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Abstract

Parkinson’s Disease (PD) is a neurodegenerative ill-
ness associated with dopaminergic loss in the basal
ganglia circuit which can lead to heterogeneous motor
symptoms such as tremor, rigidity and bradykinesia. The
electrophysiological phenomena underlying these symp-
toms is not completely understood, which imposes a
major challenge for designing customized and more
efficient Deep Brain Stimulation (DBS) protocols to
match patients’ specificities and needs. Recently, it has
been shown that elevated and prolonged beta (13–35 Hz)
oscillations (i.e. beta bursts) from the subthalamic nucleus
(STN) are associated with motor impairment in PD.
Furthermore, motor improvement induced by pharmaco-
logical treatment relates to attenuation of intermittent beta
activity. This work aims to analyze beta burst dynamics
of two phenotypes of PD patients—the tremor dominant
(TD) and the postural instability and gait difficulty
(PIGD)—to better understand how features of beta
oscillations correlate with the motor symptoms in such
different PD’s categories. Through a wavelet analysis of
35 LFPs recorded in the sensorimotor portion of the STN
from 15 TD and 20 PIGD patients, we show that PIGD

patients exhibit longer beta bursts, while TD patients
exhibit higher beta burst probability and an inverse
significant correlation of burst duration with the rigidity
score. These findings may provide critical markers for
characterizing the electrophysiological mechanism under-
lying PD phenotypes and their symptoms, as also
contribute to more efficient and customized DBS
strategies.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative ilness as-
sociated with dopaminergic loss in the basal ganglia circuit,
resulting in bradykinesia (i.e. slowness of movement),
rigidity and tremor as main core motor symptoms [1–3].
Bradykinesia/rigidity clinical scores are related to abnormal
beta band levels (13–35 Hz) in local field potential (LFP) in
subthalamic nucleus (STN) [4, 5], a surgical target for
continuous deep brain stimulation (cDBS) when pharmaco-
logical treatment is no longer efficient. The sucess of cDBS
can be attributed, at least in parts, to the attenuation of the
STN’s LFP beta power [6–8] under electrical stimulation at a
fixed frequency (e.g. 140 Hz).

Albeit efficacious, cDBS can introduce side effects such
as dysarthria, sleep disorders, sensory complains and pain,
besides higher battery drainage [9, 10]. These clinical and
technological drawbacks can be minimized with a better
understanding of the PD electrophysiological mechanisms,
as evidenced by the recently proposed adaptive DBS (aDBS)
strategies [9, 10].

It was shown that aDBS can be more efficient in terms of
battery life-time when a dual-threshold dependent on motor
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symptoms (tremor and bradykinesia) was adopted [12]. The
beta-band power has also been used to determine control
setpoints for driving the voltage amplitude applied to the
STN in conditions such as free-movement [9] or when
accompanied by treatment with levodopa [11]. Despite these
advances [13–16], it is unclear whether electrophysiological
features, especially beta band power, differ between the main
PD’s phenotypes—tremor dominant (TD) and postural
instability and gait difficulty (PIGD).

Moreover, beta activity occurs in an intermittent way, and
thus is better characterized in terms of time–frequency
events. This led to the concept of beta bursts, i.e. a
supra-threshold “package” of beta band activity, the
dynamics of which has been correlated with on and off
dopaminergic conditions [18]. In fact, prolonged beta bursts
has been proposed as a potential biomarker of motor
impairment in PD [17–19] and a candidate for driving the
voltage-levels in aDBS [20].

This work aims to analyze the beta bursts dynamics in
TD and PIGD phenotypes of PD observed in low (13–
22 Hz) and high- (22–35 Hz) beta frequency bands,
according to functional spectral division previously repor-
ted in the literature [19, 21–23]. Our findings may help to
partially elucidate the differences of voltage amplitude-
responsiveness between the PD phenotypes during aDBS
[12], therefore contributing to this therapeutic strategy, being
customized based on patients’ main clinical symptoms.

2 Materials and Methods

A. Patients

All patients (N = 25) were clinically diagnosed with PD by a
movement disorders specialist at Santa Marcelina Hospital
(São Paulo, SP, Brazil). The study was carried out in
agreement with ethical standards in which prior written
consent from Santa Marcelina Hospital Ethics Committee
(CAAE: 62,418,316.9.2004.0066) was obtained from each
patient. Patients were assigned as TD or PIGD phenotypes
according to the “Unified Parkinson’s Disease Rating Scale”
from the “Movement Disorders Society” (MDS-UPDRS) as
previously proposed in [24]. This classification considers the
ratio of mean tremor scores to mean gait-related scores [3].
For UPDRS III scale, patients with scores larger than or
equal to 1.5 were assigned as TD, while those with scores
lower than 1.0 were assigned to PIGD. For MDS-UPDRS
scale, patients with scores larger than or equal to 1.15 were
assigned to TD group, while those with scores lower than
0.9 were assigned to PIGD group. Patients out of these
ranges were considered indeterminate and were not

considered in the analysis. The resulting cohort (N = 24)
was composed of 11 TD, and 13 PIGD including 16 males
and 8 females with an average age of 55 years and an
average disease duration of 8 years. Thirteen patients
received bilateral DBS electrodes (5 TD and 8 PIGD), while
9 patients received unilateral implants (5 TD and 4 PIGD),
which amounted to a total of 35 LFP signals acquired (15
TD and 20 PIGD).

B. Surgery, LFP Recordings and Analysis.

The Surgical procedure was performed as previously
described in [7]. Briefly, the stereotactic localization of the
sensorimotor STN target was directly visualized (Fig. 1a)
using susceptibility weighted imaging (SWI) and
T2-weighted Magnetic Resonance Imaging (MRI) sequences
which are digitally fused with the stereotactic Com-
puted Tomography. Microelectrodes recordings were per-
formed by a set of three parallel 1 MX impedance tungsten
microelectrodes (microTargeting® electrodes, FHC, Green-
ville, MA, USA) in patients completely awake with their
eyes opened. Action potentials were amplified (10,000-fold)
and filtered (0.5–10 kHz, notch filtered at 60 Hz)—(Lead
Point—Medtronic, Minneapolis, MN, USA). Recordings
started at 5 mm above the STN and its corresponding dorsal
region was identified by an increase in the amplitude of the
background noise and irregular burst pattern. LFP
monopolar recordings were performed at 1 mm ventral to
the most dorsal border of the STN over the implantation
trajectory of the electrodes. Therefore, LFPs were recorded
in the sensorimotor STN sector, as close as possible to the
chronic DBS stimulating contacts (Fig. 1b). Signals were
sampled at 24 kHz, band-pass filtered (1 Hz to 200 Hz) and
recorded during 60 s at the resting-state condition.

C. Signal Pre-processing and Beta Burst Estimates.

The LFP STN signals were exported and post-processed in
Matlab 2018b. Signals were downsampled to 1 kHz, fol-
lowed by notch filtering at 60 Hz, band-pass filtering (6th
order bandpass Butterworth filter, 2–200 Hz) and z-scored
normalized. The frequency bandwidth aimed to preserve all
the main LFP sub-bands: theta (4–8 Hz), alpha (8–13 Hz),
low beta (13–22 Hz), high beta (22–35 Hz), low gamma
(35–100 Hz) and high gamma (100–200 Hz). The beta band
was divided into low beta (beta 1) and high-frequency beta
(beta 2) sub-bands as previously described in the literature
[19, 21–23] for capturing functional beta-band division.

Intermittent beta-band analysis was performed after LFP
filtering (6th order bandpass Butterworth filter) at low
(13–22 Hz) and high-frequency (22–35 Hz). Evaluation of
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beta oscillations was obtained by means of continuous
wavelet transform (CWT) using the Fieldtrip toolbox [17–
20]. Briefly, filtered LFP was convolved with a Morlet
wavelet function, which is composed of complex exponen-
tial function modulated by a Gaussian envelope. In order to
estimate a reliable intermittent beta activity, the number of
cycles and the length of the Morlet, were set following [18],
respectively to 10 cycles and 5 standard deviations of the
Gaussian kernel. The CWT coefficients were obtained for
each time–frequency point after the convolution operation
for each beta sub-band as shown in (Fig. 1c). Such coeffi-
cients were averaged within the respective beta sub-band at
each time instant, and, finally, z-scored normalized to pro-
vide the respective beta envelope (continuous red line in
Fig. 1d). Beta bursts intervals (shaded area in red depicted in
Fig. 1d) were determined by thresholding at 75th percentile
(blue horizontal dashed line) the envelope of beta envelope

strength according to the proposal presented in [17, 18].
Bursts with duration shorter than 100 ms were not consid-
ered for further analysis, since they may be associated with
background activity. In addition, a minimum interval of
60 ms between bursts was considered as a separation
criterion.

The beta bursts dynamic was characterized in terms of the
burst probability (BP, i.e. the number of bursts per unit of
time—bursts/s), the averaged burst duration (AVD, s) and the
averaged burst strength (AVS, a.d.) for each subject within
the TD and PIGD cohorts. Moreover, a dichotomization in
terms of short and long bursts was introduced according to
previous work of [17–19]. The burst duration was also con-
sidered separately for short (lasting from 100 to 600 ms) and
long (lasting more than 600 ms) bursts. Subsequently, it was
possible to introduce and analyze the percentage of shorter
durations (PSD) and the percentage of prolonged durations
(PPD), respectively. This dichotomized classification is jus-
tified by previous works, in which prolonged and elevated
bursts (i.e. durations > 600 ms) were associated with
abnormal motor symptoms [17, 18].

D. Supervised Learning.

A supervised learning approach was employed aiming to
characterize how informative the attributes are for predicting
the PD phenotypes, supporting the electrophysiological
characterization. PD phenotypes were predicted based on
burst dynamics parameters defined by the BP, AVS, AVD,
PSD and PPD. A leave-one-out cross-validation scheme was
adopted for data partitioning and linear discrimination
analysis (LDA) was employed for predicting PD phenotypes
[25]. Classification performance was accessed in terms of the
accuracy (acc), and the area under the receiving operating
characteristics (ROC) curve (AUC).

E. Statistical Analysis and Clinical Correlation.

The data is presented as mean ± standard deviation (SD).
Normality of parameter distributions was checked using at
least 3 statistical approaches: D’Agostino-Pearson, Shapiro–
Wilk and Kolmogorov–Smirnov tests. Nonpaired t-student
(or Mann–Whitney for non-normal distribution) hypothesis
tests were applied when suitable for comparing the BP, AVS
and AVD. The correlation coefficient (q) for burst parame-
ters and UPDRS clinical scores (tremor, rigidity and
bradykinesia) were evaluated for both PD phenotypes.
Pearson’s and Spearman’s coefficients were employed,
respectively, for normal and non-normal distributions.

Interaction between burst duration category (i.e. short <
600 ms and prolonged beta burst > 600 ms) and PD phe-
notypes (TD and PIGD) was investigated by a two-way

Fig. 1 Beta bursts estimates. Anatomical STN localization for DBS
surgery a and LFP recording site signal acquisition at 1 mm ventral to
the most dorsal border of the STN b. CWT coefficients heat map for
beta 1 estimates at each time–frequency point c. LFP filtered (black
continuous line), threshold (blue dashed line), beta burst envelope (red
continuous line) and shape (red shaded area) for beta 1 d
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mixed measurement analysis of variance with 2 vs. 2 design
(two burst lasting intervals vs. two PD phenotypes). PSD and
PPD were taken as the dependent variables underlying burst
duration categories. We hypothesized that the categorized
burst duration distribution may be indicative of the PD
phenotype and be correlated with the predominant PD motor
symptoms, (e.g. tremor for TD and bradykinesia for PIGD).
These comparisons for different categorized bursts for
specific phenotypes were performed using post-hoc tests
with Bonferroni’s corrections for multiple comparisons. In
all statistical analyses, the significance level for statistical
differences was defined lower than 0.05.

3 Results

Beta 2 sub-band did not present any significant difference in
the beta burst dynamics between the PD phenotypes, while
beta 1 revealed that PIGD patients exhibited bursts with
longer durations and TD patients exhibited a higher proba-
bility of bursts. Phenotypes classification performance based
on such parameters agrees with their statistical distribution
distinction, as evidenced by AUC for AVD and BP. Statis-
tical and classification analyses are summarized in Table 1.

The strength of beta burst was positively correlated with
burst durations (data not shown) for both phenotypes in both
beta sub-bands as previously obtained for burst evaluated in
patients with and without dopaminergic medication [18].
Moreover, it was observed that beta 1 AVD were moderately
negatively correlated with tremor symptom score (Fig. 1a)
with a negligible correlation for both phenotypes
(q = −0.073, p = 0.803, TD; and q = −0.073, p = 0.912,
PIGD). Bradykinesia exhibited analogous results,
(q = −0.295, p = 0.285, for TD and q = −0.001, p = 0.997
for PIGD), while TD patients exhibited a significantly
inverse negatively correlated behavior with rigidity
(q = −0.704, p < 0.001) as shown in (Fig. 2b).

The mixed two-way analysis of variance showed no
significant interaction between the percentage of short and
long bursts with the PD phenotypes (Fratio = 2.591,
p = 0.117) for beta 1 as shown in Fig. 3a, whereas a sig-
nificant difference was observed between percentage of short
and long bursts (Fratio = 4434, p < 0.0001). Main effect for
phenotype was also detected (Fratio = 4.684, p = 0.038),
although post-hoc comparison between TD and PIGD
revealed that PSD and PPD did not differ between TD and
PIGD (p = 0.225 for both variables). The phenotype clas-
sification performance (Fig. 3b) indicated that the burst
duration did not aid phenotype discrimination, suggesting
that burst duration category definition (duration threshold)
and their distributions in phenotype classes can play a key
role.

4 Discussion

In this work, we aimed to employ wavelet analysis to
characterize the intermittent beta activity of LFP recordings
from STN in different PD phenotypes (TD and PIGD), under
the hypothesis that beta activity may be associated

Table 1 Mean ± SD of the beta
burst dynamics parameters (AVD,
AVS and BP) for beta 1 and beta
2 sub-bands

Beta 1 sub-band

Feature TD PIGD p acc (%) AUC

AVD (ms) 257 ± 24 278 ± 28 0.023# 69.70 0.706

AVS (a.d.) 0.580 ± 0.059 0.554 ± 0.097 0.353 48.40 0.488

BP (bursts/s) 0.903 ± 0.068 0.841 ± 0.081 0.023* 72.70 0.714

Beta 2 sub-band

AVD (ms) 189 ± 12 196 ± 18 0.194 48.40 0.586

AVS (a.d.) 0.648 ± 0.048 0.637 ± 0.059 0.572 57.50 0.496

BP (bursts/s) 1.029 ± 0.065 1.024 ± 0.093 0.860 30.30 0.165

Moreover, the p-value for comparison of the mean is reported in tandem with accuracy (acc) of class
prediction and AUC
* P < 0.05, unpaired t student test
# P < 0.05, unpaired Mann–Whitney test

Fig. 2 Linear regression (continuous) and error bars (dashed lines) and
correlation coefficient (q) for AVD between tremor a and rigidity
b clinical scores for TD (blue) and PIGD (B) PD phenotypes. * denotes
significant correlation
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with predominant motor symptoms (i.e. tremor vs.
bradykinesia-rigidity). We show that the beta burst dynamics
for TD and PIGD patients differs in terms of burst duration
and probability, providing informative features for pheno-
types prediction. PIGD patients exhibit longer bursts, while
TD patients exhibit higher burst probability. The average
burst duration was also negatively correlated with the
rigidity score only for TD cohort. This suggests that pro-
longed beta burst affect the rigidity differently in the TD and
PIGD phenotypes. Previously, Eisinger et al. (2020) [26]
have investigated the burst dynamics in STN and globus
pallidus recordings, showing no significant correlation
between rigidity and beta burst parameters. The divergence
with our findings may be related to the lack of a phenotypic
division of PD patients and the definition of a narrow beta
sub-band (14–18 Hz) in their work. Interestingly, our find-
ings support the findings to the works of [19, 21], in which
beta 1 seems to manifest the physiopathology of the
basal ganglia circuit, whereby the beta 1 bandpower was
significantly and positively correlated with hemibody
bradykinesia/rigidity [21].

Since it has been previously shown that prolonged bursts
(> 600 ms) are associated with pathological behavior in
dopaminergic off medication [18], we have analyzed the
burst dynamics under the dichotomized categories of short
and longer bursts following the same criterion. In this case,
we verified that systematic differences of PSD and PPD
bursts were the same for the different PD phenotypes, i.e. no
interaction was found. In addition post-hoc tests did not
reveal any difference between short and long burst duration
percentages of PD phenotypes, despite main effects have
been found. Classification based on PPD bursts was per-
formed also slightly better than a random classifier. As a
general explanation, the dichotomization into short and long
burst shows that PIGD tends to exhibit longer bursts than
TD, but the difference in terms of the BP (i.e. number of

bursts for PIGD is lower than TD) may also impact on the
statistics of such division, justifying the observed results. It
is also conceivable that the original burst duration threshold
definition was introduced based on longer recordings and
chosen in terms of specificities of the distributions obtained
in that situation [18], which, probably, would require a more
detailed analysis for a suitable extrapolation to other
datasets.

From the methodological standpoint, the multiparametric
adjustments of wavelet analysis to extract beta bursts
envelope is also a matter of debate. Accurate measure-
ment of beta burst features, although promising, still may be
suboptimal and the differences between conditions/
phenotypes may be masked by several parameters. The
approach employed here was recently proposed [17–19] in
order to facilitate further comparisons. In fact, thresholding
the envelope at 75th percentile may bias the results [27] and
more robust strategies have been discussed recently [17–19].
Finally, apart of the CWT, beta bursts can be also estimated
via the Hilbert Transform (HT). Depending on the
adopted approach (i.e. CWT or HT), a proportion of bursts
of different duration in free-movement conditions is different
for each phenotype [28]. The employment of HT to this
dataset could arguably provide different results than the
current findings, since HT-based method usually results in
higher distribution of shorter bursts [27, 28] when compared
to CWT. This alternative approach illustrates the different
results observed in comparison to CWT.

5 Conclusions

In this work, we have shown through a statistical and
supervised learning approach that beta burst dynamics dif-
fers between TD and PIGD phenotypes. More specifically,
PIGD patients exhibit longer bursts, while TD patients
exhibit a higher burst probability. Both variables provided
phenotype classification performance considerably superior
than a random classifier, suggesting that beta burst dynamics
is a meaningful electrophysiological feature to distinguish
the different PD phenotypes. Moreover, mean burst duration
was negatively correlated with rigidity just for TD patients,
illustrating how PD’s electrophysiological LFP correlates
can be distinct for different phenotypes. As a major con-
clusion, we observed that TD and PIGD phenotypes of PD
exhibit different electrophysiological fingerprints, as cap-
tured here through the burst dynamics. These findings
deserve careful attention since burst dynamics can provide
crucial control variables for distinct aDBS strategies ac-
cording to PD phenotypes.

Fig. 3 Dichotomized distribution for PD phenotypes (TD and PIGD)
of the percentage of shorter beta burst (100–600 ms—PSD) and
prolonged beta bursts (> 600 ms—PPD) a. Prediction of PD pheno-
types according to PPD beta bursts b. The classification acc and AUC
are shown
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