
Chapter 1
Logical and Philosophical Foundations
of Complexity

1.1 Forms of Complexity

There are at least 45 definitions of complexity according to Seth Lloyd as reported in
The End of Science (Horgan, 1997, pp. 303–305). Rosser Jr. (1999) argued for the
usefulness in studying economics of a definition he called dynamic complexity that
was originated by Day (1994).1 This is that a dynamical economic system fails to
generate convergence to a point, a limit cycle or an explosion (or implosion)
endogenously from its deterministic parts. It has been argued that nonlinearity was
a necessary but not sufficient condition for this form of complexity,2 and that this
definition constituted a suitably broad “big tent” to encompass the “four C’s”3 of
cybernetics, catastrophe, chaos, and “small tent” (now better known as heteroge-
neous agents) complexity.

Norbert Wiener (1948) founded cybernetics, which relied on computer simula-
tions and was popular with Soviet central planners and computer scientists long after
it was not so admired in the West. Jay Forrester (1961), inventor of the flight
simulator, founded its rival system dynamics, arguing that nonlinear dynamical
systems can produce “counterintuitive” results. Probably its most famous application
was in The Limits to Growth (Meadows et al. 1972), eventually criticized for its

1Velupillai (2011) has labeled this view of dynamic complexity as “Day-Rosser” complexity.
2Strictly speaking, this is incorrect. Goodwin (1947) showed such endogenous dynamic patterns in
coupled linear systems with lags. Similar systems were analyzed by Turing (1952) in his paper that
has been viewed as the foundation of the theory of morphogenesis, a complexity phenomenon par
excellence. However, the overwhelming majority of such dynamically complex systems involve
some nonlinearity, and the uncoupled normalized equivalent of the coupled linear system is
nonlinear.
3This coinage came from Horgan (1997, Chap. 11) who sneeringly labeled the four C’s to represent
chaoplexity, which he considered to be an intellectual bubble or fad. Rosser Jr. (1999) argued that
this was a coinage like “Impressionism” that was initially an insult but can be seen as a useful
characterization.
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excessive aggregation. Arguably both came from general systems theory (von
Bertalanffy, 1950, 1974), which in turn developed from tektology, the general theory
of organization due to Bogdanov (1925-29).

Catastrophe theory developed out of broader bifurcation theory, which relies on
strong assumptions to characterize patterns of how smoothly changing control vari-
ables can generate discontinuous changes in state variables at critical bifurcation
values (Thom, 1975), with Zeeman’s (1974) model of stock market crashes the first
use of it in economics. Empirical methods for studying such models depend on
multi-modal statistics (Cobb et al. 1983; Guastello 2011a, b). Due to the strict
assumptions it relies upon, a backlash developed against its use, although Rosser
Jr. (2007) argued this became overdone.4

While chaos theory can be traced back to Poincaré (1890), it became prominent
after climatologist Edward Lorenz (1963) discovered sensitive dependence on initial
conditions, aka “the butterfly effect.” Applications in economics followed sugges-
tions made by May (1976). Debates over empirical measurement and problems
associated with forecasting have reduced its application in economics (Dechert,
1996).5 It is possible to develop models that exhibit combined catastrophic and
chaotic phenomena as in chaotic hysteresis,6 first shown as possible in a macroeco-
nomic model by Puu (1990), with Rosser Jr. et al. (2001) estimating such patterns for
investment in the Soviet Union in the post-World War II period.

The small tent or heterogeneous agents type of dynamic complexity does not have
a precise definition. Influentially, Arthur et al. (1997a) argue that such complexity
exhibits six characteristics: (1) dispersed interaction among locally interacting het-
erogeneous agents in some space, (2) no global controller that can exploit opportu-
nities arising from these dispersed interactions, (3) cross-cutting hierarchical
organization with many tangled interactions, (4) continual learning and adaptation
by agents, (5) perpetual novelty in the system as mutations lead it to evolve new
ecological niches, and (6) out-of-equilibrium dynamics with either no or many
equilibria and little likelihood of a global optimum state emerging. Many point to
Thomas Schelling’s (1971) study on a 19-by-19 Go board7 of the emergence of
urban segregation due to nearest neighbor effects as an early example.

Other forms of nonlinear dynamic complexity seen in economic models include
non-chaotic strange attractors (Lorenz 1983), fractal basin boundaries (Lorenz
1983; Abraham et al. 1997), flare attractors (Hartmann and Rössler 1998; Rosser
Jr. et al. 2003a), and more.

4Arnol’d (1993) provides a clear discussion of the mathematical issues involved while avoiding the
controversies.
5For further discussion of underlying mathematical controversies involving chaos theory, see
Rosser Jr. (2000b, Mathematical Appendix).
6This term was coined by Abraham and Shaw (1987), and Abraham (1985) also conceived the
related combined phenomenon of chaostrophe.
7It has often been claimed incorrectly that Schelling used a chess board for this study.
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Other non-dynamic complexity approaches used in economics have included
structural (Pryor 1995; Stodder 1995),8 hierarchical (Simon 1962), informational
(Shannon 1948). Algorithmic (Chaitin 1987), stochastic (Rissanen 1986), and com-
putational (Lewis 1985; Albin with Foley 1998; Velupillai 2000).

Those arguing for focus on computational complexity include Velupillai
(2005a, b) and Markose (2005), who say that the latter concept is superior because
of its foundation on more well-defined ideas, such as algorithmic complexity
(Chaitin 1987) and stochastic complexity (Rissanen 1989, 2005). These are seen as
founded more deeply on the informational entropy work of Shannon (1948) and
Kolmogorov (1983). Mirowski (2007) argues that markets themselves should be
seen as algorithms that are evolving to higher levels in a Chomsky (1959) hierarchy
of computational systems, especially as they increasingly are carried over computers
and become resolved through programmed double-auction systems and the like.
McCauley (2004, 2005) and Israel (2005) argue that such dynamic complexity ideas
as emergence are essentially empty and should be abandoned for either more
computational-based or more physics-based ones, the latter especially relying on
invariance concepts.

At the most profound level computational complexity involves the problem of
non-computability. Ultimately this depends on a logical foundation, that of
non-recursiveness due to incompleteness in the Gödel sense (Church 1936; Turing
1937). In actual computer programs this manifests itself most clearly in the form of
the halting problem (Blum et al. 1998). This amounts to the halting time of a
program being infinite, and it links closely to other computational complexity
concepts such as Chaitin’s algorithmic complexity. Such incompleteness problems
present foundational problems for economic theory (Rosser Jr. 2009a, 2012a, b;
Landini et al. 2020; Velupillai 2009).

In contrast, dynamic complexity and such concepts as emergence are useful for
understanding economic phenomena and are not as incoherent and undefined as has
been argued. A sub-theme of some of this literature, although not all of it, has been
that biologically based models or arguments are fundamentally unsound mathemat-
ically and should be avoided in more analytical economics. Instead, such approaches
can be used in conjunction with the dynamic complexity approach to explain
emergence mathematically and that such approaches can explain certain economic
phenomena that may not be easily explained otherwise.

8Structural complexity appears in the end to amount to “complicatedness,” which Israel (2005)
argues is merely an epistemological concept rather than an ontological one, with “complexity” and
“complicatedness” coming from different Latin roots (complecti, “grasp, comprehend, or embrace”
and complicare, “fold, envelop”), even if many would confuse the concepts (including even von
Neumann 1966). Rosser Jr. (2004) argues that complicatedness as such poses essentially trivial
epistemological problems, how to figure out a lot of different parts and their linkages.
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1.2 Foundations of Computational Complexity Economics

Velupillai (2000, pp. 199–200) summarizes the foundations of what he has labeled
computable economics9 in the following.

Computability and randomness are the two basic epistemological notions I have used as
building blocks to define computable economics. Both of these notions can be put to work to
formalize economic theory in effective ways. However, they can be made to only on the
basis of two theses: the Church-Turing thesis, and the Kolmogorov-Chaitin-Solomonoff
thesis.

Church (1936) and Turing (1937) independently realized that several broad
classes of functions could be described as “recursive” and were “calculable” (pro-
grammable computers had not yet been invented). Turing (1936, 1937) was the first
to realize that Gödel’s (1931) Incompleteness Theorem provided a foundation for
understanding when problems were not “calculable,” called “effectively comput-
able” since Tarski (1949). Turing’s analysis introducing the generalized concept of
the Turing machine, now viewed as the model for a rational economic agent within
computable economics (Velupillai 2005b, p. 181). While the original Gödel theorem
relied upon a Cantor diagonal proof arising from self-referencing, the classic man-
ifestation of non-computability in programming is the halting problem: that a
program will simply run forever without ever reaching a solution (Blum et al. 1998).

Much of recent computable economics has involved showing that when one tries
to put important parts of standard economic theory into forms that might be
computable, it is found that they are not effectively computable in any general
sense. These include Walrasian equilibria (Lewis 1992), Nash equilibria (Prasad
1991; Tsuji et al. 1998), more general aspects of macroeconomics (Leijonufvud
1993), and whether a dynamical system will be chaotic or not (da Costa et al. 2005).10

Indeed, what are viewed as dynamic complexities can arise from computability
problems that arise in jumping from a classical and continuous real number frame-
work to a digitized, rational numbers-only framework. An example is the curious
“finance function” of Clower and Howitt (1978) in which solution variables jump
back and forth over large intervals discontinuously as the input variables go from
integers, to non-integer rationals to irrational numbers and back. Velupillai (2005b,
p. 186) notes the case of a Patriot missile missing its target by 700 m and killing
28 soldiers as “friendly fire” in Dhahran, Saudi Arabia in 1991 due to a computer’s

9
“Computable economics” was neologized by Velupillai in 1990 and is distinguished from “com-
putational economics,” symbolized by the work one finds at conferences of the Association for
Computational Economics and its journal, Computational Economics. The former focuses more on
the logical foundations of the use of computers in economics while the latter tends to focus more on
specific applications and methods.
10Another main theme of computable economics involves considering which parts of economic
theory can be proved when such classical logical axioms are relaxed as the Axiom of Choice and the
exclusion of the middle. Under such constructive mathematics problems can arise for proving
Walrasian equilibria (Pour-El and Richards 1979; Richter and Wong 1999; Velupillai 2002, 2006)
and Nash equilibria (Prasad 2005).

4 1 Logical and Philosophical Foundations of Complexity



non-terminating cycling through a binary expansion on a decimal fraction. Finally,
the discovery of chaotic sensitive dependence on initial conditions by Lorenz (1963)
because of computer roundoff error is famous, a case that is computable but
undecidable.

There are actually several computability based definitions of complexity,
although Velupillai (2000, 2005a, b) argues that they can be linked as part of the
broader foundation of computable economics. The first is the Shannon (1948)
measure of information content, which can be interpreted as attempting observe
structure in a stochastic system. It is thus derived from a measure of entropy in the
system, or its state of disorder. Thus, if p(x) is the probability density function of a set
of K states denoted by values of x, then the Shannon entropy is given by

H Xð Þ ¼ �
X

x¼1
K ln p xð Þð Þ ð1:1Þ

From this is it is trivial to obtain the Shannon information content of X ¼ x as

SI xð Þ ¼ ln 1=p xð Þð Þ ð1:2Þ

It came to be understood that this equals the number of bits in an algorithm that it
takes to compute this code. This would lead Kolmogorov (1965) to define what is
now known as Kolmogorov complexity as the minimum number of bits in any
algorithm that does not prefix any other algorithm a(x) that a Universal Turing
Machine (UTM) would require to compute a binary string of information, x, or,

K xð Þ ¼ min a xð Þj j, ð1:3Þ

where │ │ denotes length of the algorithm in bits.11 Chaitin (1987) would indepen-
dently discover and extend this minimum description length (MDL) concept and link
it back to Gödel incompleteness issues, his version being known as algorithmic
complexity, which would get taken up later by Albin (1982)12 and Lewis (1985,
1992) in economic contexts.13

11It should be understood that whereas on the one hand Kolmogorov’s earliest work axiomatized
probability theory, his efforts to understand the problem of induction would lead him to later argue
that information theory precedes probability theory (Kolmogorov 1983). McCall (2005) provides a
useful discussion of this evolution of Kolmogorov’s views.
12Albin liked the example of the capital aggregation problem raised by Joan Robinson (1953-54)
that in order to aggregate capital one needs to already know the marginal product of capital in order
to determine the discount rate for calculating present values, while at the same time one already
needs to know the value of aggregate capital in order to determine its marginal product. Conven-
tional economics attempts to escape this potentially infinite do loop by simply assuming that all of
these are conveniently simultaneously solved in a grand general equilibrium.
13Closely related would be the universal prior of Solomonoff (1964) that puts the MDL concept
into a Bayesian framework. From this comes the rather neatly intuitive idea that the most probable
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While these concepts usefully linked probability theory and information theory
with computability theory, they all share the unfortunate aspect of being
non-computable. This would be remedied by the introduction of stochastic com-
plexity by Rissanen (1978, 1986, 1989, 2005). The intuition behind Rissanen’s
modification of the earlier concepts is to focus not on the direct measure of
information but to seek a shorter description or model that will depict the “regular
features” of the string. For Kolmogorov a model of a string is another string that
contains the first string. Rissanen (2005, pp. 89–90) defines a likelihood function for
a given structure as a class of parametric density functions that can be viewed as
respective models, where θ represents a set of k parameters and x is a given data
string indexed by n:

Mk ¼ f xn, θð Þ : θ Є Rk
� �

: ð1:4Þ

For a given f, with f(yn) a set of “normal strings,” the normalized maximum
likelihood function will be given by

f � xn,Mkð Þ ¼ f xn, θ� xnð Þð Þ=
Z
θ ynð Þ

f yn, θ ynð Þð Þdyn
" #

, ð1:5Þ

where the denominator of the right-hand side can be defined as being Cn,k.
From this the stochastic complexity is given by

� ln f � xn,Mkð Þ ¼ � ln f xn, θ� xnð Þð Þ þ ln Cn,k: ð1:6Þ

This term can be interpreted as representing “the ‘shortest code length’ for the
data xn that can be obtained with the model class Mk.” (Rissanen 2005, p. 90). With
this we have a computable measure of complexity derived from the older ideas of
Kolmogorov, Solomonoff, and Chaitin. The bottom line of Kolmogorov complexity
is that a system is complex if it is not computable. The supporters of these
approaches to defining economic complexity (Israel 2005; Markose 2005; Velupillai
2005a, b) point out the precision given by these measures in contrast to so many of
the alternatives.

However, Chaitin’s algorithmic complexity (1966, 1987) introduces a limit to this
precision, an ultimate underlying randomness. He considered the problem of a
program having started without one knowing what it is and thus facing a probability
that it will halt, which he labeled as Ω. He saw this randomness as underlying all
mathematical “facts.” Indeed, this Ω itself is in general not computable (Rosser
Jr. 2020a).

state will also have the shortest length of algorithm to describe it. Solomonoff’s work was also
independently developed, drawing on the probability theory of Keynes (1921).
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An example of this involves a theorem of Maymin (2011) that straddles the
boundary of the deep unsolved problem of whether P (polynomial) equals NP
(non-polynomial) in programs,14 thus having an unknown Ω. This theorem shows
that under certain information conditions markets are efficient if P ¼ NP, which few
believe. At the edge of this da Costa and Doria (2016) use the O’Donnell (1979)
algorithm that is exponential and thus not P but slowly growing so “almost P” to
establish a counterexample function to the P ¼ NP problem. The O’Donnell algo-
rithm holds if P < NP is probable for any theory strictly stronger than Primitive
Recursive Arithmetic, even as that cannot prove it. Such problems might appear such
as in the computationally complex traveling salesman problem. Da Costa and Doria
establish that under these conditions the O’Donnell algorithm behaves as an “almost
P” system that implies an outcome of “almost efficient markets.” This is a result that
walks on the edge of the unknown, if not the unknowable.

A deeper logical issue underlying computational complexity and economics
involves fundamental debates over the nature of mathematics itself. Conventional
mathematics assumes axioms labeled the Zermelo-Fraenkel-[Axiom of] Choice
system, or ZFC. But some of these axioms have been questioned and efforts have
been made to develop axiomatic mathematical systems not using them. The axioms
that have been challenged have been the Axiom of Choice, the Axiom of Infinity, and
the Law of the Excluded Middle. A general term for these efforts has been construc-
tivistmathematics, with systems that particularly emphasize not relying on the Law of
the ExcludedMiddle, which means no use of proof by contradiction, has been known
as intuitionism, initially developed by Luitzen Brouwer (1908) of fixed point theorem
fame.15 In particular, standard proofs of the Bolzano-Weierstrass theorem use proof
by contradiction, with this underlying Sperner’s Lemma, which in turn underlies
standard proofs of both the Brouwer and Kakutani fixed point theorems used in
general and Nash equilibrium existence proofs (Velupillai 2006, 2008).16

For mathematicians, if not economists, the most important of these debatable
axioms is the Axiom of Choice, which allows for the relatively easy ordering of
infinite sets. This underpins standard proofs of major theorems of mathematical
economics, with Scarf (1973) probably the first to notice these possible problems.
The Axiom of Choice is especially important in topology and central parts of real
analysis. On the one hand, its most ultimate formulation has been shown to be false
by Specker (1953). But one way out of some of these problems is by using Non-
standard analysis that allows for infinite and infinitesimal real numbers (Robinson

14The P ¼ NP problem was first identified by John Nash Jr. (1955) in a letter to the US National
Security Agency discussing encryption methods in cryptanalysis, which was classified until 2013.
Nash said he thought it was true that P did not equal NP, but noted he was unable to prove it, and it
remains unproven to this day.
15Ironically Brouwer’s original proof of his fixed point theorem relied on ZFC axioms, with him
only providing an intuitionistic alternative much later (Brouwer 1952).
16For authoritative logic discussions of the issues involved broadly in these constructivist alterna-
tives, see Kleene and Vesley 1965; Kleene 1967; Bishop 1967).
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1966), which allows for avoiding the use of the Axiom of Choice for proving some
important theorems.

The question of the Axiom of Infinity may perhaps be most closely tied to the
questions about computational complexity. The deep philosophical idea behind
these constructivist approaches is that mathematics should deal with finite systems
that are more realistic and more readily and easily computed. Going against this most
strongly was Cantor’s introduction of levels of infinity into mathematics, an inno-
vation that led Hilbert to praise Cantor for “bringing mathematicians into paradise.”
But the computability critics argue that mathematical economics must fit the real
world in a credible way, with efforts ongoing at constructing such an economics
based on a constructivist foundation (Velupillai 2005a, b, 2012; Bartholo et al. 2009;
Rosser Jr. 2010a, 2012a).

1.3 Epistemology and Computational Complexity

Regarding computational complexity, Velupillai (2000) provides definitions and
general discussion and Koppl and Rosser Jr. (2002) provide a more precise formu-
lation of the problem, drawing on arguments of Kleene (1967), Binmore (1987),
Lipman (1991), and Canning (1992). Velupillai defines computational complexity
straightforwardly as “intractability” or insolvability. Halting problems such as stud-
ied by Blum et al. (1998) provide excellent examples of how such complexity can
arise, with this problem first studied for recursive systems by Church (1936) and
Turing (1936, 1937).

In particular, Koppl and Rosser reexamined the famous “Holmes-Moriarty”
problem of game theory, in which two players who behave as Turing machines
contemplate a game between each other involving an infinite regress of thinking
about what the other one is thinking about (Morgenstern 1935). Essentially this is the
problem of n-level playing with n having no upper limit (Bacharach and Stahl 2000).
This has a Nash equilibrium, but “hyper-rational” Turing machines cannot arrive at
knowing they have that solution or not due to the halting problem. That the best reply
functions are not computable arises from the self-referencing problem involved
fundamentally similar to those underlying the Gödel Incompleteness Theorem
(Rosser Sr 1936; Kleene 1967, p. 246). Aaronson (2013) has shown links between
these problems in game theory and the N¼ P problem of computational complexity.
Such problems extend to general equilibrium theory as well (Lewis 1992; Richter
and Wong 1999; Landini et al. 2020).

Binmore’s (1987, pp. 209–212) response to such undecidability in self-
referencing systems invokes a “sophisticated” form of Bayesian updating involving
a degree of greater ignorance. Koppl and Rosser agree that agents can operate in such
an environment by accepting limits on knowledge and operate accordingly, perhaps
on the basis of intuition or “Keynesian animal spirits” (Keynes 1936). Hyper-
rational agents cannot have complete knowledge, essentially for the same reason
that Gödel showed that no logical system can be complete within itself.
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However, even for Binmore’s proposed solution there are also limits. Thus,
Diaconis and Freedman (1986) have shown that Bayes’ Theorem fails to hold in
an infinite dimensional space. There may be a failure to converge on the correct
solution through Bayesian updating, notably when the basis is discontinuous. There
can be convergence on a cycle in which agents are jumping back and forth from one
probability to another, neither of which is correct. In the simple example of coin
tossing, they might be jumping back and forth between assuming priors of 1/3 and
2/3 without ever being able to converge on the correct probability of 1/2. Nyarko
(1991) has studied such kinds of cyclical dynamics in learning situations in gener-
alized economic models.

Koppl and Rosser compare this issue to that of Keynes’s problem (1936,
Chap. 12) of the beauty contest. In this the participants are supposed to win if they
most accurately guess the guesses of the other participants, potentially involving an
infinite regress problem with the participants trying to guess how the other partici-
pants are going to be guessing about their guessing and so forth. This can also be
seen as a problem of reflexivity (Rosser Jr. 2020b). A solution comes by choosing to
be somewhat ignorant or boundedly rational and operating at a particular level of
analysis. However, as there is no way to determine rationally the degree of bound-
edness, which itself involves an infinite regress problem (Lipman 1991), this deci-
sion also ultimately involves an arbitrary act, based on animal spirits or whatever, a
decision ultimately made without full knowledge.

A curiously related point here is in later results (Gode and Sunder 1993; Mirowski
2002) on the behavior of zero intelligence traders. Gode and Sunder have shown that
in many artificial market setups zero intelligence traders following very simple rules
can converge on market equilibria that may even be efficient. Not only may it be
necessary to limit one’s knowledge in order to behave in a rational manner, but one
may be able to be rational in some sense while being completely without knowledge
whatsoever. Mirowski and Nik-Kah (2017) argue that this completes a transforma-
tion of the treatment of knowledge in economics in the post-World war II era from
assuming that all agents have full knowledge to all agents having zero knowledge.

A further point on this is that there are degrees of computational complexity
(Velupillai 2000; Markose 2005), with Kolmogorov (1965) providing a widely
accepted definition that the degree of computational complexity is given by the
minimum length of a program that will halt on a Turing machine. We have been
considering the extreme cases of no halting, but there is indeed an accepted hierarchy
among levels of computational complexity, with the knowledge difficulties
experiencing qualitative shifts across them. This hierarchy is widely seen as
consisting of four levels (Chomsky 1959; Wolfram 1984; Mirowski 2007). At the
lowest level are linear systems, easily solved, with such a low level of computational
complexity we can view them as not complex. Above that level are polynomial
(P) problems that are substantially more computationally complex, but still generally
solvable. Above that are exponential and other non-polynomial (NP) problems that
are very difficult to solve, although it remains as yet unproven that these two levels
are fundamentally distinct, one of the most important unsolved problems in com-
puter science. Above this level is that of full computational complexity associated
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where the minimum length is infinite, where the programs do not halt. Here the
knowledge problems can only be solved by becoming effectively less intelligent.

1.4 Foundations of Dynamic Complexity Economics

In contrast with the computationally defined measures described above, the dynamic
complexity definition stands out curiously as for its negativity: dynamical systems
that do not endogenously and deterministically generate certain “well-behaved”
outcomes. The charge that it is not precise carries weight. However, the virtue of it
is precisely its generality guaranteed by its vagueness. It can apply to a wide variety
of systems and processes that many have described as being “complex.” Of course,
the computationalists argue with reason that they are able to subsume substantial
portions of nonlinear dynamics with their approach, as for example with the already
mentioned result on the non-computability of chaotic dynamics (Costa et al. 2005).

However, most of this recent debate and discussion, especially by Israel (2005),
McCauley (2005), and Velupillai (2005b, 2005c) has focused on a particular out-
come that is associated with some interacting agents models within the smaller tent
(heterogeneous interacting agents) complexity part of the broader big tent dynamic
complexity concept. This property or phenomenon is emergence. It was much
discussed by cyberneticists and general systems theorists (von Bertalanffy 1974),
including under the label anagenesis (Boulding 1978; Jantsch 1982), although it was
initially formalized by Lewes (1875) and expanded by Morgan (1923), drawing
upon the idea of heteropathic laws due to Mill (1843, Book III). Much recent
discussion has focused on Crutchfield (1994) because he has associated it more
clearly with processes within computerized systems of interacting heterogeneous
agents and linked it to minimum length computability concepts related to
Kolmogorov’s idea, which it makes it easier for the computationalists to deal with.
In any case, the idea is of the dynamic appearance of something new endogenously
and deterministically from the system, often also labeled self-organization.17

Furthermore, all of these cited here would add another important element, that it
appears at a higher level within a dynamic hierarchical system as a result of
processes occurring at lower levels of the system. Crutchfield (1994) allows that
what is involved is symmetry breaking bifurcations, which leads McCauley (2005,
pp. 77–78) to be especially dismissive, identifying it with biological models
(Kaufmann 1993) and declaring that “so far no one has produced a clear empirically
relevant or even theoretically clear example.” The critics complain of implied holism
and Israel identifies it with Wigner’s (1960) “mystical” alienation from the solidly
grounded view of Galileo.

17This term has been especially associated with Bak (1996) and his self-organized criticality,
although he was not the first to discuss self-organization in these contexts.
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Now the complaint of McCauley amounts to an apparent lack of invariance, a
lack of ergodicity or steady state equilibria, with clearly identifiable symmetries
whose breaking brings about these higher-level reorganizations or transformations.

We can understand how a cell mutates to a new form, but we do not have a model of how a
fish evolves into a bird. That is not to say that it has not happened, only that we do not have a
model that helps us to imagine the details, which must be grounded in complicated cellular
interactions that are not understood. (McCauley 2005, p. 77)18

While he is probably correct that the details of these interactions are not fully
understood, a footnote on the same page points in the direction of some understand-
ing that has appeared, not tied directly to Crutchfield or Kaufmann. McCauley notes
the work of Hermann Haken (1983) and his “examples of bifurcations to pattern
formation via symmetry breaking.” Several possible approaches suggest themselves
at this point.

One approach is that of synergetics due to Haken (1983), alluded to above. This
deals more directly with the concept of entrainment of oscillations via the slaving
principle (Haken 1996), which operates on the principle of adiabatic approximation.
A complex system is divided into order parameters that are presumed to move
slowly in time and “slave” faster moving variables or subsystems. While it may be
that the order parameters are operating at a higher hierarchical level, which would be
consistent with many generalizations made about relative patterns between such
levels (Allen and Hoekstra 1990; Holling 1992; Radner 1992), this is not necessarily
the case. The variables may well be fully equivalent in a single, flat hierarchy, such
as with the control and state variables in catastrophe theory models. Stochastic
perturbations can lead to structural change near bifurcation points.

If slow dynamics are given by vector F, fast dynamics generated by vector q, with
A, B, and C being matrices, and ε a stochastic noise vector, then a locally linearized
version is given by

dq ¼ Aqþ B Fð ÞqC Fð Þ þ ε: ð1:7Þ

Adiabatic approximation is given by

dq ¼ � Aþ B Fð Þð Þ�1C Fð Þ: ð1:8Þ

Fast variable dependence on the slow variables is given by A + B(F). Order
parameters are those of the least absolute value.

The symmetry breaking bifurcation occurs when the order parameters destabilize
by obtaining eigenvalues with positive real parts, while the “slave variables” exhibit
the opposite. Chaos is one possible outcome. However, the most dramatic situation

18McCauley’s argument is based on Moore’s (1990, 1991a,b) study of low dimensional, iterated
maps that are Turing machines without attractors, scaling properties, or symbolic dynamics.
McCauley argues that this view provides a foundation for complexity as ultimate surprise and
unpredictability.
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is when the slaved variables destabilize and “revolt” (Diener and Poston 1984), with
the possibility of the roles switching within the system and former slaves replacing
the former “bosses” to become the new order parameters. An example in nature of
such an emerging and self-organizing entrainment might the periodic and coordi-
nated appearance of the slime mold out of separated amoebae, which later disinte-
grates back into its isolated cells (Garfinkel 1987). An example in human societies
may be the outbreak of the mid-fourteenth century Great Plague in Europe, when
accumulating famine and immunodeficiency exploded in a massive population
collapse (Braudel 1967).

Another approach is found in Nicolis (1986), derived from the work of Nicolis
and Prigogine (1977) on frequency entrainment. Rosser Jr. (1994) have argued that
this can serve as a possible model for the anagenetic moment, or the emergence of a
new level of hierarchy. Let there be n well-defined levels of the hierarchy, with L1 at
the bottom and Ln at the top. A new level, Ln+1, or dissipative structure, can emerge
at a phase transition with a sufficient degree of entrainment of the oscillations at that
level. Let there be k oscillating variables, xj and zi(t) be an independently and
identically distributed exogenous stochastic process with zero mean and constant
variance, then dynamics are given by the coupled, nonlinear differential equations of
the form

dxi=dt ¼ f i x j, t
� �þ zi tð Þ þ

X
j¼1

k

Z k

1
x j t

0ð Þwij t
0 þ τð Þdt0, ð1:9Þ

with wij representing a cross-correlation matrix operator. The third term is the key,
either being “on” or “off,” with the former showing frequency entrainment. Nicolis
(1986) views this in terms of a model of neurons, with a master hard nonlinear
oscillator being turned on by a symmetry breaking of the cross-correlation matrix
operator when the probability distribution of the real parts of its eigenvalues
exceeding zero.19 Then a new variable vector will emerge at the Ln+1 level that is
yj, which will damp or stimulate the oscillations at level Ln, depending on whether
the sum over them is below or above zero.20 An example might be the emergence of
a new level of urban hierarchy (Rosser Jr. 1994).

Regarding the relation between dynamic complexity and emergence another
perspective on this has come from the Austrian School of economics (Koppl 2006,
2009; Lewis 2012; Rosser Jr. 2012a), with the idea that market economic systems
spontaneously emerge, one of their deepest ideas, which they drew from the Scottish
Enlightenment of Hume and Smith, as well as such thinkers as Mill (1843) and
Herbert Spencer (1867-1874) who wrote on both evolution and economic sociology

19In a related model, Holden and Erneux (1993) show that the systemic switch may take the form of
a slow passage through a supercritical Hopf bifurcation., thus leading to the persistence for a while
of the previous state even after the bifurcation point has been passed.
20Yet another approach involves the hypercycle idea due to Eigen and Schuster (1979), discussed in
the next chapter.
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(Rosser Jr. 2014b). This link can be found in the work of Carl Menger (1871/1981),
the founder of the Austrian School. Menger posed this as follows in terms of what
economic research should discover (Menger 1883/1985, p. 148):

. . .how institutions which serve the common welfare and are extremely significant for its
development come into being without a common will directed toward establishing them.

Menger (1892) then posed the spontaneous emergence of commodity monies in
primitive societies with no fiat role by states as an important example of this.

Various followers of Menger did not pursue this approach strongly, many
emphasizing equilibrium approaches not all that different from the emerging neo-
classical view, which was an idea one could find in Menger’s work, who is widely
viewed as one of the founders of the neoclassical marginalist approach along with
Jevons and Walras. The crucial figure who revived an interest in emergence among
the Austrians and developed it much further was Friedrich A. Hayek (1948, 1967).21

Hayek drew on the incompleteness results of Gödel, aware of the role of self-
referencing in this, and how overcoming the paradoxes of incompleteness may
involve emergence of a higher level that can understand the lower level. Curiously
his awareness of this originally came from his work in psychology in his 1952 The
Sensory Order (pp, 188–189):

Applying the same general principles to the human brain as an apparatus of classification. It
would appear to mean that, even though we may understand its modus operandi in general
terms, or, in other words possess an explanation of the principle on which it operates, we
shall never, by any means of the same brain, be able to arrive at a detailed explanation of its
working in particular circumstances, or be able to predict what the results of it operations
will be. To achieve this would be to require a brain of a higher order complexity, though it
might still be built on the same principles. Such a brain might be able to explain what
happens in our brain, but it would in turn be unable to explain its own operations, and so on.

Koppl (2006, 2009) argues that this argument applies as well to Hayek’s long
opposition to central planning, with a central planner facing just this problem when
they attempt to understand the effect on the economy they are trying to plan of their
own planning efforts.22 This view of the importance of complexity and emergence
would come to be widely influential in Austrian economics since Hayek put forward
his arguments and continues to be so (O’Driscoll and Rizzo 1985; Lachmann 1986;
Lavoie 1989; Horwitz 1992; Wagner 2010).

21See Vaughn (1999), Vriend (2002), and Caldwell (2004) for discussion of how Hayek came to his
views on complexity and emergence and how they fit with his other views.
22The opposition to central planning and support for spontaneous emergence of market systems
from the bottom up shows up in a long debate among philosophers regarding whether emergence
only works bottom up or whether it can involve top to bottom causation. Van Cleve (1990)
introduces supervention as allowing this top down causation in emergent systems, while Kim
(1999) argues that emergent processes must be fundamentally bottom up. Lewis (2012) argues
that Hayek moved toward the supervention view in his later writings that also emphasized group
evolutionary processes (Rosser Jr. 2014b).
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1.5 Dynamic Complexity and Knowledge

In dynamically complex systems, the knowledge problem becomes the general
epistemological problem. Consider the specific problem of being able to know the
consequences of an action taken in such a system. Let G(xt) be the dynamical system
in an n-dimensional space. Let an agent possess an action setA. Let a given action by
the agent at a particular time be given by ait. For the moment let us not specify any
actions by any other agents, each of whom also possesses his or her own action set.
We can identify a relation whereby xt ¼ f(ait). The knowledge problem for the agent
in question thus becomes, “Can the agent know the reduced system G( f(ait) when
this system possesses complex dynamics due to nonlinearity”?

First of all, it may be possible for the agent to be able to understand the system
and to know that he or she understands it, at least to some extent. One reason why
this can happen is that many complex nonlinear dynamical systems do not always
behave in erratic or discontinuous ways. Many fundamentally chaotic systems
exhibit transiency (Lorenz 1992). A system can move in and out of behaving
chaotically, with long periods passing during which the system will effectively
behave in a non-complex manner, either tracking a simple equilibrium or following
an easily predictable limit cycle. While the system remains in this pattern, actions by
the agent may have easily predicted outcomes, and the agent may even be able to
become confident regarding his or her ability to manipulate the system systemati-
cally. However, this essentially avoids the question.

Let us consider four forms of dynamic complexity: chaotic dynamics, fractal
basin boundaries, discontinuous phase transitions in heterogeneous agent situations,
and catastrophe theoretic models related to heterogenous agent systems. For the first
of these there is a clear problem for the agent, the existence of sensitive dependence
on initial conditions. If an agent moves from action ait to action ajt, where |
ait � ajt| < ε < 1, then no matter how small ε is, there exists an m such that |G( f
(ait+t0) � G( f(ajt+t0)| > m for some t0 for each ε. As ε approaches zero, m/ε will
approach infinity. It will be very hard for the agent to be confident in predicting the
outcome of changing his or her action. This is the problem of the butterfly effect or
sensitive dependence on initial conditions. More particularly, if the agent has an
imperfectly precise awareness of his or her actions, with the zone of fuzziness
exceeding ε, the agent faces a potentially large range of uncertainty regarding the
outcome of his or her actions. In Edward Lorenz’s (1963) original study of this
matter when he “discovered chaos,” when he restarted his simulation of a three-
equation system of fluid dynamics partway through, the roundoff error that triggered
a subsequent dramatic divergence was too small for his computer to “perceive”
(at the four decimal place).

There are two offsetting elements for chaotic dynamics. Although an exact
knowledge is effectively impossible, requiring essentially infinitely precise knowl-
edge (and knowledge of that knowledge), a broader approximate knowledge over
time may be possible. Thus, chaotic systems are generally bounded and often
ergodic (although not always). While short-run relative trajectories for two slightly
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different actions may sharply diverge, the trajectories will at some later time return
toward each other, becoming arbitrarily close to each other before once again
diverging. Not only may the bounds of the system be knowable, but the long-run
average of the system may be knowable. There are still limits as one can never be
sure that one is not dealing with a long transient of the system, with it possibly
moving into a substantially different mode of behavior later. But the possibility of a
substantial degree of knowledge, with even some degree of confidence regarding
that knowledge is not out of the question for chaotically dynamic systems.

Regarding fractal basin boundaries, first identified for economic models by Hans-
Walter Lorenz (1992) in the same paper in which he discussed the problem of
chaotic transience. Whereas in a chaotic system there may be only one basin of
attraction, albeit with the attractor being fractal and strange and thus generating
erratic fluctuations, the fractal basin boundary case involves multiple basins of
attraction, whose boundaries with each other take fractal shapes. The attractor for
each basin may well be as simple as being a single point. However, the boundaries
between the basins may lie arbitrarily close to each other in certain zones.

In such a case, for the purely deterministic case once one is able to determine
which basin of attraction one is in, a substantial degree of predictability may ensue.
Yet there may be the problem of transient dynamics, with the system taking a long
and circuitous route before it begins to get anywhere close to the attractor, even if the
attractor is merely a point in the end. The problem arises if the system is not strictly
deterministic, if G includes a stochastic element, however small. In this case one may
be easily pushed across a basin boundary, especially if one is in a zone where the
boundaries lie very close to one another. Thus there may be a sudden and very
difficult to predict discontinuous changes in the dynamic path as the system begins to
move toward a very different attractor in a different basin. The effect is very similar
to that of sensitive dependence on initial conditions in epistemological terms, even if
the two cases are mathematically quite distinct.

Nevertheless, in this case as well there may be something similar to the kind of
dispensation over the longer run we noted for the case of chaotic dynamics. Even if
exact prediction in the chaotic case is all but impossible, it may be possible to discern
broader patterns, bounds and averages. Likewise in the case of fractal basin bound-
aries with a stochastic element, over time one should observe a jumping from one
basin to another. Somewhat like the pattern of long run evolutionary game dynamics
studied by Binmore and Samuelson (1999), one can imagine an observer keeping
track of how long the system remains in each basin and eventually developing a
probability profile of the pattern, with the percent of time the system spends in each
basin possibly approaching asymptotic values. However, this is contingent on the
nature of the stochastic process as well as the degree of complexity of the fractal
pattern of the basin boundaries. A non-ergodic stochastic process may render it very
difficult, even impossible, to observe convergence on a stable set of probabilities for
being in the respective basins, even if those are themselves few in number with
simple attractors.

For the case of phase transitions in systems of heterogeneous locally interacting
agents, the world of the so-called “small tent complexity.” Brock and Hommes
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(1997) have developed a useful model for understanding such phase transitions,
based on statistical mechanics. This is a stochastic system and is driven fundamen-
tally by two key parameters, a strength of interactions or relationships between
neighboring agents and a degree of willingness to switch behavioral patterns by
the agents. For their model the product of these two parameters is crucial, with a
bifurcation occurring for their product. If the product is below a certain critical value,
then there will be a single equilibrium state. However, once this product exceeds a
particular critical value two distinct equilibria will emerge. Effectively the agents
will jump back and forth between these equilibria in herding patterns. For financial
market models (Brock and Hommes 1998) this can resemble oscillations between
optimistic bull markets and pessimistic bear markets, whereas below the critical
value the market will have much less volatility as it tracks something that may be a
rational expectations equilibrium.

For this kind of a setup there are essentially two serious problems. One is
determining the value of the critical threshold. The other is understanding how the
agents jump from one equilibrium to the other in the multiple equilibrium zone.
Certainly the second problem resembles somewhat the discussion from the previous
case, if not involving as dramatic a set of possible discontinuous shifts.

Of course once a threshold of discontinuity is passed it may be recognizable when
it is approached again. But prior to doing so it may be essentially impossible to
determine its location. The problem of determining a discontinuity threshold is a
much broader one that vexes policymakers in many situations, such as attempting to
avoid catastrophic thresholds that can bring about the collapse of a species popula-
tion or of an entire ecosystem. One does not want to cross the threshold, but without
doing so, one does not know where it is. However, for less dangerous situations
involving irreversibilities, it may be possible to determine the location of the
threshold as one moves back and forth across it.

On the other hand in such systems it is quite likely that the location of such
thresholds may not remain fixed. Often such systems exhibit an evolutionary self-
organizing pattern in which the parameters of the system themselves become subject
to evolutionary change as the system moves from zone to zone. Such non-ergodicity
is consistent not only with Keynesian style uncertainty, but may also come to
resemble the complexity identified by Hayek (1948, 1967) in his discussions of
self-organization within complex systems. Of course for market economies Hayek
evinced an optimism regarding the outcomes of such processes. Even if market
participants may not be able to predict outcomes of such processes, the pattern of
self-organization will ultimately be largely beneficial if left on its own. Although
Keynesians and Hayekian Austrians are often seen as in deep disagreement, some
observers have noted the similarities of viewpoint regarding these underpinnings of
uncertainty (Shackle 1972; Loasby 1976; Rosser Jr. 2001a, b). Furthermore, this
approach leads to the idea of the openness of systems that becomes consistent with
the critical realist approach to economic epistemology (Lawson 1997).

Considering this problem of important thresholds brings us to the final of our
forms of dynamic complexity to consider here, catastrophe theory interpretations.
The knowledge problem is essentially that previously noted, but is more clearly writ
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large as the discontinuities involved are more likely to be large as the crashes of
major speculative bubbles. The Brock-Hommes model and its descendants can be
seen as a form of what is involved, but the original catastrophe theory approach
brings out key issues more clearly.

The very first application of catastrophe theory in economics by Zeeman (1974)
indeed considered financial market crashes in a simplified two-agent formulation:
fundamentalists who stabilized the system by buying low and selling high and
“chartists” who chase trends in a destabilizing manner by buying when markets
rise and selling when they fall. As in the Brock-Hommes formulation he allows for
agents to change their roles in response to market dynamics so that as the market
rises fundamentalists become chartists, accelerating the bubble, and when the crash
comes they revert to being fundamentalists, accelerating the crash. Rosser Jr. (1991)
provides an extended formalization of this in catastrophe theory terms that links it to
the analysis of Minsky (1972) and Kindleberger (2001), further taken up in Rosser
Jr. et al. (2012) and Rosser Jr. (2020c). This formulation involves a cusp catastrophic
formulation with the two control variables being the demands by the two categories
of agents, with the chartists’ demand determining the position of the cusp that allows
for market crashes.

The knowledge problem here involves something not specifically modeled in
Brock and Hommes, although they have a version of it. It is the matter of the
expectations of agents about the expectations of the other agents. This is effectively
the “beauty contest” issue discussed by Keynes in Chapter 12 of thisGeneral Theory
(1936). The winner of the beauty contest in a newspaper competition is not who
guesses the prettiest girl, but who guesses best the guesses of the other participants.
Keynes famously noted that one could start playing this about guessing the expec-
tations of others in their guesses of others’ guesses, and that this could go to higher
levels, in principle, an infinite regress leading to an impossible knowledge problem.
In contrast, the Brock and Hommes approach simply has agents shifting strategies
after watching what others do. These potentially higher level problems do not enter
in. These sorts of problems reappear in the problems associated with computational
complexity.

1.6 Knowledge and Ergodicity

A controversial issue involving knowledge and complexity involves the deep
sources of the Keynes-Knight idea of fundamental uncertainty (Keynes 1921;
Knight 1921). Both of them made it clear that for uncertainty there is no underlying
probability distribution determining important events that agents must make deci-
sions about. Keynes’s formulation of this has triggered much discussion and debate
as to why he saw this lack of a probability distribution arising.

One theory that has received much attention, due to Davidson (1982-83), is that
while neither Keynes nor Knight ever mentioned it, what can bring about such
uncertainty, especially for Keynes’s understanding of it, is the appearance of
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nonergodicity in the dynamic processes underlying economic reality. In making this
argument, Davidson specifically cited arguments made by Paul Samuelson (1969,
p. 184) to the effect that “economics as a science assumes the ergodic axiom.”
Davidson relied on this to assert that failure of this axiom is an ontological matter
that is central to understanding Keynesian uncertainty, when knowledge breaks
down. Many have since repeated this argument, although Alvarez and Ehnts
(2016) argue that Davidson misinterpreted Samuelson who actually dismissed this
ergodic view as being tied to an older classical view that he did not accept.

Davidson’s argument has more recently come under criticism by various
observers, perhaps most vigorously recently by O’Donnell (2014-15), who argues
that Davidson has misrepresented the ergodic hypothesis, that Keynes never con-
sidered it, and that Keynesian uncertainty is more a matter of short-run instabilities to
be understood using behavioral economics rather than the asymptotic elements that
are tied up with ergodicity. An important argument by O’Donnell is that even in an
ergodic system that is going to go to a long-run stationary state, it may be out of that
state for a period of time so long that one will be unable to determine if it is ergodic
or not. This is a strong argument that Davidson has not succeeded in fully replying to
(Davidson 2015).

Central to this is to understand the ergodic hypothesis itself and its development
and limits, as well as its relationship to Keynes’s own arguments, which turns out to
be somewhat complicated, but indeed linked to central concerns of Keynes in an
indirect way, especially given that he never directly mentioned it. Most economists
discussing this matter, including both Davidson and O’Donnell, have accepted as the
definition of an ergodic system that over time (asymptotically) its “space averages
equal its time averages.” This formulation was due to Ehrenfest and Ehrenfest-
Afanessjewa (1911), with Paul Ehrenfest a student of Ludwig Boltzmann (1884)
who expanded the study of ergodicity (and coined the term) as part of his long study
of statistical mechanics, particularly how a long term aggregate average (such as
temperature) could emerge from a set of dynamically stochastic parts (particle
movements). It turns out that for all its widespread influence, the precise formulation
by the Ehrenfests was inaccurate (Uffink 2006). But this reflected that there were
multiple strands in the meaning of “ergodicity.”

In fact there is ongoing debate about how Boltzmann coined the term in the first
place. His student, Ehrenfest, claimed it was from combining the Greek ergos
(“work”) with hodos (“path”), while it has been argued by Gallavotti (1999) that it
came from him using his own neologism,monode, meaning a stationary distribution,
instead of hodos. This fits with most of the early formulations of ergodicity that
analyzed it within the context of stationary distributions.

Later discussions of ergodicity would draw on two complementary theorems
proven by Birkhoff (1931) and von Neumann (1932), although the latter was proven
first and emphasizes measure preservation, while Birkhoff’s variation was more
geometric and related to recurrence properties in dynamical systems. Both involve
long-run convergence, and Birkhoff’s formulation showed not only measure pres-
ervation but that for a stationary ergodic system ametric indecomposability such that
not only is the space properly filled, but that it is impossible to break the system into
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two that will also fully fill the space and preserve measure, a result extending
fundamental work by Poincaré (1890) on how recurrence and space filling help
explain how chaotic dynamics can arise in celestial mechanics.

In von Neumann’s (1932) formulation let T be a measure-preserving transforma-
tion on a measure space with for every square-integrable function f on that space,
(Uf)(x) ¼ f(Tx), then U is a unitary operator on the space. For any such unitary
operator U on a Hilbert space H, the sequence of averages:

1=nð Þ f þ Uf þ . . .þ Un�1f
� � ð1:10Þ

is strongly convergent for every f in H. We note that these are finite measure spaces
and that this refers to stationary systems, just as with Boltzmann.

Birkhoff’s (1931) extension, sometimes called the “individual ergodic theorem,”
modifies the above sequence of averages to be:

1=nð Þ f xð Þ þ f Txð Þ þ . . .þ f Tn�1x
� �� � ð1:11Þ

that converge for almost every x. These complementary theorems have been gener-
alized to Banach spaces and many other conditions.23 It was from these theorems
that the next wave of developments in Moscow and elsewhere would evolve.24 This
was the state of ergodic theory when Keynes had his debate over econometrics at the
end of the 1930s with that student of Paul Ehrenfest, Jan Tinbergen.

The link between stationarity and ergodicity would come to weaken in later study,
with Malinvaud (1966) showing that a stationary system might not be ergodic, with a
limit cycle being an example, with Davidson aware of this case from the beginning
of his discussions. However, it continued to be believed that ergodic systems must be
stationary, and this remained a key for Davidson as well as being accepted by most
of his critics, including O’Donnell. However, it turns out that this may break down in
ergodic chaotic systems of infinite dimension, which may not be stationary (Shinkai
and Aizawa 2006), which brings back the role of chaotic dynamics in undermining
the ability to achieve knowledge of a dynamical system, even one that is ergodic.

Given these complications it is worthwhile to return to Keynes to understand
what his concerns were, which came out most clearly in his debates with Tinbergen
(1937, 1940; Keynes, 1938) over how to econometrically estimate models for
forecasting macroeconomic dynamics. A deep irony here is that Tinbergen was a
student of Paul Ehrenfest and so was indeed influenced by his ideas on ergodicity,
even as Keynes did not directly address this matter. In any case, what Keynes
objected to was the apparent absence of homogeneity, essentially a concern that
the model itself changes over time. Keynes’s solution to this was to break a time-

23See Halmos (1958) for how these theorems link measure theory to probability theory.
24Velupillai (2013, pp. 432–433, n8) shows that while most ergodic theory has followed a
frequentist formulation, the Moscow School would draw on Keynes’s ideas in their approach to
these issues.
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series down into sub-samples to see if one gets the same parameter estimates as one
does for the whole time-series. Homogeneity is not strictly identical to either
stationarity or ergodicity, but it is probably the case that at the time Tinbergen,
following Ehrenfest, probably assumed all three held for the models he estimated.
Thus indeed the ergodic hypothesis was assumed to hold for these early econometric
models, whereas Keynes was skeptical of there being a sufficient homogeneity for
one to assume one knew what the system was doing over time (Rosser Jr. 2016a).

1.7 Reflexivity and the Unification of Complexity Concepts

Closely related to self-referencing is the idea of reflexivity. This is a term with no
agreed upon definition, and it has been used in a wide variety of ways (Lynch 2000).
It is derived from the Latin reflectere, which is usually translated to mean “bending
back,” but can refer to “reflex” as in a knee jerking when tapped, not what is meant
here, or more generally is linked to “reflection” as in an image being reflected,
possibly back and forth many times as in the situation of two mirrors facing each
other. This latter is more what the focus is here and more the type that is connected
with self-referencing and all that implies. Someone who made that link strongly was
Douglas Hofstadter (1979) in his Gödel, Escher, Bach: An Eternal Golden Braid as
well as even more so later (Hofstadter 2006). For Hofstadter, reflexivity is linked to
the foundations of consciousness through what calls “strange loops” of indirect self-
referencing, which he sees certain prints by Maurits C. Escher as highlighting,
particularly his “Drawing Hands” and also his “Print Gallery,” with many commen-
tators on reflexivity citing “Drawing Hands,” which shows two hands drawing each
other (Rosser Jr. 2020b).25 Hofstadter argues that the foundation for his theory is the
Incompleteness Theorem of Gödel, with its deep self-referencing, along with certain
pieces by J.S. Bach, as well as these prints by Escher.

The term has probably been most widely used, and with the greatest variety of
meanings, in sociology (Lynch 2000)). Its academic usage was initiated by promi-
nent sociologist, Robert K. Merton (1938), who used it to pose the problem of
sociologists thinking about how their studies and ruminations fit into the broader
social framework, both in how they themselves are influenced by that framework in
terms of biases and paradigms, but also in terms of how their studies and how they do
their studies might reflect back to influence society as well. Among the sociologists
the most radical uses of the concept involved sharp self-criticism wherein one

25Examples of reflexivity in art are often thought to involve the Droste Effect, in which a work
contains an image of itself within itself, clearly a matter of self-referencing. Among the earliest
known examples is a painting by Giotto from 1320, The Stefaneschi Triptych, in which in the
central panel Cardinal Stefaneschi is depicted kneeling before Saint Peter and presenting to him the
triptych itself. Needless to say, even if they cease to be depicted after a finite sequence of images,
such artworks exhibiting this Droste Effect imply an infinite regress of ever smaller images
containing ever smaller images (Rosser Jr. 2020b).
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deconstructs the paradigm and influences one is operating in to the point that one can
barely do any analysis at all (Woolgar 1991), with many complaining that this leads
to a nihilistic dead end. The earliest usages of the term by economists followed this
particular strand of analyzing how particular economists are operating within certain
methodological frameworks and how they came to do so from broader societal
influences and how their work may then reflect back to influence society, sometimes
even through specific policies or even ways of gathering and reporting policy-
relevant data (Hands 2001; Davis and Klaes 2003).

Merton (1948) would also use the idea to propose the idea of the self-fulfilling
prophecy, an idea that has been widely applied in economics as with the concept of
sunspot equilibria (Azariadis 1981), with many seeing this as deriving originally
from Keynes (1936, Chap. 12) and his analysis of financial market behavior based on
the early twentieth century British newspaper beauty contests. In those contests
newspapers would publish photos of young women and ask readers to rate them on
their presumed beauty. The winner of such a contest was not the person who guessed
which young woman was objectively the most beautiful, but rather which one
received the most votes. This meant that a shrewd player of such a game was really
trying to guess the guesses of the other players, with Keynes comparing this to
financial markets where the underlying fundamental of an asset is less important for
its market value than what investors think it is. This led Keynes even to note that this
kind of reasoning can move to higher levels, trying to think what others think others
think, and on to still higher levels in a potential infinite regress, a classic infinite
reflection in a non-halting program. This beauty contest idea of Keynes has come to
be viewed as a centerpiece of his philosophical view, implying ultimately not only
reflexivity but complexity as well (Davis 2017).

Among the first to pick up on Keynes’s argument and apply it to self-fulfilling
prophecies in financial markets and also bringing in reflexivity as relevant to this was
George Soros (1987), who would later also argue that the analysis was part of
complexity economics (Soros 2013). Soros has long argued that thinking about
this beauty contest-inspired version of reflexivity has been key to his own
decision-making in financial markets. He sees it as explaining boom and bust cycles
in markets as in the US housing bubble of the early 2000s, whose decline set off the
Great Recession. He first got the term from being a student of Karl Popper’s in the
1950s (Popper 1959), with Popper also an influence on Hayek (1967) in connection
with these ideas (Caldwell 2013). Thus the idea of reflexivity with links to arguments
about incompleteness and infinite regresses associated with self-referencing have
become highly influential among economists and financiers studying financial
market dynamics and other related phenomena.

We now see the possibility of linking our major schools of complexity through
the subtle strange loopiness involved in indirect self-referencing at the heart of a
deeper form of reflexivity. The indirect self-referencing at the heart of Gödel’s
incompleteness theorem is deeply linked to computational complexity in that it
leads to the infinite do loops of the highest level of computational complexity in
which a program never stops. The way out of incompleteness involves in effect what
Davis and Klaes invoked: moving to a higher hierarchical level in which an
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exogenous agent or program determines what is true or false, although this opens the
door to incoherence (Landini et al. 2020). The indirect self-referencing opens the
door to dynamic complexity in its implications for market dynamics, with this also
linking to hierarchical complexity as new levels of hierarchy can be generated. Let us
consider briefly how this comes out of the fundamental Gödel (1931) theorem.

The Gödel theorem is really two theorems. The first one is the incompleteness
one: any consistent formal system in which elementary arithmetic26 can be carried
out is incomplete; there are statements in the language of the formal system that can
neither be proved nor disproved within the formal system. The second one addresses
the problem of consistency27: for any consistent formal system in which elementary
arithmetic can be carried out, the consistency of the formal system cannot be proved
within the formal system itself. So, coherence implies incompleteness, but any
attempt to overcome incompleteness by moving to a higher level involves one
being unable to prove the consistency of this higher level system, with both parts
of this failing due to paradoxes of (reflexive) self-referencing leading to paradoxes.

Hofstadter (2006) provides an excellent discussion of the nature of the indirect-
ness involved in proving the main part of the theorem, which involves the use of
“Gödel numbers.” These are numbers assigned to logical statements, and their use
can lead to the creation of self-referencing paradoxical statements even within a
system especially designed to avoid such self-referencing statements. The system
that Gödel subjected this treatment to eventually generates a statement equivalent to
“This sentence is unprovable” was the logical system developed by Whitehead and
Russell (1910-13) specifically to provide a consistent formal foundation for mathe-
matics without logical paradoxes. Russell in particular was much concerned about
the possibility of paradoxes in set theory, such as those involving self-referencing
sets. The classic problem was “Does the set of all sets that do not contain themselves
contain itself?” A famous simple version of this involves “Who shaves the barber in
a town where the barber only shaves those who do not shave themselves?” Both of
these involve similar endless do-loops arising from their self-referencing. Whitehead
and Russell attempted to eliminate these annoyances by developing the theory of
types that established hierarchies of sets in ways to avoid having them refer to
themselves. But then Gödel pulled his trick of establishing his numbers, which he
applied to the system of Whitehead and Russell so as through indirection to generate
a self-referencing statement that involved a paradox unresolvable within the system.
It is rather like how the hole Escher put in the middle of his “Print Gallery” allowed
for the man to look at a print on a wall in a gallery of a city that contains the gallery in
which he is standing looking at it.

26By “elementary arithmetic” is meant that which can be derived from Peano’s axiom set assuming
standard logic of the Zermelo-Frankel type with the Axiom of Choice (ZFC).
27It should be noted that in his original theorem Gödel was only able to prove incompleteness for a
limited form of ω-consistency. A proof for a more general form of consistency was provided by
Rosser Sr (1936) who used the “Rosser Sentence” (or “trick”): “If this sentence is provable, then
there is a shorter proof of its negation.” This has led some to refer to the combined theorem as the
“Gödel-Rosser Theorem.”
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Thus it is not surprising that the problem of self-referencing has lain at the core of
much of the thinking about reflexivity from an early point, and that this thinking took
on a sharper edge when various figures thought about Gödel’s theorem, or even
earlier about the paradoxes considered by Bertrand Russell. Linking this to under-
standing to complexity provides a foundation for a reflexive complexity that encom-
passes all the major forms of complexity.

1.8 Further Observations

In computationally complex systems the problem of understanding them is related to
logic, the problems of infinite regress and undecidability associated with self-
referencing in systems of Turing machines. This can manifest itself as the halting
problem, something that can arise even for a computer attempting to precisely
calculate even a dynamically complex system as for example the exact shape of
the Mandelbrot set (Blum et al. 1998). A Turing machine cannot understand fully a
system in which its own decisionmaking is too crucially a part. However, knowledge
of such systems may be gained by other means.

To the extent that models have axiomatic foundations rather than being merely ad
hoc, which many of them ultimately are, these foundations are strictly within the
non-constructivist, classical mathematical mode, assuming the Axiom of Choice, the
Law of the Excluded Middle, and other hobby horses of the everyday mathemati-
cians and mathematical economists. To the extent that they provide insight into the
nature of dynamic economic complexity and the special problem of emergence
(or anagenesis), they do not do so by being based on axiomatic foundations28 that
would pass muster with the constructivists and intuitionists of the early and
mid-twentieth century, much less their more recent disciples, who are following
the ideal hope that “The future is a minority; the past and present are a majority,” to
quote Velupillai (2005b, p. 13), himself paraphrasing Shimon Peres from an inter-
view about the prospects for Middle East peace.

There are a considerable array of models available for contemplating or modeling
emergent phenomena operating at different hierarchical levels. An interesting area to
see which of the approaches might prove to be most suitable may well be in the study
of the evolution of market processes as they themselves become more computerized.
This is the focus of Mirowski (2007) who goes so far as to argue that fundamentally
markets are algorithms. The simple kind of posted price – spot market most people
have traditionally bought things in is at the bottom of a Chomskyian hierarchy of
complexity and self-referenced control. Just as newer algorithms may contain older

28While this movement focuses on refining axiomatic foundations, it ultimately seeks to be less
formalistic and Bourbakian. This is consistent with the history of mathematical economics, which
first moved towards a greater axiomatization and formalism within the classical mathematical
paradigm, only to move away from it in more recent years (Weintraub 2002).
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algorithms within them, so the emergence of newer kinds of markets can contain and
control the older kinds as they move to higher levels in this Chomskyian hierarchy.
Futures markets may control spot markets, options markets may control futures
markets, and the ever higher order of these markets and their increasing automation
pushes the system to a higher level towards the unreachable ideal of being a full-
blown Universal Turing Machine (Cotogno 2003).

Mirowski brings to bear more recent arguments in biology regarding coevolution,
noting that the space in which the agents and systems are evolving itself changes
with their evolution. To the extent that the market system increasingly resembles a
gigantic assembly of interacting and evolving algorithms, both biology and the
problem of computability will come to bear and will come to bear and influence
each other (Stadler et al. 2001). In the end the distinction between the two may
become irrelevant.

In the great contrast of computational and dynamic complexity, we see crucial
overlaps involving how the paradoxes arising from self-referencing underlying
computational complexity can imply the emergence so deeply associated with
dynamic complexity. These interrelations may become most manifest when contem-
plating the mirror world of reflexivity and its endless concatenations. These are
among the many considerations that lie at the foundations of complexity economics.
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