
Juliana Bowles
Giovanna Broccia
Mirco Nanni (Eds.)

LN
CS

 1
26

11 From Data
to Models and Back
9th International Symposium, DataMod 2020
Virtual Event, October 20, 2020
Revised Selected Papers

Lecture Notes in Computer Science 12611

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Juliana Bowles • Giovanna Broccia •

Mirco Nanni (Eds.)

From Data
to Models and Back
9th International Symposium, DataMod 2020
Virtual Event, October 20, 2020
Revised Selected Papers

123

Editors
Juliana Bowles
University of St Andrews
St Andrews, UK

Giovanna Broccia
ISTI-CNR
Pisa, Italy

Mirco Nanni
ISTI-CNR
Pisa, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-70649-4 ISBN 978-3-030-70650-0 (eBook)
https://doi.org/10.1007/978-3-030-70650-0

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
Chapters 7, 9 and 14 are licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the
chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5918-9114
https://orcid.org/0000-0002-4737-5761
https://orcid.org/0000-0003-3534-4332
https://doi.org/10.1007/978-3-030-70650-0
http://creativecommons.org/licenses/by/4.0/

Preface

DataMod is an annual, international symposium which aims to bring together practi-
tioners and researchers from academia, industry and research institutions interested in
the combined application of computational modelling methods with data-driven tech-
niques from the areas of knowledge management, data mining and machine learning.

DataMod has a wide range of themes and topics. Considered modelling and analysis
methodologies include: Agent-based Methodologies, Automata-based Methodologies,
Big Data Analytics, Cellular Automata, Classification, Clustering, Segmentation and
Profiling, Conformance Analysis, Constraint Programming, Data Mining, Differential
Equations, Game Theory, Machine Learning, Membrane Systems, Network Theory and
Analysis, Ontologies, Optimization Modelling, Petri Nets, Process Calculi, Process
Mining, Rewriting Systems, Spatio-temporal Data Analysis/Mining, Statistical Model
Checking, Text Mining and Topological Data Analysis.

There is a particular interest in submissions from various application domains such
as: Biology, Brain Data and Simulation, Business Process Management, Climate
Change, Cybersecurity, Ecology, Education, Environmental Risk Assessment and
Management, Enterprise Architectures, Epidemiology, Genetics and Genomics,
Governance, HCI and Human Behaviour, Open-Source Software Development and
Communities, Pharmacology, Resilience Engineering, Safety and Security Risk
Assessment, Social Good, Social Software Engineering, Social Systems, Sustainable
Development, Threat Modelling and Analysis, Urban Ecology, and Smart Cities and
Smart Lands.

Synergistic approaches may include:

1. the use of modelling methods and notations in a knowledge management and
discovery context,

2. the development and use of common modelling and knowledge
management/discovery frameworks to explore and understand complex systems
from the application domains of interest.

This year, for its 9th edition, DataMod was held as a satellite event of the Inter-
national Conference on Information and Knowledge Management (CIKM 2020). The
symposium was held as a one-day fully virtual workshop, due to Covid-19. This
enabled, however, the participation of a wider audience across several different time
zones. All presentations and discussions were done online using the conference
facilities provided and Zoom.

All contributions in the form of either regular papers (up to 18 pages) or short papers
(up to 10 pages) were reviewed by three Program Committee members using
single-blind peer review, and were evaluated on the basis of originality, contribution to
the field, technical and presentation quality, and relevance to the symposium. On
average, each Program Committee member reviewed three papers and no external
reviewers were involved in the review process. EasyChair was used as an online system

for both the submissions and the reviews bidding and assignment. Before notifications
were sent to authors, a few days were left for a discussion amongst Program Committee
members to finalise the acceptance/rejection decisions.

All accepted presentations at the workshop were invited to submit a paper to be
reviewed after the workshop and to be considered for the post-proceedings. From all
submissions, this resulted in 11 long papers and 3 short papers being accepted for
publication in the post-proceedings.

Michael Vinov, IBM Research Laboratory in Haifa, gave an invited keynote at the
symposium, and presented two complementary methods for data modelling and syn-
thetic data fabrication, as well as ongoing developments on IBM’s Data Fabrication
Platform. The abstract of the talk is included in this volume.

January 2021 Juliana Bowles
Giovanna Broccia

Mirco Nanni

vi Preface

Organization

Program Committee Chairs

Juliana Bowles University of St Andrews, UK
Giovanna Broccia ISTI-CNR, Italy
Mirco Nanni ISTI-CNR, Italy

Steering Committee

Oana Andrei University of Glasgow, UK
Antonio Cerone Nazarbayev University, Kazakhstan
Vashti Galpin University of Edinburgh, UK
Riccardo Guidotti University of Pisa, Italy
Marijn Janssen Delft University of Technology, The Netherlands
Stan Matwin University of Ottawa, Canada
Paolo Milazzo University of Pisa, Italy
Anna Monreale University of Pisa, Italy
Mirco Nanni ISTI-CNR, Italy

Program Committee

Oana Andrei University of Glasgow, UK
Davide Basile ISTI-CNR, Italy
Mario Boley Monash University, Australia
Juliana Bowles (Co-chair) University of St Andrews, UK
Giovanna Broccia (Co-chair) ISTI-CNR, Italy
Marco Caminati University of St Andrews, UK
Antonio Cerone Nazarbayev University, Kazakhstan
Ricardo Czekster Newcastle University, UK
Flavio Ferrarotti SCCH, Austria
Lars Kotthoff University of Wyoming, USA
Giulio Masetti ISTI-CNR, Italy
Sotiris Moschoyiannis University of Surrey, UK
Paolo Milazzo University of Pisa, Italy
Anna Monreale University of Pisa, Italy
Reshma Munbodh Brown University, USA
Mirco Nanni (Co-chair) ISTI-CNR, Italy
Lucia Nasti University of Pisa, Italy
Céline Robardet INSA Lyon, France

Towards AI-driven Data Analysis
and Fabrication (Abstract of Invited Talk)

Michael Vinov

IBM Research Laboratory, Haifa, Israel
vinov@il.ibm.com

Abstract. IBM plays a significant role in the domain of Data Management and
Data Analysis tools. IBM research team in Haifa explores and develops two
complementary methods for data modelling and synthetic data fabrication. The
first one is a rule-based approach that provides declarative language to model
data logic and data rules. The second approach is based on machine-learning
methods both for analysis of existing data and for creation of synthetic data.
The IBM Optim Test Data Fabrication (TDF) is a tool aimed to fabricate

synthetic but realistic structural data, required for the development and testing of
data-driven tools, where data availability and privacy is a major concern.
Insurance and banking applications are just two of many other business domains
of such a kind. Synthetic data is fabricated based on a solution found by a
powerful Constraint Satisfaction Programming (CSP) solver that finds data
values satisfying all the defined rules/constraints. While being proven as very
effective, the TDF tool has a couple of inherent weaknesses:

– Manual modeling of fabrication rules/constraints
– Data fabrication performance (especially for big-data use cases)

A set of human-defined rules must be provided to the tool as an input. Rule
definition is a laborious, time and resource-consuming process, involving data
analysis as a prerequisite. Dealing with real-world data might be even more
challenging in presence of data irregularities and anomalies, or in cases when
intrinsic data dependencies and constraints are difficult to comprehend.

We propose a Machine Learning (ML) based method and an algorithm for
automatic data analysis and constraint definition which, in presence of original
(presumably production) data, will significantly simplify and speed up the
fabrication rules definition process, improve the tool's efficiency and shorten
time-to-market for our customers. We propose to combine the analytic capa-
bilities of ML methods with a solving power and precision of a CSP solver.

ML based fabrication of synthetic data with the ability to add
human-defined constraints can be used for the following major use cases:

– ML training data sets enrichment (for insufficient or imbalanced data)
– Synthetic data for testing of ML models and data driven applications.

Contents

Machine Learning

Synthesis and Pruning as a Dynamic Compression Strategy for Efficient
Deep Neural Networks. 3

Alastair Finlinson and Sotiris Moschoyiannis

Exploring Graph-Based Neural Networks for Automatic Brain Tumor
Segmentation . 18

Camillo Saueressig, Adam Berkley, Elliot Kang, Reshma Munbodh,
and Ritambhara Singh

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping
for Bike Sharing Demand Prediction . 38

Weiguo Pian, Yingbo Wu, and Ziyi Kou

Simulation-Based Approaches

A Simulation-Based Approach for the Behavioural Analysis
of Cancer Pathways. 57

Agastya Silvina, Guilherme Redeker, Thais Webber, and Juliana Bowles

Discovering the Impact of Notifications on Social Network Addiction 72
Lucia Nasti, Andrea Michienzi, and Barbara Guidi

A Simulation Study on Demand Disruptions and Limited Resources
for Healthcare Provision. 87

Juliana Bowles, Ricardo M. Czekster, Guilherme Redeker,
and Thais Webber

A Formal Model for Emulating the Generation of Human Knowledge
in Semantic Memory . 104

Antonio Cerone and Graham Pluck

Analysis of COVID-19 Data with PRISM: Parameter Estimation
and SIR Modelling . 123

Paolo Milazzo

A Formal Model for the Simulation and Analysis of Early
Biofilm Formation. 134

Antonio Cerone and Enrico Marsili

Data Mining and Processing Related Approaches

Query Rewriting on Path Views Without Integrity Constraints 155
Julien Romero, Nicoleta Preda, and Fabian Suchanek

Evaluating Trace Encoding Methods in Process Mining 174
Sylvio Barbon Junior, Paolo Ceravolo, Ernesto Damiani,
and Gabriel Marques Tavares

Semantic Annotations in Clinical Guidelines. 190
Fahrurrozi Rahman and Juliana Bowles

Deriving Performance Measures of Workflow in Radiation Therapy
from Real-Time Data. 206

Reshma Munbodh, Kara L. Leonard, and Eric E. Klein

Handshape Classification in a Reverse Dictionary of Sign Languages
for the Deaf . 217

Alikhan Abutalipov, Aigerim Janaliyeva, Medet Mukushev,
Antonio Cerone, and Anara Sandygulova

Author Index . 227

xii Contents

Machine Learning

Synthesis and Pruning as a Dynamic
Compression Strategy for Efficient Deep

Neural Networks

Alastair Finlinson(&) and Sotiris Moschoyiannis

Department of Computer Science, University of Surrey, Guildford, UK
{a.finlinson,s.moschoyiannis}@surrey.ac.uk

Abstract. The brain is a highly reconfigurable machine capable of task-specific
adaptations. The brain continually rewires itself for a more optimal configuration
to solve problems. We propose a novel strategic synthesis algorithm for feed-
forward networks that draws directly from the brain’s behaviours when learning.
The proposed approach analyses the network and ranks weights based on their
magnitude. Unlike existing approaches that advocate random selection, we
select highly performing nodes as starting points for new edges and exploit the
Gaussian distribution over the weights to select corresponding endpoints. The
strategy aims only to produce useful connections and result in a smaller residual
network structure. The approach is complemented with pruning to further the
compression. We demonstrate the techniques to deep feedforward networks.
The residual sub-networks that are formed from the synthesis approaches in this
work form common sub-networks with similarities up to *90%. Using pruning
as a complement to the strategic synthesis approach, we observe improvements
in compression.

Keywords: Sub-network � Optimisation � Compression � Pruning � Synthesis

1 Introduction

Modern Artificial Neural Networks are increasingly used in a wide range of domains.
One emerging issue, however, is that they can often become large and take consid-
erable time to compute results. Despite recent approaches to real-time, on-demand AI
deployments [1] practical examples of deployed systems often are simply not feasible
in edge and IoT use cases [2]. There are approaches to increase the compression of a
deep neural network (DNN) by reducing the size of the model’s parameter space and
therefore, memory and storage requirements. The compression also has improvements
on compute time for the device where the model is deployed.

This work explores the notion of synthesising neural networks [3–7]. The proposal
is for a network to generate weights that are beneficial to the outcome from a very
sparse network. Sparse networks are networks that have most of the connections in the
network disabled for training and in deployment. Synthesis would begin with a random
sub-network of a substantial architecture, that is unlikely to be optimal for the problem.

© Springer Nature Switzerland AG 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-70650-0_1

http://orcid.org/0000-0002-1825-0097
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-70650-0_1

These sub-networks are viable and trainable networks, but by design are random and
unlikely to be optimal in structure and weights for solving the problem.

The synthesis algorithms start generating connections, randomly or strategically, to
increase the complexity of the network until the capacity threshold for generation is
met. The threshold is a hyperparameter that is fixed during training.

The strategic approach to the generation of connections focuses on the high per-
forming areas of the network (targets). These high performing connections are used to
determine an origin and termination neuron for the new connections. The areas are
defined as having the highest impact on the output of the network. The impact is
positive when the network makes an overall improvement over a range of statistics, for
example, AUC and validation accuracy [8].

Primarily, the widely used example of compression is magnitude-based pruning [9].
The compression does come at the cost of accuracy, and this is more so at higher
compression ratios. The decay of accuracy is minimal until reaching a nearly com-
pletely sparse, highly compressed, network [3, 10–15]. This is clearly seen in [11],
where compression at *104� with a drop in accuracy of less than 4% on CIFAR-10.

The main objective is to be able to use the pruning and synthesis approaches as
complementary techniques to train a model. The combination of the techniques is
expected to lead to higher compression in the same models.

The key contribution of the paper is a strategic approach to reconfiguring a net-
work, while training, so that its structure is optimal for the problem set. More
specifically, we describe a synthesis approach which complements current pruning
techniques and is targeted at deep neural network models. We show that our proposed
approach results in a smaller residual network structure which is a more optimal
configuration for the dataset, in terms of compression, while maintaining accuracy.

The remainder of this paper is structured as follows. Section 2 outlines related
work. Section 3 presents the different approaches and variants we worked with. Sec-
tion 4 describes the application of these approaches to a dataset and layered network.
We present results in Sect. 5 and provide insights from these in Sect. 6. Section 7
concludes the paper and outlines ideas for future work.

2 Related Work

The works of [3–7] make direct use of synthesis and pruning networks to achieve
compressed and accurate architectures. A direct comparison of the improvements made
when using the combination of grow-prune techniques is given in [3] where the use of the
techniques provide an improvement of 40% over the original accuracy and compression
of eight times smaller over the prune only model of 5.7 times smaller. This is achieved
using a combination of synthesis and pruning the long short-termmemory cells (LSTMs)
[16] during training. The synthesis and pruning processes are attributed to decreasing the
inference time of the models by *16% and error rates by 10% on average.

Xiaoliang Dai et al. [4] show that their implementation has reduced the learning
costs of training the model by over 65% from scratch. They also claim that the results
of the algorithm attain a higher accuracy over the baseline network. The implemen-
tation seen in [6] uses a random approach to select the next artifact to be added to the

4 A. Finlinson and S. Moschoyiannis

network labelled “Random Growth” and is hence closely related to our work. Shayan
Hassantabar et al. also refers to a “gradient-based growth” [3] proposed initially by Dai
et al. [4] and “full growth”.

Neuron pruning and synthesis are techniques used in this work. The techniques for
pruning and synthesis of neurons is similar to that used by Shayan Hassantabar et al.
[6], Hengyuan Hu et al. [15] and Timur Ash [17], whereby, the neurons are selected at
random but also by their activation values. The activation-based generation uses the
fact that an active neuron is highly active; this neuron can be duplicated in the network.
It is claimed that the aggressive network reduction can sustain the accuracy of the
network. Our proposed approach draws from these techniques and extends them
towards a strategic approach to the growth phase of the training.

In [18], a random synthesis approach on a fully connected network is proposed,
where neurons are enabled until the accuracy of the network is achieved. The random
generation involves a fully connected neuron being added to the network. The weights
of the neuron are also fully initialised randomly. The technique described is close to the
random approach to synthesis in our work.

Currently, a significant component of the compression and reduction of networks is
the use of pruning. Pruning is widely used when trying to reduce complexity and
maintain accuracy in the model. Pruning has been used to achieve high compression on
large architectures such as with 60 times less dense on ResNet [19] and 36 times less
dense MobileNet [20], while also achieving 13 times smaller with ShuffleNet [21].

Pruning is used to remove weights from a network that are contributing small value
to the network. Pruning is most used to remove weights that centre around zero in their
magnitude. Some of the earliest works on pruning [22, 23] show that this method of
network compression can coarsely be applied and still achieve high levels of
compression.

In the TensorFlow library, there are built-in pruning methods which are referred to
as schedules. The available schedules are the ConstantSparsity [9] and Polyno-
mialDecay [24]. The ConstantSparsity refers to the use of a pruning schedule that tries
to prune a constant number of weights for each time it is applied to the network. This
allows the user to specify a sparsity that the algorithm prunes throughout the training.
The parallel drawn from TensorFlow’s implementations in our work is constant
sparsity. The constant sparsity model is closely replicated, in this work, to achieve
similar effects as in the TensorFlow library. Constant sparsity was implemented as this
is the simple case and has a lower complexity for implementation.

It transpires that the current state of the art and foundational approaches provide
high levels of compression using pruning [12–14, 19]. There are also generative
techniques [3–7] that show advances in the growing, referred to as synthesis in this
work. The limitations in the synthesis in the above techniques show that only random
techniques are directly explored. The review also shows that some explore the com-
bination of pruning and synthesis, but this is limited. Where this work builds on
compression is the use of a strategic method of synthesising networks but also then to
explore the feasibility of the combination of the pruning with different approaches to
synthesis. There is also a gap in the literature reviewed when looking at comparing the
generated networks from different approaches. This work also touches on the network
structures that form because of the different approaches. These structures may show

Synthesis and Pruning as a Dynamic Compression Strategy 5

similarity if the networks can find similar optimal solutions to the same problem and
initial state.

3 Method

3.1 Approaches

There are five developed methods for compression of the models.

Random Synthesis
Random synthesis makes use of the initialised minimum network. From this starting
point, the network is augmented with random new connections and weights until the
end of the training period.

Strategic Synthesis
Strategic synthesis makes use of the initialised minimum network. From this starting
point, the network is then augmented with new connections and weights which are
selected and generated based on a ranking of current network weights. This continues
until the end of the training period.

The weights are ranked according to the absolute magnitude of the tensor weights
in all layers (LÞ of the network (cÞ. The set U is the top ranked magnitudes and is bound
by the parameter N which is defined as the number of focal junctures.

X ¼ U : MAXð cLnUj jj jÞ; Uj j\Nf g ð1Þ

With the top N focal junctures selected, the process of generating a Gaussian
distribution curve to then select the terminus of the new synthesis connection is formed.

f xð Þ ¼ 1

r
ffiffiffiffiffiffi

2p
p � e � x�bj j�lð Þ2

2r2

� �

ð2Þ

The function uses the standard Gaussian distribution but uses the absolute distance
in the potential terminus (xÞ relative the the orgin of the connection bð Þ. The values of l
and r are set to 0 and 1, respectively.

Pruning
Pruning begins with a fully dense network with all connections and weights enabled
and initialised. In this work, the pruning algorithm used is the constant pruning style.
Constant pruning assumes that a fixed number of connections are removed during each
step that pruning is applied.

Random Synthesis with Pruning
This approach begins with the minimum network. From here, the combination of
random synthesis and pruning is applied on a fixed schedule.

Strategic Synthesis with Pruning
This approach begins with the minimum network. From here, the combination of
strategic synthesis and pruning is applied on a fixed schedule.

6 A. Finlinson and S. Moschoyiannis

3.2 Procedure

The proposed strategic approach is the first step in steering the network towards its goal
of equalling or improving upon the same network. The improvement is the network’s
ability to solve the problem presented – measured using validation accuracy and AUC.

Validation accuracy is defined as the networks ability to correctly classify data
samples as a percentage of the total number of validation samples (test samples) during
training.

AUC is defined as the area in 2D space the is occupied underneath an Receiver
Operating Characteristic (ROC). The ROC itself is defined as the performance of the
model over varying classification thresholds.

When the combination of synthesis and pruning algorithms are applied, they are
applied with the pruning first taking place then the synthesis. The ordering is used to
stop newly generated connection instantly being removed from the network as there is
potential for a new connection to be initialised with a low magnitude.

The steering is achieved by dynamically defining focal junctures (targets) in the
network. These focal junctures are defined as connections in the network that are the
most influential on the output (large magnitudes). The algorithm targets the highest
contributing junctures, given absolute magnitudes. The aim is to reinforce the strong
connections and propagate the critical features and information through the network.

The junctures have an origin (neuron) and are aware of the number of neurons in
the subsequent layer. The size of the subsequent layer is used to generate a Gaussian
distribution vector of the same dimensions. The vector is used to select the terminus of
the new connection using the origin of the target in the subsequent layer.

The Gaussian distribution for the vector is an assumption that adjacent neurons have
more relevance to one another. A neuron on the graph that exists further from the origin
of the new connection is considered less likely to develop an effective pathway through
the graph, and this is the initiation the vector attempts to emulate (Figs. 1, 2 and 3).

Before the network can begin training the networks require initialisation. The
initialisation enables the networks from an empty architecture to be trainable, even in
the infantile state. The initialisation of the network begins at each input neuron. From

Fig. 1. An instance of a neural network architecture (sub-network) at a point in time during the
training of the network.

Synthesis and Pruning as a Dynamic Compression Strategy 7

each neuron at most, one random path is generated through to the output. The pathways
of neurons can intersect and overlap. This guarantees a connection to the output and
that all inputs, at the beginning, are considered at the output.

The sub-network initialisation describes the state of a network when the synthe-
sising processes are involved. The network is initialised to a state whereby the inputs
are connected to the output through a random walk. The sub-network is initialised with
this procedure such that the information about the training samples is not lost, as it
could be integral to the models learning.

The connections from the initial layer to the subsequent layer are defined as having
a single connection from each input neuron. From the subsequent layer, where there
has been a connection made to the previous layer, a new connection can be formed.
The process is a random walk from all inputs to the output along a single path. The
paths can overlap or be entirely separate from the rest of the pathways. If the pathways
overlap, the network only maintains a single connection at this juncture.

Fig. 2. a) Application of a synthesis algorithm; green connections and neurons are representing
synthesised connections. b) Application of magnitude-based pruning; red connections and
neurons are representing pruned connections. (Color figure online)

Fig. 3. Resulting sub-network structure after pruning and synthesis is applied

8 A. Finlinson and S. Moschoyiannis

4 Problem Dataset

The dataset [25], has been selected to test the compression algorithm and is a simple
binary classification problem. The data set is comprised of 303 samples, each having
13 fields, which after applying techniques such as one-hot or Boolean encoding the
networks input parameters such as age, sex, chest pain type become 27 in number. The
task of the neural network is to classify if the patient has heart disease or not correctly.
For testing, the dataset is split into 80% for training, and the remaining 20% is used for
validation. A network architecture has been selected and fixed for each of the different
training methods. The architecture is shown in Fig. 4, the architecture has been selected
as it is a small and simple architecture, but still contains a large enough set of
parameters to tune and modify. The 50 models initialised for testing were generated
through TensorFlow and are the same models for all different approaches (Sect. 3.1).

The network used for testing is composed of an input space of 27 neurons. The
subsequent layers are 16 and 8 neurons wide – Fig. 4.

5 Results

Table 1 presents the highest performing models across different pruning and synthesis
thresholds. The thresholds are defined as an upper and lower limit for the algorithms to
apply pruning and synthesis, respectively. The results indicate that the performance of
the strategic synthesis with pruning algorithm, as averaged over the 50 test networks,
has the highest performance, by *1.5%. The AUC of the strategic synthesis with
pruning varies below the dense network between 3–11%. Whereas pruning alone varies
below the dense network by 10–12% - Table 3.

The networks using strategic synthesis are within 0.5% of the sub-networks spar-
sity. This means the synthesis approach can add a minimal set of connections to the
network, and this achieved an improved accuracy over the sub-networks of*6%. With
the *3% drop in accuracy, the strategic approach alone, with the current set of

Fig. 4. Network architecture diagram for problem dataset.

Synthesis and Pruning as a Dynamic Compression Strategy 9

parameters, is a competitive process and provides functional improvements for com-
pression. The strategic synthesis also has the highest AUC from all results.

Figure 5 shows that pruning is highly influential over the varying values for
sparsity thresholding. With pruning as the benchmark, the strategic with pruning
synthesis algorithm shows improvement towards the performance of the pruning as the
compression ratio is increased. The strategic synthesis with pruning, as with the ran-
dom synthesis and random synthesis with pruning, at lower thresholds are generating
too many new connections in the network. The over synthesising of connections could
be the inhibitor in early training cycles and contributing to false starts.

Table 1. Mean performance results for all algorithms with sparsity threshold 99%

Model type Accuracy AUC

Dense 84.83% 78.19%
Pruning 86.21% 72.52%
Sub-Network 77.31% 72.04%
Random Synthesis 77.31% 72.04%
Strategic Synthesis 83.28% 78.70%
Random Synthesis with Pruning 80.79% 76.46%
Strategic Synthesis with Pruning 83.62% 75.80%

Fig. 5. Model validation accuracy with varying sparsity threshold. Typical values for the
validation accuracy of the 50 models generated. Mean value of the samples is represented by ‘x’.
The ‘o’ represents outliers for the data. All plot plotted values are calculated using an exclusive
median.

10 A. Finlinson and S. Moschoyiannis

When analysing the hybrid approaches, the random synthesis approach can achieve
higher compression. The higher compression, compared to the strategic synthesis, is
likely to be the random weight initialisation and the instant pruning that can happen to
these connections. Where the strategic is a copy of the large weight, the random can
have small values approaching zero as new connection weights.

With marginally lower compression, the strategic synthesis approach can improve
the performance over the random synthesis with pruning by *3%. The performance
improvement can be further enhanced, as in Table 2, where the strategic and strategic
with pruning can find a solution(s) that achieves the 93.1% accuracy.

The results show that the strategic with pruning is the most capable model,
achieving optimal solutions at 93.1% overall accuracy thresholds. The high perfor-
mance of finding these optimal solutions shows that the problem space is better
explored with this guided approach to finding a consistently optimal solution in the
population of tested networks.

The sub-network models can perform, in the case of the maximum accuracy, better
than that of the dense case. The high performance implies that one or more the ran-
domly generated subnetworks had a structure that is more optimal than a fully dense
network. The sub-network models perform within *1% inaccuracy to the pruning
networks.

With strategic synthesis with pruning performing well in searching for an optimal
network, the strategic synthesis approach without pruning was able to find the most
optimal sub-network for all approaches reaching an accuracy of 96.55% at a threshold
of 90%.

The sub-networks are also able to achieve stability, as with the dense networks. The
lower performance at a sparsity averaging 92.1% the small performance loss over the
dense is marginal and when optimising for compression much more desirable.

Pruning has a lower AUC for all thresholds. Once the models set at a threshold of
85% or above, the networks exceed the performance of the pruning networks. The
improvement could suggest that the other approaches better handle the changing
structure of the network in training and that they are better able to persist information

Table 2. Maximum achieved validation accuracy for each algorithm over varying sparsity
thresholds from 80% to 99%

Model type Sparsity threshold
80% 85% 90% 95% 99%

Dense 87.93% 87.93% 87.93% 87.93% 87.93%
Sub-Network 89.66% 89.66% 89.66% 89.66% 89.66%
Pruning 90.43% 89.66% 91.38% 89.66% 91.38%
Random Synthesis 89.66% 91.38% 93.10% 89.66% 93.10%
Strategic Synthesis 87.93% 91.38% 96.55% 91.38% 91.38%
Random Synthesis with Pruning 89.66% 93.10% 93.10% 89.66% 91.38%
Strategic Synthesis with Pruning 93.10% 93.10% 93.10% 93.10% 93.10%

Synthesis and Pruning as a Dynamic Compression Strategy 11

more effectively than pruning alone. The behaviour is particularly evident in the
strategic synthesis with pruning where the algorithm is managing to outperform
pruning at all thresholds.

6 Further Considerations

6.1 Residual Networks

The networks generated using all the compression approaches form residual networks.
These networks are all solving the same problem, with the same architecture and same
perceived learning time, these networks converge to follow a typical core structure. The
typical core structure would suggest that the optimal solution to the problem for this
network can be deduced from overlaying and finding commonality in these structures.

Table 3. Maximum achieved validation AUC for each algorithm over varying sparsity
thresholds

Model type Sparsity threshold
80% 85% 90% 95% 99%

Dense 87.04% 87.04% 87.04% 87.04% 87.04%
Sub-Network 81.56% 81.56% 81.56% 81.56% 81.56%
Pruning 76.78% 76.19% 75.13% 74.61% 75.67%
Random Synthesis 72.04% 75.93% 78.26% 77.06% 76.93%
Strategic Synthesis 76.65% 79.04% 78.70% 80.91% 81.85%
Random Synthesis with Pruning 70.65% 76.46% 77.19% 76.46% 75.20%
Strategic Synthesis with Pruning 76.91% 83.62% 75.80% 77.70% 81.07%

Fig. 6. Sub-network similarity matrix

12 A. Finlinson and S. Moschoyiannis

The results visualised in Fig. 6 are taken from a representative network for each
compression approach; therefore, the networks selected may not fully represent and
average the structure. Networks for different initialisations of the graph by TensorFlow
may show that on average, the graphs share more characteristics (connections) and that
a shared core network can be extracted. The extracted network would have an
exceedingly high sparsity.

If a common network could be extracted, this could then be used to initialise the
sub-networks. With the sub-network structure known to be performant, the network
training may be reduced as well. The subnetwork could also be trained and tuned in
isolation to explore its capability in the highly sparse configuration.

6.2 Sub-networks

When evaluating the sub-networks used to initialise the networks for the synthesis,
testing showed that there are many cases where the network can initialise and learn the
problem with high accuracy. The learning of the sub-network is beneficial and has
enabled the synthesis approaches to perform well.

6.3 False Starts

The sub-networks perform competently, on average *77% accurate, but in the case of
a false start, the accuracy can be as low as *45%. When the algorithm does not
manage to connect new useful pathways and introduces redundant connections, these
networks are ineffective and useless.

The false start is propagated to the strategic synthesis as this network, in the case of
the lowest-performing networks, is as low as 53.45%. This means that the strategic
process was able to generate connections that would improve the network in all cases
when compared to the sub-networks.

The strategic synthesis with pruning can eliminate the false starts with a minimum
accuracy of 67.24%. The accuracy improvement over the sub-network at the start of
training shows that the network can be improved, and that combination improves the
accuracy.

6.4 Strategic Targets

The success rate of the networks, under synthesis, can be improved using many targets
and allowing for a more significant threshold for synthesis per cycle. Increasing the
number of targets does, however, have the potential to satisfy the network synthesising
capacity very quickly. The earlier the network generates connections and reaches
capacity, the higher the risk that the connections could stem from a connection that
eventually has a weight near zero. This would make the new connections propagate
low-quality information.

The increase in the number of targets should also be coupled with pruning to
manage the unnecessary and rapid growth of the network and to reduce the velocity of
convergence for a better-generalised model.

Synthesis and Pruning as a Dynamic Compression Strategy 13

6.5 Redundancy

As the algorithms for synthesis are designed to start generating connections, randomly
or strategically, there are bound to be connections generated that make no meaningful
connection – suggesting that the connection either has no input or no output. With all
the synthesised models, there are redundant connections. These connections, when
removed post-training, would further reduce the size of the models.

6.6 Hybrid Scheduling

With the hybrid approaches using two sub-approaches, the scheduling and execution of
these sub-processes may impact on the network. Where the approaches work syn-
chronously, the network is managed at an approximate fixed size from the start of the
processing. The network remains at the desired compression throughout training with
variations in the structure. When considering an offset of different schedules for the
pruning of the networks, the network can synthesise more artefacts and training them
before removal. The change in the periodicity of the pruning schedule may also enable
more complex pathways through the layers of the network before removing and
breaking these, in-progress, pathways.

7 Conclusions and Future Work

Modern Artificial Neural Networks are increasingly used in a wide range of domains,
from intrusion detection in cybersecurity [26], to robotics [27], image processing, or
even controlling complex networks [28, 29] with applications to transport [30], busi-
ness networks [31, 32] and web transactions [33, 34] among others.

In this paper we have shown that synthesising network connections has shown that
it can, in some cases, perform as well as a dense or pruned network. The initialised
minimum network has also shown that an optimal sub-network can be generated at
random to solve this binary classification problem. The use of the sub-network gen-
eration at the start of the algorithm, before and during synthesis or pruning, provided
the algorithms with a good baseline from which they successfully managed to improve
upon the baseline.

The strategic synthesis with no pruning was able to improve upon the sub-network
and random synthesis. The strategic algorithm in its current state is not able to improve
the accuracy of the dense or pruned networks. This mismatch suggests that more
parameter tuning is required. The strategic synthesis falls short of matching the dense
networks by only 1.5% and the pruned networks by 3%.

When combining the strategic synthesis approach with pruning, many of the
redundant connections were removed, and this resulted in improved performance, by
0.5%.

In the context of the small model used for this work, the small difference in sparsity
equates to a small number of parameters. If the architecture were scaled to many
thousands or millions of connections, then it would be reasonable to expect that the

14 A. Finlinson and S. Moschoyiannis

compression to accuracy comparison that the strategic with pruning achieves would
exhibit a much more significant reduction in density.

With more rigorous tuning and improvements to the algorithm, the strategic with
pruning has the potential to match the performance of the pruning process in terms of
accuracy and surpass the process in terms of network sparsity (compression) and AUC.

The consistency of the strategic synthesis with pruning over varying thresholds,
concerning compression and accuracy, shows that this is a stable form of generating
networks. Our results show that we have produced a viable alternative and comple-
mentary technique to pruning. It manages to reproduce the same accuracy, within
*3% to 6% of the pruning approach.

There are several pathways to take this work forward. We note the following.

Parameter Tuning
The most interesting parameters to explore would be the initialisation strategy for
artifact synthesis. The results are based on the use of the ‘copy’ method. This initial-
isation strategy has performed well and shows that the method has scope to improve.
However, it would be worth exploring the ‘Gaussian decay’ method. This premise is
because the new connections generated at the extreme of a large distribution function
would be near zero and therefore, immediately pruned. This is also true for the random
initialisation strategy.

Post Training Pruning
For this work, pruning was used as an in-process approach. However, pruning can also
be used post-training to remove redundant connections. The application of this post-
training pruning could further yield compression on connections that are trained out
after the stop delay has occurred.

Directed Acyclic Graph Pruning
Directed Acyclic Graph (DAG) pruning could be devised and implemented as a post-
training pruning method, that will look for pathways in the DAG that terminate before
reaching the output of the network – disconnected pathways. Any path through the
network that is connected from input to output is a connected pathway. The theoretical
method would find all connections at the leaf of each disconnected pathway and
recursively remove these connections until the pathway is no longer disconnected. It is
expected that many connections are redundant, and this method of DAG pruning could
remove redundant connections.

Convolutional Neural Networks
The future work of the strategic approaches is testing its application to the CNNs.
These are classically complex and parameter dense architectures. This testing could
yield results that concur with that of this work. With the much larger architectures the
compression, if it follows the results of this work, could be significant. The strategic
artifact selection strategies would require minimal modification to be applied to the
CNN architectures.

Synthesis and Pruning as a Dynamic Compression Strategy 15

References

1. Christidis, A., Moschoyiannis, S., Hsu, C.H., Davies, R.: Enabling serverless deployment of
large-scale AI workloads. IEEE Access 8, 70150–70161 (2020). https://doi.org/10.1109/
ACCESS.2020.2985282

2. Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT big data and
streaming analytics: a survey. IEEE Commun. Surv. Tutor. 20(4), 2923–2960 (2018). https://
doi.org/10.1109/COMST.2018.2844341

3. Dai, X., Yin, H., Jha, N.K.: Grow and prune compact, fast, and accurate LSTMs. IEEE
Trans. Comput. 69(3), 441–452 (2020). https://doi.org/10.1109/TC.2019.2954495

4. Dai, X., Yin, H., Jha, N.K.: Incremental Learning Using a Grow-and-Prune Paradigm with
Efficient Neural Networks, p. 10 (2019). https://arxiv.org/abs/1905.10952

5. Dai, X., Yin, H., Jha, N.K.: NeST: a neural network synthesis tool based on a grow-and-
prune paradigm. IEEE Trans. Comput. 68(10), 1487–1497 (2019). https://doi.org/10.1109/
tc.2019.2914438

6. Hassantabar, S., Wang, Z., Jha, N.K.: SCANN: Synthesis of Compact and Accurate Neural
Networks, p. 11 (2019). https://arxiv.org/abs/1904.09090

7. Dai, X.: Synthesis of Efficient Neural Networks, no. September (2019)
8. Mitchell, T.M.: Machine Learning. McGraw-Hill Inc. (1997)
9. T. (Google). tfmot.sparsity.keras.ConstantSparsity. https://www.tensorflow.org/model_

optimization/api_docs/python/tfmot/sparsity/keras/ConstantSparsity. Accessed 10 Jan 2020
10. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with

pruning, trained quantization and Huffman coding. In: 4th International Conference Learning
Representation, ICLR 2016 - Conference Track Proceedings, p. 14 (2016)

11. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In:
Proceedings IEEE International Conference on Computer Vision, vol. 2017-October,
pp. 1398–1406 (2017). https://doi.org/10.1109/ICCV.2017.155

12. Li, H., Samet, H., Kadav, A., Durdanovic, I., Graf, H.P.: Pruning filters for efficient
convnets. In: 5th International Conference on Learning Representation, ICLR 2017 -
Conference Track Proceedings, no. 2016, p. 13 (2019)

13. Zhu, M.H., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning for model
compression. In: 6th International Conference on Learning Representation, ICLR 2018 -
Workshop Track Proceedings (2018)

14. Anwar, S., Sung, W.: Compact Deep Convolutional Neural Networks with Coarse Pruning,
vol. 1, no. 2015, p. 10 (2016). https://arxiv.org/abs/1610.09639

15. Hu, H., Peng, R., Tai, Y.-W., Tang, C.-K.: Network Trimming: A Data-Driven Neuron
Pruning Approach towards Efficient Deep Architectures (2016). https://arxiv.org/abs/1607.
03250

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997). https://doi.org/10.1162/neco.1997.9.8.1735

17. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized Neural
Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1
or −1 (2016). https://arxiv.org/abs/1602.02830

18. Ash, T.: Dynamic node creation in backpropagation networks. In: International 1989 Joint
Conference on Neural Networks, vol. 2, p. 623 (1989). https://doi.org/10.1109/IJCNN.1989.
118509

19. Ma, X., Yuan, G., Lin, S., Li, Z., Sun, H., Wang, Y.: ResNet Can Be Pruned 60x:
Introducing Network Purification and Unused Path Removal (P-RM) after Weight Pruning
(2019). https://arxiv.org/abs/1905.00136

16 A. Finlinson and S. Moschoyiannis

https://doi.org/10.1109/ACCESS.2020.2985282
https://doi.org/10.1109/ACCESS.2020.2985282
https://doi.org/10.1109/COMST.2018.2844341
https://doi.org/10.1109/COMST.2018.2844341
https://doi.org/10.1109/TC.2019.2954495
https://arxiv.org/abs/1905.10952
https://doi.org/10.1109/tc.2019.2914438
https://doi.org/10.1109/tc.2019.2914438
https://arxiv.org/abs/1904.09090
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/ConstantSparsity
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/ConstantSparsity
https://doi.org/10.1109/ICCV.2017.155
https://arxiv.org/abs/1610.09639
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1607.03250
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1602.02830
https://doi.org/10.1109/IJCNN.1989.118509
https://doi.org/10.1109/IJCNN.1989.118509
https://arxiv.org/abs/1905.00136

20. Howard, A.G., et al.: MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications (2017). https://arxiv.org/abs/1704.04861

21. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional
neural network for mobile devices. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018). https://doi.
org/10.1109/CVPR.2018.00716.

22. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage (pruning). In: Advance Neural
Information Processing Systems, pp. 598–605 (1990)

23. Hassibi, B., Stork, D.: Second order derivaties for network prunning: optimal brain surgeon.
In: Advance NIPS5, pp. 164–171 (1993)

24. T. (Google). tfmot.sparsity.keras.PolynomialDecay. https://www.tensorflow.org/model_
optimization/api_docs/python/tfmot/sparsity/keras/PolynomialDecay. Accessed 10 Jan 2020

25. Janosi, A., Steinbrunn, W., Pfisterer, M., Detrano, R.: Heart Disease UCI (2019). www.
Kaggle.com. https://www.kaggle.com/ronitf/heart-disease-uci. Accessed 10 Jan 2020)

26. Ferrag, M.A., Maglaras, L., Moschoyiannis, S., Janicke, H.: Deep learning for cyber security
intrusion detection: approaches, datasets, and comparative study. J. Inf. Secur. Appl. 50,
102419 (2020). https://doi.org/10.1016/j.jisa.2019.102419

27. Goodfellow, I.J., Koenig, N., Muja, M., Pantofaru, C., Sorokin, A., Takayama, L.: Help me
help you: interfaces for personal robots. In: 5th ACM/IEEE International Conference on
Human-Robot Interaction HRI 2010, no. March, pp. 187–188 (2010). https://doi.org/10.
1145/1734454.1734536

28. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473
(7346), 167–173 (2011). https://doi.org/10.1038/nature10011

29. Karlsen, M.R., Moschoyiannis, S.: Evolution of control with learning classifier systems.
Appl. Netw. Sci. 3(1), 1–36 (2018). https://doi.org/10.1007/s41109-018-0088-x

30. Karlsen, M.R., Moschoyiannis, S.: Learning condition–action rules for personalised journey
recommendations. In: Benzmüller, C., Ricca, F., Parent, X., Roman, D. (eds.) RuleML+RR
2018. LNCS, vol. 11092, pp. 293–301. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-99906-7_21

31. Razavi, A., Moschoyiannis, S., Krause, P.: A scale-free business network for digital
ecosystems. In: Proceedings of the IEEE Digiial EcoSystems and Technologies (IEEE
DEST), pp. 241–246 (2008)

32. Schoenenberger, L., Tanase, R.: Controlling complex policy problems: a multimethodolog-
ical approach using system dynamics and network controllability. J. Simul. 12 (2017).
https://doi.org/10.1080/17477778.2017.1387335

33. Moschoyiannis, S., Krause, P.: True concurrency in long-running transactions for digital
ecosystems. Fundam. Informaticae 138(4), 483–514 (2015). https://doi.org/10.3233/FI-
2015-1222

34. Razavi, A., Marinos, A., Moschoyiannis, S., Krause, P.: RESTful transactions supported by
the isolation theorems. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009.
LNCS, vol. 5648, pp. 394–409. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02818-2_32

Synthesis and Pruning as a Dynamic Compression Strategy 17

https://arxiv.org/abs/1704.04861
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1109/CVPR.2018.00716
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/PolynomialDecay.
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/PolynomialDecay.
http://www.Kaggle.com
http://www.Kaggle.com
https://www.kaggle.com/ronitf/heart-disease-uci.
https://doi.org/10.1016/j.jisa.2019.102419
https://doi.org/10.1145/1734454.1734536
https://doi.org/10.1145/1734454.1734536
https://doi.org/10.1038/nature10011
https://doi.org/10.1007/s41109-018-0088-x
https://doi.org/10.1007/978-3-319-99906-7_21
https://doi.org/10.1007/978-3-319-99906-7_21
https://doi.org/10.1080/17477778.2017.1387335
https://doi.org/10.3233/FI-2015-1222
https://doi.org/10.3233/FI-2015-1222
https://doi.org/10.1007/978-3-642-02818-2_32
https://doi.org/10.1007/978-3-642-02818-2_32

Exploring Graph-Based Neural Networks
for Automatic Brain Tumor Segmentation

Camillo Saueressig1,2 , Adam Berkley1, Elliot Kang1,
Reshma Munbodh3(B) , and Ritambhara Singh1,2(B)

1 Department of Computer Science, Brown University, Providence, USA
ritambhara@brown.edu

2 Center for Computational Molecular Biology, Brown University, Providence, USA
3 Department of Radiation Oncology, Brown Alpert Medical School,

Providence, USA
reshma munbodh@brown.edu

Abstract. Manual evaluation of medical images, such as MRI scans
of brain tumors, requires years of training, is time-consuming, and is
often subject to inter-annotator variation. The automatic segmentation
of medical images is a long-standing challenge that seeks to alleviate
these issues, with great potential benefits for physicians and patients. In
the past few years, variations of Convolutional Neural Networks (CNNs)
have established themselves as the state-of-the-art methodology for this
task. Recently, Graph-based Neural Networks (GNNs) have gained con-
siderable attention in the deep learning community. GNNs exploit the
structural information present in graphical data by aggregating informa-
tion over connected nodes, allowing them to effectively capture relation
information between data elements. In this project, we propose a GNN-
based approach to brain tumor segmentation. We represent 3D MRI
scans of the brain as a graph, where different regions in the images are
represented by nodes and edges connect adjacent regions. We apply sev-
eral variations of GNNs for the automatic segmentation of brain tumors
from MRI scans. Our results show GNNs give reasonable performance on
the task and allow for realistic modeling of the data. Furthermore, they
are far less computationally expensive and time-consuming to train than
state-of-the-art segmentation models. Lastly, we assign Shapley value-
based contribution scores to input MRI features to learn what features
are relevant for a particular segmentation, generating interesting insights
into explaining the predictions of the proposed model.

Keywords: Graph neural networks · Brain tumor segmentation ·
Deep learning

1 Introduction

Over 87,000 people are expected to be diagnosed with brain tumors in 2020 [19].
With a low survival rate for malignant tumors, timely detection and diagno-
sis of brain tumors are crucial for developing effective treatment plans for the
c© Springer Nature Switzerland AG 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 18–37, 2021.
https://doi.org/10.1007/978-3-030-70650-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_2&domain=pdf
http://orcid.org/0000-0001-6372-0695
http://orcid.org/0000-0002-7982-7814
http://orcid.org/0000-0002-7523-160X
https://doi.org/10.1007/978-3-030-70650-0_2

Graph-Based Neural Networks for Brain Tumor Segmentation 19

patients. Neuroimaging using multimodal magnetic resonance imaging (MRI) is
integral in the diagnosis and management of brain tumors, including for surgi-
cal and radiation treatment planning, longitudinal tumor monitoring, treatment
response evaluation, and predictive analysis. These require accurate delineation
of the tumor boundary on the MRI images to characterize the tumors.

Automatic tumor segmentation methods seek to address the time and inter-
observer variability limitations posed by manual segmentation. Furthermore,
they underlie advances in quantitative tumor analysis and clinical workflow
automation. The development of such automatic segmentation methods is chal-
lenging due to several intrinsic and extrinsic factors, such as the heterogeneity in
appearance and shape of different tumor types on MRI, a lack of standardized
imaging protocols, variability in equipment, and the presence of imaging noise
and artifacts. Furthermore, advances in neuroimaging and the clinical manage-
ment of brain tumors have increased the desired complexity of the segmentation,
with an emphasis on a compartmentalized segmentation of the tumor into sub-
regions describing necrosis, enhancing and non-enhancing tumor and vasogenic
edema.

The use of deep learning methods for brain tumor segmentation has pro-
gressed rapidly in the past few years [4,16]. As opposed to conventional seg-
mentation models that rely on the extraction of pre-defined features from the
images [10,14,20], deep learning models automatically learn relevant features to
perform accurate segmentation. However, current deep learning segmentation
methods [8,9,18,34] are computationally intensive, require the division of the
images into local patches, and do not explicitly account for brain connectivity
information. They fail to capture adequately both the global structure of the 3D
images and the relational dependencies between different regions in the tumor.
We hypothesize that these properties are important for accurate and robust
brain tumor segmentation.

We propose using Graph-based Neural Networks (GNNs) to segment brain
tumors from multimodal 3D MRI. Unlike previous methods, GNNs allow for
the processing of the entire brain simultaneously, while explicitly incorporating
both local and global connectivity into their predictions by aggregating infor-
mation across neighboring nodes in the graph. As such, GNNs effectively cap-
ture relational information between the data elements. Our framework, summa-
rized in Fig. 1, first represents the 3D MRI scans of the entire brain as a graph,
where nodes represent different regions in the images and edges connect adja-
cent regions. Next, a GNN classifies each node of the graph into healthy tissue,
enhancing tumor, necrotic tissue and non-enhancing tumor, or edema. The node
predictions are subsequently mapped back to their respective supervoxels on the
MRI. We explore different GNN models for brain tumor segmentation from MRI
scans on the BraTS 2019 challenge [3,4,16]. The best performing model achieves
good performance that is comparable to other recent work. We also show that
our approach is between 5 and 15 times faster than such computationally inten-
sive methods. Finally, we provide explanations for the predictions of the deep
learning GNN models in terms of the relative contributions of the inputted MRI

20 C. Saueressig et al.

Fig. 1. Model Overview. MRI Modalities are first stacked to create one 3D Image
with 4 channels. 1) Combined modalities are clustered into supervoxels. 2) Supervoxels
are converted to a graph structure such that each supervoxel becomes one graph node.
3) Graph is fed through a Graph Neural Network, which predicts a label for each node.
4) Node predictions are overlaid back onto the supervoxels.

modalities. We generate these explanations via Shapley values, a game-theoretic
approach for fairly attributing contributions to an overall outcome among the
game participants. Such interpretations are vital for applications of these models
in the health domain.

2 Related Work

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) have, so far, been the most successful
models for fully automatic brain tumor segmentation. They excel at object classi-
fication and segmentation tasks by classifying pixels based on surrounding image
content through 2D or 3D convolutional filters. These convolutional filters are
translation invariant and can detect image edges and combine them into higher-
level image features, making them well suited for image processing. The three
best performing models of the recent 2018 BraTS Challenge [3,4,16] all consisted
of CNN-based architectures. The BraTS challenge is a brain tumor segmentation
competition where teams submit their models for testing on a multi-institutional
database of MRI scans. The best performing model by Myronenko et al. [18] used
an autoencoder-based regularization with a 3D-CNN to achieve state-of-the-art
segmentation results. The next best-performing work by Isensee et al. [9] pro-
posed that a well trained baseline 3D U-net could outperform other models with
various architectural modifications. Finally, McKinley et al. [15] used a CNN
with contextual and attentive information and tied for third place with Zhou
et al. [34] who used a U-net with a novel loss function that modeled noise and
uncertainty.

These CNN-based architectures take an extended amount of time to train,
and many have harsh GPU-requirements. The best performing model requires
34 GB of VRAM [18] and most require anywhere from 8 to 12 GB of VRAM.
Combined with the training times greater than a week, this constitutes a resource
bottleneck on training and evaluating models on new datasets. Furthermore,
these models generally require the division of the images into local patches for
training and segmentation and, hence, fail to capture the global information of
the entire MRI scan.

Graph-Based Neural Networks for Brain Tumor Segmentation 21

2.2 Graph Neural Networks

The computational burden of segmentation with CNNs can be circumvented by
summarizing the MRI images as a graph representation. This approximation
reduces image complexity by two orders of magnitude, from millions of voxels
down to several thousand nodes, while preserving most image information. A
recently popularized form of deep learning, Graph Neural Networks, is specifi-
cally designed to learn over such graph structures. The theoretic underpinnings
of learning on graphs have been established for close to a decade [7,22], but
GNNs have only recently seen widespread use following, among others, Kipf and
Wellings’s [5,12,35] introduction of the graph convolutional network (GCN).
Their work refined the convolution operation on graph-structured data and
established a layerwise approach to learning over graphs, thus aligning it more
closely to existing deep learning paradigms.

Subsequently, Hamilton et al. [6] developed GraphSAGE, which extends
GCN [12] by generalizing graph learning as a series of alternating sampling and
aggregation steps to share information across a graph. In a GraphSAGE layer,
for each node, a predefined number of neighbors are sampled. Their information
is aggregated by combining their features and applying a learnable transforma-
tion, the output of which becomes the node’s features in the next layer. Notably,
GraphSAGE allows GNNs to be extended to the inductive setting, i.e. to gener-
alize to previously unseen graphs.

The Graph Attention Network (GAT) developed by Velickovic et al. [29]
introduced the self-attention mechanism to graph learning. Self-attention is an
operation which allows each input feature to assign weights, or “attend”, differ-
ently to the other input features, and has shown the state-of-the-art performance
on natural language processing (NLP) and other tasks (Vaswani et al. 2017) [28].
In the GAT formulation, attention is instead computed between each graph node
and its neighbors. Like GraphSAGE, GAT readily allows for inductive learning
and achieves the state-of-the-art performance on an inductive protein-protein
interaction (PPI) task.

GNNs have previously been applied to medical image segmentation tasks.
Yan et al. 2019 [32] successfully applied a GCN variant, ChebNet, to segment
brain tissue (gray matter, white matter, cerebro-spinal-fluid). They first used
the SLIC algorithm [1] to cluster MRIs into supervoxels, and then predicted
the tissue type of each supervoxel. The present work is partially inspired by
their approach and follows a similar workflow. Juarez et al. [11] proposed a
joint U-Net-GNN model for airway segmentation from CT scans and matched
state-of-the-art performance. They replaced the last two layers of a U-Net with
a sequence of graph convolution layers, which allowed the model to aggregate
information globally across the entire CT scan while maintaining the pattern-
recognition capabilities of the early convolutional layers. However, GNN-based
methods have not previously been attempted for brain tumor segmentation, and
thus, we here explore the applicability and performance of several GNN variants
on the same.

22 C. Saueressig et al.

2.3 Explanation of Deep Learning Models

Many interpretation methods for deep learning fall under the umbrella of saliency
maps [23,26,27]. These methods utilize the gradients computed by a model with
respect to the input to highlight regions of interest, i.e., those where the output
changes greatly in response to small input changes. Saliency maps are especially
useful in image processing, as they allow for easy visualization of pixel saliency
and visual interpretation of results. However, one shortcoming of saliency maps is
that they are often driven by the input image and largely agnostic to the model.
In particular, it has been shown that the saliency outputs for a model trained on
random labels can closely resemble those of a legitimate model, indicating that
the saliency map is less a reflection of the model than of the input [2].

An interpretability method explicitly developed for GNNs is GNNEx-
plainer [33]. GNNExplainer learns a mask on both the edges and features of an
input graph to build a subgraph that seeks to summarize the connections and
features that lead to the prediction on a node of interest. Unlike more general
methods, GNNExplainer allows for interpreting how graph connectivity factors
into a GNN prediction. A drawback of GNNExplainer is that it is difficult to
optimize for larger subgraphs. We find that information from nodes far away
from the target node often contributes to a prediction for tumor segmentation.
Consequently, GNNExplainer was unable to identify meaningful subgraphs for
our models.

In this work, we interpret our results using the SHAP (SHapley Additive
exPlanations) library [13]. SHAP values are a computational approximation of
Shapley values, a method for assigning payouts to players in a cooperative game,
or in this case, contribution values to input features in a prediction task. SHAP
values maintain many of the theoretical properties of Shapley values, such as
additivity and consistency, which make them attractive as a interpretative tool.
Section 3.7 presents the details of the SHAP values.

3 Methods

In this section, we first introduce the dataset we use and associated pre-
processing followed by a description of transforming patient images into a graph
structure. Subsequently, we present in greater detail our experimental setup.
Finally, we describe our use of SHAP values to help interpret the results of the
proposed model.

3.1 Imaging Data

The imaging data used in this study, including ground truth annotations, were
obtained from the training data of the BraTS 2019 challenge [3,4,16]. The
dataset consists of 76 low-grade glioma and 259 high-grade glioma MRIs from 19
contributing institutions. Each sample is composed of four imaging modalities

Graph-Based Neural Networks for Brain Tumor Segmentation 23

obtained from the same patient: T2-weighted fluid attenuated inversion recov-
ery (Flair), T1-weighted (T1), T1-weighted contrast-enhanced (T1CE), and T2-
weighted (T2), which provide complementary information about the tumor. All
provided imaging data has been skull-stripped, normalized to a resolution of
1 mm3, and spatially aligned to the other modalities for the same patient [4].
Domain experts manually segmented the provided ground truth annotations fol-
lowing a standardized annotation protocol, and they were further reviewed for
consistency and accuracy by additional neuro-radiologists. The ground truth
annotation labels were as follows:

Label 0. Normal brain tissue
Label 1. Volume comprising necrotic core and non-enhancing gross tumor
abnormality
Label 2. Vasogenic edema
Label 4. Active core or enhancing region within the gross tumor abnormality

Label 3 (non-enhancing tumor) was removed from the competition as a dis-
tinct region. Instead, it was combined with Label 1 (necrotic tumor) because the
BraTS organizers found that it can be subject to significant inter-annotator vari-
ation and therefore bias the ground truth segmentation based on the annotating
institution [4].

For this paper’s purposes, one set of MRIs (all four modalities) from the same
patient is referred to as a patient sample.

3.2 Data Preprocessing

Before segmentation, each MRI is cropped to the tightest possible bounding box
of the brain tissue. This step is accomplished by excluding all image planes where
all voxels have zero intensity. Next, we standardize each modality separately to
a mean of zero and a standard deviation of one. Bias correction of the MRIs did
not improve performance, so we report our final results without bias correction
(two-sided t-test, p ≈ 1).

3.3 Graph Construction

In order for the patient samples to be used as training examples for a GNN, they
must first be converted to graph representations (Fig. 1 Step 2). To create the
graph nodes, all four MRI modalities are concatenated to create one 3D image
with four channels. The combined image is then fed through the Simple Linear
Iterative Clustering (SLIC) algorithm [1] to generate a set of k supervoxels, where
k is a tunable parameter of the SLIC algorithm. SLIC uses a K-means approach
to cluster voxels that are similar in both intensity values and physical location in
the brain (Eq. 1). In the concatenated MRI images, the spatial distance between
two voxels is simply the 3D Euclidean distance between their coordinates. The
intensity distance is the Euclidean distance calculated across all four intensity
channels. A compactness parameter, m, controls the trade-off between intensity
and spatial information.

24 C. Saueressig et al.

The distance, D, calculation between two voxels i and j used for the super-
voxel clustering thus becomes

D =

√
dI

2 +
(

ds
S

)2

m2 (1)

dI =
√

(IT1,i − IT1,j)2 + (IT1CE,i − IT1CE,j)2 + (IT2,i − IT2,j)2 + (IFLAIR,i − IFLAIR,j)2

ds =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

where x,y,z are the spatial position of a voxel in image coordinates, I is the
intensity value of a modality at that pixel, and S is the expected spacing between
supervoxels.

After clustering, supervoxels outside of the brain mass, that is, those with
zero intensity, are filtered out, typically reducing the number of supervoxels by a
factor of 2. Each remaining supervoxel is then assigned a feature vector consisting
of the 10th, 25th, 50th, 75th, 90th percentiles of its constituent voxels’ intensity
values across all four modalities. This formulation results in a feature vector
of length 20 for each supervoxel. We chose to use quantiles as it empirically
performed better than only the mean intensity. Each supervoxel is also assigned
a label, which is determined by finding the most common label (mode) of all of
its constituent voxels in the ground truth labeling.

To determine the appropriate values of k and m used in constructing the
graphs, we calculated the achievable segmentation accuracy (ASA) of several
different combinations of values on a subset of the patient samples. The ASA
quantifies how well the SLIC supervoxels recover the ground truth segmenta-
tion. This metric is equivalent to our model’s accuracy at the voxel level when
it predicts every supervoxel correctly. Because of the class imbalance skewing
towards healthy tissue, we only consider the tumorous region when computing
ASA. These results are presented in Sect. 4.1.

Once the supervoxels are generated for a patient sample, they are used to
construct a regular graph. The graph takes the form {N,E}, where N is the
set of vertices (referred to here as nodes), and E is the set of edges between
them. Each node in the graph corresponds to exactly one generated supervoxel
and is represented by its feature vector and its label (during training). The
edge set E captures proximity information between nodes and is composed of
undirected and unweighted edges constructed between each supervoxel and the
r supervoxels spatially closest to it in the patient sample, where r represents the
desired degree of the graph. We define the distance between two supervoxels as
the Euclidean distance between the centroids of their constituent voxels’ x-y-z
coordinates.

Graph-Based Neural Networks for Brain Tumor Segmentation 25

3.4 GNN Details

We evaluated several standard GNN models on their ability to segment the
tumors: GCN [12], GAT [29], and the gcn, mean, and pool variants of Graph-
SAGE [6]. In broad terms, each model is composed of individual layers that
share information across adjacent nodes. That is, each layer updates each node’s
feature vector as a transformed combination of its own features and those of
its neighbors. As in a standard neural network, an arbitrary number of these
layers can then be stacked sequentially. As the number of layers increases, the
nodes indirectly receive information from nodes further and further from their
immediate neighborhood. The mathematical formulations of each of these graph
learning layers are shown in Eqs. 2 through 5.

In each case, h
(l)
u is the features of node u at layer l, σ is a differentiable, non-

linear activation function, W (l) is a layer specific trainable weight matrix, || is
the concatenation operator, and V (u) is the subset of nodes which are connected
to u via the edge set E, also known as the neighborhood of u.

GCN/GS-gcn:

h(1+1)
u = σ(

1
q
W (l) · (h(l)

u +
V (u)∑
v

h(l)
v)) (2)

where q is a normalization constant that differs between formulations from Kipf
et al. [12] and Hamilton et al. [6]. In the case of a regular graph as considered
here, however, q is equal to r, the graph degree, for both.

GS-mean:

h(l+1)
u = σ(W (l) · (h(l)

u || mean(h(l)
v ∀ v ∈ V)) (3)

GS-pool:

h(l+1)
u = σ(W (l) · (h(l)

u || max(σ(Wpool · h(l)
v) ∀ v ∈ V (u))) (4)

where Wpool is a global trainable weight matrix.
GAT:

h(l+1)
u =

B�

b

σ(
∑

v∈V (u)

ab
uvW

(l)
b hu) (5)

where B are multiple attention heads per layer, which each compute their own
pairwise self-attention (ab

uv) between each pair of neighboring nodes u and v.
Here, we use ReLU as the non-linear activation function for all models.

3.5 Training and Evaluation Metrics

Prior to training, each patient sample is converted to a graph as described in
Sect. 3.3. We split the dataset into training (60%), validation (20%), and test
sets (20%).

26 C. Saueressig et al.

The input to the GNN is defined formally as a graph of the form {N,E},
and a feature matrix H ∈ R

n×f , where n is the number of nodes, and f is
the number of features per node. f = 20 for all experiments, as described in
Sect. 3.3. The output is of size n × c, where for each graph node, the model
returns the probability of that node belonging to each of the four classes (c)
defined in Sect. 3.1.

To determine the best hyperparameters for each of the GNN variants, we
perform a random hyperparameter search on the validation set. We sweep over
regularly spaced intervals of learning rate from 0.00001 to 0.001, feature dropout
between 0 and 0.5, model depth from 3 to 9, and hidden layer size between 64
and 256. For GAT models, we additionally examine attention dropout between
0 and 0.5 and attention heads between 3 and 10 for each layer.

Each model is trained to minimize node-wise multi-label cross-entropy loss
(Eq. 6) on the validation set using the Adam optimizer. The class weights are
adjusted to be inversely proportional to their prevalence in the test set to address
the class imbalance.

Loss =
C∑

c=0

(1c=y)wclog(p̂y) (6)

where C are the possible classes, wc is the class weight, y is the true label,
1c=y is an indicator function, and p̂y is the predicted probability of that label.

Upon convergence, each model is evaluated on the average Dice scores of its
predictions, as defined in Eq. 7.

Dice =
2TP

2TP + FP + FN
. (7)

where TP , FP , and FN are the number of true positives, false positives, and
false negatives, respectively. True positive voxels are defined as those correctly
assigned as belonging to a specific tumor compartment.

Specifically, we calculate the Dice score for the following tumor subregions:
Whole Tumor (WT: union of labels 1,2,4), Core Tumor (CT: 1,4), and Active
Tumor (AT: 4). These metrics provide insight into the ability of the model to
assess tumor shape correctly as well as to differentiate between the different
tumor subregions. To allow for direct comparison to published models in the
literature, we report voxelwise Dice scores, rather than the Dice score on node
(supervoxel) classification.

After the best hyperparameters have been selected for each GNN model, we
train a final model on the combined training and validation sets and evaluate
it on the test set. All models were implemented in PyTorch using Deep Graph
Library (DGL) [31].

3.6 Baseline Method

We use the popular U-net model as a baseline to which to compare the results
obtained with the GNN models. The top-performing 3D-CNN model [18] of

Graph-Based Neural Networks for Brain Tumor Segmentation 27

the BraTS2018 [3,4,16] competition uses state-of-the-art GPUs with 34GB of
VRAM that were not easily accessible. Therefore, we selected the second-best
model, nnU-net [9], which requires only 11GB VRAM and is easily trainable
through an included Python module and available code. GNN and CNN models
were trained using the same train and test data sets.

3.7 Model Interpretation

In addition to accurately segmenting brain tumors, it is vital that we understand
how and why our models make their predictions. Model interpretation allows us
to 1) ensure that a model learned robust and generalizable features by cross-
referencing important features with known predictive ones, and 2) identify novel
features that aid in tumor segmentation. One method for assigning the contri-
bution scores of the input features for a model is to compute Shapley values.
The concept of Shapley values is borrowed from Game Theory. It corresponds
to a fair payout to all the players in a cooperative game, given the outcome of
the game. In the case of a predictive model, Shapley values can be interpreted
as the contribution of each input feature towards the prediction of the model.
Formally, they are defined as the average marginal contribution of a feature to
a given prediction when added to a subset of other features, over all possible
subsets [17]. Since the complexity of computing exact Shapley values is combi-
natorial in the number of features, we instead use the DeepSHAP model [13] to
approximate them. This method takes in a background feature distribution and
a query prediction it seeks to explain, and assigns each feature a score repre-
senting its contribution to the model output. First, it calculates the difference in
model output when given the true features versus background features. Next, it
backpropagates this difference back to each of the input features in a way that
satisfies the properties of additivity, consistency, and local accuracy [25]. The
backpropagated value at each feature can then be considered the part of the
difference it is ‘responsible’ for.

The background feature distribution is obtained by randomly sampling 500
nodes across the entire dataset of input graphs such that the relative proportions
of node labels remain consistent. Since predictions on nodes cannot be made in
isolation (i.e., they rely on the graph structure and surrounding nodes), SHAP
values are computed for each node in a graph simultaneously.

4 Results

4.1 Supervoxel Generation Affects Achievable Accuracy

The graph construction step involves two parameters, the choice of the number,
k, and compactness, m, for the supervoxel generation via SLIC. We find that
k = 15000, 20000 and m = 0.1 led to the highest ASA (Appendix, Fig. 4). We
choose k = 15000 for all subsequent experiments as k = 20000 required longer
to train with no noticeable improvement in performance.

28 C. Saueressig et al.

G
ro

un
d

Tr
ut

h
Pr

ed
ic

te
d

Fig. 2. An example segmentation produced by the best-performing GNN model vs.
the ground truth segmentation. Shown are an example horizontal, coronal, and sagittal
slice of the same MRI. The colors correspond to the different tumor subtypes: blue =
NET/necrosis, yellow = ET, red = Edema. Tumor predictions are overlaid onto the
T1-Contrast Enhanced Image. There is a close correspondence between the predicted
tumor and the ground truth. (Color figure online)

Of note, even the best SLIC parameters result in an ASA of only 0.9, on aver-
age (Appendix, Fig. 4). The diminished accuracy is caused by SLIC-generated
supervoxels, which encompass voxels of multiple different labels. A drawback of
clustering into supervoxels is that it approximates the brain as a collection of
homogeneous regions, while each supervoxel may be somewhat heterogeneous.
This effect is especially pronounced along the borders between tumor subtypes
and regions with low contrast. Here, the transition in intensity across the dif-
ferent modalities and the ground truth labels may not be well aligned, or the
intensity differences are gradual while the shift in labels is abrupt. In these cases,
supervoxels are created with a mixture of labels, yet can only be labeled as one
of them.

The partial volume effects introduced by supervoxel creation adversely affect
the performance of our model. As shown in Fig. 5 (Appendix), the voxel-wise
Dice score achieved by our model are significantly lower than the supervoxel-
wise Dice score across all tumor regions for both the training and testing data.

4.2 Brain Tumor Segmentation Performance of Different GNN
Models

We summarize the segmentation results of the different GNN models on the test
set in Table 1. The best performing GNN is a GraphSAGE-pool network with 5

Graph-Based Neural Networks for Brain Tumor Segmentation 29

Table 1. Average Dice coefficients across different GNN models for whole tumor (WT),
enhancing tumor (ET), and tumor core (TC) trained and evaluated on same train-test
split from the training set of the BraTS 2019 data set [16].

Model WT Dice TC Dice ET Dice

GraphSAGE-pool 0.841 0.737 0.671

GraphSAGE-mean 0.804 0.720 0.70

GraphSAGE-gcn 0.536 0.483 0.302

GCN 0.564 0.455 0.341

GAT 0.742 0.687 0.588

Table 2. Average Whole Tumor Dice on training and test sets, along with training
time in hours, for GraphSAGE pool models trained and evaluated on graphs of varying
degrees.

Model Train WT Dice Test WT Dice Time to Train (hours)

GSpool-10 0.917 0.819 8.7

GSpool-20 0.912 0.832 10.2

GSpool-30 0.915 0.841 15.5

hidden layers of 256 units each, which is trained until convergence at a learning
rate of 0.0001. The mean aggregator function performs slightly worse than the
pooling operator. The worst performing models by a substantial margin are the
GCN models. We hypothesize that this is because they lack the implicit skip
connection built into the mean and pooling aggregators via the concatenation
step. These results are consistent with those reported by both Velickovic et
al. [29] and Hamilton et al. [6] for the performance trend on protein-protein
interaction (PPI) dataset. Surprisingly, GAT performs much worse on this task
than GraphSAGE-pool, despite demonstrating improved performance on other
inductive tasks. Several factors could account for this discrepancy, including a
larger average graph size, less expressive node feature vectors, the different label
classification scheme, or simply because attention may be less suited for brain
segmentation.

We note that our best performing model is deeper than those reported in
previous works [6,12,29], with 5 hidden layers, rather than 2 or 3. We hypothesize
that aggregating information from further away is more important for tumor
segmentation than other graph learning applications, such as social networks or
PPI.

30 C. Saueressig et al.

4.3 Performance and Runtime Results for Varying Neighborhood
Sizes

For the best performing model, GraphSAGE-pool, we compare model perfor-
mance on datasets with varying graph degrees. We create three different sets of
graphs from the raw MRIs, with identical node features but either 10, 20, or 30
neighbors. These results are reported in Table 2. While increasing graph degree
has no noticeable effect on model performance on the training set, a higher
degree does seem to allow the model to generalize better to the unseen data in
the test set. However, this comes at the cost of increased training time, with the
degree 30 dataset requiring about twice as long to finish training as the degree
10 dataset.

4.4 Comparison of GNN Model with Other Recent Models

Next, we compare the GraphSAGE pool model trained on graphs of degree 30 to
nnU-Net, the second place model in the BraTS 2018 competition [9]. Both mod-
els are trained and evaluated on the same train and test splits. These results are
presented in Table 3. While our GNN model fails to match the state of the art per-
formance of the nnU-Net, the results nonetheless show that GNNs can success-
fully perform the segmentation task, despite the approximations made in graph
construction and the relative novelty of inductive graph-learning techniques. In
particular, for the segmentation of the whole tumor, our model achieves a median
Dice score that is quite close to nnU-Net. This result indicates that 1) our model
is better at outlining the gross tumor than at identifying tumor subregions, and
2) while on most patient samples, GNN models are quite effective, it fails to
generalize for some, adversely affecting the mean more than the median.

Our GNN-based approach compares favorably to many other experimental
techniques submitted to the BraTS challenge in recent years. Serrano-Rubio et
al. [24] also attempt a supervoxel-based technique, coupled with Extremely Ran-
domized Trees, to achieve Dice scores of 0.80, 0.63, and 0.57 on the official 2018
validation dataset [4] for whole tumor, core tumor, and enhancing tumor, respec-
tively. Another group, Rezaei et al. [21], presents a novel Generative Adversarial
Network (GAN) termed voxel-GAN, which seeks to address the label imbalance
present in tumor segmentation. This model achieves mean Dice scores of 0.84,
0.79, and 0.63 on the BraTS 2018 validation set. Like ours, these models may not
achieve state-of-the-art performance, but identify an important issue in tumor
segmentation and attempt to solve it using a novel approach.

Moreover, GNNs’ running requirements are relatively modest. Each GNN
model was trained on 6 GB of GPU memory with a batch size of 4 brains within
hours (Table 2). By contrast, [18] and [9] require 32 GB and 12 GB of RAM, take
days to weeks to train to completion, and are limited to a batch size of max-
imally one image, and typically only image patches. The eased computational
burden could be an important consideration when developing online segmenta-
tion models that are regularly updated with new MRIs.

Graph-Based Neural Networks for Brain Tumor Segmentation 31

Table 3. Results on our test set (a partition of the BraTS2019 training set). We report
both mean and median Dice scores for the whole tumor, tumor core, and enhancing
tumor.

Test Set Results

Statistic Median Mean

Tumor Compartment WT TC ET WT TC ET

nnU-Net [9] 0.929 0.919 0.857 0.906 0.827 0.745

GSpool-30 0.892 0.841 0.783 0.841 0.737 0.672

4.5 Explaining GNN Predictions Using SHAP

Finally, we compute the SHAP values for a subset of representative patient sam-
ples. We stratify the computed SHAP values by modality, label, and whether the
corresponding feature value was high intensity (bright) or low intensity (dark)
(Fig. 3). Bright intensities are defined as the top 15% of intensity values within
a given modality, while dark intensities are those in the bottom 15%.

Fig. 3. SHAP values distribution grouped by label and stratified by modality. Dark
Violin plots correspond to dark image regions in a particular modality, while lighter
plots correspond to bright regions in the corresponding modality. Positive SHAP values
indicate that the modality contributes to the prediction of a particular label, while
negative SHAP values indicate that a modality contributes negatively to predicting
that label. Panels A-D represent the SHAP values computed for different tissue labels.

We identify several trends for each modality’s contribution to different labels
in Fig. 3. Bright T1CE regions and dark FLAIR regions drive the prediction of
healthy tissue (Fig. 3A), while the inverse is predictive of the necrotic and non-
enhancing tumor core (Fig. 3B). Edematous tissue is defined by bright T2 regions

32 C. Saueressig et al.

and the lack of dark FLAIR regions (Fig. 3C). Lastly, in the tissue predicted to
be enhancing tumor, dark T2 and dark T1 regions are assigned the highest and
lowest SHAP values, respectively (Fig. 3D). For the enhancing tumor, we also
observe that the absolute magnitudes of the SHAP values are substantially lower
than those of the other 3 possible classifications. This observation indicates that
predicting a node as an enhancing tumor is driven by a “process of elimination”,
not by intrinsic characteristics of the enhancing tumor. Rather than learning
which features uniquely identify the enhancing tumor, the model instead relies
on recognizing feature combinations that make the other labels unlikely.

Overall, the T1CE and FLAIR modalities are consistently assigned the most
variable SHAP values, while the T1 modality remains relatively constant. The
relative utility of each modality is consistent with that determined by the BraTS
organizers, who state that the T1CE and FLAIR modalities are also the most
useful for manual segmentation [4].

Many of our findings for individual tumor regions also conform to radia-
tion oncology practices for manual segmentation of brain tumors. For example,
both non-enhancing tumor and necrosis are typically delineated by dark T1-CE,
bright T2, and bright FLAIR regions of the MRI. Our model’s SHAP value anal-
ysis recovers all three of these trends for the combined NET/necrosis regions.
Interestingly, however, it indicates that T1CE and FLAIR have a much more
pronounced effect on the prediction of these regions than T2 does. (Fig. 3B).
Vasogenic edema (Label 2) may be visually assessed by contrasting bright T2
and FLAIR regions with moderate intensity T1CE and T1. However, it is often
difficult to distinguish from other tumorous labels (1 and 4), since these can all
appear bright on the T2 and FLAIR images, depending on tumor grade. Our
analysis shows that the model correctly recognizes the brightness trend in the
T2 and FLAIR modalities, but learns a more nuanced classification scheme to
circumvent this issue. Rather than using bright FLAIR intensities as a marker
for edema, it instead learns that a brain region that lacks dark FLAIR intensities
are unlikely to be healthy, and then relies on the other modalities to distinguish
further between the tumor subregions. Lastly, enhancing tumor is traditionally
defined as bright (enhanced) regions in the T1CE modality. Surprisingly, bright
T1CE regions are not assigned high SHAP values for the enhancing tumor, indi-
cating that they play little to no role in the model’s predictions thereof (Fig. 3D).
When coupled with the relative scarcity of enhancing tumor labels, this obser-
vation could explain the inferior performance of the model in predicting the
enhancing tumor (Label 4).

The above analysis indicates agreement between the feature combinations
used by the model and clinical practice. Furthermore, the analysis provides
insight into how the model distinguishes between regions that are known to
be difficult to differentiate on MRI. Insight into why the results might not be
optimal for enhancing tumor will allow us to address this issue. Such inter-
pretability analysis is key to ensuring the adoption of deep learning models in
healthcare [30].

Graph-Based Neural Networks for Brain Tumor Segmentation 33

5 Discussion

The development of effective automatic segmentation techniques can improve
timely treatment for thousands of brain tumor patients annually. Furthermore,
integrating automatic segmentation into routine clinical workflows could save
physicians thousands of hours of painstaking manual annotation and standard-
ize segmentations otherwise subject to inter-annotator variation. Here, we have
presented the application of Graph Neural Networks to brain tumor segmen-
tation from MRIs. With this work, we provide several important contributions
to the field. Firstly, we compare several common GNN variants and determine
that GraphSAGE with the pooling aggregator performs the best. Secondly, we
show that, compared to CNNs designed for the same task, GNN is less resource
expensive and time-consuming to train. Lastly, we provide an interpretation of
our model’s predictions using Shapley value-based contribution scores.

A logical extension to this work is to combine the graph construction (involv-
ing supervoxel generation) and graph prediction in an end-to-end model, sim-
ilarly to [11]. While the use of supervoxels to represent the images improves
computational efficiency, our current model performance is heavily gated by the
discrepancy between the SLIC output and the true segmentation labels. The
treatment of supervoxels which contain voxels with different labels is poorly
defined and consequently results in misclassified voxels. Even a model that clas-
sifies every graph node correctly achieves a voxel-wise Dice Whole Tumor score
of only about 0.93 (Appendix, Fig. 5). A task-specific, end-to-end approach has
the potential to alleviate this concern and increase performance substantially.
End-to-end training would allow graph nodes to be delineated in greater accor-
dance with the underlying tumor subregions, limiting the number of supervoxels
spanning multiple labels. Furthermore, it would allow the model to learn node
descriptors, which would likely be more informative than hand-engineered sum-
mary statistics for each modality. Another direction for future improvement is
training the model hierarchically, that is, first determining the outline of the
tumorous region(s) as a whole, and then segmenting each tumor subtype within
the tumorous region. Many brain tumor segmentation models are effective at
outlining the gross tumor, but struggle to delineate tumor compartments [4].
Such a training scheme should allow for a more nuanced capacity to distinguish
the regions.

34 C. Saueressig et al.

Appendix

Fig. 4. The achievable segmentation accuracy as a function of supervoxel number and
compactness. More supervoxels increase the achievable accuracy.

Fig. 5. Boxplot of Dice scores for the same brains computed by voxel vs. by supervoxel
(node). Results shown for both test and train set. **** shows p < 0.0001 in paired
t-test. Across every comparison, Dice scores calculated on voxels are significantly lower
than when calculated by node. This effect is especially pronounced on the test set.

Table 4. Hausdorff Distances (95 percentile) calculated on test set for our model and
nnUnet. Both median and mean scores are reported.

Test Set Results

Statistic Median Mean

Tumor Compartment WT TC ET WT TC ET

nnU-Net [9] 2.828 2.27 1.414 4.645 6.17 5.011

GSpool-30 4.359 5.10 3.317 7.60 10.30 5.45

Graph-Based Neural Networks for Brain Tumor Segmentation 35

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC super-
pixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal.
Mach. Intell. 34(11), 2274–2282 (2012)

2. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity
checks for saliency maps. In: Advances in Neural Information Processing Systems,
pp. 9505–9515 (2018)

3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with
expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor
segmentation, progression assessment, and overall survival prediction in the brats
challenge. arXiv preprint arXiv:1811.02629 (2018)

5. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems, pp. 3844–3852 (2016)

6. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034
(2017)

7. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spec-
tral graph theory. Appl. Computat. Harmonic Anal. 30(2), 129–150 (2011)

8. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med.
Image Anal. 35, 18–31 (2017)

9. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain
tumor segmentation and radiomics survival prediction: contribution to the BRATS
2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.)
BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75238-9 25

10. Islam, A., Reza, S.M.S., Iftekharuddin, K.M.: Multifractal texture estimation for
detection and segmentation of brain tumors. IEEE Trans. Biomed. Eng. 60(11),
3204–3215 (2013). https://doi.org/10.1109/TBME.2013.2271383

11. Garcia-Uceda Juarez, A., Selvan, R., Saghir, Z., de Bruijne, M.: A joint 3D UNet-
graph neural network-based method for airway segmentation from chest CTs. In:
Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp.
583–591. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0 67

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

13. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30,
pp. 4765–4774. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7062-
a-unified-approach-to-interpreting-model-predictions.pdf

14. Ma, C., Luo, G., Wang, K.: Concatenated and connected random forests with mul-
tiscale patch driven active contour model for automated brain tumor segmentation
of MR images. IEEE Trans. Med. Imaging 37(8), 1943–1954 (2018). https://doi.
org/10.1109/TMI.2018.2805821

15. McKinley, R., Meier, R., Wiest, R.: Ensembles of densely-connected CNNs with
label-uncertainty for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H.,
Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp.
456–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9 40

http://arxiv.org/abs/1811.02629
https://doi.org/10.1007/978-3-319-75238-9_25
https://doi.org/10.1007/978-3-319-75238-9_25
https://doi.org/10.1109/TBME.2013.2271383
https://doi.org/10.1007/978-3-030-32692-0_67
http://arxiv.org/abs/1609.02907
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1109/TMI.2018.2805821
https://doi.org/10.1109/TMI.2018.2805821
https://doi.org/10.1007/978-3-030-11726-9_40

36 C. Saueressig et al.

16. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

17. Molnar, C.: Interpretable Machine Learning (2019). https://christophm.github.io/
interpretable-ml-book/

18. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regular-
ization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum,
T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-11726-9 28

19. Ostrom, Q.T., et al.: CBTRUS statistical report: primary brain and other central
nervous system tumors diagnosed in the United States in 2012–2016. Neuro-Oncol.
21 (2019)

20. Pei, L., Bakas, S., Vossough, A., Reza, S.M., Davatzikos, C., Iftekharuddin, K.M.:
Longitudinal brain tumor segmentation prediction in MRI using feature and label
fusion. Biomed. Signal Process. Control 55, 101648 (2020). https://doi.org/10.
1016/j.bspc.2019.101648

21. Rezaei, M., Yang, H., Meinel, C.: voxel-GAN: adversarial framework for learning
imbalanced brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan,
F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 321–
333. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9 29

22. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

23. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 618–
626 (2017)

24. Serrano-Rubio, J.P., Everson, R.: Brain tumour segmentation method based on
supervoxels and sparse dictionaries. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F.,
Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 210–221.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9 19

25. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. arXiv preprint arXiv:1704.02685 (2017)

26. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: remov-
ing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)

27. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks.
arXiv preprint arXiv:1703.01365 (2017)

28. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

29. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

30. Vellido, A.: The importance of interpretability and visualization in machine learn-
ing for applications in medicine and health care. Neural Comput. Appl. (2019).
https://doi.org/10.1007/s00521-019-04051-w

31. Wang, M., et al.: Deep graph library: towards efficient and scalable deep learning
on graphs. arXiv preprint arXiv:1909.01315 (2019)

32. Yan, Z., Youyong, K., Jiasong, W., Coatrieux, G., Huazhong, S.: Brain tissue
segmentation based on graph convolutional networks. In: 2019 IEEE International
Conference on Image Processing (ICIP), pp. 1470–1474. IEEE (2019)

33. Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: gener-
ating explanations for graph neural networks. In: Advances in Neural Information
Processing Systems, pp. 9244–9255 (2019)

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1007/978-3-030-11726-9_28
https://doi.org/10.1016/j.bspc.2019.101648
https://doi.org/10.1016/j.bspc.2019.101648
https://doi.org/10.1007/978-3-030-11726-9_29
https://doi.org/10.1007/978-3-030-11726-9_19
http://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1710.10903
https://doi.org/10.1007/s00521-019-04051-w
http://arxiv.org/abs/1909.01315

Graph-Based Neural Networks for Brain Tumor Segmentation 37

34. Zhou, C., Chen, S., Ding, C., Tao, D.: Learning contextual and attentive informa-
tion for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F.,
Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 497–507.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9 44

35. Zhou, J., et al.: Graph neural networks: a review of methods and applications.
arXiv preprint arXiv:1812.08434 (2018)

https://doi.org/10.1007/978-3-030-11726-9_44
http://arxiv.org/abs/1812.08434

STDI-Net: Spatial-Temporal Network
with Dynamic Interval Mapping for Bike

Sharing Demand Prediction

Weiguo Pian1, Yingbo Wu1(B), and Ziyi Kou2

1 Chongqing University, Chongqing, China
{pwg,wyb}@cqu.edu.cn

2 University of Notre Dame, Notre Dame, USA
zkou@nd.edu

Abstract. As an economical and healthy mode of shared transporta-
tion, Bike Sharing System (BSS) develops quickly in many big cities. An
accurate prediction method can help BSS schedule resources in advance
to meet the demands of users, and definitely improve operating efficien-
cies of it. However, most of the existing methods for similar tasks just
utilize spatial or temporal information independently. Though there are
some methods consider both, they only focus on demand prediction in
a single location or between location pairs. In this paper, we propose
a novel deep learning method called Spatial-Temporal Dynamic Inter-
val Network (STDI-Net). The method predicts the number of renting
and returning orders of multiple connected stations in the near future
by modeling joint spatial-temporal information. Furthermore, we embed
an additional module that generates dynamical learnable mappings for
different time intervals, to include the factor that different time intervals
have a strong influence on demand prediction in BSS. Extensive experi-
ments are conducted on the NYC Bike dataset, the results demonstrate
the superiority of our method over existing methods.

Keywords: Bike sharing system · Demand prediction · Deep learning

1 Introduction

With the rapid development of sharing economy around the world, Bike Sharing
System (BSS) has become more and more popular in recent years [4,18]. It
provides people with a convenient and environment-friendly way of traveling.
Users can rent a bike from a BSS station by some apps on their mobile phones
and then return the bike to a station after completing their travels.

However, efficiently maintaining these systems is still challenging since the
schedule and allocation of these transportation resources vary a lot depending
on specific user requirements. For example, the number of rental orders on the
morning of a day has an extremely imbalanced distribution between residen-
tial areas and commercial places. Therefore, a demand prediction method for
adjustments of bikes in advance can improve the efficiency of BSS greatly.
c© Springer Nature Switzerland AG 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 38–53, 2021.
https://doi.org/10.1007/978-3-030-70650-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-70650-0_3

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 39

Fig. 1. Number of orders and the rates of their changes during one day for both rent
and return mode. The two lines with blue and orange color represent two single days
in April 2014. (Color figure online)

To tackle this problem, there have been several methods proposed in recent
years focusing on different prediction tasks. Besides some methods applying
hand-crafted features [3,13,19], one of the first deep learning methods was intro-
duced by Wang et al. [21] who concatenated several related factors as inputs to
predict the gap between taxi supply and demand via a non-linear MLP network.
After that, Zhang et al. [26] proposed a deep convolutional network named ST-
ResNet to predict in-out traffic flow among different areas. However, both of
them did not consider the temporal information hidden in the sequential data
which is an important factor in transportation issues. Based on that, Yao et
al. [24] constructed a spatial-temporal model to predict various taxi demands.
Moreover, they further created a graph embedding module to pass information
among different areas. But their networks only consider a single area with its
neighbors as inputs, thus obtains predicted results for different locations sepa-
rately, which resulted in a serious lack of correlated spatial information on the
global level.

Therefore, in our method, we construct a joint spatial-temporal network on
a large scale area that contains hundreds of connected BSS stations in a long
day hours. The network takes the number of both rental and returning orders
of all stations in the past few hours as integrated inputs and predicts all of
them in the near future together for once. By this way, the spatial correlation
shared by all stations can be captured at the same level and same time, with
global transportation information passing through each of them. Besides, the
joint consideration of both operations for bikes, renting and returning, helps to
maintain the sequential relation at each time interval. For the convolutional part,
instead of applying the same filters for all features in different temporal indexes,
we assign features in each index with one independent convolutional group. That
is, we consider that indexes serve different roles in sequential data, which is
far from enough to be captured by the same convolutional kernels. Compared

40 W. Pian et al.

Fig. 2. rental and return matrices as inputs for our joint spatial-temporal network.
The sidebars for both matrices denote the relationship between colors and the number
of orders. (Color figure online)

with previous methods, our network can achieve much better performance with
measurements of both accuracy and efficiency in demand prediction tasks.

Although all the previous methods have explored temporal information in a
wide range, they all ignore an important factor that different time periods influ-
ence a lot on the change of demands. Based on that, we analyze the number of
orders in BSS for each day and found in some periods, the orders increase or drop
dramatically while for other times, no apparent fluctuation can be observed. As
shown in Fig. 1, two colored lines are representing the change of orders in two
single days and also their corresponding derivatives that further demonstrate
the variety of demand changes in a continuous way. Therefore, we propose the
dynamic interval module that takes different time intervals as inputs to improve
the predictions of the main spatial-temporal network. Instead of applying a regu-
lar feature fusion for the outputs of the module, we are inspired by some few-shot
learning methods [2,22] and directly assign the generated features as learnable
parameters for the top layer that is responsible for final predictions in the main
network. In such a learning framework, time intervals participate in the formu-
lation of learning weights in a more straightforward way, which helps the whole
model to learn a mapping that is adapted based on different time periods from
the extracted spatial-temporal feature to the predicted demands.

In summary, we collect our contribution into the following three folds:

– We propose a joint spatial-temporal network with time-specific convolution
layers to predict both renting and returning demand for all the stations in
the BSS.

– We further propose a Dynamic Interval module that builds the relationship
between different time intervals in a day to the learning representation that
is assigned as learnable weights in the top regression layer.

– We conducted large scale experiments on the NYC Bike dataset. The result
shows that our approach outperforms all other previous methods and several
competitive baselines.

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 41

2 Related Work

Traffic prediction problems include many tasks, such as traffic flow prediction,
destination prediction, demand prediction (our task), etc. The methods applied
to these tasks are kind of similar. Essentially, they predict the data on future
timestamps based on the historical one [21,24,26,27]. Some traditional methods
only rely on information in time series and regress final predictions. For instance,
one of the most representative methods is Autoregressive Integrated Moving
Average (ARIMA) which is widely used in traffic prediction problems [13,19]. It
takes continuous temporal information as inputs and regresses desired results.
Besides, some other works included external context data, such as weather condi-
tions and event information, to further improve the model’s performance [14,23].

Deep learning has been successfully used in a large number of problems, such
as computer vision [6,11], which also widely used in traffic prediction. Zhang
et al. [27] proposed a DNN-based model for predicting crowd flow. After that,
they further introduced the residual connection originated from CNN-based net-
works [6] for the same task [26]. To utilize context data, Wang et al. [21] used
a large number of multiple sources as inputs of their network to predict the gap
between the supply and demand of taxi in different sub-areas. Besides, some
other methods [25,28] proposed to use the recurrent neural network, like LSTM
and BiLSM, to encode temporal information. With the popularity of a convo-
lutional neural network (CNN), Yao et al. [24] jointly modeled spatial-temporal
information in a single network, and generated graph embedding additionally
to extract the constant feature for each region. Though they achieved a great
success in some traffic prediction fields, they neglect the discriminative temporal
information hidden in time intervals and encoded sequential data without special
consideration, which will both be tackled in our proposed method.

Though deep learning methods have been successful in many areas, most of
them require a large amount of annotated data to be optimized. Meta Learning
methods [1,2,5,22], however, exist to help relieve such a strict requirement by
proposing more general training models that can be adjusted well to new tasks
with a few new samples. Especially, Bertinetto et al. proposed a siamese-like
network to receive image pairs and enforce one sub-network to generate learning
weights directly for another one [2]. Similarly, the TAFE-Net proposed by Wang
et al. [22] successfully generates weights for both convolutional and fully con-
nected layers to another network. Inspired by such a weight generating strategy,
in our work, we also explore the possibility to apply it to the demand prediction
tasks, hoping to adjust our model with more adapted parameters captured by
external knowledge hidden in our specific sequential data.

3 Preliminaries

In this section, we first introduce some basic conceptions in BSS and then for-
mulate our demand prediction problem mathematically.

Following the definition of [24] and [26], we denote S = {s1, s2, . . . , sN} as
the set of all stations in which the number of orders needs to be predicted,

42 W. Pian et al.

where N is the total number of stations used in our dataset. These stations
are further converted into a matrix M ∈ {sn}i×j where N = i × j, according
to the geographical distribution of these stations. For temporal information,
suppose each day can be segmented into H time intervals and there are D
days in a dataset, we define T = {t0,0, t1,0, . . . , tH−1,D−1} as the set of whole
time intervals. Given the above definitions, we further formulate the following
conceptions.

Rental Order: A rental order A can be defined as 〈A.s,A.t〉 that contains the
station where people rent their bikes and the corresponding start time interval.
We represent it as 〈A.s,A.t〉 with a tuple structure where s is the station and t
denotes the interval.

Return Order: Similarly, a return order R can be also defined as 〈R.s,R.t〉 in
which s and t correspond to the same meaning in A.

Rental/Return Demand: The rental and return demand in one station n and
time interval th,d are both defined as the total number of rental/return orders
during that time and location, which can be denoted as mA/mR. Therefore,
when dealing with all BSS stations, we set M t

A/M t
R ∈ N

i×j as matrices with each
element representing the demand of each station. Furtherly, demand matrices for
all time intervals can be defined as MA and MR respectively.

Demand: With all definitions above, we finally concatenate two demand matri-
ces, M t

A and M t
R, together as joints input M t ∈ N

2×i×j for our proposed network
in time interval t. As shown in Fig. 2, our demand matrix has two channels rep-
resenting rental and return demands respectively. Each grid is one station and
the corresponding color describes the number of orders.

Demand Prediction: Given the sequential data from the beginning time to
the current, demand prediction aims to predict the data in the future one time
step or several steps. Especially, for the BSS demand prediction, we denote it as

M t = F(
{
M t−L, . . . ,M t−2,M t−1

} | P) (1)

where L is the length of the input sequence, P represents some additional infor-
mation that can help for prediction tasks as prior knowledge, like the spatial con-
nection among stations [24] and different time intervals in a day in our method.

4 Proposed Spatial-Temporal Dynamic Interval Network

In this section, we provide the details of our proposed Spatial-Temporal Dynamic
Interval Network (STDI-Net) for the demand prediction task of BSS. We first
talk about our spatial-temporal module separately and then introduce the
dynamic interval module which generates different parameters for the network
based on time intervals in a day. Figure 3 shows the overview architecture of our
model.

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 43

Fig. 3. The Architecture of STDI-Net. The spatial module uses Conv Blocks to capture
the spatial feature among stations. The Conv Block consisted of a convolutional layer
and residual units. Flatten layers are used to transform the output of Conv Blocks to
vectors. The temporal module uses an LSTM model to extract temporal information.
The dynamic interval module takes different time intervals as inputs to generate the
learnable parameters (weights and biases) for the fully connected layer.

4.1 Spatial Module

The spatial module of the network aims to extract the joint features of all sta-
tions in each demand matrix. For each data node in one sequential input, we
apply a residual convolutional block to operate on it. Inspired by [6] that pro-
posed the residual link to solve problems brought by very deep networks, like
the vanishing gradient problem, we utilize a similar idea in our spatial module.
With a concatenation between different levels of layers, the block can not only
extract more abstracted representations of the demand matrix in a deep layer
but also consider context information connected through different layers from
the sparse input as the number of orders to the compact spatial relationships
among different stations. More details are shown in Fig. 4 and the process Fs

can be denoted as
X1 = X0 ∗ W1 + b1

X2 = X1 ∗ W2 + b2

X3 = f(X1 + X2)
(2)

where X0 ∈ R
c0×i×j denotes the input of a ResUnit. X1 ∈ R

c1×i×j and
X2 ∈ R

c2×i×j are the outputs of the first and second convolutional layers in
the ResUnit respectively. X3 ∈ R

c3×i×j represents the output of the ResUnit.
The f(·) denotes the non-linear activation function like ReLU . W1, b1, W2, and
b2 represent the weights and biases of the first and second convolutional layers
in the ResUnit separately.

To further consider that matrices in each sequential data serves different
roles based on their indexes, we create multiple independent Conv Blocks with

44 W. Pian et al.

Fig. 4. Internal structure of Conv Block

the same structure and each of the block is responsible for one corresponding
demand matrix. We denote the process as

ConvM l = F l
s(M

l), l ∈ t − L, ..., t − 2, t − 1 (3)

where M l ∈ R
2×i×j is the two-channel demand matrix as original input on time

interval l and ConvM l ∈ R
c×i×j is the output from M l operated by the Conv

Block F l
s. l represents the index of both sequential inputs and Conv Blocks, and

L denotes the length of the input sequence. Therefore, the number of different
convolutional blocks is equal to the number of intervals in a sequential input.
Each block captures the discriminative information hidden in the indexes of the
data.

After the convolutional operation, we apply flatten layers to transform
ConvM l that outputs from Conv Block F l

s to a feature vector αl ∈ R
cij ,

where c is the number of channels of the output matrix. The whole output
St ∈ R

l×cij represents all features extracted from temporal demand matrices
separately, which can be denoted as:

St = [αl|l = t − L, . . . , t − 2, t − 1] (4)

4.2 Temporal Module

Since the transportation data is a type of time series, we apply the temporal mod-
ule to capture the temporal dependence of the sequential demand matrices. In
the task of sequence learning, Recurrent Neural Networks (RNN) have achieved
good results [20]. The incorporation of Long Short-Term Memory (LSTM) over-
comes the shortage of traditional recurrent networks that learning long-term
dependencies is difficult [7,8]. Some previous works [17,24] have proved the great

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 45

performance of LSTM in processing traffic sequential data. To follow them, we
apply the LSTM network for the BSS sequential data in our temporal module.

Briefly speaking, LSTM maintains a memory cell ct to accumulate the pre-
vious sequence information. Specifically, at time t, given an input xt, the LSTM
uses an input gate it and a forget gate ft to update its memory cell ct, and uses
an output gate ot to control the hidden state ht.

In our model, the LSTM net takes St as input, which is the output of the
spatial module. We use βt ∈ R

d to represent the output of the LSTM net in our
temporal module.

4.3 Dynamic Interval Module

Though the sequential demand data of BSS holds a kind of trend during the
day, their changes will vary according to different time intervals. Therefore, we
propose a dynamic interval module that extracts temporal information from
each hour and then apply them to influence the learning strategies of the main
spatial-temporal network directly.

To encourage such a learning mode, some meta-learning methods [2,22] have
been proposed to create a siamese-like network in which one network is respon-
sible for generating learning weights for another. Inspired by these advanced
works, we also apply a similar network structure to map (time) to be directly
the learning weights of the top fully connected layer in the main network.

In our module, for the input number of hours ranging from 0 to 23, we first
use GloV e [16] to embed the numbers into feature vectors Vt ∈ R

h. After that,
our Interval Net in the module transforms embedding vectors to features whose
dimension is the same as the learnable parameters in the fully connected layer of
the main network, including weights and biases. The generated vectors are then
directly assigned to be the values in the fully connected layer, and the Dynamic
Interval Module participates in the back-propagation process in an end-to-end
manner.

However, it is too difficult and too large for parameters in Interval Net to
learn, since the parameters space of the Interval Net grows quadratically with
the number of the output units. Following [2], we construct a factorized rep-
resentation of the output weights that is decomposed of 2 operating matrices
and a diagonal matrix as Fig. 5 shows, which is analogous to the Singular Value
Decomposition. By this way, the parameters in the Interval Net needed to be
learned only grow linearly with the number of output units. The whole process
can be formulated as

WFC = O′ diag(W (V))O (5)

where WFC ∈ R
k×d is the generated weights for the fully connected layer.

W (V) ∈ R
a represents the output vector of the Linear layer W in Interval Net

while diag(·) is the diagonal operating to transform the vector W (V) to a diag-
onal matrix. As a consequence, the net only needs to generate low-dimensional
parameters for each time interval. In addition, two matrices O ∈ R

a×d and

46 W. Pian et al.

Fig. 5. Internal structure of Interval Net

O′ ∈ R
k×a, where k = 2 × i × j, project diag(W (V)) again to keep the same

dimension with the fully connected layer.
Similarly, biases of the fully connected layer are also generated as following:

bFC = b(V) (6)

where bFC represents the generated biases for the fully connected layer. b(V) ∈
R

k denotes the output vector of the linear layer b in Interval Net. After the
above operation, we obtain 〈WFC , bFC〉 as the parameters P in Fig. 3 of the
fully connected layer (FC).

To get the final results, the fully connected layer takes the output of temporal
module βt ∈ R

d as input for the time interval t. As we mentioned, P consists of
the weights WFC ∈ R

k×d and biases bFC ∈ R
k where k = 2 × i × j. Therefore,

the formulation of the layer can be expressed as follows:

M̂t = f(WFCβt + bFC) (7)

where the f(·) denotes the non-linear activation function of prediction layer.
M̂t ∈ R

k represents the predicted demand matrix of the ground truth Mt.

4.4 Implementation Details

In the experiments, we set the length of the input sequence L to 3. In the spatial
module, each Conv Block has 2 ResUnits with the same structure. That is, it
contains 2 convolutional layers with each layer followed by a batch normalization
(BN) [9] and a residual link. All the convolutional layers in the Conv Block
have 32 filters. The size of each filter is set to 3 × 3 with stride = 1. In the
temporal module, the LSTM net has 1 hidden layer with 1024 neurons. The
activation functions used in the fully connected layer and Conv Blocks are ReLU
while LeakyReLU is used as the activation function at the linear layers in the
dynamic interval module. We optimize our model via Adam [10] optimization
by minimizing the Mean Squared Error (MSE) loss between the predicted result
and the ground truth. The learning rate and the weight decay are set to 10−3

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 47

and 5e−5 respectively. For the training data, 90% of it is for training and the
remaining 10% is chosen as a validation set for early-stop. We implement our
network with Pytorch [15] and train it for 200 epochs on 2 NVIDIA 1080Ti
GPUs.

5 Experiment

5.1 Dataset

In the paper, we use the NYC Bike dataset in 2014, from Apr. 1st to Sept. 30th.
We treat the data for the last 10 days as the testing data and others as training
data. We set one hour as the length of a time interval. The total number of orders
and time intervals in the dataset are 5,359,944 and 4,392 respectively. And the
number of stations used in the dataset is 128. The dataset can be collected from
the website of Citi-Bike system1.

5.2 Evaluation Metric

We use Rooted Mean Square Error (RMSE) and Mean Absolute Error (MAE)
as the metrics to evaluate the performance of our model and the baselines, which
are defined as:

RMSE =

√
1
z

∑

i

(yi − ŷi)2 (8)

MAE =
1
z

z∑

i=1

|yi − ŷi| (9)

where ŷi and yi denote the predicted value and ground truth respectively, and
z is the number of all predicted values.

5.3 Baselines

We compare our STDI-Net with the following baselines:

– Historical average (HA): Historical Average (HA) predicts the future
demand by averaging the historical demands.

– Auto-regressive integrated moving average (ARIMA): Auto-
Regression Integrated Moving Average (ARIMA) is a well-known model used
for time series prediction.

– Lasso regression (Lasso): Lasso regression is a linear regression method
with L1 regularization.

– Ridge regression (Ridge): Ridge regression is a linear regression method
with L2 regularization.

1 https://www.citibikenyc.com/system-data.

https://www.citibikenyc.com/system-data

48 W. Pian et al.

– Multiple layer perception (MLP): MLP is a neural network with four
hidden layers. The number of hidden units are 256, 256, 128, 128 respec-
tively. The MLP predicts the demand matrix M t by taking a sequence of the
previous l demand matrix [M t−l, . . . ,M t−2,M t−1] as input.

– ST-ResNet [26]: ST-ResNet is a CNN-based model with residual blocks for
traffic prediction, which used multiple CNN components to extract features
from the historical data sequence.

– DMVST-Net [24]: DMVST-Net is a deep learning model which based on
CNN and LSTM for taxi demand prediction. It also contains graph embedding
to capture similar demand patterns among regions.

– DeepSTN+ [12]: DeepSTN+ is a deep learning-based convolutional model
for crowd flow prediction, which contains long range spatial dependence mod-
eling, POI-based spatial information capturing, and a fusion mechanism for
features extracted from different aspects.

Table 1. Comparison with baselines.

Method RMSE MAE

Historical average 10.7308 5.8374

ARIMA 10.4773 4.7005

Lasso regression 8.4947 3.6799

Ridge regression 8.4699 3.6984

Multiple layer perception 7.1888 3.3388

ST-ResNet 5.1249 2.7206

DMVST-Net 5.0595 2.3423

DeepSTN+ 4.9060 2.4269

STDI-Net 4.6339 2.1946

5.4 Comparison with Baselines

Table 1 shows the testing results of our proposed model and baselines on
the dataset. We can see that our STDI-Net achieves the lowest RMSE and
MAE(4.6339 and 2.1946) among all the competing methods. The HA and
ARIMA perform poorly, as they only consider the historical demand values for
prediction. Because of the consideration of more context relationships among
sequence, the linear regression methods (Lasso and Ridge) perform better than
the above two methods. However, they do not extract more spatial-temporal
information for prediction. The MLP further extracts features from the sequence
and performs better than the above methods. However, the MLP does not model
spatial or temporal dependency. The ST-ResNet achieves 5.1249 and 2.7206 for
RMSE and MAE which is better than MLP due to the extracting of spatial fea-
tures. Compared with ST-ResNet, DMVST-Net extracts joint spatial-temporal

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 49

feature and similar demand patterns among regions, which further improve
its performance for prediction. Compared with previous methods, DeepSTN+
explores spatial correlations from different aspects to reduce the prediction error.
However, it doesn’t consider about the influence of different time intervals. Our
model further contributes a dynamic interval module which further improves the
performance.

5.5 Comparison with Modules Combinations

Our full model consists of three modules for three types of information model-
ing. To explore the influence of different modules combinations on the task, we
combine them and implement the following networks:

– Spatial module + FC: This network contains the spatial module of our pro-
posed model and a fully connected layer. This network only extracts spatial
features for prediction.

– Temporal module + FC: This network only uses the temporal module of
our proposed model to capture the temporal information, and a fully con-
nected layer is used to output the predicted results.

– Spatial module + Temporal module + FC: This method is the combi-
nation of the spatial module, temporal module, and a fully connected layer. In
this method, we model joint spatial-temporal information without considering
the influence of different time intervals.

– Spatial module + Dynamic Interval module: In this network, we com-
bine the spatial module and the dynamic interval module of our proposed
model, to capture spatial information, and the dynamic mappings for differ-
ent time intervals.

– Temporal module + Dynamic Interval module: For this network, we
use the temporal module and the dynamic interval module of our proposed
model. This network models the temporal information, and generates the
dynamic mappings for different time intervals.

– STDI-Net: Our proposed model, which models joint spatial-temporal infor-
mation, and generates dynamic mappings for different time intervals.

Table 2 shows the results of the test. The RMSE and MAE of the spatial mod-
ule + FC are 5.6558 and 2.6218 respectively, while that of the spatial module
+ dynamic interval module are 4.9077 and 2.3457. The results of the tempo-
ral module + FC achieve 5.2614 and 2.3914 while the RMSE and MAE of the
temporal module + dynamic interval module are 4.7788 and 2.2582 respectively.
We can see that compared with separate spatial or temporal module + fully
connected layer, the performance of the combination with the dynamic inter-
val module improves significantly. Furthermore, the spatial module + temporal
module + FC achieves the results of 5.0832 and 2.3476, which are worse than
that of our complete model. The results show that our dynamic interval module
improves the performance significantly.

50 W. Pian et al.

Table 2. Comparison with different modules combinations

Method RMSE MAE

Spatial + FC 5.6558 2.6218

Temporal + FC 5.2614 2.3914

Spatial + Temporal + FC 5.0832 2.3476

Spatial + Dynamic Interval 4.9077 2.3457

Temporal + Dynamic Interval 4.7788 2.2582

STDI-Net 4.6339 2.1946

5.6 Comparison with Variants of Our Model

The above experiments show that our proposed dynamic interval module
achieves a good result in the demand prediction of BSS. However, we have not
proved the rationality of the parameters-generated mode in the dynamic interval
module. Besides, we also need to evaluate the effectiveness of the time-specific
convolutional layers in our spatial module. In addition, the advantage of using
GloV e need to be proved by comparing with the model that embed time inter-
vals into vectors without the pre-trained GloV e. To address these questions, we
construct the following three variants of our proposed model:

– STDI-Net-fusion: In this network, we apply a Linear layer in the Interval
Net to transform the interval embedding vector to a feature, and then we
concatenate it with the output of the temporal module. After that, a fully
connected layer is used to output the predicted results.

– Unified-Spatial Net: This network is the variant of our proposed spatial
module, which is used to evaluate the performance of applying the same filters
in different temporal indexes. This model applies unified filters for each index
of the sequence in all convolutional layers, and a fully connected layer is used
after convolutional layers. Note that, in the Unified-spatial Net, we use the
same Conv Blocks structure as our proposed STDI-Net.

– STDI-Net-embedding: In this model, we apply a learnable embedding
layer to embed the hours’ number instead of using the pre-trained GloV e
to embed them.

Table 3 shows the results of the above three variants of our model. We can see
that our spatial module + FC (5.6558 and 2.6218 for RMSE and MAE) outper-
forms Unified-Spatial Net (6.1493 and 2.9533 for RMSE and MAE), that means,
our proposed time-specific convolution layers perform better than applying same
convolutional filters in different temporal indexes. Otherwise, STDI-Net-fusion
achieves 4.8149 for RMSE and 2.2995 for MAE, which are worse than our STDI-
Net (4.6339 and 2.1946 respectively). Therefore, our parameters-generated mode
is better than the fusion way.

Due to applying a trainable embedding layer instead of using a pre-trained
model (GloV e), the STDI-Net-embedding (4.6154 and 2.1783) has more learn-
able parameters than STDI-Net (4.6339 and 2.1946). Therefore it can perform

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 51

Table 3. Comparison with variants of our model

Method RMSE MAE

Unified-Spatial Net 6.1493 2.9533

Spatial module + FC 5.6558 2.6218

STDI-Net-fusion 4.8149 2.2995

STDI-Net-embedding 4.6154 2.1783

STDI-Net 4.6339 2.1946

better than our STDI-Net. However, its performance has not improved sig-
nificantly (0.4% and 0.7% for RMSE and MAE respectively) with additional
parameters. That means, our STDI-Net can perform almost as well as STDI-
Net-embedding with less parameters than it. To reduce the number of learnable
weights, we apply GloV e to embed hours instead of using an additional embed-
ding layer to embed them.

5.7 Influence of Sequence Length and Number of ResUnits

In this section, we explore the influence of the length of the input sequence and
the influence of the number of ResUnits.

Figure 6a shows the prediction results of different input sequence length. We
can see that our method achieves best performance when sequence length is set
to 4. The prediction error decreases with the increasing of sequence length from
1 to 4, that means the temporal dependency plays an important roles in the task.
However, as the length of sequence increases to more than 4 h, the performance
of our model slightly degrades and it has a fluctuation. One potential reason is
that with the length of the input sequence growing, many more parameters need
to be learned, which makes the training harder.

Fig. 6. (a) RMSE with respect to the length of the input sequence. (b) RMSE with
respect to the number of ResUnits in a Conv Block.

52 W. Pian et al.

In Fig. 6b, we show the performance of our model with respect to the number
of ResUnits. We can see that the prediction error decreases as the number of
ResUnits growing from 0 to 5. That means, with the number of convolutional
layers rising from 1 to 11, the performance of our model becomes better. This
due to the fact that the original feature maps are convoluted with their local
correlations as layers deepen, which makes deeper layers have larger receptive
fields. As we know, larger receptive fields can capture more spatial correlations.
Therefore, the model can learn more spatial information as layers deepen to
improve its performance.

6 Conclusion and Discussion

In this paper, we propose a novel deep learning-based method for demand pre-
diction of Bike Sharing System (BSS). Our model considers the extraction of
joint spatial-temporal feature and time-specific convolutional layers with resid-
ual links. Furthermore, we contribute a dynamic interval module to include the
factor that different time intervals have a strong influence on demand prediction
in BSS by generating different feature mappings for different time intervals. We
evaluate our model on the NYC Bike dataset, and the results show that our
model significantly outperforms the competing baselines. In the future, we will
consider some other features to further improve the performance of our model,
such as meteorology data, holiday data. And we will consider the more depen-
dent relationship of stations, such as use Graph Convolutional Network (GCN)
to extract the spatial feature among stations.

Acknowledgments. This work was supported in part by the National Key Research
and Development Project under grant 2019YFB1706101, in part by the Science-
Technology Foundation of Chongqing, China under grant cstc2019jscx-mbdx0083.

References

1. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent.
In: NeurIPS (2016)

2. Bertinetto, L., Henriques, J.F., Valmadre, J., Torr, P., Vedaldi, A.: Learning feed-
forward one-shot learners. In: NeurIPS, pp. 523–531 (2016)

3. Chiang, M.F., Hoang, T.A., Lim, E.P.: Where are the passengers?: a grid-based
gaussian mixture model for taxi bookings. In: SIGSPATIAL (2015)

4. DeMaio, P.: Bike-sharing: history, impacts, models of provision, and future. J.
Public Transp. 12(4), 41–56 (2009)

5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping 53

8. Informatik, F., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. A Field Guide to Dynamical
Recurrent Neural Networks (2003)

9. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML (2015)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NeurIPS, pp. 1097–1105 (2012)

12. Lin, Z., Feng, J., Lu, Z., Li, Y., Jin, D.: DeepSTN+: context-aware spatial-temporal
neural network for crowd flow prediction in metropolis. In: AAAI (2019)

13. Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., Damas, L.: Pre-
dicting taxi-passenger demand using streaming data. IEEE Trans. Intell. Transp.
Syst. 14(3), 1393–1402 (2013)

14. Pan, B., Demiryurek, U., Shahabi, C.: Utilizing real-world transportation data for
accurate traffic prediction. In: ICDM (2012)

15. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: NeurIPS (2019)

16. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: EMNLP (2014)

17. Qiu, Z., Liu, L., Li, G., Wang, Q., Xiao, N., Lin, L.: Taxi origin-destination demand
prediction with contextualized spatial-temporal network. In: ICME, pp. 760–765
(2019)

18. Shaheen, S.A., Guzman, S., Zhang, H.: Bikesharing in Europe, the Americas, and
Asia: past, present, and future. Transp. Res. Rec. 2143(1), 159–167 (2010)

19. Shekhar, S., Williams, B.M.: Adaptive seasonal time series models for forecasting
short-term traffic flow. Transp. Res. Rec. 2024(1), 116–125 (2007)

20. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NeurIPS, pp. 3104–3112 (2014)

21. Wang, D., Cao, W., Li, J., Ye, J.: DeepSD: supply-demand prediction for online
car-hailing services using deep neural networks. In: ICDE, pp. 243–254 (2017)

22. Wang, X., Yu, F., Wang, R., Darrell, T., Gonzalez, J.E.: TAFE-Net: task-aware
feature embeddings for low shot learning. In: CVPR (2019)

23. Wu, F., Wang, H., Li, Z.: Interpreting traffic dynamics using ubiquitous urban
data. In: SIGSPACIAL (2016)

24. Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand predic-
tion. In: AAAI (2018)

25. Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: a generic
approach for extreme condition traffic forecasting. In: SIAM (2017)

26. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide
crowd flows prediction. In: AAAI (2017)

27. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: DNN-based prediction model for
spatio-temporal data. In: SIGSPATIAL (2016)

28. Zhao, J., Xu, J., Zhou, R., Zhao, P., Liu, C., Zhu, F.: On prediction of user destina-
tion by sub-trajectory understanding: a deep learning based approach. In: CIKM
2018, pp. 1413–1422 (2018)

http://arxiv.org/abs/1412.6980

Simulation-Based Approaches

A Simulation-Based Approach for the
Behavioural Analysis of Cancer Pathways

Agastya Silvina , Guilherme Redeker , Thais Webber ,
and Juliana Bowles(B)

School of Computer Science, University of St Andrews, St Andrews, KY16 9SX, UK
{as362,gr60,tcwds,jkfb}@st-andrews.ac.uk

Abstract. Cancer pathway is the name given to a patient’s journey
from initial suspicion of cancer through to a confirmed diagnosis and, if
applicable, the definition of a treatment plan. Typically, a cancer patient
will undergo a series of procedures, which we designate as events, dur-
ing their cancer care. The initial stage of the pathway, from suspected
diagnosis to confirmed diagnosis and start of a treatment is called cancer
waiting time (CWT). This paper focuses on the modelling and analysis
of the CWT. Health boards are under pressure to ensure that the dura-
tion of CWT satisfies predefined targets. In this paper, we first create the
visual representation of the pathway obtained from real patient data at a
given health board, and then compare it with the standardised pathway
considered by the board to find and flag a deviation in the execution of
the cancer pathway. Next, we devise a discrete event simulation model
for the cancer waiting time pathway. The input data is obtained from his-
torical records of patients. The outcomes from this analysis highlight the
pathway bottlenecks and transition times which may be used to reveal
potential improvements for CWT in the future.

Keywords: Cancer pathway · Cancer waiting time · Discrete event
simulation · Process modelling

1 Introduction

Cancer is a condition where cells in some part of the human body reproduce at
an uncontrollable rate. The cancer cells, instead of working together with the
system, become another entity of the body, which could potentially jeopardise
human health and well-being [6]. Patients with chronic cancer (e.g., lung cancer)
have to undergo a series of treatments to attempt the eradication of the disease
[10].

In the UK, before a patient undergoes a set of procedures that have been
agreed upon by the board members and consultants, there is a period of waiting,
usually ranging from 14 to 62 days1. This period of waiting before the decision
1 https://www.england.nhs.uk/wp-content/uploads/2015/03/delivering-cancer-wait-
times.pdf.

This research is partially supported by the DataLab.

c© Springer Nature Switzerland AG 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 57–71, 2021.
https://doi.org/10.1007/978-3-030-70650-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_4&domain=pdf
http://orcid.org/0000-0002-0012-9256
http://orcid.org/0000-0002-8722-2559
http://orcid.org/0000-0002-8091-6021
http://orcid.org/0000-0002-5918-9114
https://www.england.nhs.uk/wp-content/uploads/2015/03/delivering-cancer-wait-times.pdf
https://www.england.nhs.uk/wp-content/uploads/2015/03/delivering-cancer-wait-times.pdf
https://doi.org/10.1007/978-3-030-70650-0_4

58 A. Silvina et al.

to treat the patient is known as Cancer Waiting Time (CWT) and has sev-
eral planned activities depending on the patient’s health condition, further tests
evaluations and medical board meetings2.

The CWT pathway for lung cancer treatment provided by the UK National
Health Service (NHS) board is illustrated on Fig. 1. Within the first time period
(first 2 weeks), patients will be referred by their general practitioner (GP) and
then undergo several tests. During the next 14 to 28 days, the patient will have
further tests. Once the board agrees on the first treatment, the decision will be
made within the next 28 to 62 days. Usually, the waiting time for a decision
should not exceed a 62 days period. However, there are many cases when that
happens. Further, lung cancer has a poor prognosis: over half of people diagnosed
with lung cancer die within one year of diagnosis and around 17.8% within the
5-year survival [10]. Hence, it becomes necessary to decrease the waiting time
from the GP referral to their first treatment.

Fig. 1. Lung cancer pathway based on NHS Board

2 Standards: https://www.isdscotland.org/Health-Topics/Waiting-Times/Cancer/Gu
idance/.

https://www.isdscotland.org/Health-Topics/Waiting-Times/Cancer/Guidance/
https://www.isdscotland.org/Health-Topics/Waiting-Times/Cancer/Guidance/

A Simulation-Based Approach for the Behavioural Analysis 59

By streamlining the process of analysing the CWT dataset (e.g., through
simulation) and comparing the ‘actual’ pathway patients experience versus what
the NHS Board considers the pathway to be, we can highlight bottlenecks and
transition times that exhibit high variability across patients. These insights will
provide quantitative evidence that might be useful to design follow-up interven-
tions. For example, policies to reduce the variability of specific transition times
between activities may lead to overall improvements in CWT and reduction of
the cumulative delays.

Discrete event simulation (DES) has been widely used in many sectors includ-
ing for healthcare processes management [3,5,8]. DES allows healthcare profes-
sionals, for instance, to assess the efficiency of the existing healthcare delivery
system. It has many usages ranging from forecasting the impact of changes in
patient flow [5], examining the resources needed and available within a hospital
[4], to observing the improvement of patient experience in an emergency depart-
ment [1]. Related to this work, a DES model has been developed in the field of
radiation therapy to reduce waiting time as well as to improve the treatment
process planning [2]. Another recent work [7] focused on patient scheduling deci-
sions related to chemotherapy in order to efficiently use medical resources and
provide timely access to cancer treatment. Hence, DES provides the ability to
investigate the complex relationship between various parameters (e.g., patient
arrival rates and activities service times) through a stochastic model able to
produce statistical estimates on the metrics of interest (e.g., waiting time).

The entities in a DES model (e.g., patients) are visiting service stations that
compose the process, and sometimes they need to wait until service can be
provided. This means that the demand for service has exceeded the capacity to
provide the service readily. This information allows the healthcare professional
to observe operational processes, simulating alternatives that can be used to
reconfigure the existing pathway, to improve its performance, and to plan (change
or reduce) its activities, without altering the present process execution while
conducting such scenarios experiments [5,8]. By treating lung cancer care from
the first GP referral to the first treatment as a series of discrete events, we can
simulate the cancer pathway with a DES approach allowing us to understand
the overall treatment process, its complexities, patient journey and bottlenecks
during the pathway.

This paper is structured as follows. In Sect. 2, we present the CWT dataset
and the extraction of quantitative information through database queries devel-
opment. The simulation modelling approach, the generated pathway and input
modelling are discussed in Sect. 3. In Sect. 4 we present the approach used to
validate our simulation model. Section 5 discusses the simulation scenarios and
the findings. We conclude with suggestions for further work in Sect. 6.

2 Data Analysis and Queries Development

To analyse the cancer pathway dataset compatibility with the steps established
by the cancer pathway guideline as shown in Fig. 1, we acquired the dataset

60 A. Silvina et al.

for lung cancer from three different hospitals within an NHS health board. The
dataset contains 642 patients from 2016 to 2019 with lung cancer within NHS
Lothian. It gathers the information regarding the outpatient (i.e., patient not
formally admitted to the hospital), inpatient treatment (i.e., patient formally
admitted to the hospital), and patients’ orders (e.g., prescriptions, test’s appoint-
ments). It also contains the information related to the type of the event (e.g.,
services for the outpatients, order item for orders), the event start date (i.e.,
when the event is registered to the system), event execution date (i.e., the exact
start date of the event) and event finish date.

The modelling effort proposed in this paper aims to help the health profes-
sionals to analyse lung cancer pathway behaviour as a complex process (CWT)
and assess its execution issues. For the first milestone, we focus on the whole
observed waiting time without splitting the events based on each waiting time
category (i.e., 0–14 days, 14–28 days, 28–62 days). Even though the board states
the splitting, in reality, patients do not strictly follow the procedure guideline.

The guideline establishes that several tests could be performed prior to a
final decision on the treatment, at any time, and it is up to the medical profes-
sionals to define the ones appropriate to each case following the patient’s case
development. The overall care process is rather complex and could take consid-
erable time to schedule appointments and tests, reschedule, execute procedures
and analyse/deliver results, depending on available resources and specific test
characteristics. Thus, after discussions with healthcare professionals, we use the
dataset to describe the behaviour of the CWT process, and then use the gath-
ered information to create the DES model. We are interested in calculating the
time patients spend on (parts of) the pathway (i.e., added time), and the num-
ber of patients flowing throughout the process (i.e., between activities), as well
as calculate the elapsed days according to each milestone on the guideline, as
follows:

– We calculate the number of patients in the dataset and the added service time
observed between the first GP Referral to the definitive Multidisciplinary
Meeting (MDM). MDM is an important event that happens at least once
before starting the patient’s treatment. In this meeting, the healthcare profes-
sionals determine whether a patient needs further care. The definitive MDM
is the last MDM before starting the patient’ treatment (e.g., radiotherapy,
surgery, palliative care).

– We calculate the number of patients undergoing each category of tests
requested (i.e., CT Scan, CT Biopsy, PET, Bronch/EBUS, Surgical stag-
ing/Biopsy).

– We calculate the added service time observed from the first outpatient (OP)
appointment (in the Cancer Outpatient Clinic) to the definitive MDM.

– We calculate the number of patients who have more than one outpatient (OP)
appointment prior to the definitive MDM.

– We calculate the added service time observed between Triage to the first OP
appointment.

– We calculate the service time per order, i.e., for each test: CT Scan, PET
Scan, CT Biopsy, grouped by the type of first treatment given to the patients.

A Simulation-Based Approach for the Behavioural Analysis 61

We design the SQL queries to get the information directly from the Trak Ora-
cle database to calculate each requested observation. The design of these queries
is similar to each other. First, we categorise the event based on the service (i.e.,
for the outpatient) and order item (i.e., for orders). There are more than 1,000
different services and order items. However, there is no list to categorise these
events. Together with the health professionals, we created a list of categories.
For some services/order items, we use keywords (e.g., CT, PET). Once we get
the list of the services/order items (event), we perform a manual check. For the
other events without a reliable keyword, we choose the event that was performed
to a significant number of patients, i.e., more than 50 patients.

– Once we categorise the service, we calculated the elapsed days between the
categorised events and the first treatment date.

– With the elapsed days, we determine the first (or last) events (i.e., the defini-
tive MDM is the one which has the highest elapsed days).

– Hence, we can calculate the added service time and the number of patients
between various events.

From these observations we can derive an observed pathway which is the
basis of our simulation model.

3 Simulation Modelling and DES

After analysing the dataset, we simulate the CWT process by creating a dis-
crete event simulation (DES). We want to compare the pathway in the guideline
(refer to Fig. 1) and the pathway that emerged from the data. By knowing the
difference between the two, we can then further investigate and perform analysis
for the CWT process within the health board. In this case study, we applied a
simulation modelling process [8] in four basic steps (problem statement, process
activities identification, flow analysis, metric(s) of interest, and model refine-
ment) as follows.

1. Problem statement : we aim to simulate the pathway from the first time
patients are being referred by their general practitioner (GP)/the first time
the patients are seen in the hospital until the start of their first treatment.
The time elapsed between these two events is defined as cancer waiting time.
We are interested in finding the events/occasions when elapsed days exceed 62
days (i.e., the recommended maximum days for cancer waiting time according
to the guideline).

2. Process activities and execution flow : we abstract the activities and process
behaviour from the guideline as shown in Fig. 1 as well as matching with
the available CWT data. We determine the composition of the process in
terms of entities (e.g, patients) and activities/events (e.g., CT Scan, MDM,
and so on) that we assign into the appropriate simulation flow. The process
starts with patient arrival event (GP referral) and ends with first treatment
referral, for each patient. Each activity in the process represents a service

62 A. Silvina et al.

(an event) to a patient performed within a service time distribution. The
process flow can contain one or more decision gateways, each indicating two
or more output probabilities (or conditions) to follow. In our case, we present
two gateways ruled by probabilities. The event scheduling process of DES
tools [8] presents a time advance mechanism that guarantees that at least
one event is scheduled when simulation starts and that it will consume an
event list during execution. The simulation execution captures quantitative
information until a defined stop criteria is reached. Usually, the arrival event
configuration dictates the simulation continuance (or halt), i.e., the maximum
number of entities arrivals to simulate. Also a desired simulation length (e.g.,
duration in days) can be defined prior to execution.

3. Metric(s) of interest : once all the activities of the process (i.e., events in
the model) have been defined, we choose the performance metric to assess
within our simulation (i.e., waiting time, elapsed days between activities, and
so on). Variables and counters can be coded by the simulation analyst to
provide additional quantitative results on the sample journeys, as long as
required.

4. Model refinement : after the process flow and activities have been defined, we
indicate the model parameters. They represent fitted probability distributions
to be applied at each activity (event) determining their behaviour expressed
as service times, and as inter-arrival time regarding the patients arrival (GP
referrals). The output probabilities on gateways are acquired from further
statistical analysis over the dataset concerning all patients’ journey. Once
these timing information are set for each component in the DES, we can run
the model and perform refinements on parameters, counters, variables, and
overall behaviour to match the actual process according to the validation
framework adopted, until we have a coherent base model checked through a
statistic measurement of the dataset.

Before we simulate the CWT, we simplify the pathway as shown in Fig. 2.
The focus is on finding the process bottleneck that may represent delays on
the most common procedures (events) the patients undergo from their first GP

Fig. 2. Simplified lung cancer pathway obtained by dataset analysis

A Simulation-Based Approach for the Behavioural Analysis 63

Fig. 3. Observed lung cancer pathway as a simulation (DES) model

appointment to their first treatment. Hence, for our model, we choose several
events during the CWT pathway based on the number of occurrences and cat-
egorised them in four activities in which a patient can be at any time: (1) First
appointment (First OP), such as Triage, Cancer Outpatient appointment; (2) CT
Scan (i.e., primary test before further tests); (3) Most common further tests (i.e.,
CT Biopsy and PET Scan); and (4) MDM. The GP referral and First treatment
referral are considered as start and end events in the pathway, respectively. After
choosing and categorising these events, we update the current pathway. Figure 2
shows the simplified pathway with activities and events within the milestones.

Further, we compare the simplified pathway with the pathway captured from
the dataset. From the dataset, we find that the CWT does not strictly follow the
guideline regarding the pathway. Instead, the pathway is an iterative process as
shown in Fig. 3. From our observation, any event can happen in any particular
order. Tests, appointments, and discussions are events that may happen several
times in a patient journey.

64 A. Silvina et al.

Thus, Fig. 3 also represents the DES model. The start event ruled by patient
inter-arrival time distribution is GP referral. The end event ruled by a probabil-
ity within an exclusive decision gateway is First treatment referral. The remain-
ing activities in the model are First OP, MDM, CT Scan, CT Biopsy, PET
Scan. These activities represent scheduled events in the simulation core, and
at each iteration they are also computed as states reached during execution to
further compile the entities routing statistics. We added queues in the simula-
tion behaviour to reproduce the actual CWT accumulated delays, i.e., to buffer
patients on each activity thus simulating the transitions where the patients do
not undergo any tests, appointments, or MDM but surely they are buffered
waiting for their next activity in the pathway.

Fig. 4. Simulation core flow (DES routines)

We focus on determining the process activities (or in this case, also its events)
and the process flow (i.e., including activities partial ordering) as the other

A Simulation-Based Approach for the Behavioural Analysis 65

Algorithm 1: fit Best Distribution

Input: data
Result: best distribution, parameters
distributions ← list of distributions

dist results ← []

for dist in distributions do
parameters ← dist.fit(data)

D, p ← kstest(data, dist, parameters)

dist results.append((dist, D, p, parameters))

end

best distribution, parameters ← best(dist results)

simulation parameters and components are correctly handled by the simulation
framework Salabim3.

Salabim is an open-source object-oriented developed for DES of complex
control in logistics and production environments. It follows the methodology of
process description as demonstrated in Simula and later in Prosim, Must and
Tomas. As a python package, it allows the use of other powerful python libraries
(e.g., for statistical processing, presentation, machine learning). It also has an
integrated animation engine which eases the manual observation of process flow
for the user (i.e., the healthcare professionals).

The model description we presented in Fig. 3 is coded within the Salabim
simulation core, which is illustrated in Fig. 4 with important routines and main
program flow.

To determine the distributions for the simulation parameters, we use the
Kolmogorov-Smirnov test (kstest). The kstest compares the two sample statis-
tical distributions. It is a non-parametric test which does not require the data
to follow the normal distribution. When we compare the possible distributions
(e.g., normal, exponential) to the dataset, we get the D statistic and p value.
The D statistic is the maximum absolute difference between two distribution
functions. By comparing the D statistic and p value for each distribution (i.e.,
minimum value), we can determine the best fit distribution for the data. The
procedure is shown in Algorithm1. The list of distributions is composed of 12
distributions, i.e., we identified six types of events, and for each event, we fit
two distinct distributions. One distribution for the time needed for patients to
undergo the particular event, and the second distribution is for the transition
time between the current event to the next one. Table 1 shows each activity and
its service time distribution provided by the dataset statistical analysis.

The execution flow (refer to Fig. 3) schedules events to patients in a
FIFO (First-in/First-out) policy, and the flow can reach two possible decision

3 More information on simulation framework can be found on https://www.salabim.
org/.

https://www.salabim.org/
https://www.salabim.org/

66 A. Silvina et al.

Table 1. Cancer Waiting Time pathway simulation information

Events/activities Fitted probability distributions

GP Referral arrival Interval time: norm (2.33, 1.76)

GP Referral transition Interval time: genextreme (–0.36, 4.77, 4.86)

First OP Service time: constant (1 day)

First OP transition Service time: genextreme (–0.23, 8.53, 7.56)

CT Scan Service time: genextreme (–0.73, 4.70, 4.73)

CT Scan transition Service time: genextreme (–0.45, 7.25, 6.27)

CT Biopsy Service time: exponweib (1.47, 1.94, –0.997, 14.92)

CT Biopsy transition Service time: genextreme (–0.13, 6.36, 4.18)

PET Scan Service time: genextreme (–0.037, 13.69, 4.29)

PET Scan transition Service time: genextreme (–0.13, 6.36, 4.18)

MDM Service time: constant (1 day)

MDM transition Service time: genextreme (–0.42, 8.65, 9.18)

gateways. The first gateway represents a decision on the test(s) a patient will
undergo during the pathway (i.e., schedule new event). This one determines, from
the set of events, which one is the next to be scheduled in the simulation core,
following the current simulation state (i.e., current activity the patient is under-
going) and simulation time counters. The second gateway determines a two-way
probability that defines whether the entity (patient) will remain in the pathway
executing activities (i.e., schedule new event), or leave the simulation since it
received first treatment referral after MDM (i.e., schedule the end event). For
the output probabilities, we calculate the number of transition from each activ-
ity (i.e., state). For each state, we set a different probability for determining the
next state (e.g., according to the dataset, more than 50% of the patients will
undergo First OP after GP Referral).

Figure 5 show the transition probabilities matrix used within the first decision
gateway. The second gateway presents a conditional probability determining if
patient had at least one MDM in his/her pathway. According to dataset, 49%
of patients get their first treatment after MDM.

Fig. 5. Transition matrix with routing probabilities (%)

A Simulation-Based Approach for the Behavioural Analysis 67

Fig. 6. Number of services for the CWT events

Even though our dataset contains no information regarding the number of
resources (i.e., staff availability and the number of machines), we still incorpo-
rated the resources as parameters to guide the events scheduling. This way, we
simulate varied scenarios of having more healthcare professionals and machines
to the overall pathway activities. We calculate the number of resources by observ-
ing the maximum number of services and test orders that can happen in any
days from our dataset. Figure 6 shows the number of services for the event we
selected from 2016 to 2019, i.e., 1,150 days (3-year dataset). Though these num-
bers may not be an accurate representation of the number of resources, we can
use it as starting point before we obtain the information (e.g., from interviews,
survey or new dataset) regarding the resources capacity and availability.

4 Model Validation

The input data modelling provided fitted distributions to service times in all
activities as well as patient inter-arrival rate concerning GP referrals. Also, the
decision gateways probabilities are set with the compilation of all occurrences
in the complete pathway, for all patients in the dataset. These input parameters
were also discussed with healthcare professionals that actively participate in the
CWT. After running the model for 365 simulated days, we observe the output
(i.e., the sampling on the waiting time metric) in order to compare with real
data, i.e., the average waiting time.

Figure 7 shows the waiting time distribution for both real data and simula-
tion. Because the waiting time is not normally distributed, we use KS-test to
compare both dataset distributions [9]. The result is KS-statistic = 0.06984 and
p-value = 0.152. We know that if the KS statistic is small or the p-value is high,

68 A. Silvina et al.

Fig. 7. Patients’ waiting time distribution in days

then we cannot reject the hypothesis that the distributions of the two samples
are the same.

Table 2. Patients’ waiting time descriptive statistic

Measures Actual (Dataset) Simulated

Mean 64.42 65.87

Std deviation 37.67 39.04

25% percentile 38 37

50% percentile 61 56

75% percentile 82 84

From the KS-test result, the p-value is high (more than 5% level of signifi-
cance). Hence, we cannot reject that the distributions of the two samples are the
same. The result of the descriptive statistic for both datasets as shown in Table 2
supports the close correspondence between the simulated and observed outcome.
Therefore, our model can provide reasonable approximation and observation of
the expected system behaviour.

5 Simulation Results

The purpose of creating a DES model of the CWT pathway is to simulate alter-
native scenarios to analyse bottlenecks and assess how to improve the current
process. Table 3 shows the simulation scenarios and their respective results. We
built multiple simulation models varying parameters such as Service Capac-
ity (SC), Waiting Transition Time (WTT), and Service Time (ST). Thus, for
each scenario, we modify the number of resources available (e.g., the number of
machines), the transition time needed between each event, and the time needed
for the service execution, respectively. The applied total simulation length is
365 days to collect statistics.

A Simulation-Based Approach for the Behavioural Analysis 69

Results demonstrate that increasing in 50% the SC for MDM (Scenario (3))
or limiting the WTT after MDM in 5 days (Scenario (4)) we achieve the
best improvements for patients, i.e., getting the first treatment before 62 days.
Regarding Scenario (3), results show 62% of the patients started the treatment
before 62 days whilst in the Scenario 4 the result is even better with 74% of
patients simulated. These results show that MDM can be a bottleneck in the
whole process because almost all patients will undergo MDM before getting their
first treatment.

Table 3. CWT pathway simulated scenarios and their results

Simulated Scenarios (varying
parameters SC, WTT, and ST)

Mean Waiting Time

95% CI (lower, upper)
%
(<62days)

(1) 50% increase SC for First OP 67.06 (59.78, 74.32) 56

(2) Limit WTT after First OP (5 days) 63.99 (56.72, 71.25) 60

(3) 50% increase SC for MDM 59.85 (53.89, 65.82) 62

(4) Limit WTT after MDM (5 days) 49.45 (44.14, 54.76) 74

(5) 50% increase SC for CT Scan 63.91 (56.97, 70.85) 59

(6) Decrease ST on CT Scan (max 5 days) 64.44 (55.75, 73.13) 59

(7) Limit WTT after CT Scan (5 days) 64.30 (57.61, 70.98) 58

(8) 50% increase SC for CT Biopsy 65.97 (59.12, 72.81) 53

(9) Decrease ST on CT Biopsy (max 5 days) 69.56 (58.72, 80.40) 51

(10) Limit WTT after CT Biopsy (5 days) 65.81 (58.11, 73.51) 54

(11) 50% increase SC for PET Scan 65.80 (54.37, 77.38) 53

(12) Decrease ST on PET Scan (max 5 days) 65.03 (53.03, 77.05) 53

(13) Limit WTT after PET Scan (5 days) 65.80 (54.37, 77.28) 53

We also observe that most delays are caused by the transition time instead
of the service time/availability of resources (i.e., from the First OP and MDM).
This is possible to check on Table 1, for instance, regarding CT Scan activity with
probability distribution genextreme(-0.73, 4.70, 4.73) compared to CT Scan
transition with distribution genextreme(-0.45, 7.25, 6.27), where the service time
may not be an issue in the pathway, but the transition delay between services.
The later can include another tasks that may delay the CWT, like bureaucracy
and scheduling, just to name a few.

Adding more resources (e.g., by increasing the service capacity) for CT Scan,
PET Scan or CT Biopsy has less impact on the overall patient waiting time,
according to the results from Scenario (5) to Scenario (13). However, comparing
the improvements in those three tests services show that CT Scan has better
results when adding more resources. Thus, maybe CT Scan has a bottleneck and
it is the test activity that needs more resources to not exceed 62 days period.
As shown in Table 3, the probability of MDM or First OP as the next state is
higher when compared to the likelihood for the tests (i.e., CT Scan, PET Scan,
CT Biopsy). Hence, the less impact.

70 A. Silvina et al.

Even though we can simulate the lung CWT events, our model has many
limitations. First, we do not consider the other services (e.g., MRI, Head CT,
Pulmonary function tests) by merging all of the other services into queue tran-
sition after the states. During the simulation run, due to the fitted distribution
function (e.g., exponential, gen-extreme) the simulation result may contain more
outliers compared to the dataset as shown in Fig. 7. Also, the number of resources
in our model is based on estimations.

In the future, we can improve the simulation by incorporating more services
and update the resource number and service time with the information given
by the hospital (e.g., by interview or another dataset extraction). We can also
improve the simulation by adding more detailed characteristics, such as adding
the type of the first treatment of the patients. This may increase the simulation
accuracy because the average waiting time is very based on the patients’ first
treatment, as shown in Table 3.

6 Conclusion

Overall, simulations scenarios can provide valuable information for improvements
in the whole CWT process. Even with the model limitation such as the number
of resources (e.g., number of CT Scan machines), we can highlight the process
bottleneck related to the board meeting resources (e.g. doctors, professionals)
availability and give a close observation regarding alternative scenarios for the
lung CWT.

The main bottlenecks of the lung CWT are related to the board meeting,
i.e., the MDM state and the MDM transition. Additionally, regarding the tests’
activities we exposed that the CT Scan is the one which could improve the
CWT if more resources were available. Once we can add more activities, such as
other tests, in the pathway from collecting integral CWT dataset within hospital
database, we can fine-tune the service time and number of resources. DES can
help to provide insights on process bottlenecks and improve the overall cancer
care for the lung CWT. In future, more detail should be added in the simulation
model to gain a better understanding of the process behaviour and clarify the
transition delays in CWT.

References

1. Abo-Hamad, W., Arisha, A.: Simulation-based framework to improve patient expe-
rience in an emergency department. Eur. J. Oper. Res. 224, 154–166 (2013)

2. Aivas, I., et al.: Reducing patient wait times for radiation therapy and improving
treatment planning: a discrete-event simulation model. Clin. Oncol. 29 (2017).
https://doi.org/10.1016/j.clon.2017.01.039

3. Bangsow, S.: Use Cases of Discrete Event Simulation - Appliance and Research.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28777-0

4. Baril, C., Gascon, V., Miller, J., Bounhol, C.: The importance of considering
resource’s tasks when modeling healthcare services with discrete-event simulation:
an approach using work sampling method. J. Simul. 11, 103–114 (2017)

https://doi.org/10.1016/j.clon.2017.01.039
https://doi.org/10.1007/978-3-642-28777-0

A Simulation-Based Approach for the Behavioural Analysis 71

5. Günal, M., Pidd, M.: Discrete event simulation for performance modelling in health
care: a review of the literature. J. Simul. 4, 42–51 (2010)

6. Hochhauser, J.S.T.D.: Cancer and its Management, 6th edn. Wiley-Blackwell,
Hoboken (2010)

7. Liu, E., Ma, X., Sauré, A., Weber, L., Puterman, M.L., Tyldesley, S.: Improving
access to chemotherapy through enhanced capacity planning and patient schedul-
ing. IISE Trans. Healthcare Syst. Eng. 9(1), 1–13 (2019)

8. Rossetti, M.D.: Simulation Modeling and Arena, 2nd edn. Wiley Press, Hoboken
(2010)

9. Young, I.T.: Proof without prejudice: use of the Kolmogorov-Smirnov test for
the analysis of histograms from flow systems and other sources. J. Histochem.
Cytochem. 25, 935–941 (1977)

10. Zappa, C., Mousa, S.A.: Non-small cell lung cancer: current treatment and future
advances. Transl. Lung Cancer Res. 5(3), 288–300 (2016). https://doi.org/10.
21037/tlcr.2016.06.07

https://doi.org/10.21037/tlcr.2016.06.07
https://doi.org/10.21037/tlcr.2016.06.07

Discovering the Impact of Notifications
on Social Network Addiction

Lucia Nasti(B) , Andrea Michienzi , and Barbara Guidi

Department of Computer Science, University of Pisa,
Largo B. Pontecorvo, 56127 Pisa, Italy

{lucia.nasti,andrea.michienzi,guidi}@di.unipi.it

Abstract. Addiction is a complex phenomenon, coming from environ-
mental, biological, and psychological causes. It is defined as a natural
response of the body to external stimuli that become compulsive needs.
From the biological point of view, the brain has the central role: many
neural circuits and, above all, the Dopamine System, are involved in the
addiction process. Over the last decade, social network communication
has become an increasingly addictive activity, for which users appear to
engage in social media excessively and/or compulsively. In this work, we
show that the current online social networks’ notifications system trig-
gers addictive behaviors. We prove our hypothesis simulating the math-
ematical modeling of the Dopamine System on real interactions among
members of a set of 18 Facebook groups. In line with recent psychological
studies, we find that the addicted users show a high frequency of social
interactions on the platform.

Keywords: Social networks · Computational model · Internet
addiction · Facebook groups

1 Introduction

Addiction is a complex phenomenon that has had different interpretations over
the years. In general, we can define it as the natural response of the body to
external stimuli that become a compulsive need. This condition appears as a
total loss of control and repetitions of the same actions periodically, arduous to
break because they create an unreal feeling of wellness [22].

Since the 1960s, researchers of diverse fields (such as medicine, sociology,
and psychology) started to analyze the addiction from various points of view,
underlying how many factors contribute to its development, such as biological,
psychological, and environmental aspects. From a biological perspective, the
brain plays a central role [18]. The Dopamine System (DS) is a group of cells
originating in the midbrain whose function is to anticipate the reward. The level
of dopamine, a neurotransmitter, increases in reaching a stimulus, originating
a sense of pleasure. However, in an addiction context, this mechanism breaks
and induces to search for a higher or more frequent reward. Consequently, the
c© Springer Nature Switzerland AG 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 72–86, 2021.
https://doi.org/10.1007/978-3-030-70650-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_5&domain=pdf
http://orcid.org/0000-0003-4687-024X
http://orcid.org/0000-0001-8005-8701
http://orcid.org/0000-0002-0151-6469
https://doi.org/10.1007/978-3-030-70650-0_5

Discovering the Impact of Notifications on Social Network Addiction 73

effect of dopamine decreases, causing tolerance and withdrawal symptoms. As
well as the biological aspects, the environmental factors, such as the impact of
age, gender, and social background, have a crucial influence on the spread of
addiction, as shown in [1]. Some particular habits are popular in social groups
because people, especially the younger ones, tend to imitate reciprocally, and
this behaviour is generally known as emulation.

In the last decade, the introduction of new technologies, like smartphones
and 5G, and the advent of Social Media, are changing the way of how people
communicate. In particular, Social Media are one of the most used Internet
applications, with more than 3 billion of users, where people can create virtual
contacts by increasing the number of connections and frequency of contact. Social
Media completely changed the social life of people facilitating their interactions.

Indeed, as described in [8,16], platforms, such as Facebook, are popular
communication tools, used for many activities as maintenance of online and
offline relationships, oneself promotion, gaming and marketing. Over the last
decade, the engagement between users and social networks has become perva-
sive to the point of being a problematic phenomenon, characterized by compul-
sive behaviours (loss of control, mood modification and so on). For this reason,
researchers belonging to different fields have started to analyze these behaviours
as a new kind of addiction.

In this context, we study Internet addiction, namely the excessive Internet
(and technology) use that may interfere with daily life, and the way it spreads
through the interaction on social networks.

We start our work simulating the mathematical model of Dopamine System
[14,15] on a dataset extracted from Facebook containing the interactions of 18
real social groups. We associate the DS model to each member of the group;
then, we use the real interactions to simulate the exchange of messages among
the members. Thus the stimuli are the messages sent to and received from the
other users. Consequently, each individual has his/her dopamine level, and by
analyzing the intensity of interaction, we identify the users that are susceptible
to become addicted.

Then, analysing the real communication data, we are able to show that there
are intrinsic mechanisms, like notifications, which repeatedly engaging the users,
may contribute to the development of social networks addiction.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
problem of the Internet addiction, mentioning the sociological aspects of this
phenomenon, then we describe the network communication model, which we
consider for our work, and the mathematical model of the Dopamine System.
In Sects. 3 and 4 we describe, respectively, the characteristics of the dataset we
collect and how we perform the simulations. Finally, in Sects. 5 and 6 we draw
our conclusions and discuss future work.

2 The Internet Addiction

In few years, the impact of Internet and technology has fundamentally changed
the way we relate and communicate with each other [23]. People, especially the

74 L. Nasti et al.

younger ones, tend to prefer online communication, choosing text messages to
communicate with their peers [7]. Moreover, social network platforms offer a
great variety of services and apps that improve the engagement with the users,
whose number will be approximately of 3 billion in 2021 as estimated in [20].

Adopting a computer-mediated communication has multiple consequences
on users life, such as the loss of empathy and the increase of stress [13], and, as
underlined in [3], there is growing scientific evidence suggesting that the exces-
sive and compulsive use of social networking sites may result in symptoms tra-
ditionally associated with substance-related addictions, such as salience, mood
modifications, tolerance, withdrawal, relapse, and conflict.

In order to bring more clarity to this phenomenon, researchers have started
to investigate Internet addiction, trying to understand which mechanisms affect
the user’s behaviour. Indeed, users show different attitudes to this communica-
tion form, which mainly depends on their level of stress, sense of isolation and
inadequacy [17].

As pointed out in [5], the Internet addiction can be analyzed according to
biological, social and psychological factors. Recent research suggests that age
influences particularly social media addiction [2]: younger users are more likely to
engage in online activities. Among social factors, the authors in [5] propose: gen-
der, intensity of use, user’s met needs, and social comparison. Gender influences
the nature of online activities; while intensity, met needs, and social comparison
identify how social user needs an intense and frequent use of social networks to
establish new relationships and compare themselves to other individuals. Finally,
stress, empathy, conscientiousness, and depression are the most common psycho-
logical factors predicting the Internet addiction. In particular, as described in
[11], the stress increment affects the social media use. In [12], instead, researchers
study how users, who do not exhibit the ability to share and understand others’
emotions, are more inclined to use social media rather than in-person contact
for their social interactions.

These factors together can be used to predict a sort of susceptibility to Inter-
net addiction. However, in this context, the main issue is represented by the
objective difficulty to quantify accurately their effects on user behaviour. Indeed,
parameters as stress or empathy cannot be measured quantitatively. Therefore,
in this work, we proceed applying a novel approach, which studies the Internet
addiction analyzing only the structure and the mechanisms at the basis of social
network sites.

2.1 The Network Communication Model

Online Social Groups (OSGs) are becoming increasingly important social net-
works because they represent a new opportunity for user participation and
engagement. Formally, a group is described as two or more individuals who are
connected by and within social relationships [6]. In the online world, we can find
several examples of OSG, such as the Facebook Groups, the hashtag communi-
ties of Twitter or Instagram, or the Steemit communities. The common factor of

Discovering the Impact of Notifications on Social Network Addiction 75

all these proposals is that these groups form around an interest or a topic, such
as an artist, or a sport which is of interest among all the members of the group.

Inside an Online Social Group, users can write contents (generally called
post) with which then other users can interact. Interactions happen in two
forms: via written interactions (or comments), or via more immediate reactions.
An immediate reaction is a quick way to express a feedback towards a specific
post. Usually, they take the form of positive feelings, such as the “Like” but-
ton in Facebook, or the “Heart” buttons of Twitter and Instagram. This form
of feedback is largely used by users because of the ease with which they can be
expressed. Although common, immediate reactions are not always relevant, since
sometimes they are expressed mindlessly by users. On the other hand, comments
remain the most relevant because they require a non trivial intellectual effort
to be produced, and therefore are perceived as more meaningful if compared
to a single immediate reaction. Moreover, comments do not necessarily target
a specific content, but they can be considered as additional considerations to a
discussion, thus targeting all the people involved in the same conversation.

Users can express reactions to comments as well, and that comments can be
further commented, creating an arbitrarily deep structure of comments which
can be organised as a tree. Notifications in OSGs advise the members of a group
that new content has been published (as a comment or a reaction). We identify
three cases in which the notification system is triggered:

– New content: a new content is created, and all users of the group (except
the creator of the content) receive a notification concerning the newly created
content;

– Reaction: a user expressed a reaction towards a specific content or comment.
Only the user that created the content or comment will receive a notification;

– New comment: a new comment was created, therefore all users participating
to the discussion are notified;

In Fig. 1, we represent the scheme of the notification system, in which the
user U1 is the author of the original post, for which all the other members of the
group (m1...mn) receive a notification. If the U1’s post receives a comment or a
reaction, only U1 receive a notification, while any replies to a previous comment
(with a comment or a reaction) involves a notification for U1 and the author of
the comment (in the scheme represented as U2).

2.2 The Mathematical Model of Dopamine System

From a biological point of view, the Dopamine System (DS) is one of the neu-
rological circuits mainly involved in the addiction context. As shown in [21], the
Dopamine System is part of the reward pathways in the brain, and so all the
positive feelings obtained in response to positive reinforcement, which means
achieving something when we perform an action.

In the case of addiction, there are different consequences affecting the brain,
such as compulsion, loss of control, and negative emotional state, which depend

76 L. Nasti et al.

Fig. 1. The scheme of the notification system implemented in social networks. U1 is
the user that writes a new content, which implies a notification to all group’s members
(m1, ...,mn). If another user (U2) replies (with a comment or a reaction), only U1 will
receive a notification. If U2 receives a comment or a reaction, the notifications will
be sent to U2 and U1. In the scheme, the solid edges represent the act of express a
comment or a reaction; the dotted edges the notification path.

on the increasing amount of dopamine. These effects are exactly the same regard-
less the kind of addiction. Then, in order to investigate this phenomenon, the
authors in [14,15] extend and simplify the mathematical model of the Dopamine
System, proposed by Gutkin et al. in [10] to analyze the nicotine addiction.
Such a model describes the main neurological processes involved in addiction
phenomena and it has been validated against experimental data [4].

The model in [14,15] describes, in an abstract way, the interaction between
dopamine and neurological receptors that lead to persistent changes in brain
structures (due to neuronal plasticity) that really occur in the case of addic-
tion. The authors represent the “memorization” of the received stimuli, which
can result in tolerance and withdrawal symptoms, implementing threshold-based
switches, with simpler differential equations defined by cases. As a result, the
model consists of two differential equations:

– Dopamine concentration. The following differential equation describes the
dynamics of the variable D representing the dopamine concentration in the
prefrontal cortex:

dD

dt
= α

⎛
⎝−D + k +

⎧⎨
⎩

1, if r − M ≥ θp
0, if θn ≤ r − M ≤ θp

−D∗M
2 , if r − M ≤ θn

⎞
⎠

The dynamics of D is calculated by considering the following parameters:
• k is the basal production rate of dopamine;
• r is the perceived stimulus;
• M is the memory of the stimulus, whose value is given by the second

differential equation;

Discovering the Impact of Notifications on Social Network Addiction 77

• θp is the positive threshold, in the simulation is set to 80;
• θn is the negative threshold, in the simulation is set to −30;
• α = 0.3 is a unique time-scaling parameter.

Apart from standard decay and basal production, the differential equation
describes the dynamics of the dopamine concentration by considering three
cases given by the comparison of the current stimulus r with the memory
M and the two thresholds (both chosen by performing simulations). When
the stimulus is largely greater than the memory, the dopamine concentration
increases. When the stimulus and the memory are comparable the dopamine
concentration does not increase. Finally, when the stimulus is largely smaller
than the memory, the dopamine concentration decreases with a rate that
depends both on D and on M .

– Memory. The second differential equation describes, in an abstract way, the
opponent process (in psychology defined as a contrary emotional reaction to
a previous stimulus) that is modeled as a “memorization” process of previous
stimuli.

dM

dt
= α

(
−M +

{
r−M

2 , if r > M
0, otherwise

)

Dopamine and memory take different times to reach “high” values: Memory
requires some time to reach values comparable to the stimulus r, but when
it reaches such a level, it contrasts the increase of dopamine concentration in
the brain.
In this work, we identify the notifications, described in details in Sect. 2.1,
with the stimulus r that triggers the user in the visit of social network plat-
forms. Indeed, these messages engage the users, notifying them that the dis-
cussions of the group were enriched by additional contents or that someone
expressed a feedback. To better describe the communication model, we assign
different intensities to each action we observe in the dataset (reported in
details in Sect. 3):

• Posting a new content: when a user writes a new content, all the
group’s members (including the author of the content) receive a stimulus
of intensity 100, that is comparable to the stimulus considered in the
model presented in [14,15] in normal conditions;

• Writing a comment: when a user writes a new comment, she/he will
receive a stimulus of intensity 100;

• Receiving a comment: since comments are the most exhaustive form
of feedback, all the members receiving a comment will receive a stimulus
of intensity 150;

• Receiving a reaction: all the users will receive a stimulus of intensity
15 for each obtained reaction;

To establish if a user shows a susceptible behaviour to addiction, we consid-
ered properly the memory level, because it represents the tolerance and so the
phenomenon that better characterizes the addiction. In the model described
in [14,15], the selected threshold is M ≥ 15, because at that point in the

78 L. Nasti et al.

performed simulations, the users showed peaks and consequently decreases in
dopamine trend. In our work, we will run experiments in order to find the
Memory threshold that better characterized our networks, as we will describe
in details in Sect. 4.

3 Dataset

Table 1. General description of the Facebook groups.

Group Category Users Days Start End Posts Comments Reactions

Ed1 Education 2,668 388 01/01/17 24/01/18 3,555 63,350 60,463

Ed2 9,506 317 06/04/17 18/02/18 5,271 77,933 350,781

Ed3 4,156 393 25/01/17 22/02/18 5,060 41,480 144,764

Sp1 Sport 1,308 249 27/08/17 03/05/18 5,588 3,823 1,456

Sp2 1,065 370 04/02/17 09/02/18 708 3,421 106,622

Sp3 11,017 28 13/02/18 14/03/18 6,353 79,998 332,727

Sp4 8,585 249 27/08/17 03/05/18 5,588 162,283 340,676

Wo1 Work 3,107 406 02/01/17 12/02/18 1,444 19,007 47,492

Wo2 1,170 418 04/01/17 26/02/18 945 16,891 12,124

Wo3 2,134 318 13/06/17 27/04/18 4,809 3,296 6,479

Wo4 1,097 485 03/01/17 04/05/18 2,651 2,382 4,577

En1 Entertainment 2,133 130 30/09/17 08/02/18 5,009 65,205 182,315

En2 1,526 123 22/10/17 23/02/18 3,777 32,235 85,891

En3 7,300 120 02/01/18 03/05/18 4,904 72,631 266,666

En4 2,578 178 09/09/17 06/03/18 3,543 33,098 56,227

Ne1 News 2,022 111 07/10/17 26/01/18 155 9,777 66,668

Ne2 8,355 91 08/11/17 07/02/18 3,397 282,358 341,091

Ne3 795 406 02/01/17 12/02/18 1,133 5,476 2,675

The dataset we use for our simulations consist of the timestamped activity of 18
heterogeneous Facebook groups, which can be grouped in 5 categories, accord-
ing to their description. The dataset consists of the 17 Facebook groups already
described in [9], plus another group that falls under the Sport category. Table 1
contains the most relevant information of the groups contained in the dataset.
The Table shows the label we use to identify the groups (Group) and their cat-
egory (Category), the number of users that interacted during the observation
(Users), the length of the observation in days (Days) along with the date of
the start (Start) and end (End) of the observation, and lastly the total num-
ber of posts retrieved (Posts) and their comments (Comments) and reactions
(Reactions). The dataset is relevant because it contains all the information
needed for our model described in Sect. 2.1.

The users are unevenly distributed among the groups and range from 795 of
Ne3 to 11, 017 of Sp3. The observations have different length as well, ranging

Discovering the Impact of Notifications on Social Network Addiction 79

Fig. 2. Notification and memory level
of user A0.

Fig. 3. Notification and memory level
of user A1.

from 28 days of Sp3 to 485 days of Wo4. The different length of the observations
is due to the activity of the groups, indeed in some groups (see Wo2) the activity
was so low that we were able to read all the history of the group. On the other
hand, in the case of Sp3 there was so much activity that we were able only to read
the activity of about one month. We also report the number of posts, comments
and reactions per group to give the reader an idea concerning the activity of
each group. As expected, the number of posts is usually lower than the number
of comments, which is, in turn, usually lower than the number of reactions. This
is due to the fact that starting a conversation thread requires much intellectual
effort, while reactions are more immediate and easy to express.

4 Simulations

The activity of the groups presented in Sect. 3 was retrieved, and the DS,
presented in Sect. 2.2, was simulated according to the notifications defined in
Sect. 2.1. Being aware that the original model was designed to detect addictive
behaviours in a slightly different scenario, we needed a parameter tuning and
validation session. We decided to run the simulations on a test group to select
the correct parameters according to clearly addicted behaviours based on user
activity.

The group chosen for the parameter tuning is En3 because it shows average
properties. After a preliminary analysis of the activity of the users in the group,
we decided to focus on users who showed an unusual (i.e. high) number of noti-
fications per day to detect potentially addicted users. This choice was driven by
the fact that users encouraged to check the status of the group multiple times per
day are more likely to develop an addictive behaviour. Indeed, as described in [5],
one of the factors detecting this kind of addiction is represented by the intensity,
which is directly linked to the compulsory behaviour that usually characterized
the addicted user.

At the end of this preliminary screening, two users were found that receive
more than 100 notifications daily. The simulation of the DS of the two users

80 L. Nasti et al.

can be found in Figs. 2 and 3. Their names and ids are replaced with arbitrary
strings (AO, and A1) to prevent possible privacy disclosures. In both cases, we
see that the notifications received are far more than the ones sent. Moreover,
despite receiving a notification causes the DS to update the Memory level, sim-
ply counting the notifications does suffice to detect addictive behaviours. This
is given by the fact that not all notifications produce the same stimulus, as
described in Sect. 2.2.

To establish if a user became addicted, we considered properly the memory
level, because it represents the tolerance and so the phenomenon that better
characterizes the addiction. We decided to set to 10 the memory level to detect
users that are in an addicted state, because at that point in the performed
simulations, the users showed peaks and consequently decreases in dopamine
trend.

5 Results

Figure 4 shows the distribution of notifications sent, notifications received, Mem-
ory and Dopamine at the end of the simulations for each user of the dataset at
the end of the simulations. The histograms concerning the number of notifica-
tions sent and received show that most users are not greatly involved in the
activities of the group. On the other hand, there are also few users with a very
high involvement which managed to interact a lot with other users of the group,
suggesting us that they may have developed addiction (see Table 2 for a more
detailed view). Our supposition is confirmed by the distribution of the Mem-
ory of the users at the end of the simulation. Indeed, we see that tens of users
achieved a Memory level of at least 10.

A more detailed view of the 84 addicted users, divided by groups, can be
found in Table 2. The table shows, for each group, the number of users found
to have developed addiction (Memory ≥10), and their average number of noti-
fications (sent or received), Memory and Dopamine levels at the end of the
simulations. The Table shows that in seven groups none of the users developed
addiction, in eight groups up to 3 users developed addiction, and in the remaining
groups En1, Sp4, and Ne2 respectively 9, 21 and 37 users were found addicted.
Interestingly enough, in the Work category no users were found addicted, while
in the categories Education and Entertainment at least one user per group was
found addicted. This suggests us that social media addiction is not tied, or at
least more common, in specific group categories rather than others.

We now explore more in detail the users who were found with highest number
of notifications, Memory, and Dopamine (see Table 3). The user with the highest
notification count (TN) is the addicted uses of Ne1 which exceeds 68, 000 notifi-
cations. Its Memory is almost three times the threshold we set for considering a
user addicted. Interestingly enough, this user is not also the user with the most
severe addiction. Indeed, the user with the highest Memory level (TM) belongs
to the group Ne2 and has a Memory level of 39.50, more than 10 points higher.
The number of notifications is of comparable magnitude, but lower of approxi-
mately 2000 units. Lastly, the user with the highest Dopamine (TD) belongs to

Discovering the Impact of Notifications on Social Network Addiction 81

Fig. 4. Notification sent and received, Memory, and Dopamine distribution of all users
in all groups.

the group Ne2 as well. While this user has a high Memory level, reaching 35,
the number of notifications is much lower with respect to the other two users,
barely reaching 40, 000. This is a clear sign that the number of notifications is
not proportional to the Memory of the users. Indeed, comparing the plots in
Figs. 8, 9 and 10, representing the number of notifications sent and received,
and the levels of Dopamine of the users TN, TM and TD respectively, we can
notice that the frequency and the peaks of the stimuli have the highest impact
on the development of the addiction. Moreover, none of the three users shows
withdrawal symptoms, since the level of Dopamine tends to increment, which
means that they do not interrupt the use of the platform.

Figure 5 shows the bivariate distribution of the notifications sent and received
by each user. Green dots mark users who belong to the safe groups (Ne3, Sp1,
Sp2, Wo1, Wo2, Wo3, Wo4), i.e. where no users were found to be addicted. Yellow
markers are users who belong to the risky groups (Ed1, Ed2, Ed3, Ne1, En2, En3,
En4, Sp3), i.e. where only up to three users were found to be addicted. Orange
dots mark users who belong to the dangerous groups (Ne2, En1, and Sp4), i.e.
groups with more than 3 addicted users. Addicted users are highlighted with a
red marker in the plot to make them easier to spot. The peculiar distribution
is given by the fact that users belong to a set of 18 different groups and each
“band” of points corresponds to the users of a group. The plot shows that close
to 5, 000 notifications received groups from all the three categories can be found,

82 L. Nasti et al.

Table 2. Number of addicted users per group. The average number of notification,
Memory and Dopamine levels of the addicted users divided in each group is also shown.

Group Addicted Avg

Ed1 3

Nots 15,675.3

Mem 17.65

Dop 0.50

Ed2 2

Nots 11,758.5

Mem 10.62

Dop 0.39

Ed3 3

Nots 15,751.3

Mem 12.08

Dop 0.40

Ne1 1

Nots 68,681.0

Mem 28.68

Dop 0.45

Ne2 37

Nots 13,805.9

Mem 14.80

Dop 0.43

Ne3 0

Nots -

Mem -

Dop -

En1 9

Nots 18,420.3

Mem 15.56

Dop 0.45

En2 2

Nots 15,389.0

Mem 13.67

Dop 0.42

En3 2

Nots 13,172.0

Mem 11.40

Dop 0.39

Group Addicted Avg

En4 1

Nots 9,722.0

Mem 10.32

Dop 0.38

Sp1 0

Nots -

Mem -

Dop -

Sp2 0

Nots -

Mem -

Dop -

Sp3 3

Nots 13,515.3

Mem 11.67

Dop 0.41

Sp4 21

Nots 11,131.61

Mem 11.57

Dop 0.41

Wo1 0

Nots -

Mem -

Dop -

Wo2 0

Nots -

Mem -

Dop -

Wo3 0

Nots -

Mem -

Dop -

Wo4 0

Nots -

Mem -

Dop -

confirming that the number of notifications alone is not a good measure of the
addiction of users. Although, it must be noted that all addicted users tend to
receive a large amount of notifications: 7000 or above.

We now focus more in detail on the users found addicted and their Memory
and Dopamine levels at the end of the simulation. Figure 6 shows the Notifi-
cations bivariate distribution of addicted users, but the top 30% of users per
Memory level at the end of the simulation are highlighted with a yellow marker,
and the top 10% is highlighted with a red marker. The plot shows that the

Discovering the Impact of Notifications on Social Network Addiction 83

Table 3. Simulation values of users with highest notification count, Memory and
Dopamine.

Top Nots Top Mem Top Dop

Nots 68,681 66,297 40,399

Mem 28.68 39.50 35.20

Dop 0.45 0.56 0.69

Group Ne1 Ne2 Ne2

Fig. 5. Notification sent and received, Memory, and Dopamine of all users in all groups.
(Color figure online)

most severe cases of addiction are connected to an higher number of notifica-
tions, mostly received. However, the plot also shows that there is no correlation
between the notifications sent and received. This is counter-intuitive because one
would expect that the more a user sends notification (and interacts with other
people), the more other users are encouraged to interact with her/him. However,
as described in [19], passive activities are the most popular ones.

Figure 7 shows the Dopamine-Memory bivariate distribution of addicted
users, but the top 30% of users per notification count are highlighted with a
yellow marker, and the top 10% is highlighted with a red marker. In this distri-
bution we see that at low Memory levels correspond low levels of Dopamine (see
black and yellow markers). Additionally, an higher notification count is usually
bound to an higher Memory (and Dopamine) level. On the other hand, the nodes
marked as the top nodes per notifications does not confirm this trend, and are
instead more scattered. Interestingly enough, the three markers corresponding
to the users who were found with the highest notification count (TN), highest

84 L. Nasti et al.

Fig. 6. Users with highest memory.
(Color figure online)

Fig. 7. Users with most notifications.
(Color figure online)

Fig. 8. Notifications and dopamine
level for user TN.

Fig. 9. Notifications and dopamine
level for user TM.

Fig. 10. Notifications and dopamine level for user TD.

Memory level (TM) and highest Dopamine level (TD) (see Table 3), are the
users that distances the most from the others.

6 Conclusions

Addiction is a complex phenomenon, which has several consequences on the
brain and the behaviour of people. In the last decade, the introduction of new

Discovering the Impact of Notifications on Social Network Addiction 85

technologies and the advent of Social Media have changed the way of how people
communicate, giving rise a new kind of addiction, namely the social network
addiction, for which users engage in different online activities excessively and/or
compulsively.

In order to investigate this phenomenon, researchers have started to study
Internet addiction, to unveil the mechanisms affecting the user’s life. In this
context, the applied approaches are based on the analysis of different factors,
such as biological, social and psychological aspects.

The sociological and psychological factors can be used to predict the sus-
ceptibility to Internet addiction. However, it is difficult to measure accurately
how they affect the user’s behaviour. Therefore, in this work, we apply a novel
approach, which studies the Internet addiction analyzing only the structure and
the mechanisms at the basis of social network sites. In particular, simulating the
computational model of Dopamine System and using the real data of 18 groups
of Facebook, we are able to study how the notifications affect significantly the
user’s behaviour.

Our work can be further developed in different ways. In the future, we want
to extend our analysis considering other typologies of Facebook groups and, in
particular, monitoring their activities for longer periods. Moreover, we plan to
collect also data of different social networks, such as Twitter and Instagram,
to compare the results of our analysis and study how the user’s behaviour is
different according to the used platform. Besides, we want to investigate deeper
the role of the intensity on the addiction development.

The Dopamine System is also linked to the human perception of the sat-
isfaction, stimulating the attention, the memory and the learning. Therefore,
it is possible to extend ulteriorly our work to test satisfaction of the user in
human-computer interactions.

References

1. Andreassen, C.S., Pallesen, S., Griffiths, M.D.: The relationship between addictive
use of social media, narcissism, and self-esteem: findings from a large national
survey. Addict. Behav. 64, 287–293 (2017)

2. Andreassen, C.S., Torsheim, T., Brunborg, G.S., Pallesen, S.: Development of a
Facebook addiction scale. Psychol. Rep. 110(2), 501–517 (2012)

3. Balcerowska, J.M., Bereznowski, P., Biernatowska, A., Atroszko, P.A., Pallesen,
S., Andreassen, C.S.: Is it meaningful to distinguish between Facebook addiction
and social networking sites addiction? Psychometric analysis of Facebook addiction
and social networking sites addiction scales. Curr. Psychol. 1–14 (2020)

4. Corrigall, W.A., Franklin, K.B., Coen, K.M., Clarke, P.B.: The mesolimbic
dopaminergic system is implicated in the reinforcing effects of nicotine. Psy-
chopharmacology 107(2), 285–289 (1992). https://doi.org/10.1007/BF02245149

5. Dailey, S.L., Howard, K., Roming, S.M., Ceballos, N., Grimes, T.: A biopsychoso-
cial approach to understanding social media addiction. Hum. Behav. Emerg. Tech-
nol. 2(2), 158–167 (2020)

6. Forsyth, D.R.: Group Dynamics. Cengage Learning, Boston (2018)

https://doi.org/10.1007/BF02245149

86 L. Nasti et al.

7. Greenfield, S.: Mind Change: How Digital Technologies Are Leaving Their Mark
On Our Brains. Random House, New York (2015)

8. Griffiths, M.D., Kuss, D.J., Billieux, J., Pontes, H.M.: The evolution of internet
addiction: a global perspective. Addict. Behav. 53, 193–195 (2016)

9. Guidi, B., Michienzi, A., De Salve, A.: Community evaluation in Facebook groups.
Multimedia Tools Appl. 79(45), 33603–33622 (2019). https://doi.org/10.1007/
s11042-019-08494-0

10. Gutkin, B.S., Dehaene, S., Changeux, J.P.: A neurocomputational hypothesis for
nicotine addiction. Proc. Natl. Acad. Sci. U.S.A. 103(4), 1106–1111 (2006)

11. Hou, X.L., Wang, H.Z., Guo, C., Gaskin, J., Rost, D.H., Wang, J.L.: Psychological
resilience can help combat the effect of stress on problematic social networking site
usage. Personality Individ. Differ. 109, 61–66 (2017)

12. Jiao, C., Wang, T., Peng, X., Cui, F.: Impaired empathy processing in individuals
with internet addiction disorder: an event-related potential study. Front. Hum.
Neurosci. 11, 498 (2017)

13. Kuss, D.J., Griffiths, M.D.: Online social networking and addiction? A review of
the psychological literature. Int. J. Environ. Res. Public Health 8(9), 3528–3552
(2011)

14. Nasti, L., Milazzo, P.: A computational model of internet addiction phenomena in
social networks. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729,
pp. 86–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1 7

15. Nasti, L., Milazzo, P.: A hybrid automata model of social networking addiction. J.
Log. Algebraic Methods Program. 100, 215–229 (2018)

16. Przepiorka, A., Blachnio, A.: Time perspective in internet and Facebook addiction.
Comput. Hum. Behav. 60, 13–18 (2016)

17. Raskin, R., Terry, H.: A principal-components analysis of the narcissistic person-
ality inventory and further evidence of its construct validity. J. Pers. Soc. Psychol.
54(5), 890 (1988)

18. Roberts, A.J., Koob, G.F.: The neurobiology of addiction: an overview. Alcohol
Res. Health 21(2), 101 (1997)

19. Ryan, T., Chester, A., Reece, J., Xenos, S.: The uses and abuses of Facebook: a
review of Facebook addiction. J. Behav. Addict. 3(3), 133–148 (2014)

20. Statista: Number of social network users worldwide from 2010 to 2021 (in bil-
lions) (2019). www.statista.com/statistics/278414/number-of-worldwide-socialnet
work-users/

21. Volkow, N.D., Koob, G.F., McLellan, A.T.: Neurobiologic advances from the brain
disease model of addiction. N. Engl. J. Med. 374(4), 363–371 (2016)

22. West, R., Brown, J.: Theory of Addiction. Wiley, Hoboken (2013)
23. Zhao, S., Grasmuck, S., Martin, J.: Identity construction on Facebook: digital

empowerment in anchored relationships. Comput. Hum. Behav. 24(5), 1816–1836
(2008)

https://doi.org/10.1007/s11042-019-08494-0
https://doi.org/10.1007/s11042-019-08494-0
https://doi.org/10.1007/978-3-319-74781-1_7
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/

A Simulation Study on Demand
Disruptions and Limited Resources

for Healthcare Provision

Juliana Bowles1 , Ricardo M. Czekster2(B) , Guilherme Redeker1 ,
and Thais Webber1

1 School of Computer Science, University of St Andrews, St Andrews KY16 9SX, UK
{jkfb,gr60,tcwds}@st-andrews.ac.uk

2 School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
ricardo.melo-czekster@ncl.ac.uk

Abstract. Philanthropic hospitals in Brazil are in great part funded by
the government and are daily accessed by a large portion of the pop-
ulation. As the Brazilian economy faces deep cuts in healthcare, man-
agers are adjusting budgets and focusing on less expensive alternatives
such as process improvements. Hospitals are even more impacted by the
recent COVID-19 pandemic with widespread disruption on operational
processes forcing them to stretch resources. Thus, it brings an opportu-
nity to evaluate the actual performance of these settings under different
scenarios where analysts may address bottlenecks and the impact on
resources. Our focus is to quantify the capacity of an emergency depart-
ment to support patient demand with limited resources in pre and post-
pandemic scenarios. We use a 12-month longitudinal dataset consisting
of pre-pandemic emergency occurrences and assigned resources.

Keywords: Healthcare processes · Emergency department · Process
simulation · COVID-19

1 Introduction

Healthcare is a multidimensional domain posing interesting challenges to
researchers. Over time, a wealth of studies was carried out on how to com-
bine computing with medical practices while taking into account high quality
patient care, balancing budget and available resources [6,12]. Despite techno-
logical advances and the use of data science or analytics in healthcare sectors
across the globe, in some countries those enhancements are far from becoming
palpable, as scarce resources and low budget must meet strict objectives mostly
within public hospitals [8,12]. It remains a challenge to redesign complex busi-
ness processes for performance using what-if scenarios coupled with resource
management [3,6].

This research was partially supported by a Scottish Funding Council GCRF grant
2019/20.

c© Springer Nature Switzerland AG 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 87–103, 2021.
https://doi.org/10.1007/978-3-030-70650-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_6&domain=pdf
http://orcid.org/0000-0002-5918-9114
http://orcid.org/0000-0002-6636-4398
http://orcid.org/0000-0002-8722-2559
http://orcid.org/0000-0002-8091-6021
https://doi.org/10.1007/978-3-030-70650-0_6

88 J. Bowles et al.

Simulation allows the artificial creation of the most likely scenarios man-
agement would face, assigning resources’ service time and adjusting capacity
to circumvent monetary and physical limitations [15]. These models provide the
investigation of key metrics of interest such as average throughput, waiting time,
process total capacity, and resource utilisation [10,17], to mention a few. A recent
literature review highlighted the importance of the application of Modelling and
Simulation (M&S) specifically to improve operation of emergency wards known
as Accidents & Emergency (A&E) departments [16]. Authors revealed a growing
interest on the use of Discrete Event Simulation (DES) as a performance anal-
ysis tool in 81% out of 254 selected papers. Recent studies have applied DES
to situations where resource management scenarios exploration was essential to
reduce operational costs and increase performance [2,14].

One challenge of tackling Brazilian healthcare is to create a set of com-
prehensive what-if scenarios to help improve business processes with resource-
aware capabilities, especially after the recent Coronavirus pandemic (COVID-
19) [5,11]. According to the World Health Organisation (WHO), Brazil regis-
tered 1, 085, 038 cases of COVID-19 with 50, 617 confirmed deaths by 23 June
2020 [18]. Even before the global pandemic, A&E was one of the most crowded
departments in Brazilian hospitals. Such developing countries struggle to cope
with resource scarcity as in some Brazilian regions difficulties were already a seri-
ous predicament prior to COVID-19. It is worth noticing that clinical staff and
managers must cope with restrictive resources to meet demand of both patients
infected with COVID-19 and those in need of urgent medical assistance.

The focus of this work is to compile information, model, and analyse the abil-
ity of an A&E department to support patient demand with limited resources. We
have explored pre-pandemic and post-pandemic simulation scenarios for A&E
settings with increasing daily patient demand, combining available staff (med-
ical doctors and nurses) among different patient arrival rates. Our aim was to
investigate the effects of a disrupted demand, for example, that brought forth
by COVID-19, to quantify and assess bottlenecks on A&E operational process
and then estimate resource utilisation and queues behaviour. Finally, it is our
aim to raise awareness on the possibility of improving resource allocation and
patient care in healthcare facilities using M&S for performance assessment.

This paper is structured as follows. Section 2 covers the issues faced by a
Southern Brazilian hospital within the A&E department while Sect. 3 presents
our M&S and key measures of interest. Section 4 shows simulation scenarios
in pre-pandemic settings with effects on resource allocation and patient waiting
time, and numerical analysis of post-pandemic scenarios with demand disruption.
Section 5 concludes the work with suggestions and further work.

2 Southern Brazilian Hospital Settings

Our case study is a general public emergency care process on a Southern Brazil-
ian hospital (Hospital Santa Cruz -HSC) considered a reference hospital for car-
diac surgeries and traumatology. We focus on the A&E department as target

A Simulation Study for Healthcare Provision 89

business process for analysis due to high patient demand and equally high
amounts of investments needed per year in medical supplies and resources. In
2015, for instance, HSC had performed approximately 221, 500 patient atten-
dances in the A&E. HSC offers diagnose and treatment of a host of medical
procedures such as paediatric and surgery care, among other healthcare services.

The hospital is equipped with a modern medical imaging centre, one in-
patient wing, a recovery centre, and an A&E ward operating in two 7-h and one
10-h daily shifts: i) 00:00 to 06:59; ii) 07:00 to 13:59; and iii) 14:00 to 23:59. A
minimal number of Medical Doctors (MD) and nurses are allocated following a
pre-arranged schedule. About the IT (Information Technology) infrastructure,
the hospital invested in an Enterprise Resource Planning (ERP) software, which
is customised to the hospital needs to maintain data digitised in its business
processes [7]. A wealth of sub-processes deals with patient arrival and with the
outcomes based on clinical decisions. And, to stress things further, Brazilian
health regulation mandate a clinical decision in A&E units to take place within
24 h.

The hospital underwent serious operational changes to tackle performance,
something that is happening since 2015, including IT department remodelling.
The effort encompassed all sectors and started from mapping key business pro-
cesses as well as quantifying available resources. The initiative involved inter-
active work among stakeholders and managers, staff and performance analysts
to discuss improvements in practices and prioritisation. As support tools, they
conduct face-to-face meetings, structured interviews, and ERP data analysis.

Furthermore, they have started using the Business Process Model & Notation
(BPMN)1 [4] to visually model the business processes with standardised graph-
ical elements and annotations to represent and describe the flow of activities
in detail. It is worth mentioning that BPMN offers the possibility of a shared
understanding of business processes between administrators and simulation ana-
lysts [4], among other advantages.

Recently, the COVID-19 crisis has overwhelmed healthcare organisations
across the globe undermining the capacity of operational processes [11,18]. Thus,
it is crucial for hospitals like HSC to prepare for emergent demand disruptions
and promote effective decisions to keep patients and staff safe. HSC adminis-
trators have reorganised the healthcare services during and post-pandemic espe-
cially for most critical processes in A&E and in the Intensive Care Unit (ICU).
The following subsections present the BPMN models elaborated before the emer-
gence of COVID-19 disrupting the A&E care processes.

2.1 A&E Triage System

The hospital uses the Manchester Triage System (MTS) for clinical risk manage-
ment as a fundamental system to be applied when the demand exceeds available
clinical resources [9]. It helps organising patient flows in A&E wards, considering

1 Object Management Group (OMG) technology standards detailed information on:
https://www.omg.org/spec/BPMN/2.0/About-BPMN/.

https://www.omg.org/spec/BPMN/2.0/About-BPMN/

90 J. Bowles et al.

primarily each patients’ needs and to ensure high quality care in a timely man-
ner. The triage is performed by a certified trained nurse that assigns a colour
to the incoming patient according to a protocol that evaluates the case severity.
Figure 1 presents the BPMN model representing the MTS process.

On patient arrival, a nurse conducts a basic health assessment on the patient,
collecting data (temperature, pressure, weight) and a questionnaire on current
symptoms. Each case’s severity classification is simplified in the BPMN model
in two major patient groups: Urgent cases (comprising Red and Orange), and
Non-Urgent cases (Yellow, Green, and Blue). The simplification was applied due
to few Immediate or Very Urgent care cases retrieved from the ERP software.
The bulk is composed of Non-Urgent cases where a significant amount of daily
cases cease limited resources in a daily basis.

A
&

E
:

M
an

ch
es

te
r

T
ri

ag
e

S
ys

te
m

 (
M

T
S

)
p

ro
ce

ss

Patient
arrival

MTS
evaluation

Basic health
assessment

Red (Immediate)

Green (Standard)

Clinical
assessment?

temperature, pressure, weight
symptoms description

Orange (Very Urgent)

Yellow (Urgent)

Blue (Non-urgent)

URGENT

NON-URGENT

Fig. 1. Manchester Triage System (MTS) process performed by trained nurse. (Color
figure online)

During the pandemic a pre-triage desk promptly identified COVID-19
patients redirecting them to a new specialised ward whilst the other cases were
directed to the usual A&E. The hospital also moved staff temporarily across
departments (e.g., to the ICU, inpatient care ward), keeping only two MDs for
A&E patients not related to COVID-19. The pre-triage on patient arrival only
took a few minutes each, which can be considered negligible to the analysis of
patient waiting time within the usual operation of the A&E. During pandemic,
the above-mentioned pre-triage contributed to the reduction on patient arrival
(i.e., those seeking consultation) in the usual (pre-pandemic) A&E.

2.2 Usual Pre-pandemic A&E Patient Care Process

Patient arrival is a start event in the care process that represents ingress in the
system (e.g., by ambulance or as walk-in patient). Depending on severity, the

A Simulation Study for Healthcare Provision 91

colour (Red or Orange) is assigned right before the patient reaches the premises
(e.g., immediate or very urgent cases). If it is an immediate case, the patient is
automatically classified as Red (urgent case, emergency) and goes straight to a
stabilisation sub-process (Fig. 2). After stabilisation (or treatment of an urgent
case), one out of three actions happens to patients: i) hospitalisation (ICU or
other); ii) Surgery; or iii) discharged with (or without) prescription; also includes
‘deceased’, i.e., the patient has left the process nevertheless.

A
&

E
 d

ep
ar

tm
en

t

Patient
arrival

Patient Stabilisation

Patient Treatment

Emergency?

Yes

No

Hospitalisation
or Surgery

Discharge

Clinical
decision?

Fig. 2. A&E macro process.

The urgent cases are contrasted with those non-urgent cases such as patients
experiencing minor cuts or burns, mild headaches, or exhibiting amenable cold
symptoms, just to name a few. In a non-urgent case, the patient himself goes to
Patient Treatment sub-process (Fig. 3).

The patients enter in the activity of Admission registering where the clerk
collects more general data (personal data, health details, and other important
information such as symptoms and comorbidities). Then, the patient is routed
to the Risk assessment activity, where a nurse collects health data using medical
devices and a trained nurse performs MTS process.

The patient then goes to a waiting area until an MD is available for consul-
tation (Consult doctor activity). The MD could request more tests (e.g., blood
screening, medical imaging, etc.), so the patient goes to Request tests activity;
or MD could prescribe medication with immediate administration or just put
patient in observation period (Medication & therapeutics activity) within hos-
pital premises. In both cases, patients should wait for the activities to complete,
and sometimes they may return for new consultation with the same MD (or next
in the shift) until their treatment process reaches an outcome.

92 J. Bowles et al.

A
&

E
:

P
at

ie
n

t
T

re
at

m
en

t

Patient
arrival

Admission
registering

Risk
assessment

Consult
doctor

Discharge

Hospitalisation
or Surgery

<only prescription>

Request
tests

Medication
&

therapeutics

Clinical
decision?

Lab tests or imaging

Patient in observation

Basic health assessment
MTS evaluation ("colors")

Separated waiting rooms
(admission/assessment/consult)

<other>

<critical>

Fig. 3. Treatment sub-process activities until it reaches one of the final outcomes.

3 Applied Modelling and Simulation in the A&E

Modelling and Simulation (M&S) [17] is a broadly used approach to model sys-
tems or processes using primitives that extract quantitative performance indices
for analysis. Simulation models based on Discrete Event Simulation (DES) use
abstractions and concepts to describe and map processes into descriptive work-
flows [13,15]. The one provided by the BPMN models shown in Sect. 2 indicates
how activities are interconnected and depicts the alternative flows (gateways
with decision to be taken according to conditions) present in the process model.

From BPMN models we can manually (or automatically) derive simulation
models [1,4] and execute them in simulation tools based on DES, for instance,
the Arena Software2 [15]. Arena provides an integrated framework for building
simulation models in a wide variety of applications from industry to healthcare.
It is worth mentioning that the execution of simulation models within any DES
framework can help revealing bottlenecks and key resources in almost any process
flow model with timing information.

2 Rockwell Arena software information: https://www.arenasimulation.com/.

https://www.arenasimulation.com/

A Simulation Study for Healthcare Provision 93

Before the pandemic outset, we have conducted a comprehensive process
analysis within the hospital following four basic iterative steps. We aimed to
obtain qualitative and quantitative information about processes behaviour and
then apply DES technique. Figure 4 describes the planned steps from initial
meetings with stakeholders (Step 1) towards to the actual simulation of the
healthcare processes using a simulation tool (Step 4). During development (Step
2 and Step 3), the simulation analysts, IT professionals, and stakeholders had
interacted to discuss best strategies to deal with ERP data as well as on key
modelling aspects.

Build A&E
simulation models
(simulation tool*)

Build target
process model

Initial meetings:
discussion on

business processes

Patient flows
Healthcare services

Resource management
ERP software

process
mapping

Input data modelling Experiments and analysis
(comparisons and predictions)

Step 1 Step 2 Step 3 Step 4

Data acquisition and
treatment

BPMN model
translation

* Arena Simulation Software

Base model validation

* Arena Input Analyzer* ERP database queries,
interviews, documents

Fig. 4. Planned activities for applying DES in healthcare settings.

The Step 2 produced the BPMN models presented on Sect. 2. A comprehen-
sive data acquisition (from documents, textual logs, traces, process monitoring,
ERP data) and treatment activity was deemed necessary to: i) detect and filter
outliers; ii) process invalid observations due to lack of data inputs by clinical
staff; iii) understand how entities and resources are interacting in the process
and how the ERP software is processing the entries, and; iv) discover how the
actual process operates. In the event of data inconsistencies (e.g., invalid or miss-
ing numbers, outliers), analysts should use appropriated statistical techniques to
overcome the issues [15]. Arena software also provides a statistical tool named
Arena Input Analyser [15] that is a built-in tool to provide basic statistical prop-
erties (e.g., minimum, maximum, mean, standard deviation, and so on) as well
as probability distribution fitting to datasets, which is conducted on Step 3 and
applied on Step 4.

On Step 3, BPMN models are ready to be translated to simulation models.
The flow is directly mapped to DES in terms of structure because both have
similar elements (activities, start/end events, and decision gateways). After data
acquisition on Step 2, the input data modelling activity provides a probability
distribution function to parametrise the simulation models (patient arrival rate,
activities service times, resources’ capacity, and rotation probabilities on decision
gateways). Thus, model parametrisation depends on acquiring sets of input data
from reliable sources, including database sets and personnel interviews to review
inconsistencies. In our case study, we have chosen to model the decision gateways
with constant probabilities for output flows. For example, it was verified in the

94 J. Bowles et al.

dataset that around 50% of patients’ clinical path have followed an outcome
of ‘Discharge’. Thus, the majority of A&E patients were discharged without
needing further tests, or medication applied on site.

The Step 4 is the refinement of the simulation model (DES) translated from
the BPMN model, adding timing information such as the probability distribution
expressions, also resources quantity and behaviour, i.e., adding the parameters
obtained on Step 3 input data modelling. Our previous research [4] has pro-
posed BPMN models embedded with a structured format for text annotations
to improve simulation design and what-if scenario management. At the Step 4
analysts can make use of several statistical tools and validation approaches they
see fit to their experiments. In the end, a baseline model is evaluated towards the
measures of interest (e.g., average resource utilisation, queuing analysis such as
waiting time and queue size, and total process capacity, to mention a few). For
example, the patient waiting time could be calculated from the acquired dataset
or discussed with stakeholders, and then its difference from the figure yielded by
the simulation model should not be statistically significant.

After model validation with stakeholders, analysts start planning the sce-
narios on patient arrival rates, resource allocation, service times, and deci-
sion gateways’ probabilities. During scenarios execution, analysts observe the
process behaviour and statistical calculations are summarised in performance
indices [17]. The analysts can then evaluate these indices for multiple what-if
scenarios. Performance scenarios enable stakeholders to interpret and act on
changes or suggest modifications that would probably be less costly, or use fewer
resources for the same or higher desired output. M&S offers a way to dimin-
ish the impact of physical changes and show managers how simple adjustments
could yield better outcomes [15]. Next section details the Input data modelling
(Step 3), and the simulation scenarios and analysis (Step 4).

3.1 Input Data Modelling for the Pre-pandemic Simulation

During the data acquisition activity (Step 2) across hospital IT infrastructure, we
inspected 221,664 daily operation logs to use as real parameters for the baseline
model. We have pointed out the following issues in the dataset:

1. Seasonality aspects: we have analysed the one-year dataset to determine
whether or not the seasons (or the day of the week) were affecting our study,
accumulated monthly;

2. Arrival patterns: we investigated the rates of arrival (10,185 entries), accord-
ing to severity, and per hour of the day, accumulated monthly;

3. Consultation times for medical staff: we were interested into determining the
average time spent per medical staff on patients care according to severity.

Figure 5 presents seasonality aspects by month for each aggregated group
- Urgent and Non-urgent (refer to Fig. 1). It shows the percentage on the
total number of occurrences observed throughout the duration of the study
(12 months), matching the occurrences described in the BPMN model (refer
to Fig. 3).

A Simulation Study for Healthcare Provision 95

Fig. 5. Seasonality (by month) for Urgent (a) and Non-urgent (b).

Fig. 6. Arrivals per hour (accumulated monthly) in Non-urgent (a) and Urgent (b).

Regarding to patient arrival patterns (per hour of the day), Fig. 6 shows the
number of arrivals for Urgent and Non-urgent cases. It presents a low number of
occurrences prior to the beginning of the day (i.e., before 6:00), which increases as
the day passes, and decreases towards the end. Figure 6(a) shows an interesting
behaviour after 12:00 where the incidence increases considerably when taking
into account the totality of occurrences. However, because those cases concern

96 J. Bowles et al.

Urgent cases, the total number is considered very low (around 300 occurrences),
so no actual interpretation is effective for these cases.

Table 1 relates the inter-arrival time and the human resources to known prob-
ability distributions. We used the Arena Input Analyser tool that operates over
a list of data points acquired from the data. Probability distributions were gen-
erated for each activity in the simulation flow. We show the descriptive statistics
from the dataset before data treatment. It indicates the present of outliers, which
supposedly incurred from ERP software misuse (most probably by human error
while inputting data) or business process related particular issues, concerning
their daily operation. We computed the probability distribution expressions after
data treatment step and used the values to parametrise the simulation models.

We direct attention to the variability of MDs’ service time for both Consulta-
tion and M&T activities, since the amplitude is high, e.g. from 0.2 to 2, 400 min
and from 1 to 1, 220 min, respectively.

Table 1. Statistical analysis in the input data modelling step.

Resource
(Task)

Data
points

Min. Max. Mean Std.
Dev.

Probability distribution
(scale in minutes)

Patient
inter-arrival

10,185 0 119 15.5 19.2 -0.001 + EXPO(15.5)

Desk clerk
(Admission
Reg.)

66,702 0 44 0.713 1.02 -0.5 + GAMM(0.563,

2.16)

Qualified Nurse
(Risk
Assessment)

67,297 0 35 0.513 0.903 -0.5 + EXPO(1.01)

Nurse
(Request Tests)

843 0 202 2.56 10.3 -0.001 + EXPO(2.56)

Medical Doctor
(Consultation)

33,174 0.2 2,400 50 159 WEIB(13.1, 0.505)

Medical Doctor
(M& T)

43,463 1 1,220 4.2 15 0.999 + WEIB(0.216,

0.259)

*GAMM (Gamma Prob. Distribution), *EXPO (Exponential), *WEIB (Weibull).

We have performed a time analysis for the top five MDs by time intervals (of
5 min), dividing consultation duration in nine categories ranging from 0–4 min
to 40–44 min. The most usual consultation duration is of 0–4 min, followed by
5–9 min, and then 10–14 min. Beyond 15 min very few occurrences are present
for Non-urgent cases. We discovered that doctors and staff use the information
system only to close or report occurrences, allowing patients to move along
the process as quick as possible. After interviews, MDs described their actual
consultation period with the patient around 15 min on average. The remaining
categories had low frequency, i.e., from 45–49 min or more, could be considered as

A Simulation Study for Healthcare Provision 97

outliers in the dataset according to administrators (i.e., adverse events occurring
during consultation, or even a particular operation of the ERP software).

As mentioned earlier, using data points from ERP data is crucial determining
baseline parameters and asserting model validity when performing experiments.
Preliminary simulation experiments set the statistical parameters and analysts
can check whether the baseline model is simulating the current process operation
or need further improvement. Figure 7 illustrates the structured annotations
documented in the BPMN model to guide the simulations construction.

A
&

E
:

P
at

ie
n

t
T

re
at

m
en

t
(a

n
n

o
ta

te
d

)

Patient
arrival

Admission
registering

Risk
assessment

Consult
doctor

*Discharge

Request
tests

Medication
&

therapeutics

Clinical
decision?

ResourceType=resource-based;
TaskDelayType=other;-0.5 + GAMM(0.563, 2.16); minutes;
ResourceData=desk-clerk;1;1;

ResourceType=resource-based;
TaskDelayType=other;-0.5 + EXPO(1.01); minutes;
ResourceData=nurse;2;1;

StartEventEntityType=patient;
StartEventTimeBtwArrivals=EXPO;15.5;minutes;
StartEventEntitiesPerArrival=1;
StartEventMaxArrivals=Infinite;

ResourceType=resource-based;
TaskDelayType=WEIB(13.1, 0.505);minutes;
ResourceData=doctor;2;1;

SimulationName=A⩳
SimulationNumberofReplications=100;
SimulationReplicationLenght=24;hours;
SimulationBaseTimeUnit=minutes;

ResourceType=resource-based;
TaskDelayType=other; -0.001 + EXPO(2.56); minutes;
ResourceData=nurse;1;1;

ResourceType=resource-based;
TaskDelayType=other;0.999 + WEIB(0.216, 0.259); minutes;
ResourceData=doctor;2;1;nurse;2;1;

<50%> <only prescription>
<other: hospitalisation, surgery, etc.>

<40%>

<10%>

Fig. 7. An example of annotated BPMN model for simulation purposes.

4 Pre-pandemic and Post-pandemic Scenarios Simulation

The pre-pandemic scenario modelled the busiest hour for key human resources
in the A&E, i.e., selecting the parameters for the worst case present in the real-

98 J. Bowles et al.

case hospital before COVID-19 outset, then aligning the next what-if scenar-
ios accordingly. We considered three simulation scenarios for arrival rates (pre-
pandemic, pandemic and post-pandemic) and compiled the results in Fig. 8,
9, 10, and 11. We have assumed inter-arrival time of incoming patients to be
constant throughout the workday, as well as service time. The values come from
input data modelling step (Fig. 7). As output, we were interested in performance
indices such as patient waiting time, number of patients waiting for service, and
resource (MDs, nurses) utilisation. The Clerk utilisation in the A&E process is
not considered as an issue by hospital managers after management installed a
service totem. It has optimised patient check-in and organised triage screening.
Staff interviews pointed out that the hospital’s major concern was related to
consultation waiting room and on urgent care services provided to the patient.

4.1 Pre-pandemic Scenario Simulation

The pre-pandemic scenario (baseline scenario) uses an exponentially distributed
inter-arrival time based on the average time between occurrences yielded as
15.5 min by the statistical fitting tool in Table 1. The most requested resource in
the whole process is the MD as confirmed by earlier interviews (Step 1 and 2),
and thus it is replicated in the simulation behaviour (Step 4) according to the
MD utilisation plot in Fig. 8(a). The two available MDs in the Patient Treatment
sub-process operate in a shared-based routine on their activities (Consult doctor
and Medication & therapeutics – M&T), both being dedicated 100% of the time
in their A&E shift catering patients. Thus, if an MD is not consulting a patient at
a given time, then she/he could be working in the M&T activity, and vice-versa.

In addition, two nurses work on their respective activities (Risk Assessment
and Request tests) also in a shared-based mechanism. Results on Nurse utili-
sation in Fig. 8(d) show that the A&E nurses could stay idle in pre-pandemic
settings since they mostly execute Risk assessment activities during their shifts,
and only perform M&T depending on consultation outcome, thus they are shared
only if there is demand (patient arrival). The probability of M&T is less than
10% according to the dataset. The majority of patients seeking out consultations
(around 90%) are discharged with prescriptions or requested tests, without the
need of monitoring or medication administration in situ.

During interviews, managers and staff mentioned other sub activities per-
formed by nurses and doctors (e.g., filling forms, preparing medications, clean-
ing/preparing rooms) during their shifts. These sub activities are not explicitly
described in the BPMN mapping of the A&E Patient Treatment process, so the
resource utilisation indice refers only to the performance on modelled activities.
We have validated our simulation approach matching the baseline model result
(pre-pandemic scenario) with the dataset statistical analysis, focusing on the
average number of patients waiting during peak hours, i.e., the average queue
size (in peak operation hours) within 95% confidence interval. The patient wait-
ing time is the key performance indice we have collected for the three distinct
scenarios under evaluation. Results in Fig. 9(a) demonstrate an average num-
ber of 17.48 patients in queue waiting consultation and in Fig. 10(a) the aver-
age patient waiting time around 2.8 h in the pre-pandemic setting. Moreover,

A Simulation Study for Healthcare Provision 99

Fig. 8. Resource utilisation simulation results.

Fig. 9. Patient queue simulation results.

Fig. 10. Patient waiting time simulation results.

Fig. 9(d) and Fig. 10(d) provide the simulation results on M&T. Comparatively,
patients undergoing treatment after consultation also presented an elevated wait-
ing time as shown in consultation outcomes, i.e., the waiting time was around
2.56 h despite an average number of 1.10 patients waiting in queue. This simula-
tion provided that the total patient waiting time is 4.33 h (in average), confirmed
by the managers for their worst-case scenario of observed waiting time.

100 J. Bowles et al.

For improving waiting time and queue size for the pre-pandemic scenario,
we suggested the addition of another MD. The new scenario speeds up the Con-
sultation queue in the A&E, where the total patient waiting time was reduced
from 4.33 to 2.06 h (in average) and the queue from 17.48 to 7.83 patients wait-
ing consultation. The performance bottleneck still persists in the waiting time
on Consultation activity, however, for the managers perspective, has increased
patient overall satisfaction.

During interviews, managers mentioned that their knowledge about bottle-
necks in A&E operation was acquired mostly by daily in situ observations and
casual patient satisfaction enquiries made in waiting rooms often by tempo-
rary staff. They highlighted that the waiting rooms capacity were struggling to
accommodate the pre-pandemic demand (mostly in peak days) and the total
waiting time was rightly inferred by the baseline simulation. Although managers
discussed that the baseline model lacks of adverse events that could worsen
the patient waiting time, for instance, when systems become unavailable (e.g.,
reception totem malfunction) or healthcare services are overloaded (e.g., delays
in exam results delivery).

4.2 A&E Disruption Scenarios During and Post-pandemic

The COVID-19 pandemic brought new challenges and policies for hospitals and
emergency care regarding their services provision. In the A&E for instance,
activities in situ such as consultations were dramatically reduced. Managers
reported a 50% reduction on face-to-face assistance to patients, and scheduled
resources (MDs and nurses) started performing new activities concerning the
urgent actions needed by the pandemic (e.g extra time to put protective equip-
ment or cleansing). An isolated service ward separated from A&E was set to
treat only COVID-19 infections. MDs in the A&E received new shared tasks,
however their priority were to consult patients arriving at the emergency ward
as expected in the pre-pandemic scenario.

Our second simulation scenario is a 50% reduction on inter-arrival time in
A&E (exponent. distr. as 23.25 min). Figure 8(b) shows a high variability on
MDs’ utilisation, so the reduction on patients arrival provided room for MDs
is shared in new activities. In Fig. 8(e) Nurses reduced utilisation, i.e. they
could operate in a reduced number in A&E or having shared responsibilities
on new activities. Waiting time was reduced from 2.80 to 1.28 h on average in
Consultation activity during pandemic as observed in Fig. 10(b), and queue size
from 17.48 to 6.12 patients on Fig. 9(b). Regarding M&T in Fig. 10(e) and
Fig. 9(e), waiting time was reduced to 1.17 h representing a 50% drop in services
provided with less than one queued patient during workdays. Both reductions
were caused by the decrease in urgent care (less people on the streets, fewer
car/work related accidents) and by the patients’ concern on being contaminated
when accessing the hospital premises (avoiding visits). The simulation results
showed that MDs and nurses (A&E capacity) were sufficient to assist non-urgent
cases which are not related to COVID-19 during the pandemic.

A Simulation Study for Healthcare Provision 101

Fig. 11. Comparison of pre-pandemic and post-pandemic scenarios.

A post-pandemic effect on hospital operations is predicted by managers and
MDs with bottleneck even more evident especially on A&E and other services
interrupted such as cancer treatments, surgeries scheduling, and several others.
The arrival rates were suppressed during pandemic period and when services
return to normal operation more patients will seek care for their health issues in
minor and major cases. We have increased the inter-arrival patient time by 25%
in the post-pandemic scenario in comparison with pre-pandemic, assigning an
exponentially distributed value of 11.63 m. This increase represents mostly non-
urgent patients (e.g., patients with minor to moderate injuries, mild symptoms,
or those in the identified risk group for COVID-19) that avoided the hospital
premises during the pandemic. Figure 8(c) shows MDs’ utilisation will be close to
100% all the time, meaning that after post-pandemic wave slows down, resources
in the A&E are to be increased to reduce their utilisation rate to levels similar
to pre-pandemic settings. Nurses suffered an increase on utilisation rate but still
less than 8% (in average).

Patient waiting time for consultation has doubled in post-pandemic scenario
with two MDs, from 2.80 h to 4.07 h as shown in Fig. 11. The queue size has
increased from 17.48 to 30.70 patients similarly, which represents an even worst
scenario to be faced regarding patient experience in the waiting rooms. For
that reason, we have simulated an alternative post-pandemic scenario increasing
capacity to three MDs and the simulation results presented in Fig. 11. It showed
an improvement in waiting time (about 2 h for consultation) that could be com-
pared to pre-pandemic scenario with two MDs (2.80 h), and also queue size was
computed as 17.51 patients, in average.

5 Conclusion

M&S is crucial to accurately model diverse situations in healthcare. When mod-
els are parametrised with actual data, they provide valuable insights to managers

102 J. Bowles et al.

as to how to best allocate (limited) resources or cope with increasing demand, to
mention a few advantages. This is especially relevant with major unanticipated
events such as what the world is now witnessing with COVID-19. Emerging
countries are particularly interested in such results as the situation has only
worsened after the pandemic. The problem will persist even after the pandemic
subsides, as there as no vaccines for the whole population and, on top of that,
it is unfeasible to think about a 100% coverage that could exterminate the virus
throughout the globe. It is thus only reasonable to prepare for a constant increase
in these respiratory issues cases with higher contagion levels.

This work highlighted the importance of M&S on actual settings and the
need for better collecting input data for more consistent quantitative measures.
It seems like this is a solved problem, however, in emerging countries buying
less expensive ERPs, this is very challenging and a source of concern. Hospital
nurses and MDs were trained to input better data into the ERP software and
interact with the modelling sector to improve the process models even further.

As limitations of our work we may cite that it could fall short in terms of
adaptability to new situations, i.e., it has a fixed evaluation quality that it is hard
to circumvent whenever a crisis or an anticipated behaviour is bound to occur.
In this sense, we hope that the models could be quickly revised and re-executed,
where specialised personnel would pinpoint shortcomings on the process and
advise the medical staff in a timely manner.

Our work has considered pre and post-pandemic scenario analysis varying
inter-arrival time and resource allocation to specific tasks in A&E of a sizeable
hospital in Brazil. The results have discussed the impact of the pandemic on the
hospital A&E department, helping managers devise new operational strategies
to cope with demand and address better allocations.

As future work, we aim to expand the model with other activities and assign
resources to tasks to increase the modelling opportunities of more realistic set-
tings. We also would like to review service times and suggest improvements to
management as to deadlines so MDs and nurses could meet to increase opera-
tional efficiency due to adversities, and deal better with process bottlenecks.

Acknowledgements. We thank HSC managers and staff for the research opportunity
and the time spent on interviews as well as sharing datasets from their healthcare sys-
tem. We are grateful to Dr Sandra Quickert and Dr Marco B. Caminati for discussions
on input data analysis.

References

1. Antonacci, G., Calabrese, A., D’Ambrogio, A., Giglio, A., Intrigila, B., Ghiron,
N.L.: A BPMN-based automated approach for the analysis of healthcare processes.
In: Proceedings of the 25th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), pp. 124–129. IEEE Com-
puter Society (2016)

2. Baril, C., Gascon, V., Vadeboncoeur, D.: Discrete-event simulation and design of
experiments to study ambulatory patient waiting time in an emergency depart-
ment. J. Oper. Res. Soc. 70(12), 2019–2038 (2019)

A Simulation Study for Healthcare Provision 103

3. Bisogno, S., Calabrese, A., Gastaldi, M., Ghiron, N.L.: Combining modelling and
simulation approaches: how to measure performance of business processes. Bus.
Process Manag. J. 22, 56–74 (2016)

4. Bowles, J., Czekster, R.M., Webber, T.: Annotated BPMN models for optimised
healthcare resource planning. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF
2018. LNCS, vol. 11176, pp. 146–162. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-04771-9 12

5. Carenzo, L., et al.: Hospital surge capacity in a tertiary emergency referral centre
during the COVID-19 outbreak in Italy. Anaesthesia 75(7), 928–934 (2020)

6. Costa, L.B.M., Filho, M.G., Rentes, A.F., Bertani, T.M., Mardegan, R.: Lean
healthcare in developing countries: evidence from Brazilian hospitals. Int. J. Health
Plan. Manag. 32, e99–e120 (2017)

7. Czekster, R.M., Webber, T., Jandrey, A.H., Marcon, C.A.M.: Selection of enter-
prise resource planning software using analytic hierarchy process. Enterp. Inf. Syst.
13(6), 895–915 (2019)

8. Doniec, K., Dall’Alba, R., King, L.: Brazil’s health catastrophe in the making.
Lancet 392, 731–732 (2018)

9. FitzGerald, G., Jelinek, G.A., Scott, D., Gerdtz, M.F.: Emergency department
triage revisited. Emerg. Med. J. 27(2), 86–92 (2010)

10. Günal, M., Pidd, M.: Discrete event simulation for performance modelling in health
care: a review of the literature. J. Simul. 4, 42–51 (2010). https://doi.org/10.1057/
jos.2009.25

11. Heymann, D.L., Shindo, N.: COVID-19: what is next for public health? Lancet
395(10224), 542–545 (2020)

12. Hussain, M., Malik, M.: Prioritizing lean management practices in public and pri-
vate hospitals. J. Health Organ. Manag. 30(3), 457–474 (2016)

13. Law, A., Kelton, W.: Simulation Modeling and Analysis, 3rd edn. McGraw-Hill,
New York (2000)

14. Pongjetanapong, K., Walker, C., O’Sullivan, M., Lovell-Smith, M., Furian, N.:
Exploring trade-offs between staffing levels and turnaround time in a pathology
laboratory using discrete event simulation. Int. J. Health Plan. Manag. 34(2),
e1119–e1134 (2019)

15. Rossetti, M.D.: Simulation Modeling and Arena, 2nd edn. Wiley Press, Hoboken
(2010)

16. Salmon, A., Rachuba, S., Briscoe, S., Pitt, M.: A structured literature review
of simulation modelling applied to emergency departments: current patterns and
emerging trends. Oper. Res. Health Care 19, 1–13 (2018)

17. Sokolowski, J.A., Banks, C.M.: Principles of Modeling and Simulation: A Multi-
disciplinary Approach. Wiley, Hoboken (2011)

18. WHO: World health organisation, covid-19 dashboard, country: Brazil (2020).
https://covid19.who.int/region/amro/country/br. Accessed 23 June 2020

https://doi.org/10.1007/978-3-030-04771-9_12
https://doi.org/10.1007/978-3-030-04771-9_12
https://doi.org/10.1057/jos.2009.25
https://doi.org/10.1057/jos.2009.25
https://covid19.who.int/region/amro/country/br

A Formal Model for Emulating
the Generation of Human Knowledge

in Semantic Memory

Antonio Cerone(B) and Graham Pluck

Department of Computer Science, School of Engineering and Digital Sciences,
Nazarbayev University, Nur-Sultan, Kazakhstan
{antonio.cerone,graham.pluck}@nu.edu.kz

Abstract. The transfer of information processed by human beings from
their short-term memory (STM) to their semantic memory creates two
kinds of knowledge: a semantic network of associations and a structured
set of rules to govern human deliberate behaviour under explicit atten-
tion. This paper focuses on the memory processes that create the first
of these two kinds of knowledge. Human memory storage and process-
ing are modeled using the Real-time Maude rewrite language. Maude’s
capability of specifying complex data structures as many sorted algebras
and the time features of Real-Time Maude are exploited for (1) provid-
ing a means for formalising alternative memory models, (2) modelling
in silico experiments to compare and validate such models. We aim at
using our model for the comparison of alternative cognitive hypothesis
and theories and the analysis of interactive systems.

Keywords: Cognitive science · Human memory models · Formal
methods · Rewriting logic · Real-Time Maude

1 Introduction

Human semantic memory is a core aspect of declarative long-term memory
(LTM), comprised of propositional information, specifically word meanings and
facts. An example of semantic memory being the fact that a penguin is a bird.
Clearly, such information must be acquired from the environment, such as read-
ing, or formal education.

In terms of information flow within the human memory system, sensations of
the environment (e.g., sounds heard) are first processed by modality-specific sen-
sory stores, which we globally call sensory memory. Items attended in those sen-
sory stores persist for very short time periods and are then passed to a temporary
short-term memory (STM) limited capacity store (about 7 items [21], usually

Work partly funded by Project SEDS2020004 “Analysis of cognitive properties of inter-
active systems using model checking”, Nazarbayev University, Kazakhstan (Award
number: 240919FD3916).

c© The Author(s) 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 104–122, 2021.
https://doi.org/10.1007/978-3-030-70650-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_7&domain=pdf
http://orcid.org/0000-0003-2691-5279
https://doi.org/10.1007/978-3-030-70650-0_7

Formal Emulation of the Generation of Human Knowledge 105

Fig. 1. Human memory architecture

called chunks [24], for healthy adults), with rapid access and rapid decay. From
STM information passes to LTM, which has a virtually unlimited capacity and
where information is organised in structured ways, with slow access but little or
no decay. Finally, within LTM, information repeatedly used in practice activities
may move from semantic memory to procedural memory, thus determining skill
acquisition. In fact, the transfer from semantic memory to procedural memory
refers to our skills and consists of rules and procedures that we unconsciously
use to carry out tasks, particularly at the motor level.

This structure of human memory is depicted in Fig. 1, where continuous
arrows show transfer of information between memory components while dashed
arrows denote information stored in the source component that activate memory
processing in the target component.

In previous work [12] we considered the transfer of information from semantic
memory to STM as a means to retrieve knowledge stored in semantic memory,
in order to perform in silico experiments in which an emulated human sub-
ject answers questions that refer to specific knowledge domains. Such previous
work builds up from the definition of the Behaviour and Reasoning Descrip-
tion Language (BRDL) [11] and its implementation for the emulation of human
reasoning [13] as well as from earlier work, which was based on the Human
Behaviour Description Language (HBDL), a subset of BRDL, and proposed and
partly implemented an approach to the modelling of automatic and deliberate
human behaviour while interacting with an environment consisting of heteroge-
nous physical components [9,10].

106 A. Cerone and G. Pluck

A similar approach to ours was developed by Broccia et al. [5], who, driven by
the specific objective of modelling human multitasking, used Real-time Maude
to extend our initial untimed framework [9]. In their work, however, time is
used to model non-cognitive aspects, such as the duration of the task, which is
an interface-dependent outcome of the interaction process, and external aspect,
such as the delay due to the switching from one task to another. In contrast to
Broccia et al. we focus on the human component and model the duration of the
mental process, which is an important aspect of human cognition.

In this paper we focus on the transfer of factual knowledge from STM to
semantic memory and model this memory process using Real-Time Maude [25,
26]. The large time gap between the rapid decay of the information stored in
STM (of the order of seconds [22]) and the little or no decay of the information
in semantic memory (and in LTM, in general) has pushed research in cognitive
psychology to look for something in between. In fact, nowadays, among cognitive
scientists there is a tacit acceptance of an intermediate memory stage that some-
how bridges the gap between STM and LTM, a form of memory that operates in
the range of minutes to a few hours and, possibly, extending even further in time.
Alan Dix calls this intermediate level mezzanine memory and believes it likely
to be carried through long-term potentiation [17,18] while modern neuroscience
locates it in the hippocampus [18,19].

The minutes-hours magnitude of decay time makes it difficult to study mez-
zanine memory in an experimental setting: too long to observe decay within
a single experimental session and too short to measure the effect of the decay
between two consecutive experimental sessions. For this reason there is little
mention of such a kind of intermediate memory in the literature. In reading
comprehension it is sometime called long-term short-term memory, while other
time it is identified with working memory and is thus seen as a different level of
memory that overlaps with both STM and LTM. For example in the context of
reading a book, there is an interplay between what we store in STM from what
we are currently reading, the recall of what we have read in the same chapter
several minutes before, and the more long-term memory of the book plot, which
can date back to several days, when we read previous chapters.

A more extreme position is the ‘Levels of Processing’ framework of Craik
and Lockhart [16]. They argue that deeper (semantic) processing causes slower
decay, but they are talking of a unitary memory store which encompasses both
STM and LTM processes. Nevertheless, as they consider only one memory store,
their reduced decay rate argument applies to short-term storage. This idea of
‘deeper processing’ is equivalent to elaborative rehearsal.

In this work we aim at proposing an in silico approach to filling the exper-
imental gap between STM and LTM. Although it is hard to carry out experi-
ments on human subjects to validate hypotheses about the mezzanine memory
or, more in general, about the mechanism underlying the transfer of informa-
tion between STM and LTM, we expect that the in silico emulation of such
experiments would produce important insights into this matter. Moreover, this
approach would, in some sense, blur the difference between experimental investi-

Formal Emulation of the Generation of Human Knowledge 107

gation and case study-based investigation. In fact, the in silico emulation would
allow the researcher to consider a large amount of data and a specific human
memory model for a single individual, and perform an intensive analysis within
a much shorter time than in a real-life case study.

The rest of this paper is organised as follows. The Real-Time Maude code
illustrated in this paper can be downloaded from a GitHub repository1. Section 2
briefly introduces informal cognitive models of the information transfer from
STM to LTM from the cognitive psychology literature, with reference to main-
tenance rehearsal and elaborative rehearsal. Section 3 first provides a brief high-
light of Real-Time Maude and refers to the sections of the paper where the
different aspects of the language are illustrated. Then it extensively presents the
Real-time Maude formal models for the information to be processed and for its
STM and semantic memory stores. Section 4 is devoted to the formal models
of memory processes: perception in Sect. 4.1, maintenance rehearsal in Sect. 4.2,
elaborative rehearsal in Sect. 4.3, and the actual learning process that consoli-
dates knowledge in semantic memory in Sect. 4.4. Section 5 illustrates our formal
models using the two cases of rote learning, in Sect. 5.1, and effective learning,
in Sect. 5.2. Section 6 concludes the paper.

2 Cognitive Models for Information Transfer

The sequential processing from STM to LTM is captured by several cognitive
models, most commonly, the Multistore Model [1] and Working Memory Model
[3], however, both are equivalent in proposing structural distinctions between
phonologically-coded STM storage for verbal content and a separate LTM. The
STM and LTM distinction is known partially through cognitive neuroscience, as
it is observed that brain lesions can selectively impair either phonological STM
capacity or LTM contents (either semantic or episodic). Furthermore, severe
reductions in STM capacity caused by brain lesions, such as the inability to
hold more than two items in phonological STM simultaneously, also prevent the
acquisition of new semantic memory entries in LTM [4]. Thus, indicating that
items for storage in semantic memory must first be processed within phonological
STM.

The mechanism by which information transfers from STM to semantic mem-
ory is elaborative rehearsal [2]. This involves using the items within STM to
access existing entries within semantic memory. This deep processing, based on
semantics, increases the chance that the items will become stored in LTM, prob-
ably by strengthening their appropriate connection within the nexus of semantic
entries. This elaborative rehearsal within STM, which induces transfer to LTM,
can be contrasted with maintenance rehearsal. This latter form of processing
can be seen as phonological looping of the items to renew their representations
within STM, thereby delaying signal decay.

1 http://github.com/AntonioCerone/Publications/tree/master/2020/DataMod/
Cognition.

http://github.com/AntonioCerone/Publications/tree/master/2020/DataMod/Cognition
http://github.com/AntonioCerone/Publications/tree/master/2020/DataMod/Cognition

108 A. Cerone and G. Pluck

As shown in Fig. 1, among the sensory information briefly stored in sensory
memory, attention selects some and transfers it to STM. Information in STM
can then be used

– to activate the deliberate control in semantic memory or the automatic control
in procedural memory, or,

– after elaborative rehearsal, to create associations as well as deliberate control
rules in semantic memory.

Moreover, information can be retrieved from semantic memory and transferred
to STM. Furthermore, the repeated use of rules for deliberate control in seman-
tic memory produces skill acquisition and the resultant creation of rules for
automatic control in procedural memory. In previous work we have formally
modeled human behaviour under deliberate and automatic control [13] as well
as information retrieval from semantic memory [12].

3 Real-Time Maude Models of STM and Semantic
Memory

Real-Time Maude [25,26] is a formal modeling language and high-performance
simulation and model-checking tool for distributed real-time systems. It is based
on Full Maude, the object-oriented extension of Core Maude, which is the basic
version of Maude. Real-Time Maude makes use of

– algebraic equational specifications in a functional programming style to define
data types;

– labeled rewrite rules to define local transitions;
– tick rewrite rules to advance time in the entire system state.

Maude equational logic supports declaration of sorts, with keyword sort for one
sort, or sorts for many. A sort A may be specified as a subsort of a sort B by
subsort A < B. Operators are introduced with the op (for a single definition)
and ops (for multiple definitions) keywords:

op f : s1 . . . sn -> s.
ops f1 f2: s1 . . . sn -> s.

Operators can have user-defined syntax, with underbars ‘_’ marking the argu-
ment positions and ‘‘’ to denote a space. Some operators can have equational
attributes, such as assoc, comm, and id, stating that the operator is associative,
commutative and has a certain identity element, respectively. Such attributes
are used by the Maude engine to match terms modulo the declared axioms. An
operator can also be declared to be a constructor (ctor) that defines the carrier
of a sort. Axioms are introduced as equations using the eq keyword or, if they
can be applied only under a certain condition, using the ceq keyword, with the
condition introduced by the if keyword. Variables used in equations are place-
holders in a mathematical sense and cannot be assigned values. They must be

Formal Emulation of the Generation of Human Knowledge 109

declared with the keyword var for one variable, or vars for many. The use of
the owise (or otherwise) equational attributes in an equation denotes that the
axiom is used for all cases that are not matched by the previous equations. All
Maude statements are ended by a dot.

In the rest of this section we define the formal infrastructure that we use to
model STM, semantic memory and the information items stored in them. Some
additional details about Core Maude data types are illustrated in Sect. 3.2.
The Full Maude syntax for classes is illustrated in Sect. 4 while the syntax for
messages as well as labelled rewrite rules and Real-Time Maude tick rewrite
rules are illustrated in Sect. 4.1.

3.1 Facts, Questions and Goals

Humans, throughout their lives, acquire knowledge of the facts of the real world
and are able to refer to them and reason about them using declarative proposi-
tions. Since a declarative proposition is just a natural language description of a
fact, we will often use the word ‘fact’ also to denote the declarative proposition
that describes it. Moreover, human beings reason about facts, and organise such
facts in their semantic memory triggered by questions that are put to them, or
they put to themselves.

We model a fact in Real-Time Maude as follows:

a "dog" is a "animal".

The article ‘a’ is used for any noun, although this is ungrammatical when the
noun starts with a vowel as in the case of ‘animal’. Other examples of facts are:

a "animal" can "breathe"

a "dog" can "move"

a "dog" can "bark"

a "cat" cannot "bark"

a "cat" is not a "dog"

In such examples "animal", "dog" and "cat" are categories, "breathe", "move"
and "bark" are attributes and is a, can, is not a and cannot are types to be
applied to attributes. Categories may also be used as attributes as in a "dog" is
a "animal". The application of a type to an attribute, such as is a "animal"
or can "breathe", is called typed attribute.

A question may be of several kinds [12]. In this paper we consider only can
questions and is a questions, such as:

can a "dog" "breathe" ?

is a "dog" a "animal" ?

The two questions, which have the same structure, will be answered by one
declarative proposition, by stating the fact either negatively or positively.

A goal specifies what a human being aims at achieving as the result of
an activity. Goals drive deliberate behaviour, which exploits the knowledge in

110 A. Cerone and G. Pluck

semantic memory, but do not affect automatic behaviour, which exploits the
knowledge in procedural memory [9,10,13]. In deliberate behaviour, goals acti-
vate attention, a selective processing activity that aims to focus on one aspect
of the environment while ignoring others, thus allowing the human mind to
focus on goal-relevant stimuli in the environment (explicit attention). Another
form of attention, called implicit attention, is grabbed by sudden stimuli that
are associated with the current mental state or carry emotional significance, thus
determining automatic behaviour. For the purpose of this paper we only consider
explicit attention.

We model a goal by considering two aspects: a domain of knowledge to which
we refer and what we gain once the goal is achieved. For example, rehearsing
facts of our knowledge about dogs may be our goal. Then "dogs" is the domain
and "rehearsed" is what we gain as the achievement of our goal. Moreover,
the goal of rehearsing a fact will activate our explicit attention to focus on the
presence of fact descriptions in the environment, such as a written statement
describing a fact.

3.2 Modelling Basic Information Items and Goals

We model basic information items (facts and questions) and goals in Real-Time
Maude as follows:

sorts Fact Question Domain BasicItem Item Goal .

subsorts Fact Question < BasicItem < Item .

subsort Goal < Item .

sorts BasicItemSet ItemSet EmptyItemSet .

subsort BasicItem < BasicItemSet .

subsorts EmptyItemSet < BasicItemSet < ItemSet .

subsort Item < ItemSet .

op none : -> EmptyItemSet [ctor] .

op _;_ : BasicItemSet BasicItemSet ->

BasicItemSet [ctor assoc comm id: none format (b o n b)] .

op _;_ : ItemSet ItemSet -> ItemSet [ctor ditto] .

op _;_ : EmptyItemSet EmptyItemSet -> EmptyItemSet [ctor ditto] .

op goal : Domain BasicItemSet Nat Nat -> Goal [ctor] .

Sorts Facts, Question and Goal model facts, questions and goals, respectively.
The first two are subsorts of BasicItem. Sorts BasicItem and Goal are subsorts
of Item.

Both BasicItem and Item are organised into sets by defining the two sorts
BasicItemSet and ItemSet using the ; user-defined infix operator, which is
given the appropriate equational attributes for the properties that characterise
sets. The ditto equational attribute is a short form for all attributes of the
previous sort declaration. The format equational attribute is used to format the
output with spaces, colours and newlines in order to make it more readable.
By declaring BasicItem as a subsort of BasicItemSet and Item as a subsort
of ItemSet we implicitly define singletons of sorts BasicItemSet and ItemSet.

Formal Emulation of the Generation of Human Knowledge 111

However, the none empty set needs to be explicitly introduced as the only ele-
ment of sort EmptyItemSet, which is subsort of BasicItemSet, in turn subsort
of ItemSet.

The sorts Category and Attribute include Maude-predefined sort String
as a subsort:

sorts Category Attribute TypedAttribute .

subsort String < Category < Attribute .

subsort String < Domain .

This allows us to freely use any string, which is enclosed by double quotes in
Maude syntax, as a category or attribute, while leaving open the option to use
other representations in possible extensions of the module. The elements of sorts
TypedAttributes, Facts and Questions are instead defined using constructors,
since they have special relationships between each other and need to be manipu-
lated in special, distinct ways by the Maude engine. Attribute types can and is
a as well as facts and questions constructed using them are modeled as follow:

ops can_ is‘a_ : Attribute -> TypedAttribute [ctor] .

ops cannot_ is‘not‘a_ : Attribute -> TypedAttribute [ctor] .

op a__ : Category TypedAttribute -> Fact [ctor] .

ops can‘a__? is‘a__? : Category Attribute -> Question [ctor] .

op _is‘negative‘of_ : TypedAttribute TypedAttribute -> Bool .

One of these special relationships is the negation: cannot and is not are the
negations of can and is, respectively. Negation is expressed as an infix boolean
operator is negative of.

Goals are defined using the constructor goal. In addition to the two aspects
mentioned in Sect. 3.1, the knowledge domain, of sort Domain, and the achieve-
ment, of sort BasicItemSet, the constructor goal has two additional arguments
of sort Nat. The first Nat argument models the number of times the goal is
planned to be achieved, for example, the number of time we want to rehearse a
given fact. The second argument is the goal determination, namely how determi-
nate we are in achieving the goal. However, the usage of this argument is beyond
the purpose of our paper.

3.3 Modelling Explicit Attention and Goal Achievements

In order to model the explicit attention we need to extract achievements from
the goals. We use the operators isAchievement and explicitAttention, which
are defined as follows:

sort Achievement .

subsort Achievement < BasicItem .

ops foundAnswer rehearsed : -> Achievement [ctor] .

ops isAchievement explicitAttention : BasicItem ItemSet -> Bool .

vars BI1 BI2 : BasicItem . var BIS : BasicItemSet .

var IS : ItemSet . var D : Domain . vars DET REP : Nat .

eq isAchievement(BI1, goal(D, (BI2 ; BIS), DET, REP) ; IS) =

112 A. Cerone and G. Pluck

BI1 == BI2 or isAchievement(BI1, IS) .

eq isAchievement(BI1, IS) = false [owise] .

var Q : Question . var F : Fact .

eq explicitAttention(Q,

goal(D, (foundAnswer ; BIS), DET, REP) ; IS) = true .

eq explicitAttention(F,

goal(D, (rehearsed ; BIS), DET, REP) ; IS) = true .

eq explicitAttention(BI1, IS) = false [owise] .

For the purpose of our paper we only consider two achievements: foundAnswer,
which drives attentions to questions to be answered, and rehearsed, which drives
attentions to facts to be rehearsed.

3.4 STM—Short-Term Memory

STM is normally used as a buffer where the information that is needed for
processing activities is temporarily stored. In our previous work [12] we modeled
the mechanism for emptying STM when the stored information is no longer
needed by associating a decay time with each information item stored in STM.
A fixed value of decay time was associated with the information item at the
moment this was first stored in STM, then decreased according to the passing
of time and, when it was down to 0, the item was removed from STM. We now
extend this model by separating the actual lifetime of an information item from
its decay time at the current time of its lifetime. These two time aspects of an
STM-stored information item are the two time arguments of the constructor
chunk decay of , which is defined as follows:

sorts Chunk ShortTermMemory .

subsort Chunk < ShortTermMemory .

op chunk_decay_of_ : ItemSet TimeInf TimeInf -> Chunk [ctor] .

op emptySTM : -> ShortTermMemory [ctor] .

op _;_ : ShortTermMemory ShortTermMemory ->

ShortTermMemory [ctor assoc comm id: emptySTM format (b o n b)] .

eq chunk ITEM:Item decay 0 of T:TimeInf = emptySTM .

Another extension with respect to our previous model is the use of the notion
of chunk. Information items can be aggregated to form chunks whereby STM
capacity refers to the number of chunks rather than the number of information
items. The exact mechanism of chucking in human memory is poorly understood.
However, it is thought that conjoining items by their associations within LTM
(e.g. common word collocations), such that a person’s past experience would
influence the chunk selection, is part of the mechanism, as it is a form of data
compression where pieces of information are renamed under a new label, such
as ‘6’ and ‘1’ being labeled as ‘61’ [24].

As shown in the Maude code above, operator chunk decay of , whose syn-
tax is user-defined, associates two possibly infinite times with the aggregate set

Formal Emulation of the Generation of Human Knowledge 113

of information item that forms the chunk (an element of sort Chunk). The sort
TimeInf extend the sort Time with value INF to model an infinite time. Obvi-
ously, an infinite decay time means no decay at all; although this is unrealistic
for human STM, it may be useful in testing and calibrating newly defined mod-
els. The sort ShortTermMemory defines sets of chunks (of sort Chunk, which is a
subsort of sort ShortTermMemory) using the constructor ;. The nullary operator
emptySTM defines an STM that does not contain any information, that is, an
empty set of chunks. The equation on the constructor chunk decay of ensures
that if the decay time has reached zero, the chunk is removed from STM.

Both times specified in the chunk are initialised with a standard decay time,
whose value is fixed a priori when the chunk is first stored in STM. Then the first
time argument (decay time) decreases according to the passing of time whereas
the second argument (lifetime) does not change as long as the chunk is pas-
sively kept in STM without being used. However, if the chunk is used to carry
out maintenance rehearsal or to access information in semantic memory, then
also the lifetime may increase, thus consolidating the information chunk and
paving the way for its transfer to semantic memory. This modelling approach
is consistent with the cognitive neuroscience finding that the phonological loop-
ing of items renews their representations within STM, thereby delaying signal
decay. In Sect. 4.2 and Sect. 4.3 we present formal models of this mechanism for
maintenance rehearsal and elaborative rehearsal, respectively.

3.5 Semantic Memory

Semantic memory has been modeled in our previous work to represent knowledge
about rules that govern human behaviour [9,10,13], acquired inference rules [13]
and facts of the real world [12,13]. In this paper we focus on fact representation
and explain our approach using a case study taken from our previous work [12].

A fact representation in semantic memory is modeled as follows:

sorts FactRepresentation SemanticMemory .

subsort FactRepresentation < SemanticMemory .

op emptySemantic : -> SemanticMemory .

op _:_|-_->|_ : Domain Category Time TypedAttribute ->

FactRepresentation [ctor format (!r o b o r o b o)] .

op __ : SemanticMemory SemanticMemory ->

SemanticMemory [ctor assoc comm id: emptySemantic format (o n o)] .

op _is‘negated‘in_ : Fact SemanticMemory -> Bool .

The finite time that appears as one of the arguments of the fact representation
constructor is the retrieval time (RT) of the fact from semantic memory. As an
example, the fact that ‘a dog is an animal’ is represented within the semantic
domain "dogs" as

"dogs" : "dog" |- 1 ->| is a "animal"

and this form of generalisation can be retrieved from semantic memory in 1
time unit. The more specific category of a generalisation (e.g., "dog") inherits

114 A. Cerone and G. Pluck

all typed attributes of the more generic category (e.g., "animal") unless the
attribute is redefined at the more specific category level. Therefore,

"animals" : "animal" |- 1 ->| can "move"

which is an association of a category with a typed attribute, specifies that ‘an
animal can move’ and, since an animal is a generalisation of a dog, such a typed
attribute is inherited by the category "dog" (‘a dog can move’).

Fact representations are defined as elements of the sort FactRepresentetion.
The semantic memory is modelled by the sort SemanticMemory, which is defined
as a set of fact representations. The constructor denotes that sets of fact
representations are created by justapposition, with no written operator. The
constructor emptySemantic denotes an empty semantic memory.

4 Modelling Memory Processes

In this section we show how the different memory components are put together
as a Full Maude class object and, in Sect. 4.1, 4.2, 4.3 and 4.4 how tick rewrite
rules are used to model memory processes.

A declaration class C | att1 : s1, . . . , attn : sn declares a class C with
attributes att1 to attn of sorts s1 to sn. An object of class C is represented as a
term < O : C | att1 : val1, ..., attn : valn > of sort Object, where O, of sort Oid,
is the object’s identifier, and where val1 to valn are the current values of the
attributes att1 to attn.

We model the structure of human memory using the following Real-Time
Maude class:

class HumanMemory | shortTermMem : ShortTermMemory,

semanticMem : SemanticMemory .

STM is modelled by the field shortTermMem. Semantic memory is modelled by
the field SemanticMem. Note that this model has been simplified for the purpose
of this paper and does not include some other memory components, such as
procedural memory, and memory attributes, such as the cognitive load.

4.1 Perception

Although sensations of the environment are initially processed by sensory mem-
ory before being passed to STM, in our model we assume that perceptions avail-
able in the environment are selected using attention and directly transferred to
STM. In order to model perceptions we use Full Maude messages. A message
is an element of the pre-defined sort Msg and has the same syntax as an opera-
tion but, in addition, is also an element of the pre-defined sort Configuration.
The system state is a term of sort Configuration, and is a multiset of objects
and messages. Multiset union is denoted by an associative and commutative
juxtaposition operator, so that rewriting is multiset rewriting.

Therefore, a perception is modelled as a message using the constructor perc
as follows:

Formal Emulation of the Generation of Human Knowledge 115

sorts Perception TimedBasicItem FutureBasicItem .

subsorts Perception < Msg .

op _for_ : BasicItem TimeInf -> TimedBasicItem [ctor] .

op perc : TimedBasicItem -> Perception [ctor] .

var BI : BasicItem .

eq perc(BI for 0) = none .

The persistence of a perception in the environment is modeled by the constructor
for. Note that the time may be infinite to denote that the perception persists
forever. The equation ensures that if the persistence time has reached zero, the
perception is removed from the configuration (none is the empty configuration).

The processing of information within memory components and the transfer
of information between components are modeled using Real-Time Maude tick
rewrite rules. Labeled rewrite rules

rl [l]: t => t′ or crl [l]: t => t′ if cond

define local transitions from state t to state t′. Tick rewrite rules

rl [l]: {t} => {t′} in timeΔ or crl [l]: {t} => {t′} in timeΔ if cond

advance time in the entire state t by Δ time units.
The following rewrite rule models the storage in STM of information per-

ceived from the environment:

crl [perception-explicit-storage] :

(perc (BI for T))

< H : Human | shortTermMem : STM >

REST

=>

< H : Human | shortTermMem :

(chunk BI decay DECAY-TIME of DECAY-TIME) ; idle(STM,TP) >

(perc (BI for (T monus TP)))

REST

in time TP

if TP := tp(perc (BI for T)) /\ IS := removeTime(STM) /\
explicitAttention(BI, IS) /\ not isItemIn(BI, IS) .

The basic information BI, which is available in the environment for the
time T, is stored in STM if it is not already there (not isItemIn(BI,
IS)) and the untimed content IS of STM drives explicit attention on
it (explicitAttention(BI, IS)). As we have seen in Sect. 3.3, the
explicitAttention operator checks whether the structure of BI has a match-
ing information in a goal stored in STM. Operator tp gives the time for storing
the information in STM. As suggested by Kolers [20] we assign 100 milliseconds
(ms) as the time to move orthographic information to a phonological storage,
such as the one represented by STM, by defining operator tp as a constant.

116 A. Cerone and G. Pluck

4.2 Maintenance Rehearsal

As mentioned in Sect. 1 there is no agreement on what fills in the decay time
gap between STM and LTM. However, in order to explain how learning occurs
through maintenance rehearsal, Burgess and Hitch [6,7] claim the existence of
two learning mechanisms operating in parallel during STM storage. This is part
of a model of working memory [4]. That model includes a ‘fast’ short-term learn-
ing process that is the basis of STM and is associated with trace decay, and a
‘slow’ learning process that gradually leads to LTM (in the same cells), but
enhances within STM. These dual learning processes are said to operate in par-
allel, and are biologically plausible. They are used to explain the Hebb Repetition
effect, which is that if the same list is repeated several times, recall from STM is
improved, suggesting a longer-range learning mechanism (longer than rehearsal
resetting the decay level). As that model emphasises rehearsal as being the basis
of the fast learning mechanism, it would be reasonable to assume that the parallel
slow learning mechanism would be delaying decay.

The following rewrite rule models the effect of the learning mechanism pro-
posed by Burgess and Hitch:

crl [perception-explicit-maintenance] :

(perc (BI for T))

< H : Human | shortTermMem : (chunk BI decay T1 of T2) ; STM >

REST

=>

< H : Human | shortTermMem :

(chunk BI decay T2 of maintenance-effect(T2)) ; idle(STM,TP) >

(perc (BI for (T monus TP)))

REST

in time TP

if TP := tp(perc (BI for T)) /\ T2 < STM-TO-LTM-THRESHOLD /\
IS := removeTime(STM) /\ (rehearsed, IS) .

The operator isAchievement, which was defined in Sect. 3.3, is used to activate
the rehearsal loop when the untimed content IS of STM includes a goal having
rehearsed as its achievement.

Burgess and Hitch’s ‘fast’ short-term learning process is controlled by the
T1 decay time, while the parallel slow learning mechanism is represented by
an increase in the T2 information lifetime. Such an increase can be set in a
way that can accommodate a specific hypothesis or theory by using appropriate
equations to define operator maintenance-effect. For example, we can model
a small, constant increase at each rehearsal loop or we may implement Naveh-
Benjamin and Jonides’ suggestion [23], that the first rehearsal is the most impor-
tant, because it involves producing the rehearsal plan, with subsequent loops of
that plan adding little to the transfer to LTM.

Finally, the decay time T1 is reset to the current lifetime T2 (before increase)
and the condition on the STM-TO-LTM-THRESHOLD keeps the rehearsal process
alive until the appropriate threshold for transferring to LTM is reached.

Formal Emulation of the Generation of Human Knowledge 117

4.3 Elaborative Rehearsal

Suppose that we know that a "animal" can "move" but we do not know that a
"dog" is a "animal". Once we read this new fact, which thus enters our STM,
elaborative rehearsal could be activated by questions about dogs that require
the retrieval of animal’s attributes. The question can a "dog" "move" ? would
allow us to use the just read new fact (a "dog" is a "animal") to retrieve the
answer as an attribute of category "animal". As explained in Sect. 2, the usage
of information within STM to access existing entries within semantic memory
would increase its chance to become stored in semantic memory.

In our previous work [12], we introduced a tick rule for answering a can
question that explored the knowledge in semantic memory to answer a question
stored in STM, but without using any fact possibly stored in STM in the retrieval
process. The following tick rewrite rule extends our previous tick rule by (1)
using information stored in STM in combination with the knowledge in semantic
memory in order to answer the question; (2) modifying the lifetime of the facts
stored in STM that are used in the retrieval process.

crl [retrieval-can-elaborative-is-a] :

< H : Human |

shortTermMem : (chunk goal(D, foundAnswer, N1, N2) decay T1 of T2) ;

(chunk (can a C A ?) decay T3 of T4) ; STM,

semanticMem : S >

REST

=>

< H : Human |

shortTermMem : NEW-GOAL-CHUNK ;

(chunk F decay DECAY-TIME of DECAY-TIME) ;

idle(NEW-STM, T),

semanticMem : S >

idle(REST,T)

in time T

if F := a C can A /\ IS := removeTime(STM) /\ not isItemIn(F, IS) /\
T := canRetrievalTime(C, A, S, IS) /\ T <= MAX-RETRIEVAL-TIME /\
NEW-STM := elaborativeRetrieval(C, A, S, STM) /\
not (F is negated in S) /\ not isItemIn(a C cannot A, IS) /\
NEW-GOAL-CHUNK := if N1 > 0

then (chunk goal(D, foundAnswer, N1 monus 1, N2)

decay DECAY-TIME of DECAY-TIME)

else emptySTM fi .

The retrieval time T is calculated using the canRetrievalTime operator, which
searches in the semantic memory S for a fact representation with category Cn
and typed attribute can A, where either Cn = C or Cn is a generalisation of C
through a chain of facts

a C is a C1, a C1 is a C2, . . . a C(n − 1) is a Cn

which either have representations in semantic memory or are in STM.
The operator elaborativeRetrieval performs a similar search in semantic

memory but with the purpose of modifying the lifetime of all facts stored in

118 A. Cerone and G. Pluck

STM that are used in the process. As in the case of maintenance rehearsal, it
is unknown to which extent to modify the lifetime. Again, we can then set such
a modification in a way that can accommodate a specific hypothesis or theory.
This is achieved by appropriately defining an operator elaborative-effect,
similar to mantainence-effect, and use it within the definition of the operator
elaborativeRetrieval.

4.4 Transfer from STM to Semantic Memory

The following rule models the transfer of information from STM to Semantic
Memory.

crl [from-STM-to-LTM-fact] :

< H : Human |

shortTermMem : (chunk goal(D, rehearsed, N1, N2) decay T1 of T2) ;

(chunk (a C TA) decay T3 of T4) ; STM,

semanticMem : S >

REST

=>

< H : Human |

shortTermMem : STM,

semanticMem : (D : C |- 1 ->| TA) S >

REST

if T4 >= STM-TO-LTM-THRESHOLD .

Since the cognitive psychology literature does not provide any information on
possible values of the STM-TO-LTM-THRESHOLD threshold, we should give an esti-
mation depending on the specific hypothesis or theory we consider in defining
the lifetime increments in the cases of maintenance rehearsal and elaborative
rehearsal. For instance, if we follow Naveh-Benjamin and Jonides’ hypothesis
[23], that the first rehearsal loop is the most important, then a reasonable decay
time cut-off could be the time taken to get the phonological code into STM.
In Sect. 4.1 we considered Kolers’ suggestion [20] that the time to move ortho-
graphic information to a phonological storage in STM should require approx-
imately 100 ms. However, the conversion of the ortographical format into the
phonological format suitable for the storage is achieved by subvocalization which,
according to Mueller and Krawitz [22], requires between 1.5 and 2 s. This is in
accordance with the original Collins and Quillian experiments [15], which used
a two second presentation to their human participants. Therefore, a reasonable
threshold should be at least 3 or 4 s, by considering 1.5–2 s for the initial transfer
and another 1.5–2 s for the first rehearsal loop.

5 In Silico Experiments

In order to perform in silico experiments we need to define an infrastructure to
plan experiments and make them actual at the specified time. We call planned

Formal Emulation of the Generation of Human Knowledge 119

experiment the presentation of a single piece of orthographic information (ortho-
graphic representation of a fact or a question) to a human subject, together with
the time that must pass before it is actually presented.

The experimental infrastructure is modeled as follows:

sorts FutureBasicItem SingleExperiment Experiment .

subsort SingleExperiment < Experiment < Msg .

op _in_ : TimedBasicItem Time -> FutureBasicItem [ctor] .

op exp : FutureBasicItem -> SingleExperiment [ctor] .

op noExp : -> Experiment [ctor].

op repeat_times‘starting‘in_:_ : Nat Time SingleExperiment -> Experiment .

var T : Time . var E : SingleExperiment .

eq repeat 0 times starting in T : E = none .

eq repeat 1 times starting in T : E = E .

A single experiment is modeled as a message exp((BI for PT) in FT), where
FT denotes in how many time units the experiment is scheduled and PT denotes
the number of time units the perception of the basic information BI persists in
the environment. A sequence of experiments is modeled as a message repeat N
times starting in TI : E, where experiment E is repeated for N times and
the sequence starts in TI time units. Two simple rewrite rules generate single
experiments from a sequence defined using the repeat times‘starting‘in :
operator and a perception from a single experiment.

5.1 Rote Learning

In rote learning, maintenance rehearsal is used for achieving the transfer of the
information from STM to semantic memory. For example, if the time is given in
milliseconds,

repeat 10 times starting in 5000 :

((a "dog" is a "animal") for 2000) in 3000

models an experimental session that starts in 5 s and in which a human subject
is presented the sentence ‘a dog is an animal’ 10 times, every 3 s, each time for
2 s. Every rehearsal loop increases the fact lifetime in STM until the threshold
for transferring to semantic memory is reached so that a representation of the
fact is created in semantic memory.

5.2 Effective Learning

In order to model effective learning, we have to make sure that the fact to
be learned is first stored in STM and then used to retrieve information from
semantic memory. For example

((a "dog" is a "animal") for 2000) in 5000

repeat 10 times starting in 3000 :

((can a "dog" "move" ?) for 2000) in 3000

120 A. Cerone and G. Pluck

models an experimental session that starts in 5 s and in which a human subject
is first presented the fact ‘a dog is an animal’ once and is then presented the
question ‘can a dog move?’ 10 times, every 3 s, each time for 2 s. The retrieval
process needed to answer the question starts by using the fact in STM and ends
by using the representation of the fact a "animal" can "move" in semantic
memory. The repeated use of fact a "dog" is a "animal" increases its lifetime
in STM until the threshold for transferring to semantic memory is reached so
that a representation of the fact is created in semantic memory.

6 Conclusion and Future Work

In this paper we presented an approach to the formal modelling of memory pro-
cesses underlying the transfer of information from STM to LTM, with focus on
the consolidation of factual knowledge in semantic memory. We have tested our
approach on a simple experimental setting. In our future work we aim at inves-
tigating how our approach can cope with more complex experimental settings.

A number of hypotheses and theories from cognitive psychology have been
considered as good candidates to be investigated within our approach. Such
hypotheses and theories are normally conceptual in nature, with only vague,
controversial quantitative characterisations. For example, STM decay time has
been traditionally proposed to be 2 s, but some argue that it is much longer,
between 4 and 10 s [22]. Other suggest less than 3 s and Campoy proposes an
average estimate of 2,700 ms [8]. Although there are no specific theories that
describe mezzanine memory, the manipulation of the chunk lifetime supports
the emulation of processes that fill the time gap between STM and semantic
memory.

In fact, our in silico experiments can be used to compare such alternative
hypotheses and theories, or even contribute to the formulation of new theories,
as we aim in the case of mezzanine memory, as part of our future work. One
way to carry out such a comparison is to determine and test alternative quan-
titative implementations of conceptual hypotheses or theories, as we proposed
for Burgess and Hitch’s parallel learning mechanisms [6,7], in Sect. 4.2, and for
Naveh-Benjamin and Jonides’ hypothesis [23], in Sect. 4.4. Another way is the
direct comparison of alternative estimates form cognitive psychology or neuro-
science. This is the case for STM decay time and for Mueller and Krawitz’s
conversion of the ortographical format into the phonological format.

As part of our future work, the results of in silico experiments may also
be compared with real datasets to evince which model best mimics reality. In
addition to a manual comparison, we aim at the generalisation of an approach
from our previous work [14] in which ‘formal validation’ is achieved by converting
a dataset into a formal representation that can be composed in parallel with the
system model. In the context of this paper, the system model is actually the
human memory model. Model-checking would then be used to verify properties
that may only hold when the dataset matches the in silico experiment.

Finally, the human memory model of a user can be combined with the model
of the used computer system. Such an overall model can be formally verified

Formal Emulation of the Generation of Human Knowledge 121

using Real-time Maude model-checking features. This is also part of our future
work.

References

1. Atkinson, R.C., Shiffrin, R.M.: Human memory: a proposed system and its control
processes. In: Spense, K.W. (ed.) The Psychology of Learning and Motivation:
Advances in Research and Theory II, pp. 89–195. Academic Press (1968)

2. Atkinson, R.C., Shiffrin, R.M.: The control of short-term memory. Sci. Am. 225(2),
82–90 (1971)

3. Baddeley, A.: The episodic buffer: a new component of working memory? Trends
Cogn. Sci. 4(11), 417–423 (2000)

4. Baddeley, A., Papagno, C., Vallar, G.: When long-term learning depends on short-
term storage. J. Mem. Lang. 27(5), 586–595 (1988)

5. Broccia, G., Milazzo, P., Ölveczky, P.C.: Formal modeling and analysis of safety-
critical human multitasking. Innovations Syst. Softw. Eng. 15(3–4), 169–190
(2019). https://doi.org/10.1007/s11334-019-00333-7

6. Burgess, N., Hitch, G.J.: Memory for serial order: a network model of the phono-
logical loop and its timing. Psychol. Rev. 106(3), 551–581 (1999)

7. Burgess, N., Hitch, G.J.: A revised model of short-term memory and long-term
learning of verbal sequences. J. Mem. Lang. 55(4), 627–652 (2006)

8. Campoy, G.: Evidence for decay in verbal short-term memory: a commentary on
Berman, Jonides, and Lewis (2009). J. Exp. Psychol. Learn. Mem. Cogn. 38(4),
1129–1136 (2012)

9. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of inter-
active systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
287–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 20

10. Cerone, A.: Towards a cognitive architecture for the formal analysis of human
behaviour and learning. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018.
LNCS, vol. 11176, pp. 216–232. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-04771-9 17

11. Cerone, A.: Behaviour and reasoning description language (BRDL). In: Camara,
J., Steffen, M. (eds.) SEFM 2019. LNCS, vol. 12226, pp. 137–153. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-57506-9 11

12. Cerone, A., Murzagaliyeva, D.: Information retrieval from semantic memory:
BRDL-based knowledge representation and Maude-based computer emulation. In:
Cleophas, L., Massink, M. (eds.) SEFM 2020. LNCS, vol. 12524, pp. 159–175.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67220-1 13

13. Cerone, A., Ölveczky, P.C.: Modelling human reasoning in practical behavioural
contexts using Real-Time Maude. In: Sekerinski, E., et al. (eds.) FM 2019. LNCS,
vol. 12232, pp. 424–442. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-54994-7 32

14. Cerone, A., Zhexenbayeva, A.: Using formal methods to validate research hypothe-
ses: the Duolingo case study. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF
2018. LNCS, vol. 11176, pp. 163–170. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-04771-9 13

15. Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. J. Verbal
Learn. Verbal Behav. 8, 240–247 (1969)

https://doi.org/10.1007/s11334-019-00333-7
https://doi.org/10.1007/978-3-319-41591-8_20
https://doi.org/10.1007/978-3-030-04771-9_17
https://doi.org/10.1007/978-3-030-04771-9_17
https://doi.org/10.1007/978-3-030-57506-9_11
https://doi.org/10.1007/978-3-030-67220-1_13
https://doi.org/10.1007/978-3-030-54994-7_32
https://doi.org/10.1007/978-3-030-54994-7_32
https://doi.org/10.1007/978-3-030-04771-9_13
https://doi.org/10.1007/978-3-030-04771-9_13

122 A. Cerone and G. Pluck

16. Craik, F.I., Lockhart, R.S.: Levels of processing: a framework for memory research.
J. Verbal Learn. Verbal Behav. 11(6), 671–684 (1972)

17. Dix, A.: Personal communication (2019)
18. Fiebig, F., Lansner, A.: Memory consolidation from seconds to weeks through

autonomous reinstatement dynamics in a three-stage neural network model. In:
Liljenström, H. (ed.) Advances in Cognitive Neurodynamics (IV). ACN, pp. 47–
53. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9548-7 7

19. Kesner, R.: Parallel processing of spatial and temporal information in rodents and
humans: role of the hippocampus. In: Call, J., Burghardt, G.M., Pepperberg, I.M.,
Snowdon, C.T., Zentall, T. (eds.) APA Handbooks in Psychology R©. APA Hand-
book of Comparative Psychology: Basic Concepts, Methods, Neural Substrate, and
Behavior, pp. 517–538. American Psychological Association (2017)

20. Kolers, A.P.: A pattern-analyzing basis of recognition. In: Cermak, L.S., Craik,
F.I. (eds.) Levels of Processing in Human Memory, pp. 363–384. Psychology Press,
Hove (2014)

21. Miller, G.A.: The magical number seven, plus or minus two: some limits on our
capacity to process information. Psychol. Rev. 63(2), 81–97 (1956)

22. Mueller, S.T., Krawitz, A.: Reconsidering the two-second decay hypothesis in ver-
bal working memory. J. Math. Psychol. 53(1), 14–25 (2009)

23. Naveh-Benjamin, M., Jonides, J.: Maintenance rehearsal: a two-component analy-
sis. J. Exp. Psychol. Learn. Mem. Cogn. 10(3), 369 (1984)

24. Norris, D., Kalm, K., Hall, J.: Chunking and redintegration in verbal short-term
memory. J. Exp. Psychol. Learn. Mem. Cogn. 46(5), 872–893 (2019)

25. Ölveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4 3

26. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time-Maude.
Higher-Order Symb. Comput. 20(1–2), 161–196 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-94-017-9548-7_7
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3
http://creativecommons.org/licenses/by/4.0/

Analysis of COVID-19 Data with PRISM:
Parameter Estimation and SIR Modelling

Paolo Milazzo(B)

Department of Computer Science, University of Pisa,
Largo B. Pontecorvo, 3, 56127 Pisa, Italy

paolo.milazzo@unipi.it

Abstract. We propose a pipeline for the stochastic analysis of a SIR
model for COVID-19 through the stochastic model checker PRISM. The
pipeline consists in: (i) the definition of a modified SIR model, able to
include governmental restriction and prevention measures through an
additional time-dependent coefficient; (ii) parameter estimation based
on real epidemic data; (iii) translation of the modified SIR model into
a Continuous Time Markov Chain (CTMC) expressed using the PRISM
input language; and (iv) stochastic analysis (simulation and model check-
ing) with PRISM.

Keywords: PRISM model checker · SIR models · COVID-19

1 Introduction

The impact that the COVID-19 (or better, SARS-COV-2) pandemic is having
on the population around the world is recorded in increasingly large and varied
databases. The spread of the virus is tracked on a daily basis almost everywhere
in the world, but the effects of the epidemics can be observed also in datasets
in the contexts of healthcare, mobility, finance, and many others. The analysis
of COVID-19 epidemic data could help in understanding the dynamics of the
contagion, evaluating the effect of restriction and prevention measures taken by
national and local governments and predicting the effect of alternative measures.

Epidemic phenomena are often studied by means of a SIR model [8]. This
happened also for COVID-19 pandemic, with several extensions of the model
proposed to take into account its peculiarities [2,5–8]. SIR models typically
describe epidemics as deterministic dynamical systems, through Ordinary Dif-
ferential Equations (ODEs). For a more realistic description of the epidemic
dynamics, stochastic fluctuations are often to be taken into account. This hap-
pens, in particular, when a small number of infected individuals are present in
the population, causing the disease spread to depend tightly on the probability
of such few individuals to meet and infect other people. In order to deal with
these stochastic events, SIR models can be reformulated in terms of Continu-
ous Time Markov Chains (CTMCs). This can be done essentially by interpreting

c© Springer Nature Switzerland AG 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 123–133, 2021.
https://doi.org/10.1007/978-3-030-70650-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_8&domain=pdf
http://orcid.org/0000-0002-7309-6424
https://doi.org/10.1007/978-3-030-70650-0_8

124 P. Milazzo

infection and recovery rates, already used in ODEs, as parameters of exponential
distributions. The obtained CTMC can then be analyzed through suitable meth-
ods which include, for example, stochastic simulation.

PRISM [1] is one of the most used probabilistic/stochastic model checkers.
It can be used to study dynamical properties of a CTMC through an exhaustive
exploration of all possible behaviors. Dynamical properties can be expressed as
temporal logic formulae (for CTMCs, PRISM supports the CSL temporal logic
[3]). Properties assessment consists then in an exhaustive exploration of the
CTMC state space This may require a long sequence of matrix multiplications
giving the probability distribution of each possible state at discrete time steps.

Stochastic model checking allows studying properties of a dynamical systems
in a very systematic way. Property assessment does not provide only information
about the possible systems behaviors: given a dynamical property (e.g. reach-
ability of a given state, causality between events or possibility of oscillation),
a stochastic model checker computes the probability that the system behavior
will satisfy it. This analysis is not performed on a bunch of simulation results,
but by taking all possible behaviors into account. Of course, the main limitation
of stochastic model checking techniques is often due to size of the state space
(state explosion problem). Moreover, in the case of stiff systems, property assess-
ment may require a huge number of matrix multiplications. In some cases, these
limitations can be overcome by using suitable model specification tricks.

In this paper, we describe preliminary processing and modelling activities
that allow a SIR model of the COVID-19 pandemic to be analyzed with PRISM.
Our approach actually consists in the following pipeline:

1. Definition of a modified SIR model (based on ODEs) that allows taking into
account restriction and prevention measures (e.g. lockdown);

2. Parameter estimation using standard Python libraries (NumPy and SciPy);
3. Translation of model into a CTMC expressed in the PRISM input language;
4. Analysis with PRISM.

We will use real data about the spread of COVID-19 in the Tuscany Region
(Italy) to show the pipeline steps. However, our aim is not to perform a deep
analysis of such data with PRISM, but to show how it is possible to obtain,
from data, a PRISM model that can be analyzed efficiently. Hence, although we
will show some inferences and analysis results, the intended contribution of this
paper is mostly methodological.

2 SIR Epidemic Models and COVID-19

Epidemic phenomena are often studied by means of a SIR model [8]. The SIR
acronym summarizes the classes of individuals into which the population is parti-
tioned. They are: Susceptible, individuals who can be infected; Infected, individ-
uals who have been infected and that can infect susceptible ones; and Recovered,
individuals who passed the infection phase and can no longer infect others.

The dynamics of epidemic phenomena is described by means of a system
of Ordinary Differential Equations (ODEs). In its simplest formulation, the

Analysis of COVID-19 Data with PRISM 125

model includes one equation for each class of individuals. The population size is
assumed constant over time and it is normalized in [0, 1] ⊆ IR. Hence, variables
S, I, R ∈ [0, 1] with S + I + R = 1 describe the ratios of each class of individual
in the population. Moreover, the model is based on the following assumptions:

– infection and recovery are the only relevant events: other events related to
reproduction, death, migration, etc., are not taken into account;

– disease is transmitted by personal contacts between individuals of I and S
classes (horizontal transmission);

– contacts between individuals are random, i.e. the number of infections is
proportional to both I and S;

– after infection and recovery, individuals become resistant to the disease.

Therefore, the model is described by this small system of differential equations:
⎧
⎪⎨

⎪⎩

dS
dt = −βSI
dI
dt = βSI − γI
dR
dt = γI

(1)

where β is the infection coefficient, describing the probability of infection after
the contact of a healthy individual with an infected one, and γ is the recovery
coefficient, describing the rate of recovery of each infected individual (in other
words, 1/γ is the time one individual requires for recovering). Note that:

– S can only decrease, and R can only increase;
– if β < γ (i.e., β/γ < 1), I can only decrease (since S ≤ 1);
– if β > γ (i.e., β/γ > 1), the behavior of I depends on S. It initially increases

if S > γ/β.

Many extensions of the SIR model are available in the literature, and have been
proposed to study different infection schemes, the effects of vaccinations or the
influence of information. In order to apply the SIR model to the COVID-19
epidemic and, in particular, in order to analyze data collected during the first
few months of the epidemic, it is necessary to take into account prevention
measures (e.g. lockdown) that have been enforced by the national governments.
Hence, we propose a variant of the SIR model which includes a time dependent
coefficient p(t) expressing the effect of such measures on the infection rate.

Our modified SIR model is hence defined as follows:
⎧
⎪⎨

⎪⎩

dS
dt = −βSIp(t)
dI
dt = βSIp(t) − γI
dR
dt = γI

(2)

where p(t) ∈ [0, 1] ⊂ IR is used to scale down the infection coefficient β in
accordance with the strength of the enforced prevention measures at time t. A
value of p(t) close to 0 represents strong prevention, while p(t) = 1 means no
prevention at all. Let us consider the first few weeks of the epidemics, and let
us assume that lockdown has been enforced at time tlock. With some degree of
approximation, we can describe p(t) as a piecewise linear function as follows:

126 P. Milazzo

p(t) =

{
1 if t < tlock

plock if t ≥ tlock
(3)

with plock ∈ [0, 1] ⊂ IR modeling the effect of lockdown on infection coefficient.

3 Parameter Estimation

Now, we face the problem of estimating parameters for the modified SIR model
presented in (2). In particular, if we assume p(t) to be expressed by a piecewise
linear function as in (3), we have to estimate values for β, γ, and plock.

By focusing on the Tuscany Region, we can estimate such parameters by
applying standard optimization methods in order to fit real epidemic data. We
use COVID data published on a daily basis by the Regional Health Agency of the
Tuscany Region1. The dataset2 includes data on infections, deaths, hospitaliza-
tions, etc., collected every day in the whole region starting from February 24th,
2020. Moreover, data on infections are available also disaggregated by province.

We focus on the time period of March-May 2020, corresponding to the initial
spread of the infection and the lockdown phase. More precisely, we consider the
time interval between day 20 (March, 15th) and day 75 (May, 9th). We choose
not to consider data from the first 20 days since the number of detected infections
in that period is extremely small, and probably unreliable.

In order to take into account geographical distribution of the population in
the Tuscany Region, we choose to use the (modified) SIR model at the level of
provinces. This choice will mitigate the assumption of the SIR model that the
population is uniformly distributed in the territory, and that all individuals can
freely meet with each other. Moreover, this will allow us to evaluate and compare
differences in the disease spread in different provinces.

Tuscany consists of ten provinces. Some of them (e.g. Prato and Firenze)
have a high population density, while others (e.g. Grosseto and Siena) are large
and less populated. Since population density could have a correlation with the
infection rate, considering data at the level of provinces could lead to more
accurate parameter estimations.

The Python scripts we developed for parameter estimation purposes are avail-
able as a Jupyter Notebook on GitHub3. In order to estimate the parameters
of the SIR model for the different provinces, we use functionalities provided
by standard Python packages. In particular, we use the optimize.curve_fit
function of the SciPy library, to find optimal values for coefficients β, γ and plock.

We apply curve_fit twice: the first time to estimate β and γ on the basis of
the pre-lockdown data (hence, by assuming p(t) = 1)), and the second time to
estimate plock by assuming β and γ as estimated before and by using lockdown
data. As value for tlock in (3), namely, as time for the enforcement of lockdown
measures, we choose 45, namely April 9th. Actually, in Italy the lockdown state
1 Agenzia Regionale di Sanita (ARS), https://www.ars.toscana.it/.
2 Freely available at http://dati.toscana.it/dataset/open-data-covid19.
3 GitHub repository: https://github.com/Unipisa/SIR-covid.

https://www.ars.toscana.it/
http://dati.toscana.it/dataset/open-data-covid19
https://github.com/Unipisa/SIR-covid

Analysis of COVID-19 Data with PRISM 127

has been reached through a sequence of governmental measures taken in the
period between March 5th (schools closed) and March 22nd (national lockdown).
The effects of such measures on the epidemic dynamics started to become evident
more than two weeks later, hence around April, 9th.

Let us assume a Python function ModelSolution(t,beta,gamma,prev,x0)
that uses the odeint solver provided by the SciPy package to solve ODEs of the
modified SIR model in (2), with t a sequence of time point for which to solve the
ODEs, beta and gamma corresponding to β and γ, respectively, prev a constant
value for p(t), and x0 an array of initial conditions (i.e., initial values for S, I
and R). We define function f1 and we pass it to curve_fit as follows:

f1 = lambda t,beta,gamma: ModelSolution(t,beta,gamma,1,x0)

p1 = curve_fit(f,t1,pre_lockdown_data,bounds=(0,[np.inf,1]))

The result p1 contains two optimal values for β and γ with β ∈ [0,∞) and
γ ∈ [0, 1], that fit pre-lockdown data.

Now, we define function f2 and we pass it to curve_fit as follows:

f2 = lambda t,prev: ModelSolution(t,p1[0][0],p1[0][1],prev,x0)

p2 = curve_fit(f,t2,lockdown_data,bounds=(0,1))

Result p2 contains now an optimal value for plock, fitting lockdown data.
For both optimizations, it is important to point out our choice for the initial

condition array x0. More precisely, it is important to clearly explain how we
relate variables S, I and R with real data. The number of infected individu-
als reported in the dataset is the number of persons that resulted positive to a
SARS-COV-2 test. After the test, these persons are then isolated and have a very
small probability of infecting other people. So, individuals reported as infected in
the dataset have a role in the epidemic that is actually more similar to that of a
recovered individual than of an infected one. The “real” infected individuals are
instead those that have been infected, but have not been identified yet through
a specific SARS-COV-2 test. These behave mostly as healthy individuals and
infect other people. Unfortunately, these “real” infected individuals are hidden
in the population and their number is unknown. In the initial array x0 for the
first optimization step, we choose to set the initial value of I as the triple of the
number of positive persons reported on March, 15th. This because we assume
that in the initial phases of the epidemic only a small part of the positive indi-
viduals were identified. The condition array x0 for the second optimization step
simply correspond to the final state reached after the first optimization.

Parameters resulted from the described estimation process are reported in
Table 1. Apart form the Arezzo province, whose estimated parameters look

Table 1. Parameters estimation.

β γ plock
AREZZO 0.229187 0.251815 0.994549
FIRENZE 0.145179 0.097259 0.001654

GROSSETO 0.129687 0.144080 0.487087
LIVORNO 0.107479 0.104104 0.317674

LUCCA 0.120928 0.111307 0.004195

β γ plock
MASSA CARRARA 0.102454 0.084304 0.000098

PISA 0.122128 0.127283 0.472081
PRATO 0.130999 0.119076 0.145995

PISTOIA 0.078007 0.099515 0.991426
SIENA 0.077028 0.069914 0.000231

128 P. Milazzo

like outliers, all provinces exhibit an infection coefficient β in the interval
[0.077, 0.145] and a recovery coefficient γ in [0.06, 0.127]. Provinces with a high
population density, such as Firenze and Prato, actually correspond to highest
infection coefficients. The estimation of plock is instead less regular, thus sug-
gesting that something could be improved about the modelling of the lockdown
effect. Inaccuracies could also be caused by the low quality of measurements in
the first period of the pandemic. Anyway, the estimated plock values provide use-
ful qualitative information about the areas in which lockdown has given better
results.

Fig. 1. Data fitting and predictions
(Pisa province)

Figures 1 and 2 show numerical simu-
lation results of the modified SIR model
(only the curves of I and R are depicted)
compared with the real data about cumu-
lative number of infected individuals
(dots). The curve of I is actually a pre-
diction, since, as we already explained, we
use I to represent “real” infected individu-
als that are hidden in the population. The
shape of this curve, that in many cases
shows an edge at the start of lockdown,
demonstrates the positive effect of such a
prevention measure.

Fig. 2. Data fitting and predictions (other provinces)

Analysis of COVID-19 Data with PRISM 129

4 Translation into CTMC and Analysis with PRISM

The next step we perform is to translate our extended SIR model into a stochastic
model, by discretizing variables and by considering infection and recovery rates
as parameters of a Continuous Time Markov Chain (CTMC). This allows us
to obtain a model that is, in principle, more accurate in capturing the epidemic
dynamics, by taking into account random fluctuations that may have a significant
role in the case of small numbers of infected individuals.

Dynamical properties of the obtained CTMC could then be analyzed using
the stochastic model checker PRISM [1,9]. Stochastic model checking, compared
for instance to analysis by stochastic simulation, allows computing in a sys-
tematic way the probability of occurrence of emerging behaviors with specific
properties of interest. The main problem of model checking is, however, its poor
scalability to models with a very large state space. A stochastic SIR model rep-
resenting a population of hundreds of thousand of individuals (like in a Tuscan
province) can be very likely affected from this kind of scalability problems.

A way to solve scalability issues can be to resort to statistical model check-
ing methods: a variant of stochastic model checking which provides approximate
results by exploiting stochastic simulation result. PRISM itself has built-in sta-
tistical model checking facilities. However, before considering this solution, there
are a few modelling tricks that can significantly reduce the state space.

PRISM describes CTMC states through a set of bounded integer variables.
Since ODEs of the SIR model are based on real variables, the first step we have
to perform is to discretize the model. Hence, we assume a discretization constant
SIZE and we replace the variables domain [0.0, 1.0] ⊂ IR with [0..SIZE] ⊂ IN.

This leads to the following naive CTMC specification in PRISM input lan-
guage, where model parameters are defined by the beta, gamma and plock con-
stants (initialized with estimations for the province of Pisa), SIZE is the dis-
cretization constant, s, i and r are the model variables (again, initialized with
values from data collected on the province of Pisa) and we have two transitions
describing events of infection and recovery, respectively.

ctmc

const double beta = 0.122128; const double gamma = 0.127283;
const double plock = 0.472081; const int SIZE = 100000;

module SIR_Pisa

s : [0.. SIZE] init 99936;
i : [0.. SIZE] init 48;
r : [0.. SIZE] init 16;

[] i>0 & i<SIZE & s>0 -> beta*s*i*plock/SIZE : (s’=s -1)&(i’=i+1);
[] i>0 & r<SIZE -> gamma*i*plock : (i’=i -1)&(r’=r+1);

endmodule

The problem of this translation is that, by assuming SIZE = 100000, the
state space turns out to include 1015 potentially reachable states, which make
the model computation and analysis by PRISM unfeasible.

130 P. Milazzo

A first refinement of the model can be obtained by observing that one of the
three variables s, i and r can be pruned. Indeed, as in the original ODEs we had
S + I + R = 1, in the PRISM counterpart we always have s + i + r = SIZE.
Removing, for instance, s will require to make a small change to the definition
of the first transition, where s has to be replaced by SIZE-(i+r).

Pruning variable s immediately reduces the state space, bringing it to a size
of 1010 states. However, this is still too huge for PRISM.

As a second refinement, we choose to introduce an upper bound to the number
of infected and of recovered individuals. For example, we choose these numbers
to be always smaller than 500. As shown in the following CTMC specification,
where also the first refinement is implemented, this can be obtained by adding a
new constant BOUND that is then used to define the domain of the two variables
i and r. Moreover, we have to explicitly change the model transition to describe
the behavior in the case the upper bound is reached. The two transitions of the
naive translation have to be enabled only when i and r are strictly smaller than
BOUND. Moreover, it is necessary to introduce a third transition that, in case
the number of recovered individuals reaches the upper bound, allows an infected
individual to recover (i.e. it decreases i by one) without increasing r.

ctmc

const double beta = 0.122128; const double gamma = 0.127283;
const double plock = 0.472081; const int SIZE = 100000; const int BOUND = 500;

module SIR_Pisa

i : [0.. BOUND] init 48;
r : [0.. BOUND] init 16;

[] i>0 & i<BOUND -> beta*(SIZE -(i+r))*i*plock/SIZE : (i’=i+1);
[] i>0 & r<BOUND -> gamma*i*plock : (i’=i -1)&(r’=r+1);
[] i>0 & r=BOUND -> gamma*i*plock : (i’=i-1);

endmodule

The addition of the upper bound actually makes the model approximated. How-
ever, if the upper bound is high enough to make the probability of the variables
to reach it negligible, we have that the approximation will have no influence on
the probabilities of dynamical properties assessed through model checking. We
remark that the assumption on the small number of infected individuals was one
of the motivations for the use of a stochastic modelling approach. In the case of
big numbers, that could lead to unfeasible models with large state spaces, the
whole stochastic approach would be poorly motivated, since with big numbers
stochastic fluctuations would become much less relevant.

Upper bounds significantly reduce the state space, that now turns out to
include “only” 250000 states. This makes model construction and analysis with
PRISM very fast, in particular (and this is very important) if either the sparse
or the explicit engines are selected in the relevant PRISM settings menu.

As examples of analyses performed with PRISM, we show in Fig. 3 some
results of stochastic simulation and model checking performed using parameters
of the Pisa province and by comparing lockdown and no-lockdown scenarios.

Analysis of COVID-19 Data with PRISM 131

Fig. 3. Analysis of the Pisa model with PRISM (examples). On the left, a single run
of a stochastic simulation. On the right, probabilities, computed by stochastic model
checking, of reaching given numbers of infected individuals after 10, 20 and 30 days.
The CSL property used for model checking is P=? [F<XX i=Predicted Infections],
where XX is 10, 20 or 30, and Predicted Infections takes values as in the graph.

Simulations show that lockdown can effectively reduce the number of infected
individuals, leading to a slow down of the disease spread. As before, this model
allows understanding the dynamics of hidden infected individuals. Model check-
ing is used to make predictions on the future number of infected individuals, by
computing probabilities of reaching different threshold values in 10, 20, 30 days.

Stochastic model checking can be used to make predictions about reachable
population states in an accurate, systematic and efficient way. This makes this
technique a good candidate for real time epidemic monitoring and decision sup-
port. Moreover, the modified SIR model could be extended to describe also,
for instance, age classes, hospitalizations, new therapies or vaccinations. In this
case, it would be possible to use stochastic model checking as a tool to evaluate
hypotheses about these new aspects, for instance by computing the probability
of disease eradication when alternative vaccination strategies are followed.

5 Conclusions

In this paper we proposed a pipeline for the stochastic analysis of a SIR model
for COVID-19 through the stochastic model checker PRISM. The whole pipeline
is informative: in the parameter estimation phase, the estimated parameters
themselves provide useful information about the different dynamics in different
areas (e.g., provinces) and about the effectiveness of restriction and prevention
measures such as lockdown. Moreover, by performing numerical simulation of
the deterministic models used for parameter estimations we were able to predict
the dynamics of hidden positive individuals.

132 P. Milazzo

PRISM allows defining a stochastic SIR model in a dozen lines of code. An
optimized model can be analyzed in a few minutes. The analysis performed
through the model checking features of PRISM is exhaustive, and not based
only on a few simulation runs. These positive performance results have been
obtained by applying a couple of modelling tricks (variable pruning and upper
bounds) that allowed state space of the model constructed by PRISM to be
reduced by several orders of magnitude. The introduction of upper bounds to
the values of variables actually introduces a small approximation in the model,
that is negligible in practically relevant cases. As a consequence, we believe
that this approach aimed at making the analysis with PRISM feasible is in this
case preferable to approaches based, for instance, on statistical model checking
techniques. Indeed, the latter techniques would base the model checking analysis
on stochastic simulation results, losing exhaustivity.

This paper aimed at proposing the modelling and analysis methodology.
Developments of the approach could include improving the modelling of the
restriction measures by considering more accurate definitions of the p(t) function
in the modified SIR model. Function p(t) could be defined in order to gradually
change after the enforcement of prevention measures, or in order to depend on
the current infection trend (if the number of infected individual increases, peo-
ple tends to be more cautious). Moreover, extensions of the model including age
classes, hospitalizations, new therapies or vaccinations could be defined. Further
work would include performing a deeper analysis of COVID data with PRISM,
also by taking some of these additional aspects into account, even when some
parameters about these aspects are not precisely known [4].

Acknowledgements. This work is supported by the Università di Pisa under the
“PRA – Progetti di Ricerca di Ateneo” (Institutional Research Grants) - Project no.
PRA 2020-2021 26 “Metodi Informatici Integrati per la Biomedica”.

References

1. PRISM Probabilistic Model Checker. https://www.prismmodelchecker.org/
2. Acemoglu, D., et al.: A multi-risk SIR model with optimally targeted lockdown.

Tech. rep., National Bureau of Economic Research (2020)
3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov

chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 75

4. Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Probabilistic model checking of bio-
logical systems with uncertain kinetic rates. Theor. Comput. Sci. 419, 2–16 (2012)

5. Calafiore, G.C., Novara, C., Possieri, C.: A modified SIR model for the COVID-19
contagion in Italy. arXiv preprint arXiv:2003.14391 (2020)

6. Chen, Y.C., Lu, P.E., Chang, C.S.: A time-dependent SIR model for COVID-19.
arXiv preprint arXiv:2003.00122 (2020)

7. D’Arienzo, M., Coniglio, A.: Assessment of the SARS-CoV-2 basic reproduction
number, R0, based on the early phase of COVID-19 outbreak in Italy. Biosaf. Health
2, 57–59 (2020)

https://www.prismmodelchecker.org/
https://doi.org/10.1007/3-540-61474-5_75
http://arxiv.org/abs/2003.14391
http://arxiv.org/abs/2003.00122

Analysis of COVID-19 Data with PRISM 133

8. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory
of epidemics. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character
115(772), 700–721 (1927)

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22110-1 47

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

A Formal Model for the Simulation
and Analysis of Early Biofilm Formation

Antonio Cerone1(B) and Enrico Marsili2

1 Department of Computer Science, School of Engineering and Digital Sciences,
Nazarbayev University, Nur-Sultan, Kazakhstan

antonio.cerone@nu.edu.kz
2 Department of Chemical and Materials Engineering, School of Engineering

and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
enrico.marsili@nu.edu.kz

Abstract. Biofilms are structured communities of bacterial cells adher-
ent to a surface. This bacterial state is called sessile.

This paper focuses on the modelling of the transition between plank-
tonic and sessile state using Real-time Maude as the modelling language.
With more and more bacteria joining the sessile community, the likeli-
hood of producing a biofilm increases. Once the percentage of bacterial
cells that adheres to the surface reaches a threshold, which is specific
for the considered bacterium species, a permanent biofilm is formed. An
important challenge is to predict the time needed for the formation of a
biofilm on a specific surface, in order to plan when the material infras-
tructure that comprises such a surface needs to be cleaned or replaced.
We exploit the model-checking features of Real-time Maude to formally
prove that a regular cleaning or replacement of the infrastructure pre-
vents the biofilm formation.

Keywords: Biofilms · Formal methods · Rewriting logic · Real-Time
Maude

1 Introduction

Biofilms are microstructured bacterial communities that live at interfaces. They
are the most common mode of life for microorganisms in both terrestrial and
marine environments. Usually, biofilms thrive at liquid/solid interfaces like the
inner surface of water pipes [29] and catheters [28], or in soil and sediments
[10]; biofilms play a beneficial role in wastewater treatment, where they increase
organic carbon degradation and contaminant removal. However, biofilms har-
bor pathogens and protect them from antimicrobial agents, thus posing seri-
ous threats in health settings. Biofilms consist of bacterial cells encased in self-
produced extracellular polymeric substances, collectively termed biofilm matrix.

This work was partially funded by the Faculty Development Competitive Research
Grant Program (Grant number 110119FD4537), Nazarbayev University, Kazakhstan.

c© The Author(s) 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 134–151, 2021.
https://doi.org/10.1007/978-3-030-70650-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_9&domain=pdf
http://orcid.org/0000-0003-2691-5279
http://orcid.org/0000-0003-3150-1564
https://doi.org/10.1007/978-3-030-70650-0_9

A Formal Model of Early Biofilm Formation 135

The biofilm matrix is composed of carbohydrates, proteins and extracellular
DNA. The relative proportion of these components is species-dependent and
varies with biofilm age and nutrient concentration [17].

The biofilm life cycle is illustrated in Fig. 1. Biofilm formation initiates when
single planktonic cells enter in contact with a surface, usually solid. Following
this initial interaction, several steps can be described, including reversible attach-
ment, irreversible attachment, microcolonies formation, and biofilm maturation,
in which complex microstructures are formed and the biofilm reach its maximum
thickness. In the planktonic-sessile transition, cells lose their flagella and start
producing extracellular polymeric substance. The biofilm life cycle ends with
biofilm detachment or dispersal, where part of the cells transitions from biofilm
to planktonic state and move downstream to seed other sections of the surface.
The biofilm life cycle has been validated with microscopy, transcriptomics and
metabolomics analysis [30].

Fig. 1. Biofilm life cycle: (1) Plaktonic phenotype; (2) Newly attached planktonic cells
(“settler” biofilm); (3a) Fully mature biofilm stage (biofilm phenotype); (4) Newly sin-
gle cells dispersed from the biofilm (newly dispersed phenotype); (5) Detached biofilm
aggregates (biofilm phenotype); (6) Reattached biofilm aggregates (biofilm phenotype);
(7) Newly dispersed phenotypes cells from the biofilm giving rise to planktonic pheno-
type cells.

The biofilm early formation is largely dependent on the concentration of bis-
(3’-5’)-cyclic dimeric guanosine monophosphate (c-di-GMP), a secondary mes-
senger that is ubiquitous in the bacterial world. Enzymes that synthesize c-di-
GMP or degrade it are found in great numbers, indicating its importance as a
regulator of many bacterial functions. C-di-GMP contributes to determine motil-
ity, biofilm formation, and production of multiple proteins in microorganisms. It
binds to a large variety of effector components and controls targets involved in
transcription and formation of large cellular and extracellular structures.

In the biofilm life cycle, the most important step is the initial attachment,
in which the cells transition from free-swimming state (so-called planktonic) to
sessile state, in which they attach to solid surface, lose their motility and start
producing the extracellular matrix, in addition to the normal growth process [9].
Modelling of initial biofilm formation is important to predict the extent of biofilm
growth on removable biomedical devices (e.g., catheters) and drinking water

136 A. Cerone and E. Marsili

pipes, thus allowing for planned cleaning or replacement of biofilm-contaminated
parts and minimising the risk of infections [11]. The effectiveness of cleaning
treatment depends also on biofilm concentration, thus the formal modelling of
initial biofilm formation will contribute to optimising the frequency and the
duration of antimicrobial application in biomedical devices and water systems.

A number of biofilm models have been developed during the last 30 years.
They can be roughly divided into continuum and discrete models.

Continuum models simulate biofilms in a quantitative and deterministic way
[16]. However, such models may result in high computational complexity, par-
ticularly for multispecies biofilms and when considering multiple substrates [3].
Early continuum models focused on cell growth and microstructure formation.
Modern continuum models concern the effect of fluid dynamics on colony forma-
tion and are validated with time-resolved single cell imaging to reveal important
details on cell-fluid interactions at different biofilm ages [23].

Discrete models, on the other hand, are very successful in representing the
multidimensional heterogeneity of biofilm, but introduce elements of random-
ness and stochastic effects into the solutions [16]. Agents-based models, based
on several platforms, eventually integrated (e.g., NetLogo, MatNet), are espe-
cially popular because of their simplicity and low computational requirements.
However, they may become highly sophisticated when integrating multiscale and
constraint-based metabolic modelling [7].

Hybrid biofilms models are the most recent. They support the simulation of
discrete bacterial cells within a multiphase continuum consisting of extracellu-
lar polymeric substance (EPS) and water as separate interacting phases. These
models support the prediction of bacterial colony formation. The distribution of
bacterial growth and EPS production is sensitive to the pore spacing between
bacteria and the consumption of nutrients within the bacterial colony [12].

Although formal methods have been widely used in systems biology [6], to
the best of our knowledge, no formal models of biofilms have been reported in
the literature. After Păun’s work on P-Systems [24], rule-based systems have
been widely used in the modelling of biological systems, due to the natural way
in which they can express chemical reactions and biological interactions. The
use of a rule-based systems in combination with a formal analysis tool allows
us to generate a model that focuses on the individual bacterial cells, whose
behaviour can be defined using simple rules, assuming that the cell properties
are known, rather than using a computationally expensive multidimensional con-
tinuum. We use Real-Time Maude [19,21], a toolset that comprises a rule-based
formal modelling language, which uses rewriting logic [18] to model system state
transitions, and high-performance simulation and model checking engines, which
support formal analysis.

The rest of this paper is organised as follows. Section 1.1 provides a brief
highlight of Real-Time Maude and refers to the sections of the paper where the
different aspects of the language are illustrated. The Real-Time Maude code for
the model, the experiments and the formal analysis can be downloaded from a

A Formal Model of Early Biofilm Formation 137

GitHub repository1. Section 2 presents our approach for modelling a bacterial
population and its evolution, the process of biofilm formation as well as preven-
tive interventions. Section 3 illustrates our approach using an example inspired
by the information about a specific microorganism, Pseudomonas aeruginosa,
which is available in the literature [1,25,31]. It exploits the example to illustrate
both in silico experiments and the use of the model-checking features of Real-
time Maude to predict the outcome of the experiments and analyse intervention
plans. Section 4 concludes the paper with further considerations on our approach
and ideas for future work.

1.1 Real-Time Maude

Real-Time Maude [19,21] is a formal modeling language and high-performance
simulation and model checking tool for distributed real-time systems. It is based
on Full Maude, the object-oriented extension of Core Maude, which is the basic
version of Maude [20]. Real-Time Maude makes use of

– algebraic equational specifications in a functional programming style to define
data types;

– labeled rewrite rules to define local and global transitions;
– tick rewrite rules to advance time in the entire system state.

In this paper we do not go into the details of Real-Time Maude syntax but we
focus on rewrite rules and commands for simulation and formal analysis. In this
section we provide high-level information on the Core Maude data type definition
and Full Maude classes, subclasses and objects. Labelled rewrite rules for defining
global transitions and Real-Time Maude tick rewrite rules are illustrated in
Sect. 2. Commands for simulation and formal analysis are illustrated in Sect. 3.

A Core Maude data type is defined using an algebraic signature, that is, a
set of declarations of sorts, subsorts, and operators. Operators are defined in an
equational way as well as by using special tags to declare common properties,
such as commutativity, associativity, having a specific identity and constructors.
Constructors are the carriers of the sort, in the sense that they define in a unique
way each member of the sort.

In Full Maude, a class declaration

class C | att1: s1, ..., attn: sn.

declares a class C with attributes att1, . . . , attn of sorts s1, . . . , sn, respectively.
An object of class C in a given state is represented as a term

< O : C | att1 : val1, ..., attn : valn >

of sort Object, where O, of sort Oid, is the object’s identifier, and where val1,
. . . , valn are the current values of the attributes att1, . . . , attn, respectively.

1 github.com/AntonioCerone/Publications/tree/master/2020/DataMod/Biofilms.

138 A. Cerone and E. Marsili

A subclass inherits all the attributes and rules of its superclasses. The class
declaration syntax is also used for subclasses and supports the definition of new
attributes specific to the subclass.

Real-Time Maude specifications are organised in modules, which can be
imported by other modules and, as we will see in Sect. 3, be referred by the
commands for simulation and formal analysis.

2 Biofilm Formation Model

We use Real-Time Maude to model a bacterial population as a multiset of objects
of a class Bacterium with three attributes:

state which can be either planktonic or sessile;
toDuplication which is a natural number representing the remaining lifetime

in minutes of a cell before duplication;
c-di-GMP-internal which is a natural number representing the concentration

of c-di-GMP inside a single cell and is expressed in nanomoles (nM)

We also use a single object of a class Population to collect the global data of
the entire population of bacteria. The class Population consists of the following
attributes:

state which can be one of the following values, whose meaning is illustrated
in Fig. 2: creation, next-time, ready-to-reproduce, ready-to-die and
attributes-updated.

size which is a natural number representing the number of cells of the popula-
tion;

planktonic-cells which is a natural number representing the number of cells
of the population that are in planktonic state;

sessile-cells which is a natural number representing the number of cells of
the population that are in sessile state;

c-di-GMP-global which is a natural number representing the global concentra-
tion of c-di-GMP for the entire population and is expressed in nanomoles
(nM) with respect to the global volume of the cells;

biofilm which is a boolean stating whether the biofilm is formed or not.

We preferred to keep the multiset of Bacterium objects ‘outside’ the population
data, rather than incorporating it as a field of the Population object. This
choice aims at considering the ‘global population’ and the ‘multiset of bacteria’
as a sort of pair of ‘interacting agents’ whereby, in a prospective extension of
our approach, global data on the population behaviour may actually effect the
development of the multiset of agents. In fact, it is easier in biology to have
availability of data on the behaviour of the population as a whole rather than
on the behaviour of the single cells that make up the population.

Therefore, the system that describes the bacterial ecosystem consists of one
object of class Population and a multiset of objects of class Bacterium. Figure 2
illustrates the initial creation of the bacterial population and the evolution of the

A Formal Model of Early Biofilm Formation 139

[initial-population-creation]

time = 0

creation

�

[initial-population]
time = 0

next-time

�

[possible-biofilm-formation]
no time increase

ready-to-reproduce �[reproduction]

no time increase
(if population size ≤ DEATH-THRESHOLD)

[rename]

no time increase
(if population size > DEATH-THRESHOLD)

�

ready-to-die

[death]
no time increase

attributes-updated

� [tick]

TIME-GRANULARITY units of time increase

Fig. 2. State transitions in the model of the bacterial population.

population. Evolution consists of TIME-GRANULARITY unit cycles. During each
cycle the one object of class Population goes through the different states that
update the attributes of all objects (bacteria and population) and terminate the
cycle with a TIME-GRANULARITY unit time increment.

With reference to Fig. 2, in Sect. 2.2, 2.3, 2.4, 2.5 and 2.6 we illustrate
the rewrite rules that drive the population initial creation and its evolution.
Section 2.7 illustrate how our model may be extended to include intervention
preventing biofilm formation. Section 2.1 set the context for the next sections
by briefly explaining the notion of system state and overviewing the syntax and
semantics of rewrite rules.

2.1 Real-Time Maude Configuration and Rewrite Rules

The global system state is a term of pre-defined sort Configuration and is a
multiset of objects. Multiset union is denoted by an associative and commuta-
tive juxtaposition operator, so that rewriting is multiset rewriting. Transitions
between global system states are defined using rewrite rules.

Maude labeled rewrite rules

rl [l]: {t} => {t′} or crl [l]: {t} => {t′} if cond

140 A. Cerone and E. Marsili

define transitions from the global state pattern t to the global state pattern t′.
The transition is enabled, and the rule is applied, if the state pattern t matches
the current global system state and, for conditional rules (crl), the condition
cond is met. Complex conditions may be built using the conjuction operator
/\. Conditions may also be of the form v := t′′ in order to assign a term t′′,
containing only variables occurring in t, to variable v, which can then be used
to define the new term t′. These special conditions are evaluated to true.

Real-Time Maude tick rewrite rules

rl [l]: {t} => {t′} in timeΔ or crl [l]: {t} => {t′} in timeΔ if cond

have the additional function of advancing time in the global state t by Δ time
units.

2.2 Creation of the Initial Population

In order to start with an initial population of planktonic cells uniformly dis-
tributed in term of cell age, we consider a constant value INITIAL-POPULATION
for the initial number of bacteria and use the following two rewrite rules:

initial-population-creation which cyclically assigns an age between 1 and
the age at duplication (i.e., the duration of the cell life cycle) for the specific
species to the newly created cell;

initial-population which stops the creation process by changing the popula-
tion state from create to next-time, when the bacterial population reaches
the value INITIAL-POPULATION, thus disabling the previous rule.

The first rule also initialises the concentration of c-di-GMP internal to the cell.
This concentration depends on the age of the cell and on food availability.

2.3 Biofilm Formation

The transition of the object of class Population from state next-time to state
ready-to-reproduce updates the information about the biofilm formation and
the changes of state of the single cells (from planktonic to sessile and vice
versa). We consider two threshold values for the concentration of c-di-GMP:
C-DI-GMP-THRESHOLD-BIOFIM and C-DI-GMP-THRESHOLD-SESSILE.

The constant C-DI-GMP-THRESHOLD-BIOFIM represents the global concentra-
tion of c-di-GMP that triggers the transition of the bacterial colony to a biofilm,
when the threshold is reached or exceeded, and the transition back to a dis-
persed colony, when the concentration drops below the threshold. The transition
is recorded in the boolean attribute biofilm of the object of class Population.

The constant C-DI-GMP-THRESHOLD-SESSILE represents the internal concen-
tration of c-di-GMP of a single cell that triggers the transition of the state of that
cell to sessile, when the threshold is reached or exceeded, and the transition
back to planktonic, when the concentration drops below the threshold.

A Formal Model of Early Biofilm Formation 141

The rewrite rule possible-biofilm-formation models the transition to
biofilm and back:

crl [possible-biofilm-formation] :

{BACTERIA
< P : Population | state : next-time,

size : N,

planktonic-cells : NP,

sessile-cells : NS,

c-di-GMP-global : C,

biofilm : BOOL >}
=>

{NEW-BACTERIA
< P : Population |

state : ready-to-reproduce,

size : N,

planktonic-cells : countCells(NEW-BACTERIA, planktonic),

sessile-cells : countCells(NEW-BACTERIA, sessile),

c-di-GMP-global : C,

biofilm : (C >= C-DI-GMP-THRESHOLD-BIOFIM) >}
if NEW-BACTERIA := changeState(BACTERIA) .

Note that this rewrite rule is always enabled in the state next-time in order to
update the state of each single cell after the concentration of c-di-GMP inter-
nal to the cell has been updated during the last time increment. The opera-
tor changeState recursively changes the state of the entire multiset of bacte-
ria by comparing the concentration of c-di-GMP internal to the cell with the
threshold C-DI-GMP-THRESHOLD-SESSILE. The operator countCells recursively
counts the number planktonic and sessile cells of the NEW-BACTERIA multiset,
which is the bacterial colony after updating the states of the single cells.

2.4 Cell Reproduction

Cell reproduction may only occur when the bacterial population does not exceed
a given REPRODUCTION-THRESHOLD threshold. The reproduction process is mod-
eled by the operator mitoses which, for each cell that has reached the repro-
duction age, i.e., whose toDuplication attribute equals 0,

1. resets the attribute toDuplication of that cell to a given LIFE-DURATION
value, which represents the duration of the life cycle of the cell;

2. creates a new cell identical to the previous one apart from a 0 value for the
concentration of c-di-GMP internal to the cell;

3. uses the size of the population, passed as the second argument, to define the
object identifiers of the new cell by recursively incrementing such argument.

We have chosen to leave the entire concentration of c-di-GMP within one of
the two cells. This is consistent with recent literature, which has shown that
asymmetric division results in a better colonization of the surface [8], with the
formation of multiple microcolonies [14].

142 A. Cerone and E. Marsili

The rewrite rule reproduction models the cell reproduction process and its
impact on the attributes of the Population object:

crl [reproduction] :

{BACTERIA
< P : Population | state : ready-to-reproduce,

size : N,

planktonic-cells : NP,

sessile-cells : NS,

c-di-GMP-global : C,

biofilm : BOOL >}
=>

{NEW-BACTERIA
< P : Population |

state : attributes-updated,

size : NEW-NP + NEW-NS,

planktonic-cells : NEW-NP,

sessile-cells : NEW-NS,

c-di-GMP-global : NEW-C-DI-GMP,

biofilm : (NEW-C-DI-GMP >= C-DI-GMP-THRESHOLD-BIOFIM) >}
if N <= REPRODUCTION-THRESHOLD /\

NEW-BACTERIA := mitoses(BACTERIA, N) /\
NEW-NP := countCells(NEW-BACTERIA, planktonic) /\
NEW-NS := countCells(NEW-BACTERIA, sessile) /\
NEW-C-DI-GMP := count-c-di-GMP(NEW-BACTERIA) .

All attributes of the object of the class Population are updated to take into
account the newly created cells. In particular, the global concentration of c-di-
GMP is updated by using the operator count-c-di-GMP, which sums up the con-
centrations of c-di-GMP internal to all the single cells in multiset NEW-BACTERIA
(after the reproduction has occurred).

2.5 Cell Death

When the bacterial population exceeds the given REPRODUCTION-THRESHOLD
threshold, cell reproduction can non longer occur. Instead, cells start dying at a
rate that has been estimated around 5% for each life cycle [2].

The rewrite rule death models such a form of death:

crl [death] :
{BACTERIA
< P : Population | state : ready-to-die,

size : N,
planktonic-cells : NP,
sessile-cells : NS,
c-di-GMP-global : C,
biofilm : BOOL >}

=>
{NEW-BACTERIA
< P : Population | state : attributes-updated,

A Formal Model of Early Biofilm Formation 143

size : NEW-NP + NEW-NS,
planktonic-cells : NEW-NP,
sessile-cells : NEW-NS,
c-di-GMP-global : NEW-C-DI-GMP,
biofilm : (C >= C-DI-GMP-THRESHOLD-BIOFIM) >}

if M := ((N * DEATH-RATE * TIME-GRANULARITY) quo 100) quo LIFE-DURATION /\
NEW-BACTERIA := starvation(BACTERIA, M, 0) /\
NEW-NP := countCells(NEW-BACTERIA, planktonic) /\
NEW-NS := countCells(NEW-BACTERIA, sessile) /\
NEW-C-DI-GMP := count-c-di-GMP(NEW-BACTERIA) .

As shown in Fig. 2, before applying the rewrite rule death, we need to use the
rewrite rule rename to rename all objects of the class Bacteria. This purely
technical manipulation, which has no biological meaning, allows us to reuse the
object names and prevents the number of system states to grow arbitrarily.
Since, the balance between reproduction and death keeps the population below
some size threshold, the behaviour of the model has a finite (though very large)
number of states and can, in principle, be analysed using model checking with
no time limitations. However, in practice, we normally introduce a time upper
bound when using model checking to avoid the state explosion problem.

The rewrite rule death is enabled by the population state ready-to-die
which, as shown in Fig. 2, is changed from ready-to-reproduce by the rewrite
rule rename, when the attribute size of the Population object exceeds the
threshold REPRODUCTION-THRESHOLD. The rewrite rule death uses the operator
starvation to remove a DEATH-RATE per cent of the population over a duration
corresponding to the cell life cycle (i.e., LIFE-DURATION).

Let TIME-GRANULARITY be the number of units time advances at each incre-
ment. The number M of cells to remove during one time unit is calculated by
considering the number of cells N * DEATH-RATE quo 100 to be removed during
an entire life cycle and dividing it by LIFE-DURATION. This value has to be mul-
tiplied by TIME-GRANULARITY to get the number of cells to be removed at each
time increment. Note that the terms of the expression have been rearranged in
the rewrite rule condition to avoid the inclusion of term N * DEATH-RATE quo
100 quo LIFE-DURATION, which may become 0 for small values of N even for a
coarse time granularity (values of TIME-GRANULARITY greater than 1).

In addition to removing M cells from the multiset BACTERIA independently
of their ages, the reduction of expression starvation(BACTERIA, M, 0) recur-
sively increments its third argument by 1 and uses it to rename cells that do not
have to be removed from the multiset. In this way, the resultant multiset of bacte-
ria will be named with all natural numbers between 1 and the size of the bacterial
population. Furthermore, the operator starvation resets the toDuplication
attribute of each bacteria that is not removed to LIFE-DURATION. This ensures
that the uniform distribution of the cell ages is preserved.

2.6 Time Increment

Both rewrite rules reproduction and death change the state of the object of
class Population to attributes-updated. This is the final state for the current

144 A. Cerone and E. Marsili

time interval and features the updated values for all attributes of the objects of
the system configuration.

In the state attributes-updated time is incremented discretely as intervals
of TIME-GRANULARITY units by the following tick rewrite rule:

rl [tick] :

{BACTERIA
< P : Population | state : attributes-updated >}

=>

{idle(BACTERIA, TIME-GRANULARITY)

< P : Population | state : next-time >}
in time TIME-GRANULARITY .

The operator idle not only advances time for all cells but also calculates the
internal concentration of c-di-GMP, depending on the age of the cell after the
the increment, and changes the Population state to next-time to be ready for
updating all the object attributes during the new time interval.

2.7 Intervention to Prevent Biofilm Formation

In this section we show how to model a simple form of intervention to prevent
the formation of a biofilm on a specific surface: the replacement of the material
infrastructure that comprises such a surface. To this purpose we consider a con-
stant time TIME-BETWEEN-INTERVENTIONS, we extend the class Population by
defining a subclass Intervention which has the additional following attribute:

next-intervention which is the possibly infinite time before the next interven-
tion;

and we replace the tick rewrite rule introduced in Sect. 2.6 with the following
tick-without-intervention tick rewrite rule:

crl [tick-without-intervention] :

{BACTERIA
< I : Intervention | next-intervention : T,

state : attributes-updated >}
=>

{idle(BACTERIA, TIME-GRANULARITY)

< I : Intervention | next-intervention : T monus 1,

state : next-time >}
in time TIME-GRANULARITY

if T > 0 .

When the next-intervention attribute of the Intervention object has become
as low as 0, the following tick-with-intervention rewrite rule reset the system
to the initial population:

A Formal Model of Early Biofilm Formation 145

rl [tick-with-intervention] :

{BACTERIA
< I : Intervention | next-intervention : 0,

state : attributes-updated >}
=>

{< I : Intervention | next-intervention : TIME-BETWEEN-INTERVENTIONS,

state : creation,

size : 0,

planktonic-cells : 0,

sessile-cells : 0,

c-di-GMP-global : 0,

biofilm : false >}
in time TIME-GRANULARITY .

Note that when TIME-BETWEEN-INTERVENTIONS is set to infinite value INF, rule
tick-with-intervention can never be applied.

3 In Silico Experiments and Formal Analysis

Maude modules are executable and the Real-Time Maude toolset provides a
variety of formal analysis methods.

The timed rewriting command

(tfrew [r] in m : s0 in time <= t .)

simulates one of the system behaviours of module m by rewriting the initial
state s0 using up to r term rewrites and up to duration t.

The timed rewriting command provides us with an important tool to per-
form in silico experiments, by simulating experiments that would last for hours
within a few seconds. Although only one of the possible system behaviour of a
nondeterministic system is shown during simulation, this may provide important
information on the biological system evolution.

The timed search command supports the analysis of all possible behaviours
from a given initial state, relative to the chosen time sampling strategy. The
command performs reachability analysis by searching for the states that match
a search pattern and are reachable in a given time interval (if indicated). There
are several variants for the syntax of the search command, such as:

(tsearch [n] in m : s with no time limit .)
(tsearch [n] in m : s in time <= t .)
(tsearch [n] in m : s in time >= t .)

where s is the search pattern, n is the number of solutions searched for and t is
the time at which to stop the search.

Section 3.1 introduces the case study that we use to illustrate our approach.
Section 3.2 illustrates the use of timed rewriting to perform in silico experiments
and Sect. 3.3 illustrates the use of timed search to perform formal analysis.

146 A. Cerone and E. Marsili

3.1 Pseudomonas Aeruginosa

Pseudomonas aeruginosa is a Gram-negative microorganism, an opportunistic
pathogen, actually one of the most important pulmonary pathogens and the
predominant cause of morbidity and mortality in cystic fibrosis. P. aeruginosa
forms rapidly biofilms on plastic surfaces, agar medium, graphite, metals and
other materials. The composition of its extracellular polymeric substance has
been studied in details and high quality data are available on the c-di-GMP
distribution in cells, division upon replication and concentration with time mea-
sured through fluorescence in recombinant laboratory strains.

The life cycle of P. aeruginosa has a duration of 120 min [31] and the con-
centration of c-di-GMP internal to a cell in relation to the cell age is given in
Table 1 [1].

3.2 Simulation

In order to illustrate our approach we consider the simulation reported in Table 2.
We have defined Real-Time Maude module P-AERUGINOSA, which models a sim-
plified bacterial ecosystem with values of the parameters taken from the liter-
ature on P. areruginosa [1,25,31]. The model is defined without intervention.
The results in Table 2 have been produced using the command

(tfrew [1000000] in P-AERUGINOSA : {init} in time <= t .)

with t representing the considered time in minutes (second column of Table 2).
The duration of the simulation is 12 h. We use an initial population of 120

cells in order to have a uniform distribution of the cells within the 120 min
of cell life cycle. We adopt a 10 min time granularity to be able to observe
cell death at each time increment, when the population size is above the
REPRODUCTION-THRESHOLD threshold. In fact, due to the small population size
we considered, using a finer granularity would result in a 0% death rate for each
time increment. The small population size has been chosen due to the illustra-
tive purpose of the simulation and to the need to have a computational response
time of the order of seconds.

The chosen 10 min time granularity is a sufficient time step to model the
biofilm formation phenomenon and is within the range adopted in previous stud-
ies. In general the time step is chosen depending on the bacterial species consid-
ered and on the phenomenon under investigation (e.g., biofilm initial attachment,
biofilm detachment, viscoelastic modification of the matrix, etc.). It is commonly
accepted that the time step for microbial phenomena is much higher than for
hydrodynamic phenomena. The time step used in previous studies range from
five minutes in P. aeruginosa biofilm growth [7] to one hour for oral biofilm
formation [15] and hours in biofilm formation and bacteria decay [26].

The simulation in Table 2 shows a growth of the population size and of the
global concentration of c-di-GMP due to cell reproduction, with a biofilm forma-
tion at time 2:50, when the c-di-GMP global concentration threshold is reached.
The growth of both values then continues until time 3:00, when the population

A Formal Model of Early Biofilm Formation 147

Table 1. Concentration of c-di-GMP internal to a cell of A. aeruginosa [1].

Cell age 0–20 20–40 40–60 60–120

c-di-GMP (nM) 40 270 110 40

Table 2. In silico experiments performed with time granularity 10 for an initial pop-
ulation of 120 cells with 120 min time to reproduction, reproduction threshold of 350
cells, dear rate 5% and c-di-GMP concentration: 200 for cell transition to sessile and
back to planktonic and 40,000 for biofilm transition and back to disperse community.

Time Population size Global Biofilm From death or

hr:min min total planktonic sessile c-di-GMP presence reproduction

00:00 0 120 100 20 15 500 No Initial population

00:10 10 130 110 20 15 500 No Reproduction

00:30 30 150 130 20 16 300 No Reproduction

01:00 60 180 140 40 23 400 No Reproduction

02:00 120 240 200 40 30 600 No Reproduction

02:30 150 300 260 40 32 600 No Reproduction

02:40 160 320 260 60 38 000 No Reproduction

02:50 170 340 260 80 43 400 Yes Reproduction

03:00 180 360 280 80 46 800 Yes Reproduction

03:10 190 359 279 80 51 490 Yes Death

03:30 210 357 277 80 54 070 Yes Death

04:00 240 354 316 38 45 840 Yes Death

04:30 270 351 312 39 41 530 Yes Death

04:40 280 350 290 60 44 920 Yes Death

04:50 290 389 310 79 45 290 Yes Reproduction

05:00 300 388 310 78 50 501 Yes Death

06:00 360 382 346 36 48 680 Yes Death

10:00 600 358 326 32 45 440 Yes Death

11:00 660 352 280 72 45 650 Yes Death

11:10 670 351 279 72 46 680 Yes Death

11:20 680 350 239 111 56 940 Yes Death

11:30 690 366 255 111 57 220 Yes Reproduction

12:00 720 363 317 46 48 310 Yes Death

threshold that stops reproduction (REPRODUCTION-THRESHOLD) is exceeded (pop-
ulation size 360 > 350 threshold). Cells start then to die until the population size
drops again down to the threshold level at time 4:40. We have then an alterna-
tion of long time intervals of cell death and short time intervals of reproduction,
with the biofilm persisting throughout. This behaviour mimics on a smaller scale
real cell behaviour and is based on biological data for P. aeruginosa [1,25,31].
However, we can also consider a single cell as a representative of a cluster of cells
that, globally, exhibits a homogeneous behaviour. This approach is commonly
used and considered realistic [22,27].

148 A. Cerone and E. Marsili

3.3 Formal Analysis Using Model Checking

The search command can be used to predict the biofilm formation in an in silico
experiments. With reference to the experiment considered in Sect. 3.2, we can
use the search command

(tsearch [3] in P-AERUGINOSA init =>*

{C:Configuration
< P-aeruginosa : Population | state : attributes-updated,

biofilm : true >}
with no time limit .)

to find the solutions for times 170, 180 and 190 in Table 2. Note that we must
include the state attributes-updated in the search pattern to make sure that
the solution has all attributes updated for the specific time unit.

Moreover, the results of the experiment shown in Table 2 seem to suggest
that the biofilm, once formed, will persist forever. Such a conjecture cannot be
validated through an experiment, since we do not know for how long we need to
continue the experiment to possibly observe the biofilm disappearing. However,
using the search command

(tsearch [1] in P-AERUGINOSA init =>*

{C:Configuration
< P-aeruginosa : Population | state : attributes-updated,

biofilm : false >}
in time >= 170 .)

we find out that after 860 min (14 h and 20 min) the biofilm disappears and
the dispersed population consists of 385 cells (357 planktonic and 28 sessile)
with 38 670 as a global c-di-GMP concentration. This proves that the conjecture
suggested by the experiment results was actually false.

We have also defined module P-AERUGINOSA-INTERVENTION, which extends
module P-AERUGINOSA by modelling a replacement intervention to be repeated
every 160 min, namely TIME-BETWEEN-INTERVENTIONS equals 160. Then the
search command

(tsearch [1] in P-AERUGINOSA-INTERVENTION init =>*

{C:Configuration
< P-aeruginosa : Intervention | state : attributes-updated,

biofilm : true >}
in time <= 3000 .)

will return ‘No Solution’ thus predicting that no biofilm would be formed even
if we could extend the duration of the experiment to 3 000 min (50 h).

4 Conclusion and Future Work

We have used Real-Time Maude to define an approach for the formal modelling
and analysis of early biofilm formation. Our approach supports both simulation
to mimic lab experiments and formal analysis by exploiting Real-Time Maude
timed search command to predict

A Formal Model of Early Biofilm Formation 149

1. a specific outcome of an experiment;
2. the absence of a given outcome from all possible results of an experiments.

Prediction 2 is essential for planning effective interventions to prevent the for-
mation of a biofilm. Although the kind intervention considered in this paper is a
simple replacement, as part of our future work we plan to consider more sophis-
ticated forms of intervention, such as the use of antibacterial and quenching.

Quenching refers to the capture/deactivation of c-di-GMP and other mes-
sengers or signalling molecules involved in the process of biofilm formation and
maturation. Recent examples of c-di-GMP quenching agents include the aro-
matic compound coumarin [32], the fungal-produced antimicrobial terrein [13],
the immunosuppressive drug azathioprine [5] and the antimetabolite drug sul-
fathiazole [4]. These and other c-di-GMP quenching compounds can be used to
reduce biofilm formation without eliciting antimicrobial resistance in the target
microorganisms.

We also plan to extend our model by including more accurate biological
mechanisms and by improving the precision of the generated behaviour. For
example, in terms of biological mechanisms, we have neglected the cell grows
through time and normalised the c-di-GMP concentration with respect to the
growing volume of the cell. Separating the two mechanisms, cell growth and
c-di-GMP concentration, would result in a more accurate model. For the case
study of P. aeruginosa, detailed microbial growth parameters are reported by
Schleheck et al. [25]: duration of the log growth phase, stationary phase, and
death phase. The precision of the generated behaviour could be improved by
using the Population class to record further global aspects in order to support
the mapping of a global behaviour observed in lab experiments to the behaviour
of individual cells. For example, we could record the death toll over a period of
time that equals the life cycle and make adjustments during the rewrite process
to keep it within two given thresholds in accordance with the given birth rate.
This would allow us to avoid the problem discussed in Sect. 2.5 and make the
death rewrite rule work with higher precision and with no constraints on the
size of the population and time granularity. Finally we plan to consider a time
interval rather than an exact time for cell life-cycle duration and, at a later stage,
introduce stochasticity into our model.

References

1. Abel, S., et al.: Bi-modal distribution of the second messenger c-di-GMP controls
cell fate and asymmetry during the Caulobacter cell cycle. PLOS Genet. 9(9),
e1003744 (2013)

2. Ahmadi, M., Jorfi, S., Kujlu, R., Ghafari, S., Soltani, R.D.C., Haghighifard, N.J.:
A novel salt-tolerant bacterial consortium for biodegradation of saline and recalci-
trant petrochemical wastewater. J. Environ. Manag. 191, 198–208 (2017). https://
doi.org/10.1016/j.jenvman.2017.01.010

3. Alpkvist, E., Klapper, I.A.: Multidimensional multispecies continuum model for
heterogeneous biofilm development. Bull. Math. Biol. 69, 765–789 (2007). https://
doi.org/10.1007/s11538-006-9168-7

https://doi.org/10.1016/j.jenvman.2017.01.010
https://doi.org/10.1016/j.jenvman.2017.01.010
https://doi.org/10.1007/s11538-006-9168-7
https://doi.org/10.1007/s11538-006-9168-7

150 A. Cerone and E. Marsili

4. Antoniani, D., Maciag, P.B.A., et al.: Monitoring of diguanylate cyclase activ-
ity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-
throughput screening of biofilm inhibitors. Appl. Microbiol. Biotechnol. 85, 1095–
1104 (2010). https://doi.org/10.1007/s00253-009-2199-x

5. Antoniani, D., Rossi, E., Rinaldo, S., Bocci, P., Lolicato, M., Paiardini, A., et al.:
The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial
signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool
availability. Appl. Microbiol. Biotechnol. 97, 7325–7336 (2013). https://doi.org/
10.1007/s00253-013-4875-0

6. Bartocci, E., Lió, P.: Computational modeling, formal analysis, and tools for sys-
tems biology. PLoS Comput. Biol. 12(1), e1004591 (2016). https://doi.org/10.
1371/journal.pcbi.1004591

7. Biggs, M.B., Papin, J.A.: Novel multiscale modeling tool applied to Pseudomonas
aeruginosa biofilm formation. PLoS ONE 8(10), e78011 (2013). https://doi.org/
10.1371/journal.pone.0078011

8. Christen, M., Kulasekara, H.D., Christen, B., Kulasekara, B.R., Hoffman, L.R.,
Miller, S.I.: Asymmetrical distribution of the second messenger c-di-GMP upon
bacterial cell division. Science 328, 1295–1297 (2010)

9. Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., Kjelleberg,
S.: Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575
(2016)

10. Flemming, H.-C., Wuertz, S.: Bacteria and archaea on earth and their abundance
in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019)

11. Francolini, I., Donelli, G.: Prevention and control of biofilm-based medical-device-
related infections. FEMS Immun. Med. Microbiol. 59(3), 227–238 (2010)

12. Jin, X., Marshall, J.S., Wargo, M.J.: Hybrid model of bacterial biofilm growth. Bull.
Math. Biol. 82(27), 1–32 (2020). https://doi.org/10.1007/s11538-020-00701-6

13. Kim, B., Park, J.S., Choi, H.Y., et al.: Terrein is an inhibitor of quorum sensing
and c-di-GMP in Pseudomonas aeruginosa: a connection between quorum sensing
and c-di-GMP. Sci. Rep. 8(8617), 1–13 (2018). https://doi.org/10.1038/s41598-
018-26974-5

14. Laventie, B.-J., et al.: A surface-induced asymmetric program promotes tissue col-
onization by Pseudomonas aeruginosa. Cell Host Microbe 25(1), 140–152 (2019).
https://doi.org/10.1016/j.chom.2018.11.008

15. Martin, B., Tamanai-Shacoori, Z., Bronsard, J., Ginguené, F., Meuric, V., et al.:
A new mathematical model of bacterial interactions in two-species oral biofilms.
PLoS ONE 12(3), e0173153 (2017). https://doi.org/10.1371/journal.pone.0173153

16. Mattei, M.R., Frunzo, L., D’Acunto, B., et al.: Continuum and discrete approach in
modeling biofilm development and structure: a review. J. Math. Biol. 76, 945–1003
(2018). https://doi.org/10.1007/s00285-017-1165-y

17. McDougald, D., Rice, S.A., Barraud, N., Steinberg, P.D., Kjelleberg, S.: Should we
stay or should we go: mechanisms and ecological consequences for biofilm dispersal.
Nat. Rev. Microbiol. 10, 39–50 (2012)

18. Meseguer, J.: Twenty years of rewriting logic. J. Logic Algebr. Program. 81, 721–
781 (2012)

19. Ölveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4 3

20. Ölveczky, P.C.: Designing Reliable Distributed Systems. UTCS. Springer, London
(2017). https://doi.org/10.1007/978-1-4471-6687-0

https://doi.org/10.1007/s00253-009-2199-x
https://doi.org/10.1007/s00253-013-4875-0
https://doi.org/10.1007/s00253-013-4875-0
https://doi.org/10.1371/journal.pcbi.1004591
https://doi.org/10.1371/journal.pcbi.1004591
https://doi.org/10.1371/journal.pone.0078011
https://doi.org/10.1371/journal.pone.0078011
https://doi.org/10.1007/s11538-020-00701-6
https://doi.org/10.1038/s41598-018-26974-5
https://doi.org/10.1038/s41598-018-26974-5
https://doi.org/10.1016/j.chom.2018.11.008
https://doi.org/10.1371/journal.pone.0173153
https://doi.org/10.1007/s00285-017-1165-y
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-1-4471-6687-0

A Formal Model of Early Biofilm Formation 151

21. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time-Maude.
High.-Order Symbol. Comput. 20(1–2), 161–196 (2007)

22. Paula, A.J., Hwang, G., Koo, H.: Dynamics of bacterial population growth in
biofilms resemble spatial and structural aspects of urbanization. Nat. Commun.
11(1354), 1–14 (2020). https://doi.org/10.1038/s41467-020-15165-4

23. Pearce, P., et al.: Flow-induced symmetry breaking in growing bacterial biofilm.
Phys. Rev. Lett. 123(25), 258101–258106 (2019). https://link.aps.org/doi/10.
1103/PhysRevLett.123.258101

24. Păun, G.: P systems with active membranes: attacking NP-complete problems.
Autom. Lang. Comb. 6(1), 65–90 (2001)

25. Schleheck, D., et al.: Pseudomonas aeruginosa PAO1 preferentially grows as aggre-
gates in liquid batch cultures and disperses upon starvation. PLoS ONE 4(5),
e5513 (2009)

26. Skoneczny, S.: Cellular automata-based modelling and simulation of biofilm struc-
ture on multi-core computers. Water Sci. Technol. 72(11), 2071–2081 (2015)

27. Stewart, P., Franklin, M.: Physiological heterogeneity in biofilms. Nat. Rev. Micro-
biol. 6, 199–210 (2008). https://doi.org/10.1038/nrmicro1838

28. Stickler, D.: Bacterial biofilms in patients with indwelling urinary catheters. Nat.
Rev. Urol. 5, 598–608 (2008)

29. Wang, H., Masters, S., Edwards, M., Falkinham, J., Pruden, A.: Effect of dis-
infectant, water age, and pipe materials on bacterial and eukaryotic community
structure in drinking water biofilm. Environ. Sci. Technol. 48(3), 1426–1435 (2014)

30. Whiteley, M., Bangera, M., Bumgarner, R., et al.: Gene expression in Pseu-
domonas aeruginosa biofilms. Nature 413, 860–864 (2001). https://doi.org/10.
1038/35101627

31. Yang, L., et al.: In situ growth rates and biofilm development of Pseudomonas
aeruginosa populations in chronic lung infections. J. Bacteriol. 190(8), 2767–2776
(2008)

32. Zhang, Y., et al.: Coumarin reduces virulence and biofilm formation in Pseu-
domonas aeruginosa by affecting quorum sensing, type III secretion and c-di-GMP
levels. Front. Microbiol. 9, 1952 (2018). https://www.frontiersin.org/article/10.
3389/fmicb.2018.01952

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1038/s41467-020-15165-4
https://link.aps.org/doi/10.1103/PhysRevLett.123.258101
https://link.aps.org/doi/10.1103/PhysRevLett.123.258101
https://doi.org/10.1038/nrmicro1838
https://doi.org/10.1038/35101627
https://doi.org/10.1038/35101627
https://www.frontiersin.org/article/10.3389/fmicb.2018.01952
https://www.frontiersin.org/article/10.3389/fmicb.2018.01952
http://creativecommons.org/licenses/by/4.0/

Data Mining and Processing Related
Approaches

Query Rewriting on Path Views Without
Integrity Constraints

Julien Romero1(B) , Nicoleta Preda2, and Fabian Suchanek1

1 LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
{julien.romero,fabian.suchanek}@telecom-paris.fr

2 University of Versailles, Versailles, France
nicoleta.preda@uvsq.fr

Abstract. A view with a binding pattern is a parameterised query on
a database. Such views are used, e.g., to model Web services. To answer
a query on such views, one has to orchestrate the views together in
execution plans. The goal is usually to find equivalent rewritings, which
deliver precisely the same results as the query on all databases. However,
such rewritings are usually possible only in the presence of integrity con-
straints – and not all databases have such constraints. In this paper,
we describe a class of plans that give practical guarantees about their
result even if there are no integrity constraints. We provide a characteri-
sation of such plans and a complete and correct algorithm to enumerate
them. Finally, we show that our method can find plans on real-world
Web Services.

1 Introduction

A view with binding patterns is a parameterised query defined in terms of a
global schema [6]. Such a query works like a function: it requires specific val-
ues as input and delivers the query results as output. For example, consider the
database instance about employees at Fig. 1. The call to the function getCompany

Fig. 1. An equivalent execution plan (blue) and a maximally contained rewriting
(orange) executed on a database instance (black). (Color figure online)

c© Springer Nature Switzerland AG 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 155–173, 2021.
https://doi.org/10.1007/978-3-030-70650-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_10&domain=pdf
http://orcid.org/0000-0002-7382-9077
https://doi.org/10.1007/978-3-030-70650-0_10

156 J. Romero et al.

with an employee Anna as input, returns the company The Guardian as out-
put. Abstractly, the function is represented as the rule: getCompany(in, out) ←
worksFor(in, out). The worksFor relation is of the global schema, which is orthog-
onal to the schema of the actual data. Unlike query interfaces like SPARQL end-
points, functions prevent arbitrary access to the database engines. In particular,
one can model Web forms or REST Web Services as views with binding patterns.
According to programmableweb.com, there are currently more than 22,000 such
REST Web Services.

If we want to answer a query on a global database that can be accessed
only through functions, we have to orchestrate the functions into an execution
plan. In our example from Fig. 1, if we want to find the job title of Anna, we
first have to find her company (by calling getCompany), and then her job title
(by calling getHierarchy on her company, and filtering the results about Anna).
Our problem is thus as follows: Given a user query (such as jobTitle(Anna, x))
and a set of functions (each being a parameterised conjunctive query), find an
execution plan (i.e., a sequence of function calls) that delivers the answer to
the query on a database that offers these functions. While the schema of the
database is known to the user, she or he does not know whether the database
contains the answer to the query at all.

Much of the literature concentrates on finding equivalent rewritings, i.e., exe-
cution plans that deliver the same result as the original query on all databases
that offer this specific set of functions. Unfortunately, our example plan is not an
equivalent rewriting: it will deliver no results on databases where (for whatever
reasons) Anna has a job title but no employer. The plan is equivalent to the
query only if an integrity constraint stipulates that every person with a job title
must have an employer and the database instance is complete.

Such constraints are hard to come by in real life, because they may not hold
(a person can have a job title but no employer; a person may have a birth date
but no death date; some countries do not have a capital1; etc.). Even if they hold
in real life, they may not hold in the database due to the incompleteness of the
data. Hence, they are also challenging to mine automatically. In the absence of
constraints, however, an atomic query has an equivalent rewriting only if there
is a function that was defined precisely for that query.

This problem appears in particular in data integration settings, where
databases are incomplete, and the equivalent rewritings usually fail to deliver
results. Therefore, data integration systems often use maximally contained
rewritings instead of equivalent rewritings. Intuitively speaking, maximally con-
tained rewritings are execution plans that try to find all calls that could poten-
tially lead to an answer. In our example, the plan getAlmaMater, getHierarchy is
included in the maximally contained rewriting: It asks for the university where
Anna graduated, and for their job positions. If Anna happens to work at the
university where she graduated, this plan will answer the query.

1 e.g., the Republic of Nauru.

http://programmableweb.com

Query Rewriting on Path Views Without Integrity Constraints 157

This plan appears somehow less reasonable that our first plan because it
works only for people who work at their alma mater. However, both plans are
equal concerning their formal guarantees: none of them can guarantee to deliver
the answers to the query. This is a conundrum: Unless we have information about
the data distribution or more schema information, we have no formal means to
give the first plan higher chances of success than the second plan – although the
first plan is intuitively much better.

In this paper, we propose a solution to this conundrum: We can show that
the first plan (getCompany, getHierarchy) is “smart”, in a sense that we formally
define. We can give guarantees about the results of smart plans in the absence
of integrity constraints. We also give an algorithm that can enumerate all smart
plans for a given atomic query and path-shaped functions (as in Fig. 1).
We show that under a condition that we call the Optional Edge Semantics our
algorithm is complete and correct, i.e., it will exhaustively enumerate all such
smart plans. We apply our method to real Web services and show that smart
plans work in practice and deliver more query results than competing approaches.

This paper is structured as follows: Sect. 2 discusses related work, Sect. 3
introduces preliminaries, and Sect. 4 gives a definition of smart plans. Section 5
provides a method to characterise smart plans, and Sect. 6 gives an algorithm
that can generate smart plans. We provide extensive experiments on synthetic
and real Web services to show the viability of our method in Sect. 7.

All the proofs and technical details are in the appendix of the accompanying
technical report [13].

2 Related Work

Equivalent Rewritings. An equivalent rewriting of a query is an alternative
formulation of the query that has the same results as the query on all databases.
Equivalent rewritings have also been studied in the context of views with binding
patterns [2,12]. However, they may not be sufficient to answer the query [6].
Equivalent rewritings rely on integrity constraints, which may not be available.
These constraints are difficult to mine, as most real-life rules have exceptions.
Also, equivalent rewritings may falsely return empty answers only because the
database instance is incomplete with respect to the integrity constraints. We aim
to come up with new relevant rewritings that still offer formal guarantees about
their results.

Maximally Contained Rewriting. In data integration applications, where
databases are incomplete, and equivalent rewritings are likely to fail, maximally
contained rewritings have been proposed as an alternative. A maximally con-
tained rewriting is a query expressed in a chosen language that retrieves the
broadest possible set of answers [6]. By definition, the task does not distinguish
between intuitively more reasonable rewritings and rewritings that stand little
chance to return a result on real databases. For views with binding patterns, the
problem has been studied for different rewriting languages and under different

158 J. Romero et al.

constraints [4,5,7]. Some works [8,9] propose to prioritise the execution of the
calls in order to produce the first results fast. While the first work [8] does not
give guarantees about the plan results, the second one [9] can give guarantees
only for very few plans. Our work is much more general and includes all the
plans generated by [9], as we will see.

Plan Execution. Several works study how to optimise given execution plans
[14,15]. Our work, in contrast, aims at finding such execution plans.

Federated Databases. In federated databases [1,3], a data source supports
any queries in a predefined language. In our setting, in contrast, the database
can be queried only through functions, i.e., specific predefined queries with input
parameters.

3 Preliminaries

We use the terminology of [12], and recall the definitions briefly.

Global Schema. We assume a set C of constants and a set R of binary relation
names. A fact r(a, b) is formed from a relation name r ∈ R and two constants
a, b ∈ C. A database instance I, or simply instance, is a set of facts.

Queries. An atom takes the form r(α, β), where r ∈ R, and α and β are either
constants or variables. It can be equivalently written as r−(β, α). A query takes
the form:

q(α1, ..., αm) ← B1, ..., Bn

where α1, ...αm are variables, each of which must appear in at least one of the
body atoms B1, ...Bn. We assume that queries are connected, i.e., each body
atom must be transitively linked to every other body atom by shared variables.

An embedding for a query q on a database instance I is a substitution σ for
the variables of the body atoms so that ∀B ∈ {B1, ..., Bn} : σ(B) ∈ I. A result
of a query is an embedding projected to the variables of the head atom. We write
q(α1, ..., αm)(I) for the results of the query on I. An atomic query is a query
that takes the form q(x) ← r(a, x), where a is a constant and x is a variable. A
path query is a query of the form:

q(xi) ← r1(a, x1), r2(x1, x2), ..., rn(xn−1, xn)

where a is a constant, xi is the output variable, each xj except xi is either a
variable or the constant a, and 1 ≤ i ≤ n.

Functions. We model functions as views with binding patterns [10], namely:

f(x, y1, ..., ym) ← B1, ..., Bn

Here, f is the function name, x is the input variable (which we underline),
y1, ..., ym are the output variables, and any other variables of the body atoms are
existential variables. In this paper, we are concerned with path functions, where

Query Rewriting on Path Views Without Integrity Constraints 159

the body atoms are ordered in a sequence r1(x, x1), r2(x1, x2), ..., rn(xn−1, xn).
The first variable of the first atom is the input of the plan, the second variable
of each atom is the first variable of its successor, and the output variables follow
the order of the atoms.
Calling a function for a given value of the input variable means finding the result
of the query given by the body of the function on a database instance.

Plans. A plan takes the form

π(x) = c1, . . . , cn, γ1 = δ1, . . . , γm = δm

Here, a is a constant and x is the output variable. Each ci is a function call
of the form f(α, β1, . . . , βn), where f is a function name, the input α is either
a constant or a variable occurring in some call in c1, . . . , ci−1, and the outputs
β1, . . . , βn are variables. Each γj = δj is called a filter, where γj is an output
variable of any call, and δj is either a variable that appears in some call or a
constant. If the plan has no filters, then we call it unfiltered. The semantics of
the plan is the query

q(x) ← φ(c1), . . . , φ(cn), γ1 = δ1, . . . , γm = δm

Here, x is the output variable of the plan, and · = · is an atom that holds in
any database instance if and only if its two arguments are identical. Each φ(ci)
is the body of the query defining the function f of the call ci, in which we have
substituted the constants and variables given by ci, and where we have used
fresh existential variables across the different φ(ci).

To evaluate a plan on an instance means running the query above. In practice,
this boils down to calling the functions in the order given by the plan. Given an
execution plan πa and a database I, we call πa(I) the answers of the plan on I.

Example 3.1. Consider our example in Fig. 1. There are 3 relation names in
the database: worksFor, jobTitle, and graduatedFrom. The functions are:

getCompany(x, y) ← worksFor(x, y)

getHierarchy(y, x, z) ← worksFor−(y, x), jobTitle(x, z)

getAlmaMater(x, y) ← graduatedFrom(x, y)

The following is an execution plan:

π1(z) =getCompany(Anna, x), getHierarchy(x, y, z), y = Anna

The first element is a function call to getCompany with the name of the person
(Anna) as input, and the variable x as output. The variable x then serves as
input in the second function call to getHierarchy. Figure 1 shows the plan with
an example instance. This plan computes the query:

worksFor(Anna, x),worksFor−(x, y), jobTitle(y, z), y = Anna

In our example instance, we have the embedding:

σ = {x −→ The Guardian, y −→ Anna, z −→ Journalist}.

160 J. Romero et al.

An execution plan π is redundant if it has no call using the constant a as input,
or if it contains a call where none of the outputs is an output of the plan or an
input to another call.

An equivalent rewriting of an atomic query q(x) ← r(a, x) is an execution
plan that has the same results as q on all database instances. For our query lan-
guage, a maximally contained rewriting for the query q is a plan whose semantics
contains the atom r(a, x).

4 Defining Smart Plans

Given an atomic query, and given a set of path functions, we want to find a
reasonable execution plan that answers the query.

Introductory Observations. Let us consider again the query q(x) ←
jobTitle(Anna, x) and the two plans in Fig. 1. The first plan seems to be smarter
than the second one. The intuition becomes more formal if we look at the
queries in their respective semantics. The first plan is the plan π1(z) given in
Example 3.1. Its semantics is the query: worksFor(Anna, x),worksFor−(x, y),
jobTitle(y, z), y = Anna. If the first atom has a match in the database instance,
then y = Anna is indeed a match, and the plan delivers the answers of the query.
If the first atom has no match in the database instance, then the plan returns no
result, while the query may have one. To make the plan equivalent to the query
on all database instances, we would need the following unary inclusion depen-
dency: jobT itle(x, y) → ∃z : worksAt(x, z). In our setting, however, we cannot
assume such an integrity constraint. Let us now consider the second plan:

π2(z) = getAlmaMater(Anna, x), getHierarchy(x, y, z), y = Anna

Its semantics are: graduatedFrom(Anna, x),worksFor−(x, y), jobTitle(y, z), y =
Anna. To guarantee that y = Anna is a match, we need one constraint at the
schema level: the inclusion dependency graduatedFrom(x, y) → worksFor(x, y).
However, this constraint does not hold in the real world, and it is stronger
than a unary inclusion dependency (which has an existential variable in
the tail). Besides, π2, similarly to π1, needs the unary inclusion dependency
jobT itle(x, y) → ∃z : graduatedFrom(x, z) to be an equivalent rewriting.

Definition. In summary, the first plan, π1, returns the query answers if all the
calls return results. The second plan, π2, may return query answers, but in most
of the cases even if the calls are successful, their results are filtered out by the
filter y = Anna. This brings us to the following definition of smart plans:

Definition 4.1 (Smart Plan). Given an atomic query q and a set of functions,
a plan π is smart if the following holds on all database instances I: If the filter-
free version of π has a result on I, then π delivers exactly the answers to the
query.

Query Rewriting on Path Views Without Integrity Constraints 161

We also introduce weakly smart plans:

Definition 4.2 (Weakly Smart Plan). Given an atomic query q and a set
of functions, a plan π is weakly smart if the following holds on all database
instances I where q has at least one result: If the filter-free version of π has a
result on I, then π delivers a super-set of the answers to the query.

Weakly smart plans deliver a superset of the answers of the query, and thus do
not actually help in query evaluation. Nevertheless, weakly smart plans can be
useful: For example, if a data provider wants to hide private information, like
the phone number of a given person, they do not want to leak it in any way, not
even among other results. Thus, they will want to design their functions in such
a way that no weakly smart plan exists for this specific query.

Every smart plan is also a weakly smart plan. Some queries will admit only
weakly smart plans and no smart plans, mainly because the variable that one
has to filter on is not an output variable.

Fig. 2. A non-smart execution plan for the query phone(Anna,x). Left: a database
where the plan answers the query. Right: a database where the unfiltered plan has
results, but the filtered plan does not answer the query.

Smart Plans Versus Equivalent Plans. Consider again the plans π1 (smart)
and π2 (not-smart) above. Both plans assume the existence of a unary inclusion
dependency. The difference is that in addition, π2 relies on an additional role
inclusion constraint. Is it thus sufficient to assume unary inclusion dependencies
between all pairs of relations, and apply the algorithm in [12] to find equivalent
rewritings? The answer is no: Fig. 2 shows a plan that is equivalent if the nec-
essary unary inclusion dependencies hold. However, the plan is not smart. On
the database instance shown on the right-hand side, the unfiltered plan returns
a non-empty set of results that does not answer the query.

Problem. After having motivated and defined our notion of smart plans, we
are now ready to state our problem: Given an atomic query, and a set of path
functions, we want to enumerate all smart plans.

162 J. Romero et al.

5 Characterizing Smart Plans

5.1 Web Service Functions

We now turn to generating smart plans. As previously stated, our approach can
find smart plans only under a certain condition. This condition has to do with
the way Web services work. Assume that for a given person, a function returns
the employer and the address of the working place:

getCompanyInfo(x, y, z) ← worksAt(x, y), locatedIn(y, z)

Now assume that, for some person, the address of the employer is not in the
database. In that case, the call will not fail. Rather, it will return only the
employer y, and return a null-value for the address z. It is as if the atom
locatedIn(y, z) were optional. To model this phenomenon, we introduce the
notion of sub-functions: Given a path function f : r1(x0, x1), r2(x1, x2), . . .
rn(xn−1, xn), the sub-function for an output variable xi is the function
fi(x0, ..., xi) ← r1(x0, x1), . . . ri(xi−1, xi).

Example 5.1. The sub-functions of the function getCompanyInfo are
f1(x, y) ← worksAt(x, y), which is associated to y, and f2(x, y, z) ←
worksAt(x, y), locatedIn(y, z), which is associated to z.

We can now express the Optional Edge Semantics:

Definition 5.2 (Optional Edge Semantics). We say that we are under the
optional edge semantics if, for any path function f , a sub-function of f has
exactly the same binding for its output variables as f .

The optional edge semantics mirrors the way real Web services work. Its main
difference to the standard semantics is that it is not possible to use a function
to filter out query results. For example, it is not possible to use the function get-
CompanyInfo to retrieve only those people who work at a company. The function
will retrieve companies with addresses and companies without addresses, and
we can find out the companies without addresses only by skimming through the
results after the call. This contrasts with the standard semantics of parametrised
queries (as used, e.g., in [8,9,12]), which do not return a result if any of their
variables cannot be bound.

This has a very practical consequence: As we shall see, smart plans under
the optional edge semantics have a very particular shape.

5.2 Preliminary Definitions

Our main intuition is that smart plans under the optional edge semantics walk
forward until a turning point. From then on, they “walk back” to the input
constant and query (see again Fig. 1). As a more complex example, consider
the atomic query q(x) ← r(a, x) and the database shown in Fig. 3. The plan
f1, f2, f3, f4 is shown in blue. As we can see, the plan walks “forward” and then

Query Rewriting on Path Views Without Integrity Constraints 163

a c1 c2 c3c4
u s tr

f1

f2
f3

f4

Fig. 3. A bounded plan

“backward” again. Intuitively, the “forward path” makes sure that certain facts
exist in the database (if the facts do not exist, the plan delivers no answer, and
is thus trivially smart). If these facts exist, then all functions on the “backward
path” are guaranteed to deliver results. Thus, if a has an r-relation, the plan is
guaranteed to deliver its object. Let us now make this intuition more formal.

We first observe (and prove in the technical report) that the semantics of
any filter-free execution plan can be reduced to a path query. The path query of
Fig. 3 is:

q(a, x) ←u(a, y1), s(y1, y2), t(y2, y3), t−(y3, y2), s−(y2, y1),

s(y1, y2), s−(y2, y1), u−(y1, y0), r(y0, x)

Now, any filter-free path query can be written unambiguously as the sequence
of its relations – the skeleton. In the example, the skeleton is:

u.s.t.t−.s−.s.s−.u−.r

In particular, the skeleton of an atomic query q(x) ← r(a, x) is just r. Given
a skeleton r1.r2...rn, we write r1...rn(a) for the set of all answers of the query
when a is given as input. For path functions, we write the name of the function
as a shorthand for the skeleton of the semantics of the function. For example,
in Fig. 3, we have f1(a) = {c3}, and f1f2f3f4(a) = {c4}. We now introduce two
notions to formalise the “forward and backward” movement:

Definition 5.3 (Forward and Backward Step). Given a sequence of rela-
tions r0...rn and a position 0 ≤ i ≤ n, a forward step consists of the relation
ri, together with the updated position i + 1. Given position 1 ≤ i ≤ n + 1, a
backward step consists of the relation r−

i−1, together with the updated position
i − 1.

Definition 5.4 (Walk). A walk to a position k (0 ≤ k ≤ n) through a sequence
of relations r0...rn consists of a sequence of steps (forward or backward) in
r0...rn, so that the first step starts at position n + 1, every step starts at the
updated position of the previous step, and the last step leads to the updated posi-
tion k.

If we do not mention k, we consider that k = 0, i.e., we cross the sequence of
relations entirely.

164 J. Romero et al.

Example 5.5. In Fig. 3, a possible walk through r−ust is t−s−ss−u−r. This
walk goes from c3 to c2 to c1, then to c2, and back through c1, c, c4 (as indicated
by the blue arrows).

We can now formalise the notion of the forward and backward path:

Definition 5.6 (Bounded plan). A bounded path for a set of relations R and
a query q(x) ← r(a, x) is a path query P , followed by a walk through r−P . A
bounded plan for a set of path functions F is a non-redundant execution plan
whose semantics are a bounded path. We call P the forward path and the walk
though r−P the backward path.

Example 5.7. In Fig. 3, f1f2f3f4 is a bounded path, where the forward path is
f1, and the backward path f2f3f4 is a walk through r−f1.

5.3 Characterising Smart Plans

Our notion of bounded plans is based purely on the notion of skeletons, and
does not make use of filters. This is not a problem, because smart plans depend
on constraint-free plans. Furthermore, we show in the technical report that we
can restrict ourselves to execution plans whose semantics is a path query. This
allows for the following theorems (proven in the technical report):

Theorem 5.8 (Correctness). Let q(x) ← r(a, x) be an atomic query, F a set of
path functions and Fsub the set of sub-functions of F . Let πa be a non-redundant
bounded execution plan over the Fsub such that its semantics is a path query.
Then πa is weakly smart.

Theorem 5.9 (Completeness). Let q(x) ← r(a, x) be an atomic query, F a set
of path functions and Fsub the set of sub-functions of F . Let πa be a weakly smart
plan over Fsub such that its semantics is a path query. Then πa is bounded.

We have thus found a way to recognise weakly smart plans without executing
them. Extending this characterisation from weakly smart plans to fully smart
plans consists mainly of adding a filter. The technical report gives more technical
details.

6 Generating Smart Plans

We have shown that weakly smart plans are precisely the bounded plans. We will
now turn to generating such plans. Let us first introduce the notion of minimal
plans.

Query Rewriting on Path Views Without Integrity Constraints 165

6.1 Minimal Smart Plans

In line with related work [12], we will not generate redundant plans. These
contain more function calls, and cannot deliver more results than non-redundant
plans. More precisely, we will focus on minimal plans:

Definition 6.1 (Minimal Smart Plan). Let πa(x) be a non-redundant exe-
cution plan organised in a sequence c0, c1, . . . , ck of calls, such that the input
of c0 is the constant a, every other call ci takes as input an output variable
of the previous call ci−1, and the output of the plan is in the call ck. πa is a
minimal (weakly) smart plan if it is a (weakly) smart plan and there exists no
other (weakly) smart plan π′

a(x) composed of a sub-sequence ci1 , ..., cin (with
0 ≤ i1 < ... < in ≤ k).

Example 6.2. Let us consider the two functions f1(x, y) = r(x, y) and
f2(y, z) = r−(y, t).r(t, z). For the query q(x) ← r(a, x), the plan πa(x) =
f1(a, y), f2(y, x) is obviously weakly smart. It is also non-redundant. However,
it is not minimal. This is because π′

a(x) = f1(a, x) is also weakly smart, and is
composed of a sub-sequence of calls of πa.

In general, it is not useful to consider non-minimal plans because they are just
longer but cannot yield more results. On the contrary, a non-minimal plan can
have fewer results than its minimal version, because the additional calls can
filter out results. The notion of minimality would make sense also in the case
of equivalent rewritings. However, in that case, the notion would impact just
the number of function calls and not the results of the plan, since equivalent
rewritings deliver the same results by definition. In the case of smart plans, as
we will see, the notion of minimality allows us to consider only a finite number
of execution plans and thus to have an algorithm that terminates.

6.2 Bounding and Generating the Weakly Smart Plans

We can enumerate all minimal weakly smart plans because their number is lim-
ited. We show in the technical report the following theorem:

Theorem 6.3 (Bound on Plans). Given a set of relations R, a query q(x) ←
r(a, x), r ∈ R, and a set of path function definitions F , there can be no more
than M ! minimal smart plans, where M = |F|2k and k is the maximal number of
atoms in a function. Besides, there exists an algorithm to enumerate all minimal
smart plans.

This bound is very pessimistic: In practice, the plans are very constrained and
thus, the complete exploration is quite fast, as we will show in Sect. 7.

The intuition of the theorem is as follows: Let us consider a bounded path
with a forward and a backward path. For each position i, we consider a state that
represents the functions crossing the position i (we also consider function starting
and ending there). We notice that, as the plan is minimal, there cannot be two

166 J. Romero et al.

functions starting at position i (otherwise the calls between these functions would
be useless). This fact limits the size of the state to 2k functions (where k is the
maximal size of a function, the 2 is due to the existence of both a forward and
backward path). Finally, we notice that a state cannot appear at two different
positions; otherwise, the plan would not be minimal (all function calls between
the repetition are useless). Thus, the algorithm we propose explores the space
of states in a finite time, and yields all minimal smart plans. At each step of
the search, we explore the adjacent nodes that are consistent with the current
state. In practice, these transitions are very constrained, and so the complexity
is rarely exponential (as we will see in the experiments).

6.3 Generating the Weakly Smart Plans

Theorem 6.3 allows us to devise an algorithm that enumerates all minimal weakly
smart plans. For simplicity, let us first assume that no function definition contains
a loop, i.e., no function contains two consecutive relations of the form rr−. This
means that a function cannot be both on a forward and backward direction. We
will later see how to remove this assumption. Algorithm 1 takes as input a query
q and a set of function definitions F . It first checks whether the query can be
answered trivially by a single function (Line 1). If that is the case, the plan is
printed (Line 2). Then, the algorithm sets out to find more complex plans. To
avoid exploring states twice, it keeps a history of the explored states in a stack
H (Line 3). The algorithm finds all non-trivial functions f that could be used
to answer q. These are the functions whose short notation ends in q (Line 4).
For each of these functions, the algorithm considers all possible functions f ′ that
could start the plan (Line 5). For this, f ′ has to be consistent with f , i.e., the
functions have to share the same relations. The pair of f and f ′ constitute the
first state of the plan. Our algorithm then starts a depth-first search from that
first state (Line 6). For this purpose, it calls the function search with the current
state, the state history, and the set of functions. In the current state, a marker
(a star) designates the forward path function.

Algorithm 1. FindMinimalWeakSmartPlans
Data: Query q(a) ← r(a, x), set of path function definitions and all their

sub-functions F
Result: Prints minimal weakly smart plans

1 if ∃f = r ∈ F then
2 print(f)

3 H ← Stack()
4 foreach f = r1...rn.r ∈ F do
5 foreach f ′ ∈ F consistent with r−

n ...r−
1 do

6 search({〈f, n, backward〉, 〈f ′, 1, forward〉∗}, H, F)

Query Rewriting on Path Views Without Integrity Constraints 167

Algorithm 2 executes a depth-first search on the space of states. It first checks
whether the current state has already been explored (Line 1). If that is the case,
the method just returns. Otherwise, the algorithm creates the new state S′

(Line 3). For this purpose, it considers all positioned functions in the forward
direction (Lines 5–7). If any of these functions ends, the end counter is increased
(Line 6). Otherwise, we advance the positioned function by one position. The
(∗) means that if the positioned function happens to be the designated forward
path function, then the advanced positioned function has to be marked as such,
too. We then apply the procedure to the backwards-pointing functions (Lines
8–11).

Once that is done, there are several cases: If all functions ended, we have
a plan (Line 12). In that case, we can stop exploring because no minimal plan
can include an existing plan. Next, the algorithm considers the case where one
function ended, and one function started (Line 13). If the function that ended
were the designated forward path function, then we would have to add one more
forward function. However, then the plan would contain two functions that start
at the current state. Since this is not permitted, we just do not do anything
(Line 14), and the execution jumps to Line 29. If the function that ended was
some other function, then the ending and the starting function can form part
of a valid plan. No other function can start or end at the current state, and
hence we just move to the next state (Line 15). Next, the algorithm considers
the case where one function starts and no function ends (Line 16). In that case,
it has to add another backward function. It tries out all functions (Line 17–19)
and checks whether adding the function to the current state is consistent (as in
Algorithm 1). If that is the case, the algorithm calls itself recursively with the
new state (Line 19). Lines 20–23 do the same for a function that ended. Here
again, the (∗) means that if f was the designated forward path function, then
the new function has to be marked as such. Finally, the algorithm considers the
case where no function ended, and no function started (Line 24). In that case, we
can just move on to the next state (Line 25). We can also add a pair of a starting
function and an ending function. Lines 26–28 try out all possible combinations
of a starting function and an ending function and call the method recursively. If
none of the previous cases applies, then end > 1 and start > 1. This means that
the current plan cannot be minimal. In that case, the method pops the current
state from the stack (Line 29) and returns.

Theorem 6.4 (Algorithm). Algorithm1 is correct and complete, terminates on
all inputs, and runs in time O(M !), where M = |F|2k and k is the maximal
number of atoms in a function.

The worst-case runtime of O(M !) is unlikely to appear in practice. Indeed, the
number of possible functions that we can append to the current state in Lines
19, 23, 28 is severely reduced by the constraint that they must coincide on
their relations with the functions that are already in the state. In practice, very
few functions have this property. Furthermore, we can significantly improve the
bound if we are interested in finding only a single weakly smart plan:

168 J. Romero et al.

Algorithm 2. Search
Data: A state S with a designated forward path function, a set of states H, a

set of path functions F
Result: Prints minimal weakly smart plans

1 if S ∈ H then return
2 H.push(S)
3 S′ ← ∅
4 end ← 0
5 foreach 〈r1...rn, i, forward〉 ∈ S do
6 if i+ 1 > n then end++

7 else S′ ← S′ ∪ {〈r1...rn, i+ 1, forward〉(∗)}
8 start ← 0
9 foreach 〈r1...rn, i, backward〉 ∈ S do

10 if i = 1 then start++
11 else S′ ← S′ ∪ {〈r1...rn, i − 1, backward〉}
12 if S′ = ∅ then print(H)
13 else if start = 1 ∧ end = 1 then
14 if the designated function ended then pass
15 else search(S′, H,F)

16 else if start = 1 ∧ end = 0 then
17 foreach f ∈ F do
18 S′′ ← S′ ∪ {〈f, |f |, backward〉}
19 if S′′ is consistent then search(S′′, H,F)

20 else if start = 0 ∧ end = 1 then
21 foreach f ∈ F do

22 S′′ ← S′ ∪ {〈f, 1, forward〉(∗)}
23 if S′′ is consistent then search(S′′, H,F)

24 else if start = 0 ∧ end = 0 then
25 search(S′, H,F)
26 foreach f, f ′ ∈ F do
27 S′′ ← S′ ∪ {〈f, 1, forward〉, 〈f ′, |f ′|, backward〉}
28 if S′′ is consistent then search(S′′, H,F)

29 H.pop()

Theorem 6.5. Given an atomic query and a set of path function definitions
F , we can find a single weakly smart plan in O(|F|2k), where k is the maximal
number of atoms in a function.

Functions with Loops. If there is a function that contains a loop of the form
r.r−, then Algorithm 2 has to be adapted as follows: First, when neither functions
are starting nor ending (Lines 24–28), we can also add a function that contains a
loop. Let f = r1...rir

−
i ...rn be such a function. Then the first part r1...ri becomes

Query Rewriting on Path Views Without Integrity Constraints 169

the backward path, and the second part r−
i ...rn becomes the forward path in

Line 27.
When a function ends (Lines 20–23), we could also add a function with a

loop. Let f = r1...rir
−
i rn be such a function. The first part r1...ri will create a

forward state 〈r1...ri, 1, forward〉. The second part, r−
i ...rn will create the back-

ward state 〈r−
i ...rn, |r1...ri|, backward〉. The consistency check has to be adapted

accordingly. The case when a function starts (Lines 16–19) is handled analo-
gously. Theorems 6.4 and 6.5 remain valid, because the overall number of states
is still bounded as before.

7 Experiments

We have implemented the Susie Algorithm [9] (more details in the technical
report), the equivalent rewriting approach [12] (using Pyformlang [11]), as well as
our method (Sect. 6.2) in Python. The code is available on Github2. We conduct
two series of experiments – one on synthetic data, and one on real Web services.
All our experiments are run on a laptop with Linux, 1 CPU with four cores at
2.5 GHz, and 16 GB RAM.

7.1 Synthetic Functions

In our first set of experiments, we use the methodology introduced by [12] to sim-
ulate random functions. We consider a set of artificial relations R = {r1, ..., rn},
and randomly generated path functions up to length 3, where all variables are
existential except the last one. Then we try to find a smart plan for each query
of the form q(x) ← r(a, x), r ∈ R.

In our first experiment, we limit the number of functions to 30 and vary the
number n of relations. All the algorithms run in less than 2 s in each setting
for each query. Figure 4a shows which percentage of the queries the algorithms
answer. As expected, when increasing the number of relations, the percentage
of answered queries decreases, as it becomes harder to combine functions. The
difference between the curve for weakly smart plans and the curve for smart
plans shows that it was not always possible to filter the results to get exactly
the answer of the query. Weakly smart plans can answer more queries but at
the expense of delivering only a super-set of the query answers. In general, we
observe that our approach can always answer strictly more queries than Susie
and the equivalent rewriting approach.

In our next experiment, we fix the number of relations to 10 and vary the
number of functions. Figure 4b shows the results. As we increase the number of
functions, we increase the number of possible function combinations. Therefore,
the percentage of answered queries increases for all approaches. As before, our
algorithm outperforms the other methods by a wide margin. The reason is that
Susie cannot find all smart plans (see the technical report for more details).

2 https://github.com/Aunsiels/smart plans.

https://github.com/Aunsiels/smart_plans

170 J. Romero et al.

Fig. 4. Percentage of answered queries

Equivalent rewritings, on the other hand, can find only those plans that are
equivalent to the query on all databases – which are very few in the absence of
constraints.

7.2 Real-World Web Services

In our second series of experiments, we apply the methods to real-world Web ser-
vices. We use the functions provided by [9,12]. These are the functions of the Web
services of Abe Books, ISBNDB, LibraryThing, MusicBrainz, and MovieDB.
Besides, as these Web services do not contain many existential variables, we
added the set of functions based on information extraction techniques (IE) from
[9].

Table 2 shows the number of functions and the number of relations for each
Web service. Table 1 gives examples of functions. Some of them are recursive.
For example, MusicBrainz allows querying for the albums that are related to a
given album. All functions are given in the same schema. Hence, in an additional
setting, we consider the union of all functions from all Web services.

Note that our goal is not to call the functions. Instead, our goal is to deter-
mine whether a smart plan exists – before any functions have to be called.

For each Web service, we considered all queries of the form q(x) ← r(a, x)
and q(x) ← r−(a, x), where r is a relation used in the function definitions of that
Web service. We ran the Susie algorithm, the equivalent rewriting algorithm, and
our algorithm for each of these queries. The run-time is always less than 2 s for
each query. Table 2 shows the ratio of queries for which we could find smart
plans. We first observe that our approach can always answer at least as many
queries as the other approaches can answer. Furthermore, there are cases where
our approach can answer strictly more queries than Susie.

http://abebooks.com
http://isbndb.com/
http://www.librarything.com/
http://musicbrainz.org/
https://www.themoviedb.org

Query Rewriting on Path Views Without Integrity Constraints 171

Table 1. Examples of real functions (3 of MusicBrainz, 1 of ISBNdb, 1 of Library-
Thing).

getDeathDate(x, y, z) ← hasId−(x, y) ∧ diedOnDate(y, z)

getSinger(x, y, z, t) ← hasRelease−(x, y) ∧ released−(y, z) ∧ hasId(z, t)

getLanguage(x, y, z, t) ← hasId(x, y) ∧ released(y, z) ∧ language(z, t)

getTitles(x, y, z, t) ← hasId−(x, y) ∧ wrote−(y, z) ∧ title(z, t)

getPublicationDate(x, y, z) ← hasIsbn−(x, y) ∧ publishedOnDate(y, z)

Table 2. Percentage of queries with smart plans (numbers in parenthesis represent the
results with IE).

Web service Functions Relations Susie Eq. Rewritings Smart plans

MusicBrainz (+IE) 23 42 48% (32%) 48% (32%) 48% (35%)

LastFM (+IE) 17 30 50% (30%) 50% (30%) 50% (32%)

LibraryThing (+IE) 19 32 44% (27%) 44% (27%) 44% (35%)

Abe Books (+IE) 9 8 75% (14%) 63% (11%) 75% (14%)

ISBNdb (+IE) 14 20 65% (23%) 50% (18%) 65% (23%)

Movie DB (+IE) 12 18 56% (19%) 56% (19%) 56% (19%)

UNION with IE 74 82 52% 50% 54%

The Advantage of our Algorithm is Not that it Beats Susie by Some
Percentage Points on Some Web Services. Instead, the Crucial Advan-
tage of our Algorithm is the Guarantee that the Results Are Com-
plete. If our algorithm does not find a plan for a given query, it means that
there cannot exist a smart plan for that query. Thus, even if Susie and our algo-
rithm can answer the same number of queries on AbeBooks, only our algorithm
can guarantee that the other queries cannot be answered at all. Thus, only our
algorithm gives a complete description of the possible queries of a Web service.

Table 3. Example Plans (2 of MusicBrainz, 1 of ABEBooks).

Query Plan

hasTrackNumber getReleaseInfoByTitle, getReleaseInfoById

hasIdCollaborator getArtistInfoByName, getCollaboratorIdbyId,getCollaboratorsById

publishedByTitle getBookInfoByTitle, getBookInfoById

Rather short execution plans can answer some queries. Table 3 shows a few
examples. However, a substantial percentage of queries cannot be answered at all.
In MusicBrainz, for example, it is not possible to answer produced(a, x) (i.e., to
know which albums a producer produced), hasChild−(a,x) (to know the parents
of a person), and marriedOnDate−(a, x) (to know who got married on a given
day). These observations show that the Web services maintain control over the
data, and do not allow exhaustive requests.

172 J. Romero et al.

8 Conclusion

In this paper, we have introduced the concept of smart execution plans for Web
service functions. These are plans that are guaranteed to deliver the answers to
the query if they deliver results at all. We have formalised the notion of smart
plans, and we have given a correct and complete algorithm to compute smart
plans. Our experiments have demonstrated that our approach can be applied to
real-world Web services. All experimental data, as well as all code, is available at
the URL given in Sect. 7. We hope that our work can help Web service providers
to design their functions, and users to query the services more efficiently.

References

1. Aebeloe, C., Montoya, G., Hose, K.: A decentralized architecture for sharing and
querying semantic data. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol. 11503,
pp. 3–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21348-0 1

2. Benedikt, M., Leblay, J., ten Cate, B., Tsamoura, E.: Generating Plans from
Proofs: The Interpolation-Based Approach to Query Reformulation. Synthesis Lec-
tures on Data Management. Morgan & Claypool, San Rafael (2016)

3. Buron, M., Goasdoué, F., Manolescu, I., Mugnier, M.L.: Obi-Wan: ontology-based
RDF integration of heterogeneous data. Proc. VLDB Endow. 13(12), 2933–2936
(2020). https://doi.org/10.14778/3415478.3415512

4. Cal̀ı, A., Martinenghi, D.: Querying data under access limitations. In: ICDE (2008)
5. Duschka, O.M., Genesereth, M.R.: Answering recursive queries using views. In:

PODS (1997)
6. Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10, 270–294

(2001). https://doi.org/10.1007/s007780100054
7. Nash, A., Ludäscher, B.: Processing unions of conjunctive queries with negation

under limited access patterns. In: Bertino, E., et al. (eds.) EDBT 2004. LNCS,
vol. 2992, pp. 422–440. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24741-8 25

8. Preda, N., Kasneci, G., Suchanek, F.M., Neumann, T., Yuan, W., Weikum, G.:
Active knowledge: dynamically enriching RDF knowledge bases by web services.
In: SIGMOD (2010)

9. Preda, N., Suchanek, F.M., Yuan, W., Weikum, G.: SUSIE: search using services
and information extraction. In: ICDE (2013)

10. Rajaraman, A., Sagiv, Y., Ullman, J.D.: Answering queries using templates with
binding patterns. In: PODS (1995)

11. Romero, J.: Pyformlang: an educational library for formal language manipulation.
In: SIGCSE. Springer International Publishing (2021)

12. Romero, J., Preda, N., Amarilli, A., Suchanek, F.: Equivalent rewritings on path
views with binding patterns. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol.
12123, pp. 446–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
49461-2 26. Extended version with proofs. https://arxiv.org/abs/2003.07316

13. Romero, J., Preda, N., Suchanek, F.: Query rewriting on path views without
integrity constraints. In: Datamod (2020). Extended version with proofs. https://
arxiv.org/abs/2010.03527

https://doi.org/10.1007/978-3-030-21348-0_1
https://doi.org/10.14778/3415478.3415512
https://doi.org/10.1007/s007780100054
https://doi.org/10.1007/978-3-540-24741-8_25
https://doi.org/10.1007/978-3-540-24741-8_25
https://doi.org/10.1007/978-3-030-49461-2_26
https://doi.org/10.1007/978-3-030-49461-2_26
https://arxiv.org/abs/2003.07316
https://arxiv.org/abs/2010.03527
https://arxiv.org/abs/2010.03527

Query Rewriting on Path Views Without Integrity Constraints 173

14. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over
web services. In: VLDB (2006)

15. Thakkar, S., Ambite, J.L., Knoblock, C.A.: Composing, optimizing, and executing
plans for bioinformatics web services. VLDB J. 14, 330–353 (2005). https://doi.
org/10.1007/s00778-005-0158-4

https://doi.org/10.1007/s00778-005-0158-4
https://doi.org/10.1007/s00778-005-0158-4

Evaluating Trace Encoding Methods
in Process Mining

Sylvio Barbon Junior1 , Paolo Ceravolo2 , Ernesto Damiani3 ,
and Gabriel Marques Tavares2(B)

1 Londrina State University (UEL), Londrina, Brazil
barbon@uel.br

2 Università degli Studi di Milano (UNIMI), Milan, Italy
{paolo.ceravolo,gabriel.tavares}@unimi.it
3 Khalifa University (KUST), Abu Dhabi, UAE

ernesto.damiani@kustar.ac.ae

Abstract. Encoding methods affect the performance of process min-
ing tasks but little work in the literature focused on quantifying their
impact. In this paper, we compare 10 different encoding methods from
three different families (trace replay and alignment, graph embeddings,
and word embeddings) using measures to evaluate the overlaps in the
feature space, the accuracy obtained, and the computational resources
(time) consumed with a classification task. Across hundreds of event
logs representing four variations of five scenarios and five anomalies, it
was possible to identify the edge2vec method as the most accurate and
effective in reducing class overlapping in the feature space.

Keywords: Trace encoding · Word embeddings · Graph embeddings ·
Classification · Process Mining

1 Introduction

Process Mining (PM) is aimed at extracting knowledge from business process
event logs. Trace encoding, i.e. encoding the sequence of events in a case, is
then a crucial stage for any PM task [8]. Event logs incorporate multiple infor-
mation such as activity sequences, time spans, dependency between activities
or attribute values, replaceability between activities or resources, concurrent or
iterative behavior, and others [3,11,12,19] that can be hardly summarized in a
single representation. Encoding transforms this information into a feature space
enabling data processing. For this reason, the choice of the encoding method
can drive the successful implementation of PM tasks. A bad encoding creates
ambiguity, sparsity and complex separation boundaries [17,20]. A good encoding

This study was financed in part by Coordination for the National Council for Scientific
and Technological Development (CNPq) of Brazil - Grant of Project 420562/2018-4
and Fundação Araucária (Paraná, Brazil). It was also partly supported by the program
“Piano di sostegno alla ricerca 2019” funded by Università degli Studi di Milano.

c© Springer Nature Switzerland AG 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 174–189, 2021.
https://doi.org/10.1007/978-3-030-70650-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_11&domain=pdf
http://orcid.org/0000-0002-4988-0702
http://orcid.org/0000-0002-4519-0173
http://orcid.org/0000-0002-9557-6496
http://orcid.org/0000-0002-2601-8108
https://doi.org/10.1007/978-3-030-70650-0_11

Evaluating Trace Encoding Methods in Process Mining 175

boosts performances by correctly and effectively discriminating traces and the
impact on computational costs.

The machine learning community has deeply discussed the relationship
between data encoding and the complexity of classification tasks. For example,
Ho and Basu, in [17], studied several properties, such as class ambiguity, data
sparsity, non-discriminative features, and the intrinsic complexity of class sepa-
ration boundaries. Lorena et al. [20], grouped some of these properties to support
measures of complexity of the classification problems. The Maximum Fisher’s
Discriminant Ratio (F1) and the Volume of Overlapping Region (F2) were sug-
gested to measure how effectively the feature vectors can separate classes. F1
uses the largest discriminating ratio among all the dimensions provided by the
encoding method, indicating if the problem classes can be separable using this
high-discriminant feature. F2 is related to the overlapping intervals between the
problem classes [10]. The Average Number of Principal Component Analysis
(PCA) dimensions compared to the original dimensions (T4) can be used for
evaluating dimensionality [20].

Despite trace encoding is widely discussed in the PM community [3,11,12,19],
to the best of our knowledge, we lack a study on the quality achieved by the dif-
ferent methods proposed in the literature. In this work, we compared 10 different
encoding methods (alignment, trace replay, edge2vec, node2vec, fasttext, tfidf,
count2vec, word2vec, one-hot, and hash2vec) representative of both traditional
PM methods, such a trace replay and alignment, and methods producing highly
informative but low-dimensional vectors such as graph embeddings and word
embeddings. These methods are compared against a classification problem as it
directly relates to well-known PM tasks such as trace clustering and anomaly
detection. More specifically, the Random Forest algorithm was employed to mea-
sure accuracy and time for binary classification of event logs. The F1, F2, and T4
measures were used to assess the quality of the compared encoding methods. The
classes to be identified were common PM anomalies (early, insert, late, rework,
and skip) with four different shares across five different scenarios, analyzing a
total of 100 event logs.

Our results bring important insights into the optimal representation of traces
in PM. More specifically, the paper starts by presenting the relevance of trace
encoding in the PM literature (Sect. 2). Then, we expand on the encoding meth-
ods evaluated (Sect. 3). Section 4 presents the event logs and experiments, along
with an application scenario in the classification domain. The results are pre-
sented and discussed in Sect. 5. Final remarks and conclusions are presented in
Sect. 6.

2 Related Work

As process data may be analyzed according to multiple perspectives, there exists
a considerable amount of encoding techniques that could be applied to event
logs. Traditional PM goals, such as discovering a process model, require some
level of abstractions to represent information, which can be achieved by encod-
ings. In process discovery techniques, relations from the log are extracted and

176 S. Barbon Junior et al.

transformed into other forms of representations, such as directly-follows map-
pings [27]. Leontjeva et al. [19] presented a complex sequence encoder based
on indexes and hidden Markov models encoding. A last state encoding method
was proposed by Polato et al. [24] for time and activity prediction in processes.
Inspired by natural language processing research, Koninck et al. [11] applied
word2vec and doc2vec for representational learning in business processes. The
authors adapted these encodings to work on several business process layers,
activities, traces, logs, and models. Also using word embeddings to learn repre-
sentations, Hake et al. [16] combined word2vec and recurrent neural networks to
label nodes in business process models.

Recently, graph embedding techniques have been proposed to encode infor-
mation structured as graphs [15]. These techniques are suitable in PM environ-
ments as graphs can represent business process models, where nodes and edges
are activities and directly-follows relations. A graph representation of the busi-
ness process can be compared to graph representations of the traces similarly to
traditional PM conformance checking methods. Furthermore, graph embeddings
open new possibilities for PM analysis, such as capturing graph structures and
finding similarities across different process models.

Nolle et al. [22] used autoencoders for the assessment of anomalies. Autoen-
coder is a class of neural networks trained to copy its input to an output that
preserves the input’s probability density function [14]. For that, it learns the
input-output mapping ignoring the noise. The authors’ method consists of first
transforming the event log using the one-hot encoding technique. Then, the
autoencoder is trained with back-propagation using the event log both as input
and output label. However, the vector size increases linearly with the number of
activities, meaning that complex processes are encoded in huge dimensions. Also,
autoencoders involve relevant computational costs that limit their application.

3 Encoding Methods

To limit the scope of our work, we decided to investigate the control-flow per-
spective, that is, the selected encoding methods are pertinent to the analysis of
the sequence of executed activities. Moreover, autoencoders were not considered
due to their extremely high computational costs, making applications in busi-
ness processes difficult. The selected methods can be organized into three main
groups: trace replay and alignment, word embeddings, and graph embeddings.
Table 1 details the encoding methods we studied with their features, types, and
ranges.

3.1 Trace Replay and Alignment

Most PM quality measures are based on conformance checking methods, which
aim at comparing a process execution to a process model [25]. The measures
produced by conformance checking techniques can be interpreted as features.

Evaluating Trace Encoding Methods in Process Mining 177

Table 1. Encoding characteristics, produced features and their possible values

Encoding Family Feature Type Range

trace replay PM-based trace is fit Boolean {True, False}
fitness Numeric [0, 1]

consumed tokens Integer [0, ∞[

remaining tokens Integer [0, ∞[

produced tokens Integer [0, ∞[

alignment PM-based cost Integer [0, ∞[

visited states Integer [0, ∞[

queued states Integer [0, ∞[

traversed arcs Integer [0, ∞[

fitness Numeric [0, 1]

word2vec Text-based n-dimensions∗ Numeric]−∞, ∞[

fasttext Text-based n-dimensions∗ Numeric]−∞, ∞[

count2vec Text-based n-dimensions∗∗ Integer [0, ∞[

one-hot Text-based n-dimensions∗∗ Integer {0, 1}
tfidf Text-based n-dimensions∗∗ Numeric [0, 1]

hash2vec Text-based n-dimensions∗ Numeric [−1, 1]

node2vec Graph-based n-dimensions∗ Numeric]−∞, ∞[

edge2vec Graph-based n-dimensions∗ Numeric]−∞, ∞[
∗ encoding vector size is determined by a parameter
∗∗ encoding vector size is determined by the vocabulary size

More specifically, we exploited two conformance checking algorithms to encode
traces: trace replay and trace alignment.

Trace Replay. These techniques replay traces into a model trying to consume
the executed activities according to the constraints imposed by the model. By
counting the missing and remaining activities, a measure of the conformance is
produced [6].

Trace Alignment. These techniques also perform a comparison between a model
and a trace but directly relate a trace to the valid execution sequences, i.e.
allowed by the model [6]. Ultimately, an alignment can be seen as a sequence
of moves that can be synchronous if originated from both the model and the
trace, model-dependent if originated from the model only, or log-dependent if
originated from the trace only. It follows that more than one alignment is possible
when comparing a trace to a model. Thus, the technique aims at finding an
optimal alignment, minimizing the number of model- and log-moves, which are
measured by a cost function.

178 S. Barbon Junior et al.

3.2 Word Embeddings

Word embeddings are grounded in information retrieval and natural language
processing. Neural network algorithms are exploited to create highly informative
but low-dimensional vectors modeling the context in which words of a corpus
are inserted. We applied the following text-based encodings: word2vec, fasttext,
count2vec, one-hot, tfidf and hash2vec.

Word2vec. The word embeddings come from the weights of a two-layer neural
network created to reconstruct the linguistic context of words in a corpus [21].
This way, words appearing in similar contexts generate more similar encodings
than words present in different contexts. In the process domain, a trace can be
described by its sequence of activities, which can be treated as words in a corpus.
From this perspective, a trace is a sentence and a log is a text, i.e., a sequence
of sentences. Consequently, the trace encoding is the aggregation of its activities
encodings, which is obtained by their mean.

Fasttext. Fasttext represents each word as a bag of n-gram characters, trying to
capture the morphemes of a corpus. The final vector representation of a word
is, then, retrieved by the sum of its n-gram character representations [2]. Given
this construction, the method performs well in the representation of rare words
and can generate encodings for words that do not appear in the training data.

Count2vec. The count vectorizer is a simple way of encoding words by accounting
for their frequencies in a text document. This tokenization process outputs a
matrix of word counts. The length of the features is determined by the number
of unique words in the document. For this method, the event log is interpreted
as a document and the activity frequency regulates the resulting feature vector
for each trace.

One-Hot. The one-hot encoding technique encodes categorical values in a binary
representation. For that, it first maps words into integers and, then, transforms
the generated integer values to a binary value. Like count2vec, the number of
dimensions linearly increases with the vocabulary size, with the tendency of
generating sparse features.

Tdidf. Term frequency-inverse document frequency (tdidf) is a traditional infor-
mation retrieval metric aimed at capturing the importance of a word in a doc-
ument given a collection of documents. The term frequency weights a term
occurrence proportionally to its frequency in a document. The inverse docu-
ment frequency quantifies the importance of a term as the inverse function of its
occurrence across a collection of documents.

Hash2vec. Tdidf creates a dictionary of words, which increases linearly to the
vocabulary size, often generating large and sparse representations. To overcome
this issue, the hash2vec maps a feature into an index (word) using a hash func-
tion. Then, word frequencies are computed based on previously mapped indices.
The technique allows a vector of a predetermined size, on the other hand, if a
small vector size is used, hash collisions, where different words are represented
by the same index, can take place [28].

Evaluating Trace Encoding Methods in Process Mining 179

3.3 Graph Embeddings

Graph embeddings emerged from the necessity of modeling more complex rela-
tions, such as entity links and long-term relations. Graphs are suitable for this
task due to their data representation format, enabling exploration of nodes and
edges. We applied two versions of node2vec: one encodes the nodes, while the
other encodes the edges.

Node2vec. Built on top of word2vec, node2vec aims at encoding graph data
while preserving neighborhoods and structures. The low-dimensional node rep-
resentations are based on second-order random walks that propose a trade-off
between breadth and width searches, exploring neighbors and neighborhoods.
The flexibility of node exploration allows for a richer representation of diverse
neighborhoods.

Edge2vec. Edge2vec captures the links (edges) that connect nodes. For our evalu-
ation, this behavior is interesting as process models can be represented as graphs.
This way, by grouping the edges representations, we can generate another encod-
ing using the same method.

4 Materials and Methods

This section presents the event logs, the experimental setup, and the quality
metrics used in our experimental analysis. Generated event logs and code for
experiments are publicly available1, following open-science principles.

4.1 Event Logs

Our experimental design implies relying on labeled data providing the ground
truth for the evaluation of the compared methods. We then generated synthetic
event logs following standard practices in PM research and injecting anomalies
to the generated traces. This way we achieved two goals. Traces are labeled
as anomalous or normal, making our data set suitable for supervised learning.
Heterogeneous behaviors are introduced in the event logs, making our data set
more realistic.

First, five different process models were generated using the PLG2 tool [5].
PLG2 performs a random generation of process models capable of representing
several business process behaviors such as sequential, parallel, and iterative con-
trol flows. For that, the tool combines traditional control-flow patterns [26], e.g.,
sequence, parallel split and synchronization. The patterns are progressively com-
bined, given a predetermined set of rules, to simulate real-world scenarios. The
five generated process models define five different base scenarios differing because
of the number of activities and gateways [9]. The next step was to simulate the
process model to generate the log. For that, we applied the Perform a simple

1 https://github.com/gbrltv/business process encoding.

https://github.com/gbrltv/business_process_encoding

180 S. Barbon Junior et al.

simulation of a (stochastic) Petri net ProM plug-in2. The number of simulated
cases was set to 1000, and the arrival rate of new cases was set to 30 min. The
other hyperparameters were unchanged. As a post-processing step, we injected
anomalies by perturbing regular traces. Injecting anomalies into event logs is a
common practice in the literature [1]. For that, we applied the anomalies pro-
posed by Nolle et al. [23]: 1. skip: a sequence of 3 or less necessary events is
skipped;2. insert: 3 or less random activities are inserted in the case;3. rework:
a sequence of 3 or less necessary events is executed twice;4. early: a sequence of
2 or fewer events executed too early, which is then skipped later in the case;5.
late: a sequence of 2 or fewer events executed too late.

The anomalies were applied in normal traces, replacing their occurrence.
Moreover, to analyze to which extent anomalies affect the encodings, we injected
different percentages of anomalies for each scenario: 5%, 10%, 15%, and 20%.
Given five scenarios (our base models), five anomalies, and four anomaly per-
centages, a total of 100 event logs were generated. To facilitate the interpreta-
tion of the logs, we added two additional attributes: label and description. Case
labels represent if a case belongs to a normal execution or one of the anomalous
types. Furthermore, the description is a natural language sentence describing the
anomaly and its impact on the case. Descriptive statistics about the generated
event logs are listed in Table 2. The different scenarios are of increasing com-
plexity, scenario 3 contains the longest traces and, consequently, logs composed
of more events.

Table 2. Event log statistics demonstrating different levels of complexity. 20 event logs
with 1k cases were generated for each scenario

Log name #gateways #events trace size #activities

scenario 1 8 10k–11k 9–13 22

scenario 2 12 26k 26–30 41

scenario 3 22 43k–44k 42–50 64

scenario 4 30 11k–13k 3–30 83

scenario 5 34 18k–19k 4–37 103

4.2 Trace Encoding

Since trace replay and alignment require a process model, we generated a model
using the Inductive Miner Directly Follows algorithm [18]. Process model and
encodings were extracted using the PM4Py library3. For word embeddings, we
used the Gensim4 library to compute word2vec and fasttext and the Scikit-learn

2 http://www.promtools.org/doku.php.
3 https://pm4py.fit.fraunhofer.de/.
4 https://radimrehurek.com/gensim/.

http://www.promtools.org/doku.php
https://pm4py.fit.fraunhofer.de/
https://radimrehurek.com/gensim/

Evaluating Trace Encoding Methods in Process Mining 181

library5 compute the remaining encodings. For the graph embeddings, a graph
model is expected as input. Thus, we generated a directly-follows graph using
the event log to capture node and edge frequency. The encodings were extracted
with the node2vec6 library. For all encoding methods, the recommended standard
hyperparameters were used.

4.3 Feature Vector Measures and Classification Algorithm

In our experiments, we computed F1, F2 and T4 measures using the ECoL
(Extended Complexity Library) R package, available at Github7 and CRAN8,
using standard hyperparameters. Although multiple PM tasks could exploit trace
encoding, we drove our evaluation using a binary classification task for anomaly
detection. This is a basic supervised approach that can be easily evaluated and
whose connections to other tasks are well known. We used the Random For-
est classification algorithm [4] following the Scikit-learn implementation with
standard parameters. The Random Forest was chosen due to its high predictive
performance and wide use in related papers. The traditional holdout method was
used to divide the data into train and test sets, with an 80%/20% proportion.
Each classification was performed 30 times to compute a mean accuracy value,
eliminating possible eccentric performances. Moreover, the meantime consump-
tion for the performed executions was computed.

5 Results and Discussion

This section presents the results obtained in evaluating the impact of the studied
encoding methods from several complementary perspectives.

5.1 Accuracy Performance

One of the main goals when choosing an encoding method is to support high
predictive performance. Figure 1 presents the accuracy results (along with their
standard deviation) aggregated over the event logs of all the scenarios presented
in Table 2. Trace replay and alignment methods obtained very similar results, an
average accuracy of 91.93% and 92.62%, respectively. The word embedding fam-
ily obtained average accuracy varying from 88.72% (one-hot) to 94.16% (tfidf),
with the latter being the best performing text-based encoding. The best perfor-
mances were achieved with methods of the graph embedding family. Node2vec
reached an average accuracy of 94.18% while edge2vec obtained 96.08%, the best
overall performance.

Trace replay and alignment methods rely on the comparison of an event
log to a model. Since the model is induced from the event log, anomalies may
5 https://scikit-learn.org/stable/.
6 https://github.com/eliorc/node2vec.
7 https://github.com/lpfgarcia/ECoL.
8 https://cran.r-project.org/package=ECoL.

https://scikit-learn.org/stable/
https://github.com/eliorc/node2vec
https://github.com/lpfgarcia/ECoL
https://cran.r-project.org/package=ECoL

182 S. Barbon Junior et al.

Fig. 1. Average accuracy obtained using all encoding methods across binary problems
related to anomaly detection (early, insert, late, rework and skip) affected by four
different levels of compromised samples (5%, 10%, 15% and 20%).

have been modeled as normal transitions. Ideally, a model could be constructed
from a filtered event log, without anomalies. However, in reality, often event
data is not labeled, and manually detecting anomalies is a resource-consuming
task. Nonetheless, these methods produce the most interpretable features, eas-
ily understandable by process stakeholders. This characteristic has gained more
attention in data mining research, as black-box models may not offer sufficient
basis for their choices. Overall, the trade-off between performance and inter-
pretability plays an important role when applying trace encodings.

Word embeddings present a wider range of performances. One-hot encoding
and count2vec appear with the worst results. Both methods are grounded in
word frequencies and fail to encode global information, such as accounting dif-
ferences between traces in the same log. Besides, the ordering of the traces is lost
by these methods. This way, counting frequencies demonstrate to be a shallow
method that does not meet business process modeling requirements. Word2vec
and fasttext, which are more recent advancements in text processing, capture
activities context by considering their neighborhood. These methods allow for a
better overall trace description and, consequently, higher accuracy values. More-
over, fasttext performs slightly better than word2vec, probably a result of its
consideration of n-grams when encoding a word. Hash2vec and tfidf are the best
performing methods within this family. Both methods propose a frequency anal-
ysis that also covers inter-trace behavior, i.e., global event log characteristics.
Even though these encodings do not consider the ordering, their performance
surpasses methods that capture context information. This implies that trace
context, i.e., activities neighborhood, from a text analysis perspective, is not so
determinant as a descriptor when compared to weighted frequencies. A possible

Evaluating Trace Encoding Methods in Process Mining 183

explanation for the inferior performance obtained by word2vec and fasttext is
that these methods require a rich corpus for training their models. According
to Table 2, the richest log, in the number of unique activities, only contains 103
words. This highly limits the capacity of capturing context information. In most
cases, the set of activities in a business process is considerably smaller than the
vocabulary of a document collection. This way, in the business process domain,
modern word embedding techniques are not necessarily the best. Finally, the
length of the event log also plays a role in this performance since a higher num-
ber of traces may increase the encoding quality of context-based methods.

The graph embedding family was the best performing for the classification
task. Node2vec and edge2vec are built on top of word2vec, thus, the goal is also
to capture context information. Further, the graph structure is capable of rep-
resenting many complex behaviors. Therefore, their performance overcomes all
other families. Within graph embeddings, edge2vec displays an accuracy con-
siderably higher than node2vec. This happens because node2vec is limited to
encode node (activity) behavior only. On the other hand, edge2vec encodes the
connections within activities and long-term relations are captured.

5.2 Time Usage

Time costs of an encoding method can directly influence its selection since costly
methods are prohibitive to real-life event logs with huge volume of data. In our
experiments, we considered the time consumed during the classification task.
Figure 2 presents the time variation among all methods. Trace replay and align-
ment obtained similar results, with trace replay (0.258 s) being the fastest and
most stable method. Graph embeddings were the most time-costly, with an aver-
age of 0.349 s. The edge2vec method, which uses edge information, was the slow-
est, spending an average of 0.391 s. Text-encoding family reveals to be faster,
except for the word2vec method that required an average of 0.341 s and resulted
the most unstable, obtaining the highest standard deviation (0.07 s).

Fig. 2. Average time required in the classification task for each trace encoding across
all scenarios.

184 S. Barbon Junior et al.

It is important to note that concerning the time dispensed to perform the
encoding procedure, our results confirmed what is well known in the literature.
However, due to space limits, we do not report these results in detail in this
paper. Trace replay and alignment are time costly, mainly alignment [13], fol-
lowed by graph embeddings [15]. The high cost of alignment is related to the
multi-step approximation required to find an optimal alignment. Moreover, the
alignment procedure has a computational complexity that grows exponentially
to the number of states and transitions, becoming impractical in most scenar-
ios. On the other hand, when dealing with graph embeddings representation,
node2vec generates random walks, which require several iterations (time perspec-
tive). Methods from the word embedding family, such as one-hot and fasttext
are less costly and can be employed in tasks focused on light-weight processing,
such as online PM [7].

5.3 Encoding Representativeness

The capacity to represent knowledge towards providing low ambiguity between
classes and reduce the inherent complexity to the problem guides a high-quality
encoding method. Moreover, this capacity is made by constructing a short and
highly informative feature vector. In our experiments, we measured the Maxi-
mum Fisher’s Discriminant Ratio (F1), the Volume of Overlapping Region (F2),
and the Ratio of the PCA dimensions to the original dimensions (T4).

Using F1, we can assess how informative the encoding methods are to sep-
arate the classes of the analyzed problems. Figure 3 presents a scatter plot of
the F1 values for all the encoding methods in the studied scenarios with the
average value indicated by the cross. The values that represent good quality are
the lower ones. From the F1 perspective, it is possible to observe trace replay,
node2vec, edge2vec and fasttext, as the methods with low overlapping of a single
feature in particular cases.

Fig. 3. Maximum Fisher’s Discriminant Ratio (F1) values, for the studied scenarios.
F1 measures the overlap in classes of the best-disjunct feature.

Evaluating Trace Encoding Methods in Process Mining 185

Fig. 4. Volume of Overlapping Region (F2) of the feature values distributions within
the problem classes. Low F2 values implies low overlapping.

Encoding quality comparison can be performed by observing the overlapping
of the feature values distribution produced by each encoding method. This evalu-
ation is supported by F2, where higher values refer to higher overlap between the
classes. As Fig. 4 shows, edge2vec achieved the lowest metric value, i.e., the most
disjoint representation. On the other hand, alignment and one-hot encodings
generated the most overlapping distributions.

Scenarios with high F1 and F2 values can lead to difficulties in choosing
a proper classification algorithm and even demanding hyperparameter tuning
to achieve accurate results in classification tasks. Conversely, low F1 and F2
values imply a broader set of algorithms and hyperparametrizations that can
discriminate the classes of the problem.

Some encoding methods depend on hyperparameters to determine their fea-
ture vector dimension. Using default values, we compared the relevance of dimen-
sions settled by each encoding method to describe most of the data variability
through T4. T4 takes advantage of the PCA projection of principal components
to identify the number of features capable of representing more than 95% of data
variability. The higher the T4 value, the more the encoded features are needed
to describe data variability, representing a concise problem description. Lower
values represent a waste of features to explain data variability (Fig. 5).

Table 3 shows the T4 values of all encoding methods obtained in the different
scenarios. Graph embeddings obtained the lowest T4 values. Node2vec obtained
0.02, delivering feature vectors capable of describing the data variability with
few samples. On the other hand, trace replay and alignment presented vectors of
dimension closer to the original samples. Several word embedding methods build
feature vectors with adaptive sizes to better represent the problem. Among them,
tfidf was able to obtain competitive results, reaching an average T4 of 0.21. In
some scenarios, tfidf was superior to both trace replay and alignment.

186 S. Barbon Junior et al.

Fig. 5. Ratio of the PCA dimension to the original dimension (T4) of all encoding
methods. High T4 means more original features are relevant.

Table 3. Encoding methods dimensionality and T4 values (mean and standard devi-
ation)

Encoding method T4 Dimensions

trace replay 0.18 (±0.04) 5

alignment 0.21 (±0.04) 5

word2vec 0.09 (±0.04) 100

fasttext 0.14 (±0.07) 50

count2vec 0.18 (±0.10) 22–103*

one-hot 0.17 (±0.10) 22–103*

tfidf 0.21 (±0.10) 22–103*

hash2vec 0.08 (±0.04) 128

node2vec 0.02 (±0.01) 128

edge2vec 0.03 (±0.03) 128
∗ encoding vector size is determined by the
vocabulary size

Complex scenarios, such as Scenarios 4 and 5, required higher dimensionality
in the feature space. When dealing with simple scenarios, e.g., Scenario 1, a small
number of features is required for all encoding methods. Thus, the demand for
dimensions, i.e., larger feature vectors, is strictly related to complex problems.

Evaluating Trace Encoding Methods in Process Mining 187

5.4 Encoding Ranking

Fig. 6. Ranking of each metric across all encoding methods. The rank ranges from 1
to 10, where the best-ranked position is 1 and the worst-ranked is 10.

Figure 6 presents a heatmap created by ranking each encoding method across
mean values of accuracy (Acc), time, F1, F2, and T4. For a concisely and
resource-friendly encoding method considering just the classification task, we
can take advantage of the trace replay and alignment methods. Regarding F1
and F2 metrics, the graph embeddings present high performance, mostly with
edge2vec being the best and second-best in F1 and F2, respectively. This perfor-
mance demonstrates a great encoding capability proposed in this method. More-
over, fasttext regularly ranks well in these two metrics, showing high informative
and quality encodings. Word2vec has the second-best F2 (low overlap between
features) while, at the same time, has the worst F1. This means that the encod-
ing does not produce a unique, highly descriptive feature, and it depends on the
conjunction of its created features to encode behavior. Trace replay being the
best F1 demonstrates its capability of proposing quality encodings.

We need to emphasize that word and graph embedding families can reduce
time considerably by performing a feature selection procedure. Also, count2vec,
tfidf and one-hot can dynamically adapt the feature vector and word2vec, fast-
text, hash2vec, node2vec and edge2vec have their feature vector size according
to user definition. This means parameters for controlling the trade-off between
computational time and accuracy are made available by most techniques. Addi-
tionally, the complexity of the encoding process needs to be considered. Encod-
ing generation is more time and resource-consuming than the classification task.
This way, methods such as alignment, which are known to be slow [13], have
their applicability hindered in most real situations. At the same time, medium

188 S. Barbon Junior et al.

performance methods, such as fasttext and hash2vec, demand less computational
resources. This way, a trade-off between all the presented perspectives must be
considered when choosing an encoding for business processes.

6 Conclusion

In this work, we compared ten trace encoding methods across 100 event logs
depicting several scenarios with different levels of complexity. We assessed encod-
ings in classification tasks towards collecting feature vector metrics such as over-
lapping (F1 and F2) and dimension (T4). Moreover, we considered accuracy
and time outcomes to support a general comparison. Overall, the experiments
show that encoding significantly contributes to the results of a classification algo-
rithm. Also, a good encoding method can improve a wide range of algorithms
without need of tuning. In fact, our experiments suggest that an improper trace
encoding can bring additional complexity, obtaining a suboptimal classification
performance. In future work, we expect to expand the encoding families, e.g.,
deep learning encoding approaches. Finally, it is important to study anomalies
with more attention and spot their effect on the metrics and performance of
different PM tasks.

References

1. Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces in logs of
process aware information systems. Inf. Syst. 38(1), 33–44 (2013)

2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

3. Bose, R.J.C., Van der Aalst, W.M.: Context aware trace clustering: towards
improving process mining results. In: Proceedings of the 2009 SIAM International
Conference on Data Mining, pp. 401–412 (2009)

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

5. Burattin, A.: PLG2: multiperspective processes randomization and simulation for
online and offline settings (2015)

6. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-319-99414-7

7. Ceravolo, P., Tavares, G.M., Junior, S.B., Damiani, E.: Evaluation goals for online
process mining: a concept drift perspective. IEEE Trans. Serv. Comput. 1 (2020).
https://ieeexplore.ieee.org/abstract/document/9124702

8. Ceravolo, P., Damiani, E., Torabi, M., Barbon, S.: Toward a new generation of log
pre-processing methods for process mining. In: Carmona, J., Engels, G., Kumar,
A. (eds.) BPM 2017. LNBIP, vol. 297, pp. 55–70. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65015-9 4

9. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput.
Stand. Interfaces 34(1), 124–134 (2012)

10. Cummins, L., Bridge, D.: On dataset complexity for case base maintenance. In:
Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS (LNAI), vol. 6880, pp. 47–61.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23291-6 6

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://ieeexplore.ieee.org/abstract/document/9124702
https://doi.org/10.1007/978-3-319-65015-9_4
https://doi.org/10.1007/978-3-319-65015-9_4
https://doi.org/10.1007/978-3-642-23291-6_6

Evaluating Trace Encoding Methods in Process Mining 189

11. De Koninck, P., vanden Broucke, S., De Weerdt, J.: act2vec, trace2vec, log2vec, and
model2vec: representation learning for business processes. In: Weske, M., Montali,
M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 305–321.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7 18

12. Delias, P., Doumpos, M., Grigoroudis, E., Matsatsinis, N.: A non-compensatory
approach for trace clustering. Int. Trans. Oper. Res. 26(5), 1828–1846 (2019)

13. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Conformance checking
approximation using subset selection and edit distance. In: Dustdar, S., Yu, E.,
Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 234–251.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3 15

14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

15. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

16. Hake, P., Zapp, M., Fettke, P., Loos, P.: Supporting business process modeling
using RNNs for label classification. In: Frasincar, F., Ittoo, A., Nguyen, L.M.,
Métais, E. (eds.) NLDB 2017. LNCS, vol. 10260, pp. 283–286. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59569-6 35

17. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems.
IEEE Trans. Pattern Anal. Mach. Intell. 24, 289–300 (2002)

18. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
with guarantees. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q.
(eds.) CAISE 2015. LNBIP, vol. 214, pp. 85–101. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19237-6 6

19. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business pro-
cesses. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015.
LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23063-4 21

20. Lorena, A.C., Garcia, L.P.F., Lehmann, J., Souto, M.C.P., Ho, T.K.: How complex
is your classification problem? A survey on measuring classification complexity.
ACM Comput. Surv. 52(5), 1–34 (2019)

21. Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781 (2013)

22. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Analyzing business process
anomalies using autoencoders. Mach. Learn. 107(11), 1875–1893 (2018). https://
doi.org/10.1007/s10994-018-5702-8

23. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: BINet: multi-perspective
business process anomaly classification. Inf. Syst. 101458 (2019). https://www.
sciencedirect.com/journal/information-systems/special-issue/10419P9FG88

24. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.D.: Time and activity sequence
prediction of business process instances. Computing 100(9), 1005–1031 (2018).
https://doi.org/10.1007/s00607-018-0593-x

25. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on mon-
itoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

26. Russell, N., ter Hofstede, A., van der Aalst, W., Mulyar, N.: Workflow control-flow
patterns: a revised view. BPM reports (2006)

27. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

28. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature
hashing for large scale multitask learning. In: Proceedings of the 26th Annual
International Conference on Machine Learning, ICML 2009, pp. 1113–1120. Asso-
ciation for Computing Machinery (2009)

https://doi.org/10.1007/978-3-319-98648-7_18
https://doi.org/10.1007/978-3-030-49435-3_15
https://doi.org/10.1007/978-3-319-59569-6_35
https://doi.org/10.1007/978-3-319-19237-6_6
https://doi.org/10.1007/978-3-319-19237-6_6
https://doi.org/10.1007/978-3-319-23063-4_21
https://doi.org/10.1007/978-3-319-23063-4_21
https://doi.org/10.1007/s10994-018-5702-8
https://doi.org/10.1007/s10994-018-5702-8
https://www.sciencedirect.com/journal/information-systems/special-issue/10419P9FG88
https://www.sciencedirect.com/journal/information-systems/special-issue/10419P9FG88
https://doi.org/10.1007/s00607-018-0593-x

Semantic Annotations in Clinical
Guidelines

Fahrurrozi Rahman(B) and Juliana Bowles

School of Computer Science, University of St Andrews,
St Andrews KY16 9SX, UK

{f27,jkfb}@st-andrews.ac.uk

Abstract. Clinical guidelines are evidence-based recommendations
developed to assist practitioners in their decisions on appropriate care
for patients with specific clinical circumstances. They provide succinct
instructions such as what drugs should be given or taken for a particular
condition, how long such treatment should be given, what tests should be
conducted, or other situational clinical circumstances for certain diseases.
However, as they are described in natural language, they are prone to
problems such as variability and ambiguity. In this paper, we propose an
approach to automatically infer the main components in clinical guideline
sentences. Knowing the key concepts in the sentences, we can then feed
them to model checkers to validate their correctness. We adapt semantic
role labelling approach to mark the key entities in our problem domain.
We also implement the technique used for Named-Entity Recognition
(NER) task and compare the results. The aim of our work is to build
a reasoning framework that combines the information gained from real
patient data and clinical practice, with clinical guidelines to give more
suitable personalised recommendations for treating patients.

Keywords: Therapy algorithms · Formal verification · Natural
language processing · Machine learning · Text tagging

1 Introduction

Recent studies have shown that over the next 20 years there will be an increased
expansion of morbidity, and particularly complex multimorbidity which occurs
when individuals have several concurrent chronic conditions [12]. One of the
challenges of treating patients with multimorbidity is that clinical guidelines are
generally focused on single disease. It is hence difficult to understand treatment
options, and their consequences in the long term, when patients have to follow
a considerable number of single disease oriented treatments simultaneously.

Furthermore, there are also several challenges inherent in clinical guidelines:
they are written mostly in natural language and hence prone to ambiguity; the
way they are presented may be very different from one guideline to another;
clinical practice varies and may at times deviate from clinical guidelines, and

c© Springer Nature Switzerland AG 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 190–205, 2021.
https://doi.org/10.1007/978-3-030-70650-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_12&domain=pdf
http://orcid.org/0000-0001-9093-8518
http://orcid.org/0000-0002-5918-9114
https://doi.org/10.1007/978-3-030-70650-0_12

Semantic Annotations in Clinical Guidelines 191

we need to take into account this variability. When there are multiple treatment
options available, we want to know how likely these options are followed in
practice.

We have built a framework to formalise the written text of a therapy algo-
rithm for lowering blood glucose for people with type 2 diabetes (T2D) in our
previous work [19]. The generated model is a network of timed automata, where
each transition represents the medication taken by the patient and the state is the
patient’s condition after getting such treatment and over time. The model also
takes into account how the value of HbA1c, i.e., the glycated haemoglobin that
is commonly measured to determine the average blood sugar levels for patients
with diabetes, may deteriorate over time, and force further intensifications in
the treatment. The advantage of a formalisation is that it enables us to detect
gaps or omissions in the textual algorithm, which can then be used to further
clarify treatment steps.

Although this approach is promising, it depends entirely on their own curated
controlled natural language (CNL) to design and hand-tune complex rules to
extract information from the therapy algorithm written in a natural language
string. This approach becomes problematic when recommendations are expressed
in very different ways as either the CNL needs to be refined or the recommenda-
tion sentences need to be adjusted to the CNL, which in most cases it involves
both. Expanding the breadth and complexity of the CNL also demands a lot of
human development work, linguistic knowledge as well as a deep understanding
in the specific domain. This rigid and unscalable approach is not suitable for the
long term goal: to process any clinical guidelines automatically.

In this paper, we propose a different approach to address this issue of captur-
ing the main concepts in clinical guideline sentences using semantic role labeling
and named-entity recognition. This approach will limit the human effort needed
to design the grammar for a CNL. The result can then be used for further lin-
guistic analysis in clinical guideline domain. It can also be utilised to check the
correctness of the guideline by transforming the main concepts in the guideline
into formal representations such as UPPAAL [2], PRISM [13], or Z3 [16].

The remainder of this paper is structured as follows. In Sect. 2 we discuss
related work that serve as the foundation of this paper. Section 3 describes
the framework of the system that we want to build. Section 4 explains the
semantic annotations covering the ontology concepts, the relationships between
each concept and named-entity recognition. The learning process, including the
syntactic and the semantic analysis as well as the features used and the learning
models are discussed in Sect. 5. The outcome of the experiments using several
learning models is discussed in Sect. 6. Finally, in Section 7, we draw some
conclusions on our research.

2 Related Work

Considerable research in modelling and formalising clinical guidelines has been
done over the past years. Pérez et al. [18] built a framework to enable author-

192 F. Rahman and J. Bowles

ing and verification of clinical guidelines. They use UML statecharts to repre-
sent the guidelines and provide a pattern-based approach to define commonly
occurring types of requirements in guidelines to ease the non-expert to write
formal specifications. The statecharts are transformed into process meta lan-
guage (PROMELA) and the specifications are translated into linear temporal
logic (LTL). The verification of the guideline model and its specification is then
performed using the SPIN model checker [10].

Bäumler et al. [1] also apply formal modelling and verification to improve
the quality of medical guidelines. To model the guidelines, they must be written
in Asbru language [21], a predefined language for guideline-application tasks.
With the properties formulated in the Action Computational Tree Logic (ACTL)
language, the model is then verified using the Cadence SMV model checker [14].

Another implementation of model checking to verify clinical guidelines is done
by Giordano et al. [7]. They use the GLARE language [22], a domain-independent
prototypical system for acquiring, representing and executing clinical guidelines.
With an XML intermediary layer which then is translated to PROMELA, the
model and its specification written in LTL are verified using the SPIN model
checker.

In software engineering, Carvalho et al. [4] have created a framework to
formally generate test cases from the written software requirements into several
formalisms using natural language processing (NLP) techniques. Written in a
controlled natural language, the requirements are transformed into data flow
reactive system (DFRS), where inputs and outputs are modelled as signals, with
timers to capture the time-based behaviour.

Another work by Diamantopoulos et al. [5] shows a system that automat-
ically maps software requirements into formal representations to detect prob-
lems hidden in the written texts at the early stage of development process.
The system is built upon ontology class hierarchies to represent the semantic
roles in the requirement texts. The hierarchies are built by training a semantic
role labelling system from software requirements project classes in Europe. The
inference process is done after the ontology is represented in the web ontology
language (OWL).

In this research, we modify our previous work [19] following the approach
used by Diamantopoulos et al. [5] and NER. Concretely, we will adapt the work
in [5] and NER to annotate the key concepts in guideline sentences domain so
it becomes less labour intensive, more scalable, and more general purpose.

3 The Framework

Figure 1 shows the whole framework in our research. We simplify our previous
work by adding the syntactic and semantic analysis module. Instead of manually
crafting a CNL, we use machine learning to achieve the goal.

Firstly, we provide the guideline sentences that we want to map into some for-
mal representations. Some guidelines would have an implicit orders on how ther-
apy should be given while others are orderless. Next, our syntactic and semantic

Semantic Annotations in Clinical Guidelines 193

Clinical guidelines Syntactic and
semantic analysis

Annotated
sentences

UPPAAL model

PRISM model

Z3 model

Fig. 1. The mapping of clinical guidelines framework

analysis module will mark the key concepts in the sentences. The learning process
for this module is further explained in Sect. 5.

The result of this process will be annotated sentences as illustrated in Fig. 2,
i.e., some words in the sentences are given semantic markers. Knowing these
semantic markers means that we can move on to transforming the guideline
into any further modelling approach we have in mind, for example, a formal
representation. We believe it would be beneficial to help the transformation
process from guidelines to UPPAAL models as done in [19].

All patients should have appropriate monitoring for clinically significant AEs
ActionActor Property Object

acts_on

has_propertyhas_actor

Fig. 2. Example of an annotated sentence

4 Semantic Annotations

4.1 A Hierarchy of Concepts

In order to build a learning model to mark the roles of a word or a phrase in a
sentence, we first need to define the classes of roles that we allow in our domain.
Following [5], we made several ontology concepts to represent the static aspects
of the guidelines. The design focuses on the concept of an actor doing some
action(s) on some object(s) with some properties. Figure 3 shows our current
ontology class hierarchy for our domain.

The ontology hiearchy in Fig. 3 states that every class is a Concept. They
are furthermore diversified into ThingType and OperationType. OperationType
refers to the operations performed by an actor to another entity, whereas
ThingType refers to any entity that can be an actor of an action, an object

194 F. Rahman and J. Bowles

Fig. 3. Ontology class hierarchy

that is acted upon, or a property that can further explain an action, an actor,
or an object.

The class OperationType covers all operations performed in the sentence,
either transitive or not. Its subclass is:

– Action denotes an operation performed on some Object by an Actor (if
exists). Different from [5], we also consider the ownership type as an Action.
E.g. “All patients should have appropriate monitoring for clinically significant
AEs.”

A ThingType can furthermore be classified as:

– Actor refers to the explicit performer of an Action. In many cases, the actor
is invisible from the guideline sentences. E.g. “All patients should have appro-
priate monitoring for clinically significant AEs.”

– Object denotes the entity that an Action is performed on. E.g. “All patients
should have appropriate monitoring for clinically significant AEs.”

– Property describes all modifiers of an Action, an Actor, or an Object. E.g.
“All patients should have appropriate monitoring for clinically significant
AEs.”

Although our ontology classes can still be further diversified into lower sub-
classes as in [5], we find that they are not needed and too complex for our
problem at the moment.

4.2 Relationship Between Classes

When designing the concept classes, we also need to introduce the relationship
between them. This relationship defines the allowed interactions between one
concept to another, and possibly from different level of concept. Table 1 shows
the set of relationship between classes and concept in general.

acts on defines that an Action is performed on either an Object or a
Property. The inverse relation is receives action that connects an Object
or a Property to an Action. From here, we can say that monitoring
receives action from have.

Semantic Annotations in Clinical Guidelines 195

The performer of an Action is defined by the has actor relation to an Actor.
Likewise, the Actor of an Action is defined by the is actor of relation. E.g.
have has actor patients.

The last two relations can cover the whole ThingType concept as their partic-
ipants. This is because a Property can be used to modify an Actor, an Object,
or a Property itself. Hence, we set the rule that any ThingType can have the
has property to a Property or a Property is connected to any ThingType by
the is property of relation. E.g. monitoring has property appropriate.

Table 1. Relationship between classes

Concept class Relationship Concept class

Action acts on Object, Property

Object, Property receives action Action

Action has actor Actor

Actor is actor of Action

ThingType has property Property

Property is property of ThingType

As each pair of the relations is an inverse of themselves, we will only use three
of them in our end system, namely: acts on, has actor, and has property.

4.3 Named-Entity Recognition

We also investigate a different approach to mark the important part of the
sentence using named-entity recognition (NER) technique. NER is a task in
NLP to detect the entity in the text that can be referred to with a proper name
such as a person, a location, an organisation, or even things that are not proper
entities such as dates, times, or prices [11].

In NER, the entities are usually marked using IOB format. The beginning of
an entity type is marked with B-prefix tag, and I-prefix tag marks every token
inside an entity type. An O tag is used for tokens that do not belong to any
entity. Figure 4 shows a sentence marked with IOB format.

All patients should have appropriate monitoring for clinically significant AEs
B-actionB-actor B-property B-object

Fig. 4. A sentence marked with IOB format

We use the same ontology concepts for NER in IOB format. We consider
four entities, i.e., Action, Actor, Object, and Property (as shown in Fig. 3).

196 F. Rahman and J. Bowles

As there are two tags for each entity, i.e. the B-tag and the I-tag, our label set
size becomes 9 (from 2n + 1 where n is the number of entities) namely B-action,
I-action, B-actor, I-actor, B-object, I-object, B-property, I-property,
and O. In reality, we only use 7 tags, namely B-action, B-actor, B-object,
I-object, B-property, I-property, and O as we do not have instances for
either I-action or I-actor.

5 Learning

5.1 Syntactic Analysis of Guideline Sentences

In this section, we will use the following common terminology. Part-of-speech
(POS) is a category of words that have similar grammatical properties. Noun
(e.g., noun NN or plural noun NNS), verb (VB), adjective (JJ), determiner (DT),
adverb (RB), and punctuation (PUNCT) are some common POS in English
language. The complete POS tags set that we use and their description can be
found on Penn Treebank POS Tags1.

A lemma is a word that can be inflected into several forms. E.g. eat as a verb
is the lemma for eat, eats, eating, ate, and eaten.

All patients should have appropriate monitoring for clinically significant AEs .

DT NNS MD VB JJ NN IN RB NNSJJ PUNCT
nmod

sbj vc nmod

obj
adv

punct

pmod

amod nmod

Fig. 5. An example of dependency tree

In order to build the features for the learning model which will be explained
further in the next section, we need to perform syntactic analysis tasks on the
sentences. These tasks are encapsulated as a pipeline which consists of several
steps, namely:

– tokenisation that splits every component in the sentence into a single token. In
All patients should have appropriate monitoring for clinically significant AEs.,
there will be ten tokens: All, patients, should, have, appropriate, monitoring,
for, clinically, significant, AEs, and ..

– POS tagging that marks up the words corresponding to a particular part of
speech. Following the previous example, the POS tags are as follow: All/DT,
patients/NNS, should/MD, have/VB, appropriate/JJ, monitoring/NN,
for/IN, clinically/RB, significant/JJ, AEs/NNS, ./PUNCT.

– lemmatisation which groups the same uninflected base form of each word
into the same cluster. Using the previous example, the lemmas are as follow:
All/all, patients/patient, should/should, have/have, appropriate/appropriate,
monitoring/monitor, for/for, clinically/clinically, significant/significant,
AEs/aes, ./..

1 https://www.ling.upenn.edu/courses/Fall 2003/ling001/penn treebank pos.html.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Semantic Annotations in Clinical Guidelines 197

– dependency parsing which parses the sentence based on the dependency rela-
tion of the words, i.e. every word is connected to each other by a direct link.
Figure 5 shows the dependency parse tree for the sentence All patients should
have appropriate monitoring for clinically significant AEs.. The dependency
relationship marks the link between two words. For example, the link connect-
ing monitoring to appropriate is marked by the relation nmod, or 〈nmod〉 →
〈monitoring, appropriate〉, which means that appropriate is a noun modifier
for monitoring.

We follow the approach used in [5] to utilise the Mate Tools2 [3] to perform the
steps in the syntactic analysis. This tool has achieved state of the art performance
on the shared task for syntactic analysis [8] so we can incorporate it in our
system.

5.2 Semantic Analysis of Guideline Sentences

Similar to the syntactic analysis, we adapt the approach done in [5] into our
semantic analysis. This step is analogous to the semantic role labelling pipeline
in [3], namely the predicate identification, predicate disambiguation, argument
identification, and argument classification. In relation to our problem domain,
each of these steps in the pipeline deals with one particular task as follows:

1. identifying words that are either Action or Object, which corresponds to the
predicate identification. The reasoning behind choosing these two concepts
is because they govern the relationship to other ontology concepts in the
hierarchy. For example, by knowing if a word is an Action or an Object, we
can further find the rest of the concepts through the relationships acts on,
has actor, and has property.

2. classifying words identified in step 1 to their correct concept, similar to the
predicate disambiguation. For every verb and noun that can be either an
Action or an Object, this step classifies them into the actual ontology con-
cept, e.g. have/Action, monitoring/Object.

3. identifying words that are related to the instances in step 1, which corresponds
to the argument identification. The instances that we are looking for in this
step are the Actor of an Action and the Property related to any TypeThing
concept. For example, this step will recognise patients as an Actor and appro-
priate as a Property.

4. classifying the relationship holds between a pair of instances from step 1 and
step 3, which corresponds to the argument classification. The input of this
step is a pair of words and its corresponding pair of concepts such as 〈patients,
have〉 → 〈Actor, Action〉 and 〈have, monitoring〉 → 〈Action, Object〉.

2 http://code.google.com/p/mate-tools/.

http://code.google.com/p/mate-tools/

198 F. Rahman and J. Bowles

Table 2. Feature sets and their usage

Action and Object Related concepts

Identification Classification Identification Classification

word form • • • •
word lemmata • — — —

word POS • — • •
dependency relation • — • •
parent POS • • — —

child words • — — —

child POS • — — —

dependency words — — • •
position — — • •
word embedding • • • •

5.3 Features

In order to do the semantic analysis, we build one learning model for every step
in the pipeline. This means we need to have a set of features for every learning
model as it is more likely that one set of features for a task will not perform
as well as when it is used for a different task. We based our feature sets on the
intersection between the approach used by [5] and [6] for semantic role labeling
task.

Most of the basic features have been implemented by Mate Tools as explained
in Sect. 5.1. Furthermore, our additional features can be derived from the ones
that have been provided. These features are as follow:

1. affected word form, which is the original word in the sentence
2. affected word lemmata taken from the lemmatisation step in syntactic anal-

ysis
3. affected word part-of-speech taken from the part-of-speech tagging in syn-

tactic analysis
4. relation to parent, which is taken from the relation of dependency parsing

in syntactic analysis
5. parent part-of-speech. The parent word can be derived from the dependency

parsing in syntactic analysis
6. child words, the same with affected word form but for all children of current

word. This is derived from the dependency parsing in syntactic analysis
7. child part-of-speech, the same with parent part-of-speech but for all children

of current word
8. dependency between words, i.e. the words in dependency relations between

the action and its object, the action and its actor, or the property and its
action/actor/object.

9. position of affected words, e.g. before or after the predicate

Semantic Annotations in Clinical Guidelines 199

10. word vector representation, which is the word embedding or the numerical
representation for every word

Vectorising categorical features into numerical will inevitably generate a very
sparse feature matrix. To compensate this phenomenon, we add the last feature
10 which is a dense feature matrix in nature. This feature is also used to add
more generalisation to other features, for instance the POS features, which are
specifically important for the semantic analysis task. Slightly different from the
approach used in [5], we utilise the GloVe 6 billion tokens3 [17] and the fastText
16 billion tokens4 [15] as our word vector representation.

Table 2 shows the features and their usage in each semantic analysis steps.

5.4 Learning Algorithm

To get the best learning model for our semantic analysis steps, we run our
dataset against several classifiers. To achieve this, we annotate our guideline
sentences following the ontology concepts needed for each particular step. For
example, in the first and second step, we only annotated words in the sentences
as either Action or Object. Then we give the label for those words as either
1 (for potential Action or Object) or 0 (for others). For the second step, the
classifier will learn to distinguish the words recognised in step 1 as either 1 (for
Action) or 0 (for Object).

After comparing several classifiers, we choose perceptron [20] as our learning
algorithm as it shows the best result compared to the rests, e.g. decision tree,
and random forests. We use the free perceptron library from scikit-learn. In
perceptron, during the training step, for every input xj and the expected output
yj in the training set, the algorithm will calculate the output ŷj(t) using the
weight matrix w(t) and activation (also called step) function f as in Eq. (1). In
every iteration, the weight matrix is updated following Eq. (2) where wi is the
weight for feature i, xj,i is the ith feature value of jth training data, and η is
the learning rate.

ŷj(t) = f [w(t) · xj] (1)

wi(t + 1) = wi(t) + η · (ŷj − yj(t))xj,i (2)

The learning process will stop until it reaches a converging point, i.e. the
value of |ŷj − yj | ≤ ε where ε is a very small threshold value. Otherwise, it will
stop until it passes the maximum number of learning iteration.

5.5 Long Short-Term Memory for NER

For our NER approach, we built a neural network learning model using long
short-term memory (LSTM) [9]. LSTM is an architecture in recurrent neural
3 https://nlp.stanford.edu/projects/glove/.
4 https://fasttext.cc/docs/en/english-vectors.html.

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html

200 F. Rahman and J. Bowles

network (RNN). RNNs are commonly used to analyse sequence and time series
data. However, unlike RNNs, LSTMs can also capture long-term dependencies in
the data. This is due to an LSTM unit/cell is made up of an input gate, output
gate, and forget gate that make an LSTM cell can learn an important input,
keep it as long as it is deemed important, and extract it when it is required.

Figure 6 illustrates our NER model using LSTM for the first 4 words in
the sentence “All patients should have appropriate monitoring for clinically sig-
nificant AEs.” Although Fig. 6 shows that the input is represented by word
embeddings and part-of-speech features, we also ran many experiments using
the combination of all possible feature sets in Table 2. We also conducted exper-
iments to see the effect of using different embedding dimensions.

POS GloVe

All

LSTM 1

O

GloVe

patients

B-actor

P
O

S
+

 w
or

d
em

be
d

d
in

gs

GloVe

should

O

B
id

ir
ec

ti
on

al
 L

ST
M

C
on

ca
te

n
at

io
n

D
en

se
20

0
 u

n
it

s
D

en
se

10
0

 u
n

it
s

D
en

se
7

u
n

it
s

GloVe

have

B-action

POS POS POS

LSTM 2

LSTM 1

LSTM 2

LSTM 1

LSTM 2

LSTM 1

LSTM 2

LSTM 1

LSTM 2

LSTM 1

LSTM 2

LSTM 1

LSTM 2

LSTM 1

LSTM 2

Fig. 6. Named-entity recognition using LSTM

For every word token and its part-of-speech in the sentence, we use bidi-
rectional LSTM with 128 units to recognise the pattern in both forward and
backward directions. The outputs of the LSTM layers are merged in the next
layer. We added two subsequent dense layers with 200 and 100 units respec-
tively. These additional layers added the depth of our model to learn better

Semantic Annotations in Clinical Guidelines 201

from the inputs. Finally, the output layer contains 7 units for each label in our
data domain as described in Sect. 4.3.

6 Evaluation

6.1 Dataset Analysis

Our dataset has a total of 379 sentences, 216 of them are taken from The
National Institute for Health and Care Excellence (NICE)5, 98 are from The
Scottish Intercollegiate Guidelines Network (SIGN)6, and 65 are from Annals of
the Rheumatic Diseases (ARD)7. These sentences are gathered from guidelines
for various diseases to capture the nature of the sentences in a clinical guideline
setting. Overall there are 7967 tokens and 1414 types, i.e. one sentence would
have 21 words in average. The shortest sentence has 9 words in it whereas the
longest has 66.

The annotation of the dataset was performed by a single annotator to mark
the ontology of concepts on words following the hierarchy in Fig. 3. Some diffi-
culties became evident when dealing with an Actor or an Object as well as a
Property. For example, the annotator sometimes mixed up tagging a word as
an Actor in a passive sentence where it should be an Object, and vice versa.
Determining if there is a Property in a phrase can also be challenging. For
example, in the phrase adjuvant therapy, the annotator initially marked both
words as Objects. On a further examination, it was then revised so that now
adjuvant is the Property of the Object therapy. We believe that it also becomes
more difficult if we want to have a more fine-grained concepts in our annota-
tions. Although all considerations have been taken into account, we may not be
surprised if there are still several inconsistencies and/or ambiguities in our final
dataset.

Table 3. Counts of instances of concepts and relations

Concept Instances Relations Instances

Action 630

Actor 261 has actor 128

Object 691 acts on 676

Property 825 has property 823

Total 2407 Total 1627

Table 3 shows the counts of instances of concepts and relations. It should
be noted that there are many actions without explicit actors in our dataset.
5 https://www.nice.org.uk/.
6 https://www.sign.ac.uk/.
7 https://ard.bmj.com/.

https://www.nice.org.uk/
https://www.sign.ac.uk/
https://ard.bmj.com/

202 F. Rahman and J. Bowles

Furthermore, some actors do not involve in any action, i.e. they just have some
properties to modify them. As for our NER approach, the counts of named-entity
instances can be seen in Table 4.

Table 4. Counts of named-entity instances

IOB tag Instances

O 3785

B-action 472

B-actor 281

B-object 1507

I-object 769

B-property 928

I-property 225

Total 7967

6.2 Experiments

After finalising our dataset, we ran several machine learning classifier algorithms
to evaluate the performance of our semantic annotations approach as we briefly
mentioned in Sect. 5.4. We use the common evaluation metrics precision and
recall. Precision is defined as the percentage of predicted instances that are
correct whereas recall is defined as the percentage of correct instances that are
predicted by the model. It is also often that we combine precision and recall into
a single metric called F1-score, particularly to simplify the comparison between
several classifiers. The F1-score is computed as the harmonic mean of precision
and recall (Table 5).

Table 5. Evaluation F1-score values for several classifiers

Classifier Precision Recall F1-score

Decision tree 0.745 0.512 0.603

Random forest 0.792 0.488 0.604

Perceptron 0.603 0.678 0.638

GloVe 300 + POS 0.854 0.881 0.867

GloVe 200 + POS & lemma 0.855 0.879 0.867

GloVe 300 + POS & parent 0.846 0.888 0.866

Wiki 300 + POS & dependency 0.853 0.876 0.864

Wiki 300 + POS & parent & dependency 0.856 0.872 0.864

Semantic Annotations in Clinical Guidelines 203

Table 6. Evaluation F1-score values for several relation classification

Classifier F1-score

300d 300/200/100/100 0.885

100d 100/100/100 0.881

100d 100/100/100 0.877

Table 6 shows the performance of several classifiers for our semantic anno-
tation approach. For each classifier, we perform evaluation using tenfold cross-
validation setting, i.e. in every fold, there will be ten equal portions of data where
one portion out of ten will be used as testing. We can see variations of trend
for each performance metric. Random forests has the best performance (79%)
for correctly predicting the concepts and relations in the sentences, i.e. 4 out of
5 annotations are correct. Meanwhile, perceptron is the best for predicting all
correct concepts and relations (67%), roughly 7 out of 10 correct annotations
can be predicted. Using the F1-score, the best one is achieved by perceptron
(64%) with mean 0.97 and ±0.007 standard deviation.

Table 6 also shows some experiments of NER using LSTM for our domain.
Here, we only show 5 experiments although in reality we ran many more to get
the best result. We tried using every possible combinations of features in Table 2.
We also investigated the effect of using pre-trained word embeddings with vary-
ing dimension size. We found the best F1-score of 87% using the combination of
POS feature and GloVe embeddings of size 300.

As we adapted the approach done by [5], it would be interesting to see how
our performance would be if we run it against their dataset. It will also answer the
question on how much the domain used to build the model affects its performance
when used in a different one. This was outside the scope of the present paper,
but will be explored in future work.

7 Conclusion

In this paper, we presented our work to annotate semantic information in guide-
line sentences. We began by collecting guideline sentences from the English,
Scottish, and European guideline corpora. These sentences serve as the prelim-
inary dataset for applying linguistic analysis in the domain. Although we only
have 379 sentences in our dataset, we have done around 4000 annotations for
the concepts we are interested in.

Following the approach in [5], we annotated the dataset using a hierarchy of
concepts. We adapted their ontology concepts using only concepts that we found
useful for our problem at present. We also conducted a named-entity recognition
task using the same ontology concepts to compare the results. Furthermore, the
more fine-grained concepts we want to apply, the more challenging it becomes.
As our current development only has one annotator for the whole dataset, to

204 F. Rahman and J. Bowles

increase the accuracy of our annotation we should consider adding one or more
annotators in the future.

The main aim for this work is to help people retrieve the key information in
clinical guidelines. As shown in [19], we built a system to do formal verification
of a therapy algorithm for type 2 diabetes. As guidelines are expressed in natural
language, they are prone to ambiguity, incompleteness, and inconsistency. We
expect that our work will help further the development of clearer and better
clinical guidelines.

In future work, our aim is to build a framework that integrates the whole
process defined in [19]. It means that we will also add functionalities to produce
some formal models from the annotated guideline sentences. We need to further
assess the performance of our approach when compared to different datasets.
Finally, we also plan to build a user interface to help the annotation process and
to visualise the annotation result.

References

1. Bäumler, S., Balser, M., Dunets, A., Reif, W., Schmitt, J.: Verification of medical
guidelines by model checking – a case study. In: Valmari, A. (ed.) SPIN 2006.
LNCS, vol. 3925, pp. 219–233. Springer, Heidelberg (2006). https://doi.org/10.
1007/11691617 13

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

3. Björkelund, A., Hafdell, L., Nugues, P.: Multilingual semantic role labeling. In:
Proceedings of the Thirteenth Conference on Computational Natural Language
Learning (CoNLL 2009): Shared Task, pp. 43–48. Association for Computational
Linguistics, Boulder (June 2009). https://www.aclweb.org/anthology/W09-1206

4. Carvalho, G., Carvalho, A., Rocha, E., Cavalcanti, A., Sampaio, A.: A formal model
for natural-language timed requirements of reactive systems. In: Merz, S., Pang, J.
(eds.) ICFEM 2014. LNCS, vol. 8829, pp. 43–58. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11737-9 4

5. Diamantopoulos, T., Roth, M., Symeonidis, A., Klein, E.: Software requirements as
an application domain for natural language processing. Lang. Resour. Eval. 51(2),
495–524 (2017). https://doi.org/10.1007/s10579-017-9381-z

6. Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Comput. Linguist.
28(3), 245–288 (2002). https://doi.org/10.1162/089120102760275983

7. Giordano, L., Terenziani, P., Bottrighi, A., Montani, S., Donzella, L.: Model check-
ing for clinical guidelines: an agent-based approach. In: AMIA Annual Symposium,
pp. 289–93 (2006)

8. Hajic, J., et al.: The CoNLL-2009 shared task: syntactic and semantic dependencies
in multiple languages. In: Proceedings of the Thirteenth Conference on Computa-
tional Natural Language Learning (CoNLL 2009): Shared Task, pp. 1–18 (2009)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

10. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Boston (2003)

https://doi.org/10.1007/11691617_13
https://doi.org/10.1007/11691617_13
https://doi.org/10.1007/978-3-540-30080-9_7
https://www.aclweb.org/anthology/W09-1206
https://doi.org/10.1007/978-3-319-11737-9_4
https://doi.org/10.1007/978-3-319-11737-9_4
https://doi.org/10.1007/s10579-017-9381-z
https://doi.org/10.1162/089120102760275983
https://doi.org/10.1162/neco.1997.9.8.1735

Semantic Annotations in Clinical Guidelines 205

11. Jurafsky, D., Martin, J.H.: Speech and Language Processing : An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Pearson Prentice Hall, Upper Saddle River (2009)

12. Kingston, A., Robinson, L., Booth, H., Knapp, M., Jagger, C.: Projections of
multi-morbidity in the older population in England to 2035: estimates from the
population ageing and care simulation (PACSim) model. Age Ageing 47, 374–380
(2018)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

14. McMillan, K.L., Qadeer, S., Saxe, J.B.: Induction in compositional model checking.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 312–327.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 25

15. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-
training distributed word representations. In: Proceedings of the International Con-
ference on Language Resources and Evaluation (LREC 2018) (2018)

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

17. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543 (2014). http://www.aclweb.org/anthology/D14-1162

18. Pérez, B., Porres, I.: Authoring and verification of clinical guidelines: a model
driven approach. J. Biomed. Inform. 43(4), 520–536 (2010). https://doi.org/10.
1016/j.jbi.2010.02.009

19. Rahman, F., Bowles, J.K.F.: Formal verification of CNL health recommendations.
In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 357–371.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1 24

20. Rosenblatt, F.: The perceptron—a perceiving and recognizing automaton. Tech.
rep. 85–460-1, Cornell Aeronautical Laboratory (1957)

21. Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project: a task-specific framework
for the application and critiquing of time-oriented clinical guidelines. Artif. Intell.
Med. 14(1), 29–51 (1998). https://doi.org/10.1016/S0933-3657(98)00015-3

22. Terenziani, P., Molino, G., Torchio, M.: A modular approach for representing and
executing clinical guidelines. Artif. Intell. Med. 23(3), 249–276 (2001). https://doi.
org/10.1016/S0933-3657(01)00087-2

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/10722167_25
https://doi.org/10.1007/978-3-540-78800-3_24
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1016/j.jbi.2010.02.009
https://doi.org/10.1016/j.jbi.2010.02.009
https://doi.org/10.1007/978-3-319-66845-1_24
https://doi.org/10.1016/S0933-3657(98)00015-3
https://doi.org/10.1016/S0933-3657(01)00087-2
https://doi.org/10.1016/S0933-3657(01)00087-2

Deriving Performance Measures
of Workflow in Radiation Therapy

from Real-Time Data

Reshma Munbodh1,2(B) , Kara L. Leonard1,2,3, and Eric E. Klein1,2

1 Department of Radiation Oncology,
Alpert Medical School of Brown University, Providence, RI, USA

reshma munbodh@brown.edu
2 Department of Radiation Oncology,

Rhode Island Hospital, Providence, RI, USA
3 Department of Radiation Oncology, Tufts Medical Center,

Tufts University School of Medicine, Boston, MA, USA

Abstract. Radiation treatment planning is a complex process with mul-
tiple, dependent steps involving an interdisciplinary patient care team.
We have previously implemented an interactive, web-based dashboard,
which requires a standardised radiation treatment planning workflow
and provides real-time monitoring and visualization of the workflow. We
present this framework and the results of performance measures char-
acterising the standardised workflow in an effort to optimize clinical
efficiency and patient safety. Quantitative representations of longitudi-
nal progression of carepath activities were computed from staff-reported
timestamps queried from the EMR. Performance measures evaluated
included staff compliance in completing assigned tasks, timeliness in task
completion, and the time to complete different tasks. The framework
developed allows for informed, data-driven decisions regarding clinical
workflow management and the impact of changes on existing workflow
as we seek to optimize clinical efficiency and safety, and incorporate new
interventions into clinical practice.

Keywords: Workflow tracking · Performance evaluation · Cancer

1 Introduction

Approximately 50% of patients diagnosed with cancer receive radiation therapy.
Radiation therapy is a complex process involving multiple, dependent stages
whereby an interdisciplinary care team collaborates to create and deliver a
personalised radiation treatment plan. Patient safety and clinical efficiency are
important during this process [2].

The radiation therapy workflow, illustrated in Fig. 1, consists of acquiring
a CT scan of the patient from which a highly conformal, three-dimensional,
radiation treatment plan is created to deliver a physician-prescribed dose to the
c© Springer Nature Switzerland AG 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 206–216, 2021.
https://doi.org/10.1007/978-3-030-70650-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_13&domain=pdf
http://orcid.org/0000-0002-7982-7814
https://doi.org/10.1007/978-3-030-70650-0_13

Deriving Performance Measures of Workflow in Radiation Therapy 207

tumour while also sparing surrounding healthy tissue. After creation and quality
assurance of the radiation plan and prior to treatment, a simulation of the treat-
ment is performed to verify safe delivery of the plan to the patient. Treatment
delivery is usually performed under image guidance. Following treatment, the
images acquired and delivered dose are reviewed in the electronic medical record
(EMR) system to verify that the prescription was fulfilled.

The focus of this study is on the radiation treatment planning (RTP) stage,
which is perhaps the most complex process, in the radiation therapy workflow.
It is also the stage where radiation treatment errors are most likely to originate
[4]. Effective communication among staff [1], adequate staffing levels and the
ability to optimise the distribution of work among resources along with process
automation [6] are key to ensuring patient safety, clinical efficiency and timely
treatment starts. However, a lack of standardisation in clinical practice, inherent
limitations in the EMR to display consolidated information that effectively com-
municates progress in the creation of patients’ treatment plans to the care team
[7], the need for specialised skills to extract information from the EMR, and a
consequent lack of quantitative performance measures of workflow in radiation
oncology are all challenges towards achieving these goals.

Electronic whiteboards [10] and carepath management systems [5] have been
shown to improve communication and task management in radiation oncology.
In an effort to improve communication and the tracking of resource utilisation,
we have previously implemented an interactive, web-based dashboard to track
clinical workflow [9]. The dashboard integrates with the departmental EMR, and
provides real-time monitoring and visualization of the RTP workflow. It consists
of several tabs unified by date, physician name, treatment type and treatment
location, and monitors utilisation of the linear accelerators, patient appointment
status as well as the status of tasks associated with the creation of a patient’s
treatment plan for several patients simultaneously. As well as providing a con-
solidated overview of progress in the creation of a patient’s radiation treatment
plan, the dashboard implements a standardized, integrated framework to analyze
data acquired in real-time for quantitative clinical workflow evaluation.

In this study, we derive important quantitative performance measures, which
describe the RTP workflow, from these data in an effort to understand how
different activities unfold over time. We also estimate the efficiency of clinical
practices and processes. The performance measures are calculated from data
automatically queried from the EMR, and which provide the status, start and
completion times of various tasks completed by the patient’s care team during
treatment planning. The measures obtained will contribute towards the imple-
mentation of informed, data-driven decisions on clinical workflow management

Fig. 1. Radiation therapy clinicalworkflow.The five stages in the radiation therapy
clinical workflow. In this article, we focus on the radiation treatment planning stage

208 R. Munbodh et al.

and the development of process models for resource allocation with the long-term
aim of improving radiation treatment safety and efficacy.

2 Methods

In this section, we describe a standardised model of the radiation treatment
planning workflow, the implementation of a process to acquire data that tracks
workflow in real-time, and the performance measures computed from these real-
time data.

2.1 Standardised Model of the RTP Workflow

Process maps and flowcharts were created to model the RTP workflow. These
described:

– Tasks representing standardised carepath activities associated with creation
of a patient’s radiation treatment plan from the time of CT simulation to
treatment

– Task timeline and sequence
– Task ownership
– Staff interaction.

We considered patients treated with either of two treatment modalities,
namely, three-dimensional (3D) conformal radiation therapy and intensity mod-
ulated radiation therapy (IMRT).

A simplified process map of the RTP workflow is shown in Fig. 2.

Start

CT simula�on CT import Image
registra�on MD contour

Planning
(3D/IMRT)MD reviewMD approvalIni�ate physics

review

Treat pa�ent

Are plan revisions required?

Perform plan
revisions

End

No

Yes

Perform plan
revisions

Are plan revisions required?
No

Is IMRT QA required

Physics reviewYes IMRT QA

Did IMRT QA pass

Yes

Yes

No

No

Fig. 2. RTP workflow. Standardised carepath activities associated with the creation
of a patient-specific radiation treatment plan are shown. Tracked activities are in grey.

Deriving Performance Measures of Workflow in Radiation Therapy 209

Radiation treatment planning starts with the acquisition of a CT scan of
the patient during a process known as CT simulation. After CT simulation, the
CT is imported into the treatment planning system (TPS) by a dosimetrist who
then registers the CT to other images of the patient, if present. Afterwards,
a physician contours the tumour and organs at risk and positions the radia-
tion beams on the CT. The dosimetrist subsequently calculates a personalised
radiation treatment plan using the CT, contoured anatomical structures and
radiation beams. The plan is designed to deliver a physician-prescribed dose
to the tumor while minimising irradiation of the organs at risk. After the plan
has been calculated, it undergoes quality assurance in the form peer review by
physicians and medical physicists. Peer review consists of a physician review,
physician approval, IMRT QA, if applicable, and finally, a physics chart review
by a medical physicist before the calculated radiation treatment plan is finally
being approved for treatment. The planned treatment is then delivered to the
patient. Tracked carepath activities during the RTP workflow are shaded in grey.

A description of the tasks created in the EMR to track the carepath activities,
the staff responsible for completing the tasks, that is, the owners of the tasks,
and the ideal timeline, τ , associated with completion of the tasks are listed in
Table 1. An ideal timeline of 6 days from CT simulation to completion of the
physics chart review was formulated. The number of days is counted post CT-
acquisition, with zero being at the end of the day on which the CT was acquired.
The tasks in Table 1 are listed in the sequence of completion during the RTP
process. The granularity of the ideal timeline is limited at one day by the EMR.
This led to sequential tasks having parallel timelines in the EMR.

Table 1. RTP tasks. The table lists, in sequential order, carepath activity tasks,
task owner and ideal timeline, τ , for completing the task in terms of number of days
following the CT simulation.

i Task Owner τ (days) Description

1 CT Import Dosimetrist 0 CT import into TPS

2 Image Reg Dosimetrist 0 Registration of CT to other images

3 MD Contour Physician 1 Contouring of anatomy on CT and
radiation beam placement

4 Planning Dosimetrist 3 Calculation of 3D or IMRT treatment
plan

5 MD Review Physician 5 Review of calculated plan

6 MD Approval Physician 5 Approval of calculated plan

7 IMRT QA Medical physicist 5 Patient specific quality assurance

8 Physics Review Medical physicist 6 Final review and approval of radiation
plan for treatment

210 R. Munbodh et al.

2.2 Real-Time Tracking and Display of RTP Workflow

The status of tasks comprised in a patient’s treatment plan was recorded in the
EMR by the task owner, and displayed in real-time on a web-based dashboard.

2.3 Performance Measures of RTP Workflow

The standardised RTP workflow was designed to provide measures to charac-
terise and evaluate clinical practice. Task status information and timestamps
were automatically queried from the EMR using SQL and used to compute a
number of measures describing workflow performance. Of note to us, were: 1)
Staff compliance in recording task completion, 2) Time to completion of various
tasks, 3) On-time performance relative to the ideal timeline, 4) Elapsed time
between different tasks.

A description of relevant variables, constants and performance parameters is
provided below.

Variables

Ti Task i

Mj Treatment modality j

tji,k Time to complete Ti since date of CT for patient k and Mj

1(tji,k) =

{
1 if tji,k �= 0

0 otherwise
Indicator function on tji,k

1(δji,k) =

{
1 if δji,k ≤ 0

0 otherwise
Indicator function on delay for Ti, Mj and patient k

Constants

N Total number of patients studied

Nj
i Number of patients for whom Ti was completed for Mj

τi Ideal time to completion in days for Ti

Performance measures

βj
i = 100

N
j
i

∑
k 1(tji,k) Percentage number of patients with Ti completed for Mj

μj
i = 1

N
j
i

∑
k tji,k Mean completion time for Ti and Mj

σj
i =

√
1

N
j
i −1

∑
k(t

j
i,k − μj

i)
2 Standard deviation of completion time for Ti and Mj

δji,k = tji,k − τi Delay in completing Ti for Mj and patient k

ψj
i = μj

i − τi Mean delay in completing Ti for Mj

ηj
i = 100

N
j
i

∑
k 1(δji,k) Percentage on-time completion for Ti and Mj

3 Results

Staff were educated about the standardised RTP workflow and trained in the
use of tasks in the EMR to record carepath activity status.

Deriving Performance Measures of Workflow in Radiation Therapy 211

3.1 Real-Time Tracking and Display of Workflow

Workflow progression according to treatment date, physician, type of treatment
and treatment location were displayed in real-time on web-based dashboard as
shown in Fig. 3. For every patient, task status and timeline were conveyed by
means of color-coded due dates. Overall progress in the creation of a patient’s
treatment plan was conveyed through a progress bar.

Fig. 3. Real-time tracking of radiation treatment planning workflow. A
departmental web-based dashboard tracks carepath activities in the creation of a radi-
ation treatment plan and the status of associated tasks, queried from the EMR, in
real-time. (Color figure online)

3.2 Performance Measures

Data for N = 85 new patient treatments and 476 care path tasks that were
completed in the EMR within 10 days of the CT simulation date were analyzed.
As described previously, two treatment modalities, M = {3D, IMRT}, were
considered with a breakdown of 54 and 31 patients, respectively. A summary of
the calculated performance measures for the different tasks for 3D and IMRT
treatments is given in Table 2. These results are described in more detail in the
following sections.

212 R. Munbodh et al.

Table 2. RTP performance measures. The performance measures associated with
the different tasks tracked for patients treated with 3D or IMRT radiation therapy are
shown below.

i Task 3D IMRT

β1
i μ1

i σ1
i ψ1

i η1
i β2

i μ2
i σ2

i ψ2
i η2

i

(%) (days) (days) (days) (%) (%) (days) (days) (days) (%)

1 CT Import 100 −0.42 0.18 −0.42 96.3 100 −0.32 0.40 −0.32 87.1

2 Image Reg 79.6 0.33 0.94 0.33 44.2 90.3 0.51 0.68 0.0.51 25.0

3 MD Contour 100 0.35 0.97 −0.65 87.0 100 1.41 0.91 0.41 32.3

4 Planning 87.0 3.47 2.11 0.47 34.0 67.7 5.98 1.45 2.98 23.8

5 MD Review 44.4 3.18 2.06 −1.82 87.5 22.6 5.25 1.54 0.25 42.9

6 MD Approval 42.6 3.23 2.09 −1.77 87.0 22.6 5.25 1.54 0.25 42.9

7 IMRT QA 83.9 6.06 2.11 1.06 46.2

8 Physics Review 92.6 3.94 2.31 −2.06 94.0 96.8 6.11 1.63 0.11 53.3

3.3 Compliance in Recording Task Completion

Compliance, β, in recording task completion ranged from 22% to 100% as shown
in Table 2. Note that here, non-completion of the task does not indicate that the
carepath activity was not completed, but rather that it was either not completed
within 10 days or not recorded as having been completed in the EMR. Compli-
ance was greatest for the CT Import task and least for the MD Review and MD
Approval tasks.

3.4 Elapsed Time to Task Completion

Quantitative, longitudinal progression of the RTP workflow for 3D treatments
is shown in Fig. 4 and for IMRT treatments in Fig. 5. The bubbles displayed are
color-coded by staff role. The centre of the bubbles in the figures represents the
average number of days, μ, to completion of a task post CT simulation. The
diameter of the bubbles is proportional to the percentage times, η, the tasks
were completed on time relative to the ideal timeline. The dotted line represents
the ideal timeline for task completion.

The graphs permit evaluation of where bottlenecks are introduced in the
clinic and help identify areas of improvement. The mean time (and standard
deviation) from CT import to completion of the physics review for 3D and IMRT
treatments, respectively, were 3.9 (2.3) and 6.1 (1.6) days. 3D task completion
times were better than ideal, indicating that the timeline associated with the 3D
RTP workflow is amenable to further refinement. For IMRT treatments, delays
were introduced in the image registration and MD contour stages. The average
time to completion of the physics review task, which was the last task in the
RTP process, was close to the ideal completion time of 6 days.

Deriving Performance Measures of Workflow in Radiation Therapy 213

3.5 On-Time Performance Relative to Ideal Timeline

Average on-time performance relative to the ideal timeline was 75/7% (44.2%–
96.3%) for 3D plans and 44.2% (25–87.1%) for IMRT plans, with the lowest
timeliness being for planning activities. Further analysis of the individual task
completion times showed that the planning task was completed out-of-sequence
by the dosimetrists. That is, tasks associated with planning activities were com-
pleted prior to the physics review rather than prior to the MD review as modelled
in the standardised RTP workflow in Fig. 2, thus resulting in low on-time per-
formance for this task.

3.6 Elapsed Time Between Tasks

The average time elapsed between completion of the different tasks is listed
in Table 3. This provides an estimate of the average time required to perform
each task. The times to complete the planning, MD review and MD approval
tasks were calculated relative to completion of the MD contour task. The times
to complete the IMRT QA and the Physics review tasks were calculated with
respect to MD approval. As can be seen, individual IMRT tasks require more
time to complete than 3D tasks, reflecting the increased complexity associated
with IMRT plans.

Fig. 4. 3D treatment planning workflow timeline. The average number of days
to completion for the different tasks in the 3D planning workflow is shown by staff role.
The diameter of the bubble is proportional to on time compliance relative to the ideal
timeline (dotted line). (Color figure online)

214 R. Munbodh et al.

Fig. 5. IMRT treatment planning workflow timeline. The average number of
days to task completion in the IMRT planning workflow colour-coded by staff role is
shown. The diameter of the bubble is proportional to on-time compliance relative to
the ideal timeline (dotted line). (Color figure online)

Table 3. Average time to complete a given task for 3D and IMRT treat-
ments. The negative value for CT import is to end-of-day on the day that the CT
is acquired being considered as the start time. †Calculated relative to MD Contour.
‡Calculated relative to MD Approval.

Modality Task

CT Image MD Planning† MD MD IMRT Physics

Import Reg. Contour Review† Approval† QA‡ Review‡

Ideal time (days) −0.5 −0.5 1 2 4 4 1 1

3D actual time (days) −0.42 0.75 0.76 3.1 2.8 2.85 0.47

IMRT actual time (days) −0.32 0.83 0.90 4.56 3.83 3.83 0.81 0.86

4 Discussion

We have presented performance measures of the radiation treatment planning
workflow for cancer patients. The measures describe the completion time and
compliance rates in the completion of key carepath activities in a standardised
RTP workflow.

Formulating, implementing and adoption of a standardised workflow in radi-
ation oncology that can be tracked by the EMR and displayed in real-time on
the departmental dashboard was challenging due to the complexity of the RTP
process, the large number and interdisciplinary nature of the staff involved in
the creation of a patient’s treatment plan, and inherent limitations of the EMR.

Deriving Performance Measures of Workflow in Radiation Therapy 215

Ensuring effective communication amongst the stakeholders was key towards
achieving a working solution.

Implementing an RTP process in the clinic that is event-driven and where
progression to the next stage of planning is triggered by task completion relies
on the timely completion of the tasks in the EMR by the owners of the task.
It also relies on the tasks being completed in the correct sequence. This study
has provided insight into how activities unfold in a busy clinical practice dur-
ing the treatment planning process. It has helped us identify strengths in our
clinical practice, for instance, on average the physics review is completed, and
therefore patient treatment starts, within the ideal timeline. It has also helped
identify limitations, for instance in the compliance of task completion for certain
activities, the sequence of activity completion, and delays.

As patient loads increase and we move towards process automation in radi-
ation oncology, optimal allocation of resources and an understanding of where
bottlenecks and failure modes arise [3,8,11], the relationship between workload
and staffing levels, as well as the impact of potential changes in workflow are
crucial. The performance measures presented here are important for clinical prac-
tice improvement and process modelling particularly with respect to optimising
allocation of resources and ensuring adequate staffing levels in a busy clinical
setting. In future work, we will develop more advanced models of the radiation
therapy workflow towards improving clinical practice and patient safety.

References

1. Chao, S.T., et al.: Workflow enhancement (we) improves safety in radiation oncol-
ogy: putting the we and team together. Int. J. Radiat. Oncol.*Biol.*Phys. 89(4),
765–772 (2014). https://doi.org/10.1016/j.ijrobp.2014.01.024

2. Chera, B.S., et al.: Quantification of the impact of multifaceted initiatives intended
to improve operational efficiency and the safety culture: a case study from an
academic medical center radiation oncology department. Pract. Radiat. Oncol.
4(2), e101–e108 (2014). https://doi.org/10.1016/j.prro.2013.05.007

3. Ford, E.C., et al.: Evaluation of safety in a radiation oncology setting using fail-
ure mode and effects analysis. Int. J. Radiat. Oncol.*Biol.*Phys. 74(3), 852–858
(2009). https://doi.org/10.1016/j.ijrobp.2008.10.038

4. Gopan, O., Zeng, J., Novak, A., Nyflot, M., Ford, E.: The effectiveness of pre-
treatment physics plan review for detecting errors in radiation therapy. Med Phys.
43(9), 5181 (2016). https://doi.org/10.1118/1.4961010. Place: United States

5. Kovalchuk, N., Russo, G.A., Shin, J.Y., Kachnic, L.A.: Optimizing efficiency and
safety in a radiation oncology department through the use of aria 11 visual care
path. Pract. Radiat. Oncol. 5(5), 295–303 (2015). https://doi.org/10.1016/j.prro.
2015.05.001. Safety Issue

6. Liu, S., et al.: Optimizing efficiency and safety in external beam radiotherapy using
automated plan check (APC) tool and six sigma methodology. J. Appl. Clin. Med.
Phys. 20(8), 56–64 (2019). https://doi.org/10.1002/acm2.12678

7. Marks, L.B., et al.: The challenge of maximizing safety in radiation oncology. Pract.
Radiat. Oncol. 1(1), 2–14 (2011). https://doi.org/10.1016/j.prro.2010.10.001

https://doi.org/10.1016/j.ijrobp.2014.01.024
https://doi.org/10.1016/j.prro.2013.05.007
https://doi.org/10.1016/j.ijrobp.2008.10.038
https://doi.org/10.1118/1.4961010
https://doi.org/10.1016/j.prro.2015.05.001
https://doi.org/10.1016/j.prro.2015.05.001
https://doi.org/10.1002/acm2.12678
https://doi.org/10.1016/j.prro.2010.10.001

216 R. Munbodh et al.

8. Mugford, M., Banfield, P., O’Hanlon, M.: Effects of feedback of information on
clinical practice: a review. BMJ 303(6799), 398–402 (1991). https://doi.org/10.
1136/bmj.303.6799.398

9. Munbodh, R., Roth, T.M., Leonard, K.L., Brindle, J., Klein, E.E.: Real-time anal-
ysis and display of quantitative measures to track and improve clinical workflow.
Med. Phys. 46(6), e197 (2019)

10. Wolfgang, J.A., Hong, T.S.: Radiation oncology whiteboard: data and work-
flow manager for enhanced communication and task management. J. Clin.
Oncol. 30(34 suppl), 304 (2012). https://doi.org/10.1200/jco.2012.30.34 suppl.
304. pMID: 28146901

11. Wright, J.L., et al.: Real-time management of incident learning reports in a radia-
tion oncology department. Pract. Radiat. Oncol. 8(5), e337–e345 (2018). https://
doi.org/10.1016/j.prro.2018.04.016

https://doi.org/10.1136/bmj.303.6799.398
https://doi.org/10.1136/bmj.303.6799.398
https://doi.org/10.1200/jco.2012.30.34_suppl.304
https://doi.org/10.1200/jco.2012.30.34_suppl.304
https://doi.org/10.1016/j.prro.2018.04.016
https://doi.org/10.1016/j.prro.2018.04.016

Handshape Classification in a Reverse
Dictionary of Sign Languages for the Deaf

Alikhan Abutalipov1, Aigerim Janaliyeva1, Medet Mukushev2 ,
Antonio Cerone1 , and Anara Sandygulova2(B)

1 Department of Computer Science,
Nazarbayev University, Nur-Sultan, Kazakhstan

{alikhan.abutalipov,aigerim.janaliyeva,antonio.cerone}@nu.edu.kz
2 Department of Robotics and Mechatronics,

Nazarbayev University, Nur-Sultan, Kazakhstan
{mmukushev,anara.sandygulova}@nu.edu.kz

Abstract. This paper showcases the work that aims at building a user-
friendly mobile application of a reverse dictionary to translate sign lan-
guages to spoken languages. The concept behind the reverse dictionary
is the ability to perform a video-based search by demonstrating a hand-
shape in front of a mobile phone’s camera. The user would be able to
use this feature in two ways. Firstly, the user would be able to search
for a word by showing a handshape for the application to provide a list
of signs that contain that handshape. Secondly, the user could finger-
spell the word letter by letter in front of the camera for the application
to return the sign that corresponds to that word. The user can then
look through the suggested videos and see their written translations. To
offer other functionalities, the application also has Search by Category
and Search by Word options. Currently, the reverse dictionary supports
translations from Russian Sign Language (RSL) to Russian language.

Keywords: Reverse dictionary · Sign language dictionary ·
Fingerspelling recognition · Video-based search interface ·
Human-computer interaction · iOS application · Russian Sign
Language (RSL)

1 Introduction

Deaf communities around the world use sign languages for everyday communi-
cation. Each country or region has its own sign language. Contrary to popular
belief, Russian Sign Language (RSL) does not share structure or grammar with
the Russian language. In addition, people native to RSL do not necessarily know
how to read and write Russian and have to learn it as a foreign language.

Most online sign language (SL) dictionaries are alphabet-based which are
convenient for people who are fluent in spoken languages. When searching for
a sign, they need to know the written translation of it and search by its first

c© The Author(s) 2021
J. Bowles et al. (Eds.): DataMod 2020, LNCS 12611, pp. 217–226, 2021.
https://doi.org/10.1007/978-3-030-70650-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70650-0_14&domain=pdf
http://orcid.org/0000-0002-3655-9928
http://orcid.org/0000-0003-2691-5279
http://orcid.org/0000-0001-9299-5700
https://doi.org/10.1007/978-3-030-70650-0_14

218 A. Abutalipov et al.

letter. However, such functionality is useful for people who want to learn SL and
cannot provide a reverse option - searching for meaning of unfamiliar signs.

There exists only a few reserve dictionaries where searching by sign is per-
formed by one of its components, such as handshapes. Nonetheless, this is still
not user-friendly as each handshape is described in a written form. Usually these
descriptions are compiled by professional SL linguists, which makes it hard for
a non-expert user to understand the description. Sometimes the pictorial rep-
resentations of the handshapes are provided too, but then the creation of such
dictionaries for every sign is time-consuming.

Therefore, this work aims to build an automatic reverse dictionary where a
search is performed in the most natural way - searching by demonstration. Since
each sign in a sign language consists of one or several handshapes, searching
by handshape demonstration would yield the most intuitive method for people
native to sign languages.

2 Related Work

2.1 Sign Language Dictionaries

Computer-based sign language dictionaries could be divided into two categories:
search by textual description of the sign and demonstration of the sign.

Search by demonstration systems became popular with the introduction of
Microsoft Kinect, which supports skeletal joints tracking [6]. Another approach
is the use of systems that accept video demonstration of the sign as an input
to find the list of similar signs [4,20]. However, such systems may have poor
performance when tested on different users and users are required to perfectly
demonstrate the sign in order to find its match.

Feature-based sign language dictionaries overcome the problems of computer-
based sign language dictionaries by focusing only on features or components
describing a sign. Bragg et al. [3] proposed a feature-based dictionary system
that enables users to lookup unknown signs by selecting from features such
as handshape, orientation, or location. Increase in the computational power
of smartphones opens new opportunities for the development of sign language
dictionaries. Some functional prototypes were built both for text-to-sign [8] or
handshape-to-sign systems [14]. Alonzo et al. [1] highlight the difficulty of search-
ing for an unfamiliar sign in dictionaries. Furthermore, they showed that the
placement of the searched sign in the list (its position) and the similarity of the
shown items affect user’s opinion regarding the quality of the search results. In
general, researchers agree that there are few resources available that are robust
enough to overcome all existing limitations [2].

2.2 Sign Language Fingerspelling Recognition

Automatic sign language recognition has been an active field of research in the
past couple of decades and fingerspelling recognition is one part of sign language

Reverse Dictionary of Sign Languages for the Deaf 219

recognition. Fingerspelling is used to express words that have no specific sign
in the vocabulary of sign languages. Many approaches were used to solve this
task such as hand crafted features, Convolutional Neural Networks, and depth
features. The field largely benefits from the advances in computer vision.

The Australian Sign Language fingerspelling recognizer uses a combination of
features extracted from skin detection which are later used to extract geometric
features. For classification it applies Hidden Markov Models (HMM) to get the
output probabilities for the given sequence of features. At word level this model
achieves 88.61% recognition accuracy [7]. For the American Sign Language (ASL)
a semi-Markov conditional model approach was developed. It achieves an 11.6%
letter error rate compared to the HMM baseline with 16.3% [9].

Microsoft Kinect depth cameras showed good results when applied to finger-
spelling recognition. Pugeault and Bowden [16] proposed a real-time ASL finger-
spelling recognition system based on Microsoft Kinect. Their approach focuses
on detecting user’s hands and extracting handshape features and is based on
Gabor filtering of the intensity and depth images. The classification part was
performed with multi-class random forest and achieved 75% accuracy. Dong et
al. [5] proposed a model for recognizing 24 static ASL alphabet signs with 90%
accuracy. Their model first extracted hand segments based on depth contrast
features which were then used to localize hand joint positions. For the classifica-
tion part, a Random Forest algorithm was applied. Another interesting approach
based on classification tree and machine learning was developed for the Japanese
Sign Language. It supports the classification of 41 characters without movement
with 86% accuracy [11]. Point cloud descriptors recorded with Microsoft Kinect
were used to recognize static letters of the Polish Sign Language. The classifica-
tion part was performed using HMM and achieved an accuracy of 78.8% [21].

Some specific hardware is required for the systems mentioned above which
are not convenient for the end users. In contrast, vision-based approaches can
be implemented using only web-cameras or mobile phone cameras. Shi et al.
[17] introduced the largest dataset for ASL fingerspelling recognition used to
detect fingerspelling “in the wild” in realistic conditions. Most of the previous
works performed experiments on more controlled data with a limited number of
participants. The proposed system has two parts: hand detector and sequence
recognizer. The best letter accuracy was achieved with a CTC-based recognizer
and was around 42%. Another approach for detecting fingerspelling in realistic
conditions used end-to-end model with an iterative attention mechanism. In
contrast to previous work, this approach is not using explicit hand detection or
segmentation. The best accuracy was 61.2% on ChicagoFSWild dataset [18].

3 System Design and Architecture

Our system is based on a database where each sign video has a list of hand-
shapes corresponding to that sign. We used a publicly available dictionary of
RSL from the Spread the Sign dictionary1. Thus, every frame of the sign video
1 www.spreadthesign.com.

https://www.spreadthesign.com/en.us/search/

220 A. Abutalipov et al.

was cropped to contain only the hand region using the “Hand-CNN” pre-trained
hand detection model [13]. Then we utilized the “Deep Hand” pre-trained hand-
shape recognition model [10] to classify handshapes in each sign video. Once
the database was ready, we built a system consisting of two main components,
an iOS mobile application and a server that runs the “Hand-CNN” and “Deep
Hand” models. When a user takes a photo of a handshape, the application sends
the image over HTTP as a request to the server, which in turn classifies the
handshape in the photo and return the result to the application via an HTTP
request. The application then shows the user the signs that contain the user’s
handshape by searching the database. When a user takes a photo of another
handshape, the just-described process repeats itself, but this time the applica-
tion shows the signs that contain both handshapes. The more handshapes are
shown, the narrower the search is. Overall architecture of the application is pre-
sented in Fig. 1.

Fig. 1. System components

3.1 Datasets

In order to adapt the handshape classification to support RSL and fingerspelling
in RSL, we utilized a manually labeled dataset of RSL handshapes [12] as well
as a previously collected Cyrillic fingerspelling dataset [19] to perform transfer
learning of the “Deep Hand” model to make two models for RSL handshape
recognition and Cyrillic fingerspelling. In the end, the number of classes was
29 for 33 letters in the Russian alphabet as some cases were combined due to
being different only in the movement. This is the case for the signs for the letters

.

Reverse Dictionary of Sign Languages for the Deaf 221

Fig. 2. Training process

3.2 Implementation Details

For the transfer learning, we decreased the overall learning rate from 0.0005 to
0.0002 while increasing the learning rate of the final layer by 2 and used the
RSL datasets [12,19] to re-train the pre-trained “Deep Hand” model’s weights.
The results were: Top-1 results refer to the output deemed most probable by a
model, while Top-5 results refer to the 5 most probable outputs of models. The
reason for transfer learning was two-folds: first, the “Deep Hand” model already
showed rather good results on their dataset: 85% for Top-1 results and 94.8% for
Top-5 results [10] (see Table 1). It was beneficial to use the model’s “knowledge”.
Secondly, the size of our datasets used for transfer learning was much smaller
than the dataset used to train “Deep Hand” in [10]: 3201 images for 36 classes
of the Handshapes model and 1587 images for the Fingerspelling model versus
over 1 million handshape images in [10]. The training process is shown in Fig. 2.

Table 1. Transfer-learned models’ accuracy

Model Number of classes Top-1 accuracy [%] Top-5 accuracy [%]

Deep Hand [10] 45 85 94.8

Fingerspelling 29 88 97

Handshapes 35 74 94.6

4 System Functionality

The application is a reverse dictionary that supports Russian and Russian Sign
Language. It has the following components: “Search by Words”, “Search by
Categories”, “Search by Fingerspelling” and “Search by Handshapes”, which are
described below in more details. Its screenshots of various views are presented
in Fig. 3 and 4.

222 A. Abutalipov et al.

(a) Home view (b) Search by Handshapes (c) Search by Fingerspelling

Fig. 3. Application views

4.1 Search by Handshapes

The main functionality of the application is the ability to search for signs by
the handshapes that are used to form them. The “Handshape” option from the
home view launches the camera view for the user to take a photo of their hand.
After taking a photo the “Search by Handshape” view is shown, where a top
one-third part of the view shows the photos of the handshapes that the user
uses to search for a sign. The rest of the view shows the list of signs that contain
the user-provided handshapes. The signs are shown as videos in the loop. We
assume that because deaf people are proficient in recognizing signs, they will not
be confused by simultaneously playing videos of different signs.

The taking photo is on the top part of the view. If the application successfully
classifies the handshape, the border around the photo of the handshape turns
green. However, if the handshape is not classified or the application cannot reach
the server, the image disappears. The user can also add other handshapes. To
do so, the user taps on the “camera” button in the top right corner of the view,
which presents the camera view, where the user can take a photo of another
handshape. Moreover, the user can delete a handshape from the search by long
pressing on the photo of the handshape and tapping on the “delete” button
that will be shown as the result. The list of signs updates every time a new
handshape is added or an existing one is deleted to reflect the most current
state of the search. Finally, the user can tap on a sign, which will result in the
“Sign” view to be shown.

Reverse Dictionary of Sign Languages for the Deaf 223

(a) Sign view (b) Search by Words (c) Search by Category

Fig. 4. Application views

4.2 Search by Fingerspelling

Another important feature of the application is “Search by Fingerspelling”. Sim-
ilarly to the “Search by Handshapes” it sends the handshape image shown during
fingerspelling to the server, which returns back the bounding boxes that bound
the hands in the image. The application classifies the image using the locally
run “Fingerspelling” model. Here, however, the distinction between these two
features is evident. The application does not search for signs immediately, but
rather sends another image of handshape to the server and waits for the bound-
ing boxes coordinates. It does so for a few dozen images, after which it checks
whether there is a particular sign that corresponds to a minimum 80% percent
of classified images of handshapes. If so, the application builds a word by adding
the letter that is represented by the handshape that reached the 80% threshold.
If the threshold is not met, the application discards the oldest frame, sends the
latest frame to the server again and tests for the threshold again. After the word
is built, the application sends a query to the database, fetches signs that relate
to the built word and shows the result to the user.

4.3 Other Search Methods

In the “Search by Words” the user sees the list of all words and phrases that
the application has in its vocabulary. Users can use the search bar at the top of
the view to search for the word or phrase that they want the sign translation
for. After the user taps on a specific word or phrase, the video of the signs that
correspond to the selected word or phrase is shown in a loop. In addition to that,
the word or phrase is shown at the bottom of the screen. Moreover, the user can
tap on the star image to mark or unmark the sign as favorite. All favorite signs

224 A. Abutalipov et al.

can be accessed quickly by clicking on the “Favorites” option in the home view.
This method of searching will be mostly useful for the people who are learning
the sign language. However, deaf people might also find this method useful, as
it would allow them to translate unknown Russian words that they encounter.

In the home view, when the user taps on the “Category” option, “Search by
Category” has multiple categories, which are presented in a way similar to the
“Search by Words” view. By tapping a word or phrase in this list, the list of sign
videos are presented.

5 Evaluation

We conducted a user study with two non-deaf people and conducted interviews
with 6 non-deaf people after showing them a video of the application. After the
result of the user study and interviews we come up with three broad comments.
First of all, the non-deaf users might want to have additional capabilities in the
app to help them in the learning of the Kazakh/Russian sign language. The appli-
cation might have a list of handshapes that are used in the Kazakh/Russian sign
language and in fingerspelling. Further, the app might have educational parts,
where the user could learn by practicing fingerspelling and sign words/phrases.
Second, the “Search by Categories” was deemed the least useful feature of the
app by both groups. Thirdly, the app might need to include a tutorial of how
to use the app. The tutorial might consist of a video that demonstrates and
explains all the features when the app is first launched.

There were some other useful points from the user study. One participant said
that looking for a word in “Search by Categories” was not very easy. In response,
we included the A-Z index list shown in Fig. 4. Users can slide their fingers along
the index list, and the app would “snap” or move to the words that begin with
a particular letter in the index list. In addition, during the user study, searching
by handshapes took a long time for both participants, in the range from 1 min
to almost 2 min. The fingerspelling model gave reasonable results, for example,
when the users were instructed to fingerspell the word , although the
timing was not great, about 2 min for both participants. When the participants
were instructed to fingerspell the word the model could not recognize
the handshape for the letter for both users.

6 Conclusion and Future Work

In this work we presented the prototype of an automatic reverse dictionary
based on the video-based handshape configuration search. Handshape is the basic
component of a sign. Thus, searching by demonstration provides the most natural
way for the users. We also presented how transfer learning could be applied to
sign language recognition. As most of the sign languages are considered as low-
resource languages, such approach could be beneficial when annotated data is
limited.

Future work will include training a hand detection model compatible with
Core ML. This will allow us to run all models on the device and will allow the

Reverse Dictionary of Sign Languages for the Deaf 225

users to use the application without the need to be connected to the internet.
Moreover, a user study with deaf people should be conducted and the feedback
should be incorporated in the future version of the application. We plan to
conduct a two-step usability study. Firstly, we plan to conduct a pilot study
with approximately five hearing users and later conduct a usability study with
approximately five deaf users. According to Nielsen and Landauer [15] five users
should be enough to find most of the usability issues during the testing.

Acknowledgment. This work was supported by the Nazarbayev University Faculty
Development Competitive Research Grant Program 2019–2021 “Kazakh Sign Language
Automatic Recognition System (K-SLARS)”. Award number is 110119FD4545.

References

1. Alonzo, O., Glasser, A., Huenerfauth, M.: Effect of automatic sign recognition
performance on the usability of video-based search interfaces for sign language dic-
tionaries. In: The 21st International ACM SIGACCESS Conference on Computers
and Accessibility, pp. 56–67 (2019)

2. Bragg, D., et al.: Sign language recognition, generation, and translation: an inter-
disciplinary perspective. In The 21st International ACM SIGACCESS Conference
on Computers and Accessibility, pp. 16–31 (2019)

3. Bragg, D., Rector, K., Ladner, R.E.: A user-powered American Sign Language
dictionary. In: Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing, pp. 1837–1848 (2015)

4. Cooper, H., Pugeault, N., Bowden, R.: Reading the signs: a video based sign dic-
tionary. In: 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops), pp. 914–919. IEEE (2011)

5. Dong, C., Leu, M.C., Yin, Z.: American sign language alphabet recognition using
Microsoft Kinect. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 44–52 (2015)

6. Elliott, R., Cooper, H., Ong, E.-J., Glauert, J., Bowden, R., Lefebvre-Albaret, F.:
Search-by-example in multilingual sign language databases. In: Proceedings of the
Sign Language Translation and Avatar Technologies Workshops (2011)

7. Goh, P., Holden, E.-J.: Dynamic fingerspelling recognition using geometric and
motion features. In: 2006 International Conference on Image Processing, pp. 2741–
2744. IEEE (2006)

8. Jones, M.D., Hamilton, H., Petmecky, J.: Mobile phone access to a sign language
dictionary. In: Proceedings of the 17th International ACM SIGACCESS Conference
on Computers & Accessibility, pp. 331–332 (2015)

9. Kim, T., Shakhnarovich, G., Livescu, K.: Fingerspelling recognition with semi-
Markov conditional random fields. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 1521–1528 (2013)

10. Koller, O., Ney, H., Bowden, R.: Deep hand: how to train a CNN on 1 million
hand images when your data is continuous and weakly labelled. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3793–3802
(2016)

11. Mukai, N., Harada, N., Chang, Y.: Japanese fingerspelling recognition based on
classification tree and machine learning. In: 2017 NICOGRAPH International
(NICOInt), pp. 19–24. IEEE (2017)

226 A. Abutalipov et al.

12. Mukushev, M., Imashev, A., Kimmelman, V., Sandygulova, A.: Automatic classifi-
cation of handshapes in Russian Sign Language. In: Proceedings of the LREC2020
9th Workshop on the Representation and Processing of Sign Languages: Sign Lan-
guage Resources in the Service of the Language Community, Technological Chal-
lenges and Application Perspectives, Marseille, France, pp. 165–170. European
Language Resources Association (ELRA), May 2020

13. Narasimhaswamy, S., Wei, Z., Wang, Y., Zhang, J., Hoai, M.: Contextual attention
for hand detection in the wild (2019)

14. Nelson, A., Price, K., Multari, R.: ASL reverse dictionary-ASL translation using
deep learning. SMU Data Sci. Rev. 2(1), 21 (2019)

15. Nielsen, J., Landauer, T.K.: A mathematical model of the finding of usability
problems. In: Proceedings of the INTERACT 1993 and CHI 1993 Conference on
Human Factors in Computing Systems, CHI 1993, New York, NY, USA, pp. 206–
213. Association for Computing Machinery (1993)

16. Pugeault, N., Bowden, R.: Spelling it out: real-time ASL fingerspelling recognition.
In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV
Workshops), pp. 1114–1119. IEEE (2011)

17. Shi, B., et al.: American sign language fingerspelling recognition in the wild. In:
2018 IEEE Spoken Language Technology Workshop (SLT), pp. 145–152. IEEE
(2018)

18. Shi, B., Rio, A.M.D., Keane, J., Brentari, D., Shakhnarovich, G., Livescu, K.: Fin-
gerspelling recognition in the wild with iterative visual attention. In: Proceedings
of the IEEE International Conference on Computer Vision, pp. 5400–5409 (2019)

19. Tazhigaliyeva, N., et al.: Cyrillic manual alphabet recognition in RGB and RGB-D
data for sign language interpreting robotic system (SLIRS). In: 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 4531–4536. IEEE
(2017)

20. Wang, H., Stefan, A., Moradi, S., Athitsos, V., Neidle, C., Kamangar, F.: A system
for large vocabulary sign search. In: Kutulakos, K.N. (ed.) ECCV 2010. LNCS,
vol. 6553, pp. 342–353. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35749-7 27

21. Warcho�l, D., Kapuściński, T., Wysocki, M.: Recognition of fingerspelling sequences
in polish sign language using point clouds obtained from depth images. Sensors
19(5), 1078 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-35749-7_27
https://doi.org/10.1007/978-3-642-35749-7_27
http://creativecommons.org/licenses/by/4.0/

Author Index

Abutalipov, Alikhan 217

Barbon Junior, Sylvio 174
Berkley, Adam 18
Bowles, Juliana 57, 87, 190

Ceravolo, Paolo 174
Cerone, Antonio 104, 134, 217
Czekster, Ricardo M. 87

Damiani, Ernesto 174

Finlinson, Alastair 3

Guidi, Barbara 72

Janaliyeva, Aigerim 217

Kang, Elliot 18
Klein, Eric E. 206
Kou, Ziyi 38

Leonard, Kara L. 206

Marques Tavares, Gabriel 174
Marsili, Enrico 134

Michienzi, Andrea 72
Milazzo, Paolo 123
Moschoyiannis, Sotiris 3
Mukushev, Medet 217
Munbodh, Reshma 18, 206

Nasti, Lucia 72

Pian, Weiguo 38
Pluck, Graham 104
Preda, Nicoleta 155

Rahman, Fahrurrozi 190
Redeker, Guilherme 57, 87
Romero, Julien 155

Sandygulova, Anara 217
Saueressig, Camillo 18
Silvina, Agastya 57
Singh, Ritambhara 18
Suchanek, Fabian 155

Webber, Thais 57, 87
Wu, Yingbo 38

	Preface
	Organization
	Towards AI-driven Data Analysis and Fabrication (Abstract of Invited Talk)
	Contents
	Machine Learning
	Synthesis and Pruning as a Dynamic Compression Strategy for Efficient Deep Neural Networks
	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Approaches
	3.2 Procedure

	4 Problem Dataset
	5 Results
	6 Further Considerations
	6.1 Residual Networks
	6.2 Sub-networks
	6.3 False Starts
	6.4 Strategic Targets
	6.5 Redundancy
	6.6 Hybrid Scheduling

	7 Conclusions and Future Work
	References

	Exploring Graph-Based Neural Networks for Automatic Brain Tumor Segmentation
	1 Introduction
	2 Related Work
	2.1 Convolutional Neural Networks
	2.2 Graph Neural Networks
	2.3 Explanation of Deep Learning Models

	3 Methods
	3.1 Imaging Data
	3.2 Data Preprocessing
	3.3 Graph Construction
	3.4 GNN Details
	3.5 Training and Evaluation Metrics
	3.6 Baseline Method
	3.7 Model Interpretation

	4 Results
	4.1 Supervoxel Generation Affects Achievable Accuracy
	4.2 Brain Tumor Segmentation Performance of Different GNN Models
	4.3 Performance and Runtime Results for Varying Neighborhood Sizes
	4.4 Comparison of GNN Model with Other Recent Models
	4.5 Explaining GNN Predictions Using SHAP

	5 Discussion
	References

	STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping for Bike Sharing Demand Prediction
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Spatial-Temporal Dynamic Interval Network
	4.1 Spatial Module
	4.2 Temporal Module
	4.3 Dynamic Interval Module
	4.4 Implementation Details

	5 Experiment
	5.1 Dataset
	5.2 Evaluation Metric
	5.3 Baselines
	5.4 Comparison with Baselines
	5.5 Comparison with Modules Combinations
	5.6 Comparison with Variants of Our Model
	5.7 Influence of Sequence Length and Number of ResUnits

	6 Conclusion and Discussion
	References

	Simulation-Based Approaches
	A Simulation-Based Approach for the Behavioural Analysis of Cancer Pathways
	1 Introduction
	2 Data Analysis and Queries Development
	3 Simulation Modelling and DES
	4 Model Validation
	5 Simulation Results
	6 Conclusion
	References

	Discovering the Impact of Notifications on Social Network Addiction
	1 Introduction
	2 The Internet Addiction
	2.1 The Network Communication Model
	2.2 The Mathematical Model of Dopamine System

	3 Dataset
	4 Simulations
	5 Results
	6 Conclusions
	References

	A Simulation Study on Demand Disruptions and Limited Resources for Healthcare Provision
	1 Introduction
	2 Southern Brazilian Hospital Settings
	2.1 A&E Triage System
	2.2 Usual Pre-pandemic A&E Patient Care Process

	3 Applied Modelling and Simulation in the A&E
	3.1 Input Data Modelling for the Pre-pandemic Simulation

	4 Pre-pandemic and Post-pandemic Scenarios Simulation
	4.1 Pre-pandemic Scenario Simulation
	4.2 A&E Disruption Scenarios During and Post-pandemic

	5 Conclusion
	References

	A Formal Model for Emulating the Generation of Human Knowledge in Semantic Memory
	1 Introduction
	2 Cognitive Models for Information Transfer
	3 Real-Time Maude Models of STM and Semantic Memory
	3.1 Facts, Questions and Goals
	3.2 Modelling Basic Information Items and Goals
	3.3 Modelling Explicit Attention and Goal Achievements
	3.4 STM—Short-Term Memory
	3.5 Semantic Memory

	4 Modelling Memory Processes
	4.1 Perception
	4.2 Maintenance Rehearsal
	4.3 Elaborative Rehearsal
	4.4 Transfer from STM to Semantic Memory

	5 In Silico Experiments
	5.1 Rote Learning
	5.2 Effective Learning

	6 Conclusion and Future Work
	References

	Analysis of COVID-19 Data with PRISM: Parameter Estimation and SIR Modelling
	1 Introduction
	2 SIR Epidemic Models and COVID-19
	3 Parameter Estimation
	4 Translation into CTMC and Analysis with PRISM
	5 Conclusions
	References

	A Formal Model for the Simulation and Analysis of Early Biofilm Formation
	1 Introduction
	1.1 Real-Time Maude

	2 Biofilm Formation Model
	2.1 Real-Time Maude Configuration and Rewrite Rules
	2.2 Creation of the Initial Population
	2.3 Biofilm Formation
	2.4 Cell Reproduction
	2.5 Cell Death
	2.6 Time Increment
	2.7 Intervention to Prevent Biofilm Formation

	3 In Silico Experiments and Formal Analysis
	3.1 Pseudomonas Aeruginosa
	3.2 Simulation
	3.3 Formal Analysis Using Model Checking

	4 Conclusion and Future Work
	References

	Data Mining and Processing Related Approaches
	Query Rewriting on Path Views Without Integrity Constraints
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Defining Smart Plans
	5 Characterizing Smart Plans
	5.1 Web Service Functions
	5.2 Preliminary Definitions
	5.3 Characterising Smart Plans

	6 Generating Smart Plans
	6.1 Minimal Smart Plans
	6.2 Bounding and Generating the Weakly Smart Plans
	6.3 Generating the Weakly Smart Plans

	7 Experiments
	7.1 Synthetic Functions
	7.2 Real-World Web Services

	8 Conclusion
	References

	Evaluating Trace Encoding Methods in Process Mining
	1 Introduction
	2 Related Work
	3 Encoding Methods
	3.1 Trace Replay and Alignment
	3.2 Word Embeddings
	3.3 Graph Embeddings

	4 Materials and Methods
	4.1 Event Logs
	4.2 Trace Encoding
	4.3 Feature Vector Measures and Classification Algorithm

	5 Results and Discussion
	5.1 Accuracy Performance
	5.2 Time Usage
	5.3 Encoding Representativeness
	5.4 Encoding Ranking

	6 Conclusion
	References

	Semantic Annotations in Clinical Guidelines
	1 Introduction
	2 Related Work
	3 The Framework
	4 Semantic Annotations
	4.1 A Hierarchy of Concepts
	4.2 Relationship Between Classes
	4.3 Named-Entity Recognition

	5 Learning
	5.1 Syntactic Analysis of Guideline Sentences
	5.2 Semantic Analysis of Guideline Sentences
	5.3 Features
	5.4 Learning Algorithm
	5.5 Long Short-Term Memory for NER

	6 Evaluation
	6.1 Dataset Analysis
	6.2 Experiments

	7 Conclusion
	References

	Deriving Performance Measures of Workflow in Radiation Therapy from Real-Time Data
	1 Introduction
	2 Methods
	2.1 Standardised Model of the RTP Workflow
	2.2 Real-Time Tracking and Display of RTP Workflow
	2.3 Performance Measures of RTP Workflow

	3 Results
	3.1 Real-Time Tracking and Display of Workflow
	3.2 Performance Measures
	3.3 Compliance in Recording Task Completion
	3.4 Elapsed Time to Task Completion
	3.5 On-Time Performance Relative to Ideal Timeline
	3.6 Elapsed Time Between Tasks

	4 Discussion
	References

	Handshape Classification in a Reverse Dictionary of Sign Languages for the Deaf
	1 Introduction
	2 Related Work
	2.1 Sign Language Dictionaries
	2.2 Sign Language Fingerspelling Recognition

	3 System Design and Architecture
	3.1 Datasets
	3.2 Implementation Details

	4 System Functionality
	4.1 Search by Handshapes
	4.2 Search by Fingerspelling
	4.3 Other Search Methods

	5 Evaluation
	6 Conclusion and Future Work
	References

	Author Index

