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Removal of Nitrogen Oxyanion (Nitrate)
in Constructed Wetlands
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Abstract The increasing levels of nitrogen oxyanion pollution especially nitrate in
water environments have become a critical issues of concern because of the poten-
tial risk on ecology and human health. Owing to its distinctive merits of sustain-
ability, lesser operational andmaintenance expenditure, the utilization of constructed
wetland systems for the treatment of wastewater has turned out to be predominant
worldwide. Its nitrogenoxyanion removal performance has received significant atten-
tion in the last two decades. This chapter presents a comprehensive outline of the
application of constructed wetlands (CW) for nitrogen oxyanion removal fromwater
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and wastewater. The removal mechanisms and transformations of nitrogen are also
discussed. In addition, the major factors that influence the removal performances in
CWs are elucidated, especially the types of carbon sources commonly used, and how
it affects the denitrification process. This chapter would be useful to engineers and
researchers in the field of water and wastewater engineering.

Keywords Carbon sources · Constructed wetlands · Nitrate · Nitrogen pollution ·
Wastewater

12.1 Background

12.1.1 Nitrate in the Environment

Nitrate (NO−
3 ) is one of themajor generic forms of nitrogen oxyanions that exist natu-

rally in moderate concentrations in different environmental media. The oxidation of
nitrites (NO−

2 )majorly generates nitrates during nitrification process of the nitrogen
cycle. The nitrogen cycle is the biogeochemical cycle by which organic protein from
animals and plants origin is converted into ammonia (NH3) and then NO

−
2 , and NO

−
3

in the environment. The transformations of the different nitrogen forms are carried
out via physicochemical and biological processes (Fig. 12.1). Owing to its high
solubility in water, the presence of NO−

3 has adverse effects on the environment,
as it greatly accounts for the pollution of soil, surface water and the groundwater
[1]. Several wastewater types such as urban drainage, landfill leachate, industrial
and agricultural wastewater that contain nitrogenous compounds initiate undesirable
phenomena (e.g. eutrophication and methemoglobinemia (i.e. blue baby syndrome))
when they are released into water bodies [2–4]. The concentrations of NO−

3 in these
wastewaters vary from low to high, and thus, demand an appropriate technique for
the removal. According to Rajmohan et al. [5], the usual NO−

3 level in polluted water
ranges from 200 to 500 mg/L, based on the nature of the source (Table 12.1), but
wastewater from nuclear industries contain up to 50,000 mg/L of NO−

3 .
Excess NO−

3 , discharged from the large-scale utilization of agricultural fertilizers,
concentrated livestock feeding operations and disposal of partially treated sewage,
that enters the groundwater, is among the priority pollutants of the groundwater
system. Over 10,000 public water supply wells are estimated to have high levels of
nitrate in the USA and thousands of wells were also ascertained with nitrate concen-
trations at or above the established health standards, acrossWestern Europe and Asia
[14].Consequently, themaximumpermissible concentration limit ofNO−

3 in drinking
water was set at 10 mg/L as nitrate-nitrogen (NO3–N) by the US Environmental
Protection Agency, while 50 mg/L NO−

3 was set by World Health Organization to
address the concerns of methemoglobinemia in infants [14, 15]. High levels of NO−

3
is recognized to cause environmental and public health issues. The presence of this
nitrogen oxyanion inwater environments is a global challenge that needs urgent atten-
tion. To this end, various technological solutions, including electrodialysis, chemical
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Fig. 12.1 Nitrogen cycle

Table 12.1 Nitrate levels at various sources as reported in the literature

Wastewater source Nitrate level (mg/L) References

Domestic wastewaters/septic tanks 70–85 [6, 7]

Fertilizer, Diaries, metal finishing industries 200 [8]

Tannery, Pisa, Italy 222 [9]

Glasshouses waste 325 [10]

Brackish water 1000 [11]

Explosives factory, China 3600 [12]

Nuclear industry 50,000 [13]

Adapted from (Rajmohan et al. 2017)
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reduction, membrane separation, adsorption, sequencing batch reactor, moving bed
bioreactors, electrochemical denitrification, reverse osmosis; ion exchange, photo-
catalytic degradation and membrane bioreactors have been developed to solve this
menace [3, 16–27]. However, these technologies are always limited by their costly
installation and high operational cost, secondary pollution, sludge production that
need disposal, incomplete removal efficiency [28, 29]. In this chapter, constructed
wetland (CW) systems, which are generally cost effective, simple, environmentally
non-disruptive, ecologically sound, with relatively low maintenance cost, will be
expounded in relation to NO−

3 removal.

12.1.2 Constructed Wetlands

Constructed wetlands, also referred to as treatment wetlands, are engineered systems
that are designed and fabricated to treat several kinds of wastewater with relatively
low external energy requirements and operationally simple technology and main-
tenance (Fig. 12.2) [30–35]. Milani et al. [36] defined CW as a “sustainable and
efficient solutions used around the world to treat wastewater as an alternative or
a supplement to intensively engineered treatment plants”. They are complex, inte-
grated systems that involve the interaction of soil, water, plants, animals, microbes
and the environment. The CWs have become an essential alternative wastewater
treatment system since the method combines relatively high performance of pollu-
tant removal with low maintenance and simple operation [37]. The CWs are planned
methods designed and constructed to apply the natural procedures involving wetland
vegetation, soils and the associated microbial assemblages to assist in wastewater
treatment. It can effectively remove suspended solids, organic pollutants and nutri-
ents fromwastewater [38–40]. The CWs provide an inexpensive and reliable method
for treating a variety of wastewaters such as sewage, landfill leachate, mine leachate,
urban storm-water and agricultural run-off. This system of treatment is very efficient
for nutrient removal and comparatively simple to construct, operate, maintain and
suitable for advanced and polishing treatment if water reuse is an option [41]. The
main NO−

3 removal mechanisms in wetlands are seepage loss, plant uptake and deni-
trification [42] which are further expatiated in Sect. 12.2. Table 12.2 summarizes
research studies on NO−

3 removal using CWs.

12.2 Nitrogen Transformation in Constructed Wetlands

As an ecological treatment technology, CWs have been largely utilized in recent
decades in wastewater treatment plants. Before the arrival of CWs technology,
conventional activated sludge-type wastewater treatment plants have been used for
nitrogen removal but only minimal quantity is removed, via the consumption of the
organic matter fraction of the wastewater.
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Fig. 12.2 Constructedwetlands aHorizontal flow freewater surface constructedwetland bVertical
flow free water surface constructed wetland c Horizontal sub-surface flow constructed wetland
d Vertical sub-surface flow constructed wetland

Inwastewater treatment operations, nitrate is removed through a process known as
denitrification. This is a process, where organic and ammonia nitrogen is converted,
through a process known as nitrification, to NO−

3 in the absence of oxygen (an
anaerobic environment). The NO−

3 produced through nitrification is further reduced
to nitrogen gas in this same anoxic environment, thus completing the denitrification
process [65, 66]. This process is carried out by several range of autotrophic and
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heterotrophic facultative anaerobic bacteria, which are capable of utilizing NO−
3

(and NO−
2 ), under anoxic conditions, as an electron acceptor [67]. Some of these

bacteria include Pseudomonas, Micrococcus, Bacillus, Paracoccus denitrificans and
Achromobacter. For better nitrogen removal, an external organic carbon source is
needed to act as an electron donor in the respiratory chain [38], and CWs are a better
option to achieving this.

Although the eutrophication and the toxic effects of NO−
3 on aquatic organisms of

both vertebrate and invertebrate species are sources of concerns [68], it also boosts
plants’ growth, which sequentially promotes the environmental biogeochemistry in
the wetlands. The circulation of nitrogen in wetlands involves composite processes,
while very straightforward chemical conversion of this element still poses a great
task in environmental engineering. Such processes, which include bacterial actions,
plant/microbial uptake, adsorption (interaction between ionized NH3 and the media
in sub-surface horizontal flow, (SSHF) CWs), and volatilization (i.e. transformation
of aquatic NH+

4 to gaseous NH3, within the operating pH regime of the surface flow
CW), mostly achieved nitrogen removals in wetlands [68–70].

Nitrogen transformation involves some processes and mechanisms, which lead to
the transference of wetland nitrogen from one point to the other without any conse-
quentialmolecular alteration [69].As earlier noted, the physical processes ofmanage-
ment of nitrogen oxyanion in CW include, settling of particles and re-suspension,
dissolution and diffusion, plant translocation, litterfall, volatilization and sorption
[68, 69]. Generally, nitrogen oxyanion removal in CW occurs through two processes
that include biological and physicochemical treatment processes. The five major
biological treatment process include denitrification, nitrification, ammonification
(mineralization), assimilation and decomposition [69, 71, 72]. The physicochem-
ical processes include, sedimentation, NH3 stripping, breakpoint chlorination and
ion exchange [70, 73]. It was suggested that low oxygen and organic matter contents
in the root zone offers restriction to nitrification and denitrification processes [69].
However, an integration of partial nitrification and anaerobic NH+

4 oxidation has
equally been recommended to be resourceful in removing nitrogen from constructed
wetlands. This is largely due to the autotrophic nature of anaerobic ammonia oxida-
tion (Anammox) process, in which NH+

4 is completely converted into nitrogen gas
in the presence of NO−

2 and without the addition of organic matter [69].

12.2.1 Ammonification

The ammonification refers to the process by which the organic nitrogen fraction is
transformed to NH3, through a biological process [71]. The first stage of nitrifica-
tion in sub-surface flow CW (SSFCW) systems is initiated by ammonification, if
the inbound wastewater is highly loaded with organic nitrogen [74]. This biochem-
ical process, where the amino acids fractions are exposed to oxidative deamination
yielding NH3 is acomplex and exergonic process, (Eq. 12.2.1) [74, 75].
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Amino acids → Imino acids → Keto acids → NH3 (12.2.1)

Since the process of occurrence decreases with depth, it shows that ammonifica-
tion is quickest within the upper zone of the wetlands, where the aerobic condition
is prominent. It is time-consuming within the lower zone, where the environment
moves from facultative anaerobic condition to obligate anaerobic condition [71,
76]. In CWs, the inorganic ammoniacal-nitrogen is mostly removed by nitrifica-
tion–denitrification processes, but ammonification kinetically progresses faster than
nitrification [71]. Kadlec and Knight [70] suggested that the ammonification process
progresses quicker in higher temperature, doubling the rate with a temperature rise
of 10 °C. The pH range observed to be ideal for ammonification is 6.5–8.5 [74, 77,
78]. The ammonification process is therefore generally affected by pH, temperature,
carbon-to-nitrogen (C/N) ratio, soil structure and available nutrient [76]. Further-
more, processes such as adsorption, plant uptake and volatilization are suggested to
be resourceful in ammonia–nitrogen removal [38], though the effectiveness of nitri-
fication–denitrification processes is, in general, suggested to be the most resourceful
in NH+

4 removal [71].

12.2.2 Nitrification

Nitrification is the major transformation mechanism by which the level of ammonia
nitrogen is reduced. This reduction is achieved through the conversion of the
ammonia nitrogen into oxidized form of nitrogen (i.e.NO−

2 andNO
−
3 ). Graaf et al. [79]

defined nitrification as the biological formation of nitrate or nitrite from compounds
containing reduced nitrogen with oxygen (O2) as their terminal electron receptor.
Lee et al. [71] defined it as the chemolithoautotrophic oxidation of NH3 to NO−

3 in
the presence of adequate O2, occurring in two successive oxidative steps, namely
ammonia oxidation (NH3 toNO−

2 ) and nitrite oxidation (NO−
2 toNO

−
3 ), carried out

by nitrifying bacteria. These bacteria use NH3 or NO
−
2 as an energy source, O2 as

the terminal electron recipient and carbon dioxide as the carbon source [71]. The
first stage is the oxidation of NH3 to NO

−
2 , by ammonium oxidizing bacteria such as

Nitrosomonas or Nitrospira or Nitrosococcus (Eq. 12.2.2) [71, 74].

NH+
4 + 1.5O2Nitroso - genus−−−−−−−−−−→ NO−

2 + H2O + 2H+ (12.2.2)

The above first stage is succeeded by the second stage which is the oxidation
of NO−

2 by nitrite-oxidizing bacteria such as Nitrobacter or Nitrospira. The second
stage is described by Eq. 12.2.3 [71, 74].

NO−
2 + 0.5O2Nitro - genus−−−−−−−−→ NO−

3 (12.2.3)
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The oxygen consumption of nitrification process is estimated to be 3.16 mg O2

per mg NH4 −N oxidized, and 1.11 mg O2 per mg NO2 −N oxidized, while Nitro-
somonas and Nitrobacter produce 0.15 mg cells per mg NH4 − N oxidized and
0.02 mg cells per mg NO2 − N respectively [71]. Furthermore, alkalinity is neces-
sary as 7.07 mg CaCO3 per mg NH4 − N oxidized [80]. The acid formation (i.e.
low pH value) during nitrification process causes alkalinity reduction and a deep
reduction in pH [68, 80–82], and a swift decline in the nitrification rate below the
neutral pH value [81]. Hence, it is important to replenish the alkaline level with lime
during the process, when there is a drop in alkalinity [80]. Though nitrification is
basically attributed to chemoautotrophic bacteria, it is suggested that heterotrophic
nitrification takes place, which can be significant [68]. Aside from autotrophic nitri-
fication, heterotrophic nitrifying bacteria are also capable of producing NO3 − N.
Some of these species (in bacteria, algae and fungi) are Actinomycetes, Arthrobacter
globiformis, Aerobacter aerogenes, Bacillus, Mycobacterium phlei, Streptomyces
griseus, Theosphaera and Pseudomonas [38, 74, 83]. Gerardi [83] affirmed that
although these heterotrophic nitrifiers are resourceful, the nitrification rates achieved
by Nitrosomonas and Nitrobacter groups are significantly greater (relatively greater
by 1000 to 10,000 times) [74]. However, owing to constraints against nitrification and
denitrification processes, offered by low oxygen and organic matter concentration in
SSF, it has been affirmed that a combination of partial nitrification and Anammox
is a resourceful means of removing nitrogen from CWs [69]. Moreover, since the
Anammox process is autotrophic, the transformation of NH+

4 to nitrogen could be
possible without adding organic matter [69].

12.3 Denitrification

Kadlec andWallace [68] defined denitrification as the process bywhichNO−
3 is trans-

formed to dinitrogen (N2) via intermediates such as NO−
2 , nitric oxide, and nitrous

oxide, and finally nitrogen (Eq. 12.2.4). The denitrification process is also called
NO−

3 dissimilation, and it is accomplished by facultative heterotrophic organisms
that can use NO−

3 as the terminal electron receptor, and organic carbon as an electron
donor under anoxic condition [71]. During the transformation, inorganic nitrogens
such as NO−

2 and NO−
3 are usually reduced to harmless nitrogen gas by denitrifying

bacteria [71, 84, 85]. Some denitrifiers require organic substrates to get their carbon
source for growth and evolution, whereas others use inorganic substances as their
energy sources and CO2 as their carbon source [86]. Therefore, denitrifying bacteria
are categorized into two main species, namely autotrophs and heterotrophs [71].
However, earlier studies have focussed on the heterotrophic denitrification process,
due to its frequency in conventional wastewater treatment plants [71, 87], while the
autotrophic denitrification process started gaining attention in recent studies [88–94].

Moreover, denitrification is led by some heterotrophic microorganisms like Pseu-
domonas, Micrococcus, Achromobacter and Bacillus, under anaerobic or low-
oxygen conditions. Denitrificating microbes can be grouped as: organotrophs (e.g.
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Pseudomonas, Alcaligenes, Bacillus, Agrobacterium, Flavobacterium, Propioni-
bacterium and Vibrio), chemolithotrophs (e.g. Thiobacillus, Thiomicrospira, Nitro-
somonas), photolithotrophs (e.g. Rhodopsuedomonas), diazotrophs (e.g. Rhizo-
bium, Azospirillum), archaea (e.g. Halobacterium) and other microorganisms such
as Paracoccus or Neisseria [68]. The fraction of total nitrogen removal through
denitrification is normally 60–95%.

2NO−
3 → 2NO−

2 → 2NO → 2N2O → N2 (12.2.4)

12.3.1 Assimilation Process of Nitrogen

The uptake of nitrogen by plants or microbes is regarded as the assimilation process.
Masclaux-Daubresse et al. [95] andXuet al. [96] asserted that the usageof nitrogenby
plants encompasses numerous stages, including uptake, assimilation, translocation
and, when the plant is ageing, recycling and remobilization. The assimilation process
occurs via the formation of organic nitrogen compounds such as amino acids from
inorganic nitrogen compounds available in the environment. Organisms like plants,
fungi and specific bacteria that cannot fix nitrogen gas (N2) rely on the ability to
assimilate NO−

3 or NH3 for their needs. Animals also depend fully on the organic
nitrogen form for their food. Several studies have affirmed the significance of the
removal of NH3 from water by wetland plants [97–104]. However, many of these
studies are commonly seen to portray the measurement of gross nitrogen uptake,
without deduction for consequential losses due to plant death and decomposition,
with associated leaching as well as re-solubilization of nitrogen [68].

For nitrogen removal from the wetland water, the attention is usually on the
net influence of the macrophytes (macroflora) on the water phase concentrations
[68]. When discussing plant uptake as a process of nitrogen removal from wetland
water, terms such as phytomass (the totality of vegetative materials, living and dead),
biomass (all living vegetative materials) and necromass (all dead vegetative mate-
rials) are often used [68]. Macrophytes are vital in enhancing nitrogen removal from
wetlands due to their functions such as providing surfaces and O2 for the growth
of microbes within the rhizosphere, thus improving nitrification [99, 105–107], and
providing carbon from root secretions (due to photosynthetically fixed carbon, within
a range of 5–25% C), enhancing organics removal and denitrification process [97,
108–111]. Various relative researches between unplanted and planted wetlands indi-
cated good nitrogen and organics removal, with the latter yielding more significant
results, hence indicating the necessity of macroflora for enhancing nitrogen removal
operations in CWs [74].

Inorganic nitrogen forms are usually transformed into organic compounds through
the uptake of NH3 and NO−

3 by macrophytes. This serves as the building blocks
for cells and tissues [78]. The ability of rooted plants to utilize sediment nutrients
partly describes their massive yield in comparison with planktonic algae in many
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systems [112]. Different plant species have varying ability in their ideal nitrogen
forms absorbed, and the nutrient concentration of plants tissues also influences the
uptake and storage rate of nutrient [71]. However, NH+

4 preference is conventional
in macroflora within NH+

4 -rich environments where restricted nitrification occurs
[113]. In general, the uptake of nitrogen by plants varies along with system config-
urations, loading ranges, type of wastewater and environmental conditions [74]. In
nitrogen removal, plants contribution is affirmed to be about 0.5–40.0% of the total
nitrogen removal [74, 103, 104]. Plant biomass accumulates 60% of total nitrogen
thus, enhancing nitrogen removal significantly [103]. For efficient nutrient assimila-
tion and storage, plantswith features such as high tissue nutrient content, rapid growth
and ability to achieve high-standing crops are preferably desired. On the contrary,
plants with immense biomass accumulation during autumn and winter have a likeli-
hood of releasing a considerable amount of their stored nitrogen back into the water
during the winter season [38]. Brodrick et al. [114] equally suggested that decaying
plant materials could also raise the concentration of nutrients in the effluent through
leaching [74].

Some selected plants have been employed in constructed wetlands; however,
Phragmites australis remains the most typical plant used in SSFCW due to its capa-
bility to pass O2 from its leaves through the stems and rhizomes and out of from its
fine hair roots into the rhizosphere [115]. Reports from literature about the ability of
the plant to convey oxygen (thereby fostering microbial conversion and nitrification)
express various illustrations [74, 116–118]. Armstrong et al. [116] noted O2 release
(per unit wetland area) by phragmites species to be in the range of 5–12 g O2 per
square metre per day, while the O2 release by phragmites in a study by Brix and
Schierup [117] gives a record of only 0.02 g O2 per square meter in soil substrate.
The oxygen released by phragmites species recorded by Bavor et al. [118] is about
0.8 g O2 per square meter in gravel substrate [74]. Figure 12.3 represents the major
typical routes for nitrogen removal in SSFCWs.

12.4 Factors Affecting Nitrogen Removal Efficiency in CWs

Nitrogen oxyanion removal efficiency, especiallyNO−
3 , in CWs has been discussed to

involve various biological and physicochemical processes. Therefore, various envi-
ronmental factors are bound to affect the efficiencies of these processes, thereby
limiting the oxyanion removal efficiency. Some of such factors include pH, temper-
ature, hydraulic residence time (HRT), NO−

2 concentration, oxygen concentration,
vegetation type (wetland plant species) and density, activity ofmicroorganism, distri-
bution of wastewater, climate, and attributes of influent[71, 74, 119–122]. It should
be noted that most of these factors are interdependent; hence, a variation of one factor
often leads to a consequent change in other factors [121]. Furthermore, Kuschk et al.
[123] stressed that the two major factors affecting the nitrogen removal from CWs
are temperature and HRT [71]. The following subsections give a concise analysis of
the key factors influencing nitrogen removal efficiency in CWs.
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Fig. 12.3 Key classical nitrogen removal routes in sub-surface flow wetlands [74]

12.4.1 Carbon Source

Amidst all the aforementioned factors, the carbon source is one of the known
dominant external factors which has disreputed the nitrogen oxyanion removal
efficiency of CWs [56, 124]. Other factors to be considered in the choice of the
carbon source include cost, handling and storage safety/stability, denitrification rate,
degree of utilization, kinetics, sludge production, the content of unfavourable/toxic
compounds. A commonly used carbon source, which is readily available, and with
a high denitrification rate is methanol. Other closely related examples are ethanol
and acetic acid. Although the nitrogen removal efficiency, using the methanol carbon
source is desirable, the existence of NO−

2 accumulation in wastewater with highNO−
3

concentration often results in bacteria growth suppression [125]. Furthermore, the
danger of overapplication of easily biodegradable materials of these liquid carbon
sources through aerobic degradation can adversely impact nitrogenoxyanion removal
[126]. Considering the aforementioned shortcomings, plant-based carbon sources
have been considered [124, 127], and used to treat different wastewater, such as
domestic sewage, agricultural run-off and industrial effluent. At present, most of the
denitrifying bacteria in CWs are heterotrophic which require organic carbon sources
for the substantive effect on denitrification process for nourishment and NO−

3 reduc-
tion [128]. In a study by Zhao and Chen [129], it was discovered that ammonia
nitrogen, nitrous nitrogen and total nitrogen (when alkali-treated corn stover was
used as additional carbon source material) were removed in the upper and middle
layers, while nitrate is removed mainly at the bottom layer. Xiao et al. [130] showed
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the addition of solid carbon source to the vertical flow CW. In the system, there was
almost 100% nitrification reaction, when the addition position of the carbon source
was at the lower layer, thus giving the total nitrogen removal rate at the highest.

The type of exogenous carbon sources that are widely used for CWs are of
three classes, including natural organic matters, low molecular carbohydrates and
biodegradable macromolecule polymers.

12.4.1.1 Natural Organic Matters

Plant is a naturally degradable material that is rich in lignin, cellulose, hemicellulose
and many more. In CWs, it is the most vital composition because of its ability to
absorb nitrogen as nutrient and also to provide suitable environment for nitrification
and denitrification [131]. In recent years, the application of natural material (espe-
cially plant biomass) as a carbon source for maximum nitrogen removal efficiency
has gained substantial ground in CWs, because of the economic viability and practi-
cability [132]. Their effects in nitrogen oxyanion removal vary, due to the diversity in
the composition of lignin, cellulose, hemicellulose and other components in plants.
Some natural organic matters (mostly plant biomass) have been studied to assess the
effectiveness and efficiency of plant carbon source in CW denitrification rate [133]
(Table 12.3). Conversely, these natural materials (especially for plant biomass) have
some demerits, which include unstable carbon supply and discharge of coloured
matter [134], which sometimes affect their applications.

12.4.1.2 Low Molecular Carbohydrate

Low molecular organic carbon sources have some desirable properties, which have
also gained them recognition as an external carbon source. They are rich in carbon,
which can easily be used up during decomposition. If classified in terms of physical
form, they are liquid organic substances, which are termed liquid carbon sources.
Examples are glucose [142–144], fructose [44], ethanol, methanol [145–147] and
acetic acid [148].

12.4.1.3 Biodegradable Macromolecule Polymers

In recent time, a wide range of external carbon sources, which by the phys-
ical classification are solid organic substances, were checked in some labora-
tory studies, to function as physical support for biofilm formation in solid-phase
denitrification system [149]. Some of the polymers were even blended. Exam-
ples of these polymer/polymer blends used so far are polybutylene succinate
[150], polycaprolactone [151, 152], polyhydroxyalkanoates [153], polyvinyl alcohol
[154], starch [155], starch/polyvinyl alcohol [156], poly(3-hydroxybutyrate-co-3-
hydroxyvalerate)/poly(lactic acid) [157] and PHBV/starch [149].
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Table 12.3 Plant biomass used as carbon source in CWs and their denitrification rates and removal
efficiencies. Adapted from [133]

Carbon
Source

Wastewater
Treatment

Denitrification
Rate (g m−3

d−1)

NO−
3 − N Removal

efficiency
(%)

References

Influent
(mg L−1)

Effluent
(mg L−1)

Wheat straw Drinking
water

32–53 ≈ 20 0 100 [135]

Sawdust Groundwater 0.24–3.36 NA NA >95.0 [136]

Wheat straw Simulated
sewage

NA 200 >170 >15 [121]

G.verrucosa Simulated
sewage

13.2 100 0 100 [137]

Giant reed Simulated
sewage

3.36 100 0 100 [137]

Liquorice Synthetic
brackish
water

20.64 100 0 100 [138]

Giant reed Synthetic
brackish
water

85.92 100 13 87 [138]

Giant reed Synthetic
brackish
water

101.52 100 0–13 87–100 [138]

Cotton wool Aquaculture
wastewater

NA >200 <10 >95 [139]

Pine bark Landfill
leachates

33.6 600 0 100 [140]

Pine
woodchip

Simulated
sewage

2.4 17.2 11.6 32.6 [141]

Maize cobs Simulated
sewage

6.24 17.2 4.9 71.5 [141]

Wheat straw Simulated
sewage

4.56 17.2 8.9 48.3 [141]

Green waste Simulated
sewage

5.04 17.2 5.8 66.3 [141]

Sawdust Simulated
sewage

4.32 17.2 8.6 50.0 [141]

Eucalyptus Simulated
sewage

3.6 17.2 10.3 40.1 [141]

Maize cobs Municipal
portable
water

19.8 141 0 100 [119]

(continued)



366 F. O. Ajibade et al.

Table 12.3 (continued)

Carbon
Source

Wastewater
Treatment

Denitrification
Rate (g m−3

d−1)

NO−
3 − N Removal

efficiency
(%)

References

Influent
(mg L−1)

Effluent
(mg L−1)

Wheat straw Municipal
portable
water

10.5 141 NA NA [119]

Softwood Municipal
portable
water

5.8 141 NA NA [119]

Hardwood Municipal
portable
water

3.0 141 NA NA [119]

NA: No data available

Hitherto, there have been some investigations of denitrification performance and
microbial community structure in both liquid and solid carbon sources supported
denitrification systems but their differences are scarcely studied. Srinandan et al.
[158] reported that both liquid and solid organic carbon sources influence the nitrate
removal activity, biofilm architecture and community structure although molecular
weight and chemical structure of the biodegradable polymers were generally higher
and more complicated when compared with the liquid carbon sources. Furthermore,
denitrification performance and microbial diversity using starch/PCL and ethanol as
an electron donor for nitrate removal were also investigated through comparison.
The outcome revealed that the ethanol system displayed a higher denitrification rate
while the blended starch/PCL system had richer microbial diversity [159].

Generally, when blended polymers and other external carbon sources were
utilized, they yielded a good denitrification effect [160, 161] but the water of the
solution of the blended polymer carbon source took some ample of time, causing
some lag period. In addition, the morphology of the blended materials, surface prop-
erties and particle size posed great influence on the denitrification rate, with its
biodegradability and denitrification performance decreasing with increasing molec-
ular weight [162]. Thus, polymer/polymer blended carbon sources are not commonly
used because of some factors such as high market price and slow release of carbon
sources which requires a lot of time.

12.4.2 Selected Operating Parameters

12.4.2.1 pH

It has been established that nitrification process consumes alkalinity. Vymazal [38]
affirmed that a pH >8.0 is capable of decreasing nitrification and denitrification



12 Removal of Nitrogen Oxyanion (Nitrate) in Constructed Wetlands 367

processes to an insignificant level, with denitrification process occurring slowly at
pH 5. Moreover, previous studies have suggested that high pH leads to a decline in
dissolved oxygen (DO) in substrate [163], thus influencing nitrification and denitri-
fication processes [32]. Also, some studies suggested that pH <6.0 and >8.0 hinder
denitrification [32, 38, 81, 163], while the peak rate is observed at a pH range 7.0–7.5
[74, 164].

12.4.2.2 Temperature

Temperature is a significant environmental factor that controls the solid-phase deni-
trification process by hindering the activity of the associated enzymes in both hydrol-
ysis of the solid substrate and reduction of NO−

3 [165]. In other words, temperature
affects both microbial activities and diffusion rate of O2 in constructed wetlands
[166]. A temperature range between 16.5 and 32 ºC is favourable for nitrification in
CWs [74, 167], while the most efficient removal occurs at temperature that ranged
between 20 and 25 °C [164, 166]. The nitrification- and denitrification-associated
microbial activities decreased significantly at temperatures below 15 °C and above
30 °C [123].

Many studies have investigated the activities of denitrifiers in CW sediments
during various climatic conditions and found that their activities are generally more
robust in spring and summer than in autumn and winter [74, 168–171]. Oostrom and
Russell [172] affirmed that, in general, the degree of removal ofNO−

3 is greater around
summer than during winter [71]. Denitrification is usually believed to terminate at
temperatures below 5 °C [71]. In soils, the optimal temperature limits for nitrification
and ammonification are 30–40 °C and 40–60 °C, respectively [38].

12.4.2.3 Hydraulic Residence Time and Hydraulic Loading

Hydraulic residence time (HRT) is an important factor in nitrogen removal. The
nitrogen removal efficiency is highly influenced by the flow condition and the resi-
dence time [4]. An increase in wastewater residence time leads to an intense decrease
of ammonium and total Kjeldahl nitrogen concentrations in treated effluent [71]. This
is because of the lengthier time of contact of nitrogen pollutant with microorgan-
isms that gives advantage to the microbe to play a significant catabolic activity [74].
Lee et al. [71] also stated that lengthier HRT is necessary in nitrogen removal from
wetlands than for BOD and COD removal. An eight-day HRT at a temperature above
15 °C is needed in SSFCWs [173]. However, if anaerobic conditions dominate in the
wetlands, there is likelihood that an increase in HRT will not facilitate NO−

3 removal
[174]. About 3–4 h HRT is required when NO−

3 concentration is not more than 40mg
L−1 and a minimum HRT of 6 h is necessary when NO−

3 concentration is more than
70 mg L−1 [175]. Hydraulic loading is also important in this regard, especially in
SSFWs. Saeed and Sun [74] affirmed that the greater the hydraulic loading the faster
the passage of wastewater through the media.
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12.4.2.4 Dissolved Oxygen (DO)

As earlier discussed, most denitrifiers are facultative anaerobic organisms that use
nitrate as a terminal electron recipient in the absence of oxygen or under anoxic
condition. DO is a great and energetic electron recipient, and for that reason, it
exhibits direct competition or inhibition of enzymes, which consequently results
to suppression of the denitrification process [165]. Denitrification could happen at
DO concentration to the level of 4.0–5.0 mg L−1 [165], though the denitrification
rate declined with increase in DO levels [153]. Furthermore, it is vital to note that
the presence of DO promotes upsurge in carbon source consumption as a portion of
predisposed organic carbon is used up by aerobic respiration instead of denitrification
[153, 176]. Since enzymatic actions in reducing nitrate can be inhibited by DO, there
mayoccur nitrate accumulation [165].The lower theoxygen concentration, the higher
the denitrification becomes [177].

Denitrification rate of Diaphorobacter nitroreducens strain NA10B decreased
as the DO concentration increased, when using poly(3-hydroxybutyrate-co-3-
hydroxyvalerate) (PHBV) powders as carbon substrate, even when more than 3 mg
NO3 −N g−1 h−1 is maintained under complete aerobic conditions [178]. Gutierrez-
Wing et al. [153] reported that the denitrification rate decreased from 5.5 to 0.5 g
NO3 − N L−1 d−1 when the DO concentration increased from 0.5 to 4.0 mg L−1 in
a circulating aquaculture water system filled with polyhydroxybutyrate (PHB). At
the DO levels of 4–5 mg L−1, a least denitrification rate of 0.18 g NO3 −N L−1 d−1

was noticed for 6 days and thereafter declined to zero. Xu et al. [179] also reported
that the nitrate removal increased to more than 85% with increasing DO levels in the
influent from 1.5 to 4.0 mg L−1, and decreased to 50% at DO levels > 4.0 mg L−1

in a solid-phase denitrification system, using corncobs as carbon source. Wang and
Chu [165] thus suggested that controlling the DO levels in the denitrification reactor
appeared to be needless, but then it could promote the efficiency of the process.

12.4.3 Vegetation Type

Macrophytes (also known as macroflora, phytoremediators, hydrophytes, wetland
plants and aquatic plants) are those plant species naturally found thriving in wetlands
of all sorts, either in or on the water. They play a significant role in CWs and have
been extensively used for decontamination of water bodies. For instance, their roots
provide surface areas for microbial activities and aerobic zones in the wetlands.
The rhizosphere is the most active reaction zone in a CW as it promotes the rela-
tionship benefits that exit amongst plants, microbes, soil and contaminants, thereby
enhancing physical and biochemical processes [71]. Studies revealed that parts (the
above-ground and below-ground) of the macrophytes enhanced microbial diversity
and offer enormous surface areas for biofilm development which is accountable for
the majority of the microbial activities occurring in the CWs [180, 181]. The cate-
gories of macrophytes commonly used in CW are emergent plants (Arundo donax L.,
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Juncus spp., Phragmites spp., Typha spp., Iris spp., and Eleocharis spp), submerged
plants (Myriophyllum verticillatum, Hydrilla verticillata, Ceratophyllum demersum,
and Vallisneria natans), floating leaved plants (water spinach (Ipomoea aquatica),
water lettuce (Pistia stratiotes) Nymphaea tetragona, Nymphoides peltata, Trapa
bispinosa and Marsilea quadrifolia), free-floating plants (Water hyacinth (Eich-
hornia crassipes), Lemna minor, Hydrocharis dubia and Salvinia natans) and other
large wetland grass-like plants like Bulrushes (e.g. Scirpus luviatilis, Scirpus validus,
Scirpus cyperinus). It has been substantiated that planting of more than one species
of macrophytes enhances the removal performance of CWs because the presence
of diverse kind of plant species offers a more favourable microbial activities and
longer retention time [182, 183]. For optimum treatment efficiency and favourable
CW design, a detailed understanding of plant species, uniqueness of microorganism
groups, and the associations between biogenic matters and particular components in
contaminants are required.

12.5 Conclusion

Nitrate pollution remains a vital problem in the pursuit of environmental sustain-
ability in water environments. This chapter has shed light on the viable means of
treating nitrate contaminated water using an ecologically based technology called
constructed wetland. CWs have been proved to be a beneficial and promising tech-
nique in wastewater treatment because of their low-cost, environmental quality
preservation and easy maintenance. This chapter also summarizes several factors
responsible for nitrogen removal in CW treatment systems from water and wastew-
ater, including the various transformations of nitrogen with a focus on nitrogen
oxyanion (nitrate).
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