
Chapter 3
Model-Based Machine Learning and
Approximate Inference

By the end of this chapter, the reader should:

• Understand the various advantages of the model-based approach,
• Discern the benefits and issues of Bayesian inference,
• Be capable of understanding and implementing variational Bayes and expectation

propagation,
• Understand the mean-field approximation,
• Comprehend the relations between the different variational methods,
• Know the modern landscape of stochastic and black-box inference methods.

3.1 Model-Based Machine Learning

Model-Based Machine Learning (MBML) aims at providing a specific solution for
each application. It encodes the set of assumptions for a given application explicitly
in the model. Consequently, we are able to create a wide range of highly tailored
models under a single development framework.

The clear picture of what is the model decouples the model structure from
the learning (inference) algorithm. This segregation allows their independent for-
mulation and the application of the same inference method to different models
and vice versa, generating a large number of possible combinations. The unified
framework facilitates rapid prototyping and comparison, allowing the derivation
of many traditional ML techniques as special cases of certain model-inference
configurations (see examples in Sect. 3.1.1).

One might question why do we want to infer probability distributions or even
what are the advantages over something simpler such as point estimates, which are
single values that already give us answers. The problem in considering only the
most likely solution comes from losing information of the underlying variability and
robustness of the model. Let us consider a trivial example to illustrate this issue:

© Springer Nature Switzerland AG 2021
L. P. Cinelli et al., Variational Methods for Machine Learning with Applications to
Deep Networks, https://doi.org/10.1007/978-3-030-70679-1_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70679-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-70679-1_3


32 3 Model-Based Machine Learning and Approximate Inference

Example An ambulance must take a dying person to the nearest hospital, and there
are two possible routes, A and B. A takes about 15 min, while B, 17. Which
one should the driver choose? Now, the driver further considers that the patient
must get to the hospital within 20 min and A consists of regular urban streets with
semaphores and possible traffic jams and that his predicted travel time may vary
up to eight minutes, whereas B is an express lane for medical emergencies and the
estimated time varies by no more than one minute. Would the choice still be the
same?

The highlighted keywords above give us a sense of the intrinsic variability in
our problem, and disregarding that information may be misleading. In the above
example, it is clear that the average time is not sufficient information and that the
uncertainty is critical for making a more conscious decision. Probability theory
provides a principled framework for modeling uncertainty. As seen in our example,
probabilistic models allow us to reason and perform decision-making, anticipate
the future and plan accordingly, and detect unexpected events, among others; all by
learning probability distributions of the data. Not only we can understand almost all
ML through probabilistic lenses but also connect it through this perspective to every
other computational science [22, p. 2].

3.1.1 Probabilistic Graphical Models

Full joint distributions are generally intractable. Therefore, we resort to structured
models [4], which associate probability distributions over only a few variables
providing considerable computational simplifications.

One flexible paradigm is Probabilistic Graphical Model (PGM) [12], which use
a diagrammatic representation for compactly encoding a complex distribution over
a high-dimensional space [12], as depicted in Fig. 3.2, where the most frequent
elements are:

• vertices or nodes: denote random variables (also commonly called nodes), which
can be shaded if observed or empty otherwise;

• edges: capture the dependency between vertices;
• plates: symbolize that the enclosed subgraph is repeated the number of times

indicated by the subscript in the bottom right of the plate, as illustrated in Fig. 3.1.

3.1.1.1 Direct Acyclic Graphs

Let V be the set of all vertices of a graph. Define a parent of the vertex i as the
vertex whose directed edge points to i. Further define the parent set Πi as the set of
all vertices that are parents of the vertex i.



3.1 Model-Based Machine Learning 33

y

z2z1 . . . zN

y

z

N

Fig. 3.1 Equivalence of the shorthand plate notation

x1 x2 x3 x4

z1 z2 z3

(a)

x1 x2 x3 x4

z1 z2 z3

(b)

Fig. 3.2 Examples of probabilistic graphical models. In either cases, vertices represent random
variables and edges their dependency relation. Bayesian networks (a) encode causation through the
edge’s direction, i.e., x1 depends on z1, z2, and z3, being their effect. On the other hand, Markov
random fields, also known as undirected graphical models, encode symmetrical dependency
through the edges, with no cause–effect relation. (a) Bayesian network. (b) Markov random field

In the Directed Acyclic Graph (DAG) approach, exemplified in Fig. 3.2a, each
vertex i ∈ V together with its parent set Πi defines a local probability distribution
p(xi | Πi) over the random variable xi associated with the corresponding vertex i.
The existence of an edge from i to j indicates that i causes j , while the absence
indicates that the nodes are independent.

The collection of all local probability distributions p(xi | Πi) over the random
variables xi describes the joint probability of the model:

p(x1, x2, . . . , x|V|) =
∏

i∈V
p(xi | Πi) . (3.1)

This class of models is frequently referred to as Bayesian network, despite no
intrinsic need for Bayesian methods. They are so called because they use the Bayes’
rule for defining the probability distributions [23].

3.1.1.2 Undirected Graphs

Contrary to DAGs, undirected graphs, exemplified in Fig. 3.2b, have no cause–
effect relation between its nodes and cannot describe a generative process. Instead



34 3 Model-Based Machine Learning and Approximate Inference

of describing the full joint distribution in terms of conditionals, undirected graphs
factorize the joint distribution over groups Xc of fully connected nodes (maximal
cliques), each characterized by a potential function ψ(Xc) [12]. The potential
function of a group is not a valid probability distribution, but the set C of all such
groups gives the joint distribution according to

p(x1, x2, . . . , x|V|) = 1

Z

∏

c∈C
ψ(Xc), (3.2)

where Z is the normalizing constant.

3.1.1.3 The Power of Graphical Models

Many traditional ML and signal processing algorithms can be derived as special
cases of graphical models combined with the appropriate inference algorithms.
Moreover, many of them can be represented by simple graphical structures and be
effortlessly combined [4]. For example:

1. Principal Component Analysis (PCA) can be formulated as a generative process
with the latent variable z corresponding to the principal component subspace
(Fig. 3.3a). Observations y are noisy versions of the linear mapping Wz + μ,
where τ is the noise precision, which is the same for all directions. Assuming all
distributions to be Gaussian, using MLE for determining W and μ, and taking
the limit τ → ∞, one obtains the standard PCA model [3, ch. 12].

2. Gaussian Mixture Model (GMM) (Fig. 3.3b) with K modes is represented by a
K-dimensional latent indicator variable z that follows a categorical distribution
with probabilities, the mixture weights, given by θ . Each mode has its own mean
μ and variance �. For other types of mixture, the difference is in the type of
parameters that define the K modes, i.e., μ and �.

PGMs can be easily customized to a specific application or modified if the
requirements of the application change.

3.1.2 Probabilistic Programming

Probabilistic programming is a tool for statistical modeling. It borrows lessons
from computer science and common programming languages to construct languages
that allow the denotation and evaluation of inference problems [32]. It frees the
developer from complex low-level details of probabilistic inference, allowing him or
her to concentrate on issues more specific to the problem at hand, such as the model
and the choice of inference method. Similarly to high-level programming languages



3.1 Model-Based Machine Learning 35

yW

z

N

(a) Principal component analysis.

y

z

K

KN

(b) Gaussian mixture model.

q

m m

t S

Fig. 3.3 Probabilistic graphical models of traditional machine learning algorithms. In the PCA
model (a), the principal component subspace is represented by the latent variable z, which cannot
be directly observed. We only know the y values that are noisy observations of the true underlying
generative y = Wz + μ + N(0, τ ). In the GMM (b), each of the K modes has its set of unknown
defining parameters, i.e., μ and �, and is selected by the latent indicator variable Z, whose
observation probability is θ

Parameters

Program

Output

Parameters

Parameters

Observations

p(z |X)

p(x |Z)p(z)

x

Inference

CS Probabilistic Programming Statistics

Fig. 3.4 An intuitive view of probabilistic programming and how it differs from the common
computer science paradigm. Shaded boxes indicate the information that is available. Instead of
inputting the required parameters to run the program and obtain the desired output, probabilistic
programming tries to recover the parameters from the observations generated by the program. This
process is similar to inference in statistics

that abstract away architecture-specific implementation details, it boosts system
performance and productivity. In Fig. 3.4 we draw a parallel between computer
science, statistics, and probabilistic programming.

One of the cornerstones for the deep learning success was the development of
specialized programming libraries that facilitate model specification and automatize
differentiation, relieving the user from the need of manually deriving the gradients
for optimization. This genre of software led to the widespread use of deep learning.
Nowadays, there is no need to actually understand the basics of neural networks or
even differential calculus to try and run a model. Still, it does not mean that whatever
the model may be it will be useful or meaningful. Probabilistic programming aims
to achieve the same for probabilistic ML [32]. It also allows rapid prototyping and
testing of ideas, allowing the field to flourish and pushing industry adoption.



36 3 Model-Based Machine Learning and Approximate Inference

Modern probabilistic programming languages provide a more powerful frame-
work than PGM. Computer programs accept recursion and control flow statements
that are otherwise difficult to represent [7]. There is a myriad of different languages,
each with its own set of specific features: some are explicitly restrictive, others
specialize in a certain type of inference techniques, or yet are general purpose.
A non-extensive list includes Pyro [2], Stan [6], WebPPL [8], Infer.NET [21],
PyMC3 [28], Edward [30], and BUGS (from 1995) [33].

3.2 Approximate Inference

As briefly alluded in the previous section, it is frequently unfeasible to compute
posterior distributions and marginals for many models of practical interest. In the
continuous case, there may not be a closed-form analytical solution or it may be
just too complex for numerical computation. In the discrete case, summing over all
possible configurations, though possible in principle, may not be viable if the total
number of combinations grows exponentially.

In such cases we have two options: either to successively simplify the model
until exact inference is possible or to perform approximate inference in the original
model. On this matter, John Tukey stated [31, p. 13], “Far better an approximate
answer to the right question, which is often vague, than an exact answer to the
wrong question, which can always be made precise.”

There are two broad classes of approximation schemes: deterministic and
stochastic. The latter relies on Monte-Carlo sampling to approximate expectations
over a given distribution. Given infinite computational resources, they converge to
the exact result, but, in practice, sampling methods can be computationally expen-
sive. On the other hand, deterministic methods consist of analytical approximations
to the posterior distribution and, as a consequence, cannot generate exact results.
Hence, both methods are complementary.

In this chapter, we discuss variational methods, which are deterministic. We start
by its most prominent representative, Variational Inference (VI). Later, we present
an alternative variational framework known as Expectation Propagation (EP).

3.2.1 Variational Inference

VI, Variational Bayes, and Variational Bayesian Inference are different names
for the same algorithm. Its purpose is to construct a deterministic analytical
approximation to the posterior distribution. Thus, it is suited to large data sets and to
quickly test many models [5]. As other Bayesian methods, it describes all available
information about the variables through their probability distributions. Figure 3.5
depicts how VI works: it iteratively finds the best possible distribution q∗ among
the specified family Q, given a dissimilarity criterion D.



3.2 Approximate Inference 37

q∗

p(z |X)

DKL(q∗(z)‖p(z |X))

qinit

Q

Fig. 3.5 Illustration of VI optimization process given a family Q of distributions that does not
contain the true posterior distribution p(z |X). The best possible approximation q∗ the variational
posterior q can achieve is the one that minimizes the chosen dissimilarity criterion D, i.e., the KL
divergence DKL (q(z |X)‖p(z |X))

VI borrows its name from variational calculus. Regular calculus concentrates on
maxima, minima, and derivatives of functions, while variational calculus does that
for functionals, which are basically functions of functions. Several problems can be
cast as functional optimization problems, and variational methods do exactly that
for inference: they allow us to find a function, the approximating distribution q, that
minimizes the quality measure functional D.

3.2.1.1 The Evidence Lower Bound

Let us suppose a model with joint distribution p(x, z) over the observed variables
X and the latent variables Z. As usual in a Bayesian setting, we wish to compute
its posterior distribution p(z |X), which we shall suppose intractable. We consider a
family of approximate, tractable densities P over the latent variables and try to find
the member q∗ that is the “closest” to the exact posterior in the KL divergence sense
by solving

q∗(z |X) = argmin
q∈Q

DKL (q(z |X)‖p(z |X)), (3.3)

where

DKL (q‖p) =
∫

q(ε) log
q(ε)

p(ε)
dε. (3.4)

Directly minimizing the KL divergence is not possible because we would need
the log of the true posterior, log p(Z |X), and hence the log evidence log p(x), which
we assumed intractable. Aiming to get rid of this term, we perform some algebraic
manipulations and arrive at



38 3 Model-Based Machine Learning and Approximate Inference

DKL (q(z |X)‖p(z |X))) =
∫

q(z |X) log

(
q(z |X)

p(z |X)

)
dz

= −
∫

q(z |X) log

(
p(x, z)

p(x)q(z |X)

)
dz

= −
(∫

q(z |X) log

(
p(x, z)
q(z |X)

)
dz −

∫
q(z |X) log p(x)dz

)

= −
∫

q(z |X) log

(
p(x, z)
q(z |X)

)
dz + log p(x)

∫
q(z |X)dz

= −Eq

[
log

(
p(x, z)
q(z |X)

)]
+ log p(x). (3.5)

Reorganizing the last equation, we obtain

log p(x) = Eq

[
log

(
p(x, z)
q(z |X)

)]
+ DKL(q(z |X)‖p(z |X)). (3.6)

Knowing that DKL(q‖p) � 0, it follows that the first term of the right-hand side
of Eq. (3.6) must be a lower bound on log p(x). For this reason, it is named the
Evidence Lower Bound (ELBO). This remark leads to a very important result: since
the model evidence log p(x) is fixed, once we know x, by maximizing the ELBO
we are equivalently minimizing DKL(q‖p), our original optimization problem. The
equivalence is very convenient because the right-hand side of Eq. (3.6) does not
contain the intractable log evidence. The term log p(x, z) decomposes into the log-
likelihood log p(x |Z) and the log-prior log p(z), which we are able to handle.

Alternatively, we could have obtained the same bound by applying Jensen’s
inequality for concave functions E [f (x)] � f (E [x]) as follows:

log p(x) = log
∫

p(x, z)dz

= log
∫

p(x, z)
p(z |X)

q(z |X)
dz

= logEq

[
p(x, z)
q(z |X)

]

� Eq

[
log

(
p(x, z)
q(z |X)

)]
. (3.7)

By comparison with Eq. (3.6), the difference between the left- and right-hand
sides of Eq. (3.7) is exactly the KL divergence term, as shown in Fig. 3.6. The
visual depiction clearly illustrates the equivalence between the minimization of
DKL (q(z |X)‖p(z |X))) and the maximization of the ELBO(q).



3.2 Approximate Inference 39

log p(X )
ELBO(q)

DKL(q‖p)

Fig. 3.6 The decomposition of the marginal log-probability p(x) into the ELBO and the
DKL(q‖p) terms

We can rearrange the ELBO into the more interpretable form:

ELBO(q) = Eq

[
log p(x, z)

] − Eq

[
log q(z |X)

]

= Eq

[
log p(x |Z) + log p(z)

] − Eq

[
log q(z |X)

]

= Eq

[
log p(x |Z)

] − DKL (q(z |X)‖p(z)). (3.8)

The first term is the expected likelihood under the distribution q(z |X) and the
second is the (negative) divergence between the q(z |X) and the prior p(z).
When maximizing the ELBO, the former drives the approximation toward better
explaining the data, while the latter acts as a regularizer pushing the approximation
toward the prior p(z).

The ELBO is also closely related to the variational free energy F̃ of statistical
physics, namely

ELBO(q) = Eq

[
log p(x, z)

] − Eq

[
log q(z |X)

]

= Eq

[
log p(x, z)

] + H[q] (3.9)

F̃ (q) = −Eq

[
log p(x, z)

] − H[q]
= −ELBO(q), (3.10)

where −Eq

[
log p(x, z)

]
is the average of the energy function under the distribution

q(z |X) and H[q] is the entropy of q(z |X) [16, ch. 33]. Indeed, the use of the vari-
ational free energy framework in statistical learning leads to the VI methodology.

The optimal solution for q in Eq. (3.9) w.r.t. the term Eq

[
log p(x, z)

]
cor-

responds to the MAP estimate of p, which maximizes the log joint probability
log p(x, z). However, the entropy term favors disperse distributions. The solution
is then a compromise between these two terms.



40 3 Model-Based Machine Learning and Approximate Inference

3.2.1.2 Information Theoretic View on the ELBO

In its very essence, the rate-distortion theory establishes the trade-off between
data compression and the entailed distortion [1]. The rate represents the average
number of bits needed per sample to transmit the data. Ideally, one wants to
maximally compress the data, achieving compact representations with low rates,
while preserving all relevant information, such that the reconstructed signal has no
distortion whatsoever. However, these are opposite goals.

Clustering algorithms can be naturally seen through the rate-distortion perspec-
tive. In K-means [14], the rate is related to the number of centroids and the distortion
measure is the sum of the squared error between the original data points and the
centroid of their attributed cluster.

Rate-distortion theory asserts that for a given maximum level of distortion D,
there exists a minimum achievable rate R. Thus, for the input random variable X

and the compressed output Z, we have

R(D) = argmin
q(z |X)

I (X;Z) (3.11)

s.t. Ep(x)
[
Eq [d(Z,X)]

]
< D,

where d(·, ·) is the distortion measure (e.g., sum of squared errors in K-means),
I (X;Z) the mutual information, and q(z|X) the channel we wish to optimize.

Introduced in Sect. 2.3.4, the mutual information I (X;Z) between the random
variables X and Z quantifies their dependency, that is, how much can we know
about one by observing the other. Intuitively, Eq. (3.11) seeks to remove as much
information as possible from X, making it independent of Z.

To make the optimization problem manageable, we upper bound I (X;Z) as
follows:

I (X;Z) = DKL (q(z, x)‖q(z)p(x))

= Ep(x) [DKL (q(z |X)‖m(z))] − DKL (q(z)‖p(z)) (3.12)

≤ Ep(x) [DKL (q(z |X)‖m(z))], (3.13)

where q(z) is the induced marginal q(z) = ∫
q(z, x)p(x)dx, m(z) is an approxima-

tion to q(z), and the inequality stems from the nonnegativity of the KL divergence.
For latent variable models, the implicitly defined distortion function is d(X,Z) =

− log p(x |Z). This distortion penalizes latent variables Z unable to faithfully
reconstruct the original sample x. If we further set the marginal approximation m(z)
as the prior p(z) over the compressed random variable Z, the optimization problem
becomes

min
q(z |X)

Ep(x) [DKL (q(z |X)‖p(z))] (3.14)



3.2 Approximate Inference 41

s.t. Ep(x)
[
Eq

[− log p(x |Z)
]]

< D.

Rewriting Eq. (3.14) as a maximization problem and stating it in terms of its
Lagrangian lead to

max
q(z |X)

Ep(x)
[
Eq

[
log p(x |Z)

] − βDKL (q(z |X)‖p(z))
]
, (3.15)

where β is the Lagrange multiplier.
Solving Eq. (3.15) is equivalent to maximizing the average ELBO in Eq. (3.8)

for the data set D = {X}n with empirical distribution p(d) and β = 1. Thus, we
can interpret Variational Bayes as optimizing an upper bound on the distortion-rate
function. While the Eq

[
log p(x |Z)

]
term measures the fidelity (negative distortion)

of the compressed representation, the KL term quantifies the extra number of bits
needed to represent X with Z. The connection allows us to leverage insights from
the well-established field of information theory onto variational Bayes. For example,
there is an upper bound to the ELBO, and its value is the negative of the entropy of
the true data distribution, −H[p(x)].

3.2.1.3 The Mean-Field Approximation

No matter the kind of inference algorithm, we usually impose restrictions to
the family of approximating distributions Q so that we can solve the problem.
The family Q should be as flexible as possible to allow us to achieve better
approximations of the true posterior, the only restriction being its tractability. The
richer the family of distributions, the closer q∗(z |X) will be to p(z |X). In cases
where Q does include the true posterior and the latter is tractable, the inference
methods generally converge to the exact distribution.

There are two main ways to constrain the family of distributions of a model:

1. by specifying a parametric form for the distribution q(z |X;Ψ ) with the set Ψ of
variational parameters;

2. by assuming that q factorizes over partitions ZSi
of Z such that

q(z |X) =
M∏

i=1

qi(zSi
|X). (3.16)

The factorized form of Eq. (3.16) where each partition is a single dimension is
called Mean-Field VI (MFVI). The mean-field approximation is flexible enough to
capture any marginal density of the latent variables but is incapable of modeling cor-
relation between them due to the independence assumption, as illustrated in Fig. 3.7.
This assumption is a double-edged sword, helping with scalable optimization while
limiting expressibility [5]. Hence the need for other families of approximations



42 3 Model-Based Machine Learning and Approximate Inference

z1 z2

z3

(a) True posterior.

z1 z2

z3

(b) structured approximation.

z1 z2

z3

(c) fully-factorized
approximation.

Fig. 3.7 Graphical representations as undirected graphs of the different levels of approximation
to the posterior distribution. In (a), the nodes in the true posterior are all dependent. In (b), Z1 and
Z2 are conditionally independent, and the approximation still preserves their dependency on Z3.
In (c), all the nodes are marginally independent. Each approximation renders the distribution less
expressive

such as structured mean-field [10], richer covariance models [15, 29], normalizing
flow [26], etc.

3.2.1.4 Coordinate Ascent Variational Inference

Coordinate Ascent Variational Inference (CAVI) is an algorithm for MFVI. To
find the optimal factors q∗

i (zSi
|X) for Eq. (3.16), we could solve the Lagrangian

composed by the ELBO and the constraints that the factors q∗
i must sum up to 1.

However, we do not resort to the calculus of variations. Instead, we take a more
laborious route by substituting Eq. (3.16) back into Eq. (3.9) and working out the
math (available in Appendix A.2) to get

log q∗
j (zSj

|X) = E−j

[
log p(x, z)

] + const (3.17)

q∗
j (zSj

|X) ∝ exp{E−j

[
log p(x, z)

]}, (3.18)

where E−j [·] indicates expectation over all sets Si of Z, except Sj .
The mutual dependence between the equations for the optimal factors calls for

an iterative approach. At each step, we replace each factor by its revised estimate
while keeping the others fixed (3.18). CAVI raises the ELBO to a local optimum. An
alternative approach to optimization is through gradient-oriented updates, in which
the algorithm computes and follows the gradient of the objective w.r.t. the factors at
each iteration.

Although we considered all parameters to be within the latent space Z, it is
also possible to have parameters Θ on which we perform point estimation, i.e.,
p(z |X;Θ). In this case, we alternate between two distinct steps:

1. approximating the posterior at each iteration by computing the expectation over
all ZSi

as in Eq. (3.18);



3.2 Approximate Inference 43

2. performing the maximization of the ELBO w.r.t. Θ under the refined distribution
qnew(z |X) = ∏

i q∗
i (zSi

|X).

This is the Variational EM algorithm. VI can be understood as a fully Bayesian
extension of Variational EM, in which instead of computing a point mass for the
posterior over the parameters Θ (MAP estimation, Sect. 2.6.3), it computes the
entire distribution over Θ and Z.

3.2.1.5 Stochastic Variational Inference

Stochastic Variational Inference (SVI) optimizes the ELBO by taking noisy esti-
mates of the gradient g [11], hence the name. Stochastic optimization is ubiquitous
on modern ML since it is much faster than assessing a massive data set, which is
commonplace nowadays.

The major requirements for the approximation to be valid are:

1. The gradient estimator ĝ should be unbiased E
[
ĝ
] = E [g];

2. The step size sequence {αi | i ∈ N} (learning rate) that nudges the parameters
toward the optimal should be annealed so that

∞∑

i=0

αi = ∞ and
∞∑

i=0

α2
i < ∞. (3.19)

Intuitively, the first condition on the step size relates to the exploration capacity
so the algorithm may find good solutions no matter where it is initialized. The
second guarantees that its energy is bounded so that it can converge to the solution.

Instead of computing the expectation step in Eq. (3.18) for all N data points
(at every iteration), we do it for a uniformly sampled (with replacement) subset
of desired size n. From these new variational parameters, we compute the maxi-
mization step (or the expectation of the global variational parameters) as though we
observed the data points N/n times and update the estimate as the weighted average
of the previous estimate and the subset optimal, according to Eq. (3.19).

Theoretically, this process should go on forever with increasingly smaller step
sizes according to the constraints stated above. In practice, however, it ends when it
reaches a stopping criteria, which should indicate that the ELBO has converged.

SVI is a stochastic optimization algorithm originally developed for fully fac-
torized approximations (MFVI) [11] and later extended to support models with
arbitrary dependencies between global and local variables [10].



44 3 Model-Based Machine Learning and Approximate Inference

Fig. 3.8 Graphical
representation of a linear
regression model with N

observations and one weight.
The variable γ is the
observation noise precision

x y

w

N

g

3.2.1.6 VI Issues

Despite the widespread adoption of the VI framework, it still has some major issues.
As presented here, it remains restricted to the conditionally conjugate exponential

family for which we can compute the analytical form of the ELBO. Outside this
family, we end up with distributions for which we cannot write down formulas to
optimize. Section 3.2.4 briefly presents methods that address this problem.

Even though minimizing the DKL (q(z |X)‖p(z |X)) and maximizing the ELBO
are equivalent optimization problems, the KL is bounded below by zero, while the
ELBO has no bound whatsoever. Therefore, observing how close the KL is to zero
informs us about the quality of the approximation and how close it is to the true
posterior. On the other hand, the ELBO has no absolute scale to compare with so we
have no clue how far it is from the true distribution. Still, it asymptotically converges
so we can use the value for model selection.

Minimization of the KL divergence combined with the independence assumption
of the mean-field approximation causes the approximating distribution to match a
single mode of the target distribution. Additionally, this combo underestimates the
marginal variances of the target density [5].

3.2.1.7 VI Example

Consider a one-dimensional linear regression problem where the weight has a
Gaussian prior distribution with mean μ and precision τ . We wish to infer the
marginal posterior of the observation noise precision γ , whose prior follows a
Gamma distribution. The model is given by

� ∼ Ga(γ ;α0, β0) (3.20)

W ∼ N(w | μ, τ−1) (3.21)

Yi ∼ Wxi + N(0, γ −1) , 1 ≤ i ≤ N. (3.22)

Observing the graphical model in Fig. 3.8 and its dependency structure, we can
write the joint distribution as

p(w, γ, | y1, · · · , yNX) = p(y1, · · · , yN | W, γ,X)p(γ )p(w). (3.23)



3.2 Approximate Inference 45

With the objective of using the CAVI algorithm introduced in Sect. 3.2.1.4,
we approximate the posterior p(γ,w|Y,X) over the global variables w and γ by
q(γ,w) = q(γ )q(w). The distribution of real interest is the marginal q(γ ).

From Eq. (3.23) and the assumption of independent and identically distributed
(iid) observation samples xi , the true posterior distribution is

p(γ,w |Y,X) = p(γ )p(w)

p(y1, · · · , yN |X)

N∏

i=1

p(yi | W, γ, xi), (3.24)

while the marginal on γ is

p(γ |Y,X) =
∫

p(γ | W,Y,X)dw. (3.25)

To compute the CAVI’s update formula for q(w), we substitute Eq. (3.23) into
Eq. (3.18) and label all terms not involving w as constants, what leads to

log q∗(w) = Eγ

[
log p(w, γ, y |X)

] + const

= Eγ

[
log p(y1, · · · , yN | W, γ,X)

] + Eγ

[
log p(w)

] + Eγ

[
log p(γ )

] + const

= Eγ

[
logN(y1, · · · , yN |WT X, γ −1)

]
+ Eγ

[
logN(w | μ, τ−1)

]
+ const

= Eγ

[
1

2
log γ − 1

2
log 2π − γ

2
(y − wx)T (y − wx)

]

+ Eγ

[
1

2
log τ − 1

2
log 2π − τ

2
(w − μ)2

]
+ const

= Eγ

[
−γ

2
(y − wx)T (y − wx)

]
− τ

2
(w − μ)2 + const

= −1

2

{
Eγ [γ ]

[
(y − wx)T (y − wx)

]
+ τ(w − μ)2

}
+ const

= −1

2

{
Eγ [γ ]

(
w2xT x − 2wxT y

)
+ τw2 − 2τwμ

}
+ const

= −1

2

[
(xT xEγ [γ ] + τ)w2 − 2(xT yEγ [γ ] + τμ)w

]
+ const

= −xT xEγ [γ ] + τ

2

[
w2 − 2

xT yEγ [γ ] + τμ

xT xEγ [γ ] + τ
w

]
+ const

= −xT xEγ [γ ] + τ

2

(
w − xT yEγ [γ ] + τμ

xT xEγ [γ ] + τ

)2

+ const, (3.26)



46 3 Model-Based Machine Learning and Approximate Inference

where we considered y = [y1, · · · , yN ]t and x = [x1, · · · , xN ]t . Note that Eq.
(3.26) is the log of the Gaussian distribution’s kernel, so we write

q∗(w) = N
(

w

∣∣∣∣∣
xT yEγ [γ ] + τμ

xT xEγ [γ ] + τ
,
(
xT xEγ [γ ] + τ

)−1
)

. (3.27)

Applying the same procedure to q(γ ), we obtain

log q∗(γ ) = Ew

[
log p(y | w, γ, x)

] + Ew

[
log p(γ )

] + Ew

[
log p(w)

] + const

= Ew

[
logN(y |wT x, γ −1)

]
+ Ew [Ga(γ ; α0, β0)] + const

= 1

2
log γ − γ

2
Ew

[
(y − wx)T (y − wx)

]

+ Ew

[
α0 log β0 − log �(α0) + (α0 − 1) log γ − β0γ

] + const

= 1

2
log γ − γ

2
Ew

[
(y − wx)T (y − wx)

]
+ (α0 − 1) log γ − β0γ + const

=
(

1

2
+ α0 − 1

)
log γ −

(
1

2
Ew

[
(y − wx)T (y − wx)

]
+ β0

)
γ + const.

(3.28)

Note that Eq. (3.28) is the log of the Gamma distribution’s kernel, so we write

q∗(γ ) = Ga

(
γ

∣∣∣∣α0 + 1

2
,

1

2
Ew

[
(y − wx)T (y − wx)

]
+ β0

)
. (3.29)

The CAVI algorithm consists in initializing the parameters of q(w) and q(γ ),
e.g., with the values of their priors, and interleaving the update formulas (3.27) and
(3.29) until convergence.

3.2.2 Assumed Density Filtering

Assumed Density Filtering (ADF) has been independently proposed in the statistics,
artificial intelligence, and control domains [17]. Its central idea relies on the model’s
joint probability p(x, z) decomposing into a product of independent factors fi(z) as

p(x, z) =
N∏

i=1

fi(z), (3.30)



3.2 Approximate Inference 47

p(z |X) = 1

p(x)

N∏

i=1

fi(z), (3.31)

where the dependency of the factors fi on x is made implicit.
The assumption of factorizable distributions is still pretty general. For example,

we frequently assume that the observed data is iid given the parameters, which
induces factorization over the likelihood term. When considering a graphical model,
the distribution can be factored according to its structure, where the factors represent
sets of nodes.

Separately approximating each factor and only combining them all at the end
to obtain q(N)(z) frequently lead to poor global approximation. Therefore, the
ADF sequences through each factor, including one at a time into the current
approximation q(i−1)(z), according to

q
(i)
tilt (z) ∝ q(i−1)(z)fi(z). (3.32)

However, q
(i)
tilt (z) gets “slightly” warped and cannot be represented anymore by

the initially assumed family of densities Q from which the prior belong. We thus
have to project it back to a distribution in Q. The projection consists in minimizing
the KL divergence between the two distributions such that

q(i)(z) = argmin
q∈Q

DKL

(
q

(i)
tilt (z)‖q(z)

)

= argmin
q∈Q

DKL

(
1

Ki

q(i−1)(z)fi(z)‖q(z)
)

, (3.33)

where Ki is the normalizing constant.
At the ith iteration, q(i)(z) is the approximation of the product between the true

factors fk(z), 1 � k � i.

3.2.2.1 Minimizing the Forward KL Divergence

Differently from Sect. 3.2.1, we now employ the forward KL divergence DKL(p‖q)

for measuring the quality of the approximation. The change in the ordering of the
arguments is the reason why ADF (and EP in Sect. 3.2.3) behaves so differently
from ADF. KL is a divergence and not a distance, so the symmetry property does
not hold and exchanging the arguments leads to a distinct functional with distinct
properties.

The reverse KL divergence DKL(q‖p) used in VI severely penalizes the approx-
imating distribution q for placing mass in regions where p has low probability.
Rewriting Eq. (3.4) as



48 3 Model-Based Machine Learning and Approximate Inference

p argminq DKL(p q) argminq DKL(q p)

Fig. 3.9 Comparison of the two alternatives forms of the KL divergence in different scenarios.
The blue solid curve is a mixture of two Gaussians, while in the leftmost graph their mean intersects
resulting in a single mode, for the two other cases the distribution becomes bi-modal. The green
dashed curve corresponds to the distribution q that best approximates p in the forward KL sense,
whereas the red dotted curve is the best approximation according to the reverse KL. As the modes
of p get farther apart, DKL(q‖p) seeks the most probable mode while DKL(p‖q) strives for the
global average

DKL(q‖p) = Eq

[
log q(x)

] − Eq

[
log p(x)

]
, (3.34)

we can note that the term log p(x) rapidly tends to −∞ for such regions. Conversely,
by exchanging p and q in Eqs. (3.4) and (3.34) we get

DKL(p‖q) = Ep

[
log p(x)

] − Ep

[
log q(x)

]
. (3.35)

The forward KL has the opposite behavior, that is, it favors spreading the mass
of q over the support of p. Even low probability regions of p must have mass
attributed to in q to avoid obtaining samples from p(x) such that log q(x) tends
to −∞. Figure 3.9 neatly illustrates this property for both KL forms.

3.2.2.2 Moment Matching in the Exponential Family

In order to be efficiently calculated, the posterior distribution must be simple to
handle. So we further constrain qi to belong to the exponential family:

qi(z) = h(z)g(η) exp (ηT u(z)), (3.36)

where ηT are the natural parameters of the family, u(z) the sufficient statistics, g(η)

the partition function, and h(z) > 0 the carrier function. See Sect. 2.2 for further
details.

Then, the forward KL divergence reduces to



3.2 Approximate Inference 49

DKL(p‖q) =
∫

p(z) log p(z)dz −
∫

p(z) log q(z)dz

=
∫

p(z) log p(z)dz −
∫

p(z) log
(
h(z)g(η) exp (ηT u(z))dz

)

=
∫

p(z) log p(z)dz −
(
Ep [h(z)] + log g(η) + ηT

Ep [u(z)]
)

.

(3.37)

We are interested in finding the natural parameters η that specify the distribution
that minimizes the KL among the assumed member of the exponential family. Thus,
we set

∇ηDKL(p‖q) = 0

�⇒ ∇η

{∫
p(z) log p(z)dz −

(
Ep [h(z)] + log g(η) + ηT

Ep [u(z)]
)}

= 0

�⇒ −∇η log g(η) − Ep [u(z)] = 0

�⇒ ∇η log g(η) = −Ep [u(z)]. (3.38)

From the fact that any normalized distribution must sum up to 1, we arrive at the
following general result for the exponential family:

∇η1 = ∇η

(∫
h(z)g(η) exp (ηT u(z))dz

)

�⇒ 0 =
∫

h(z) exp (ηT u(z))dz∇ηg(η) +
∫

u(z)h(z)g(η) exp (ηT u(z))dz

�⇒ 0 = ∇ηg(η)
1

g(η)

∫
g(η)h(z) exp (ηT u(z))dz +

∫
u(z)qi(z)dz

�⇒ 0 = 1

g(η)
∇ηg(η)

∫
qi(z)dz + Eq [u(z)]

�⇒ 0 = 1

g(η)
∇ηg(η) + Eq [u(z)]

�⇒ 0 = ∇η log g(η) + Eq [u(z)]. (3.39)

The relation (3.39) means that we can compute moments by taking the derivative
w.r.t. η of the negative log-partition function.

Substituting Eq. (3.38) in Eq. (3.39), we arrive at

Eq [u(z)] = Ep [u(z)], (3.40)



50 3 Model-Based Machine Learning and Approximate Inference

which means that when approximating an arbitrary distribution with a member
of the exponential family, we should match their expectations over the sufficient
statistics u(z), e.g., the first and second moments, z and z2, for the univariate
Gaussian (see Sect. 2.2). Therefore, it all comes down to matching the moments of
the new approximation with the moments of the old one tilted by the newly included
true factor at each iteration. For computing those moments, Eq. (3.39) is extensively
explored.

For example, if we consider a Gaussian posterior approximation N(z;μ,�), we
should select μi , �i , and Ki for the distribution q(i) such that

μi = Eq(i−1)fi
[z], (3.41)

�i = Covq(i−1)fi
[z], (3.42)

∫
q(i)(z)dz = 1

Ki

∫
q(i−1)(z)fi(z)dz = 1, (3.43)

where q(i−1)fi is the unnormalized version of the tilted distribution q
(i)
tilt defined in

Eq. (3.32).

3.2.2.3 ADF Issues

Even though the ADF’s sequential approach is better than independently approxi-
mating each factor, it depends on the ordering of the factors. If the first factors lead
to a bad approximation, the ADF produces a poor final estimate of the posterior.
We could mitigate this issue at the expense of losing the online characteristic of the
method by revising the initial approximations later on, effectively cycling through
all factors.

Similarly to ADF, the variance of the approximating distribution is affected by
both the independence assumption needed for the factorization of the distribution
and the mass spreading property of the forward KL. However, differently from
ADF, the ADF overestimates the marginal variance, giving larger uncertainty
estimations and variability than the true posterior would. One should take the
variance overestimation property into account when choosing among the different
variational methods to solve a given problem.

3.2.2.4 ADF Example

We return to the linear regression problem of Sect. 3.2.1.7, whose model definition
was given in Eqs. (3.20)–(3.22) and the posterior distribution provided in Eq. (3.23).
For convenience, we rewrite them here:

� ∼ Ga(γ ;α0, β0) (3.44)



3.2 Approximate Inference 51

W ∼ N(w | μ, τ−1) (3.45)

Yi = Wxi + N(0, γ −1) , 1 ≤ i ≤ N, (3.46)

p(γ,w |Y,X) = p(γ )p(w)

p(y |X)

N∏

i=1

p(yi | w, γ, xi). (3.47)

Here we use the ADF algorithm to approximate the marginal posterior
p(γ |Y,X) given by

p(γ |Y,X) =
∫

p(γ,w |Y,X)dw

= p(γ )

p(y |X)

N∏

i=1

∫
p(yi | w, γ, xi)p(w)dw

= p(γ )

p(y |X)

N∏

i=1

p(yi | γ, xi), (3.48)

where the likelihood terms p(yi | γ ; xi) of the individual observations Yi are

p(yi | γ ; xi) =
∫

p(yi | w, γ, xi)p(w)dw

=
∫

N(yi | wxi, γ
−1)N(w;μ, τ−1)dw

= N(yi; xiμ, τ−1x2
i + γ −1). (3.49)

We have N likelihood factors to include. We choose γ to have a Gamma prior,
what constrains the approximate posterior q(γ ) to follow a Gamma distribution. So,
at start the posterior is

q(γ ) = Ga(γ | α, β), with α = α0, β = β0. (3.50)

Next, we include the likelihood factors of Eq. (3.49) into q(γ ). The resulting
shifted distribution s(γ ) after the inclusion of one such factor p(yi | γ ; xi) is

s(γ ) ∝ Ga(γ | α, β)N(yi; xiμ, τ−1x2
i + γ −1)

∝
[
γ α−1 exp {−βγ }

] [(
τ−1x2

i + γ −1
)−1/2

exp

{
−1

2

(yi − xiμ)2

τ−1x2
i + γ −1

}]
.

(3.51)



52 3 Model-Based Machine Learning and Approximate Inference

Notice that we cannot write s(γ ) under the functional form of the Gamma
distribution that we established for the approximation q(γ ). We must project s(γ )

back to the assumed family. Thus, we compute the update equations responsible for
matching the moments. The sufficient statistics for γ under the shifted distribution
has no closed form, so we only match the first and second moments.

Before proceeding, we compute the normalizing constant K , which we need for
the moments:

K =
∫

Ga(γ | α, β)p(yi | γ ; xi)dγ

=
∫

Ga(γ | α, β)p(yi | zi, γ ; xi)p(zi | w; xi)dzidγ

=
∫

Ga(γ | α, β)N(yi | zi, γ
−1)N(zi | xiμ, x2τ−1)dzidγ

=
∫

T2α(yi | zi, β/α)N(zi | xiμ, x2τ−1)dzi

≈
∫

N(yi | xiμ, x2
i + β/(α − 1))N(zi | xiμ, x2τ−1)dzi

= N(yi | xiμ, x2
i τ−1 + β/(α − 1)), (3.52)

where we have used the fact that the marginalization over the Gamma-distributed
prior precision γ of the Gaussian-distributed observations Yi is the student’s t-
distribution T , as shown in Eq. (A.34). We then approximated the distribution T
with a Gaussian with the same mean and variance. Notice that the normalizing
constant K depends on α and β, a fact that we make explicit by writing K as Kα,β .

Labeling the Gaussian term in Eq. (3.51) as g(γ ), we write the first moment of
γ under the shifted distribution s as

Es [γ ] =
∫

1

Kα,β

γ Ga(γ | α, β)g(γ )dwdγ

= 1

Kα,β

∫
γ

βα

�(α)
γ α−1e−βγ g(γ )dwdγ

= 1

Kα,β

∫
�(α + 1)

β�(α)

βα+1

�(α + 1)
γ (α+1)−1e−βγ g(γ )dwdγ

= 1

Kα,β

α

β

∫
Ga(γ | α + 1, β)g(γ )dwdγ

= Kα+1,β

Kα,β

α

β
. (3.53)



3.2 Approximate Inference 53

The second moment follows a similar procedure

Es

[
γ 2

]
=

∫
K−1γ 2Ga(γ | α, β)g(γ )dwdγ

=
∫

λ2

Kα,β

�(α + 2)

β2�(α)

βα+2

�(α + 2)
γ (α+2)−1e−βγ dγ

= 1

Kα,β

α(α + 1)

β2

∫
Ga(γ | α + 1, β)g(γ )dwdγ

= Kα+2,β

Kα,β

α(α + 1)

β2 . (3.54)

Recalling the mean and variance formulas for the Gamma distribution, we write

Es [γ ] = αnew

βnew

= Kα+1,β

Kα,β

α

β
,

V ars(γ ) = αnew

β2
new

= Kα+2,β

Kα,β

α(α + 1)

β2 . (3.55)

Solving the system of equations for αnew and βnew, we get

αnew =
[
Kα,βKα+2,β

Kα+1,β

α + 1

α
− 1

]−1

, (3.56)

βnew =
[
Kα+2,β

Kα+1,β

α + 1

β
− Kα+1,β

Kα,β

α

β

]−1

. (3.57)

In summary, the algorithm starts from the prior in Eq. (3.50), then it applies Eqs.
(3.56) and (3.57) once for each likelihood factor, where the partition functions for
K follow Eq. (3.52).

An established example is given in [17], where the author demonstrates the use
of ADF for recovering data from a sea of clutter, projecting a Gaussian mixture
posterior onto a single Gaussian distribution.

3.2.3 Expectation Propagation

As mentioned in the previous section, one of the ADF’s weaknesses is its sensitivity
to the order in which factors are considered. In a batch setting, where all factors are
available, it is unreasonable to see each only once and not refine the approximation
repeatedly. However, directly cycling through a factor n times would lead to
including such factor into the approximating distribution n times instead of one. This
would artificially accumulate evidence, making the likelihood concentrate around a



54 3 Model-Based Machine Learning and Approximate Inference

−20 −15 −10 −5 0 5 10 15 20
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p(
x
)

Fig. 3.10 Continuous inclusion of the same original factor, in lightest shade, causes the
distribution to concentrate around its mode, progressively collapsing to that single point and
eventually becoming a Dirac distribution

single point, until collapsing the posterior into that point, as shown in Fig. 3.10,
which is highly undesired.

3.2.3.1 Recasting ADF as a Product of Approximate Factors

The EP reinterprets the ADF as approximating each new true factor fi with f̃i such
that

q(i)(z) ∝ q(i−1)(z)f̃i . (3.58)

The approximate factor f̃i can be easily obtained at the end of the ith ADF iteration
by

f̃i (z) ∝ q(i)(z)
q(i−1)(z)

. (3.59)

This shift in view means that q can be seen as a product of the approximate
factors f̃i , such that

q(z) ∝ q(N)(z)
q(N−1)(z)

. . .
q(1)(z)
q(0)(z)

=
N∏

i=1

f̃i (z), (3.60)

where q(0)(z) = p0(z) is the prior distribution.
In ADF, initial factors have little context: few to none other factors have been

seen; so they are prone to poor approximation. On the other hand, later factors have



3.2 Approximate Inference 55

large context and potential to be better approximated. The EP handles this issue by
observing the entire context when approximating fi with f̃i . Since it keeps track of
each fi and the corresponding f̃i at every iteration, it is possible to compute

qnew(z) = argmin
q∈Q

DKL

(
1

Ki

fi(z)
q(z)

f̃i(z)
‖q(z)

)
, (3.61)

where Ki is the normalizing constant. Note that now, at any given iteration j , q no
longer is the product of factors 1 < k < j , but of all N factors. That is why we have
dropped the superscript in q.

Since we always remove f̃i prior to including fi , we will not repeatedly
accumulate the fi’s contribution if we repeat this step multiple times. After
computing qnew according to Eq. (3.61), we revise f̃i in a similar fashion to Eq.
(3.59) so that the factor f̃i is responsible for the change from q to qnew. However,
because q is the product of all factors in EP, the update in f̃i follows

f̃i (z) = Ki

qnew(z)
q−i (z)

, (3.62)

where q−i (z) is the unnormalized cavity distribution, computed by removing the
factor fi from q, like

q−i (z) = qi(z)/f̃i(z). (3.63)

Note that, from the definitions above, Eq. (3.62) leads to

qnew(z)
q−i (z)

∝
∏

j f̃j (z)
∏

j �=i f̃j (z)
= f̃i (z). (3.64)

Broadly speaking, each iteration consists of refining the approximation of f̃i

by substituting its contribution by that of true factor fi and finding the qnew

that minimizes the KL divergence. Just as seen in Sect. 3.2.2.2 for ADF, KL
minimization is done by matching the moments of the new distribution qnew(z)
with those of the tilted distribution qtilt (z) = K−1

i fi(z)q−i (z). Even though the
EP approximates one factor at a time and the resulting q is a valid probability
distribution, f̃i alone and the partial products not necessarily represent a valid
distribution.

The EP algorithm is summarized in Algorithm 1. Figure 3.11 succinctly shows
the difference between EP and ADF for a single iteration: while the EP takes in all
approximate factors f̃j except for j = i, that is going to be update, the ADF takes
in only previously seen factors f̃j , which are input through q(i−1) ∝ ∏i−1

j=1 f̃j .



56 3 Model-Based Machine Learning and Approximate Inference

UPDATEfi
˜fi

{ ˜fj : j < i} { ˜fj : j �= i}
ADF EP

Fig. 3.11 Diagram of ADF and EP updates for a single iteration. The ADF limits itself by looking
at the previously included factors, which got approximated from fj to f̃j in the projection step
of qj . The EP considers all factors simultaneously, except for the one to be updated, what avoids
factor multiplicity in the approximation q

Algorithm 1: EP

1: initializing f̃i = 1, ∀i by setting the parameters accordingly
2: while not converged do
3: choosing a factor f̃i to update
4: computing the unnormalized cavity distribution defined in (3.63)
5: evaluating the normalizing constant Ki in (3.61)
6: performing the projection of (3.61)
7: updating the factor f̃i by (3.62)
8: end while

3.2.3.2 Operations in the Exponential Family

Constraining the factors to the functional form of the exponential family renders
inclusion and exclusion of factors simple and computationally efficient. It suffices
to add and subtract the natural parameters η, like

qi(z)/f̃i(z) = h(z)g(η) exp (ηT u(z))
h(z)g(η) exp (η′T u(z))

= exp ((η′ − η)T u(z)). (3.65)

3.2.3.3 Power EP

Not every distribution can be factored into simple terms. Hence, integrating such
factors to compute the normalizing terms is not a simple task. Consequently, EP
fails to be computationally efficient. Power EP [18] addresses this shortcoming by
cleverly raising the factors fi to a power of 1/ni , ni ∈ R, canceling out complicated
exponents present in the true factors, and making them easier to compute.

The algorithm is essentially the same, except that we perform it on “fractional
factors,” that is,

f ′
i (z) = fi(z)1/ni , (3.66)

f̃ ′
i (z) = f̃i (z)1/ni . (3.67)



3.2 Approximate Inference 57

α = −∞ α = −1 α = 0 α = 1 α = ∞

Fig. 3.12 The α-divergence family. For α → −1, it becomes the reverse KL, DKL(q‖p), while
for α → 1 it is the forward KL, DKL(p‖q)

When ni � 1 ∈ N, we can think of Power EP as an EP that splits the factor fi

into ni distinct copies. However, instead of performing one EP iteration for each fi ,
following Eqs. (3.61) and (3.62), Power EP computes the update for a single copy
and assumes the result to be the same for the other ni − 1 copies.

In the EP, replacing the minimized objective DKL (p‖q) by

Dα(p‖q) = 4

1 − α2

(
1 −

∫
p(x)(1+α)/2q(x)(1−α)/2dx

)
, (3.68)

with a continuous parameter α, results in an algorithm with the same fixed points as
the Power EP. Therefore, we can think of Power EP as minimizing the α-divergence
Dα , with α corresponding to a particular choice of 1/ni , namely α = 2(1/ni) − 1.

The forward and reverse KL divergences are members of the α-family defined
by Eq. (3.68). Specifically, α → 1 gives the forward KL and α → −1 the reverse
KL, which can be verified by remembering that p(x)γ = exp{γ log p(x)} and using
L’Hôpital rule for evaluating indeterminate limits. As we can see in Fig. 3.12, values
α � −1 induce a zero-forcing behavior, setting q(x) = 0 for any values of x for
which p(x) = 0. Conversely, α � 1 is zero avoiding, imposing q(x) � 0 for regions
where p(x) � 0, and typically q stretches to cover all p.

One way to understand many message-passing algorithms, including those we
discussed, is as the same variational framework with different energy functions
corresponding to distinct values of α in Eq. (3.68) [19].

3.2.3.4 EP Issues

Naturally, the enhancement provisioned by EP has costs. Besides being unsuitable
to online learning, it has to keep all true and approximating factors stored in
memory. Therefore, memory consumption grows linearly with the number of factors
of the distribution. This may be inadequate if data sets are too large, because it
would be impractical or even impossible to maintain all factors in memory during
optimization.

While each step in VI is guaranteed to decrease the ELBO, the described EP
algorithm has no convergence guarantees and iterations may indeed increase the



58 3 Model-Based Machine Learning and Approximate Inference

associated energy function instead of decreasing it [3, p. 510]. Nonetheless, stable
EP fixed points are local minima of the optimization problem [17].

In multi-modal target distributions, the EP can lead to poor approximations
because the forward KL divergence causes q to average over all modes [3, p. 510].

3.2.3.5 EP Example

Consider again the linear regression problem of Sects. 3.2.2.4 and 3.2.1.7. The main
difference from Sect. 3.2.2.4 is that now we need to track the approximate factors
f̃ .

We initialize the approximate posterior with parameters α = 1 and β = 0 so
that we have a uniform distribution. The inclusion of the prior factor p(γ ) shifts the
distribution into

s(γ ) ∝ Ga(γ | α, β)Ga(γ | α0, β0), (3.69)

s(γ ) = Ga(γ | α + α0 − 1, β + β0). (3.70)

We see that s(γ ) is a member of the assumed family and there is no approxima-
tion in this step. Since the inclusion of the prior precision p(γ ) does not throw the
approximate posterior q(γ ) out of the assumed family, there is no need to process
such factor multiple times. The update equations are

αnew = α + α0 − 1 βnew = β + β0. (3.71)

On the other hand, the inclusion of the likelihood factors p(yi | γ ; xi) is not exact
as:

1. we approximate a student’s t-distribution by a Gaussian in deriving Eq. (3.52);
2. we match only the first two moments of the shifted distribution in Eq. (3.51).

Consequently, there is room for improvement and we cycle through the likelihood
factors. We conveniently choose the approximate factors to be

f̃i (γ ) = Ga(γ | a, b). (3.72)

This form allows us to easily compute the cavity distribution

q−i (γ ) ∝ q(γ )

f̃i(γ )
= Ga(γ | α, β)

Ga(γ | a, b)
= Ga (γ | α−i , β−i ) , (3.73)

where

α−i = α − a + 1 β−i = β − b. (3.74)



3.2 Approximate Inference 59

After computing the cavity distribution q−i , we include the true likelihood factor
p(yi | γ ; xi) and project the resulting distribution back onto the assumed family of
q. The steps for including and projecting the likelihood factors are still the same as
those of Sect. 3.2.2.4 for the ADF algorithm: Eqs. (3.56) and (3.57) for updating α

and β, respectively.
Lastly, we revise the approximate factor f̃i , according to

a = α − α−i + 1 b = β − β−i . (3.75)

3.2.4 Further Practical Extensions

In this section, we briefly review three modern extensions of the approximate
inference algorithms we have seen. While the first two address computability and
tractability issues, the last aims at usability, making VI more accessible.

3.2.4.1 Black Box Variational Inference

As seen in Sect. 3.2.1.5, the SVI computes the distribution updates in a closed
form, which requires model-specific knowledge and implementation. Moreover,
the gradient of the ELBO must have a closed-form analytical formula. Black Box
Variational Inference (BBVI) [25] avoids these problems by estimating the gradient
instead of actually computing it.

BBVI uses the score function estimator [34]

∇φEq(z;φ) [f (z; θ)] = Eq(z;φ)

[
f (z; θ)∇φ log q(z;φ)

]
, (3.76)

where the approximating distribution q(z;φ) is a continuous function of φ (see
Appendix A.1). Using this estimator to compute the gradient of the ELBO in Eq.
(3.7) gives us

∇φELBO = Eq

[
(∇φ log q(z;φ))(log p(x, z) − log q(z;φ))

]
. (3.77)

The expectation in Eq. (3.77) is approximated by a Monte Carlo integration.
The sole assumption of the gradient estimator in Eq. (3.77) about the model is

the feasibility of computing the log of the joint p(x, zs). The sampling method and
the gradient of the log both rely on the variational distribution q. Thus, we can
derive them only once for each approximating family q and reuse them for different
models p(x, zs). Hence the name black box: we just need to specify the model
p(x, zs) and can directly perform VI on it. Actually, p(x, zs) does not even need to
be normalized, since the log of the normalization constant does not contribute to the
gradient in Eq. (3.77).



60 3 Model-Based Machine Learning and Approximate Inference

We generally perform stochastic optimization, observing a subset of the available
data at each iteration. The score function estimator gives unbiased estimates when
considering f (z; θ) in Eq. (3.76). However, gradient estimates in Eq. (3.77) are
not unbiased due to the presence of the log function. Furthermore, the estimator
generally has high variance, what may force the step sizes to be too small for the
algorithm to be practical. The authors in [25] further consider variance reduction
methods that preserve the black box character of BBVI to address this issue.

3.2.4.2 Black Box α Minimization

Black Box α minimization [9] (BB-α) optimizes an approximation of the power
EP energy function [19, 20]. Instead of considering i different local compatibility
functions f̃i , it ties them together so that all f̃i are equal, that is, f̃i = f̃ . We may
view it as an average factor approximation, which we use to approximate the average
effect of the original fi [9].

Further restricting these factors to belong to the exponential family amounts to
tying their natural parameters. As a consequence, BB-α no longer needs to store an
approximating site per likelihood factor, which leads to significant memory savings
in large data sets. The fixed points differ from power EP, though they become equal
in the limit of infinite data.

BB-α dispenses with the need for double-loop algorithms to directly minimize
the energy and employs gradient-descent methods for this matter. This contrasts
with the iterative update scheme of Sect. 3.2.3. As other modern methods designed
for large-scale learning, it employs stochastic optimization to avoid cycling through
the whole data set. Besides, it estimates the expectation over the approximating
distribution q present in the energy function by Monte Carlo sampling.

Differently from BBVI [25], the BB-α uses the pathwise derivative estimator [24]
to estimate the gradient (see Appendix A.1). We must be able to express the random
variable z ∼ q(z, φ) as an invertible deterministic transformation g(·;φ) of a base
random variable ε ∼ p(ε), so we can write

∇φEq(z;φ) [f (z; θ)] = Ep(ε)

[∇φf (g(ε;φ); θ)
]
. (3.78)

The approach requires not only the distribution q(z;φ) to be reparameterizable but
also f (z; θ) to be known and a continuous function of φ for all values of z. Note that
it requires, in addition to the likelihood function, its gradients. Still, we can readily
obtain them with automatic differentiation tools if the likelihood is analytically
defined and differentiable.

As observed in Sect. 3.2.3, the parameter α in Eq. (3.68) controls the divergence
function. Hence, the method is able to interpolate between VI (α → −1) and an
algorithm similar to EP (α → 1). Interestingly, the authors [9] claim to usually
obtain the best results by setting α = 0, halfway through VI and EP. This value
corresponds to the so-called Hellinger distance, the sole member of the α-family
that is symmetric.



3.3 Closing Remarks 61

3.2.4.3 Automatic Differentiation Variational Inference

Automatic Differentiation Variational Inference (ADVI) offers a recipe for automat-
ing the computations involved in VI [13]. The user only provides the desired
probabilistic model and the data set. The framework occupies itself of all the
remaining blocks of the pipeline. There is no need to derive the objective function
nor its derivatives for each specific combination of approximating family and model.

The ADVI applies a transformation T : Z �→ Ξ that maps the support
of the latent variables z to all real coordinate space, such that the model’s joint
distribution p(x, z) becomes p(x, ξ). Then, it approximates p(x, ξ) with a Gaussian
distribution, though other variational approximating families are possible. Even the
simple Gaussian case induces non-Gaussian distributions in the original latent space
Z = T −1(Ξ). As usual, the ELBO defined in Eq. (3.7) involves an intractable
expectation. The ADVI resorts to the pathwise gradient estimator in Eq. (3.78)
to convert the variational distribution into a deterministic function of the standard
Gaussian N(0, 1), thus allowing automatic differentiation. Finally, it estimates the
expectation over the latent space by Monte Carlo integration, producing noisy
unbiased gradients of the ELBO and performing stochastic optimization [27].

As the ADVI employs the pathwise gradient estimator, it works only for
differentiable models. The derivative of the log joint probability ∇z log p(x, z) must
exist. On the other hand, BBVI [25] computes the derivative of the variational
approximation q and is, thus, more general, though it can suffer from high variance.

Although the performance of the resulting ADVI model may not be as good as
its manually implemented counterpart, the ADVI works well for a large class of
practical models on modern data sets [13]. Therefore, it allows rapid prototyping of
new ideas and corrections of complex models.

3.3 Closing Remarks

In this chapter, we introduced the concept of MBML and its three pillars: Bayesian
inference, graphical models, and probabilistic programming, explaining how each
piece connects to construct the MBML landscape and clarifying the need for
approximate inference in complex problems.

We have explained the inner workings of and exemplified three central varia-
tional inference techniques, namely ADF, ADF, and EP, drawing attention to the
advantages and shortcomings of each. In summary,

• VI: maximizes a lower bound on the model evidence (ELBO), tends to fit a
single mode of the true posterior distribution, underestimates variance, and is
guaranteed to converge.

• EP: matches moments, requires definition of the approximate posterior family,
tends to summarize the entire true posterior distribution, overestimates variance,
and is not guaranteed to converge.

• ADF: online version of EP with no iterative refinement.



62 3 Model-Based Machine Learning and Approximate Inference

The ADF, ADF, and EP techniques are the bases for many modern methods, such
as the ones in Sect. 3.2.4, and are extensively used in many algorithms, which we
discuss in Chap. 4, what illustrates the relevance of the topic.

References

1. Berger T (1975) Rate distortion theory and data compression. Springer Vienna, pp 1–39.
https://doi.org/10.1007/978-3-7091-2928-9_1

2. Bingham E, Chen JP, Jankowiak M, Obermeyer F, Pradhan N, Karaletsos T, Singh R, Szerlip
P, Horsfall P, Goodman ND (2019) Pyro: deep universal probabilistic programming. J Mach
Learn Res 20(28):1–6

3. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin
4. Bishop CM (2013) Model-based machine learning. Philos Trans R Soc A: Math Phys Eng Sci

371(1984):1–17
5. Blei DM, Kucukelbir A, McAuliffe JD (2017) Variational inference: a review for statisticians.

J Am Stat Assoc 112(518):859–877
6. Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J,

Li P, Riddell A (2017) Stan: A probabilistic programming language. J Stat Softw 76(1):1–32.
Articles

7. Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature
521(7553):452–459

8. Goodman ND, Stuhlmüller A (2014) (electronic). The Design and Implementation of Proba-
bilistic Programming Languages. Retrieved 2021-4-5 from http://dippl.org

9. Hernandez-Lobato J, Li Y, Rowland M, Bui T, Hernandez-Lobato D, Turner R (2016) Black-
box alpha divergence minimization. In: Proceedings of the international conference on machine
learning, New York, vol 48, pp 1511–1520

10. Hoffman M, Blei D (2015) Stochastic structured variational inference. In: International
conference on artificial intelligence and statistics, San Diego, vol 38, pp 361–369

11. Hoffman MD, Blei DM, Wang C, Paisley J (2013) Stochastic variational inference. J Mach
Learn Res 14:1303–1347

12. Koller D, Friedman N, Bach F (2009) Probabilistic graphical models: principles and tech-
niques. MIT Press, Cambridge

13. Kucukelbir A, Blei D, Gelman A, Ranganath R, Tran D (2017) Automatic differentiation
variational inference. J Mach Learn Res 18:1–45

14. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theor 28(2):129–137
15. Louizos C, Welling M (2016) Structured and efficient variational deep learning with matrix

Gaussian posteriors. In: Proceedings of the international conference on machine learning, New
York, vol 48, pp 1708–1716

16. MacKay DJ (2003) Information theory, inference and learning algorithms. Cambridge Univer-
sity Press, Cambridge

17. Minka TP (2001) Expectation propagation for approximate Bayesian inference. In: Conference
in uncertainty in artificial intelligence, San Francisco, pp 362–369

18. Minka T (2004) Power EP. Tech. rep., Microsoft Research
19. Minka T (2005) Divergence measures and message passing. Tech. rep., Microsoft Research
20. Minka T (2007) The EP energy function and minimization schemes. Tech. rep., Microsoft

Research
21. Minka T, Winn J, Guiver J, Zaykov Y, Fabian D, Bronskill J (2018) Inf. NET 0.3. Microsoft

Research Cambridge
22. Mohamed S (2018) Planting the seeds of probabilistic thinking: foundations, tricks and

algorithms. Tutorial presentation

https://doi.org/10.1007/978-3-7091-2928-9_1
http://dippl.org


References 63

23. Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge
24. Price R (1958) A useful theorem for nonlinear devices having Gaussian inputs. Trans Inf Theor

4(2):69–72
25. Ranganath R, Gerrish S, Blei D (2014) Black box variational inference. In: Proceedings of the

international conference on artificial intelligence and statistics, Reykjavik, pp 814–822
26. Rezende D, Mohamed S (2015) Variational inference with normalizing flows. In: Proceedings

of the international conference on machine learning, Lille, vol 37, pp 1530–1538
27. Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22(3):400–

407
28. Salvatier J, Wiecki TV, Fonnesbeck C (2016) Probabilistic programming in Python using

PyMC3. PeerJ Comput Sci 2:e55
29. Sun S, Chen C, Carin L (2017) Learning structured weight uncertainty in Bayesian neural

networks. In: International conference on artificial intelligence and statistics, Fort Lauderdale,
vol 54, pp 1283–1292

30. Tran D, Kucukelbir A, Dieng AB, Rudolph M, Liang D, Blei DM (2016) Edward: a library for
probabilistic modeling, inference, and criticism. arXiv e-prints 1610.09787

31. Tukey JW (1962) The future of data analysis. Ann Math Stat 33(1):1–67
32. van de Meent JW, Paige B, Yang H, Wood F (2018) An introduction to probabilistic

programming. arXiv e-prints 1809.10756
33. Vidakovic B (2011) Bayesian inference using Gibbs sampling—BUGS project. Springer, New

York, pp 733–745
34. Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist rein-

forcement learning. Mach Learn 8(3):229–256


	3 Model-Based Machine Learning and Approximate Inference
	3.1 Model-Based Machine Learning
	3.1.1 Probabilistic Graphical Models
	3.1.1.1 Direct Acyclic Graphs
	3.1.1.2 Undirected Graphs
	3.1.1.3 The Power of Graphical Models

	3.1.2 Probabilistic Programming

	3.2 Approximate Inference
	3.2.1 Variational Inference
	3.2.1.1 The Evidence Lower Bound
	3.2.1.2 Information Theoretic View on the ELBO
	3.2.1.3 The Mean-Field Approximation
	3.2.1.4 Coordinate Ascent Variational Inference
	3.2.1.5 Stochastic Variational Inference
	3.2.1.6 VI Issues
	3.2.1.7 VI Example

	3.2.2 Assumed Density Filtering
	3.2.2.1 Minimizing the Forward kl Divergence
	3.2.2.2 Moment Matching in the Exponential Family
	3.2.2.3 ADF Issues
	3.2.2.4 ADF Example

	3.2.3 Expectation Propagation
	3.2.3.1 Recasting adf as a Product of Approximate Factors
	3.2.3.2 Operations in the Exponential Family
	3.2.3.3 Power EP
	3.2.3.4 EP Issues
	3.2.3.5 EP Example

	3.2.4 Further Practical Extensions
	3.2.4.1 Black Box Variational Inference
	3.2.4.2 Black Box α Minimization
	3.2.4.3 Automatic Differentiation Variational Inference


	3.3 Closing Remarks
	References


