
STDI-Net: Spatial-Temporal Network
with Dynamic Interval Mapping for Bike

Sharing Demand Prediction

Weiguo Pian1, Yingbo Wu1(B), and Ziyi Kou2

1 Chongqing University, Chongqing, China
{pwg,wyb}@cqu.edu.cn

2 University of Notre Dame, Notre Dame, USA
zkou@nd.edu

Abstract. As an economical and healthy mode of shared transporta-
tion, Bike Sharing System (BSS) develops quickly in many big cities. An
accurate prediction method can help BSS schedule resources in advance
to meet the demands of users, and definitely improve operating efficien-
cies of it. However, most of the existing methods for similar tasks just
utilize spatial or temporal information independently. Though there are
some methods consider both, they only focus on demand prediction in
a single location or between location pairs. In this paper, we propose
a novel deep learning method called Spatial-Temporal Dynamic Inter-
val Network (STDI-Net). The method predicts the number of renting
and returning orders of multiple connected stations in the near future
by modeling joint spatial-temporal information. Furthermore, we embed
an additional module that generates dynamical learnable mappings for
different time intervals, to include the factor that different time intervals
have a strong influence on demand prediction in BSS. Extensive experi-
ments are conducted on the NYC Bike dataset, the results demonstrate
the superiority of our method over existing methods.

Keywords: Bike sharing system · Demand prediction · Deep learning

1 Introduction

With the rapid development of sharing economy around the world, Bike Sharing
System (BSS) has become more and more popular in recent years [4,18]. It
provides people with a convenient and environment-friendly way of traveling.
Users can rent a bike from a BSS station by some apps on their mobile phones
and then return the bike to a station after completing their travels.

However, efficiently maintaining these systems is still challenging since the
schedule and allocation of these transportation resources vary a lot depending
on specific user requirements. For example, the number of rental orders on the
morning of a day has an extremely imbalanced distribution between residen-
tial areas and commercial places. Therefore, a demand prediction method for
adjustments of bikes in advance can improve the efficiency of BSS greatly.
c© Springer Nature Switzerland AG 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 38–53, 2021.
https://doi.org/10.1007/978-3-030-70650-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-70650-0_3

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 39

Fig. 1. Number of orders and the rates of their changes during one day for both rent
and return mode. The two lines with blue and orange color represent two single days
in April 2014. (Color figure online)

To tackle this problem, there have been several methods proposed in recent
years focusing on different prediction tasks. Besides some methods applying
hand-crafted features [3,13,19], one of the first deep learning methods was intro-
duced by Wang et al. [21] who concatenated several related factors as inputs to
predict the gap between taxi supply and demand via a non-linear MLP network.
After that, Zhang et al. [26] proposed a deep convolutional network named ST-
ResNet to predict in-out traffic flow among different areas. However, both of
them did not consider the temporal information hidden in the sequential data
which is an important factor in transportation issues. Based on that, Yao et
al. [24] constructed a spatial-temporal model to predict various taxi demands.
Moreover, they further created a graph embedding module to pass information
among different areas. But their networks only consider a single area with its
neighbors as inputs, thus obtains predicted results for different locations sepa-
rately, which resulted in a serious lack of correlated spatial information on the
global level.

Therefore, in our method, we construct a joint spatial-temporal network on
a large scale area that contains hundreds of connected BSS stations in a long
day hours. The network takes the number of both rental and returning orders
of all stations in the past few hours as integrated inputs and predicts all of
them in the near future together for once. By this way, the spatial correlation
shared by all stations can be captured at the same level and same time, with
global transportation information passing through each of them. Besides, the
joint consideration of both operations for bikes, renting and returning, helps to
maintain the sequential relation at each time interval. For the convolutional part,
instead of applying the same filters for all features in different temporal indexes,
we assign features in each index with one independent convolutional group. That
is, we consider that indexes serve different roles in sequential data, which is
far from enough to be captured by the same convolutional kernels. Compared

40 W. Pian et al.

Fig. 2. rental and return matrices as inputs for our joint spatial-temporal network.
The sidebars for both matrices denote the relationship between colors and the number
of orders. (Color figure online)

with previous methods, our network can achieve much better performance with
measurements of both accuracy and efficiency in demand prediction tasks.

Although all the previous methods have explored temporal information in a
wide range, they all ignore an important factor that different time periods influ-
ence a lot on the change of demands. Based on that, we analyze the number of
orders in BSS for each day and found in some periods, the orders increase or drop
dramatically while for other times, no apparent fluctuation can be observed. As
shown in Fig. 1, two colored lines are representing the change of orders in two
single days and also their corresponding derivatives that further demonstrate
the variety of demand changes in a continuous way. Therefore, we propose the
dynamic interval module that takes different time intervals as inputs to improve
the predictions of the main spatial-temporal network. Instead of applying a regu-
lar feature fusion for the outputs of the module, we are inspired by some few-shot
learning methods [2,22] and directly assign the generated features as learnable
parameters for the top layer that is responsible for final predictions in the main
network. In such a learning framework, time intervals participate in the formu-
lation of learning weights in a more straightforward way, which helps the whole
model to learn a mapping that is adapted based on different time periods from
the extracted spatial-temporal feature to the predicted demands.

In summary, we collect our contribution into the following three folds:

– We propose a joint spatial-temporal network with time-specific convolution
layers to predict both renting and returning demand for all the stations in
the BSS.

– We further propose a Dynamic Interval module that builds the relationship
between different time intervals in a day to the learning representation that
is assigned as learnable weights in the top regression layer.

– We conducted large scale experiments on the NYC Bike dataset. The result
shows that our approach outperforms all other previous methods and several
competitive baselines.

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 41

2 Related Work

Traffic prediction problems include many tasks, such as traffic flow prediction,
destination prediction, demand prediction (our task), etc. The methods applied
to these tasks are kind of similar. Essentially, they predict the data on future
timestamps based on the historical one [21,24,26,27]. Some traditional methods
only rely on information in time series and regress final predictions. For instance,
one of the most representative methods is Autoregressive Integrated Moving
Average (ARIMA) which is widely used in traffic prediction problems [13,19]. It
takes continuous temporal information as inputs and regresses desired results.
Besides, some other works included external context data, such as weather condi-
tions and event information, to further improve the model’s performance [14,23].

Deep learning has been successfully used in a large number of problems, such
as computer vision [6,11], which also widely used in traffic prediction. Zhang
et al. [27] proposed a DNN-based model for predicting crowd flow. After that,
they further introduced the residual connection originated from CNN-based net-
works [6] for the same task [26]. To utilize context data, Wang et al. [21] used
a large number of multiple sources as inputs of their network to predict the gap
between the supply and demand of taxi in different sub-areas. Besides, some
other methods [25,28] proposed to use the recurrent neural network, like LSTM
and BiLSM, to encode temporal information. With the popularity of a convo-
lutional neural network (CNN), Yao et al. [24] jointly modeled spatial-temporal
information in a single network, and generated graph embedding additionally
to extract the constant feature for each region. Though they achieved a great
success in some traffic prediction fields, they neglect the discriminative temporal
information hidden in time intervals and encoded sequential data without special
consideration, which will both be tackled in our proposed method.

Though deep learning methods have been successful in many areas, most of
them require a large amount of annotated data to be optimized. Meta Learning
methods [1,2,5,22], however, exist to help relieve such a strict requirement by
proposing more general training models that can be adjusted well to new tasks
with a few new samples. Especially, Bertinetto et al. proposed a siamese-like
network to receive image pairs and enforce one sub-network to generate learning
weights directly for another one [2]. Similarly, the TAFE-Net proposed by Wang
et al. [22] successfully generates weights for both convolutional and fully con-
nected layers to another network. Inspired by such a weight generating strategy,
in our work, we also explore the possibility to apply it to the demand prediction
tasks, hoping to adjust our model with more adapted parameters captured by
external knowledge hidden in our specific sequential data.

3 Preliminaries

In this section, we first introduce some basic conceptions in BSS and then for-
mulate our demand prediction problem mathematically.

Following the definition of [24] and [26], we denote S = {s1, s2, . . . , sN} as
the set of all stations in which the number of orders needs to be predicted,

42 W. Pian et al.

where N is the total number of stations used in our dataset. These stations
are further converted into a matrix M ∈ {sn}i×j where N = i × j, according
to the geographical distribution of these stations. For temporal information,
suppose each day can be segmented into H time intervals and there are D
days in a dataset, we define T = {t0,0, t1,0, . . . , tH−1,D−1} as the set of whole
time intervals. Given the above definitions, we further formulate the following
conceptions.

Rental Order: A rental order A can be defined as 〈A.s,A.t〉 that contains the
station where people rent their bikes and the corresponding start time interval.
We represent it as 〈A.s,A.t〉 with a tuple structure where s is the station and t
denotes the interval.

Return Order: Similarly, a return order R can be also defined as 〈R.s,R.t〉 in
which s and t correspond to the same meaning in A.

Rental/Return Demand: The rental and return demand in one station n and
time interval th,d are both defined as the total number of rental/return orders
during that time and location, which can be denoted as mA/mR. Therefore,
when dealing with all BSS stations, we set M t

A/M t
R ∈ N

i×j as matrices with each
element representing the demand of each station. Furtherly, demand matrices for
all time intervals can be defined as MA and MR respectively.

Demand: With all definitions above, we finally concatenate two demand matri-
ces, M t

A and M t
R, together as joints input M t ∈ N

2×i×j for our proposed network
in time interval t. As shown in Fig. 2, our demand matrix has two channels rep-
resenting rental and return demands respectively. Each grid is one station and
the corresponding color describes the number of orders.

Demand Prediction: Given the sequential data from the beginning time to
the current, demand prediction aims to predict the data in the future one time
step or several steps. Especially, for the BSS demand prediction, we denote it as

M t = F(
{
M t−L, . . . ,M t−2,M t−1

} | P) (1)

where L is the length of the input sequence, P represents some additional infor-
mation that can help for prediction tasks as prior knowledge, like the spatial con-
nection among stations [24] and different time intervals in a day in our method.

4 Proposed Spatial-Temporal Dynamic Interval Network

In this section, we provide the details of our proposed Spatial-Temporal Dynamic
Interval Network (STDI-Net) for the demand prediction task of BSS. We first
talk about our spatial-temporal module separately and then introduce the
dynamic interval module which generates different parameters for the network
based on time intervals in a day. Figure 3 shows the overview architecture of our
model.

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 43

Fig. 3. The Architecture of STDI-Net. The spatial module uses Conv Blocks to capture
the spatial feature among stations. The Conv Block consisted of a convolutional layer
and residual units. Flatten layers are used to transform the output of Conv Blocks to
vectors. The temporal module uses an LSTM model to extract temporal information.
The dynamic interval module takes different time intervals as inputs to generate the
learnable parameters (weights and biases) for the fully connected layer.

4.1 Spatial Module

The spatial module of the network aims to extract the joint features of all sta-
tions in each demand matrix. For each data node in one sequential input, we
apply a residual convolutional block to operate on it. Inspired by [6] that pro-
posed the residual link to solve problems brought by very deep networks, like
the vanishing gradient problem, we utilize a similar idea in our spatial module.
With a concatenation between different levels of layers, the block can not only
extract more abstracted representations of the demand matrix in a deep layer
but also consider context information connected through different layers from
the sparse input as the number of orders to the compact spatial relationships
among different stations. More details are shown in Fig. 4 and the process Fs

can be denoted as
X1 = X0 ∗ W1 + b1

X2 = X1 ∗ W2 + b2

X3 = f(X1 + X2)
(2)

where X0 ∈ R
c0×i×j denotes the input of a ResUnit. X1 ∈ R

c1×i×j and
X2 ∈ R

c2×i×j are the outputs of the first and second convolutional layers in
the ResUnit respectively. X3 ∈ R

c3×i×j represents the output of the ResUnit.
The f(·) denotes the non-linear activation function like ReLU . W1, b1, W2, and
b2 represent the weights and biases of the first and second convolutional layers
in the ResUnit separately.

To further consider that matrices in each sequential data serves different
roles based on their indexes, we create multiple independent Conv Blocks with

44 W. Pian et al.

Fig. 4. Internal structure of Conv Block

the same structure and each of the block is responsible for one corresponding
demand matrix. We denote the process as

ConvM l = F l
s(M

l), l ∈ t − L, ..., t − 2, t − 1 (3)

where M l ∈ R
2×i×j is the two-channel demand matrix as original input on time

interval l and ConvM l ∈ R
c×i×j is the output from M l operated by the Conv

Block F l
s. l represents the index of both sequential inputs and Conv Blocks, and

L denotes the length of the input sequence. Therefore, the number of different
convolutional blocks is equal to the number of intervals in a sequential input.
Each block captures the discriminative information hidden in the indexes of the
data.

After the convolutional operation, we apply flatten layers to transform
ConvM l that outputs from Conv Block F l

s to a feature vector αl ∈ R
cij ,

where c is the number of channels of the output matrix. The whole output
St ∈ R

l×cij represents all features extracted from temporal demand matrices
separately, which can be denoted as:

St = [αl|l = t − L, . . . , t − 2, t − 1] (4)

4.2 Temporal Module

Since the transportation data is a type of time series, we apply the temporal mod-
ule to capture the temporal dependence of the sequential demand matrices. In
the task of sequence learning, Recurrent Neural Networks (RNN) have achieved
good results [20]. The incorporation of Long Short-Term Memory (LSTM) over-
comes the shortage of traditional recurrent networks that learning long-term
dependencies is difficult [7,8]. Some previous works [17,24] have proved the great

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 45

performance of LSTM in processing traffic sequential data. To follow them, we
apply the LSTM network for the BSS sequential data in our temporal module.

Briefly speaking, LSTM maintains a memory cell ct to accumulate the pre-
vious sequence information. Specifically, at time t, given an input xt, the LSTM
uses an input gate it and a forget gate ft to update its memory cell ct, and uses
an output gate ot to control the hidden state ht.

In our model, the LSTM net takes St as input, which is the output of the
spatial module. We use βt ∈ R

d to represent the output of the LSTM net in our
temporal module.

4.3 Dynamic Interval Module

Though the sequential demand data of BSS holds a kind of trend during the
day, their changes will vary according to different time intervals. Therefore, we
propose a dynamic interval module that extracts temporal information from
each hour and then apply them to influence the learning strategies of the main
spatial-temporal network directly.

To encourage such a learning mode, some meta-learning methods [2,22] have
been proposed to create a siamese-like network in which one network is respon-
sible for generating learning weights for another. Inspired by these advanced
works, we also apply a similar network structure to map (time) to be directly
the learning weights of the top fully connected layer in the main network.

In our module, for the input number of hours ranging from 0 to 23, we first
use GloV e [16] to embed the numbers into feature vectors Vt ∈ R

h. After that,
our Interval Net in the module transforms embedding vectors to features whose
dimension is the same as the learnable parameters in the fully connected layer of
the main network, including weights and biases. The generated vectors are then
directly assigned to be the values in the fully connected layer, and the Dynamic
Interval Module participates in the back-propagation process in an end-to-end
manner.

However, it is too difficult and too large for parameters in Interval Net to
learn, since the parameters space of the Interval Net grows quadratically with
the number of the output units. Following [2], we construct a factorized rep-
resentation of the output weights that is decomposed of 2 operating matrices
and a diagonal matrix as Fig. 5 shows, which is analogous to the Singular Value
Decomposition. By this way, the parameters in the Interval Net needed to be
learned only grow linearly with the number of output units. The whole process
can be formulated as

WFC = O′ diag(W (V))O (5)

where WFC ∈ R
k×d is the generated weights for the fully connected layer.

W (V) ∈ R
a represents the output vector of the Linear layer W in Interval Net

while diag(·) is the diagonal operating to transform the vector W (V) to a diag-
onal matrix. As a consequence, the net only needs to generate low-dimensional
parameters for each time interval. In addition, two matrices O ∈ R

a×d and

46 W. Pian et al.

Fig. 5. Internal structure of Interval Net

O′ ∈ R
k×a, where k = 2 × i × j, project diag(W (V)) again to keep the same

dimension with the fully connected layer.
Similarly, biases of the fully connected layer are also generated as following:

bFC = b(V) (6)

where bFC represents the generated biases for the fully connected layer. b(V) ∈
R

k denotes the output vector of the linear layer b in Interval Net. After the
above operation, we obtain 〈WFC , bFC〉 as the parameters P in Fig. 3 of the
fully connected layer (FC).

To get the final results, the fully connected layer takes the output of temporal
module βt ∈ R

d as input for the time interval t. As we mentioned, P consists of
the weights WFC ∈ R

k×d and biases bFC ∈ R
k where k = 2 × i × j. Therefore,

the formulation of the layer can be expressed as follows:

M̂t = f(WFCβt + bFC) (7)

where the f(·) denotes the non-linear activation function of prediction layer.
M̂t ∈ R

k represents the predicted demand matrix of the ground truth Mt.

4.4 Implementation Details

In the experiments, we set the length of the input sequence L to 3. In the spatial
module, each Conv Block has 2 ResUnits with the same structure. That is, it
contains 2 convolutional layers with each layer followed by a batch normalization
(BN) [9] and a residual link. All the convolutional layers in the Conv Block
have 32 filters. The size of each filter is set to 3 × 3 with stride = 1. In the
temporal module, the LSTM net has 1 hidden layer with 1024 neurons. The
activation functions used in the fully connected layer and Conv Blocks are ReLU
while LeakyReLU is used as the activation function at the linear layers in the
dynamic interval module. We optimize our model via Adam [10] optimization
by minimizing the Mean Squared Error (MSE) loss between the predicted result
and the ground truth. The learning rate and the weight decay are set to 10−3

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 47

and 5e−5 respectively. For the training data, 90% of it is for training and the
remaining 10% is chosen as a validation set for early-stop. We implement our
network with Pytorch [15] and train it for 200 epochs on 2 NVIDIA 1080Ti
GPUs.

5 Experiment

5.1 Dataset

In the paper, we use the NYC Bike dataset in 2014, from Apr. 1st to Sept. 30th.
We treat the data for the last 10 days as the testing data and others as training
data. We set one hour as the length of a time interval. The total number of orders
and time intervals in the dataset are 5,359,944 and 4,392 respectively. And the
number of stations used in the dataset is 128. The dataset can be collected from
the website of Citi-Bike system1.

5.2 Evaluation Metric

We use Rooted Mean Square Error (RMSE) and Mean Absolute Error (MAE)
as the metrics to evaluate the performance of our model and the baselines, which
are defined as:

RMSE =

√
1
z

∑

i

(yi − ŷi)2 (8)

MAE =
1
z

z∑

i=1

|yi − ŷi| (9)

where ŷi and yi denote the predicted value and ground truth respectively, and
z is the number of all predicted values.

5.3 Baselines

We compare our STDI-Net with the following baselines:

– Historical average (HA): Historical Average (HA) predicts the future
demand by averaging the historical demands.

– Auto-regressive integrated moving average (ARIMA): Auto-
Regression Integrated Moving Average (ARIMA) is a well-known model used
for time series prediction.

– Lasso regression (Lasso): Lasso regression is a linear regression method
with L1 regularization.

– Ridge regression (Ridge): Ridge regression is a linear regression method
with L2 regularization.

1 https://www.citibikenyc.com/system-data.

https://www.citibikenyc.com/system-data

48 W. Pian et al.

– Multiple layer perception (MLP): MLP is a neural network with four
hidden layers. The number of hidden units are 256, 256, 128, 128 respec-
tively. The MLP predicts the demand matrix M t by taking a sequence of the
previous l demand matrix [M t−l, . . . ,M t−2,M t−1] as input.

– ST-ResNet [26]: ST-ResNet is a CNN-based model with residual blocks for
traffic prediction, which used multiple CNN components to extract features
from the historical data sequence.

– DMVST-Net [24]: DMVST-Net is a deep learning model which based on
CNN and LSTM for taxi demand prediction. It also contains graph embedding
to capture similar demand patterns among regions.

– DeepSTN+ [12]: DeepSTN+ is a deep learning-based convolutional model
for crowd flow prediction, which contains long range spatial dependence mod-
eling, POI-based spatial information capturing, and a fusion mechanism for
features extracted from different aspects.

Table 1. Comparison with baselines.

Method RMSE MAE

Historical average 10.7308 5.8374

ARIMA 10.4773 4.7005

Lasso regression 8.4947 3.6799

Ridge regression 8.4699 3.6984

Multiple layer perception 7.1888 3.3388

ST-ResNet 5.1249 2.7206

DMVST-Net 5.0595 2.3423

DeepSTN+ 4.9060 2.4269

STDI-Net 4.6339 2.1946

5.4 Comparison with Baselines

Table 1 shows the testing results of our proposed model and baselines on
the dataset. We can see that our STDI-Net achieves the lowest RMSE and
MAE(4.6339 and 2.1946) among all the competing methods. The HA and
ARIMA perform poorly, as they only consider the historical demand values for
prediction. Because of the consideration of more context relationships among
sequence, the linear regression methods (Lasso and Ridge) perform better than
the above two methods. However, they do not extract more spatial-temporal
information for prediction. The MLP further extracts features from the sequence
and performs better than the above methods. However, the MLP does not model
spatial or temporal dependency. The ST-ResNet achieves 5.1249 and 2.7206 for
RMSE and MAE which is better than MLP due to the extracting of spatial fea-
tures. Compared with ST-ResNet, DMVST-Net extracts joint spatial-temporal

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 49

feature and similar demand patterns among regions, which further improve
its performance for prediction. Compared with previous methods, DeepSTN+
explores spatial correlations from different aspects to reduce the prediction error.
However, it doesn’t consider about the influence of different time intervals. Our
model further contributes a dynamic interval module which further improves the
performance.

5.5 Comparison with Modules Combinations

Our full model consists of three modules for three types of information model-
ing. To explore the influence of different modules combinations on the task, we
combine them and implement the following networks:

– Spatial module + FC: This network contains the spatial module of our pro-
posed model and a fully connected layer. This network only extracts spatial
features for prediction.

– Temporal module + FC: This network only uses the temporal module of
our proposed model to capture the temporal information, and a fully con-
nected layer is used to output the predicted results.

– Spatial module + Temporal module + FC: This method is the combi-
nation of the spatial module, temporal module, and a fully connected layer. In
this method, we model joint spatial-temporal information without considering
the influence of different time intervals.

– Spatial module + Dynamic Interval module: In this network, we com-
bine the spatial module and the dynamic interval module of our proposed
model, to capture spatial information, and the dynamic mappings for differ-
ent time intervals.

– Temporal module + Dynamic Interval module: For this network, we
use the temporal module and the dynamic interval module of our proposed
model. This network models the temporal information, and generates the
dynamic mappings for different time intervals.

– STDI-Net: Our proposed model, which models joint spatial-temporal infor-
mation, and generates dynamic mappings for different time intervals.

Table 2 shows the results of the test. The RMSE and MAE of the spatial mod-
ule + FC are 5.6558 and 2.6218 respectively, while that of the spatial module
+ dynamic interval module are 4.9077 and 2.3457. The results of the tempo-
ral module + FC achieve 5.2614 and 2.3914 while the RMSE and MAE of the
temporal module + dynamic interval module are 4.7788 and 2.2582 respectively.
We can see that compared with separate spatial or temporal module + fully
connected layer, the performance of the combination with the dynamic inter-
val module improves significantly. Furthermore, the spatial module + temporal
module + FC achieves the results of 5.0832 and 2.3476, which are worse than
that of our complete model. The results show that our dynamic interval module
improves the performance significantly.

50 W. Pian et al.

Table 2. Comparison with different modules combinations

Method RMSE MAE

Spatial + FC 5.6558 2.6218

Temporal + FC 5.2614 2.3914

Spatial + Temporal + FC 5.0832 2.3476

Spatial + Dynamic Interval 4.9077 2.3457

Temporal + Dynamic Interval 4.7788 2.2582

STDI-Net 4.6339 2.1946

5.6 Comparison with Variants of Our Model

The above experiments show that our proposed dynamic interval module
achieves a good result in the demand prediction of BSS. However, we have not
proved the rationality of the parameters-generated mode in the dynamic interval
module. Besides, we also need to evaluate the effectiveness of the time-specific
convolutional layers in our spatial module. In addition, the advantage of using
GloV e need to be proved by comparing with the model that embed time inter-
vals into vectors without the pre-trained GloV e. To address these questions, we
construct the following three variants of our proposed model:

– STDI-Net-fusion: In this network, we apply a Linear layer in the Interval
Net to transform the interval embedding vector to a feature, and then we
concatenate it with the output of the temporal module. After that, a fully
connected layer is used to output the predicted results.

– Unified-Spatial Net: This network is the variant of our proposed spatial
module, which is used to evaluate the performance of applying the same filters
in different temporal indexes. This model applies unified filters for each index
of the sequence in all convolutional layers, and a fully connected layer is used
after convolutional layers. Note that, in the Unified-spatial Net, we use the
same Conv Blocks structure as our proposed STDI-Net.

– STDI-Net-embedding: In this model, we apply a learnable embedding
layer to embed the hours’ number instead of using the pre-trained GloV e
to embed them.

Table 3 shows the results of the above three variants of our model. We can see
that our spatial module + FC (5.6558 and 2.6218 for RMSE and MAE) outper-
forms Unified-Spatial Net (6.1493 and 2.9533 for RMSE and MAE), that means,
our proposed time-specific convolution layers perform better than applying same
convolutional filters in different temporal indexes. Otherwise, STDI-Net-fusion
achieves 4.8149 for RMSE and 2.2995 for MAE, which are worse than our STDI-
Net (4.6339 and 2.1946 respectively). Therefore, our parameters-generated mode
is better than the fusion way.

Due to applying a trainable embedding layer instead of using a pre-trained
model (GloV e), the STDI-Net-embedding (4.6154 and 2.1783) has more learn-
able parameters than STDI-Net (4.6339 and 2.1946). Therefore it can perform

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 51

Table 3. Comparison with variants of our model

Method RMSE MAE

Unified-Spatial Net 6.1493 2.9533

Spatial module + FC 5.6558 2.6218

STDI-Net-fusion 4.8149 2.2995

STDI-Net-embedding 4.6154 2.1783

STDI-Net 4.6339 2.1946

better than our STDI-Net. However, its performance has not improved sig-
nificantly (0.4% and 0.7% for RMSE and MAE respectively) with additional
parameters. That means, our STDI-Net can perform almost as well as STDI-
Net-embedding with less parameters than it. To reduce the number of learnable
weights, we apply GloV e to embed hours instead of using an additional embed-
ding layer to embed them.

5.7 Influence of Sequence Length and Number of ResUnits

In this section, we explore the influence of the length of the input sequence and
the influence of the number of ResUnits.

Figure 6a shows the prediction results of different input sequence length. We
can see that our method achieves best performance when sequence length is set
to 4. The prediction error decreases with the increasing of sequence length from
1 to 4, that means the temporal dependency plays an important roles in the task.
However, as the length of sequence increases to more than 4 h, the performance
of our model slightly degrades and it has a fluctuation. One potential reason is
that with the length of the input sequence growing, many more parameters need
to be learned, which makes the training harder.

Fig. 6. (a) RMSE with respect to the length of the input sequence. (b) RMSE with
respect to the number of ResUnits in a Conv Block.

52 W. Pian et al.

In Fig. 6b, we show the performance of our model with respect to the number
of ResUnits. We can see that the prediction error decreases as the number of
ResUnits growing from 0 to 5. That means, with the number of convolutional
layers rising from 1 to 11, the performance of our model becomes better. This
due to the fact that the original feature maps are convoluted with their local
correlations as layers deepen, which makes deeper layers have larger receptive
fields. As we know, larger receptive fields can capture more spatial correlations.
Therefore, the model can learn more spatial information as layers deepen to
improve its performance.

6 Conclusion and Discussion

In this paper, we propose a novel deep learning-based method for demand pre-
diction of Bike Sharing System (BSS). Our model considers the extraction of
joint spatial-temporal feature and time-specific convolutional layers with resid-
ual links. Furthermore, we contribute a dynamic interval module to include the
factor that different time intervals have a strong influence on demand prediction
in BSS by generating different feature mappings for different time intervals. We
evaluate our model on the NYC Bike dataset, and the results show that our
model significantly outperforms the competing baselines. In the future, we will
consider some other features to further improve the performance of our model,
such as meteorology data, holiday data. And we will consider the more depen-
dent relationship of stations, such as use Graph Convolutional Network (GCN)
to extract the spatial feature among stations.

Acknowledgments. This work was supported in part by the National Key Research
and Development Project under grant 2019YFB1706101, in part by the Science-
Technology Foundation of Chongqing, China under grant cstc2019jscx-mbdx0083.

References

1. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent.
In: NeurIPS (2016)

2. Bertinetto, L., Henriques, J.F., Valmadre, J., Torr, P., Vedaldi, A.: Learning feed-
forward one-shot learners. In: NeurIPS, pp. 523–531 (2016)

3. Chiang, M.F., Hoang, T.A., Lim, E.P.: Where are the passengers?: a grid-based
gaussian mixture model for taxi bookings. In: SIGSPATIAL (2015)

4. DeMaio, P.: Bike-sharing: history, impacts, models of provision, and future. J.
Public Transp. 12(4), 41–56 (2009)

5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 53

8. Informatik, F., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. A Field Guide to Dynamical
Recurrent Neural Networks (2003)

9. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML (2015)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NeurIPS, pp. 1097–1105 (2012)

12. Lin, Z., Feng, J., Lu, Z., Li, Y., Jin, D.: DeepSTN+: context-aware spatial-temporal
neural network for crowd flow prediction in metropolis. In: AAAI (2019)

13. Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., Damas, L.: Pre-
dicting taxi-passenger demand using streaming data. IEEE Trans. Intell. Transp.
Syst. 14(3), 1393–1402 (2013)

14. Pan, B., Demiryurek, U., Shahabi, C.: Utilizing real-world transportation data for
accurate traffic prediction. In: ICDM (2012)

15. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: NeurIPS (2019)

16. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: EMNLP (2014)

17. Qiu, Z., Liu, L., Li, G., Wang, Q., Xiao, N., Lin, L.: Taxi origin-destination demand
prediction with contextualized spatial-temporal network. In: ICME, pp. 760–765
(2019)

18. Shaheen, S.A., Guzman, S., Zhang, H.: Bikesharing in Europe, the Americas, and
Asia: past, present, and future. Transp. Res. Rec. 2143(1), 159–167 (2010)

19. Shekhar, S., Williams, B.M.: Adaptive seasonal time series models for forecasting
short-term traffic flow. Transp. Res. Rec. 2024(1), 116–125 (2007)

20. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NeurIPS, pp. 3104–3112 (2014)

21. Wang, D., Cao, W., Li, J., Ye, J.: DeepSD: supply-demand prediction for online
car-hailing services using deep neural networks. In: ICDE, pp. 243–254 (2017)

22. Wang, X., Yu, F., Wang, R., Darrell, T., Gonzalez, J.E.: TAFE-Net: task-aware
feature embeddings for low shot learning. In: CVPR (2019)

23. Wu, F., Wang, H., Li, Z.: Interpreting traffic dynamics using ubiquitous urban
data. In: SIGSPACIAL (2016)

24. Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand predic-
tion. In: AAAI (2018)

25. Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: a generic
approach for extreme condition traffic forecasting. In: SIAM (2017)

26. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide
crowd flows prediction. In: AAAI (2017)

27. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: DNN-based prediction model for
spatio-temporal data. In: SIGSPATIAL (2016)

28. Zhao, J., Xu, J., Zhou, R., Zhao, P., Liu, C., Zhu, F.: On prediction of user destina-
tion by sub-trajectory understanding: a deep learning based approach. In: CIKM
2018, pp. 1413–1422 (2018)

http://arxiv.org/abs/1412.6980

	STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping for Bike Sharing Demand Prediction
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Spatial-Temporal Dynamic Interval Network
	4.1 Spatial Module
	4.2 Temporal Module
	4.3 Dynamic Interval Module
	4.4 Implementation Details

	5 Experiment
	5.1 Dataset
	5.2 Evaluation Metric
	5.3 Baselines
	5.4 Comparison with Baselines
	5.5 Comparison with Modules Combinations
	5.6 Comparison with Variants of Our Model
	5.7 Influence of Sequence Length and Number of ResUnits

	6 Conclusion and Discussion
	References

