
Lucas Pinheiro Cinelli
Matheus Araújo Marins
Eduardo Antônio Barros da Silva
Sérgio Lima Netto

Variational Methods
for Machine Learning
with Applications
to Deep Networks

Variational Methods for Machine Learning
with Applications to Deep Networks

Lucas Pinheiro Cinelli • Matheus Araújo Marins
Eduardo Antônio Barros da Silva
Sérgio Lima Netto

Variational Methods for
Machine Learning with
Applications to Deep
Networks

Lucas Pinheiro Cinelli
Program of Electrical Engineering - COPPE
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

Matheus Araújo Marins
Program of Electrical Engineering - COPPE
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

Eduardo Antônio Barros da Silva
Program of Electrical Engineering - COPPE /
Department of Electronics - Poli
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

Sérgio Lima Netto
Program of Electrical Engineering - COPPE /
Department of Electronics - Poli
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

ISBN 978-3-030-70678-4 ISBN 978-3-030-70679-1 (eBook)
https://doi.org/10.1007/978-3-030-70679-1

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-70679-1

To our families.

Preface

This book has its origins in the first author’s profound interest in uncertainty as
a natural way of thinking. Indeed, behavioral studies support that humans perform
nearly optimal Bayesian inference, efficiently integrating multi-sensory information
while being energetically efficient. At the same time, modern deep learning methods
still are sensitive to overfitting and lack uncertainty estimation even though they
achieve human-level results in many tasks. The Bayesian framework fits elegantly
as a manner to tackle both issues, simultaneously offering a principled mathematical
ground.

While Bayesian ML and approximate inference are rather broad topics, each
spawning entire books, the present text is a self-contained introduction to modern
variational methods for Bayesian Neural Network (BNN). Even within this realm,
research is fortunately sprouting at a rate difficult to follow and many algorithms
are also being reinterpreted through Bayesian lenses. We focus on practical BNN
algorithms that are either relatively easy to understand or fast to train. We also
address one specific usage of a variational technique for generative modeling.

The target audience are those already familiar with ML and modern NN.
Although basic knowledge of calculus, linear algebra, and probability theory is
a must to comprehend the concepts and derivations herein, they should also be
enough. We explicitly avoid matrix calculus since the material may be challenging
by itself, and adding this difficulty does not really aid in understanding the book
and may actually intimidate the reader. Furthermore, we do not assume the reader
to be familiar with statistical inference and thus explain the necessary information
throughout the text.

Most introductory texts cover either modern NNs or general Bayesian methods
for ML, with little work dedicated to both simultaneously to this date. Information is
scattered around in research blog posts and introductions of published papers, with
the sole in-depth work being Neal’s excellent Ph.D. thesis from 1996, which does
not cover modern variational approximations. The current scenario makes the leap
from NNs to BNNs hard from a theoretical point of view: the reader needs either

vii

viii Preface

to learn Bayesian methods first or to decide what matters and which algorithms
to learn, the former being cumbersome and the latter troublesome in a self-study
scenario.

The present book has the mission of filling this gap and helping others cross from
one area to the other with not only a working knowledge but also an understanding
of the theoretical underpinnings of the Bayesian approach.

Prior to any trending ML technique, we introduce in Chap. 2 the required
statistical tools that many students lack nowadays. We discuss what is a model,
how information is measured, what is the Bayesian approach, as well as two
cornerstones of statistical inference: estimation and hypothesis testing. Even those
already familiar with the subject could benefit from the refresher, at the same time
acclimating with the notation.

In Chap. 3, we introduce the building blocks of Model-Based Machine Learning
(MBML). We explain what it is and discuss its main enabling techniques: Bayesian
inference, graphical models, and, more recently, probabilistic programming. We
explain approximate inference and broach deterministic distributional approxi-
mation methods, focusing on Variational Bayes, Assumed Density Filtering, and
Expectation Propagation, going through derivations, advantages, issues, and modern
extensions.

In Chap. 4, we introduce the concept and advantages of the Bayesian Neural
Network (BNN). We scrutinize four of the most popular algorithms in the area:
Bayes by Backpropagation, Probabilistic Backpropagation, Monte Carlo Dropout,
and Variational Adam, covering their derivations, benefits, and issues. We finish
by comparing the algorithms through a 1-D example as well as more complex
scenarios.

In Chap. 5, we introduce generative models. We focus specifically on the
Variational Autoencoder (VAE) family, a well-known deep generative model. The
ability to model the process that generates the observed data empowers us to
simulate new data, create world models, grasp underlying generative factors, and
learn with little to no supervision. Starting with a simple example, we build the
vanilla VAE, pointing out its shortcomings and various extensions, such as the
Conditional VAE, the β-VAE, the Categorical VAE, and others. We end the chapter
with numerous VAE experiments on two image data sets, and an illustrative example
of semi-supervised learning with VAEs.

We take this opportunity to thank our professors and colleagues who helped us
in writing this book. In particular, we thank Dr. Leonardo Nunes and Professor Luís
Alfredo de Carvalho who first came up with its conceptual ideal. We also thank our
loved ones for putting up with us during the challenging and interesting times of
turning the book into a reality.

Rio de Janeiro, Brazil Lucas Pinheiro Cinelli
Rio de Janeiro, Brazil Matheus Araújo Marins
Rio de Janeiro, Brazil Eduardo Antônio Barros da Silva
Rio de Janeiro, Brazil Sergio Lima Netto
September 2020

Contents

1 Introduction . 1
1.1 Historical Context . 1
1.2 On the Notation . 3
References . 4

2 Fundamentals of Statistical Inference . 5
2.1 Models . 5

2.1.1 Parametric Models . 6
2.1.2 Nonparametric Models. 8
2.1.3 Latent Variable Models . 8
2.1.4 De Finetti’s Representation Theorem . 9
2.1.5 The Likelihood Function. 9

2.2 Exponential Family. 10
2.2.1 Sufficient Statistics . 10
2.2.2 Definition and Properties . 11

2.3 Information Measures . 13
2.3.1 Fisher Information . 13
2.3.2 Entropy . 14
2.3.3 Kullback-Leibler Divergence . 15
2.3.4 Mutual Information . 16

2.4 Bayesian Inference . 17
2.4.1 Bayesian vs. Classical Approach . 17
2.4.2 The Posterior Predictive Distribution . 18
2.4.3 Hierarchical Modeling . 19

2.5 Conjugate Prior Distributions . 19
2.5.1 Definition and Motivation . 19
2.5.2 Conjugate Prior Examples . 20

2.6 Point Estimation . 22
2.6.1 Method of Moments . 22
2.6.2 Maximum Likelihood Estimation . 22
2.6.3 Maximum a Posteriori Estimation. 23

ix

x Contents

2.6.4 Bayes Estimation . 24
2.6.5 Expectation-Maximization. 25

2.7 Closing Remarks . 30
References . 30

3 Model-Based Machine Learning and Approximate Inference 31
3.1 Model-Based Machine Learning. 31

3.1.1 Probabilistic Graphical Models. 32
3.1.2 Probabilistic Programming . 34

3.2 Approximate Inference . 36
3.2.1 Variational Inference . 36
3.2.2 Assumed Density Filtering . 46
3.2.3 Expectation Propagation . 53
3.2.4 Further Practical Extensions . 59

3.3 Closing Remarks . 61
References . 62

4 Bayesian Neural Networks . 65
4.1 Why BNNs? . 65
4.2 Assessing Uncertainty Quality . 67

4.2.1 Predictive Log-Likelihood . 67
4.2.2 Calibration . 68
4.2.3 Downstream Applications . 69

4.3 Bayes by Backprop . 69
4.3.1 Practical VI . 73

4.4 Probabilistic Backprop . 75
4.4.1 Incorporating the Hyper-Priors p(λ) and p(γ) 77
4.4.2 Incorporating the Priors on the Weights p(w | λ) 78
4.4.3 Incorporating the Likelihood Factors p(y |W,X, γ) 82

4.5 MC Dropout . 85
4.5.1 Dropout . 86
4.5.2 A Bayesian View . 87

4.6 Fast Natural Gradient. 90
4.6.1 Vadam. 91

4.7 Comparing the Methods. 95
4.7.1 1-D Toy Example . 95
4.7.2 UCI Data Sets . 97
4.7.3 Experimental Setup . 99
4.7.4 Training Configuration . 102
4.7.5 Analysis. 102

4.8 Further References . 105
4.9 Closing Remarks . 107
References . 107

5 Variational Autoencoder . 111
5.1 Motivations . 111

Contents xi

5.2 Evaluating Generative Networks . 112
5.3 Variational Autoencoders . 114

5.3.1 Conditional VAE . 120
5.3.2 β-VAE . 121

5.4 Importance Weighted Autoencoder . 122
5.5 VAE Issues . 124

5.5.1 Inexpressive Posterior . 124
5.5.2 The Posterior Collapse . 126
5.5.3 Latent Distributions . 127

5.6 Experiments. 129
5.6.1 Data Sets . 129
5.6.2 Experimental Setup . 131
5.6.3 Results . 132

5.7 Application: Generative Models on Semi-supervised Learning. 140
5.8 Closing Remarks . 145
5.9 Final Words . 146
References . 146

A Support Material . 151
A.1 Gradient Estimators . 151
A.2 Update Formula for CAVI . 152
A.3 Generalized Gauss–Newton Approximation . 154
A.4 Natural Gradient and the Fisher Information Matrix 155
A.5 Gaussian Gradient Identities . 157
A.6 t-Student Distribution . 160
References . 161

Index . 163

Acronyms

ADF Assumed Density Filtering. 46, 47, 50, 51, 53–56, 59, 61, 62, 74, 76, 77,
81, 84, 94, 95, 97, 104, 106, 151

ADVI Automatic Differentiation Variational Inference. 61
AEVB Autoencoding Variational Bayes. 119, 120

BBB Bayes by Backprop. 65, 69, 71–75, 102
BBVI Black Box Variational Inference. 59–61
BNN Bayesian Neural Network. vii, viii, 65–67, 74, 104, 106, 111
BO Bayesian Optimization. 100, 101, 103

CAVI Coordinate Ascent Variational Inference. 42, 45, 46, 151
CDF Cumulative Distribution Function. 3
CVAE Conditional VAE. 120

DL Deep Learning. 2, 66, 119, 130, 146
DNN Deep Neural Network. 2

ELBO Evidence Lower Bound. 38, 39, 41–44, 59, 61, 70, 75, 90, 92, 116, 117,
120, 121, 123–125, 127, 132, 133, 139, 145, 153

EM Expectation-Maximization. 25–28, 30, 43
EP Expectation Propagation. 36, 47, 54–58, 60–62, 75–77, 81, 97, 104, 106

GGN Generalized Gauss-Newton. 73, 151
GPU Graphical Processing Unit. 103

iid independent and identically distributed. 8–11, 20, 22, 45, 47, 77, 128,
142

IS Importance Sampling. 115
IWAE Importance Weighted Autoencoder. 123

KL Kullback-Leibler. 15–17, 30, 37, 38, 40, 41, 44, 47–49, 55, 57, 58, 71,
72, 77, 92, 114, 117–122, 126, 127, 129, 137–139, 153, 155, 156

MAP Maximum a posteriori. 23–26, 30, 39
MBML Model-Based Machine Learning. viii, 31, 61

xiii

xiv Acronyms

MC Monte Carlo. 69, 70, 72–74, 107
MCDO Monte Carlo Dropout. 65, 89, 90, 97, 102, 104, 105
MCMC Markov Chain Monte Carlo. 1, 2
MFVI Mean-Field VI. 41, 42, 91
ML Machine Learning. vii, viii, 1–3, 5, 6, 13, 18, 23, 30–32, 34, 35, 43, 130,

140, 144–146
MLE Maximum Likelihood Estimator. 22–26, 28–30, 34, 77, 91, 116, 118

NN Neural Network. vii, 65, 66, 87, 116, 117, 119, 141, 144

PBP Probabilistic Backpropagation. 65, 75–77, 82, 96, 97, 101–104
PCA Principal Component Analysis. 34, 35
PDF Probability Density Function. 3, 6, 9–11, 13, 14, 19
PGM Probabilistic Graphical Model. 32, 72, 74, 76, 89, 140

ReLU Rectified Linear Unit. 75, 82, 131, 144
RMSE Root Mean Squared Error. 99, 104, 105

UMAP Uniform Manifold Approximation and Projection. 130, 132

Vadam Variational Adam. 65
VAE Variational Autoencoder. viii, 111, 119, 120, 123
VI Variational Inference. 36, 37, 39, 43, 44, 47, 57, 59–61, 69, 73–75, 88,

91, 106, 117, 135, 145, 152

Chapter 1
Introduction

1.1 Historical Context

Over the last two decades, Bayesian methods have largely fallen out of favor in the
ML community. The culprit for such unpopularity is their complicated mathematics,
which makes it hard for practitioners to access and comprehend them, as well
as their heavy computational burden. Conversely, classical techniques relying on
bagging and point estimates offer cheap alternatives to measure uncertainty and
evaluate hypotheses [9]. Consequently, Bayesian methods remained confined mostly
to (Bayesian) statisticians and a handful of other researchers either working in
related areas or limited by small amounts of data.

For instance, Markov Chain Monte Carlo (MCMC) methods are powerful
Bayesian tools [9]. In a modeling problem they are able to converge to the true
distribution of the model if given enough time. However, this frequently means more
time than one is willing to wait, and though many modern algorithms alleviate this
issue [6], the state of affairs remains roughly the same. MCMC is asymptotically
exact and computationally expensive. This effect worsens with the dimensionality
of the problem. Conventional Bayesian methods do not scale well to large amounts
of data nor to high dimensions, situations that are becoming increasingly common
in the Age of Big Data [2].

One may think that the abundant amount of data should make up for the lack of
uncertainty and its estimation because in the limit of infinite samples the Bayesian
estimation converges to the maximum likelihood point. Although correct, the limit
is far from being reached in practical cases. As we discuss in Sect. 2.4.1, there
is an important fundamental difference between a large and a statistically large
data set. A mere 28 × 28 binary image has 784 dimensions and 2784 ≈ 10236

different arrangements, which is far more than the estimated number of atoms in the
observable universe (∼1080) [10]. Even in a simple case as this, being statistically
large means having a virtually infinite number of examples, which is not practically
achievable. Naturally, one frequently assumes that there is an underlying low-

© Springer Nature Switzerland AG 2021
L. P. Cinelli et al., Variational Methods for Machine Learning with Applications to
Deep Networks, https://doi.org/10.1007/978-3-030-70679-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70679-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-70679-1_1

2 1 Introduction

dimensional structure that explains the observations. In Chap. 2, we formalize this
thought and in Chap. 5 we review an algorithm that incorporates this assumption.

The pinnacle of the disconnection from the probabilistic view is standard Deep
Learning. It basically consists on very large parametric models trained on, ideally
but not often, large amounts of data to fit an unknown function. Modern hardware
and computational libraries render the computation possible through parallel com-
puting. Thanks to this new representation learning technique, outstanding results
have been achieved in the last ten years or so, breaking through plateaus in many
areas of research, e.g., speech [5] and vision [8]. As a consequence, the DL domain
became a trending area, attracting a lot of newcomers, media attention, and industry
investments.

All this positive feedback reinforces the approach of overlooking probabilistic
modeling and reasoning. After all, it seems to be working. However, reliable
confidence estimates are essential to many domains, such as healthcare and financial
markets, whose demands standard Deep Learning cannot adequately attend. Addi-
tionally, Deep Learning requires large quantities of data that when not available
leads to models that are likely to overfit and have poor generalization. Contrarily,
Bayesian methods perform well even in data-poor regimes and are robust, though
not immune, to overfitting.

Recently, researchers found that many ML models, including Deep Neural
Network (DNN) with great test set performance, are deceived by adversarial
examples [3], which are tampered images apparently normal to humans that are
consistently misclassified despite the model’s great confidence. Moreover, the
authors in [3] describe a method to systematically create adversarial examples.
Fortunately, methods that estimate uncertainty are capable of detecting adversarial
examples and, more generally, examples outside the domain in which they were
trained.

Probabilistic models further lend themselves to semi-supervised and unsuper-
vised learning, allowing us to leverage the performance from unlabeled samples.
Moreover, we can recur to active learning, in which the system put forward for
the operator to annotate the samples it is most uncertain about, thus maximizing
information gain and minimizing annotation labor.

In general, the Bayesian framework offers a principled approach to constructing
probabilistic models, reasoning under uncertainty, making predictions, detecting
surprising events, and simulating new data. It naturally provides mathematical tools
for model fitting, comparison, and prediction, but more than that, it constitutes a
systematic way of approaching a problem.

Since Bayesian methods can be prohibitively expensive, we focus on approx-
imate algorithms that on a sensible amount of time can achieve reasonable per-
formance. Technically, MCMC is one such class of algorithm, but it is based on
sampling and has slow convergence rate. Here, we discuss variational methods,
which instead rely on deterministic approximations. They are much faster than
sampling approaches, which makes them well suited to large data sets and to quickly
explore many models [1]. The toll for its speed is inferior performance, making
it adequate to scenarios where a lot of data is available to compensate for such

1.2 On the Notation 3

weakness and it would be otherwise impossible to employ MCMC. Over the last
decade, research on variational methods for Bayesian ML started to reemerge [4]
and slowly gain momentum. Since 2014, there has been an exponential growth in
interest for this field [7, 11, 12], fueled among others by the discovery of critical
failure modes for conventional Deep Learning. Nowadays, there are workshop
tracks for variational Bayesian ML in major ML conferences and lots of papers
accepted to the main tracks, as well as in venues geared toward Statistics, Artificial
Intelligence, and uncertainty estimation, all increasing in importance, visibility, and
submission count.

1.2 On the Notation

The following mathematical elements attend the notation:

• scalar: a and σ ;
• vector: a and σ ;
• matrix: A and �;
• set:A and Σ .

We denote both Probability Density Function (PDF) and discrete probability
distributions with lower-case notation p. Although an abuse of language, we decided
to simplify notation. We shall make clear from the context whether the random
variable is continuous or discrete. Nevertheless, we already advert to the almost non-
existence of discrete random variables throughout the text, especially in Chap. 4,
whose algorithms rely on continuous functions and variables. Additionally, we
always denote random variables and the Cumulative Distribution Function (CDF)
in upper case, such as F(X) = P(X � x).

We write parametric family P of distributions p as p(· ; θ) with θ the set of
parameters that specify the member of the family. For example, for a Gaussian
random variable z, the PDF would be p(z ; μ, σ 2) = N(z ; μ, σ 2), where the
parameters are the mean μ and variance σ 2. If the parameters are random variables,
we can write the conditional distribution as p(· | �), and since we deal with
Bayesian analysis these two notations get pretty similar although different.

Whenever possible, the variational parameters will write ψ and the model
parameters θ , and if both refer to the same entity we opt for θ . If we are to consider
parameters as random variables, we write them in bold upper-cased letters, i.e., �

and �, respectively. Similarly, hidden units or more generally latent variables are Z.
Also, derivatives w.r.t. to a set is a shorthand for compactly representing

the derivative w.r.t. each element of the set. For example, let f be a function
parameterized by θ = [θ1, θ2]t , we have according to this notation:

∂f (θ)

∂θ
=
⎡
⎣

∂f (θ1,θ2)
∂θ1

∂f (θ1,θ2)
∂θ2

⎤
⎦ .

4 1 Introduction

References

1. Blei DM, Kucukelbir A, McAuliffe JD (2017) Variational inference: a review for statisticians.
J Am Stat Assoc 112(518):859–877

2. Chen M, Mao S, Liu Y (2014) Big data: a survey. Mobile Netw Appl 19(2):171–209
3. Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples.

In: Proceedings of the international conference on learning representations, San Diego
4. Graves A (2011) Practical variational inference for neural networks. In: Advances in neural

information processing systems, Granada, pp 2348–2356
5. Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen

P, Sainath TN, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. Sign Process Mag 29(6):82–97

6. Homan MD, Gelman A (2014) The No-U-Turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. J Mach Learn Res 15(1):1593–1623

7. Kingma DP, Welling M (2014) Auto-encoding variational Bayes. In: Proceedings of the
international conference on learning representations, Banff

8. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional
neural networks. In: Advances in neural information processing systems, Lake Tahoe, pp 1097–
1105

9. Murphy KP (2012) Machine Learning: a probabilistic perspective. MIT Press, Cambridge
10. Planck Collaboration, Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi

C, Banday AJ, Barreiro RB, Bartlett JG, et al (2016) Planck 2015 results. XIII. Cosmological
parameters. Astron Astrophys 594:A13. arXiv:1502.01589

11. Ranganath R, Gerrish S, Blei D (2014) Black box variational inference. In: Proceedings of the
international conference on artificial intelligence and statistics, Reykjavik, pp 814–822

12. Soudry D, Hubara I, Meir R (2014) Expectation backpropagation: parameter-free training
of multilayer neural networks with continuous or discrete weights. In: Advances in neural
information processing systems, Montreal, pp 963–971

Chapter 2
Fundamentals of Statistical Inference

By the end of this chapter, the reader should:

• Appreciate the importance of statistical inference as the basis to popular ML;
• Discern between the frequentist and Bayesian views of probability;
• Comprehend the advantages of the exponential family and its characteristics;
• Understand the concept of entropy and information;
• Be capable of implementing computational algorithms for estimation.

2.1 Models

A model can assume different forms and complexities. Physicists have different
models for understanding the universe: astronomers focus on General Relativity
and the interaction between celestial bodies, while particle physicists represent it
according to quantum mechanics; infants draw stick figures of their families, houses,
and alike; neuroscientists study the drosophila (“small fruit flies”) as a model for
understanding the brain; drivers imagine what will change and how, in order to
decide what to do next.

Although all these examples seem distinct and may serve diverse purposes, they
all are approximate representations of the corresponding real-world entity. A model
is a description of the world (at a given level) and as such encodes our beliefs and
assumptions about it. Specifically, a statistical model is a mathematical description
of a process and involves both sample data as well as statistical assumptions about
such process.

Models have parameters, which may be unknown a priori and must be learned
from the available data so that we are able to discover its latent causes or predict
possible outcomes. If our model does not match the observed data, we are capable
of refuting the proposition and search for one that can explain it better.

© Springer Nature Switzerland AG 2021
L. P. Cinelli et al., Variational Methods for Machine Learning with Applications to
Deep Networks, https://doi.org/10.1007/978-3-030-70679-1_2

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70679-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-70679-1_2

6 2 Fundamentals of Statistical Inference

Statistical inference refers to the general procedure by which we deduce any
desired probability distribution (possibly marginal or conditional) of our model or
parts of it given the observed data. The ML literature usually disassociates the terms
learning and inference, with the former referring to model parameter estimation and
the latter to reasoning about unknowns, i.e., the model output, given the already
estimated parameters. However, in statistics there is no such difference and both
mean estimations. In the present text, they are used interchangeably though we tend
to say inference more often due to this term being readily associated with probability
distributions.

2.1.1 Parametric Models

A parametric model P is a family of distributions f that can be indexed by a finite
number of parameters. Let θ be an element of the parameter space Θ and X a
random variable, we define the set of possible distribution of the parametric model
as

PΘ = {f (x ; θ) : θ ∈ Θ} . (2.1)

A simple, yet clear example is the uniform distributionU(a, b) defined by

f (x ; a, b) =
{

1/(a − b) , if x ∈ [a, b]
0 , otherwise .

(2.2)

Note that each pair of parameters {a, b} defines a different distribution that follows
the same functional form.

2.1.1.1 Location-Scale Families

We can also generate families of distributions by modifying an original base PDF,
hence named standard PDF, in a predefined manner. Concisely, we can either shift,
scale, or shift-and-scale the standard distribution.

Theorem 2.1 Let f (x) be a PDF and μ and σ > 0 constants. Then, the following
functions are also a PDF:

g(x ;μ, σ) = 1

σ
f

(
x − μ

σ

)
. (2.3)

Hence, introducing the scale σ and/or the location μ parameters in the PDF and
tweaking their values lead to new PDFs. Examples of families generated from these
procedures include many of the well-known distributions. Figure 2.1a shows the

2.1 Models 7

0 2 4 6 8 10 12 14
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p(
x
)

β = 0.3
β = 1
β = 2
β = 3

(a)

(b)

−4 −2 0 2 4 6 8
x

0.0

0.2

0.4

0.6

0.8

p(
x
)

μ = −2, σ = 0.5
μ = −1, σ = 1
μ = 0, σ = 1.5
μ = 2, σ = 2

Fig. 2.1 Illustration of location-scale families for the Gamma and Gaussian distributions. In our
parametrization of the Gamma function with the rate parameter β, the scale parameter as defined
in Theorem 2.1 is actually σ = 1/β. Note that as the scale σ increases the distribution becomes
less concentrated around the location parameter. In particular, limσ→0 f (x ;μ, σ) = δ(x − μ).
(a) Members of the same scale family of Gamma distributions with shape parameter α = 2.2. (b)
Members of the same location-scale family of Gaussian distributions

Gamma distribution Ga(α, β) which is a scale family for each value of the shape
parameter α:

f (x ;α, β) = βα

�(α)
xα−1e−βx. (2.4)

8 2 Fundamentals of Statistical Inference

Likewise, Fig. 2.1b exhibits the Gaussian distributionN(μ, σ) that is a location-
scale family for the parameters μ and σ , respectively, following

f (x ;μ, σ) = 1√
2πσ 2

e
− 1

2

(
x−μ
σ

)2

. (2.5)

2.1.2 Nonparametric Models

Nonparametric models assume an infinite dimensional parameter space �, instead
of a finite one. We interpret θ as a realization from a stochastic process, what defines
a probability distribution over Θ and further allows us to understand θ as a random
function.

A well-known example is given by infinite mixture models [6], which can have
a countably infinite number of components, and uses a Dirichlet Process to define a
distribution of distributions [9]. The model allows the number of latent components
to grow as necessary to accommodate the data, which is a typical characteristic of
nonparametric models.

2.1.3 Latent Variable Models

Given observed data x, how should we model the distribution p(x) so that it reflects
the true real-world population? This distribution may be arbitrarily complex and
to readily assume the data points xi to be independent and identically distributed
(iid) seems rather naive. After all, they cannot be completely independent, as there
must be an underlying reason for them to exist the way they do, even if unknown
or latent. We represent this hidden cause by the variable Z, thus obtaining the joint
distribution p(x, z). Naturally, by marginalizing over z we obtain

p(x) =
∫

p(x, z)dz =
∫

p(x |Z)p(z)dz. (2.6)

Note that we use latent variables and unknown model parameters interchange-
ably. For Bayesians, there is no fundamental difference between model parameters
and latent variables, as they are all random variables whose values we wish to
infer. For example, if our observables Xi are Bernoulli random variables, then Z
corresponds to the probability of success p ∈ (0, 1).

2.1 Models 9

2.1.4 De Finetti’s Representation Theorem

Independence is a strong assumption. Instead we can resort to the infinite exchange-
ability property. Exchangeability is the minimal assumption of symmetry. A finite
sequence of random variables (X1,X2, . . . ,Xn) is said to be exchangeable if any
permutation of its elements has the same probability distribution [7]. Consequently,
the order of the sequence is not relevant to determine the joint distribution nor any
marginal. In particular, all marginal distributions are equal. An infinite sequence
of random variables is infinitely exchangeable if every finite subsequence is
exchangeable. Note that this is more general than the iid property.

De Finetti’s representation theorem [7] states that if the sequence of random
variables is infinitely exchangeable, then there exists p(z) for which the joint
distribution can be written as

p(x1, x2, . . .) =
∫ ∏

i

p(xi |Z)p(z)dz. (2.7)

We can thus see the joint distribution of an infinitely exchangeable sequence
of random variables as representing a process in which a random parameter is
drawn from some (prior) distribution and then all observables in question are iid
conditioned on that parameter.

The representation theorem shows how statistical models emerge in a Bayesian
context: under the hypothesis of exchangeability of {X}∞i=1, a much weaker assump-
tion than iid, there exists a parameter such that, given its value, the observables
are conditionally iid. The theorem is a powerful motivation for Bayesian parametric
models even though it does not say anything about p(z).

In practical problems, even if we deal with unordered data, the number of random
variables is always finite. Therefore, the infinite exchangeability assumption may be
impractical or wrong, but the result still holds approximately true for large n [5].

2.1.5 The Likelihood Function

The likelihood function L(θ | x) measures how well the parameter θ explains the
observations x of the random variable X. Thus, it measures the model’s ability to
fit the observed data for different values of θ . The definition is similar to the PDF
f (x ; θ), following

L(θ | x) = f (x ; θ). (2.8)

The higher its value, the more likely the given value of θ , indicating that x had
higher probability of being observed over other realizations of X.

10 2 Fundamentals of Statistical Inference

Despite the similarity in the definition, the likelihood considers x as known and
fixed while θ as the unknown variable. On the other hand, the PDF considers θ as
fixed and x as the variable. Hence, the likelihood function is not a PDF and, as a
consequence, does not necessarily sum to one.

We can understand the role of the likelihood term L(θ | x) more practically by
means of an example. Let f (· ;w) be a regression model parameterized by w that
predicts a scalar value ŷ, such that ŷ = f (x). Suppose a probabilistic model that
assumes a given level of noise and we thus place an observation noise model on
top of the output, such that the observed output is corrupted by a known process
g(·), say an additive Gaussian noise with variance σ 2. So, now our model does not
output the correct value f (x;w), instead it outputs a value that fluctuates around it
according to a Gaussian distribution with variance σ 2. The log-likelihood then has
the form

logL(w | y, x) = logN(y ; f (x ;w), σ 2)

= −1

2
log
(

2πσ 2
)

− 1

2σ 2 (y − f (x;w))2 . (2.9)

What we wish is maximize L(w | y, x), which means minimize (y − f (x;w))2. So,
as y gets closer to the predicted output f (x), more likely the value of w. Note that
the prediction and the noise model could in principle be anything.

2.2 Exponential Family

2.2.1 Sufficient Statistics

When working with statistical models, it is necessary to recover some, or even
all, of its parameters from a set of randomly drawn samples x1, x2, · · · , xn.
Assuming these observations are iid and sampled from a PDF f (x ; θ), estimating
the parameter θ is the goal of many statisticians and engineers, imposing a real
challenge sometimes. A rather common approach is to capture and summarize some
information from the observations and use it to estimate the parameter θ instead of
using the observations themselves. This strategy is known as data reduction, whereas
engineers and computer scientists call it feature extraction.

The problem of the data reduction is the loss of information. How do we
guarantee that with the statistics we computed from the observations, call it T (X),
we are not discarding information to estimate θ? The answer to this question is
provided by the Sufficiency Principle, which defines T (X) as a sufficient statistics
when, for any two samples x1 and x2, where T (x1) = T (x2), the estimation of θ

yields the same results despite observing X = x1 or X = x2.

2.2 Exponential Family 11

Computing the sufficient statistics for a parameter is a rather difficult task in most
scenarios, but a rather simple way to do that is by using the Fisher-Neyman Theorem
(also known as factorization theorem).

Theorem 2.2 (Fisher-Neyman Factorization Theorem) Let x1, x2, · · · , xn be
random observations from a discrete distribution with PDF f (x ; θ), and x =
[x1, x2, · · · , xn]t . T (X) is a sufficient statistics if, and only if, there exist functions
g(T (x) ; θ) and h(x), such that h(x) ≥ 0 and, for all sample points x and all values
of θ , the distribution f (x ; θ) can be factorized as follows:

f (x ; θ) = g(T (x) ; θ)h(x). (2.10)

For example, for a one-dimensional Poisson distribution with unknown mean
θ , if we draw a sample x formed by n iid observations, it is possible to write the
probability function as:

f (x ; θ) =
n∏

i=1

f (xi ; θ) =
n∏

i=1

e−θ θxi

xi ! = e−nθ θ
∑n

i=1 xi∏n
i=1 xi ! = g(T (x) ; θ)h(x),

(2.11)

where g(T (x) ; θ) = e−nθ θ
∑n

i=1 xi and h(x) = (∏n
i=1 xi !

)−1. So, from the
factorization theorem, T (x) =∑n

i=1 xi is a sufficient statistics for θ .

2.2.2 Definition and Properties

The exponential family is a parametric family with PDF f (x ; θ) that can be written
in the form

f (x ; θ) = h(x)e
∑k

i=1 ηi (θ)ti (x)−B(θ), (2.12)

where h(x) ≥ 0 and η1, η2, · · · , ηk are called natural parameters.
Many of the well-known distributions, such as Poisson, beta, and binomial, are

members of the exponential family, i.e., their respective PDFs can be expressed
in the form of (2.12). Let us verify if the binomial distribution belongs to the
exponential family:

f (x ;p) =
(
n

x

)
px(1 − p)n−x

=
(
n

x

)
(1 − p)n

(
p

1 − p

)x

12 2 Fundamentals of Statistical Inference

=
(
n

x

)
en log(1−p)e

x log p
1−p

= h(x)eη1(p)t1(x)−B(p), (2.13)

where h(x) = (n
x

)
, B(p) = −n log(1 − p), t1(x) = x, and η1(p) = log p

1−p
.

Now, from (2.12) and assuming we have n independent observations, we have

f (x ; θ) =
n∏

j=1

h(xj)e
∑k

i=1 ηi (θ)ti (xj)−B(θ)

=
n∏

j=1

(
h(xj)

[
e
∑k

i=1 ηi (θ)
∑n

j=1 ti (xj)−nB(θ)
])

. (2.14)

In the context of Theorem 2.2, we have

h(x) =
n∏

j=1

h(xj), (2.15)

g(t (x) ; θ) = e
∑k

i=1 ηi (θ)
∑n

j=1 ti (xj)−nB(θ)
, (2.16)

which implies the sufficient statistics1 T (x) = (
∑n

j=1 t1(xj), · · · ,∑n
j=1 tk(xj)).

This result is extremely important, since it gives us a formula to compute the
sufficient statistics for a large family of important distributions. The exponential
family also provides two equations that allow us to compute derivatives instead of
integrations [2], by changing the expected value (which is an integration) for usually
easier operations:

E

[
k∑

i=1

∂ηi(θ)

∂θj
ti(x)

]
= ∂B(θ)

∂θj
, (2.17)

Var

[
k∑

i=1

∂ηi(θ)

∂θj
ti(x)

]
= ∂2B(θ)

∂θ2
j

− E

[
k∑

i=1

∂2ηi(θ)

∂θ2
j

ti(x)

]
, (2.18)

∀j ∈ {1, 2, · · · , d}.

1In the case of exponential family, it is also known as natural sufficient statistics.

2.3 Information Measures 13

2.3 Information Measures

How much information does a data set gives us about the parameters of our
model? How much information may a random variable carry? How do we measure
the amount of information gained from observing a random variable? What does
information mean? Information theory answers those questions and its concepts
are of fundamental importance to ML and, more generally, to information systems,
whether they be for quantification, storage, or communication.

In this section, we briefly present some of the fundamental notions of information
theory as well as different measures of information that will be needed along book.

2.3.1 Fisher Information

The Fisher information measures the variance in the distribution f (x ; θ) inflicted
by changes in the parameter space �. Intuitively, it quantifies the amount of
information about θ that lies in the random variable X.

For the k-dimensional parameter space � and random variable X with PDF
f (x ; θ), the elements of the Fisher information matrix are

Ii,j (θ) = Cov

(
∂

∂θi
log f (X ; θ),

∂

∂θj
log f (X ; θ)

)
, (2.19)

where Cov (·, ·) is the covariance function.
The vector ∂

∂θ
log f (X ; θ) is called the score function and indicates the sensitiv-

ity of the likelihood to the parameter θ . When a likelihood L(θ | x), corresponding
to the PDF f (x ; θ), is very sensitive to variations in θ it is easier to find strong
candidates to the true parameter value: even small changes in θ are enough to
cause the likely observations to be considerably different. However, since the score
function has mean equal to zero [9], a high Ii,j (θ) implies that the score function
is generally high and then, X distinguishes well the plausible values of θ . We state
“generally” because, being the covariance of the score, the Fisher information is an
expectation over all possible values of x.

The Fisher information encodes the curvature of the parameter space and plays
an important role in optimization. In Chap. 4 we shall see one method that relies on
the Fisher information and in Appendix A.4 we show that the Fisher matrix is the
negative of the expected value of the Hessian of the log-likelihood.

14 2 Fundamentals of Statistical Inference

2.3.2 Entropy

Entropy is a nonnegative measure of the expected information content of a random
variable. The information content quantifies how surprising a particular outcome is:
the less probable is the event, the more informative it is. If an event has probability
0 or 1, its observation (or lack thereof) is not surprising at all and it does not provide
us any additional information. On the other hand, if an event is very unlikely and
yet it happens, then such observation brings a lot of valuable information.

As hinted, the information content depends on the probability of a particular
event and, hence, the entropy depends on the random variable’s probability dis-
tribution. For a discrete random variable with probability mass function p(x), the
information content of an observation x is

h(x) = − logp(x). (2.20)

Thus, the entropy being the expected information content of a random variable is
defined as

H(X) = −
∑
i

p(xi) logp(xi) = EX

[− logp(x)
]
. (2.21)

If the probability distribution is flat, all events are equally probable and we cannot
be sure of any particular outcome, so the entropy is at its maximum.

2.3.2.1 Conditional Entropy

The conditional entropy quantifies the remaining amount of entropy present on
the random variable X when Y is known. If both variables are independent, then
information about one should not affect our knowledge about the other. Thus, the
conditional entropyH(X |Y) should equalH(X).

We define the conditional entropy as the expected information content of X |Y
under the joint distribution p(x, y), that is

H(X |Y) = −
∑
i,j

p(xi, yj) log
p(xi, yj)

p(yj)
= EX |Y

[− logp(x | y)]. (2.22)

2.3.2.2 Differential Entropy

Originally, Claude Shannon defined entropy in the context of message symbols
in communication theory [10], which are inherently discrete. The entropy of
the discrete random variable Y whose probability mass function infinitesimally
approximates the PDF f (x) of a continuous random variable X is given by

2.3 Information Measures 15

lim
εi→0
H(X) = −

∑
i

f (xi)εi log (f (xi)εi)

= −
∑
i

f (xi)εi log f (xi) −
∑
i

f (xi)εi log εi

= −
∫

f (x) log f (x)dx − log εi

∫
f (x)dx

= −
∫

f (x) log f (x)dx + lim
εi→0

− log εi (2.23)

= −
∫

f (x) log f (x)dx + ∞, (2.24)

where εi is the width of the ith discretized segment.
The Shannon entropy diverges and for continuous distributions we offset the limit

in (2.24) by limεi→0 log εi = −∞. The continuous extension, named differential
entropy, is not a direct equivalent to Shannon’s entropy and does not share some of
its original properties, e.g., nonnegative values, though the formulas look similar.
Let f (x) be the pdf of the continuous random variable X, then

H(X) = −
∫

f (x) log f (x)dx = EX

[− log f (x)
]
. (2.25)

Throughout the remaining chapters we shall write entropy for both Shannon and
differential entropy. The context will be clear in both cases since the former refers
to discrete random variables and the latter to continuous ones.

Despite the divergence, when dealing with difference of entropies in the contin-
uous case, the terms limεi→0 − log εi cancel, and then the divergence disappears.
In the next sections we will present other information measures that are based on
difference of entropies, and can be applied for discrete and continuous random
variables in the same way.

2.3.3 Kullback-Leibler Divergence

Unlike the information measures seen so far, the Kullback-Leibler (KL) divergence
is a relative measure in that it assesses the dissimilarity between two distributions
p(x) and q(x) over the same random variable X by

DKL (p‖q) =
∫

p(x) log

(
p(x)

q(x)

)
dx. (2.26)

16 2 Fundamentals of Statistical Inference

Alternatively, we can write the KL divergence as

DKL (p‖q) = Hq(p) −H(p), (2.27)

whereH(p) is the entropy when the random variable’s probability distribution is p

andHq(p) is the cross-entropy between p and q given by

Hq(p) = −
∫

p(x) log q(x)dx. (2.28)

While the entropyH(p) gives us the expected message length necessary to trans-
mit the information content present in the random variable X whose distribution is
given by p(x), the cross-entropy Hq(p) gives us the expected message length to
transmit X when assuming the incorrect distribution q(x) [3]. In that sense, from
(2.28) we can understand the KL divergence as a measure of the expected additional
length caused by using q instead of p. Hence, it cannot be negative nor symmetric
and the definition in (2.26) complies to these constraints.

Since the argument of the log in the KL divergence is a ratio between distribu-
tions, the quantity is well-defined for continuous random variables. Moreover, it is
invariant to affine transformations. However, the distributions p and q must have
the same support, that is, they must be defined over the same set of events. Indeed,
it does not make sense to compare distributions otherwise.

2.3.4 Mutual Information

The mutual information I (X;Y) can be defined as the complement of the con-
ditional entropy H(X |Y) relative to the entropy H(X) as illustrated in Fig. 2.2.
Thus, mutual information quantifies the expected reduction in uncertainty about X
that comes from observing Y . It is a measure of the common information between
X and Y . Hence, it is a property of their joint distribution.

Let p(x) and p(y) be the marginal distribution of X and Y , respectively, and
p(x, y) their joint distribution. Then, the mutual information is

I (X;Y) = DKL (p(x, y)‖p(x)p(y)). (2.29)

Fig. 2.2 Relationship
between joint information,
marginal entropy, conditional
entropy, and mutual
information

H(X,Y)

H(X)

H(Y)

H(Y |X)I(X ;Y)H(X |Y)

2.4 Bayesian Inference 17

Note that (2.29) is the KL divergence between p(x, y) and the product of their
marginals p(x)p(y). We can understand I (X;Y) as the information cost, i.e., the
extra number of bits, of encoding the pair (X, Y) as independent. If the variables are
actually independent, then I (X;Y) = 0.

2.4 Bayesian Inference

Bayesian probability inherits its name from the Bayes rule:

p(z |X) = p(x |Z)p(z)

p(x)
. (2.30)

Although such equation is valid for whatever events z and x may represent, we
consider a common case of ours where Z is the set of unknown random variables
specifying our model and X = x the observed data corresponding to the real-world
process.

In the above expression each term has a clear interpretation:

• p(z)—the prior—it encodes into the model any prior belief or domain knowl-
edge we might possess. In case one does not know anything about the problem
at hand then one might use non-informative priors [2];

• p(x |Z)—the likelihood—already seen in Sect. 2.1.5, it is the density function
of the probability with respect to the parameters and not to the possible events.
Intuitively, it measures how likely is the observed data given the model.

• p(z |X)—the posterior—its name reflects the fact that our knowledge about
the parameters is updated after accounting for our (new) data, thus it is the
probability of z conditioned on such evidence;

• p(x)—the evidence—as hinted above, the term refers to the observable data and
this distribution works as a normalizing factor equal to

∫
p(x |Z)p(z)dz so that

the posterior corresponds to a proper probability distribution.

2.4.1 Bayesian vs. Classical Approach

The existence of a prior and a posterior distribution are inherent to the Bayesian
framework, in which the parameters and other unknowns are seen not as fixed but
as random variables. Thus, all unknown quantities are treated equally and there is
no distinction among them.

18 2 Fundamentals of Statistical Inference

The Bayesian view is an interpretation of probability itself and its meaning.
While frequentists2 see it as the relative frequency of an event, Bayesians see it
as quantification of a belief.

Under a statistically large data set, the Bayesian posterior becomes asymptoti-
cally narrow and similar to the likelihood. Intuitively, this behavior makes sense:
the evidence provided by the observed data becomes so strong that the effect of the
prior knowledge is practically irrelevant. In those scenarios, Bayesian and classical
approaches give comparable results. One may then question what is the advantage
of being Bayesian if the results end up being similar. The catch here are the words
“asymptotically” and “statistically large.” Bayesian modeling really shines when
data is limited and traditional methods are prone to overfitting, the uncertainty in
the parameters is significant in these cases [1]. The recent revolution in ML relies
on very large data sets. However, these data sets still are statistically small, e.g.,
although the ImageNet data set [4] has more than 14 million images, there are
virtually infinite possible configurations for all the object classes appearances in an
image. Therefore, the scientific community has been actively researching Bayesian
inference methods that scale well to large data sets.

2.4.2 The Posterior Predictive Distribution

A Bayesian treatment consists of computing the full posterior distribution p(z |X)

instead of only point estimates, therefore the importance of the normalizing constant
in (2.30), the evidence

∫
p(x |Z)p(z)dz. Both distributions allow us to produce

point or interval estimates of the latent variables and construct predictive densities
for new data. For example, at test time we compute the posterior predictive
distribution over the new datum x′:

p(x′ | x) =
∫

p(x′ |Z)p(z |X = x)dz . (2.31)

Intuitively, we compute the probability of x′ for each setting of the random variable
Z taking into account the probability of z itself as given by the learned posterior
p(z |X).

As one might already imagine, in Bayesian analysis integration is the central
operation. However, this frequently leads to intractable solutions, either due to the
high dimensionality that renders computation unfeasible in a viable time, or to the
nonexistence of a closed-form analytical solution. In Sect. 3.2 we go through some
approximate methods that deal with this issue and in Chap. 4 we discuss algorithms

2Frequentism is the classical approach to probability, for which the probability of an event is only
meaningful in the limiting case of infinite measurements.

2.5 Conjugate Prior Distributions 19

μ θ X

Fig. 2.3 Hierarchical Bayes model of 3 stages. X is an observed random variable, θ is an
unknown parameter governing its generation process, and μ a hyper-parameter that determines
the distribution of the random variable θ

for performing Bayesian regression in deep neural networks (a class of parametric
models).

2.4.3 Hierarchical Modeling

Bayesian models may be further decomposed into a sequence of conditional
distributions spanning multiple levels following a hierarchical structure. Bayesian
hierarchical models then have multiple levels of hyper-parameters which set the
prior distribution of downstream stages and hyper-priors that define the correspond-
ing distributions. In the example of Fig. 2.3, μ is a hyper-parameter since θ is
already a parameter that influences the distribution of the observations X. If we
define a distribution for μ, we are defining a hyper-prior, and if we want to take
this distribution into consideration in the inference process, by marginalizing μ, we
are performing a fully Bayesian approach. On the other hand, if we define a point
value for μ by maximizing its likelihood determined by the observations, we are
doing empirical Bayes. In Chap. 4, we will use hierarchical modeling to develop the
Probabilistic Backprop.

2.5 Conjugate Prior Distributions

2.5.1 Definition and Motivation

In Sect. 2.2, we presented particular characteristics of the exponential family and
the advantages of using PDFs from this family. Resorting to the previous section,
in Bayesian theory, the prior knowledge of a parameter is used alongside some
experiments to update that parameter’s beliefs. Mathematically speaking, we have

p(z |X) ∝ p(x |Z)p(z). (2.32)

So, one can choose the prior distribution to maintain the posterior distribution in
the same family. When p(z |X) and p(z) are in the same family of distributions, we
say that p(z) is a conjugate prior distribution for the likelihood function p(x |Z). In
that manner, using conjugate priors can save a lot of time as it is only necessary to

20 2 Fundamentals of Statistical Inference

compute the updated parameters and not the entire distribution. Although conjugate
prior distributions offer a more straightforward way to calculate the posterior, it
is essential to choose a prior that can represent your beliefs about the unknown
parameters.

2.5.2 Conjugate Prior Examples

For the first example on conjugate priors, we will show the thought process used to
compute them. Let us suppose we have a Normal distribution with known variance
σ and unknown mean μ:

p(x |μ) = 1√
2πσ 2

e
− 1

2

(
x−μ
σ

)2

. (2.33)

Then, considering n iid observations:

p(x |μ) =
n∏

i=1

p(xi |μ)

=
n∏

i=1

1√
2πσ 2

e
− 1

2

(
xi−μ

σ

)2

=
(

2πσ 2
)− n

2
e
− 1

2

∑n
i=1

(
xi−μ

σ

)2

. (2.34)

Using this result in (2.32), the posterior can be written as

p(μ |X) ∝ p(μ)
(

2πσ 2
)− n

2
e
− 1

2

∑n
i=1

(
xi−μ

σ

)2

. (2.35)

Now, we can notice that the factor that influences the μ parameter is an
exponential with both terms μ2 and μ, and then, the posterior will also have both
terms. Thus, the conjugate prior must have both terms, which indicates that it must
also be a Normal distribution. Supposing it is a Normal distribution with mean μ0
and variance σ0, we have

p(μ |X) ∝ p(μ)
(

2πσ 2
)− n

2
e
− 1

2

∑n
i=1

(
xi−μ

σ

)2

∝ 1√
2πσ 2

0

e
− 1

2

(
μ−μ0
σ0

)2 (
2πσ 2

)− n
2
e
− 1

2

∑n
i=1

(
xi−μ

σ

)2

2.5 Conjugate Prior Distributions 21

∝ e
− 1

2

[
μ2
(

1
σ2

0
+ n

σ2

)
−2μ

(
μ0
σ2

0
+ nx̄

σ2

)]

. (2.36)

In the last step of (2.36) we first ignored every term not related to μ as they
are constant and grouped the remaining terms with either μ2 or μ. At this point,

we want to write p(μ |X) also as a Normal distribution of the form N
(
μp, σ

2
p

)
.

Therefore,

p(μ |X) ∝ e
− 1

2

[
μ2
(

1
σ2

0
+ n

σ2

)
−2μ

(
μ0
σ2

0
+ nx̄

σ2

)]

=
(

2πσ 2
p

)− 1
2
e
− 1

2

(
μ−μp
σp

)2

∝ e
− 1

2

[
μ2 1

σ2
p

−2μ
μp

σ2
p

]

. (2.37)

Which implies that

σ−1
p =

(
1

σ 2
0

+ n

σ 2

)
, (2.38)

μp = μ0 + nx̄

σ 2 + nσ 2
0

. (2.39)

This process looks long and not as a simple way to compute the posterior, but the
alternative method involves integrations that usually leads to a longer path.

Next, we give another example that will be quite useful in Chaps. 3 and 4. Instead
of figuring out the conjugate prior, we will only prove that the Gamma distribution
is a conjugate prior for the Gaussian distribution with known mean and unknown
precision (the inverse of its variance 1/σ 2), that is

p(x | λ) =
n∏

i=1

N
(
x |μ, λ−1

)
=
(

λ

2π

) n
2

e− λ
2

∑n
i=1(xi−μ)2

, (2.40)

p(λ, α0, β0) = β
α0
0 λα0−1e−β0λ

�(α0)
∝ λα0−1e−β0λ. (2.41)

Therefore, from (2.32), we have

p(λ |X) ∝ λα0−1e−β0λ

(
λ

2π

) n
2

e− λ
2

∑n
i=1(xi−μ)2

∝ λα0−1+ n
2 e

−λ
(

1
2

∑n
i=1(xi−μ)2+β0

)

22 2 Fundamentals of Statistical Inference

= Ga

(
λ

∣∣∣∣∣α0 + n

2
,

1

2

n∑
i=1

(xi − μ)2 + β0

)
. (2.42)

From (2.42) we see the influence of the parameters α0 and β0 on the posterior. It
is as if we had already collected 2α0 observations with sample variance β0/α0.

2.6 Point Estimation

A point estimation is the process of identifying the single value that corresponds
to the “best possible guess” of some unknown desired quantity from the sample
data. The quantity could be a parameter, a function or the future value of a random
variable. We consider the function of the sample to be the estimator and the estimate
to be the actual value when a sample is taken.

In this section, we briefly review the most common methods of point estimation,
some of which are later used in the book.

2.6.1 Method of Moments

The method of moments is straightforward. It relies on solving the system of
equations that results from “matching,” that is, equating, the sample moments
{mi}ki=1 to the population moments {μi}ki=1. The latter typically are functions of
the sought parameters {θi}ki=1. Then, we have k equations:

⎛
⎝mi = 1

n

n∑
j=0

Xi
j

⎞
⎠ =

(
E

[
Xi
]

= μi

)
,∀1 ≤ i ≤ k. (2.43)

Since this technique consists on matching moments of distributions, it is also
called moment matching. We will use it for approximate inference in Sects. 3.2.2
and 3.2.3, which will in turn be quite useful in Chap. 4. As we shall see,
it is advisable to use similar distributions when matching moments, otherwise
computability is seriously compromised.

2.6.2 Maximum Likelihood Estimation

Maximum Likelihood Estimator (MLE) relies on the maximization of the likelihood
function, that is, finding the single parameter value for which the observable data is
more likely. We assume data is iid givenZ so p(x |Z) factorizes as follows:

2.6 Point Estimation 23

zMLE = argmax
Z

p(x |Z)

= argmax
Z

∏
i

p(xi |Z)

= argmax
Z

∑
i

logp(xi |Z) . (2.44)

The last equality holds as the log is a monotonically increasing function and
therefore the optimization problem is equivalent.

This method obtains a point estimate for the parameters (corresponding to the
maximum) and boasts parameter transformation invariance and ease of calculation.
On the other hand, it loses the variability information we previously discussed and
is prone to overfitting, though asymptotically optimal.

2.6.3 Maximum a Posteriori Estimation

Maximum a posteriori (MAP) estimation performs the maximization of the a
posteriori function p(z |X) defined in Eq. (2.30). From an optimization perspective
with respect to the parameters, the evidence is fixed so we can ignore it. Therefore,
one may write that:

ZMAP = argmax
Z

p(z |X)

= argmax
Z

p(x |Z)p(z)

p(x)

= argmax
Z

(p(x |Z)p(z))

= argmax
Z

([∏
i

p(xi |Z)

]
p(z)

)

= argmax
Z

log

([∏
i

p(xi |Z)

]
p(z)

)

= argmax
Z

(∑
i

logp(xi |Z) + logp(z)

)
. (2.45)

The MAP forcefully regards Z as a random variable since it also takes into
consideration the prior, which is a proper probability density of Z. The MAP arrives
at a different solution from the MLE, as illustrated in Fig. 2.4. The formula in (2.45)
is a common utility function in ML algorithms, e.g., in neural networks the second

24 2 Fundamentals of Statistical Inference

Fig. 2.4 The solutions for
the MLE and MAP are
different in general. As more
data is gathered, the
likelihood becomes
expressive and the posterior
shifts towards it

xMLExMAP

Prior
Likelihood
Posterior

term is known as the regularizer and if we take the prior as a standard Gaussian
distribution the term reduces to �2 regularization.

Even though this approach has a more Bayesian feeling to it, the MAP estimation
still is a point estimate and we may wish instead the whole probability distribution.
Furthermore, its results are not invariant to parameter transformations, which is
undesired because we would like to always arrive at the same point, the equivalent
solution.

2.6.4 Bayes Estimation

The full Bayesian estimation is inherently different from the previous approaches
where we had an ad-hoc formula to compute the point value. Similarly to the MAP
estimator, the procedures start by defining the prior distribution p(z) for the random
variable Z we wish to infer. However, we take the marginal distribution p(x) into
account, so that we obtain the complete posterior distribution p(z |X) instead of a
single point inZ.

Naturally, the problem of selecting the best suitable point in Z arises. To solve
such matter, Decision Theory defines the concept of risk R of an estimator δ, which
is the expected value of a loss function L(δ, Z) w.r.t. the posterior distribution
p(z |X). We thus write

R(δ) = EZ |X [L(δ, Z)]. (2.46)

The minimization of the risk R(δ) leads to the estimator δ whose realizations
correspond to the suitable point estimates inZ. The choice of loss function depends
on the characteristics of the problem: are large errors just as bad as small ones or
considerably worse? Design questions such as this result in different estimators, for
example:

2.6 Point Estimation 25

• The quadratic loss L(δ, Z) = (δ(X) − Z)2 leads to the mean of posterior
distribution;

• The absolute loss L(δ, Z) = |δ(X) − Z| leads to the median of posterior
distribution;

• The 0 − 1 loss L(δ, Z) = 1{δ:|δ(X)−Z|>ε}3 leads to the mode of posterior
distribution, just as the MAP;

2.6.5 Expectation-Maximization

The Expectation-Maximization (EM) is an iterative algorithm that attempts to find
the MLE of a parameter θ . The method casts the optimization problem of finding
the maximum of a function as a sequence of two simpler problems involving
expectation and maximization, which are performed interchangeably at each step.
The algorithm excels at handling missing data, what often makes computation
difficult, and is widely used in computational statistics.

We can write a distribution f (x; θ) as the marginal of a “complete-data”
distribution f (x, z; θ) by

f (x; θ) =
∫

f (x, z; θ)dz, (2.47)

where Z is an unobserved random variable, thus constituting the missing data.
Through the induced conditional distribution h(z |X, θ), we write

logh(Z |X, θ) = log f (X, z; θ) − log f (X; θ). (2.48)

We can take the expectation over the unobserved Z,
(
Z |X; θ(0)

)
, in (2.48) and

rearrange to obtain

log f (X; θ) = EZ

[
log f (X,Z; θ) |X, θ(0)

]
− EZ

[
logh(Z |X, θ(0))

]
. (2.49)

The second term of the right-hand side of (2.49) may be ignored for the optimiza-
tion of f (X; θ) and it suffices to maximize the term EZ

[
log f (X,Z; θ) |X, θ(0)

]
.

Thus, we break the computation down into two steps

1. E-step: Q(θ | θ(r), X) = EZ

[
log f (X,Z; θ) |X, θ(r)

]
;

2. M-step θ(r+1) = argmaxθ Q(θ | θ(r), X).

31(·) is the indicator function, in this case we have L(δ, Z) = 1 if |δ(X) − Z| > ε, and equals to
0, otherwise.

26 2 Fundamentals of Statistical Inference

The E-step computes the expectation of the log function over the missing data Z

considering the observed data X and θ(r) fixed. The “M-step” finds the maximum
w.r.t. θ .

Although we have deliberately ignored a term in (2.49), the algorithm is guaran-
teed to improve the parameter’s estimation at every iteration. We prove this property
by showing that EZ

[
log f (X,Z; θ) |X, θ(r+1)

] ≥ EZ

[
log f (X,Z; θ) |X, θ(r)

]
and EZ

[
logh(Z |X, θ(r+1))

] ≤ EZ

[
logh(Z |X, θ(r))

]
. The former is guaranteed

by construction through the M-step that maximizes that function. The latter we see
by noting that

EZ

[
logh(Z |X, θ(r+1)) |X, θ(r)

]
≤ EZ

[
log h(Z |X, θ(r)) |X, θ(r)

]

⇐⇒ EZ

[
log

h(Z |X, θ(r+1))

h(Z |X, θ(r))
|X, θ(r)

]
≤ 0

⇐⇒ EZ

[
log

h(Z |X, θ(r+1))

h(Z |X, θ(r))
|X, θ(r)

]
≤ logEZ

[
h(Z |X, θ(r+1))

h(Z |X, θ(r))
|X, θ(r)

]

⇐⇒ EZ

[
log

h(Z |X, θ(r+1))

h(Z |X, θ(r))
|X, θ(r)

]
≤ log

∫
h(Z |X, θ(r+1))

h(Z |X, θ(r))
h(Z |X, θ(r))dZ

⇐⇒ EZ

[
log

h(Z |X, θ(r+1))

h(Z |X, θ(r))
|X, θ(r)

]
≤ log(1) = 0, (2.50)

where in the third step of Eq. (2.50) we applied the Jensen inequality as log(x) is
concave.

At the first iteration, any guess about θ is enough to get the algorithm started.
Usually, we run the method multiple times from different random starting points θ(0)

to mitigate the local-optimum issue inherent to multi-modal problems. While good
guesses enable faster convergence, bad guesses may lead to slower convergence
or local optima. The algorithm itself is generally slow with the E-step being the
bottleneck, getting slower with higher dimensionality. Besides, the more missing
data one has, the more expectations one must take and the slower the method gets.

In spite of the aforementioned disadvantages, the EM method is very useful and
employed in a number of different cases where computation of the MLE (or MAP)
may be difficult:

• Mixture of distributions;
• Non-conjugate prior;
• Missing or unobserved data;
• Discrete, continuous, or mixed data.

2.6 Point Estimation 27

2.6.5.1 EM Example

Since the EM has a strong numerical component, we see fit to illustrate with it an
example.

Suppose a factory produces n different products. Let Yi be the count of registered
malfunctioning items of the product i and the root cause for the defects be impurities
in the raw materials Xi used for each i, which naturally occurs at rate τi . We assume
the manufacturing process affects all materials equally through the factor β.

The directors of the factory are doubting the quality of their machinery and
have seen a study setting standards for the parameter β of a factory. Hence, they
want to estimate the efficiency of their own factory to decide whether they should
invest in new equipment. Unfortunately, measuring which raw materials are below
the required purity level is an expensive procedure and due to budget reasons it is
only possible to perform the chemical analysis a small number of times m < n.
Moreover, not all products have records of the malfunctioning items. Nonetheless,
the directors demand a thorough report.

Although we could simply ignore all products for which we do not possess either
raw impurity measure or malfunctioning records, the directors would not accept
that. Thus, to overcome the missing data, we use the EM algorithm.

We model the counting of malfunctioning items Yi and the counting of impure
materials Xi as two Poisson processes, like

Xi ∼ Poisson(τi) (2.51)

Yi ∼ Poisson(βτi). (2.52)

The complete likelihood is given by

f (x, y |β, τ) =
n∏

i=1

(
e−τi τ

xi
i

xi !

)(
e−βτi (βτi)

yi

yi !
)
. (2.53)

For simplicity, we consider m = n − 1, with x1 missing. Also, suppose unavail-
able the record of defective items yn. We write the incomplete-data likelihood as

f (x−1, y |β, τ) =
n∏

i=2

(
e−τi τ

xi
i

xi !

)
n−1∏
i=1

(
e−βτi (βτi)

yi

yi !
)
. (2.54)

As in Eq. (2.48), defining the conditional h(x1, yn | x−1, y−n; θ), where θ =
(β, τ), we write

h(x1, yn | x−1, y−n; θ) = f (x, y; θ)

f (x−1, y−n; θ)

⇒ log f (x−1, y−n; θ) = log f (x, y; θ) − logh(x1, yn | x−1, y−n; θ)

28 2 Fundamentals of Statistical Inference

⇒ log f (x−1, y−n; θ) = EX1,Yn

[
log f (x, y; θ) | x−1, y−n; θ

]

− EX1,Yn

[
logh(x | y; θ) | x−1, y−n; θ

]
.

(2.55)

The EM algorithm allows us find the most suitable θ by taking expectations and
maximizing (log f (x, y; θ) | x−1, y; θ). First, we compute the analytical formula for
the expected complete-data log-likelihood as

EX1,Yn

[
log f (x, y; θ) | x−1, y−n; θ

]

=
n−1∑
i=1

[−βτi + yi(logβ + log τi) − log yi !
]+

n∑
i=2

[−τi + xi log τ − log xi !
]

+
∞∑

x1=0

[−τ1 + x1 log τ1 − log x1!
] e−τ

(r)
1 (τ

(r)
1)x1

x1!

+
∞∑

yn=0

[−βτn + yn logβτn − log yn!
] e−βτ

(r)
n (βτ

(r)
n)yn

yn!

=
(

n∑
i=1

[
yi(logβ + log τi) − βτi

]+
n∑

i=2

[
xi log τi − τi

]

+
∞∑

x1=0

[
x1 log τ1 − τ1

] e−τ
(r)
1 (τ

(r)
1)x1

x1!

⎞
⎠−

(
n−1∑
i=1

log yi ! +
n∑

i=2

log xi !

+
∞∑

yn=0

log yn!e
−βτ

(r)
n (βτ

(r)
n)yn

yn! +
∞∑

x1=0

log x1!e
−τ

(r)
1 (τ

(r)
1)x1

x1!

⎞
⎠ . (2.56)

Since we compute the expectation only to be able to maximize it w.r.t. θ , we can
ignore all terms not involving θ , i.e., the second set of parentheses in (2.56). Taking
the derivatives w.r.t. θ and computing the MLEs lead to

β̂(r+1) = β̂(r)τ̂
(r)
n +∑n−1

i=1 yi∑n
i=1 τ̂

(r)
i

= β̂(r)τ̂
(r)
n +∑n−1

i=1 yi

τ̂
(r)
1 +∑n

i=2 xi
, (2.57)

τ̂1
(r+1) = τ̂1

(r) + y1

1 + β̂(r+1)
, (2.58)

τ̂ (r+1)
n = xn + β̂(r)τ̂

(r)
n

1 + β̂(r+1)
, (2.59)

2.6 Point Estimation 29

τ̂i
(r+1) = xi + yi

1 + β̂(r+1)
∀i �= 1, n. (2.60)

The second equality in (2.57) comes from summing (2.58)–(2.60) and substitut-
ing β̂(r+1) by (2.57), like

n∑
i

τ̂ (r+1) = y1 + xn + τ̂
(r)
1 + β̂(r)τ̂

(r)
1 +∑n−1

i=2 xi +∑n−1
i=2 yi

β̂(r+1) + 1

=
∑n

i=2 xi +∑n−1
i=1 yi + τ̂

(r)
1 + β̂(r)τ̂

(r)
1∑n−1

i=1 yi +∑n
i=1 τ

(r)
i + β̂(r)τ̂

(r)
n

n∑
i

τ̂ (r+1)

⇒
n∑

i=1

τ
(r)
i =

n∑
i=2

xi + τ̂
(r)
1 . (2.61)

Note that the formulas for τ1 and τn, i.e., (2.58) and (2.59), respectively, are
similar to the general formula (2.60) for τi ∀i �= i, n. When the observation is
unavailable, we replace it by the mean of the corresponding random variable, which
is the rate of Poisson process.

Iterating over Eqs. (2.57)–(2.60) will lead to the stationary point, which must
satisfy

β̂ = β̂τ̂n +∑n−1
i=1 yi

τ̂1 +∑n
i=2 xi

, τ̂1 = τ̂1 + y1

1 + β̂
, τ̂n = xn + β̂τ̂n

1 + β̂
, τ̂i = xi + yi

1 + β̂
∀i �= 1, n.

(2.62)

After solving the set of equations, we arrive at

β̂ =
n−1∑
i=1

yi

/
n−1∑
i=1

xi , (2.63)

τ̂1 = y1/β̂, (2.64)

τ̂n = xn, (2.65)

τ̂i = xi + yi

1 + β̂
∀i �= 1, n, (2.66)

which we also achieve by computing the MLE from the incomplete-data likelihood
(2.54).

In this simple example, as just pointed out, we could have found the estimates of
θ directly from (2.54). However, this is not usually the case in real scenarios.

30 2 Fundamentals of Statistical Inference

2.7 Closing Remarks

In this chapter we skimmed through the some of the essentials of statistical infer-
ence. Specifically, we focused on parametric models and discussed the exponential
family of distributions. For the inference portion, we saw common point estimation
methods, i.e., Maximum Likelihood Estimator (MLE), Maximum a posteriori
(MAP) and method of moments. Also, we introduced the Expectation-Maximization
(EM) algorithm, which we will revisit in Chap. 3. Of fundamental importance for
the approximation methods of Chap. 3 is the KL divergence between distributions
that we interpreted as the extra cost for transmitting information under the wrong
model.

As we have already pointed out, having a good understanding of this subject
is paramount for those who wish to work on any ML-related field. Otherwise, all
methods will seem mysterious recipes and problem-solving will resemble alchemy.
Good comprehensive resource on statistics and statistical inference include [2, 8,
11].

References

1. Bishop CM (2013) Model-based machine learning. Philos Trans R Soc A: Math Phys Eng Sci
371(1984):1–17

2. Casella G, Berger RL (1990) Statistical inference. Wadsworth and Brooks/Cole, Pacific Grove,
CA

3. Cover TM, Thomas JA (2006) Elements of information theory. Wiley-Interscience, New York
4. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical

image database. In: IEEE conference on Computer vision and pattern recognition, 2009. CVPR
2009. IEEE, New York, pp 248–255

5. Diaconis P, Freedman D (1980) Finite exchangeable sequences. Ann Probab 8(4):745–764
6. Ghahramani Z (2013) Bayesian non-parametrics and the probabilistic approach to modelling.

Philos Trans R Soc A: Math Phys Eng Sci 371
7. Migon HS, Gamerman D, Louzada F (2014) Statistical inference: an integrated approach. CRC

Press, Boca Raton
8. Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge
9. Schervish MJ (1996) Theory of statistics. Springer, New York

10. Shannon CE, Weaver W (1963) A mathematical theory of communication. University of
Illinois Press, Champaign, IL

11. Wasserman L (2010) All of statistics: a concise course in statistical inference. Springer
Publishing Company, Incorporated, New York

Chapter 3
Model-Based Machine Learning and
Approximate Inference

By the end of this chapter, the reader should:

• Understand the various advantages of the model-based approach,
• Discern the benefits and issues of Bayesian inference,
• Be capable of understanding and implementing variational Bayes and expectation

propagation,
• Understand the mean-field approximation,
• Comprehend the relations between the different variational methods,
• Know the modern landscape of stochastic and black-box inference methods.

3.1 Model-Based Machine Learning

Model-Based Machine Learning (MBML) aims at providing a specific solution for
each application. It encodes the set of assumptions for a given application explicitly
in the model. Consequently, we are able to create a wide range of highly tailored
models under a single development framework.

The clear picture of what is the model decouples the model structure from
the learning (inference) algorithm. This segregation allows their independent for-
mulation and the application of the same inference method to different models
and vice versa, generating a large number of possible combinations. The unified
framework facilitates rapid prototyping and comparison, allowing the derivation
of many traditional ML techniques as special cases of certain model-inference
configurations (see examples in Sect. 3.1.1).

One might question why do we want to infer probability distributions or even
what are the advantages over something simpler such as point estimates, which are
single values that already give us answers. The problem in considering only the
most likely solution comes from losing information of the underlying variability and
robustness of the model. Let us consider a trivial example to illustrate this issue:

© Springer Nature Switzerland AG 2021
L. P. Cinelli et al., Variational Methods for Machine Learning with Applications to
Deep Networks, https://doi.org/10.1007/978-3-030-70679-1_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70679-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-70679-1_3

32 3 Model-Based Machine Learning and Approximate Inference

Example An ambulance must take a dying person to the nearest hospital, and there
are two possible routes, A and B. A takes about 15 min, while B, 17. Which
one should the driver choose? Now, the driver further considers that the patient
must get to the hospital within 20 min and A consists of regular urban streets with
semaphores and possible traffic jams and that his predicted travel time may vary
up to eight minutes, whereas B is an express lane for medical emergencies and the
estimated time varies by no more than one minute. Would the choice still be the
same?

The highlighted keywords above give us a sense of the intrinsic variability in
our problem, and disregarding that information may be misleading. In the above
example, it is clear that the average time is not sufficient information and that the
uncertainty is critical for making a more conscious decision. Probability theory
provides a principled framework for modeling uncertainty. As seen in our example,
probabilistic models allow us to reason and perform decision-making, anticipate
the future and plan accordingly, and detect unexpected events, among others; all by
learning probability distributions of the data. Not only we can understand almost all
ML through probabilistic lenses but also connect it through this perspective to every
other computational science [22, p. 2].

3.1.1 Probabilistic Graphical Models

Full joint distributions are generally intractable. Therefore, we resort to structured
models [4], which associate probability distributions over only a few variables
providing considerable computational simplifications.

One flexible paradigm is Probabilistic Graphical Model (PGM) [12], which use
a diagrammatic representation for compactly encoding a complex distribution over
a high-dimensional space [12], as depicted in Fig. 3.2, where the most frequent
elements are:

• vertices or nodes: denote random variables (also commonly called nodes), which
can be shaded if observed or empty otherwise;

• edges: capture the dependency between vertices;
• plates: symbolize that the enclosed subgraph is repeated the number of times

indicated by the subscript in the bottom right of the plate, as illustrated in Fig. 3.1.

3.1.1.1 Direct Acyclic Graphs

Let V be the set of all vertices of a graph. Define a parent of the vertex i as the
vertex whose directed edge points to i. Further define the parent set Πi as the set of
all vertices that are parents of the vertex i.

3.1 Model-Based Machine Learning 33

y

z2z1 . . . zN

y

z

N

Fig. 3.1 Equivalence of the shorthand plate notation

x1 x2 x3 x4

z1 z2 z3

(a)

x1 x2 x3 x4

z1 z2 z3

(b)

Fig. 3.2 Examples of probabilistic graphical models. In either cases, vertices represent random
variables and edges their dependency relation. Bayesian networks (a) encode causation through the
edge’s direction, i.e., x1 depends on z1, z2, and z3, being their effect. On the other hand, Markov
random fields, also known as undirected graphical models, encode symmetrical dependency
through the edges, with no cause–effect relation. (a) Bayesian network. (b) Markov random field

In the Directed Acyclic Graph (DAG) approach, exemplified in Fig. 3.2a, each
vertex i ∈ V together with its parent set Πi defines a local probability distribution
p(xi |Πi) over the random variable xi associated with the corresponding vertex i.
The existence of an edge from i to j indicates that i causes j , while the absence
indicates that the nodes are independent.

The collection of all local probability distributions p(xi |Πi) over the random
variables xi describes the joint probability of the model:

p(x1, x2, . . . , x|V|) =
∏
i∈V

p(xi |Πi) . (3.1)

This class of models is frequently referred to as Bayesian network, despite no
intrinsic need for Bayesian methods. They are so called because they use the Bayes’
rule for defining the probability distributions [23].

3.1.1.2 Undirected Graphs

Contrary to DAGs, undirected graphs, exemplified in Fig. 3.2b, have no cause–
effect relation between its nodes and cannot describe a generative process. Instead

34 3 Model-Based Machine Learning and Approximate Inference

of describing the full joint distribution in terms of conditionals, undirected graphs
factorize the joint distribution over groups Xc of fully connected nodes (maximal
cliques), each characterized by a potential function ψ(Xc) [12]. The potential
function of a group is not a valid probability distribution, but the set C of all such
groups gives the joint distribution according to

p(x1, x2, . . . , x|V|) = 1

Z

∏
c∈C

ψ(Xc), (3.2)

where Z is the normalizing constant.

3.1.1.3 The Power of Graphical Models

Many traditional ML and signal processing algorithms can be derived as special
cases of graphical models combined with the appropriate inference algorithms.
Moreover, many of them can be represented by simple graphical structures and be
effortlessly combined [4]. For example:

1. Principal Component Analysis (PCA) can be formulated as a generative process
with the latent variable z corresponding to the principal component subspace
(Fig. 3.3a). Observations y are noisy versions of the linear mapping Wz + μ,
where τ is the noise precision, which is the same for all directions. Assuming all
distributions to be Gaussian, using MLE for determining W and μ, and taking
the limit τ → ∞, one obtains the standard PCA model [3, ch. 12].

2. Gaussian Mixture Model (GMM) (Fig. 3.3b) with K modes is represented by a
K-dimensional latent indicator variable z that follows a categorical distribution
with probabilities, the mixture weights, given by θ . Each mode has its own mean
μ and variance �. For other types of mixture, the difference is in the type of
parameters that define the K modes, i.e., μ and �.

PGMs can be easily customized to a specific application or modified if the
requirements of the application change.

3.1.2 Probabilistic Programming

Probabilistic programming is a tool for statistical modeling. It borrows lessons
from computer science and common programming languages to construct languages
that allow the denotation and evaluation of inference problems [32]. It frees the
developer from complex low-level details of probabilistic inference, allowing him or
her to concentrate on issues more specific to the problem at hand, such as the model
and the choice of inference method. Similarly to high-level programming languages

3.1 Model-Based Machine Learning 35

yW

z

N

(a) Principal component analysis.

y

z

K

KN

(b) Gaussian mixture model.

q

m m

t S

Fig. 3.3 Probabilistic graphical models of traditional machine learning algorithms. In the PCA
model (a), the principal component subspace is represented by the latent variable z, which cannot
be directly observed. We only know the y values that are noisy observations of the true underlying
generative y = Wz + μ +N(0, τ). In the GMM (b), each of the K modes has its set of unknown
defining parameters, i.e., μ and �, and is selected by the latent indicator variable Z, whose
observation probability is θ

Parameters

Program

Output

Parameters

Parameters

Observations

p(z |X)

p(x |Z)p(z)

x

Inference

CS Probabilistic Programming Statistics

Fig. 3.4 An intuitive view of probabilistic programming and how it differs from the common
computer science paradigm. Shaded boxes indicate the information that is available. Instead of
inputting the required parameters to run the program and obtain the desired output, probabilistic
programming tries to recover the parameters from the observations generated by the program. This
process is similar to inference in statistics

that abstract away architecture-specific implementation details, it boosts system
performance and productivity. In Fig. 3.4 we draw a parallel between computer
science, statistics, and probabilistic programming.

One of the cornerstones for the deep learning success was the development of
specialized programming libraries that facilitate model specification and automatize
differentiation, relieving the user from the need of manually deriving the gradients
for optimization. This genre of software led to the widespread use of deep learning.
Nowadays, there is no need to actually understand the basics of neural networks or
even differential calculus to try and run a model. Still, it does not mean that whatever
the model may be it will be useful or meaningful. Probabilistic programming aims
to achieve the same for probabilistic ML [32]. It also allows rapid prototyping and
testing of ideas, allowing the field to flourish and pushing industry adoption.

36 3 Model-Based Machine Learning and Approximate Inference

Modern probabilistic programming languages provide a more powerful frame-
work than PGM. Computer programs accept recursion and control flow statements
that are otherwise difficult to represent [7]. There is a myriad of different languages,
each with its own set of specific features: some are explicitly restrictive, others
specialize in a certain type of inference techniques, or yet are general purpose.
A non-extensive list includes Pyro [2], Stan [6], WebPPL [8], Infer.NET [21],
PyMC3 [28], Edward [30], and BUGS (from 1995) [33].

3.2 Approximate Inference

As briefly alluded in the previous section, it is frequently unfeasible to compute
posterior distributions and marginals for many models of practical interest. In the
continuous case, there may not be a closed-form analytical solution or it may be
just too complex for numerical computation. In the discrete case, summing over all
possible configurations, though possible in principle, may not be viable if the total
number of combinations grows exponentially.

In such cases we have two options: either to successively simplify the model
until exact inference is possible or to perform approximate inference in the original
model. On this matter, John Tukey stated [31, p. 13], “Far better an approximate
answer to the right question, which is often vague, than an exact answer to the
wrong question, which can always be made precise.”

There are two broad classes of approximation schemes: deterministic and
stochastic. The latter relies on Monte-Carlo sampling to approximate expectations
over a given distribution. Given infinite computational resources, they converge to
the exact result, but, in practice, sampling methods can be computationally expen-
sive. On the other hand, deterministic methods consist of analytical approximations
to the posterior distribution and, as a consequence, cannot generate exact results.
Hence, both methods are complementary.

In this chapter, we discuss variational methods, which are deterministic. We start
by its most prominent representative, Variational Inference (VI). Later, we present
an alternative variational framework known as Expectation Propagation (EP).

3.2.1 Variational Inference

VI, Variational Bayes, and Variational Bayesian Inference are different names
for the same algorithm. Its purpose is to construct a deterministic analytical
approximation to the posterior distribution. Thus, it is suited to large data sets and to
quickly test many models [5]. As other Bayesian methods, it describes all available
information about the variables through their probability distributions. Figure 3.5
depicts how VI works: it iteratively finds the best possible distribution q∗ among
the specified family Q, given a dissimilarity criterion D.

3.2 Approximate Inference 37

q∗

p(z |X)

DKL(q∗(z)‖p(z |X))

qinit

Q

Fig. 3.5 Illustration of VI optimization process given a family Q of distributions that does not
contain the true posterior distribution p(z |X). The best possible approximation q∗ the variational
posterior q can achieve is the one that minimizes the chosen dissimilarity criterion D, i.e., the KL
divergence DKL (q(z |X)‖p(z |X))

VI borrows its name from variational calculus. Regular calculus concentrates on
maxima, minima, and derivatives of functions, while variational calculus does that
for functionals, which are basically functions of functions. Several problems can be
cast as functional optimization problems, and variational methods do exactly that
for inference: they allow us to find a function, the approximating distribution q, that
minimizes the quality measure functional D.

3.2.1.1 The Evidence Lower Bound

Let us suppose a model with joint distribution p(x, z) over the observed variables
X and the latent variables Z. As usual in a Bayesian setting, we wish to compute
its posterior distribution p(z |X), which we shall suppose intractable. We consider a
family of approximate, tractable densities P over the latent variables and try to find
the member q∗ that is the “closest” to the exact posterior in the KL divergence sense
by solving

q∗(z |X) = argmin
q∈Q

DKL (q(z |X)‖p(z |X)), (3.3)

where

DKL (q‖p) =
∫

q(ε) log
q(ε)

p(ε)
dε. (3.4)

Directly minimizing the KL divergence is not possible because we would need
the log of the true posterior, logp(Z |X), and hence the log evidence logp(x), which
we assumed intractable. Aiming to get rid of this term, we perform some algebraic
manipulations and arrive at

38 3 Model-Based Machine Learning and Approximate Inference

DKL (q(z |X)‖p(z |X))) =
∫

q(z |X) log

(
q(z |X)

p(z |X)

)
dz

= −
∫

q(z |X) log

(
p(x, z)

p(x)q(z |X)

)
dz

= −
(∫

q(z |X) log

(
p(x, z)
q(z |X)

)
dz −

∫
q(z |X) logp(x)dz

)

= −
∫

q(z |X) log

(
p(x, z)
q(z |X)

)
dz + logp(x)

∫
q(z |X)dz

= −Eq

[
log

(
p(x, z)
q(z |X)

)]
+ logp(x). (3.5)

Reorganizing the last equation, we obtain

logp(x) = Eq

[
log

(
p(x, z)
q(z |X)

)]
+ DKL(q(z |X)‖p(z |X)). (3.6)

Knowing that DKL(q‖p) � 0, it follows that the first term of the right-hand side
of Eq. (3.6) must be a lower bound on logp(x). For this reason, it is named the
Evidence Lower Bound (ELBO). This remark leads to a very important result: since
the model evidence logp(x) is fixed, once we know x, by maximizing the ELBO
we are equivalently minimizing DKL(q‖p), our original optimization problem. The
equivalence is very convenient because the right-hand side of Eq. (3.6) does not
contain the intractable log evidence. The term logp(x, z) decomposes into the log-
likelihood logp(x |Z) and the log-prior logp(z), which we are able to handle.

Alternatively, we could have obtained the same bound by applying Jensen’s
inequality for concave functions E [f (x)] � f (E [x]) as follows:

logp(x) = log
∫

p(x, z)dz

= log
∫

p(x, z)
p(z |X)

q(z |X)
dz

= logEq

[
p(x, z)
q(z |X)

]

� Eq

[
log

(
p(x, z)
q(z |X)

)]
. (3.7)

By comparison with Eq. (3.6), the difference between the left- and right-hand
sides of Eq. (3.7) is exactly the KL divergence term, as shown in Fig. 3.6. The
visual depiction clearly illustrates the equivalence between the minimization of
DKL (q(z |X)‖p(z |X))) and the maximization of the ELBO(q).

3.2 Approximate Inference 39

log p(X)
ELBO(q)

DKL(q‖p)

Fig. 3.6 The decomposition of the marginal log-probability p(x) into the ELBO and the
DKL(q‖p) terms

We can rearrange the ELBO into the more interpretable form:

ELBO(q) = Eq

[
logp(x, z)

]− Eq

[
log q(z |X)

]

= Eq

[
logp(x |Z) + logp(z)

]− Eq

[
log q(z |X)

]

= Eq

[
logp(x |Z)

]− DKL (q(z |X)‖p(z)). (3.8)

The first term is the expected likelihood under the distribution q(z |X) and the
second is the (negative) divergence between the q(z |X) and the prior p(z).
When maximizing the ELBO, the former drives the approximation toward better
explaining the data, while the latter acts as a regularizer pushing the approximation
toward the prior p(z).

The ELBO is also closely related to the variational free energy F̃ of statistical
physics, namely

ELBO(q) = Eq

[
logp(x, z)

]− Eq

[
log q(z |X)

]

= Eq

[
logp(x, z)

]+H[q] (3.9)

F̃ (q) = −Eq

[
logp(x, z)

]−H[q]
= −ELBO(q), (3.10)

where −Eq

[
logp(x, z)

]
is the average of the energy function under the distribution

q(z |X) andH[q] is the entropy of q(z |X) [16, ch. 33]. Indeed, the use of the vari-
ational free energy framework in statistical learning leads to the VI methodology.

The optimal solution for q in Eq. (3.9) w.r.t. the term Eq

[
logp(x, z)

]
cor-

responds to the MAP estimate of p, which maximizes the log joint probability
logp(x, z). However, the entropy term favors disperse distributions. The solution
is then a compromise between these two terms.

40 3 Model-Based Machine Learning and Approximate Inference

3.2.1.2 Information Theoretic View on the ELBO

In its very essence, the rate-distortion theory establishes the trade-off between
data compression and the entailed distortion [1]. The rate represents the average
number of bits needed per sample to transmit the data. Ideally, one wants to
maximally compress the data, achieving compact representations with low rates,
while preserving all relevant information, such that the reconstructed signal has no
distortion whatsoever. However, these are opposite goals.

Clustering algorithms can be naturally seen through the rate-distortion perspec-
tive. In K-means [14], the rate is related to the number of centroids and the distortion
measure is the sum of the squared error between the original data points and the
centroid of their attributed cluster.

Rate-distortion theory asserts that for a given maximum level of distortion D,
there exists a minimum achievable rate R. Thus, for the input random variable X

and the compressed output Z, we have

R(D) = argmin
q(z |X)

I (X;Z) (3.11)

s.t. Ep(x)
[
Eq [d(Z,X)]

]
< D,

where d(·, ·) is the distortion measure (e.g., sum of squared errors in K-means),
I (X;Z) the mutual information, and q(z|X) the channel we wish to optimize.

Introduced in Sect. 2.3.4, the mutual information I (X;Z) between the random
variables X and Z quantifies their dependency, that is, how much can we know
about one by observing the other. Intuitively, Eq. (3.11) seeks to remove as much
information as possible from X, making it independent of Z.

To make the optimization problem manageable, we upper bound I (X;Z) as
follows:

I (X;Z) = DKL (q(z, x)‖q(z)p(x))

= Ep(x) [DKL (q(z |X)‖m(z))] − DKL (q(z)‖p(z)) (3.12)

≤ Ep(x) [DKL (q(z |X)‖m(z))], (3.13)

where q(z) is the induced marginal q(z) = ∫ q(z, x)p(x)dx, m(z) is an approxima-
tion to q(z), and the inequality stems from the nonnegativity of the KL divergence.

For latent variable models, the implicitly defined distortion function is d(X,Z) =
− logp(x |Z). This distortion penalizes latent variables Z unable to faithfully
reconstruct the original sample x. If we further set the marginal approximation m(z)
as the prior p(z) over the compressed random variable Z, the optimization problem
becomes

min
q(z |X)

Ep(x) [DKL (q(z |X)‖p(z))] (3.14)

3.2 Approximate Inference 41

s.t. Ep(x)
[
Eq

[− logp(x |Z)
]]

< D.

Rewriting Eq. (3.14) as a maximization problem and stating it in terms of its
Lagrangian lead to

max
q(z |X)

Ep(x)
[
Eq

[
logp(x |Z)

]− βDKL (q(z |X)‖p(z))
]
, (3.15)

where β is the Lagrange multiplier.
Solving Eq. (3.15) is equivalent to maximizing the average ELBO in Eq. (3.8)

for the data set D = {X}n with empirical distribution p(d) and β = 1. Thus, we
can interpret Variational Bayes as optimizing an upper bound on the distortion-rate
function. While the Eq

[
logp(x |Z)

]
term measures the fidelity (negative distortion)

of the compressed representation, the KL term quantifies the extra number of bits
needed to represent X with Z. The connection allows us to leverage insights from
the well-established field of information theory onto variational Bayes. For example,
there is an upper bound to the ELBO, and its value is the negative of the entropy of
the true data distribution, −H[p(x)].

3.2.1.3 The Mean-Field Approximation

No matter the kind of inference algorithm, we usually impose restrictions to
the family of approximating distributions Q so that we can solve the problem.
The family Q should be as flexible as possible to allow us to achieve better
approximations of the true posterior, the only restriction being its tractability. The
richer the family of distributions, the closer q∗(z |X) will be to p(z |X). In cases
where Q does include the true posterior and the latter is tractable, the inference
methods generally converge to the exact distribution.

There are two main ways to constrain the family of distributions of a model:

1. by specifying a parametric form for the distribution q(z |X;Ψ) with the set Ψ of
variational parameters;

2. by assuming that q factorizes over partitionsZSi
ofZ such that

q(z |X) =
M∏
i=1

qi(zSi
|X). (3.16)

The factorized form of Eq. (3.16) where each partition is a single dimension is
called Mean-Field VI (MFVI). The mean-field approximation is flexible enough to
capture any marginal density of the latent variables but is incapable of modeling cor-
relation between them due to the independence assumption, as illustrated in Fig. 3.7.
This assumption is a double-edged sword, helping with scalable optimization while
limiting expressibility [5]. Hence the need for other families of approximations

42 3 Model-Based Machine Learning and Approximate Inference

z1 z2

z3

(a) True posterior.

z1 z2

z3

(b) structured approximation.

z1 z2

z3

(c) fully-factorized
approximation.

Fig. 3.7 Graphical representations as undirected graphs of the different levels of approximation
to the posterior distribution. In (a), the nodes in the true posterior are all dependent. In (b), Z1 and
Z2 are conditionally independent, and the approximation still preserves their dependency on Z3.
In (c), all the nodes are marginally independent. Each approximation renders the distribution less
expressive

such as structured mean-field [10], richer covariance models [15, 29], normalizing
flow [26], etc.

3.2.1.4 Coordinate Ascent Variational Inference

Coordinate Ascent Variational Inference (CAVI) is an algorithm for MFVI. To
find the optimal factors q∗

i (zSi
|X) for Eq. (3.16), we could solve the Lagrangian

composed by the ELBO and the constraints that the factors q∗
i must sum up to 1.

However, we do not resort to the calculus of variations. Instead, we take a more
laborious route by substituting Eq. (3.16) back into Eq. (3.9) and working out the
math (available in Appendix A.2) to get

log q∗
j (zSj

|X) = E−j

[
logp(x, z)

]+ const (3.17)

q∗
j (zSj

|X) ∝ exp{E−j

[
logp(x, z)

]}, (3.18)

where E−j [·] indicates expectation over all sets Si ofZ, except Sj .
The mutual dependence between the equations for the optimal factors calls for

an iterative approach. At each step, we replace each factor by its revised estimate
while keeping the others fixed (3.18). CAVI raises the ELBO to a local optimum. An
alternative approach to optimization is through gradient-oriented updates, in which
the algorithm computes and follows the gradient of the objective w.r.t. the factors at
each iteration.

Although we considered all parameters to be within the latent space Z, it is
also possible to have parameters Θ on which we perform point estimation, i.e.,
p(z |X;Θ). In this case, we alternate between two distinct steps:

1. approximating the posterior at each iteration by computing the expectation over
allZSi

as in Eq. (3.18);

3.2 Approximate Inference 43

2. performing the maximization of the ELBO w.r.t. Θ under the refined distribution
qnew(z |X) =∏i q

∗
i (zSi

|X).

This is the Variational EM algorithm. VI can be understood as a fully Bayesian
extension of Variational EM, in which instead of computing a point mass for the
posterior over the parameters Θ (MAP estimation, Sect. 2.6.3), it computes the
entire distribution over Θ and Z.

3.2.1.5 Stochastic Variational Inference

Stochastic Variational Inference (SVI) optimizes the ELBO by taking noisy esti-
mates of the gradient g [11], hence the name. Stochastic optimization is ubiquitous
on modern ML since it is much faster than assessing a massive data set, which is
commonplace nowadays.

The major requirements for the approximation to be valid are:

1. The gradient estimator ĝ should be unbiased E
[
ĝ
] = E [g];

2. The step size sequence {αi | i ∈ N} (learning rate) that nudges the parameters
toward the optimal should be annealed so that

∞∑
i=0

αi = ∞ and
∞∑
i=0

α2
i < ∞. (3.19)

Intuitively, the first condition on the step size relates to the exploration capacity
so the algorithm may find good solutions no matter where it is initialized. The
second guarantees that its energy is bounded so that it can converge to the solution.

Instead of computing the expectation step in Eq. (3.18) for all N data points
(at every iteration), we do it for a uniformly sampled (with replacement) subset
of desired size n. From these new variational parameters, we compute the maxi-
mization step (or the expectation of the global variational parameters) as though we
observed the data points N/n times and update the estimate as the weighted average
of the previous estimate and the subset optimal, according to Eq. (3.19).

Theoretically, this process should go on forever with increasingly smaller step
sizes according to the constraints stated above. In practice, however, it ends when it
reaches a stopping criteria, which should indicate that the ELBO has converged.

SVI is a stochastic optimization algorithm originally developed for fully fac-
torized approximations (MFVI) [11] and later extended to support models with
arbitrary dependencies between global and local variables [10].

44 3 Model-Based Machine Learning and Approximate Inference

Fig. 3.8 Graphical
representation of a linear
regression model with N

observations and one weight.
The variable γ is the
observation noise precision

x y

w

N

g

3.2.1.6 VI Issues

Despite the widespread adoption of the VI framework, it still has some major issues.
As presented here, it remains restricted to the conditionally conjugate exponential

family for which we can compute the analytical form of the ELBO. Outside this
family, we end up with distributions for which we cannot write down formulas to
optimize. Section 3.2.4 briefly presents methods that address this problem.

Even though minimizing the DKL (q(z |X)‖p(z |X)) and maximizing the ELBO
are equivalent optimization problems, the KL is bounded below by zero, while the
ELBO has no bound whatsoever. Therefore, observing how close the KL is to zero
informs us about the quality of the approximation and how close it is to the true
posterior. On the other hand, the ELBO has no absolute scale to compare with so we
have no clue how far it is from the true distribution. Still, it asymptotically converges
so we can use the value for model selection.

Minimization of the KL divergence combined with the independence assumption
of the mean-field approximation causes the approximating distribution to match a
single mode of the target distribution. Additionally, this combo underestimates the
marginal variances of the target density [5].

3.2.1.7 VI Example

Consider a one-dimensional linear regression problem where the weight has a
Gaussian prior distribution with mean μ and precision τ . We wish to infer the
marginal posterior of the observation noise precision γ , whose prior follows a
Gamma distribution. The model is given by

� ∼ Ga(γ ;α0, β0) (3.20)

W ∼ N(w |μ, τ−1) (3.21)

Yi ∼ Wxi +N(0, γ−1) , 1 ≤ i ≤ N. (3.22)

Observing the graphical model in Fig. 3.8 and its dependency structure, we can
write the joint distribution as

p(w, γ, | y1, · · · , yNX) = p(y1, · · · , yN |W, γ,X)p(γ)p(w). (3.23)

3.2 Approximate Inference 45

With the objective of using the CAVI algorithm introduced in Sect. 3.2.1.4,
we approximate the posterior p(γ,w|Y,X) over the global variables w and γ by
q(γ,w) = q(γ)q(w). The distribution of real interest is the marginal q(γ).

From Eq. (3.23) and the assumption of independent and identically distributed
(iid) observation samples xi , the true posterior distribution is

p(γ,w |Y,X) = p(γ)p(w)

p(y1, · · · , yN |X)

N∏
i=1

p(yi |W, γ, xi), (3.24)

while the marginal on γ is

p(γ |Y,X) =
∫

p(γ |W,Y,X)dw. (3.25)

To compute the CAVI’s update formula for q(w), we substitute Eq. (3.23) into
Eq. (3.18) and label all terms not involving w as constants, what leads to

log q∗(w) = Eγ

[
logp(w, γ, y |X)

]+ const

= Eγ

[
logp(y1, · · · , yN |W, γ,X)

]+ Eγ

[
logp(w)

]+ Eγ

[
logp(γ)

]+ const

= Eγ

[
logN(y1, · · · , yN |WT X, γ−1)

]
+ Eγ

[
logN(w |μ, τ−1)

]
+ const

= Eγ

[
1

2
log γ − 1

2
log 2π − γ

2
(y − wx)T (y − wx)

]

+ Eγ

[
1

2
log τ − 1

2
log 2π − τ

2
(w − μ)2

]
+ const

= Eγ

[
−γ

2
(y − wx)T (y − wx)

]
− τ

2
(w − μ)2 + const

= −1

2

{
Eγ [γ]

[
(y − wx)T (y − wx)

]
+ τ(w − μ)2

}
+ const

= −1

2

{
Eγ [γ]

(
w2xT x − 2wxT y

)
+ τw2 − 2τwμ

}
+ const

= −1

2

[
(xT xEγ [γ] + τ)w2 − 2(xT yEγ [γ] + τμ)w

]
+ const

= −xT xEγ [γ] + τ

2

[
w2 − 2

xT yEγ [γ] + τμ

xT xEγ [γ] + τ
w

]
+ const

= −xT xEγ [γ] + τ

2

(
w − xT yEγ [γ] + τμ

xT xEγ [γ] + τ

)2

+ const, (3.26)

46 3 Model-Based Machine Learning and Approximate Inference

where we considered y = [y1, · · · , yN]t and x = [x1, · · · , xN]t . Note that Eq.
(3.26) is the log of the Gaussian distribution’s kernel, so we write

q∗(w) = N
(
w

∣∣∣∣∣
xT yEγ [γ] + τμ

xT xEγ [γ] + τ
,
(
xT xEγ [γ] + τ

)−1
)

. (3.27)

Applying the same procedure to q(γ), we obtain

log q∗(γ) = Ew

[
logp(y |w, γ, x)

]+ Ew

[
logp(γ)

]+ Ew

[
logp(w)

]+ const

= Ew

[
logN(y |wT x, γ−1)

]
+ Ew [Ga(γ ;α0, β0)] + const

= 1

2
log γ − γ

2
Ew

[
(y − wx)T (y − wx)

]

+ Ew

[
α0 logβ0 − log�(α0) + (α0 − 1) log γ − β0γ

]+ const

= 1

2
log γ − γ

2
Ew

[
(y − wx)T (y − wx)

]
+ (α0 − 1) log γ − β0γ + const

=
(

1

2
+ α0 − 1

)
log γ −

(
1

2
Ew

[
(y − wx)T (y − wx)

]
+ β0

)
γ + const.

(3.28)

Note that Eq. (3.28) is the log of the Gamma distribution’s kernel, so we write

q∗(γ) = Ga

(
γ

∣∣∣∣α0 + 1

2
,

1

2
Ew

[
(y − wx)T (y − wx)

]
+ β0

)
. (3.29)

The CAVI algorithm consists in initializing the parameters of q(w) and q(γ),
e.g., with the values of their priors, and interleaving the update formulas (3.27) and
(3.29) until convergence.

3.2.2 Assumed Density Filtering

Assumed Density Filtering (ADF) has been independently proposed in the statistics,
artificial intelligence, and control domains [17]. Its central idea relies on the model’s
joint probability p(x, z) decomposing into a product of independent factors fi(z) as

p(x, z) =
N∏
i=1

fi(z), (3.30)

3.2 Approximate Inference 47

p(z |X) = 1

p(x)

N∏
i=1

fi(z), (3.31)

where the dependency of the factors fi on x is made implicit.
The assumption of factorizable distributions is still pretty general. For example,

we frequently assume that the observed data is iid given the parameters, which
induces factorization over the likelihood term. When considering a graphical model,
the distribution can be factored according to its structure, where the factors represent
sets of nodes.

Separately approximating each factor and only combining them all at the end
to obtain q(N)(z) frequently lead to poor global approximation. Therefore, the
ADF sequences through each factor, including one at a time into the current
approximation q(i−1)(z), according to

q
(i)
tilt (z) ∝ q(i−1)(z)fi(z). (3.32)

However, q(i)
tilt (z) gets “slightly” warped and cannot be represented anymore by

the initially assumed family of densities Q from which the prior belong. We thus
have to project it back to a distribution in Q. The projection consists in minimizing
the KL divergence between the two distributions such that

q(i)(z) = argmin
q∈Q

DKL

(
q
(i)
tilt (z)‖q(z)

)

= argmin
q∈Q

DKL

(
1

Ki

q(i−1)(z)fi(z)‖q(z)
)
, (3.33)

where Ki is the normalizing constant.
At the ith iteration, q(i)(z) is the approximation of the product between the true

factors fk(z), 1 � k � i.

3.2.2.1 Minimizing the Forward KL Divergence

Differently from Sect. 3.2.1, we now employ the forward KL divergence DKL(p‖q)
for measuring the quality of the approximation. The change in the ordering of the
arguments is the reason why ADF (and EP in Sect. 3.2.3) behaves so differently
from ADF. KL is a divergence and not a distance, so the symmetry property does
not hold and exchanging the arguments leads to a distinct functional with distinct
properties.

The reverse KL divergence DKL(q‖p) used in VI severely penalizes the approx-
imating distribution q for placing mass in regions where p has low probability.
Rewriting Eq. (3.4) as

48 3 Model-Based Machine Learning and Approximate Inference

p argminq DKL(p q) argminq DKL(q p)

Fig. 3.9 Comparison of the two alternatives forms of the KL divergence in different scenarios.
The blue solid curve is a mixture of two Gaussians, while in the leftmost graph their mean intersects
resulting in a single mode, for the two other cases the distribution becomes bi-modal. The green
dashed curve corresponds to the distribution q that best approximates p in the forward KL sense,
whereas the red dotted curve is the best approximation according to the reverse KL. As the modes
of p get farther apart, DKL(q‖p) seeks the most probable mode while DKL(p‖q) strives for the
global average

DKL(q‖p) = Eq

[
log q(x)

]− Eq

[
logp(x)

]
, (3.34)

we can note that the term logp(x) rapidly tends to −∞ for such regions. Conversely,
by exchanging p and q in Eqs. (3.4) and (3.34) we get

DKL(p‖q) = Ep

[
logp(x)

]− Ep

[
log q(x)

]
. (3.35)

The forward KL has the opposite behavior, that is, it favors spreading the mass
of q over the support of p. Even low probability regions of p must have mass
attributed to in q to avoid obtaining samples from p(x) such that log q(x) tends
to −∞. Figure 3.9 neatly illustrates this property for both KL forms.

3.2.2.2 Moment Matching in the Exponential Family

In order to be efficiently calculated, the posterior distribution must be simple to
handle. So we further constrain qi to belong to the exponential family:

qi(z) = h(z)g(η) exp (ηT u(z)), (3.36)

where ηT are the natural parameters of the family, u(z) the sufficient statistics, g(η)
the partition function, and h(z) > 0 the carrier function. See Sect. 2.2 for further
details.

Then, the forward KL divergence reduces to

3.2 Approximate Inference 49

DKL(p‖q) =
∫

p(z) logp(z)dz −
∫

p(z) log q(z)dz

=
∫

p(z) logp(z)dz −
∫

p(z) log
(
h(z)g(η) exp (ηT u(z))dz

)

=
∫

p(z) logp(z)dz −
(
Ep [h(z)] + log g(η) + ηT

Ep [u(z)]
)
.

(3.37)

We are interested in finding the natural parameters η that specify the distribution
that minimizes the KL among the assumed member of the exponential family. Thus,
we set

∇ηDKL(p‖q) = 0

�⇒ ∇η

{∫
p(z) logp(z)dz −

(
Ep [h(z)] + log g(η) + ηT

Ep [u(z)]
)}

= 0

�⇒ −∇η log g(η) − Ep [u(z)] = 0

�⇒ ∇η log g(η) = −Ep [u(z)]. (3.38)

From the fact that any normalized distribution must sum up to 1, we arrive at the
following general result for the exponential family:

∇η1 = ∇η

(∫
h(z)g(η) exp (ηT u(z))dz

)

�⇒ 0 =
∫

h(z) exp (ηT u(z))dz∇ηg(η) +
∫

u(z)h(z)g(η) exp (ηT u(z))dz

�⇒ 0 = ∇ηg(η)
1

g(η)

∫
g(η)h(z) exp (ηT u(z))dz +

∫
u(z)qi(z)dz

�⇒ 0 = 1

g(η)
∇ηg(η)

∫
qi(z)dz + Eq [u(z)]

�⇒ 0 = 1

g(η)
∇ηg(η) + Eq [u(z)]

�⇒ 0 = ∇η log g(η) + Eq [u(z)]. (3.39)

The relation (3.39) means that we can compute moments by taking the derivative
w.r.t. η of the negative log-partition function.

Substituting Eq. (3.38) in Eq. (3.39), we arrive at

Eq [u(z)] = Ep [u(z)], (3.40)

50 3 Model-Based Machine Learning and Approximate Inference

which means that when approximating an arbitrary distribution with a member
of the exponential family, we should match their expectations over the sufficient
statistics u(z), e.g., the first and second moments, z and z2, for the univariate
Gaussian (see Sect. 2.2). Therefore, it all comes down to matching the moments of
the new approximation with the moments of the old one tilted by the newly included
true factor at each iteration. For computing those moments, Eq. (3.39) is extensively
explored.

For example, if we consider a Gaussian posterior approximationN(z;μ,�), we
should select μi , �i , and Ki for the distribution q(i) such that

μi = Eq(i−1)fi
[z], (3.41)

�i = Covq(i−1)fi
[z], (3.42)

∫
q(i)(z)dz = 1

Ki

∫
q(i−1)(z)fi(z)dz = 1, (3.43)

where q(i−1)fi is the unnormalized version of the tilted distribution q
(i)
tilt defined in

Eq. (3.32).

3.2.2.3 ADF Issues

Even though the ADF’s sequential approach is better than independently approxi-
mating each factor, it depends on the ordering of the factors. If the first factors lead
to a bad approximation, the ADF produces a poor final estimate of the posterior.
We could mitigate this issue at the expense of losing the online characteristic of the
method by revising the initial approximations later on, effectively cycling through
all factors.

Similarly to ADF, the variance of the approximating distribution is affected by
both the independence assumption needed for the factorization of the distribution
and the mass spreading property of the forward KL. However, differently from
ADF, the ADF overestimates the marginal variance, giving larger uncertainty
estimations and variability than the true posterior would. One should take the
variance overestimation property into account when choosing among the different
variational methods to solve a given problem.

3.2.2.4 ADF Example

We return to the linear regression problem of Sect. 3.2.1.7, whose model definition
was given in Eqs. (3.20)–(3.22) and the posterior distribution provided in Eq. (3.23).
For convenience, we rewrite them here:

� ∼ Ga(γ ;α0, β0) (3.44)

3.2 Approximate Inference 51

W ∼ N(w |μ, τ−1) (3.45)

Yi = Wxi +N(0, γ−1) , 1 ≤ i ≤ N, (3.46)

p(γ,w |Y,X) = p(γ)p(w)

p(y |X)

N∏
i=1

p(yi |w, γ, xi). (3.47)

Here we use the ADF algorithm to approximate the marginal posterior
p(γ |Y,X) given by

p(γ |Y,X) =
∫

p(γ,w |Y,X)dw

= p(γ)

p(y |X)

N∏
i=1

∫
p(yi |w, γ, xi)p(w)dw

= p(γ)

p(y |X)

N∏
i=1

p(yi | γ, xi), (3.48)

where the likelihood terms p(yi | γ ; xi) of the individual observations Yi are

p(yi | γ ; xi) =
∫

p(yi |w, γ, xi)p(w)dw

=
∫
N(yi |wxi, γ

−1)N(w;μ, τ−1)dw

= N(yi; xiμ, τ−1x2
i + γ−1). (3.49)

We have N likelihood factors to include. We choose γ to have a Gamma prior,
what constrains the approximate posterior q(γ) to follow a Gamma distribution. So,
at start the posterior is

q(γ) = Ga(γ |α, β), with α = α0, β = β0. (3.50)

Next, we include the likelihood factors of Eq. (3.49) into q(γ). The resulting
shifted distribution s(γ) after the inclusion of one such factor p(yi | γ ; xi) is

s(γ) ∝ Ga(γ |α, β)N(yi; xiμ, τ−1x2
i + γ−1)

∝
[
γ α−1 exp {−βγ }

] [(
τ−1x2

i + γ−1
)−1/2

exp

{
−1

2

(yi − xiμ)2

τ−1x2
i + γ−1

}]
.

(3.51)

52 3 Model-Based Machine Learning and Approximate Inference

Notice that we cannot write s(γ) under the functional form of the Gamma
distribution that we established for the approximation q(γ). We must project s(γ)

back to the assumed family. Thus, we compute the update equations responsible for
matching the moments. The sufficient statistics for γ under the shifted distribution
has no closed form, so we only match the first and second moments.

Before proceeding, we compute the normalizing constant K , which we need for
the moments:

K =
∫

Ga(γ |α, β)p(yi | γ ; xi)dγ

=
∫

Ga(γ |α, β)p(yi | zi, γ ; xi)p(zi |w; xi)dzidγ

=
∫

Ga(γ |α, β)N(yi | zi, γ−1)N(zi | xiμ, x2τ−1)dzidγ

=
∫
T2α(yi | zi, β/α)N(zi | xiμ, x2τ−1)dzi

≈
∫
N(yi | xiμ, x2

i + β/(α − 1))N(zi | xiμ, x2τ−1)dzi

= N(yi | xiμ, x2
i τ

−1 + β/(α − 1)), (3.52)

where we have used the fact that the marginalization over the Gamma-distributed
prior precision γ of the Gaussian-distributed observations Yi is the student’s t-
distribution T , as shown in Eq. (A.34). We then approximated the distribution T
with a Gaussian with the same mean and variance. Notice that the normalizing
constant K depends on α and β, a fact that we make explicit by writing K as Kα,β .

Labeling the Gaussian term in Eq. (3.51) as g(γ), we write the first moment of
γ under the shifted distribution s as

Es [γ] =
∫

1

Kα,β

γGa(γ |α, β)g(γ)dwdγ

= 1

Kα,β

∫
γ

βα

�(α)
γ α−1e−βγ g(γ)dwdγ

= 1

Kα,β

∫
�(α + 1)

β�(α)

βα+1

�(α + 1)
γ (α+1)−1e−βγ g(γ)dwdγ

= 1

Kα,β

α

β

∫
Ga(γ |α + 1, β)g(γ)dwdγ

= Kα+1,β

Kα,β

α

β
. (3.53)

3.2 Approximate Inference 53

The second moment follows a similar procedure

Es

[
γ 2
]

=
∫

K−1γ 2Ga(γ |α, β)g(γ)dwdγ

=
∫

λ2

Kα,β

�(α + 2)

β2�(α)

βα+2

�(α + 2)
γ (α+2)−1e−βγ dγ

= 1

Kα,β

α(α + 1)

β2

∫
Ga(γ |α + 1, β)g(γ)dwdγ

= Kα+2,β

Kα,β

α(α + 1)

β2 . (3.54)

Recalling the mean and variance formulas for the Gamma distribution, we write

Es [γ] = αnew

βnew

= Kα+1,β

Kα,β

α

β
,

V ars(γ) = αnew

β2
new

= Kα+2,β

Kα,β

α(α + 1)

β2 . (3.55)

Solving the system of equations for αnew and βnew, we get

αnew =
[
Kα,βKα+2,β

Kα+1,β

α + 1

α
− 1

]−1

, (3.56)

βnew =
[
Kα+2,β

Kα+1,β

α + 1

β
− Kα+1,β

Kα,β

α

β

]−1

. (3.57)

In summary, the algorithm starts from the prior in Eq. (3.50), then it applies Eqs.
(3.56) and (3.57) once for each likelihood factor, where the partition functions for
K follow Eq. (3.52).

An established example is given in [17], where the author demonstrates the use
of ADF for recovering data from a sea of clutter, projecting a Gaussian mixture
posterior onto a single Gaussian distribution.

3.2.3 Expectation Propagation

As mentioned in the previous section, one of the ADF’s weaknesses is its sensitivity
to the order in which factors are considered. In a batch setting, where all factors are
available, it is unreasonable to see each only once and not refine the approximation
repeatedly. However, directly cycling through a factor n times would lead to
including such factor into the approximating distribution n times instead of one. This
would artificially accumulate evidence, making the likelihood concentrate around a

54 3 Model-Based Machine Learning and Approximate Inference

−20 −15 −10 −5 0 5 10 15 20
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p(
x
)

Fig. 3.10 Continuous inclusion of the same original factor, in lightest shade, causes the
distribution to concentrate around its mode, progressively collapsing to that single point and
eventually becoming a Dirac distribution

single point, until collapsing the posterior into that point, as shown in Fig. 3.10,
which is highly undesired.

3.2.3.1 Recasting ADF as a Product of Approximate Factors

The EP reinterprets the ADF as approximating each new true factor fi with f̃i such
that

q(i)(z) ∝ q(i−1)(z)f̃i . (3.58)

The approximate factor f̃i can be easily obtained at the end of the ith ADF iteration
by

f̃i (z) ∝ q(i)(z)
q(i−1)(z)

. (3.59)

This shift in view means that q can be seen as a product of the approximate
factors f̃i , such that

q(z) ∝ q(N)(z)
q(N−1)(z)

. . .
q(1)(z)
q(0)(z)

=
N∏
i=1

f̃i (z), (3.60)

where q(0)(z) = p0(z) is the prior distribution.
In ADF, initial factors have little context: few to none other factors have been

seen; so they are prone to poor approximation. On the other hand, later factors have

3.2 Approximate Inference 55

large context and potential to be better approximated. The EP handles this issue by
observing the entire context when approximating fi with f̃i . Since it keeps track of
each fi and the corresponding f̃i at every iteration, it is possible to compute

qnew(z) = argmin
q∈Q

DKL

(
1

Ki

fi(z)
q(z)

f̃i(z)
‖q(z)

)
, (3.61)

where Ki is the normalizing constant. Note that now, at any given iteration j , q no
longer is the product of factors 1 < k < j , but of all N factors. That is why we have
dropped the superscript in q.

Since we always remove f̃i prior to including fi , we will not repeatedly
accumulate the fi’s contribution if we repeat this step multiple times. After
computing qnew according to Eq. (3.61), we revise f̃i in a similar fashion to Eq.
(3.59) so that the factor f̃i is responsible for the change from q to qnew. However,
because q is the product of all factors in EP, the update in f̃i follows

f̃i (z) = Ki

qnew(z)
q−i (z)

, (3.62)

where q−i (z) is the unnormalized cavity distribution, computed by removing the
factor fi from q, like

q−i (z) = qi(z)/f̃i(z). (3.63)

Note that, from the definitions above, Eq. (3.62) leads to

qnew(z)
q−i (z)

∝
∏

j f̃j (z)∏
j �=i f̃j (z)

= f̃i (z). (3.64)

Broadly speaking, each iteration consists of refining the approximation of f̃i

by substituting its contribution by that of true factor fi and finding the qnew

that minimizes the KL divergence. Just as seen in Sect. 3.2.2.2 for ADF, KL
minimization is done by matching the moments of the new distribution qnew(z)
with those of the tilted distribution qtilt (z) = K−1

i fi(z)q−i (z). Even though the
EP approximates one factor at a time and the resulting q is a valid probability
distribution, f̃i alone and the partial products not necessarily represent a valid
distribution.

The EP algorithm is summarized in Algorithm 1. Figure 3.11 succinctly shows
the difference between EP and ADF for a single iteration: while the EP takes in all
approximate factors f̃j except for j = i, that is going to be update, the ADF takes
in only previously seen factors f̃j , which are input through q(i−1) ∝∏i−1

j=1 f̃j .

56 3 Model-Based Machine Learning and Approximate Inference

UPDATEfi
˜fi

{ ˜fj : j < i} { ˜fj : j �= i}
ADF EP

Fig. 3.11 Diagram of ADF and EP updates for a single iteration. The ADF limits itself by looking
at the previously included factors, which got approximated from fj to f̃j in the projection step
of qj . The EP considers all factors simultaneously, except for the one to be updated, what avoids
factor multiplicity in the approximation q

Algorithm 1: EP

1: initializing f̃i = 1, ∀i by setting the parameters accordingly
2: while not converged do
3: choosing a factor f̃i to update
4: computing the unnormalized cavity distribution defined in (3.63)
5: evaluating the normalizing constant Ki in (3.61)
6: performing the projection of (3.61)
7: updating the factor f̃i by (3.62)
8: end while

3.2.3.2 Operations in the Exponential Family

Constraining the factors to the functional form of the exponential family renders
inclusion and exclusion of factors simple and computationally efficient. It suffices
to add and subtract the natural parameters η, like

qi(z)/f̃i(z) = h(z)g(η) exp (ηT u(z))
h(z)g(η) exp (η′T u(z))

= exp ((η′ − η)T u(z)). (3.65)

3.2.3.3 Power EP

Not every distribution can be factored into simple terms. Hence, integrating such
factors to compute the normalizing terms is not a simple task. Consequently, EP
fails to be computationally efficient. Power EP [18] addresses this shortcoming by
cleverly raising the factors fi to a power of 1/ni , ni ∈ R, canceling out complicated
exponents present in the true factors, and making them easier to compute.

The algorithm is essentially the same, except that we perform it on “fractional
factors,” that is,

f ′
i (z) = fi(z)1/ni , (3.66)

f̃ ′
i (z) = f̃i (z)1/ni . (3.67)

3.2 Approximate Inference 57

α = −∞ α = −1 α = 0 α = 1 α = ∞

Fig. 3.12 The α-divergence family. For α → −1, it becomes the reverse KL, DKL(q‖p), while
for α → 1 it is the forward KL, DKL(p‖q)

When ni � 1 ∈ N, we can think of Power EP as an EP that splits the factor fi

into ni distinct copies. However, instead of performing one EP iteration for each fi ,
following Eqs. (3.61) and (3.62), Power EP computes the update for a single copy
and assumes the result to be the same for the other ni − 1 copies.

In the EP, replacing the minimized objective DKL (p‖q) by

Dα(p‖q) = 4

1 − α2

(
1 −

∫
p(x)(1+α)/2q(x)(1−α)/2dx

)
, (3.68)

with a continuous parameter α, results in an algorithm with the same fixed points as
the Power EP. Therefore, we can think of Power EP as minimizing the α-divergence
Dα , with α corresponding to a particular choice of 1/ni , namely α = 2(1/ni) − 1.

The forward and reverse KL divergences are members of the α-family defined
by Eq. (3.68). Specifically, α → 1 gives the forward KL and α → −1 the reverse
KL, which can be verified by remembering that p(x)γ = exp{γ logp(x)} and using
L’Hôpital rule for evaluating indeterminate limits. As we can see in Fig. 3.12, values
α � −1 induce a zero-forcing behavior, setting q(x) = 0 for any values of x for
which p(x) = 0. Conversely, α � 1 is zero avoiding, imposing q(x) � 0 for regions
where p(x) � 0, and typically q stretches to cover all p.

One way to understand many message-passing algorithms, including those we
discussed, is as the same variational framework with different energy functions
corresponding to distinct values of α in Eq. (3.68) [19].

3.2.3.4 EP Issues

Naturally, the enhancement provisioned by EP has costs. Besides being unsuitable
to online learning, it has to keep all true and approximating factors stored in
memory. Therefore, memory consumption grows linearly with the number of factors
of the distribution. This may be inadequate if data sets are too large, because it
would be impractical or even impossible to maintain all factors in memory during
optimization.

While each step in VI is guaranteed to decrease the ELBO, the described EP
algorithm has no convergence guarantees and iterations may indeed increase the

58 3 Model-Based Machine Learning and Approximate Inference

associated energy function instead of decreasing it [3, p. 510]. Nonetheless, stable
EP fixed points are local minima of the optimization problem [17].

In multi-modal target distributions, the EP can lead to poor approximations
because the forward KL divergence causes q to average over all modes [3, p. 510].

3.2.3.5 EP Example

Consider again the linear regression problem of Sects. 3.2.2.4 and 3.2.1.7. The main
difference from Sect. 3.2.2.4 is that now we need to track the approximate factors
f̃ .

We initialize the approximate posterior with parameters α = 1 and β = 0 so
that we have a uniform distribution. The inclusion of the prior factor p(γ) shifts the
distribution into

s(γ) ∝ Ga(γ |α, β)Ga(γ |α0, β0), (3.69)

s(γ) = Ga(γ |α + α0 − 1, β + β0). (3.70)

We see that s(γ) is a member of the assumed family and there is no approxima-
tion in this step. Since the inclusion of the prior precision p(γ) does not throw the
approximate posterior q(γ) out of the assumed family, there is no need to process
such factor multiple times. The update equations are

αnew = α + α0 − 1 βnew = β + β0. (3.71)

On the other hand, the inclusion of the likelihood factors p(yi | γ ; xi) is not exact
as:

1. we approximate a student’s t-distribution by a Gaussian in deriving Eq. (3.52);
2. we match only the first two moments of the shifted distribution in Eq. (3.51).

Consequently, there is room for improvement and we cycle through the likelihood
factors. We conveniently choose the approximate factors to be

f̃i (γ) = Ga(γ | a, b). (3.72)

This form allows us to easily compute the cavity distribution

q−i (γ) ∝ q(γ)

f̃i(γ)
= Ga(γ |α, β)

Ga(γ | a, b) = Ga (γ |α−i , β−i) , (3.73)

where

α−i = α − a + 1 β−i = β − b. (3.74)

3.2 Approximate Inference 59

After computing the cavity distribution q−i , we include the true likelihood factor
p(yi | γ ; xi) and project the resulting distribution back onto the assumed family of
q. The steps for including and projecting the likelihood factors are still the same as
those of Sect. 3.2.2.4 for the ADF algorithm: Eqs. (3.56) and (3.57) for updating α

and β, respectively.
Lastly, we revise the approximate factor f̃i , according to

a = α − α−i + 1 b = β − β−i . (3.75)

3.2.4 Further Practical Extensions

In this section, we briefly review three modern extensions of the approximate
inference algorithms we have seen. While the first two address computability and
tractability issues, the last aims at usability, making VI more accessible.

3.2.4.1 Black Box Variational Inference

As seen in Sect. 3.2.1.5, the SVI computes the distribution updates in a closed
form, which requires model-specific knowledge and implementation. Moreover,
the gradient of the ELBO must have a closed-form analytical formula. Black Box
Variational Inference (BBVI) [25] avoids these problems by estimating the gradient
instead of actually computing it.

BBVI uses the score function estimator [34]

∇φEq(z;φ) [f (z; θ)] = Eq(z;φ)
[
f (z; θ)∇φ log q(z;φ)], (3.76)

where the approximating distribution q(z;φ) is a continuous function of φ (see
Appendix A.1). Using this estimator to compute the gradient of the ELBO in Eq.
(3.7) gives us

∇φELBO = Eq

[
(∇φ log q(z;φ))(logp(x, z) − log q(z;φ))]. (3.77)

The expectation in Eq. (3.77) is approximated by a Monte Carlo integration.
The sole assumption of the gradient estimator in Eq. (3.77) about the model is

the feasibility of computing the log of the joint p(x, zs). The sampling method and
the gradient of the log both rely on the variational distribution q. Thus, we can
derive them only once for each approximating family q and reuse them for different
models p(x, zs). Hence the name black box: we just need to specify the model
p(x, zs) and can directly perform VI on it. Actually, p(x, zs) does not even need to
be normalized, since the log of the normalization constant does not contribute to the
gradient in Eq. (3.77).

60 3 Model-Based Machine Learning and Approximate Inference

We generally perform stochastic optimization, observing a subset of the available
data at each iteration. The score function estimator gives unbiased estimates when
considering f (z; θ) in Eq. (3.76). However, gradient estimates in Eq. (3.77) are
not unbiased due to the presence of the log function. Furthermore, the estimator
generally has high variance, what may force the step sizes to be too small for the
algorithm to be practical. The authors in [25] further consider variance reduction
methods that preserve the black box character of BBVI to address this issue.

3.2.4.2 Black Box α Minimization

Black Box α minimization [9] (BB-α) optimizes an approximation of the power
EP energy function [19, 20]. Instead of considering i different local compatibility
functions f̃i , it ties them together so that all f̃i are equal, that is, f̃i = f̃ . We may
view it as an average factor approximation, which we use to approximate the average
effect of the original fi [9].

Further restricting these factors to belong to the exponential family amounts to
tying their natural parameters. As a consequence, BB-α no longer needs to store an
approximating site per likelihood factor, which leads to significant memory savings
in large data sets. The fixed points differ from power EP, though they become equal
in the limit of infinite data.

BB-α dispenses with the need for double-loop algorithms to directly minimize
the energy and employs gradient-descent methods for this matter. This contrasts
with the iterative update scheme of Sect. 3.2.3. As other modern methods designed
for large-scale learning, it employs stochastic optimization to avoid cycling through
the whole data set. Besides, it estimates the expectation over the approximating
distribution q present in the energy function by Monte Carlo sampling.

Differently from BBVI [25], the BB-α uses the pathwise derivative estimator [24]
to estimate the gradient (see Appendix A.1). We must be able to express the random
variable z ∼ q(z, φ) as an invertible deterministic transformation g(·;φ) of a base
random variable ε ∼ p(ε), so we can write

∇φEq(z;φ) [f (z; θ)] = Ep(ε)

[∇φf (g(ε;φ); θ)]. (3.78)

The approach requires not only the distribution q(z;φ) to be reparameterizable but
also f (z; θ) to be known and a continuous function of φ for all values of z. Note that
it requires, in addition to the likelihood function, its gradients. Still, we can readily
obtain them with automatic differentiation tools if the likelihood is analytically
defined and differentiable.

As observed in Sect. 3.2.3, the parameter α in Eq. (3.68) controls the divergence
function. Hence, the method is able to interpolate between VI (α → −1) and an
algorithm similar to EP (α → 1). Interestingly, the authors [9] claim to usually
obtain the best results by setting α = 0, halfway through VI and EP. This value
corresponds to the so-called Hellinger distance, the sole member of the α-family
that is symmetric.

3.3 Closing Remarks 61

3.2.4.3 Automatic Differentiation Variational Inference

Automatic Differentiation Variational Inference (ADVI) offers a recipe for automat-
ing the computations involved in VI [13]. The user only provides the desired
probabilistic model and the data set. The framework occupies itself of all the
remaining blocks of the pipeline. There is no need to derive the objective function
nor its derivatives for each specific combination of approximating family and model.

The ADVI applies a transformation T : Z �→ Ξ that maps the support
of the latent variables z to all real coordinate space, such that the model’s joint
distribution p(x, z) becomes p(x, ξ). Then, it approximates p(x, ξ) with a Gaussian
distribution, though other variational approximating families are possible. Even the
simple Gaussian case induces non-Gaussian distributions in the original latent space
Z = T −1(Ξ). As usual, the ELBO defined in Eq. (3.7) involves an intractable
expectation. The ADVI resorts to the pathwise gradient estimator in Eq. (3.78)
to convert the variational distribution into a deterministic function of the standard
Gaussian N(0, 1), thus allowing automatic differentiation. Finally, it estimates the
expectation over the latent space by Monte Carlo integration, producing noisy
unbiased gradients of the ELBO and performing stochastic optimization [27].

As the ADVI employs the pathwise gradient estimator, it works only for
differentiable models. The derivative of the log joint probability ∇z logp(x, z) must
exist. On the other hand, BBVI [25] computes the derivative of the variational
approximation q and is, thus, more general, though it can suffer from high variance.

Although the performance of the resulting ADVI model may not be as good as
its manually implemented counterpart, the ADVI works well for a large class of
practical models on modern data sets [13]. Therefore, it allows rapid prototyping of
new ideas and corrections of complex models.

3.3 Closing Remarks

In this chapter, we introduced the concept of MBML and its three pillars: Bayesian
inference, graphical models, and probabilistic programming, explaining how each
piece connects to construct the MBML landscape and clarifying the need for
approximate inference in complex problems.

We have explained the inner workings of and exemplified three central varia-
tional inference techniques, namely ADF, ADF, and EP, drawing attention to the
advantages and shortcomings of each. In summary,

• VI: maximizes a lower bound on the model evidence (ELBO), tends to fit a
single mode of the true posterior distribution, underestimates variance, and is
guaranteed to converge.

• EP: matches moments, requires definition of the approximate posterior family,
tends to summarize the entire true posterior distribution, overestimates variance,
and is not guaranteed to converge.

• ADF: online version of EP with no iterative refinement.

62 3 Model-Based Machine Learning and Approximate Inference

The ADF, ADF, and EP techniques are the bases for many modern methods, such
as the ones in Sect. 3.2.4, and are extensively used in many algorithms, which we
discuss in Chap. 4, what illustrates the relevance of the topic.

References

1. Berger T (1975) Rate distortion theory and data compression. Springer Vienna, pp 1–39.
https://doi.org/10.1007/978-3-7091-2928-9_1

2. Bingham E, Chen JP, Jankowiak M, Obermeyer F, Pradhan N, Karaletsos T, Singh R, Szerlip
P, Horsfall P, Goodman ND (2019) Pyro: deep universal probabilistic programming. J Mach
Learn Res 20(28):1–6

3. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin
4. Bishop CM (2013) Model-based machine learning. Philos Trans R Soc A: Math Phys Eng Sci

371(1984):1–17
5. Blei DM, Kucukelbir A, McAuliffe JD (2017) Variational inference: a review for statisticians.

J Am Stat Assoc 112(518):859–877
6. Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J,

Li P, Riddell A (2017) Stan: A probabilistic programming language. J Stat Softw 76(1):1–32.
Articles

7. Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature
521(7553):452–459

8. Goodman ND, Stuhlmüller A (2014) (electronic). The Design and Implementation of Proba-
bilistic Programming Languages. Retrieved 2021-4-5 from http://dippl.org

9. Hernandez-Lobato J, Li Y, Rowland M, Bui T, Hernandez-Lobato D, Turner R (2016) Black-
box alpha divergence minimization. In: Proceedings of the international conference on machine
learning, New York, vol 48, pp 1511–1520

10. Hoffman M, Blei D (2015) Stochastic structured variational inference. In: International
conference on artificial intelligence and statistics, San Diego, vol 38, pp 361–369

11. Hoffman MD, Blei DM, Wang C, Paisley J (2013) Stochastic variational inference. J Mach
Learn Res 14:1303–1347

12. Koller D, Friedman N, Bach F (2009) Probabilistic graphical models: principles and tech-
niques. MIT Press, Cambridge

13. Kucukelbir A, Blei D, Gelman A, Ranganath R, Tran D (2017) Automatic differentiation
variational inference. J Mach Learn Res 18:1–45

14. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theor 28(2):129–137
15. Louizos C, Welling M (2016) Structured and efficient variational deep learning with matrix

Gaussian posteriors. In: Proceedings of the international conference on machine learning, New
York, vol 48, pp 1708–1716

16. MacKay DJ (2003) Information theory, inference and learning algorithms. Cambridge Univer-
sity Press, Cambridge

17. Minka TP (2001) Expectation propagation for approximate Bayesian inference. In: Conference
in uncertainty in artificial intelligence, San Francisco, pp 362–369

18. Minka T (2004) Power EP. Tech. rep., Microsoft Research
19. Minka T (2005) Divergence measures and message passing. Tech. rep., Microsoft Research
20. Minka T (2007) The EP energy function and minimization schemes. Tech. rep., Microsoft

Research
21. Minka T, Winn J, Guiver J, Zaykov Y, Fabian D, Bronskill J (2018) Inf. NET 0.3. Microsoft

Research Cambridge
22. Mohamed S (2018) Planting the seeds of probabilistic thinking: foundations, tricks and

algorithms. Tutorial presentation

https://doi.org/10.1007/978-3-7091-2928-9_1
http://dippl.org

References 63

23. Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge
24. Price R (1958) A useful theorem for nonlinear devices having Gaussian inputs. Trans Inf Theor

4(2):69–72
25. Ranganath R, Gerrish S, Blei D (2014) Black box variational inference. In: Proceedings of the

international conference on artificial intelligence and statistics, Reykjavik, pp 814–822
26. Rezende D, Mohamed S (2015) Variational inference with normalizing flows. In: Proceedings

of the international conference on machine learning, Lille, vol 37, pp 1530–1538
27. Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22(3):400–

407
28. Salvatier J, Wiecki TV, Fonnesbeck C (2016) Probabilistic programming in Python using

PyMC3. PeerJ Comput Sci 2:e55
29. Sun S, Chen C, Carin L (2017) Learning structured weight uncertainty in Bayesian neural

networks. In: International conference on artificial intelligence and statistics, Fort Lauderdale,
vol 54, pp 1283–1292

30. Tran D, Kucukelbir A, Dieng AB, Rudolph M, Liang D, Blei DM (2016) Edward: a library for
probabilistic modeling, inference, and criticism. arXiv e-prints 1610.09787

31. Tukey JW (1962) The future of data analysis. Ann Math Stat 33(1):1–67
32. van de Meent JW, Paige B, Yang H, Wood F (2018) An introduction to probabilistic

programming. arXiv e-prints 1809.10756
33. Vidakovic B (2011) Bayesian inference using Gibbs sampling—BUGS project. Springer, New

York, pp 733–745
34. Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist rein-

forcement learning. Mach Learn 8(3):229–256

Chapter 4
Bayesian Neural Networks

This chapter presents the ideas, derivations, advantages, and issues of four different
algorithms for Bayesian Neural Network (BNN):

• Bayes by Backprop (BBB) [6];
• Probabilistic Backpropagation (PBP) [19];
• Monte Carlo Dropout (MCDO) [13];
• Variational Adam (Vadam) [26].

Each method approaches the problem in a considerably different manner. Still,
they all share one trait in common: they all consider unstructured approximations to
the posterior distribution.

By the end of this chapter, the reader should:

• Know the attributes a BNN should possess;
• Learn metrics to assess such characteristics;
• Discern the benefits and issues of each method;
• Understand the differences among them;
• Be capable of choosing the one that best suits its needs;
• Know where to search deeper if in need of structured BNNs.

4.1 Why BNNs?

Recently, BNNs have been object of renewed interest within the research commu-
nity. As one may imagine by now, BNNs are essentially standard deterministic NNs
enhanced with Bayesian methods. Instead of learning the optimal weights w∗, they
infer the posterior weight distribution p(w |D) given the data set D. Thus, w∗,
the maximizer of the distribution, is only a single point in the entire support, as
illustrated in Fig. 4.1.

© Springer Nature Switzerland AG 2021
L. P. Cinelli et al., Variational Methods for Machine Learning with Applications to
Deep Networks, https://doi.org/10.1007/978-3-030-70679-1_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70679-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-70679-1_4

66 4 Bayesian Neural Networks

w1∗ w2∗

Fig. 4.1 Maximizer w∗
1 of the posterior distribution and runner-up w∗

2 corresponding to the
maximum of another mode

First introduced in [55], BNNs saw a great advance during the following years
(the 1990s) [20, 35, 39, 40]. However, due to their computational complexity, they
ended up relegated for a decade. Standard NNs had not had success for a long time,
only picking up momentum in 2006 [21] and effectively gaining attention in 2012
after a Deep Learning (DL) method [30] won an important image classification
competition [48] by a large margin. It certainly would not go differently for BNNs,
which faced an even more difficult scenario. Over the last few years, new practical
approaches to BNNs [16, 57] allied to the concerns raised by adversarial attacks [43]
and the cry for uncertainty measures quintessential for some practical applications
sparked interest in Bayesian methods for DL.

The main reason for the late acceptance of BNNs (which is still to come) is
that their computational complexity impedes scalability. Modern models and data
sets have millions of parameters and instances, so nothing but very simplistic
algorithms can handle well such large-scale regime. A clear example is the use of
backpropagation and first-order optimization methods, though that does not mean
they are not ingenious. Consequently, latest works in this field focus on scalable and
(most of the time) practical approaches that can meet the current demand and still
are comprehensible, or at least usable, by practitioners.

For those still not convinced about the benefits of being Bayesian, we quickly
review the state of affairs for modern DL.

Even though backpropagation and maximum likelihood optimization allow
fitting large non-linear models on massive amounts of data and find success on
several tasks, they are sensitive to overfitting, specially if we try such models on
not so large data sets. Employing common regularization techniques, such as �1 or
�2 penalty, is equivalent to maximum a posteriori optimization (with Laplace and
Gaussian priors, respectively). However, in spite of alleviating overfitting, it is far
from solving the problem. What is more, it makes the solution dependent on the
parameterization, that is, different parameterizations may lead to different optimal
points. Then, the question arises of which parameterization leads to the best possible
solution and how sensitive it is.

Even when resorting to invariant methods, we still have no measure of confi-
dence. Although bootstrapping alleviates the issue, it does not solve the underlying
problem: it approximates the probability distribution of the observed data, consid-
ering the unknown variables to be fixed. The Bayesian framework solves all this at
once by allowing models to represent not only single point estimates but complete
distributions over all possible parameter values. It offers a unified framework for

4.2 Assessing Uncertainty Quality 67

model building, inference, prediction, and decision-making. Moreover, it provides
a straightforward way to score models and select among them. BNNs have built-
in regularization, offer the advantages of ensemble learning, allow uncertainty
estimation and continual learning, besides weight quantization and compression.

There is no free lunch, and as already hinted above, BNNs have burdensome
inference. They rely on conditioning and marginalization, so the main operation is
integration. Thus, high-dimensional and/or complex models impose a real barrier
to their deployment. We discuss approaches that mitigate this issue by employing
distributional approximations (Sect. 3.2) to render computations amenable. Partic-
ularly, we focus on those that do not explicitly impose structure on weights, and
instead assume them independent (mean-field approximation, Sect. 3.2.1).

For ease of notation, we shall use w as the random variable instead of z. This
change of notation is not only to keep similarity to the literature in BNNs, but
also to remind our readers that the distributions are over the model’s weights (the
parameters) and not hidden units.

4.2 Assessing Uncertainty Quality

Bayesian and, more generally, probabilistic models output some measure of uncer-
tainty on which we rely to make decisions. Can we really believe in these models?
Do they reflect, approximately at least, the truth? We next present common
approaches to address these questions.

4.2.1 Predictive Log-Likelihood

As explained in Sect. 2.4, the likelihood term p(d |W) measures how likely a
specific configuration of the model is of generating the observed data. The predictive
log-likelihood captures how well the model fits the data, taking the variance (or other
measure of spread) of the prediction into account. It is an estimate of how well the
model fits both the mean and uncertainty.

Intuitively, the lower the variance, the more reliable the prediction should be and,
hence, the lower the score for being wrong. Still, the predictions ought to be reliable
so large variances also receive lower scores.

Let us take as example a regression model f (·;w), parameterized by w, that
predicts a scalar value ŷ, such that ŷ = f (x). Our probabilistic model assumes a
given level of noise and we thus place an observation noise model on top of the
output, such that the true output is corrupted by a known process. For an additive
Gaussian noise with variance σ 2, the log-likelihood estimate has the form

logp(y | x,w) = logN(y; f (x;w), σ 2)

= −1

2
log
(

2πσ 2
)

− 1

2σ 2 (y − f (x))2 . (4.1)

68 4 Bayesian Neural Networks

What we wish is that the observation y is as close as possible to the predicted output
f (x), such that our model agrees with the data. Note that the prediction and the
noise model could in principle be anything.

4.2.2 Calibration

Although posterior or predictive credible intervals are not necessarily calibrated,
it is a natural measure of reliability. In a classification task, one would expect
being correct X% of the time when the model assigns an X% probability of being
correct. In a regression setting, one hopes that X% of the time the true value falls
within an X% credible interval. A model with such coverage property is said to be
well-calibrated and implies that the Bayesian credible intervals coincide with the
frequentist confidence intervals.

The approach that asserts that inferences under a particular model should be
Bayesian, but model assessment can and should involve frequentist ideas is called
Calibrated Bayes [33].

A common diagnostic tool for calibration is the reliability (or calibration) plot,
shown in Fig. 4.2. Ideally, the empirical and the predictive cumulative distribution
functions should match, so plotting one against the other should give a graph
as close as possible to the identity y = x. Namely, for each credible interval
corresponding to a probability threshold pi , we plot the observed number of times
(empirical frequency) the prediction falls within the interval. We can measure the
calibration error numerically by computing the expected error between the predicted
and empirical frequencies for m different confidence intervals.

Still analyzing Fig. 4.2, one can notice that there are two other curves besides
the identity. The one in red, with triangle markers, refers to the uncalibrated model,
as the blue one, with square markers, is provided by the calibrated method applied
after the model has been trained. This is a toy example so the reader can realize how
significant the calibration process can be, clearly moving the uncalibrated curve
towards the identity. However, the performance of this method varies according
to the model you are calibrating, as pointed by the authors in [42]. In that paper,
the authors also present and analyze the behavior of two well-known learning
techniques that perform calibration: Platt Scaling [45] and Isotonic Regression.

Calibration is not enough for a good overall model, forecasts also need to be
sharp [31]. Intuitively, credible intervals should be as tight and probabilities as
binary as possible in regression and classification, respectively. A model that always
predicts the mean value and adjusts its confidence accordingly is calibrated by
definition, but not useful. There are various ways to measure spread, variance being
one of them.

4.3 Bayes by Backprop 69

0.00 0.25 0.50 0.75 1.00
Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

O
bs
er
ve
d
P
ro
ba
bi
lit
y

Fig. 4.2 Example of calibration plot. The gray dashed line is the identity y = x, the red curve
is the uncalibrated model, and the blue curve refers to the post-calibration model, which were
calibrated using the Platt’s method [45]. Ideally, we want the blue and gray line to be superposed,
indicating a perfectly well-calibrated model

4.2.3 Downstream Applications

It is worthwhile noting that even though the two previous metrics, predictive
log-likelihood and expected calibration error, are standard measures for assessing
uncertainty quality, it is still important to consider the context in which the
uncertainty measures are applied. One should also evaluate uncertainty quality by
measuring the performance of the downstream application of interest, e.g., outlier
detection, active learning, or uncertainty-driven exploration, with the appropriate
relevant metrics.

4.3 Bayes by Backprop

BBB has a quite long history preceding it. Bayes by Backprop [6], or BBB for short,
continues the work of [16] on practical VI for NNs, who in turn extends on [20], the
first to propose VI for NNs.

The essence of BBB’s approach is choosing a variational posterior q from which
probable samples can be drawn efficiently so that it becomes amenable to Monte
Carlo (MC) integration.

Specifying a diagonal Gaussian posterior implies that all network weights wi

are independent, requiring separate means μi and variances σ 2
i . Consequently, each

70 4 Bayesian Neural Networks

weight wi is characterized by Ψi = {μi, σ
2
i } and the set of all parameters by Ψ =

{μ, σ 2}. We express the approximating variational posterior distribution by

q(w;Ψ) =
∏
i

q(wi;Ψi) =
∏
i

N(wi;μi, σ
2
i). (4.2)

As seen in Sect. 3.2.1, optimizing the variational approximation amounts to
minimizing the negative ELBO as in (3.8), which writes

L(q) = −ELBO(q)

= −Eq(w;Ψ)

[
logp(D |W)

]+ DKL (q(w;Ψ)‖p(w))

= Ldata +Lprior , (4.3)

where we make explicit the presence of two cost functions of different nature. The
first,Ldata , which we refer to as the likelihood cost, is data-dependent and quantifies
the amount of error the model commits. The second, Lprior , is prior-dependent
and we call it the complexity cost. While the former drives the model towards best
explaining the data, the latter acts as a regularizer pushing towards the prior p(w),
as already explained in Sect. 3.2.1.

The diagonal Gaussian posterior (4.2) results in a non-closed analytical form for
the expectation in Ldata and for its derivatives w.r.t. μi and σi , rendering direct
evaluation and backpropagation unfeasible. To get around this issue one may resort
to MC integration, i.e., drawing different weights wt from the posterior q(w;Ψ),
performing the desired computation for each sample and averaging the results. The
main contribution from [6] is a reparameterization that gives unbiased gradient
estimators and is actually not restricted to Gaussian distributions. It relies on the
reparameterization trick (Sect. A.1) for a variational posterior q(w;Ψ) and a cost
function h(w;Ψ), both dependent on the parameters Ψ , according to

∇ΨEq(w;Ψ) [h(w;Ψ)] = Ep(ε)

[
∂h(w;Ψ)

∂w
∂w
∂Ψ

+ ∂h(w;Ψ)

∂Ψ

]
, (4.4)

where, as before, w = g(ε;Ψ), with g(·;Ψ) a smooth invertible deterministic
transformation, and ε is a base random variable.

Indeed, the above representation works for any distribution q(w;Ψ) that can be
recast as a transformation g(ε; ·) of base distribution p(ε). Still, the present case
only deals with q(w;Ψ) as the product of independent univariate Gaussians (4.2)
with parameters Ψ = {μ, σ 2}. A convenient choice of transformation is g(ε;Ψ) =
μ + �ε, where ε ∼ N(0, I), which boils down to μ + σ � ε for the uncorrelated
Gaussian case, i.e., diagonal covariance matrix �.

On a practical numerical note, one needs to prevent the σi from assuming
negative values during the optimization since σi � 0. Instead of imposing explicit

4.3 Bayes by Backprop 71

= g(ε ; Ψ)

a

f

∼ N (ε ; 0, 1)

Backprop

∂f
∂w

∂w
∂Ψ

w

Ψ ε

Fig. 4.3 Computational graph after the reparameterization trick. The blue round node is a random
node, while the gray rhombus nodes are deterministic. Black arrows represent the forward pass of
the model and the red ones (part of) the backpropagation path. The black dashed line indicates the
path for the computation of the KL divergence, that takes the distribution parameters Ψ as input.
Note that thanks to the reparameterization trick the node w is no longer random and so we can
compute its gradient as usual

constraints, the authors [6] suggest the softplus transform σi = log(1 + exp ρi) that
maps σi to ρi , whose value is confined to the range (0,∞).

Computing the derivatives of (4.4) w.r.t. both elements of Ψ = {μ, σ 2} and using
the chosen transformation give

∂L
∂μi

= ∂h(w, Ψ)

∂wi

+ ∂h(w, Ψ)

∂μi

, (4.5)

∂L
∂ρi

= ∂h(w, Ψ)

∂wi

ε

1 + exp (−ρi)
+ ∂h(w, Ψ)

∂ρi

. (4.6)

The modification places the random component out of the gradient path followed
by backpropagation, as illustrated in Fig. 4.3, where we depict a computational
graph that computes a function f with weights w from input activations a.
This modification allows the direct computation of the gradients w.r.t. w and Ψ

nodes in the computational graph just as done in any other deterministic node.
Automatic differentiation tools available in common frameworks [1, 44, 53] handle
this transparently, the only implementation difference being the need to explicitly
reparameterize the weights w = g(ε;Ψ) in the network definition and specify Ψ =
{μ, ρ} as the learnable parameters. More modern versions of the frameworks include
built-in functions that automatically perform this reparameterization implicitly.

Figure 4.4 shows the final graphical model for BBB with independent Gaussian
priors with parameters {μp, σ

2
p}, an example for which the KL term in (4.3) can be

evaluated analytically through the closed-form solution

Lprior =
W∑
i

log
σp

σi

+ 1

2σ 2
p

[
(μi − μp)

2 + σ 2
i − σ 2

p

]
, (4.7)

whose derivatives w.r.t. σi and μi are trivial to calculate.

72 4 Bayesian Neural Networks

Fig. 4.4 PGM representation of the model underlying the BBB method. The observed output yn
is a noisy observation of the model output for the input xn with the variance noise determined by
the fixed parameter σ 2

n . The constant values {μp, σ
2
p} govern the Gaussian prior distributions over

the weights, while {μk, σ
2
k } their posteriors

For non-conjugate priors, such as a mixture of Gaussians, we can instead
compute the KL numerically with the samples drawn from the posterior. This
estimation has the immediate advantage of allowing many more combinations
of prior and variational posterior families. Even though we now have one more
approximation in the system, more expressive priors can be used, i.e., non-Gaussian,
what potentially leads to better results. In light of this change, instead of plugging
(4.7) into (4.3), we write

L ≈
T∑

i=1

− logp(d |W(i)) + log q(w(i);Ψ) − logp(w(i)), (4.8)

where w(i) denotes the i-th out of T Monte Carlo samples drawn from the variational
posterior q(w;Ψ).

When using mini-batch optimization such that D = {dj | 1 ≤ j ≤ M}, it is
important to scale the complexity cost Lprior in the objective accordingly. Equation
(4.7) accounts for the whole data set, so naively computing the loss Lj in (4.3) M

times will lead to accounting M times for the complexity lossLprior instead of one.
The Ljprior

terms should then be weighted so that Lprior = BjLjprior
. Although

uniformly distributed weights Bj = 1/M seem a natural choice, there are different
ways of distributing them as long as

∑M
j=1 Bj = 1. In [6], the authors propose

Bj = 2M−j /(2M − 1). During the first iterations, the complexity cost dominates,
and at later mini-batches, after more data is seen, the data likelihood cost Ljdata

progressively gains more importance.
We summarize the resulting algorithm for optimizing a BNN in Algorithm 1. The

case we illustrate is for a diagonal Gaussian variational posterior with parameters
Ψ = {μ, ρ}, trained with a mini-batch of size 1 with non-uniformly distributed
weighting of the complexity term Lprior across the mini-batches.

Even though the gradient estimators are unbiased, the MC predictive log-
likelihood estimator is biased, because a non-linear function, i.e., the log, warps

4.3 Bayes by Backprop 73

Algorithm 1: Bayes by Backprop
1: while not converged do
2: w ← μ + log(1 + exp(ρ)) � ε, where ε ∼ N(0, I)
3: Randomly sample a data example xi
4: i ← (i + 1) mod N

5: πi ← 2N−i/2N−1

6: for s ∈ {w,μ, ρ} do
7: gs ← −∇s logp(xi |W) + πi (∇s log q(w;Ψ) − ∇s logp(w))

8: end for
9: �μ ← gw + gμ

10: �ρ ← gw � ε/(1 + exp(−ρ)) + gρ

11: μ ← μ − k�μ

12: ρ ← ρ − k�ρ

13: end while

the expected value. This will in general be true for all MC estimators and can be
mitigated by increasing the number of samples.

4.3.1 Practical VI

The BBB algorithm [6] actually builds upon the work of Graves [16], which gets
around the non-closed analytical form of the derivatives of Ldata in a different
manner. Instead of using the reparameterization trick to compute the derivatives,
Practical VI uses the fact that the expectations are over the Gaussian distribution
and employs the identities [7, 46]

∂Eq [f (w)]

∂μi

= Eq

[
∂f (w)

∂wi

]
, (4.9)

∂Eq [f (w)]

∂σ 2
i

= 1

2
Eq

[
∂2f (w)

∂w2
i

]
. (4.10)

Here, the generic function f = − logp(d |W) and its expected value Eq [f (w)] =
Ldata , the likelihood cost term of (4.3). These identities are useful because they
enable unbiased gradient estimates and have low variance when doing MC inte-
gration. Nevertheless, (4.10) requires second-order derivatives and even though the
mean-field assumption saves us from computing the full Hessian matrix ∇2

wLdata ,
its diagonal is still necessary.

Using the Generalized Gauss-Newton (GGN) approximation [8] to the Hessian
in (4.10) (see Appendix A.3), we obtain

74 4 Bayesian Neural Networks

∂Eq [f (w)]

∂σ 2
i

= 1

2
Eq

[
∂2f (w)

∂w2
i

]
≈ 1

2
Eq

[(
∂f (w)

∂wi

)2
]
. (4.11)

This approximation spares us from second-order derivatives, but introduces bias into
the estimation of the gradient w.r.t. the variance, that is, its expected value no longer
corresponds to the true gradient.

Putting together the gradients for both Lprior and Ldata terms, we have

∂L
∂μi

≈ μi − μp

σ 2
p

+
∑
x∈D

1

T

T∑
k=1

∂ logp(x |W(k))

∂wi

, (4.12)

∂L
∂σ 2

i

≈ 1

2

(
1

σ 2
p

− 1

σ 2
i

)
+
∑
x∈D

1

T

T∑
k=1

[
∂ logp(x |W(k))

∂wi

]2

, (4.13)

where {wi}Ti=0 are the MC samples, x are the data points, i.e., input, target pairs.
We then optimize the objective (4.3) with a gradient-descent method Ψm+1 = Ψm −
k ∂L
∂Ψm

.
As with the BBB method, observing (4.13) we note that this parameterization

may cause σi to assume negative values, thus calling for external constraints. Also
similar to BBB, the Probabilistic Graphical Model (PGM) underlying Practical VI is
the same as the one in Fig. 4.4. The difference between the two algorithms is rather
a practical implementation issue, not a modeling assumption.

We summarize the resulting algorithm for optimizing a BNN with Practical
ADF [16] in Algorithm 2. The case we illustrate is for a diagonal Gaussian
variational posterior with parameters Ψ = {μ, σ 2} and centered Gaussian prior with
diagonal covariance matrix σ 2

pI, trained with a mini-batch of size 1 and uniformly
distributed weighting of the complexity term Lprior across the mini-batches.

Algorithm 2: Practical ADF
1: while not converged do
2: w ← μ + σ � ε, where ε ∼ N(0, I)
3: Randomly sample a data example xi
4: g ← −∇ logp(xi |w)

5: �μ ← (μ − μp1)/(Nσ 2
p) + g

6: �σ 2 ← (σ 2 − σ 2
p1)/

(
Nσ 2

pσ 2
)

+ (g � g)

7: μ ← μ − k�μ

8: σ 2 ← σ 2 − k�σ 2

9: end while

4.4 Probabilistic Backprop 75

4.4 Probabilistic Backprop

Probabilistic Backpropagation (PBP) [19] solves the same problem as BBB but in a
rather very different manner. While the algorithm of the previous section relies on
optimizing the ELBO for the VI equation, PBP employs Assumed Density Filtering
(ADF) and Expectation Propagation (EP), discussed in Sects. 3.2.2 and 3.2.3,
respectively. The result is a parameter-free (not even learning rate) fully Bayesian
method that has forward and backward phases as in common backpropagation.
But instead of performing gradient descent in the parameter space, it incorporates
information about the new data points into the posterior approximation at each
iteration. Although another EP-based method had been proposed before [50], it
focused on binary weights and its continuous extension performed poorly, not
estimating the posterior variance.

In the year following PBP’s publication [19], other researchers developed a
variant for binary and multi-class classification problems [15]. In [52], the authors
adopted the PBP framework to propose an online algorithm that models the correla-
tions within the weights of the network with a matrix variate Gaussian distribution.
However, here we shall focus solely on its original formulation for regression
tasks since this already is enough work. PBP does not use the usual reverse mode
automatic differentiation and requires non-trivial custom implementations, which is
its major drawback and the reason why it has not seen widespread adoption. We start
this section anticipating the reader that this is the most technically difficult section
in the book.

Similar to the previous method, PBP assumes independence among the network
weights and the existence of additive Gaussian noise N(ε | 0, γ−1) with precision
γ corrupting the observations. Although specifying the network architecture is not
necessary for the other methods in this chapter, since they correctly function with
any directed acyclic graph with no or almost none adaptations, the one at hand
specializes in fully connected layers with Rectified Linear Unit (ReLU) [38], that
is, max(0, x), as activation function. While modifying the model to conform to a
different non-linearity is possible, it requires painstaking mathematical derivations
as we can glance upon this section.

The graphical model for PBP is illustrated in Fig. 4.5 and its full posterior
distribution over the parameters is given by

p(w, γ, λ |X) = p(y |W,X, γ)p(w | λ)p(λ)p(γ)

p(y |X)

∝ p(y |W,X, γ)p(w | λ)p(λ)p(γ), (4.14)

where p(y |X) is the model evidence, p(y |W,X, γ) the observation model
defining the likelihood factors, p(w | λ) the prior distribution over the weights
composed of univariate Gaussians with precision λ, that is,

76 4 Bayesian Neural Networks

Fig. 4.5 PGM representation of the PBP model. The observed output yn is a noisy observation of
the model output znL for the input xn. The hyper-parameter λ governs the precision of the Gaussian
prior distributions over the weights, whereas γ governs the precision noise of the Gaussian
observation model

p(w1, · · · , w|W| | λ) =
∏

w∈W
N(w | 0, λ−1), (4.15)

and p(λ) and p(γ) are hyper-prior distributions over the precision hyper-parameters
of the likelihood and weight prior, respectively. We specify Gamma distributions
Ga(z |α, β), given by

p(z |α, β) = βα

�(α)
zα−1 exp(−βz), (4.16)

for both hyper-priors. In Sect. 2.5, we proved that Gamma is the conjugate prior for
the Gaussian distribution with known mean and unknown precision parameter.

From the analysis of the influence of the hyper-parameters on the Gamma
posterior (2.42), we choose them such that they impose a weak prior, not affecting
the posterior distribution. Exactly the same reasoning is valid for the hyper-prior on
γ .

PBP uses EP and ADF (Sects. 3.2.3 and 3.2.2 respectively) to update the
parameters w1, · · · , w|W|, αγ , βγ , αλ, and βλ of the approximating distribution

q(w1, · · · , w|W|, λ, γ)

=
⎡
⎣

|W|∏
i=1

N(wi |μi, σ
2
i)

⎤
⎦Ga (λ |αλ, βλ)Ga

(
γ |αγ , βγ

)
, (4.17)

by cycling through the factors in (4.14) and including them one at a time. Thus, the
total number of factors is the number of data points plus the (hyper-)priors, i.e., |W|
for the weights and two for the precisions.

Since EP requires storing the approximate factors to compute the cavity distribu-
tions, it does not scale well with data. Its memory consumption grows linearly with
the data set size. Thus, instead of performing EP updates for the likelihood factors,
PBP repeatedly employs ADF multiple times, that is, instead of going through

4.4 Probabilistic Backprop 77

each data point only once, it incorporates the same factors N times. Although
computationally more efficient, this approach has the risk of underestimating
the parameter posterior variance. We are artificially observing more data, which
in the limit of infinite data leads to the collapse of the posterior distribution
onto the MLE as we assume the data points are (conditionally) independent and
identically distributed (iid). However, this is clearly not the case when repeating
the observations. Thus, the PBP should not run for many epochs. The authors [19]
advise fewer than 100 and in our case study (Sect. 4.7) we run it for 40 epochs.
Nevertheless, PBP is specifically designed for large data sets so this restriction does
not matter much in practice. Yet, this is important to keep it in mind.

The models we analyze here and those employed in the original work have rather
small sizes according to the current standards, i.e., one hidden layer with 50 units, so
running EP updates is still feasible. Indeed, it is what the authors in [19] propose. In
modern networks, which commonly contain hundreds of thousands of parameters,
EP once again becomes a problem and ADF is the way to go.

The ADF update consists in including the true factor fi(w1, · · · , w|W|, λ, γ)

into the current approximation q(w1, · · · , w|W|, λ, γ), such that the updated
approximation is

K−1f (w1, · · · , w|W|, λ, γ)q(w1, · · · , w|W|, λ, γ), (4.18)

where K−1 is a normalization constant that assures q(w1, · · · , w|W|, λ, γ) remains
a proper probability distribution. This step usually causes the distribution to shift
and no longer belong to the desired functional form. Then, to maintain the approxi-
mation manageable, we project it back to the same distribution class we had before
the inclusion of the true factor, namely we minimize the KL divergence between
the term in (4.18) and qnew(w1, · · · , w|W|, λ, γ) w.r.t. w1, · · · , w|W|, λ, γ , the
parameters of the new distribution qnew. As already shown in (3.40), this is
equivalent to matching the moments of both distributions, and each update consists
of an iterative deterministic procedure so there is no learning rate to modulate the
step size as for the other methods we discuss.

At the beginning, we have no information, so unless we have prior domain
knowledge we initialize the parameters such that q is effectively uniform. This
amounts to setting αλ = αγ = 1, βλ = βγ = 0, and μ = 0, σ 2 = ∞ for every
weight w.

The remainder of the section is split into three different subsections explaining
how each type of factor is included into the model.

4.4.1 Incorporating the Hyper-Priors p(λ) and p(γ)

The first factors to incorporate into the approximation are the priors over γ and
λ. As shown in (2.42), the product of the prior precision Gamma and the Normal
distribution results in a distribution with the same functional form as Gamma. This

78 4 Bayesian Neural Networks

is exactly the case for (4.14), that is

qnew(w1, · · · , w|W|, λ, γ) ∝
[
λαλ−1 exp (−λβλ)

] [
λαλ,0−1 exp

(−λβλ,0
)]

∝ λ(αλ+αλ,0−1)−1 exp
(−λ

(
βλ,0 + βλ

))
. (4.19)

Thus, including the Gamma prior factors into q, and considering that αλ = 0, βλ =
1, amounts to increment the values of the parameters γ and λ by

αγ,new = αγ + αγ,0 − 1 = αγ,0 ,

βγ,new = βγ + βγ,0 = βγ,0 , (4.20)

where we have used the values defined above, i.e., αλ = αγ = 0, βλ = βγ = 1.
Since there are no approximations in these relationship, and, hence no loss of

information, the hyper-priors need to be included only once.

4.4.2 Incorporating the Priors on the Weights p(w | λ)

Next, we incorporate the priors over the weights w ∈W. The unnormalized shifted
distribution after the inclusion of one such factor is

q(w1, · · · , w|W|, γ, λ)N(wj | 0, λ−1), (4.21)

and the normalization constant is

K =
∫

q(w1, · · · , w|W|, γ, λ)N(wj | 0, λ−1)dwdγ dλ

=
∫ |W|∏

i=1

N(wi |μi, σ
2
i)Ga (λ |αλ, βλ)Ga

(
γ |αγ , βγ

)

︸ ︷︷ ︸
q(w1,··· ,w|W|,γ,λ)

×

N(wj | 0, λ−1)dw1 · · · dw|W|dγ dλ

=
∫
N(wj |μj , σ

2
j)

[∫
N(wj | 0, λ−1)Ga (λ |αλ, βλ) dλ

]
dwj

=
∫
N(wj |μj , σ

2
j)T2αλ(wj | 0, βλ/αλ)dwj , (4.22)

where we have used the result demonstrated in (A.34), that the integral of the
product of a Gamma and a Gaussian distributions is the t-Student’s distribution

4.4 Probabilistic Backprop 79

defined in (A.35). We continue the computation of K by approximating the t-
Student’s distribution T2αλ(wj | 0, βλ/αλ) with a Gaussian with same mean and
variance, what as we saw in Fig. A.1 is within reason for enough degrees of freedom
ν, i.e., large αλ. Thus, continuing the calculation of K:

K ≈
∫
N(wj |μj , σ

2
j)N(wj | 0, βλ/(αλ − 1))dwj

=
∫
N
(
μj

∣∣∣∣ 0, σ 2
j + βλ

αλ − 1

)
N
(
wj

∣∣∣∣
λ(αλ − 1)

βλ + α − 1

μ

σ 2 ,
λ(αλ − 1)

βλ + α − 1

)
dwj

= N
(
μj

∣∣∣∣ 0, σ 2
j + βλ

αλ − 1

)∫
N
(
wj

∣∣∣∣
λ(αλ − 1)

βλ + α − 1

μ

σ 2
,

λ(αλ − 1)

βλ + α − 1

)
dwj

= N
(
μj

∣∣∣∣ 0, σ 2
j + βλ

αλ − 1

)
, (4.23)

where we resorted to the fact that the product of two Gaussians is also a Gaussian
and is given by

N(wj |μ1, σ
2
1)N(wj |μ2, σ

2
2) = N(μ1 |μ2, σ

2
1 + σ 2

2)N(wj |μ, σ 2), (4.24)

with σ 2 =
(
σ−2

1 + σ−2
2

)−1
and μ = σ 2

(
μ1σ

2
1 + μ2σ

2
2

)
.

4.4.2.1 Update Equations for αλ and βλ

Updating the posterior approximation means matching its moments with those of
the shifted distribution s = K−1q(w1, · · · , w|W|, γ, λ)N(wj | 0, λ−1). However,
the sufficient statistics for λ does not have closed form so we revise its parameters
βλ and αλ by matching only its first and second moments, which still produces good
results [36].

Let us now derive those update formulas. We start by noting that K in (4.23)
is a function of μj , σ

2
j , βλ, and αλ, and make the dependency in the two

latter terms explicit by writing K(βλ, αλ). Additionally, for brevity we denote
q(w1, · · · , w|W|, γ, λ)N(wj | 0, λ−1) as f (λ)Ga(λ |αλ, βλ) and compute

Eq [λ] = 1

K(βλ, αλ)

∫
λf (λ)Ga(λ |αλ, βλ)dλ

= 1

K(βλ, αλ)

∫
αλ

βλ

f (λ)Ga(λ |αλ + 1, βλ)dλ

= 1

K(βλ, αλ)

[
αλ

βλ

K(αλ + 1, βλ)

]

80 4 Bayesian Neural Networks

= K(αλ + 1, βλ)αλ

K(αλ, βλ)βλ

. (4.25)

Similarly, we obtain for the second moment

Eq

[
λ2
]

= K(αλ + 2, βλ)αλ (αλ + 1)

K(αλ, βλ)β
2
λ

. (4.26)

Recalling the mean and variance formulas for the Gamma distribution (4.16), we
equate them to the above expressions to obtain

αλ,new

βλ,new
= K(αλ + 1, βλ)αλ

K(βλ, αλ)βλ

, (4.27)

αλ,new

β2
λ,new

= K(αλ + 2, βλ)αλ(αλ + 1)

K(βλ, αλ)β2 −
[
K(αλ + 1, βλ)αλ

K(βλ, αλ)βλ

]2

. (4.28)

Solving the above equations for αλ,new and βλ,new, and abbreviating the normalizing
coefficients K0 = K(αλ, βλ), K1 = K(αλ + 1, βλ), and K2 = K(αλ + 2, βλ), we
finally get

αλ,new =
[
K0K2K

−2
1 (αλ + 1)α−1

λ − 1
]−1

, (4.29)

βλ,new =
[
K2K

−1
1 (αλ + 1)β−1

λ − K1K
−1
0 αλβ

−1
λ

]−1
, (4.30)

which are the update equations for the Gamma distribution over the precision
parameter λ.

4.4.2.2 Update Equations for the μ and σ 2

It remains to establish how the mean and variance parameters of a given random
weight change when we include its prior distribution into the posterior. The
derivation in this section closely follows [17].

We first note that the shifted distribution can be conveniently written as s =
K−1f (wi)N(wi |μi, σ

2
i), where f (wi) comprises all factors in

q(w1, · · · , w|W|, γ, λ)N(wi | 0, γ−1) (4.31)

except the N(wi |μi, σ
2
i), which we make explicit.

For μi , we start from the easily verifiable identity

∇μi
N(wi |μi, σ

2
i) = σ−2

i (wi − μi)N(wi |μi, σ
2
i), (4.32)

4.4 Probabilistic Backprop 81

which we rearrange to

wiN(wi |μi, σ
2
i) = μiN(wi |μi, σ

2
i) + σ 2

i ∇μN(wi |μi, σ
2
i). (4.33)

Multiplying on both sides by K−1f (wi) and integrating over wi leads to

∫
wiK

−1f (wi)N(wi |μi, σ
2)dwi =

∫
μK−1f (wi)N(wi |μi, σ

2)dwi

+
∫

σ 2K−1f (wi)∇μN(wi |μi, σ
2)dwi

(4.34)

Es [wi] = μ + σ 2K−1
[
∇μ

∫
f (wi)N(wi |μi, σ

2)dwi

]

= μ + σ 2K−1∇μK

= μ + σ 2∇μ logK. (4.35)

Since the first moment for the to-be-updated distribution N(wi |μi, σ
2) is μi , the

update formula is

μi,new = μ + σ 2∇μ logK. (4.36)

Through a similar identity for the derivative w.r.t. σ 2
i :

∇σ 2
i
N(wi |μi, σ

2) = σ−2
i

2

(
−1 + σ−2

i (wi − μi)
2
)
N(wi |μi, σ

2), (4.37)

and following exactly the same procedure as before for μi , we arrive at Es

[
w2

i

] =
σ 2
i + 2

(
σ 2
i

)2 ∇σ 2
i

logK . Then, the variance of the shifted distribution is

Var(wi) = Es

[
w2

i

]
− (Es [wi])

2 = σ 2
i −

(
σ 2
i

)2 [(∇μ logK
)2 − 2∇σ 2

i
logK

]
.

(4.38)

From this, we establish the update for the variance of the normally distributed weight
as

σ 2
i,new = σ 2

i −
(
σ 2
i

)2 [(∇μ logK
)2 − 2∇σ 2

i
logK

]
. (4.39)

Although we derived rules for performing ADF, that is, only including the
individual true factors of the model, without ever removing the approximating
factors to be updated, adapting them to EP is simple. The two key differences are:

82 4 Bayesian Neural Networks

1. Keep track of the parameters for each individual approximating factor;
2. Before the update, remove from the posterior the approximating factor cor-

responding to the true factor that will be incorporated (cavity distribution),
effectively this means subtracting their contributions from the parameters of the
posterior.

4.4.3 Incorporating the Likelihood Factors p(y |W,X, γ)

In order to incorporate the information coming from a data point, we pass it
forward through the network. Assuming the model to be a fully connected multi-
layer network, at each layer following the input, PBP approximates the distribution
of the resulting activations with a Gaussian distribution with same mean and
variance, such that the input to the next layer is also Gaussian. At the last layer,
we obtain the distribution of the output yi given xi , to which we further apply the
observation model, i.e., additive Gaussian noise with precision γ , which gives us
p(yi | xi ,W, γ) = N(yi | f (xi ,W), γ−1). The likelihood factor is then included
into the posterior approximation as usual: we shift the posterior by multiplying it by
the likelihood factor stemming from the data point under consideration, compute the
first and second moments of the resulting distribution, and update the parameters to
obtain these moments.

Note that in the derivation of the update formulas (4.29), (4.30), (4.36), (4.39)
we have not assumed any specific format for the factors being included into
the posterior approximation. So the same equations can be used once again for
the likelihood factors, the sole change being what the normalizing constant K

is. In what follows we unveil the expression for K for the likelihood factors
N(yi | f (xi ,W), γ−1).

4.4.3.1 The Normalizing Factor

We consider a network with L layers and Vl units on each layer l, taking in vector-
shaped inputs xi . Thus, the output zl of each layer can be arranged into a vector,
and the weights between two consecutive layers into a weight matrix Wl with
dimensions Vl × (Vl−1 + 1), where the +1 stems from the inclusion of a bias term.
The pre-activation of a layer l is given by al = Wzl−1/

√
Vl−1 + 1, and for all except

the last layer, this gets transformed according to the non-linear mapping max(a, 0),
known as ReLU [38].

We make the simplifying assumption that the output zL of the network at the
last layer L is distributed as a Gaussian and proceed to compute the normalizing
constant K of the associated shifted distribution as

K =
∫

q(w, γ, λ)N(yi | f (Xi ,w), γ−1)dwdγ dλ

4.4 Probabilistic Backprop 83

≈
∫

q(w, γ, λ)N(yi | zL, γ−1)N(zL |μzL, σ
2
zL)dwdzLdγ dλ

=
∫

Ga
(
γ |αγ , βγ

)
N(yi | zL, γ−1)N(zL |μzL, σ

2
zL)dzLdγ

=
∫
T2αγ (yi | zL, βγ /αγ)N(zL |μzL, σ

2
zL)dzL

≈
∫
N
(
yi | zL, βγ /(αγ − 1)

)
N(zL |μzL, σ

2
zL)dzL

= N(yi |μzL, βγ /(αγ − 1) + σ 2
zL), (4.40)

where we have followed the same steps and performed the same approximations as
in the derivation of (4.23).

Computing the mean μzL and variance σ 2
zL of the last layer zL amounts to

propagating the input through the entire network. If we assume that the layer l − 1
has output zl−1 with a diagonal covariance Gaussian distribution with mean and
variance μzl−1 and σ 2

zl−1
, respectively, we can compute the mean and variance of the

pre-activation al at the following layer according to

μal = E

[
Wlzl−1/

√
Vl−1 + 1

]
= W̄lzl−1/

√
Vl−1 + 1 (4.41)

σ 2
al = Var

(
Wlzl−1/

√
Vl−1 + 1

)
,

= 1

Vl−1 + 1

[
(E [Wl])

2 Var
(
zl−1

)+ Var (Wl)
(
E
[
zl−1

])2 + Var (Wl)Var
(
zl−1

)]

= 1

Vl−1 + 1

[(
W̄l � W̄l

)
σ 2
zl−1

+ Vl

(
μzl−1 � μzl−1

)+ Vlσ
2
zl−1

]
, (4.42)

where W̄l and Vl are the mean and variance matrices for the weights in Wl , whose
values are determined by the corresponding Gaussian factors of the model.

If the number Vl−1 of inputs to the layer l is large enough and we further assume
the entries of al are independent, we can invoke the Central Limit Theorem and
claim that the pre-activation al is Normally distributed with the above mean and
variance [50].

We are now to consider the effect of the non-linear activation function on al . The
max(0, ai,l) operation causes all probability density spread over R− to concentrate
at zero as Fig. 4.6 indicates. The resulting distribution is called rectified Gaussian
and has its PDF given by

NR
(
ai,l;μi,l, σ

2
i,l

)
= �

(
−μi,l

σi,l

)
δ(ai,l) + 1√

2πσ 2
i,l

e
− (ai,l−μi,l)

2

2σ2
i,l U(ai,l),

(4.43)

84 4 Bayesian Neural Networks

−2 −1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
R
(x

|0
, 1

2)

Fig. 4.6 PDF of the rectified Gaussian distribution NR(x; 0.5, 12)

where μ, σ 2 are the mean and variance of the Gaussian prior to rectification, �(·)
is the CDF of the standard Gaussian at the specified point, δ(·) is Dirac’s impulse
function, and U(·) is the unit step function. Its mean and variance are

μzi,l = �

(
μai,l

σai,l

)
μai,l + σai,l φ

(
−μai,l

σai,l

)
(4.44)

σ 2
ai,l

= m
(
μai,l + σai,l κ

)
�

(
−μai,l

σai,l

)
+ �

(
μai,l

σai,l

)
σ 2
ai,l

(
1 − κ

(
κ + μai,l

σai,l

))
,

(4.45)

where κ = φ
(
−μai,l

σai,l

)/
�
(

μai,l

σai,l

)
, and φ(·) is the PDF of the standard Gaussian at

the specified position.
The output distribution of the corresponding layer is then a Gaussian with entries

determined by the above formulas plus an extra element we append for the bias term,
which has mean 1 and variance 0. Then, finding the values μzL and σ 2

zL
consists in

iteratively computing Eqs. (4.41), (4.42), (4.44), (4.45) from the first until the last
layer for each data point (xi , yi).

We summarize the many factors that compose PBP’s distribution in Table 4.1 and
highlight how many of each there are. The steps of the ADF-update-only method are
available in Algorithm 3. We condense the forward pass responsible for computing
the output distribution N(Yi | f (Xi ,w), γ−1) into a single step in line 17.

It is important to note that the authors [19] assume the inputs are normalized, i.e.,
zero mean and unit variance. Hence, we need to normalize the data points before
feeding them to the model and then to denormalize the obtained outputs.

4.5 MC Dropout 85

Table 4.1 Summary of PBP’s factors, their distributions, and quantities

Type Symbol Distribution Quantity

Hyper-prior p(λ) Ga (λ |αλ, βλ) 1

Hyper-prior p(γ) Ga
(
γ |αγ , βγ

)
1

Prior p(wj | λ) N(wj | 0, λ−1) |W|
Likelihood p(Yj |W,Xj , γ) N(Yj | f (Xj ,w), γ−1) N

Algorithm 3: Probabilistic Backprop

1: Initialise parameters αλ, αγ , βλ, βγ , {μj , σ
2
j }|W|

j=0
2: for s ∈ {λ, γ } do
3: αs ← αs + αs,0 − 1
4: βs ← βs + βs,0
5: end for
6: while not converged do
7: for j = 1 to |W| do
8: for s = 0 to 2 do
9: Ks ← N

(
μj

∣∣∣ 0, σ 2
j + βλ/(αλ − 1 + s)

)

10: end for

11: αλ ←
[
K0K2K

−2
1 (αλ + 1)α−1

λ − 1
]−1

12: βλ ←
[
K2K

−1
1 (αλ + 1)β−1

λ − K1K
−1
0 αλβ

−1
λ

]−1

13: μj ← μj + σ 2∇μ logK0

14: σ 2
j ← σ 2

j −
(
σ 2
j

)2 [(∇μj
logK0

)2 − 2∇σ 2
j

logK0

]

15: end for
16: for j = 1 to N do
17: μzL , σ

2
zL ← f (Xj ,W)

18: for s = 0 to 2 do
19: Ks ← N(yi |μzL , σ

2
zL) + βγ /(αγ − 1 + s)

20: end for

21: αγ ←
[
K0K2K

−2
1 (αγ + 1)α−1

γ − 1
]−1

22: βγ ←
[
K2K

−1
1 (αγ + 1)β−1

γ − K1K
−1
0 αγ β

−1
γ

]−1

23: μj ← μj + σ 2∇μ logK0

24: σ 2
j ← σ 2

j −
(
σ 2
j

)2 [(∇μj
logK0

)2 − 2∇σ 2
j

logK0

]

25: end for
26: end while

4.5 MC Dropout

The Monte Carlo Dropout [13], usually referred to as MC Dropout, stems from rein-
terpreting Dropout [51] as doing approximate Bayesian inference. Consequently, it
suffices to use Dropout both during training and testing to obtain the advantages of
Bayesian inference and model uncertainty measures.

86 4 Bayesian Neural Networks

(a) (b)

Fig. 4.7 Effect of Bernoulli dropout on the network. Setting the output of a unit to zero is
equivalent to removing that unit from the network. That nodes’ inputs also become irrelevant
because they are no longer propagated forward and so we remove them from the drawing in (b).
(a) Standard neural network. (b) Neural network after dropout

4.5.1 Dropout

First, we review Dropout [51]. Succinctly, it is a stochastic regularization technique
to avoid overfitting the data. The basic idea is to corrupt the model’s units
with random multiplicative noise while training. Mathematically, it amounts to
multiplying the input hl of layer l pointwise by a realization of a random vector
εl , such that ĥl = hl � εl .

In the case of Bernoulli dropout, each unit hj,l at layer l is randomly dropped
out with probability 1 − p, i.e., its output value is set to zero, at each iteration
according to εj,l ∼ Bern(p), as illustrated in Fig. 4.7. Dropping units causes
different subnetworks with considerably less parameters to be used at each iteration
(12 instead of 55 in Fig. 4.7, for instance). When testing, all units are kept as if an
ensemble with all subnetworks was being used for evaluation.

Other works propose other types of noise. For example, in [28, 51], the authors
study corrupting the activations with multiplicative Gaussian noise, and in [56],
independently injecting noise on each weight, instead of on the input. The latter
technique is called DropConnect.

4.5 MC Dropout 87

4.5.2 A Bayesian View

Optimizing a model with dropout and an approximate Bayesian inference model
leads to similar objective functions with similar stochastic gradient update steps.
This similarity is so strong that under some conditions they are indeed equiva-
lent [13]. Although we shall only consider here the Bernoulli Dropout, a similar
development is possible for other types of noise.

Let us first review the cost function of a standard deterministic neural network
f (·;Θ) with deterministic parameters Θ:

L = Ldata (D, f (·;Θ)) +Lreg(Θ), (4.46)

where the first term is data-dependent and measures the model’s prediction error,
and the second is a regularization term to help against overfitting. Considering
a regression task with data points D = {(xi , yi) | 1 � i � N}, a model with
parameters Θ = {Ml | 1 � l � L}, and Lreg as the usual �2-norm with strength
factors λM, (4.46) becomes

L = 1

|D|
∑

(x,y)∈D

1

2
(y − f (x;Θ))2 +

∑
M∈Θ

λM‖M‖2
2 . (4.47)

If we reinterpret Dropout as instead of corrupting the layers’ inputs, corrupting
the corresponding weights, we get for an arbitrary intermediate layer l with
activation function gl(·), the expression

hl = gl

(
Ml ĥl−1

)

= gl (Ml (εl � hl−1))

= gl (Ml (diag (εl)hl−1))

= gl ((Mldiag (εl))hl−1)

= gl (Wlhl−1) , (4.48)

where Ml is the (deterministic) weight matrix, hl−1 the input, εl the random noise,
and Wl = Mldiag (εl).

We have demonstrated that multiplying the input is equivalent to multiplying
the columns of the upcoming weight matrix. Considering a Bernoulli distribution
on each element of εl , when one of its entries assumes value equal to 0, it zeros
the corresponding column of Wl (as Wl = Mldiag (εl)). Zeroing the column is
equivalent to dropping every input of a neuron, which in turn is the same as dropping
the neuron itself, as illustrated in Fig. 4.8.

Hence, applying dropout on a deterministic neural network can be interpreted as
a transformation to a NN whose weights are sampled from a distribution. Looking

88 4 Bayesian Neural Networks

Fig. 4.8 Dropping every
input of a neuron (figure in
the left) is equivalent to
dropping the neuron itself

from this perspective, dropout is a way of using BNNs. Figure 4.10 shows the
resulting weight matrix after being transformed by realizations of different types
of noise.

If we now rewrite (4.47) taking this into consideration and make the sampling
explicit, we get

L = 1

N

N∑
i=1

1

2

(
yi − f (i)(xi;Θ)

)2 +
L∑

l=1

λl‖Ml‖2
2, (4.49)

where the notation f (i)(·;Θ) indicates a sample of the random parameters drawn
for the data point (xi , yi). Since Θ now defines distribution parameters, we replace
it by Ψ in order to keep compliance with our notation of variational parameters and
ease the comparison with other methods.

Substituting the first term of the above equation according to (4.1), we obtain

L = − 1

N

N∑
i=1

σ 2
n logp(yi |Xi ,W(i)) +

L∑
l=1

λl‖Ml‖2
2 − σ 2

n

2
log
(

2πσ 2
n

)

= − 1

N

N∑
i=1

σ 2
n logp(yi |Xi ,W(i)) +

L∑
l=1

λl‖Ml‖2
2 + const , (4.50)

where σn is the observation noise, W(i) is one sample from the distribution. The
term that only depends on σn is considered a constant since this hyper-parameter is
set by cross-validation and not gradient-descent optimization.

Equation (4.50) is pretty similar to a one-sample MC estimator of the VI cost
function L̂V I defined in (3.8), and (4.3), which after approximating with MC
integration becomes

L̂V I = − 1

T

T∑
k=1

logp(d |W(k)) + DKL

(
q(W(k);Ψ)‖p(W(k))

)

= − logp(d |W(1)) + DKL

(
q(W(1);Ψ)‖p(W(1))

)

= −
N∑
i=1

logp(yi |Xi ,W(1)) + DKL

(
q(W(1);Ψ)‖p(W(1))

)
. (4.51)

4.5 MC Dropout 89

Taking the derivative of both (4.50) and (4.51) w.r.t. their parameters, we note
that they possess the same objective (up to a constant scale factor), as long as we
assure that

∂

∂Ψ
DKL

(
q(W(1);Ψ)‖p(W(1))

)
= N

σ 2
n

∂

∂Ψ

L∑
l=1

λl‖Ml‖2
2. (4.52)

This condition is now the sole thing impeding us from using dropout (or any other
similar noise injection technique) as an approximate Bayesian model. For (4.52) to
hold, we have to choose the hyper-parameters σn and Λ = {λl |1 � l � L} such
that they induce a sensible prior p(W) for the underlying variational distribution
q(W;Ψ). In the Appendix of [12], the author goes deeper in the conditions
necessary to be attended in order for Eq. (4.52) to hold, where they assume that the
weights of the neural network are sampled from a centered Gaussian distribution,
i.e., wj,l ∼ N(0, γ−1

l).
Let us stop here and digest this result. No specific assumption about the neural

network architecture was assumed other than having a Dropout layer before each
weight layer. This is the only restriction to obtain approximate Bayesian inference
with the model in Fig. 4.9, the other being readily attended: to every choice of
dropout probability 1 − pl , observation noise σ 2

n (or, equivalently, noise precision
τn), and regularization strength λl , corresponds a prior precision γl (or, according
to [13] a prior length-scale ll), whether or not its value is reasonable for the
problem at hand. For other network architectures such as convolutional [12] and
recurrent [14], few additional considerations are required to achieve a similar
result. If the employed model does not have Dropout in between every layer, as
is usually the case in pretrained models with only the last fully connected layers of
the classifier possessing Dropout, we can think of them as having a deterministic
feature-extractor part and a subsequent approximate Bayesian classifier. Although
not as powerful, this is still a nice interpretation if we want to do inference and are
bound to a given model.

Fig. 4.9 PGM representation of the MCDO model. The observed output yn is a noisy observation
of the model output for the input xn with the variance noise determined by the fixed parameter
σ 2
n . The j -th weight vector mj,l out of the Jl from the l-th layer get selected by Bernoulli random

variables with success rate pl and wj,l have centered Gaussian priors with fixed precision γl , whose
value is readily determined by the choice of the two previous hyper-parameters together with the
regularization strength λl

90 4 Bayesian Neural Networks

Bernoulli DropConnect

Gaussian DropConnect

Bernoulli Dropout

Gaussian Dropout

1.77

0.88

0.0

Fig. 4.10 The effect on the network weights of using different stochastic regularization tech-
niques on the same deterministic weight matrix M. Each technique corresponds to a distinct base
distribution and leads to distinct variational distribution. For the same weight matrix, different base
variational distributions

Also, the posterior approximation for Bernoulli Dropout factorizes over different
layers and over connections going out of the same unit, but not over the connections
arriving at the same unit. As the same Bernoulli random variable acts on the same
weight matrix column, naturally they are not independent. The other methods of
this chapter use mean-field approximation to the posterior, completely missing any
codependency among the weights. In this sense, MCDO is less restrictive.

However, the author of [12] warns that to get well-calibrated uncertainty esti-
mates the dropout probability must be optimized as well. Since this is a variational
parameter, it cannot be directly chosen by observing the ELBO objective [12]. The
recommendation is then to set it by maximizing the log-likelihood over a validation
set.

We summarize the resulting procedure in Algorithm 4, where we illustrate
the case for the Bernoulli dropout trained with a mini-batch of size 1. However,
as pointed out at the beginning of this section, other stochastic regularizers can
be recast as performing approximate Bayesian inference by following a similar
derivation, as Fig. 4.10 illustrates. For example, for DropConnect [56] the only
difference is in using separate random variables for each weight instead of one for
each column of the weight matrix. It is important to note that not all resignifications
go without problems, Gaussian Dropout [51] as Bayesian inference with a log-
uniform prior [28] has had some issues pointed out in [24]. If instead of using
multiplicative we consider additive Gaussian noise for each weight parameter, we
recover the algorithm of Sect. 4.3.1.

4.6 Fast Natural Gradient

The parameter space is in general Riemannian and not Euclidean, so learning
methods should take the structure of the space into account [2]. Natural gradient

4.6 Fast Natural Gradient 91

Algorithm 4: MC Dropout
1: while not converged do
2: Randomly sample a data example {xi , yi}
3: for l = 1 to L do
4: Wl ← Mldiag (εl), where εl ∼ Bern(pl)

5: end for
6: g ← 1

2 ∇ (yi − f (xi; {Wl}Ll=0)
)2 +∑L

l=1 λl∇‖Wldiag (εl)‖2
2

7: mj,l ← mj,l − kg
8: end while

methods do that by warping the gradient according to the information geometry
encoded into the Fisher information matrix (see Appendix A.4). As a consequence,
they are invariant (up to first order) to changes in the parameterization of the
problem, what is in stark contrast to standard gradient descent, whose efficiency
and convergence rate are sensitive to the parameterization.

Current frameworks focus on MLE and adapting them for VI requires mod-
ifications in the code, increasing development time, memory requirements, and
computation costs. For example, the algorithms of Sects. 4.3 and 4.4 have twice the
number of parameters of a deterministic model with the same architecture, besides
the additional implementation effort. Adaptive optimizers further enlarge the costs
since each parameter has its own scaling variable that regulates the learning rate.

The authors in [26] build upon previous work [25] on natural gradient for
Gaussian MFVI and propose a series of progressively more practical but less
accurate optimizers. It is a lengthy read to grasp all the details, but certainly worth
the effort. Here, we review and rederive the core algorithm of [26], named Vadam.

4.6.1 Vadam

From all reviewed methods, Vadam [26] is the more recent and practical one. Similar
to the Adam optimizer [27] by construction, it is a natural gradient method (see
Appendix A.4) with momentum designed specifically for MFVI. Starting from a
parameter update equation proposal, the authors [26] embed several approximations
defining different algorithms until reaching the method they name Vadam, for
Variational Adam.

Gradient optimizers with momentum establish the update step as a linear
combination between the steepest descent direction and the last displacement [8],
such as

wt+1 = wt − ᾱt∇wf (wt) + γ̄t (wt − wt−1), (4.53)

where {ᾱt } and {γ̄t } form a sequence of scalars that determines the contribution of
each term and must obey the convergence conditions discussed in Sect. 3.2.1.5.

92 4 Bayesian Neural Networks

The latter term in (4.53) keeps the algorithm’s movement along previous search
directions, and is thus named momentum. Reasoning about its dynamics since the
first iteration, each step can be understood as an exponentially decaying average
of past gradients, hence the tendency to accumulate contributions in directions of
persistent descent, while directions that oscillate tend to cancel out, or at least
remain small [8].

Instead of (4.53), the authors of [26] propose

ηt+1 = ηt − ᾱt ∇̃ηf (ηt) + γ̄t (ηt − ηt−1), (4.54)

where ∇̃ is the natural gradient and the optimization is on the natural parameter
η of an exponential family member. For such family, the natural gradient assumes
a simple and efficient form, requiring less memory and computations. Besides, it
improves the convergence rate by exploiting the information geometry of posterior
approximations.

Constraining the variational approximation to the exponential family allows the
use of the relation [3]

∇̃ηf (η) = I−1(η)∇ηf (η) = ∇mf (m), (4.55)

which states that the natural gradient w.r.t. the natural parameter is equal to the
gradient w.r.t. the mean parameter m when f (·) is parameterized according to
m = E [u(w)]. The identity in (4.55) frees us from computing the Fisher matrix
and its inverse, that is why it is so useful and many other practical natural gradient
algorithms resort to it [22, 23, 25].

In the specific case of independent univariate Gaussian weights (mean-field
assumption), writing (4.54) as a minimization problem with a KL constraint (see
Appendix A.4), using (4.55) and solving the resulting Lagrangian lead to

μt+1 = μt − βt

1 − αt

σ 2
t+1∇μLt + αt

1 − αt

σ 2
t+1σ

−2
t−1(μt − μt−1), (4.56)

σ−2
t+1 = 1

1 − αt

σ−2
t − αt

1 − αt

σ−2
t−1 + 2βt

1 − αt

∇σ 2Lt . (4.57)

The pair of update Eqs. (4.56) and (4.57) is the natural momentum extension of
[25]. We immediately note that the learning rate of μ gets scaled by the variance.
Additionally, σ 2 may assume negative values just like the methods in Sect. 4.3, thus
one needs external constraints to sidestep this issue.

No specific knowledge of the cost function L has been absorbed into the
algorithm so far. However, now we take into consideration that the cost function
is the negative ELBO defined in (4.3) and also specify univariate Gaussian priors
p(w) = N(w; 0, σ 2

p) for the weights. Recalling the derivatives of the KL term
already calculated in (4.7)–(4.13) and again using the identities (4.9) and (4.10), we
get

4.6 Fast Natural Gradient 93

Fig. 4.11 PGM representation of the Vadam model. It is the same as the one in Sect. 4.3. The
observed output yn is a noisy observation of the model output for the input xn with the variance
noise determined by the fixed parameter σ 2

n . The constant values {μp, σ
2
p} govern the Gaussian

prior distributions over the weights, while {μk, σ
2
k } their posteriors

∇μL = NEq [∇wh(w)] + μ

σ 2
p

, (4.58)

∇σ 2L = N

2
Eq

[
∇2

wh(w)
]

+ 1

2

(
1

σ 2
p

− 1

σ 2

)
, (4.59)

where N is the data set size and h(w) = − 1
N

∑N
i=1 log(xi |w), the average negative

log-likelihood.
Now, after determining the prior and posterior distributions over the weights,

we have completely defined the underlying Vadam model, shown in Fig. 4.11.
t has the same structure as the one used in Sect. 4.3 (Fig. 4.4), the difference
between both methods being the approximations included in Vadam to make it more
computationally efficient.

As one might already expect, we use one-sample MC estimators for the
expectations in (4.58) and (4.59), as well as replace the gradients, so far computed
from the entire data set, with their stochastic versions ∇̂w and ∇̂2

w, computed from a
mini-batch. Since second derivatives are computationally expensive, besides (4.59)
being able to lead σ 2 to negatives values, we resort to the GGN approximation
for ∇̂2

w (see Appendix A.3). This last step requires calculating the square of the
first-order derivative for each mini-batch element; however, modern frameworks are
not optimized to operate separately on each element of a batch after computing its
derivatives. Thus, we incorporate yet another approximation

∇̂2
wh(wt) ≈ 1

M

M∑
i=1

∇̂wh(wt ; xi)2 ≈
(

1

M

M∑
i=1

∇̂wh(wt ; xi)
)2

. (4.60)

While the first approximation in (4.60) is the GGN, the last is known as the gradi-
ent magnitude approximation and employed by several usual optimizers [11, 27, 54].
It causes σ 2 to act as diagonal rescaling that simply assures equal progress along
each axis of μ rather than closely approximating the curvature [8] (disregarding the

94 4 Bayesian Neural Networks

momentum term of the update equation that counter-balances this effect by favoring
historically good directions).

The gradient magnitude approximation biases the estimation even more than
GGN, its expectation is in between that of GGN and the squared gradient of the
full-batch. As the mini-batch size increases, the bias also increases: if the whole
data set is used to compute this approximation, then all second-order information is
lost, while if computed if a single data point it is equal to the GGN. Hence, there
is a compromise between biasing estimations but converging quickly versus being
“exact” (GGN-wise) but slow.

For practicality, the authors in [26] define the scaled prior precision λ̃ = σ−2
p /N

and the new parameter st = (σ−2
t −σ−2

p)/N . Moreover, they arbitrarily apply square
root on the scaling vector st in the μ update formula so that the method gets more
similar to Adam. Although this modification does not change the algorithm’s fixed
point solutions, it alters the dynamics [26]. The Vadam weight update equations are
then

μt+1 = μt − ᾱt

[
1√

st + λ̃

] (∇̂wh(wt) + μt λ̃
)+ γ̄t

[√
st + λ̃√

st+1 + λ̃

]
(μt − μt+1) ,

(4.61)

st+1 = (1 − ᾱt) st + ᾱt ∇̂2
wh(wt), (4.62)

where ∇̂w and ∇̂2
w are the unbiased stochastic approximations of ∇w and ∇2

w,
respectively.

Unwinding these update equations and using different step sizes γ1 and γ2 for μ
and s instead of ᾱt and (1−ᾱt), respectively, we get the Algorithm 5. Remember that
the scale factor s actually relates to σ 2 by σ−2

t = Nst +σ−2
p and each weight sample

wt is drawn from the distribution N(μt , σ
2
t). The implementation differences from

Adam [27], in red in Algorithm 5, are responsible for enabling ADF.

Algorithm 5: Vadam
1: while not converged do

2: w ← μ + σ � ε where ε ∼ N(0, I), σ ← 1/
√
Ns + σ−2

p

3: Randomly sample a data example xi
4: g ← −∇ logp(xi |W)

5: m ← γ1 m + (1 − γ1) (g+ σ−2
p μ/N)

6: s ← γ2 s + (1 − γ2) (g � g)
7: m̂ ← m/(1 − γ t

1), ŝ ← s/(1 − γ t
2)

8: μ ← μ − α m̂/(
√
ŝ+ σ−2

p /N)

9: t ← t + 1
10: end while

Throughout the development of the Vadam algorithm, it is considered that the
algorithm would already be running. Consequently, the exponential moving average
would actually encode information about the geometry of the space. During the

4.7 Comparing the Methods 95

initial iterations, however, this estimation would be biased towards the starting
point [27]. In order to reduce this effect, the authors [26] introduce a bias-correcting
factor that decays exponentially as the optimization runs.

The final method is indeed very similar to Adam [27], but has the advantage of
providing uncertainty estimates due to the implicit posterior inference it performs.
Apart from being fast, Vadam offers a plug-and-play manner of performing ADF.
Differently from the previous methods of this chapter, the user has only to define
the model as if it were deterministic and optimize it with Vadam. There is no silver
bullet and the price for such easiness and speed is inferior posterior estimates.

4.7 Comparing the Methods

In the remainder of this section, we compare the four algorithms studied during the
chapter. We begin with one-dimensional toy examples, for which we can visually
analyze the predicted curves and better grasp some of the discussed ideas. Next, we
benchmark them on more complex regression tasks, whose results work as better
guidelines on possible practical scenarios.

4.7.1 1-D Toy Example

As a first experiment, we evaluate the predictive distribution obtained from the
approximation algorithms on toy regression data sets whose targets are given by

y = −(x + 1) sin(3πx) + ε, where ε = N(0, 0.32). (4.63)

For this task, we uniformly sample a 20-point and a 400-point sets. We train one-
hidden-layer networks with 100 units until convergence using the Adam optimizer
(except for the Vadam algorithm, which is an optimizer itself). Figure 4.12 shows
the results we obtain.

Let us first recall what was our intention with BNNs: to better model the
underlying distribution of our problem and quantify the unknown. Thus, we would
like to see our models’ uncertainty increase in regions with few to none samples.
In that sense, no matter how dense our knowledge about the function may be in
the center region of Fig. 4.12, we essentially do not know much outside it, so
our uncertainty estimation should not change much in these off-center regions.
Conversely, the more samples we have in a given region, the better our accuracy
should get and the more certain our model should be in that region.

We can notice that Vadam’s uncertainty in the 400-sample scenario remain high
whereas the other methods’ estimate shrink considerably more in proportion to
their 20-sample case. Even BBB, whose predictions look similar to Vadam’s, more
severely underestimates the variance of the posterior, specially in the 400-point set.

96 4 Bayesian Neural Networks

−1.0 −0.5 0.0 0.5 1.0
−7.5
−5.0
−2.5
0.0
2.5
5.0
7.5
10.0

−1.0 −0.5 0.0 0.5 1.0
−7.5
−5.0
−2.5
0.0
2.5
5.0
7.5
10.0

(a)

−1.0 −0.5 0.0 0.5 1.0
−7.5
−5.0
−2.5
0.0
2.5
5.0
7.5
10.0

−1.0 −0.5 0.0 0.5 1.0
−7.5
−5.0
−2.5
0.0
2.5
5.0
7.5
10.0

(b)

−1.0 −0.5 0.0 0.5 1.0
−7.5
−5.0
−2.5
0.0
2.5
5.0
7.5
10.0

−1.0 −0.5 0.0 0.5 1.0
−7.5
−5.0
−2.5
0.0
2.5
5.0
7.5
10.0

(c)

−1.0 −0.5 0.0 0.5 1.0
−7.5
−5.0
−2.5
0.0
2.5
5.0
7.5
10.0

−1.0 −0.5 0.0 0.5 1.0
−7.5
−5.0
−2.5
0.0
2.5
5.0
7.5
10.0

(d)

Model mean
Noiseless source

Data samples
Model uncertainty

Data uncertainty

Fig. 4.12 Comparison of the resulting predictive distribution of a one-dimensional toy example
with either 40 (left) or 400 (right) data point obtained by (a) BBB, (b) MCDO, (c) PBP, and (d)
Vadam

4.7 Comparing the Methods 97

−1.0 −0.5 0.0 0.5 1.0
−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Model mean
Model uncertainty
Data uncertainty
Data samples

Fig. 4.13 Predictive posterior distribution for the PBP method when trained for 200 epochs. Note
that the blue shades (model uncertainty) have disappeared

MCDO’s predictions are considerably less smooth than those from other algo-
rithms, needing more MC samples to obtain stable results. Nonetheless, the mean
predictions accurately capture the underlying behavior of the target function.
Although the algorithm’s iterations are individually less computationally expensive,
more iterations are required to adequately model the data. Even with a small number
of samples, MCDO obtains good estimates for both the mean and the variance.

In larger data sets, where only a reduced number of passes over the data (fewer
than 100) are possible, performing EP requires a unreasonably large memory
footprint, so PBP actually performs multiple ADF passes through the data, treating
each as a novel example. A disadvantage of this approach is that it can lead to
underestimation of the posterior variance when too many passes are done over the
data. This is the behavior we observe in Fig. 4.13 compared to the one in Fig. 4.12c
for the same number of samples.

4.7.2 UCI Data Sets

Now, with a better understanding, we benchmark the algorithms in eight different
regression data sets of the UCI Machine Learning Repository [10], a procedure that
has recently become a standard in the related literature [13, 18, 19, 26, 34, 52, 58].
Below we give a brief description of each data set.

4.7.2.1 Boston Housing

Data about homes from various suburbs in Boston, Massachusetts, collected in 1978
by the US Census Service. The task is to predict the median value of owner-occupied
homes from 13 variables measuring property and neighborhood characteristics such

98 4 Bayesian Neural Networks

as average number of rooms per dwelling, nitric oxides concentration, per capita
crime rate, among others. From now on, we refer to it as Boston only.

4.7.2.2 Concrete Compressive Strength

Concrete strength is one of the most important engineering properties of concrete
and very important in civil engineering. It is a highly non-linear function of age
and ingredients, usually obtained by testing samples under a compression testing
machine. The aim of the data set is to predict the compressive strength given the
age and seven ingredients, such as cement, water, fine and coarse aggregate, among
other component concentrations. From now on, we call it Concrete.

4.7.2.3 Energy Efficiency

During the design of a building, simulations are performed to estimate its energy
efficiency. The task is to predict the efficiency, which is expressed by the 2 different
metrics heating and cooling load, from eight attributes, such as glazing area, surface
area, orientation. The data set is composed of a collection of 768 simulated buildings
with different characteristics and 12 different shapes. For brevity, we call this data
set Energy.

4.7.2.4 Kin8nm

This data set consists of the angular positions of the joints of an 8-link all-
revolute robotic arm, which is known to be highly non-linear. Data was synthetically
generated from a simulation of its forward kinematics. The aim is to predict the
distance of the end-effector from a given target.

4.7.2.5 Condition Based Maintenance of Naval Propulsion Plants

The behavior and interaction of the main components of propulsion systems
cannot be easily modeled with a priori physical knowledge. Still, it is important
to continuously monitor the propulsion equipment and take decisions based on
their condition. The aim is to predict the compressor decay state coefficient using
input features such as ship speed, fuel flow, torques from turbine and propellers,
temperatures and pressures coming in and out of the compressor. The data set was
generated from a numerical simulator of a Navy frigate characterized by a combined
diesel-electric and gas propulsion plant. The simulator was fine-tuned and validated
with real-data. In what follows, we refer to this data set as Naval.

4.7 Comparing the Methods 99

4.7.2.6 Combined Cycle Power Plant

The aim of this data set is to predict the net hourly electrical energy output of a
power plant. Power output prediction is an important element in managing a plant
and its connection to the power grid. The features come from a real plant and were
collected for over 6 years, when the plant was set to work with full load. They
consist of hourly averages of temperature, ambient pressure, relative humidity, and
exhaust vacuum. From this point on, we call this data set Powerplant.

4.7.2.7 Wine Quality

The data consists of 11 physicochemical characteristics of different brands of red
and variants of the Portuguese “Vinho Verde” wine. The objective is to predict the
quality of the wine, a score between 0 and 10. This data set is hereafter called Wine.

4.7.2.8 Yacht Hydrodynamics

Estimation of the residuary resistance of sailing yachts at the initial design stage
is essential for evaluating the ship’s performance and for assessing the required
propulsive power. The data set contains results from 308 full-scale experiments of
22 different hull forms. The input features are aspects of hull geometry. From now
on, we call this data set Yacht.

4.7.3 Experimental Setup

For each data set in Sect. 4.7.2, we compare algorithms according to their training
time, predictive (Gaussian) log-likelihood (4.1), and Root Mean Squared Error
(RMSE), which is defined as

RMSE =
√∑N

i=1(yi − ŷi)2

N
. (4.64)

While RMSE exclusively measures the prediction accuracy, thus assessing how
close the predictions are to the target values, the log-likelihood takes into account
the prediction variance and thus incorporates the prediction uncertainty into the
evaluation. Intuitively, the lower the variance, the more reliable the prediction
should be and, hence, the higher the penalty for being wrong; but still we want
predictions to be reliable so large variances also receive higher penalties. Otherwise,
constantly predicting uncertain values would amount to good scores, even though
the model would not be of much use.

100 4 Bayesian Neural Networks

We do not directly measure structural uncertainty, that is, the uncertainty
stemming from the model, which could be corrected with an infinite amount of
data. However, highly uncertain weights, i.e., weights with large variances, lead
to very different outputs for the same inputs each time we draw a different set of
weight values. Consequently those outputs frequently fall far from the true value
even if their mean is correct. This causes the estimated predictive log-likelihood,
that should be ideally high, to be low. Hence, this metric gives us a sense of the
model uncertainty, though indirectly.

We follow the setup proposed in [13]: for each data set we run the models on
20 random train-test splits after doing hyper-parameter search with 30 iterations of
Bayesian Optimization (BO) [49] on each split. It is important to note that Bayesian
Optimization (BO) has nothing to do with the previously discussed methods for
training BNNs, we use it as a tool for efficiently searching the hyper-parameter
space. We could have employed random or grid search instead and the arguments
developed throughout the chapter would still be the same, as would our pipeline
illustrated in Fig. 4.14.

4.7.3.1 Hyper-Parameter Search with Bayesian Optimization (BO)

Bayesian Optimization (BO) is a black-box approach to optimize objective
functions that take a long time or are costly to evaluate. Bayesian Optimiza-
tion (BO) builds a surrogate for the objective and quantifies the uncertainty in
that surrogate through Gaussian Process regression [47]. At each iteration, we
observe the objective at a new point (a new hyper-parameter configuration),
update the posterior distribution that describes the potential objective values
at each point, and sample a new point whose values maximize a given
acquisition function, i.e., the expected improvement. Bayesian Optimization
(BO) factors in all previously seen configurations to decide what point of the
parameter space to investigate next, achieving good solutions for complex
non-convex functions with considerably fewer iterations. On the other hand,
the decision where to evaluate next makes each iteration computationally
expensive to run, imposing an overhead.

We use the same 20 data splits1 for the methods to avoid fluctuations in the
results due to the reduced size of the data sets and the effect different splits may
have. For each split, we set the optimal hyper-parameter configurations of the prior
precision λ (or equivalently the prior variance σ 2

p), the observation noise precision
γ , and, in the MC Dropout case, the dropout probability p by running 30 iterations
of Bayesian Optimization (BO) on the training set for 40 epochs. Additionally, the

1Available at: https://github.com/yaringal/DropoutUncertaintyExps/tree/master/UCI_Datasets.

https://github.com/yaringal/DropoutUncertaintyExps/tree/master/UCI_Datasets

4.7 Comparing the Methods 101

Dataset Split

Hyper-parameter Optimization

Train model

Evaluate

Evaluate

Cross Validation

Performance

Hyper-parameter
search

modelGrid search
Random search
Bayesian optim

BBB
MCDO
Vadam

Trained
model

Fig. 4.14 Experimental pipeline for evaluating BNNs. Each data set is split as in [13], then we
do 30 rounds of hyper-parameter optimization, training the model on a random subset of the split
with one of the discussed methods in a cross-validation setting on each round. At the end, we use
the best hyper-parameters found to train the final model on the whole split

performance of the hyper-parameter configuration of each Bayesian Optimization
(BO) iteration is averaged over a 5-fold cross-validation, so for each setting we train
and evaluate the model 5 times. After finding the best configuration for each split,
we fit the model to the whole training set. All this procedure follows from [13]. The
general pipeline of the approach is summarized in Fig. 4.14.

We observe that this structure escalates quickly, as for each data set and model
we have:

20︸︷︷︸
splits

×

⎛
⎜⎜⎜⎝ 30︸︷︷︸

BO iters

×
(

5 × 4

5

)

︸ ︷︷ ︸
CV iters

+ 1︸︷︷︸
full run

⎞
⎟⎟⎟⎠× 40︸︷︷︸

epochs

= 96800︸ ︷︷ ︸
epochs

, (4.65)

plus the time each Bayesian Optimization (BO) iteration takes to decide on the next
point to test. We do small scale studies with single hidden-layer networks with 50
units to keep the computation under a viable amount of time.

The source codes for PBP2 and Vadam3 were borrowed from the authors’
repositories. With exception of PBP which is implemented in Theano 1.0 [53], all
remaining algorithms and supporting code are in PyTorch 1.0 [44].

2https://github.com/HIPS/Probabilistic-Backpropagation.
3https://github.com/emtiyaz/vadam.

https://github.com/HIPS/Probabilistic-Backpropagation
https://github.com/emtiyaz/vadam

102 4 Bayesian Neural Networks

Table 4.2 Number of MC
samples during training for
each algorithm. PBP does not
employ MC integration,
instead it uses analytical
approximations

Smaller sets Larger sets

BBBx1 10 5

BBBx2 20 10

MCDOx1 1 1

MCDOx10 10 10

Vadam 10 5

PBP – –

4.7.4 Training Configuration

We maintain a training configuration similar to [26]. We use a mini-batch of size 32
on the four smaller data sets (Boston, Concrete, Energy, and Yacht), and of 128 on
the other four (Wine, Powerplant, Naval, Kin8nm). Table 4.2 contains the number
of MC samples used during training for each algorithm, for evaluation they all use
100 MC samples.

We run BBB and MCDO under two different conditions to further investigate
their behavior. BBBx2 draws twice the number of MC samples of BBBx1 during
training. As for MC Dropout, our MCDOx1 configuration follows the original MC
Dropout implementation [13], i.e., just one MC sample during training and longer
training time after hyper-parameter selection, namely 400 epochs instead of 40,
since MC Dropout takes longer to converge [13]. On the other hand, MCDOx10’s
training procedure is more similar to the other algorithms’ setup: 10 training MC
samples and 40 epochs.

In PBP’s original implementation [19], which we use, samples are individually
processed, but mini-batching is possible at the cost of slightly reduced performance.
PBP also has no MC approximation of the weights’ posterior since it propagates
entire distributions through the layers, analytically performing its approximations.

BBB, MCDO, and Vadam use gradient-descent optimizers. Both BBB and MC
Dropout use the Adam optimizer [27], while Vadam is itself a (variational) optimizer
and the experiment consists of using it in lieu of Adam. Following [26], in all three
methods we set learning rate k = 0.01, and moving-average parameters γ1 = 0.99
and γ2 = 0.9 (instead of the usual γ1 = 0.9 and γ2 = 0.999) to encourage
convergence within 40 epochs. The initial precision for the posterior approximation
is set to 10 (attention, this is not the prior precision) for BBB and Vadam.

4.7.5 Analysis

For comparing the algorithms according to the performance in each individual data
set, we use the Bayesian Correlated t-test [9]. This test is used for the analysis
of cross-validation results and accounts for the correlation due to the overlapping

4.7 Comparing the Methods 103

Table 4.3 Average amount of time in seconds each algorithm takes to complete a whole training
cycle, that is, from finding the optimal hyper-parameters to finding the final posterior approximation
to the weights

Absolute avg. running time (s)

Data set Size Dim BBBx1 BBBx2 Vadam PBP MCDOx1 MCDOx10

Boston 506 13 1813 3279 2214 16 1286 1339

Concrete 1030 8 3510 6101 4333 28 2280 2442

Energy 768 8 2680 4312 3283 20 1541 912

Kin8nm 8192 8 4563 8433 4985 190 4493 4631

Naval 11,934 16 6923 14036 6835 279 6759 6916

Powerplant 9568 4 5349 9993 6117 188 5356 5500

Wine 1599 11 1009 2269 1226 41 1098 1076

Yacht 308 6 1139 1634 1291 10 612 275

training sets [5]. It is thus suited to our case where we have 20 random splits with
90% for training and 10% for testing.

PBP automatically sets all its hyper-parameters by the Bayesian framework
thanks to the hyper-priors, thus dispensing with the hyper-parameter search. In this
case, the number in (4.65) reduces from 96800 epochs to 20 × 40 = 800, that is,
one 40-epoch run per random split. Table 4.3 shows the required (wall-clock) time
each algorithm takes to complete the full training schedule (including Bayesian
Optimization (BO)). Figure 4.15 illustrates a similar information, but depicts the
ratio w.r.t. PBP training time for easier visualization.

PBP outspeeds all others being 34 times faster than the runner-up. This difference
results from the absence of hyper-parameter tuning, which exempts the method
from running the equivalent of 30 × 4 = 120 times to find a good hyper-
parameter configuration prior to finally fitting to the full training set. On top of
that, there is the overhead imposed by the Bayesian optimization inference. Instead
of requiring computer time, PBP requires human time to workout all its derivations
and approximations. However, if we were not performing hyper-parameter tuning,
PBP’s advantage would fade away and it would actually be the slowest method on
average. There are actually different factors contributing to this:

• PBP’s current implementation uses a mini-batch size of 1, and increasing it to 32,
the same size as the others, makes the method once again the fastest [4], though
not by that large of a margin as before;

• PBP uses the framework Theano, which is no longer officially supported, while
the other 3 methods were implemented in Pytorch [44], a more recent and rapidly
growing framework powered by Facebook Artificial Intelligence Research and
developed by dedicated personnel, hence the operations are better optimized to
GPU processing.

BBBx2 is by far the slowest, taking on average 80% more time to train than
BBBx1. Although Vadam has a poorer average performance than BBBx2 as seen
in the performance bar chars of Figs. 4.16 and 4.17, it trains faster: only 16%

104 4 Bayesian Neural Networks

Wine

Con
cret

e
Yac

ht
Ene

rgy
Bos

ton
Kin

nm Nav
al

Pow
erp

lant
101.0

101.2

101.4

101.6

101.8

102.0

102.2

102.4
R
el
at
iv
e
T
im

in
gs

Method

Datasets

BBBx1
BBBx2
Vadam
MCDOx1
MCDOx10

Fig. 4.15 Amount of time in logarithm scale for training each algorithm relative to PBP. We take
into account hyper-parameter search and training of the final model

slower than BBBx1, instead of 80%. Vadam does not have additional parameters for
the variances of weights; instead it directly computes them from the intermediate
variable used to normalize the directions of the parameter space, something the
optimizer Adam already does.

Both MCDO configurations take roughly the same amount of time and have
similar performance as Figs. 4.15, 4.16, and 4.17 show. MCDOx1 is 10% slower
to train and has slightly better performance than MCDOx10. Even though this
difference is small, it is consistent. Overall, MCDOx1 is the best w.r.t both RMSE
and log-likelihood, with MCDOx10 being a close second. PBP follows them in third
place.

Despite its not so stellar performance, PBP has no need for hyper-parameter
search and trains incredibly fast. Another strength PBP possesses, inherited from
EP, is being naturally well-suited to data-parallelization across machines, and if
using only ADF updates, to online learning.

We summarize the conclusions in Table 4.4 to make future reference easier. It
rates the BNN algorithms without any number nor formula w.r.t. three fundamental
practical aspects:

• The implementation effort to build a custom solution;
• The quality of the model predictions, both accuracy and uncertainty;
• The time it takes to train the model.

4.8 Further References 105

Bos
ton

Con
cret

e
Ene

rgy
Kin

8nm Nav
al

Pow
erp

lant Wine Yac
ht

Dataset

0

1

2

3

4

5

6

7

R
M
SE

Method
BBBx1
BBBx2
Vadam
PBP
MCDOx1
MCDOx10

Fig. 4.16 The average RMSE (low values are better) over the 20 random resampled splits of the
UCI regression data sets. Error bars represent the standard deviations over the 20 random splits

On a final note, we leave a general recommendation for those needing to develop
a custom solution for a certain task: use Vadam [26], it is fast, out-of-the-box and
has reasonable performance. It still needs hyper-parameter tuning, but at this point,
almost every algorithm does. If the problem calls for better predictive accuracy or
uncertainty estimation, resort to MCDO or other methods not covered here, a few
of which are mentioned in Sect. 4.9.

4.8 Further References

Even though we treated here only algorithms that do not (explicitly) model the
correlation structure between the weights, this also is an active research subject
with many interesting works such as:

• Matrix variate Gaussian prior [52] and posterior approximation [34];
• Structured covariance with noisy natural gradient [58];
• Low-rank covariance approximation with natural gradient [37].

106 4 Bayesian Neural Networks

Bos
ton

Con
cret

e
Ene

rgy
Kin

8nm Nav
al

Pow
erp

lant Wine Yac
ht

Dataset

−2

0

2

4

6
Lo

g
−

lik
el
ih
oo
d

Method
BBBx1
BBBx2
Vadam
PBP
MCDOx1
MCDOx10

Fig. 4.17 The average log-likelihood (high values are better) over the 20 random resampled splits
of the UCI regression data sets. Error bars represent the standard deviations over the 20 random
splits

Table 4.4 Practitioner’s Table: a rough comparison between the variational methods studied for
BNNs. Although BBBx2 performance is better than Vadam’s, it takes longer to train and a fairer
comparison regarding the time would include BBBx1 instead

Method Effort Quality Timing

BPB Medium Poor Slow

PBP Very hard Good Very fast

MCDO Very easy Good OK

Vadam None OK OK

Although the above methods also rely either on VI, ADF, or EP, by focusing
on modeling the structure between the parameters, they achieve better posteriors
approximations and uncertainty estimations.

There is a whole other sort of methods that rely on Markov Chain MC
approximations to the posterior predictive density, which was not the focus of our
discussion. Still, we name a few so that the interested reader knows where to start:

• Hamiltonian MC [41];
• Stochastic gradient Langevin dynamics [32, 57];
• Posterior distribution distillation [29].

References 107

4.9 Closing Remarks

In this chapter we have discussed BNNs, along with motivations for recurring to the
computationally heavier Bayesian approach instead of contenting ourselves with
traditional point estimates. Bayesian models offer a large number of advantages
such as robustness to overfitting, principled model comparison, and uncertainty
estimation not only in their outputs, but also in all of their parameters.

Additionally, we reviewed and experimentally compared four key variational
algorithms throughout the chapter. Namely, Bayes by Backprop [6], Probabilistic
Backprop [19], MC Dropout [13], and Vadam [26]. They all consider unstructured
approximations to the posterior. Even though MC Dropout [13] is the only one that
does not rely on mean-field approximation, it assumes dependency among groups
of weights in a rather non-well-defined manner.

References

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J,
Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser
L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens
J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O,
Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine
learning on heterogeneous systems. Software available from tensorflow.org

2. Amari SI (1998) Natural gradient works efficiently in learning. Neural Comput 10(2):251–276
3. Amari SI (2016) Natural gradient learning and its dynamics in singular regions. Springer Japan,

Tokyo, pp 279–314
4. Benatan M, Daresbury ST, Pyzer-Knapp EO (2018) Practical considerations for probabilistic

backpropagation. In: Workshop on Bayesian deep learning (NeurIPS 2018), Montreal
5. Benavoli A, Corani G, Demšar J, Zaffalon M (2017) Time for a change: a tutorial for comparing

multiple classifiers through Bayesian analysis. J Mach Learn Res 18(77):1–36
6. Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015) Weight uncertainty in neural

networks. In: Proceedings of the international conference on machine learning, Lille, vol 37,
pp 1613–1622

7. Bonnet G (1964) Transformations des signaux aléatoires a travers les systèmes non linéaires
sans mémoire. Annales des Télé Communications 19(9):203–220

8. Bottou L, Curtis FE, Nocedal J (2018) Optimization methods for large-scale machine learning.
SIAM Rev 60(2):223–311. https://doi.org/10.1137/16M1080173

9. Corani G, Benavoli A (2015) A Bayesian approach for comparing cross-validated algorithms
on multiple data sets. Mach Learn 100(2-3):285–304

10. Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml
11. Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and

stochastic optimization. J Mach Learn Res 12:2121–2159
12. Gal Y (2016) Uncertainty in deep learning. PhD thesis, University of Cambridge
13. Gal Y, Ghahramani Z (2016a) Dropout as a bayesian approximation: representing model

uncertainty in deep learning. In: Proceedings of the international conference on machine
learning, New York, vol 48, pp 1050–1059

14. Gal Y, Ghahramani Z (2016b) A theoretically grounded application of dropout in recurrent
neural networks. In: Advances in neural information processing systems, Barcelona, pp 1019–
1027

https://doi.org/10.1137/16M1080173
http://archive.ics.uci.edu/ml

108 4 Bayesian Neural Networks

15. Ghosh S, Fave FD, Yedidia J (2016) Assumed density filtering methods for learning Bayesian
neural networks. In: Proceedings of the AAAI conference on artificial intelligence, Phoenix,
pp 1589–1595

16. Graves A (2011) Practical variational inference for neural networks. In: Advances in neural
information processing systems, Granada, pp 2348–2356

17. Herbrich R (2005) Minimising the Kullback-Leibler divergence. Tech. rep., Microsoft
Research

18. Hernandez-Lobato J, Li Y, Rowland M, Bui T, Hernandez-Lobato D, Turner R (2016) Black-
box alpha divergence minimization. In: Proceedings of the international conference on machine
learning, New York, vol 48, pp 1511–1520

19. Hernández-Lobato JM, Adams RP (2015) Probabilistic backpropagation for scalable learning
of bayesian neural networks. In: Proceedings of the international conference on machine
learning, Lille, vol 37, pp 1861–1869

20. Hinton GE, van Camp D (1993) Keeping the neural networks simple by minimizing the
description length of the weights. In: Annual conference on computational learning theory,
COLT ’93, Santa Cruz, pp 5–13

21. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural
Comput 18(7):1527–1554

22. Hoffman MD, Blei DM, Wang C, Paisley J (2013) Stochastic variational inference. J Mach
Learn Res 14:1303–1347

23. Honkela A, Tornio M, Raiko T, Karhunen J (2007) Natural conjugate gradient in variational
inference. In: Proceedings of the international conference on neural information processing,
Kitakyushu, pp 305–314

24. Hron J, Matthews A, Ghahramani Z (2018) Variational Bayesian dropout: pitfalls and fixes. In:
Proceedings of the international conference on machine learning, Stockholm, vol 80, pp 2019–
2028

25. Khan M, Lin W (2017) Conjugate-computation variational inference :converting variational
inference in non-conjugate models to inferences in conjugate models. In: International
conference on artificial intelligence and statistics, Fort Lauderdale, vol 54, pp 878–887

26. Khan M, Nielsen D, Tangkaratt V, Lin W, Gal Y, Srivastava A (2018) Fast and scalable
Bayesian deep learning by weight-perturbation in Adam. In: Proceedings of the international
conference on machine learning, Stockholm, vol 80, pp 2611–2620

27. Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: Proceedings of the
international conference on learning representations, San Diego

28. Kingma DP, Salimans T, Welling M (2015) Variational dropout and the local reparameteriza-
tion trick. In: Advances in neural information processing systems, Montreal, pp 2575–2583

29. Korattikara A, Rathod V, Murphy K, Welling M (2015) Bayesian dark knowledge. In:
Advances in neural information processing systems, Montreal, pp 3438–3446

30. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional
neural networks. In: Advances in neural information processing systems, Lake Tahoe, pp 1097–
1105

31. Kuleshov V, Fenner N, Ermon S (2018) Accurate uncertainties for deep learning using
calibrated regression. In: Proceedings of the international conference on machine learning,
Stockholm, vol 80, pp 2796–2804

32. Li C, Chen C, Carlson D, Carin L (2016) Preconditioned stochastic gradient Langevin
dynamics for deep neural networks. In: Proceedings of the AAAI conference on artificial
intelligence, Phoenix, pp 1788–1794

33. Little RJ (2006) Calibrated Bayes: a Bayes/frequentist roadmap. Am Stat 60(3):213–223
34. Louizos C, Welling M (2016) Structured and efficient variational deep learning with matrix

Gaussian posteriors. In: Proceedings of the international conference on machine learning, New
York, vol 48, pp 1708–1716

35. MacKay DJC (1992) A practical Bayesian framework for backpropagation networks. Neural
Comput 4(3):448–472

36. Minka TP (2001) Expectation propagation for approximate Bayesian inference. In: Conference
in uncertainty in artificial intelligence, San Francisco, pp 362–369

References 109

37. Mishkin A, Kunstner F, Nielsen D, Schmidt M, Khan ME (2018) SLANG: fast structured
covariance approximations for Bayesian deep learning with natural gradient. In: Advances in
neural information processing systems, Montreal, pp 6245–6255

38. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In:
Proceedings of the international conference on machine learning, Haifa, pp 807–814

39. Neal RM (1993) Bayesian learning via stochastic dynamics. In: Advances in neural information
processing systems, San Francisco, pp 475–482

40. Neal RM (1996) Bayesian learning for neural networks. PhD thesis, University of Toronto,
Toronto

41. Neal RM (2011) MCMC using Hamiltonian dynamics. In: Handbook of Markov chain, chap 5.
Monte Carlo, CRC Press, Boca Raton, pp 113–162

42. Niculescu-Mizil A, Caruana R (2005) Predicting good probabilities with supervised learning.
In: Proceedings of the international conference on machine learning, Bonn, pp 625–632

43. Papernot N, McDaniel P, Goodfellow I, Jha S, Celik ZB, Swami A (2017) Practical black-box
attacks against machine learning. In: Proceedings of the ACM Asia conference on computer
and communications security, Abu Dhabi, pp 506–519

44. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein
N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S,
Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: an imperative style, high-performance
deep learning library. In: Advances in neural information processing systems, Vancouver, pp
8024–8035

45. Platt JC (1999) Probabilistic outputs for support vector machines and comparisons to regular-
ized likelihood methods. In: Advances in large margin classifiers, pp 61–74

46. Price R (1958) A useful theorem for nonlinear devices having Gaussian inputs. Trans Inf Theor
4(2):69–72

47. Rasmussen CE, Williams CKI (2005) Gaussian processes for machine learning. The MIT
Press, Cambridge

48. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A,
Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. Int
J Comput Vis 115(3):211–252

49. Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning
algorithms. In: Advances in neural information processing systems, Lake Tahoe, pp 2951–2959

50. Soudry D, Hubara I, Meir R (2014) Expectation backpropagation: parameter-free training
of multilayer neural networks with continuous or discrete weights. In: Advances in neural
information processing systems, Montreal, pp 963–971

51. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple
way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

52. Sun S, Chen C, Carin L (2017) Learning structured weight uncertainty in Bayesian neural
networks. In: International conference on artificial intelligence and statistics, Fort Lauderdale,
vol 54, pp 1283–1292

53. Theano Development Team (2016) Theano: a python framework for fast computation of
mathematical expressions. arXiv e-prints 1605.02688

54. Tieleman T, Hinton G (2012) Lecture 6.5-rmsprop: divide the gradient by a running aof its
recent magnitude

55. Tishby N, Levin E, Solla SA (1989) Consistent inference of probabilities in layered networks:
predictions and generalization. In: International joint conference on neural networks, vol 2, pp
403–409

56. Wan L, Zeiler M, Zhang S, Cun YL, Fergus R (2013) Regularization of neural networks using
dropconnect. In: Proceedings of the international conference on machine learning, Atlanta,
vol 28, pp 1058–1066

57. Welling M, Teh YW (2011) Bayesian learning via stochastic gradient Langevin dynamics. In:
Proceedings of the international conference on machine learning, Bellevue, pp 681–688

58. Zhang G, Sun S, Duvenaud D, Grosse R (2018) Noisy natural gradient as variational inference.
In: Proceedings of the international conference on machine learning, Stockholm, vol 80,
pp 5852–5861

Chapter 5
Variational Autoencoder

What to expect in the following sections:

• what a generative model is and what its benefits are,
• how to evaluate a generative model,
• detailed explanation of the Variational Autoencoder (VAE),
• developments that enhance the VAE’s performance in different aspects,
• central problems of this class of models;
• examples and demonstrations of the discussed VAE models.

After the dense chapter on BNNs, the reader will find this one a bit simpler, as
the required tools were actually already introduced. By the end of this chapter, one
should

• be able to characterize generative models,
• understand when they are useful,
• know the challenges on assessing their quality,
• possess breadth of knowledge on VAE’s core idea,
• comprehend the ideas behind its extensions and what effectively changes.

5.1 Motivations

Generative models are statistical models of data that attempt to capture the
entire probability distribution from the observables, that is, to estimate p(x) from
D = {X}n. They are a complete description of the probabilistic model that
generates the observed data. In possession of the full model we can extrapolate to
unseen examples, generate new samples, infer relations and dependencies, perform
prediction, and much more.

Differently from discriminative models that use the target Y as supervisory
signal to estimate the conditional distribution of Y |X, generative models do not

© Springer Nature Switzerland AG 2021
L. P. Cinelli et al., Variational Methods for Machine Learning with Applications to
Deep Networks, https://doi.org/10.1007/978-3-030-70679-1_5

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70679-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-70679-1_5

112 5 Variational Autoencoder

need to be supervised. Thus, the latter naturally fits unsupervised algorithms,
which use unlabeled data, an abundant resource. Nonetheless, generative models
can also perform discriminative tasks, such as classification, by modeling the
joint distribution p(y, x). The models of Chap. 4 are examples of discriminative
models, as they estimate the conditional p(y |X): given some inputs, they output
a distribution of probable values for the unknown quantity. However, we cannot
infer information such as the most probable input–output pairs or the expected input
values for a given observed output, which would require the joint p(y, x).

Knowledge of the complete probabilistic model means we can simulate how
the world evolves [20, 29], anticipate and plan for the future [14, 18], reason
out and make decisions [11, 14], and understand elements and their factors of
variation [10, 11], among other high-level abstract tasks. Exciting applications
that have direct application in industry are image super-resolution [28], com-
pression [55], denoising [8], and audio synthesis [57]. Other examples outside
the multimedia domain and arguably even more compelling are in chemistry, for
efficient exploration of new compounds [13], biology, for prediction of the effects
of mutations in proteins and RNAs [46], and astronomy, for images of optical
telescope [44].

A classical example of a generative model is the Naive Bayes that constructs the
joint probability for classification. In this chapter, the focus is on modern methods
that use approximate inference. Specifically, we discuss the family of VAE models,
theirs issues, and advantages.

5.2 Evaluating Generative Networks

There is no universal metric for measuring the performance of a generative model,
thus assessing its quality is not straightforward and often misleading. Models trained
by optimizing the same criteria relate well across different properties and can be
directly compared, i.e., the training criteria can be used as an objective metric
for model selection. However, for different objective functions, model comparison
becomes problematic. The higher the dimension of the space, the less correlated the
metrics become [53].

There are many different properties we may wish for in a model: high quality
samples, diverse samples, compact representations, useful representation, inter-
pretable representations, and so on. Naturally, we cannot have all at the same time,
so we must compromise.

A model may have a high log-likelihood but an average matching behavior,
causing it to assign probability mass to low-density regions. Although the approxi-
mation may be overall good, unusual regions will end up getting too much attention,
at least more than it normally should. Consequently, generated samples will be
more likely to be very distinct from samples from the true distribution in spite of
the approximation’s good log-likelihood. Although it may seem as an undesirable
property at first, it really depends on the context. For drug discovery, it can be great

5.2 Evaluating Generative Networks 113

because it means we are exploring other regions of the space, where we can find
new useful compounds. For images, it can be a disaster because the resulting image
can be amorphous and weird or represent nothing at all. Still, how many abstract,
odd artworks end up being highly valuable and praised?

On the other hand, a model with moment-matching behavior produces realistic
samples but has poorer log-likelihood for multi-modal distributions. The approx-
imation fits a single mode, assuming a unimodal model, and misses out on a
great deal of information. Hence, the resulting sample diversity will also be low.
Images are a good example of highly multi-modal distributions over space: there
is dependence between neighboring pixels and groups of pixels (superpixels), and
on the scene as a whole, besides a lot of structure built-in from the physical world.
A model fitted to a single mode would then struggle to mix different factors of
variation in image elements.

Besides log-likelihood and sample quality communicating different things, they
do not inform us about sample diversity though they are connected. If samples seem
to come from the true distribution and, at the same time, have great diversity, then
probably the two densities match well overall, which implies good average log-
likelihood for the model. Sample diversity relates to the entropy of the distribution.

Average log-likelihood has become the de facto standard measure of quality for
generative models. However, the computation may not be possible, at least in a
viable amount of time, depending on the model type. For such models, where a
direct measure of the log-likelihood is not possible, it is common to resort to Parzen
window estimates [53]. The Parzen window method is a nonparametric approach
that consists in drawing samples from the original model and constructing a
tractable approximate model, for which we can compute the average log-likelihood.
Nevertheless, it has been experimentally demonstrated that evaluation with Parzen
window estimates does not correlate well with likelihood nor sample quality, hence
being strongly discouraged [53].

Visual sample inspection is the natural metric for assessing sample quality, and it
is the go-to metric when dealing with image synthesis, as it allows us to find out in
an intuitive manner about what is happening into the model. Still, this approach is
only effective for audiovisual samples. Samples represent an interesting diagnostic
tool but should not be used as a proxy for other tasks [53].

Perceptual quality metrics do not take into account generalization capacity. A
model that simply outputs training examples without ever producing a new one
would score high but would be of no use. Trivial algorithms such as nearest
neighbors for detecting whether generated samples are similar to training ones are
not effective: perceptually similar images can have large distances, e.g., a one-
pixel shift of a texture-rich image. Additionally, overfit models do not necessarily
reproduce the images from the data set [53].

A different approach for assessing the model’s performance is to measure
it directly on a surrogate task, what is especially useful if the aim is to learn
good feature representations. Although indirect, measuring the effect of the model
in the intended downstream application provides exactly what one searches for.
For example, one could use a small capacity linear classifier on the learned

114 5 Variational Autoencoder

representations to test if they form well-defined clusters, which would be indicated
by a high classification accuracy.

The community has been devoting recent efforts to propose principled scores that
embrace these aspects and allow to objectively compare between competing algo-
rithms. For images, the Inception Score [48] and the Frechet Inception Distance [16]
are two popular metrics that use pretrained classification models to compare the
generated samples with a hold-out test set. The former measures sharpness and
diversity, whereas the latter measures similarities in the feature representation space.
Both empirically correlate well with the perceived quality of samples. However,
the Inception Score is only valid when the classifier used for the evaluation was
pretrained on the same data set as the generative model under evaluation [47].

In summary, there is no universal metric with sample quality, classification accu-
racy, and log-likelihood being largely independent properties in high-dimensional
spaces. Thus, proper assessment of the model’s performance depends on the
application: different applications require different metrics, e.g., sample quality for
content generation, downstream task for representation learning, and log-likelihood
for compression and density estimation.

5.3 Variational Autoencoders

We begin this section by posing a modeling problem and steadily progress toward
constructing the KL. We start from the set of observations D = {X}Nn=1 and latent
variable models, whose value we already discussed in Sect. 2.1.3. Thus, we have
p(x) = ∫

p(x, z)dz, where Z is the unknown latent variables which we assume
to be the hidden causes for the observed x, and p(x, z) is the generative model of
Fig. 5.1a.

Although KLs can in principle work with any kind of data, we use it on images to
illustrate our points and keep the discussion attractive. Hence, x corresponds to an
image sample. This type of data has great appeal, is intuitive, and has broad support
on modern programming frameworks, i.e., Pytorch [41].

We can rewrite the integral over the joint distribution according to the chain rule
for conditional probability, which gives us p(x, z) = p(x |Z)p(z), where p(z) is
the prior distribution over the latent space and p(x |Z) the likelihood function. For
all but very simple models, the integral

∫
p(x |Z)p(z)dz is intractable and cannot

be analytically calculated; thus, we estimate it by Monte Carlo (MC) sampling with
T samples, such as

p(x) =
∫

p(x, z)dz =
∫

p(x |Z)p(z)dz ≈ 1

T

T∑
i=1

p(x |Z(i)), (5.1)

with z ∼ p(z). However, finding samples of z for which p(x |Z) is large is
challenging in high-dimensional latent spaces: we need millions of draws to obtain

5.3 Variational Autoencoders 115

Fig. 5.1 Graphical representations of the generative model p(x, z). Figure 5.1a is the initial model
we formulate: the latent variables zi are the hidden cause behind the sample xi . Figure 5.1b depicts
the parameterized model where we assume the parameters responsible for generating the data to
be Θ and the posterior approximation to be determined by the parameters Φ. The dashed line
represents the inference process from which we determine the posterior approximation q(z |X;Φ)

from the samples x. (a) The latent variable model. (b) The parameterized model

reasonable estimates for p(x). Then, how to choose p(z) such that we obtain
plausible values of z, for which p(x |Z) is high, with high probability?

Once more, we rewrite the problem as

p(x) =
∫

p(x |Z)p(z)dz

=
∫

p(x |Z)p(z)
q(z |X)

q(z |X)
dz

= Eq

[
p(x |Z)p(z)

q(z |X)

]

≈ 1

T

T∑
i=1

p(x |Z(i))p(z(i))
q(z(i) |X)

, (5.2)

with z ∼ q(z |X), and approximate the integral with an unbiased MC estimate of
T samples.

Under this new perspective, the sampling process occurs according to the
proposal distribution q(z |X), and to obtain the same result as before, we need
to properly weight the values of p(x |Z) by p(z)/q(z |X). The problem has now
become finding suitable candidates for p(z) and q(z |X).

The approach in (5.2) corresponds to Importance Sampling (IS) [35]. This
technique is generally applied to reduce the variance of the estimator or when it
is difficult to simulate from the original density, the latter being the present case.
The optimal proposal distribution q∗(z |X) is

q∗(z |X) = p(x |Z)p(z)
p(x)

= p(z |X), (5.3)

116 5 Variational Autoencoder

for which we obtain for the single-sample estimator p̂T =1(x) the true distribution
we seek, that is,

p̂T =1(x) = p(x |Z(1))p(z(1))
q(z(1) |X)

= p(x |Z(1))p(z(1))
p(x |Z(1))p(z(1))

p(x)

= p(x). (5.4)

Yet, the inability to compute p(x) = ∫
p(x |Z)p(z)dz was the very reason that

motivated us to search for other solutions. We shall parameterize the distributions as
p(x |Z;Θ) and q(z |X;Φ) and jointly optimize for Θ and Φ. The corresponding
Probabilistic Graphical Model (PGM), the concept introduced in Sect. 3.1.1, is
represented in Fig. 5.1b. While the posterior distribution q(z |X;Φ) allows inferring
latent distributions relating to the observables, the likelihood function p(x |Z;Θ)

enables the generation of new samples when paired with the prior, what effectively
means sampling from the joint distribution.

We implement the likelihood model as a neural network (NN) and fit its
parameters, Θ , by Maximum Likelihood Estimator (MLE), instead of variational
Bayesian inference, though possible. For the variational parameters Φ, we would
need to compute local estimates for each sample xi ∈ D [3]. Besides not scaling
well, it implies computing new variational parameters for each test data before
estimating the posterior distribution over the latent variables.

Instead, we optimize a separate model, called recognition model, to output the
local variational parameters Φ that define the posterior distribution q(z |X;Φ).
Hence, each new data point x′ goes through a function f (x′;Ψ) �→ Φ. The problem
becomes solving for the global variational parameters Ψ that define the mapping
f (·;Ψ). We shall also use an NN for the recognition model. The approach of
sharing the variational parameters across data points is called amortized inference
and is common in settings with large data sets because it effectively amortizes the
inference cost, allowing for faster training and testing.

We immediately note that the optimal value for Φ is such that q(z |X;Φ) =
p(z |X;Θ) or at least as close to it as possible. We have arrived at a familiar
framework in which we wish to maximize the evidence p(x;Θ), and for this, we do

max
Θ

p(x;Θ) = max
Θ

logp(x;Θ) = max
Θ,Φ

logEq

[
p(x |Z;Θ)p(z)

q(z |X;Φ)

]
. (5.5)

Applying Jensen’s inequality exactly as we did in Sect. 3.2.1.1 leads us once again
to the ELBO objective (3.7, 3.8) as we verify in

logEq

[
p(x |Z;Θ)p(z)

q(z |X;Φ)

]
� Eq

[
log

p(x |Z;Θ)p(z)
q(z |X;Φ)

]
= ELBO(Θ,Φ).

(5.6)

Even though the final utility function has a similar form to those seen in
Chap. 4, there are some subtle but important differences. Here, we perform

5.3 Variational Autoencoders 117

xi x̂iẑEncoder Decoder
q(z |X; f(x′;Ψ)) p(x |Z = ẑ;θ)

Fig. 5.2 Schematic of the KL model. The image xi gets mapped, thanks to the encoder NN,
to a distribution over the latent variable Z, from which we draw a sample ẑ (one-sample MC
estimator). Next, we pass the sample through the likelihood model NN to obtain the distribution
p(x |Z = ẑ; θ), whose most probable values should be the xi that generated the latent sample ẑ

Variational Inference (VI), on the latent variables Z, but point estimation on the
variables Θ of the likelihood model. In Chap. 4, we performed VI on all variables,
which were global, since they were the same for all data points, and there were no
local latent variables. A brief treatment on the Full Variational Bayes version can be
found in [23].

Note that the target density p(x |Z;Θ) changes over the course of training,
not being static as the target densities of Chap. 4. Hence, q(z |X; f (x′ ;Ψ)) must
track this evolution so that the approximation remains “close” to the true (modeled)
distribution.

From the complete model developed so far, shown in Fig. 5.2, we observe that the
distribution over the latent spaceZ is in between the recognition and the likelihood
models, creating an information bottleneck if dim(Z) < dim(X) [1]. Generally,
this is the case since we assume that the data lives in a lower dimensional manifold
than the space in which it is defined. Therefore, we may interpret the present class
of models as encoding x to a lower dimensional space Z, thus throwing away
unnecessary information and preserving what is meaningful, which actually helps
the decoder to reconstruct the original input. Hence, q(z |X;Ψ) can be understood
as a probabilistic encoder and p(x |Z;Θ) as a probabilistic decoder. Indeed, if we
write the ELBO for the data setD with N samples in its most usual form, we have

ELBO(Θ,Ψ) =
N∑

n=1

Eq

[
logp(xn |Zn;Θ)

]− DKL (q(zn |Xn;Ψ)‖p(z)).

(5.7)

The first term in (5.7) aims at maximizing the likelihood of the reconstructed
samples. The second term, on the other hand, works as a regularization factor
imposing structure to the latent space. It must be structured so that the conditional
on xi is as similar as possible to the prior. Deviations from the prior should be
meaningful enough, so the decoder can achieve a better reconstruction and pay off
the toll imposed by the Kullback-Leibler (KL). Without the KL term, (5.7) would

118 5 Variational Autoencoder

correspond to MLE maximization and the latent distribution would degenerate to a
point estimate. This would entail a conventional autoencoder that deterministically
maps a data point xi to zi and deterministically reconstructs it. Consequently, nearby
latent points would not necessarily represent similar data points, just as in a lookup
table. Thus, the latent space would not have a significant structure. The autoencoder
with the KL regularization term in the latent space receives the name of Variational
Autoencoder [23].

From the information bottleneck perspective [54], we can see the reconstruction
error as a measure of distortion and the posterior misalignment as the communica-
tion rate between the prior and posterior distributions [1, 2]. Indeed, in information
theory, the DKL (q‖p) can be interpreted as the extra number of bits required to
send a message under q with a coding scheme that was optimally designed for the
p. When the KL is zero, we have q(z |D;Ψ) = p(z), and there is no information
about the input x flowing through the model, meaning that the latent channels
have zero capacity. A larger overlap between the distributions corresponds to a
less informative posterior, with respect to the input xi , and a higher reconstruction
error (distortion). This constraint forces similar data points to have similar posterior
distributions, imposing smoothness and locality to the latent space.

The latent distribution in between the encoder and decoder raises difficulty when
trying to use gradient descent to optimize the model. We cannot numerically com-
pute the gradient of an expectation w.r.t. its distribution; see Appendix A.1 for an
in-depth discussion. However, for continuous latent distributions and differentiable
likelihood models, we resort to the pathwise gradient estimator (Appendix A.1),
more commonly known as the reparameterization trick [23], which after T MC
samples leads to

ÊLBO1(Θ,Ψ) =
N∑

n=1

1

T

T∑
i=1

[
logp(xn, z(i)n ;Θ) − log q(z(i)n |Xn;Ψ)

]
, (5.8)

where z(i)n = g(ε(i), xn;Ψ) is a deterministic transformation and ε(i) the i-th sample
from the base distribution p(ε). The above estimator is equivalent to (4.8), put forth
in [4] for BNNs.

By choosing families of distributions for p(z) and for q(z |X;Ψ) such that the
KL term in (5.7) has closed-form analytical formula, we rewrite the estimator in
(5.8) as

ÊLBO2(Θ,Ψ)=
N∑

n=1

[
1

T

[
T∑

i=1

logp(xn |Z(i)
n ;Θ)

]
−DKL (q(zn |Xn;Ψ)‖p(z))

]
,

(5.9)

which is the form used throughout Chap. 4. Figure 5.3 illustrates the reparameter-
ization trick applied to a random node z in the computational graph with the KL
divergence being analytically calculated.

5.3 Variational Autoencoders 119

= g(ε ; Ψ)

f

∼ p(ε)

Backprop

∂f
∂zn

∂zn
∂Ψ

zn

Ψ ε

Fig. 5.3 Computational graph after the reparameterization trick. The blue round node is a random
node, while the gray rhombus nodes are deterministic. Black arrows represent the forward pass of
the model and the red ones the backpropagation path. The black dashed line indicates the path for
the computation of the KL divergence, which takes the distribution parameters Ψ as input. Note
that, thanks to the reparameterization trick, the node zn is no longer random, and so we can directly
compute its gradient

The main technical contribution of [23] was introducing for the first time, in
2013, to the Deep Learning (DL) community the reparameterization trick to obtain
a low-variance gradient estimator. The widely used KL model is simply a use case
example of this estimator the authors give midway through the paper [23]. The
name for the generic formulation of Fig. 5.1a optimized with (5.8) is Autoencoding
Variational Bayes (AEVB). Here we consider the most common instantiation
of VAE: q(z |X;Ψ) and p(x |Z;Θ) both implemented with feedforward NNs.
Still, we could implement the same general model with other blocks, such as
autoregressive models.

Later, in Sect. 5.6, we will work with binary images. Consequently, we describe
the pixels as realizations of independent Bernoulli distributions and interpret each
output pixel of the generative NN as an estimate of Bernoulli’s parameter p in the
original sample.

In what follows, we suppose the input to be real-valued images, usingN(μi, σ
2
i)

as the likelihood function p(xi |Z;Θ), and a centered diagonal N(0, I) for the a
priori p(z). Thus the KL term in (5.7) simplifies to

DKL (q(zn |Xn;Ψ)‖p(z)) =
|z|∑
i

log
1

σi

+ 1

2

(
μ2

i + σ 2
i − 1

)
. (5.10)

In addition, approximate the posterior q(zi |Xi;Ψ) with a Gaussian distribution
with diagonal covariance matrix. These choices for the distributions are not at all
due to restrictions in the algorithm, but rather motivated by their simplicity. The
deterministic transformation g(ε; xn, Ψ) is then

g(ε; x, Ψ) = μ(f (x;Ψ)) + σ(f (x;Ψ)) � ε, (5.11)

120 5 Variational Autoencoder

with ε ∼ N(0, I), f (·;Ψ) is the recognition model and � the operator for
elementwise multiplication.

Although we employ the same transformation all the time, it does not mean that
it is the only possible one, and it just happens that location-scale transformations of
the standard distribution of a given family are simple and practical. Another viable
option, for example, is to specify g as the inverse Cumulative Density Function
(CDF) of the desired distribution and ε ∼ U(0, 1). While we can use full covariance
Gaussian posterior, the optimization problem becomes considerably harder with
O(K2) parameters instead of O(K), where K is the number of dimensions in
the latent space, besides needing to ensure that the covariance matrix is positive
semidefinite.

Experimentally, the authors [23] verified that when using mini-batch optimiza-
tion with size M , one sample from the approximate posterior z(1) ∼ q(z |X;Θ) is
enough as long as M is large enough, e.g., 100. Nevertheless, it has become common
for practitioners to use one sample even when the mini-batch size is not that large
because of the computational gains.

We summarize the (vanilla) VAE algorithm at high level with an arbitrary base
distribution p(ε) in Algorithm 6.

Algorithm 6: VAE (or more generally, AEVB algorithm)
1: while not converged do
2: Randomly sample a data example xi
3: Randomly sample ε from the base distribution p(ε)

4: Compute the gradients of the ELBO estimator w.r.t. Θ and Ψ

5: Update the parameters Θ and Ψ using the gradients
6: end while

5.3.1 Conditional VAE

The vanilla KL model does not allow us to constrain the generated sample to have
a particular characteristic: one should relentlessly draw samples until obtaining the
desired feature, which restricts its usefulness in practical applications. For example,
an ordinary task would be automatically coloring a person’s hair in a photograph
prior to actually dyeing it. A question then arises on how to endow the model to
create targeted samples rather than completely random ones.

What we really wish is to condition the model output on some kind of
information Y, hence the name Conditional VAE (CVAE) [50]. The aim becomes
to maximize logp(xi |Yi) for each observed variable xi . Following the same
derivation as in (5.6) and (5.7), we arrive at

logp(xi |Yi;Θ) � Eq(z |Xi ,Yi ;Ψ) [p(xi , z |Yi;Θ) − q(z |Xi ,Yi;Ψ)]

= Eq(z |Xi ,Yi ;Ψ)

[
logp(xi |Z,Yi;Θ)

]

− DKL (q(z |Xi ,Yi;Ψ)‖p(z |Xi ,Yi;Θ)). (5.12)

5.3 Variational Autoencoders 121

xi x̂iẑEncoder Decoder
q(z |X,Yi; f(x′;Ψ)) p(x |Z = ẑ,Yi; ;θ)

yi yi

Fig. 5.4 Schematic illustration of the CVAE model. Note that this is basically the same as the KL,
the sole difference being the inclusion of additional conditioning information Y to the input x and
the sampled latent variable z. The former so that the recognition model can infer the distribution
corresponding to that condition, and the latter so that the generation network also knows to which
condition that distribution refers

Recalling that for the KL, the inference model q(zi |Xi;Ψ) has input xi and
output zi , and it becomes straightforward that for the conditional counterpart
q(zi |Xi ,Yi;Ψ), we must just add yi as input. One possible way is to concatenate
the condition yi at the end of xi before passing through the inference model. Similar
reasoning applies to the generator model. Thus, by changing nothing more than the
input to the models, we obtain a CVAE [50].

From an implementation perspective, we can encode category information as a
one-hot representation, indicating to the model which class is at the input (or latent
code). Intuitively, the prior gets split into different regions, each corresponding to
a specific label, which gives us the ability to choose among them. In addition,
by separating the samples into different classes, the data points within the same
category become more similar, enhancing the modeling capacity and sample quality
of CVAEs (Fig. 5.4).

5.3.2 β-VAE

As seen from (5.7), optimizing the ELBO is a compromise between the reconstruc-
tion quality and posterior alignment with the prior. Depending on the application,
we might want to prioritize either realistic high-quality samples or rich latent
representations or even something in between. However, the formulation (5.7) offers
no control over the individual objectives. Hence, higher ELBOs do not imply better
learned representations. Thus, the ELBO is not a suitable objective function for
representation learning [2].

The dilemma of representation size and fidelity is well established in rate-
distortion theory, already discussed in Sect. . Ideally, we want the model to find
a solution along the Pareto front of the distortion-rate plane, which corresponds
to the set of minimal solutions. In the β-KL context, we cast fidelity as the log-
likelihood of the model output and connect the concept of rate to the divergence

122 5 Variational Autoencoder

between the posterior and prior distributions because the misalignment creates the
need for sending extra bits through the channel to correct the posterior samples
inaccurately coded by the prior.

As we have shown, writing the Lagrangian of the equivalent maximization
problem leads us to

F (θ, φ, β) = Eq

[
logp(x |Z;Θ)

]− βDKL (q(z |X;Ψ)‖p(z)), (5.13)

where β is the Lagrangian multiplier.
Equation (5.13) is the objective function of the β-KL algorithm [17], and it is

equal to (3.15) after taking the whole data distribution into account. Large values
of β, i.e., β > 1, give higher weight to the posterior misalignment, forcing a lower
corresponding δ for the rate R, thus limiting the representation capacity of the latent
space. Hence, the data locality property is further encouraged and, consequently,
so does the alignment of independent generative factors of variation along separate
latent dimensions [7]. The latent representations become better disentangled. The
modeled diagonal structure of the covariance matrix of the posterior distribution
also contributes to aligning the factors of variation with the axes.

Due to the fidelity and compression trade-off, log-likelihood is not suited for
assessing the quality of the representations learned. However, we can use a linear
classifier with low capacity to predict labels from the latent space, p(y |Z). If the
classifier achieves high accuracy values, it means that the latent space is linearly
separable and easily decoded, hence disentangled [17].

5.4 Importance Weighted Autoencoder

As we discussed so far, the VAE objective heavily penalizes approximate posterior
samples that fail to explain the data. The log-likelihood term in (5.7) must be high
enough to be worth the misalignment penalty imposed by the KL regularization.
The VAE criterion may be too strict and limit the model flexibility. If we relax this
constraint and become more lenient with samples that are unlikely to explain the
observations, we obtain more flexibility on the generative model.

We replace the expectation over the likelihood ratio p(x, z;Θ)/q(z |X;Ψ) in
(5.5) with the expectation over its estimator. Thus, we have the expectation of the
importance sampler of (5.2), like

logp(x)= logEq

[
1

T

T∑
i=1

p(x, z;Θ)

q(z |X;Ψ)

]
≥Eq

[
log

1

T

T∑
i=1

p(x, z;Θ)

q(z |X;Ψ)

]
=ELBOIS ,

(5.14)

where once again we have applied Jensen’s inequality, and T is the number of drawn
samples.

5.4 Importance Weighted Autoencoder 123

We immediately note that (5.14) is equal to (5.7) when T = 1, so it can be
understood as a generalization of the latter under the point of view of importance
sampling. By taking multiple samples, we get progressively tighter bounds and
lower variance [6]. Actually, both bias and variance of the Importance Weighted
Autoencoder (IWAE) estimator are reduced at a rate O(1/T), leading to a consistent
but biased estimate of the true likelihood p(x) [39]. Hence, the gradient of ELBOIS
points toward better directions as T increases.

The update rule for IWAE is the average over the samples with weights
proportional to the importance weights wi = p(x, z;Θ)/q(z |X;Ψ), as shown by

∇ΘELBOIS = ∇Ψ,ΘEq

[
log

1

T

T∑
i=1

p(x, z;Θ)

q(z |X;Ψ)

]

= Ep(ε)

[
∇Ψ,Θ log

1

T

T∑
i=1

p(x, g(ε, xn;Ψ);Θ)

g(ε, xn;Ψ) |X;Ψ)

]

= Ep(ε)

[
∇Ψ,Θ log

1

T

T∑
i=1

wi

]

= Ep(ε)

[
∇Ψ,Θ

T∑
i=1

w̃i logwi

]
, (5.15)

where we have used the reparameterization trick, zn = g(ε, xn;Ψ) with ε ∼ p(ε),
to move the gradient inside the expectation, and w̃i are the normalized importance
weights w̃i = wi/

∑T
i=1 wi .

Respective to the log-importance weights in (5.15), the normalized weights w̃i

can be seen as their softmax version,

li = logwi → w̃i = eli∑T
j=1 elj

= softmax(l)i . (5.16)

The importance weights then prioritize the sample with the highest log-likelihood
ratio, the one that best explains the data. Since the samples with low likelihood are
given less importance, the penalty they impute is attenuated, and the approximate
posterior is given more liberty with respect to the VAE constraints, allowing it to
spread over the modes of the true posterior and become a better approximation.

However, it is important to keep in mind that the model was optimized to have
better performance when drawing multiple samples from the posterior. Thus, one
cannot expect IWAEs to have good performance for tasks in which single samples
will be used. Training using IWAE will result in models where each individual
sample from the model will often have a low (standard) ELBO that is why IWAEs
might not be a good fit if we wish to use single samples from the approximate

124 5 Variational Autoencoder

posterior for downstream tasks. Besides, importance weighted estimates have
notoriously bad scaling properties to high-dimensional latent spaces [24].

Although ELBOIS gets tighter and the gradient variance smaller with more
samples T , the magnitude gets even smaller. More precisely, the signal-to-noise
ratio of the inference model actually converges at O(1/

√
T) [42]. So, while T >> 1

is great for the generative model, it hampers the training of the inference model. This
issue can be somewhat alleviated by averaging over M gradient samples, changing
the convergence rate to O(

√
M/

√
T) [42]. However, there are now two sample sizes

to tune: while M regulates the variance of the gradient, T regulates the tightness of
the bound. In practice, increasing mini-batch size has a similar effect. One can also
use different objective functions for each model, generative and inference [42].

5.5 VAE Issues

VAE and its variants are a great tool for generative modeling, but they are not
without shortcomings. In what follows we succinctly present their main known
problems so far.

5.5.1 Inexpressive Posterior

The ELBO simultaneously tries to fit the data distribution through optimization of
the generative model and to perform amortized inference through the optimization
of the inference model. However, due to limited capacity, it is not possible to
adequately perform both and failures can emerge, imposing trade-offs onto the
ELBO.

The independent Gaussian assumption for the posterior limits the expressiveness
of the model. One way we can circumvent this weakness is by using more flexible
families for the posterior approximation. However, the proposal distribution must
still be at the same time efficient to sample from, compute, and differentiate if we
wish to operate with large amounts of data.

5.5.1.1 Full Covariance Gaussian

One straightforward possibility is replacing the isotonic Gaussian with diagonal
covariance matrix by one with correlation between the dimensions. The arbitrary
multivariate Gaussian with full-rank covariance � allows per axis scaling and
rotation, establishing preferential directions in the latent space.

Directly learning the covariance is troublesome because the number of parame-
ters grows at O(d2) with the number of dimensions d of the latent space, and we
need to assure that � is semipositive definite. Alternatively, we can again write the

5.5 VAE Issues 125

latent random variable as the deterministic transformation of a base random variable.
We use z = μ+Lε with ε ∼ N(0, I) and L a lower triangular matrix with non-zero
entries on the diagonal.

5.5.1.2 Auxiliary Latent Variables

We can use auxiliary latent variables A to augment the inference and generative
models [30, 43], as for example,

q(z |X) =
∫

q(a, z |X)da =
∫

q(a |X)q(z |A,X)da. (5.17)

This hierarchical specification allows the latent variables to be correlated through
A, defining a general non-Gaussian implicit marginal distribution while maintaining
the computational efficiency of fully factorized models.

Similarly, for the generative model, we have

p(z, x) =
∫

p(z, x, a)da =
∫

p(a |Z,X)p(z, x)da. (5.18)

The ELBO objective for the auxiliary VAE follows derivations of (3.7) in
Sect. 3.2.1.1 straightforwardly, giving

logp(x) = log
∫

p(a, z, x)dadz

≥ Eq

[
log

p(a |Z,X; θ)p(x |Z; θ)p(z)
q(a |X;ψ)q(z |A,X;ψ)

]
(5.19)

= ELBOaux. (5.20)

5.5.1.3 Normalizing Flow

A normalizing flow is a sequence of invertible mappings that transforms an initial
base distribution into a complex one [45]. At each step k, it transforms the
distribution qK−1(zk−1) into qK(zk) through the change of variable specified by
the mapping zk = fk(zk−1), specifically

qK(zk) = qK−1(zk−1)

∣∣∣∣∣det

(
∂f−1

k

∂zk−1

)∣∣∣∣∣ = qK−1(zk−1)

∣∣∣∣det

(
∂fk

∂zk−1

)∣∣∣∣
−1

,

(5.21)

where ∂f
∂z is the Jacobian and det the determinant of the matrix.

126 5 Variational Autoencoder

If the Jacobian determinant can be computed, it is possible to sample from the
estimated density by sampling from the base distribution and applying the chain of
mappings f1 ◦ · · · ◦fK . Moreover, because the mappings are invertible, we can also
perform inference by applying the inverse mappings in the reversed order f −1

K ◦· · ·◦
f −1

1 . The log-likelihood of the final distribution qK(zk) can be written as

log qK(zk) = log

[
q0(z0)

K∏
k=1

∣∣∣∣det

(
∂fk

∂zk−1

)∣∣∣∣
−1
]

= log q0(z0) −
K∑

k=1

log

∣∣∣∣det

(
∂fk

∂zk−1

)∣∣∣∣ . (5.22)

We can then use normalizing flows parameterized by the output of the inference
network to approximate the posterior distribution q(z |X) from a simple base
distribution p(ε), i.e., standard multivariate Gaussian, and obtain more complex
distributions [45]. For example, we can use a single hidden-layer feedforward
network with scalar output to define a non-linear transformation [45], like

f (z) = z + uh(wT z + b), (5.23)

where the weight w, bias b, and scale u are learned parameter vectors and h(·) a
smooth elementwise non-linearity.

The above mapping is not very expressive, and we need a large stack of chained
transformations to capture high-dimensional dependencies [26]. Nonetheless, we
can introduce such dependencies by using autoregressive functions that preserve the
Jacobian computation simple enough [9, 26, 40]. Autoregressive flows with affine
transformations are very popular, but their expressiveness is limited due to their
affine nature.Still, chaining multiple layers of autoregressive transformations leads
to complex and multivariate distributions.

5.5.2 The Posterior Collapse

The posterior collapse is the common effect of achieving the undesirable local
optimum q(z |X;ψ) = p(z |X; θ) = p(z) during the VAE optimization. In
the state where the variational posterior and true model posterior collapse to
the prior, the posterior encodes no information about the input x, and no useful
latent representation was learned. The KL divergence is zero and no extra bits are
communicated. This corresponds to the (D, 0) of the distortion-rate plane discussed
in Sects. 5.3.2 and 5.3.2.

The true model posterior is a moving target for the inference network, so it
naturally lags behind, especially at the beginning of training where the variables
X and Z are nearly independent as a consequence of the random initialization of

5.5 VAE Issues 127

the models’ parameters. When q(z |X;ψ) and p(z |X; θ) start to diverge, but Z
still is independent of X such that q(z |X;ψ) ≈ q(z;ψ), and no information is
passed through the model, the regularization signal from the KL divergence term
in the ELBO objective may be too strong compared to the weak signal coming
from the data likelihood [15]. As a result, the model is encouraged to ignore the
latent encoding and converges to the local optimum q(z |X;ψ) = p(z |X; θ) =
p(z). Then, it is the generative model that is responsible for reconstructing X and
effectively maximizing the bound.

The information about the data distribution can be encoded both on the latent
space representation and on the weights of the generative model. An excessively
powerful generator facilitates the posterior collapse because it has enough capacity
to store sufficient information in its weights. Indeed, it is frequently reported in the
literature that autoregressive generators are prone to this effect [2, 15].

Many modifications have been proposed to solve posterior collapse since it was
first detected, such as using an annealing schedule on weighting factor on the KL
term [51]; modifying the ELBO objective to ensure that the KL has on average a
minimum value, guaranteeing a minimum amount of information transmission [26];
using the β-VAE framework with β < 1 [2]; and aggressively updating the inference
network by optimizing it in an inner loop [15]. The latter is currently the most
promising one, obtaining better performance for both inference and generative
models, but at a higher computational cost, i.e., 2–3 times slower [15].

5.5.3 Latent Distributions

VAEs rely on the pathwise gradient estimator to enable the computation of gradients
through random nodes in computational graphs and the usage of automatic differen-
tiation tools. However, this estimator assumes the distribution under expectation to
be continuous and cannot be used for the discrete case. This characteristic restraints
our modeling capacity, and we cannot, for example, use categorical distributions for
the latent space.

There are works that use the score function estimator instead to estimate the
gradient, such as [36, 37]. The alternative estimator on which these algorithms
rely makes no assumption about the underlying distribution and can work with
both discrete and continuous data, eliminating the issue whatsoever. Although more
general, as shown in Appendix A.1, the score function estimator has large variance,
so it requires usage of variance reduction techniques to work properly.

There are works on how to reparameterize discrete random variables by relaxing
them into continuous distributions [19, 33] and use the pathwise estimator to obtain
low-variance biased gradient estimates of the objective function. Still, the cost of
these methods is the introduction of a new temperature parameter that should be
annealed during training.

128 5 Variational Autoencoder

5.5.3.1 Continuous Relaxation

Similarly to the reparameterization trick where we sampled from an arbitrary Gaus-
sian distribution through transformation of a standard Gaussian random variable, we
can use the Gumbel-max trick to allow us to sample a discrete random variable X

from the unnormalized K-Categorical distribution �̃K , whose PDF is πK(x), using
a continuous distribution [32], following

x = argmax
k

logπk(·) + Gk, (5.24)

where Gk is one element from the K-sample independent and identically distributed
(iid) sequence of standard Gumbel distributed random variables.

The Gumbel is useful to model the distribution of extreme values of samples from
the exponential family and its CDF defined by F(x) = exp(− exp(−x)). Thus, we
can use the inverse formula to obtain

G = − log(− log(U)), with U ∼ U[0, 1], (5.25)

and combine it with (5.24) to efficiently get discrete samples by drawing from a
standard uniform distribution [32].

However, the argmax function is not differentiable and cannot be used within
a gradient learning setting. Thus, we replace it with the softmax function to
obtain a continuous relaxation with a temperature parameter τ over the probability
simplex [19, 33], as follows:

x = softmax (logα + G) . (5.26)

The softened version of the reparameterization is known as the Gumbel-softmax
trick and the resulting distribution as Concrete. The temperature τ regulates the
discreteness of the representation such that lim

τ→0
ConcreteK(x) = �K(x). Higher

temperatures result in a smoother distribution but lower variance of the gradients,
while lower temperatures give more accurate samples but higher variance. The
additional hyper-parameter τ is robust and generally follows an annealing schedule
from high to low temperature during the optimization [19].

5.5.3.2 Vector Quantization

A popular method for learning discrete latent representations is the Vector Quan-
tized VAE, where vector quantization maps the output of the recognition model to
the nearest of M reference elements in the codebook, which is then passed to the
generative model [58]. Since the nearest-neighbor match is not differentiable, for
the algorithm to work the gradients must be copied from the generator input to the
decoder output and the codebook updated using nearest-neighbor lookup to match.

5.6 Experiments 129

Although the algorithm achieves great generation results, the original and
prevalent formulation is not probabilistic: all operations are deterministic [58].
Nonetheless, we can replace the nearest-neighbor lookup by sampling over a K-
Categorical distribution �K , defined as

�K =
k∏

i=1

p
[x=i]
i , (5.27)

where [x = i] evaluates to 1 if x = i, 0 otherwise.
The probabilities pi should be the distance between the recognition model output

h(X) and the codebook elements {c}M [52], such that

q(z |X) = �K (z | softmax (‖{c}M − h(X)‖2)) (5.28)

5.6 Experiments

We train and analyze the VAE and CVAE methods with different latent dimensions
on two well-known image toy data sets. In addition, we study the effect on the
distortion-rate plane of varying the weight β of the KL term in (5.13) as well as the
effect of normalizing flows on the posterior distribution.

5.6.1 Data Sets

5.6.1.1 MNIST

The MNIST data set is composed of 60,000 training and 10,000 testing 28 × 28
grayscale images of handwritten digits [27]. Each sample depicts a single digit out
the 10 possibilities. Figure 5.5 presents one example of each digit class.

Fig. 5.5 Mosaic of the 10 different digit classes of the MNIST data set

130 5 Variational Autoencoder

−5 0 5 10

0

2

4

6

8

10

12

0
1

2
3

4
5

6
7

8
9

Fig. 5.6 UMAP 2D projection of the raw pixel space of MNIST

Uniform Manifold Approximation and Projection (UMAP) [34] can be used
as an out-of-the-box visualization tool similar to t-distributed Stochastic Neighbor
Embedding (t-SNE) [31], while being faster, better scaling to high dimensions and
better preserving aspects of global data structure. Using this dimension reduction
technique, we observe in Fig. 5.6 the structure of MNIST data set. It has well-
defined clusters for all of its classes.

Standard ML algorithms obtain over 97% classification accuracy on MNIST, i.e.,
random forest [5] and support vector machine with Gaussian kernel [49], while DL
models over 99.5% [59]. There is almost no space left for researchers to evaluate if
observed performance improvements are statistically relevant. Hence, MNIST has
little use for benchmarking and is no longer representative of modern computer
vision tasks. Still, it has been employed in recent years mainly as a toy data set to
do sanity checks and algorithm prototyping.

5.6 Experiments 131

Fig. 5.7 Mosaic of the 10 different classes of the Fashion-MNIST data set

5.6.1.2 Fashion-MNIST

Fashion-MNIST presents the same general layout: 60,000 training and 10,000 test
samples, 28×28 grayscale images, and 10 possible exclusive classes [60]. It is
constructed to be a drop-in replacement for MNIST with each class associated with
a different piece of clothing, as shown in Fig. 5.7. It is noticeable the higher level of
details in the images.

Comparing the raw pixel structure of Fashion-MNIST data set, shown in
Fig. 5.8, with that from MNIST in Fig. 5.6, we note that the former has clusters
corresponding to garments for the same body region partially overlapping. Although
simple, Fashion-MNIST is not as easy as MNIST and still has margin for improve-
ments [60].

5.6.2 Experimental Setup

We implement the encoder and generator of all models as fully connected networks
with ReLU activations and Gaussian distributions for the latent spaces. In all exper-
iments, we binarize the input images xi in the range [0, 1] to {0, 1} with a threshold
of 0.5, considering each element j as a realization of a independent Bernoulli
distribution. Similarly, we model the output as the parameters of independent
Bernoulli distributions X̂ij . Hence, the log-likelihood function logp(xi |Zi;Θ)

becomes the binary cross entropy, like

H[pi, p̂i] =
∑

j∈|Xi |
−xij log xij − (1 − x̂ij) log(1 − x̂ij), (5.29)

where pi is the binomial distribution induced by the binarized sample xi , and the ·̂
symbol denotes quantities related to the model output.

132 5 Variational Autoencoder

−5 0 5 10 15

−2

0

2

4

6

8

10

12

T − shirt/top
Coat

Trouser
Sandal

Pullover
Sneaker

Dress
Bag

Shirt
Ankleboot

Fig. 5.8 UMAP 2D projection of the raw pixel space of Fashion-MNIST

Additionally, we use mini-batches of size bs = 128, draw T = 1 MC sample
of the latent space for each input example, and train for epc = 100 epochs with
Adam [21] using a learning rate of lr = 0.001.

We train both the VAE and CVAE with varying latent space sizes d =
{2, 8, 32, 128}. Since the MNIST data set is simpler, we use hl = 1 hidden layer for
both the encoder and the generator, whereas for the Fashion-MNIST we use hl = 2.
For simplicity, we design the decoders as mirrored versions of the encoders. Thus,
the constructed models have the structure:

• MNIST: 784 → 200 → d → 200 → 784;
• Fashion-MNIST: 784 → 400 → 200 → d → 200 → 400 → 784.

5.6.3 Results

Overall, the behavior of VAE and CVAE models is similar across both data sets
as Fig. 5.9 shows. When there are few latent dimensions, the models lose a lot of
information in compression and cannot properly represent the different features of
the data set, what explains the low ELBO curves for d = 2 in Fig. 5.9. Increasing the
dimension d of the latent space allows the models to encode relevant information
that was previously ignored, bringing expressive gains to the ELBO. Although
this boost on performance saturates with larger d, it has almost no negative effect
on performance for excessively large d, i.e., the ELBO for the 128-dimensional

5.6 Experiments 133

0 20 40 60 80 100
Epoch

−160

−140

−120

−100

−80

E
LB

O

(a)

0 20 40 60 80 100
Epoch

−160

−140

−120

−100

−80

E
LB

O
(b)

0 20 40 60 80 100
Epoch

−190
−180
−170
−160
−150
−140
−130
−120
−110

E
LB

O

(c)

0 20 40 60 80 100
Epoch

−190
−180
−170
−160
−150
−140
−130
−120
−110

E
LB

O

(d)

Latent
Mode

2
Train

8
Test

32 128

Fig. 5.9 Training and evaluation ELBO for the MNIST and Fashion-MNIST data sets for different
sizes of the latent dimension space. Performance on Fashion-MNIST is lower than on MNIST, and
the CVAE models achieve performances similar to the VAEs. (a) VAE model on MNIST. (b) CVAE
model on MNIST. (c) VAE model on Fashion-MNIST. (d) CVAE model on Fashion-MNIST

models is similar to that for the 32D ones in Figs. 5.9a,b, and only slightly lower in
Figs. 5.9c,d. VAEs are robust to overfitting, at least with respect to the size of the
latent space.

As expected, the Fashion-MNIST models have remarkably worse results. Indeed,
we can confirm it visually by observing the generated samples from Fig. 5.10. While
the original MNIST samples are not very rich in details, this is not true for the
Fashion-MNIST objects, and the VAE struggles to recover the finer details and
more complex shapes. The main reason why the trained CVAEs do not increase

134 5 Variational Autoencoder

Fig. 5.10 Samples generated by the VAE and CVAE models with d = 32. (a) Original and
corresponding binarized samples from MNIST and FashionMNIST data sets. (b) VAE model—
MNIST. (c) CVAE model—MNIST. (d) VAE model—Fashion-MNIST. (e) CVAE model—
Fashion-MNIST

performance in our experiments is because, in most cases, i.e., d = {8, 32, 128},
further augmenting the latent dimension does not translate on better ELBOs. Thus,
appending 10 extra dimensions for the conditioning does not make the models any
more expressible.

Even though the CVAE does a slightly better job at generating new MNIST
images, what we can observe by comparing Figs. 5.10b,c, for Fashion-MNIST data

5.6 Experiments 135

the sample quality is indistinguishable for both CVAE and VAE, because images
in Fig. 5.10e are only marginally better than those of the VAE model, displayed
in Fig. 5.10d. The quality of both models is overall poor if compared to the real
samples of Fig. 5.7.

One central argument during the construction of the VAE was the latent space
structure. This property allows us to smoothly interpolate between different latent
representations of arbitrary dimension to create new image samples. In Fig. 5.11a,
we interpolate between pairs of randomly drawn high-dimensional latent space
samples conditioned on the same MNIST digits. We can see the samples gradually
morphing, i.e., the 0 gets thinner and the 1 gets simultaneously bolder and straighter.
When d = 2, we can span the whole latent space and plot its reconstructions.
Figure 5.11b shows samples generated from evenly spaced percentiles of the latent
Gaussian prior, note the smoothness in the transition between concepts. The models
effectively encode factors of variation of the data into the latent space.

We note from Fig. 5.12 that the latent representations of samples from digits 4
and 9, as well as 5 and 3, are generally overlapped, which indicates that the model
cannot properly tell them apart. A classifier built from the latent feature space would
have a poor accuracy for samples from these classes. Similarly, as already observed
in Fig. 5.8, the pullover, coat, and shirt classes are mostly distributed on the same
region of the latent space, which intuitively makes sense since they are designed
for the same body part and, thus, have similar shapes. From this, we can conclude
that the inference network was not capable of identifying the distinctive features
of those classes, in accordance with the previous discussion of our models not
being powerful enough. More modern types of flow, such as Sylvester flows [56],
a generalization of the planar flow, use more powerful transformations and is better
suited to real applications.

In Sect. 5.5.1, we discussed different approaches for obtaining more expressive
posteriors. Normalizing flows are one of the most prominent approaches nowadays,
with several works relying exclusively on it to efficiently perform density estimation
and sample generation [22, 26, 40]. In our experiments we use it to enhance
VI and obtain models with better posterior approximations and, consequently,
higher likelihoods. Table 5.1 shows the estimated marginal log-likelihood on both
MNIST and Fashion-MNIST of the VAE with increasing number of steps K in the
planar flow, whose transformation was defined in (5.23). Although not statistically
significant for K = {2, 4, 8}, the gain in performance is clear when comparing
with the plain VAE. Planar transformations are an elementary case and affect only
a small volume of the space at each step, thus calling for a large number of steps to
effectively obtain the desired effect, especially on high-dimensional spaces.

Unfortunately, all reconstructed and generated samples were considerably blurry.
Blurriness is a general characteristic of VAEs, originating from the objective that
seeks to minimize the average log-likelihood of data. On average, they may be good,
but individually they are not sharp. This effect is more pronounced on Fashion-
MNIST as clothes are more diverse and have more details than digits and precisely
what we observe in Figs. 5.10 and 5.13. Still, much of the fine-grained details
are lost in the binarization procedure applied on the input samples. We could use

Fig. 5.11 Interpolation of the latent space of VAE and CVAE models trained on MNIST. Human
concepts as thickness, orientation, and digit-specific traits vary smoothly between samples,
signaling the latent space effectively captures factors of variation in the data. (a) CVAE model
with d = 32 on MNIST. (b) VAE model with d = 2 on MNIST

5.6 Experiments 137

0 2 4 6 8 10

2

4

6

8

10

T − shirt/top
Coat

Trouser
Sandal

Pullover
Sneaker

Dress
Bag

Shirt
Ankleboot

Fig. 5.12 Visualization of the 2D projection of the VAE with d = 32 trained on Fashion-MNIST

Table 5.1 Estimated
marginal log-likelihood p(X)
of the VAE model with planar
normalizing flows for varying
length K . Estimations are
computed by importance
sampling with 1024 samples
for each instance of the test
set

Steps K Marginal log-likelihood p(X)
MNIST FashionMNIST

0 −73.4 ± 0.2 −116.6 ± 0.7

1 −71.4 ± 0.1 −112.3 ± 0.6

2 −71.7 ± 0.6 −112.6 ± 0.7

4 −71.8 ± 0.2 −112.5 ± 0.7

8 −71.8 ± 0.3 −112.5 ± 0.5

16 −71.0 ± 0.3 −112.9 ± 0.6

32 −70.0 ± 0.2 −113.1 ± 0.7

the original grayscale values, but the binary cross entropy that stems from the
Bernoulli log-likelihood would cease to be adequate, and it would be necessary
to employ one from a suitable continuous real-valued distribution, such as the logit-
Normal. In general, to achieve better log-likelihood and sample quality, we need to
employ better models. Indeed, plain fully connected networks have pretty much
been replaced nowadays by convolutional architectures, especially in the image
domain.

The KL divergence remains stable throughout the whole training, varying very
little, as shown in Fig. 5.14. Although we only exhibit the case of the CVAE trained
on Fashion-MNIST, this is a general behavior observed in all experiments. This is a
consequence of the powerful regularizing effect the KL term has on the model, seen
in Sect. 5.5.2. The learned posterior distribution moves away from the prior within
the first epoch and, even though not much has been learned yet as confirmed by

138 5 Variational Autoencoder

Fig. 5.13 Reconstruction of Fashion-MNIST samples throughout training of the VAE model with
d = 32 latent dimensions. The original samples are in the first row, while the others are snapshots at
every 10 epochs. Most of the information is learned within the first 10 epochs. Still, it is perceptible
the higher level of details in the images in the last row

Fig. 5.13, the posterior stays at approximately the same “distance” during the rest of
the optimization procedure. Had we used a powerful generator with greater ability to
reconstruct the input, e.g., autoregressive model, the KL term strength would have
succeeded in keeping the posterior aligned with the prior, causing the undesired
posterior collapse. The most straightforward way to sidestep this issue is by directly
decreasing the value of β in the β-VAE model. Adjusting the value of β allows
us to weight the relative importance of the regularization effect of the KL term on
the ELBO. The hyper-parameter balances the compromise between distortion, the
reconstruction error, communication rate, and the posterior misalignment, given the
model’s limited capacity. This characteristic can be observed from Fig. 5.15, where
model performance is plotted on the distortion-rate plane.

5.6 Experiments 139

0 20 40 60 80 100
Epoch

6

8

10

12

14

16

18

20

K
LD

iv
er
ge
nc
e

Latent
2
8
32
128
Mode
Train
Test

Fig. 5.14 The KL divergence curve during the training and evaluation of the CVAE models with
different latent dimension sizes in the Fashion-MNIST data set

0 25 50 75 100 125 150
Rate

40

60

80

100

120

140

160

180

200

D
is
to
rt
io
n

Dataset /Method
MNIST /VAE
MNIST /CVAE
FashionMNIST /VAE
FashionMNIST /CVAE

Fig. 5.15 Representation of the ELBO on the distortion-rate plane (in nats). The ELBO can be
decomposed into the fidelity term, measured by the log-likelihood of the data set and a rate term,
quantifying the average number of extra bits needed to correct the samples inaccurately represented
with the prior distribution. In the plane graphic we use negative fidelity, the distortion. Given a
model with finite capacity, not capable of achieving the data entropy lower bound, we must set the
hyper-parameter β and make other design decisions with this behavior trade-off in mind

140 5 Variational Autoencoder

5.7 Application: Generative Models on Semi-supervised
Learning

Popular modern approaches to ML rely on models with millions of parameters and
require large amounts of annotated data, currently the most expensive and desirable
asset in AI. When annotation is not extensively available, supervised models overfit
to the presented data and achieve poor generalization. Generative models allow us
to leverage performance from unlabeled samples, effectively reducing the reliance
on annotations, under an approach we call semi-supervised learning.

We can optimize a discriminative classifier together with a VAE, sharing their
parameters, and use them for semi-supervised learning of the target variable Y [25,
30]. For the unlabeled samples, we treat Y as a discrete latent stochastic variable
distributed according to a categorical distribution, what enables us to infer the target
label Y. Figure 5.16 shows the PGMs for the generative and the inference models.
Note that we use Y to condition the latent variable Y, segmenting the latent space
in different regions according to the class, similarly to the CVAE in Sect. 5.3.1.
Figure 5.17 illustrates the high-level computational graph of such model.

More complex versions of the model in Fig. 5.17 were able to achieve an
average classification error below 1% on MNIST while using only 10 labeled
images per class, a total of 100 out of the 60,000 available in the training set [30].
The auxiliary deep generative model extends the above VAE with an auxiliary
latent variable (see Sect. 5.5.1.2), making it a two-layered stochastic model [30].
This increases the flexibility of the variational approximation, allowing it to better
fit complex latent distributions, hence improving the variational lower bound.
The underlying PGM for the generative model is shown in Fig. 5.18a, whereas
Fig. 5.18b depicts the inference model. They are basically the same as those of
Fig. 5.18a, except for the inclusion of the auxiliary node a. Figure 5.19 illustrates
the high-level computational graph of the auxiliary deep generative model used for

Fig. 5.16 Graphical model of the semi-supervised VAE. The partially colored node y denotes
the partially observed target labels. We assume that y and z are conditionally independent in the
generative process, so while y captures digits’ semantics, z captures styles and position. Since z is
never observed and different digits possess different styles, y is used during inference to estimate
z, such relation is depicted in (b) by the arrow y → z. (a) Graphical model for the generative
network. (b) Graphical model for the inference network

5.7 Application: Generative Models on Semi-supervised Learning 141

x

y

ẑ

x∗

p(x |Z,Y)

q(z |X,Y)

(a)

x

ŷ

ẑ

x∗

p(x |Z,Y)

q(z |X,Y)

q(y |X)

(b)

Fig. 5.17 Overview of the computational diagram of the semi-supervised VAE model in the
example. x∗ is the reconstruction of the original sample x. For labeled samples, we have once
again the CVAE seen in Sect. 5.3.1, where ẑ represents the estimated value of z. For unlabeled
data, however, y is unknown, and its value must first be inferred from the categorical distribution
q(y |X), which gives the estimate ŷ. Although each box is implemented by a separate fully
connected NN, the complete model is optimized simultaneously. (a) Diagram for labeled samples.
(b) Diagram for unlabeled samples

Fig. 5.18 Graphical representations of both inference and generative parts of the auxiliary deep
generative model. The partially colored node y denotes the partially observed target labels. The
novelty here w.r.t. Fig. 5.16 is the inclusion of the stochastic node a, which gives more flexibility
to the variational posterior. (a) Graphical model for the generative network. (b) Graphical model
for the inference network

semi-supervised learning. Although only one variable was added to the model, two
distributions were included: q(a |X) for the inference network and p(a |X,Z,Y)

for its generative counterpart.
In what follows, we use the model in Figs. 5.17 and 5.16, i.e., without the

auxiliary variableA, to construct our toy example.
We model the generative process of the xi as also being dependent on the partially

observed latent class variable Yi that specifies the digit. Both latent variables Y
and Z are conditionally independent so that the first captures digits’ semantics
and the second digits’ styles, independently. Hence, we can write p(yi , zi |Xi) =

142 5 Variational Autoencoder

x

y

ẑ

x∗

q(z |X,Y,A)

p(x |Z,Y,A)

â

q(a |X)

p(a |X,Y,Z)

a∗

(a)

x

ŷ

ẑ

x∗

q(y |X,A)

q(z |X,Y,A)

p(x |Z,Y,A)

â

q(a |X)

p(a |X,Y,Z)

a∗

(b)

Fig. 5.19 Computational diagram overview of the auxiliary deep generative model. All differ-
ences w.r.t. Fig. 5.17, seen above in color, stem from the inclusion of the auxiliary variable ,
which represents an intermediate step in the inference process, illustrated in Fig. 5.18b. Then,
feeds Y and Z encoders (the q(·) blocks), as well as the X decoder (the q(x | ·) block). Similarly
to Fig. 5.17, x∗ and a∗ both represent the reconstruction of the samples x and a, respectively. (a)
Diagram for labeled samples. (b) Diagram for unlabeled samples

p(yi |Xi)p(zi |Xi). We define the prior p(yi) to be a K-Categorical distribution �K

over the class variable and the prior p(z) a multivariate standard Gaussian, similarly
to Sect. 5.3. Then, the complete generative process for one sample is defined by

p(xi , zi , yi) = p(xi |Zi ,Yi)p(z)p(y) (5.30)

p(y) = �K(y |π) (5.31)

p(z) = N(z | 0, I) (5.32)

p(xi |Zi ,Yi) =
|X|∏
j=1

pj (xi |Zi ,Yi), (5.33)

where π is a probability vector and the elements of X, i.e., the dimensions, iid.
Specifically, we use Bernoulli variables to model the binary black-and-white pixel
value.

Optimizing this model involves the marginal likelihood of observed and unob-
served class variables Y, p(x, y) and p(x), respectively. As in Sect. 5.3, we cannot
directly compute those marginals and resort to the variational framework introduced
in Sect. 3.2.1, like

5.7 Application: Generative Models on Semi-supervised Learning 143

logp(xi , yi) = log
∫

p(xi , yi , zi)dzi

≥ Eq(zi |Xi ,Yi ;ψ)

[
log

p(xi , yi , zi; θ)

q(zi |Xi ,Yi;ψ)

]
= L(xi , yi) (5.34)

logp(xi) = log
∫

p(xi , yi , zi)dzidyi

≥ Eq(zi ,yi |Xi ;ψ)

[
log

p(xi , yi , zi; θ)

q(zi , yi |Xi;ψ)

]

= Eq(yi |Xi ;ψ)

[
Eq(zi |Yi ,Xi ;ψ)

[
log

p(xi , yi , zi; θ)

q(zi , yi |Xi;ψ)

]]
= U(xi),

(5.35)

where q(·) is again the proposal distribution learned by the inference model. For
detailed explanation on how to obtain the inequalities in (5.35) and (5.34), read
Sect. 3.2.1.1.

We train one recognition model for each latent variable and assume that their
distribution follows

q(yi |Xi) = �K(yi |π(xi;ψ)) (5.36)

q(zi |Yi ,Xi) = N
(
zi |μ(xi , yi;φ), diag

(
σ 2 (yi , xi;φ)

))
. (5.37)

Thus, we are able to perform inference in the latent space using (5.37) condi-
tioned on the additional attributes yi , similarly to the CVAE in Sect. 5.3.1. Besides,
we can infer the unknown label of xi through the distribution defined by (5.36).

Unfortunately, the reparameterization trick does not apply to q(yi |Xi) because
the distribution is discrete. We can use the score function estimator of the gradi-
ent instead, and however it entails high-variance estimates (see Appendix A.1).
Alternatively, we can marginalize over Yi in (5.37) and perform inference on
q(zi |Yi ,Xi;ψ) for each value of y [25]. However, marginalizing over all classes
rapidly becomes costly since it is necessary to repeat the same operation K times,
where K is the number of classes in a K-Categorical distribution, defined in (5.27).
Another option is to relax the discrete distributions p(y) and q(zi |Yi ,Xi;ψ)

onto continuous approximations using the Gumbel-softmax trick [19, 33] (see
Sect. 5.5.3.1), making it possible again to apply the pathwise gradient estimator.
The continuous relaxation allows us to take MC samples instead of marginalizing.
When using 1 MC sample, it was experimentally verified to increase the overall
training speed by 2× for 10 classes and 10× for 100 classes compared to
marginalization [19].

There is still a practical issue in the proposed model: direct optimization of the
label predictive distribution q(yi |Xi) is restricted to the unlabeled portion of the
data via (5.35). Let S be the set of indexes of all labeled samples in the data set.

144 5 Variational Autoencoder

Table 5.2 Results of both semi-supervised VAE and supervised NN classifier on the Fashion-
MNIST and MNIST for different amounts of training labels. The values inside parentheses
represent the percentage of the original set size used

Model accuracy on test set

Fashion-MNIST MNIST

Label Count Semi-supervised Supervised Semi-supervised Supervised

6000 (10%) 79.2 77.1 93.6 91.4

3000 (5%) 77.9 71.6 91.4 88.0

600 (1%) 72.0 56.4 86.1 44.6

300 (0.5%) 70.9 46.7 81.7 30.1

100 (0.17%) 63.5 21.3 68.0 20.4

For i ∈ S, the model does not directly learn to infer classes. Thus, we augment
the objective by adding an auxiliary cross-entropy term that constrains q(yi |Xi) to
distributions that correctly classify the sample xi according to the observed class
label yi , which leads to

J =
[∑

i∈S

U(xi) +
∑
i /∈S

L(xi , yi)
]

+ α
∑
i /∈S

log q(yi |Xi), (5.38)

where the weight α is a hyper-parameter that balances the regularization strength of
the cross-entropy term.

Although we arbitrarily appended the cross-entropy term to (5.38) to enhance
learning, we could have achieved the same result directly from the variational
framework by also inferring the parameters π in (5.36) coupling it with a symmetric
Dirichlet prior for p(π), instead of defining a categorical prior of Y [25].

Table 5.2 presents the classification accuracy obtained from the semi-supervised
VAE described in this section for the MNIST and Fashion-MNIST data sets at
different levels of annotation.

We construct the model by following the diagram in Fig. 5.17, using 2 hidden-
layer fully connected networks with ReLU activations [38] for each module. The
Gumbel-softmax approximation to the categorical distribution �K(yi |π(xi;ψ))

introduces a temperature hyper-parameter Tk , which we set to Tk = 0.6. Addition-
ally, we set the latent space dimension d = 32, draw T = 1 MC samples from the
approximating distributions q(yi |Xi) and q(zi |Yi ,Xi), and use the regularization
weight α = 25. Regarding the optimization procedure, we employ the Adam [21]
optimizer, training for epc = 40 epochs with fixed learning rate lr = 0.003 and
batch size bs = 128.

The generative approach allows to leverage the latent information from the
unlabeled data and obtain reasonable performances at an annotation effective
standpoint. This translates to cheaper and faster development cycles, since cleaning
and labeling are by far the toughest and more expensive parts of any ML project in
business and industrial applications. Together with active learning, the approach in

5.8 Closing Remarks 145

which the system presents to the user which samples should be annotated next for
optimal performance gain, semi-supervision is a promising and refreshing frontier
to the field, with several real-world use cases.

5.8 Closing Remarks

In this chapter we discussed the family of VAE models, how the models arise by
applying VI to the latent variable modeling, and how they are related to one another.
Moreover, we presented their major drawbacks, i.e., inexpressive posterior, posterior
collapse, and discrete latent variable, as well as different manners to mitigate them.
Many of these issues are current research topics.

In our experiments, we illustrated the generative and inference capabilities of
VAEs and their main variations as well as properties of the ELBO and the latent
space. Finally, we demonstrated the incredible potential of generative modeling for
semi-supervised learning, a learning approach that uses very few labeled examples
and takes advantage of the unlabeled samples.

There exist several other types of generative algorithms, the most popular
being Generative Adversarial Networks [12], whose training dynamic can also be
interpreted as through probabilistic lenses. Recently, pure flow-based models [9, 22]
have gained a lot of attention of the research community due to their ability to
perform inference and/or generation impressively fast and straightforward training.

As final words, we would link to point out that throughout the book we have seen
the value of the Bayesian approach to probabilistic modeling and how it seamlessly
allows us to reason under uncertainty, make predictions, and simulate new data, all
achieved through the marginalization and conditioning operations. Besides, model
fitting and comparison naturally arise from within the framework, which also has
the additional advantage of being better equipped to handle data-poor regimes.

Bayesian deep learning is proving to be a central topic in current ML conferences
with venues for applications crystallizing by the day: out-of-domain detection,
adversarial robustness, compound exploration, audio synthesis, and image super-
resolution, among many others. From the start of the writing of this book to the
moment of its publication, many new interesting applications and methods came
to light, rendering impossible the mission of keeping up with advancements made
by the scientific community. However, we hope that our presentation was able to
motivate the reader to confidently go further in this field. This is an exciting time to
statisticians and ML practitioners alike, as there is a new wave of innovation ahead
of us.

146 5 Variational Autoencoder

5.9 Final Words

Throughout the book we have seen the value of the Bayesian approach to prob-
abilistic modeling and how it seamlessly allows us to reason under uncertainty,
make predictions, and simulate new data, all achieved through the marginalization
and conditioning operations. Besides, model fitting and comparison naturally arise
from within the framework, which also has the additional advantage of being better
equipped to handle data-poor regimes.

Bayesian DL is proving to be a central topic in current ML conferences
with venues for applications crystallizing by the day: out-of-domain detection,
adversarial robustness, compound exploration, audio synthesis, and image super-
resolution, among many others. From the start of the writing of this book to the
moment of its publication, many new interesting applications and methods came
to light, rendering impossible the mission of keeping up with advancements made
by the scientific community. However, we hope that our presentation was able to
motivate the reader to confidently go further in this field. This is an exciting time to
statisticians and ML practitioners alike, as there is a new wave of innovation ahead
of us.

References

1. Alemi A, Fischer I, Dillon J, Murphy K (2017) Deep variational information bottleneck. In:
Proceedings of the international conference on learning representations, Toulon, France

2. Alemi A, Poole B, Fischer I, Dillon J, Saurous RA, Murphy K (2018) Fixing a broken ELBO.
In: Dy J, Krause A (eds) Proceedings of the international conference on machine learning,
Stockholm, Sweden, vol 80, pp 159–168

3. Beal MJ, Ghahramani Z (2003) The variational Bayesian EM algorithm for incomplete data:
with application to scoring graphical model structures. In: Bayesian Statistics 7: the Seventh
Valencia International Meeting, Tenerife, Spain pp. 453–464

4. Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015) Weight uncertainty in neural
networks. In: Proceedings of the international conference on machine learning, Lille, France,
vol 37, pp 1613–1622

5. Breiman L (2001) Random forests. Machine Learning 45(1):5–32. https://doi.org/10.1023/A:
1010933404324

6. Burda Y, Grosse R, Salakhutdinov R (2016) Importance weighted autoencoders. In: Proceed-
ings of the international conference on learning representations, San Juan, Puerto Rico

7. Burgess CP, Higgins I, Pal A, Matthey L, Watters N, Desjardins G, Lerchner A (2018)
Understanding disentangling in β-VAE. arXiv e-prints 1804.03599

8. Chen J, Chen J, Chao H, Yang M (2018) Image blind denoising with generative adversarial
network based noise modeling. In: Proceedings of the conference on computer vision and
pattern recognition, Salt Lake City, USA

9. Dinh L, Sohl-Dickstein J, Bengio S (2017) Density estimation using real NVP. In: Proceedings
of the international conference on learning representations, Toulon, France

10. Eslami SMA, Heess N, Weber T, Tassa Y, Szepesvari D, kavukcuoglu k, Hinton GE (2016)
Attend, infer, repeat: Fast scene understanding with generative models. In: Advances in neural
information processing systems, pp 3225–3233

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324

References 147

11. Eslami SMA, Jimenez Rezende D, Besse F, Viola F, Morcos AS, Garnelo M, Ruderman A,
Rusu AA, Danihelka I, Gregor K, Reichert DP, Buesing L, Weber T, Vinyals O, Rosenbaum
D, Rabinowitz N, King H, Hillier C, Botvinick M, Wierstra D, Kavukcuoglu K, Hassabis D
(2018) Neural scene representation and rendering. Science 360(6394):1204–1210

12. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio
Y (2014) Generative adversarial nets. In: Advances in neural information processing systems,
Montreal, Canada, pp 2672–2680

13. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B,
Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic
chemical design using a data-driven continuous representation of molecules. ACS Central Sci
4(2):268–276

14. Ha D, Schmidhuber J (2018) Recurrent world models facilitate policy evolution. In: Advances
in neural information processing systems, Montreal, Canada, pp 2450–2462

15. He J, Spokoyny D, Neubig G, Berg-Kirkpatrick T (2019) Lagging inference networks and
posterior collapse in variational autoencoders. In: Proceedings of the international conference
on learning representations, New Orleans, USA

16. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S (2017) GANs trained by a two
time-scale update rule converge to a local Nash equilibrium. In: Advances in neural information
processing systems, Long Beach, USA, pp 6626–6637

17. Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, Mohamed S, Lerchner A
(2017) β-VAE: Learning basic visual concepts with a constrained variational framework. In:
Proceedings of the international conference on learning representations, Toulon, France

18. Houthooft R, Chen X, Chen X, Duan Y, Schulman J, De Turck F, Abbeel P (2016)
VIME: Variational information maximizing exploration. In: Advances in neural information
processing systems, Barcelona, Spain, pp 1109–1117

19. Jang E, Gu S, Poole B (2017) Categorical reparameterization with Gumbel-softmax. In:
Proceedings of the international conference on learning representations, Toulon, France

20. Kalchbrenner N, van den Oord A, Simonyan K, Danihelka I, Vinyals O, Graves A,
Kavukcuoglu K (2017) Video pixel networks. In: Proceedings of the international conference
on machine learning, Sydney, NSW, Australia, vol 70, pp 1771–1779

21. Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: Proceedings of the
international conference on learning representations, San Diego, USA

22. Kingma DP, Dhariwal P (2018) Glow: Generative flow with invertible 1x1 convolutions. In:
Advances in neural information processing systems, Montreal, Canada, pp 10215–10224

23. Kingma DP, Welling M (2014) Auto-encoding variational Bayes. In: Proceedings of the
international conference on learning representations, Banff, Canada

24. Kingma DP, Welling M (2019) An introduction to variational autoencoders. Found Trends
Mach Learn 12(4):307–392. https://doi.org/10.1561/2200000056

25. Kingma DP, Mohamed S, Jimenez Rezende D, Welling M (2014) Semi-supervised learning
with deep generative models. In: Advances in neural information processing systems, Mon-
treal, Canada, pp 3581–3589

26. Kingma DP, Salimans T, Jozefowicz R, Chen X, Sutskever I, Welling M (2016) Improved
variational inference with inverse autoregressive flow. In: Advances in neural information
processing systems, Barcelona, Spain, pp 4743–4751

27. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document
recognition. Proc IEEE 86(11):2278–2324

28. Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz
J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of the conference on computer vision and pattern
recognition, Honolulu, USA

29. Lee AX, Zhang R, Ebert F, Abbeel P, Finn C, Levine S (2018) Stochastic adversarial video
prediction. arXiv e-prints 1804.01523

https://doi.org/10.1561/2200000056

148 5 Variational Autoencoder

30. Maaløe L, Sønderby CK, Sønderby SK, Winther O (2016) Auxiliary deep generative models.
In: Proceedings of the international conference on machine learning, New York, USA, vol 48,
pp 1445–1453

31. Maaten Lvd, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605
32. Maddison CJ, Tarlow D, Minka T (2014) A∗ sampling. In: Advances in neural information

processing systems, Montreal, Canada, pp 3086–3094
33. Maddison C, Mnih A, Teh YW (2017) The concrete distribution: a continuous relaxation

of discrete random variables. In: Proceedings of the international conference on learning
representations, Toulon, France

34. McInnes L, Healy J, Melville J (2018) UMAP: Uniform manifold approximation and projec-
tion for dimension reduction. arXiv e-prints 1802.03426

35. Migon HS, Gamerman D, Louzada F (2014) Statistical inference: An integrated approach.
CRC press, Boca Raton, USA

36. Mnih A, Gregor K (2014) Neural variational inference and learning in belief networks. In:
Proceedings of the international conference on machine learning, Bejing, China, vol 32, pp
1791–1799

37. Mnih A, Rezende D (2016) Variational inference for Monte Carlo objectives. In: Proceedings
of the international conference on machine learning, New York, USA, vol 48, pp 2188–2196

38. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In:
Proceedings of the international conference on machine learning, Haifa, Israel, pp 807–814

39. Nowozin S (2018) Debiasing evidence approximations: On importance-weighted autoencoders
and jackknife variational inference. In: Proceedings of the international conference on learning
representations, Vancouver, Canada

40. Papamakarios G, Pavlakou T, Murray I (2017) Masked autoregressive flow for density
estimation. In: Advances in neural information processing systems, Long Beach, USA, pp
2338–2347

41. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein
N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S,
Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: An imperative style, high-performance
deep learning library. In: Advances in neural information processing systems, Vancouver,
Canada, pp 8024–8035

42. Rainforth T, Kosiorek A, Le TA, Maddison C, Igl M, Wood F, Teh YW (2018) Tighter
variational bounds are not necessarily better. In: Proceedings of the international conference
on machine learning, Stockholm, Sweden, vol 80, pp 4277–4285

43. Ranganath R, Tran D, Blei D (2016) Hierarchical variational models. In: Proceedings of the
international conference on machine learning, New York, USA, vol 48, pp 324–333

44. Regier J, Miller A, McAuliffe J, Adams R, Hoffman M, Lang D, Schlegel D, Prabhat M (2015)
Celeste: Variational inference for a generative model of astronomical images. In: Proceedings
of the international conference on machine learning, Lille, France, vol 37, pp 2095–2103

45. Rezende D, Mohamed S (2015) Variational inference with normalizing flows. In: Proceedings
of the international conference on machine learning, Lille, France, vol 37, pp 1530–1538

46. Riesselman AJ, Ingraham JB, Marks DS (2018) Deep generative models of genetic variation
capture the effects of mutations. Nature Methods 15:816–822

47. Rosca M, Lakshminarayanan B, Warde-Farley D, Mohamed S (2017) Variational approaches
for auto-encoding generative adversarial networks. arXiv e-prints 1706.04987

48. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X, Chen X (2016)
Improved techniques for training GANs. In: Advances in neural information processing
systems, Barcelona, Spain, pp 2234–2242

49. Scholkopf B, Sung KK, Burges CJ, Girosi F, Niyogi P, Poggio T, Vapnik V (1997) Comparing
support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans
Signal Process 45(11):2758–2765

50. Sohn K, Lee H, Yan X (2015) Learning structured output representation using deep conditional
generative models. In: Advances in neural information processing systems, Montreal, Canada,
pp 3483–3491

References 149

51. Sønderby CK, Raiko T, Maaløe L, Sønderby SK, Winther O (2016) Ladder variational
autoencoders. In: Advances in neural information processing systems, Barcelona, Spain, pp
3738–3746

52. Sønderby CK, Poole B, Mnih A (2017) Continuous relaxation training of discrete latent
variable image models. In: Neural information processing systems - workshop on bayesian
deep learning, Long Beach, USA

53. Theis L, Oord Avd, Bethge M (2016) A note on the evaluation of generative models. In:
Proceedings of the international conference on learning representations, San Juan, Puerto Rico

54. Tishby N, Pereira FC, Bialek W (2000) The information bottleneck method. arXiv e-prints
physics/0004057

55. Tschannen M, Agustsson E, Lucic M (2018) Deep generative models for distribution-
preserving lossy compression. In: Advances in neural information processing systems,
Montreal, Canada, pp 5929–5940

56. van den Berg R, Hasenclever L, Tomczak J, Welling M (2018) Sylvester normalizing
flow for variational inference. In: Proceedings of the international conference on learning
representations, Monterey, USA

57. van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N,
Senior A, Kavukcuoglu K (2016) WaveNet: A generative model for raw audio. In: ISCA speech
synthesis workshop, Sunnyvale, USA, pp 125–125

58. van den Oord A, Vinyals O, kavukcuoglu k (2017) Neural discrete representation learning. In:
Advances in neural information processing systems, Long Beach, USA, pp 6306–6315

59. Wan L, Zeiler M, Zhang S, Cun YL, Fergus R (2013) Regularization of neural networks using
dropconnect. In: Proceedings of the international conference on machine learning, Atlanta,
USA, vol 28, pp 1058–1066

60. Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: A novel image dataset for benchmarking
machine learning algorithms. arXiv e-prints 1708.07747

Appendix A
Support Material

In this appendix, we extend on subjects that we deem important to the overall
comprehension of the chapters but are only briefly discussed throughout the book.
Specifically, we start by explaining the score function and pathwise derivative
estimators, crucial to any gradient-based method. We go into the natural gradient,
motivating it and showing a rough mathematical derivation. Moreover, we cover the
detailed derivations of the

• Coordinate Ascent Variational Inference (CAVI) algorithm, seen in Sect. 3.2.1.4;
• Generalized Gauss-Newton (GGN) approximation used in the derivations of

the Practical ADF [3] and Vadam [4] methods for Bayesian Neural Networks
(BNNs), seen in Sects. 4.3.1 and 4.6;

• Bonnet’s and Price’s theorems, known as the Gaussian gradient identities, equally
employed on Practical ADF [3] and Vadam [4].

A.1 Gradient Estimators

In inference problems, as well as in other domains, we frequently encounter the
computation of ∇φEq(z;φ) [f (z; θ)]. This is the gradient w.r.t. φ of the expectation
of the function f (z; θ) under the distribution q(z;φ), with θ and φ being their
parameters, respectively. Generally, we cannot compute this gradient directly
because the expectation is intractable. Hence, we assume certain conditions so as
to rewrite it and obtain appropriate practical estimators, which we approximate by
Monte Carlo integration.

If q(z;φ) is known and it is a continuous function of φ, though not necessarily
of z, we derive the reinforce or score function estimator [8] through

∇φEq(z;φ) [f (z; θ)] = ∇φ

[∫
q(z;φ)f (z; θ)dz

]

© Springer Nature Switzerland AG 2021
L. P. Cinelli et al., Variational Methods for Machine Learning with Applications to
Deep Networks, https://doi.org/10.1007/978-3-030-70679-1

151

https://doi.org/10.1007/978-3-030-70679-1

152 A Support Material

=
∫

∇φ [q(z;φ)] f (z; θ)dz

=
∫

q(z;φ)∇φ

[
log q(z;φ)] f (z; θ)dz

= Eq(z;φ)
[
f (z; θ)∇φ

[
log q(z;φ)]]. (A.1)

Note that the third equality comes from the log derivative trick

∂ log g(ξ)

∂ξ
= 1

g(ξ)

∂g(ξ)

∂ξ
(A.2)

and that we made no assumptions about f (z; θ). It may indeed be non-differentiable
or even discrete.

If we, instead, express the random variable Z ∼ q(z;φ) as an invertible
deterministic differentiable transformation g(·;φ) of a base random variable E ∼
p(ε), we arrive at the pathwise derivative estimator [7]

∇φEq(z;φ) [f (z; θ)] = ∇φ

[∫
p(ε)f (g(ε;φ); θ)dε

]

= ∇φ

[
Ep(ε) [f (g(ε;φ); θ)]]

= Ep(ε)

[∇φ [f (g(ε;φ); θ)]]. (A.3)

This approach requires not only the distribution q(z;φ) to be reparameterizable but
also f (z; θ) to be known and continuous on z for all values of θ . It is also known as
reparameterization trick and recently popularized by [5].

While both estimators yield unbiased estimates, the score function estimator
generally has higher variance due to the derivative of the log function. This behavior
makes sense if we think that the score function estimator computes the derivative
only on q and does not include information about the function f (z; θ), which is the
objective function.

A.2 Update Formula for CAVI

Without resorting to variational calculus, we derive the update equations for the
optimal factors of the approximating distribution q(z |X) under the VI algorithm in
Sect. 3.2.1.

We rewrite here the formulas for the factorized approximating distribution
defined in Eq. (3.16) and the ELBO:

A Support Material 153

q(z |X) =
M∏
i=1

qi(zSi
|X), (A.4)

ELBO(q) = Eq

[
logp(x, z)

]− Eq

[
log q(z |X)

]
. (A.5)

We substitute Eq. (A.4) into Eq. (A.5) and extract the dependence on one of the
factors qi(zSi

|X). Simplifying the notation from qi(zSi
|X) to qi , we get

ELBO(q) =
∫ (∏

i

qi

)
logp(x, z)dz −

∫ (∏
k

qk

)
log
∏
l

qldz

=
∫

qj

⎡
⎣
∫

logp(x, z)
∏
−j

(qidzi)

⎤
⎦ dzj −

∑
k

∫ ∏
l

ql log qkdz

=
∫

qjE−j

[
logp(x, z)

]
dzj −

∑
k

∫
qk log qk

⎡
⎣∏

l �=k

∫
qldzl

⎤
⎦ dzk,

(A.6)

where the symbol E−j [·] in the first term denotes expectation with respect to the q

distribution over all variables ZSi
except for i = j .

Since each ql in the second term is an independent factor, it is normalized
such that it sums up to 1. In addition, we define a new distribution p̃−j such that
log p̃−j = E−j

[
logp(x, z)

] + c, where the constant term c compensates for the
normalization. Then,

ELBO(q) =
∫

qj log p̃−j dzj −
∑
i

∫
qk log qkdzk + c

=
∫

qj log p̃−j dzj −
∫

qj log qjdzj −
∑
k �=j

∫
qk log qkdzk + c

=
∫

qj log

(
p̃−j

qj

)
dzj + c

= −DKL(qj‖p̃−j) + c. (A.7)

We keep all q−j fixed and maximize the ELBO w.r.t. to qj . Since the maximum of
Eq. (A.7) happens when the KL term is zero, we find the optimal q∗ by setting it to
be equal to p̃−j

q∗
j (zSj

|X) = p̃−j (x, zSj
), (A.8)

log q∗
j (zSj

|X) = E−j

[
logp(x, z)

]+ c, (A.9)

154 A Support Material

q∗
j (zSj

|X) ∝ exp{E−j

[
logp(x, z)

]}. (A.10)

The M equations (A.10), each for a latent variable set Sj , are coupled. Thus,
solving them for the objective function requires an iterative approach. At each step,
one replaces a factor qj by its revised estimate according to (A.10) and does so in a
coordinate manner such as round robin.

A.3 Generalized Gauss–Newton Approximation

The Gauss–Newton method is a classical approach for non-linear least squares that
approximates the Hessian of the (vectorial) function f (·) with its Jacobian Jf . When
the objective function is not a sum of squares, but rather an arbitrary (scalar) function
�(·), i.e., the negative logarithm, we do

∂2�(f (x))
∂xj ∂xi

= ∂

∂xj

(
∂�(f (x))

∂xi

)

= ∂

∂xj

(
K∑

k=0

∂�

∂fk(x)
∂fk(x)
∂xi

)

=
K∑

k=0

∂

∂xj

(
∂�

∂fk(x)

)
∂fk(x)
∂xi

+
K∑

k=0

∂�

∂fk(x)
∂2fk(x)
∂xj ∂xi

=
K∑

k=0

K∑
m=0

(
∂2�

∂fm(x)fk(x)

)
∂fm(x)
∂xj

∂fk(x)
∂xi

+
K∑

k=0

∂�

∂fk(x)
∂2fk(x)
∂xj ∂xi

.

(A.11)

The first term in Eq. (A.11) is the component of the Hessian due to variations in
fk(x), whereas the second is due to variations in x. Around the minimum of the loss
function, the second term is inexpressive and we can neglect it. Thus, we have

∂2�(f (x))
∂xj ∂xi

≈
K∑

k=0

K∑
m=0

(
∂2�

∂fm(x)fk(x)

)
∂fm(x)
∂xj

∂fk(x)
∂xi

� Gij . (A.12)

The resulting approximation is what we call the Generalized Gauss–Newton and
is exact when the loss � = 0, since the term ∂�/∂fk(x) in Eq. (A.11) becomes zero.
However, the approximation gets increasingly worse at larger �.

Writing the GGN in matrix form gives

G = Jf (x)T H�(f (x))Jf (x), (A.13)

A Support Material 155

which is always positive semidefinite. In the particular case where �(f (x)) =
− log f (x), it becomes

G = J T
f (x)

1

f (x)2 Jf (x) = ∇xf (x)∇T
x f (x). (A.14)

The shortcoming of this approach is losing second order interaction between the
different dimensions of the parameter space, which might mean a loss of curvature
information [2].

A.4 Natural Gradient and the Fisher Information Matrix

We motivate the natural gradient and explain how it appears in our optimization
context. The derivation closely follows [6]. For brevity, we use the notation pψ

instead of the usual p(·;ψ) to indicate a family of distributions p parameterized by
ψ .

Ideally, we would like the update step in the gradient descent algorithm to have
constant velocity through training. However, it can vary abruptly at each iteration,
what slows down and can even hamper optimization. Neither clipping nor fixing its
magnitude guarantees a clear limit on the change induced in the model. Furthermore,
the gradient depends on the coordinate system, so constraining its norm amounts to
different restrictions in different coordinate systems. While small changes in the
parameters have large effects on the probability represented by the model for some
distributions, for others it is the opposite. If we wish to move along the distribution
manifold with constant speed, regardless of its curvature, we must measure distance
in the distribution space and constrain it.

Suppose we want to minimize the loss function L w.r.t. the distribution pψ (z).
Hence, at each iteration we wish to find the step

argmin
δψ

L(ψ + δψ) (A.15)

s.t. DKL(pψ‖pψ+δψ) = c, (A.16)

where c is a constant term. The KL divergence constraint assures that the distribution
space changes by a constant value. Although not a proper metric due to its asymme-
try, KL divergence is asymptotically symmetric for δψ → 0, what enables us to use
it nonetheless. For small enough δψ , we can approximate the KL divergence around
the vicinity of ψ by its Taylor expansion up to the second order, like

DKL

(
pψ‖pψ+δψ

) ≈ DKL

(
pψ‖pψ

)+ δψ ∇ψ ′DKL

(
pψ‖pψ ′

)∣∣
ψ ′=ψ

(A.17)

+ 1

2
δψT H(ψ ′)δψ

∣∣
ψ ′=ψ

,

156 A Support Material

where H(ψ ′) is the shorthand for the Hessian of the DKL computed at ψ ′, whose
adequate formula is

H(ψ ′) = ∇2
ψ ′DKL

(
pψ‖pψ ′

) = −∇2
ψ ′E

[
logpψ ′

]
. (A.18)

At ψ ′ = ψ , the KL divergence is at the minimum, so both the first and second
right-hand terms in Eq. (A.17) vanish and only the second order term remains. Then,
the Hessian is given by

H(ψ) = −∇2
ψE
[
logpψ

]

= E

[
−∇2

ψ logpψ

]

= Epψ

[
−∇ψ

[
1

pψ

∇ψpT
ψ

]]

= Epψ

[
1

p2
ψ

∇ψpψ∇ψpT
ψ

]
− Epψ

[
1

pψ

∇2
ψpψ

]

= E

[
∇ψ logpψ∇ψ logpT

ψ

]
−
∫

∇2
ψpψdZ

= E

[
∇ψ logpψ∇ψ logpT

ψ

]

= E

[
∇ψ logpψ∇ψ logpT

ψ

]
− E

[∇ψ logpψ

]
︸ ︷︷ ︸

=0

E

[
∇ψ logpT

ψ

]

= Cov(∇ψ logpψ ,∇ψ logpψ)

= I(ψ), (A.19)

where I(ψ) is the Fisher information matrix and the last equality comes from its
definition, as seen in Sect. 2.3.1.

From Eq. (A.19), we can appreciate that the Fisher matrix is the negative of the
expected value of the Hessian of the log-likelihood, thus I(ψ) encodes the curvature
of the manifold.

From Eqs. (A.17) and (A.19), we can write the Lagrangian form of Eq. (A.15) as

argmin
δψ

L(ψ + δψ) + λ

(
1

2
δψTI(ψ)δψ − const

)
. (A.20)

If we further assume that the linearization of L(ψ + δψ) around the vicinity of ψ is
valid, we obtain

A Support Material 157

argmin
δψ

L(ψ) + ∇ψL(ψ)T δψ + λ

(
1

2
δψTI(ψ)δψ − const

)
. (A.21)

Finally, setting the gradient w.r.t. δψ equal to zero in order to solve the problem, we
arrive at

0 = ∇ψL(ψ) + λI(ψ)δψ ⇒ δψ = −k∇̃ψL(ψ), (A.22)

where we define ∇̃ψL(ψ) ≡ I−1(ψ)∇ψL(ψ) as the natural gradient and k = 1/λ
as the step size.

We have thus obtained an algorithm that not only is robust to one-to-one
reparameterizations (accounted for in the Fisher matrix), and moves along the
manifold with constant speed, but also follows the steepest descent direction [1].

A.5 Gaussian Gradient Identities

Here, we review the derivations of Bonnet’s and Price’s theorems, (4.9) and (4.10),
respectively. Before these proofs, we derive two other intermediary useful results.

First, given a multivariate Gaussian distribution N(ξ |μ,C), where dim(ξ) = d,
the gradient with respect to μi can be rewritten as

∇μiN(ξ |μ,C) =
∂
(
(2π)−d/2|C|−1/2e− 1

2 (ξ−μ)T C−1(ξ−μ)
)

∂μi

= (2π)−d/2|C|−1/2e− 1
2 (ξ−μ)T C−1(ξ−μ)

∂
(
− 1

2 (ξ − μ)T C−1(ξ − μ)
)

∂μi

= N(ξ |μ,C)

⎛
⎝

d∑
k=1

(ξk − μk)lik

⎞
⎠ , (A.23)

where li,i is the ith element of the ith column of C−1.

Analogously, we have ∇ξiN(ξ |μ,C) = −N(ξ |μ,C)
(∑d

k=1(ξk − μk)lik

)
, so

∇μi
N(ξ |μ,C) = −∇ξiN(ξ |μ,C). (A.24)

Second, we obtain a relation on the derivative of the Gaussian w.r.t. its covariance
matrix elements:

∇ci,jN(ξ |μ,C) =
∂
(
(2π)−d/2|C|−1/2e− 1

2 (ξ−μ)T C−1(ξ−μ)
)

∂ci,j

158 A Support Material

= (2π)−d/2|C|−1/2e− 1
2 (ξ−μ)T C−1(ξ−μ)

∂
(
− 1

2 (ξ − μ)TC−1(ξ − μ)
)

∂ci,j

+ (2π)−d/2e− 1
2 (ξ−μ)T C−1(ξ−μ) ∂|C|−1/2

∂ci,j

= N(ξ |μ,C)

(
1

2
(ξ − μ)TC−1 ∂C

∂ci,j
C−1(ξ − μ)

)

+ (2π)−d/2e− 1
2 (ξ−μ)T C−1(ξ−μ)

(
−1

2
|C|−3/2|C|tr

(
C−1 ∂C

∂ci,j

))

= −1

2
N(ξ |μ,C)

⎛
⎝−

d∑
k1=1

⎛
⎝(ξk1 − μk1)li,k1

d∑
k2=1

(ξk2 − μk2)lj,k2

⎞
⎠+ li,j

⎞
⎠ .

(A.25)

Now, taking the derivative of ∇ξiN(ξ |μ,C) w.r.t. ξj , we have

∇ξi ,ξjN(ξ |μ,C) = −∂N(ξ |μ,C)

∂ξj

⎛
⎝

d∑
k=1

(ξk − μk)li,k

⎞
⎠−N(ξ |μ,C)li,j

= −N(ξ |μ,C)

⎛
⎝li,j −

⎛
⎝

d∑
k=1

(ξk − μk)li,k

⎞
⎠
⎛
⎝

d∑
k=1

(ξk − μk)lj,k

⎞
⎠
⎞
⎠ ,

(A.26)

which implies on

∇ci,jN(ξ |μ,C) = 1

2
∇ξi ,ξjN(ξ |μ,C). (A.27)

Theorem A.1 (Bonnet’s Theorem) Let f (ξ) : Rd �→ R be an integrable and
twice differentiable function. The gradient of the expectation of f (ξ) under a
Gaussian distribution N(ξ |μ,C) with respect to the mean μ can be expressed as
the expectation of the gradient of f (ξ), that is,

∇μi
EN(μ,C) [f (ξ)] = EN(μ,C)

[∇ξi f (ξ)
]
. (A.28)

Proof

∇μi
EN(μ,C) [f (ξ)] =

∫
∇μi
N(ξ |μ,C)f (ξ)dξ

= −
∫

∇ξiN(ξ |μ,C)f (ξ)dξ

A Support Material 159

= −
∫

∇ξi (N(ξ |μ,C)f (ξ)) dξ

+
∫
N(ξ |μ,C)∇ξi f (ξ)dξ

= −
∫

ξ1

· · ·
∫

ξn

∫

ξi

∇ξi (N(ξ |μ,C)f (ξ)) dξi

︸ ︷︷ ︸
=[N(ξ |μ,C)f (ξ)]

ξi=+∞
ξi=−∞

dξn · · · dξ1

+
∫
N(ξ |μ,C)∇ξi f (ξ)dξ

=
[∫
N(ξ |μ,C)f (ξ)dξ¬i

]ξi=+∞

ξi=−∞
+ EN(μ,C)

[∇ξi f (ξ)
]

= EN(μ,C)

[∇ξi f (ξ)
]
, (A.29)

where we have used the identity (A.24) in moving from step 1 to 2, and the product
rule for derivatives from step 2 to 3. In moving from step 3 to 4, we have rewritten
the first term. At the last step, we eliminated the first term, which equals zero. ��
Theorem A.2 (Price’s Theorem) Under the same conditions as before. The gradi-
ent of the expectation of f (ξ) under a Gaussian distributionN(ξ |0,C) with respect
to the covariance C can be expressed in terms of the expectation of the Hessian of
f (ξ) as

∇Ci,j
EN(0,C) [f (ξ)] = 1

2
EN(0,C)

[∇ξi ,ξj f (ξ)
]
. (A.30)

Proof

∇Ci,j
E [N(0,C)] [f (ξ)] =

∫
∇Ci,j

N(ξ |0,C)f (ξ)dξ

= 1

2

∫
∇ξi ,ξjN(ξ |0,C)f (ξ)dξ

= 1

2

∫
N(ξ |0,C)∇ξi ,ξj f (ξ)dξ

= 1

2
EN(0,C)

[∇ξi ,ξj f (ξ)
]
. (A.31)

In moving from step 1 to 2, we have used the identity (A.27). From step 2 to 3, we
have used the product rule for integrals twice. ��

160 A Support Material

A.6 t-Student Distribution

Here we elaborate on a result that we used on more than one occasion throughout
the book. Consider w randomly sampled from a normal distribution with zero mean
and precision λ, such as

p(w | λ) =
(

λ

2π

) 1
2

exp

(
−λ

w2

2

)
(A.32)

and consider that λ is sampled from a Gamma distribution with parameters α0 and
β0

p(λ ;β0, α0) = β
α0
0

�(α0)
λα0−1 exp (−λβ0) , (A.33)

we can marginalize the distribution of w so it only depends on α0 and β0, as follows:

p(w |β0, α0) =
∫ ∞

0
p(w | λ)p(λ ;β0, α0)dλ

=
∫ ∞

0

[
β
α0
0

�(α0)
λα0−1 exp (−λβ0)

][(
λ

2π

) 1
2

exp

(
−λ

w2

2

)]
dλ

= (2π)−
1
2

β
α0
0

�(α0)

∫ ∞

0
λ(α0+ 1

2)−1 exp

[
−λ

(
β0 + w2

2

)]
dλ

= (2π)−
1
2

�
(
α0 + 1

2

)

�(α0)
β
α0
0

(
β0 + w2

2

)−
(
α0+ 1

2

)

×
∫ ∞

0
Ga

(
λ

∣∣∣∣α0 + 1

2
, β0 + w2

2

)
dλ

= (2π)−
1
2
� (α0 + 1/2)

�(α0)
β
α0
0

(
β0 + w2

2

)−
(
α0+ 1

2

)

= � (α0 + 1/2)

�(α0)
(2πβλ)

− 1
2

(
1 + w2

2β0

)−
(
α0+ 1

2

)

. (A.34)

Compare Eq. (A.34) to the location-scale family for the student’s t-distribution
(parameterized in terms of the inverse scaling parameter λ)

Tν(x |μ, λ) =
�
(

ν+1
2

)

�
(
ν
2

)
(

λ

πν

) 1
2
(

1 + λ(x − μ)2

ν

)− ν+1
2

, (A.35)

A Support Material 161

−4 −2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

p (
x
)

T1(x)
T4(x)
T16(x)

N (x | 0, 1)

Fig. A.1 PDF of the standard Student’s t-distribution Tν(x) for different values of the parameter
ν. The higher the value of ν, the closer (in the KL divergence sense) the distribution becomes
to the Gaussian distribution. The standard family member has the location μ and inverse scale λ

parameters of Eq. (A.35) equal to 0 and 1, respectively

whose mean and variance are E [X] = μ, and Var(X) = 1
λ

ν
ν−2 , respectively.

We conclude that p(w |βλ,0, αλ,0) is a student’s t-distribution with
T2αλ,0(w | 0, αλ,0

βλ,0
). whose standard PDF is shown in Fig. A.1.

References

1. Amari Si (1998) Natural gradient works efficiently in learning. Neural Computation 10(2):251–
276

2. Bottou L, Curtis FE, Nocedal J (2018) Optimization methods for large-scale machine learning.
SIAM Review 60(2):223–311. https://doi.org/10.1137/16M1080173

3. Graves A (2011) Practical variational inference for neural networks. In: Advances in neural
information processing systems, Granada, Spain, pp 2348–2356

4. Khan M, Nielsen D, Tangkaratt V, Lin W, Gal Y, Srivastava A (2018) Fast and scalable Bayesian
deep learning by weight-perturbation in Adam. In: Proceedings of the international conference
on machine learning, Stockholm, Sweden, vol 80, pp 2611–2620

5. Kingma DP, Welling M (2014) Auto-encoding variational Bayes. In: Proceedings of the
international conference on learning representations, Banff, Canada

6. Pascanu R, Bengio Y (2014) Revisiting natural gradient for deep networks. In: Proceedings of
the international conference on learning representations, Banff, Canada

7. Price R (1958) A useful theorem for nonlinear devices having Gaussian inputs. Trans Inf Theory
4(2):69–72

8. Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning 8(3):229–256

https://doi.org/10.1137/16M1080173

Index

A
ADF, see Assumed density filtering (ADF)
ADVI, see Automatic differentiation

variational inference (ADVI)
AEVB, see Autoencoding variational Bayes

(AEVB)
Approximate inference

ADF (see Assumed density filtering (ADF))
EP (see Expectation propagation (EP))
further practical extensions

ADVI, 61
black box αminimization, 60
black box variational inference, 59–60

VI, 36–46
Assumed density filtering (ADF)

approximation, 77
example, 50–53
forward KL divergence minimizing, 47–48
issues, 50
moment matching, exponential family,

48–50
plug-and-play manner, 95
recasting, 54–56

Autoencoding variational Bayes (AEVB), 119,
120

Automatic differentiation variational inference
(ADVI), 61

B
Bayes by Backprop (BBB)

computational graph, 71
gradient path, 71
mini-batch optimization, 72

Monte Carlo (MC) integration, 69
non-closed analytical form, 70
PGM representation, 72
practical VI, 73–74

Bayesian inference
advantages of, 85
vs. classical approach, 17–18
hierarchical modeling, 19
The MC Dropout, 85
posterior predictive distribution, 18–19
variational, 116

Bayesian Neural Networks (BNNs)
BBB, 69–74
comparing the methods

analysis, 102–105
experimental setup, 99–102
1-D toy example, 95–97
training configuration, 102
UCI data sets, 97–99

computational complexity, 66
fast natural gradient

Vadam, 91–95
MC Dropout, 85–90
non-linear models, 66
PBP (see Probabilistic backpropagation

(PBP))
references, 105–106
standard deterministic NNs, 65
uncertainty quality, 67–69

Bayesian statistics, 1
BBB, see Bayes by Backprop (BBB)
BNNs, see Bayesian Neural Networks

(BNNs)

© Springer Nature Switzerland AG 2021
L. P. Cinelli et al., Variational Methods for Machine Learning with Applications to
Deep Networks, https://doi.org/10.1007/978-3-030-70679-1

163

https://doi.org/10.1007/978-3-030-70679-1

164 Index

C
CAVI, see Coordinate ascent variational

inference (CAVI)
Coordinate ascent variational inference

(CAVI), 42–43, 152–154

D
Deep learning (DL), 2, 3, 35, 66, 119, 145
DL, see Deep learning (DL)

E
EM, see Expectation-maximization (EM)
Entropy

conditional, 14
differential, 14–15
marginal, 16

EP, see Expectation propagation (EP)
Expectation-maximization (EM), 25–30, 43

E-step, 26
example, 27–29

Expectation propagation (EP)
data-parallelization, 104
example, 58–59
issues, 57
operations in the exponential family, 56
power, 56–57
recasting ADF, 54–56

Exponential family
and CDF, 128
definition and properties, 11–12
moment matching, 48–50
operations, 56
sufficient statistics, 10–11

F
Fisher information matrix, 13, 91, 155–157

G
Gaussian gradient identities, 157–159
Gauss–Newton approximation, 154–155
Gradient estimators, 43, 59, 61, 118, 119, 143,

151–152

I
Information measures

entropy, 14–15
Fisher, 13
Kullback-Leibler divergence, 15–16
mutual information, 16–17

K
Kullback-Leibler (KL), 15–17, 55–58, 114,

117

L
Latent variable models, 8, 40, 115, 145

M
Machine learning (ML)

deep learning, 2
DNN, 2
infinite samples, 1
MCMC, 1
notation, 3
variational Bayesian ML, 3

MAP, see Maximum a posteriori (MAP)
Maximum a posteriori (MAP), 23–26, 30, 39,

43, 66
Maximum Likelihood Estimator (MLE),

22–26, 29, 30, 34, 91, 116, 118
MBML, see Model-based machine learning

(MBML)
ML, see Machine learning (ML)
MLE, see Maximum Likelihood Estimator

(MLE)
Model-based machine learning (MBML)

approximate inference (see Approximate
inference)

intrinsic variability, 32
learning (inference) algorithm, 31
probabilistic graphical models

direct acyclic graphs, 32–33
power of graphical models, 34
undirected graphs, 33–34

probabilistic programming, 34–36
probability distributions, 31

The Monte Carlo (MC) Dropout
Bayesian view, 87–90
dropout, 86

P
Parametric models

location-scale families, 6–8
unknown function, 2

PBP, see Probabilistic backpropagation (PBP)
Point estimation, 42, 117

Bayes estimation, 24–25
EM, 25–29
MAP, 23–24
method of moments, 22
MLE, 22–23

Index 165

Probabilistic backpropagation (PBP)
EP and ADF, 76–77
graphical model, 75
hyper-priors p(λ) and p(γ), 77–78
likelihood factors p (y |W, X, γ)

normalizing factor, 82–85
multi-class classification problems, 75
PGM representation, 75, 76
priors on the weights p(w|λ)

update equations for αλ and βλ, 79–80
update equations for µand σ 2, 80–82

S
Statistical inference

Bayesian inference, 17–19
conjugate prior distributions

definition and motivation, 19–20
examples, 20–22

De Finetti’s Representation Theorem, 9
exponential family, 10–12
information measures, 13–17
likelihood function, 9–10
models

latent variable, 8
nonparametric, 8
parametric, 6–8

point estimation, 22–29
Stochastic variational inference (SVI), 43, 59

T
t-student distribution, 160–161

U
UCI data sets

Boston housing, 97–98
combined cycle power plant, 99
concrete compressive strength, 98
energy efficiency, 98
Kin8nm, 98
naval propulsion plants, 98
wine quality, 99
Yacht hydrodynamics, 99

Uncertainty
calibration, 68, 69

downstream applications, 69
predictive log-likelihood, 67–68

V
VAE, see Variational autoencoder (VAE)
Variational autoencoder (VAE)

AEVB, 119
β−VAE, 121–122
computational graph, 119
conditional, 120–121
data sets

fashion-MNIST, 131
MNIST, 129–130

encoder and decoder, 118
experimental setup, 131–132
generative networks, 112–114
graphical representations, 115
importance weighted autoencoder, 122–124
inexpressive posterior

auxiliary latent variables, 125
full covariance Gaussian, 124–125
normalizing flow, 125–126

information bottleneck perspective, 118
KLs, 114, 117
latent distributions

continuous relaxation, 128
vector quantization, 128–129

location-scale transformations, 120
motivations, 111–112
NN and MLE, 116
posterior collapse, 126–127
results, 132–139
sampling process, 115
semi-supervised learning, 140–145
utility function, 116–117

Variational Bayes, 3, 36, 41, 117
Variational inference (VI)

CAVI, 42–43
evidence lower bound, 37–39
example, 44–46
information theoretic view, 40–41
issues, 44
mean-field approximation, 41–42
SVI, 43

Variational methods, 2, 3, 36, 37, 50, 106
VI, see Variational inference (VI)

	Preface
	Contents
	Acronyms
	1 Introduction
	1.1 Historical Context
	1.2 On the Notation
	References

	2 Fundamentals of Statistical Inference
	2.1 Models
	2.1.1 Parametric Models
	2.1.1.1 Location-Scale Families

	2.1.2 Nonparametric Models
	2.1.3 Latent Variable Models
	2.1.4 De Finetti's Representation Theorem
	2.1.5 The Likelihood Function

	2.2 Exponential Family
	2.2.1 Sufficient Statistics
	2.2.2 Definition and Properties

	2.3 Information Measures
	2.3.1 Fisher Information
	2.3.2 Entropy
	2.3.2.1 Conditional Entropy
	2.3.2.2 Differential Entropy

	2.3.3 Kullback-Leibler Divergence
	2.3.4 Mutual Information

	2.4 Bayesian Inference
	2.4.1 Bayesian vs. Classical Approach
	2.4.2 The Posterior Predictive Distribution
	2.4.3 Hierarchical Modeling

	2.5 Conjugate Prior Distributions
	2.5.1 Definition and Motivation
	2.5.2 Conjugate Prior Examples

	2.6 Point Estimation
	2.6.1 Method of Moments
	2.6.2 Maximum Likelihood Estimation
	2.6.3 Maximum a Posteriori Estimation
	2.6.4 Bayes Estimation
	2.6.5 Expectation-Maximization
	2.6.5.1 EM Example

	2.7 Closing Remarks
	References

	3 Model-Based Machine Learning and Approximate Inference
	3.1 Model-Based Machine Learning
	3.1.1 Probabilistic Graphical Models
	3.1.1.1 Direct Acyclic Graphs
	3.1.1.2 Undirected Graphs
	3.1.1.3 The Power of Graphical Models

	3.1.2 Probabilistic Programming

	3.2 Approximate Inference
	3.2.1 Variational Inference
	3.2.1.1 The Evidence Lower Bound
	3.2.1.2 Information Theoretic View on the ELBO
	3.2.1.3 The Mean-Field Approximation
	3.2.1.4 Coordinate Ascent Variational Inference
	3.2.1.5 Stochastic Variational Inference
	3.2.1.6 VI Issues
	3.2.1.7 VI Example

	3.2.2 Assumed Density Filtering
	3.2.2.1 Minimizing the Forward kl Divergence
	3.2.2.2 Moment Matching in the Exponential Family
	3.2.2.3 ADF Issues
	3.2.2.4 ADF Example

	3.2.3 Expectation Propagation
	3.2.3.1 Recasting adf as a Product of Approximate Factors
	3.2.3.2 Operations in the Exponential Family
	3.2.3.3 Power EP
	3.2.3.4 EP Issues
	3.2.3.5 EP Example

	3.2.4 Further Practical Extensions
	3.2.4.1 Black Box Variational Inference
	3.2.4.2 Black Box α Minimization
	3.2.4.3 Automatic Differentiation Variational Inference

	3.3 Closing Remarks
	References

	4 Bayesian Neural Networks
	4.1 Why BNNs?
	4.2 Assessing Uncertainty Quality
	4.2.1 Predictive Log-Likelihood
	4.2.2 Calibration
	4.2.3 Downstream Applications

	4.3 Bayes by Backprop
	4.3.1 Practical VI

	4.4 Probabilistic Backprop
	4.4.1 Incorporating the Hyper-Priors p(λ) and p(γ)
	4.4.2 Incorporating the Priors on the Weights p(w| λ)
	4.4.2.1 Update Equations for αλ and βλ
	4.4.2.2 Update Equations for the μ and σ2

	4.4.3 Incorporating the Likelihood Factors p(y| W, X, γ)
	4.4.3.1 The Normalizing Factor

	4.5 MC Dropout
	4.5.1 Dropout
	4.5.2 A Bayesian View

	4.6 Fast Natural Gradient
	4.6.1 Vadam

	4.7 Comparing the Methods
	4.7.1 1-D Toy Example
	4.7.2 UCI Data Sets
	4.7.2.1 Boston Housing
	4.7.2.2 Concrete Compressive Strength
	4.7.2.3 Energy Efficiency
	4.7.2.4 Kin8nm
	4.7.2.5 Condition Based Maintenance of Naval Propulsion Plants
	4.7.2.6 Combined Cycle Power Plant
	4.7.2.7 Wine Quality
	4.7.2.8 Yacht Hydrodynamics

	4.7.3 Experimental Setup
	4.7.3.1 Hyper-Parameter Search with Bayesian Optimization (BO)

	4.7.4 Training Configuration
	4.7.5 Analysis

	4.8 Further References
	4.9 Closing Remarks
	References

	5 Variational Autoencoder
	5.1 Motivations
	5.2 Evaluating Generative Networks
	5.3 Variational Autoencoders
	5.3.1 Conditional VAE
	5.3.2 β-VAE

	5.4 Importance Weighted Autoencoder
	5.5 VAE Issues
	5.5.1 Inexpressive Posterior
	5.5.1.1 Full Covariance Gaussian
	5.5.1.2 Auxiliary Latent Variables
	5.5.1.3 Normalizing Flow

	5.5.2 The Posterior Collapse
	5.5.3 Latent Distributions
	5.5.3.1 Continuous Relaxation
	5.5.3.2 Vector Quantization

	5.6 Experiments
	5.6.1 Data Sets
	5.6.1.1 MNIST
	5.6.1.2 Fashion-MNIST

	5.6.2 Experimental Setup
	5.6.3 Results

	5.7 Application: Generative Models on Semi-supervised Learning
	5.8 Closing Remarks
	5.9 Final Words
	References

	A Support Material
	A.1 Gradient Estimators
	A.2 Update Formula for CAVI
	A.3 Generalized Gauss–Newton Approximation
	A.4 Natural Gradient and the Fisher Information Matrix
	A.5 Gaussian Gradient Identities
	A.6 t-Student Distribution
	References

	Index

