q

Check for
updates

A Formal Model for Emulating
the Generation of Human Knowledge
in Semantic Memory

Antonio Cerone®™)® and Graham Pluck

Department of Computer Science, School of Engineering and Digital Sciences,
Nazarbayev University, Nur-Sultan, Kazakhstan
{antonio.cerone,graham.pluck}@nu. edu.kz

Abstract. The transfer of information processed by human beings from
their short-term memory (STM) to their semantic memory creates two
kinds of knowledge: a semantic network of associations and a structured
set of rules to govern human deliberate behaviour under explicit atten-
tion. This paper focuses on the memory processes that create the first
of these two kinds of knowledge. Human memory storage and process-
ing are modeled using the Real-time Maude rewrite language. Maude’s
capability of specifying complex data structures as many sorted algebras
and the time features of Real-Time Maude are exploited for (1) provid-
ing a means for formalising alternative memory models, (2) modelling
in silico experiments to compare and validate such models. We aim at
using our model for the comparison of alternative cognitive hypothesis
and theories and the analysis of interactive systems.

Keywords: Cognitive science -+ Human memory models - Formal
methods - Rewriting logic - Real-Time Maude

1 Introduction

Human semantic memory is a core aspect of declarative long-term memory
(LTM), comprised of propositional information, specifically word meanings and
facts. An example of semantic memory being the fact that a penguin is a bird.
Clearly, such information must be acquired from the environment, such as read-
ing, or formal education.

In terms of information flow within the human memory system, sensations of
the environment (e.g., sounds heard) are first processed by modality-specific sen-
sory stores, which we globally call sensory memory. Items attended in those sen-
sory stores persist for very short time periods and are then passed to a temporary
short-term memory (STM) limited capacity store (about 7 items [21], usually

Work partly funded by Project SEDS2020004 “Analysis of cognitive properties of inter-
active systems using model checking”, Nazarbayev University, Kazakhstan (Award
number: 240919FD3916).

© The Author(s) 2021

J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 104-122, 2021.
https://doi.org/10.1007/978-3-030-70650-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_7&domain=pdf
http://orcid.org/0000-0003-2691-5279
https://doi.org/10.1007/978-3-030-70650-0_7

Formal Emulation of the Generation of Human Knowledge 105

Experiments > Environment
X
action sensory
y information
Long-t?{‘?Ml\/)Iemory Sensory
Memory
skill ‘ Procedural ivati
acquisition human skills actwvaning . _
perception
Semantic automatic control
facts . selected
requures erception
semantic network implicit attention b Pt
of associations rehearsal | (attention)
factivatmg r l
deliberate control information Yy
C o e — o - _ I It -
requires < - - Short-term Memory
explicit attention information transfer - (STM)

information transfer

Fig. 1. Human memory architecture

called chunks [24], for healthy adults), with rapid access and rapid decay. From
STM information passes to LTM, which has a virtually unlimited capacity and
where information is organised in structured ways, with slow access but little or
no decay. Finally, within LTM, information repeatedly used in practice activities
may move from semantic memory to procedural memory, thus determining skill
acquisition. In fact, the transfer from semantic memory to procedural memory
refers to our skills and consists of rules and procedures that we unconsciously
use to carry out tasks, particularly at the motor level.

This structure of human memory is depicted in Fig. 1, where continuous
arrows show transfer of information between memory components while dashed
arrows denote information stored in the source component that activate memory
processing in the target component.

In previous work [12] we considered the transfer of information from semantic
memory to STM as a means to retrieve knowledge stored in semantic memory,
in order to perform in silico experiments in which an emulated human sub-
ject answers questions that refer to specific knowledge domains. Such previous
work builds up from the definition of the Behaviour and Reasoning Descrip-
tion Language (BRDL) [11] and its implementation for the emulation of human
reasoning [13] as well as from earlier work, which was based on the Human
Behaviour Description Language (HBDL), a subset of BRDL, and proposed and
partly implemented an approach to the modelling of automatic and deliberate
human behaviour while interacting with an environment consisting of heteroge-
nous physical components [9,10].

106 A. Cerone and G. Pluck

A similar approach to ours was developed by Broccia et al. [5], who, driven by
the specific objective of modelling human multitasking, used Real-time Maude
to extend our initial untimed framework [9]. In their work, however, time is
used to model non-cognitive aspects, such as the duration of the task, which is
an interface-dependent outcome of the interaction process, and external aspect,
such as the delay due to the switching from one task to another. In contrast to
Broccia et al. we focus on the human component and model the duration of the
mental process, which is an important aspect of human cognition.

In this paper we focus on the transfer of factual knowledge from STM to
semantic memory and model this memory process using Real-Time Maude [25,
26]. The large time gap between the rapid decay of the information stored in
STM (of the order of seconds [22]) and the little or no decay of the information
in semantic memory (and in LTM, in general) has pushed research in cognitive
psychology to look for something in between. In fact, nowadays, among cognitive
scientists there is a tacit acceptance of an intermediate memory stage that some-
how bridges the gap between STM and LTM, a form of memory that operates in
the range of minutes to a few hours and, possibly, extending even further in time.
Alan Dix calls this intermediate level mezzanine memory and believes it likely
to be carried through long-term potentiation [17,18] while modern neuroscience
locates it in the hippocampus [18,19].

The minutes-hours magnitude of decay time makes it difficult to study mez-
zanine memory in an experimental setting: too long to observe decay within
a single experimental session and too short to measure the effect of the decay
between two consecutive experimental sessions. For this reason there is little
mention of such a kind of intermediate memory in the literature. In reading
comprehension it is sometime called long-term short-term memory, while other
time it is identified with working memory and is thus seen as a different level of
memory that overlaps with both STM and LTM. For example in the context of
reading a book, there is an interplay between what we store in STM from what
we are currently reading, the recall of what we have read in the same chapter
several minutes before, and the more long-term memory of the book plot, which
can date back to several days, when we read previous chapters.

A more extreme position is the ‘Levels of Processing’ framework of Craik
and Lockhart [16]. They argue that deeper (semantic) processing causes slower
decay, but they are talking of a unitary memory store which encompasses both
STM and LTM processes. Nevertheless, as they consider only one memory store,
their reduced decay rate argument applies to short-term storage. This idea of
‘deeper processing’ is equivalent to elaborative rehearsal.

In this work we aim at proposing an in silico approach to filling the exper-
imental gap between STM and LTM. Although it is hard to carry out experi-
ments on human subjects to validate hypotheses about the mezzanine memory
or, more in general, about the mechanism underlying the transfer of informa-
tion between STM and LTM, we expect that the in silico emulation of such
experiments would produce important insights into this matter. Moreover, this
approach would, in some sense, blur the difference between experimental investi-

Formal Emulation of the Generation of Human Knowledge 107

gation and case study-based investigation. In fact, the in silico emulation would
allow the researcher to consider a large amount of data and a specific human
memory model for a single individual, and perform an intensive analysis within
a much shorter time than in a real-life case study.

The rest of this paper is organised as follows. The Real-Time Maude code
illustrated in this paper can be downloaded from a GitHub repository'. Section 2
briefly introduces informal cognitive models of the information transfer from
STM to LTM from the cognitive psychology literature, with reference to main-
tenance rehearsal and elaborative rehearsal. Section 3 first provides a brief high-
light of Real-Time Maude and refers to the sections of the paper where the
different aspects of the language are illustrated. Then it extensively presents the
Real-time Maude formal models for the information to be processed and for its
STM and semantic memory stores. Section 4 is devoted to the formal models
of memory processes: perception in Sect. 4.1, maintenance rehearsal in Sect. 4.2,
elaborative rehearsal in Sect.4.3, and the actual learning process that consoli-
dates knowledge in semantic memory in Sect. 4.4. Section 5 illustrates our formal
models using the two cases of rote learning, in Sect.5.1, and effective learning,
in Sect. 5.2. Section 6 concludes the paper.

2 Cognitive Models for Information Transfer

The sequential processing from STM to LTM is captured by several cognitive
models, most commonly, the Multistore Model [1] and Working Memory Model
[3], however, both are equivalent in proposing structural distinctions between
phonologically-coded STM storage for verbal content and a separate LTM. The
STM and LTM distinction is known partially through cognitive neuroscience, as
it is observed that brain lesions can selectively impair either phonological STM
capacity or LTM contents (either semantic or episodic). Furthermore, severe
reductions in STM capacity caused by brain lesions, such as the inability to
hold more than two items in phonological STM simultaneously, also prevent the
acquisition of new semantic memory entries in LTM [4]. Thus, indicating that
items for storage in semantic memory must first be processed within phonological
STM.

The mechanism by which information transfers from STM to semantic mem-
ory is elaborative rehearsal [2]. This involves using the items within STM to
access existing entries within semantic memory. This deep processing, based on
semantics, increases the chance that the items will become stored in LTM, prob-
ably by strengthening their appropriate connection within the nexus of semantic
entries. This elaborative rehearsal within STM, which induces transfer to LTM,
can be contrasted with maintenance rehearsal. This latter form of processing
can be seen as phonological looping of the items to renew their representations
within STM, thereby delaying signal decay.

! http://github.com/AntonioCerone/Publications/tree/master/2020 /DataMod/
Cognition.

http://github.com/AntonioCerone/Publications/tree/master/2020/DataMod/Cognition
http://github.com/AntonioCerone/Publications/tree/master/2020/DataMod/Cognition

108 A. Cerone and G. Pluck

As shown in Fig. 1, among the sensory information briefly stored in sensory
memory, attention selects some and transfers it to STM. Information in STM
can then be used

— to activate the deliberate control in semantic memory or the automatic control
in procedural memory, or,

— after elaborative rehearsal, to create associations as well as deliberate control
rules in semantic memory.

Moreover, information can be retrieved from semantic memory and transferred
to STM. Furthermore, the repeated use of rules for deliberate control in seman-
tic memory produces skill acquisition and the resultant creation of rules for
automatic control in procedural memory. In previous work we have formally
modeled human behaviour under deliberate and automatic control [13] as well
as information retrieval from semantic memory [12].

3 Real-Time Maude Models of STM and Semantic
Memory

Real-Time Maude [25,26] is a formal modeling language and high-performance
simulation and model-checking tool for distributed real-time systems. It is based
on Full Maude, the object-oriented extension of Core Maude, which is the basic
version of Maude. Real-Time Maude makes use of

— algebraic equational specifications in a functional programming style to define
data types;

— labeled rewrite rules to define local transitions;

— tick rewrite rules to advance time in the entire system state.

Maude equational logic supports declaration of sorts, with keyword sort for one
sort, or sorts for many. A sort A may be specified as a subsort of a sort B by
subsort A < B. Operators are introduced with the op (for a single definition)
and ops (for multiple definitions) keywords:

opf:s1...8, ~>s.
ops f1 fa: s1...8, => s.

[

Operators can have user-defined syntax, with underbars ‘_’ marking the argu-
ment positions and ‘¢’ to denote a space. Some operators can have equational
attributes, such as assoc, comm, and id, stating that the operator is associative,
commutative and has a certain identity element, respectively. Such attributes
are used by the Maude engine to match terms modulo the declared axioms. An
operator can also be declared to be a constructor (ctor) that defines the carrier
of a sort. Axioms are introduced as equations using the eq keyword or, if they
can be applied only under a certain condition, using the ceq keyword, with the
condition introduced by the if keyword. Variables used in equations are place-
holders in a mathematical sense and cannot be assigned values. They must be

Formal Emulation of the Generation of Human Knowledge 109

declared with the keyword var for one variable, or vars for many. The use of
the owise (or otherwise) equational attributes in an equation denotes that the
axiom is used for all cases that are not matched by the previous equations. All
Maude statements are ended by a dot.

In the rest of this section we define the formal infrastructure that we use to
model STM, semantic memory and the information items stored in them. Some
additional details about Core Maude data types are illustrated in Sect. 3.2.
The Full Maude syntax for classes is illustrated in Sect. 4 while the syntax for
messages as well as labelled rewrite rules and Real-Time Maude tick rewrite
rules are illustrated in Sect. 4.1.

3.1 Facts, Questions and Goals

Humans, throughout their lives, acquire knowledge of the facts of the real world
and are able to refer to them and reason about them using declarative proposi-
tions. Since a declarative proposition is just a natural language description of a
fact, we will often use the word ‘fact’ also to denote the declarative proposition
that describes it. Moreover, human beings reason about facts, and organise such
facts in their semantic memory triggered by questions that are put to them, or
they put to themselves.
We model a fact in Real-Time Maude as follows:

a "dog" is a "animal".

The article ‘a’ is used for any noun, although this is ungrammatical when the
noun starts with a vowel as in the case of ‘animal’. Other examples of facts are:

"animal" can "breathe"
"dog" can "move"

"dog" can "bark"

"cat" cannot "bark"
"cat" is not a "dog"

(O I O R

In such examples "animal", "dog" and "cat" are categories, "breathe", "move"
and "bark" are attributes and is a, can, is not a and cannot are types to be
applied to attributes. Categories may also be used as attributes asin a "dog" is
a "animal". The application of a type to an attribute, such as is a "animal"
or can "breathe", is called typed attribute.

A question may be of several kinds [12]. In this paper we consider only can
questions and is a questions, such as:

can a "dog" "breathe" 7
is a "dog" a "animal" ?

The two questions, which have the same structure, will be answered by one
declarative proposition, by stating the fact either negatively or positively.

A goal specifies what a human being aims at achieving as the result of
an activity. Goals drive deliberate behaviour, which exploits the knowledge in

110 A. Cerone and G. Pluck

semantic memory, but do not affect automatic behaviour, which exploits the
knowledge in procedural memory [9,10,13]. In deliberate behaviour, goals acti-
vate attention, a selective processing activity that aims to focus on one aspect
of the environment while ignoring others, thus allowing the human mind to
focus on goal-relevant stimuli in the environment (ezplicit attention). Another
form of attention, called implicit attention, is grabbed by sudden stimuli that
are associated with the current mental state or carry emotional significance, thus
determining automatic behaviour. For the purpose of this paper we only consider
explicit attention.

We model a goal by considering two aspects: a domain of knowledge to which
we refer and what we gain once the goal is achieved. For example, rehearsing
facts of our knowledge about dogs may be our goal. Then "dogs" is the domain
and "rehearsed" is what we gain as the achievement of our goal. Moreover,
the goal of rehearsing a fact will activate our explicit attention to focus on the
presence of fact descriptions in the environment, such as a written statement
describing a fact.

3.2 Modelling Basic Information Items and Goals

We model basic information items (facts and questions) and goals in Real-Time
Maude as follows:

sorts Fact Question Domain BasicItem Item Goal .
subsorts Fact Question < BasicItem < Item .
subsort Goal < Item .

sorts BasicItemSet ItemSet EmptyItemSet .
subsort BasicItem < BasicItemSet .

subsorts EmptyItemSet < BasicItemSet < ItemSet .
subsort Item < ItemSet .

op none : -> EmptyItemSet [ctor]

op _;_ : BasicItemSet BasicItemSet ->

BasicItemSet [ctor assoc comm id: none format (b o n b)]
op _;_ : ItemSet ItemSet -> ItemSet [ctor ditto]
op _;_ : EmptyItemSet EmptyItemSet -> EmptyItemSet [ctor ditto]

op goal : Domain BasicItemSet Nat Nat -> Goal [ctor]

Sorts Facts, Question and Goal model facts, questions and goals, respectively.
The first two are subsorts of BasicItem. Sorts BasicItem and Goal are subsorts
of Item.

Both BasicItem and Item are organised into sets by defining the two sorts
BasicItemSet and ItemSet using the ; user-defined infix operator, which is
given the appropriate equational attributes for the properties that characterise
sets. The ditto equational attribute is a short form for all attributes of the
previous sort declaration. The format equational attribute is used to format the
output with spaces, colours and newlines in order to make it more readable.
By declaring BasicItem as a subsort of BasicItemSet and Item as a subsort
of ItemSet we implicitly define singletons of sorts BasicItemSet and ItemSet.

Formal Emulation of the Generation of Human Knowledge 111

However, the none empty set needs to be explicitly introduced as the only ele-
ment of sort EmptyItemSet, which is subsort of BasicItemSet, in turn subsort
of ItemSet.

The sorts Category and Attribute include Maude-predefined sort String
as a subsort:

sorts Category Attribute TypedAttribute .
subsort String < Category < Attribute .
subsort String < Domain .

This allows us to freely use any string, which is enclosed by double quotes in
Maude syntax, as a category or attribute, while leaving open the option to use
other representations in possible extensions of the module. The elements of sorts
TypedAttributes, Facts and Questions are instead defined using constructors,
since they have special relationships between each other and need to be manipu-
lated in special, distinct ways by the Maude engine. Attribute types can and is
a as well as facts and questions constructed using them are modeled as follow:

ops can_ is‘a_ : Attribute -> TypedAttribute [ctor]

ops cannot_ is‘not‘a_ : Attribute -> TypedAttribute [ctor]

op a__ : Category TypedAttribute -> Fact [ctor]

ops can‘a__7 is‘a__7? : Category Attribute -> Question [ctor]
op _is‘negative‘of_ : TypedAttribute TypedAttribute -> Bool .

One of these special relationships is the negation: cannot and is not are the
negations of can and is, respectively. Negation is expressed as an infix boolean
operator is negative of.

Goals are defined using the constructor goal. In addition to the two aspects
mentioned in Sect. 3.1, the knowledge domain, of sort Domain, and the achieve-
ment, of sort BasicItemSet, the constructor goal has two additional arguments
of sort Nat. The first Nat argument models the number of times the goal is
planned to be achieved, for example, the number of time we want to rehearse a
given fact. The second argument is the goal determination, namely how determi-
nate we are in achieving the goal. However, the usage of this argument is beyond
the purpose of our paper.

3.3 Modelling Explicit Attention and Goal Achievements

In order to model the explicit attention we need to extract achievements from
the goals. We use the operators isAchievement and explicitAttention, which
are defined as follows:

sort Achievement .

subsort Achievement < BasicItem .

ops foundAnswer rehearsed : -> Achievement [ctor]

ops isAchievement explicitAttention : BasicItem ItemSet -> Bool .

vars BI1 BI2 : Basicltem . var BIS : BasicItemSet .
var IS : ItemSet . var D : Domain . vars DET REP : Nat .
eq isAchievement (BI1, goal(D, (BI2 ; BIS), DET, REP) ; IS) =

112 A. Cerone and G. Pluck

BI1 == BI2 or isAchievement(BI1, IS)
eq isAchievement(BI1, IS) = false [owise]

var Q : Question . var F : Fact .
eq explicitAttention(Q,

goal(D, (foundAnswer ; BIS), DET, REP) ; IS) = true .
eq explicitAttention(F,

goal(D, (rehearsed ; BIS), DET, REP) ; IS) = true .
eq explicitAttention(BI1, IS) = false [owise]

For the purpose of our paper we only consider two achievements: foundAnswer,
which drives attentions to questions to be answered, and rehearsed, which drives
attentions to facts to be rehearsed.

3.4 STM-—Short-Term Memory

STM is normally used as a buffer where the information that is needed for
processing activities is temporarily stored. In our previous work [12] we modeled
the mechanism for emptying STM when the stored information is no longer
needed by associating a decay time with each information item stored in STM.
A fixed value of decay time was associated with the information item at the
moment this was first stored in STM, then decreased according to the passing
of time and, when it was down to 0, the item was removed from STM. We now
extend this model by separating the actual lifetime of an information item from
its decay time at the current time of its lifetime. These two time aspects of an
STM-stored information item are the two time arguments of the constructor
chunk_decay_of_, which is defined as follows:

sorts Chunk ShortTermMemory .
subsort Chunk < ShortTermMemory .

op chunk_decay_of_ : ItemSet TimeInf TimeInf -> Chunk [ctor]
op emptySTM : -> ShortTermMemory [ctor]
op _;_ : ShortTermMemory ShortTermMemory ->
ShortTermMemory [ctor assoc comm id: emptySTM format (b o n b)]

eq chunk ITEM:Item decay O of T:TimeInf = emptySTM .

Another extension with respect to our previous model is the use of the notion
of chunk. Information items can be aggregated to form chunks whereby STM
capacity refers to the number of chunks rather than the number of information
items. The exact mechanism of chucking in human memory is poorly understood.
However, it is thought that conjoining items by their associations within LTM
(e.g. common word collocations), such that a person’s past experience would
influence the chunk selection, is part of the mechanism, as it is a form of data
compression where pieces of information are renamed under a new label, such
as ‘6’ and ‘1’ being labeled as ‘61’ [24].

As shown in the Maude code above, operator chunk_decay_of_, whose syn-
tax is user-defined, associates two possibly infinite times with the aggregate set

Formal Emulation of the Generation of Human Knowledge 113

of information item that forms the chunk (an element of sort Chunk). The sort
TimeInf extend the sort Time with value INF to model an infinite time. Obvi-
ously, an infinite decay time means no decay at all; although this is unrealistic
for human STM, it may be useful in testing and calibrating newly defined mod-
els. The sort ShortTermMemory defines sets of chunks (of sort Chunk, which is a
subsort of sort ShortTermMemory) using the constructor ;. The nullary operator
emptySTM defines an STM that does not contain any information, that is, an
empty set of chunks. The equation on the constructor chunk decay_of_ ensures
that if the decay time has reached zero, the chunk is removed from STM.

Both times specified in the chunk are initialised with a standard decay time,
whose value is fixed a priori when the chunk is first stored in STM. Then the first
time argument (decay time) decreases according to the passing of time whereas
the second argument (lifetime) does not change as long as the chunk is pas-
sively kept in STM without being used. However, if the chunk is used to carry
out maintenance rehearsal or to access information in semantic memory, then
also the lifetime may increase, thus consolidating the information chunk and
paving the way for its transfer to semantic memory. This modelling approach
is consistent with the cognitive neuroscience finding that the phonological loop-
ing of items renews their representations within STM, thereby delaying signal
decay. In Sect. 4.2 and Sect. 4.3 we present formal models of this mechanism for
maintenance rehearsal and elaborative rehearsal, respectively.

3.5 Semantic Memory

Semantic memory has been modeled in our previous work to represent knowledge

about rules that govern human behaviour [9,10,13], acquired inference rules [13]

and facts of the real world [12,13]. In this paper we focus on fact representation

and explain our approach using a case study taken from our previous work [12].
A fact representation in semantic memory is modeled as follows:

sorts FactRepresentation SemanticMemory .
subsort FactRepresentation < SemanticMemory .

op emptySemantic : -> SemanticMemory .
op _:_|-_->|_ : Domain Category Time TypedAttribute ->
FactRepresentation [ctor format (!r o b o r o b 0)]
op __ : SemanticMemory SemanticMemory ->
SemanticMemory [ctor assoc comm id: emptySemantic format (o n o)]
op _is‘negated‘in_ : Fact SemanticMemory -> Bool .

The finite time that appears as one of the arguments of the fact representation
constructor is the retrieval time (RT) of the fact from semantic memory. As an
example, the fact that ‘a dog is an animal’ is represented within the semantic
domain "dogs" as

"dogs" : "dog" |- 1 ->| is a "animal"

and this form of generalisation can be retrieved from semantic memory in 1
time unit. The more specific category of a generalisation (e.g., "dog") inherits

114 A. Cerone and G. Pluck

all typed attributes of the more generic category (e.g., "animal") unless the
attribute is redefined at the more specific category level. Therefore,

"animals" : "animal" |- 1 ->| can "move"

which is an association of a category with a typed attribute, specifies that ‘an
animal can move’ and, since an animal is a generalisation of a dog, such a typed
attribute is inherited by the category "dog" (‘a dog can move’).

Fact representations are defined as elements of the sort FactRepresentetion.
The semantic memory is modelled by the sort SemanticMemory, which is defined
as a set of fact representations. The constructor __ denotes that sets of fact
representations are created by justapposition, with no written operator. The
constructor emptySemantic denotes an empty semantic memory.

4 Modelling Memory Processes

In this section we show how the different memory components are put together
as a Full Maude class object and, in Sect. 4.1, 4.2, 4.3 and 4.4 how tick rewrite
rules are used to model memory processes.

A declaration class C' | atty : si, ..., att, : s, declares a class C' with
attributes att; to att, of sorts s; to s,. An object of class C is represented as a
term <O : C | atty : valy, ..., atty, : val, > of sort Object, where O, of sort 0id,
is the object’s identifier, and where valy to val, are the current values of the
attributes att; to att,,.

We model the structure of human memory using the following Real-Time
Maude class:

class HumanMemory | shortTermMem : ShortTermMemory,
semanticMem : SemanticMemory .

STM is modelled by the field shortTermMem. Semantic memory is modelled by
the field SemanticMem. Note that this model has been simplified for the purpose
of this paper and does not include some other memory components, such as
procedural memory, and memory attributes, such as the cognitive load.

4.1 Perception

Although sensations of the environment are initially processed by sensory mem-
ory before being passed to STM, in our model we assume that perceptions avail-
able in the environment are selected using attention and directly transferred to
STM. In order to model perceptions we use Full Maude messages. A message
is an element of the pre-defined sort Msg and has the same syntax as an opera-
tion but, in addition, is also an element of the pre-defined sort Configuration.
The system state is a term of sort Configuration, and is a multiset of objects
and messages. Multiset union is denoted by an associative and commutative
juxtaposition operator, so that rewriting is multiset rewriting.

Therefore, a perception is modelled as a message using the constructor perc
as follows:

Formal Emulation of the Generation of Human Knowledge 115

sorts Perception TimedBasicItem FutureBasicItem .
subsorts Perception < Msg .

op _for_ : BasicItem TimeInf -> TimedBasicItem [ctor]
op perc : TimedBasicItem -> Perception [ctor]

var BI : BasicItem .

eq perc(BI for 0) = none .

The persistence of a perception in the environment is modeled by the constructor
for. Note that the time may be infinite to denote that the perception persists
forever. The equation ensures that if the persistence time has reached zero, the
perception is removed from the configuration (none is the empty configuration).

The processing of information within memory components and the transfer
of information between components are modeled using Real-Time Maude tick
rewrite rules. Labeled rewrite rules

rl[]:t=>t or crl[ll:t=>t if cond
define local transitions from state ¢ to state t’. Tick rewrite rules
r1 []:{t}=>{t'}in time A or crl[{]:{t}=>{t'}in time A if cond

advance time in the entire state t by A time units.
The following rewrite rule models the storage in STM of information per-
ceived from the environment:

crl [perception-explicit-storagel
(perc (BI for T))
< H : Human | shortTermMem : STM >
REST
=>
< H : Human | shortTermMem :
(chunk BI decay DECAY-TIME of DECAY-TIME) ; idle(STM,TP) >
(perc (BI for (T monus TP)))
REST
in time TP
if TP := tp(perc (BI for T)) /\ IS := removeTime(STM) /\
explicitAttention(BI, IS) /\ not isItemIn(BI, IS)

The basic information BI, which is available in the environment for the
time T, is stored in STM if it is not already there (not isItemIn(BI,
IS)) and the untimed content IS of STM drives explicit attention on
it (explicitAttention(BI, IS)). As we have seen in Sect. 3.3, the
explicitAttention operator checks whether the structure of BI has a match-
ing information in a goal stored in STM. Operator tp gives the time for storing
the information in STM. As suggested by Kolers [20] we assign 100 milliseconds
(ms) as the time to move orthographic information to a phonological storage,
such as the one represented by STM, by defining operator tp as a constant.

116 A. Cerone and G. Pluck

4.2 Maintenance Rehearsal

As mentioned in Sect. 1 there is no agreement on what fills in the decay time
gap between STM and LTM. However, in order to explain how learning occurs
through maintenance rehearsal, Burgess and Hitch [6,7] claim the existence of
two learning mechanisms operating in parallel during STM storage. This is part
of a model of working memory [4]. That model includes a ‘fast’ short-term learn-
ing process that is the basis of STM and is associated with trace decay, and a
‘slow’ learning process that gradually leads to LTM (in the same cells), but
enhances within STM. These dual learning processes are said to operate in par-
allel, and are biologically plausible. They are used to explain the Hebb Repetition
effect, which is that if the same list is repeated several times, recall from STM is
improved, suggesting a longer-range learning mechanism (longer than rehearsal
resetting the decay level). As that model emphasises rehearsal as being the basis
of the fast learning mechanism, it would be reasonable to assume that the parallel
slow learning mechanism would be delaying decay.

The following rewrite rule models the effect of the learning mechanism pro-
posed by Burgess and Hitch:

crl [perception-explicit-maintenance]
(perc (BI for T))
< H : Human | shortTermMem : (chunk BI decay T1 of T2) ; STM >
REST
=>
< H : Human | shortTermMem :
(chunk BI decay T2 of maintenance-effect(T2)) ; idle(STM,TP) >
(perc (BI for (T monus TP)))
REST
in time TP
if TP := tp(perc (BI for T)) /\ T2 < STM-TO-LTM-THRESHOLD /\
IS := removeTime(STM) /\ (rehearsed, IS) .

The operator isAchievement, which was defined in Sect. 3.3, is used to activate
the rehearsal loop when the untimed content IS of STM includes a goal having
rehearsed as its achievement.

Burgess and Hitch’s ‘fast’ short-term learning process is controlled by the
T1 decay time, while the parallel slow learning mechanism is represented by
an increase in the T2 information lifetime. Such an increase can be set in a
way that can accommodate a specific hypothesis or theory by using appropriate
equations to define operator maintenance-effect. For example, we can model
a small, constant increase at each rehearsal loop or we may implement Naveh-
Benjamin and Jonides’ suggestion [23], that the first rehearsal is the most impor-
tant, because it involves producing the rehearsal plan, with subsequent loops of
that plan adding little to the transfer to LTM.

Finally, the decay time T1 is reset to the current lifetime T2 (before increase)
and the condition on the STM-TO-LTM-THRESHOLD keeps the rehearsal process
alive until the appropriate threshold for transferring to LTM is reached.

Formal Emulation of the Generation of Human Knowledge 117

4.3 Elaborative Rehearsal

Suppose that we know that a "animal" can "move" but we do not know that a
"dog" is a "animal". Once we read this new fact, which thus enters our STM,
elaborative rehearsal could be activated by questions about dogs that require
the retrieval of animal’s attributes. The question can a "dog" "move" 7 would
allow us to use the just read new fact (a "dog" is a "animal") to retrieve the
answer as an attribute of category "animal". As explained in Sect. 2, the usage
of information within STM to access existing entries within semantic memory
would increase its chance to become stored in semantic memory.

In our previous work [12], we introduced a tick rule for answering a can
question that explored the knowledge in semantic memory to answer a question
stored in STM, but without using any fact possibly stored in STM in the retrieval
process. The following tick rewrite rule extends our previous tick rule by (1)
using information stored in STM in combination with the knowledge in semantic
memory in order to answer the question; (2) modifying the lifetime of the facts
stored in STM that are used in the retrieval process.

crl [retrieval-can-elaborative-is-a]
< H : Human |
shortTermMem : (chunk goal(D, foundAnswer, N1, N2) decay Tl of T2) ;
(chunk (can a C A ?7) decay T3 of T4) ; STM,
semanticMem : S >
REST
=>
< H : Human |
shortTermMem : NEW-GOAL-CHUNK ;
(chunk F decay DECAY-TIME of DECAY-TIME) ;
idle (NEW-STM, T),
semanticMem : S >
idle(REST,T)
in time T
if F := a C can A /\ IS := removeTime(STM) /\ not isItemIn(F, IS) /\
T := canRetrievalTime(C, A, S, IS) /\ T <= MAX-RETRIEVAL-TIME /\
NEW-STM := elaborativeRetrieval(C, A, S, STM) /\
not (F is negated in S) /\ not isItemIn(a C cannot A, IS) /\
NEW-GOAL-CHUNK := if N1 > O
then (chunk goal(D, foundAnswer, N1 monus 1, N2)
decay DECAY-TIME of DECAY-TIME)
else emptySTM fi .

The retrieval time T is calculated using the canRetrievalTime operator, which
searches in the semantic memory S for a fact representation with category Cn
and typed attribute can A, where either Cn = C or Cn is a generalisation of C
through a chain of facts

aCisacCl, aClisacC2 ... aCln—1) is aCn

which either have representations in semantic memory or are in STM.
The operator elaborativeRetrieval performs a similar search in semantic
memory but with the purpose of modifying the lifetime of all facts stored in

118 A. Cerone and G. Pluck

STM that are used in the process. As in the case of maintenance rehearsal, it
is unknown to which extent to modify the lifetime. Again, we can then set such
a modification in a way that can accommodate a specific hypothesis or theory.
This is achieved by appropriately defining an operator elaborative-effect,
similar to mantainence-effect, and use it within the definition of the operator
elaborativeRetrieval.

4.4 Transfer from STM to Semantic Memory

The following rule models the transfer of information from STM to Semantic
Memory.

crl [from-STM-to-LTM-fact]
< H : Human |
shortTermMem : (chunk goal(D, rehearsed, N1, N2) decay Tl of T2) ;
(chunk (a C TA) decay T3 of T4) ; STM,
semanticMem : S >
REST
=>
< H : Human |
shortTermMem : STM,
semanticMem : (D : C |- 1 ->| TA) S >
REST
if T4 >= STM-TO-LTM-THRESHOLD .

Since the cognitive psychology literature does not provide any information on
possible values of the STM-TO-LTM-THRESHOLD threshold, we should give an esti-
mation depending on the specific hypothesis or theory we consider in defining
the lifetime increments in the cases of maintenance rehearsal and elaborative
rehearsal. For instance, if we follow Naveh-Benjamin and Jonides’ hypothesis
[23], that the first rehearsal loop is the most important, then a reasonable decay
time cut-off could be the time taken to get the phonological code into STM.
In Sect. 4.1 we considered Kolers’ suggestion [20] that the time to move ortho-
graphic information to a phonological storage in STM should require approx-
imately 100 ms. However, the conversion of the ortographical format into the
phonological format suitable for the storage is achieved by subvocalization which,
according to Mueller and Krawitz [22], requires between 1.5 and 2s. This is in
accordance with the original Collins and Quillian experiments [15], which used
a two second presentation to their human participants. Therefore, a reasonable
threshold should be at least 3 or 4, by considering 1.5-2s for the initial transfer
and another 1.5-2s for the first rehearsal loop.

5 In Silico Experiments

In order to perform in silico experiments we need to define an infrastructure to
plan experiments and make them actual at the specified time. We call planned

Formal Emulation of the Generation of Human Knowledge 119

experiment the presentation of a single piece of orthographic information (ortho-
graphic representation of a fact or a question) to a human subject, together with
the time that must pass before it is actually presented.

The experimental infrastructure is modeled as follows:

sorts FutureBasicItem SingleExperiment Experiment .

subsort SingleExperiment < Experiment < Msg .

op _in_ : TimedBasicItem Time -> FutureBasicItem [ctor]

op exp : FutureBasicItem -> SingleExperiment [ctor]

op noExp : -> Experiment [ctor].

op repeat_times‘starting‘in_:_ : Nat Time SingleExperiment -> Experiment .

var T : Time . var E : SingleExperiment .
eq repeat O times starting in T : E = none .
eq repeat 1 times starting in T : E = E .

A single experiment is modeled as a message exp((BI for PT) in FT), where
FT denotes in how many time units the experiment is scheduled and PT denotes
the number of time units the perception of the basic information BI persists in
the environment. A sequence of experiments is modeled as a message repeat N
times starting in TI : E, where experiment E is repeated for N times and
the sequence starts in TI time units. Two simple rewrite rules generate single
experiments from a sequence defined using the repeat_times‘starting‘in_:_
operator and a perception from a single experiment.

5.1 Rote Learning

In rote learning, maintenance rehearsal is used for achieving the transfer of the
information from STM to semantic memory. For example, if the time is given in
milliseconds,

repeat 10 times starting in 5000 :
((a "dog" is a "animal") for 2000) in 3000

models an experimental session that starts in 5s and in which a human subject
is presented the sentence ‘a dog is an animal’ 10 times, every 3s, each time for
2s. Every rehearsal loop increases the fact lifetime in STM until the threshold
for transferring to semantic memory is reached so that a representation of the
fact is created in semantic memory.

5.2 Effective Learning

In order to model effective learning, we have to make sure that the fact to
be learned is first stored in STM and then used to retrieve information from
semantic memory. For example

((a "dog" is a "animal") for 2000) in 5000
repeat 10 times starting in 3000 :
((can a "dog" "move" 7) for 2000) in 3000

120 A. Cerone and G. Pluck

models an experimental session that starts in 5s and in which a human subject
is first presented the fact ‘a dog is an animal’ once and is then presented the
question ‘can a dog move?’ 10 times, every 3s, each time for 2s. The retrieval
process needed to answer the question starts by using the fact in STM and ends
by using the representation of the fact a "animal" can "move" in semantic
memory. The repeated use of fact a "dog" is a "animal" increases its lifetime
in STM until the threshold for transferring to semantic memory is reached so
that a representation of the fact is created in semantic memory.

6 Conclusion and Future Work

In this paper we presented an approach to the formal modelling of memory pro-
cesses underlying the transfer of information from STM to LTM, with focus on
the consolidation of factual knowledge in semantic memory. We have tested our
approach on a simple experimental setting. In our future work we aim at inves-
tigating how our approach can cope with more complex experimental settings.

A number of hypotheses and theories from cognitive psychology have been
considered as good candidates to be investigated within our approach. Such
hypotheses and theories are normally conceptual in nature, with only vague,
controversial quantitative characterisations. For example, STM decay time has
been traditionally proposed to be 2s, but some argue that it is much longer,
between 4 and 10s [22]. Other suggest less than 3s and Campoy proposes an
average estimate of 2,700 ms [8]. Although there are no specific theories that
describe mezzanine memory, the manipulation of the chunk lifetime supports
the emulation of processes that fill the time gap between STM and semantic
memory.

In fact, our in silico experiments can be used to compare such alternative
hypotheses and theories, or even contribute to the formulation of new theories,
as we aim in the case of mezzanine memory, as part of our future work. One
way to carry out such a comparison is to determine and test alternative quan-
titative implementations of conceptual hypotheses or theories, as we proposed
for Burgess and Hitch’s parallel learning mechanisms [6,7], in Sect. 4.2, and for
Naveh-Benjamin and Jonides’ hypothesis [23], in Sect. 4.4. Another way is the
direct comparison of alternative estimates form cognitive psychology or neuro-
science. This is the case for STM decay time and for Mueller and Krawitz’s
conversion of the ortographical format into the phonological format.

As part of our future work, the results of in silico experiments may also
be compared with real datasets to evince which model best mimics reality. In
addition to a manual comparison, we aim at the generalisation of an approach
from our previous work [14] in which ‘formal validation’ is achieved by converting
a dataset into a formal representation that can be composed in parallel with the
system model. In the context of this paper, the system model is actually the
human memory model. Model-checking would then be used to verify properties
that may only hold when the dataset matches the in silico experiment.

Finally, the human memory model of a user can be combined with the model
of the used computer system. Such an overall model can be formally verified

Formal Emulation of the Generation of Human Knowledge 121

using Real-time Maude model-checking features. This is also part of our future
work.

References

10.

11.

12.

13.

14.

15.

Atkinson, R.C., Shiffrin, R.M.: Human memory: a proposed system and its control
processes. In: Spense, K.W. (ed.) The Psychology of Learning and Motivation:
Advances in Research and Theory II, pp. 89-195. Academic Press (1968)
Atkinson, R.C., Shiffrin, R.M.: The control of short-term memory. Sci. Am. 225(2),
82-90 (1971)

Baddeley, A.: The episodic buffer: a new component of working memory? Trends
Cogn. Sci. 4(11), 417-423 (2000)

Baddeley, A., Papagno, C., Vallar, G.: When long-term learning depends on short-
term storage. J. Mem. Lang. 27(5), 586-595 (1988)

Broccia, G., Milazzo, P., Olveczky, P.C.: Formal modeling and analysis of safety-
critical human multitasking. Innovations Syst. Softw. Eng. 15(3-4), 169-190
(2019). https://doi.org/10.1007/s11334-019-00333-7

Burgess, N., Hitch, G.J.: Memory for serial order: a network model of the phono-
logical loop and its timing. Psychol. Rev. 106(3), 551-581 (1999)

Burgess, N., Hitch, G.J.: A revised model of short-term memory and long-term
learning of verbal sequences. J. Mem. Lang. 55(4), 627-652 (2006)

Campoy, G.: Evidence for decay in verbal short-term memory: a commentary on
Berman, Jonides, and Lewis (2009). J. Exp. Psychol. Learn. Mem. Cogn. 38(4),
1129-1136 (2012)

Cerone, A.: A cognitive framework based on rewriting logic for the analysis of inter-
active systems. In: De Nicola, R., Kiithn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
287-303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8_20
Cerone, A.: Towards a cognitive architecture for the formal analysis of human
behaviour and learning. In: Mazzara, M., Ober, 1., Salaiin, G. (eds.) STAF 2018.
LNCS, vol. 11176, pp. 216-232. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-04771-9_17

Cerone, A.: Behaviour and reasoning description language (BRDL). In: Camara,
J., Steffen, M. (eds.) SEFM 2019. LNCS, vol. 12226, pp. 137-153. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-57506-9_11

Cerone, A., Murzagaliyeva, D.: Information retrieval from semantic memory:
BRDL-based knowledge representation and Maude-based computer emulation. In:
Cleophas, L., Massink, M. (eds.) SEFM 2020. LNCS, vol. 12524, pp. 159-175.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67220-1_-13

Cerone, A., Olveczky, P.C.: Modelling human reasoning in practical behavioural
contexts using Real-Time Maude. In: Sekerinski, E., et al. (eds.) FM 2019. LNCS,
vol. 12232, pp. 424-442. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-54994-7_32

Cerone, A., Zhexenbayeva, A.: Using formal methods to validate research hypothe-
ses: the Duolingo case study. In: Mazzara, M., Ober, I., Salaiin, G. (eds.) STAF
2018. LNCS, vol. 11176, pp. 163-170. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-04771-9_13

Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. J. Verbal
Learn. Verbal Behav. 8, 240-247 (1969)

https://doi.org/10.1007/s11334-019-00333-7
https://doi.org/10.1007/978-3-319-41591-8_20
https://doi.org/10.1007/978-3-030-04771-9_17
https://doi.org/10.1007/978-3-030-04771-9_17
https://doi.org/10.1007/978-3-030-57506-9_11
https://doi.org/10.1007/978-3-030-67220-1_13
https://doi.org/10.1007/978-3-030-54994-7_32
https://doi.org/10.1007/978-3-030-54994-7_32
https://doi.org/10.1007/978-3-030-04771-9_13
https://doi.org/10.1007/978-3-030-04771-9_13

122 A. Cerone and G. Pluck

16. Craik, F.I., Lockhart, R.S.: Levels of processing: a framework for memory research.
J. Verbal Learn. Verbal Behav. 11(6), 671-684 (1972)

17. Dix, A.: Personal communication (2019)

18. Fiebig, F., Lansner, A.: Memory consolidation from seconds to weeks through
autonomous reinstatement dynamics in a three-stage neural network model. In:
Liljenstrom, H. (ed.) Advances in Cognitive Neurodynamics (IV). ACN, pp. 47—
53. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9548-7_7

19. Kesner, R.: Parallel processing of spatial and temporal information in rodents and
humans: role of the hippocampus. In: Call, J., Burghardt, G.M., Pepperberg, .M.,
Snowdon, C.T., Zentall, T. (eds.) APA Handbooks in Psychology®. APA Hand-
book of Comparative Psychology: Basic Concepts, Methods, Neural Substrate, and
Behavior, pp. 517-538. American Psychological Association (2017)

20. Kolers, A.P.: A pattern-analyzing basis of recognition. In: Cermak, L.S., Craik,
F.I. (eds.) Levels of Processing in Human Memory, pp. 363-384. Psychology Press,
Hove (2014)

21. Miller, G.A.: The magical number seven, plus or minus two: some limits on our
capacity to process information. Psychol. Rev. 63(2), 81-97 (1956)

22. Mueller, S.T., Krawitz, A.: Reconsidering the two-second decay hypothesis in ver-
bal working memory. J. Math. Psychol. 53(1), 14-25 (2009)

23. Naveh-Benjamin, M., Jonides, J.: Maintenance rehearsal: a two-component analy-
sis. J. Exp. Psychol. Learn. Mem. Cogn. 10(3), 369 (1984)

24. Norris, D., Kalm, K., Hall, J.: Chunking and redintegration in verbal short-term
memory. J. Exp. Psychol. Learn. Mem. Cogn. 46(5), 872-893 (2019)

25. Olveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42-79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4_3

26. Olveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time-Maude.
Higher-Order Symb. Comput. 20(1-2), 161-196 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-94-017-9548-7_7
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3
http://creativecommons.org/licenses/by/4.0/

	A Formal Model for Emulating the Generation of Human Knowledge in Semantic Memory
	1 Introduction
	2 Cognitive Models for Information Transfer
	3 Real-Time Maude Models of STM and Semantic Memory
	3.1 Facts, Questions and Goals
	3.2 Modelling Basic Information Items and Goals
	3.3 Modelling Explicit Attention and Goal Achievements
	3.4 STM—Short-Term Memory
	3.5 Semantic Memory

	4 Modelling Memory Processes
	4.1 Perception
	4.2 Maintenance Rehearsal
	4.3 Elaborative Rehearsal
	4.4 Transfer from STM to Semantic Memory

	5 In Silico Experiments
	5.1 Rote Learning
	5.2 Effective Learning

	6 Conclusion and Future Work
	References

