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Abstract. Manual evaluation of medical images, such as MRI scans
of brain tumors, requires years of training, is time-consuming, and is
often subject to inter-annotator variation. The automatic segmentation
of medical images is a long-standing challenge that seeks to alleviate
these issues, with great potential benefits for physicians and patients. In
the past few years, variations of Convolutional Neural Networks (CNNs)
have established themselves as the state-of-the-art methodology for this
task. Recently, Graph-based Neural Networks (GNNs) have gained con-
siderable attention in the deep learning community. GNNs exploit the
structural information present in graphical data by aggregating informa-
tion over connected nodes, allowing them to effectively capture relation
information between data elements. In this project, we propose a GNN-
based approach to brain tumor segmentation. We represent 3D MRI
scans of the brain as a graph, where different regions in the images are
represented by nodes and edges connect adjacent regions. We apply sev-
eral variations of GNNs for the automatic segmentation of brain tumors
from MRI scans. Our results show GNNs give reasonable performance on
the task and allow for realistic modeling of the data. Furthermore, they
are far less computationally expensive and time-consuming to train than
state-of-the-art segmentation models. Lastly, we assign Shapley value-
based contribution scores to input MRI features to learn what features
are relevant for a particular segmentation, generating interesting insights
into explaining the predictions of the proposed model.

Keywords: Graph neural networks · Brain tumor segmentation ·
Deep learning

1 Introduction

Over 87,000 people are expected to be diagnosed with brain tumors in 2020 [19].
With a low survival rate for malignant tumors, timely detection and diagno-
sis of brain tumors are crucial for developing effective treatment plans for the
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patients. Neuroimaging using multimodal magnetic resonance imaging (MRI) is
integral in the diagnosis and management of brain tumors, including for surgi-
cal and radiation treatment planning, longitudinal tumor monitoring, treatment
response evaluation, and predictive analysis. These require accurate delineation
of the tumor boundary on the MRI images to characterize the tumors.

Automatic tumor segmentation methods seek to address the time and inter-
observer variability limitations posed by manual segmentation. Furthermore,
they underlie advances in quantitative tumor analysis and clinical workflow
automation. The development of such automatic segmentation methods is chal-
lenging due to several intrinsic and extrinsic factors, such as the heterogeneity in
appearance and shape of different tumor types on MRI, a lack of standardized
imaging protocols, variability in equipment, and the presence of imaging noise
and artifacts. Furthermore, advances in neuroimaging and the clinical manage-
ment of brain tumors have increased the desired complexity of the segmentation,
with an emphasis on a compartmentalized segmentation of the tumor into sub-
regions describing necrosis, enhancing and non-enhancing tumor and vasogenic
edema.

The use of deep learning methods for brain tumor segmentation has pro-
gressed rapidly in the past few years [4,16]. As opposed to conventional seg-
mentation models that rely on the extraction of pre-defined features from the
images [10,14,20], deep learning models automatically learn relevant features to
perform accurate segmentation. However, current deep learning segmentation
methods [8,9,18,34] are computationally intensive, require the division of the
images into local patches, and do not explicitly account for brain connectivity
information. They fail to capture adequately both the global structure of the 3D
images and the relational dependencies between different regions in the tumor.
We hypothesize that these properties are important for accurate and robust
brain tumor segmentation.

We propose using Graph-based Neural Networks (GNNs) to segment brain
tumors from multimodal 3D MRI. Unlike previous methods, GNNs allow for
the processing of the entire brain simultaneously, while explicitly incorporating
both local and global connectivity into their predictions by aggregating infor-
mation across neighboring nodes in the graph. As such, GNNs effectively cap-
ture relational information between the data elements. Our framework, summa-
rized in Fig. 1, first represents the 3D MRI scans of the entire brain as a graph,
where nodes represent different regions in the images and edges connect adja-
cent regions. Next, a GNN classifies each node of the graph into healthy tissue,
enhancing tumor, necrotic tissue and non-enhancing tumor, or edema. The node
predictions are subsequently mapped back to their respective supervoxels on the
MRI. We explore different GNN models for brain tumor segmentation from MRI
scans on the BraTS 2019 challenge [3,4,16]. The best performing model achieves
good performance that is comparable to other recent work. We also show that
our approach is between 5 and 15 times faster than such computationally inten-
sive methods. Finally, we provide explanations for the predictions of the deep
learning GNN models in terms of the relative contributions of the inputted MRI
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Fig. 1. Model Overview. MRI Modalities are first stacked to create one 3D Image
with 4 channels. 1) Combined modalities are clustered into supervoxels. 2) Supervoxels
are converted to a graph structure such that each supervoxel becomes one graph node.
3) Graph is fed through a Graph Neural Network, which predicts a label for each node.
4) Node predictions are overlaid back onto the supervoxels.

modalities. We generate these explanations via Shapley values, a game-theoretic
approach for fairly attributing contributions to an overall outcome among the
game participants. Such interpretations are vital for applications of these models
in the health domain.

2 Related Work

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) have, so far, been the most successful
models for fully automatic brain tumor segmentation. They excel at object classi-
fication and segmentation tasks by classifying pixels based on surrounding image
content through 2D or 3D convolutional filters. These convolutional filters are
translation invariant and can detect image edges and combine them into higher-
level image features, making them well suited for image processing. The three
best performing models of the recent 2018 BraTS Challenge [3,4,16] all consisted
of CNN-based architectures. The BraTS challenge is a brain tumor segmentation
competition where teams submit their models for testing on a multi-institutional
database of MRI scans. The best performing model by Myronenko et al. [18] used
an autoencoder-based regularization with a 3D-CNN to achieve state-of-the-art
segmentation results. The next best-performing work by Isensee et al. [9] pro-
posed that a well trained baseline 3D U-net could outperform other models with
various architectural modifications. Finally, McKinley et al. [15] used a CNN
with contextual and attentive information and tied for third place with Zhou
et al. [34] who used a U-net with a novel loss function that modeled noise and
uncertainty.

These CNN-based architectures take an extended amount of time to train,
and many have harsh GPU-requirements. The best performing model requires
34 GB of VRAM [18] and most require anywhere from 8 to 12 GB of VRAM.
Combined with the training times greater than a week, this constitutes a resource
bottleneck on training and evaluating models on new datasets. Furthermore,
these models generally require the division of the images into local patches for
training and segmentation and, hence, fail to capture the global information of
the entire MRI scan.
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2.2 Graph Neural Networks

The computational burden of segmentation with CNNs can be circumvented by
summarizing the MRI images as a graph representation. This approximation
reduces image complexity by two orders of magnitude, from millions of voxels
down to several thousand nodes, while preserving most image information. A
recently popularized form of deep learning, Graph Neural Networks, is specifi-
cally designed to learn over such graph structures. The theoretic underpinnings
of learning on graphs have been established for close to a decade [7,22], but
GNNs have only recently seen widespread use following, among others, Kipf and
Wellings’s [5,12,35] introduction of the graph convolutional network (GCN).
Their work refined the convolution operation on graph-structured data and
established a layerwise approach to learning over graphs, thus aligning it more
closely to existing deep learning paradigms.

Subsequently, Hamilton et al. [6] developed GraphSAGE, which extends
GCN [12] by generalizing graph learning as a series of alternating sampling and
aggregation steps to share information across a graph. In a GraphSAGE layer,
for each node, a predefined number of neighbors are sampled. Their information
is aggregated by combining their features and applying a learnable transforma-
tion, the output of which becomes the node’s features in the next layer. Notably,
GraphSAGE allows GNNs to be extended to the inductive setting, i.e. to gener-
alize to previously unseen graphs.

The Graph Attention Network (GAT) developed by Velickovic et al. [29]
introduced the self-attention mechanism to graph learning. Self-attention is an
operation which allows each input feature to assign weights, or “attend”, differ-
ently to the other input features, and has shown the state-of-the-art performance
on natural language processing (NLP) and other tasks (Vaswani et al. 2017) [28].
In the GAT formulation, attention is instead computed between each graph node
and its neighbors. Like GraphSAGE, GAT readily allows for inductive learning
and achieves the state-of-the-art performance on an inductive protein-protein
interaction (PPI) task.

GNNs have previously been applied to medical image segmentation tasks.
Yan et al. 2019 [32] successfully applied a GCN variant, ChebNet, to segment
brain tissue (gray matter, white matter, cerebro-spinal-fluid). They first used
the SLIC algorithm [1] to cluster MRIs into supervoxels, and then predicted
the tissue type of each supervoxel. The present work is partially inspired by
their approach and follows a similar workflow. Juarez et al. [11] proposed a
joint U-Net-GNN model for airway segmentation from CT scans and matched
state-of-the-art performance. They replaced the last two layers of a U-Net with
a sequence of graph convolution layers, which allowed the model to aggregate
information globally across the entire CT scan while maintaining the pattern-
recognition capabilities of the early convolutional layers. However, GNN-based
methods have not previously been attempted for brain tumor segmentation, and
thus, we here explore the applicability and performance of several GNN variants
on the same.
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2.3 Explanation of Deep Learning Models

Many interpretation methods for deep learning fall under the umbrella of saliency
maps [23,26,27]. These methods utilize the gradients computed by a model with
respect to the input to highlight regions of interest, i.e., those where the output
changes greatly in response to small input changes. Saliency maps are especially
useful in image processing, as they allow for easy visualization of pixel saliency
and visual interpretation of results. However, one shortcoming of saliency maps is
that they are often driven by the input image and largely agnostic to the model.
In particular, it has been shown that the saliency outputs for a model trained on
random labels can closely resemble those of a legitimate model, indicating that
the saliency map is less a reflection of the model than of the input [2].

An interpretability method explicitly developed for GNNs is GNNEx-
plainer [33]. GNNExplainer learns a mask on both the edges and features of an
input graph to build a subgraph that seeks to summarize the connections and
features that lead to the prediction on a node of interest. Unlike more general
methods, GNNExplainer allows for interpreting how graph connectivity factors
into a GNN prediction. A drawback of GNNExplainer is that it is difficult to
optimize for larger subgraphs. We find that information from nodes far away
from the target node often contributes to a prediction for tumor segmentation.
Consequently, GNNExplainer was unable to identify meaningful subgraphs for
our models.

In this work, we interpret our results using the SHAP (SHapley Additive
exPlanations) library [13]. SHAP values are a computational approximation of
Shapley values, a method for assigning payouts to players in a cooperative game,
or in this case, contribution values to input features in a prediction task. SHAP
values maintain many of the theoretical properties of Shapley values, such as
additivity and consistency, which make them attractive as a interpretative tool.
Section 3.7 presents the details of the SHAP values.

3 Methods

In this section, we first introduce the dataset we use and associated pre-
processing followed by a description of transforming patient images into a graph
structure. Subsequently, we present in greater detail our experimental setup.
Finally, we describe our use of SHAP values to help interpret the results of the
proposed model.

3.1 Imaging Data

The imaging data used in this study, including ground truth annotations, were
obtained from the training data of the BraTS 2019 challenge [3,4,16]. The
dataset consists of 76 low-grade glioma and 259 high-grade glioma MRIs from 19
contributing institutions. Each sample is composed of four imaging modalities
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obtained from the same patient: T2-weighted fluid attenuated inversion recov-
ery (Flair), T1-weighted (T1), T1-weighted contrast-enhanced (T1CE), and T2-
weighted (T2), which provide complementary information about the tumor. All
provided imaging data has been skull-stripped, normalized to a resolution of
1 mm3, and spatially aligned to the other modalities for the same patient [4].
Domain experts manually segmented the provided ground truth annotations fol-
lowing a standardized annotation protocol, and they were further reviewed for
consistency and accuracy by additional neuro-radiologists. The ground truth
annotation labels were as follows:

Label 0. Normal brain tissue
Label 1. Volume comprising necrotic core and non-enhancing gross tumor
abnormality
Label 2. Vasogenic edema
Label 4. Active core or enhancing region within the gross tumor abnormality

Label 3 (non-enhancing tumor) was removed from the competition as a dis-
tinct region. Instead, it was combined with Label 1 (necrotic tumor) because the
BraTS organizers found that it can be subject to significant inter-annotator vari-
ation and therefore bias the ground truth segmentation based on the annotating
institution [4].

For this paper’s purposes, one set of MRIs (all four modalities) from the same
patient is referred to as a patient sample.

3.2 Data Preprocessing

Before segmentation, each MRI is cropped to the tightest possible bounding box
of the brain tissue. This step is accomplished by excluding all image planes where
all voxels have zero intensity. Next, we standardize each modality separately to
a mean of zero and a standard deviation of one. Bias correction of the MRIs did
not improve performance, so we report our final results without bias correction
(two-sided t-test, p ≈ 1).

3.3 Graph Construction

In order for the patient samples to be used as training examples for a GNN, they
must first be converted to graph representations (Fig. 1 Step 2). To create the
graph nodes, all four MRI modalities are concatenated to create one 3D image
with four channels. The combined image is then fed through the Simple Linear
Iterative Clustering (SLIC) algorithm [1] to generate a set of k supervoxels, where
k is a tunable parameter of the SLIC algorithm. SLIC uses a K-means approach
to cluster voxels that are similar in both intensity values and physical location in
the brain (Eq. 1). In the concatenated MRI images, the spatial distance between
two voxels is simply the 3D Euclidean distance between their coordinates. The
intensity distance is the Euclidean distance calculated across all four intensity
channels. A compactness parameter, m, controls the trade-off between intensity
and spatial information.
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The distance, D, calculation between two voxels i and j used for the super-
voxel clustering thus becomes

D =

√
dI

2 +
(

ds
S

)2

m2 (1)

dI =
√

(IT1,i − IT1,j)2 + (IT1CE,i − IT1CE,j)2 + (IT2,i − IT2,j)2 + (IFLAIR,i − IFLAIR,j)2

ds =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

where x,y,z are the spatial position of a voxel in image coordinates, I is the
intensity value of a modality at that pixel, and S is the expected spacing between
supervoxels.

After clustering, supervoxels outside of the brain mass, that is, those with
zero intensity, are filtered out, typically reducing the number of supervoxels by a
factor of 2. Each remaining supervoxel is then assigned a feature vector consisting
of the 10th, 25th, 50th, 75th, 90th percentiles of its constituent voxels’ intensity
values across all four modalities. This formulation results in a feature vector
of length 20 for each supervoxel. We chose to use quantiles as it empirically
performed better than only the mean intensity. Each supervoxel is also assigned
a label, which is determined by finding the most common label (mode) of all of
its constituent voxels in the ground truth labeling.

To determine the appropriate values of k and m used in constructing the
graphs, we calculated the achievable segmentation accuracy (ASA) of several
different combinations of values on a subset of the patient samples. The ASA
quantifies how well the SLIC supervoxels recover the ground truth segmenta-
tion. This metric is equivalent to our model’s accuracy at the voxel level when
it predicts every supervoxel correctly. Because of the class imbalance skewing
towards healthy tissue, we only consider the tumorous region when computing
ASA. These results are presented in Sect. 4.1.

Once the supervoxels are generated for a patient sample, they are used to
construct a regular graph. The graph takes the form {N,E}, where N is the
set of vertices (referred to here as nodes), and E is the set of edges between
them. Each node in the graph corresponds to exactly one generated supervoxel
and is represented by its feature vector and its label (during training). The
edge set E captures proximity information between nodes and is composed of
undirected and unweighted edges constructed between each supervoxel and the
r supervoxels spatially closest to it in the patient sample, where r represents the
desired degree of the graph. We define the distance between two supervoxels as
the Euclidean distance between the centroids of their constituent voxels’ x-y-z
coordinates.
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3.4 GNN Details

We evaluated several standard GNN models on their ability to segment the
tumors: GCN [12], GAT [29], and the gcn, mean, and pool variants of Graph-
SAGE [6]. In broad terms, each model is composed of individual layers that
share information across adjacent nodes. That is, each layer updates each node’s
feature vector as a transformed combination of its own features and those of
its neighbors. As in a standard neural network, an arbitrary number of these
layers can then be stacked sequentially. As the number of layers increases, the
nodes indirectly receive information from nodes further and further from their
immediate neighborhood. The mathematical formulations of each of these graph
learning layers are shown in Eqs. 2 through 5.

In each case, h
(l)
u is the features of node u at layer l, σ is a differentiable, non-

linear activation function, W (l) is a layer specific trainable weight matrix, || is
the concatenation operator, and V (u) is the subset of nodes which are connected
to u via the edge set E, also known as the neighborhood of u.

GCN/GS-gcn:

h(1+1)
u = σ(

1
q
W (l) · (h(l)

u +
V (u)∑
v

h(l)
v )) (2)

where q is a normalization constant that differs between formulations from Kipf
et al. [12] and Hamilton et al. [6]. In the case of a regular graph as considered
here, however, q is equal to r, the graph degree, for both.

GS-mean:

h(l+1)
u = σ(W (l) · (h(l)

u || mean(h(l)
v ∀ v ∈ V )) (3)

GS-pool:

h(l+1)
u = σ(W (l) · (h(l)

u || max(σ(Wpool · h(l)
v ) ∀ v ∈ V (u))) (4)

where Wpool is a global trainable weight matrix.
GAT:

h(l+1)
u =

B�

b

σ(
∑

v∈V (u)

ab
uvW

(l)
b hu) (5)

where B are multiple attention heads per layer, which each compute their own
pairwise self-attention (ab

uv) between each pair of neighboring nodes u and v.
Here, we use ReLU as the non-linear activation function for all models.

3.5 Training and Evaluation Metrics

Prior to training, each patient sample is converted to a graph as described in
Sect. 3.3. We split the dataset into training (60%), validation (20%), and test
sets (20%).
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The input to the GNN is defined formally as a graph of the form {N,E},
and a feature matrix H ∈ R

n×f , where n is the number of nodes, and f is
the number of features per node. f = 20 for all experiments, as described in
Sect. 3.3. The output is of size n × c, where for each graph node, the model
returns the probability of that node belonging to each of the four classes (c)
defined in Sect. 3.1.

To determine the best hyperparameters for each of the GNN variants, we
perform a random hyperparameter search on the validation set. We sweep over
regularly spaced intervals of learning rate from 0.00001 to 0.001, feature dropout
between 0 and 0.5, model depth from 3 to 9, and hidden layer size between 64
and 256. For GAT models, we additionally examine attention dropout between
0 and 0.5 and attention heads between 3 and 10 for each layer.

Each model is trained to minimize node-wise multi-label cross-entropy loss
(Eq. 6) on the validation set using the Adam optimizer. The class weights are
adjusted to be inversely proportional to their prevalence in the test set to address
the class imbalance.

Loss =
C∑

c=0

(1c=y)wclog(p̂y) (6)

where C are the possible classes, wc is the class weight, y is the true label,
1c=y is an indicator function, and p̂y is the predicted probability of that label.

Upon convergence, each model is evaluated on the average Dice scores of its
predictions, as defined in Eq. 7.

Dice =
2TP

2TP + FP + FN
. (7)

where TP , FP , and FN are the number of true positives, false positives, and
false negatives, respectively. True positive voxels are defined as those correctly
assigned as belonging to a specific tumor compartment.

Specifically, we calculate the Dice score for the following tumor subregions:
Whole Tumor (WT: union of labels 1,2,4), Core Tumor (CT: 1,4), and Active
Tumor (AT: 4). These metrics provide insight into the ability of the model to
assess tumor shape correctly as well as to differentiate between the different
tumor subregions. To allow for direct comparison to published models in the
literature, we report voxelwise Dice scores, rather than the Dice score on node
(supervoxel) classification.

After the best hyperparameters have been selected for each GNN model, we
train a final model on the combined training and validation sets and evaluate
it on the test set. All models were implemented in PyTorch using Deep Graph
Library (DGL) [31].

3.6 Baseline Method

We use the popular U-net model as a baseline to which to compare the results
obtained with the GNN models. The top-performing 3D-CNN model [18] of
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the BraTS2018 [3,4,16] competition uses state-of-the-art GPUs with 34GB of
VRAM that were not easily accessible. Therefore, we selected the second-best
model, nnU-net [9], which requires only 11GB VRAM and is easily trainable
through an included Python module and available code. GNN and CNN models
were trained using the same train and test data sets.

3.7 Model Interpretation

In addition to accurately segmenting brain tumors, it is vital that we understand
how and why our models make their predictions. Model interpretation allows us
to 1) ensure that a model learned robust and generalizable features by cross-
referencing important features with known predictive ones, and 2) identify novel
features that aid in tumor segmentation. One method for assigning the contri-
bution scores of the input features for a model is to compute Shapley values.
The concept of Shapley values is borrowed from Game Theory. It corresponds
to a fair payout to all the players in a cooperative game, given the outcome of
the game. In the case of a predictive model, Shapley values can be interpreted
as the contribution of each input feature towards the prediction of the model.
Formally, they are defined as the average marginal contribution of a feature to
a given prediction when added to a subset of other features, over all possible
subsets [17]. Since the complexity of computing exact Shapley values is combi-
natorial in the number of features, we instead use the DeepSHAP model [13] to
approximate them. This method takes in a background feature distribution and
a query prediction it seeks to explain, and assigns each feature a score repre-
senting its contribution to the model output. First, it calculates the difference in
model output when given the true features versus background features. Next, it
backpropagates this difference back to each of the input features in a way that
satisfies the properties of additivity, consistency, and local accuracy [25]. The
backpropagated value at each feature can then be considered the part of the
difference it is ‘responsible’ for.

The background feature distribution is obtained by randomly sampling 500
nodes across the entire dataset of input graphs such that the relative proportions
of node labels remain consistent. Since predictions on nodes cannot be made in
isolation (i.e., they rely on the graph structure and surrounding nodes), SHAP
values are computed for each node in a graph simultaneously.

4 Results

4.1 Supervoxel Generation Affects Achievable Accuracy

The graph construction step involves two parameters, the choice of the number,
k, and compactness, m, for the supervoxel generation via SLIC. We find that
k = 15000, 20000 and m = 0.1 led to the highest ASA (Appendix, Fig. 4). We
choose k = 15000 for all subsequent experiments as k = 20000 required longer
to train with no noticeable improvement in performance.
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Fig. 2. An example segmentation produced by the best-performing GNN model vs.
the ground truth segmentation. Shown are an example horizontal, coronal, and sagittal
slice of the same MRI. The colors correspond to the different tumor subtypes: blue =
NET/necrosis, yellow = ET, red = Edema. Tumor predictions are overlaid onto the
T1-Contrast Enhanced Image. There is a close correspondence between the predicted
tumor and the ground truth. (Color figure online)

Of note, even the best SLIC parameters result in an ASA of only 0.9, on aver-
age (Appendix, Fig. 4). The diminished accuracy is caused by SLIC-generated
supervoxels, which encompass voxels of multiple different labels. A drawback of
clustering into supervoxels is that it approximates the brain as a collection of
homogeneous regions, while each supervoxel may be somewhat heterogeneous.
This effect is especially pronounced along the borders between tumor subtypes
and regions with low contrast. Here, the transition in intensity across the dif-
ferent modalities and the ground truth labels may not be well aligned, or the
intensity differences are gradual while the shift in labels is abrupt. In these cases,
supervoxels are created with a mixture of labels, yet can only be labeled as one
of them.

The partial volume effects introduced by supervoxel creation adversely affect
the performance of our model. As shown in Fig. 5 (Appendix), the voxel-wise
Dice score achieved by our model are significantly lower than the supervoxel-
wise Dice score across all tumor regions for both the training and testing data.

4.2 Brain Tumor Segmentation Performance of Different GNN
Models

We summarize the segmentation results of the different GNN models on the test
set in Table 1. The best performing GNN is a GraphSAGE-pool network with 5
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Table 1. Average Dice coefficients across different GNN models for whole tumor (WT),
enhancing tumor (ET), and tumor core (TC) trained and evaluated on same train-test
split from the training set of the BraTS 2019 data set [16].

Model WT Dice TC Dice ET Dice

GraphSAGE-pool 0.841 0.737 0.671

GraphSAGE-mean 0.804 0.720 0.70

GraphSAGE-gcn 0.536 0.483 0.302

GCN 0.564 0.455 0.341

GAT 0.742 0.687 0.588

Table 2. Average Whole Tumor Dice on training and test sets, along with training
time in hours, for GraphSAGE pool models trained and evaluated on graphs of varying
degrees.

Model Train WT Dice Test WT Dice Time to Train (hours)

GSpool-10 0.917 0.819 8.7

GSpool-20 0.912 0.832 10.2

GSpool-30 0.915 0.841 15.5

hidden layers of 256 units each, which is trained until convergence at a learning
rate of 0.0001. The mean aggregator function performs slightly worse than the
pooling operator. The worst performing models by a substantial margin are the
GCN models. We hypothesize that this is because they lack the implicit skip
connection built into the mean and pooling aggregators via the concatenation
step. These results are consistent with those reported by both Velickovic et
al. [29] and Hamilton et al. [6] for the performance trend on protein-protein
interaction (PPI) dataset. Surprisingly, GAT performs much worse on this task
than GraphSAGE-pool, despite demonstrating improved performance on other
inductive tasks. Several factors could account for this discrepancy, including a
larger average graph size, less expressive node feature vectors, the different label
classification scheme, or simply because attention may be less suited for brain
segmentation.

We note that our best performing model is deeper than those reported in
previous works [6,12,29], with 5 hidden layers, rather than 2 or 3. We hypothesize
that aggregating information from further away is more important for tumor
segmentation than other graph learning applications, such as social networks or
PPI.



30 C. Saueressig et al.

4.3 Performance and Runtime Results for Varying Neighborhood
Sizes

For the best performing model, GraphSAGE-pool, we compare model perfor-
mance on datasets with varying graph degrees. We create three different sets of
graphs from the raw MRIs, with identical node features but either 10, 20, or 30
neighbors. These results are reported in Table 2. While increasing graph degree
has no noticeable effect on model performance on the training set, a higher
degree does seem to allow the model to generalize better to the unseen data in
the test set. However, this comes at the cost of increased training time, with the
degree 30 dataset requiring about twice as long to finish training as the degree
10 dataset.

4.4 Comparison of GNN Model with Other Recent Models

Next, we compare the GraphSAGE pool model trained on graphs of degree 30 to
nnU-Net, the second place model in the BraTS 2018 competition [9]. Both mod-
els are trained and evaluated on the same train and test splits. These results are
presented in Table 3. While our GNN model fails to match the state of the art per-
formance of the nnU-Net, the results nonetheless show that GNNs can success-
fully perform the segmentation task, despite the approximations made in graph
construction and the relative novelty of inductive graph-learning techniques. In
particular, for the segmentation of the whole tumor, our model achieves a median
Dice score that is quite close to nnU-Net. This result indicates that 1) our model
is better at outlining the gross tumor than at identifying tumor subregions, and
2) while on most patient samples, GNN models are quite effective, it fails to
generalize for some, adversely affecting the mean more than the median.

Our GNN-based approach compares favorably to many other experimental
techniques submitted to the BraTS challenge in recent years. Serrano-Rubio et
al. [24] also attempt a supervoxel-based technique, coupled with Extremely Ran-
domized Trees, to achieve Dice scores of 0.80, 0.63, and 0.57 on the official 2018
validation dataset [4] for whole tumor, core tumor, and enhancing tumor, respec-
tively. Another group, Rezaei et al. [21], presents a novel Generative Adversarial
Network (GAN) termed voxel-GAN, which seeks to address the label imbalance
present in tumor segmentation. This model achieves mean Dice scores of 0.84,
0.79, and 0.63 on the BraTS 2018 validation set. Like ours, these models may not
achieve state-of-the-art performance, but identify an important issue in tumor
segmentation and attempt to solve it using a novel approach.

Moreover, GNNs’ running requirements are relatively modest. Each GNN
model was trained on 6 GB of GPU memory with a batch size of 4 brains within
hours (Table 2). By contrast, [18] and [9] require 32 GB and 12 GB of RAM, take
days to weeks to train to completion, and are limited to a batch size of max-
imally one image, and typically only image patches. The eased computational
burden could be an important consideration when developing online segmenta-
tion models that are regularly updated with new MRIs.
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Table 3. Results on our test set (a partition of the BraTS2019 training set). We report
both mean and median Dice scores for the whole tumor, tumor core, and enhancing
tumor.

Test Set Results

Statistic Median Mean

Tumor Compartment WT TC ET WT TC ET

nnU-Net [9] 0.929 0.919 0.857 0.906 0.827 0.745

GSpool-30 0.892 0.841 0.783 0.841 0.737 0.672

4.5 Explaining GNN Predictions Using SHAP

Finally, we compute the SHAP values for a subset of representative patient sam-
ples. We stratify the computed SHAP values by modality, label, and whether the
corresponding feature value was high intensity (bright) or low intensity (dark)
(Fig. 3). Bright intensities are defined as the top 15% of intensity values within
a given modality, while dark intensities are those in the bottom 15%.

Fig. 3. SHAP values distribution grouped by label and stratified by modality. Dark
Violin plots correspond to dark image regions in a particular modality, while lighter
plots correspond to bright regions in the corresponding modality. Positive SHAP values
indicate that the modality contributes to the prediction of a particular label, while
negative SHAP values indicate that a modality contributes negatively to predicting
that label. Panels A-D represent the SHAP values computed for different tissue labels.

We identify several trends for each modality’s contribution to different labels
in Fig. 3. Bright T1CE regions and dark FLAIR regions drive the prediction of
healthy tissue (Fig. 3A), while the inverse is predictive of the necrotic and non-
enhancing tumor core (Fig. 3B). Edematous tissue is defined by bright T2 regions
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and the lack of dark FLAIR regions (Fig. 3C). Lastly, in the tissue predicted to
be enhancing tumor, dark T2 and dark T1 regions are assigned the highest and
lowest SHAP values, respectively (Fig. 3D). For the enhancing tumor, we also
observe that the absolute magnitudes of the SHAP values are substantially lower
than those of the other 3 possible classifications. This observation indicates that
predicting a node as an enhancing tumor is driven by a “process of elimination”,
not by intrinsic characteristics of the enhancing tumor. Rather than learning
which features uniquely identify the enhancing tumor, the model instead relies
on recognizing feature combinations that make the other labels unlikely.

Overall, the T1CE and FLAIR modalities are consistently assigned the most
variable SHAP values, while the T1 modality remains relatively constant. The
relative utility of each modality is consistent with that determined by the BraTS
organizers, who state that the T1CE and FLAIR modalities are also the most
useful for manual segmentation [4].

Many of our findings for individual tumor regions also conform to radia-
tion oncology practices for manual segmentation of brain tumors. For example,
both non-enhancing tumor and necrosis are typically delineated by dark T1-CE,
bright T2, and bright FLAIR regions of the MRI. Our model’s SHAP value anal-
ysis recovers all three of these trends for the combined NET/necrosis regions.
Interestingly, however, it indicates that T1CE and FLAIR have a much more
pronounced effect on the prediction of these regions than T2 does. (Fig. 3B).
Vasogenic edema (Label 2) may be visually assessed by contrasting bright T2
and FLAIR regions with moderate intensity T1CE and T1. However, it is often
difficult to distinguish from other tumorous labels (1 and 4), since these can all
appear bright on the T2 and FLAIR images, depending on tumor grade. Our
analysis shows that the model correctly recognizes the brightness trend in the
T2 and FLAIR modalities, but learns a more nuanced classification scheme to
circumvent this issue. Rather than using bright FLAIR intensities as a marker
for edema, it instead learns that a brain region that lacks dark FLAIR intensities
are unlikely to be healthy, and then relies on the other modalities to distinguish
further between the tumor subregions. Lastly, enhancing tumor is traditionally
defined as bright (enhanced) regions in the T1CE modality. Surprisingly, bright
T1CE regions are not assigned high SHAP values for the enhancing tumor, indi-
cating that they play little to no role in the model’s predictions thereof (Fig. 3D).
When coupled with the relative scarcity of enhancing tumor labels, this obser-
vation could explain the inferior performance of the model in predicting the
enhancing tumor (Label 4).

The above analysis indicates agreement between the feature combinations
used by the model and clinical practice. Furthermore, the analysis provides
insight into how the model distinguishes between regions that are known to
be difficult to differentiate on MRI. Insight into why the results might not be
optimal for enhancing tumor will allow us to address this issue. Such inter-
pretability analysis is key to ensuring the adoption of deep learning models in
healthcare [30].
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5 Discussion

The development of effective automatic segmentation techniques can improve
timely treatment for thousands of brain tumor patients annually. Furthermore,
integrating automatic segmentation into routine clinical workflows could save
physicians thousands of hours of painstaking manual annotation and standard-
ize segmentations otherwise subject to inter-annotator variation. Here, we have
presented the application of Graph Neural Networks to brain tumor segmen-
tation from MRIs. With this work, we provide several important contributions
to the field. Firstly, we compare several common GNN variants and determine
that GraphSAGE with the pooling aggregator performs the best. Secondly, we
show that, compared to CNNs designed for the same task, GNN is less resource
expensive and time-consuming to train. Lastly, we provide an interpretation of
our model’s predictions using Shapley value-based contribution scores.

A logical extension to this work is to combine the graph construction (involv-
ing supervoxel generation) and graph prediction in an end-to-end model, sim-
ilarly to [11]. While the use of supervoxels to represent the images improves
computational efficiency, our current model performance is heavily gated by the
discrepancy between the SLIC output and the true segmentation labels. The
treatment of supervoxels which contain voxels with different labels is poorly
defined and consequently results in misclassified voxels. Even a model that clas-
sifies every graph node correctly achieves a voxel-wise Dice Whole Tumor score
of only about 0.93 (Appendix, Fig. 5). A task-specific, end-to-end approach has
the potential to alleviate this concern and increase performance substantially.
End-to-end training would allow graph nodes to be delineated in greater accor-
dance with the underlying tumor subregions, limiting the number of supervoxels
spanning multiple labels. Furthermore, it would allow the model to learn node
descriptors, which would likely be more informative than hand-engineered sum-
mary statistics for each modality. Another direction for future improvement is
training the model hierarchically, that is, first determining the outline of the
tumorous region(s) as a whole, and then segmenting each tumor subtype within
the tumorous region. Many brain tumor segmentation models are effective at
outlining the gross tumor, but struggle to delineate tumor compartments [4].
Such a training scheme should allow for a more nuanced capacity to distinguish
the regions.
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Appendix

Fig. 4. The achievable segmentation accuracy as a function of supervoxel number and
compactness. More supervoxels increase the achievable accuracy.

Fig. 5. Boxplot of Dice scores for the same brains computed by voxel vs. by supervoxel
(node). Results shown for both test and train set. **** shows p < 0.0001 in paired
t-test. Across every comparison, Dice scores calculated on voxels are significantly lower
than when calculated by node. This effect is especially pronounced on the test set.

Table 4. Hausdorff Distances (95 percentile) calculated on test set for our model and
nnUnet. Both median and mean scores are reported.

Test Set Results

Statistic Median Mean

Tumor Compartment WT TC ET WT TC ET

nnU-Net [9] 2.828 2.27 1.414 4.645 6.17 5.011

GSpool-30 4.359 5.10 3.317 7.60 10.30 5.45
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