth of the hierarchical level. Indeed, it is easy to
see the history of the explanation of the second law of thermodynamics, which began
about 200 years ago. However, this is only the second step in the hierarchy of matter
from MP to SP! However, any natural phenomenon will eventually become known.
That is, although the processes of studying nature are endless, but the limitations of
existing knowledge are associated with the limitations of theories and models used,
and not with the existence of the boundaries of knowledge.

Thus, taking into account the structural nature of matter and its role in dynamics
has led to the possibility of describing irreversibility, the establishment of infinite
divisibility of matter, the universality of the mechanism of symmetry breaking, and,
ultimately, the possibility of describing evolutionary processes within the frame-
work of the basic laws of physics. All this means the possibility of constructing a
deterministic evolutionary picture of the world within the framework of the laws of
physics.
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The AC Driven Frenkel-Kontorova
Model: From Shapiro Steps to Chaos

Jasmina Tekić, Andre Botha, Petar Mali, and Yuri M. Shukrinov

Abstract The appearance of devil’s staircase and chaos have been studied in the
dc+ac driven Frenkel-Kontorovamodel. In the overdamped limit, the devil’s staircase
structure arising from the complete mode-locking of an entirely nonchaotic system
was observed. Even though no chaoswas found, a hierarchical ordering of the Shapiro
stepswasmade possible through the use of a previously introduced continued fraction
formula. When the inertial term is included, unlike in the overdamped case, the
increase of mass led to the appearance of the whole series of subharmonic steps
in the staircase of the average velocity as a function of average driving force in
any commensurate structure. At certain values of parameters, the subharmonic steps
became separated by chaotic windows while the whole structure retained scaling
similar to the original staircase.
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1 Introduction

One of the most interesting properties of nonlinear dynamical systems with compet-
ing time scales is their ability to exhibit frequency locking phenomena. One such
phenomenon, that occurs in nonlinear systems under some external radiation or force
are Shapiro steps, which appear as a result of dynamical mode-locking of frequen-
cies. Due to significance for various technological applications, for years, they have
been the subject of intensive theoretical and experimental studies in charge-density
wave systems [1–4], vortex matter [5–7], irradiated Josephson junctions [8–10], and,
more recently, even in superconducting nanowires [11, 12]. In the search for an opti-
mum way to control the dynamical mode-locking, one should keep in mind that
there is one usually unwanted but often present phenomenon in nonlinear dynamical
systems, which is highly sensitive to the initial condition, and which can affect the
stability of locked states, this phenomenon is the chaos. Therefore, studies of chaotic
behavior are necessary in order to get a complete microscopic picture of frequency
locking in nonlinear systems.

One of the models capable of capturing the essence of frequency locking, and
the appearance of Shapiro steps is the Frenkel-Kontorova (FK) model under external
periodic forces [13–15]. The standard FK model represents a chain of harmonically
interacting identical particles subjected to the sinusoidal substrate potential [13, 14].
When the external dc and ac forces are applied locking occurs between the frequency
of the particles motion over the periodic potential and the frequency of external ac
force [14]. On the macroscopic scale, this effect is characterized by the appearance
of a staircase of Shapiro steps in the curve for average velocity as a function of
the average external driving force v̄(F̄). The steps are called harmonic if the locking
appears at integermultiples of the ac frequency or subharmonic at noninteger rational
multiples.

It is well known that dissipative dynamical systems with competing frequencies
canbedescribedby the circlemap.Dependingon the coupling strength, the circlemap
can develop a cubic inflection point leading to the appearance of a devil’s staircase and
the transition to chaos [16, 17]. When the coupling is below some critical value, the
staircase is incomplete, i.e., there are quasiperiodic intervals between the frequency
locked plateaus (steps) of periodic behavior. As coupling increases, the frequency
locked regions start to broaden, and at some critical value, they fill up all the space.
Though the quasiperiodic intervals have zero measure, and the devil’s staircase is
said to be complete, they have nonzero fractal dimension (scaling index) which is
universal, i.e. the same D = 0.87 for all the systems (at least for those described by
the circle map with a cubic inflection point), and thus often considered as a constant
of nature [16]. The mechanism leading eventually to chaos is the interaction between
different resonances caused by the nonlinear coupling and overlapping of resonant
regions when coupling exceeds certain critical value. However, the universality of
this scenario as well as the universality of the fractal dimension have been questioned
in the past years, and numerous studies in the wide range of biological, chemical, and
physical systems have been devoted to models showing the occurrence of the entire
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nonchaotic regionswith complete phase locking [18–21]. Nonchaotic transition from
quasiperiodicity to complete locking [18] and deviation from the universality with
fractal dimension varying from 0.64 to 0.98 have been observed [20, 22].

In this paper we will explore the appearance of devil’s staircase and chaos in the
dc+ac driven Frenkel-Kontorova model. The discrete FK model is not integrable,
and in general, its dynamics can be chaotic [13] since due to its nonintegrability,
atomic motion is always accompanied by energy exchange between different modes
leading to intrinsic chaotisation of its dynamics [13]. We will analyze both over-
and underdamped models and examine how the system dynamics changes with the
changing of parameters and transferring from one limit to another.

The paper is organized as follows. The model is introduced in Sect. 2, and simula-
tion results are presented in Sects. 3 and 4. The devil’s staircase structure is revealed
in Sect. 3, while the chaos was examined in Sect. 4. Finally, Sect. 5 concludes the
paper.

2 Model

We consider the dynamics of the standard damped FK model, which consists of
a series of coupled harmonic oscillators ul of mass m, subjected to the periodic
substrate potential V (u):

V (u) = K

(2π)2
[1 − cos(2πu)], (1)

where K is the pinning strength. This potential belongs to the family of nonlinear
periodic deformable potentials, introduced by Remoissent and Peyrard [23] as a way
to model many specific physical situations without employing perturbation methods.
By changing the shape parameter r , the potential can be tuned in a very fine way,
from the simple sinusoidal one for r = 0 to a deformable one for 0 < |r | < 1.

The system is driven by dc and ac forces,

F(t) = Fdc + Fac cos(2πν0t), (2)

where Fac and ν0 are amplitude and frequency of the ac force respectively.
If the system is overdamped, its dynamics is described by the following system

of equations of motion:

u̇l = ul+1 + ul−1 − 2ul − V ′(ul) + F(t). (3)

where l = −N/2, ..., N/2.
In the underdamped case we will consider the following set of equations:



946 J. Tekić et al.

u̇l = υl

mυ̇l = ul+1 + ul−1 − 2ul − K

2π
sin(2πul) − υl + F(t),

(4)

where l = 1, ..., N labels the particles, and the term, which comes from the substrate
potential is given for the case r = 0. The damping is fixed by two parameters m and
K , and for some constant force F , the system is overdamped for [24, 25]:

0 < m ≤ 1

4(2 + K )
. (5)

When the system is driven by a periodic force, two frequency scales appear in
the system: the frequency ν0 of the external periodic (ac) force and the characteristic
frequency of the particle motion over the periodic substrate potential driven by the
average force F̄ = Fdc. The competition between these two frequency scales can
result in the appearance of dynamical mode-locking. The solution of the system (4)
is called resonant if the time average mean velocity v̄ satisfies the relation:

v̄ :=
〈
1

N

N∑
i=1

vi

〉
t

= iω + j

s
ν0, (6)

where i, j, s are integers and ω is the winding number [15], which is fixed to ratio-
nal or irrational values, characterizing commensurate or incommensurate structures,
respectively.

The above systems of equations (3) and (4) have been integrated for the com-
mensurate structures ω = 1

2 . using the fourth-order Runge-Kutta method with the
periodic boundary conditions for the system of N = 8 particles. The force has been
increased from zero with the very fine discretization 10−4 − 10−6. Unlike in the
overdamped case, the behavior of the underdamped system depends on its previous
history therefore, the initial condition at the each step of driving force was obtained
from the last step in the integration, at its previous value.

3 Devil’s Staircase in a Nonchaotic System

We will consider first the overdamped FK model described by (3). It is well known
that the standard overdamped FK model with sinusoidal substrate potential for com-
mensurate structures with integer values of ω reduces to single particle model where
no subharmonic locking exists, while for rational, noninteger ω subharmonic steps
do appear, however, their size is so small that they are hardly visible on the v̄(F̄)
characteristics [13]. By introducing some form of deformable potential such as the
one in (1) the whole series of halinteger and higher order subharmonic steps start to
emerge [14].
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Fig. 1 The average velocity v̄ as a function of the average driving force F̄ for K = 4, ν0 = 0.2,
ω = 1

2 r = 0.5, and different values of the ac amplitude Fac = 0.2 and 1.1. The numbers mark
harmonic steps

In Fig. 1, the average velocity as a function of the average driving force is presented
for two values of the ac amplitude. The number and size of Shapiro steps, which
appear on the response function are determined by the amplitude of the ac force and
the extent of deformation of the potential. In Fig. 1, beside harmonic, only halfinteger
steps are clearly visible, however, the high resolution analysis reveals a devil’s stair
case, i.e., an infinite series of higher order subharmonic steps in between them.
In Fig. 2, the high resolution views of the selected areas in Fig. 1 are presented.
In the devil’s staircase structure, the steps appear following the continued fraction
formula [9, 10], which in the case of the ac driven FK model can be written as:

v̄ =
⎛
⎝i ± 1

m ± 1
n± 1

p±...

⎞
⎠ ων0, (7)

where i,m, n, p, ... are positive integers. Harmonic steps are presented by the first-
level terms, which involve only i , while the other terms involving other integers
describe subharmonic or fractional steps. Terms involving i andm are called second-
level terms, those with i , m, and n third-level terms, etc. In Fig. 2a, b the sequences
of the third and fourth level become visible. Our calculations of fractal dimensions
shows that it varies with deformation of the potential and the ac amplitude, for
small deformation it changes around 0.87, while for higer deformation it decreases
depending on the ac amplitude.
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Fig. 2 The high-resolution views of the selected areas in Fig. 1 for Fac = 0.2 in (a) and 1.1 in (b).
The rest of parameters are the same as in Fig. 1

Appearance of devil’s staircase in the overdamped FK model might lead to the
conclusion that if it exhibits complete locking, it must also, therefore, exhibit the
chaos. In our search for chaos we applied the largest Lyapunov exponent (LE) com-
putational technique and extend our examination to a very high resolution and wider
range of parameters, the ac amplitudes in particular. Regardless of systemparameters,
no chaos was ever observed. The overdamped Frenkel-Kontorova model remained
entirely non chaotic.

The absence of chaos in the ac driven overdamped FK model can be attributed to
the dissipative character of the system and the Middleton no-passing rule
[26, 27]. According to this rule which applies on one-dimensional, strictly over-
damped systems, the order of particles must be preserved in dynamics or, in other
words, the particles cannot jump over each other while they move. In such case,
there could be no overlapping of resonances which is the main cause of the chaotic
behavior in frequency locking systems [10, 16, 17].

4 The Appearance of Chaos

When the inertial term is present (4) and the FK model is underdamped its behavior
changes completely. One of well known inertial effects is the appearance of sub-
harmonic mode-locking even in the commensurate structures with integer values
of ω [14]. However, the increase of mass in the ac+dc driven FK model may have
much more dramatic effects than just simply inducing subharmonic streps. In Fig. 3,
the response function v̄(F̄) and the corresponding Lyapunov exponents (LE) λi are
presented for two different values of mass. In order to also examine the effect of
the mass on the appearance of subharmonic steps, we consider here the standard
FK model with sinusoidal substrate potential (r = 0). As we can see in Fig. 3a since
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Fig. 3 The average velocity v̄ as a function of the average driving force F̄ and the corresponding
Lyapunov exponents λi for K = 4, r = 0, Fac = 0.2, ν0 = 0.2,ω = 1

2 , and m = 0.1 and 0.15 in
(a) and (b), respectively. On this scale of y axis only the largest Lyapunov exponent is visible.
Numbers mark the harmonic steps

Fig. 4 a The average velocity v̄ as a function of the average driving force F̄ and the corresponding
Lyapunov exponents λi for K = 4,r=0, Fac = 0.2, ν0 = 0.2,ω = 1

2 , and m = 0.2. Dashed line
corresponds to the dc driven system Fac = 0. b The high-resolution views of the selected areas in
(a)

m �= 0, subharmonic steps start to appear. As the mass increases in Fig. 3b chaotic
behavior starts to appear indicated by the positive values of the LE.

Further, we will focus on the chaotic regions between the large harmonic steps,
and examine in detail the onset on chaos on subharmonic steps. In Fig. 4, the staircase
structure of the average velocity as a function of the average driving force v̄(F̄) and
the corresponding LE for m = 0.2 are presented. Chaotic behavior appears only in
the region of subharmonic steps as we can see in Fig. 4a. As the force increases the
response of the system approaches to the that of the dc driven one. If we further



950 J. Tekić et al.

examine the chaotic region, the high resolution view in Fig. 4b reveals the staircase
of subharmonic steps separated by chaotic windows. Devil’s staircase containing
Shapiro steps separated by self-similar chaotic regions has been observed both in the
single and in the one dimensional stack of Josephson junctions [10, 28]. It was shown
that in the current-voltage characteristics of the junctions the staircase with chaotic
intervals preserves the scaling of the original staircase with the fractal dimension
close to 0.87. In our case, for the fractal dimension D in the region between the
second and third harmonic step, we obtained D = 0.8759 with an uncertainty of
±0.0166.

5 Conclusion

In this work the appearance of devil’s staircase and chaotic dynamics have been
studied in the dc+ac driven Frenkel-Kontorova model. In the overdamped limit,
though entirely non chaotic, the system exhibits the devil’s staircase arising from
the complete mode-locking, where the Shapiro steps appear following continued
fraction formula. In the underdamped limit, on the other hand, the increase of mass
leads to the appearance of the whole series of subharmonic steps in the staircase
of the average velocity as a function of average driving force in any commensurate
structure. At certain values of parameters, the subharmonic steps become separated
by chaotic windows while the whole structure retained scaling similar to the original
staircase.

This work could be important for all nonlinear physical systems with competing
frequencies from physical to chemical and byological, which exhibit devil’s staircase
and potentially could go under the transition to chaos. Shapiro steps have been
studied for years in Josephson junction systems, which posses a great potential for
technological applications from device building to voltage standards and detection
of Majorana fermions [29], and situations in which the parameters should be set to
produce desired dynamical effects without evoking chaos are a common engineering
problem [30]. In voltage standards or other applications, both quasiperiodic and
chaotic behavior must be avoided; however, surprisingly, the optimum operating
region is actually near the onset of chaos. Therefore, further comparative studies
of the resonance phenomena in the Frenkel-Kontorova model and other physical
systems, particularly experiments, would be very interesting.
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Switching Frequency Bifurcations
in an LED Boost Driver

Elias D. Tsirbas, Frangiskos V. Topalis, and Evangelos N. Skoubris

Abstract Under specific conditions LED driver circuits can be as susceptible to
chaotic bifurcations, as conventional boost converters have proven to be. A signifi-
cant relationship between the switching frequency of the boost converter’s transistor
and the circuit’s nonlinear behaviour is shown. In order to examine such transistor
switching frequency effects, an open-loop configuration is employed, since a feed-
back control system would obscure these particular nonlinearities. A theoretical
method has been devised to predict the unstable frequency regions based on certain
dependence equations. There are particular nonlinear parameters which influence
the circuit’s behaviour, such as the reverse-recovery time of the boost diode, as well
as the collective effect of the inductance and the diode’s junction capacitance. The
dependence equations prove a correlation between these inherent nonlinearities and
the switching frequency of the boost transistor. Period doublings and transitions to
chaos occur for several regions of the examined switching frequency range. The
theoretical method used for the numerical analysis is based on the periodicity of
certain voltage waveform peaks, probed at key points on the converter. The LED
boost driver displays a wealth of nonlinear phenomena and detrimental effects on its
brightness levels throughout the nonlinear frequency regions.
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1 Introduction

Plenty of practical applications that employ power conversion circuits would benefit
from an alternative circuit model, one that takes into account the nonlinear nature
of the converter’s characteristics. Conventional modelling techniques utilized so far,
can omit various nonlinear effects and as a result the circuit designer might miss
certain operating behaviours that may significantly degrade a power converter’s
performance. Such unpredictable phenomena might arise in current-mode DC-DC
boost converters [1] or in Power Factor Correction (PFC) power supplies in the form
of slow-scale instabilities, which can degrade the power factor significantly [2]. As
a consequence, the linearization approach that is still commonly used in the industry
can provide inaccurate solutions to designers, since nonlinear instabilities that can
affect a power converter’s response, cannot be easily detected without a certain type
of analysis. Such an analysis can offer an in-depth view into the behaviour of these
nonlinear circuits that may embrace specific properties such as subharmonics [3] as
well as several chaotic phenomena within numerous power converter configurations
[4].

A diode circuit in the form of a resonator made an early introduction to electronics
chaos [5]. The inductor and the diode of this simple circuit have proven to be highly
nonlinear circuit elements as shown in [6] and [7] amongst others.When the nonlinear
capacitance of the diode’s equivalent circuit is combined with a nonlinear resistor at
high frequencies chaos emerges [8].

Diode resonator circuits have also been initially used for the study of the period-
doubling phenomenon that can lead a system towards chaos. At the course of this
phenomenon, a signal waveform’s period is doubled successively as a control param-
eter of the circuit is varied, until the time-series finally become chaotic and the signal’s
period becomes undetectable. The circuit diverges from its designated operation, as
in the example of rectifiers that employ slow-response diodes [9]. Since LED driver
circuits are essentially modified DC-DC power converters [10], it is important to
explore the conditions that could cause chaos in such a system. In most published
papers though, chaos appears mainly due to controller instabilities of the feedback
loop in such power converters [11] or as a result of slope disturbances [12]. The
possibility of chaos is examined without the feedback loop, in order to prove that
chaos can be possible only due to the inherent nonlinear properties of the boost diode
and inductor combined.

2 Diode Physical Characteristics

A Light Emitting Diode (LED) forms a special type of diode. A specific forward
voltage is required in order to switch on an LED, which will then enable the nominal
operating current through it. LEDs are nonlinear devices, in the sense that they do not
possess a linear relationship between the voltage applied, and the current drawn.Once



Switching Frequency Bifurcations in an LED Boost Driver 955

the forward voltage is reached, the current through the LED will rise exponentially,
and visible radiation is emitted.

The equation shown below from the authors’ published work [13], shows that the
instantaneous current of the diode is linked with an exponential relationship to its
reverse current,

i(v) = i0
(
e

qev
kT − 1

)
(1)

which is the io term shown above. LEDs will switch on only when they are forward-
biased with a positive voltage polarity to its anode and a negative voltage to its
cathode. If this voltage polarity is reversed, current should not normally flow, as the
diode behaves as an insulator under reverse polarity.

Under normal current flow, a spontaneous recombination of electrons and holes
takes place in the PN junction of the diode’s semiconductor material, and it is through
their interaction that light is generated.Under specific circumstances however, a small
reverse current might flow. Such an event occurs when the temperature is varied and
when minority charge carriers move inside the junction.

The power electronic circuits which drive LED devices can either operate under
AC or DC voltage, although it is more common to operate LEDs under direct current.

In the case of the LED boost driver circuit, a DC-DC boost converter is utilised. A
DC input voltage supplies the converter, while energy is stored in both the inductor
and its output capacitor. A MOSFET transistor switch controls this energy transfer
by switching on & off rapidly and the LED is supplied with this combined capacitor
and inductor voltage. The combined output voltage is higher than the input voltage
and it should be near the LED’s nominal forward voltage.

For the purposes of the experiments of this paper, the MOSFET duty cycle was
set at D = 0.5 (50% pulse on-50% pulse off) which should double the input supply
voltage. For the LED boost driver, this results in an LED output voltage of 1.7× 2=
3.3 V. This is the calculated LED forward voltage in order to switch on the particular
power LEDmodule. The average LED current is also estimated in the range between
350 and 450 mA. Two main DC-DC boost converter topologies form the basis of
the experiments. One open-loop boost converter with a resistive load, and one LED
boost driver. The circuit in Fig. 1 shows the experimental configuration of the LED
boost driver. Table 1 shows the experiment settings for the resistive boost converter.

3 Theoretical Analysis

There are certain nonlinear characteristics which influence the diode’s operation.
One of them is the reverse-recovery time, the time that the diode needs to recover
the positions of its electrons and holes, when a reverse current goes through it.

The resonant frequency which relates the diode’s reverse-recovery time is shown
below.
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Fig. 1 LED boost driver experimental circuit schematic

Table 1 Resistive boost
driver circuit configuration

Resistors RL = 24 k� (Load)
R1 = 1.2 � (Q1-MOSFET
source)

Inductors L1 = 4.48 mH, L2 = 470 μH

Boost diodes D2 = type BYG20J (Cj = 25
pF, τRR = 75 ns)
D5 = type 1N4007 (Cj = 10
pF, τRR = 5 μs)

Output capacitor C = 10 μF (C1//C2)

DC Voltage source amplitude Vdc = 14 V

Frequency of pulsed voltage
source

fsw = 1 kHz to 1 MHz

fτRR = 1

τRR
(2)

A second nonlinear parameter is the diode parasitic junction capacitance. When
a reverse current flows through the diode, certain electrical charge is held at the
junction, due to this capacitance. When the input voltage changes polarity again, that
is from negative to positive, the inductor tries to maintain this reverse current.

The resonant frequency which relates the parasitic capacitance and the total
inductance of the circuit is shown below.

fLD = 1

2π
√
LC j

(3)

As a result, two inherent resonant frequencies emerge from these nonlinear char-
acteristics, fτRR and fLD . A specific method with dependence equations has been
used in order to derive the unstable switching frequency regions of this circuit.
These dependence equations have been successfully utilized in resonator circuits in
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the past [14]. This theoretical method is supported by both simulation and labora-
tory experiments, whereby a circuit model has been designed for each experiment
type. In other published works of Hamill [15] or Dobson [16], a different model
type predicts the behaviour of generic boost converters. However, the model of this
paper aims to define the physical principles behind the formation of chaos in such
boost converter circuits. When these resonant frequencies are synchronised with
the switching frequency of the transistor, chaos occurs at multiples of these reso-
nant frequencies. The dependence equations shown here, were used to support this
theoretical analysis.

fsw ≈ fLD (4)

fsw ≈ fτRR (5)

In order to examine the reverse recovery effects on the diode’s operation, a
resonator circuit was initially simulated, built and examined. This original diode
resonator includes anAC source, an inductor, a diode and a resistor load [5].When the
AC voltage changes direction, chaotic oscillations are formed at specific frequencies,
right at the load’s voltage due to the aforementioned reverse current effects.

The next experiment involves a pulsed input as the excitation source of the diode
resonator. A similar nonlinear response to the original diode circuit was observed,
which proves that chaotic and resonant oscillations under an alternating or pulsed
signal input are indeed feasible. At a later stage, the resistive boost converter was
used to test the theoretical model. Finally, the LED boost driver was utilised in order
to verify these findings in a lighting application circuit.

For the theoretical analysis, specific voltages on the LED driver were selected, and
their waveforms have been examined. This theoretical analysis follows an iteration
sample procedurewhich examines the periodicity of thewaveformpeaks. The voltage
waveforms have been sampled at the same switching frequency of the transistor, and
if the peaks repeat at the same amplitude and shape periodically, then the system is
in a stable and linear state. If the peaks show period doubling, the waveform peaks
appear twice, before the waveforms’ period starts again. If the peaks do not show a
regular periodic pattern, chaos has been reached in the system.The suggested iteration
procedure is described below. The reader may select the two voltage variables of the
system, that is the MOSFET drain voltage VL1D and the diode voltage VDL2. The
suggested peak analysis method involves an iteration algorithm for the two voltages
as shown below

VL1D,(n+1)T = f (VL1D,nT ) (6)

VDL2,(n+1)T = f (VDL2,nT ) (7)

where T is the switching period and n is the iteration number (n = 1, 2, … k), which
is an independent variable. Typical switching frequencies for most boost converters
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Fig. 2 (period-2, fsw = 315 kHz): a VDL2 voltage Fourier spectra, b XY plot, c Poincaré plot

range from tens to hundreds of kHz, but modern LED drivers have reached 2–
3 MHz. In order to observe such chaotic phenomena in the laboratory, Poincaré
sections, Fourier transform spectra and phase space XY plots have been calculated
and displayed as follows (Figs. 2 and 3).

For the initial experimentswith the resistive boost converter, a bifurcation diagram
has been generated for the entire examined frequency range. Period-doublings have
been witnessed at 315 kHz and chaos at 214 kHz. Both of these frequencies were
multiples of the resonant frequency that the theoretical model predicts for this partic-
ular diode type. These results are plotted in phase space plots, frequency spectra and
Poincare sections.

For the transistor switching frequency range from 15 kHz up to 350 kHz the
experimental voltage waveform data was analysed, and the bifurcation diagram of
Fig. 4 was generated. Linear regions are indicated with single solid lines, and the
sparse regions indicate strong nonlinear regions with wide voltage differences. It
should be stressed that in some cases (e.g. near 25 kHz), the inspected diode voltage
reached almost 80 V, with only 14 V of input voltage.
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Fig. 3 (chaos, fsw = 214 kHz): a VDL2 voltage Fourier spectra b XY plot, c Poincaré plot

Fig. 4 Bifurcation diagram of VDL2 voltage-as a function of the switching frequency
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4 Illuminance Experiments

Following the experiments with the resistive boost converter, the same switching
frequency variation procedure was performed, in order to investigate the LED boost
driver behaviour. For the LED boost driver the following circuit configuration has
been used (Table 2).

Boost diode-1N4007 (slow-response): Throughout the different switching
frequencies, periodic behaviour at 50 kHz was recorded, along with relatively high
brightness levels (230 lx) (Figs. 5 and 6). At much lower switching frequencies the
LED illuminance peaks at 460 lx. With the same diode type, a strange attractor
appears at 80 and 200 kHz (Figs. 7 and 8), in a similar fashion to the resistive boost

Table 2 LED boost driver
circuit configuration

Resistors RL = 10 � (2 W) (Load)
R1 = 1.2 � (Q1-MOSFET
source)

Inductors L1 = 4.48 mH, L2 = 470 μH

Boost diodes D2 = type BYG20J (Cj = 25
pF, τRR = 75 ns)
D5 = type 1N4007 (Cj = 10
pF, τRR = 5 μs)

Output capacitor C = 10 μF (C1//C2)

DC voltage source amplitude Vdc = 1.7 V

Frequency of pulsed voltage
source

fsw = 1 kHz to 1 MHz

Fig. 5 LED Driver period-1 response, 50 kHz, Time-domain waveform
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Fig. 6 LED Driver period-1
response, 50 kHz, Phase plot

Fig. 7 LED Driver chaotic response, 200 kHz, Time-domain waveform

converter. The illuminance levels drop considerably at these frequencies, due to the
high nonlinearity of the system.

The illuminancedata has beenprocessed inorder to plot themagainst the switching
frequency. The illuminance graph for the slow-response 1N4007 diode is shown in
Fig. 9.

High illuminance is recorded in periodic or relatively stable period-4 or period-
5 attractors. In the frequencies that the system reached chaos, extremely small
illuminance levels have been recorded.

Boost diode-BYG20J (fast-response): With the ultra-fast diode, larger areas
of linear behaviour have been observed, as this diode’s reverse recovery time is
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Fig. 8 LED Driver chaotic
response, 200 kHz

Fig. 9 Illuminance as a function of the MOSFET switching frequency (slow-response diode)

considerably faster than the 1N4007 diode. A very high illuminance was recorded in
the periodic regions reaching a maximum of 1353 lx, whilst the illuminance falls to
just 17 lx in the chaotic attractor regions (Fig. 10). The theoretical method predicts
these nonlinear resonant frequencies where chaos dominates the system.

The ultra-fast diode exhibits more illuminance peaks at higher frequencies, where
the slow diode was going through a very unstable region. Still, chaos is observed at
certain frequencies at the lower peaks of the graph, e.g. at 80, 130 or 200 kHz.
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Fig. 10 Illuminance as a function of the MOSFET switching frequency (fast-response diode)

5 High Sensitivity to Initial Conditions

There is a particular type of phenomenon which occurs often in such nonlinear
systems. Even with the BYG20J ultra-fast diode, a sensitive dependence on the
initial conditions of the system has been recorded. With only a 100 Hz of difference
between the switching frequencies of 666.6 kHz and 666.7 kHz, the LED driver
circuit moves suddenly from an unstable region of almost zero illuminance, to a
stable region of considerable illuminance (Fig. 11).

Fig. 11 Illuminance as a function of the MOSFET switching frequency
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6 Conclusions

Two nonlinear resonant frequencies of an LED driver circuit have been detected,
which influence harmfully its performance. This behaviour manifests itself only in
the power section of the boost driver, and unlike previous literature, chaos occurs
without a feedback loop. The synchronisation of these resonant frequencies with the
transistor switching frequency, steers the LED converter towards chaos. The negative
effects include a significant degradation in illuminance performance, especially at the
chaotic regions. The suggested nonlinear analysis includes a bifurcation peak-to-peak
method, in order to guide the interested researcher to avoid such unstable regions.
A number of research suggestions for further steps of this work can be considered.
In this context, the resonant response of even faster diodes can be investigated. The
interested reader can also explore the low-frequency chaos that has been found in
such fast diodes. Finally, some abrupt transitions to chaos that have been recorded
at specific frequencies, could be investigated as forms of interior crisis within this
nonlinear system.
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Halo Dynamics: From Rainbows to Black
Holes

Alberto Tufaile and Adriana Pedrosa Biscaia Tufaile

Abstract Here we applied some of concepts of dynamical systems in an experiment
involving a laser beam injected in a glass cylinder, recording the light patterns from
the scattering of light from a finite cylinder. We have studied some aspects of the
representation of dynamical systems in this experiment, along with the observation
of the existence of a sequence of numbers which characterizes this dynamics, known
as Farey sequence, due to its connection with trajectories following star polygons.
We also report the observation of arcs with folds in these light patterns. We studied
the case when the cylinder change its shape into the case of a foot of a wine glass, and
compared some solutions of the cylindrical lens with epicycloid dynamics and halo
formation, for the case of patterns formation based in the observation of relativistic
effects.

Keywords Relativity · Farey sequence · Billiards

1 Introduction

The word halo brings to mind a picture of an optical phenomenon by light interaction
with ice crystals suspended in the atmosphere, such as the circular halo, which is a
representative of a family of luminous patterns whose main effect is a large ring of
light around a point. Here,we consider a halo any distribution of a light pattern around
a point. The essence of these phenomena is somehow related to any property that is
capable of bending light from the source as the light travels towards the observer.
The presence of a halo can therefore reveal the extent of the optical properties of the
medium where light spreads. For example, luminous arcs are present in rainbows
(Fig. 1a), 22 degrees halo around the Sun (Fig. 1b) or in relativistic effects such

A. Tufaile (B) · A. P. B. Tufaile
Soft Matter Lab, Escola de Artes, Ciências E Humanidades, University of São Paulo, São Paulo
03828-000, Brazil
e-mail: tufaile@usp.br

A. P. B. Tufaile
e-mail: atufaile@usp.br

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
C. H. Skiadas et al. (eds.), 13th Chaotic Modeling and Simulation International
Conference, Springer Proceedings in Complexity,
https://doi.org/10.1007/978-3-030-70795-8_67

967

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70795-8_67&domain=pdf
mailto:tufaile@usp.br
mailto:atufaile@usp.br
https://doi.org/10.1007/978-3-030-70795-8_67


968 A. Tufaile and A. P. B. Tufaile

Fig. 1 Some halos and luminous arcs found in nature. In a rainbow observed at Newark, California,
USA, in b the 22 degrees halo around the sun formed by the interaction of the sun light and ice
crystals suspended in the atmosphere, and in c the gravitational mirage known as Einstein ring
obtained with a simulation of a gravitational lens

as Einstein rings (Fig. 1c), with the presence of partial or complete circumferences.
From these examples, we see that there are different types of systems that can present
formation of luminous halos, based on quite different physical environments. In the
previous examples, the halos are related to the presence of ice crystals or drops in
space, deflecting light, in other cases the very constitution of the structure of the
space-time creates the effect of the curvature of light path, due to the presence of
massive objects such as quasars, galaxies or black holes.

Due to the visual appeal of these phenomena in the mankind, this subject has been
observed and studied intensely by centuries with a significative impact on history of
science. The study of rainbows, glories and halos helped the development of optics
and mathematics [1], and many authors have described the aspects of the theory of
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rainbows and its applications [2], the elementary physical features of halos [3], and
advanced aspects such as considering a rainbow as diffraction catastrophe [4]. The
existence of multiple rainbows was done using glass rods with normally incident
light and for diagonal incidence [5, 6]. Interesting patterns obtained with cylindrical
symmetry in optical systems is also related with some studies of dynamical systems
and solitons [7]. In addition to rainbow halos, the existence of halos in Einstein
rings was predicted by the lensing effect by Albert Einstein over 70 years ago [8].

Stimulated by the observation of some patterns obtained in our experiments, we
have explored the use of the concepts present in dynamical systems and topology to
give a new perspective in the comprehension of halo formation. For this reason, it
is appropriate to discuss the light beams like particles travelling in an open billiard,
exploring these motions from the point of view of dynamical systems, and this is
the aim of this paper. The description of light rays in open billiards creating light
patterns forming circles was explored in our previous works [9–13], as well as the
role of the hyperbolic geometry in some light pattern formation [15]. In this paper
we explore the formation of some of these halos and arcs from the point of view of
dynamical systems based on some concepts of optics using two lenses, a cylindrical
one and another with the shape of a pseudosphere. We start studying the scattering of
rays in a cylinder and present a direct analysis of the observed pattern based on the
conceptual structure of the dynamical systems. After that, we propose a topological
transformation of the cylinder to a pseudosphere and analyze some properties of
gravitational lenses.

2 The Cylinder as an Open Billiard

Our first experiment consists of a laser beam hiting a glas rod, as it is shown in
Figs. 2a, b. The theory of rainbows here is the following. For the case of circular
section of Fig. 2c, light reaching the cylinder with angle αi = 0, creates rainbows for
specific angles, due to the formation of caustics. Usually, caustics can be defined as
the envelope of rays that describes the flow of energy, and this energy flow increases
significantly on caustics compared to the adjacent space, forming more intense light
patterns. Lenses with circular sections exhibit the formation of caustics similar to
those observed in the case of the rainbow, and the main ray of the caustics is called
Cartesian ray, which can be obtained considering the total deviation of a ray for the
general case of k-internal reflections giving by [16]:

θT RT = 180◦ k + 2θi − 2γ (k + 1), (1)

and the incident angle θ i corresponding to the minimum deviation after k internal
reflection is the Cartesian ray angle θCr :
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Fig. 2 Two views of a laser hitting a cinder in a tilting angle, with the emerging light traveling in
space. In a we can see the glass cylinder at the left side and the scattered light forming a cone on
the right side. In b, we have a frontal perspective of this experiment. Diagrams of light rays in a
cylinder: c normal incidence and d oblique incidence. Diagrams of conical projections in e and f,
and the angle of Cartesian ray in function of the tilt angle αi for a glass cylinder with refraction
index n = 1.50 in (g)
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θcr = min(θT RT ) = arccos

√
n2 − 1

k(k + 2)
. (2)

For the case of values of αi different for zero of Fig. 2d and θi = 0, the laser beam
hitting the cylinder at distance dsc of the screen will give an image at height hk from
the axis of the cylinder for the kth point is giving by:

hk = {[dsc + d(1 − k)(tgαr )[tg(90◦ − αi )]}, (3)

in which when k is even the projection of this point is at upper part of the screen,
and when k is odd the point is at the down part of the screen, considering the vertical
axis perpendicular to the cylinder axis.

However, the light rays are not always scattered about a cone whose axis is in
the cylinder axis [17], because the laser hits the cylinder obliquely, as it is shown in
the diagrams of Fig. 2e–f. For example, one ray that hits the axis of the cylinder is
associated with one cone, while another ray grazing the cylinder surface is associated
with another rays’ cone with intermediary impact parameters generate intermediary
cone of Fig. 2f. Basically, this effect of the laser hitting the cylinder obliquely causes
an optical flattening of the circular cross section of the cylinder, creating similar
effects of a cylinderwith an elliptical section, and coupling the radial and longitudinal
modes.

3 Dynamical System Optics

Consider a light ray of a laser beam traveling inside a glass plate undergoing a
sequence of internal reflections on the upper (1) and down sides (2) of this plate, like
a light ray trapped in a kaleidoscope formed by two parallel mirrors. This sequence
of reflections can be represented in the sequence of events with the reflections “1”
evolving in space at the top of this plot and reflections “2” at the bottom part of
this plate. Considering the sequence of spatial events, we can associated a temporal
evolution for the trajectory of the light ray for each reflection, so that thefirst reflection
in time is closer to the laser source, while the most distant ones occurred later. The
pattern associated with this dynamics in a cylinder is shown by the caustics of Fig. 3a,
and the external pattern of Fig. 3d for an angle of incidence θ i = 0. Changing this
angle, we obtain the patterns of Figs. 3e–f, associated with the caustics of Fig. 3b, c.

The simplest dynamical system related to the ray tracing described previously is
the one-dimensional circle map [14]:

f (θ) = θ + Ω − K/2π sin(2πθ) (mod 1), (4)

which describes amotion on a three-dimensional torus, characterized by two frequen-
ciesω1 andω2 given by� = ω2/ω1. If the non-linear termK vanishes in (4), the ratio
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Fig. 3 Observing the flattening of the section of the cylindrical lens due to the coupling between
the azimuthal and longitudinal modes. A similar behavior of flattening can be seen in the caustics
from a circle in (a) to an ellipse in (b), to another ellipse in (c). In our experiment, the equivalent
of a circle is shown in (d) (θ = 0°, α = 30°), with the elliptical sections in (e) (θ = 7°, α = 30°)
and (f) (θ = 12°, α = 30°). The dynamics of Farey mediant in (g) and luminous pattern formation
from a cylinder due the combination of different modes in (h)
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of the two frequencies ω2/ω1 = p/q is a rational number, and the trajectory is closed
after q internal reflections and the motion is periodic. Irrational numbers � lead to
quasi-periodic internal reflections which creates spiral patterns. The case when the
ratio of the two frequencies gives a rational number is related to a structure in the
space of control parameters known as Arnold tongues.

In Fig. 3g we can see how these patterns are associated with the dynamics of a
particle bouncing in a billiard for a period-2 (1, 2) and for a particle for the case
of a period-3 (1, 3), with its respective patterns. From the dynamics obtained from
(4), there is the existence of a closed orbit with the shape of a pentagram of Fig. 3h,
which is defined as the Farey mediant between the period-2 and period-3, because
this period-5 orbit is part of a family of star polygons, linked to a special array of
rational numbers in the unit interval, which is defined by the Farey mediant [14],
given the three consecutive fractions p1/q1, p2/q2, p3/q3:

q1 p2 − q2 p1 = 1,

p2
q2

= p1
q1

⊕ p3

q3
≡ p1 + p3

q1 + q3
, (5)

which is a special addition of fractions. This idea is valid for the flattened case of
the ellipsis of Fig. 4a, b. In Fig. 4c we present the Farey diagram associated with the
circle map, along with some orbits obtained in our experiment.

4 Caustics-like Patterns

In our experiment, we have observed the formation of arcs with fold. Considering
that the laser beam maintains its shape inside the glass cylinder, for some of the rays
that escape from its surface, in addition to the divergence projected in the screen there
is a fold property, forming these arcs with two branches represented in the plot of
Fig. 5a. Looking for a possible explanation for these arcs with folds in the literature
of optics, we have found an analogy with the mechanism of caustics formation and
folded wavefront of Fig. 5b caused by the involutes of Fig. 5c, d for each branch of
the caustics.

Considering the incident light as a plane wave there is a folding of this wave in
the cylinder and formation of a caustic [2] as it is shown in Fig. 5. This caustic is the
involute of the plane wave represented in Fig. 5c, d. The projection of these involutes
in the screen forms different patterns for different values of θi and αi, and for some
projections is possible to observe two arcs of Fig. 5a. According to catastrophe theory
each side of this caustic forms an arc parametrically modeled by a constant Ct in the
following function:

yn = Ct (x2/3). (6)
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Fig. 4 Elliptical billiards and Farey diagram for star polygons trajectores. The dynamics of a
circunferece is similar in an elliptical billiard, as is shown in (a) the quasiperiodic orbit close to a
period-3, and in (b) the quasiperiodic behavior close to a period-5, for a ray injected at the point
indicated by the red arrow. In c star polygons and the diagram of the Farey sequence for � = p/q
from 0 to 1, along with some light patterns obtained from our experiment

Returning to our experiment and using the same representation for the arcs with
folds discussed above, we can see some arcs with folds in the pattern of Fig. 5e,
analogous to the case of the Fig. 5a.

The existence of non-closed orbits is related to quasi-periodic dynamics of the
laser inside the billiard, such as the spirals shown in Fig. 5f, g. The rotation orientation
of these spirals shows which side of the Farey diagram are the orbits in relation to
the center of the diagram for the value of � = ½. The green pattern of Fig. 5f rotates
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Fig. 5 Light arcs and folding light due to caustic formation. In a the plot of the caustic obtained
from the folded wavefront b due to the glass cylinder. Each side of this caustic (y1 and y2) is
associated with the involutes shown in (c) and (d). The image of the multiple caustics is projected
in a screen (e) (θ = 27°, α = 33°). The pattern obtained with green laser (θ = 18°, α = 13°) rotates
counterclockwise in (f), while the pattern with red laser in (g) rotates clockwise (θ = -18°, α =
13°). The longest arc of light is always the first reflected ray R of the diagram of Fig. 2a

in clockwise direction for positive values of θ i, while using a red laser in Fig. 5g,
with a negative value of θ i, these arclets rotate in counterclockwise direction. The
patterns of Figs. 5f, g have up to 30 rays each one. The longest arc of light is always
the first reflected ray R of the diagram of Fig. 2a, while the brightest point is the laser
hitting the screen directly.

5 From Cylinder to Gravitational Lens

The next step in this work of halo dynamics is to remark the association of this
pattern formation with images like epicycloids, observed in another optical system
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related with gravitational lensing, in which there is the formation of the Einstein’s
ring, which here we compare with halos.

First, we can transform a cylinder to a foot of a wine glass with the transformation
of Fig. 6a. The realization of this optical lens is shown in Fig. 6b. Using the terms
of hyperbolic geometry, this foot of a wine glass shape is related to the surface of a
tractrix curve and the pseudosphere, in our case a half pseudosphere. Second, placing
this lens of three horizontal parallel lines, we have obtained the pattern of Fig. 6c,
which are related with the Möbius transformations [15].

The transformations associated with this type of geometry is analogous to the path
traced by a point P on the edge of a circle of radius b rolling on the outside of a circle
of radius a of the period-2 of Fig. 3, and it is related with the caustic of epicycloids
of Fig. 3a, which are given by the parametric equations [18]:

x = (a + b) cosφ − b cos
[

(a+b)φ
b

]
, (7a)

Fig. 6 Transforming a cylinder in (a) in a foot of wine glass (half pseudosphere) shownwith yellow
surface in the inset. The realization of this lens is shown in (b). In c we can see the image obtained
with the lens with the shape of a pseudosphere of three parallel lines, shown in the inset at the top
of this image
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y = (a + b) sin φ − b sin
[

(a+b)φ
b

]
, (7b)

in which a, b are the parameters of the epicycloids. In this way, the dynamics of
the caustics of period-2 of the cylindrical lens is still present in the foot of a wine
glass lens, considering the profiles of caustics in a cylinder Fig. 3a and the Möbius
transformation of Fig. 6c.

Now, we explain why this lens can be associated with a black hole. To obtain this
lens, we start with the Einstein’s gravity field equations [19]:

Rμυ − 1/2Rgμυ + Λgμυ = 8πG

c4
Tμυ. (8)

The two first terms are related with the space time-curvature, the third term is the
stress from empty space-time itself, and the last term is the stress from an object in
space-time.

One possible solution of these equations is the pseudosphere lens, because they
can be broken into simpler equations, which are more appropriate to understand the
gravitational lensing, considering the case of the lens with the shape of a foot of a
wine glass for a point mass model, and the angle which light is deflected by this poit
mass is [19, 20]:

α̂ = 4GM

c2b
, (9)

where G is the universal gravitational constant, M is the mass and b is the impact
parameter. This point mass could be the black hole.

The images obtained for the solution in (9) are comparable to the period-2observed
of Fig. 7a with the cylindrical lens and are related with the parametric equations of
the epicycloid of (7a), (7b) due to Möbius transformations of space-time of Fig. 7b.
The diagrams of Fig. 7c, d describes how (9) is related with the image perceived by
the observer in the point O, from a star source of the light at the distance of some
gigaparsecs DSfrom this observer, when a massive object L with the size of some
megaparsecs is at distance DL placed betweem them. When the star source S, the
massive object L and the observer O are perfectly aligned, there is the possibilty of
the formation of the ring (halo) [20], known as Einstein’s ring. Like the case of the
cylinder acting as a lens, the control parameter here is the alignement of the system
S-L-O, with the system triggered in the period-2 due to the lens configuration. This
halo pattern is present in a system which is analogous to the case of gravitational
lens observed in Fig. 1c, and we observed that it is similar to the dynamics involving
Farey diagram of Fig. 4, for the case of frequency ½.

One important thing to note for the case of the gravitational lensing is that the
formation of both arcs occurs simultaniously, suggesting that the dynamics of halo
formation here is related to a supercritical pitchfork bifurcation [14], as it is shown
from the images obtained from a point source of Fig. 8 for different values of the
control parameter b. Multiple images can be present in gravitational lensing [19–21],
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Fig. 7 The period-2 compared with the gravitational lens model. In a the period-2 obtained with
the cylinfrical lens. The luminous arcs obtained with the foot glass. In c diagram of the image
formation of the gravitational lens. The lateral view of the same diagram in (d). Simulation of the
Einstein’s ring (e) obtained from our experiment is another example of halo dynamics

Fig. 8 Evolution of arcs using the foot ofwine glass lens for a period-2, like a supercritical pitchfork
bifurcation in a surface of a cylinder for the parameter b from 1.1 in (a), 1.0 in (b), 0.8 in (c), 0.6
in (d), 0.4 in (e), and 0.2 in (f)
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involving amore complex analysis of the halo dynamics, due the presence ofmultiple
lens planes, resmbling the previous case of the cylinder with oblique incidence.

6 Conclusions

We have explored the halo formation based in the concepts of rainbow ray formation
and caustics in parallel with the studies of dynamical systems, such as particles
bouncing in an open biliard. We have observed the existence of pattern formation
following the dynamics observed in the Farey Diagram, using an approach based
in the experiment of a laser beam hitting obliquelly a glass cylinder. After that, we
investigated the pattern formation when this cyclinder suffers deformations until it
has the shape of a foot of a wine glass lens, used to study patterns in systems affected
by relativistic effects. In our explorations, we have found patterns for this system as
two light spots, which converges to a halo when the light source, the lens and the
observer are aligned.
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Hysteresis Loops, Dynamical Systems
and Magneto-Optics

Adriana Pedrosa Biscaia Tufaile and Alberto Tufaile

Abstract The interest in hysteresis and magnetism is shared by scientists with an
impressive variety of backgrounds, such asmechanics, thermodynamics, electromag-
netism, catastrophe theory, mathematics and dynamical systems, because hysteresis
loop is a concept at the core of non-linear systems in which the dependence of the
evolution of the states of these systems are related with their history. In this work we
present a connection between dynamical systems and hysteresis loops and after that,
we present some interesting hysteresis loops obtained using the TransverseMagneto-
Optical Kerr effect (TMOKE), of thin films of sperimagnetic amorphous alloys with
rare-earth and transition metal. The samples present first and second order transi-
tions. The first order transition occurs at the compensation temperature when the
total magnetic moment or magnetization is minimal. The second one occurs at the
transition magnetic field when the behavior of the derivative of the signal changes,
and it can be spin-reorientation or spin-inversion.

Keywords Bistable system · Hysteresis loop · Sperimagnetism

1 Introduction

Magnetism is a property of matter, and we can observe their magnetizationM under
several specific conditions of measurement or geometry when some materials are
subjected to an external magnetic field H, as it is shown in Fig. 1 [1].

These curves give us some interesting ideas of the properties of the materials,
helping to categorize themparamagnetic, diamagnetic, ferromagnetic, and so on. The
blue curve representing the ferromagnetism presents the interesting feature known
as hysteresis curve, in which the response of the system depends on its history.
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Fig. 1 Magnetic curves for different magnetic materials

Ferromagnetism here represents several kinds of materials with ferro and antiferro-
magnetic materials that have exchange interactions that align the atomic magnetic
moment without external applied field. The sperimagnetism is included.

Systems with hysteresis are in general nonlinear systems, and they are common
in nature, and the word is used in different contexts to express some kind of state of
a system that is dependent of its history, with some kind of lag between the input or
control parameter and the output or state variable, enabling to makememory devices,
such as magnetic tapes or hard-disks [1].

The magnetic field H is the input or control variable and the magnetization or
total magnetic moment M is the output or state variable. H andM are conjugate work
variables meaning that their product is work. G is the Gibbs free energy of the system
and the thermodynamic potential controlling spontaneous transformations. GL is the
Landau free energy, after L.D. Landau phenomenological theory of phase transitions.
G is different ofGL, but after symmetry arguments andproper approximations,we can
consider that Gibbs is equal Landau free energy, and search the local minima using
the derivatives of GL. The lowercases represents some convenient dimensionless
form [1].
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Fig. 2 The system is in the state m of the green dots for the temporal evolution (1, 2, 3, 4, 5 and
6) of the potential gL(m, h) controlled by the input h in (a). The three different functions of gL are
represented by red, black, and blue curves. In b, we have the hysteresis loop associated with this
bistable system [1]

First, we will concentrate on bistable systems [2] and rate independent hysteresis,
as it is shown in Fig. 2.

The potential represented with the black plot in Fig. 2a is the free energy of the
bistable system for h = 0 for the expression [1]:

gL(m, h) = m4 − 2am2 − hm (1)

where a is a positive parameter.
The hysteresis loop of this bistable system is shown in Fig. 2b changing the

control parameter h. This system always moves towards a minimum value, when
h is increased from the saturated state 1, to state 2, jumps abruptly in state 3 by a
Barkhausen jump, reaching another saturated state 4. Reversing the control param-
eter, the system evolves from state 4 to state 5, a different minimum of the bistable
potential. After that, there is another Barkhausen jump in state 6 the initial saturated
state 1. This behavior exemplifies how the system can have different values of one
variable depending on the direction of change of the control parameter.

2 Dynamical Systems

We can observe that the hysteresis is related to a supercritical pitchfork bifurca-
tion, with this example. Related with dynamical systems by look the derivatives,
considering the state variable x, representing the magnetization, that will change in
time.
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Stable points have first derivative equal to zero, and a positive second derivative.
Unstable points have first derivative equal to zero, but a negative second derivative.
The first derivative is

f(h, x) = dgL/dx = 4x3 − 4ax − h. (2)

Changing the magnetic field will change the first derivative f(h,x) and one can
construct a hysteresis loop. In Fig. 3a, the system evolves from only one stable fixed
point to a saddle-node bifurcation, with two new stable fixed points, as it is shown in
Fig. 3b. Then, in Fig. 3c, the hysteresis is seen when the system goes back and forth,
and just one stable fixed point is visited each time, before the Barkhausen jump. The
intermediate region between the two stable fixed points is unstable, in contrast to
the case when the parameter h < 0. The pitchfork bifurcation of each branch of the
hysteresis cycle is shown in Fig. 3d.

Fig. 3 Relation between hysteresis loop and a supercritical pitchfork bifurcation. In a, the system
evolves to only one stable fixed point for a control parameter h < 0. A saddle-node bifurcation is
shown in (b) as we change the control parameter h. The complete hysteresis cycle depends on the
history of the initial conditions. The pitchfork bifurcation of each branch of the hysteresis cycle is
shown in Fig. 3d
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3 Sperimagnetism

The samples are thin filmsmade of amorphous alloys contain rare-earth and transition
metal. They have transition metal cobalt Co and a rare-earth metal as gadolinium
Gd or holmium Ho. The films were deposited by magnetron sputtering in glass and
silicon Si substrates cooled to free the atoms and make amorphous alloys. We took
the loops of the films in glass substrates; the Si ones were used the measure the
thickness of the layers. In Fig. 4, we represent the profile of the films.

The composition and thickness of the samples are shown in the Table 1. They
were measured by analyzing Rutherford Backscattering Spectrometry (RBS) spectra
obtained with normal beam incidence of 4He+ de 2.4 MeV. We used the films with
silicon substrates for this analysis.

It is important to note that, in amorphous materials, atoms are frozen in random
positions and orientations, unlike a crystalline structure, where the positions and
orientations of atoms, or ions, are periodically ordered. So, in amorphous alloys,
the direction of anisotropy for each ion is random. The interaction responsible for
the ordering of spins in the material, and therefore, for the existence of spontaneous
magnetization, was recognized by Heisenberg, in 1926, and called exchange inter-
action. The type of exchange interaction that occurs between two atoms depends on
the electronic structure of the interacting atoms.

The antiferromagnetic exchange interaction between gadolinium or holmium and
cobalt make themagnetization of these two sublattices points to opposites sides. This
gives rise to a compensation temperature Tcomp, in which the total magnetization of
the alloy is minimal.

The sperimagnetism [3] occurs because of two aspects, local or ion anisotropy
and interaction between the alloy components. The intensity of exchange interaction

Fig. 4 The structure of the samples shown in cross section. The Si3N4 are antireflexive and
protective layers. The axis of easy magnetization (arrow) is on the plane of the film

Table 1 Composition and
thickness of the samples

Composition
of the metallic
layer

Layer thickness (nm)

Metallic
layer

1st Si3N4 2nd Si3N4

Ho33Co67 108 32 31

Ho36Co64 116 32 31

Gd20Co80 153 55 55
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between cobalt and cobalt is one order of magnitude greater than the exchange
interaction between cobalt and rare-earth, which in turn is one order of magnitude
greater than the interaction between rare-earth ions. So, the cobalt sublattice is well
aligned, but the alignment of the rare-earth sublattice it is weaker in the struggle
against temperature.

The rare-earth elements have the electronic structure of the most energetic layers
represented by: 4fN 5s2 5p6 5d1 6s2, whereN= 0 to 14, corresponding to the elements
from La to Lu. For Ho, N = 10, because its atomic number is 66, for Gd N = 7
(no orbital angular momentum, L = 0). The rare-earth magnetism comes from the
unpaired electrons of layer 4f, and in an alloy they are usually in the form of a 3+
ion, that is, the electrons of layers 5d and 6s are conduction electrons. Layer 4f is
said to be deep, as it has an average radius of approximately 0.3 Å, while the ionic
radius is around 1.8 Å. Thus, the superposition of layer 4f of neighboring ions is
negligible, and therefore, there is no direct exchange interaction between these ions.
Its alignment is due to a low intensity indirect exchange interaction. Gadolinium
ion is spherical, much more symmetric than holmium, so the local ion anisotropy is
stronger in holmium. The exchange interaction between ions of transition metal as
Co happens with electrons of the 3d that have large volume of superposition, therefor
a large exchange integral [3].

The sperimagnetism that appears in amorphous rare-earth (RE) alloys and tran-
sition metal (TM) is a special arrangement of spins, in which the directions of the
spins corresponding to the rare-earth ions are randomly distributed inside a cone or
a semi-sphere, while the spins of the transition metal are all aligned with the axis of
the rare-earth spin cone. This type of arrangement is represented in Fig. 5a, the dark
circles represent the rare-earth ions, and the light circles, the TM ions. In Fig. 5b, we
have a schematic representation of the arrangement, showing the random distribu-
tion of the RE spins and the TM alignment. This representation corresponds to the
fundamental state, that is, temperature equal to zero Kelvin.

During the hysteresis loops, this type of alloy suffers a second order phase transi-
tion,when the appliedmagnetic field can turn the direction of themagnetization of the
sublattices, the transition magnetic fieldHt. And it can change with the temperature.

The phenomenon called spin-reorientation is the change in direction of the average
magnetic moments of each sublattice, in relation to the direction of the applied field
[4]. When the applied field is weak, we have sperimagnetic arrangements before
and after the compensation temperature, this phase transition is first order. But if the
applied magnetic field is larger than the critical field, Hcri, for temperatures close to
Tcomp, then the magnetic moments of the two sublattices start to have a projection
in the direction of the applied field. With the hysteresis loops, we identify the Ht.
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Fig. 5 T = 0. In a, we have a spatial representation of the amorphous RE-TM alloy (rare-
earth/transition metal), where we see that the positions and orientations of the ions are random,
and for RE the local anisotropy is dominant, so the orientations of its spins are random. However,
for TM the dominant interaction is the exchange interaction, which promotes the perfect alignment
of the spins of these ions. In b, we have a schematic representation of the directions of the spins,
where we see that the average magnetic moment of RE is in the opposite direction to that of Co,
since there is an anti-ferromagnetic coupling [3]

This phase transition is second order. In Fig. 6, before the spin reorientation, we
have small shaded regions that correspond to the phases where the transition metal
also has a random distribution of the spin directions. The dashed lines above Hcri

represent the behavior of coercivity. The dashed lines below Hcri correspond to the
loss of stability of the collinear phases. Zvezdin [4] used films with the axis of easy
magnetization perpendicular to the plane of the film, our samples have it in the plane
of the film.

4 Thermal Behavior of the Hysteresis Plots

Themagnetic signal wasmeasure by vibrating samplemagnetometer (VSM) at room
temperature or SQUID: Superconducting Quantum Interference Device, at 5 K < T <
300 K. Amagnetic hysteresis loop is shown in Fig. 7, where we can see the transition
magnetic field.

The magneto-optical signal is the Transverse Magneto-Optical Kerr Effect
(TMOKE) measured using laser diode. λ = 670 nm, at 7 K < T < 300 K, angle
of incidence: 45° [5, 6]. The Magneto-Optical Kerr Effects are shown in Fig. 8.



988 A. P. B. Tufaile and A. Tufaile

Fig. 6 Phase diagram for amorphous films of RE-TM, applied magnetic field H versus temper-
ature T. The axis of easy magnetization is normal to the film plane. In our case, the axis of easy
magnetization is in the plane of the film [4]

Fig. 7 Magnetic hysteresis loop (VSM), where we can see the transition magnetic field, Ht. It is a
second order phase transition
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Fig. 8 The three configurations of the magneto-optical Kerr effects

Representing the light by its electric field components with respect to the plane
of incidence, the material surface is represented by the R matrix:

(
Ep

Es

)r

= R
(
Ep

Es

)i

where R =
(
rpp rps
rsp rss

)
(3)

The reflectivity of the component in the plane of incidence (p) is

∣∣Rp = ∣∣rpp∣∣2 = rpp.r
∗
pp (4)

The TMOKE signal is the relative variation in reflectivity in p component. For
visible light, TMOKE is sensitive to the component of the magnetization of the
transition metal sublattice parallel to the applied magnetic field:

�R

R
∝ MCo

x (5)

The two types of phase transition happen due to the competition between the
magnetization of the sublattices. This behavior creates variety of hysteresis loops,
more complex than the bistable system of Fig. 2.

In the Fig. 9, there are hysteresis loops for six different temperatures that
we obtained with magneto-optical effect for another composition of amorphous
holmium-cobalt alloy. As you can see, the loops are more complicated that a bistable
system. But it is possible to find out what is happening. Before the compensation
temperature, the magneto-optical loop is inverted, because this signal is sensitive to
cobalt, which has less magnetization than holmium. The compensation temperature
is around 218 K and the main thermal behavior is in the signal of saturation. The
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magneto-optical saturation signal increases with increasing temperature. We did not
notice thermal variation of the transition magnetic field [5].

Here inverted hysteresis loops have different meaning of those ones observed by
Ghising, Samantaray, and Hossain [7] (Fig. 9).

We have a superposition of the magnetic and magneto-optical loops taken of the
sample a-Ho33Co67 in Fig. 10.

The comparison of magnetic and the magneto-optical loops for a film of a-
Gd20Co80 is in Fig. 11. The compensation temperature is around 92 K, and we
can see that the transition field increased with temperature. The magneto-optical
saturation signal is constant, but further analyzes show that the transition magnetic
field increases exponentially with temperature.

In Fig. 12, there is the schematic explanation for the phenomena we observed in
the hysteresis loops.

For gadolinium-cobalt alloy, the magneto-optical signal has the same intensity
before and after the transition field, indicating that cobalt sublattice has the same

Fig. 9 Magneto-optical hysteresis loops for a thin sperimagnetic film of a-Ho33Co67. The Tcomp
~ 218 K, and Ht is approximately constant
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Fig. 10 Magnetic and magneto-optical hysteresis loops for the sample of a-Ho33Co67, at 224 K.
We can see that the effect of the second order phase transition occurs in the same value of the applied
field

component of magnetization in the direction of the field, but in the opposite sense.
Therefore, we conclude that the second order transition is not a spin-reorientation.
We call it a spin-inversion because there is no non-collinear sublattice situation.

As gadolinium ion is spherical, so the local anisotropy is less than in the case of
holmium, which has strong local anisotropy because it has a large orbital angular
moment. So, it is easier for the ionic magnetic moment (spin) of Gd to turn in the
direction of the magnetic field than spin of Ho.

5 Conclusions

Westarted showing the connections between hysteresis loops and dynamical systems.
We have presented the complexity of hysteresis loops present in some sperimagnetic
thin films of Gd-Co and Ho-Co, by looking magnetic and magneto-optical signal.
Both samples presented a first order phase transition and a second order phase tran-
sition. The difference in local anisotropy between Gd and Ho ions led to different
types of second-order phase transition. Ho-Co film has a spin-reorientation phase
transition (collinear phase to non collinear phase). Gd-Co film has a spin-inversion
phase transition (collinear phase to opposite collinear phase). Despite the complexity,
we know the characteristics of the transitions, these types of hysteresis loops deserve
a more complex bistable system model.
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Fig. 11 Superposition of magnetic and magneto-optical hysteresis loops for the sample of a-
Gd20Co80. The compensation temperature is around 92 K, the transition field increased with
temperature [5]
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Fig. 12 The analysis of magnetic and magneto-optical hysteresis loops for the sample of a-
Gd20Co80 indicates that it has a spin-inversion, and the sample of a-Ho33Co67 has spin-reorientation
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Investigating Dynamical Systems Using
Optic-Fluidics

Alberto Tufaile, Michael Snyder, Timm A. Vanderelli,
and Adriana Pedrosa Biscaia Tufaile

Abstract We are presenting experimental results and simulations of dynamical
systems using magneto-optics. These light patterns are obtained by the observa-
tion of a thin film of ferrofluid in the presence of a magnetic in the presence of a
magnetic field.

Keywords Magnetism · Isoclines · Chiral

1 Introduction

In our previous work, we have considered the analogy between the general properties
of vector fields of the phase space of dynamical systems with the properties of
potential of magnetic charges using magneto-optics [1], as it is shown in Fig. 1.

We have proposed this representation because the representation of both fields
is comparable, the existence of two different types of “charges” enable us to obtain
elliptic points and saddles. Basically, the colored lines observed from our magneto-
optical systemare obtained from the light diffraction of light sources inmicro-needles
aligned with magnetic field. In Figs. 1 and 2, we can see that the isopotentials are
perpendicular to the lines of the magnetic field.
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Fig. 1 a Two magnetic charges with the field lines represented by the arrows and isopotentials
represented by the colored lines and its magneto-optical counterpart in (b)

Fig. 2 a Three magnetic charges with the field lines represented by the arrows and isopotentials
represented by the colored lines and its magneto-optical counterpart in (b)

It is important to note that the representation of magnetic charges is a valid way to
represent the magnetic field and this is not incompatible with the idea of the Lorentz
force, as the same way that a phase space represents states of motion, not the motion
itself.

However, there is an apparent contradiction in this analogy, because the represen-
tation of isopotentials and the colored lines of our magneto–optical is not perfect.
A close observation of the light patterns of the experiment shows the existence of
crossing lines, which could imply in indeterminacy in a dynamical system, violating
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the classical representation of dynamical systems. The light patterns mimic the
isopotentials, because the light patterns are a combination of the magnetic field
and the position of the light source. For different positions of the light source,
we have different diffracted lines, which eventually will cross each other. In this
way, metaphorically speaking, these luminous patterns linked to the isopotentials
are equivalent to the representation of the nature by the impressionist painters, with
emphasis in depiction of light in its changing qualities with unusual visual angles.

Consider now the Hénon conservative map given by:

x ′ = x cosα + (
y − x2

)
sin α,

y′ = x sin α + (
y − x2

)
cosα.

(1)

For the case of Hamiltonian systems, we can observe the existence of chaos for
perturbations close to the separatrix of the system, as it is shown in Fig. 3a, which

Fig. 3 In a diagram of separatrix chaos. In b the diagram of a Henon-Heyles map with chaotic
oscillations. In c the concept of chaos in conservative systems close of hyperbolic points
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Fig. 4 Chaos close of a hyperbolic point in the Hénon map

shows the conditions of the nonlinear resonance on the phase space, in which the
green line is the unperturbed trajectory. The blue line is the new separatrix of the
phase oscillations. The classical plot of chaotic behavior can be obtained for the
Hénon conservative map of the Fig. 3b from (1), with chaotic behavior given by red
region (α = π/2 – 0.228), quasiperiodic behavior in green color (α = π/2 – 0.200),
and another chaotic region in black (α = π/2 – 0.250).

The idea o f chaos in this case can be understood if we follow the stable (Ws)
and unstable manifolds (Wu) of Fig. 3c, until their intersection points in red, called
homoclinic pointsHS

1 andHS2. Applying the perturbation repeatedly to Ph0, we have
the sequence of image points Phk converging towards hyperbolic point for k tending
to infinite, and consequentlyWu andWs can only intersect after an infinite sequence,
and the same is valid for the reversing points Qh

k. The result is an extraordinary
complex view of intersecting invariant manifolds. One example of this behavior is
shown in Fig. 4 using the (1), for the case of α equals to (π/2–0.228) (see [2]).

For the case of the magneto-optics in our experiment, we observed that the light
patterns are oriented by the vectorial product of Fig. 5 [1, 3–6].

This approach is well known in celestial mechanics, demonstration of chaotic
pendulum, or in electromagnetism, where physicists look for the dynamics of parti-
cles inmagnetic fields.Weare investigating in this paper the equivalent case of chaotic
scenario in magnetostatics interacting with light from our experiment involving
magneto-optics. We were inspired by the direct observation of luminous patterns
and properties of magnetic fields.
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Fig. 5 The vector d is the direction of the tangent line of the diffracted lines, which is perpendicular
to the direction of propagation of the light ray p and the orientation of the magnetic field H

2 Experimental Apparatus and Modeling Isopotentials

In Fig. 6 we present the experimental apparatus of this system. The luminous patterns
observed in the thin film of ferrofluid is a direct effect of the magnetic field with the

Fig. 6 Diagram of the ferro-mirror experiment setup
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iron particles, which take a shape that scatters light in a certain shape for the viewer.
In this way we have to use an array of magnets of Fig. 7, above the magnets we have
a mirror. The device known as Ferrolens of Fig. 8, the Hele-Shaw cell containing
the ferrofluid, is placed above this assembly. We use different light arrays above

Fig. 7 Magnets fixed in a base

Fig. 8 Pattern obtaine with the Ferrolens
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Fig. 9 Comparison between
isopotentials of magnetic
field and the phase space of a
pendulum. The green curves
represents the separatrix

this setup, which represent the ferro-mirror experiment. The ferrofluid is a stable
colloidal dispersion using light mineral oil. The nanoparticles are spheres of the
order of 10 nm in diameter. The magneto-optic effect results in the change of some
optical parameters of the ferrofluid, forming images. For more details see [1, 3, 7,
5].

The software Pic2Mag [7] simulates some aspects of magnetic field arrangement
of a magnet array, such as vector field and isopotentials, like the case of two magnets
of Fig. 9a, wich can be compared to a phase space like the one in Fig. 9b, which
represents the phase space of a pendulum.

3 The Patterns of Eyes and Chirality

One interesting phenomenon observed is a magneto-chiral pattern of Fig. 10, which
there is three magnets to create this pattern, in a three-pole configuration formed by
south-north–south poles. The pattern resembles three eyes arranged in a column-like
alignment. Figure 10c is the top view of the light pattern, Figs. 10a, b is from the
same system observed from the right side, and Figs. 10d, e are perspective obtained
from the left. We can see that the pattern suffers distortions. However, these patterns



1002 A. Tufaile et al.

Fig. 10 Magneto chiral effect

cannot be overlapped with other in order to be reproduced. One image is a reflection
of the other, in suchway that there is a chiral effect.We can consider that the assembly
of nanoparticles is somehow affecting these light patterns, because nanoscale parti-
cles could self-assemble into helical-like structures due to the interplay of magnetic
dipoles and van der Walls interactions [3, 4, 6]. The consequence of this anisotropy
is the emergence of optical chiral structures.

4 Hyperbolic Points

For the case of Hamiltonian systems, the existence of saddle point is the important
key to observe the existence of chaos. The stable and unstable manifolds are called
separatrices, and when a weak perturbation is added, the separatrix are destroyed and
replaced by a separatrix chaotic layer. The same way as the separatrix is obtained
numerically by integration of the equations with a set of initial conditions in the
vicinity of the separatrix, we can explore in our system what is happening around the
saddle points in our experiment. Let’s consider the case of Fig. 11with a configuration
of isopotentials equivalent of a torus. Observing the detail of the central area of this
image in Fig. 12a with the experiment in Fig. 12b, we can see what is happening with
the four saddle points around the center of the light pattern observedwith experiment.
The colored lines converge to the saddle point and vanish. In contrast, the center point
of the image, which represents the center point of a dynamical system, the colored
lines swirls around it, and the central region is dark.

Figure 13 was obtained by placing the pattern obtained experimentally on the
simulation. With this picture, we can observe that the saddle points of the simulation
is slightly different from the experiment, for example the green cross at the right
side, at the top of Fig. 14, in which the experiment is the red circle A, and simulation
is the green circle B.
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Fig. 11 Simulation of isopotentials in a a torus

Fig. 12 Exploring Center and saddle points: simulation and experiment
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Fig. 13 Another array of magnets superposed on the simulation of the magnetic field and
isopotentials

Fig. 14 Observing a hyperbolic magnetic point from the previous figure: the experiment is the red
circle A, and simulation is the green circle B
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5 Conclusions

We have explored some aspects of the analogy between dynamical systems and the
magneto-optical system formed by a thin film of ferrofluid. Magnetic static fields
have some general properties of Hamiltonian systems, and using different magnetic
fields configurations, we look for hyperbolic points and observed how the experiment
behaves around these regions. The light patterns are related to the vectorial product
between the ray light p and the orientation of the magnetic field H, given locally the
tangent vector d. During theses explorations of this magneto-optical system, we have
found some evidences of chiral effects and we suggested that this effect is related to
anysitropic properties of magnetic nanoparticles.

We have observed that the presence of the thin film of ferrofluid affects the
magnetic field, and the formation of patterns can show the differences between the
values of the patterns observed experimentally and the computed values.

References

1. A. Tufaile, T.A. Vanderelli, A.P.B. Tufaile, Observing jumping laser dogs. J. Appl. Math. Phys.
4, 1977–1988 (2016)

2. J. Argyris, G. Faust, M. Haase,An Exploration of Chaos (Elsevier, Amsterdam, 1994), p. 108
3. A. Tufaile, T.A. Vanderelli, A.P.B. Tufaile,Light polarization using ferrofluids and magnetic

fields. J. Adv. Condens. Matter Phys. 2583717 (2017)
4. A. Tufaile, T.A. Vanderelli, M. Snyder, A.P.B. Tufaile,Observing dynamical systems using

magneto-controlled diffraction. Condens. Matter 4(2), 35 (2019)
5. A. Tufaile, M. Snyder, T.A. Vanderelli, A.P.B. Tufaile, Non-linear stability observation using

magneto-controled diffraction with optic-fluidics, in 11th Chaotic Modeling and Simula-
tion International Conference, ed. by C.H. Skiadas, I. Lubashevsky, Springer Proceedings in
Complexity (2019), p. 275

6. M. Snyder, A. Tufaile, A.P.B. Tufaile, T.A. Vanderelli, Controlling light diffraction with
nanostructures. TechConnect Briefs 2019, June 17 (2019), pp. 369–372

7. Program for simulation of magnetic field, www.pic2mag.com

http://www.pic2mag.com


Inversive Generators of Second Order

Sergey Varbanets and Yakov Vorobyov

Abstract Inversive congruential method for generating the uniform pseudorandom
numbers is a particulary attractive alternative to linear congruential generators, which
show many undesirable regularities. In present paper, we investigate the equidistri-
bution of sequences produced by inversive congruential generator of second order by
using the discrepancy bounds of such sequences of pseudorandom numbers (PRN’s).
Also there are obtained the estimates of special exponential sums of these sequences.

1 Introduction

The sequences of random numbers have the various applications in the numerical
analysis and cryptography. But in practice instead the sequences of random num-
bers we use the pseudorandom sequences, i.e. the sequences which pass appropriate
statistical test on randomness. An assortment of statistical tests depends on the type
solved problem.

Our main point here is to elucidate the motivation for construction the sequences
of PRN’s with some specific properties that foster their applications in Quasi-Monte
Carlo methods and cryptography. For the numerical analysis there are tests for the
uniform distribution in certain region. Such tests go with success the sequences of
linear congruential pseudorandom numbers (abbr., LCPRN’s) (see, [4]). For cryp-
tographic applications it is essential that except “equidistribution” it performs yet a
requirement of “unpredictability”. But to this requirement the sequence of PRN’s
produced by linear congruential generator does not satisfy.
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Knuth [3] and Marsaglia [5] proved that LCPRN’s are predictable. This moti-
vated the creation of the nonlinear congruential pseudorandom sequences having the
unpredictable property.

The inversive congruential generator initiated by Eichenauer and Lehn [2] in 1986
make sure the “equidistribution” and “unpredictability” of the sequence of PRN’s
produced by the congruential recursion

yn+1 ≡ ay−1
n + b (mod p),

where a, b ∈ Z, p be a prime number, y−1 denotes a multiplicative inverse of y
modulo p, y0 be initial value.

In present paper, we study the sequence of PRN’s {yn} defined by the congruential
recursion

yn+1 = ay−1
n−1y

−1
n + b (mod pm). (1)

This generator of {yn}we call the inversive congruential generator of second order.
We distinguish two type of respective sequences

(I) type : νp(a) = 1, νp(b) = ν ≥ 1;
(II) type : νp(a) = α, νp(b) = 1.

In case of inversive generator of first order (which was studied by Eichenauer,
Lehn, Niederreiter and others) the sequence {yn} of type (II) steadies starting from a
certain index n, and therefore it will not be the uniformly distributed sequence.

The sequences produced by the congruential generator of kth order

yn+1 ≡ f (yn, yn−1, . . . , yn−k+1) (mod M)

have the least period length τ ≤ Mk .
The function f (yn, yn−1, . . . , yn−k+1) ought to choose so as a period {yn} was as

large as possible.
Some results about the period and distribution of inversive congruential sequences

of first order can be found in the survey paper [1].
The inversive generators of first order generate the sequences of PRN’s which

pass the test on “equidistribution” and “unpredictability” but they do not satisfy
to requirement of “security”. Indeed, if we know more than one sequential values
yn, yn+1, . . . , yn+k , we easy can obtain the parameters a and b of the inversive gener-
ator of first order. However, the “security” of sequence of PRN’s can be remained if
the parameter of shift c change to c + n + pμF(n), where μ > ν and F(n) is some
random polynomial from Z[n] (see, [8, 9]).

In this paper we continue investigation of the inversive generator of second order
of two types.

Our purpose in this work is to show the passing of test on equidistribution and
statistical independence for the sequence {xn}, xn = yn

pm , and hence, the main point is
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to show the possibility for such sequences to be used in the problem of real processes
modeling and in the cryptography.

In the sequel we will use the following notations.
Variables of summation automatically range over all integers satisfying the indi-

cated condition. The letter p denotes a prime number, p ≥ 3. For m ∈ N the nota-
tion Zpm (respectively, Z∗

pm ) denotes the complete (respectively, reduced) system of
residues modulo pm . For z ∈ Z, (z, p) = 1 let z−1 be the multiplicative inverse of
z modulo pm ; instead of a

b (mod pm) we will write a · b−1. We write νp(A) = α if

pα|A, pα+1 � A for A ∈ Z. For integer t , the abbreviation eq(t) = e
2π i t
q is used.

Let f (x) be a periodic function with a period τ . For any N ∈ N, 1 ≤ N ≤ τ , we
denote

SN ( f ) :=
N∑

x=1

e2π i f (x)

2 Auxiliary Results

Let a, b ∈ Z, p ≥ 3 be a prime, and let m > 1 be a positive integer. Let us consider
the transformation Ψ defined on Z∗

pm by

Ψ (yn, yn−1, . . . , yn−s+1) = ay−1
n · · · y−1

n−s+1 + b,

(y0, p) = (y1, p) = 1, 0 ≤ yn < pm .

(2)

Weput xn = yn
pm ,n = 0, 1, . . .. And then the transformationΨ wecall the inversive

congruential generator of second order of the sequence of pseudo-random numbers
(abbr., PRN’s).

In order that the sequence {yn} exists for any n ∈ Z it is sufficient that (a, p) = 1,
b ≡ 0 (mod p) or a ≡ 0 (mod p), (b, p) = 1. These conditions generate various
of sequences of PRN’s. Henceforth, we call that sequences as inversive congruential
sequences of type I or II.

For example, the inversive congruential sequence {yn} of first order with a ≡ 0
(mod p), (b, p) = 1 has a period τ = 1, but in the case (a, p) = 1, νp(b) = ν ≥ 1,
the relevant sequence of PRN’s can be a period with τ = 2pm−ν .

In our paper we study the inversive congruential generator of second order, i.e.
s = 2. We will illustrate that the least period length of sequence {yn} can be equal to
3pm−μ or pm−ν .

We need the following lemmas.

Lemma 1 Let f (x)beaperiodic function. For any N ∈ N,1 ≤ N ≤ τ the following
estimate

|SN ( f )| ≤
(
max
1≤n≤τ

∣∣∣∣∣

τ∑

x=1

e2π i( f (x)+ nx
τ )

∣∣∣∣∣

)
log 2τ

holds.
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This statement can be derived by inequalities for complete exponential sums on
a usual way.

Lemma 2 Let h1, h2, k, � be positive integers and let νp(h1 + h2) = α, νp(h1k +
h2�) = β, δ = min (α, β). Then for every j = 2, 3, . . . we have

νp(h1k
j−1 + h2�

j−1) ≥ δ.

Moreover, for every polynomial G(u) = A1u + A2u2 + ptG1(u) ∈ Z[u] we have

h1G(k) + h2G(�) = A1(h1k + h2�) + A2(h1k
2 + h2�

2) + pt+sG2(k, �),

where s ≥ min (νp(h1 + h2), νp(h1k + h2�)), h1, h2, k, � ∈ Z, G2(u, v) ∈ Z[u, v].
Proof By the equality

h1k
j + h2�

j = (h1k
j−1 + h2�

j−1)(k + �) − k�(h1k
j−2 + h2�

j−2),

applying the method of mathematical induction, we obtain at once νp(h1k j +
h2� j ) ≥ δ, j = 2, 3, . . . �

Lemma 3 Let p > 2 be a prime number, m ≥ 2 be a positive integer, m0 = [
m
2

]
,

f (x), g(x), h(x) be polynomials over Z

f (x) = A1x + A2x
2 + · · · , g(x) = B1x + B2x

2 + · · · ,

h(x) = C�x + C�+1x
�+1 + · · · , � ≥ 1,

νp(A j ) = λ j , νp(Bj ) = μ j , νp(C j ) = ν j ,

and, moreover,

k = λ2 < λ3 ≤ · · · , 0 = μ1 < μ2 < μ3 ≤ · · · ,

νp(C�) = 0, νp(C j ) > 0, j ≥ � + 1.

Then the following bounds occur

∣∣∣
∑

1

∣∣∣ :=
∣∣∣∣∣∣

∑

x∈Zpm

em( f (x))

∣∣∣∣∣∣
≤
{
2p

m+k
2 i f νp(A1) ≥ k,

0 i f νp(A1) < k;

∣∣∣
∑

2

∣∣∣ :=
∣∣∣∣∣∣

∑

x∈Z∗
pm

em( f (x) + g(x−1))

∣∣∣∣∣∣
≤ I (pm−m0)p

m
2
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∣∣∣
∑

3

∣∣∣ :=
∣∣∣∣∣∣

∑

x∈Z∗
pm

em(h(x))

∣∣∣∣∣∣
≤
{
1 i f � = 1,
0 i f � > 1,

where I (pm−m0) is a number of solutions of the congruence

y · f ′(y) ≡ g′(y−1) · y−1 (mod pm−m0), y ∈ Z∗
pm−m0 .

Proposition 1 Let the sequence {yn} be produced by the recursion (2) with (a, p) =
(y0, p) = (y1, p) = 1, νp(b) = ν0 > 0, νp(c) = μ0 > 2ν0. There exist the polyno-
mials F0(x), F1(x), F2(x) ∈ Z[x] with the coefficient depending on y0, y1, such that

y3k = A0 + A1k + A2k
2 + pμG0(k, y0, y

−1
0 , y1, y

−1
1 ), (3)

y3k+1 = B0 + B1k + B2k
2 + pμG1(k, y0, y

−1
0 , y1, y

−1
1 ), (4)

y3k+2 = C0 + C1k + C2k
2 + C3k

3 + C4k
4 + pμG2(k, y0, y

−1
0 , y1, y

−1
1 ), (5)

where

A1 ≡ b + a−1b2y0y1 − 1

2
a−1b2y20 − a−1by20 y1 − 2b2y30 y

2
1 − 1

2
a−1b2y0y1,

A2 ≡ −a−1b2y0y1 − 1

2
a−1b2y20 + b2y30 y

2
1 + 1

2
a−1b2y0y1,

B1 ≡ b

(
1

2
b
(
y−1
0 − a−1y21

)+ 1 − y−1
0 y1

)
,

B2 ≡ b2
1

2

(−y−1
0 + a−1b2y21

)
,

C1 ≡ b

(
(−ay−2

0 y−1
1 + 1) − 1

2
by−1

1

(
ay−2

0 y−1
1 − 1

))
,

C2 ≡ b2
1

2
y−1
0

(−1 + a−1y0y
2
1

)
,

μ = min (ν0 + μ0, 3ν0).

(see, [7])

Corollary 1 Let νp(y0 − ay−2
1 ) = α ≤ ν0 and let τ be a period length of the

sequence {yn} generated by recursion (2) of type (I) with initial values y0, y1. Then
we have

τ = 3pm−ν0−α,

and τ ≤ 3pm−ν0 on all occasions.

Corollary 2 For k = 3, 4, . . ., we have modulo pμ, μ = min (2ν0, μ0)
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y3k =
(
1 + b2

(
a−1y1 + 1

2
a−1ky1 − a−1k2y1 + 1

2
a−1k2y1

))
y0+

+
(
a−1by1 − 1

2
a−1kb2 − 1

2
a−1b2k2

)
y20 + (−2ky21b

2 + k2b2y21
)
y30 ,

y3k+1 = (
1 − kby−1

0

)
y1 + (−a−1b2 − a−1bk + a−1k2b2

)
y21 ,

y3k+2 = ay−1
0 y−1

1 +
(
1

2
kb2y−1

0 + 1

2
ab2ky−2

0 + 1

2
b2k2

)
y−1
1 −

− 1

2
k2b2y−1

0 + a−1b2k2y0y
2
1 .

Proposition 1’ Let {yn} be a sequence of PRN’s generated by the recursion (2)
of type (II), and let νp(a) = α > 1, νp(b) = 0. Then for n = 9, . . . the following
representation

yn+1 = A(n+1)
0 + A(n+1)

1 y0 + A(n+1)
2 y0y1

B(n+1)
0 + B(n+1)

1 y0 + B(n+1)
2 y0y1

(6)

holds,
where

A(n)
0 = (n − 4)a2bn−5 + ab(n−2), B(n)

0 = (n − 5)a2bn−6 + abn−3,

A(n)
1 = (n − 5)a2bn−6 + ab(n−3), B(n)

1 = (n − 6)a2bn−2 + abn−4,

A(n)
2 = (n − 5)(n − 4)

2
a2bn−3+

+ (n − 3)ab(n−4) + b(n−1),

B(n)
2 = (n − 7)(n − 6)

2
a2bn−8+

+ (n − 4)abn−5 + bn−2,

Proof The straightforward computations on congruent recursion (2) allow to obtain
the representations for y7 and y8 modulo p3α:

y7 = 3a2b2 + ab5 + (2a2b + ab4)y0 + (a2 + 4ab3 + b6)y0y1
2a2b + ab2 + (a2 + ab3)y0 + (3ab2 + b5)y0y1

,

y8 = 4a2b3 + ab6 + (3a2b2 + ab5)y0 + (3a2b + 5ab4 + b7)y0y1
3a2b2 + ab5 + (2a2b + ab4)y0 + (a + 4ab3 + b6)y0y1

And nowby amathematical inductionwe at once have the assertion of Proposition 1’.
�

Corollary 1’ The elements of sequence {yn} generated by (1) with νp(a) = α > 1,
νp(b) = 0 can be represented as the following polynomials on n modulo p3α

yn+1 = A0(y0, y1) + nA1(y0, y1) + n2A2(y0, y1), (7)

where
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A0 = by0y1 + a(b−4y0 − 3b−2y0y1) + a2A′
0(y0, y1, y

−1
0 , y−1

1 ),

A1 = −ab−2y0y1 + a2A′
1(y0, y1, y

−1
0 , y−1

1 ),

A2 = −a2b−1(b4 − y0y1) + a3A′
2(y0, y1, y

−1
0 , y−1

1 ),

A′
i (y0, y1, y

−1
0 , y−1

1 ) ∈ Z[y0, y1, y−1
0 , y−1

1 ], y0y
−1
0 ≡ y1y

−1
1 ≡ 1 (mod pm).

Proof Indeed, (6) shows that all summands in denominator of representation yn+1,
except y0, y1, are congruent to zero modulo pα . Thus, using a congruence 1

c+pαd =
c−1(1 − pαc−1d + p2α(c−1d)2) mod p2α with (c, p) = 1, we obtain (4) at once. �

Corollary 2’ For every sequence of PRN’s produced by (2) with νp(a) = α ≥ 1,
νp(b) = 0, the least period length is equal to pm−α .

Actually, we have modulo pm

yn+� − yn = −2ab−2y − 0y − 1(1 + aF0(n�)), F0(n, �) ∈ Z[n, �].

So, yn+� ≡ yn (mod pm) if only n ≥ 8 and � ≡ 0 (mod pm−α).

The following lemmas need to study the exponential sum of special type on the
sequences of PRN’s.

Lemma 4 Let p > 2 be a prime number, b0, b1 ∈ Z, (b0, p) = (b1, p) = 1.We have
for k < m

S1 :=
∑

x∈Zpm

epm
(
a0 + a1 pkx

b0 + b1 pkx

)
=
{
0 i f a0b1 �≡ a1b0 (mod pm−k)

pm i f a0b1 ≡ a1b0 (mod pm−k).
(8)

Proof In view of 1
b0+b1 pk

≡ b−1
0 (1 − b−1

0 b1 pkx + (b−1
0 b1)2 p2k x2 + · · · ) (mod pm)

we get by Lemma (3)

S1 =
∑

x∈Zpm

epm (b−1
0 (a0 + a1 p

kx)(1 − b−1
0 b1 p

kx + (b−1
0 b1)

2 p2k x2 − · · · )) =

=
∑

x∈Zpm

(b−1
0 + (a1 − a0b

−1
0 b1)p

kx + b−1
0 (a0b

−2
0 b21 − a1b1b

−1
0 )p2k x2 + · · · ) =

=
{
0 i f a0b1 �≡ a1b0 (mod pm−k),

pm i f a0b1 ≡ a1b0 (mod pm−k).

�

Lemma 5 Let ai , bi ∈ Z, (ai , p) = (bi , p) = 1, i = 0, 1; p > 2 be a prime number,
and m, k be positive integers, m ≥ 3k. Then
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S2 :=
∑

x∈Zpm

epm
(
a0 + pka1x + p2ka2x2

b0 + pkb1x + p2kb2x2

)
	 p

m
2 +k (9)

with the absolute constant in the symbol “	”.

Proof First we assume m = 2m0, m0 ∈ N. Let x = y(1 + pm0 z). We obtain

∑

x∈Zpm

epm
(
a0 + pka1x + p2ka2x2

b0 + pkb1x + p2kb2x2

)
=

=
∑

y∈Zpm0

∑

z∈Zpm0

epm
(
A0 + pk+m0(a1y + pka2y2)z

B0 + pk+m0(b1y + pkb2y2)z

)
,

where
A0 = a0 + pk y + p2ka2y

2,

B0 = b0 + pk y + p2kb2y
2.

It follows

S2 =
∑

y∈Zpm0

epm (A0B
−1
0 )

∑

z∈Zpm0

epm (−A0B
−1
0 (b1y + pkb2y

2)zpk+m1) =

= pm
∑

y∈Zpm0

epm (A0B
−1
0 )

∑

z∈Zpm1

epm1−k (−A0B
−1
0 (b1y + pkb2y

2)z) =

= pm1
∑

y∈Z1

y≡0 (mod pm0−k )

epm (A0B
−1
0 ) =

= pm0
∑

y0∈Zpk

epm ((1 − pm0b−1
0 b1y0)(a0 + pm0a1)) =

= pm1e2π i
a0
pm

∑

y0 (mod pk )

epm (a0b
−1
0 b1y0) 	 pm0+k .

For m = 2m0 + 1 we infer by a similar way

S2 	 p
m
2 + k

�



Inversive Generators of Second Order 1015

3 Evaluation of Exponential Sums over the Sequences
of PRN’s

Let {yn}be the sequenceofPRN’s producedby the inversive generator of secondorder
of the first or second type. In the Propositions 1 and 1’ it was received a description
of elements yn as polynomials at n that essentially make easier the construction of
estimates for exponential sums. We will consider the following exponential sums
over the sequence {yn} of PRN’s generated by the recursion (1) of type (I) or (II)
with the least period τ .

σk�(h1, h2) :=
∑

y0,y1∈Z∗
pm

epm (h1yk + h2y�), h1, h2 ∈ Z;

SN (h, y0) :=
N−1∑

n=0

epm (hyn), h ∈ N, 0 < N ≤ τ ;

K (h1, h2; pm) :=
τ∑

n=1

epm (h1yn + h2y
−1
n ), (h1, h2 ∈ Z);

G(h, pm) :=
τ∑

n=1

epm (hy2n ), (h ∈ Z).

These sums are called σ -sum, S-sum,Kloosterman sum andGauss sum, respectively.

Theorem 1 Let the sequence {ωk} has the maximal period τ , τ = 2pn−β . Then the
following bound

|Sτ (h, ω)| :=
∣∣∣∣∣

τ−1∑

k=0

epn (hωk)

∣∣∣∣∣ ≤
⎧
⎨

⎩

0 i f β + δ < n,

τ i f β + δ ≥ n,

holds.

(see, [7], Th. 3)

Theorem 1’ Let h1, h2 ∈ Z, νp(h1 + h2) = ps, 0 ≤ s ≤ m. Then for the sequence
{yn} of type (II) we have
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σk,�(h1, h2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i f k �≡ � (mod pm)

and νp(h1 + h2) < m − 1;

p2(m−2)(p − 1)2 i f k �≡ � (mod pm)

and νp(h1 + h2) = m − 1;

p2(m−1)(p − 1)2 i f k ≡
�≡� (mod pm)

and νp(h1 + h2) = m.

(10)

Proof By Corollary 1’ we can write

h1yk + h2y� = b(h − 1 + h2)y0y1 + (h1 + h2)p
αF(y0, y

−1
0 , y1, y

−1
1 ), (11)

where F(y0, y
−1
0 , y1, y

−1
1 ) is a polynomial with the integer coefficients.

Now we obtain

σk,�(h1, h2) =
∑

y0,y1∈Z∗
pm

epm ((h1 + h2)b�1�2 + pk(h1 + h2)F(y0, y
−1
0 , y1, y

−1
1 )) =

=
∑

y0∈Z∗
pm

∑

y1∈Z∗
pm

epm ((h1 + h2)by0y1 + pk(h1 + h2)F1(y1, y
−1
1 )) =

=
∑

y1∈Z∗
pm

⎧
⎨

⎩

0 i f νp(h1 + h2) < m − 1,
p2(m−2)(p − 1)2 i f νp(h1 + h2) = m − 1,
p2m(m−1)(p − 1)2 i f νp(h1 + h2) = m.

Here we took into account that for (a, p) = 1

∑

x∈Z∗
pm

e2π i
ax
pm =

{−1 i f m = 1,
0 i f m ≥ 1.

�

In Theorem 1’ the initial values y0, y1 run the setZ∗
pm independently of each other.

Now we shall assume that y0 = y1.

Theorem 1” Under conditions of Theorem 1’ and the proposal y0 = y1 we have

|σk,�(h1, h2)| =
{

p
m+s
2 i f s < m,

pm−1(p − 1) i f s = m.
(12)

Proof By (11) and y0 ≡ y1 (mod pm) we obtain modulo pm

h1yk + h2y� = b(h1 + h2)y
2
0 + pα(h1 + h2)F1(y0, y

−1
0 ).

Thus Lemma 3 gives
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|σk,�(h1, h2)| =
∣∣∣∣∣∣

∑

y0∈Z∗
pm

epm ((h1 + h2)by
2
0 + pα(h1 + h2)F1(y0, y

−1
0 ))

∣∣∣∣∣∣
=

=
{

p
m+2
2 i f s < m,

pm(p − 1) i f s = m.

�

Now we will construct the estimates for G- and K -sums.

Theorem 2 Let the sequence of PRN’s is generated by recursion (1) with νp(a) = 0,
1 ≤ νp(b) = ν ≤ m

3 . Then for G-sum the following estimate

G(h, pm) 	 p
m+s
2 , s = νp(h, pm)

holds.

Proof By Proposition 1 we easy obtain

y23k = (y0 + A′
0 p

α) + 2k(by0 + A′
1 p

2α) + k2(b2(1 + a−1y0y1) + A′
2 p

3α)

(1 + B ′
0 p

α) + k(by0y1 + B ′
1 p

2α) + k2(b2a−2y20 y
2
1 + B ′

2 p
3α)

,

y23k+1 = (y20 y
2
1 + A′

0 p
α) + 2k(by20 y1 + A′

1 p
2α) + k2(b2y20 y

2
1 + A′

2 p
3α)

(y20 + B ′
0 p

α) + 2k(by0 + B ′
1 p

2α) + k2(b2(1 + a−1
0 y0y1) + B ′

2 p
3α)

,

y23k+2 = (1 + A′
0 p

α) + 2k(by0y1 + A′
1 p

2α) + k2(b2(ay0 + y20 y
2
1 ) + A′

2 p
3α)

(y20 y
2
1 + B ′

0 p
α) + 2k(by0y1 + B ′

1 p
2α) + k2(b2y20 + B ′

2 p
3α)

,

where A′
j , B

′
j are some polynomials from Z[y0, y1, k].

Next, we have

G(h, pm) =
3pm−ν∑

n=1

epm (hy2n ) =

=
pm−ν∑

k=1

epm (hy23k) +
pm−ν∑

k=1

epm (hy23k+1) +
pm−ν∑

k=1

epm (hy23k+2) 	

	 ps−ν

s∑

j=0

∣∣∣∣∣∣

pm−s∑

k=1

epm−s (hy3k+ j )

∣∣∣∣∣∣
	 ps−ν p

m−s
2 +ν = p

m+s
2 .

�

It is similarly investigating the inversive congruential sequence of PRN’s of second
order type (II).
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Theorem 2’ The G-sum for the inversive congruential sequence of type (II) with
νp(a) = α estimates by

G(h, pm) 	 p
m+s
2 , s = νp(h, pm).

Lemma 5 makes possible to prove the estimates for K -sums.

Theorem 2” Let {yn} be the sequence produced by recursion (1) of type (II) with
νp(a) = α, νp(b) = 0, and let A, B ∈ Z. Then we have

K (A, B; pm) =
pm−α∑

n=1

e2pm (Ayn + By−1
n ) 	

{
0 i f 2α ≥ m, (Ab2 + B) = 1,

p
m+α
2 i f 2α < m, (Ab2 + B) = 1.

Proof Using Proposition 1’, we after a simple calculations can obtain

Ayn + By−1
n = Ã0 + Ã1n + Ã2n2

B̃0 + B̃1n + B̃2n2
,

where

Ã0 = (Ab2 + B)ab5(1 + Ã′
0 p

α)y20 y
2
1 ; B̃0 = b3(1 + B̃ ′

0 p
α)y20 y

2
1 ;

Ã1 = pα2a1b3(Ab + B)(1 + Ã′
1 p

α)y20 y
2
1 ; B̃1 = pα2a1b3(1 + B̃ ′

1 p
α)y20 y

2
1 ;

Ã2 = p2αa21b
−1(Ab2 + B)(1 + Ã′

2 p
α)y20 y

2
1 ; B̃2 = p2αa1(1 + B̃ ′

2 p
α)y20 y

2
1 ;

Ã′
j , B̃ ′

j are some polynomials from Z[y0, y1, n].

It follows thence the assertion of theorem. �

Similarly, the result is true for the K -sum on the sequence {yn} produced by
inversive congruential generator of second order of type (I) with νp(a) = 0, νp(b) =
ν ≥ 1.

4 Discrepancy Bound

To analyze the equidistribution and statistical independence properties of the inves-
tigated sequences of PRN’s {xn}, xn = yn

pm , n = 1, 2, . . . we use the discrepancy of

points x0, x1, . . . , xN−1, . . . and overlapping points X (s)
N = { xn , xn+1, ..., xn+s−1 },

n = 0, 1, . . ., with fixed s. For given N points X (s)
n , the discrepancy D(s)

N

(X (s)
0 , . . . , X (s)

N−1) is defined as

D(s)
N (X (s)

0 , . . . , X (s)
N−1) = sup

Δ

∣∣∣∣
AN (Δ)

N
− vol(Δ)

∣∣∣∣ ,
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where the supremum is extended over all subrectangles Δ ⊂ [0, 1)s , AN (Δ) is the
number of points among X (s)

0 . . . , X (s)
N−1 falling into [0, 1)s , and vol(Δ) is the area

of Δ.
If for every s = 1, 2, . . . , S, we have D(s)

N (X (s)
0 , . . . , X (s)

N−1) → 0 with a rise of
N , we will say that the sequence of PRN’s passes s-dimensional test on the pseu-
dorandomness. In cryptographical applications a penetrations of s-serial test (s ≥ 2)
means that the sequence {xn} is unpredictable.

Beside discrepancy there exists other important criteria for the uniformity and
the independence of PRN’s. We shall restrict our attention to the discrepancy, since
it is the most important measure of uniformity and independence related to PRN’s.
For upper estimate of the discrepancy of points we will use the following inequality
from [6].

Lemma 6 Let q > 1 and s be natural numbers and let {Yn}, Yn ∈ {0, 1, . . . , q − 1}s ,
be a purely periodic sequence with a period τ . Then the points Xn = Yn

q ∈ [0, 1)s ,
n ∈ {0, 1, . . . , N − 1}, N ≥ τ , have discrepancy

D(s)
N (X0, X1, . . . , XN−1) ≤ s

q
+ 1

N

∑

h0,h1,...,hs

1

h0h1 · · · hs
|S|, (13)

where the summation runs over all integers h0, h1, . . . , hs for which h0 ∈ (−τ
2 , τ

2

]
,

hi ∈ (− q
2 ,

q
2

]
, (i = 1, . . . , s), (h1, . . . , hs) �= (0, . . . , 0), hi = max (1, |hi |), and

S :=
τ−1∑

n=0

e

(
h · Xn + nh0

τ

)
,

where h · Xn =
s∑

i=1
hi x

(n)
i stands for the inner product of h and Xn in Zs .

The following lemma is a special version of Niederreiter’s result [6].

Lemma 7 The discrepancy of N arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)2 satisfies

D(2)
N (t0, t1, . . . , tN−1) ≥ 1

2(π + 2)|h1h2|N ·
∣∣∣∣∣

N−1∑

k=0

e(h · tk)
∣∣∣∣∣ (14)

for any lattice point h = (h1, h − 2) ∈ Z2 with h1h2 �= 0.

Going to the estimates of a discrepancy for the sequence of PRN’s produced by
the generators of second order of type (I) or (II) let us remark here that required
estimates of the exponential sums

∣∣∣∣∣

N−1∑

n=0

epm (hyn)

∣∣∣∣∣ ≤
⎧
⎨

⎩

O(m) i f N = τ ;
4p

m+δ+ν
2 i f N ≤ τ, δ + ν ≤ m, ν = νp(h);

N otherwise.
(15)
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we can infer at once from the Corollaries 1 or 1’ and Lemma 3.
We need also some supporting data on upper and lower boundaries for the dis-

crepancy of points tk = yn
q , yn ∈ Zs

q , n = 0, 1, . . . , N − 1; q ∈ N.

Lemma 8 Let Cs(q) be set of all nonzero point h = (h1, . . . , hs) ∈ Zs ,− q
2 < h j ≤

q
2 ,1 ≤ j ≤ s. Forh ∈ Cs(q),y0, y1, . . . , yN−1 ∈ Zs

q ,y ∈ [0, q)s , n = 0, 1, . . . , N −
1, we have

D(s)
N (y0, y1, . . . , yN−1) ≤ s

q
+ 1

N

∑

h∈Cs (q)

∑

h0∈(− τ
2 , τ

2 ]

1

r(h, q)

∣∣∣∣∣

N−1∑

n=0

eq(h · yn)
∣∣∣∣∣ ,

where r(h, q) =
s∏

j=1
r(hi , q), r(h, q) =

{
1 i f h = 0,
q sin (π

|h|
q ) i f h �= 0,

(see, [6])

Lemma 9 The discrepancy of N arbitrary points y0, y1, . . . , yN−1 ∈ [0, 1)s suffice
to inequality

DN (y0, y1, . . . , yN−1) ≥ 1

2s−1(π + 2)|h1· · ·hs | · 1

N

∣∣∣∣∣

N−1∑

n=0

e(h · yn)
∣∣∣∣∣

for any point h = (h1, . . . , hs) ∈ Zs under condition h1 · · · · · h2 �= 0.

(see, [6])
For the sequence {yn} produced by the recursion (2) we easy infer (with help

Lemma 8).

Theorem 3 Let {yn}, n = 0, 1, . . ., be the sequence of PRN’s of second order type
(I) with the maximal period τ = 3pm−ν . Then for discrepancy DN (x0, . . . , xN−1) of
the sequence {xn}, xn = yn

pm ∈ [0, 1)s , the following bound for N ≤ τ

D(1)
N (x0, x1, . . . , xN−1) ≤ 1

pm
+ 3p

m
2

N

(
1

p

(
2

π
log pm + 7

5

)2

+ 1

)

holds.

Proof Since {yn} has a maximal period, we have τ = 3pm−ν . Hence by Lemma (8)

D(1)
N (x0, x1, . . . , xN−1) ≤

≤ 1

pm
+ 1

N

∑

|h|≤ 1
2 p

m

∑

|h0|≤ 1
2 τ

(r(h,
1

2
pm)r(h0, τ ))−1

∣∣∣∣∣

τ−1∑

n=0

epm
(
hxn + hx0 pm

τ

)∣∣∣∣∣ ≤

≤ 1

pm
+ 1

N

∑

h

∑

h0

(
r

(
h,

1

2
pm
)
r

(
h0,

1

2
τ

))−1

·
(∣∣∣
∑

1

∣∣∣+
∣∣∣
∑

2

∣∣∣+
∣∣∣
∑

3

∣∣∣
)
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where

∑

j

=
pm−ν−1∑

k=0

epm
(
hx3k+ j + nh0 p

ν + n2hp2ν + · · · ) , j = 0, 1, 2.

Now in view of the representations of x3k+ j , j = 0, 1, 2, and Lemma (3), we obtain

D1
N (x0, x1, . . . , xN−1) ≤ 1

pm
+ 3p

m
2

N

(
1

p

(
2

π
log pm + 7

5

)2

+ 1

)
.

�

Remark 1 For the case s, 2 ≤ s ≤ 4, we have similarly

Ds
N := D(s)

N (x (s)
0 , x (s)

1 , . . . , x (s)
N−1) ≤ s

pm
+ 1

p
m
2 −ν

(
1 + 1

pν

(
2

π
log pm + 7

5

)s)
.

Theorem 4 For every s ∈ {1, 2, . . . , p − 1} we have for the sequence of PRN’s
produced by the inversive generator type (II) of second order the following estimates

D(s)
τ (x (s)

0 , x (s)
1 , . . . , x (s)

τ−1) ≤ s

pm
+ 3

p
m
2 −ν

(
1 + 1

pν

(
s

π
log pm + 7

5

)s)

hold.

This assertion is a corollary of the representation (7) and Lemmas 3 and 7.
From Theorems 3 and 4 it follows that the sequences of PRN’s {xn} produced by

generator (2) pass the s-dimensional test (s = 1, 2, 3, 4) on the uniform distribution
and statistical independency (unpredictability).Moreover, if we add the constant shift
b to the variable shift b(n) = b + cn + dF(n) with νp(c) ≥ max (νp(a), νp(b)) and
νp(d) ≥ 2νp(c), then all assertions of Theorems 1–4 will true.

Theorem 5 For the sequences of PRN’s produced by recursion (2) of type (I) or (II)
we have

∣∣SN (h)
∣∣ :=

∣∣∣∣∣∣∣

∑

(y0,y1)∈Z∗
pm

2

N−1∑

n=0

epm (hyn)

∣∣∣∣∣∣∣
≤ 12N

1
2 + 12Np− m−δ

2 ,

where

(h, p) = 1, δ =
{

νp(b) i f νp(a) = 0, νp(b) = ν,

νp(a) i f νp(a) = α, νp(b) = 0.

Theorem 6 Let the sequence {yn} be produced by (2) with parameters a, b, y0, y1,
(a, p) = (y0y1, p) = 1, νp(b) = pν0 , ν0 ≥ 1. Then for every h ∈ Z, (h, pm) = μ ≤
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m, we have

SN (h) = 1

(ϕ(pm))2

∑

y0,y1∈Z∗
pm

|SN (h, y0, y1)| ≤ 12N
1
2 + 12Np− m−ν0

2 .

Proof Let νp(h) = 0, i.e. (h, p) = 1. By the Cauchy-Schwarz inequality we get

∣∣SN (h)
∣∣2 = 1

(ϕ(pm))2

∣∣∣∣∣∣

∑

y0,y1∈Z∗
pm

N−1∑

n=0

em(hyn)

∣∣∣∣∣∣

2

=

= 1

(ϕ(pm))2

∑

y0,y1∈Z∗
pm

N−1∑

k,�=0

em(h(yk − y�)) ≤

≤ 1

(ϕ(pm))2

N−1∑

k,�=0

|σk,�(h,−h)| = 1

(ϕ(pm))2

∞∑

r=0

N−1∑

k,�=0
νp(k−�)=r

|σk,�(h,−h)| =

= 1

(ϕ(pm))2

m−1∑

t=0

N−1∑

k,�=0
νp(k−�)=t

|σk,�(h,−h)| + 1

(ϕ(pm))2

N−1∑

k=0

|σk,k(h,−h)| =

= N + 1

(ϕ(pm))2

m−1∑

t=0

N−1∑

k,�=0
νp(k−�)=t

|σk,�(h,−h)|.

Using Theorem 1, we obtain
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∣∣SN (h)
∣∣2 ≤ N + 1

(ϕ(pm))2
×

×
m−1∑

r=0

⎛

⎜⎜⎜⎜⎝

N−1∑

k,�=0
k �≡� (mod 3)

νp(k−�)=r

|σk,�(h,−h)| +
N−1∑

k,�=0
k≡� (mod 3)

νp(k−�)=r

|σk,k(h,−h)|

⎞

⎟⎟⎟⎟⎠
≤

≤ N + 1

(ϕ(pm))2
×

×

⎡

⎢⎢⎣4p
m

m−1∑

r=0

N 2

pr
+
(
∑

r<m−ν0

+
∑

m−ν0≤r≤m−1

)
N−1∑

k,�=0
k≡� (mod 3)

|σk,�(h,−h)|

⎤

⎥⎥⎦ ≤

≤ N + N

(ϕ(p(m))2
×

×
(
4Npm +

∑

r<m−ν0

N

pr
pm+ν0+r + pm

∑

r≥m−ν0

N

pr

)
≤

≤ N + N 2 p−m · 11pν0(m − ν0).

Hence, for (h, p) = 1 we obtain

∣∣SN (h)
∣∣ ≤ N

1
2 + 12Np− m−ν0

2 .

�

5 Conclusion

Although the considered sequences produced by inversive congruential generators
of second order do not reach the maximal period length T = (

pm−1(p − 1)
)2
, but

due to simplicity of construction and cryptographic applicability they merit attention
and further generalization.
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Variations on the Fermi-Pasta-Ulam
Chain, a Survey
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Abstract Wewill present a survey of low energy periodic Fermi-Pasta-Ulam chains
with leading idea the “breaking of symmetry”. The classical periodic FPU-chain
(equal masses for all particles) was analysed by Rink in 2001 with main conclusions
that the normal form of the beta-chain is always integrable and that in many cases
this also holds for the alfa-chain. The implication is that the KAM-theorem applies to
the classical chain so that at low energy most orbits are located on invariant tori and
display quasi-periodic behaviour.Most of the reasoning also applies to the FPU-chain
with fixed endpoints. The FPU-chain with alternatingmasses already shows a certain
breaking of symmetry. Three exact families of periodic solutions can be identified
and a few exact invariant manifolds which are related to the results of Chechin et
al. (1998–2005) on bushes of periodic solutions. An alternating chain of 2n particles
is present as submanifold in chains with k 2n particles, k = 2, 3, … The normal
forms are strongly dependent on the alternating masses 1, m, 1, m, … If m is not
equal to 2 or 4/3 the cubic normal form of the Hamiltonian vanishes. For alfa-chains
there are some open questions regarding the integrability of the normal forms if m
= 2 or 4/3. Interaction between the optical and acoustical group in the case of large
mass m is demonstrated. The part played by resonance suggests the role of the mass
ratios. It turns out that in the case of 4 particles there are 3 first order resonances and
10s order ones; the 1:1:1:…:1 resonance does not arise for any number of particles
and mass ratios. An interesting case is the 1:2:3 resonance that produces after a
Hamilton-Hopf bifurcation and breaking symmetry chaotic behaviour in the sense
of Shilnikov-Devaney. Another interesting case is the 1:2:4 resonance. As expected
the analysis of various cases has a significant impact on recurrence phenomena; this
will be illustrated by numerical results.
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1 Introduction

Chains of oscillators arise naturally in systems of coupled oscillators and by discreti-
sation of vibration problems of structures. In physics studying the Fermi-Pasta-Ulam
(FPU) chain has been very influential for a different reason. The FPU-chain mod-
els a one-dimensional chain of oscillators with nearest-neighbour interaction only;
see Fig. 1. It was formulated to show the thermalisation of interacting particles by
starting with exciting one mode with the expectation that after some time the energy
would spread out over all the modes. This is one of the basic ideas of statistical
mechanics. In the first numerical experiment in 1955, 32 oscillators were used with
the spectacular outcome that the dynamics was recurrent as after some time most of
the energy returned to the chosen initial state. For the original report see Fermi et
al. [14] and a review by Ford [15], recent references can be found in Christodoulidi
et al. [10] or Bountis and Skokos [1]. Discussions can be found in Jackson [22],
Campbell et al. [6] and Galavotti [16]. Note that although studies of FPU-chains are
of great interest, as models for statistical mechanics problems they are too restrictive.

1.1 Formulation

The original FPU-chain was designed with fixed endpoints and choosing the initial
energy small. Later research showed the presence of periodic solutions and wave
phenomena, also larger values of the energy were considered. Another version of
the FPU-chain is the spatially periodic chain where particle 1 is connected with the
last one. In this survey we will focus mainly on the periodic chain with small initial
values of the energy. The Hamiltonian H(p, q) for N particles is of the form:

H(p, q) =
N∑

j=1

(
1

2m j
p2j + V (q j+1 − q j )

)
, (1)

where particle 1 is connectedwith particle N . The coordinate system has been chosen
so that q = p = 0 is a stable equilibrium. For FPU-chains one considers usually
potentials V (z) that contain quadratic, cubic and quartic terms. Explicity

V (z) = 1

2
z2 + α

3
z3 + β

4
z4.

Fig. 1 A Fermi-Pasta-Ulam
chain with fixed endpoints nmass 1 2 3
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If β = 0 we call the FPU-chain an α-chain, if α = 0 a β-chain. Physically the 2
chains are different, for an α-chain the forces on each particle are asymmetric, for a
β-chain they are symmetric.

The spatially periodic chain has a second integral of motion, the momentum
integral:

m1q̇1 + m2q̇2 + · · · + mNq̇N = constant. (2)

The momentum integral (2) enables us to reduce the N dof system to a N − 1 dof
Hamiltonian system by a symplectic transformation.

For low energy orbits near stable equilibrium one usually rescales p �→ ε p̄, q �→
εq̄ , divides the Hamiltonian by ε2 and drops the bars. For the linearised system near
stable equilibrium we find:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m1q̈1 + 2q1 − q2 − qN = 0,

m2q̈2 + 2q2 − q3 − q1 = 0,

m3q̈3 + 2q3 − q4 − q2 = 0,

. . . = 0,

mNq̈N + 2qN − q1 − qN−1 = 0.

(3)

The quadratic nonlinearities start with ε, the cubic ones with ε2. The spectrum
of the linear operator (the eigenvalues near stable equilibrium) determines the reso-
nances and the nonlinear dynamics near stable equilibrium. Our survey is based on
papers that make extensive use of normalisation-averaging techniques, see Sanders
et al. [28], Chaps. 2 and 10. This involves near-identity transformations to simplify
the equations of motion or the Hamiltonian itself if one studies such a system. A
quadratic Hamiltonian indicated by H2 corresponds with a linear system of differ-
ential equations; for a Hamiltonian with cubic terms near-identity transformation
removes the non-resonant terms to higher order. Omitting the higher order terms the
resulting normalised Hamiltonian H̄ = H2 + H̄3 contains only the resonant terms
H̄3 of the cubic H3 (the index indicates the power of the polynomials). One can go
on with the normalisation process by using a near-identity transformation to remove
the non-resonant terms from H4, etc.

In general the normalised (averaged) equations that are truncated at some level
of normalisation will not be integrable, although there are many exceptions. For the
FPU-Hamiltonian in homogeneous polynomials we have the notation:

H = H2 + εH3 + ε2H4, and H̄ = H2 + εH̄3 + ε2 H̄4.

We will describe a number of prominent cases that show different dynamics for
different choices of the masses. In the original (classical) FPU problem all masses
are equal which seems a natural choice. A second natural choice is to alternate the
masses m, M,m, M, . . . ,m, M ; it is no restriction to assume 0 < m ≤ M . A quite
different approach is to look for mass ratio’s that produce interesting resonances and
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dynamics. We aim at summarising all these approaches for low energy chains. Of
special interest in the analysis are integrals correspondingwith approximate invariant
manifolds of the averaged systems, periodic solutions, bifurcations and chaos.

An important conclusion will be that the classical FPU-chain contains so many
symmetries that by symmetry breaking it is structurally unstable.

1.2 Theoretical Background

There exist an enormous amount of papers on the original FPU-chain of Fermi et
al. [14]. A large number of the papers consist of numerical explorations; they are
often inspiring but not always satisfactorily explaining the phenomena. Apart from
normalisation-averaging, symmetry considerations are important for the qualitative
results. This involves the theory of Hamiltonian systems, see for an introduction
Verhulst [29] and for the more general dynamical systems context Broer and Takens
[2]. New results on Hamiltonian systems and symmetry are found in Bountis and
Skokos [1], Efstathiou [13] and Hanßmann [18]. Basic understanding of recurrence
as formulated by Poincaré [24] vol. 3, Chap. 26 is essential.

A systematic study of dynamical systems with discrete symmetry was started by
Chechin and Sakhnenko [7]. The authors introduce the notion of bushes with a bush
comprising all modes singling out an active symmetry group in the system. A bush
corresponds with a lower dimensional invariant manifold (or approximate invariant
manifold in the sense of normalisation) giving insight in the various dynamical parts
that compose the system. The theory is quite general, it was applied to FPU chains
by Chechin et al. in [8, 9].

Independently the ideas of utilising symmetries were also developed by Rink [26]
and by Bruggeman and Verhulst in [4, 5].

2 The Classical Periodic FPU-chain

In the original FPU problem one considered the so-called mono-atomic case, i.e.
all masses equal; we call this the classical FPU-chain and put m1 = m2 = · · · =
mN = 1. The recurrence of the classical FPU-chain signalled by Fermi et al. [14]
was surprising at the time as this was before the time of publication of the KAM
theorem (see below).

The linearised system (3) has the frequencies ω j of the corresponding harmonic
equations:

ω j = 2 sin

(
jπ

N

)
, j = 1, . . . , N . (4)
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The implication is that we have many 1 : 1 resonances, N/2 if N is even and
(N − 1)/2 if N is odd. Also there exist accidental other resonances like 1 : 2 : 1. A
natural first step is to reduce the system using integral (2) to N − 1 dof.

An interesting attempt to solve the recurrence problem was made by Nishida
[23] by proposing to use the KAM theorem; this theorem guarantees under the right
conditions the existence of an infinite number of (N − 1)-tori containing quasi-
periodic solutions near stable equilibrium. This would solve the recurrence problem,
but unfortunately the spectrum is resonant and the KAM theorem can not be applied
in a simple way.

The problem was for most cases solved for the spatially periodic FPU chain by
Rink in [26]; his results can also be applied to the chain with endpoints fixed. We
summarise the reasoning. First the systemwith cubic and quartic terms in the Hamil-
tonian is transformed by symplectic normalisation (also called Birkhoff-Gustavson
normalisation) to a simpler form. If the resulting normalised Hamiltonian H̄ is non-
degenerate in the sense of the KAM theorem and if it is integrable i.e. containing,
in addition to integral (2), N − 1 functionally independent integrals that are in invo-
lution, then the KAM theorem applies to the original Hamiltonian H . By the trans-
formation the nonresonant terms of the cubic and quartic part are shifted to higher
order. The original system contains various discrete symmetry groups, a rotation
symmetry and a reflection symmetry. These symmetries carry over to the normalised
Hamiltonian systemwith the surprising result that the cubic terms in H̄ vanish! From
theorem 8.2 of Rink [26] we have for the classical periodic FPU chain derived from
Hamiltonian (1) containing cubic and quartic terms:

H̄3 = 0. (5)

The analysis in Rink [26] of H̄ produces furthermore:

1. Assume α �= 0 and N is odd, then H2 + ε2 H̄4 is integrable and nondegenerate in
the sense of the KAM theorem.

2. Assume α �= 0 and N is even, then H2 + ε2 H̄4 hast at least (3N − 4)/4 quadratic
integrals (if 4 divides N ) or (3N − 2)/4 quadratic integrals (if 4 does not divides
N ).

3. The normalised β-chain (α = 0) is integrable and nondegenerate in the sense of
the KAM theorem. Almost all low-energy orbits are periodic or quasi-periodic
and move on invariant tori near stable equilibrium.

4. Similar results can be obtained for the classical FPU-chain with fixed endpoints.

The remaining problem is the integrability of H2 + ε2 H̄4 in the case of the even
α-chain. To check this one has to carry out the normalisation to quartic terms which
is quite a lot of work if N is large. We will discuss an example with α = 1, β = −1.

Example 1 Consider a periodic Fermi-Pasta-Ulam chain consisting of four particles
of equalmassm (=1) with quadratic and cubic nearest-neighbor interaction. Periodic
means that we connect the first with the fourth particle. The Hamiltonian is in this
case:
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H(p, q) =
4∑

j=1

(
1

2
p2j + V (q j+1 − q j )

)
, (6)

with

V (z) = 1

2
z2 + 1

3
z3 − 1

4
z4.

The corresponding equations of motion were studied Rink and Verhulst [25].
The equations induced by Hamiltonian (6) have a second integral of motion,

the momentum integral
∑4

j=1 p j = constant. This enables us to reduce the 4 dof
equations of motion to 3 dof by a canonical (symplectic) transformation. From Rink
and Verhulst [25] we have the reduced system:

⎧
⎪⎨

⎪⎩

ẍ1 + 4x1 = 4x2x3 + 4x31 + 6x1(x22 + x23 ),

ẍ2 + 2x2 = 4x1x3 + x32 + 3x2(x23 + 2x21 ),

ẍ3 + 2x3 = 4x1x2 + x33 + 3x3(x22 + 2x21 ).

(7)

We can identify 3 families of periodic solutions, the 3 normal modes in the coor-
dinate planes. Consider the x2 normal mode that satisfies the equation:

ẍ2 + 2x2 = x32 .

In general, solutions far from stable equilibrium become chaotic, so we restrict
ourselves to a neighbourhoodof the origin by rescaling x1 = εx̄1, x2 = εx̄2, x3 = εx̄3
and then omitting the bars. Rescale also

√
2t = s. System (7) becomes:

⎧
⎪⎨

⎪⎩

d2x1
ds2 + 2x1 = 2εx2x3 + 2ε2x31 + 3ε2x1(x22 + x23 ),
d2x2
ds2 + x2 = 2εx1x3 + 1

2ε
2x32 + 3

2ε
2x2(x23 + 2x21 ),

d2x3
ds2 + x3 = 2εx1x2 + 1

2ε
2x33 + 3

2ε
2x3(x22 + 2x21 ).

(8)

The equation for the x2 normal mode was studied in many introductions to the
averaging method, where with initial values x2(0) = a, dx2(0)/ds = 0 we obtain
the approximation:

φ(s) = a cos(s − ε2
3

16
a2s).

We transform x1 = y1, x2 = φ(s) + y2, x3 = y3 in system (8) and linearising we
find:

⎧
⎪⎨

⎪⎩

d2 y1
ds2 + 2y1 = 2εφ(s)y3 + 3ε2y1φ2(s),
d2 y2
ds2 + y2 = 0,
d2 y3
ds2 + y3 = 2εy1φ(s) + 3

2ε
2y3φ2(s).

(9)
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Fig. 2 The actions for 3000 timesteps near the unstable x2 normal mode of system (7) with ε =
0.1, initial conditions x1(0) = x3(0) = 0.1, x2(0) = 1 and initial velocities zero. Left the action
I2(t) = 1

2 (ẋ22 + 2x22 ) starting near zero and increasing to values near 1; also the nonresonant I1(t) =
1
2 (ẋ21 + 4x21 ). Right the resonant action I3(t) = 1

2 (ẋ23 + 2x23 ) that exchanges energy with the x2
mode (pictures from [31])

The first and third equations are coupled but there is no resonance because of the
basic frequencies

√
2 and 1; we conclude that the solutions of system (9) are stable.

Interestingly, it was proved in [25] that near stable equilibrium the stability in linear
approximation is destroyed by the nonlinearities. See Fig. 2 for an illustration.

Example 2 (Other examples) The relatively simple case of 3 particles was discussed
by Ford [15]; the system is identified with the Hénon-Heiles system, a 2 dof Hamil-
tonian system in 1 : 1 resonance; for a survey see Rod and Churchill [27]. This
is interesting as this system has an integrable normal form for low energy values.
Between the invariant tori there exists chaos but of exponentially small measure. If
the energy is increased the amount of chaos increases, destroying more and more
tori until the system looks fully chaotic at higher energy. Proofs are available for
this behaviour, see Holmes et al. [20], except that we do not know whether at “full
chaotic behaviour” there are no tiny sets of tori left, undetected by numerics.

In Rink and Verhulst [25] the classical system with 4, 5 and 6 particles was
analysed in the cases of α- and β-chains, also for mixed cubic and quartic terms. In
these examples the normal forms are integrable.

3 The FPU-chain with Alternating Masses

Alternating themasses of aFPU-chain produces already a certain symmetry breaking.
It is no restriction to rescale the smallest mass to 1 and have largest mass m ≥ 1.

So we consider the periodic FPU-chain with N (even) masses that alternate:
1,m, 1,m, . . . , 1,m (the case 0 < m ≤ 1 follows from symmetry considerations).
The chain is related to the formulation in Galgani et al. [17] that analyses the chain
and explores numerical aspects if N is large. In Bruggeman andVerhulst [5] a general
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analysis was started, but there are still many open questions; we summarise a number
of results of this paper.

The eigenvalues λ j , j = 1, . . . N of system (3) are with a = 1/m in the case of
alternating masses:

λ j = 1 + a ±
√
1 + 2a cos(2π j/N ) + a2, j = 1, . . . N . (10)

Several observations can be made:

1. One eigenvalue equals 0 corresponding with the existence of the momentum
integral (2).

2. If N is amultiple of 4we have among the eigenvalues the numbers 2(a + 1), 2, 2a.
3. For large masses m (a → 0) the eigenvalue spectrum consists of 2 groups, one

with size 2 + O(a) (the so-called optical group) and one with size O(a) (the
so-called acoustical group). The symplectic transformation to N − 1 dof mixes
the modes because of the nearest-neighbour interactions, present already in the
linearised system (3). So we cannot simply identify the dynamics of the optical
group with the dynamics of the large masses.

A few qualitative and quantitative results were obtained by Bruggeman and Ver-
hulst [5]:

1. We can identify three explicit families of periodic solutions characterised by the
frequencies

√
2,

√
2a,

√
2(1 + a). The solutions are either harmonic or elliptic

functions.
2. In the spirit of Chechin and Sakhenko [7] we can identify bushes of solutions

in the following sense: the dynamics of a system with N particles will be found
as a submanifold in systems with kN particles (k = 2, 3, . . .). This increases the
importance of studying chains with a small number of particles enormously. Note
that the result is valid for large values of N , it also holds in the classical case
m = 1.

3. First order averaging-normalisation (m �= 1) produces for the α-chain only non-
trivial results ifm = 2 andm = 4/3. From the point of view of normalisation the
case of large m (a → 0) has to be treated separately.

4. An interesting discussion by Zaslavsky [32] deals with the phenomenon of delay
of recurrence in Hamiltonian systems by quasi-trapping. This phenomenon arises
for 3 and more dof if resonance manifolds, acting as subsets of the energy mani-
fold, contain periodic solutions surrounded by invariant tori. The orbits entering
such resonance manifolds may be delayed passage by staying for a number of
revolutions near these tori.
InBruggeman andVerhulst [5] an explicit analysis and numerics of quasi-trapping
is given for a number of cases with 8 particles. In the case of large mass m a sec-
ond order normalisation is necessary; the recurrence is sensitive to the initial
conditions.

5. For the alternating mass m large (small a) we expect different dynamics for the
optical group (eigenvalues near 2) and the acoustical group (eigenvalues O(a)),
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Fig. 3 Interaction between optical and acoustical group in invariantmanifoldM correspondingwith
4 particles. The modes x1, x2 are near 1 : 1 resonance. We have in system (11) a = 0.01, x1(0) =
x2(0) = 0.5, x3(0) = 0 and initial velocities zero. The instability of the solution in the optical group
is indicated by the action E1(t) = 0.5(ẋ21 + 2(1 + a)x21 ) (middle). Although far from resonance,
the low-frequency mode x3 is excited; figs left x3(t) and right E3(t) = 0.5(ẋ23 + 2ax23 )

see Galgani et al. [17]. This raises an old question: can high frequency modes
transfer energy to low frequencymodes and vice versa? The answer is affirmative,
see the discussion below and Fig. 3.

We summarise results for the cases N = 4n and N = 8n.

3.1 Chain with 4n Particles, n = 1, 2, 3, . . ., [3]

A system with 4 particles is imbedded as an invariant manifold in a system with 4n
particles. The momentum integral (2) enables reduction to 3 dof with frequencies√
2,

√
2a,

√
2(1 + a). We find no 3 dof first order resonances in a system with 4

particles. The normal modes are exact periodic solutions both for the α- and the β-
chain. The normal forms are in both cases integrable to second order. The recurrence
of the orbits on an energy manifold depends on the initial conditions, starting near
an unstable periodic orbit lengthens the recurrence times.

For the case large mass m (a small) see below.

3.2 Chain with 8n Particles, n = 1, 2, 3, . . ., [5]

A system with 8 particles is imbedded as an invariant manifold in a system with 8n
particles. Using integral (2) produces reduction to 7 dof with frequencies:

√
2,

√
2a,

√
2(1 + a), 1 + a +

√
1 + a2 (twice), 1 + a −

√
1 + a2 (twice).

The normal forms become much more complex (H4 contains 49 terms) so we
restrict the analysis to α-chains. As expected we recover the invariant manifold
associated with the first 3 eigenvalues (or frequencies) for the system before normal-
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isation; we find two more 6-dimensional invariant manifolds of the exact equations.
The 3 invariant manifolds have the normal mode periodic solution associated with
the frequency 2a in common. This mode plays a pivotal part in the dynamics.

Normalisation produces H̄3 = 0 except if a = 0.5, 0.75 and if a is close to zero
(large mass). The normal form flow in the 3 invariant manifolds is integrable. In the
case a = 0.75 we find instability of the invariant manifolds, the stability in the other
cases can not be decided as the eigenvalues are purely imaginary (this is a basic
stability problem of Hamiltonian systems with more than 2 dof).

A conclusion is that the presence of nested invariant manifolds (bushes) makes
the equipartition of energy rather improbable.

3.3 Interactions Between Optical and Acoustical Group

The eigenvalues and frequencies obtained from (10) suggest that for mass m large
we have two groups of oscillators, one with frequency size close to

√
2 and one with

size O(
√
a). There are indications in Bruggeman and Verhulst [3] that in the case of

a chain with 4 particles there exists significant interactions between the 2 groups. It
turns out that in α-chains the acoustical group can be strongly excited by the optical
group.

We will clarify this interaction phenomenon in the case of 4n particles using
the 4 particles invariant manifold M that consists of the modes with frequen-
cies

√
1 + a,

√
2,

√
2a. This submanifold corresponds with the 4 particles system

described above.
As 0 < a � 1 there is actually no need for a scaling by small parameter ε in this

case. The corresponding equations of motion are (see Bruggeman and Verhulst [5]):

⎧
⎪⎨

⎪⎩

ẍ1 + 2(1 + a)x1 = 2
√
a(1 + a)x2x3,

ẍ2 + 2x2 = 2
√
a(1 + a)x1x3,

ẍ3 + 2ax3 = 2
√
a(1 + a)x1x2.

(11)

The modes x1 and x2 are in a detuned 1 : 1 resonance when choosing 0 < a � 1.
Consider the general position periodic solution of the 1 : 1 resonance of the x1, x2
modes, described in Bruggeman and Verhulst [3]. A normal form approximation is
x1(t) = r0 cos(

√
2t + ψ0), x1(t) = ±x2(t); the approximation is based on the equa-

tions for these modes to order O(a):

ẍ1 + 2x1 = 2
√
ax2x3 + a . . . , ẍ2 + 2x2 = 2

√
ax1x3 + a . . .

with x3 varying on a long timescale. The asymptotic approximation with x1 = x2
leads to a forced, linear equation for x3(t):

ẍ3 + 2ax3 = 2
√
ar20 cos

2(
√
2t + ψ0), (12)
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with particular solution:

x3(t) = r20
2
√
a

− r20
8r20 − 2

√
a
cos(2

√
2t + 2ψ0). (13)

To this expression we have to add the homogeneous solution consisting of
cos(

√
2at) and sin(

√
2at). It is remarkable that the particular solution has a large

amplitude, O(1/
√
a), and period π/

√
2. The homogeneous solution has long period

π
√
2/

√
a. We find that the “acoustical mode” x3 is strongly excited; x1 and x3 are

shown in Fig. 3 in the case of large mass 100.

4 Resonances Induced by Other Mass Ratio’s

The classical FPU-chain and the chain with alternating masses are natural models of
physical chains. It is clear from dynamical systems theory that resonances and sym-
metries play a fundamental part in all these model chains; see for instance Poincaré
[24] or Sanders et al. [28].

Take for instance the classical FPU-chain with N = 6; the 6 harmonic frequencies
of system (3) are 1,

√
3, 2,

√
3, 1, 0. As we know, both for α- and β-chains H̄3 = 0

so the 1 : 2 : 1 first order resonance is not effective because of symmetry; it might
appear as a 2 : 4 : 2 resonance at higher order. The√

3 : √
3 = 1 : 1 resonance plays

a part for β-chains.
A different choice of masses that would make the frequency spectrum of system

(3) non-resonant would always have near-resonances as the rationals are dense in
the set of real numbers. This would produce detuned resonances with behaviour
related to exact resonance, so even in this case the analysis of Nishida [23] would
not apply although his idea turns out to be correct. Thus it makes sense to explore
systematically the kind of resonances that may arise in FPU-chains. As we shall see
this leads to various applications.

The exploration of possible resonances was done by Bruggeman and Verhulst
[4] for the case of 4 particles leading to chains described by 3 dof. In Sanders et
al. [28], Chap. 10 a list of prominent Hamiltonian resonances in 3 dof is given for
general Hamiltonians. In general for 3 dof we have 4 first order resonances (active
at H3) and 12second order resonances (active at H3 + H4). Considering system (3)
for the special case of the FPU chains with arbitrary positive masses, we find that
the first order resonance 1 : 2 : 2 does not arise, of the 12seond order resonances
1 : 1 : 1 and 1 : 3 : 3 are missing. The importance of the resonances that do arise is
partly determined by the size of sets in the parameter space of masses. We present
the results from Bruggeman and Verhulst [4] where the sets in 3d-parameter space,
the mass ratios of (m1,m2,m3,m4), with active resonance are indicated between
brackets:
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First order resonance
1 : 2 : 1 (4 points); 1 : 2 : 3 (4 open curves); 1 : 2 : 4 (12 open curves).

Second order resonances

1 : 1 : 3 (4 points) 1 : 2 : 5 (12 open curves)
1 : 2 : 6 (12 open curves) 1 : 3 : 4 (4 open curves)
1 : 3 : 5 (4 open curves) 1 : 3 : 6 (12 open curves)
1 : 3 : 7 (12 open curves) 1 : 3 : 9 (12 open curves)
2 : 3 : 4 (2 compact curves); 2 : 3 : 6 (2 compact curves)

To determine the possible resonances for FPU chains with more than 4 particles
is a formidable linear algebra and algebraic problem that has not been solved in
generality. A general result from Bruggeman and Verhulst [4] is that for N ≥ 4 no
mass distribution will produce the N dof 1 : 1 : . . . : 1 resonance. We will discuss
some results that are known for the 1 : 2 : 3 and 1 : 2 : 4 resonances with 4 particles.
The second order resonances are largely unexplored for FPU-chains.

4.1 The 1 : 2 : 3 Resonance

This resonance is of special interest as in this case for the general Hamiltonian
chaos does not become exponentially small near stable equilibrium as ε → 0 (see
Hoveijn and Verhulst [21]). In general the normal form of the 1 : 2 : 3 resonance is
not integrable; see Christov [11]. However, symmetries may change the dynamics
as is shown in systems with 4 particles, see Bruggeman and Verhulst [4] and below.

The symmetric case of 4 particles α-chains, m1 = m3

Using integral (2) and symplectic transformation we find the Hamiltonian:

H(p, q) = 1

2

3∑

j=1

(p2j + ω2
j q

2
j ) + ε(d3q

2
1 + d10q

2
2 + d6q

2
3 )q3,

(ω1, ω2, ω3) = (3, 2, 1),

(14)

with coefficients d3, d6, d10 �= 0. The (p1, q1) and the (p2, q2) normal modes are
exact periodic solutions in the 2 coordinate planes. Averaging-normalisation pro-
duces in addition the (p3, q3) normal mode periodic solution. We find 3 integrals
of motion of the normalised system so the normal form dynamics is integrable. The
normal form system contains only one combination angle χ = ψ1 − ψ2 − ψ3 pro-
ducing for fixed energy families of periodic solutions (tori) in general position. This
is a degeneration in the sense described by Poincaré [24] vol. 1, Chap. 4.

The stability of the normal modes is indicated in Fig. 4, left; the normal 2nd and
3rd modes (ω = 2, 1) are stable with purely imaginary eigenvalues, the eigenvalues
are coincident for the 2nd normal mode (Krein collision of eigenvalues). The first
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HH

EE

EE

EE

C

ω=3 ω=3

ω=1 ω=1

ω=2ω=2

HH

Fig. 4 The 1 : 2 : 3 resonance with action simplex of the symmetric case m1 = m3 (left) and right
a typical case with all masses different. Along the axes the actions form a triangle for fixed values
of H2 which is an integral of the normal forms. The frequencies 1, 2, 3 indicate the 3 normal mode
positions at the vertices. The black dots indicate periodic solutions, the indicated stability types
are HH (hyperbolic-hyperbolic), EE (elliptic-elliptic) and C (complex with real and imaginary
parts nonzero). The two (roughly sketched) curves connecting the 2 normal modes in the left
simplex correspond for fixed energy with two tori consisting of periodic solutions, respectively
with combination angle χ = 0 and π . The tori break up into 4 general position periodic solutions
if all masses are different

mode (ω = 3) is unstable with real eigenvalues; In Bruggeman and Verhulst [4] a
detailed description is given of the motion of the orbits starting near the unstable
normal mode (ω = 3).

We will see that the case m1 = m3 is structurally unstable, the dynamics changes
drastically if all masses are different.

The case of 4 particles α-chains, all masses different
This case presents striking differences from the case with 2 masses equal, the sym-
metry is broken. We summarise:

1. The 3rd normal mode (ω = 1) vanishes, the periodic solution shifts to the 2 dof
subspace formed by the first and 3rd mode; stability EE.

2. The second normal mode becomes complex unstable (C) by a Hamiltonian-Hopf
bifurcation. In this case two pairs of coincident imaginary eigenvalues (the case
m1 = m3) move into the complex plane.

3. The presence of a complex unstable periodic solution fits in the Shilnikov-
Devaney scenario leading to chaotic dynamics in the normal form, see Devaney
[12] and Hoveijn and Verhulst [21]; the normalised Hamiltonian is not integrable
in this case. Establishing chaos involves the presence of a horseshoe map. As this
map is structurally stable, finding chaos in the normal form, this chaos will persist
in the original system.

4. The tori consisting of periodic solutions in the case m1 = m3 break up into 4
periodic solutions at fixed energy.
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4.2 The 1 : 2 : 4 Resonance

Work in progress for the FPU-chain with 4masses in 1 : 2 : 4 resonance can be found
in Hanßmann et al. [19]; this analysis includes detuning. We mention some of the
results in the case of opposing masses equal, m1 = m3.

1. The case of 2 opposing masses equal induces aZ2 symmetry with as consequence
that for both α- and β-chains we have H̄3 = 0.

2. The normal form H2 + H̄4 for the α- and β-chains has 3 normal mode periodic
solutions and is integrable.

3. Normalisation to H6 breaks the symmetry, only 2 integrals of the normalised
Hamiltonian could be found.

Interestingly the case of 2 adjacent equal masses produces different results; in this
case H̄3 �= 0, the symmetry mentioned above is broken.

The case of all masses different will be studied in a forthcoming paper.

4.3 An Application to Cell-Chains

One can use low-dimensional FPU-chains as cells to form a new type of chain,
see Fig. 5. This is quite natural when thinking of interactions of molecules (a small
group of connected oscillators) instead of atoms leading to a chain of connected near-
neighbour interacting oscillators. A few examples of such cell-chains are discussed
in Verhulst [30].

Consider cells consisting of a FPU-chain with 4 particles. As we have seen before
the dynamics within each cell will strongly depend on the choice of the 4 masses.
A second important aspect is how the cells are linked. Connecting cells by particles
where stable periodic solutions dominate is expected to produce less transfer of
energy than connecting by particles with more unstable periodic solutions and more
active dynamics. Also the linking of cells will detune the resonances; this effect can
be stronger if the FPU-chain is structurally unstable. We will show a few examples
of transfer of energy for the simplest case of two connected cells. As the systems
are Hamiltonian the phase-flow will always be recurrent but if the recurrence takes a
long time this will indicate active but small transfer of energy between the cells with
delayed recurrence.

Fig. 5 A FPU cell-chain
with 3 cells
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8 10

11

12

5



Variations on the Fermi-Pasta-Ulam Chain, a Survey 1039

Hamiltonian (15) describes the interaction of 2 cells if c1 �= 0.

H(p, q) =
4∑

j=1

(
m j

2
p2j + 1

2
(q j+1 − q))

2)

)

+
8∑

j=5

(
m j−4

2
p2j + 1

2
(q j+1 − q j )

2

)
+ ε

2
c1(q2 − q6)

2 + H3,

(15)

with

H3 =
8∑

j=1

ε

3
(q j+1 − q j )

3.

In the experimentswe startwith zero initial values in the 2nd cell,q j (0) = v j (0) =
0, j = 5, . . . , 8. If c1 = 0 we have non-trivial dynamics and corresponding distance
d(t) to the initial values only in the first cell. Explicitly:

d(t) =
√√√√

8∑

j=1

[(q j (t) − q j (0))2 + (v j (t) − v j (0))2]. (16)

The distance d(t) can be used to consider recurrence to a δ-neighbourhood of the
initial values. An upper bound L for the recurrence time has been given in Verhulst
[30]. Suppose we consider a bounded Hamiltonian energy manifold with N dof,
energy value E0 and Euclidean distance d(t) of an orbit to the initial conditions,
than we have for the recurrence time Tr to return in a δ-neighbourhood of the initial
conditions an upper bound L with:

L = O

(
EN−1/2
0

δ2N−1

)
. (17)

For one FPU-cell we have with reduction to 3 dof L1 = E5/2
0 /δ5 and for 2 linked

FPU-cells L2 = E13/2
0 /δ13. Of course, starting near a stable periodic solution or if

there exist extra first integrals will reduce the recurrence time enormously.

Numerical experiments
Wepresent numerical results for 3 caseswith cells consistingof 4masses: the classical
FPU-chain with equal masses in Fig. 6 (m = 0.1 to have comparable timescales), the
1 : 2 : 3 resonance case with symmetry induced by the choicem1 = m3 in Fig. 7 and
the less-balanced case of the 1 : 2 : 3 resonancewhere the dynamics is chaotic, Fig. 8.
In each of the 3 cell-chainswe have initial values q1(0) = 0.05, q2(0) = 0.2, q3(0) =
0.05, q4(0) = 0.05, q5(0) = q6(0) = q7(0) = q8(0) = 0.0, initial velocities are all
zero. So we start in the first cell near the second normal mode plane.
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Fig. 6 The classical case m = 0.1 with strong recurrence for 1 cell (roughly 100 timesteps if
δ = 0.05) and delayed recurrence for 2 cells (roughly 5000 timesteps)

Fig. 7 The symmetric 1 : 2 : 3 case m1 = m3; the normal form is integrable, we have strong
recurrence. Left one cell, with δ = 0.01 roughly 800 timestep; right 2 cells with δ = 0.05 roughly
1600 timesteps

Fig. 8 The chaotic 1 : 2 : 3 cell-chain with already delayed recurrence in one cell; with δ = 0.05
left 15,000 timesteps; right for 2 cells we have to integrate nearly 90,000 timesteps
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As expected the recurrence times increase when adding one cell but most dramat-
ically in the chaotic case. The inverse masses for Fig. 7 are a1 = 0.0357143, a2 =
0.126804, a3=0.0357143, a4=0.301767 (symmetric 1 : 2 : 3 resonance with m1 =
m3) and for Fig. 8 a1=0.00510292, a2=0.117265, a3 = 0.0854008, a4 = 0.292231
(chaotic 1 : 2 : 3 resonance).

In all these recurrence experiments with for instance δ = 0.1 or δ = 0.05 the
recurrence times are definitely lower than the corresponding upper bound L given
by (17).

The numerics used Matlab ode 78 with abs and rel error e−15.

Acknowledgements Comments on earlier versions of this paper by Tassos Bountis and Roelof
Bruggeman are gratefully acknowledged.
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Chaotic Mixing Experiments at High
Temperature: Towards Unravelling
a Large Magmatic Province

Caio M. Vicentini, Cristina P. de Campos, Werner Ertel-Ingrisch,
Diego Perugini, Leila S. Marques, and Donald B. Dingwell

Abstract The Paraná-Etendeka Magmatic Province (PEMP) is the largest outpour
of magma on the Earth surface during lower Cretaceous times (~133 Ma). Basalts
(SiO2~50%, both high-Ti and low-Ti members) predominate over an estimated
volume of 7·105 km3. However, ca. 2.5% of the volcanic products, are chemically
more evolved (SiO2>63%). Their genesis is still under debate. This work aims a first
attempt to experimentally reproduce the impact of underplating basaltic melt into a
pre-existing continental crust. Mixing dynamics is thought to greatly influence the
formation/contamination conditions of the high-Ti acidmember (Chapecó-type).We
used a chaotic mixing protocol (Journal Bearing System) at 1,350 °C and following
end-members: KS-700 basalt (high-Ti Pitanga-type from PEMP; η1350 = 8.78 Pa.s;
ρ1350 = 2.47 g/cm3) and LMC-027 granite (syenogranite from Capão Bonito Stock;
η1350 = 1.22·105 Pa s; ρ1350 = 2.29 g/cm3). Homogenized glasses from the basalt and
the granitic basement were used in an 80/20 proportion, respectively. The experiment
was performed during 212min in total, i.e., two periods of: (i) two clockwise rotations
of outer cylinder (35 min); (ii) six anticlockwise rotations of inner cylinder (18 min).
The independent and non-simultaneous movements of the two cylinders guaranteed
the chaotic flow. The obtained mixed glass was cut in slices of 3 mm perpendicular
to the rotation axes and two of the sections reproduced Poincaré patterns, which
are theoretically expected to be resulted for this kind of dynamic mixing. With the
development of stretching and folding processes, chaotic trajectories are distributed
off-centered as lamellar lens-like structures in the mixed system. Vortex structures
are comparable to those produced by mixing Fe-free silicate melts, however with
much higher fractal dimension (Df). These sections were preliminarily analyzed for
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the changes in morphology by comparing the Df using binary images (ImageJ soft-
ware). ObtainedDf’s (≈1.79) are close to those from similar experimentswith natural
melts, although widespread orbicular structures found along all basaltic morpholog-
ical domains are thought to enhance the complexity. Further experiments varying
the granitic end-member are planned. Raman, microprobe and LA-ICP-MS investi-
gations will be performed to compare chemical behavior of major/minor oxides and
trace elements. Furthermore, numerical simulations will follow.

Keywords Magma mixing · Chaotic dynamics · Journal bearing system at
high-T · Paraná-Etendeka Magmatic Province · Chapecó-acidic type

1 Introduction

The Paraná-Etendeka Magmatic Province (PEMP—Fig. 1) is the second largest LIP
(large igneous province) that occurs on the Earth’s surface with over a 1·106 km2

of area and 800,000 km3 (Frank et al. [1]) of expelled material. It took place about
133 My ago (Piccirillo and Melfi [2]; Janasi et al. [3]; Marzoli et al. [4]). Basalts
(rocks with SiO2 ≈ 50 wt % in their composition) are the most common members
found along the province and they are mainly divided in two groups: one with low
contents of titanium (TiO2 < 2 wt%; LTi), and other one with high contents (TiO2

≥ 2 wt%; HTi). HTi basalts also differ from LTi due to the higher contents of P2O5,
large-ion lithophile elements (such as Sr, Zr, Ba) and rare earth elements (as La,
Ce and Lu) in general (Piccirillo and Melfi [2]; Marques et al. [5]; Peate et al.
[6]). However, approximately 2.5% of the volcanic products are chemically more
evolved (SiO2 ≥ 63 wt%), named rhyolites, and they also can be divided in two
further-subgroups, according to the amount of TiO2. Each subgroup also presents
a geochemical behaviour similar to those found in the basalts (Piccirillo and Melfi
[2]; Nardy et al. [7]). Despite the genesis of the rhyolites from PEMP being still
under debate, the most accepted ideas consider these evolved members as products
of basaltic evolution and interaction with other crustal rocks. Therefore, each group
of basaltic rocks (LTi and HTi) would have originated rhyolites with respective low
and high contents of titanium.

Figure 2 shows the underplating model used for Piccirillo andMelfi [2] to explain
the genesis of Chapecó-type, where a HTi basaltic body is trapped under the crust,
which is mainly composed by granitic rocks. At some point, the basalt has been
remelted and interacted with the granitic basement around. Petrogenetic models tend
to consider themagma chambers as static, so that the evolution ofmagmas is basically
linear in time. However, in the last years, scientists began to compare the structures
observed in volcanic environmental with the fractal geometry (De Rosa et al. [9],
Perugini et al. [10], Perugini and Poli [11]), which is a characteristic of chaotic
dynamic processes, and the complex dynamics inside the magma chamber started to
be considered. Since then, fractal analysis and numerical simulations have been used
as a tool to quantify such processes. Therefore, this work aims to an experimental
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Fig. 1 Map from Paraná-Etendeka Magmatic Province—PEMP. Africa is rotated for present posi-
tion of South America. Insert: TC = Tristan da Cunha island. Modified after Nardy et al. [7],
Machado et al. [8] and references therein

approach of the genesis of high-Ti acid member of PEMP (Chapecó-type). It is a
first attempt to reproduce the impact of underplating basaltic melt into a pre-existing
continental crust and investigate the influence of chaotic mixing dynamics in their
formation/contamination processes.

In order to investigate the genesis of Chapecó-acidic type, we chose an experi-
mental approach, which is based on previously obtained results from chaotic mixing
experiments with geological materials at high temperatures. Therefore, the devel-
opment and construction of the first experimental apparatus succeeded, being able
to reproduce the chaotic dynamics according a specific protocol of motion at high
temperature (De Campos et al. [12]). It mimics the processes that would govern
the magma chambers, in where the mixing process occurs. Results with synthetic
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Fig. 2 Model for the underplating scenario of Chapecó-type genesis

end-members showed similar patterns comparing to those theoretically expected
(e.g.: Poincaré sections). Using the same device, Perugini et al. [13] generated a
hybrid sample from synthetic end-members and correlated the chemical analysis
with numerical simulations considering that the particles have been submitted to a
chaotic field motion. The comparison demonstrated that the patterns fit, meaning
that a chaotic mixing process could explain what is observed in nature. Finally,
Morgavi et al. [14] performed the same experiment using natural end-members and
finding different geometrical patterns compared to those obtained from synthetic end-
members. Furthermore, the chemical analysis showed that the elementary mobility
is different to the linear behaviour expected.

2 Methods

The chaotic mixing device is based on the Journal Bearing System (JBS; Swanson
and Ottino [15]) that is able to generate a chaotic flow using a certain protocol of
motion. Our apparatus scheme is shown in Fig. 3. It is basically consisted by two
independent motors. The lower motor moves a base where an Al2O3-rod (alumina:
AL23) is fixed and allows positioning the crucible inside the hot spot of a high
temperature furnace. The upper motor fixes an off-centered spindle also made from
alumina and sheathed by a Pt foil in its extremity that will be positioned inside the
sample. The geometry of JBS is determined basically by: (i) the ratio of the radii of
the two cylinders, r = Rin/Rout = 1/3; (ii) the eccentricity ratio to the outer cylinder
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Fig. 3 Schematics of the experimental apparatus. Adapted fromDeCampos et al. [12] andMorgavi
et al. [14]

ε = δ/Rout = 0.3, where δ is the distance between the centers of the inner and outer
cylinders (Rin and Rout). The system was designed to enable independent rotations
of inner and outer cylinders at variable speeds, directions and stirring protocols and
to place the apparatus in the hot spot region of a well-calibrated high-temperature
oven. The motors for both (inner and outer) cylinder movements are controlled by
a central mixing system, which enables independent control of rotation direction,
rotation speed and number of rotations (De Campos et al. [12]).

The protocol used to generate the chaotic streamlines is: (i) two clockwise rota-
tions of outer cylinder (35 min); (ii) six anticlockwise rotations of inner cylinder
(18 min); (iii) two clockwise rotations of outer cylinder (35 min); (iv) six anticlock-
wise rotations of inner cylinder (18 min). It totalizes 212 min of non-simultaneous
and independent movements, which guarantees the chaotic flow. This choice was
made based on Morgavi et al. [14] that performed the experiment during ½, 1 and
2 protocols and demonstrated that the mixing efficiency at this time is sufficient to
preserve the structures.

The end-members used in our experiment were: (i) a HTiPitanga-type basalt from
PEMP (mafic); (ii) a basement syenogranite from Capão Bonito Stock (felsic). The
experimental temperature was 1,350 °C and it was chosen taking in to account the
lowest value that still allows the interaction between the melts, once at low temper-
atures the viscosity increases and in some point no interaction would be possible.
Estimated temperatures in nature where this interaction happens are lower than that,
however there are other factors not considered in the experiment such as volatiles
content and pressure that may greatly change the viscosity. In our case, melts are free
of volatiles. At 1,350 °C, measured viscosity and calculated density for basalt was
η1350 = 8.78 Pa.s; ρ1350 = 2.47 g/cm3, while to rhyolite (melted granite) was η1350 =
1.22·105 Pa s; ρ1350 = 2.29 g/cm3, which leads to a viscosity ratio of approximately
1.4·104. For the preparation, the end-members were pulverized and heated to produce
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a glass. Melts have been homogenized with a viscometer following the procedure
described by Morgavi et al. [14]. The dry-bubble-free glasses were inserted into a
Pt80–Rh20 crucible with 25 mm of diameter, 50 mm of length and 1 mm thick in a
proportion of 80% of basalt and 20% of rhyolite. After positioning the crucible in the
device, the oven is turned on and it heats up during approximately 40 min to all parts
accommodate. During this time the temperature increases gradually until 1,350 °C is
reached and then the mixing protocol starts. At the end, the chaotic mixing device is
turned off and hybrid glass is cooled at room temperature. After cooling, the sample
was drilled out. The obtained core was cut perpendicular to the rotation axis into
several pieces with approximately 3 mm length for further analysis. It is important
to notice that De Campos et al. [12], Perugini et al. [13] and Morgavi et al. [14] used
the inverse proportion (i.e., 80% of felsic end-member with 20% of mafic inside)
due to the fact the higher viscous material would stabilize the less viscous one at
high temperatures. In principal, it would avoid any movement of the small cylinder
before the protocol starts, although during the experiment the interaction expected
between the end-members and the resultant patterns would not have been affected.

3 Results and Discussion

The initial cooling rate observed was approximately 86.5 °C/min, which is concor-
dant with previous reports (De Campos et al. [12]; Morgavi et al. [14]). Two
sections of the sample core presented morphological aspects theoretically expected
and similar to Poincaré sections. These have been polished for microscopic further
geochemical analysis as shown in Fig. 4.

Fig. 4 Representative sections of chaotic mixing patterns after one protocol. Dark grey = felsic
end-member; light grey = mafic end-member
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The sections exhibit complex patterns of non-centered lamellar structures
consisting of alternation of lens-like filaments in the mixed system. Around the inner
cylinder these filaments are more or less concentric. At the top part it is observed a
complex morphology composed by filaments strongly stretched and folded defining
a lobate and banded structure pointing to the right side (4 top; 5 bottom is an adja-
cent face, therefore it points to opposite direction). The left side shows the felsic
end-member thinning and forming a tail that almost connects to the concentric
part described before. Comparing the morphology with those obtained for synthetic
sample experiments the same vortex structures are observed (Fig. 5).

It is important to notice that synthetic samples prepared by De Campos et al. [12]
and Perugini et al. [13] are iron free (composition: SiO2, Al2O3, MgO, CaO, Na2O
and K2O) and their experiments were executed at 1,400 °C, which facilitated the
mixing process. At this temperature the authors calculated a viscosity of 1.55·103

Fig. 5 Previous results by: a De Campos et al. [12]; (b, c) Perugini et al. [13]. Dark grey = mafic
end-member; light grey = felsic end-member



1050 C. M. Vicentini et al.

Pa.s to felsic and 1.4 Pa.s to mafic end-member, corresponding to a viscosity ratio
of ca. 1.1·103, and densities of 2.26 and 2.52 g/cm3 respectively. The same morpho-
logical response to mixtures with different chemical and physical properties could
indicate that this mechanism is sufficiently robust. Perugini et al. [13] also numer-
ically simulated the trajectory of the particles (Fig. 5c) and, despite the differences
due to the initial proportion (felsic = 65%; mafic = 35%), similar structures appears
in the simulation such as the off-centered lamellar structures, the lobate and banded
portion at the top and the concentric filaments around the inner cylinder. The agree-
ment between experiment and numerical results corroborates to the importance of
this mechanism on the genesis of this rocks.

Nonetheless, the comparison with natural material from Morgavi et al. [14]
permits to observe the discrepant patterns (Fig. 6). It seems the principal mafic
body dropped inside the felsic one at the right part, while the upper region suffered
more influence of stretching and folding processes. Measured viscosity of the rhyo-
lite was 5.6·104 Pa.s and of basalt was 7.2 Pa.s, corresponding to a viscosity ratio
of ca. 7.8·103, and the calculated densities were 2.33 and 2.98 g/cm3 respectively.
The discrepancies between the final morphology of natural and synthetic materials
were initially thought to appear due to the presence of iron, that plays an important
role in the melt structure, especially because of its two possible valences (Fe2+ and
Fe3+). Nevertheless, there are other factors that apparently influence the melt inter-
action taking into account the physical parameters of two experiments using natural
samples show no relevant differences.

One of the most interesting features observed in the mixed glass presented in the
Fig. 7 are the orbicular structures along the two end-members. They are more evident
on the felsic portion though. It is notice such feature was not reported on previous

Fig. 6 Previous result by
Morgavi et al. [14]. Dark
grey = rhyolite; light grey =
basalt
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Fig. 7 4 top: 8 × zoom from
Carl Zeiss Discovery V8.0
microscope. Object field =
2.9 mm. Dark grey = felsic
end-member; light grey =
mafic end-member

works using synthetic or natural materials (De Campos et al. [12]; Perugini et al.
[13]; Morgavi et al. [14]).

In order to estimate the fractal dimension of both sections its photos were trans-
formed in binary images using the ImageJ software developed by Rasband [16]
(Fig. 8) and the fractal coefficient Df was calculate using the box-counting method,
developed byMandelbrot [17].Df values are substantially sensitive to the input (i.e.,
the image) once even some blurred portions and anomalous pixels can be interpreted
as interest features by the software. Therefore, a simple protocol was adopted to
provide the best estimative. It implicated in changing its brightness to highlight the
contrast between the end-members, transforming in binary images and using tools
(Erode and Dilate) to remove some anomalous pixels and to highlight the relevant
ones.

After this procedure the calculated Df ‘s were 1.78 (4top) and 1.80 (5bottom).
The values are consistently higher thanDf = 0.91 obtained by De Campos et al. [12],
for a mixture composed by synthetic samples, and similar to other results obtained
to natural occurrences that takes place in the intervals: 1.01 < Df < 1.84 (De Rosa
et al. [9]); 1.67 < Df < 1.92 (Perugini et al. [10]); 1.39 < Df < 1.62 (Guimarães
et al. [18]).Df ’s reported are consider an initial estimative indicating the experiment
reproduced the patterns expected by a natural chaotic dynamic process. More precise
calculations will be further obtained improving the quality of digitalized sections.
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Fig. 8 Binary images used to calculate Df (ImageJ) and respective curves built by box-counting
method

4 Conclusions

Chaotic mixing processes are thought to be a sophisticated explanation for natural
melts interaction that have to be approached carefully. Therefore, at this stage is
possible to summarize some conclusions:

1. The experiment showed very good primarily results. Compared to the morpho-
logical features previously obtained by Morgavi et al. [14], results from this
study are better than expected, with the generation of Poincaré sections. It is
evident this line of investigation should be maintained;

2. According to the results, inserting a cylinder of a more viscous material (rhyo-
lite) inside a less viscous material (basalt) did not affect the experimental
stability at high temperatures (1,350 °C). The heating procedure adopted is
thought to be vital to this fact and allows to invert the end-members proportion;
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3. The patterns produced by chaotic dynamics are in concordance with those theo-
retically expected. This was noticed on the appearance of similar morphological
elements in comparison with numerical simulations performed under similar
conditions (Perugini et al. [13]);

4. Orbicular structures were identified for the first time on this type of experiment;
5. The fractal coefficients (Df ≈ 1.79 ± 0.01) are in agreement with those values

reported. Based on geological cases previous reported (e.g.: De Rosa et al. [9],
Perugini et al. [10] and Guimarães et al. [18]) this first estimative could stand
that the chaotic mixing has a role on petrogenesis of Chapecó-acidic type of
PEMP.

Following investigation steps are still under development:

• Geochemical behavior ofmajor/minor oxides and trace elements (microprobe and
Laser Ablation-ICP-MS analysis);

• Numerical simulations to compare the theoretical response of the system;
• Raman analysis of the orbicular structures to study the nature and changes of the

glass structure;
• Further chaotic mixing experiments varying the rhyolitic end-member in order to

test other candidates as contaminants for the Chapecó-type genesis. As a conse-
quence, the impact of chemical and physical variations on morphological aspects
under the same experimental conditions can be evaluated (i.e., temperature and
duration).
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Self-similar Chaotic Processes
in Dynamical Systems of Nonlinear
Stochastic Maps

George Vostrov, Andrii Khrinenko, and Roman Opiata

Abstract The subject of research is cyclic processes that arise in recursive nonlinear
maps under the influence of external probabilistic or stochastic factors. A wide
range of nonlinear maps are considered, both continuous and containing discon-
tinuity points. It is proved that any cyclic trajectory of considerable length always
contains fragments with chaos properties, which are defined as properties of maps
as well as properties of numbers from the domain of their definition. The laws are
established for the transition of a dynamic system from one chaotic state to another
chaotic state, depending on the properties of nonlinear maps.

Keywords Nonlinear maps · Dynamical systems · Self-similarity

1 Introduction

Emergence of a book by famous authors with the name “Many-sided Chaos” is
not accidental [1]. There is no doubt that the concept of “chaos” is associated with
dynamic processes taking place in a certain space. In the literature [2], deterministic
and stochastic chaos is defined as two general forms. However, the systematic use
of the term “chaos” often leads to an incorrect analysis of its properties [3]. This
fact is due to the fact that the nature of all chaotic processes is diverse and in some
sense has many faces. Despite this, chaotic processes of completely different nature
are often subject to general laws [4]. The study of such universal, in a certain sense,
laws of chaotic processes of different nature is an actual and interesting problem of
modern concept of chaos. Despite the fact that the deterministic and stochastic forms
of chaos are very different from the point of view on mechanisms of its origin, from
the point of view of their mathematical models it can be stated about certain patterns
of interweaving of their properties in one frame.
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The stochastic model of chaos is certainly based on the concept of randomness.
Any random variable ξ , in the simplest case with a uniform probability distribution
law over a finite interval (a, b), with a large number of tests, potentially allows to get
a chaotic sequence of arbitrarily large length. Unfortunately, this is only a theoretical
possibility.At presentmoment, randomgeneratorswith a uniformdistribution laware
absent, and, consequently, with any other probability distribution law. Moreover, as
shown in [5], none of the mathematical models of algorithmic computability makes
it possible to obtain a binary sequence that could be called random in the exact
mathematical sense. The same result was obtained in [6] on the basis of another
mathematical analysis of algorithms for constructing binary random sequences. It
follows that absolute non-deterministic chaos, i.e. stochastic chaos at this stage in
the development of research cannot be obtained by physical methods.

Assuming that this is “potentially” possible, the question arises as to what condi-
tions a numerical sequence must satisfy in order to be considered as random.
This question also applies to its binary representation. It is proved that absolutely
random, and therefore chaotic sequence should not have any internal predicted struc-
tures. When solving problems of dynamical systems modeling [7], analyzing and
processing data, and especially in the case of Big Data, when analyzing random
processes [8], non-stationary time series and many other areas of pure and applied
mathematics, randomnumber generators with a given probability distribution law are
needed. It follows that algorithmic models of random number generators are needed
based on the theory of recursive functions, which allow us to model “absolute chaos”
with maximum approximation to a given probability distribution law.

At present, it is not possible to construct random number generators based on the
theory of recursive functions that could simultaneously simulate “absolute chaos”
with a given distribution law.But the condition on the distribution lawalready violates
the requirement that there are no internal properties in the generated sequences that
reduce the level of randomness to some extent. It is necessary to construct pseudo-
random number generators [9], but at the same time one has to admit the existence
in the generated sequences of numbers of internal controlled patterns that minimize
distortion of the results of modeling limited chaos. This means that we have to move
to deterministic chaos [10]. The basis of such mathematical constructions is the
theory of recursive functions and the theory of effective computability associated
with it [10].

Such class of recursive functions is very extensive. It includes features of high
computational complexity. Uncontrolled use of the theory of recursive functions can
lead to a significant limitation on the speed of obtaining pseudorandom numbers.
Therefore, we have to choose such classes of recursive functions that play a dual
role. On the one hand, they are models of dynamical systems of a certain class, and
on the other hand, their cyclic fixe pointsmake it possible to generate their trajectories
in such a way that they can be used to construct pseudorandom number generators.
To solve this problem, it is could be promising to use maps on the set of integers
or rational numbers, which on the one hand are models of deterministic dynamical
systems, and on the other hand, the recursive sequences generate with these maps
can be used to construct pseudorandom number generators.
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In this regard, it seems perspective to start such studies with maps of the “tent”
class in symmetric and asymmetric form, logistic map and algebraic maps that are
based on the theory of residues modulo prime. The use of primes is interesting since
inmodern state ofmathematical science there are still major blind spots in knowledge
of its nature, although their logarithmic distribution law is established.

π(x) =
x∫

2

dt

ln t
+ O

(
xe−c

√
ln x

)
,

where π(x) is the number of primes p ≤ x , however, the exact behavior of the

function f (x) = π(x) − Li(x), where Li(x) =
x∫
2

dt
ln t not studied. There is an

assumption that the function f (x) has a fractal structure. Until now the dynamics of
changes in the distance between primes is unknown in number theory. Estimation of
increase in the distance between primes based on the following expression:

pn+1 − pn ≥ ln x ln ln x ln ln ln ln x

ln ln ln x
,

shows that the distance between primes is continuously increasing. However, this
expression does not at all follow how the properties of adjacent primes differ. Despite
their simplicity, the properties of pn+1 − 1 and pn − 1 can be very different, and this
must be taken into account in the modern theory of the discrete logarithm, modern
cryptography and in the modern theory of pseudorandom number generators.

The answers to these questions can be obtained to a certain extent by studying
dynamic chaotic processes modeled by simple maps abovementioned classes at their
cyclic fixed points determined by primes p ∈ P . At the same time, it is important
to choose such primes from the set of all primes P that allow obtaining of cyclic
trajectories of large length and complex structure. At points given by primes p ∈ P ,
rational numbers of the form q/p where p and q are primes allow to study the
properties of dynamical systems determined on the given maps.

2 Self-similar Processes Inside the Trajectories
of Nonlinear Chaotic Maps

Maps of the set of natural, integer, rational, real, complex numbers onto or into itself
by means of nonlinear maps are always associated with the representation of such
maps using recursive, primitively recursive, and therefore computable functions. Any
such map defines a dynamic system, which is usually associated with some dynamic
processes of a very different nature. As proven by well-known authors mathematical
models of such processes can be built in arithmetic systems of various levels of
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complexity. The study of such mathematical models always includes an analysis of
the trajectories of cyclic fixed points. As proved by Sharkovsky, the existence of a
cycle of length three implies the existence of an iterative cycle in a dynamical system
with a trajectory of any length, i.e. while the relation:

3 > 5 > 7 > 9 > . . . > 2 · 3 > 2 · 5 > . . . > 1.

It follows that there is an iterative cycle of a fixed point of any length. The existence
of long cycles leads to the need to analyze their properties, since these properties are
properties of a dynamical system. Information about the properties of iterable maps
is important for control of dynamical systems, analysis of their properties in order to
make decisions aimed at studying the behavior of systems under various conditions.
As proven in many monographs, scientific articles [10, 12] studies of the properties
of dynamical systems based on the analysis of their trajectories are associated with
significant difficulties due to the chaotic properties of the trajectories. The term
“chaos” is interpreted by different authors in very different ways. This fact is not
paradoxical since the nature of dynamic systems differs significantly from dynamic
processes in biology, medicine, and economics. However, it can be assumed that
there are some properties that are common to any models of dynamical systems.
These properties are related to the mathematical form of the system representation
and the properties of numbers, which determine the conditions for the occurrence of
a cyclic trajectory of a fixed point.

Let examine the class of algebraic dynamical systems, which is surprisingly
connected with nonlinear dynamical systems and represented by very simple
nonlinear maps. Consider the set of all primes P and the residue group (Z/pZ)

which is a cyclic group associated with each prime p ∈ P . Natural numbers a are
usually called the primitive root of a prime p and, therefore, the group (Z/pZ)∗ if
the next condition is satisfied:

(1)

for any divisor k > 1 of numbers p−1 =
n∏

i=1
pαi
i . These are necessary and sufficient

conditions for verifying that a is the primitive root of p and it follows from Fermat’s
little theorem. The validation of these conditions is based on the calculation of a
recursive sequence:

x0 = 1, xn+1 = axn(mod p) (2)

to those. until the condition xm = axm−1(mod p) = 1 is satisfied at the m-th step
of the iteration. If m = p − 1, then a is the antiderivative root of p. Otherwise, the
number a is a generating element of the number p of some subgroup of the group
(Z/pZ). And any number a is a classifier of the set of all primes P into classes:
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P(a, 1),P(a, 2), . . . ,P(a, i), (3)

According to condition:

P(a, i) = {p|(p − 1)carda(p) = inda(p) = i},

where carda(p) is theminimumrecursion length (2) atwhich 1modulo p is achieved,
since carda(p) always divides p − 1, then inda(p) determines the number of adja-
cency classes of the subgroup of the group (Z/pZ)∗. Obviously, if carda(p) = p−1,
then a is the primitive root of the group (Z/pZ)∗, and if carda(p) < p−1, then a is
a generating element of the cyclic subgroup of this group and its order is carda(p),
and the number of adjacency classes is inda(p). Thus, the set P(a, 1) contains all
primes p for which a is a primitive root, P(a, i) contains all primes p for which a
is a generating element with index inda(p) = i . The infinity of the set of all primes
P determines the existence of cyclic recursion (2) of arbitrarily large length for all
classes and especially for the class P(a, 1). In this case, four classes of problems
arise:

1. x ≡ am(mod p)—defined a, p,m, find x ;
2. c ≡ ax (mod p)—defined a, p, c, find x ;
3. c ≡ xm(mod p)—defined c, p,m, find x ;
4. c ≡ am(mod x)—defined a, c,m, find x ∈ P .

The first problem is solved relatively simply by the method of repeated squaring.
The second problem is the discrete logarithm problem, which belongs to the class
of problems of high complexity, and it is possible that to the class of algorithmically
unsolvable problems. The third and fourth task is much more complicated since the
literature does not describe attempts to solve them. Closely related to the solution of
the second problem is modern cryptography and modern methods for constructing
pseudorandom number generators [8]. And also along with the first problem these
problems has relation to the problem of chaos analysis. For convenience, we consider
the case when a is a primitive root p ∈ P and the number p has a larger order,
for example, p > 10200. Recursion (2) for any such type is a permutation of the
set of numbers {2, 3, . . . , p − 2}, where the number p − 1 is not included since
a p−1 ≡ 1(modp).

The prime p has ϕ(p − 1) =
m∏
i=1

pαi−1
i (pi − 1) (Euler function) of primitive roots

(a1, a2, . . . , aϕ(p−1} and for each of which there exists a permutation in which the
order of numbers from 2 to p − 2 differs from the order of any other primitive root.
In order to solve all problems associated with the discrete logarithm, it is necessary
to possess information at least some degree on the order of the placement of numbers
in chaos that is generated by recursion (2) for each ai from the set of all primitive
roots.

Definition Let p ∈ P be a prime such that p − 1 =
k∏

i=1
pki and a is its primitive

root, then in the trajectory of the recursive function (2) xn+1 = axn(modp) and the
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index n = kpi for all p1, . . . , pk will be called basic indices. With respect to the set
of indices of trajectories of recursion on the base a for a prime number p ∈ P and
set of its primitive roots

{
a1, . . . , aq(p−1)

}
next theorem is true.

Theorem For any prime number p ∈ P such that p − 1 =
k∏

i=1
pαi
i and any primitive

root of it, the set of all primitive roots
{
a1, . . . , aq(p−1)

}
at the base points of the

trajectories (2) there cannot be numbers from the set of all its primitive roots.
The validity of the theorem follows from the fact that during operations at base

points of primitive roots there cannot be created a conflict situation among them in
accordance with Fermat’s little theorem and set theory.

Thus, the structure of the trajectories is constructed to a certain extent, taking
into account the self-similarity of the trajectories of all primitive roots of a given
prime number. This theorem confirms that in deterministic chaos, the properties of
the map functions and the properties of a number from the region of the trajectories
of recursive fixed points to some extent affect the structure of chaos.

Consider the case of dynamical system maps that are defined by simple functions
of the “tent” class [10]. Despite their simplicity, as shown in [12], their behavior,
both of dynamical systems and of sources of chaos formation, is far from simple.
Consider two types of maps of this class:

xn+1 =
{
2xn,

∣∣∣∣xn <
1

4
; (4)

xn+1 =
{
1 − 2xn,

∣∣∣∣12 > xn ≥ 1

4
. (5)

The graphic representation of these maps is elementary. Consider the behavior of
these maps on a set of numbers of the form x = 1/p under the condition p ∈ P . This
choice of the set of initial conditions is chosen due to two considerations. Firstly, the
analysis of dynamic processes and the chaos accompanying them can be compared
with the algebraic map of residues modulo prime (2), and secondly, the study of the
properties of dynamic processes by elements of such a set of initial values allows us
to study their dependence on the properties of primes without taking into account

decomposition p − 1 =
k∏

i=1
pαi
i and the properties resulting from it. In addition,

since such a rational number 0 < m/n < 1 is expressed through decomposition
into simple factors, knowing the laws of the influence of the 1/p properties on the
dynamics and chaos features, we can switch to composite numbers of the formm/n.

Maps (4) and (5) were studied in papers where the study of map (2) led to the
construction of a generalizedArtin hypothesis and its solution [8, 9, 11]. Based on the
results of these studies, interesting conclusions can be drawn. Note that the logistic
map:

xn+1 = 4xn(1 − xn) (6)
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As an object of numerous studies [10] on a set of numbers of the form 1/p, it
behaves in a certain sense “similarly” to maps (4) and (5). By analogy it is ment
the congruence of these maps, which was studied in [13] for maps (4) and (6). The
congruence of the twomappings f (x) and g(x) on the set [0, 1] suggests that there is a
one-to-one correspondence between their cyclic fixed points for which the lengths of
the cyclic trajectories of the congruent points coincide, but the topological structure
is different. The author of the congruence method in [13] described a method for
proving the congruence of maps on a distinguished set from the domain of definition
of maps.

Based on the results of modeling the processes of formation of classes P(a, i)
for any a �= i& ± 1 and i ∈ {1, 2, . . . , n, ..}, theorems on congruence of maps,
analysis of trajectories of maps (2), (4), (5) it is not difficult to prove the validity of
the following statements.

Statement 1 The map (4) is congruent to the map (2) for a = 4 on the set of all
primes p ∈ P , but for any prime number their trajectories in the chaos structure do
not coincide.

This statement means that, on the basis of map (4), we obtain the same system of
primes in the generalized Artin hypothesis as on the basis of map (2), although map
(2) is discrete and map (2) is continuous. As shown in [12], the display paths (2)
represent a sequence of self-similar successive fragments of the trajectory located
at a regular distance from each other and interconnected by successive fragments of
chaotic behavior. A fragment of such a structure of cyclic trajectories of fixed points
1/p is shown in Fig. 1 where solid line represents sequence fragments with high
degree of similarity and dashed line represent chaotic behavior of the map.

It should be noted that a completely non-algebraic function of the “tent” type
allows one to solve a problem from number theory related to the discrete logarithm
problem, modern cryptography and problems of constructing pseudorandom number
generators, and, on the other hand, stimulates a deeper analysis of the trajectories
of cyclic fixed points of dynamical systems in order to identify areas where chaotic

Fig. 1 Sequence with self-similar successive fragments
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behavior approaches its non-deterministic models. A similar analysis of the map (5)
allows us to prove the following statement.

Statement 2 The map (5) is congruent to the map (2) with a = 2 on the set of all
primes p ∈ P , but their trajectories do not coincide in structure for any p.

From this statement it follows that map (6) forms a system of classes of primes
of the form:

P(2, 1),P(2, 2), . . . ,P(2, i), . . .

This means that P(2, 1) = {p ∈ P|(p − 1)/card2(p) = ind2(p) = 1}, i.e.
these are all prime numbers for which the number a = 2 is their primitive root. The
class P(2, i) consists of the set of all primes p for which in the group (Z/pZ)∗
a subgroup with index i has the number a = 2 by its generating element. Thus,
maps of the “tent” type with an appropriate choice of parameter allow to solve
problems of modern number theory. In addition, it follows from statements 1 and
2 that the properties of dynamical systems fundamentally depend on the properties
of the functions that determine them and on the properties of the number of some
fundamental sequences from the domain of their definition.

3 Conclusions

An analysis of the chaos structure in the cyclic trajectories of fixed points of dynam-
ical systems reveals formation patterns of their trajectories based on the properties of
themaps that determine the dynamical system. The parameters of themaps determine
the classification of numbers from the domain of their definition whose properties are
functions of the properties of parameters. Various studies in this direction allow us
to deepen an understanding of the mechanisms of chaos formation and its dynamical
structure.
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Stabilization in the Instability Region
Around the Triangular Libration Points
for the Restricted Three-Body Problem

Asher Yahalom and Natalia Puzanov

Abstract Stabilized restricted three-body problem inwhich themotion of third body
is planar and circular is presented. The instability region of triangular libration points
is stabilized by feedback control in integral form.

1 Introduction

We consider the plane elliptic restricted three-body problem. The differential equa-
tions of this problem in the Nechville coordinates (ξ, η) have the form [1, 3, 4]:

⎧
⎨

⎩

ξ ′′ − 2η′ = ρ(ξ − μ + μ−1

(ξ 2+η2)
3
2
ξ − μ

[(ξ−1)2+η2] 32
(ξ − 1))

η′′ + 2η′ = ρ(η + μ−1

(ξ 2+η2)
3
2
η − μ

[(ξ−1)2+η2] 32
η)

(1)

where

ρ = 1

1 + ε cos t
, μ = m1

m0 + m1
,

ε is the eccentricity of the Keplerian orbit (0 ≤ ε < 1), t is the true anomaly,m0 and
m1 are the masses of actively gravitating bodies; thus 0 < μ < 1. Those equations
are derived in the appendix.
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Fig. 1 The stability region of triangular libration points

The system (1) has five constant solutions—libration points: straight-line L1, L2,
and triangular L4 and L5. In the plane of the variables (ξ, η) of the system (1), the
straight-line libration points lie on the line η = 0, and the triangular libration points
have the coordinates:

L4

(
1

2
,

√
3

2

)

, L5

(
1

2
,−

√
3

2

)

. (2)

Wewill be interested in questions related to the stability of triangular libration points.
Figure1 [6] describes the regions of stability and instability of the system (1)

for small values of μ. The shaded area corresponds to stability region in parameter
space.

Here

μ∗ = 1

2
−

√
69

18
= 0.038520...., μ0 = 1

2
−

√
2

3
= 0.028595.... (3)

Numerous studies addressing the regions of stability of the system (1) and the behav-
ior of the solutions of this system near the boundaries of these regions of stability
are due to the importance of these questions for celestial mechanics. However, so far
no attempts have been made to stabilize system (1) in the region of instability of the
libration point.

We will pass from system (1) to equivalent normal system by introduction of new
variables u1 = ξ, u2 = η, u3 = ξ ′, u4 = η′
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′
1 = u3,

u′
2 = u4,

u′
3 = 2u4 + ρ(u1 − μ + μ−1

(u21+u22)
3
2
u1 − μ

[(u1−1)2+u22]
3
2
(u1 − 1))

u′
4 = −2u3 + ρ(u2 + μ−1

(u21+u22)
3
2
u2 − μ

[(u1−1)2+u22]
3
2
u2)

(4)

We thus have a system of the form:

u′ = F(u, ε, μ, t), u ∈ R4 (5)

F(u, ε, μ, t) is the vector function defined by the right part of system (4). Libration
points of system (1) correspond to constant solutions of system (5). In particular
triangular libration points L4 and L5 correspond to following constant solutions of
system (5)

v4 =

⎡

⎢
⎢
⎣

1
2√
3
2
0
0

⎤

⎥
⎥
⎦ v5 =

⎡

⎢
⎢
⎣

1
2

−
√
3
2
0
0

⎤

⎥
⎥
⎦ (6)

The behaviour of system (5) is the same in neighborhoods of libration points v4
and v5. For definiteness we will study behaviour of system (5) in neighborhood of
libration point v4.

Carrying out in (4) the substitution X = u − v4,we arrive at the equivalent system.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X ′(t) = Z(t),

Y ′(t) = W (t),

Z ′(t) = 2W (t) + ρ

⎡

⎢
⎣

(
X (t) + 1

2

) − μ + μ−1
[

(X (t)+ 1
2 )

2+
(
Y (t)+

√
3
2

)2
] 3

2

(
X (t) + 1

2

)−

μ
[

(X (t)− 1
2 )

2+
(
Y (t)+

√
3
2

)2
] 3

2

(
X (t) − 1

2

)

⎤

⎥
⎦

W ′(t) = −2Z(t) + ρ

⎡

⎢
⎣

(
Y (t) +

√
3
2

)
+ μ−1

[

(X (t)+ 1
2 )

2+
(
Y (t)+

√
3
2

)2
] 3

2

(
Y (t) +

√
3
2

)
−

μ
[

(X (t)− 1
2 )

2+
(
Y (t)+

√
3
2

)2
] 3

2

(
Y (t) +

√
3
2

)

⎤

⎥
⎦

(7)
The libration point v4 of the system (5) corresponds to an equilibrium point X = 0
of the system (7). System (7) can be represented as
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X ′ = A(ε, μ, t)X + a(X, ε, μ, t), X ∈ R4 (8)

in which A(ε, μ, t) = F ′
X (0, ε, μ, t) is the Jacobi matrix of the vector function

F(X, ε, μ, t) calculated at the point X = 0, and a(X, ε, μ, t) is a nonlinearity which
begins with terms quadratic in X . At ε = 0 (a circular case) the system (7) is
autonomous.

The matrix A(ε, μ, t) is equal to

A(ε, μ, t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0
0 0 0 1
3

4
ρ 3

√
3

4
(1 − 2μ)ρ 0 1

3

√
3

4
(1 − 2μ)ρ

9

4
ρ −2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(9)

To investigate our problem it suffices to consider the linear equation:

X ′ = A(ε, μ, t)X. (10)

Since for 0 ≤ ε < 1 the equality

ρ = 1

1 + ε cos t
= 1 − ε cos t + ε2cos2t − ε3cos3t + .... (11)

is correct then the matrix (9) can be represented in the form:

A(ε, μ, t) = A0(μ) + (−ε cos t)A1(μ) + ... (12)

where

A0(μ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0
0 0 0 1
3

4
3

√
3

4
(1 − 2μ) 0 1

3

√
3

4
(1 − 2μ)

9

4
−2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(13)

and for μ = μ0 = 1
2 −

√
2
3

A0 = A0(μ0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0
0 0 0 1
3

4

√
6

2
0 2√

6

2

9

4
−2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (14)

The linear approximation (10) for the planar case is:
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Fig. 2 The phase portrait of the solution of the system (7) for ρ = 0 in the (X, Y ) plane with initial
conditions: X (0) = Y (0) = Z(0) = W (0) = 0 for interval 200 ≤ t ≤ 500

X ′ = A0(μ0)X. (15)

has the following simple eigenvalues:

λ1,2 = ±1

2
, λ3,4 = ±

√
3

2
(16)

In accordance with the Fig. 1, system (7) is not stable at μ = μ0, ε = 0 (ρ = 1)
(Fig. 2).

2 Exponential Stabilization of Triangular Libration Points
in Instability Region by Feedback Delay Control in
Integral Form

We introduce the feedback delay control V (t) in the form, in which all the history
of the process W(t) is taken into account [5].

V (t) =
t∫

0

e−β(t−s)W (s)ds, (17)

Weapply stabilization by the feedback delay control signal to the system (7) assuming
that the control signal V (t) acts only in the first equation.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X ′(t) = Z(t) − α
ι∫

0
e−β(t−s)W (s)ds,

Y ′(t) = W (t),

Z ′(t) = 2W (t) + ρ

⎡

⎢
⎣

(
X (t) + 1

2

) − μ + μ−1
[

(X (t)+ 1
2 )

2+
(
Y (t)+

√
3
2

)2
] 3

2

(
X (t) + 1

2

)−

μ
[

(X (t)− 1
2 )

2+
(
Y (t)+

√
3
2

)2
] 3

2

(
X (t) − 1

2

)

⎤

⎥
⎦ ,

W ′(t) = −2Z(t) + ρ

⎡

⎢
⎣

(
Y (t) +

√
3
2

)
+ μ−1

[

(X (t)+ 1
2 )

2+
(
Y (t)+

√
3
2

)2
] 3

2

(
Y (t) +

√
3
2

)
−

μ
[

(X (t)− 1
2 )

2+
(
Y (t)+

√
3
2

)2
] 3

2

(
Y (t) +

√
3
2

)

⎤

⎥
⎦ ,

(18)
whereα andβ the parameters needed to achieve the point (X,Y, Z ,W ) = (0, 0, 0, 0)
at which the system becomes exponentially stable. In accordance with the Leibnitz

rule for differentiation under the integral sign, of the form
d

dy

∫ b(y)
a(y) f (x, y)dt we

get the expression for V ′(t). Thus we can rewrite the system (18) in a form of the
system of ordinary differential equations [2]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X ′(t) = Z(t) − αV (t),

Y ′(t) = W (t),

Z ′(t) = 2W (t) + ρ

⎡

⎢
⎣

(
X (t) + 1

2

) − μ + μ−1
[

(X (t)+ 1
2 )

2+
(
Y (t)+

√
3
2

)2
] 3

2

(
X (t) + 1

2

)−

μ
[

(X (t)− 1
2 )

2+
(
Y (t)+

√
3
2

)2
] 3

2

(
X (t) − 1

2

)

⎤

⎥
⎦ ,

W ′(t) = −2Z(t) + ρ

⎡

⎢
⎣

(
Y (t) +

√
3
2

)
+ μ−1

[

(X (t)+ 1
2 )

2+
(
Y (t)+

√
3
2

)2
] 3

2

(
Y (t) +

√
3
2

)
−

μ
[

(X (t)− 1
2 )

2+
(
Y (t)+

√
3
2

)2
] 3

2

(
Y (t) +

√
3
2

)

⎤

⎥
⎦ ,

V ′(t) = W (t) − βV (t).
(19)

In the linear approximation, system (19) can be represented as
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X ′ = J X, (20)

where J is Jacobi matrix for the right side of the system (19)

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 −α

0 0 0 1 0
3

4

√
6

2
0 2 0√

6

2

9

4
−2 0 0

0 0 0 1 −β

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)

det (J − λI ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−λ 0 1 0 −α

0 −λ 0 1 0
3

4

√
6

2
−λ 2 0√

6

2

9

4
−2 −λ 0

0 0 0 1 −λ − β

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(22)

Characteristic equation is

−
(

λ5 + βλ4 + λ3 +
(
β +

√
6

2
α
)
λ2 +

(
−3

2
α + 3

16

)
λ + 3

16
β

)

= 0 (23)

According to the Hurwitz criterion for a 6-th order system all roots of the char-
acteristic equation (23) have negative real parts if and only if

a1 = β > 0
a2 = 1 > 0,

a3 = β +
√
6

2
α > 0,

a4 = −3

2
α + 3

16
> 0,

a5 = 3

16
β > 0,

a1a2 − a3 = −
√
6

2
α > 0,

(a1a2 − a3)(a3a4 − a2a5) − (a1a4 − a5)2 =
3

32
α2

(
−24β2 + 8

√
6 + 24α − 3

)
> 0.

(24)

From (24) we obtain:
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Fig. 3 The phase portrait of the solution of the system (19) for ρ = 0 in the (X, Y ) plane with initial
conditions: X (0) = Y (0) = Z(0) = W (0) = V (0) = 0 for interval 200 ≤ t ≤ 500 with control
parameters: α = −0.029, β = 0.5

− 1

24
< α < 0,

√
6

6
−

√
6 + 144α

6
< β <

√
6

6
+

√
6 + 144α

6

(25)

Numerical integration of the system (19) illustrated in Fig. 3.

3 Conclusion

Comparison of (2) and (3) show quite clearly the effect of stabilization on a planetary
orbit. The dramatic change from a chaotic orbit to a regular elliptic orbit is quite
apparent. This is achieved by adding an additional degree of freedomwhich stabilizes
the orbit (see (19)), this approach seems quite general and may be used for many
chaotic systems.

Appendix: Derivation of Nechville Differential Equations for
Bounded, Restricted Three-Body Problem

We define our problem as follows: Two bodies (M0 and M1) revolve around their
center of mass G under the influence of their mutual gravitational attraction and a
third body M2 which attracted by the previous two but not influence in their motion,
movies on the plane defined by the two revolving bodies (Fig. 4). The restricted
problem of three bodies is to describe the motion of this third body (M2).
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Fig. 4 To the derivation of the equations of motion presented below

The masses of bodies M0 and M1 are arbitrary but these bodies have such internal
mass distributions that they may be considered point masses. The mass of third body
M2 does not influence the motion of M0 and M1.

Let Gξηζ is a coordinate system, in the plane (ξη) in which the point M1 moves.
The equation of motion of M2 (“zero” mass) in inertial (fixed) rectangular coor-

dinate system (ξηζ ) are

ξ̈ = −∂U

∂ξ
, η̈ = −∂U

∂η
, ζ̈ = −∂U

∂ζ
, (26)

where
U = f

(m0

r0
+ m1

r1

)
, (27)

f is constant of gravitation;m0 andm1 are masses of bodies M0 and M1, and mutual
distances are determined by formulas:

⎧
⎪⎨

⎪⎩

r20 = (ξ − ξ0)
2 + (η − η0)

2 + ζ 2

r21 = (ξ − ξ1)
2 + (η − η1)

2 + ζ 2

ζ0 = ζ1 = 0,

(28)

where ξ0, η0 and ξ1, η1 are coordinates of points M0 and M1 in the system Gξηζ .
These coordinates are determined by obvious formulas.
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{
(m0 + m1)ξ0 = −m1r cos v, (m0 + m1)η0 = −m1r sin v,

(m0 + m1)ξ1 = +m0r cos v, (m0 + m1)η1 = +m0r sin v.
(29)

Values of r and v are known functions of time defined by the Keplerian motion
formulas. r = M0M1; v is the angle of vector r with the positive direction of the axis
Gξ (the true anomaly).

Orbit of point M1 in the plane Gξη is ellipse with focus at the point M0. It is
determined by the equation.

r = p

1 + ε cos v
(30)

where p is a focal parameter, ε is the eccentricity of the Keplerian orbit (0 ≤ ε < 1),
v is the true anomaly.

The expression for the kinetic energy of the point M2 is

T = 1

2
m2(ξ̇

2 + η̇2 + ζ̇ 2) (31)

Let us move in (26) from the fixed axis system Gξηζ to the rotating one around
Gζ axis, so that the new abscissa passes through the points M0 and M1. Denoting
the coordinates of the point M2 in the new coordinate system: x, y, z we have

⎧
⎪⎨

⎪⎩

ξ = x cos v − y sin v,

η = x sin v + y cos v

ζ = z,

(32)

where v is the same angle as in formula (29), i.e. true anomaly of the Keplerian
movement. Whence by means of differentiation on time one find derivatives

⎧
⎪⎨

⎪⎩

ξ̇ = ẋ cos v − ẏ sin v − v̇(x sin v − y cos v)

η̇ = ẋ sin v + ẏ cos v + v̇(x cos v − y sin v)

ζ̇ = ż.

(33)

The expression for the kinetic energy (31) in the new coordinates will take the
form

T = 1

2
m2(ẋ

2 + ẏ2 + ż2 + (2v̇(x ẏ − yẋ) + v̇2(x2 + y2). (34)

Expressions for partial derivatives of kinetic energy take the form
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂T

∂ ẋ
= m2(ẋ − v̇y),

∂T

∂x
= m2v̇(ẏ + v̇x),

∂T

∂ ẏ
= m2(ẏ + v̇x),

∂T

∂y
= m2v̇(−ẋ + v̇y),

∂T

∂ ż
= m2 ż,

∂T

∂z
= 0.

(35)

Substituting these expressions into the Lagrange equation

d

dt

(
∂T

∂q̇ j

)

− ∂T

∂q j
= ∂U

∂q j
, ( j = 1, 2, 3). (36)

We will get the equations of motion of a point M2 in the rotating axes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẍ − 2v̇ ẏ − v̇2x − v̈y = ∂U

∂x

ÿ + 2v̇ ẋ − v̇2y + v̈x = ∂U

∂y

z̈ = ∂U

∂z

(37)

where U is defined by (27) but the distances r0 and r1 taking into account (32) are
given by the formulas

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r20 = (x − x0)2 + y2 + z2

r21 = (x − x1)2 + y2 + z2

x0 = − m1r

m0 + m1

x1 = − m0r

m0 + m1
.

(38)

Further since
r2v̇ = c = const (39)

where c is area integral in the orbit plane, we have

v̇ = c

p2
(1 + e cos v)2; v̈ = −2c2e

p4
(1 + e cos v)4 (40)

In (37), we make a transition to a pulsating coordinate of system G ξ̃ η̃ζ̃ using
formulas

x = ρξ̃ , y = ρη̃, z = ρζ̃ (41)

where

ρ = r

p
= 1

1 + e cos v
, (42)
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and following Nechville [5] we input a new independent variable, namely the true
anomaly v of the body M1.

Then, as is simply to verify, we have

{
ẋ = (ρ ′ξ̃ + ρξ̃ ′)v̇
ẍ = (ρ ′′ξ + 2ρ ′ξ ′ + ρξ ′′)v̇2 + (ρ ′ξ + ρξ ′)v̇v̇′ (43)

(hatchs denote differentiation by variable v). Similarly, we can obtain formulas for
two other coordinates.

Substituting the expressions for the old coordinates and their derivatives and the
expressions for v̇ and v̈ from (40) into (37), we obtain as a result, instead of system
(37), the following

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξ̃ ′′ − 2η̃ = ∂Ω

∂ξ̃

η̃′′ − 2ξ̃ = ∂Ω

∂η̃

ζ̃ ′′ = ∂Ω

∂ζ̃

(44)

where
Ω = ρ

[
1
2 (ξ̃

2 + η̃2 + eζ̃ 2 cos v) + p3
(
1−μ

r̃1
+ μ

r̃2

)]
,

r̃1 =
√

(ξ̃ − ξ̃1)2 + η̃2 + ζ̃ 2, r̃2 =
√

(ξ̃ − ξ̃2)2 + η̃2 + ζ̃ 2,

ξ̃1 = −pμ, ξ̃2 = −p(1 − μ),

μ = m1/(m0 + m1), 1 − μ = m0/(m0 + m1).

(45)
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Influence of M-Current on Dopamine
Modulation of Weak PING Gamma
Rhythm

Denis Zakharov and Boris Gutkin

Abstract The human brain demonstrates electrical oscillations of various frequency
ranges that are associated with a number of cognitive tasks. Here we will focus
on the so-called weak (clustered) gamma rhythm (20–80 Hz). Typically, in the
cortex, gamma oscillations appear in neuronal networks consisting of excitatory
pyramidal cells and inhibitory interneurons. This is the Pyramidal INterneuronal
Gamma (PING) rhytm. The weak clustered gamma oscillations are a specific case
of PING when the pyramidal cells fire in several internally synchronous clusters
producing a “collective” rhythm by alternating the cluster firing. We will analyse
how characteristics of the cluster states (mainly the number of clusters) depend on
the intrinsic ionic currents of the PY cells (AHP- and m-currents). Since different
number of clusters mean different level of PING oscillations coherence, our work
links the intrinsic cellular properties of the constitutent neurons to the coherence of
the gamma rhythm.
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1 Introduction

During performance of cognitive tasks, the brain demonstrates electrical activity of
various frequency ranges [1]. One such prominent oscillation is the gamma rhythm
(20–80 Hz). It is observed during a wide variety of cognitive tasks, such as working
memory, coding and information processing [2]. In comparison with the other oscil-
lations, gamma has a higher frequency, is comparatively much more irregular, sparse
and locally distributed [3]. It is well known that typically this rhythm is generated
in the networks consisting of two neuronal populations of interneurons (IN) and
pyramidal (PY) cells [4]. There are two basic mechanisms of gamma oscillations
generation in such networks. The first is INterneuronal Gamma (ING) rhythm which
are produced in the IN population [5]. In this case the PY population has negli-
gible influence on the IN neurons and, in fact, mirrors the IN population activity.
In the second mechanism, the gamma oscillations are a result of recurrent interac-
tions between both populations. This is so called Pyramidal-INterneuronal Gamma
(PING) gamma rhythm [6]. In addition, it is possible to to construct either strong or
weak gamma rhythms. In the first case, both populations have almost the same firing
rate account the experimental features of the gamma and the observed large differ-
ence between intrinsic frequencies of the PY cells and IN neurons, one potentially
likely mechanism is that alternatively firing of synchronous PY clusters generates
the gamma oscillations (see, for example, Börgers and Kopell [7], Kilpatrick and
Ermetrout [8] and Krupa et al. [9]). This is a weak clustered gamma rhythm. Each
PY cell, in this case, fires with the frequency, which is lower than gamma frequency,
whereas the gamma oscillations are formed by collective activity of the PY clusters.
The number of clusters in a cluster state and the number of PY cells in the each cluster
determine and regularly fire together with a small time lag. To take into coherence
of the gamma oscillations while making them sparse and irregular. In Krupa et al.
[9] it was shown that the maximum number of clusters dramatically depends on
the intrinsic neuronal parameters and coupling strength of interpopulation coupling,
especially inhibitory ones. In particular, Krupa et al. found that the spike frequency
adaptation of PY cells has a significant influence on the cluster formation process.
This was confirmed by parametric modulation studies of the network parameters on
the changes in cluster states (Zakharov et al. [10, 11]). For instance, it was shown that
modulation of the spike frequency adaptation is the most effective in increasing of
cluster number under an increase of the spike frequency adaptation parameters and a
decrease, for a negative modulation of the spike frequency adaptation. The strength
of the inhibitory interpopulational coupling, in turn, also substantially influenced on
the cluster modulation. Higher connection strengths stabilized the cluster states with
a lower number of clusters.

In this paper, we expand on Krupa et al. [9] and focus in the influence of the
intrinsic parameters of the PY cells on the cluster formation process in a PING
network and therefore, on the coherence of the oscillations. In particular, we take
into account both spike frequency adaptation (AHP-current) and the M-current. The
former is a slow spike-dependent hyperpolarizing current (biophysically speaking
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it is a calcium-dependent slow potassium current), the latter is voltage a voltage-
dependent slow hyperpolarizing K-current. The M-current has a significant impact
on thedynamics of thePYcells, controls the intrinsic cellular excitability and synaptic
responses of the pyramidal neurons [see, for example, Marrion [12] and Peng et al.
[13]. This current is slowly activated when the membrane potential is depolarized
towards voltage levels where the spike producing currents activate, and repolarizes
the neuron back to the rest state reducing neuronal excitability In addition, the M-
current has no inactivation and may play a critical role for neuronal excitability,
especially near the rest state. It was previously shown that the addition of this current
even in the canonical theta-neuron model with adaptation results in a change of
excitability type (from 1st type to 2nd one) Gutkin et al. [14]. For the hippocampal
PY cells it was shown experimentally and theoretically (within the framework of
Morris-Lecar equations) that the M-current, as well as shunting inhibition, can lead
to the same change of excitability type and thereby significantly change dynamics
of the PY cells [14–16].

2 Influence of AHP- and M-Currents on PY Cell Activity

To describe the PY neuron activity, we use the modified the Miles-Traub equations
with adaptation from Krupa et al. [9] with the addition of the M-current:

dve
dt

=Iapp − gL(ve − EL) − gK n
4(ve − EK );

− gNamin f,Na(ve)
3Fh(n)(ve − ENa)

− gCamin f,Ca(ve)(ve − ECa)

− gAH P
[Ca]

[Ca] + 1
(ve − EK ) − gMwe(ve − EK ),

d[Ca]

dt
= −εCa ICa − [Ca]

τCa
,

dn

dt
= αn(ve)(1 − n) − βn(ve)n, (1)

we = ε
(
win f (ve) − we

)
/τM(ve)

min f,Na(ve) = αm(ve)

αm(vve) + βm(ve)
,

min f,Ca(ve) = 1

1 + e−(ve+25)/2.5
,
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where the first equation is the current balance equation giving the dynamics of ve the
membrane potential of a PY cell, [Ca] is the calcium concentration, n, minf,Na,minf,Ca

and we are the voltage-dependent gating variables for the various cross-membrane
currents; Ex are the reversal potentials of the various ionic species. This is a biophys-
ical neuronal model containing on the right hand side of the first equation a combina-
tion of the ionic currents: an applied current Iapp, a leak current IL, a fast potassium
current IK , a sodium current INa, calcium current ICa, a slow after-hyperpolarization
(AHP) current IAHP, and M-current IM respectively. The AHP current is a calcium-
activated slow potassium current that effectively results in the spike frequency adap-
tation of a PY cell. Gating functions of the currents describes by the following
equations:

αn(ve) = 0.32
v + 52

1 − e− v+52
5

, βn(ve) = 0.50.28e− ve+57
40 ;

αm(ve) = 0.32
ve + 54

1 − e− ve+54
4

, βm(ve) = 0.28
ve + 27

e− ve+27
5 − 1

;

win f (ve) = 1

1 + e−− ve+35
10

, τm(ve) = 400

3.3e
ve+35
20 + e− ve+35

20

(2)

Fh(n) = max{1 − 1.25n, 0}

We choose the gAHP and gM as control parameters and fix the other parameters of
the PY model in the following way:

Iapp = 4μA, gNa = 100ms/cm2, gK = 80ms/cm2, gCa = 1ms/cm2, ENa = 50mV,

EK = −100mV, ECa = 120mV, EL = 67mV, τCa = 80ms,

εCa = 0.01 cm2/(msμA)

Our analysis shows that both AHP- and M-currents can effectively change the
frequency of the PY cell firing but there is a qualitative difference between their
influence. TheM-current changes the bifurcation scenario that govern the onset of the
repetitive firing (Fig. 1). If the conductance of this current is zero, the transition from
the rest state (stable equilibrium) to the active one (stable limit cycle) is through the
bifurcation of saddle-node in invariant circle (SNIC, Fig. 1a), whereas for sufficiently
large positive values of the conductance the limit cycle appears through the saddle-
node bifurcation of limit cycles (Fig. 1b). In the first case, the limit cycle has zero
frequency at the bifurcation point. It means that the PY cell has the 1st type of
excitability and is able to generate spike trains with arbitrary small frequencies. In
the second case, it is bornwith a finite frequency and, thus, the neuron has aminimum
frequency and can fire only in a certain frequency band. It corresponds to the 2nd type
of excitability. This is confirmed by the Infinitesimal phase response curves (iPRC)
whichwere plotted for both cases in Fig. 2. TheAHP-current decreases the frequency
of the PY cell but keeps iPRC positive (Fig. 2a). The M-current also increases the
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Fig. 1 Infinitesimal phase response curves (iPRC) for the different values of gAHP (a, gM = 0) and
for the different values of gM (b, gAHP = 2.5). The frequency spike adaptation current keeps the 1st
type of excitability (gM = 0), whereas the M-current (gM > 0) changes it to 2nd type

Fig. 2 One parametric bifurcation diagrams for gM = 0 (a) and gM = 1 (b) (gAHP = 2.5). If
gM = 0 the stable equilibrium, corresponding the rest state of the neuron (the solid black curve),
disappears through the SNIC bifurcation. In addition, it results in the birth of the stable limit
cycle corresponding to the active state of the neuron. For values of the parameter gM > 0 the
stable equilibrium loses stability through the subcritical Andronov–Hopf bifurcation (A–H). An
unstable limit cycle, which was also born due to the bifurcation, disappears flipping to the saddle
separatrix loop (Hom, the homoclinic bifurcation) and appears oncemore due to another homoclinic
bifurcation for the smaller value of I. In contrast to the previous case, the stable limit cycle is born
by the saddle-node bifurcation of limit cycles

frequency but at the same time changes the iPRC to the 2nd type. The change of
excitability type can significantly change the neurocomputational properties of the
PY cells and has influence on their synchronization properties.

Both conductances of the AHP and M-currents decrease the firing rate of the PY
cell the diagram showing the dependence of the frequency on both parameters has
a well-expressed diagonal structure (Fig. 3). The lowest firing rate is observed in
the upper right corner. We would like to note that the increase of spike frequency
adaptation by the AHP does not lead to activity suppression for biologically relevant
values, making this parameter to be effective for firing rate control of the PY cells.
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Fig. 3 Dependence of the PY cell period on the control parameter plane (gAHP , gM ) (Iapp = 4). The
period increases with growth of both control parameters. Increase of gM leads to the disappearance
of the stable limit cycle through the saddle-node bifurcation (S–N LC)

In contrast, the PY cells can demonstrate activity only for the certain interval of the
conductance of the M-current, its increase leads to the disappearance of the stable
limit cycle through the saddle-node bifurcations of limit cycles.

3 Influence of AHP- and M-Currents on Cluster Formation

To describe the generation of the PING rhythm, the network model should consist
of two interacting populations of neurons of the PY cells and IN neurons. Since we
do not focus on the intrinsic properties of the interneurons, following the approach
in Krupa et al. [9], we may describe the population of the IN neurons we need
a minimal yet relevant model of a spiking neuron. Thus, we chose the quadratic
Integrate-and-fire (QIF) model:

dvi
dt

= Iint − 2vi (vi − 1), (3)

reset : i f vi ≥ 1, vi → 0

where vi is a membrane potential of a IN neuron, Iint = 0.52 is a parameter deter-
mining the excitability of the INneurons.We note that theQIF neuron is the canonical
model for type I excitability and spike generation (SNIC driven spiking).

In the IN population, the neurons interact with each other andwith the PY cells via
inhibitory synapses (GABA synapse, gamma-aminobutyric acid). In contrast, the PY
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cells have projections only to the IN neurons via fast excitatory synapses (AMPA-
synapses, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid). All existing
couplings have an all-to-all topology. Thus, the network model has the following
form:

dve, j
dt

=
∑

j

Iionic, j − gei

(
1

Ni

Ni∑

k=1

si,k

)
(
ve, j − Eei

rev

)
, j = 1, Ne, (4)

dvi,l
dt

= f
(
2vi,l , Iint

) − gie

(
1

Ne

Ne∑

k=1

se,k

)
(
vi,l − Eie

rev

)

− gi i

(
1

Ni

Ni∑

k=1

si,k

)
(
vi,l − Eii

rev

)
,

where vi,l and vi,j are the membrane potential of the l-th IN neuron and j-th PY cell
respectively. The neurons interact through chemical synapses: gie is the conductance
of the inhibitory synapses located on the PY cells, gei and gii are the conductances
of the excitatory and inhibitory synapses located on the IN neurons. Parameters
Eei
rev, E

ie
rev and Eii

rev determine the reversal potentials of the synapses. The synaptic
variables si,k and se,j have values between 0 and 1. They are set to 1 after each spike
of the kth IN neuron and the jht PY cell E-cell and decay exponentially with time
constant τ i and τ e. The parameter gl, that controls intrinsic frequency of the PY
cells, was uniformly distributed in the interval [0.075, 0.125]. As in Krupa et al. [9]
the IN population contains 20 IN neurons, the PY population has 200 neurons.The
coupling parameters were set in the following way: gei= 0.2, gii = 10, τ i = 9, τ e =
2, Eei

rev = −80mv, Eie
rev = 6.5 and Eii

rev = −0.25.
In agreement with the frequency distribution on Fig. 3, the diagrams on Fig. 4

have almost the same diagonal structure of the cluster states with different number of
clusters (Fig. 4). Typically, simultaneous growth of the M-current conductance and
the spike frequency adaptation AHP parameter leads to greater number of clusters.
Because of much higher frequency of IN neurons, the PY cells split into several
alternatively firing clusters and form a cluster state. Examples of the different cluster
states are presented in Fig. 5. Imay be one (Fig. 5a), two (Fig. 5b), three (Fig. 5c), four
(Fig. 5d) and five cluster states, cluster states with “skipping” PY cells activity each
three periods of IN neurons (Fig. 5e). It is important to note that each point at each
diagram in the Fig. 4 is a result of network evolution from the randomly generated
initial conditions. The network is multistable, thus, for the same parameter set but
for different initial conditions, it is possible to get various cluster state with either the
same or the different number of clusters. For instance, in the lower right corners of
the diagrams in Fig. 4c, d there is a 2-cluster state (Fig. 5f) that coexists with some
2- and 3-cluster states. This is a result of the PING mechanism of gamma rhythm
generation for which the interaction between the network populations can make their
frequency multiples and form a state with a number of clusters determined by the
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Fig. 4 Number of clusters in the cluster states for the different strengths of the interpopulational
inhibitory connections. Each point on these diagrams corresponds to the number of clusters in a
state to which the system has evaluated from randomly generated initial conditions. The diagrams
demonstrate the well-expressed diagonal layered structure according with the changes of the PY
cells period (Fig. 3). Simultaneous growth of m-current and spike frequency adaptation leads to
greater number of clusters. In contrast, increasing inhibition results in smaller number of clusters.
The black circles in the diagrams correspond to the rasterplots in Fig. 5. We draw your attention that
here there is a multistability between different cluster states with either the same or the different
numbers of clusters. For example in the region labeled 5F it is possible to get (depending on initial
conditions) either 2, 3 or 4 clusters in the cluster state

ratio between the frequencies of IN and PY populations.

gei = 0.2, gie = 2, gi i = 10, τi = 9, τe = 2, Eeie
rev = 6.5,

Eii
rev = −0.25, Eei

rev = −80mV, Eee
rev = 50mV

Interestingly we note that changing of excitability type of the PY cells by the
M-current from type I to type II, leads to an increase in region of activity of the PY
population. At first we note, that an individual PY cell with gL = 0.1 does not fire
for the gM > 1.7 (see Fig. 3). In the PY population in our network, the parameter
gL is distributed in the interval [0.05, 0.15]. Thus, it is possible to suggest that
some PY cells stop to fire before this critical value of gM , the others above it. In
contrast, all PY cells fire at least for gM which is approximately higher two (Fig. 4).
Taking into account the absence of excitatory connections between the PY cells, it
is possible to conclude that such behavior (that cannot be predicted directly from
single cell analysis) is likely due to inhibitory synaptic influence of the IN neurons
and a generation of rebound spikes.
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Fig. 5 Rasterplots showing different possible cluster states in the PY population for the different
values of conductances of AHP and M-currents: one cluster for gAHP = 0.5, gM = 0.25 (a), two
clusters for gAHP = 1, gM= 0. 5 (b), three clusters for gAHP = 1.5, gM = 0.75 (c), four clusters for
gAHP = 3, gM = 1.5 (d), three cluster state with “skipping” PY cells activity each three periods of
IN neurons for gAHP = 3.9, gM = 1.95 (e) and two clusters for gAHP = 3.9, gM = 0.1 (f). All panels
labels coincide with letters titled the points on the diagrams in the Fig. 4a, b

The inhibitory couplings from the IN neurons to the pyramidal cells have a stabi-
lizing effect on the network. Stronger inhibition leads to lower numbers of clusters in
the cluster states and, thus, increase coherence of the gamma. In particular, the size of
three and especially four clusters regions decreases. It is important for investigation of
modulation of such cluster states by endogenous neuromodulators (dopamine, acetyl-
choline and others). For example, the positive dopamine modulation can increase the
PY cells inhibition and decrease the spike frequency adaptation and, vice versa, the
negative dopamine modulation decreases the inhibitory connections and increases
the spike frequency adaptation (see, for example, Zakharov et al. [10, 11] and cited
papers). Depending on initial point in the diagrams in Fig. 4, it is possible to control
the efficiency of the positive and negative dopamine modulation.
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4 Conclusions

In this paper, we consider process of cluster formation in a PING network producing
the weak (clustered) gamma rhythm.We have shown that theM-current significantly
changes the dynamical properties of the PY cells. TheM-current changes excitability
type of the PY cells and decreases the region of their activity in the parameter space.
In addition, theM-current, as well as AHP-current, effectively changes the frequency
of the neuron and can effectively affect the cluster formation. In particular, due to
the frequency drop with the increase of these currents, the color plots in the Fig. 5,
showing the dependence of number of clusters in the cluster states, have the well-
expressed diagonal layered structure. By changing PY cell excitability to 2nd type,
the M-current also promotes the population activity of the PY cells within the PING
network. In comparison with papers of Prescott et al. [14–16] we used more realistic
model of the PY cell that also takes into account transport of Ca2+ ions. It allows
us to describe spike frequency adaptation more accurately and use this model for
simulation of action of endogenous neuromodulators in the brain.

In our previous studies, we have shown that DA modulation of the AHP-current
can effectively change the cluster number in the cluster states of the weak PING
networks and thus the coherence of their collective activity that can significantly
affect information processing and decision-making. Thus, we expect that a joint
modulation of AHP- and M-currents will be able to do it more efficiently. From
the biological point of view, it can happen in the cases of simultaneous action of
dopamine, which can affect the AHP-current [17, 18], and acetylcholine, which
can decrease the M-current by, for example, muscarinic receptors [12], or due to
acetylcholine modulation, which can influence both currents [19].
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