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Abstract. Clinical guidelines are evidence-based recommendations
developed to assist practitioners in their decisions on appropriate care
for patients with specific clinical circumstances. They provide succinct
instructions such as what drugs should be given or taken for a particular
condition, how long such treatment should be given, what tests should be
conducted, or other situational clinical circumstances for certain diseases.
However, as they are described in natural language, they are prone to
problems such as variability and ambiguity. In this paper, we propose an
approach to automatically infer the main components in clinical guideline
sentences. Knowing the key concepts in the sentences, we can then feed
them to model checkers to validate their correctness. We adapt semantic
role labelling approach to mark the key entities in our problem domain.
We also implement the technique used for Named-Entity Recognition
(NER) task and compare the results. The aim of our work is to build
a reasoning framework that combines the information gained from real
patient data and clinical practice, with clinical guidelines to give more
suitable personalised recommendations for treating patients.

Keywords: Therapy algorithms - Formal verification - Natural
language processing - Machine learning - Text tagging

1 Introduction

Recent studies have shown that over the next 20 years there will be an increased
expansion of morbidity, and particularly complex multimorbidity which occurs
when individuals have several concurrent chronic conditions [12]. One of the
challenges of treating patients with multimorbidity is that clinical guidelines are
generally focused on single disease. It is hence difficult to understand treatment
options, and their consequences in the long term, when patients have to follow
a considerable number of single disease oriented treatments simultaneously.

Furthermore, there are also several challenges inherent in clinical guidelines:
they are written mostly in natural language and hence prone to ambiguity; the
way they are presented may be very different from one guideline to another;
clinical practice varies and may at times deviate from clinical guidelines, and
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we need to take into account this variability. When there are multiple treatment
options available, we want to know how likely these options are followed in
practice.

We have built a framework to formalise the written text of a therapy algo-
rithm for lowering blood glucose for people with type 2 diabetes (T2D) in our
previous work [19]. The generated model is a network of timed automata, where
each transition represents the medication taken by the patient and the state is the
patient’s condition after getting such treatment and over time. The model also
takes into account how the value of HbAlc, i.e., the glycated haemoglobin that
is commonly measured to determine the average blood sugar levels for patients
with diabetes, may deteriorate over time, and force further intensifications in
the treatment. The advantage of a formalisation is that it enables us to detect
gaps or omissions in the textual algorithm, which can then be used to further
clarify treatment steps.

Although this approach is promising, it depends entirely on their own curated
controlled natural language (CNL) to design and hand-tune complex rules to
extract information from the therapy algorithm written in a natural language
string. This approach becomes problematic when recommendations are expressed
in very different ways as either the CNL needs to be refined or the recommenda-
tion sentences need to be adjusted to the CNL, which in most cases it involves
both. Expanding the breadth and complexity of the CNL also demands a lot of
human development work, linguistic knowledge as well as a deep understanding
in the specific domain. This rigid and unscalable approach is not suitable for the
long term goal: to process any clinical guidelines automatically.

In this paper, we propose a different approach to address this issue of captur-
ing the main concepts in clinical guideline sentences using semantic role labeling
and named-entity recognition. This approach will limit the human effort needed
to design the grammar for a CNL. The result can then be used for further lin-
guistic analysis in clinical guideline domain. It can also be utilised to check the
correctness of the guideline by transforming the main concepts in the guideline
into formal representations such as UPPAAL [2], PRISM [13], or Z3 [16].

The remainder of this paper is structured as follows. In Sect. 2 we discuss
related work that serve as the foundation of this paper. Section 3 describes
the framework of the system that we want to build. Section 4 explains the
semantic annotations covering the ontology concepts, the relationships between
each concept and named-entity recognition. The learning process, including the
syntactic and the semantic analysis as well as the features used and the learning
models are discussed in Sect. 5. The outcome of the experiments using several
learning models is discussed in Sect. 6. Finally, in Section 7, we draw some
conclusions on our research.

2 Related Work

Considerable research in modelling and formalising clinical guidelines has been
done over the past years. Pérez et al. [18] built a framework to enable author-
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ing and verification of clinical guidelines. They use UML statecharts to repre-
sent the guidelines and provide a pattern-based approach to define commonly
occurring types of requirements in guidelines to ease the non-expert to write
formal specifications. The statecharts are transformed into process meta lan-
guage (PROMELA) and the specifications are translated into linear temporal
logic (LTL). The verification of the guideline model and its specification is then
performed using the SPIN model checker [10].

Béaumler et al. [1] also apply formal modelling and verification to improve
the quality of medical guidelines. To model the guidelines, they must be written
in Asbru language [21], a predefined language for guideline-application tasks.
With the properties formulated in the Action Computational Tree Logic (ACTL)
language, the model is then verified using the Cadence SMV model checker [14].

Another implementation of model checking to verify clinical guidelines is done
by Giordano et al. [7]. They use the GLARE language [22], a domain-independent
prototypical system for acquiring, representing and executing clinical guidelines.
With an XML intermediary layer which then is translated to PROMELA, the
model and its specification written in LTL are verified using the SPIN model
checker.

In software engineering, Carvalho et al. [4] have created a framework to
formally generate test cases from the written software requirements into several
formalisms using natural language processing (NLP) techniques. Written in a
controlled natural language, the requirements are transformed into data flow
reactive system (DFRS), where inputs and outputs are modelled as signals, with
timers to capture the time-based behaviour.

Another work by Diamantopoulos et al. [5] shows a system that automat-
ically maps software requirements into formal representations to detect prob-
lems hidden in the written texts at the early stage of development process.
The system is built upon ontology class hierarchies to represent the semantic
roles in the requirement texts. The hierarchies are built by training a semantic
role labelling system from software requirements project classes in Europe. The
inference process is done after the ontology is represented in the web ontology
language (OWL).

In this research, we modify our previous work [19] following the approach
used by Diamantopoulos et al. [5] and NER. Concretely, we will adapt the work
in [5] and NER to annotate the key concepts in guideline sentences domain so
it becomes less labour intensive, more scalable, and more general purpose.

3 The Framework

Figure 1 shows the whole framework in our research. We simplify our previous
work by adding the syntactic and semantic analysis module. Instead of manually
crafting a CNL, we use machine learning to achieve the goal.

Firstly, we provide the guideline sentences that we want to map into some for-
mal representations. Some guidelines would have an implicit orders on how ther-
apy should be given while others are orderless. Next, our syntactic and semantic
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Fig. 1. The mapping of clinical guidelines framework

analysis module will mark the key concepts in the sentences. The learning process
for this module is further explained in Sect. 5.

The result of this process will be annotated sentences as illustrated in Fig. 2,
i.e., some words in the sentences are given semantic markers. Knowing these
semantic markers means that we can move on to transforming the guideline
into any further modelling approach we have in mind, for example, a formal
representation. We believe it would be beneficial to help the transformation
process from guidelines to UPPAAL models as done in [19].

acts_on

has_actor ( has_property

All  patients should have appropriate monitoring  for clinically significant AEs
Actor Action Property Object

Fig. 2. Example of an annotated sentence

4 Semantic Annotations

4.1 A Hierarchy of Concepts

In order to build a learning model to mark the roles of a word or a phrase in a
sentence, we first need to define the classes of roles that we allow in our domain.
Following [5], we made several ontology concepts to represent the static aspects
of the guidelines. The design focuses on the concept of an actor doing some
action(s) on some object(s) with some properties. Figure 3 shows our current
ontology class hierarchy for our domain.

The ontology hiearchy in Fig. 3 states that every class is a Concept. They
are furthermore diversified into ThingType and OperationType. OperationType
refers to the operations performed by an actor to another entity, whereas
ThingType refers to any entity that can be an actor of an action, an object
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|— Property

ThingType Object

Concept I— Actor
OperationType Action

Fig. 3. Ontology class hierarchy

that is acted upon, or a property that can further explain an action, an actor,
or an object.

The class OperationType covers all operations performed in the sentence,
either transitive or not. Its subclass is:

— Action denotes an operation performed on some Object by an Actor (if
exists). Different from [5], we also consider the ownership type as an Action.

E.g. “All patients should have appropriate monitoring for clinically significant
AEs.”

A ThingType can furthermore be classified as:

— Actor refers to the explicit performer of an Action. In many cases, the actor
is invisible from the guideline sentences. E.g. “All patients should have appro-
priate monitoring for clinically significant AEs.”

— Object denotes the entity that an Action is performed on. E.g. “All patients
should have appropriate monitoring for clinically significant AEs.”

— Property describes all modifiers of an Action, an Actor, or an Object. E.g.

“All patients should have appropriate monitoring for clinically significant
AEs.”

Although our ontology classes can still be further diversified into lower sub-
classes as in [5], we find that they are not needed and too complex for our
problem at the moment.

4.2 Relationship Between Classes

When designing the concept classes, we also need to introduce the relationship
between them. This relationship defines the allowed interactions between one
concept to another, and possibly from different level of concept. Table 1 shows
the set of relationship between classes and concept in general.

acts_on defines that an Action is performed on either an Object or a
Property. The inverse relation is receives_action that connects an Object
or a Property to an Action. From here, we can say that monitoring
receives_action from have.
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The performer of an Action is defined by the has_actor relation to an Actor.
Likewise, the Actor of an Action is defined by the is_actor_of relation. E.g.
have has_actor patients.

The last two relations can cover the whole ThingType concept as their partic-
ipants. This is because a Property can be used to modify an Actor, an Object,
or a Property itself. Hence, we set the rule that any ThingType can have the
has_property to a Property or a Property is connected to any ThingType by
the is_property_of relation. E.g. monitoring has_property appropriate.

Table 1. Relationship between classes

Concept class Relationship Concept class
Action acts_on Object, Property
Object, Property |receives_action |Action

Action has_actor Actor

Actor is_actor_of Action

ThingType has_property Property
Property is_property_of |ThingType

As each pair of the relations is an inverse of themselves, we will only use three
of them in our end system, namely: acts_on, has_actor, and has_property.

4.3 Named-Entity Recognition

We also investigate a different approach to mark the important part of the
sentence using named-entity recognition (NER) technique. NER is a task in
NLP to detect the entity in the text that can be referred to with a proper name
such as a person, a location, an organisation, or even things that are not proper
entities such as dates, times, or prices [11].

In NER, the entities are usually marked using IOB format. The beginning of
an entity type is marked with B-prefix tag, and I-prefix tag marks every token
inside an entity type. An O tag is used for tokens that do not belong to any
entity. Figure 4 shows a sentence marked with IOB format.

All  patients should have appropriate monitoring  for clinically significant AEs
B-actor B-action B-property B-object

Fig. 4. A sentence marked with IOB format

We use the same ontology concepts for NER in IOB format. We consider
four entities, i.e., Action, Actor, Object, and Property (as shown in Fig. 3).
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As there are two tags for each entity, i.e. the B-tag and the I-tag, our label set
size becomes 9 (from 2n + 1 where n is the number of entities) namely B-action,
I-action, B-actor, I-actor, B-object, I-object, B-property, I-property,
and 0. In reality, we only use 7 tags, namely B-action, B-actor, B-object,
I-object, B-property, I-property, and 0 as we do not have instances for
either I-action or I-actor.

5 Learning

5.1 Syntactic Analysis of Guideline Sentences

In this section, we will use the following common terminology. Part-of-speech
(POS) is a category of words that have similar grammatical properties. Noun
(e.g., noun NN or plural noun NNS), verb (VB), adjective (JJ), determiner (DT),
adverb (RB), and punctuation (PUNCT) are some common POS in English
language. The complete POS tags set that we use and their description can be
found on Penn Treebank POS Tags!.

A lemma is a word that can be inflected into several forms. E.g. eat as a verb
is the lemma for eat, eats, eating, ate, and eaten.

. punct
P
d L e T T \
DT ¥\ NNS <sbi- MD <c>VB JJ €nmoc¥NN IN/  RB <amod- JJ <nmocNNS YPUNCT

All patients  should have appropriate monitoring for clinically significant AEs

Fig. 5. An example of dependency tree

In order to build the features for the learning model which will be explained
further in the next section, we need to perform syntactic analysis tasks on the
sentences. These tasks are encapsulated as a pipeline which consists of several
steps, namely:

— tokenisation that splits every component in the sentence into a single token. In
All patients should have appropriate monitoring for clinically significant AFEs.,
there will be ten tokens: All, patients, should, have, appropriate, monitoring,
for, clinically, significant, AEs, and ..

— POS tagging that marks up the words corresponding to a particular part of
speech. Following the previous example, the POS tags are as follow: All/DT,
patients/NNS, should/MD, have/VB, appropriate/JJ, monitoring/NN,
for/IN, clinically/RB, significant/JJ, AEs/NNS, ./PUNCT.

— lemmatisation which groups the same uninflected base form of each word
into the same cluster. Using the previous example, the lemmas are as follow:
All/all, patients/patient, should/should, have/have, appropriate/appropriate,
monitoring/monitor, for/for, clinically/clinically, significant/significant,

AEs/aes, ./..

! https://www.ling.upenn.edu/courses/Fall_2003/ling001 /penn_treebank_pos.html.
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— dependency parsing which parses the sentence based on the dependency rela-
tion of the words, i.e. every word is connected to each other by a direct link.
Figure 5 shows the dependency parse tree for the sentence All patients should
have appropriate monitoring for clinically significant AEs.. The dependency
relationship marks the link between two words. For example, the link connect-
ing monitoring to appropriate is marked by the relation nmod, or (nmod) —
(monitoring, appropriate), which means that appropriate is a noun modifier
for monitoring.

We follow the approach used in [5] to utilise the Mate Tools? [3] to perform the
steps in the syntactic analysis. This tool has achieved state of the art performance
on the shared task for syntactic analysis [8] so we can incorporate it in our
system.

5.2 Semantic Analysis of Guideline Sentences

Similar to the syntactic analysis, we adapt the approach done in [5] into our
semantic analysis. This step is analogous to the semantic role labelling pipeline
in [3], namely the predicate identification, predicate disambiguation, argument
identification, and argument classification. In relation to our problem domain,
each of these steps in the pipeline deals with one particular task as follows:

1. identifying words that are either Action or Object, which corresponds to the
predicate identification. The reasoning behind choosing these two concepts
is because they govern the relationship to other ontology concepts in the
hierarchy. For example, by knowing if a word is an Action or an Object, we
can further find the rest of the concepts through the relationships acts_on,
has_actor, and has_property.

2. classifying words identified in step 1 to their correct concept, similar to the
predicate disambiguation. For every verb and noun that can be either an
Action or an Object, this step classifies them into the actual ontology con-
cept, e.g. have/Action, monitoring/Object.

3. identifying words that are related to the instances in step 1, which corresponds
to the argument identification. The instances that we are looking for in this
step are the Actor of an Action and the Property related to any TypeThing
concept. For example, this step will recognise patients as an Actor and appro-
priate as a Property.

4. classifying the relationship holds between a pair of instances from step 1 and
step 3, which corresponds to the argument classification. The input of this
step is a pair of words and its corresponding pair of concepts such as (patients,
have) — (Actor, Action) and (have, monitoring) — (Action, Object).

2 http://code.google.com /p/mate-tools/ .
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Table 2. Feature sets and their usage

Action and Object Related concepts

Identification | Classification | Identification | Classification
word form . ° ° °
word lemmata ° — — —
word POS ° — ° °
dependency relation | ® — ° °
parent POS ) . — —
child words ° — — —
child POS . — — —
dependency words | — — ° °
position — — ° °
word embedding ° ° ° °

5.3 Features

In order to do the semantic analysis, we build one learning model for every step
in the pipeline. This means we need to have a set of features for every learning
model as it is more likely that one set of features for a task will not perform
as well as when it is used for a different task. We based our feature sets on the
intersection between the approach used by [5] and [6] for semantic role labeling
task.

Most of the basic features have been implemented by Mate Tools as explained

in Sect. 5.1. Furthermore, our additional features can be derived from the ones
that have been provided. These features are as follow:

1.

affected word form, which is the original word in the sentence

2. affected word lemmata taken from the lemmatisation step in syntactic anal-

ysis

affected word part-of-speech taken from the part-of-speech tagging in syn-
tactic analysis

relation to parent, which is taken from the relation of dependency parsing
in syntactic analysis

. parent part-of-speech. The parent word can be derived from the dependency

parsing in syntactic analysis

child words, the same with affected word form but for all children of current
word. This is derived from the dependency parsing in syntactic analysis
child part-of-speech, the same with parent part-of-speech but for all children
of current word

dependency between words, i.e. the words in dependency relations between
the action and its object, the action and its actor, or the property and its
action/actor/object.

position of affected words, e.g. before or after the predicate
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10. word wvector representation, which is the word embedding or the numerical
representation for every word

Vectorising categorical features into numerical will inevitably generate a very
sparse feature matrix. To compensate this phenomenon, we add the last feature
10 which is a dense feature matrix in nature. This feature is also used to add
more generalisation to other features, for instance the POS features, which are
specifically important for the semantic analysis task. Slightly different from the
approach used in [5], we utilise the GloVe 6 billion tokens® [17] and the fastText
16 billion tokens* [15] as our word vector representation.

Table 2 shows the features and their usage in each semantic analysis steps.

5.4 Learning Algorithm

To get the best learning model for our semantic analysis steps, we run our
dataset against several classifiers. To achieve this, we annotate our guideline
sentences following the ontology concepts needed for each particular step. For
example, in the first and second step, we only annotated words in the sentences
as either Action or Object. Then we give the label for those words as either
1 (for potential Action or Object) or O (for others). For the second step, the
classifier will learn to distinguish the words recognised in step 1 as either 1 (for
Action) or 0 (for Object).

After comparing several classifiers, we choose perceptron [20] as our learning
algorithm as it shows the best result compared to the rests, e.g. decision tree,
and random forests. We use the free perceptron library from scikit-learn. In
perceptron, during the training step, for every input x; and the expected output
y; in the training set, the algorithm will calculate the output g;(t) using the
weight matrix w(t) and activation (also called step) function f as in Eq. (1). In
every iteration, the weight matrix is updated following Eq. (2) where w; is the
weight for feature 4, x;; is the ith feature value of jth training data, and 7 is
the learning rate.

9;(t) = fiw(t) - x] (1)

wi(t +1) = wi(t) +n- (F; —y;(t)z;a (2)
The learning process will stop until it reaches a converging point, i.e. the

value of |§; — y;| < € where € is a very small threshold value. Otherwise, it will
stop until it passes the maximum number of learning iteration.

5.5 Long Short-Term Memory for NER

For our NER approach, we built a neural network learning model using long
short-term memory (LSTM) [9]. LSTM is an architecture in recurrent neural

3 https://nlp.stanford.edu/projects/glove;/.
4 https:/ /fasttext.cc/docs/en /english-vectors.html.
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network (RNN). RNNs are commonly used to analyse sequence and time series
data. However, unlike RNNs, LSTMs can also capture long-term dependencies in
the data. This is due to an LSTM unit/cell is made up of an input gate, output
gate, and forget gate that make an LSTM cell can learn an important input,
keep it as long as it is deemed important, and extract it when it is required.

Figure 6 illustrates our NER model using LSTM for the first 4 words in
the sentence “All patients should have appropriate monitoring for clinically sig-
nificant AEs.” Although Fig. 6 shows that the input is represented by word
embeddings and part-of-speech features, we also ran many experiments using
the combination of all possible feature sets in Table 2. We also conducted exper-
iments to see the effect of using different embedding dimensions.

Dense|
7 units

Dense
100 units

Dense
200 units|

Concatenation

Bidirectional LSTM

POS + word
embeddings

patientsT

Fig. 6. Named-entity recognition using LSTM

For every word token and its part-of-speech in the sentence, we use bidi-
rectional LSTM with 128 units to recognise the pattern in both forward and
backward directions. The outputs of the LSTM layers are merged in the next
layer. We added two subsequent dense layers with 200 and 100 units respec-
tively. These additional layers added the depth of our model to learn better
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from the inputs. Finally, the output layer contains 7 units for each label in our
data domain as described in Sect. 4.3.

6 Evaluation

6.1 Dataset Analysis

Our dataset has a total of 379 sentences, 216 of them are taken from The
National Institute for Health and Care Excellence (NICE)®, 98 are from The
Scottish Intercollegiate Guidelines Network (SIGN)®, and 65 are from Annals of
the Rheumatic Diseases (ARD)7. These sentences are gathered from guidelines
for various diseases to capture the nature of the sentences in a clinical guideline
setting. Overall there are 7967 tokens and 1414 types, i.e. one sentence would
have 21 words in average. The shortest sentence has 9 words in it whereas the
longest has 66.

The annotation of the dataset was performed by a single annotator to mark
the ontology of concepts on words following the hierarchy in Fig. 3. Some diffi-
culties became evident when dealing with an Actor or an Object as well as a
Property. For example, the annotator sometimes mixed up tagging a word as
an Actor in a passive sentence where it should be an Object, and vice versa.
Determining if there is a Property in a phrase can also be challenging. For
example, in the phrase adjuvant therapy, the annotator initially marked both
words as Objects. On a further examination, it was then revised so that now
adjuvant is the Property of the Object therapy. We believe that it also becomes
more difficult if we want to have a more fine-grained concepts in our annota-
tions. Although all considerations have been taken into account, we may not be
surprised if there are still several inconsistencies and/or ambiguities in our final
dataset.

Table 3. Counts of instances of concepts and relations

Concept | Instances | Relations Instances
Action 630

Actor 261 has_actor 128
Object 691 acts_on 676
Property | 825 has_property | 823
Total 2407 Total 1627

Table 3 shows the counts of instances of concepts and relations. It should
be noted that there are many actions without explicit actors in our dataset.

® https://www.nice.org.uk/.
5 https://www.sign.ac.uk/.
" https://ard.bmj.com/.
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Furthermore, some actors do not involve in any action, i.e. they just have some
properties to modify them. As for our NER approach, the counts of named-entity
instances can be seen in Table 4.

Table 4. Counts of named-entity instances

1IOB tag Instances

0 3785
B-action 472
B-actor 281

B-object 1507
I-object 769
B-property | 928
I-property | 225
Total 7967

6.2 Experiments

After finalising our dataset, we ran several machine learning classifier algorithms
to evaluate the performance of our semantic annotations approach as we briefly
mentioned in Sect. 5.4. We use the common evaluation metrics precision and
recall. Precision is defined as the percentage of predicted instances that are
correct whereas recall is defined as the percentage of correct instances that are
predicted by the model. It is also often that we combine precision and recall into
a single metric called Fi-score, particularly to simplify the comparison between
several classifiers. The Fi-score is computed as the harmonic mean of precision
and recall (Table5).

Table 5. Evaluation Fi-score values for several classifiers

Classifier Precision | Recall | F1-score
Decision tree 0.745 0.512 | 0.603
Random forest 0.792 0.488 | 0.604
Perceptron 0.603 0.678  0.638
GloVe 300 4+ POS 0.854 0.881 | 0.867
GloVe 200 + POS & lemma 0.855 0.879 |0.867
GloVe 300 4+ POS & parent 0.846 0.888 | 0.866
Wiki 300 + POS & dependency 0.853 0.876 | 0.864
Wiki 300 + POS & parent & dependency | 0.856 0.872 | 0.864
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Table 6. Evaluation Fi-score values for several relation classification

Classifier F'1-score
300d 300/200/100/100 | 0.885
100d 100/100/100 0.881
100d 100/100/100 0.877

Table 6 shows the performance of several classifiers for our semantic anno-
tation approach. For each classifier, we perform evaluation using tenfold cross-
validation setting, i.e. in every fold, there will be ten equal portions of data where
one portion out of ten will be used as testing. We can see variations of trend
for each performance metric. Random forests has the best performance (79%)
for correctly predicting the concepts and relations in the sentences, i.e. 4 out of
5 annotations are correct. Meanwhile, perceptron is the best for predicting all
correct concepts and relations (67%), roughly 7 out of 10 correct annotations
can be predicted. Using the Fi-score, the best one is achieved by perceptron
(64%) with mean 0.97 and £0.007 standard deviation.

Table 6 also shows some experiments of NER using LSTM for our domain.
Here, we only show 5 experiments although in reality we ran many more to get
the best result. We tried using every possible combinations of features in Table 2.
We also investigated the effect of using pre-trained word embeddings with vary-
ing dimension size. We found the best Fi-score of 87% using the combination of
POS feature and GloVe embeddings of size 300.

As we adapted the approach done by [5], it would be interesting to see how
our performance would be if we run it against their dataset. It will also answer the
question on how much the domain used to build the model affects its performance
when used in a different one. This was outside the scope of the present paper,
but will be explored in future work.

7 Conclusion

In this paper, we presented our work to annotate semantic information in guide-
line sentences. We began by collecting guideline sentences from the English,
Scottish, and European guideline corpora. These sentences serve as the prelim-
inary dataset for applying linguistic analysis in the domain. Although we only
have 379 sentences in our dataset, we have done around 4000 annotations for
the concepts we are interested in.

Following the approach in [5], we annotated the dataset using a hierarchy of
concepts. We adapted their ontology concepts using only concepts that we found
useful for our problem at present. We also conducted a named-entity recognition
task using the same ontology concepts to compare the results. Furthermore, the
more fine-grained concepts we want to apply, the more challenging it becomes.
As our current development only has one annotator for the whole dataset, to



204 F. Rahman and J. Bowles

increase the accuracy of our annotation we should consider adding one or more
annotators in the future.

The main aim for this work is to help people retrieve the key information in
clinical guidelines. As shown in [19], we built a system to do formal verification
of a therapy algorithm for type 2 diabetes. As guidelines are expressed in natural
language, they are prone to ambiguity, incompleteness, and inconsistency. We
expect that our work will help further the development of clearer and better
clinical guidelines.

In future work, our aim is to build a framework that integrates the whole
process defined in [19]. It means that we will also add functionalities to produce
some formal models from the annotated guideline sentences. We need to further
assess the performance of our approach when compared to different datasets.
Finally, we also plan to build a user interface to help the annotation process and
to visualise the annotation result.
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