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Abstract

Stroke is a neurological syndrome that may affect severely
lower-limb movements and the normal gait. The com-
plete or partial restoration may be achieved through alter-
native rehabilitation therapies, such as Motor Imagery
(MI)-based Brain Computer Interfaces (BCIs). Although
these systems have shown promising results on post-stroke
patients with severe disability, their performance recog-
nizing MI may be reduced for people executing MI tasks
with high difficult or producingweak brain activation. This
study presents a proposal to improve the calibration stage
of a low-cost electroencephalographic (EEG) based MI
BCI with pedal end-effector, which integrally aims to acti-
vate continuously the central and peripheral mechanisms
related to lower-limbs, and obtain the best feature vectors
for MI recognition. This setup enables users to perform
pedaling MI and receive passive pedaling into a Calibra-
tion phase. Consequently users can produce related EEG
signals useful to obtain those more discriminant MI fea-
ture vectors through a probability analysis combining pat-
terns from pedaling MI and passive pedaling. Here, Rie-
mannian geometry and Common Spatials Patterns (CSP)
for feature extraction were used independently or com-
bined in our approach. Preliminary results show that the
proposed method may improve the BCI performance. For
healthy subjects, the approach using CSP achieved accu-
racy (ACC) up to 98.43%, whereas for PS1 and PS2
obtained ACC of 71.07% and 79.24%, respectively. How-
ever, Riemannian geometry plus CSP using LDA reached
better results for healthy subjects and patients (mean ACC
of 73.84%).
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1 Introduction

Stroke is the leading cause of adult long-term disability [1,2],
and may cause severe cognitive and motor impairments for
survives. Loss of independence in their daily life, such as
mobility, balance and walking are often affected [1,3]. Gait
rehabilitation is the major goal for post-stroke people [3].

Significant neurological improvements of post-stroke
patients may take place up to 6 months, when receiving
motor rehabilitation, which has great importance and benefits
to recover their independence. Evidences have demonstrated
that chronic stroke patients maintain neuroplasticity, which
increases the chance for recovery [1]. Generally, these
patients receive traditional rehabilitation to improve their
motor function [4]. For instance, the mirror therapy is a
traditional method in which the hemiplegic patients are
able to see uniquely the reflex-response of the non-affected
limb [5], therefore they receive visual feedback. In contrast,
BCIs based on robotic devices have been successfully used
for motor rehabilitation after stroke, providing physical
feedback. Thus, this technology can be used on post-stroke
patients that cannot voluntarily initiate a movement [6], as
BCIs are communication systems that translate brain waves
into artificial output to control the external world [1].

Some BCIs have been proposed to recognize motor
imagery using different approaches for feature extraction,
being Riemannian geometry [4,7,8] and CSP [9] very
promising methods. In [4,7], Riemannian geometry was used
successfully in a BCI to recognize pedaling motor imagery
for lower-limb rehabilitation of post-stroke patients. In [9], a
CSP-based BCI approach was proposed to select MI features.
The performance extracting features using independently
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each one of these methods from EEG related to MI may be
negatively affected due to several factors: stroke episode
severity, making difficult MI execution or producing weak
brain activation; uncertainty labelling feature vectors; EEG
variability, etc. We hypothesize that using feature vectors
from passive movements may increase class discrimination
of a MI-based BCI, as similar brain regions are activated by
executing a same imagined or real movement. Furthermore,
new approaches also combining Riemannian geometry and
CSP may be explored to discriminate better MI tasks.

This study aims to advance designing feature extraction
methods for amotor imagery BCI based on pedal end-effector
that continuously promote activation on central and periph-
eral mechanisms linked to lower-limbs, using pedaling MI
and passive pedaling tasks in the Calibration phase. Rieman-
nian geometry, CSP and Riemannian plus CSP are evaluated
for feature extraction, into a new approach-based on proba-
bility for obtaining those feature vectors from pedaling MI
more related to patterns of passive pedaling movements. This
type of systems for providing pedaling exercises have shown
effectiveness in both gait and lower-limb rehabilitation, and
can be easily extended into developing countries, due to their
relative low-cost [7].

This paper is structured into three sections as follows.
Section2 describes first the dataset used, followed by the
proposed system to recognize pedaling motor imagery
in our approach. Afterwards, the results and discussions
are presented in Sect. 3, in which the performance of our
approaches is analyzed. Finally, the conclusion about the
proposed method are given in Sect. 4.

2 Materials andMethods

2.1 Data Description

AnEEG acquisition systemwith a sampling rate 250Hz using
the low-cost open-source OpenBCI Cyton Board was used to
collect the EEG database in our previous study [4]. EEG data
from eight healthy subjects (one female and seven males) and
two post-stroke patients (females) was collected over FC1,
FC2, C3, Cz, C4, CP1, CP2, and Pz locations. The reference
(A1) and ground (A2) were placed on the left and right ear-
lobes, respectively [4].

For each participant, the database was divided into a cali-
bration set and an evaluation set. The former was composed
of seven sessions (12 trials per sessions), completing a bal-
anced set with 168 periods of 5 s for both resting and ped-
aling MI classes. Data from the first six sessions was used
for training (144 periods), whereas last session (24 periods)
was employed for validation. On the other hand, the eval-
uation set was formed by 2 sessions composed of 12 trials
each one, resulting in a total of 24 trials containing rest state

(5 s in length), pedaling MI (up to 5 s), and passive pedaling
movements (5 s in length). It is worth mentioning that each
trial was defined for a period of 20s (5 s “resting" and 5s
“MI") capturing the calibration set, whereas each trial was
designed for a period up to 25s (5 s “resting", 5 s “MI", and
5s receiving passive movements) collecting evaluation set in
an on-line condition. In on-line, each participant was encour-
aged to trigger a motorized pedal by executing pedaling MI
tasks, and he/she received passive movements for a period of
5 s as a feedback after successfully turning on the pedal [4].

In this study, we exploit this database for obtaining robust
methods for feature extraction, enhancing the discrimination
between rest state and pedalingMI. As novelty, we aim to find
the best feature vectors from pedaling MI by analyzing their
proximity to equivalent patterns from real movements. Then,
we used those periods of 5 s from the evaluation set containing
cortical activity generated while participants received passive
movements.

2.2 Proposed BCI

Figure 1 shows our EEG-based MI BCI proposal, which Cal-
ibration phase (see Fig. 1a) is designed here for participants
to perform pedaling MI task for a period of 5 s, and receive
successively passive movements for other period of 5 s. In
practice, this approach should promote cortical and physi-
cal motor rehabilitation since the Calibration phase, targeting
one of the main goal of patients and physiotherapists, more
motor training during rehabilitation session. Next subsections
our proposed BCI is in detail, including a new approach for
robust feature extraction.

2.2.1 Pre-processing
Similar to [4] EEG data from both Calibration and On-line
phases is band-pass filtered over epochs of 1s each 64 ms,
using in sequence the Fast Fourier Transform (FFT) and the
inverse FFT. Specifically, EEG signals are transformed into
the frequency domain for removing all frequency components
outside the range of interest, for after getting back the EEG
filtered into the time domain through an inverse transforma-
tion [4]. In our study, two frequency ranges from 0.1 to 30Hz
[4,10] and from 8 to 30Hz [7,11] for band-pass filtering were
evaluated on each participant.

2.2.2 Discriminative Feature Extraction
In our approach, we assume that the collected EEG data from
each participant on the Calibration phase has several trials
containing the same real and imagery motor tasks. Thus, in
order to obtain more discriminative feature vectors for both
rest state and pedaling MI during Calibration phase, we pro-
pose to include patterns from passive pedaling movements in
the feature analysis. This approach is composed of the follow-
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Fig. 1 Proposed system for EEG processing and pedaling MI recognition. a Calibration phase; b online phase

ing stages: 1) Feature extraction using filtered EEG epochs of
1 s with rest state, MI and passive (real) movements motor
tasks; 2) Finding feature vectors ofMI closer to passivemove-
ments patterns; 3) Composing a new balanced calibration set
with the best feature vectors from MI and rest state to finally
calibrate the MI-based BCI.

The CSPmethod [9] and the Riemannian geometry [4,7,8]
were used independently or combined in our study for fea-
ture extraction, which operate on a set of covariance matrices,
computed in our case from EEG epochs of 1 s. The former
is a supervised spatial filter by Linear Discriminat Analysis
(LDA), widely used to extract the most discriminative fea-
tures X, which are obtained after projecting the set of covari-
ance matrices through a matrix P that only retains the first
and last m rows [11]. Similarly the set of covariance matri-
ces can be analyzed by Riemmanian geometry to calculate a
projection matrix P onto the tangential space, and obtain the
spatial feature set X. This implementation using Riemmanian
geometry can be performed by the functions covariances,
meancovariances, Tangentspace, available at.1 It is worth
mentioning that the projection matrix P is computed here in
both methods, only considering the covariance matrices from
rest state and pedaling MI.

The second stage aims to select the feature vectors from
pedaling MI which are more related to passive movements.
Let X ∈ R

N× f be a balanced feature vector set containing N
objects xi ∈ R

1× f linked to pedaling MI (first N/3 objects),
passive movements (next N/3 objects), and rest state (last
N/3 objects). The probability of each MI pattern to come
from the rest state is given by the Equations (1)-(3).

di j =
√
(xi − x j )(xi − x j )T , i �= j (1)

1https://github.com/alexandrebarachant.

pi j = exp(−di j )∑
i,i �= j

exp(−di j )
, (2)

p j =
N∑

i=2N/3+1

pi j , (3)

where i ranges from 1 to N , j takes values from 1 to 2N/3,
di j is the Euclidean distance between xi and x j , pi j is the
probability of xi and x j to correspond to a same class, p j

is the probability of x j be a pattern coming from the rest
state. Then, p j values is used as a threshold (p j > pth) in
order to select those MI patterns closer to rest state, as shown
in Equation (4). For further analysis, we denote M the total
non-rejected MI patterns.

pth = max {pmi } × (1 − |max {pmi } − max {prm} |) , (4)

where pmi is a set containing the probability p j ofMI patterns
( j = 1 to N/3), and prm is a set containing the probability p j

of real motor patterns ( j = N/3 + 1 to 2N/3).
Equations (1)-(3) are also used to find those M patterns

from rest state with less probability of be associated to those
non-rejected MI feature vectors. Let X contains first feature
vectors linked to rest state (N/3 objects), followed by the best
feature vectors from pedaling MI (next M objects), i ranges
from1 to N/3 + M and j takes values from1 to N/3 applying
nowEquations (1)-(2),while i ranges from N/3 + 1 to N/3 +
M for Equation (3) and each j value. Afterwards, a balanced
new calibration set is formed by EEG epochs containingmore
probable MI tasks (p j ≤ pth) and rest state.

Finally, the covariance matrices are again computed on the
new balanced set (with M EEG epochs per class), updating
their projection matrix P for obtaining the spatial features X.
Notice that Pwas also used for feature extraction over covari-
ance matrices of EEG epochs from the testing set (calibration

https://github.com/alexandrebarachant
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phase) and evaluation set (from the on-line phase).Also notice
that P can be computed again by CSP or Riemannian geom-
etry.

2.2.3 Feature Selection and Classification
Here, the new calibration set X from Riemmanian geometry
containing feature vectors from MI tasks and rest state are
analyzed through the Pair-Wise Feature Proximity (PWFP)
method to remove redundant features, usingFisher score com-
putation and feature similarity [4,12]. The best feature vec-
tors are used to compute the classification model, as shown
in Fig. 1(a). Three different classifiers based on discriminant
analysis were tested, such as LDA using diagonal or full
matrix, andRegularizedDiscriminantAnalysis (RDA). These
classifiers have been successfully applied for EEG based-
BCIs and achieved promising results to discriminate both
resting state and pedaling MI classes [4,7,13].

2.3 Statistical Evaluation

Both calibration and validation sets were employed to eval-
uate the EEG-based MI BCI, using our approach for robust
feature extraction through Riemannian geometry and/or CSP.
Here, the metrics Accuracy (ACC) and Kappa were used for
comparison.

3 Results and Discussion

As aforementioned, two frequency ranges were evaluated.
In addition, the BCI performance using our proposed method
was compared with the BaselineMethod (without probability
analysis).

Figures2 and 3 show the performance of the proposed
BCI (pBCI) in both Calibration and On-line phases, respec-
tively, over eight healthy subjects (P01 to P08) and two post-
stroke patients (PS1 and PS2) during both rest state and pedal-
ing MI recognition. On Calibration phase, our proposed BCI
(pBCI) achieved ACC values up to 76.98% (Kappa = 0.54)
and 75.93% (Kappa = 0.52) for healthy subjects and post-
stroke patients groups, respectively, using only Riemannian
geometry. On the other hand, when Riemannian geometry
was combined with CSP, ACC up to 68.00% (Kappa = 0.36)
and 73.45% (Kappa = 0.45) were achieved for each groups,
respectively. Finally, our approach, using only CSP, achieved
in each group ACC up to 73.21% (Kappa = 0.46) and 72.14%
(Kappa = 0.44), respectively.

The calibratedBCIwas used on the evaluation set (from the
Online phase) to recognize epochs of 1 s each 64 ms through-
out periods that each participant was performing pedaling MI
tasks to trigger the motorized pedal. As shown in Fig. 3, the
proposed BCI (pBCI) using only Riemannian geometry pre-

sented high accuracy or outperformed the Baseline Method
(BM) for almost all participants (except for Patient PS2). Par-
ticularly, our approach based on LDA using diagonal matrix
achieved on healthy subjects better performance (ACC up to
95.29%) than RDA or LDA using full matrix (for both ACC
up to 90.91%). Also, our approach reached low values (ACC
up to 15.09%) for PS1, increasing its performance for PS2
without outperforming BM.

In addition, Fig. 3 shows the results using Riemannian
geometry combined with CSP. For seven participants (P01,
P02, P03, P04, P06, P08 and PS1), pBCI achieved high accu-
racy or outperformed BM, similar when applying only Rie-
mannian geometry. For healthy subjects, LDA based on full
matrix presented better performance (ACCup to 98.18%) than
LDA using diagonal matrix and RDA. Furthermore, for PS1
the performance using pBCI increased notably (ACC up to
71.07%) compared to BM (ACC up to 0.16%).

Finally, the proposed system using only CSP presented
high accuracy or outperformed theBMboth for the six healthy
subjects (P01, P03, P04, P05, P06 and P08) and all post-stroke
subjects, as shown inFig. 3. Similar to our approachusingRie-
mannian geometry, CSP plus LDA based on diagonal matrix
achieved better performance for healthy subjects (ACC up to
98.43%) and PS1 (ACC up to 65.41%) than applying LDA
with full matrix or RDA. Furthermore, PS2 achieved high val-
ues for the pBCI (ACC up to 79.24%) using LDA with full
matrix and RDA, compared to BM (ACC up to 25.85%).

Notice that our approach using Riemannian geometry
achieved better results on the Calibration phase than apply-
ing CSP or Riemannian geometry plus CSP (mean ACC of
68.81%, 61.08%and 63.38%, respectively). Also notice in the
Online phase, Riemannian geometry plus CSP reached better
performance than using only Riemannian geometry or CSP
(mean ACC of 73.84%, 65.25% and 70.08%, respectively).

3.1 Further Discussion

BCIs based on MI may play an important role to motor reha-
bilitation in post-stroke patients, in cases where post-stroke
patients may need assistance to voluntarily initiate a move-
ment [4,7]. Then, our EEG-based MI system may improve
their lower-limb rehabilitation through triggering the motor-
ized pedal using MI. In [10], the authors presented a study
based on pedaling MI using 32 EEG channels to apply the
CAR filter and they explored different setups of electrode
configuration (between 4 and 9) and feature extraction meth-
ods in frequency domain (mean band power from the power
spectral density) to evaluate their system. Five healthy sub-
jects took part in the experiment and an accuracy of 55.1%
was obtained. In [7] a recognition system of pedaling motor
imagery using 19 EEG channels for lower-limb rehabilitation
was proposed, which used Riemannian geometry to improve
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the feature extraction. Ten healthy subjects were selected for
the tests, which consisted of two-stages in order to obtain
EEG dataset for calibration and validation. The recognition
system based on subject-specific bands achieved mean accu-
racy of 96.43%. Despite of the high accuracy, only ten healthy
subjects evaluated this approach, and a subject-specific band
location was not performed [7]. In [4], a low-cost BCI based
on 8 EEG channels for lower-limb motor recovery of post-
stroke patients was proposed using Riemannian geometry, in
which twopost-stroke subjects obtained accuracies of 41.67%
and 91.67%, and healthy subjects reached 100%. Although
high accuracy was reached, patients felt tiredness due to the
long time of Calibration phase [4].

As a highlight, our proposed system encourages the patient
to execute MI tasks and provide passive movements during
BCI calibration step. We hypothesize that our approach of
BCI intervention may be more effective for post-stroke reha-
bilitation, reducing patient’s boredom. In addition, the use of
real movements for obtaining the best features vectors from
MI and rest state may improve the BCI calibration, which can
make the BCI intervention more effective.

4 Conclusion

This work introduced an EEG-based MI BCI to recognize
pedaling motor imagery for post-stroke patient rehabilita-
tion, which improved its performance by applying methods
to select a better calibration set using probability analysis
and exploring different methods for feature extraction. Our
approach using Riemannian geometry plus CSP achieved bet-
ter result (mean ACC of 73.84%) when compared to other
methods. As a limitation of our study, we performed the anal-
ysis using a database. In future works, an experimental pro-
tocol will be carried out on healthy patients, using the pro-
posed system. Also, methods for subject-specific bands will
be explored.
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