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Abstract. The brain is a highly reconfigurable machine capable of task-specific
adaptations. The brain continually rewires itself for a more optimal configuration
to solve problems. We propose a novel strategic synthesis algorithm for feed-
forward networks that draws directly from the brain’s behaviours when learning.
The proposed approach analyses the network and ranks weights based on their
magnitude. Unlike existing approaches that advocate random selection, we
select highly performing nodes as starting points for new edges and exploit the
Gaussian distribution over the weights to select corresponding endpoints. The
strategy aims only to produce useful connections and result in a smaller residual
network structure. The approach is complemented with pruning to further the
compression. We demonstrate the techniques to deep feedforward networks.
The residual sub-networks that are formed from the synthesis approaches in this
work form common sub-networks with similarities up to *90%. Using pruning
as a complement to the strategic synthesis approach, we observe improvements
in compression.
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1 Introduction

Modern Artificial Neural Networks are increasingly used in a wide range of domains.
One emerging issue, however, is that they can often become large and take consid-
erable time to compute results. Despite recent approaches to real-time, on-demand AI
deployments [1] practical examples of deployed systems often are simply not feasible
in edge and IoT use cases [2]. There are approaches to increase the compression of a
deep neural network (DNN) by reducing the size of the model’s parameter space and
therefore, memory and storage requirements. The compression also has improvements
on compute time for the device where the model is deployed.

This work explores the notion of synthesising neural networks [3–7]. The proposal
is for a network to generate weights that are beneficial to the outcome from a very
sparse network. Sparse networks are networks that have most of the connections in the
network disabled for training and in deployment. Synthesis would begin with a random
sub-network of a substantial architecture, that is unlikely to be optimal for the problem.
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These sub-networks are viable and trainable networks, but by design are random and
unlikely to be optimal in structure and weights for solving the problem.

The synthesis algorithms start generating connections, randomly or strategically, to
increase the complexity of the network until the capacity threshold for generation is
met. The threshold is a hyperparameter that is fixed during training.

The strategic approach to the generation of connections focuses on the high per-
forming areas of the network (targets). These high performing connections are used to
determine an origin and termination neuron for the new connections. The areas are
defined as having the highest impact on the output of the network. The impact is
positive when the network makes an overall improvement over a range of statistics, for
example, AUC and validation accuracy [8].

Primarily, the widely used example of compression is magnitude-based pruning [9].
The compression does come at the cost of accuracy, and this is more so at higher
compression ratios. The decay of accuracy is minimal until reaching a nearly com-
pletely sparse, highly compressed, network [3, 10–15]. This is clearly seen in [11],
where compression at *104� with a drop in accuracy of less than 4% on CIFAR-10.

The main objective is to be able to use the pruning and synthesis approaches as
complementary techniques to train a model. The combination of the techniques is
expected to lead to higher compression in the same models.

The key contribution of the paper is a strategic approach to reconfiguring a net-
work, while training, so that its structure is optimal for the problem set. More
specifically, we describe a synthesis approach which complements current pruning
techniques and is targeted at deep neural network models. We show that our proposed
approach results in a smaller residual network structure which is a more optimal
configuration for the dataset, in terms of compression, while maintaining accuracy.

The remainder of this paper is structured as follows. Section 2 outlines related
work. Section 3 presents the different approaches and variants we worked with. Sec-
tion 4 describes the application of these approaches to a dataset and layered network.
We present results in Sect. 5 and provide insights from these in Sect. 6. Section 7
concludes the paper and outlines ideas for future work.

2 Related Work

The works of [3–7] make direct use of synthesis and pruning networks to achieve
compressed and accurate architectures. A direct comparison of the improvements made
when using the combination of grow-prune techniques is given in [3] where the use of the
techniques provide an improvement of 40% over the original accuracy and compression
of eight times smaller over the prune only model of 5.7 times smaller. This is achieved
using a combination of synthesis and pruning the long short-termmemory cells (LSTMs)
[16] during training. The synthesis and pruning processes are attributed to decreasing the
inference time of the models by *16% and error rates by 10% on average.

Xiaoliang Dai et al. [4] show that their implementation has reduced the learning
costs of training the model by over 65% from scratch. They also claim that the results
of the algorithm attain a higher accuracy over the baseline network. The implemen-
tation seen in [6] uses a random approach to select the next artifact to be added to the
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network labelled “Random Growth” and is hence closely related to our work. Shayan
Hassantabar et al. also refers to a “gradient-based growth” [3] proposed initially by Dai
et al. [4] and “full growth”.

Neuron pruning and synthesis are techniques used in this work. The techniques for
pruning and synthesis of neurons is similar to that used by Shayan Hassantabar et al.
[6], Hengyuan Hu et al. [15] and Timur Ash [17], whereby, the neurons are selected at
random but also by their activation values. The activation-based generation uses the
fact that an active neuron is highly active; this neuron can be duplicated in the network.
It is claimed that the aggressive network reduction can sustain the accuracy of the
network. Our proposed approach draws from these techniques and extends them
towards a strategic approach to the growth phase of the training.

In [18], a random synthesis approach on a fully connected network is proposed,
where neurons are enabled until the accuracy of the network is achieved. The random
generation involves a fully connected neuron being added to the network. The weights
of the neuron are also fully initialised randomly. The technique described is close to the
random approach to synthesis in our work.

Currently, a significant component of the compression and reduction of networks is
the use of pruning. Pruning is widely used when trying to reduce complexity and
maintain accuracy in the model. Pruning has been used to achieve high compression on
large architectures such as with 60 times less dense on ResNet [19] and 36 times less
dense MobileNet [20], while also achieving 13 times smaller with ShuffleNet [21].

Pruning is used to remove weights from a network that are contributing small value
to the network. Pruning is most used to remove weights that centre around zero in their
magnitude. Some of the earliest works on pruning [22, 23] show that this method of
network compression can coarsely be applied and still achieve high levels of
compression.

In the TensorFlow library, there are built-in pruning methods which are referred to
as schedules. The available schedules are the ConstantSparsity [9] and Polyno-
mialDecay [24]. The ConstantSparsity refers to the use of a pruning schedule that tries
to prune a constant number of weights for each time it is applied to the network. This
allows the user to specify a sparsity that the algorithm prunes throughout the training.
The parallel drawn from TensorFlow’s implementations in our work is constant
sparsity. The constant sparsity model is closely replicated, in this work, to achieve
similar effects as in the TensorFlow library. Constant sparsity was implemented as this
is the simple case and has a lower complexity for implementation.

It transpires that the current state of the art and foundational approaches provide
high levels of compression using pruning [12–14, 19]. There are also generative
techniques [3–7] that show advances in the growing, referred to as synthesis in this
work. The limitations in the synthesis in the above techniques show that only random
techniques are directly explored. The review also shows that some explore the com-
bination of pruning and synthesis, but this is limited. Where this work builds on
compression is the use of a strategic method of synthesising networks but also then to
explore the feasibility of the combination of the pruning with different approaches to
synthesis. There is also a gap in the literature reviewed when looking at comparing the
generated networks from different approaches. This work also touches on the network
structures that form because of the different approaches. These structures may show
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similarity if the networks can find similar optimal solutions to the same problem and
initial state.

3 Method

3.1 Approaches

There are five developed methods for compression of the models.

Random Synthesis
Random synthesis makes use of the initialised minimum network. From this starting
point, the network is augmented with random new connections and weights until the
end of the training period.

Strategic Synthesis
Strategic synthesis makes use of the initialised minimum network. From this starting
point, the network is then augmented with new connections and weights which are
selected and generated based on a ranking of current network weights. This continues
until the end of the training period.

The weights are ranked according to the absolute magnitude of the tensor weights
in all layers (LÞ of the network (cÞ. The set U is the top ranked magnitudes and is bound
by the parameter N which is defined as the number of focal junctures.

X ¼ U : MAXð cLnUj jj jÞ; Uj j\Nf g ð1Þ

With the top N focal junctures selected, the process of generating a Gaussian
distribution curve to then select the terminus of the new synthesis connection is formed.

f xð Þ ¼ 1

r
ffiffiffiffiffiffi

2p
p � e � x�bj j�lð Þ2

2r2

� �

ð2Þ

The function uses the standard Gaussian distribution but uses the absolute distance
in the potential terminus (xÞ relative the the orgin of the connection bð Þ. The values of l
and r are set to 0 and 1, respectively.

Pruning
Pruning begins with a fully dense network with all connections and weights enabled
and initialised. In this work, the pruning algorithm used is the constant pruning style.
Constant pruning assumes that a fixed number of connections are removed during each
step that pruning is applied.

Random Synthesis with Pruning
This approach begins with the minimum network. From here, the combination of
random synthesis and pruning is applied on a fixed schedule.

Strategic Synthesis with Pruning
This approach begins with the minimum network. From here, the combination of
strategic synthesis and pruning is applied on a fixed schedule.
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3.2 Procedure

The proposed strategic approach is the first step in steering the network towards its goal
of equalling or improving upon the same network. The improvement is the network’s
ability to solve the problem presented – measured using validation accuracy and AUC.

Validation accuracy is defined as the networks ability to correctly classify data
samples as a percentage of the total number of validation samples (test samples) during
training.

AUC is defined as the area in 2D space the is occupied underneath an Receiver
Operating Characteristic (ROC). The ROC itself is defined as the performance of the
model over varying classification thresholds.

When the combination of synthesis and pruning algorithms are applied, they are
applied with the pruning first taking place then the synthesis. The ordering is used to
stop newly generated connection instantly being removed from the network as there is
potential for a new connection to be initialised with a low magnitude.

The steering is achieved by dynamically defining focal junctures (targets) in the
network. These focal junctures are defined as connections in the network that are the
most influential on the output (large magnitudes). The algorithm targets the highest
contributing junctures, given absolute magnitudes. The aim is to reinforce the strong
connections and propagate the critical features and information through the network.

The junctures have an origin (neuron) and are aware of the number of neurons in
the subsequent layer. The size of the subsequent layer is used to generate a Gaussian
distribution vector of the same dimensions. The vector is used to select the terminus of
the new connection using the origin of the target in the subsequent layer.

The Gaussian distribution for the vector is an assumption that adjacent neurons have
more relevance to one another. A neuron on the graph that exists further from the origin
of the new connection is considered less likely to develop an effective pathway through
the graph, and this is the initiation the vector attempts to emulate (Figs. 1, 2 and 3).

Before the network can begin training the networks require initialisation. The
initialisation enables the networks from an empty architecture to be trainable, even in
the infantile state. The initialisation of the network begins at each input neuron. From

Fig. 1. An instance of a neural network architecture (sub-network) at a point in time during the
training of the network.
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each neuron at most, one random path is generated through to the output. The pathways
of neurons can intersect and overlap. This guarantees a connection to the output and
that all inputs, at the beginning, are considered at the output.

The sub-network initialisation describes the state of a network when the synthe-
sising processes are involved. The network is initialised to a state whereby the inputs
are connected to the output through a random walk. The sub-network is initialised with
this procedure such that the information about the training samples is not lost, as it
could be integral to the models learning.

The connections from the initial layer to the subsequent layer are defined as having
a single connection from each input neuron. From the subsequent layer, where there
has been a connection made to the previous layer, a new connection can be formed.
The process is a random walk from all inputs to the output along a single path. The
paths can overlap or be entirely separate from the rest of the pathways. If the pathways
overlap, the network only maintains a single connection at this juncture.

Fig. 2. a) Application of a synthesis algorithm; green connections and neurons are representing
synthesised connections. b) Application of magnitude-based pruning; red connections and
neurons are representing pruned connections. (Color figure online)

Fig. 3. Resulting sub-network structure after pruning and synthesis is applied
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4 Problem Dataset

The dataset [25], has been selected to test the compression algorithm and is a simple
binary classification problem. The data set is comprised of 303 samples, each having
13 fields, which after applying techniques such as one-hot or Boolean encoding the
networks input parameters such as age, sex, chest pain type become 27 in number. The
task of the neural network is to classify if the patient has heart disease or not correctly.
For testing, the dataset is split into 80% for training, and the remaining 20% is used for
validation. A network architecture has been selected and fixed for each of the different
training methods. The architecture is shown in Fig. 4, the architecture has been selected
as it is a small and simple architecture, but still contains a large enough set of
parameters to tune and modify. The 50 models initialised for testing were generated
through TensorFlow and are the same models for all different approaches (Sect. 3.1).

The network used for testing is composed of an input space of 27 neurons. The
subsequent layers are 16 and 8 neurons wide – Fig. 4.

5 Results

Table 1 presents the highest performing models across different pruning and synthesis
thresholds. The thresholds are defined as an upper and lower limit for the algorithms to
apply pruning and synthesis, respectively. The results indicate that the performance of
the strategic synthesis with pruning algorithm, as averaged over the 50 test networks,
has the highest performance, by *1.5%. The AUC of the strategic synthesis with
pruning varies below the dense network between 3–11%. Whereas pruning alone varies
below the dense network by 10–12% - Table 3.

The networks using strategic synthesis are within 0.5% of the sub-networks spar-
sity. This means the synthesis approach can add a minimal set of connections to the
network, and this achieved an improved accuracy over the sub-networks of*6%. With
the *3% drop in accuracy, the strategic approach alone, with the current set of

Fig. 4. Network architecture diagram for problem dataset.
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parameters, is a competitive process and provides functional improvements for com-
pression. The strategic synthesis also has the highest AUC from all results.

Figure 5 shows that pruning is highly influential over the varying values for
sparsity thresholding. With pruning as the benchmark, the strategic with pruning
synthesis algorithm shows improvement towards the performance of the pruning as the
compression ratio is increased. The strategic synthesis with pruning, as with the ran-
dom synthesis and random synthesis with pruning, at lower thresholds are generating
too many new connections in the network. The over synthesising of connections could
be the inhibitor in early training cycles and contributing to false starts.

Table 1. Mean performance results for all algorithms with sparsity threshold 99%

Model type Accuracy AUC

Dense 84.83% 78.19%
Pruning 86.21% 72.52%
Sub-Network 77.31% 72.04%
Random Synthesis 77.31% 72.04%
Strategic Synthesis 83.28% 78.70%
Random Synthesis with Pruning 80.79% 76.46%
Strategic Synthesis with Pruning 83.62% 75.80%

Fig. 5. Model validation accuracy with varying sparsity threshold. Typical values for the
validation accuracy of the 50 models generated. Mean value of the samples is represented by ‘x’.
The ‘o’ represents outliers for the data. All plot plotted values are calculated using an exclusive
median.
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When analysing the hybrid approaches, the random synthesis approach can achieve
higher compression. The higher compression, compared to the strategic synthesis, is
likely to be the random weight initialisation and the instant pruning that can happen to
these connections. Where the strategic is a copy of the large weight, the random can
have small values approaching zero as new connection weights.

With marginally lower compression, the strategic synthesis approach can improve
the performance over the random synthesis with pruning by *3%. The performance
improvement can be further enhanced, as in Table 2, where the strategic and strategic
with pruning can find a solution(s) that achieves the 93.1% accuracy.

The results show that the strategic with pruning is the most capable model,
achieving optimal solutions at 93.1% overall accuracy thresholds. The high perfor-
mance of finding these optimal solutions shows that the problem space is better
explored with this guided approach to finding a consistently optimal solution in the
population of tested networks.

The sub-network models can perform, in the case of the maximum accuracy, better
than that of the dense case. The high performance implies that one or more the ran-
domly generated subnetworks had a structure that is more optimal than a fully dense
network. The sub-network models perform within *1% inaccuracy to the pruning
networks.

With strategic synthesis with pruning performing well in searching for an optimal
network, the strategic synthesis approach without pruning was able to find the most
optimal sub-network for all approaches reaching an accuracy of 96.55% at a threshold
of 90%.

The sub-networks are also able to achieve stability, as with the dense networks. The
lower performance at a sparsity averaging 92.1% the small performance loss over the
dense is marginal and when optimising for compression much more desirable.

Pruning has a lower AUC for all thresholds. Once the models set at a threshold of
85% or above, the networks exceed the performance of the pruning networks. The
improvement could suggest that the other approaches better handle the changing
structure of the network in training and that they are better able to persist information

Table 2. Maximum achieved validation accuracy for each algorithm over varying sparsity
thresholds from 80% to 99%

Model type Sparsity threshold
80% 85% 90% 95% 99%

Dense 87.93% 87.93% 87.93% 87.93% 87.93%
Sub-Network 89.66% 89.66% 89.66% 89.66% 89.66%
Pruning 90.43% 89.66% 91.38% 89.66% 91.38%
Random Synthesis 89.66% 91.38% 93.10% 89.66% 93.10%
Strategic Synthesis 87.93% 91.38% 96.55% 91.38% 91.38%
Random Synthesis with Pruning 89.66% 93.10% 93.10% 89.66% 91.38%
Strategic Synthesis with Pruning 93.10% 93.10% 93.10% 93.10% 93.10%
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more effectively than pruning alone. The behaviour is particularly evident in the
strategic synthesis with pruning where the algorithm is managing to outperform
pruning at all thresholds.

6 Further Considerations

6.1 Residual Networks

The networks generated using all the compression approaches form residual networks.
These networks are all solving the same problem, with the same architecture and same
perceived learning time, these networks converge to follow a typical core structure. The
typical core structure would suggest that the optimal solution to the problem for this
network can be deduced from overlaying and finding commonality in these structures.

Table 3. Maximum achieved validation AUC for each algorithm over varying sparsity
thresholds

Model type Sparsity threshold
80% 85% 90% 95% 99%

Dense 87.04% 87.04% 87.04% 87.04% 87.04%
Sub-Network 81.56% 81.56% 81.56% 81.56% 81.56%
Pruning 76.78% 76.19% 75.13% 74.61% 75.67%
Random Synthesis 72.04% 75.93% 78.26% 77.06% 76.93%
Strategic Synthesis 76.65% 79.04% 78.70% 80.91% 81.85%
Random Synthesis with Pruning 70.65% 76.46% 77.19% 76.46% 75.20%
Strategic Synthesis with Pruning 76.91% 83.62% 75.80% 77.70% 81.07%

Fig. 6. Sub-network similarity matrix
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The results visualised in Fig. 6 are taken from a representative network for each
compression approach; therefore, the networks selected may not fully represent and
average the structure. Networks for different initialisations of the graph by TensorFlow
may show that on average, the graphs share more characteristics (connections) and that
a shared core network can be extracted. The extracted network would have an
exceedingly high sparsity.

If a common network could be extracted, this could then be used to initialise the
sub-networks. With the sub-network structure known to be performant, the network
training may be reduced as well. The subnetwork could also be trained and tuned in
isolation to explore its capability in the highly sparse configuration.

6.2 Sub-networks

When evaluating the sub-networks used to initialise the networks for the synthesis,
testing showed that there are many cases where the network can initialise and learn the
problem with high accuracy. The learning of the sub-network is beneficial and has
enabled the synthesis approaches to perform well.

6.3 False Starts

The sub-networks perform competently, on average *77% accurate, but in the case of
a false start, the accuracy can be as low as *45%. When the algorithm does not
manage to connect new useful pathways and introduces redundant connections, these
networks are ineffective and useless.

The false start is propagated to the strategic synthesis as this network, in the case of
the lowest-performing networks, is as low as 53.45%. This means that the strategic
process was able to generate connections that would improve the network in all cases
when compared to the sub-networks.

The strategic synthesis with pruning can eliminate the false starts with a minimum
accuracy of 67.24%. The accuracy improvement over the sub-network at the start of
training shows that the network can be improved, and that combination improves the
accuracy.

6.4 Strategic Targets

The success rate of the networks, under synthesis, can be improved using many targets
and allowing for a more significant threshold for synthesis per cycle. Increasing the
number of targets does, however, have the potential to satisfy the network synthesising
capacity very quickly. The earlier the network generates connections and reaches
capacity, the higher the risk that the connections could stem from a connection that
eventually has a weight near zero. This would make the new connections propagate
low-quality information.

The increase in the number of targets should also be coupled with pruning to
manage the unnecessary and rapid growth of the network and to reduce the velocity of
convergence for a better-generalised model.
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6.5 Redundancy

As the algorithms for synthesis are designed to start generating connections, randomly
or strategically, there are bound to be connections generated that make no meaningful
connection – suggesting that the connection either has no input or no output. With all
the synthesised models, there are redundant connections. These connections, when
removed post-training, would further reduce the size of the models.

6.6 Hybrid Scheduling

With the hybrid approaches using two sub-approaches, the scheduling and execution of
these sub-processes may impact on the network. Where the approaches work syn-
chronously, the network is managed at an approximate fixed size from the start of the
processing. The network remains at the desired compression throughout training with
variations in the structure. When considering an offset of different schedules for the
pruning of the networks, the network can synthesise more artefacts and training them
before removal. The change in the periodicity of the pruning schedule may also enable
more complex pathways through the layers of the network before removing and
breaking these, in-progress, pathways.

7 Conclusions and Future Work

Modern Artificial Neural Networks are increasingly used in a wide range of domains,
from intrusion detection in cybersecurity [26], to robotics [27], image processing, or
even controlling complex networks [28, 29] with applications to transport [30], busi-
ness networks [31, 32] and web transactions [33, 34] among others.

In this paper we have shown that synthesising network connections has shown that
it can, in some cases, perform as well as a dense or pruned network. The initialised
minimum network has also shown that an optimal sub-network can be generated at
random to solve this binary classification problem. The use of the sub-network gen-
eration at the start of the algorithm, before and during synthesis or pruning, provided
the algorithms with a good baseline from which they successfully managed to improve
upon the baseline.

The strategic synthesis with no pruning was able to improve upon the sub-network
and random synthesis. The strategic algorithm in its current state is not able to improve
the accuracy of the dense or pruned networks. This mismatch suggests that more
parameter tuning is required. The strategic synthesis falls short of matching the dense
networks by only 1.5% and the pruned networks by 3%.

When combining the strategic synthesis approach with pruning, many of the
redundant connections were removed, and this resulted in improved performance, by
0.5%.

In the context of the small model used for this work, the small difference in sparsity
equates to a small number of parameters. If the architecture were scaled to many
thousands or millions of connections, then it would be reasonable to expect that the
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compression to accuracy comparison that the strategic with pruning achieves would
exhibit a much more significant reduction in density.

With more rigorous tuning and improvements to the algorithm, the strategic with
pruning has the potential to match the performance of the pruning process in terms of
accuracy and surpass the process in terms of network sparsity (compression) and AUC.

The consistency of the strategic synthesis with pruning over varying thresholds,
concerning compression and accuracy, shows that this is a stable form of generating
networks. Our results show that we have produced a viable alternative and comple-
mentary technique to pruning. It manages to reproduce the same accuracy, within
*3% to 6% of the pruning approach.

There are several pathways to take this work forward. We note the following.

Parameter Tuning
The most interesting parameters to explore would be the initialisation strategy for
artifact synthesis. The results are based on the use of the ‘copy’ method. This initial-
isation strategy has performed well and shows that the method has scope to improve.
However, it would be worth exploring the ‘Gaussian decay’ method. This premise is
because the new connections generated at the extreme of a large distribution function
would be near zero and therefore, immediately pruned. This is also true for the random
initialisation strategy.

Post Training Pruning
For this work, pruning was used as an in-process approach. However, pruning can also
be used post-training to remove redundant connections. The application of this post-
training pruning could further yield compression on connections that are trained out
after the stop delay has occurred.

Directed Acyclic Graph Pruning
Directed Acyclic Graph (DAG) pruning could be devised and implemented as a post-
training pruning method, that will look for pathways in the DAG that terminate before
reaching the output of the network – disconnected pathways. Any path through the
network that is connected from input to output is a connected pathway. The theoretical
method would find all connections at the leaf of each disconnected pathway and
recursively remove these connections until the pathway is no longer disconnected. It is
expected that many connections are redundant, and this method of DAG pruning could
remove redundant connections.

Convolutional Neural Networks
The future work of the strategic approaches is testing its application to the CNNs.
These are classically complex and parameter dense architectures. This testing could
yield results that concur with that of this work. With the much larger architectures the
compression, if it follows the results of this work, could be significant. The strategic
artifact selection strategies would require minimal modification to be applied to the
CNN architectures.
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