
Chapter 5
Variational Autoencoder

What to expect in the following sections:

• what a generative model is and what its benefits are,
• how to evaluate a generative model,
• detailed explanation of the Variational Autoencoder (VAE),
• developments that enhance the VAE’s performance in different aspects,
• central problems of this class of models;
• examples and demonstrations of the discussed VAE models.

After the dense chapter on BNNs, the reader will find this one a bit simpler, as
the required tools were actually already introduced. By the end of this chapter, one
should

• be able to characterize generative models,
• understand when they are useful,
• know the challenges on assessing their quality,
• possess breadth of knowledge on VAE’s core idea,
• comprehend the ideas behind its extensions and what effectively changes.

5.1 Motivations

Generative models are statistical models of data that attempt to capture the
entire probability distribution from the observables, that is, to estimate p(x) from
D = {X}n. They are a complete description of the probabilistic model that
generates the observed data. In possession of the full model we can extrapolate to
unseen examples, generate new samples, infer relations and dependencies, perform
prediction, and much more.

Differently from discriminative models that use the target Y as supervisory
signal to estimate the conditional distribution of Y |X, generative models do not

© Springer Nature Switzerland AG 2021
L. P. Cinelli et al., Variational Methods for Machine Learning with Applications to
Deep Networks, https://doi.org/10.1007/978-3-030-70679-1_5

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70679-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-70679-1_5

112 5 Variational Autoencoder

need to be supervised. Thus, the latter naturally fits unsupervised algorithms,
which use unlabeled data, an abundant resource. Nonetheless, generative models
can also perform discriminative tasks, such as classification, by modeling the
joint distribution p(y, x). The models of Chap. 4 are examples of discriminative
models, as they estimate the conditional p(y |X): given some inputs, they output
a distribution of probable values for the unknown quantity. However, we cannot
infer information such as the most probable input–output pairs or the expected input
values for a given observed output, which would require the joint p(y, x).

Knowledge of the complete probabilistic model means we can simulate how
the world evolves [20, 29], anticipate and plan for the future [14, 18], reason
out and make decisions [11, 14], and understand elements and their factors of
variation [10, 11], among other high-level abstract tasks. Exciting applications
that have direct application in industry are image super-resolution [28], com-
pression [55], denoising [8], and audio synthesis [57]. Other examples outside
the multimedia domain and arguably even more compelling are in chemistry, for
efficient exploration of new compounds [13], biology, for prediction of the effects
of mutations in proteins and RNAs [46], and astronomy, for images of optical
telescope [44].

A classical example of a generative model is the Naive Bayes that constructs the
joint probability for classification. In this chapter, the focus is on modern methods
that use approximate inference. Specifically, we discuss the family of VAE models,
theirs issues, and advantages.

5.2 Evaluating Generative Networks

There is no universal metric for measuring the performance of a generative model,
thus assessing its quality is not straightforward and often misleading. Models trained
by optimizing the same criteria relate well across different properties and can be
directly compared, i.e., the training criteria can be used as an objective metric
for model selection. However, for different objective functions, model comparison
becomes problematic. The higher the dimension of the space, the less correlated the
metrics become [53].

There are many different properties we may wish for in a model: high quality
samples, diverse samples, compact representations, useful representation, inter-
pretable representations, and so on. Naturally, we cannot have all at the same time,
so we must compromise.

A model may have a high log-likelihood but an average matching behavior,
causing it to assign probability mass to low-density regions. Although the approxi-
mation may be overall good, unusual regions will end up getting too much attention,
at least more than it normally should. Consequently, generated samples will be
more likely to be very distinct from samples from the true distribution in spite of
the approximation’s good log-likelihood. Although it may seem as an undesirable
property at first, it really depends on the context. For drug discovery, it can be great

5.2 Evaluating Generative Networks 113

because it means we are exploring other regions of the space, where we can find
new useful compounds. For images, it can be a disaster because the resulting image
can be amorphous and weird or represent nothing at all. Still, how many abstract,
odd artworks end up being highly valuable and praised?

On the other hand, a model with moment-matching behavior produces realistic
samples but has poorer log-likelihood for multi-modal distributions. The approx-
imation fits a single mode, assuming a unimodal model, and misses out on a
great deal of information. Hence, the resulting sample diversity will also be low.
Images are a good example of highly multi-modal distributions over space: there
is dependence between neighboring pixels and groups of pixels (superpixels), and
on the scene as a whole, besides a lot of structure built-in from the physical world.
A model fitted to a single mode would then struggle to mix different factors of
variation in image elements.

Besides log-likelihood and sample quality communicating different things, they
do not inform us about sample diversity though they are connected. If samples seem
to come from the true distribution and, at the same time, have great diversity, then
probably the two densities match well overall, which implies good average log-
likelihood for the model. Sample diversity relates to the entropy of the distribution.

Average log-likelihood has become the de facto standard measure of quality for
generative models. However, the computation may not be possible, at least in a
viable amount of time, depending on the model type. For such models, where a
direct measure of the log-likelihood is not possible, it is common to resort to Parzen
window estimates [53]. The Parzen window method is a nonparametric approach
that consists in drawing samples from the original model and constructing a
tractable approximate model, for which we can compute the average log-likelihood.
Nevertheless, it has been experimentally demonstrated that evaluation with Parzen
window estimates does not correlate well with likelihood nor sample quality, hence
being strongly discouraged [53].

Visual sample inspection is the natural metric for assessing sample quality, and it
is the go-to metric when dealing with image synthesis, as it allows us to find out in
an intuitive manner about what is happening into the model. Still, this approach is
only effective for audiovisual samples. Samples represent an interesting diagnostic
tool but should not be used as a proxy for other tasks [53].

Perceptual quality metrics do not take into account generalization capacity. A
model that simply outputs training examples without ever producing a new one
would score high but would be of no use. Trivial algorithms such as nearest
neighbors for detecting whether generated samples are similar to training ones are
not effective: perceptually similar images can have large distances, e.g., a one-
pixel shift of a texture-rich image. Additionally, overfit models do not necessarily
reproduce the images from the data set [53].

A different approach for assessing the model’s performance is to measure
it directly on a surrogate task, what is especially useful if the aim is to learn
good feature representations. Although indirect, measuring the effect of the model
in the intended downstream application provides exactly what one searches for.
For example, one could use a small capacity linear classifier on the learned

114 5 Variational Autoencoder

representations to test if they form well-defined clusters, which would be indicated
by a high classification accuracy.

The community has been devoting recent efforts to propose principled scores that
embrace these aspects and allow to objectively compare between competing algo-
rithms. For images, the Inception Score [48] and the Frechet Inception Distance [16]
are two popular metrics that use pretrained classification models to compare the
generated samples with a hold-out test set. The former measures sharpness and
diversity, whereas the latter measures similarities in the feature representation space.
Both empirically correlate well with the perceived quality of samples. However,
the Inception Score is only valid when the classifier used for the evaluation was
pretrained on the same data set as the generative model under evaluation [47].

In summary, there is no universal metric with sample quality, classification accu-
racy, and log-likelihood being largely independent properties in high-dimensional
spaces. Thus, proper assessment of the model’s performance depends on the
application: different applications require different metrics, e.g., sample quality for
content generation, downstream task for representation learning, and log-likelihood
for compression and density estimation.

5.3 Variational Autoencoders

We begin this section by posing a modeling problem and steadily progress toward
constructing the KL. We start from the set of observations D = {X}Nn=1 and latent
variable models, whose value we already discussed in Sect. 2.1.3. Thus, we have
p(x) = ∫

p(x, z)dz, where Z is the unknown latent variables which we assume
to be the hidden causes for the observed x, and p(x, z) is the generative model of
Fig. 5.1a.

Although KLs can in principle work with any kind of data, we use it on images to
illustrate our points and keep the discussion attractive. Hence, x corresponds to an
image sample. This type of data has great appeal, is intuitive, and has broad support
on modern programming frameworks, i.e., Pytorch [41].

We can rewrite the integral over the joint distribution according to the chain rule
for conditional probability, which gives us p(x, z) = p(x |Z)p(z), where p(z) is
the prior distribution over the latent space and p(x |Z) the likelihood function. For
all but very simple models, the integral

∫
p(x |Z)p(z)dz is intractable and cannot

be analytically calculated; thus, we estimate it by Monte Carlo (MC) sampling with
T samples, such as

p(x) =
∫

p(x, z)dz =
∫

p(x |Z)p(z)dz ≈ 1

T

T∑

i=1

p(x |Z(i)), (5.1)

with z ∼ p(z). However, finding samples of z for which p(x |Z) is large is
challenging in high-dimensional latent spaces: we need millions of draws to obtain

5.3 Variational Autoencoders 115

Fig. 5.1 Graphical representations of the generative model p(x, z). Figure 5.1a is the initial model
we formulate: the latent variables zi are the hidden cause behind the sample xi . Figure 5.1b depicts
the parameterized model where we assume the parameters responsible for generating the data to
be Θ and the posterior approximation to be determined by the parameters Φ. The dashed line
represents the inference process from which we determine the posterior approximation q(z |X; Φ)

from the samples x. (a) The latent variable model. (b) The parameterized model

reasonable estimates for p(x). Then, how to choose p(z) such that we obtain
plausible values of z, for which p(x |Z) is high, with high probability?

Once more, we rewrite the problem as

p(x) =
∫

p(x |Z)p(z)dz

=
∫

p(x |Z)p(z)
q(z |X)

q(z |X)
dz

= Eq

[
p(x |Z)p(z)

q(z |X)

]

≈ 1

T

T∑

i=1

p(x |Z(i))p(z(i))

q(z(i) |X)
, (5.2)

with z ∼ q(z |X), and approximate the integral with an unbiased MC estimate of
T samples.

Under this new perspective, the sampling process occurs according to the
proposal distribution q(z |X), and to obtain the same result as before, we need
to properly weight the values of p(x |Z) by p(z)/q(z |X). The problem has now
become finding suitable candidates for p(z) and q(z |X).

The approach in (5.2) corresponds to Importance Sampling (IS) [35]. This
technique is generally applied to reduce the variance of the estimator or when it
is difficult to simulate from the original density, the latter being the present case.
The optimal proposal distribution q∗(z |X) is

q∗(z |X) = p(x |Z)p(z)
p(x)

= p(z |X), (5.3)

116 5 Variational Autoencoder

for which we obtain for the single-sample estimator p̂T =1(x) the true distribution
we seek, that is,

p̂T =1(x) = p(x |Z(1))p(z(1))

q(z(1) |X)
= p(x |Z(1))p(z(1))

p(x |Z(1))p(z(1))
p(x)

= p(x). (5.4)

Yet, the inability to compute p(x) = ∫
p(x |Z)p(z)dz was the very reason that

motivated us to search for other solutions. We shall parameterize the distributions as
p(x |Z;Θ) and q(z |X;Φ) and jointly optimize for Θ and Φ. The corresponding
Probabilistic Graphical Model (PGM), the concept introduced in Sect. 3.1.1, is
represented in Fig. 5.1b. While the posterior distribution q(z |X;Φ) allows inferring
latent distributions relating to the observables, the likelihood function p(x |Z;Θ)

enables the generation of new samples when paired with the prior, what effectively
means sampling from the joint distribution.

We implement the likelihood model as a neural network (NN) and fit its
parameters, Θ , by Maximum Likelihood Estimator (MLE), instead of variational
Bayesian inference, though possible. For the variational parameters Φ, we would
need to compute local estimates for each sample xi ∈ D [3]. Besides not scaling
well, it implies computing new variational parameters for each test data before
estimating the posterior distribution over the latent variables.

Instead, we optimize a separate model, called recognition model, to output the
local variational parameters Φ that define the posterior distribution q(z |X;Φ).
Hence, each new data point x′ goes through a function f (x′;Ψ) �→ Φ. The problem
becomes solving for the global variational parameters Ψ that define the mapping
f (·;Ψ). We shall also use an NN for the recognition model. The approach of
sharing the variational parameters across data points is called amortized inference
and is common in settings with large data sets because it effectively amortizes the
inference cost, allowing for faster training and testing.

We immediately note that the optimal value for Φ is such that q(z |X;Φ) =
p(z |X;Θ) or at least as close to it as possible. We have arrived at a familiar
framework in which we wish to maximize the evidence p(x;Θ), and for this, we do

max
Θ

p(x;Θ) = max
Θ

log p(x;Θ) = max
Θ,Φ

logEq

[
p(x |Z;Θ)p(z)

q(z |X;Φ)

]

. (5.5)

Applying Jensen’s inequality exactly as we did in Sect. 3.2.1.1 leads us once again
to the ELBO objective (3.7, 3.8) as we verify in

logEq

[
p(x |Z;Θ)p(z)

q(z |X;Φ)

]

� Eq

[

log
p(x |Z;Θ)p(z)

q(z |X;Φ)

]

= ELBO(Θ,Φ).

(5.6)

Even though the final utility function has a similar form to those seen in
Chap. 4, there are some subtle but important differences. Here, we perform

5.3 Variational Autoencoders 117

xi x̂iẑEncoder Decoder
q(z |X; f(x′;Ψ)) p(x |Z = ẑ;θ)

Fig. 5.2 Schematic of the KL model. The image xi gets mapped, thanks to the encoder NN,
to a distribution over the latent variable Z, from which we draw a sample ẑ (one-sample MC
estimator). Next, we pass the sample through the likelihood model NN to obtain the distribution
p(x |Z = ẑ; θ), whose most probable values should be the xi that generated the latent sample ẑ

Variational Inference (VI), on the latent variables Z, but point estimation on the
variables Θ of the likelihood model. In Chap. 4, we performed VI on all variables,
which were global, since they were the same for all data points, and there were no
local latent variables. A brief treatment on the Full Variational Bayes version can be
found in [23].

Note that the target density p(x |Z;Θ) changes over the course of training,
not being static as the target densities of Chap. 4. Hence, q(z |X; f (x′ ;Ψ)) must
track this evolution so that the approximation remains “close” to the true (modeled)
distribution.

From the complete model developed so far, shown in Fig. 5.2, we observe that the
distribution over the latent spaceZ is in between the recognition and the likelihood
models, creating an information bottleneck if dim(Z) < dim(X) [1]. Generally,
this is the case since we assume that the data lives in a lower dimensional manifold
than the space in which it is defined. Therefore, we may interpret the present class
of models as encoding x to a lower dimensional space Z, thus throwing away
unnecessary information and preserving what is meaningful, which actually helps
the decoder to reconstruct the original input. Hence, q(z |X;Ψ) can be understood
as a probabilistic encoder and p(x |Z;Θ) as a probabilistic decoder. Indeed, if we
write the ELBO for the data setD with N samples in its most usual form, we have

ELBO(Θ,Ψ) =
N∑

n=1

Eq

[
log p(xn |Zn;Θ)

] − DKL (q(zn |Xn;Ψ)‖p(z)).

(5.7)

The first term in (5.7) aims at maximizing the likelihood of the reconstructed
samples. The second term, on the other hand, works as a regularization factor
imposing structure to the latent space. It must be structured so that the conditional
on xi is as similar as possible to the prior. Deviations from the prior should be
meaningful enough, so the decoder can achieve a better reconstruction and pay off
the toll imposed by the Kullback-Leibler (KL). Without the KL term, (5.7) would

118 5 Variational Autoencoder

correspond to MLE maximization and the latent distribution would degenerate to a
point estimate. This would entail a conventional autoencoder that deterministically
maps a data point xi to zi and deterministically reconstructs it. Consequently, nearby
latent points would not necessarily represent similar data points, just as in a lookup
table. Thus, the latent space would not have a significant structure. The autoencoder
with the KL regularization term in the latent space receives the name of Variational
Autoencoder [23].

From the information bottleneck perspective [54], we can see the reconstruction
error as a measure of distortion and the posterior misalignment as the communica-
tion rate between the prior and posterior distributions [1, 2]. Indeed, in information
theory, the DKL (q‖p) can be interpreted as the extra number of bits required to
send a message under q with a coding scheme that was optimally designed for the
p. When the KL is zero, we have q(z |D;Ψ) = p(z), and there is no information
about the input x flowing through the model, meaning that the latent channels
have zero capacity. A larger overlap between the distributions corresponds to a
less informative posterior, with respect to the input xi , and a higher reconstruction
error (distortion). This constraint forces similar data points to have similar posterior
distributions, imposing smoothness and locality to the latent space.

The latent distribution in between the encoder and decoder raises difficulty when
trying to use gradient descent to optimize the model. We cannot numerically com-
pute the gradient of an expectation w.r.t. its distribution; see Appendix A.1 for an
in-depth discussion. However, for continuous latent distributions and differentiable
likelihood models, we resort to the pathwise gradient estimator (Appendix A.1),
more commonly known as the reparameterization trick [23], which after T MC
samples leads to

ÊLBO1(Θ,Ψ) =
N∑

n=1

1

T

T∑

i=1

[
log p(xn, z(i)

n ;Θ) − log q(z(i)
n |Xn;Ψ)

]
, (5.8)

where z(i)
n = g(ε(i), xn;Ψ) is a deterministic transformation and ε(i) the i-th sample

from the base distribution p(ε). The above estimator is equivalent to (4.8), put forth
in [4] for BNNs.

By choosing families of distributions for p(z) and for q(z |X;Ψ) such that the
KL term in (5.7) has closed-form analytical formula, we rewrite the estimator in
(5.8) as

ÊLBO2(Θ,Ψ)=
N∑

n=1

[
1

T

[
T∑

i=1

log p(xn |Z(i)
n ;Θ)

]

−DKL (q(zn |Xn;Ψ)‖p(z))

]

,

(5.9)

which is the form used throughout Chap. 4. Figure 5.3 illustrates the reparameter-
ization trick applied to a random node z in the computational graph with the KL
divergence being analytically calculated.

5.3 Variational Autoencoders 119

= g(ε ; Ψ)

f

∼ p(ε)

Backprop

∂f
∂zn

∂zn
∂Ψ

zn

Ψ ε

Fig. 5.3 Computational graph after the reparameterization trick. The blue round node is a random
node, while the gray rhombus nodes are deterministic. Black arrows represent the forward pass of
the model and the red ones the backpropagation path. The black dashed line indicates the path for
the computation of the KL divergence, which takes the distribution parameters Ψ as input. Note
that, thanks to the reparameterization trick, the node zn is no longer random, and so we can directly
compute its gradient

The main technical contribution of [23] was introducing for the first time, in
2013, to the Deep Learning (DL) community the reparameterization trick to obtain
a low-variance gradient estimator. The widely used KL model is simply a use case
example of this estimator the authors give midway through the paper [23]. The
name for the generic formulation of Fig. 5.1a optimized with (5.8) is Autoencoding
Variational Bayes (AEVB). Here we consider the most common instantiation
of VAE: q(z |X;Ψ) and p(x |Z;Θ) both implemented with feedforward NNs.
Still, we could implement the same general model with other blocks, such as
autoregressive models.

Later, in Sect. 5.6, we will work with binary images. Consequently, we describe
the pixels as realizations of independent Bernoulli distributions and interpret each
output pixel of the generative NN as an estimate of Bernoulli’s parameter p in the
original sample.

In what follows, we suppose the input to be real-valued images, usingN(μi, σ
2
i)

as the likelihood function p(xi |Z;Θ), and a centered diagonal N(0, I) for the a
priori p(z). Thus the KL term in (5.7) simplifies to

DKL (q(zn |Xn;Ψ)‖p(z)) =
|z|∑

i

log
1

σi

+ 1

2

(
μ2

i + σ 2
i − 1

)
. (5.10)

In addition, approximate the posterior q(zi |Xi;Ψ) with a Gaussian distribution
with diagonal covariance matrix. These choices for the distributions are not at all
due to restrictions in the algorithm, but rather motivated by their simplicity. The
deterministic transformation g(ε; xn, Ψ) is then

g(ε; x, Ψ) = μ(f (x;Ψ)) + σ(f (x;Ψ))
 ε, (5.11)

120 5 Variational Autoencoder

with ε ∼ N(0, I), f (·;Ψ) is the recognition model and
 the operator for
elementwise multiplication.

Although we employ the same transformation all the time, it does not mean that
it is the only possible one, and it just happens that location-scale transformations of
the standard distribution of a given family are simple and practical. Another viable
option, for example, is to specify g as the inverse Cumulative Density Function
(CDF) of the desired distribution and ε ∼ U(0, 1). While we can use full covariance
Gaussian posterior, the optimization problem becomes considerably harder with
O(K2) parameters instead of O(K), where K is the number of dimensions in
the latent space, besides needing to ensure that the covariance matrix is positive
semidefinite.

Experimentally, the authors [23] verified that when using mini-batch optimiza-
tion with size M , one sample from the approximate posterior z(1) ∼ q(z |X;Θ) is
enough as long as M is large enough, e.g., 100. Nevertheless, it has become common
for practitioners to use one sample even when the mini-batch size is not that large
because of the computational gains.

We summarize the (vanilla) VAE algorithm at high level with an arbitrary base
distribution p(ε) in Algorithm 6.

Algorithm 6: VAE (or more generally, AEVB algorithm)
1: while not converged do
2: Randomly sample a data example xi

3: Randomly sample ε from the base distribution p(ε)

4: Compute the gradients of the ELBO estimator w.r.t. Θ and Ψ

5: Update the parameters Θ and Ψ using the gradients
6: end while

5.3.1 Conditional VAE

The vanilla KL model does not allow us to constrain the generated sample to have
a particular characteristic: one should relentlessly draw samples until obtaining the
desired feature, which restricts its usefulness in practical applications. For example,
an ordinary task would be automatically coloring a person’s hair in a photograph
prior to actually dyeing it. A question then arises on how to endow the model to
create targeted samples rather than completely random ones.

What we really wish is to condition the model output on some kind of
information Y, hence the name Conditional VAE (CVAE) [50]. The aim becomes
to maximize log p(xi |Yi) for each observed variable xi . Following the same
derivation as in (5.6) and (5.7), we arrive at

log p(xi |Yi;Θ) � Eq(z |Xi ,Yi ;Ψ) [p(xi , z |Yi;Θ) − q(z |Xi ,Yi;Ψ)]

= Eq(z |Xi ,Yi ;Ψ)

[
log p(xi |Z,Yi;Θ)

]

− DKL (q(z |Xi ,Yi;Ψ)‖p(z |Xi ,Yi;Θ)). (5.12)

5.3 Variational Autoencoders 121

xi x̂iẑEncoder Decoder
q(z |X,Yi; f(x′;Ψ)) p(x |Z = ẑ,Yi; ;θ)

yi yi

Fig. 5.4 Schematic illustration of the CVAE model. Note that this is basically the same as the KL,
the sole difference being the inclusion of additional conditioning information Y to the input x and
the sampled latent variable z. The former so that the recognition model can infer the distribution
corresponding to that condition, and the latter so that the generation network also knows to which
condition that distribution refers

Recalling that for the KL, the inference model q(zi |Xi;Ψ) has input xi and
output zi , and it becomes straightforward that for the conditional counterpart
q(zi |Xi ,Yi;Ψ), we must just add yi as input. One possible way is to concatenate
the condition yi at the end of xi before passing through the inference model. Similar
reasoning applies to the generator model. Thus, by changing nothing more than the
input to the models, we obtain a CVAE [50].

From an implementation perspective, we can encode category information as a
one-hot representation, indicating to the model which class is at the input (or latent
code). Intuitively, the prior gets split into different regions, each corresponding to
a specific label, which gives us the ability to choose among them. In addition,
by separating the samples into different classes, the data points within the same
category become more similar, enhancing the modeling capacity and sample quality
of CVAEs (Fig. 5.4).

5.3.2 β-VAE

As seen from (5.7), optimizing the ELBO is a compromise between the reconstruc-
tion quality and posterior alignment with the prior. Depending on the application,
we might want to prioritize either realistic high-quality samples or rich latent
representations or even something in between. However, the formulation (5.7) offers
no control over the individual objectives. Hence, higher ELBOs do not imply better
learned representations. Thus, the ELBO is not a suitable objective function for
representation learning [2].

The dilemma of representation size and fidelity is well established in rate-
distortion theory, already discussed in Sect. . Ideally, we want the model to find
a solution along the Pareto front of the distortion-rate plane, which corresponds
to the set of minimal solutions. In the β-KL context, we cast fidelity as the log-
likelihood of the model output and connect the concept of rate to the divergence

122 5 Variational Autoencoder

between the posterior and prior distributions because the misalignment creates the
need for sending extra bits through the channel to correct the posterior samples
inaccurately coded by the prior.

As we have shown, writing the Lagrangian of the equivalent maximization
problem leads us to

F (θ, φ, β) = Eq

[
log p(x |Z;Θ)

] − βDKL (q(z |X;Ψ)‖p(z)), (5.13)

where β is the Lagrangian multiplier.
Equation (5.13) is the objective function of the β-KL algorithm [17], and it is

equal to (3.15) after taking the whole data distribution into account. Large values
of β, i.e., β > 1, give higher weight to the posterior misalignment, forcing a lower
corresponding δ for the rate R, thus limiting the representation capacity of the latent
space. Hence, the data locality property is further encouraged and, consequently,
so does the alignment of independent generative factors of variation along separate
latent dimensions [7]. The latent representations become better disentangled. The
modeled diagonal structure of the covariance matrix of the posterior distribution
also contributes to aligning the factors of variation with the axes.

Due to the fidelity and compression trade-off, log-likelihood is not suited for
assessing the quality of the representations learned. However, we can use a linear
classifier with low capacity to predict labels from the latent space, p(y |Z). If the
classifier achieves high accuracy values, it means that the latent space is linearly
separable and easily decoded, hence disentangled [17].

5.4 Importance Weighted Autoencoder

As we discussed so far, the VAE objective heavily penalizes approximate posterior
samples that fail to explain the data. The log-likelihood term in (5.7) must be high
enough to be worth the misalignment penalty imposed by the KL regularization.
The VAE criterion may be too strict and limit the model flexibility. If we relax this
constraint and become more lenient with samples that are unlikely to explain the
observations, we obtain more flexibility on the generative model.

We replace the expectation over the likelihood ratio p(x, z;Θ)/q(z |X;Ψ) in
(5.5) with the expectation over its estimator. Thus, we have the expectation of the
importance sampler of (5.2), like

log p(x)= logEq

[
1

T

T∑

i=1

p(x, z;Θ)

q(z |X;Ψ)

]

≥Eq

[

log
1

T

T∑

i=1

p(x, z;Θ)

q(z |X;Ψ)

]

=ELBOIS ,

(5.14)

where once again we have applied Jensen’s inequality, and T is the number of drawn
samples.

5.4 Importance Weighted Autoencoder 123

We immediately note that (5.14) is equal to (5.7) when T = 1, so it can be
understood as a generalization of the latter under the point of view of importance
sampling. By taking multiple samples, we get progressively tighter bounds and
lower variance [6]. Actually, both bias and variance of the Importance Weighted
Autoencoder (IWAE) estimator are reduced at a rate O(1/T), leading to a consistent
but biased estimate of the true likelihood p(x) [39]. Hence, the gradient of ELBOIS
points toward better directions as T increases.

The update rule for IWAE is the average over the samples with weights
proportional to the importance weights wi = p(x, z;Θ)/q(z |X;Ψ), as shown by

∇ΘELBOIS = ∇Ψ,ΘEq

[

log
1

T

T∑

i=1

p(x, z;Θ)

q(z |X;Ψ)

]

= Ep(ε)

[

∇Ψ,Θ log
1

T

T∑

i=1

p(x, g(ε, xn;Ψ);Θ)

g(ε, xn;Ψ) |X;Ψ)

]

= Ep(ε)

[

∇Ψ,Θ log
1

T

T∑

i=1

wi

]

= Ep(ε)

[

∇Ψ,Θ

T∑

i=1

w̃i log wi

]

, (5.15)

where we have used the reparameterization trick, zn = g(ε, xn;Ψ) with ε ∼ p(ε),
to move the gradient inside the expectation, and w̃i are the normalized importance
weights w̃i = wi/

∑T
i=1 wi .

Respective to the log-importance weights in (5.15), the normalized weights w̃i

can be seen as their softmax version,

li = logwi → w̃i = eli

∑T
j=1 elj

= softmax(l)i . (5.16)

The importance weights then prioritize the sample with the highest log-likelihood
ratio, the one that best explains the data. Since the samples with low likelihood are
given less importance, the penalty they impute is attenuated, and the approximate
posterior is given more liberty with respect to the VAE constraints, allowing it to
spread over the modes of the true posterior and become a better approximation.

However, it is important to keep in mind that the model was optimized to have
better performance when drawing multiple samples from the posterior. Thus, one
cannot expect IWAEs to have good performance for tasks in which single samples
will be used. Training using IWAE will result in models where each individual
sample from the model will often have a low (standard) ELBO that is why IWAEs
might not be a good fit if we wish to use single samples from the approximate

124 5 Variational Autoencoder

posterior for downstream tasks. Besides, importance weighted estimates have
notoriously bad scaling properties to high-dimensional latent spaces [24].

Although ELBOIS gets tighter and the gradient variance smaller with more
samples T , the magnitude gets even smaller. More precisely, the signal-to-noise
ratio of the inference model actually converges at O(1/

√
T) [42]. So, while T >> 1

is great for the generative model, it hampers the training of the inference model. This
issue can be somewhat alleviated by averaging over M gradient samples, changing
the convergence rate to O(

√
M/

√
T) [42]. However, there are now two sample sizes

to tune: while M regulates the variance of the gradient, T regulates the tightness of
the bound. In practice, increasing mini-batch size has a similar effect. One can also
use different objective functions for each model, generative and inference [42].

5.5 VAE Issues

VAE and its variants are a great tool for generative modeling, but they are not
without shortcomings. In what follows we succinctly present their main known
problems so far.

5.5.1 Inexpressive Posterior

The ELBO simultaneously tries to fit the data distribution through optimization of
the generative model and to perform amortized inference through the optimization
of the inference model. However, due to limited capacity, it is not possible to
adequately perform both and failures can emerge, imposing trade-offs onto the
ELBO.

The independent Gaussian assumption for the posterior limits the expressiveness
of the model. One way we can circumvent this weakness is by using more flexible
families for the posterior approximation. However, the proposal distribution must
still be at the same time efficient to sample from, compute, and differentiate if we
wish to operate with large amounts of data.

5.5.1.1 Full Covariance Gaussian

One straightforward possibility is replacing the isotonic Gaussian with diagonal
covariance matrix by one with correlation between the dimensions. The arbitrary
multivariate Gaussian with full-rank covariance � allows per axis scaling and
rotation, establishing preferential directions in the latent space.

Directly learning the covariance is troublesome because the number of parame-
ters grows at O(d2) with the number of dimensions d of the latent space, and we
need to assure that � is semipositive definite. Alternatively, we can again write the

5.5 VAE Issues 125

latent random variable as the deterministic transformation of a base random variable.
We use z = μ+Lε with ε ∼ N(0, I) and L a lower triangular matrix with non-zero
entries on the diagonal.

5.5.1.2 Auxiliary Latent Variables

We can use auxiliary latent variables A to augment the inference and generative
models [30, 43], as for example,

q(z |X) =
∫

q(a, z |X)da =
∫

q(a |X)q(z |A,X)da. (5.17)

This hierarchical specification allows the latent variables to be correlated through
A, defining a general non-Gaussian implicit marginal distribution while maintaining
the computational efficiency of fully factorized models.

Similarly, for the generative model, we have

p(z, x) =
∫

p(z, x, a)da =
∫

p(a |Z,X)p(z, x)da. (5.18)

The ELBO objective for the auxiliary VAE follows derivations of (3.7) in
Sect. 3.2.1.1 straightforwardly, giving

log p(x) = log
∫

p(a, z, x)dadz

≥ Eq

[

log
p(a |Z,X; θ)p(x |Z; θ)p(z)

q(a |X;ψ)q(z |A,X;ψ)

]

(5.19)

= ELBOaux. (5.20)

5.5.1.3 Normalizing Flow

A normalizing flow is a sequence of invertible mappings that transforms an initial
base distribution into a complex one [45]. At each step k, it transforms the
distribution qK−1(zk−1) into qK(zk) through the change of variable specified by
the mapping zk = fk(zk−1), specifically

qK(zk) = qK−1(zk−1)

∣
∣
∣
∣
∣
det

(
∂f −1

k

∂zk−1

)∣
∣
∣
∣
∣
= qK−1(zk−1)

∣
∣
∣
∣det

(
∂fk

∂zk−1

)∣
∣
∣
∣

−1

,

(5.21)

where ∂f
∂z is the Jacobian and det the determinant of the matrix.

126 5 Variational Autoencoder

If the Jacobian determinant can be computed, it is possible to sample from the
estimated density by sampling from the base distribution and applying the chain of
mappings f1 ◦ · · · ◦fK . Moreover, because the mappings are invertible, we can also
perform inference by applying the inverse mappings in the reversed order f −1

K ◦· · ·◦
f −1

1 . The log-likelihood of the final distribution qK(zk) can be written as

log qK(zk) = log

[

q0(z0)

K∏

k=1

∣
∣
∣
∣det

(
∂fk

∂zk−1

)∣
∣
∣
∣

−1
]

= log q0(z0) −
K∑

k=1

log

∣
∣
∣
∣det

(
∂fk

∂zk−1

)∣
∣
∣
∣ . (5.22)

We can then use normalizing flows parameterized by the output of the inference
network to approximate the posterior distribution q(z |X) from a simple base
distribution p(ε), i.e., standard multivariate Gaussian, and obtain more complex
distributions [45]. For example, we can use a single hidden-layer feedforward
network with scalar output to define a non-linear transformation [45], like

f (z) = z + uh(wT z + b), (5.23)

where the weight w, bias b, and scale u are learned parameter vectors and h(·) a
smooth elementwise non-linearity.

The above mapping is not very expressive, and we need a large stack of chained
transformations to capture high-dimensional dependencies [26]. Nonetheless, we
can introduce such dependencies by using autoregressive functions that preserve the
Jacobian computation simple enough [9, 26, 40]. Autoregressive flows with affine
transformations are very popular, but their expressiveness is limited due to their
affine nature.Still, chaining multiple layers of autoregressive transformations leads
to complex and multivariate distributions.

5.5.2 The Posterior Collapse

The posterior collapse is the common effect of achieving the undesirable local
optimum q(z |X;ψ) = p(z |X; θ) = p(z) during the VAE optimization. In
the state where the variational posterior and true model posterior collapse to
the prior, the posterior encodes no information about the input x, and no useful
latent representation was learned. The KL divergence is zero and no extra bits are
communicated. This corresponds to the (D, 0) of the distortion-rate plane discussed
in Sects. 5.3.2 and 5.3.2.

The true model posterior is a moving target for the inference network, so it
naturally lags behind, especially at the beginning of training where the variables
X and Z are nearly independent as a consequence of the random initialization of

5.5 VAE Issues 127

the models’ parameters. When q(z |X;ψ) and p(z |X; θ) start to diverge, but Z
still is independent of X such that q(z |X;ψ) ≈ q(z;ψ), and no information is
passed through the model, the regularization signal from the KL divergence term
in the ELBO objective may be too strong compared to the weak signal coming
from the data likelihood [15]. As a result, the model is encouraged to ignore the
latent encoding and converges to the local optimum q(z |X;ψ) = p(z |X; θ) =
p(z). Then, it is the generative model that is responsible for reconstructing X and
effectively maximizing the bound.

The information about the data distribution can be encoded both on the latent
space representation and on the weights of the generative model. An excessively
powerful generator facilitates the posterior collapse because it has enough capacity
to store sufficient information in its weights. Indeed, it is frequently reported in the
literature that autoregressive generators are prone to this effect [2, 15].

Many modifications have been proposed to solve posterior collapse since it was
first detected, such as using an annealing schedule on weighting factor on the KL
term [51]; modifying the ELBO objective to ensure that the KL has on average a
minimum value, guaranteeing a minimum amount of information transmission [26];
using the β-VAE framework with β < 1 [2]; and aggressively updating the inference
network by optimizing it in an inner loop [15]. The latter is currently the most
promising one, obtaining better performance for both inference and generative
models, but at a higher computational cost, i.e., 2–3 times slower [15].

5.5.3 Latent Distributions

VAEs rely on the pathwise gradient estimator to enable the computation of gradients
through random nodes in computational graphs and the usage of automatic differen-
tiation tools. However, this estimator assumes the distribution under expectation to
be continuous and cannot be used for the discrete case. This characteristic restraints
our modeling capacity, and we cannot, for example, use categorical distributions for
the latent space.

There are works that use the score function estimator instead to estimate the
gradient, such as [36, 37]. The alternative estimator on which these algorithms
rely makes no assumption about the underlying distribution and can work with
both discrete and continuous data, eliminating the issue whatsoever. Although more
general, as shown in Appendix A.1, the score function estimator has large variance,
so it requires usage of variance reduction techniques to work properly.

There are works on how to reparameterize discrete random variables by relaxing
them into continuous distributions [19, 33] and use the pathwise estimator to obtain
low-variance biased gradient estimates of the objective function. Still, the cost of
these methods is the introduction of a new temperature parameter that should be
annealed during training.

128 5 Variational Autoencoder

5.5.3.1 Continuous Relaxation

Similarly to the reparameterization trick where we sampled from an arbitrary Gaus-
sian distribution through transformation of a standard Gaussian random variable, we
can use the Gumbel-max trick to allow us to sample a discrete random variable X

from the unnormalized K-Categorical distribution �̃K , whose PDF is πK(x), using
a continuous distribution [32], following

x = argmax
k

log πk(·) + Gk, (5.24)

where Gk is one element from the K-sample independent and identically distributed
(iid) sequence of standard Gumbel distributed random variables.

The Gumbel is useful to model the distribution of extreme values of samples from
the exponential family and its CDF defined by F(x) = exp(− exp(−x)). Thus, we
can use the inverse formula to obtain

G = − log(− log(U)), with U ∼ U[0, 1], (5.25)

and combine it with (5.24) to efficiently get discrete samples by drawing from a
standard uniform distribution [32].

However, the argmax function is not differentiable and cannot be used within
a gradient learning setting. Thus, we replace it with the softmax function to
obtain a continuous relaxation with a temperature parameter τ over the probability
simplex [19, 33], as follows:

x = softmax (log α + G) . (5.26)

The softened version of the reparameterization is known as the Gumbel-softmax
trick and the resulting distribution as Concrete. The temperature τ regulates the
discreteness of the representation such that lim

τ→0
ConcreteK(x) = �K(x). Higher

temperatures result in a smoother distribution but lower variance of the gradients,
while lower temperatures give more accurate samples but higher variance. The
additional hyper-parameter τ is robust and generally follows an annealing schedule
from high to low temperature during the optimization [19].

5.5.3.2 Vector Quantization

A popular method for learning discrete latent representations is the Vector Quan-
tized VAE, where vector quantization maps the output of the recognition model to
the nearest of M reference elements in the codebook, which is then passed to the
generative model [58]. Since the nearest-neighbor match is not differentiable, for
the algorithm to work the gradients must be copied from the generator input to the
decoder output and the codebook updated using nearest-neighbor lookup to match.

5.6 Experiments 129

Although the algorithm achieves great generation results, the original and
prevalent formulation is not probabilistic: all operations are deterministic [58].
Nonetheless, we can replace the nearest-neighbor lookup by sampling over a K-
Categorical distribution �K , defined as

�K =
k∏

i=1

p
[x=i]
i , (5.27)

where [x = i] evaluates to 1 if x = i, 0 otherwise.
The probabilities pi should be the distance between the recognition model output

h(X) and the codebook elements {c}M [52], such that

q(z |X) = �K (z | softmax (‖{c}M − h(X)‖2)) (5.28)

5.6 Experiments

We train and analyze the VAE and CVAE methods with different latent dimensions
on two well-known image toy data sets. In addition, we study the effect on the
distortion-rate plane of varying the weight β of the KL term in (5.13) as well as the
effect of normalizing flows on the posterior distribution.

5.6.1 Data Sets

5.6.1.1 MNIST

The MNIST data set is composed of 60,000 training and 10,000 testing 28 × 28
grayscale images of handwritten digits [27]. Each sample depicts a single digit out
the 10 possibilities. Figure 5.5 presents one example of each digit class.

Fig. 5.5 Mosaic of the 10 different digit classes of the MNIST data set

130 5 Variational Autoencoder

−5 0 5 10

0

2

4

6

8

10

12

0
1

2
3

4
5

6
7

8
9

Fig. 5.6 UMAP 2D projection of the raw pixel space of MNIST

Uniform Manifold Approximation and Projection (UMAP) [34] can be used
as an out-of-the-box visualization tool similar to t-distributed Stochastic Neighbor
Embedding (t-SNE) [31], while being faster, better scaling to high dimensions and
better preserving aspects of global data structure. Using this dimension reduction
technique, we observe in Fig. 5.6 the structure of MNIST data set. It has well-
defined clusters for all of its classes.

Standard ML algorithms obtain over 97% classification accuracy on MNIST, i.e.,
random forest [5] and support vector machine with Gaussian kernel [49], while DL
models over 99.5% [59]. There is almost no space left for researchers to evaluate if
observed performance improvements are statistically relevant. Hence, MNIST has
little use for benchmarking and is no longer representative of modern computer
vision tasks. Still, it has been employed in recent years mainly as a toy data set to
do sanity checks and algorithm prototyping.

5.6 Experiments 131

Fig. 5.7 Mosaic of the 10 different classes of the Fashion-MNIST data set

5.6.1.2 Fashion-MNIST

Fashion-MNIST presents the same general layout: 60,000 training and 10,000 test
samples, 28×28 grayscale images, and 10 possible exclusive classes [60]. It is
constructed to be a drop-in replacement for MNIST with each class associated with
a different piece of clothing, as shown in Fig. 5.7. It is noticeable the higher level of
details in the images.

Comparing the raw pixel structure of Fashion-MNIST data set, shown in
Fig. 5.8, with that from MNIST in Fig. 5.6, we note that the former has clusters
corresponding to garments for the same body region partially overlapping. Although
simple, Fashion-MNIST is not as easy as MNIST and still has margin for improve-
ments [60].

5.6.2 Experimental Setup

We implement the encoder and generator of all models as fully connected networks
with ReLU activations and Gaussian distributions for the latent spaces. In all exper-
iments, we binarize the input images xi in the range [0, 1] to {0, 1} with a threshold
of 0.5, considering each element j as a realization of a independent Bernoulli
distribution. Similarly, we model the output as the parameters of independent
Bernoulli distributions X̂ij . Hence, the log-likelihood function log p(xi |Zi;Θ)

becomes the binary cross entropy, like

H[pi, p̂i] =
∑

j∈|Xi |
−xij log xij − (1 − x̂ij) log(1 − x̂ij), (5.29)

where pi is the binomial distribution induced by the binarized sample xi , and the ·̂
symbol denotes quantities related to the model output.

132 5 Variational Autoencoder

−5 0 5 10 15

−2

0

2

4

6

8

10

12

T − shirt/top
Coat

Trouser
Sandal

Pullover
Sneaker

Dress
Bag

Shirt
Ankleboot

Fig. 5.8 UMAP 2D projection of the raw pixel space of Fashion-MNIST

Additionally, we use mini-batches of size bs = 128, draw T = 1 MC sample
of the latent space for each input example, and train for epc = 100 epochs with
Adam [21] using a learning rate of lr = 0.001.

We train both the VAE and CVAE with varying latent space sizes d =
{2, 8, 32, 128}. Since the MNIST data set is simpler, we use hl = 1 hidden layer for
both the encoder and the generator, whereas for the Fashion-MNIST we use hl = 2.
For simplicity, we design the decoders as mirrored versions of the encoders. Thus,
the constructed models have the structure:

• MNIST: 784 → 200 → d → 200 → 784;
• Fashion-MNIST: 784 → 400 → 200 → d → 200 → 400 → 784.

5.6.3 Results

Overall, the behavior of VAE and CVAE models is similar across both data sets
as Fig. 5.9 shows. When there are few latent dimensions, the models lose a lot of
information in compression and cannot properly represent the different features of
the data set, what explains the low ELBO curves for d = 2 in Fig. 5.9. Increasing the
dimension d of the latent space allows the models to encode relevant information
that was previously ignored, bringing expressive gains to the ELBO. Although
this boost on performance saturates with larger d, it has almost no negative effect
on performance for excessively large d, i.e., the ELBO for the 128-dimensional

5.6 Experiments 133

0 20 40 60 80 100
Epoch

−160

−140

−120

−100

−80

E
LB

O

(a)

0 20 40 60 80 100
Epoch

−160

−140

−120

−100

−80

E
LB

O
(b)

0 20 40 60 80 100
Epoch

−190
−180
−170
−160
−150
−140
−130
−120
−110

E
LB

O

(c)

0 20 40 60 80 100
Epoch

−190
−180
−170
−160
−150
−140
−130
−120
−110

E
LB

O

(d)

Latent
Mode

2
Train

8
Test

32 128

Fig. 5.9 Training and evaluation ELBO for the MNIST and Fashion-MNIST data sets for different
sizes of the latent dimension space. Performance on Fashion-MNIST is lower than on MNIST, and
the CVAE models achieve performances similar to the VAEs. (a) VAE model on MNIST. (b) CVAE
model on MNIST. (c) VAE model on Fashion-MNIST. (d) CVAE model on Fashion-MNIST

models is similar to that for the 32D ones in Figs. 5.9a,b, and only slightly lower in
Figs. 5.9c,d. VAEs are robust to overfitting, at least with respect to the size of the
latent space.

As expected, the Fashion-MNIST models have remarkably worse results. Indeed,
we can confirm it visually by observing the generated samples from Fig. 5.10. While
the original MNIST samples are not very rich in details, this is not true for the
Fashion-MNIST objects, and the VAE struggles to recover the finer details and
more complex shapes. The main reason why the trained CVAEs do not increase

134 5 Variational Autoencoder

Fig. 5.10 Samples generated by the VAE and CVAE models with d = 32. (a) Original and
corresponding binarized samples from MNIST and FashionMNIST data sets. (b) VAE model—
MNIST. (c) CVAE model—MNIST. (d) VAE model—Fashion-MNIST. (e) CVAE model—
Fashion-MNIST

performance in our experiments is because, in most cases, i.e., d = {8, 32, 128},
further augmenting the latent dimension does not translate on better ELBOs. Thus,
appending 10 extra dimensions for the conditioning does not make the models any
more expressible.

Even though the CVAE does a slightly better job at generating new MNIST
images, what we can observe by comparing Figs. 5.10b,c, for Fashion-MNIST data

5.6 Experiments 135

the sample quality is indistinguishable for both CVAE and VAE, because images
in Fig. 5.10e are only marginally better than those of the VAE model, displayed
in Fig. 5.10d. The quality of both models is overall poor if compared to the real
samples of Fig. 5.7.

One central argument during the construction of the VAE was the latent space
structure. This property allows us to smoothly interpolate between different latent
representations of arbitrary dimension to create new image samples. In Fig. 5.11a,
we interpolate between pairs of randomly drawn high-dimensional latent space
samples conditioned on the same MNIST digits. We can see the samples gradually
morphing, i.e., the 0 gets thinner and the 1 gets simultaneously bolder and straighter.
When d = 2, we can span the whole latent space and plot its reconstructions.
Figure 5.11b shows samples generated from evenly spaced percentiles of the latent
Gaussian prior, note the smoothness in the transition between concepts. The models
effectively encode factors of variation of the data into the latent space.

We note from Fig. 5.12 that the latent representations of samples from digits 4
and 9, as well as 5 and 3, are generally overlapped, which indicates that the model
cannot properly tell them apart. A classifier built from the latent feature space would
have a poor accuracy for samples from these classes. Similarly, as already observed
in Fig. 5.8, the pullover, coat, and shirt classes are mostly distributed on the same
region of the latent space, which intuitively makes sense since they are designed
for the same body part and, thus, have similar shapes. From this, we can conclude
that the inference network was not capable of identifying the distinctive features
of those classes, in accordance with the previous discussion of our models not
being powerful enough. More modern types of flow, such as Sylvester flows [56],
a generalization of the planar flow, use more powerful transformations and is better
suited to real applications.

In Sect. 5.5.1, we discussed different approaches for obtaining more expressive
posteriors. Normalizing flows are one of the most prominent approaches nowadays,
with several works relying exclusively on it to efficiently perform density estimation
and sample generation [22, 26, 40]. In our experiments we use it to enhance
VI and obtain models with better posterior approximations and, consequently,
higher likelihoods. Table 5.1 shows the estimated marginal log-likelihood on both
MNIST and Fashion-MNIST of the VAE with increasing number of steps K in the
planar flow, whose transformation was defined in (5.23). Although not statistically
significant for K = {2, 4, 8}, the gain in performance is clear when comparing
with the plain VAE. Planar transformations are an elementary case and affect only
a small volume of the space at each step, thus calling for a large number of steps to
effectively obtain the desired effect, especially on high-dimensional spaces.

Unfortunately, all reconstructed and generated samples were considerably blurry.
Blurriness is a general characteristic of VAEs, originating from the objective that
seeks to minimize the average log-likelihood of data. On average, they may be good,
but individually they are not sharp. This effect is more pronounced on Fashion-
MNIST as clothes are more diverse and have more details than digits and precisely
what we observe in Figs. 5.10 and 5.13. Still, much of the fine-grained details
are lost in the binarization procedure applied on the input samples. We could use

Fig. 5.11 Interpolation of the latent space of VAE and CVAE models trained on MNIST. Human
concepts as thickness, orientation, and digit-specific traits vary smoothly between samples,
signaling the latent space effectively captures factors of variation in the data. (a) CVAE model
with d = 32 on MNIST. (b) VAE model with d = 2 on MNIST

5.6 Experiments 137

0 2 4 6 8 10

2

4

6

8

10

T − shirt/top
Coat

Trouser
Sandal

Pullover
Sneaker

Dress
Bag

Shirt
Ankleboot

Fig. 5.12 Visualization of the 2D projection of the VAE with d = 32 trained on Fashion-MNIST

Table 5.1 Estimated
marginal log-likelihood p(X)

of the VAE model with planar
normalizing flows for varying
length K . Estimations are
computed by importance
sampling with 1024 samples
for each instance of the test
set

Steps K Marginal log-likelihood p(X)

MNIST FashionMNIST

0 −73.4 ± 0.2 −116.6 ± 0.7

1 −71.4 ± 0.1 −112.3 ± 0.6

2 −71.7 ± 0.6 −112.6 ± 0.7

4 −71.8 ± 0.2 −112.5 ± 0.7

8 −71.8 ± 0.3 −112.5 ± 0.5

16 −71.0 ± 0.3 −112.9 ± 0.6

32 −70.0 ± 0.2 −113.1 ± 0.7

the original grayscale values, but the binary cross entropy that stems from the
Bernoulli log-likelihood would cease to be adequate, and it would be necessary
to employ one from a suitable continuous real-valued distribution, such as the logit-
Normal. In general, to achieve better log-likelihood and sample quality, we need to
employ better models. Indeed, plain fully connected networks have pretty much
been replaced nowadays by convolutional architectures, especially in the image
domain.

The KL divergence remains stable throughout the whole training, varying very
little, as shown in Fig. 5.14. Although we only exhibit the case of the CVAE trained
on Fashion-MNIST, this is a general behavior observed in all experiments. This is a
consequence of the powerful regularizing effect the KL term has on the model, seen
in Sect. 5.5.2. The learned posterior distribution moves away from the prior within
the first epoch and, even though not much has been learned yet as confirmed by

138 5 Variational Autoencoder

Fig. 5.13 Reconstruction of Fashion-MNIST samples throughout training of the VAE model with
d = 32 latent dimensions. The original samples are in the first row, while the others are snapshots at
every 10 epochs. Most of the information is learned within the first 10 epochs. Still, it is perceptible
the higher level of details in the images in the last row

Fig. 5.13, the posterior stays at approximately the same “distance” during the rest of
the optimization procedure. Had we used a powerful generator with greater ability to
reconstruct the input, e.g., autoregressive model, the KL term strength would have
succeeded in keeping the posterior aligned with the prior, causing the undesired
posterior collapse. The most straightforward way to sidestep this issue is by directly
decreasing the value of β in the β-VAE model. Adjusting the value of β allows
us to weight the relative importance of the regularization effect of the KL term on
the ELBO. The hyper-parameter balances the compromise between distortion, the
reconstruction error, communication rate, and the posterior misalignment, given the
model’s limited capacity. This characteristic can be observed from Fig. 5.15, where
model performance is plotted on the distortion-rate plane.

5.6 Experiments 139

0 20 40 60 80 100
Epoch

6

8

10

12

14

16

18

20

K
LD

iv
er
ge
nc
e

Latent
2
8
32
128
Mode
Train
Test

Fig. 5.14 The KL divergence curve during the training and evaluation of the CVAE models with
different latent dimension sizes in the Fashion-MNIST data set

0 25 50 75 100 125 150
Rate

40

60

80

100

120

140

160

180

200

D
is
to
rt
io
n

Dataset /Method
MNIST /VAE
MNIST /CVAE
FashionMNIST /VAE
FashionMNIST /CVAE

Fig. 5.15 Representation of the ELBO on the distortion-rate plane (in nats). The ELBO can be
decomposed into the fidelity term, measured by the log-likelihood of the data set and a rate term,
quantifying the average number of extra bits needed to correct the samples inaccurately represented
with the prior distribution. In the plane graphic we use negative fidelity, the distortion. Given a
model with finite capacity, not capable of achieving the data entropy lower bound, we must set the
hyper-parameter β and make other design decisions with this behavior trade-off in mind

140 5 Variational Autoencoder

5.7 Application: Generative Models on Semi-supervised
Learning

Popular modern approaches to ML rely on models with millions of parameters and
require large amounts of annotated data, currently the most expensive and desirable
asset in AI. When annotation is not extensively available, supervised models overfit
to the presented data and achieve poor generalization. Generative models allow us
to leverage performance from unlabeled samples, effectively reducing the reliance
on annotations, under an approach we call semi-supervised learning.

We can optimize a discriminative classifier together with a VAE, sharing their
parameters, and use them for semi-supervised learning of the target variable Y [25,
30]. For the unlabeled samples, we treat Y as a discrete latent stochastic variable
distributed according to a categorical distribution, what enables us to infer the target
label Y. Figure 5.16 shows the PGMs for the generative and the inference models.
Note that we use Y to condition the latent variable Y, segmenting the latent space
in different regions according to the class, similarly to the CVAE in Sect. 5.3.1.
Figure 5.17 illustrates the high-level computational graph of such model.

More complex versions of the model in Fig. 5.17 were able to achieve an
average classification error below 1% on MNIST while using only 10 labeled
images per class, a total of 100 out of the 60,000 available in the training set [30].
The auxiliary deep generative model extends the above VAE with an auxiliary
latent variable (see Sect. 5.5.1.2), making it a two-layered stochastic model [30].
This increases the flexibility of the variational approximation, allowing it to better
fit complex latent distributions, hence improving the variational lower bound.
The underlying PGM for the generative model is shown in Fig. 5.18a, whereas
Fig. 5.18b depicts the inference model. They are basically the same as those of
Fig. 5.18a, except for the inclusion of the auxiliary node a. Figure 5.19 illustrates
the high-level computational graph of the auxiliary deep generative model used for

Fig. 5.16 Graphical model of the semi-supervised VAE. The partially colored node y denotes
the partially observed target labels. We assume that y and z are conditionally independent in the
generative process, so while y captures digits’ semantics, z captures styles and position. Since z is
never observed and different digits possess different styles, y is used during inference to estimate
z, such relation is depicted in (b) by the arrow y → z. (a) Graphical model for the generative
network. (b) Graphical model for the inference network

5.7 Application: Generative Models on Semi-supervised Learning 141

x

y

ẑ

x∗

p(x |Z,Y)

q(z |X,Y)

(a)

x

ŷ

ẑ

x∗

p(x |Z,Y)

q(z |X,Y)

q(y |X)

(b)

Fig. 5.17 Overview of the computational diagram of the semi-supervised VAE model in the
example. x∗ is the reconstruction of the original sample x. For labeled samples, we have once
again the CVAE seen in Sect. 5.3.1, where ẑ represents the estimated value of z. For unlabeled
data, however, y is unknown, and its value must first be inferred from the categorical distribution
q(y |X), which gives the estimate ŷ. Although each box is implemented by a separate fully
connected NN, the complete model is optimized simultaneously. (a) Diagram for labeled samples.
(b) Diagram for unlabeled samples

Fig. 5.18 Graphical representations of both inference and generative parts of the auxiliary deep
generative model. The partially colored node y denotes the partially observed target labels. The
novelty here w.r.t. Fig. 5.16 is the inclusion of the stochastic node a, which gives more flexibility
to the variational posterior. (a) Graphical model for the generative network. (b) Graphical model
for the inference network

semi-supervised learning. Although only one variable was added to the model, two
distributions were included: q(a |X) for the inference network and p(a |X,Z,Y)

for its generative counterpart.
In what follows, we use the model in Figs. 5.17 and 5.16, i.e., without the

auxiliary variableA, to construct our toy example.
We model the generative process of the xi as also being dependent on the partially

observed latent class variable Yi that specifies the digit. Both latent variables Y
and Z are conditionally independent so that the first captures digits’ semantics
and the second digits’ styles, independently. Hence, we can write p(yi , zi |Xi) =

142 5 Variational Autoencoder

x

y

ẑ

x∗

q(z |X,Y,A)

p(x |Z,Y,A)

â

q(a |X)

p(a |X,Y,Z)

a∗

(a)

x

ŷ

ẑ

x∗

q(y |X,A)

q(z |X,Y,A)

p(x |Z,Y,A)

â

q(a |X)

p(a |X,Y,Z)

a∗

(b)

Fig. 5.19 Computational diagram overview of the auxiliary deep generative model. All differ-
ences w.r.t. Fig. 5.17, seen above in color, stem from the inclusion of the auxiliary variable ,
which represents an intermediate step in the inference process, illustrated in Fig. 5.18b. Then,
feeds Y and Z encoders (the q(·) blocks), as well as the X decoder (the q(x | ·) block). Similarly
to Fig. 5.17, x∗ and a∗ both represent the reconstruction of the samples x and a, respectively. (a)
Diagram for labeled samples. (b) Diagram for unlabeled samples

p(yi |Xi)p(zi |Xi). We define the prior p(yi) to be a K-Categorical distribution �K

over the class variable and the prior p(z) a multivariate standard Gaussian, similarly
to Sect. 5.3. Then, the complete generative process for one sample is defined by

p(xi , zi , yi) = p(xi |Zi ,Yi)p(z)p(y) (5.30)

p(y) = �K(y | π) (5.31)

p(z) = N(z | 0, I) (5.32)

p(xi |Zi ,Yi) =
|X|∏

j=1

pj (xi |Zi ,Yi), (5.33)

where π is a probability vector and the elements of X, i.e., the dimensions, iid.
Specifically, we use Bernoulli variables to model the binary black-and-white pixel
value.

Optimizing this model involves the marginal likelihood of observed and unob-
served class variables Y, p(x, y) and p(x), respectively. As in Sect. 5.3, we cannot
directly compute those marginals and resort to the variational framework introduced
in Sect. 3.2.1, like

5.7 Application: Generative Models on Semi-supervised Learning 143

log p(xi , yi) = log
∫

p(xi , yi , zi)dzi

≥ Eq(zi |Xi ,Yi ;ψ)

[

log
p(xi , yi , zi; θ)

q(zi |Xi ,Yi;ψ)

]

= L(xi , yi) (5.34)

log p(xi) = log
∫

p(xi , yi , zi)dzidyi

≥ Eq(zi ,yi |Xi ;ψ)

[

log
p(xi , yi , zi; θ)

q(zi , yi |Xi;ψ)

]

= Eq(yi |Xi ;ψ)

[

Eq(zi |Yi ,Xi ;ψ)

[

log
p(xi , yi , zi; θ)

q(zi , yi |Xi;ψ)

]]

= U(xi),

(5.35)

where q(·) is again the proposal distribution learned by the inference model. For
detailed explanation on how to obtain the inequalities in (5.35) and (5.34), read
Sect. 3.2.1.1.

We train one recognition model for each latent variable and assume that their
distribution follows

q(yi |Xi) = �K(yi | π(xi;ψ)) (5.36)

q(zi |Yi ,Xi) = N
(
zi | μ(xi , yi;φ), diag

(
σ 2 (yi , xi;φ)

))
. (5.37)

Thus, we are able to perform inference in the latent space using (5.37) condi-
tioned on the additional attributes yi , similarly to the CVAE in Sect. 5.3.1. Besides,
we can infer the unknown label of xi through the distribution defined by (5.36).

Unfortunately, the reparameterization trick does not apply to q(yi |Xi) because
the distribution is discrete. We can use the score function estimator of the gradi-
ent instead, and however it entails high-variance estimates (see Appendix A.1).
Alternatively, we can marginalize over Yi in (5.37) and perform inference on
q(zi |Yi ,Xi;ψ) for each value of y [25]. However, marginalizing over all classes
rapidly becomes costly since it is necessary to repeat the same operation K times,
where K is the number of classes in a K-Categorical distribution, defined in (5.27).
Another option is to relax the discrete distributions p(y) and q(zi |Yi ,Xi;ψ)

onto continuous approximations using the Gumbel-softmax trick [19, 33] (see
Sect. 5.5.3.1), making it possible again to apply the pathwise gradient estimator.
The continuous relaxation allows us to take MC samples instead of marginalizing.
When using 1 MC sample, it was experimentally verified to increase the overall
training speed by 2× for 10 classes and 10× for 100 classes compared to
marginalization [19].

There is still a practical issue in the proposed model: direct optimization of the
label predictive distribution q(yi |Xi) is restricted to the unlabeled portion of the
data via (5.35). Let S be the set of indexes of all labeled samples in the data set.

144 5 Variational Autoencoder

Table 5.2 Results of both semi-supervised VAE and supervised NN classifier on the Fashion-
MNIST and MNIST for different amounts of training labels. The values inside parentheses
represent the percentage of the original set size used

Model accuracy on test set

Fashion-MNIST MNIST

Label Count Semi-supervised Supervised Semi-supervised Supervised

6000 (10%) 79.2 77.1 93.6 91.4

3000 (5%) 77.9 71.6 91.4 88.0

600 (1%) 72.0 56.4 86.1 44.6

300 (0.5%) 70.9 46.7 81.7 30.1

100 (0.17%) 63.5 21.3 68.0 20.4

For i ∈ S, the model does not directly learn to infer classes. Thus, we augment
the objective by adding an auxiliary cross-entropy term that constrains q(yi |Xi) to
distributions that correctly classify the sample xi according to the observed class
label yi , which leads to

J =
[
∑

i∈S

U(xi) +
∑

i /∈S

L(xi , yi)

]

+ α
∑

i /∈S

log q(yi |Xi), (5.38)

where the weight α is a hyper-parameter that balances the regularization strength of
the cross-entropy term.

Although we arbitrarily appended the cross-entropy term to (5.38) to enhance
learning, we could have achieved the same result directly from the variational
framework by also inferring the parameters π in (5.36) coupling it with a symmetric
Dirichlet prior for p(π), instead of defining a categorical prior of Y [25].

Table 5.2 presents the classification accuracy obtained from the semi-supervised
VAE described in this section for the MNIST and Fashion-MNIST data sets at
different levels of annotation.

We construct the model by following the diagram in Fig. 5.17, using 2 hidden-
layer fully connected networks with ReLU activations [38] for each module. The
Gumbel-softmax approximation to the categorical distribution �K(yi | π(xi;ψ))

introduces a temperature hyper-parameter Tk , which we set to Tk = 0.6. Addition-
ally, we set the latent space dimension d = 32, draw T = 1 MC samples from the
approximating distributions q(yi |Xi) and q(zi |Yi ,Xi), and use the regularization
weight α = 25. Regarding the optimization procedure, we employ the Adam [21]
optimizer, training for epc = 40 epochs with fixed learning rate lr = 0.003 and
batch size bs = 128.

The generative approach allows to leverage the latent information from the
unlabeled data and obtain reasonable performances at an annotation effective
standpoint. This translates to cheaper and faster development cycles, since cleaning
and labeling are by far the toughest and more expensive parts of any ML project in
business and industrial applications. Together with active learning, the approach in

5.8 Closing Remarks 145

which the system presents to the user which samples should be annotated next for
optimal performance gain, semi-supervision is a promising and refreshing frontier
to the field, with several real-world use cases.

5.8 Closing Remarks

In this chapter we discussed the family of VAE models, how the models arise by
applying VI to the latent variable modeling, and how they are related to one another.
Moreover, we presented their major drawbacks, i.e., inexpressive posterior, posterior
collapse, and discrete latent variable, as well as different manners to mitigate them.
Many of these issues are current research topics.

In our experiments, we illustrated the generative and inference capabilities of
VAEs and their main variations as well as properties of the ELBO and the latent
space. Finally, we demonstrated the incredible potential of generative modeling for
semi-supervised learning, a learning approach that uses very few labeled examples
and takes advantage of the unlabeled samples.

There exist several other types of generative algorithms, the most popular
being Generative Adversarial Networks [12], whose training dynamic can also be
interpreted as through probabilistic lenses. Recently, pure flow-based models [9, 22]
have gained a lot of attention of the research community due to their ability to
perform inference and/or generation impressively fast and straightforward training.

As final words, we would link to point out that throughout the book we have seen
the value of the Bayesian approach to probabilistic modeling and how it seamlessly
allows us to reason under uncertainty, make predictions, and simulate new data, all
achieved through the marginalization and conditioning operations. Besides, model
fitting and comparison naturally arise from within the framework, which also has
the additional advantage of being better equipped to handle data-poor regimes.

Bayesian deep learning is proving to be a central topic in current ML conferences
with venues for applications crystallizing by the day: out-of-domain detection,
adversarial robustness, compound exploration, audio synthesis, and image super-
resolution, among many others. From the start of the writing of this book to the
moment of its publication, many new interesting applications and methods came
to light, rendering impossible the mission of keeping up with advancements made
by the scientific community. However, we hope that our presentation was able to
motivate the reader to confidently go further in this field. This is an exciting time to
statisticians and ML practitioners alike, as there is a new wave of innovation ahead
of us.

146 5 Variational Autoencoder

5.9 Final Words

Throughout the book we have seen the value of the Bayesian approach to prob-
abilistic modeling and how it seamlessly allows us to reason under uncertainty,
make predictions, and simulate new data, all achieved through the marginalization
and conditioning operations. Besides, model fitting and comparison naturally arise
from within the framework, which also has the additional advantage of being better
equipped to handle data-poor regimes.

Bayesian DL is proving to be a central topic in current ML conferences
with venues for applications crystallizing by the day: out-of-domain detection,
adversarial robustness, compound exploration, audio synthesis, and image super-
resolution, among many others. From the start of the writing of this book to the
moment of its publication, many new interesting applications and methods came
to light, rendering impossible the mission of keeping up with advancements made
by the scientific community. However, we hope that our presentation was able to
motivate the reader to confidently go further in this field. This is an exciting time to
statisticians and ML practitioners alike, as there is a new wave of innovation ahead
of us.

References

1. Alemi A, Fischer I, Dillon J, Murphy K (2017) Deep variational information bottleneck. In:
Proceedings of the international conference on learning representations, Toulon, France

2. Alemi A, Poole B, Fischer I, Dillon J, Saurous RA, Murphy K (2018) Fixing a broken ELBO.
In: Dy J, Krause A (eds) Proceedings of the international conference on machine learning,
Stockholm, Sweden, vol 80, pp 159–168

3. Beal MJ, Ghahramani Z (2003) The variational Bayesian EM algorithm for incomplete data:
with application to scoring graphical model structures. In: Bayesian Statistics 7: the Seventh
Valencia International Meeting, Tenerife, Spain pp. 453–464

4. Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015) Weight uncertainty in neural
networks. In: Proceedings of the international conference on machine learning, Lille, France,
vol 37, pp 1613–1622

5. Breiman L (2001) Random forests. Machine Learning 45(1):5–32. https://doi.org/10.1023/A:
1010933404324

6. Burda Y, Grosse R, Salakhutdinov R (2016) Importance weighted autoencoders. In: Proceed-
ings of the international conference on learning representations, San Juan, Puerto Rico

7. Burgess CP, Higgins I, Pal A, Matthey L, Watters N, Desjardins G, Lerchner A (2018)
Understanding disentangling in β-VAE. arXiv e-prints 1804.03599

8. Chen J, Chen J, Chao H, Yang M (2018) Image blind denoising with generative adversarial
network based noise modeling. In: Proceedings of the conference on computer vision and
pattern recognition, Salt Lake City, USA

9. Dinh L, Sohl-Dickstein J, Bengio S (2017) Density estimation using real NVP. In: Proceedings
of the international conference on learning representations, Toulon, France

10. Eslami SMA, Heess N, Weber T, Tassa Y, Szepesvari D, kavukcuoglu k, Hinton GE (2016)
Attend, infer, repeat: Fast scene understanding with generative models. In: Advances in neural
information processing systems, pp 3225–3233

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324

References 147

11. Eslami SMA, Jimenez Rezende D, Besse F, Viola F, Morcos AS, Garnelo M, Ruderman A,
Rusu AA, Danihelka I, Gregor K, Reichert DP, Buesing L, Weber T, Vinyals O, Rosenbaum
D, Rabinowitz N, King H, Hillier C, Botvinick M, Wierstra D, Kavukcuoglu K, Hassabis D
(2018) Neural scene representation and rendering. Science 360(6394):1204–1210

12. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio
Y (2014) Generative adversarial nets. In: Advances in neural information processing systems,
Montreal, Canada, pp 2672–2680

13. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B,
Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic
chemical design using a data-driven continuous representation of molecules. ACS Central Sci
4(2):268–276

14. Ha D, Schmidhuber J (2018) Recurrent world models facilitate policy evolution. In: Advances
in neural information processing systems, Montreal, Canada, pp 2450–2462

15. He J, Spokoyny D, Neubig G, Berg-Kirkpatrick T (2019) Lagging inference networks and
posterior collapse in variational autoencoders. In: Proceedings of the international conference
on learning representations, New Orleans, USA

16. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S (2017) GANs trained by a two
time-scale update rule converge to a local Nash equilibrium. In: Advances in neural information
processing systems, Long Beach, USA, pp 6626–6637

17. Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, Mohamed S, Lerchner A
(2017) β-VAE: Learning basic visual concepts with a constrained variational framework. In:
Proceedings of the international conference on learning representations, Toulon, France

18. Houthooft R, Chen X, Chen X, Duan Y, Schulman J, De Turck F, Abbeel P (2016)
VIME: Variational information maximizing exploration. In: Advances in neural information
processing systems, Barcelona, Spain, pp 1109–1117

19. Jang E, Gu S, Poole B (2017) Categorical reparameterization with Gumbel-softmax. In:
Proceedings of the international conference on learning representations, Toulon, France

20. Kalchbrenner N, van den Oord A, Simonyan K, Danihelka I, Vinyals O, Graves A,
Kavukcuoglu K (2017) Video pixel networks. In: Proceedings of the international conference
on machine learning, Sydney, NSW, Australia, vol 70, pp 1771–1779

21. Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: Proceedings of the
international conference on learning representations, San Diego, USA

22. Kingma DP, Dhariwal P (2018) Glow: Generative flow with invertible 1x1 convolutions. In:
Advances in neural information processing systems, Montreal, Canada, pp 10215–10224

23. Kingma DP, Welling M (2014) Auto-encoding variational Bayes. In: Proceedings of the
international conference on learning representations, Banff, Canada

24. Kingma DP, Welling M (2019) An introduction to variational autoencoders. Found Trends
Mach Learn 12(4):307–392. https://doi.org/10.1561/2200000056

25. Kingma DP, Mohamed S, Jimenez Rezende D, Welling M (2014) Semi-supervised learning
with deep generative models. In: Advances in neural information processing systems, Mon-
treal, Canada, pp 3581–3589

26. Kingma DP, Salimans T, Jozefowicz R, Chen X, Sutskever I, Welling M (2016) Improved
variational inference with inverse autoregressive flow. In: Advances in neural information
processing systems, Barcelona, Spain, pp 4743–4751

27. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document
recognition. Proc IEEE 86(11):2278–2324

28. Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz
J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of the conference on computer vision and pattern
recognition, Honolulu, USA

29. Lee AX, Zhang R, Ebert F, Abbeel P, Finn C, Levine S (2018) Stochastic adversarial video
prediction. arXiv e-prints 1804.01523

https://doi.org/10.1561/2200000056

148 5 Variational Autoencoder

30. Maaløe L, Sønderby CK, Sønderby SK, Winther O (2016) Auxiliary deep generative models.
In: Proceedings of the international conference on machine learning, New York, USA, vol 48,
pp 1445–1453

31. Maaten Lvd, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605
32. Maddison CJ, Tarlow D, Minka T (2014) A∗ sampling. In: Advances in neural information

processing systems, Montreal, Canada, pp 3086–3094
33. Maddison C, Mnih A, Teh YW (2017) The concrete distribution: a continuous relaxation

of discrete random variables. In: Proceedings of the international conference on learning
representations, Toulon, France

34. McInnes L, Healy J, Melville J (2018) UMAP: Uniform manifold approximation and projec-
tion for dimension reduction. arXiv e-prints 1802.03426

35. Migon HS, Gamerman D, Louzada F (2014) Statistical inference: An integrated approach.
CRC press, Boca Raton, USA

36. Mnih A, Gregor K (2014) Neural variational inference and learning in belief networks. In:
Proceedings of the international conference on machine learning, Bejing, China, vol 32, pp
1791–1799

37. Mnih A, Rezende D (2016) Variational inference for Monte Carlo objectives. In: Proceedings
of the international conference on machine learning, New York, USA, vol 48, pp 2188–2196

38. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In:
Proceedings of the international conference on machine learning, Haifa, Israel, pp 807–814

39. Nowozin S (2018) Debiasing evidence approximations: On importance-weighted autoencoders
and jackknife variational inference. In: Proceedings of the international conference on learning
representations, Vancouver, Canada

40. Papamakarios G, Pavlakou T, Murray I (2017) Masked autoregressive flow for density
estimation. In: Advances in neural information processing systems, Long Beach, USA, pp
2338–2347

41. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein
N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S,
Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: An imperative style, high-performance
deep learning library. In: Advances in neural information processing systems, Vancouver,
Canada, pp 8024–8035

42. Rainforth T, Kosiorek A, Le TA, Maddison C, Igl M, Wood F, Teh YW (2018) Tighter
variational bounds are not necessarily better. In: Proceedings of the international conference
on machine learning, Stockholm, Sweden, vol 80, pp 4277–4285

43. Ranganath R, Tran D, Blei D (2016) Hierarchical variational models. In: Proceedings of the
international conference on machine learning, New York, USA, vol 48, pp 324–333

44. Regier J, Miller A, McAuliffe J, Adams R, Hoffman M, Lang D, Schlegel D, Prabhat M (2015)
Celeste: Variational inference for a generative model of astronomical images. In: Proceedings
of the international conference on machine learning, Lille, France, vol 37, pp 2095–2103

45. Rezende D, Mohamed S (2015) Variational inference with normalizing flows. In: Proceedings
of the international conference on machine learning, Lille, France, vol 37, pp 1530–1538

46. Riesselman AJ, Ingraham JB, Marks DS (2018) Deep generative models of genetic variation
capture the effects of mutations. Nature Methods 15:816–822

47. Rosca M, Lakshminarayanan B, Warde-Farley D, Mohamed S (2017) Variational approaches
for auto-encoding generative adversarial networks. arXiv e-prints 1706.04987

48. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X, Chen X (2016)
Improved techniques for training GANs. In: Advances in neural information processing
systems, Barcelona, Spain, pp 2234–2242

49. Scholkopf B, Sung KK, Burges CJ, Girosi F, Niyogi P, Poggio T, Vapnik V (1997) Comparing
support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans
Signal Process 45(11):2758–2765

50. Sohn K, Lee H, Yan X (2015) Learning structured output representation using deep conditional
generative models. In: Advances in neural information processing systems, Montreal, Canada,
pp 3483–3491

References 149

51. Sønderby CK, Raiko T, Maaløe L, Sønderby SK, Winther O (2016) Ladder variational
autoencoders. In: Advances in neural information processing systems, Barcelona, Spain, pp
3738–3746

52. Sønderby CK, Poole B, Mnih A (2017) Continuous relaxation training of discrete latent
variable image models. In: Neural information processing systems - workshop on bayesian
deep learning, Long Beach, USA

53. Theis L, Oord Avd, Bethge M (2016) A note on the evaluation of generative models. In:
Proceedings of the international conference on learning representations, San Juan, Puerto Rico

54. Tishby N, Pereira FC, Bialek W (2000) The information bottleneck method. arXiv e-prints
physics/0004057

55. Tschannen M, Agustsson E, Lucic M (2018) Deep generative models for distribution-
preserving lossy compression. In: Advances in neural information processing systems,
Montreal, Canada, pp 5929–5940

56. van den Berg R, Hasenclever L, Tomczak J, Welling M (2018) Sylvester normalizing
flow for variational inference. In: Proceedings of the international conference on learning
representations, Monterey, USA

57. van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N,
Senior A, Kavukcuoglu K (2016) WaveNet: A generative model for raw audio. In: ISCA speech
synthesis workshop, Sunnyvale, USA, pp 125–125

58. van den Oord A, Vinyals O, kavukcuoglu k (2017) Neural discrete representation learning. In:
Advances in neural information processing systems, Long Beach, USA, pp 6306–6315

59. Wan L, Zeiler M, Zhang S, Cun YL, Fergus R (2013) Regularization of neural networks using
dropconnect. In: Proceedings of the international conference on machine learning, Atlanta,
USA, vol 28, pp 1058–1066

60. Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: A novel image dataset for benchmarking
machine learning algorithms. arXiv e-prints 1708.07747

	5 Variational Autoencoder
	5.1 Motivations
	5.2 Evaluating Generative Networks
	5.3 Variational Autoencoders
	5.3.1 Conditional VAE
	5.3.2 β-VAE

	5.4 Importance Weighted Autoencoder
	5.5 VAE Issues
	5.5.1 Inexpressive Posterior
	5.5.1.1 Full Covariance Gaussian
	5.5.1.2 Auxiliary Latent Variables
	5.5.1.3 Normalizing Flow

	5.5.2 The Posterior Collapse
	5.5.3 Latent Distributions
	5.5.3.1 Continuous Relaxation
	5.5.3.2 Vector Quantization

	5.6 Experiments
	5.6.1 Data Sets
	5.6.1.1 MNIST
	5.6.1.2 Fashion-MNIST

	5.6.2 Experimental Setup
	5.6.3 Results

	5.7 Application: Generative Models on Semi-supervised Learning
	5.8 Closing Remarks
	5.9 Final Words
	References

