
Chapter 4
Bayesian Neural Networks

This chapter presents the ideas, derivations, advantages, and issues of four different
algorithms for Bayesian Neural Network (BNN):

• Bayes by Backprop (BBB) [6];
• Probabilistic Backpropagation (PBP) [19];
• Monte Carlo Dropout (MCDO) [13];
• Variational Adam (Vadam) [26].

Each method approaches the problem in a considerably different manner. Still,
they all share one trait in common: they all consider unstructured approximations to
the posterior distribution.

By the end of this chapter, the reader should:

• Know the attributes a BNN should possess;
• Learn metrics to assess such characteristics;
• Discern the benefits and issues of each method;
• Understand the differences among them;
• Be capable of choosing the one that best suits its needs;
• Know where to search deeper if in need of structured BNNs.

4.1 Why BNNs?

Recently, BNNs have been object of renewed interest within the research commu-
nity. As one may imagine by now, BNNs are essentially standard deterministic NNs
enhanced with Bayesian methods. Instead of learning the optimal weights w∗, they
infer the posterior weight distribution p(w |D) given the data set D. Thus, w∗,
the maximizer of the distribution, is only a single point in the entire support, as
illustrated in Fig. 4.1.
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First introduced in [55], BNNs saw a great advance during the following years
(the 1990s) [20, 35, 39, 40]. However, due to their computational complexity, they
ended up relegated for a decade. Standard NNs had not had success for a long time,
only picking up momentum in 2006 [21] and effectively gaining attention in 2012
after a Deep Learning (DL) method [30] won an important image classification
competition [48] by a large margin. It certainly would not go differently for BNNs,
which faced an even more difficult scenario. Over the last few years, new practical
approaches to BNNs [16, 57] allied to the concerns raised by adversarial attacks [43]
and the cry for uncertainty measures quintessential for some practical applications
sparked interest in Bayesian methods for DL.

The main reason for the late acceptance of BNNs (which is still to come) is
that their computational complexity impedes scalability. Modern models and data
sets have millions of parameters and instances, so nothing but very simplistic
algorithms can handle well such large-scale regime. A clear example is the use of
backpropagation and first-order optimization methods, though that does not mean
they are not ingenious. Consequently, latest works in this field focus on scalable and
(most of the time) practical approaches that can meet the current demand and still
are comprehensible, or at least usable, by practitioners.

For those still not convinced about the benefits of being Bayesian, we quickly
review the state of affairs for modern DL.

Even though backpropagation and maximum likelihood optimization allow
fitting large non-linear models on massive amounts of data and find success on
several tasks, they are sensitive to overfitting, specially if we try such models on
not so large data sets. Employing common regularization techniques, such as �1 or
�2 penalty, is equivalent to maximum a posteriori optimization (with Laplace and
Gaussian priors, respectively). However, in spite of alleviating overfitting, it is far
from solving the problem. What is more, it makes the solution dependent on the
parameterization, that is, different parameterizations may lead to different optimal
points. Then, the question arises of which parameterization leads to the best possible
solution and how sensitive it is.

Even when resorting to invariant methods, we still have no measure of confi-
dence. Although bootstrapping alleviates the issue, it does not solve the underlying
problem: it approximates the probability distribution of the observed data, consid-
ering the unknown variables to be fixed. The Bayesian framework solves all this at
once by allowing models to represent not only single point estimates but complete
distributions over all possible parameter values. It offers a unified framework for
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model building, inference, prediction, and decision-making. Moreover, it provides
a straightforward way to score models and select among them. BNNs have built-
in regularization, offer the advantages of ensemble learning, allow uncertainty
estimation and continual learning, besides weight quantization and compression.

There is no free lunch, and as already hinted above, BNNs have burdensome
inference. They rely on conditioning and marginalization, so the main operation is
integration. Thus, high-dimensional and/or complex models impose a real barrier
to their deployment. We discuss approaches that mitigate this issue by employing
distributional approximations (Sect. 3.2) to render computations amenable. Partic-
ularly, we focus on those that do not explicitly impose structure on weights, and
instead assume them independent (mean-field approximation, Sect. 3.2.1).

For ease of notation, we shall use w as the random variable instead of z. This
change of notation is not only to keep similarity to the literature in BNNs, but
also to remind our readers that the distributions are over the model’s weights (the
parameters) and not hidden units.

4.2 Assessing Uncertainty Quality

Bayesian and, more generally, probabilistic models output some measure of uncer-
tainty on which we rely to make decisions. Can we really believe in these models?
Do they reflect, approximately at least, the truth? We next present common
approaches to address these questions.

4.2.1 Predictive Log-Likelihood

As explained in Sect. 2.4, the likelihood term p(d |W) measures how likely a
specific configuration of the model is of generating the observed data. The predictive
log-likelihood captures how well the model fits the data, taking the variance (or other
measure of spread) of the prediction into account. It is an estimate of how well the
model fits both the mean and uncertainty.

Intuitively, the lower the variance, the more reliable the prediction should be and,
hence, the lower the score for being wrong. Still, the predictions ought to be reliable
so large variances also receive lower scores.

Let us take as example a regression model f (·;w), parameterized by w, that
predicts a scalar value ŷ, such that ŷ = f (x). Our probabilistic model assumes a
given level of noise and we thus place an observation noise model on top of the
output, such that the true output is corrupted by a known process. For an additive
Gaussian noise with variance σ 2, the log-likelihood estimate has the form

log p(y | x,w) = logN(y; f (x;w), σ 2)

= −1

2
log
(

2πσ 2
)

− 1

2σ 2 (y − f (x))2 . (4.1)
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What we wish is that the observation y is as close as possible to the predicted output
f (x), such that our model agrees with the data. Note that the prediction and the
noise model could in principle be anything.

4.2.2 Calibration

Although posterior or predictive credible intervals are not necessarily calibrated,
it is a natural measure of reliability. In a classification task, one would expect
being correct X% of the time when the model assigns an X% probability of being
correct. In a regression setting, one hopes that X% of the time the true value falls
within an X% credible interval. A model with such coverage property is said to be
well-calibrated and implies that the Bayesian credible intervals coincide with the
frequentist confidence intervals.

The approach that asserts that inferences under a particular model should be
Bayesian, but model assessment can and should involve frequentist ideas is called
Calibrated Bayes [33].

A common diagnostic tool for calibration is the reliability (or calibration) plot,
shown in Fig. 4.2. Ideally, the empirical and the predictive cumulative distribution
functions should match, so plotting one against the other should give a graph
as close as possible to the identity y = x. Namely, for each credible interval
corresponding to a probability threshold pi , we plot the observed number of times
(empirical frequency) the prediction falls within the interval. We can measure the
calibration error numerically by computing the expected error between the predicted
and empirical frequencies for m different confidence intervals.

Still analyzing Fig. 4.2, one can notice that there are two other curves besides
the identity. The one in red, with triangle markers, refers to the uncalibrated model,
as the blue one, with square markers, is provided by the calibrated method applied
after the model has been trained. This is a toy example so the reader can realize how
significant the calibration process can be, clearly moving the uncalibrated curve
towards the identity. However, the performance of this method varies according
to the model you are calibrating, as pointed by the authors in [42]. In that paper,
the authors also present and analyze the behavior of two well-known learning
techniques that perform calibration: Platt Scaling [45] and Isotonic Regression.

Calibration is not enough for a good overall model, forecasts also need to be
sharp [31]. Intuitively, credible intervals should be as tight and probabilities as
binary as possible in regression and classification, respectively. A model that always
predicts the mean value and adjusts its confidence accordingly is calibrated by
definition, but not useful. There are various ways to measure spread, variance being
one of them.
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Fig. 4.2 Example of calibration plot. The gray dashed line is the identity y = x, the red curve
is the uncalibrated model, and the blue curve refers to the post-calibration model, which were
calibrated using the Platt’s method [45]. Ideally, we want the blue and gray line to be superposed,
indicating a perfectly well-calibrated model

4.2.3 Downstream Applications

It is worthwhile noting that even though the two previous metrics, predictive
log-likelihood and expected calibration error, are standard measures for assessing
uncertainty quality, it is still important to consider the context in which the
uncertainty measures are applied. One should also evaluate uncertainty quality by
measuring the performance of the downstream application of interest, e.g., outlier
detection, active learning, or uncertainty-driven exploration, with the appropriate
relevant metrics.

4.3 Bayes by Backprop

BBB has a quite long history preceding it. Bayes by Backprop [6], or BBB for short,
continues the work of [16] on practical VI for NNs, who in turn extends on [20], the
first to propose VI for NNs.

The essence of BBB’s approach is choosing a variational posterior q from which
probable samples can be drawn efficiently so that it becomes amenable to Monte
Carlo (MC) integration.

Specifying a diagonal Gaussian posterior implies that all network weights wi

are independent, requiring separate means μi and variances σ 2
i . Consequently, each
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weight wi is characterized by Ψi = {μi, σ
2
i } and the set of all parameters by Ψ =

{μ, σ 2}. We express the approximating variational posterior distribution by

q(w;Ψ ) =
∏
i

q(wi;Ψi) =
∏
i

N(wi;μi, σ
2
i ). (4.2)

As seen in Sect. 3.2.1, optimizing the variational approximation amounts to
minimizing the negative ELBO as in (3.8), which writes

L(q) = −ELBO(q)

= −Eq(w;Ψ )

[
log p(D |W)

]+ DKL (q(w;Ψ )‖p(w))

= Ldata + Lprior , (4.3)

where we make explicit the presence of two cost functions of different nature. The
first, Ldata , which we refer to as the likelihood cost, is data-dependent and quantifies
the amount of error the model commits. The second, Lprior , is prior-dependent
and we call it the complexity cost. While the former drives the model towards best
explaining the data, the latter acts as a regularizer pushing towards the prior p(w),
as already explained in Sect. 3.2.1.

The diagonal Gaussian posterior (4.2) results in a non-closed analytical form for
the expectation in Ldata and for its derivatives w.r.t. μi and σi , rendering direct
evaluation and backpropagation unfeasible. To get around this issue one may resort
to MC integration, i.e., drawing different weights wt from the posterior q(w;Ψ ),
performing the desired computation for each sample and averaging the results. The
main contribution from [6] is a reparameterization that gives unbiased gradient
estimators and is actually not restricted to Gaussian distributions. It relies on the
reparameterization trick (Sect. A.1) for a variational posterior q(w;Ψ ) and a cost
function h(w;Ψ ), both dependent on the parameters Ψ , according to

∇ΨEq(w;Ψ ) [h(w;Ψ )] = Ep(ε)

[
∂h(w;Ψ )

∂w
∂w
∂Ψ

+ ∂h(w;Ψ )

∂Ψ

]
, (4.4)

where, as before, w = g(ε;Ψ ), with g(·;Ψ ) a smooth invertible deterministic
transformation, and ε is a base random variable.

Indeed, the above representation works for any distribution q(w;Ψ ) that can be
recast as a transformation g(ε; ·) of base distribution p(ε). Still, the present case
only deals with q(w;Ψ ) as the product of independent univariate Gaussians (4.2)
with parameters Ψ = {μ, σ 2}. A convenient choice of transformation is g(ε;Ψ ) =
μ + �ε, where ε ∼ N(0, I), which boils down to μ + σ � ε for the uncorrelated
Gaussian case, i.e., diagonal covariance matrix �.

On a practical numerical note, one needs to prevent the σi from assuming
negative values during the optimization since σi � 0. Instead of imposing explicit
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= g(ε ; Ψ )
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Fig. 4.3 Computational graph after the reparameterization trick. The blue round node is a random
node, while the gray rhombus nodes are deterministic. Black arrows represent the forward pass of
the model and the red ones (part of) the backpropagation path. The black dashed line indicates the
path for the computation of the KL divergence, that takes the distribution parameters Ψ as input.
Note that thanks to the reparameterization trick the node w is no longer random and so we can
compute its gradient as usual

constraints, the authors [6] suggest the softplus transform σi = log(1 + exp ρi) that
maps σi to ρi , whose value is confined to the range (0,∞).

Computing the derivatives of (4.4) w.r.t. both elements of Ψ = {μ, σ 2} and using
the chosen transformation give

∂L
∂μi

= ∂h(w, Ψ )

∂wi

+ ∂h(w, Ψ )

∂μi

, (4.5)

∂L
∂ρi

= ∂h(w, Ψ )

∂wi

ε

1 + exp (−ρi)
+ ∂h(w, Ψ )

∂ρi

. (4.6)

The modification places the random component out of the gradient path followed
by backpropagation, as illustrated in Fig. 4.3, where we depict a computational
graph that computes a function f with weights w from input activations a.
This modification allows the direct computation of the gradients w.r.t. w and Ψ

nodes in the computational graph just as done in any other deterministic node.
Automatic differentiation tools available in common frameworks [1, 44, 53] handle
this transparently, the only implementation difference being the need to explicitly
reparameterize the weights w = g(ε;Ψ ) in the network definition and specify Ψ =
{μ, ρ} as the learnable parameters. More modern versions of the frameworks include
built-in functions that automatically perform this reparameterization implicitly.

Figure 4.4 shows the final graphical model for BBB with independent Gaussian
priors with parameters {μp, σ 2

p}, an example for which the KL term in (4.3) can be
evaluated analytically through the closed-form solution

Lprior =
W∑
i

log
σp

σi

+ 1

2σ 2
p

[
(μi − μp)2 + σ 2

i − σ 2
p

]
, (4.7)

whose derivatives w.r.t. σi and μi are trivial to calculate.
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Fig. 4.4 PGM representation of the model underlying the BBB method. The observed output yn

is a noisy observation of the model output for the input xn with the variance noise determined by
the fixed parameter σ 2

n . The constant values {μp, σ 2
p} govern the Gaussian prior distributions over

the weights, while {μk, σ
2
k } their posteriors

For non-conjugate priors, such as a mixture of Gaussians, we can instead
compute the KL numerically with the samples drawn from the posterior. This
estimation has the immediate advantage of allowing many more combinations
of prior and variational posterior families. Even though we now have one more
approximation in the system, more expressive priors can be used, i.e., non-Gaussian,
what potentially leads to better results. In light of this change, instead of plugging
(4.7) into (4.3), we write

L ≈
T∑

i=1

− log p(d |W(i)) + log q(w(i);Ψ ) − log p(w(i)), (4.8)

where w(i) denotes the i-th out of T Monte Carlo samples drawn from the variational
posterior q(w;Ψ ).

When using mini-batch optimization such that D = {dj | 1 ≤ j ≤ M}, it is
important to scale the complexity cost Lprior in the objective accordingly. Equation
(4.7) accounts for the whole data set, so naively computing the loss Lj in (4.3) M

times will lead to accounting M times for the complexity loss Lprior instead of one.
The Ljprior

terms should then be weighted so that Lprior = BjLjprior
. Although

uniformly distributed weights Bj = 1/M seem a natural choice, there are different
ways of distributing them as long as

∑M
j=1 Bj = 1. In [6], the authors propose

Bj = 2M−j /(2M − 1). During the first iterations, the complexity cost dominates,
and at later mini-batches, after more data is seen, the data likelihood cost Ljdata

progressively gains more importance.
We summarize the resulting algorithm for optimizing a BNN in Algorithm 1. The

case we illustrate is for a diagonal Gaussian variational posterior with parameters
Ψ = {μ, ρ}, trained with a mini-batch of size 1 with non-uniformly distributed
weighting of the complexity term Lprior across the mini-batches.

Even though the gradient estimators are unbiased, the MC predictive log-
likelihood estimator is biased, because a non-linear function, i.e., the log, warps
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Algorithm 1: Bayes by Backprop
1: while not converged do
2: w ← μ + log(1 + exp(ρ)) � ε, where ε ∼ N(0, I)
3: Randomly sample a data example xi

4: i ← (i + 1) mod N

5: πi ← 2N−i/2N−1

6: for s ∈ {w,μ, ρ} do
7: gs ← −∇s log p(xi |W) + πi (∇s log q(w; Ψ ) − ∇s log p(w))

8: end for
9: 	μ ← gw + gμ

10: 	ρ ← gw � ε/(1 + exp(−ρ)) + gρ

11: μ ← μ − k	μ

12: ρ ← ρ − k	ρ

13: end while

the expected value. This will in general be true for all MC estimators and can be
mitigated by increasing the number of samples.

4.3.1 Practical VI

The BBB algorithm [6] actually builds upon the work of Graves [16], which gets
around the non-closed analytical form of the derivatives of Ldata in a different
manner. Instead of using the reparameterization trick to compute the derivatives,
Practical VI uses the fact that the expectations are over the Gaussian distribution
and employs the identities [7, 46]

∂Eq [f (w)]

∂μi

= Eq

[
∂f (w)

∂wi

]
, (4.9)

∂Eq [f (w)]

∂σ 2
i

= 1

2
Eq

[
∂2f (w)

∂w2
i

]
. (4.10)

Here, the generic function f = − log p(d |W) and its expected value Eq [f (w)] =
Ldata , the likelihood cost term of (4.3). These identities are useful because they
enable unbiased gradient estimates and have low variance when doing MC inte-
gration. Nevertheless, (4.10) requires second-order derivatives and even though the
mean-field assumption saves us from computing the full Hessian matrix ∇2

wLdata ,
its diagonal is still necessary.

Using the Generalized Gauss-Newton (GGN) approximation [8] to the Hessian
in (4.10) (see Appendix A.3), we obtain
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∂Eq [f (w)]

∂σ 2
i

= 1

2
Eq

[
∂2f (w)

∂w2
i

]
≈ 1

2
Eq

[(
∂f (w)

∂wi

)2
]
. (4.11)

This approximation spares us from second-order derivatives, but introduces bias into
the estimation of the gradient w.r.t. the variance, that is, its expected value no longer
corresponds to the true gradient.

Putting together the gradients for both Lprior and Ldata terms, we have

∂L
∂μi

≈ μi − μp

σ 2
p

+
∑
x∈D

1

T

T∑
k=1

∂ log p(x |W(k))

∂wi

, (4.12)

∂L
∂σ 2

i

≈ 1

2

(
1

σ 2
p

− 1

σ 2
i

)
+
∑
x∈D

1

T

T∑
k=1

[
∂ log p(x |W(k))

∂wi

]2

, (4.13)

where {wi}Ti=0 are the MC samples, x are the data points, i.e., input, target pairs.
We then optimize the objective (4.3) with a gradient-descent method Ψm+1 = Ψm −
k ∂L

∂Ψm
.

As with the BBB method, observing (4.13) we note that this parameterization
may cause σi to assume negative values, thus calling for external constraints. Also
similar to BBB, the Probabilistic Graphical Model (PGM) underlying Practical VI is
the same as the one in Fig. 4.4. The difference between the two algorithms is rather
a practical implementation issue, not a modeling assumption.

We summarize the resulting algorithm for optimizing a BNN with Practical
ADF [16] in Algorithm 2. The case we illustrate is for a diagonal Gaussian
variational posterior with parameters Ψ = {μ, σ 2} and centered Gaussian prior with
diagonal covariance matrix σ 2

pI, trained with a mini-batch of size 1 and uniformly
distributed weighting of the complexity term Lprior across the mini-batches.

Algorithm 2: Practical ADF
1: while not converged do
2: w ← μ + σ � ε, where ε ∼ N(0, I)
3: Randomly sample a data example xi

4: g ← −∇ log p(xi |w)

5: 	μ ← (μ − μp1)/(Nσ 2
p) + g

6: 	σ 2 ← (σ 2 − σ 2
p1)/

(
Nσ 2

pσ 2
)

+ (g � g)

7: μ ← μ − k	μ

8: σ 2 ← σ 2 − k	σ 2

9: end while
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4.4 Probabilistic Backprop

Probabilistic Backpropagation (PBP) [19] solves the same problem as BBB but in a
rather very different manner. While the algorithm of the previous section relies on
optimizing the ELBO for the VI equation, PBP employs Assumed Density Filtering
(ADF) and Expectation Propagation (EP), discussed in Sects. 3.2.2 and 3.2.3,
respectively. The result is a parameter-free (not even learning rate) fully Bayesian
method that has forward and backward phases as in common backpropagation.
But instead of performing gradient descent in the parameter space, it incorporates
information about the new data points into the posterior approximation at each
iteration. Although another EP-based method had been proposed before [50], it
focused on binary weights and its continuous extension performed poorly, not
estimating the posterior variance.

In the year following PBP’s publication [19], other researchers developed a
variant for binary and multi-class classification problems [15]. In [52], the authors
adopted the PBP framework to propose an online algorithm that models the correla-
tions within the weights of the network with a matrix variate Gaussian distribution.
However, here we shall focus solely on its original formulation for regression
tasks since this already is enough work. PBP does not use the usual reverse mode
automatic differentiation and requires non-trivial custom implementations, which is
its major drawback and the reason why it has not seen widespread adoption. We start
this section anticipating the reader that this is the most technically difficult section
in the book.

Similar to the previous method, PBP assumes independence among the network
weights and the existence of additive Gaussian noise N(ε | 0, γ −1) with precision
γ corrupting the observations. Although specifying the network architecture is not
necessary for the other methods in this chapter, since they correctly function with
any directed acyclic graph with no or almost none adaptations, the one at hand
specializes in fully connected layers with Rectified Linear Unit (ReLU) [38], that
is, max(0, x), as activation function. While modifying the model to conform to a
different non-linearity is possible, it requires painstaking mathematical derivations
as we can glance upon this section.

The graphical model for PBP is illustrated in Fig. 4.5 and its full posterior
distribution over the parameters is given by

p(w, γ, λ |X) = p(y | W,X, γ )p(w | λ)p(λ)p(γ )

p(y |X)

∝ p(y | W,X, γ )p(w | λ)p(λ)p(γ ), (4.14)

where p(y | X) is the model evidence, p(y | W,X, γ ) the observation model
defining the likelihood factors, p(w | λ) the prior distribution over the weights
composed of univariate Gaussians with precision λ, that is,
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Fig. 4.5 PGM representation of the PBP model. The observed output yn is a noisy observation of
the model output zn

L for the input xn. The hyper-parameter λ governs the precision of the Gaussian
prior distributions over the weights, whereas γ governs the precision noise of the Gaussian
observation model

p(w1, · · · , w|W| | λ) =
∏

w∈W
N(w | 0, λ−1), (4.15)

and p(λ) and p(γ ) are hyper-prior distributions over the precision hyper-parameters
of the likelihood and weight prior, respectively. We specify Gamma distributions
Ga(z | α, β), given by

p(z | α, β) = βα

�(α)
zα−1 exp(−βz), (4.16)

for both hyper-priors. In Sect. 2.5, we proved that Gamma is the conjugate prior for
the Gaussian distribution with known mean and unknown precision parameter.

From the analysis of the influence of the hyper-parameters on the Gamma
posterior (2.42), we choose them such that they impose a weak prior, not affecting
the posterior distribution. Exactly the same reasoning is valid for the hyper-prior on
γ .

PBP uses EP and ADF (Sects. 3.2.3 and 3.2.2 respectively) to update the
parameters w1, · · · , w|W|, αγ , βγ , αλ, and βλ of the approximating distribution

q(w1, · · · , w|W|, λ, γ )

=
⎡
⎣

|W|∏
i=1

N(wi | μi, σ
2
i )

⎤
⎦Ga (λ | αλ, βλ) Ga

(
γ | αγ , βγ

)
, (4.17)

by cycling through the factors in (4.14) and including them one at a time. Thus, the
total number of factors is the number of data points plus the (hyper-)priors, i.e., |W|
for the weights and two for the precisions.

Since EP requires storing the approximate factors to compute the cavity distribu-
tions, it does not scale well with data. Its memory consumption grows linearly with
the data set size. Thus, instead of performing EP updates for the likelihood factors,
PBP repeatedly employs ADF multiple times, that is, instead of going through
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each data point only once, it incorporates the same factors N times. Although
computationally more efficient, this approach has the risk of underestimating
the parameter posterior variance. We are artificially observing more data, which
in the limit of infinite data leads to the collapse of the posterior distribution
onto the MLE as we assume the data points are (conditionally) independent and
identically distributed (iid). However, this is clearly not the case when repeating
the observations. Thus, the PBP should not run for many epochs. The authors [19]
advise fewer than 100 and in our case study (Sect. 4.7) we run it for 40 epochs.
Nevertheless, PBP is specifically designed for large data sets so this restriction does
not matter much in practice. Yet, this is important to keep it in mind.

The models we analyze here and those employed in the original work have rather
small sizes according to the current standards, i.e., one hidden layer with 50 units, so
running EP updates is still feasible. Indeed, it is what the authors in [19] propose. In
modern networks, which commonly contain hundreds of thousands of parameters,
EP once again becomes a problem and ADF is the way to go.

The ADF update consists in including the true factor fi(w1, · · · , w|W|, λ, γ )

into the current approximation q(w1, · · · , w|W|, λ, γ ), such that the updated
approximation is

K−1f (w1, · · · , w|W|, λ, γ )q(w1, · · · , w|W|, λ, γ ), (4.18)

where K−1 is a normalization constant that assures q(w1, · · · , w|W|, λ, γ ) remains
a proper probability distribution. This step usually causes the distribution to shift
and no longer belong to the desired functional form. Then, to maintain the approxi-
mation manageable, we project it back to the same distribution class we had before
the inclusion of the true factor, namely we minimize the KL divergence between
the term in (4.18) and qnew(w1, · · · , w|W|, λ, γ ) w.r.t. w1, · · · , w|W|, λ, γ , the
parameters of the new distribution qnew. As already shown in (3.40), this is
equivalent to matching the moments of both distributions, and each update consists
of an iterative deterministic procedure so there is no learning rate to modulate the
step size as for the other methods we discuss.

At the beginning, we have no information, so unless we have prior domain
knowledge we initialize the parameters such that q is effectively uniform. This
amounts to setting αλ = αγ = 1, βλ = βγ = 0, and μ = 0, σ 2 = ∞ for every
weight w.

The remainder of the section is split into three different subsections explaining
how each type of factor is included into the model.

4.4.1 Incorporating the Hyper-Priors p(λ) and p(γ )

The first factors to incorporate into the approximation are the priors over γ and
λ. As shown in (2.42), the product of the prior precision Gamma and the Normal
distribution results in a distribution with the same functional form as Gamma. This
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is exactly the case for (4.14), that is

qnew(w1, · · · , w|W|, λ, γ ) ∝
[
λαλ−1 exp (−λβλ)

] [
λαλ,0−1 exp

(−λβλ,0
)]

∝ λ(αλ+αλ,0−1)−1 exp
(−λ

(
βλ,0 + βλ

))
. (4.19)

Thus, including the Gamma prior factors into q, and considering that αλ = 0, βλ =
1, amounts to increment the values of the parameters γ and λ by

αγ,new = αγ + αγ,0 − 1 = αγ,0 ,

βγ,new = βγ + βγ,0 = βγ,0 , (4.20)

where we have used the values defined above, i.e., αλ = αγ = 0, βλ = βγ = 1.
Since there are no approximations in these relationship, and, hence no loss of

information, the hyper-priors need to be included only once.

4.4.2 Incorporating the Priors on the Weights p(w |λ)

Next, we incorporate the priors over the weights w ∈ W. The unnormalized shifted
distribution after the inclusion of one such factor is

q(w1, · · · , w|W|, γ, λ)N(wj | 0, λ−1), (4.21)

and the normalization constant is

K =
∫

q(w1, · · · , w|W|, γ, λ)N(wj | 0, λ−1)dwdγ dλ

=
∫ |W|∏

i=1

N(wi | μi, σ
2
i )Ga (λ | αλ, βλ) Ga

(
γ | αγ , βγ

)

︸ ︷︷ ︸
q(w1,··· ,w|W|,γ,λ)

×

N(wj | 0, λ−1)dw1 · · · dw|W|dγ dλ

=
∫

N(wj | μj , σ
2
j )

[∫
N(wj | 0, λ−1)Ga (λ | αλ, βλ) dλ

]
dwj

=
∫

N(wj | μj , σ
2
j )T2αλ(wj | 0, βλ/αλ)dwj , (4.22)

where we have used the result demonstrated in (A.34), that the integral of the
product of a Gamma and a Gaussian distributions is the t-Student’s distribution
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defined in (A.35). We continue the computation of K by approximating the t-
Student’s distribution T2αλ(wj | 0, βλ/αλ) with a Gaussian with same mean and
variance, what as we saw in Fig. A.1 is within reason for enough degrees of freedom
ν, i.e., large αλ. Thus, continuing the calculation of K:

K ≈
∫

N(wj | μj , σ
2
j )N(wj | 0, βλ/(αλ − 1))dwj

=
∫

N
(

μj

∣∣∣∣ 0, σ 2
j + βλ

αλ − 1

)
N
(

wj

∣∣∣∣
λ(αλ − 1)

βλ + α − 1

μ

σ 2 ,
λ(αλ − 1)

βλ + α − 1

)
dwj

= N
(

μj

∣∣∣∣ 0, σ 2
j + βλ

αλ − 1

)∫
N
(

wj

∣∣∣∣
λ(αλ − 1)

βλ + α − 1

μ

σ 2
,

λ(αλ − 1)

βλ + α − 1

)
dwj

= N
(

μj

∣∣∣∣ 0, σ 2
j + βλ

αλ − 1

)
, (4.23)

where we resorted to the fact that the product of two Gaussians is also a Gaussian
and is given by

N(wj | μ1, σ
2
1 )N(wj | μ2, σ

2
2 ) = N(μ1 | μ2, σ

2
1 + σ 2

2 )N(wj | μ, σ 2), (4.24)

with σ 2 =
(
σ−2

1 + σ−2
2

)−1
and μ = σ 2

(
μ1σ

2
1 + μ2σ

2
2

)
.

4.4.2.1 Update Equations for αλ and βλ

Updating the posterior approximation means matching its moments with those of
the shifted distribution s = K−1q(w1, · · · , w|W|, γ, λ)N(wj | 0, λ−1). However,
the sufficient statistics for λ does not have closed form so we revise its parameters
βλ and αλ by matching only its first and second moments, which still produces good
results [36].

Let us now derive those update formulas. We start by noting that K in (4.23)
is a function of μj , σ

2
j , βλ, and αλ, and make the dependency in the two

latter terms explicit by writing K(βλ, αλ). Additionally, for brevity we denote
q(w1, · · · , w|W|, γ, λ)N(wj | 0, λ−1) as f (λ)Ga(λ | αλ, βλ) and compute

Eq [λ] = 1

K(βλ, αλ)

∫
λf (λ)Ga(λ | αλ, βλ)dλ

= 1

K(βλ, αλ)

∫
αλ

βλ

f (λ)Ga(λ | αλ + 1, βλ)dλ

= 1

K(βλ, αλ)

[
αλ

βλ

K(αλ + 1, βλ)

]
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= K(αλ + 1, βλ)αλ

K(αλ, βλ)βλ

. (4.25)

Similarly, we obtain for the second moment

Eq

[
λ2
]

= K(αλ + 2, βλ)αλ (αλ + 1)

K(αλ, βλ)β
2
λ

. (4.26)

Recalling the mean and variance formulas for the Gamma distribution (4.16), we
equate them to the above expressions to obtain

αλ,new

βλ,new
= K(αλ + 1, βλ)αλ

K(βλ, αλ)βλ

, (4.27)

αλ,new

β2
λ,new

= K(αλ + 2, βλ)αλ(αλ + 1)

K(βλ, αλ)β2 −
[
K(αλ + 1, βλ)αλ

K(βλ, αλ)βλ

]2

. (4.28)

Solving the above equations for αλ,new and βλ,new, and abbreviating the normalizing
coefficients K0 = K(αλ, βλ), K1 = K(αλ + 1, βλ), and K2 = K(αλ + 2, βλ), we
finally get

αλ,new =
[
K0K2K

−2
1 (αλ + 1)α−1

λ − 1
]−1

, (4.29)

βλ,new =
[
K2K

−1
1 (αλ + 1)β−1

λ − K1K
−1
0 αλβ

−1
λ

]−1
, (4.30)

which are the update equations for the Gamma distribution over the precision
parameter λ.

4.4.2.2 Update Equations for the μ and σ 2

It remains to establish how the mean and variance parameters of a given random
weight change when we include its prior distribution into the posterior. The
derivation in this section closely follows [17].

We first note that the shifted distribution can be conveniently written as s =
K−1f (wi)N(wi | μi, σ

2
i ), where f (wi) comprises all factors in

q(w1, · · · , w|W|, γ, λ)N(wi | 0, γ −1) (4.31)

except the N(wi | μi, σ
2
i ), which we make explicit.

For μi , we start from the easily verifiable identity

∇μi
N(wi | μi, σ

2
i ) = σ−2

i (wi − μi)N(wi | μi, σ
2
i ), (4.32)
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which we rearrange to

wiN(wi | μi, σ
2
i ) = μiN(wi | μi, σ

2
i ) + σ 2

i ∇μN(wi | μi, σ
2
i ). (4.33)

Multiplying on both sides by K−1f (wi) and integrating over wi leads to

∫
wiK

−1f (wi)N(wi | μi, σ
2)dwi =

∫
μK−1f (wi)N(wi | μi, σ

2)dwi

+
∫

σ 2K−1f (wi)∇μN(wi | μi, σ
2)dwi

(4.34)

Es [wi ] = μ + σ 2K−1
[
∇μ

∫
f (wi)N(wi | μi, σ

2)dwi

]

= μ + σ 2K−1∇μK

= μ + σ 2∇μ log K. (4.35)

Since the first moment for the to-be-updated distribution N(wi | μi, σ
2) is μi , the

update formula is

μi,new = μ + σ 2∇μ log K. (4.36)

Through a similar identity for the derivative w.r.t. σ 2
i :

∇σ 2
i
N(wi | μi, σ

2) = σ−2
i

2

(
−1 + σ−2

i (wi − μi)
2
)
N(wi | μi, σ

2), (4.37)

and following exactly the same procedure as before for μi , we arrive at Es

[
w2

i

] =
σ 2

i + 2
(
σ 2

i

)2 ∇σ 2
i

log K . Then, the variance of the shifted distribution is

Var(wi) = Es

[
w2

i

]
− (Es [wi])

2 = σ 2
i −

(
σ 2

i

)2 [(∇μ log K
)2 − 2∇σ 2

i
log K

]
.

(4.38)

From this, we establish the update for the variance of the normally distributed weight
as

σ 2
i,new = σ 2

i −
(
σ 2

i

)2 [(∇μ log K
)2 − 2∇σ 2

i
log K

]
. (4.39)

Although we derived rules for performing ADF, that is, only including the
individual true factors of the model, without ever removing the approximating
factors to be updated, adapting them to EP is simple. The two key differences are:
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1. Keep track of the parameters for each individual approximating factor;
2. Before the update, remove from the posterior the approximating factor cor-

responding to the true factor that will be incorporated (cavity distribution),
effectively this means subtracting their contributions from the parameters of the
posterior.

4.4.3 Incorporating the Likelihood Factors p(y |W,X, γ )

In order to incorporate the information coming from a data point, we pass it
forward through the network. Assuming the model to be a fully connected multi-
layer network, at each layer following the input, PBP approximates the distribution
of the resulting activations with a Gaussian distribution with same mean and
variance, such that the input to the next layer is also Gaussian. At the last layer,
we obtain the distribution of the output yi given xi , to which we further apply the
observation model, i.e., additive Gaussian noise with precision γ , which gives us
p(yi | xi ,W, γ ) = N(yi | f (xi ,W), γ −1). The likelihood factor is then included
into the posterior approximation as usual: we shift the posterior by multiplying it by
the likelihood factor stemming from the data point under consideration, compute the
first and second moments of the resulting distribution, and update the parameters to
obtain these moments.

Note that in the derivation of the update formulas (4.29), (4.30), (4.36), (4.39)
we have not assumed any specific format for the factors being included into
the posterior approximation. So the same equations can be used once again for
the likelihood factors, the sole change being what the normalizing constant K

is. In what follows we unveil the expression for K for the likelihood factors
N(yi | f (xi ,W), γ −1).

4.4.3.1 The Normalizing Factor

We consider a network with L layers and Vl units on each layer l, taking in vector-
shaped inputs xi . Thus, the output zl of each layer can be arranged into a vector,
and the weights between two consecutive layers into a weight matrix Wl with
dimensions Vl × (Vl−1 + 1), where the +1 stems from the inclusion of a bias term.
The pre-activation of a layer l is given by al = Wzl−1/

√
Vl−1 + 1, and for all except

the last layer, this gets transformed according to the non-linear mapping max(a, 0),
known as ReLU [38].

We make the simplifying assumption that the output zL of the network at the
last layer L is distributed as a Gaussian and proceed to compute the normalizing
constant K of the associated shifted distribution as

K =
∫

q(w, γ, λ)N(yi | f (Xi ,w), γ −1)dwdγ dλ
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≈
∫

q(w, γ, λ)N(yi | zL, γ −1)N(zL | μzL, σ 2
zL)dwdzLdγ dλ

=
∫

Ga
(
γ | αγ , βγ

)
N(yi | zL, γ −1)N(zL | μzL, σ 2

zL)dzLdγ

=
∫

T2αγ (yi | zL, βγ /αγ )N(zL | μzL, σ 2
zL)dzL

≈
∫

N
(
yi | zL, βγ /(αγ − 1)

)
N(zL | μzL, σ 2

zL)dzL

= N(yi | μzL, βγ /(αγ − 1) + σ 2
zL), (4.40)

where we have followed the same steps and performed the same approximations as
in the derivation of (4.23).

Computing the mean μzL and variance σ 2
zL of the last layer zL amounts to

propagating the input through the entire network. If we assume that the layer l − 1
has output zl−1 with a diagonal covariance Gaussian distribution with mean and
variance μzl−1 and σ 2

zl−1
, respectively, we can compute the mean and variance of the

pre-activation al at the following layer according to

μal = E

[
Wlzl−1/

√
Vl−1 + 1

]
= W̄lzl−1/

√
Vl−1 + 1 (4.41)

σ 2
al

= Var
(
Wlzl−1/

√
Vl−1 + 1

)
,

= 1

Vl−1 + 1

[
(E [Wl])

2 Var
(
zl−1

)+ Var (Wl )
(
E
[
zl−1

])2 + Var (Wl ) Var
(
zl−1

)]

= 1

Vl−1 + 1

[(
W̄l � W̄l

)
σ 2
zl−1

+ Vl

(
μzl−1 � μzl−1

)+ Vlσ
2
zl−1

]
, (4.42)

where W̄l and Vl are the mean and variance matrices for the weights in Wl , whose
values are determined by the corresponding Gaussian factors of the model.

If the number Vl−1 of inputs to the layer l is large enough and we further assume
the entries of al are independent, we can invoke the Central Limit Theorem and
claim that the pre-activation al is Normally distributed with the above mean and
variance [50].

We are now to consider the effect of the non-linear activation function on al . The
max(0, ai,l) operation causes all probability density spread over R− to concentrate
at zero as Fig. 4.6 indicates. The resulting distribution is called rectified Gaussian
and has its PDF given by

NR
(
ai,l;μi,l, σ

2
i,l

)
= �

(
−μi,l

σi,l

)
δ(ai,l) + 1√

2πσ 2
i,l

e
− (ai,l−μi,l )

2

2σ2
i,l U(ai,l),

(4.43)
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Fig. 4.6 PDF of the rectified Gaussian distribution NR(x; 0.5, 12)

where μ, σ 2 are the mean and variance of the Gaussian prior to rectification, �(·)
is the CDF of the standard Gaussian at the specified point, δ(·) is Dirac’s impulse
function, and U(·) is the unit step function. Its mean and variance are

μzi,l
= �

(
μai,l

σai,l

)
μai,l

+ σai,l
φ

(
−μai,l

σai,l

)
(4.44)

σ 2
ai,l

= m
(
μai,l

+ σai,l
κ
)
�

(
−μai,l

σai,l

)
+ �

(
μai,l

σai,l

)
σ 2

ai,l

(
1 − κ

(
κ + μai,l

σai,l

))
,

(4.45)

where κ = φ
(
−μai,l

σai,l

)/
�
(

μai,l

σai,l

)
, and φ(·) is the PDF of the standard Gaussian at

the specified position.
The output distribution of the corresponding layer is then a Gaussian with entries

determined by the above formulas plus an extra element we append for the bias term,
which has mean 1 and variance 0. Then, finding the values μzL

and σ 2
zL

consists in
iteratively computing Eqs. (4.41), (4.42), (4.44), (4.45) from the first until the last
layer for each data point (xi , yi ).

We summarize the many factors that compose PBP’s distribution in Table 4.1 and
highlight how many of each there are. The steps of the ADF-update-only method are
available in Algorithm 3. We condense the forward pass responsible for computing
the output distribution N(Yi | f (Xi ,w), γ −1) into a single step in line 17.

It is important to note that the authors [19] assume the inputs are normalized, i.e.,
zero mean and unit variance. Hence, we need to normalize the data points before
feeding them to the model and then to denormalize the obtained outputs.



4.5 MC Dropout 85

Table 4.1 Summary of PBP’s factors, their distributions, and quantities

Type Symbol Distribution Quantity

Hyper-prior p(λ) Ga (λ | αλ, βλ) 1

Hyper-prior p(γ ) Ga
(
γ | αγ , βγ

)
1

Prior p(wj | λ) N(wj | 0, λ−1) |W|
Likelihood p(Yj |W,Xj , γ ) N(Yj | f (Xj ,w), γ −1) N

Algorithm 3: Probabilistic Backprop

1: Initialise parameters αλ, αγ , βλ, βγ , {μj , σ
2
j }|W|

j=0
2: for s ∈ {λ, γ } do
3: αs ← αs + αs,0 − 1
4: βs ← βs + βs,0
5: end for
6: while not converged do
7: for j = 1 to |W| do
8: for s = 0 to 2 do
9: Ks ← N

(
μj

∣∣∣ 0, σ 2
j + βλ/(αλ − 1 + s)

)

10: end for

11: αλ ←
[
K0K2K

−2
1 (αλ + 1)α−1

λ − 1
]−1

12: βλ ←
[
K2K

−1
1 (αλ + 1)β−1

λ − K1K
−1
0 αλβ

−1
λ

]−1

13: μj ← μj + σ 2∇μ log K0

14: σ 2
j ← σ 2

j −
(
σ 2

j

)2 [(∇μj
log K0

)2 − 2∇σ 2
j

log K0

]

15: end for
16: for j = 1 to N do
17: μzL , σ 2

zL ← f (Xj ,W)

18: for s = 0 to 2 do
19: Ks ← N(yi | μzL , σ 2

zL ) + βγ /(αγ − 1 + s)

20: end for

21: αγ ←
[
K0K2K

−2
1 (αγ + 1)α−1

γ − 1
]−1

22: βγ ←
[
K2K

−1
1 (αγ + 1)β−1

γ − K1K
−1
0 αγ β−1

γ

]−1

23: μj ← μj + σ 2∇μ log K0

24: σ 2
j ← σ 2

j −
(
σ 2

j

)2 [(∇μj
log K0

)2 − 2∇σ 2
j

log K0

]

25: end for
26: end while

4.5 MC Dropout

The Monte Carlo Dropout [13], usually referred to as MC Dropout, stems from rein-
terpreting Dropout [51] as doing approximate Bayesian inference. Consequently, it
suffices to use Dropout both during training and testing to obtain the advantages of
Bayesian inference and model uncertainty measures.
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(a) (b)

Fig. 4.7 Effect of Bernoulli dropout on the network. Setting the output of a unit to zero is
equivalent to removing that unit from the network. That nodes’ inputs also become irrelevant
because they are no longer propagated forward and so we remove them from the drawing in (b).
(a) Standard neural network. (b) Neural network after dropout

4.5.1 Dropout

First, we review Dropout [51]. Succinctly, it is a stochastic regularization technique
to avoid overfitting the data. The basic idea is to corrupt the model’s units
with random multiplicative noise while training. Mathematically, it amounts to
multiplying the input hl of layer l pointwise by a realization of a random vector
εl , such that ĥl = hl � εl .

In the case of Bernoulli dropout, each unit hj,l at layer l is randomly dropped
out with probability 1 − p, i.e., its output value is set to zero, at each iteration
according to εj,l ∼ Bern(p), as illustrated in Fig. 4.7. Dropping units causes
different subnetworks with considerably less parameters to be used at each iteration
(12 instead of 55 in Fig. 4.7, for instance). When testing, all units are kept as if an
ensemble with all subnetworks was being used for evaluation.

Other works propose other types of noise. For example, in [28, 51], the authors
study corrupting the activations with multiplicative Gaussian noise, and in [56],
independently injecting noise on each weight, instead of on the input. The latter
technique is called DropConnect.
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4.5.2 A Bayesian View

Optimizing a model with dropout and an approximate Bayesian inference model
leads to similar objective functions with similar stochastic gradient update steps.
This similarity is so strong that under some conditions they are indeed equiva-
lent [13]. Although we shall only consider here the Bernoulli Dropout, a similar
development is possible for other types of noise.

Let us first review the cost function of a standard deterministic neural network
f (·;Θ) with deterministic parameters Θ:

L = Ldata (D, f (·;Θ)) + Lreg(Θ), (4.46)

where the first term is data-dependent and measures the model’s prediction error,
and the second is a regularization term to help against overfitting. Considering
a regression task with data points D = {(xi , yi ) | 1 � i � N}, a model with
parameters Θ = {Ml | 1 � l � L}, and Lreg as the usual �2-norm with strength
factors λM, (4.46) becomes

L = 1

|D|
∑

(x,y)∈D

1

2
(y − f (x;Θ))2 +

∑
M∈Θ

λM‖M‖2
2 . (4.47)

If we reinterpret Dropout as instead of corrupting the layers’ inputs, corrupting
the corresponding weights, we get for an arbitrary intermediate layer l with
activation function gl(·), the expression

hl = gl

(
Ml ĥl−1

)

= gl (Ml (εl � hl−1))

= gl (Ml (diag (εl )hl−1))

= gl ((Mldiag (εl ))hl−1)

= gl (Wlhl−1) , (4.48)

where Ml is the (deterministic) weight matrix, hl−1 the input, εl the random noise,
and Wl = Mldiag (εl ).

We have demonstrated that multiplying the input is equivalent to multiplying
the columns of the upcoming weight matrix. Considering a Bernoulli distribution
on each element of εl , when one of its entries assumes value equal to 0, it zeros
the corresponding column of Wl (as Wl = Mldiag (εl )). Zeroing the column is
equivalent to dropping every input of a neuron, which in turn is the same as dropping
the neuron itself, as illustrated in Fig. 4.8.

Hence, applying dropout on a deterministic neural network can be interpreted as
a transformation to a NN whose weights are sampled from a distribution. Looking
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Fig. 4.8 Dropping every
input of a neuron (figure in
the left) is equivalent to
dropping the neuron itself

from this perspective, dropout is a way of using BNNs. Figure 4.10 shows the
resulting weight matrix after being transformed by realizations of different types
of noise.

If we now rewrite (4.47) taking this into consideration and make the sampling
explicit, we get

L = 1

N

N∑
i=1

1

2

(
yi − f (i)(xi;Θ)

)2 +
L∑

l=1

λl‖Ml‖2
2, (4.49)

where the notation f (i)(·;Θ) indicates a sample of the random parameters drawn
for the data point (xi , yi ). Since Θ now defines distribution parameters, we replace
it by Ψ in order to keep compliance with our notation of variational parameters and
ease the comparison with other methods.

Substituting the first term of the above equation according to (4.1), we obtain

L = − 1

N

N∑
i=1

σ 2
n log p(yi |Xi ,W(i)) +

L∑
l=1

λl‖Ml‖2
2 − σ 2

n

2
log
(

2πσ 2
n

)

= − 1

N

N∑
i=1

σ 2
n log p(yi |Xi ,W(i)) +

L∑
l=1

λl‖Ml‖2
2 + const , (4.50)

where σn is the observation noise, W(i) is one sample from the distribution. The
term that only depends on σn is considered a constant since this hyper-parameter is
set by cross-validation and not gradient-descent optimization.

Equation (4.50) is pretty similar to a one-sample MC estimator of the VI cost
function L̂V I defined in (3.8), and (4.3), which after approximating with MC
integration becomes

L̂V I = − 1

T

T∑
k=1

log p(d |W(k)) + DKL

(
q(W(k);Ψ )‖p(W(k))

)

= − log p(d |W(1)) + DKL

(
q(W(1);Ψ )‖p(W(1))

)

= −
N∑

i=1

log p(yi |Xi ,W(1)) + DKL

(
q(W(1);Ψ )‖p(W(1))

)
. (4.51)
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Taking the derivative of both (4.50) and (4.51) w.r.t. their parameters, we note
that they possess the same objective (up to a constant scale factor), as long as we
assure that

∂

∂Ψ
DKL

(
q(W(1);Ψ )‖p(W(1))

)
= N

σ 2
n

∂

∂Ψ

L∑
l=1

λl‖Ml‖2
2. (4.52)

This condition is now the sole thing impeding us from using dropout (or any other
similar noise injection technique) as an approximate Bayesian model. For (4.52) to
hold, we have to choose the hyper-parameters σn and Λ = {λl |1 � l � L} such
that they induce a sensible prior p(W) for the underlying variational distribution
q(W;Ψ ). In the Appendix of [12], the author goes deeper in the conditions
necessary to be attended in order for Eq. (4.52) to hold, where they assume that the
weights of the neural network are sampled from a centered Gaussian distribution,
i.e., wj,l ∼ N(0, γ −1

l ).
Let us stop here and digest this result. No specific assumption about the neural

network architecture was assumed other than having a Dropout layer before each
weight layer. This is the only restriction to obtain approximate Bayesian inference
with the model in Fig. 4.9, the other being readily attended: to every choice of
dropout probability 1 − pl , observation noise σ 2

n (or, equivalently, noise precision
τn), and regularization strength λl , corresponds a prior precision γl (or, according
to [13] a prior length-scale ll), whether or not its value is reasonable for the
problem at hand. For other network architectures such as convolutional [12] and
recurrent [14], few additional considerations are required to achieve a similar
result. If the employed model does not have Dropout in between every layer, as
is usually the case in pretrained models with only the last fully connected layers of
the classifier possessing Dropout, we can think of them as having a deterministic
feature-extractor part and a subsequent approximate Bayesian classifier. Although
not as powerful, this is still a nice interpretation if we want to do inference and are
bound to a given model.

Fig. 4.9 PGM representation of the MCDO model. The observed output yn is a noisy observation
of the model output for the input xn with the variance noise determined by the fixed parameter
σ 2

n . The j -th weight vector mj,l out of the Jl from the l-th layer get selected by Bernoulli random
variables with success rate pl and wj,l have centered Gaussian priors with fixed precision γl , whose
value is readily determined by the choice of the two previous hyper-parameters together with the
regularization strength λl
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Bernoulli DropConnect

Gaussian DropConnect

Bernoulli Dropout

Gaussian Dropout

1.77

0.88

0.0

Fig. 4.10 The effect on the network weights of using different stochastic regularization tech-
niques on the same deterministic weight matrix M. Each technique corresponds to a distinct base
distribution and leads to distinct variational distribution. For the same weight matrix, different base
variational distributions

Also, the posterior approximation for Bernoulli Dropout factorizes over different
layers and over connections going out of the same unit, but not over the connections
arriving at the same unit. As the same Bernoulli random variable acts on the same
weight matrix column, naturally they are not independent. The other methods of
this chapter use mean-field approximation to the posterior, completely missing any
codependency among the weights. In this sense, MCDO is less restrictive.

However, the author of [12] warns that to get well-calibrated uncertainty esti-
mates the dropout probability must be optimized as well. Since this is a variational
parameter, it cannot be directly chosen by observing the ELBO objective [12]. The
recommendation is then to set it by maximizing the log-likelihood over a validation
set.

We summarize the resulting procedure in Algorithm 4, where we illustrate
the case for the Bernoulli dropout trained with a mini-batch of size 1. However,
as pointed out at the beginning of this section, other stochastic regularizers can
be recast as performing approximate Bayesian inference by following a similar
derivation, as Fig. 4.10 illustrates. For example, for DropConnect [56] the only
difference is in using separate random variables for each weight instead of one for
each column of the weight matrix. It is important to note that not all resignifications
go without problems, Gaussian Dropout [51] as Bayesian inference with a log-
uniform prior [28] has had some issues pointed out in [24]. If instead of using
multiplicative we consider additive Gaussian noise for each weight parameter, we
recover the algorithm of Sect. 4.3.1.

4.6 Fast Natural Gradient

The parameter space is in general Riemannian and not Euclidean, so learning
methods should take the structure of the space into account [2]. Natural gradient
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Algorithm 4: MC Dropout
1: while not converged do
2: Randomly sample a data example {xi , yi}
3: for l = 1 to L do
4: Wl ← Mldiag (εl ), where εl ∼ Bern(pl)

5: end for
6: g ← 1

2 ∇ (yi − f (xi; {Wl}Ll=0)
)2 +∑L

l=1 λl∇‖Wldiag (εl )‖2
2

7: mj,l ← mj,l − kg
8: end while

methods do that by warping the gradient according to the information geometry
encoded into the Fisher information matrix (see Appendix A.4). As a consequence,
they are invariant (up to first order) to changes in the parameterization of the
problem, what is in stark contrast to standard gradient descent, whose efficiency
and convergence rate are sensitive to the parameterization.

Current frameworks focus on MLE and adapting them for VI requires mod-
ifications in the code, increasing development time, memory requirements, and
computation costs. For example, the algorithms of Sects. 4.3 and 4.4 have twice the
number of parameters of a deterministic model with the same architecture, besides
the additional implementation effort. Adaptive optimizers further enlarge the costs
since each parameter has its own scaling variable that regulates the learning rate.

The authors in [26] build upon previous work [25] on natural gradient for
Gaussian MFVI and propose a series of progressively more practical but less
accurate optimizers. It is a lengthy read to grasp all the details, but certainly worth
the effort. Here, we review and rederive the core algorithm of [26], named Vadam.

4.6.1 Vadam

From all reviewed methods, Vadam [26] is the more recent and practical one. Similar
to the Adam optimizer [27] by construction, it is a natural gradient method (see
Appendix A.4) with momentum designed specifically for MFVI. Starting from a
parameter update equation proposal, the authors [26] embed several approximations
defining different algorithms until reaching the method they name Vadam, for
Variational Adam.

Gradient optimizers with momentum establish the update step as a linear
combination between the steepest descent direction and the last displacement [8],
such as

wt+1 = wt − ᾱt∇wf (wt ) + γ̄t (wt − wt−1), (4.53)

where {ᾱt } and {γ̄t } form a sequence of scalars that determines the contribution of
each term and must obey the convergence conditions discussed in Sect. 3.2.1.5.
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The latter term in (4.53) keeps the algorithm’s movement along previous search
directions, and is thus named momentum. Reasoning about its dynamics since the
first iteration, each step can be understood as an exponentially decaying average
of past gradients, hence the tendency to accumulate contributions in directions of
persistent descent, while directions that oscillate tend to cancel out, or at least
remain small [8].

Instead of (4.53), the authors of [26] propose

ηt+1 = ηt − ᾱt ∇̃ηf (ηt ) + γ̄t (ηt − ηt−1), (4.54)

where ∇̃ is the natural gradient and the optimization is on the natural parameter
η of an exponential family member. For such family, the natural gradient assumes
a simple and efficient form, requiring less memory and computations. Besides, it
improves the convergence rate by exploiting the information geometry of posterior
approximations.

Constraining the variational approximation to the exponential family allows the
use of the relation [3]

∇̃ηf (η) = I−1(η)∇ηf (η) = ∇mf (m), (4.55)

which states that the natural gradient w.r.t. the natural parameter is equal to the
gradient w.r.t. the mean parameter m when f (·) is parameterized according to
m = E [u(w)]. The identity in (4.55) frees us from computing the Fisher matrix
and its inverse, that is why it is so useful and many other practical natural gradient
algorithms resort to it [22, 23, 25].

In the specific case of independent univariate Gaussian weights (mean-field
assumption), writing (4.54) as a minimization problem with a KL constraint (see
Appendix A.4), using (4.55) and solving the resulting Lagrangian lead to

μt+1 = μt − βt

1 − αt

σ 2
t+1∇μLt + αt

1 − αt

σ 2
t+1σ

−2
t−1(μt − μt−1), (4.56)

σ−2
t+1 = 1

1 − αt

σ−2
t − αt

1 − αt

σ−2
t−1 + 2βt

1 − αt

∇σ 2Lt . (4.57)

The pair of update Eqs. (4.56) and (4.57) is the natural momentum extension of
[25]. We immediately note that the learning rate of μ gets scaled by the variance.
Additionally, σ 2 may assume negative values just like the methods in Sect. 4.3, thus
one needs external constraints to sidestep this issue.

No specific knowledge of the cost function L has been absorbed into the
algorithm so far. However, now we take into consideration that the cost function
is the negative ELBO defined in (4.3) and also specify univariate Gaussian priors
p(w) = N(w; 0, σ 2

p) for the weights. Recalling the derivatives of the KL term
already calculated in (4.7)–(4.13) and again using the identities (4.9) and (4.10), we
get
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Fig. 4.11 PGM representation of the Vadam model. It is the same as the one in Sect. 4.3. The
observed output yn is a noisy observation of the model output for the input xn with the variance
noise determined by the fixed parameter σ 2

n . The constant values {μp, σ 2
p} govern the Gaussian

prior distributions over the weights, while {μk, σ
2
k } their posteriors

∇μL = NEq [∇wh(w)] + μ

σ 2
p

, (4.58)

∇σ 2L = N

2
Eq

[
∇2

wh(w)
]

+ 1

2

(
1

σ 2
p

− 1

σ 2

)
, (4.59)

where N is the data set size and h(w) = − 1
N

∑N
i=1 log(xi | w), the average negative

log-likelihood.
Now, after determining the prior and posterior distributions over the weights,

we have completely defined the underlying Vadam model, shown in Fig. 4.11.
t has the same structure as the one used in Sect. 4.3 (Fig. 4.4), the difference
between both methods being the approximations included in Vadam to make it more
computationally efficient.

As one might already expect, we use one-sample MC estimators for the
expectations in (4.58) and (4.59), as well as replace the gradients, so far computed
from the entire data set, with their stochastic versions ∇̂w and ∇̂2

w, computed from a
mini-batch. Since second derivatives are computationally expensive, besides (4.59)
being able to lead σ 2 to negatives values, we resort to the GGN approximation
for ∇̂2

w (see Appendix A.3). This last step requires calculating the square of the
first-order derivative for each mini-batch element; however, modern frameworks are
not optimized to operate separately on each element of a batch after computing its
derivatives. Thus, we incorporate yet another approximation

∇̂2
wh(wt ) ≈ 1

M

M∑
i=1

∇̂wh(wt ; xi )
2 ≈

(
1

M

M∑
i=1

∇̂wh(wt ; xi )

)2

. (4.60)

While the first approximation in (4.60) is the GGN, the last is known as the gradi-
ent magnitude approximation and employed by several usual optimizers [11, 27, 54].
It causes σ 2 to act as diagonal rescaling that simply assures equal progress along
each axis of μ rather than closely approximating the curvature [8] (disregarding the
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momentum term of the update equation that counter-balances this effect by favoring
historically good directions).

The gradient magnitude approximation biases the estimation even more than
GGN, its expectation is in between that of GGN and the squared gradient of the
full-batch. As the mini-batch size increases, the bias also increases: if the whole
data set is used to compute this approximation, then all second-order information is
lost, while if computed if a single data point it is equal to the GGN. Hence, there
is a compromise between biasing estimations but converging quickly versus being
“exact” (GGN-wise) but slow.

For practicality, the authors in [26] define the scaled prior precision λ̃ = σ−2
p /N

and the new parameter st = (σ−2
t −σ−2

p )/N . Moreover, they arbitrarily apply square
root on the scaling vector st in the μ update formula so that the method gets more
similar to Adam. Although this modification does not change the algorithm’s fixed
point solutions, it alters the dynamics [26]. The Vadam weight update equations are
then

μt+1 = μt − ᾱt

[
1√

st + λ̃

] (∇̂wh(wt ) + μt λ̃
)+ γ̄t

[ √
st + λ̃√

st+1 + λ̃

]
(μt − μt+1) ,

(4.61)

st+1 = (1 − ᾱt ) st + ᾱt ∇̂2
wh(wt ), (4.62)

where ∇̂w and ∇̂2
w are the unbiased stochastic approximations of ∇w and ∇2

w,
respectively.

Unwinding these update equations and using different step sizes γ1 and γ2 for μ

and s instead of ᾱt and (1−ᾱt ), respectively, we get the Algorithm 5. Remember that
the scale factor s actually relates to σ 2 by σ−2

t = Nst +σ−2
p and each weight sample

wt is drawn from the distribution N(μt , σ
2
t ). The implementation differences from

Adam [27], in red in Algorithm 5, are responsible for enabling ADF.

Algorithm 5: Vadam
1: while not converged do

2: w ← μ + σ � ε where ε ∼ N(0, I), σ ← 1/

√
Ns + σ−2

p

3: Randomly sample a data example xi

4: g ← −∇ log p(xi |W)

5: m ← γ1 m + (1 − γ1) (g+ σ−2
p μ/N)

6: s ← γ2 s + (1 − γ2) (g � g)
7: m̂ ← m/(1 − γ t

1), ŝ ← s/(1 − γ t
2)

8: μ ← μ − α m̂/(
√
ŝ+ σ−2

p /N)

9: t ← t + 1
10: end while

Throughout the development of the Vadam algorithm, it is considered that the
algorithm would already be running. Consequently, the exponential moving average
would actually encode information about the geometry of the space. During the
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initial iterations, however, this estimation would be biased towards the starting
point [27]. In order to reduce this effect, the authors [26] introduce a bias-correcting
factor that decays exponentially as the optimization runs.

The final method is indeed very similar to Adam [27], but has the advantage of
providing uncertainty estimates due to the implicit posterior inference it performs.
Apart from being fast, Vadam offers a plug-and-play manner of performing ADF.
Differently from the previous methods of this chapter, the user has only to define
the model as if it were deterministic and optimize it with Vadam. There is no silver
bullet and the price for such easiness and speed is inferior posterior estimates.

4.7 Comparing the Methods

In the remainder of this section, we compare the four algorithms studied during the
chapter. We begin with one-dimensional toy examples, for which we can visually
analyze the predicted curves and better grasp some of the discussed ideas. Next, we
benchmark them on more complex regression tasks, whose results work as better
guidelines on possible practical scenarios.

4.7.1 1-D Toy Example

As a first experiment, we evaluate the predictive distribution obtained from the
approximation algorithms on toy regression data sets whose targets are given by

y = −(x + 1) sin(3πx) + ε, where ε = N(0, 0.32). (4.63)

For this task, we uniformly sample a 20-point and a 400-point sets. We train one-
hidden-layer networks with 100 units until convergence using the Adam optimizer
(except for the Vadam algorithm, which is an optimizer itself). Figure 4.12 shows
the results we obtain.

Let us first recall what was our intention with BNNs: to better model the
underlying distribution of our problem and quantify the unknown. Thus, we would
like to see our models’ uncertainty increase in regions with few to none samples.
In that sense, no matter how dense our knowledge about the function may be in
the center region of Fig. 4.12, we essentially do not know much outside it, so
our uncertainty estimation should not change much in these off-center regions.
Conversely, the more samples we have in a given region, the better our accuracy
should get and the more certain our model should be in that region.

We can notice that Vadam’s uncertainty in the 400-sample scenario remain high
whereas the other methods’ estimate shrink considerably more in proportion to
their 20-sample case. Even BBB, whose predictions look similar to Vadam’s, more
severely underestimates the variance of the posterior, specially in the 400-point set.
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Fig. 4.12 Comparison of the resulting predictive distribution of a one-dimensional toy example
with either 40 (left) or 400 (right) data point obtained by (a) BBB, (b) MCDO, (c) PBP, and (d)
Vadam
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Fig. 4.13 Predictive posterior distribution for the PBP method when trained for 200 epochs. Note
that the blue shades (model uncertainty) have disappeared

MCDO’s predictions are considerably less smooth than those from other algo-
rithms, needing more MC samples to obtain stable results. Nonetheless, the mean
predictions accurately capture the underlying behavior of the target function.
Although the algorithm’s iterations are individually less computationally expensive,
more iterations are required to adequately model the data. Even with a small number
of samples, MCDO obtains good estimates for both the mean and the variance.

In larger data sets, where only a reduced number of passes over the data (fewer
than 100) are possible, performing EP requires a unreasonably large memory
footprint, so PBP actually performs multiple ADF passes through the data, treating
each as a novel example. A disadvantage of this approach is that it can lead to
underestimation of the posterior variance when too many passes are done over the
data. This is the behavior we observe in Fig. 4.13 compared to the one in Fig. 4.12c
for the same number of samples.

4.7.2 UCI Data Sets

Now, with a better understanding, we benchmark the algorithms in eight different
regression data sets of the UCI Machine Learning Repository [10], a procedure that
has recently become a standard in the related literature [13, 18, 19, 26, 34, 52, 58].
Below we give a brief description of each data set.

4.7.2.1 Boston Housing

Data about homes from various suburbs in Boston, Massachusetts, collected in 1978
by the US Census Service. The task is to predict the median value of owner-occupied
homes from 13 variables measuring property and neighborhood characteristics such
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as average number of rooms per dwelling, nitric oxides concentration, per capita
crime rate, among others. From now on, we refer to it as Boston only.

4.7.2.2 Concrete Compressive Strength

Concrete strength is one of the most important engineering properties of concrete
and very important in civil engineering. It is a highly non-linear function of age
and ingredients, usually obtained by testing samples under a compression testing
machine. The aim of the data set is to predict the compressive strength given the
age and seven ingredients, such as cement, water, fine and coarse aggregate, among
other component concentrations. From now on, we call it Concrete.

4.7.2.3 Energy Efficiency

During the design of a building, simulations are performed to estimate its energy
efficiency. The task is to predict the efficiency, which is expressed by the 2 different
metrics heating and cooling load, from eight attributes, such as glazing area, surface
area, orientation. The data set is composed of a collection of 768 simulated buildings
with different characteristics and 12 different shapes. For brevity, we call this data
set Energy.

4.7.2.4 Kin8nm

This data set consists of the angular positions of the joints of an 8-link all-
revolute robotic arm, which is known to be highly non-linear. Data was synthetically
generated from a simulation of its forward kinematics. The aim is to predict the
distance of the end-effector from a given target.

4.7.2.5 Condition Based Maintenance of Naval Propulsion Plants

The behavior and interaction of the main components of propulsion systems
cannot be easily modeled with a priori physical knowledge. Still, it is important
to continuously monitor the propulsion equipment and take decisions based on
their condition. The aim is to predict the compressor decay state coefficient using
input features such as ship speed, fuel flow, torques from turbine and propellers,
temperatures and pressures coming in and out of the compressor. The data set was
generated from a numerical simulator of a Navy frigate characterized by a combined
diesel-electric and gas propulsion plant. The simulator was fine-tuned and validated
with real-data. In what follows, we refer to this data set as Naval.
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4.7.2.6 Combined Cycle Power Plant

The aim of this data set is to predict the net hourly electrical energy output of a
power plant. Power output prediction is an important element in managing a plant
and its connection to the power grid. The features come from a real plant and were
collected for over 6 years, when the plant was set to work with full load. They
consist of hourly averages of temperature, ambient pressure, relative humidity, and
exhaust vacuum. From this point on, we call this data set Powerplant.

4.7.2.7 Wine Quality

The data consists of 11 physicochemical characteristics of different brands of red
and variants of the Portuguese “Vinho Verde” wine. The objective is to predict the
quality of the wine, a score between 0 and 10. This data set is hereafter called Wine.

4.7.2.8 Yacht Hydrodynamics

Estimation of the residuary resistance of sailing yachts at the initial design stage
is essential for evaluating the ship’s performance and for assessing the required
propulsive power. The data set contains results from 308 full-scale experiments of
22 different hull forms. The input features are aspects of hull geometry. From now
on, we call this data set Yacht.

4.7.3 Experimental Setup

For each data set in Sect. 4.7.2, we compare algorithms according to their training
time, predictive (Gaussian) log-likelihood (4.1), and Root Mean Squared Error
(RMSE), which is defined as

RMSE =
√∑N

i=1(yi − ŷi )2

N
. (4.64)

While RMSE exclusively measures the prediction accuracy, thus assessing how
close the predictions are to the target values, the log-likelihood takes into account
the prediction variance and thus incorporates the prediction uncertainty into the
evaluation. Intuitively, the lower the variance, the more reliable the prediction
should be and, hence, the higher the penalty for being wrong; but still we want
predictions to be reliable so large variances also receive higher penalties. Otherwise,
constantly predicting uncertain values would amount to good scores, even though
the model would not be of much use.
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We do not directly measure structural uncertainty, that is, the uncertainty
stemming from the model, which could be corrected with an infinite amount of
data. However, highly uncertain weights, i.e., weights with large variances, lead
to very different outputs for the same inputs each time we draw a different set of
weight values. Consequently those outputs frequently fall far from the true value
even if their mean is correct. This causes the estimated predictive log-likelihood,
that should be ideally high, to be low. Hence, this metric gives us a sense of the
model uncertainty, though indirectly.

We follow the setup proposed in [13]: for each data set we run the models on
20 random train-test splits after doing hyper-parameter search with 30 iterations of
Bayesian Optimization (BO) [49] on each split. It is important to note that Bayesian
Optimization (BO) has nothing to do with the previously discussed methods for
training BNNs, we use it as a tool for efficiently searching the hyper-parameter
space. We could have employed random or grid search instead and the arguments
developed throughout the chapter would still be the same, as would our pipeline
illustrated in Fig. 4.14.

4.7.3.1 Hyper-Parameter Search with Bayesian Optimization (BO)

Bayesian Optimization (BO) is a black-box approach to optimize objective
functions that take a long time or are costly to evaluate. Bayesian Optimiza-
tion (BO) builds a surrogate for the objective and quantifies the uncertainty in
that surrogate through Gaussian Process regression [47]. At each iteration, we
observe the objective at a new point (a new hyper-parameter configuration),
update the posterior distribution that describes the potential objective values
at each point, and sample a new point whose values maximize a given
acquisition function, i.e., the expected improvement. Bayesian Optimization
(BO) factors in all previously seen configurations to decide what point of the
parameter space to investigate next, achieving good solutions for complex
non-convex functions with considerably fewer iterations. On the other hand,
the decision where to evaluate next makes each iteration computationally
expensive to run, imposing an overhead.

We use the same 20 data splits1 for the methods to avoid fluctuations in the
results due to the reduced size of the data sets and the effect different splits may
have. For each split, we set the optimal hyper-parameter configurations of the prior
precision λ (or equivalently the prior variance σ 2

p), the observation noise precision
γ , and, in the MC Dropout case, the dropout probability p by running 30 iterations
of Bayesian Optimization (BO) on the training set for 40 epochs. Additionally, the

1Available at: https://github.com/yaringal/DropoutUncertaintyExps/tree/master/UCI_Datasets.

https://github.com/yaringal/DropoutUncertaintyExps/tree/master/UCI_Datasets
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Fig. 4.14 Experimental pipeline for evaluating BNNs. Each data set is split as in [13], then we
do 30 rounds of hyper-parameter optimization, training the model on a random subset of the split
with one of the discussed methods in a cross-validation setting on each round. At the end, we use
the best hyper-parameters found to train the final model on the whole split

performance of the hyper-parameter configuration of each Bayesian Optimization
(BO) iteration is averaged over a 5-fold cross-validation, so for each setting we train
and evaluate the model 5 times. After finding the best configuration for each split,
we fit the model to the whole training set. All this procedure follows from [13]. The
general pipeline of the approach is summarized in Fig. 4.14.

We observe that this structure escalates quickly, as for each data set and model
we have:

20︸︷︷︸
splits

×

⎛
⎜⎜⎜⎝ 30︸︷︷︸

BO iters

×
(

5 × 4

5

)

︸ ︷︷ ︸
CV iters

+ 1︸︷︷︸
full run

⎞
⎟⎟⎟⎠× 40︸︷︷︸

epochs

= 96800︸ ︷︷ ︸
epochs

, (4.65)

plus the time each Bayesian Optimization (BO) iteration takes to decide on the next
point to test. We do small scale studies with single hidden-layer networks with 50
units to keep the computation under a viable amount of time.

The source codes for PBP2 and Vadam3 were borrowed from the authors’
repositories. With exception of PBP which is implemented in Theano 1.0 [53], all
remaining algorithms and supporting code are in PyTorch 1.0 [44].

2https://github.com/HIPS/Probabilistic-Backpropagation.
3https://github.com/emtiyaz/vadam.

https://github.com/HIPS/Probabilistic-Backpropagation
https://github.com/emtiyaz/vadam
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Table 4.2 Number of MC
samples during training for
each algorithm. PBP does not
employ MC integration,
instead it uses analytical
approximations

Smaller sets Larger sets

BBBx1 10 5

BBBx2 20 10

MCDOx1 1 1

MCDOx10 10 10

Vadam 10 5

PBP – –

4.7.4 Training Configuration

We maintain a training configuration similar to [26]. We use a mini-batch of size 32
on the four smaller data sets (Boston, Concrete, Energy, and Yacht), and of 128 on
the other four (Wine, Powerplant, Naval, Kin8nm). Table 4.2 contains the number
of MC samples used during training for each algorithm, for evaluation they all use
100 MC samples.

We run BBB and MCDO under two different conditions to further investigate
their behavior. BBBx2 draws twice the number of MC samples of BBBx1 during
training. As for MC Dropout, our MCDOx1 configuration follows the original MC
Dropout implementation [13], i.e., just one MC sample during training and longer
training time after hyper-parameter selection, namely 400 epochs instead of 40,
since MC Dropout takes longer to converge [13]. On the other hand, MCDOx10’s
training procedure is more similar to the other algorithms’ setup: 10 training MC
samples and 40 epochs.

In PBP’s original implementation [19], which we use, samples are individually
processed, but mini-batching is possible at the cost of slightly reduced performance.
PBP also has no MC approximation of the weights’ posterior since it propagates
entire distributions through the layers, analytically performing its approximations.

BBB, MCDO, and Vadam use gradient-descent optimizers. Both BBB and MC
Dropout use the Adam optimizer [27], while Vadam is itself a (variational) optimizer
and the experiment consists of using it in lieu of Adam. Following [26], in all three
methods we set learning rate k = 0.01, and moving-average parameters γ1 = 0.99
and γ2 = 0.9 (instead of the usual γ1 = 0.9 and γ2 = 0.999) to encourage
convergence within 40 epochs. The initial precision for the posterior approximation
is set to 10 (attention, this is not the prior precision) for BBB and Vadam.

4.7.5 Analysis

For comparing the algorithms according to the performance in each individual data
set, we use the Bayesian Correlated t-test [9]. This test is used for the analysis
of cross-validation results and accounts for the correlation due to the overlapping



4.7 Comparing the Methods 103

Table 4.3 Average amount of time in seconds each algorithm takes to complete a whole training
cycle, that is, from finding the optimal hyper-parameters to finding the final posterior approximation
to the weights

Absolute avg. running time (s)

Data set Size Dim BBBx1 BBBx2 Vadam PBP MCDOx1 MCDOx10

Boston 506 13 1813 3279 2214 16 1286 1339

Concrete 1030 8 3510 6101 4333 28 2280 2442

Energy 768 8 2680 4312 3283 20 1541 912

Kin8nm 8192 8 4563 8433 4985 190 4493 4631

Naval 11,934 16 6923 14036 6835 279 6759 6916

Powerplant 9568 4 5349 9993 6117 188 5356 5500

Wine 1599 11 1009 2269 1226 41 1098 1076

Yacht 308 6 1139 1634 1291 10 612 275

training sets [5]. It is thus suited to our case where we have 20 random splits with
90% for training and 10% for testing.

PBP automatically sets all its hyper-parameters by the Bayesian framework
thanks to the hyper-priors, thus dispensing with the hyper-parameter search. In this
case, the number in (4.65) reduces from 96800 epochs to 20 × 40 = 800, that is,
one 40-epoch run per random split. Table 4.3 shows the required (wall-clock) time
each algorithm takes to complete the full training schedule (including Bayesian
Optimization (BO)). Figure 4.15 illustrates a similar information, but depicts the
ratio w.r.t. PBP training time for easier visualization.

PBP outspeeds all others being 34 times faster than the runner-up. This difference
results from the absence of hyper-parameter tuning, which exempts the method
from running the equivalent of 30 × 4 = 120 times to find a good hyper-
parameter configuration prior to finally fitting to the full training set. On top of
that, there is the overhead imposed by the Bayesian optimization inference. Instead
of requiring computer time, PBP requires human time to workout all its derivations
and approximations. However, if we were not performing hyper-parameter tuning,
PBP’s advantage would fade away and it would actually be the slowest method on
average. There are actually different factors contributing to this:

• PBP’s current implementation uses a mini-batch size of 1, and increasing it to 32,
the same size as the others, makes the method once again the fastest [4], though
not by that large of a margin as before;

• PBP uses the framework Theano, which is no longer officially supported, while
the other 3 methods were implemented in Pytorch [44], a more recent and rapidly
growing framework powered by Facebook Artificial Intelligence Research and
developed by dedicated personnel, hence the operations are better optimized to
GPU processing.

BBBx2 is by far the slowest, taking on average 80% more time to train than
BBBx1. Although Vadam has a poorer average performance than BBBx2 as seen
in the performance bar chars of Figs. 4.16 and 4.17, it trains faster: only 16%
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Fig. 4.15 Amount of time in logarithm scale for training each algorithm relative to PBP. We take
into account hyper-parameter search and training of the final model

slower than BBBx1, instead of 80%. Vadam does not have additional parameters for
the variances of weights; instead it directly computes them from the intermediate
variable used to normalize the directions of the parameter space, something the
optimizer Adam already does.

Both MCDO configurations take roughly the same amount of time and have
similar performance as Figs. 4.15, 4.16, and 4.17 show. MCDOx1 is 10% slower
to train and has slightly better performance than MCDOx10. Even though this
difference is small, it is consistent. Overall, MCDOx1 is the best w.r.t both RMSE
and log-likelihood, with MCDOx10 being a close second. PBP follows them in third
place.

Despite its not so stellar performance, PBP has no need for hyper-parameter
search and trains incredibly fast. Another strength PBP possesses, inherited from
EP, is being naturally well-suited to data-parallelization across machines, and if
using only ADF updates, to online learning.

We summarize the conclusions in Table 4.4 to make future reference easier. It
rates the BNN algorithms without any number nor formula w.r.t. three fundamental
practical aspects:

• The implementation effort to build a custom solution;
• The quality of the model predictions, both accuracy and uncertainty;
• The time it takes to train the model.



4.8 Further References 105

Bos
ton

Con
cret

e
Ene

rgy
Kin

8nm Nav
al

Pow
erp

lant Wine Yac
ht

Dataset

0

1

2

3

4

5

6

7

R
M
SE

Method
BBBx1
BBBx2
Vadam
PBP
MCDOx1
MCDOx10

Fig. 4.16 The average RMSE (low values are better) over the 20 random resampled splits of the
UCI regression data sets. Error bars represent the standard deviations over the 20 random splits

On a final note, we leave a general recommendation for those needing to develop
a custom solution for a certain task: use Vadam [26], it is fast, out-of-the-box and
has reasonable performance. It still needs hyper-parameter tuning, but at this point,
almost every algorithm does. If the problem calls for better predictive accuracy or
uncertainty estimation, resort to MCDO or other methods not covered here, a few
of which are mentioned in Sect. 4.9.

4.8 Further References

Even though we treated here only algorithms that do not (explicitly) model the
correlation structure between the weights, this also is an active research subject
with many interesting works such as:

• Matrix variate Gaussian prior [52] and posterior approximation [34];
• Structured covariance with noisy natural gradient [58];
• Low-rank covariance approximation with natural gradient [37].
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Fig. 4.17 The average log-likelihood (high values are better) over the 20 random resampled splits
of the UCI regression data sets. Error bars represent the standard deviations over the 20 random
splits

Table 4.4 Practitioner’s Table: a rough comparison between the variational methods studied for
BNNs. Although BBBx2 performance is better than Vadam’s, it takes longer to train and a fairer
comparison regarding the time would include BBBx1 instead

Method Effort Quality Timing

BPB Medium Poor Slow

PBP Very hard Good Very fast

MCDO Very easy Good OK

Vadam None OK OK

Although the above methods also rely either on VI, ADF, or EP, by focusing
on modeling the structure between the parameters, they achieve better posteriors
approximations and uncertainty estimations.

There is a whole other sort of methods that rely on Markov Chain MC
approximations to the posterior predictive density, which was not the focus of our
discussion. Still, we name a few so that the interested reader knows where to start:

• Hamiltonian MC [41];
• Stochastic gradient Langevin dynamics [32, 57];
• Posterior distribution distillation [29].
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4.9 Closing Remarks

In this chapter we have discussed BNNs, along with motivations for recurring to the
computationally heavier Bayesian approach instead of contenting ourselves with
traditional point estimates. Bayesian models offer a large number of advantages
such as robustness to overfitting, principled model comparison, and uncertainty
estimation not only in their outputs, but also in all of their parameters.

Additionally, we reviewed and experimentally compared four key variational
algorithms throughout the chapter. Namely, Bayes by Backprop [6], Probabilistic
Backprop [19], MC Dropout [13], and Vadam [26]. They all consider unstructured
approximations to the posterior. Even though MC Dropout [13] is the only one that
does not rely on mean-field approximation, it assumes dependency among groups
of weights in a rather non-well-defined manner.
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