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Abstract. We propose a pipeline for the stochastic analysis of a SIR
model for COVID-19 through the stochastic model checker PRISM. The
pipeline consists in: (i) the definition of a modified SIR model, able to
include governmental restriction and prevention measures through an
additional time-dependent coefficient; (ii) parameter estimation based
on real epidemic data; (iii) translation of the modified SIR model into
a Continuous Time Markov Chain (CTMC) expressed using the PRISM
input language; and (iv) stochastic analysis (simulation and model check-
ing) with PRISM.
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1 Introduction

The impact that the COVID-19 (or better, SARS-COV-2) pandemic is having
on the population around the world is recorded in increasingly large and varied
databases. The spread of the virus is tracked on a daily basis almost everywhere
in the world, but the effects of the epidemics can be observed also in datasets
in the contexts of healthcare, mobility, finance, and many others. The analysis
of COVID-19 epidemic data could help in understanding the dynamics of the
contagion, evaluating the effect of restriction and prevention measures taken by
national and local governments and predicting the effect of alternative measures.

Epidemic phenomena are often studied by means of a SIR model [8]. This
happened also for COVID-19 pandemic, with several extensions of the model
proposed to take into account its peculiarities [2,5–8]. SIR models typically
describe epidemics as deterministic dynamical systems, through Ordinary Dif-
ferential Equations (ODEs). For a more realistic description of the epidemic
dynamics, stochastic fluctuations are often to be taken into account. This hap-
pens, in particular, when a small number of infected individuals are present in
the population, causing the disease spread to depend tightly on the probability
of such few individuals to meet and infect other people. In order to deal with
these stochastic events, SIR models can be reformulated in terms of Continu-
ous Time Markov Chains (CTMCs). This can be done essentially by interpreting
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infection and recovery rates, already used in ODEs, as parameters of exponential
distributions. The obtained CTMC can then be analyzed through suitable meth-
ods which include, for example, stochastic simulation.

PRISM [1] is one of the most used probabilistic/stochastic model checkers.
It can be used to study dynamical properties of a CTMC through an exhaustive
exploration of all possible behaviors. Dynamical properties can be expressed as
temporal logic formulae (for CTMCs, PRISM supports the CSL temporal logic
[3]). Properties assessment consists then in an exhaustive exploration of the
CTMC state space This may require a long sequence of matrix multiplications
giving the probability distribution of each possible state at discrete time steps.

Stochastic model checking allows studying properties of a dynamical systems
in a very systematic way. Property assessment does not provide only information
about the possible systems behaviors: given a dynamical property (e.g. reach-
ability of a given state, causality between events or possibility of oscillation),
a stochastic model checker computes the probability that the system behavior
will satisfy it. This analysis is not performed on a bunch of simulation results,
but by taking all possible behaviors into account. Of course, the main limitation
of stochastic model checking techniques is often due to size of the state space
(state explosion problem). Moreover, in the case of stiff systems, property assess-
ment may require a huge number of matrix multiplications. In some cases, these
limitations can be overcome by using suitable model specification tricks.

In this paper, we describe preliminary processing and modelling activities
that allow a SIR model of the COVID-19 pandemic to be analyzed with PRISM.
Our approach actually consists in the following pipeline:

1. Definition of a modified SIR model (based on ODEs) that allows taking into
account restriction and prevention measures (e.g. lockdown);

2. Parameter estimation using standard Python libraries (NumPy and SciPy);
3. Translation of model into a CTMC expressed in the PRISM input language;
4. Analysis with PRISM.

We will use real data about the spread of COVID-19 in the Tuscany Region
(Italy) to show the pipeline steps. However, our aim is not to perform a deep
analysis of such data with PRISM, but to show how it is possible to obtain,
from data, a PRISM model that can be analyzed efficiently. Hence, although we
will show some inferences and analysis results, the intended contribution of this
paper is mostly methodological.

2 SIR Epidemic Models and COVID-19

Epidemic phenomena are often studied by means of a SIR model [8]. The SIR
acronym summarizes the classes of individuals into which the population is parti-
tioned. They are: Susceptible, individuals who can be infected; Infected, individ-
uals who have been infected and that can infect susceptible ones; and Recovered,
individuals who passed the infection phase and can no longer infect others.

The dynamics of epidemic phenomena is described by means of a system
of Ordinary Differential Equations (ODEs). In its simplest formulation, the
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model includes one equation for each class of individuals. The population size is
assumed constant over time and it is normalized in [0, 1] ⊆ IR. Hence, variables
S, I, R ∈ [0, 1] with S + I + R = 1 describe the ratios of each class of individual
in the population. Moreover, the model is based on the following assumptions:

– infection and recovery are the only relevant events: other events related to
reproduction, death, migration, etc., are not taken into account;

– disease is transmitted by personal contacts between individuals of I and S
classes (horizontal transmission);

– contacts between individuals are random, i.e. the number of infections is
proportional to both I and S;

– after infection and recovery, individuals become resistant to the disease.

Therefore, the model is described by this small system of differential equations:
⎧
⎪⎨

⎪⎩

dS
dt = −βSI
dI
dt = βSI − γI
dR
dt = γI

(1)

where β is the infection coefficient, describing the probability of infection after
the contact of a healthy individual with an infected one, and γ is the recovery
coefficient, describing the rate of recovery of each infected individual (in other
words, 1/γ is the time one individual requires for recovering). Note that:

– S can only decrease, and R can only increase;
– if β < γ (i.e., β/γ < 1), I can only decrease (since S ≤ 1);
– if β > γ (i.e., β/γ > 1), the behavior of I depends on S. It initially increases

if S > γ/β.

Many extensions of the SIR model are available in the literature, and have been
proposed to study different infection schemes, the effects of vaccinations or the
influence of information. In order to apply the SIR model to the COVID-19
epidemic and, in particular, in order to analyze data collected during the first
few months of the epidemic, it is necessary to take into account prevention
measures (e.g. lockdown) that have been enforced by the national governments.
Hence, we propose a variant of the SIR model which includes a time dependent
coefficient p(t) expressing the effect of such measures on the infection rate.

Our modified SIR model is hence defined as follows:
⎧
⎪⎨

⎪⎩

dS
dt = −βSIp(t)
dI
dt = βSIp(t) − γI
dR
dt = γI

(2)

where p(t) ∈ [0, 1] ⊂ IR is used to scale down the infection coefficient β in
accordance with the strength of the enforced prevention measures at time t. A
value of p(t) close to 0 represents strong prevention, while p(t) = 1 means no
prevention at all. Let us consider the first few weeks of the epidemics, and let
us assume that lockdown has been enforced at time tlock. With some degree of
approximation, we can describe p(t) as a piecewise linear function as follows:
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p(t) =

{
1 if t < tlock

plock if t ≥ tlock
(3)

with plock ∈ [0, 1] ⊂ IR modeling the effect of lockdown on infection coefficient.

3 Parameter Estimation

Now, we face the problem of estimating parameters for the modified SIR model
presented in (2). In particular, if we assume p(t) to be expressed by a piecewise
linear function as in (3), we have to estimate values for β, γ, and plock.

By focusing on the Tuscany Region, we can estimate such parameters by
applying standard optimization methods in order to fit real epidemic data. We
use COVID data published on a daily basis by the Regional Health Agency of the
Tuscany Region1. The dataset2 includes data on infections, deaths, hospitaliza-
tions, etc., collected every day in the whole region starting from February 24th,
2020. Moreover, data on infections are available also disaggregated by province.

We focus on the time period of March-May 2020, corresponding to the initial
spread of the infection and the lockdown phase. More precisely, we consider the
time interval between day 20 (March, 15th) and day 75 (May, 9th). We choose
not to consider data from the first 20 days since the number of detected infections
in that period is extremely small, and probably unreliable.

In order to take into account geographical distribution of the population in
the Tuscany Region, we choose to use the (modified) SIR model at the level of
provinces. This choice will mitigate the assumption of the SIR model that the
population is uniformly distributed in the territory, and that all individuals can
freely meet with each other. Moreover, this will allow us to evaluate and compare
differences in the disease spread in different provinces.

Tuscany consists of ten provinces. Some of them (e.g. Prato and Firenze)
have a high population density, while others (e.g. Grosseto and Siena) are large
and less populated. Since population density could have a correlation with the
infection rate, considering data at the level of provinces could lead to more
accurate parameter estimations.

The Python scripts we developed for parameter estimation purposes are avail-
able as a Jupyter Notebook on GitHub3. In order to estimate the parameters
of the SIR model for the different provinces, we use functionalities provided
by standard Python packages. In particular, we use the optimize.curve_fit
function of the SciPy library, to find optimal values for coefficients β, γ and plock.

We apply curve_fit twice: the first time to estimate β and γ on the basis of
the pre-lockdown data (hence, by assuming p(t) = 1)), and the second time to
estimate plock by assuming β and γ as estimated before and by using lockdown
data. As value for tlock in (3), namely, as time for the enforcement of lockdown
measures, we choose 45, namely April 9th. Actually, in Italy the lockdown state
1 Agenzia Regionale di Sanita (ARS), https://www.ars.toscana.it/.
2 Freely available at http://dati.toscana.it/dataset/open-data-covid19.
3 GitHub repository: https://github.com/Unipisa/SIR-covid.

https://www.ars.toscana.it/
http://dati.toscana.it/dataset/open-data-covid19
https://github.com/Unipisa/SIR-covid
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has been reached through a sequence of governmental measures taken in the
period between March 5th (schools closed) and March 22nd (national lockdown).
The effects of such measures on the epidemic dynamics started to become evident
more than two weeks later, hence around April, 9th.

Let us assume a Python function ModelSolution(t,beta,gamma,prev,x0)
that uses the odeint solver provided by the SciPy package to solve ODEs of the
modified SIR model in (2), with t a sequence of time point for which to solve the
ODEs, beta and gamma corresponding to β and γ, respectively, prev a constant
value for p(t), and x0 an array of initial conditions (i.e., initial values for S, I
and R). We define function f1 and we pass it to curve_fit as follows:

f1 = lambda t,beta,gamma: ModelSolution(t,beta,gamma,1,x0)

p1 = curve_fit(f,t1,pre_lockdown_data,bounds=(0,[np.inf,1]))

The result p1 contains two optimal values for β and γ with β ∈ [0,∞) and
γ ∈ [0, 1], that fit pre-lockdown data.

Now, we define function f2 and we pass it to curve_fit as follows:

f2 = lambda t,prev: ModelSolution(t,p1[0][0],p1[0][1],prev,x0)

p2 = curve_fit(f,t2,lockdown_data,bounds=(0,1))

Result p2 contains now an optimal value for plock, fitting lockdown data.
For both optimizations, it is important to point out our choice for the initial

condition array x0. More precisely, it is important to clearly explain how we
relate variables S, I and R with real data. The number of infected individu-
als reported in the dataset is the number of persons that resulted positive to a
SARS-COV-2 test. After the test, these persons are then isolated and have a very
small probability of infecting other people. So, individuals reported as infected in
the dataset have a role in the epidemic that is actually more similar to that of a
recovered individual than of an infected one. The “real” infected individuals are
instead those that have been infected, but have not been identified yet through
a specific SARS-COV-2 test. These behave mostly as healthy individuals and
infect other people. Unfortunately, these “real” infected individuals are hidden
in the population and their number is unknown. In the initial array x0 for the
first optimization step, we choose to set the initial value of I as the triple of the
number of positive persons reported on March, 15th. This because we assume
that in the initial phases of the epidemic only a small part of the positive indi-
viduals were identified. The condition array x0 for the second optimization step
simply correspond to the final state reached after the first optimization.

Parameters resulted from the described estimation process are reported in
Table 1. Apart form the Arezzo province, whose estimated parameters look

Table 1. Parameters estimation.

β γ plock
AREZZO 0.229187 0.251815 0.994549
FIRENZE 0.145179 0.097259 0.001654

GROSSETO 0.129687 0.144080 0.487087
LIVORNO 0.107479 0.104104 0.317674

LUCCA 0.120928 0.111307 0.004195

β γ plock
MASSA CARRARA 0.102454 0.084304 0.000098

PISA 0.122128 0.127283 0.472081
PRATO 0.130999 0.119076 0.145995

PISTOIA 0.078007 0.099515 0.991426
SIENA 0.077028 0.069914 0.000231
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like outliers, all provinces exhibit an infection coefficient β in the interval
[0.077, 0.145] and a recovery coefficient γ in [0.06, 0.127]. Provinces with a high
population density, such as Firenze and Prato, actually correspond to highest
infection coefficients. The estimation of plock is instead less regular, thus sug-
gesting that something could be improved about the modelling of the lockdown
effect. Inaccuracies could also be caused by the low quality of measurements in
the first period of the pandemic. Anyway, the estimated plock values provide use-
ful qualitative information about the areas in which lockdown has given better
results.

Fig. 1. Data fitting and predictions
(Pisa province)

Figures 1 and 2 show numerical simu-
lation results of the modified SIR model
(only the curves of I and R are depicted)
compared with the real data about cumu-
lative number of infected individuals
(dots). The curve of I is actually a pre-
diction, since, as we already explained, we
use I to represent “real” infected individu-
als that are hidden in the population. The
shape of this curve, that in many cases
shows an edge at the start of lockdown,
demonstrates the positive effect of such a
prevention measure.

Fig. 2. Data fitting and predictions (other provinces)
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4 Translation into CTMC and Analysis with PRISM

The next step we perform is to translate our extended SIR model into a stochastic
model, by discretizing variables and by considering infection and recovery rates
as parameters of a Continuous Time Markov Chain (CTMC). This allows us
to obtain a model that is, in principle, more accurate in capturing the epidemic
dynamics, by taking into account random fluctuations that may have a significant
role in the case of small numbers of infected individuals.

Dynamical properties of the obtained CTMC could then be analyzed using
the stochastic model checker PRISM [1,9]. Stochastic model checking, compared
for instance to analysis by stochastic simulation, allows computing in a sys-
tematic way the probability of occurrence of emerging behaviors with specific
properties of interest. The main problem of model checking is, however, its poor
scalability to models with a very large state space. A stochastic SIR model rep-
resenting a population of hundreds of thousand of individuals (like in a Tuscan
province) can be very likely affected from this kind of scalability problems.

A way to solve scalability issues can be to resort to statistical model check-
ing methods: a variant of stochastic model checking which provides approximate
results by exploiting stochastic simulation result. PRISM itself has built-in sta-
tistical model checking facilities. However, before considering this solution, there
are a few modelling tricks that can significantly reduce the state space.

PRISM describes CTMC states through a set of bounded integer variables.
Since ODEs of the SIR model are based on real variables, the first step we have
to perform is to discretize the model. Hence, we assume a discretization constant
SIZE and we replace the variables domain [0.0, 1.0] ⊂ IR with [0..SIZE] ⊂ IN.

This leads to the following naive CTMC specification in PRISM input lan-
guage, where model parameters are defined by the beta, gamma and plock con-
stants (initialized with estimations for the province of Pisa), SIZE is the dis-
cretization constant, s, i and r are the model variables (again, initialized with
values from data collected on the province of Pisa) and we have two transitions
describing events of infection and recovery, respectively.

ctmc

const double beta = 0.122128; const double gamma = 0.127283;
const double plock = 0.472081; const int SIZE = 100000;

module SIR_Pisa

s : [0.. SIZE] init 99936;
i : [0.. SIZE] init 48;
r : [0.. SIZE] init 16;

[] i>0 & i<SIZE & s>0 -> beta*s*i*plock/SIZE : (s’=s -1)&(i’=i+1);
[] i>0 & r<SIZE -> gamma*i*plock : (i’=i -1)&(r’=r+1);

endmodule

The problem of this translation is that, by assuming SIZE = 100000, the
state space turns out to include 1015 potentially reachable states, which make
the model computation and analysis by PRISM unfeasible.
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A first refinement of the model can be obtained by observing that one of the
three variables s, i and r can be pruned. Indeed, as in the original ODEs we had
S + I + R = 1, in the PRISM counterpart we always have s + i + r = SIZE.
Removing, for instance, s will require to make a small change to the definition
of the first transition, where s has to be replaced by SIZE-(i+r).

Pruning variable s immediately reduces the state space, bringing it to a size
of 1010 states. However, this is still too huge for PRISM.

As a second refinement, we choose to introduce an upper bound to the number
of infected and of recovered individuals. For example, we choose these numbers
to be always smaller than 500. As shown in the following CTMC specification,
where also the first refinement is implemented, this can be obtained by adding a
new constant BOUND that is then used to define the domain of the two variables
i and r. Moreover, we have to explicitly change the model transition to describe
the behavior in the case the upper bound is reached. The two transitions of the
naive translation have to be enabled only when i and r are strictly smaller than
BOUND. Moreover, it is necessary to introduce a third transition that, in case
the number of recovered individuals reaches the upper bound, allows an infected
individual to recover (i.e. it decreases i by one) without increasing r.

ctmc

const double beta = 0.122128; const double gamma = 0.127283;
const double plock = 0.472081; const int SIZE = 100000; const int BOUND = 500;

module SIR_Pisa

i : [0.. BOUND] init 48;
r : [0.. BOUND] init 16;

[] i>0 & i<BOUND -> beta*(SIZE -(i+r))*i*plock/SIZE : (i’=i+1);
[] i>0 & r<BOUND -> gamma*i*plock : (i’=i -1)&(r’=r+1);
[] i>0 & r=BOUND -> gamma*i*plock : (i’=i-1);

endmodule

The addition of the upper bound actually makes the model approximated. How-
ever, if the upper bound is high enough to make the probability of the variables
to reach it negligible, we have that the approximation will have no influence on
the probabilities of dynamical properties assessed through model checking. We
remark that the assumption on the small number of infected individuals was one
of the motivations for the use of a stochastic modelling approach. In the case of
big numbers, that could lead to unfeasible models with large state spaces, the
whole stochastic approach would be poorly motivated, since with big numbers
stochastic fluctuations would become much less relevant.

Upper bounds significantly reduce the state space, that now turns out to
include “only” 250000 states. This makes model construction and analysis with
PRISM very fast, in particular (and this is very important) if either the sparse
or the explicit engines are selected in the relevant PRISM settings menu.

As examples of analyses performed with PRISM, we show in Fig. 3 some
results of stochastic simulation and model checking performed using parameters
of the Pisa province and by comparing lockdown and no-lockdown scenarios.
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Fig. 3. Analysis of the Pisa model with PRISM (examples). On the left, a single run
of a stochastic simulation. On the right, probabilities, computed by stochastic model
checking, of reaching given numbers of infected individuals after 10, 20 and 30 days.
The CSL property used for model checking is P=? [F<XX i=Predicted Infections],
where XX is 10, 20 or 30, and Predicted Infections takes values as in the graph.

Simulations show that lockdown can effectively reduce the number of infected
individuals, leading to a slow down of the disease spread. As before, this model
allows understanding the dynamics of hidden infected individuals. Model check-
ing is used to make predictions on the future number of infected individuals, by
computing probabilities of reaching different threshold values in 10, 20, 30 days.

Stochastic model checking can be used to make predictions about reachable
population states in an accurate, systematic and efficient way. This makes this
technique a good candidate for real time epidemic monitoring and decision sup-
port. Moreover, the modified SIR model could be extended to describe also,
for instance, age classes, hospitalizations, new therapies or vaccinations. In this
case, it would be possible to use stochastic model checking as a tool to evaluate
hypotheses about these new aspects, for instance by computing the probability
of disease eradication when alternative vaccination strategies are followed.

5 Conclusions

In this paper we proposed a pipeline for the stochastic analysis of a SIR model
for COVID-19 through the stochastic model checker PRISM. The whole pipeline
is informative: in the parameter estimation phase, the estimated parameters
themselves provide useful information about the different dynamics in different
areas (e.g., provinces) and about the effectiveness of restriction and prevention
measures such as lockdown. Moreover, by performing numerical simulation of
the deterministic models used for parameter estimations we were able to predict
the dynamics of hidden positive individuals.
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PRISM allows defining a stochastic SIR model in a dozen lines of code. An
optimized model can be analyzed in a few minutes. The analysis performed
through the model checking features of PRISM is exhaustive, and not based
only on a few simulation runs. These positive performance results have been
obtained by applying a couple of modelling tricks (variable pruning and upper
bounds) that allowed state space of the model constructed by PRISM to be
reduced by several orders of magnitude. The introduction of upper bounds to
the values of variables actually introduces a small approximation in the model,
that is negligible in practically relevant cases. As a consequence, we believe
that this approach aimed at making the analysis with PRISM feasible is in this
case preferable to approaches based, for instance, on statistical model checking
techniques. Indeed, the latter techniques would base the model checking analysis
on stochastic simulation results, losing exhaustivity.

This paper aimed at proposing the modelling and analysis methodology.
Developments of the approach could include improving the modelling of the
restriction measures by considering more accurate definitions of the p(t) function
in the modified SIR model. Function p(t) could be defined in order to gradually
change after the enforcement of prevention measures, or in order to depend on
the current infection trend (if the number of infected individual increases, peo-
ple tends to be more cautious). Moreover, extensions of the model including age
classes, hospitalizations, new therapies or vaccinations could be defined. Further
work would include performing a deeper analysis of COVID data with PRISM,
also by taking some of these additional aspects into account, even when some
parameters about these aspects are not precisely known [4].
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