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Abstract

Measurement of blood pressure is critical for patients with
cardiovascular disease. Using a cuff sphygmomanometer
with non-invasive registration is currently the most
common practice since its fast and does not require
an experienced operator. However, it does not allow
continuous pressure monitoring and the discomfort of
the procedure can discourage consistent use. Photo-
plethysmography (PPG) is a technique increasingly used
for non-invasive, portable devices to monitor arterial
oxygen saturation (SpO2), heart rate and, more recently,
for glycemic control. In this study, we evaluate different
methods to estimate blood pressure using PPG. Two
methods presented are adapted from the literature, while
the third is an improvement proposal. Multiple linear
regression (MLR), artificial neural network (ANN),
support vector machine regression (SVR) and decison tree
regression (DTR) using temporal and spectral PPG fea-
tures are evaluated. Principal component analysis (PCA)
is used in order to reduce dimensionality. The MIMIC
(Multiparameter Intelligent Monitoring in Intensive Care)
database is used to train and evaluate the approaches.
Results indicate that the proposal improves diastolic
(DBP) and systolic (SBP) blood pressure estimation with
mean absolute errors (MAE) of 6.52 ± 5.75 mmHg and
13.19 ± 11.90 mmHg, respectively.
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1 Introduction

Primary hypertension is an intermediate risk factor for cardio-
vascular disease (CVD) and affects more than thirty million
people in Brazil [1]. The treatment for this incurable, chronic
disease consists in lifestyle changes, use of antihypertensive
medications as well as daily blood pressure monitoring [2].
Hypertension is also one of the major comorbities and an
important risk factor for COVID-19 mortality [3]. Common
methods used for the measurement of arterial blood pressure
(BP) are the auscultatory and oscillometric, which estimate
maximum (systolic) and minimum (diastolic) BP pressure
[2]. However, these methods have some disadvantages. To
perform this procedure, artery must be occluded to interrupt
the blood flow in the measurement region, causing discom-
fort to the patient [4,5]. It also precludes online and continu-
ous monitoring, which, when needed, often use more invasive
techniques [6].

Due to the limitations of the traditional bloodpressuremea-
surement, several non-invasive methods are being researched
to provide greater comfort and safety for continuous pressure
monitoring [6]. Among the biological signals with potential
for continuous and non-invasive pressure monitoring applica-
tions, photoplethysmography has shown great promise since
PPG signals are non-invasive and require simple optical sen-
sors (see Fig. 1).

Given the widespread use of PPG signals in HR (Heart
Rate) and SpO2 monitoring [7], and, even glicemic control
[8], it is also a very robust and well known technology. Thus,
several groups have been studying the application of PPG
signals to estimate blood pressure. Kachuee et al. [9] demon-
strate a technique called pulse transit time (PTT), which uses
PPG and electrocardiography (ECG) signals to estimate aver-
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Fig. 1 Photoplethysmography (PPG) technique

age BP within an 7.52 ± 9.54 mmHg mean absolute error
(MAE) range. Also, Nabeel et al. [10] shows that one can use
two PPG signals acquired from different parts of the body to
assess the average BP within an 0.96 ± 6.77 mmHg mean
error (ME) range in a method called pulse wave velocity
(PWV). Although these methods have achieved interesting
results they also add implementation complexity due the use
of two sensors and the performance sensitivity to synchroniza-
tion issues between the inputs. Also, when the method also
requires using a signal other than PPG (f.i. ECG is required
in the PTT method) this furthers increases the hardware for
signal conditioning.

To reduce hardware complexity some authors have pro-
posed algorithmsusingparameter extracted froma singlePPG
signal. Methods using features in time [11,12] and frequency
[13] domains, or both [14], have been explored. Among these
studies, [11,13] have results within the standards proposed
for BP measurement [15]. However, in similar studies such
as [14,16,17], found error to be above the requirements to
meet the standard. There is room, therefore, to subsequent
work that helps clarify this divergence.

This paper aims to reproduce and compare the features
extraction methods reported by Kurylyak et al. [11] and
Xing and Sun [13] and compare the performance of different
machine learning algorithms for BP measurement in order to
assist in the investigation of these reported error differences.
Themethod reported byKurylyak et al. [11] uses time domain
features of the PPG signal to train an artificial neural network
(ANN) to estimate the BP. In [13], an ANN is trained using
frequency domain features of the PPG signal. In addition,
in this work, an algorithm is proposed to estimate systolic
and diastolic pressures using the principal component analy-
sis (PCA) technique with time and frequency domain features
and machine learning classification.

This work is organized as follows: Sect. 2 presents the
generalmethodology. Section 3describes the experiments and
results achieved. Finally, in Sect. 4 a general discussion and
the main conclusions are presented.

2 Methodology

Tests were performed to evaluate the impact of the follow-
ing issues on the BP measurement error: signal feature selec-
tion and dimensional reduction of those features; signal range
used; and, finally, choice of regression algorithms.

2.1 Database

Data was extracted from the database presented in [9], which
is a preprocessed and validated version of the MIMIC II [18],
consisting of 3363 signal segments of at least 10min, sampled
at 125 Hz with a minimum resolution of 8 bits. PPG signals
were captured at the fingertip, while ECG lead II and an inva-
sive blood pressure signal were recorded simultaneously.

A few signals of this database contain movement artifacts.
By visual inspection, these sections were identified and the
entire section was discarded from the beginning of the move-
ment artifact to the end of the signal. A total of 147 blocks
were discarded in this step, which corresponds to 658minutes
of signal.

Finally, the detection of peaks and valleys was made using
the algorithm presented in [19], which separates the PPG sig-
nal in segments and classifies each one as positive slope or
negative slope. When a transition from a positive slope to
a negative slope segment occurs, the maximum value in the
segment with the latest positive slope is considered to be the
peak value in the signal. Similarly, when a transition from
a negative to a positive slope occurs, the minimum value in
the segment with the latest negative slope is considered to
be the valley value of the signal. An 8 points (64 ms win-
dow) constant segmentation was used. This algorithm was
chosen due to the simplicity of being implemented in embed-
ded devices. The detection of peaks and valleys is important
both for extracting the features in the time domain and for
determining the cycle used for the features in the frequency
domain.

2.2 Extracted Features

Kurylyak et al. [11] used 21 temporal features of PPG signal
to train ANNs (see Fig. 2). The high number of features were
used because of the variability of the data between different
individuals to the same pressure value due to physiological
characteristics of each individual.

Xing and Sun [13] used normalized PPG signals by apply-
ing a simplified model of volumetric expansion of arteries in
order to reduce the influence of the variability of the elastic
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Fig. 2 Extracted features of PPG signal

properties of the arteries between different individuals. After
normalization, intervals containing a complete cardiac cycle,
10 % of the previous and 5 % of the following cycle are taken
and zeros are added until 150 points are obtained. After that,
the fast Fourier transform (FFT) of these intervals were per-
formed and the module/phase information up to 10.8 Hz was
used to train an ANN with a hidden layer of 35 neurons and
two outputs, one for the SBP and the other for the DBP.

In this work, two configurations to extract features based
in [11,13] were used. The first, extracts the 21 time domain
features described in [11] while the second applies a normal-
ization and extracts the frequency domain features described
in [13]. A normalization different from the described in [13]
was used, given by the Eq. 1, which is also very effective
according to [20].

PPGnorm = PPG0 −min(PPG0)

max(PPG0)−min(PPG0)
(1)

2.3 Dimensionality Reduction

To reduce the dimensionality of the extracted features, Pear-
son correlation coefficient,Relief [21] algorithmandprincipal
component analysis (PCA) are used.

Pearson correlation coefficient and Relief weights were
calculated in correlation to each feature and the SBP value.
The dimensionality reduction by these two methods was per-
formed considering only the eight characteristics with the
highest weights when using Relief or with the highest coeffi-
cients when using Pearson.

When using PCA, the components that account for at least
95 % of the variability of the input data were considered.

2.4 Blood Pressure Ranges

Some tests were done training the algorithms using data in the
entire pressure range available in the dataset. In the other cases
we followed the methodology described in [12], in which the
data was divided into three categories according to the SBP
values - hypotensive (80–100 mmHg), normotensive (100 to
140 mmHg) and hypertensive (140–180 mmHg). The algo-
rithms were then trained in each of these ranges.

2.5 Regression Algorithms

To estimate systolic and diastolic blood pressures from the
features of the PPG signal, four regression algorithms were
used: multiple linear regression (MLR), ANNs, support vec-
tor machine regression (SVR) and decision tree regression
(DTR).

The coefficients for MLR were obtained by the least
squares method and the neural network used was a multi-
layer perceptron (MLP) with a hidden layer of 35 neurons
and two neurons in the output layer (one for SBP and one for
DBP). For SVR and DTR algotihms, linear kernel and binary
trees were used, respectively.

3 Experiment and Outcomes

The development of the experiment took place through a set
of evaluations carried out in the methods described in sec-
tion II. A total of twenty-four tests were performed, varying
different parameters of the method proposed in [11]. Fifteen
tests were performed varying the parameters of the method
described in [13] and sixteen tests were performed following
the method proposed in this article, which combined the time
and frequency features of PPG signal The evaluations carried
out on these three cases are illustrated in Fig. 3 by the test
flow diagrams.

Tables 1 and 2 demonstrate the test results for the methods
proposed in [11,13]. The tests were performed according to
the test flowdiagramdescribed in Fig. 3. In these experiments,
tests were performed with different features, different regres-
sion algorithms and regressors for different pressure ranges.

All results obtained employ the MAE and standard devi-
ation (SD) of the pressure errors as a performance metric.
As already mentioned, for MAE and SD to meet the require-
ments proposed in [15], theymust remain below5± 8mmHg,
respectively.

The best results obtained for the method proposed in [11]
for systolic pressure were with the use of ANN, in which a
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Fig. 3 Test flow diagrams: a method 1 corresponding to proposed
method in [11]; b method 2 corresponding to proposed method in [13]
and c method 3 corresponding to the proposed method in this work

MAE of 15.58 ± 14.78 mmHg was obtained for SBP and
7.34 ± 7.05 mmHg for DBP. For the method proposed in
[13], the best results were 21.97 ± 16.79 mmHg for SBP and
6.97 ± 5.73 for DBP using the SVR regression algorithm, as
seen in Table 2. Note that the obtained results for both cases
are far from the standards described in [15].

The method proposed in [11] produces the best result for
a general test when compared to other regression algorithms.
However, the regression algorithms for fractional pressure
ranges shown inTable 1 presented superior performance, even
in tests with a reduced number of features using the Relief
algorithm and also using the principal components given by
PCA dimensionality reduction shown in Table 3. Applying

the method proposed in [13], it can be observed that for a
test in the general pressure range the ANN regressor is not
better than the SVR regression algorithm. In addition, the
input feature reduction using PCA to 12 principal components
can improve the performance of this method as shown in the
Table 1. However, the most promising approach was the one
in which the general pressure range was divided into three
sub-ranges.

In order to improve the results obtained by the regres-
sion algorithms presented in [11,13], a new approach was
proposed using the features of both methods with a dimen-
sionality reduction by PCA. In this approach, the parameters
were reduced from 47 to 13 principal components. With this
approach, a better result was obtained when compared to the
tests of the other two methods shown in the Tables 1, 2, 3, and
4, as can be seen in Table 5.

4 Conclusions

In this study, we developed an experiment to reproduce the
methods presented in [11,13] and, based on those we propose
a new method. A summary of the results obtained in previous
works and the results obtained in this study is given in Table 6.

From the results obtained, it was observed that, in general,
the proposed method, using the temporal and spectral charac-
teristics of the PPG signal, improves the blood pressure esti-
mation in comparison to the other two methods. In addition,
better results were observed in tests in which the algorithms
were trained only in certain pressure ranges in comparison
to when they were trained in the entire available range. This
difference is more evident in the estimation of SBP.

Regarding the reproduced methods, it should be noted
that the results obtained in this study agreed with the results
obtained in [16,17]. As for the regression algorithms, in gen-
eral the DTR presented the highest MAE values. The lowest
MAE values were obtained using SVR with linear kernel,
which indicates a predominantly linear relationship between
characteristics and blood pressure values.

Most results are outside the range determined by AAMI,
especially those referring to SBP. Despite this, some obtained
results for DBP and SBP are within the range of 5± 8mmHg,
which demonstrates the feasibility of extracting blood pres-
sure only with the use of PPG signs.

The results indicated that the proposed method could
improve the blood pressure estimation by evaluating the tem-
poral and spectral features extracted from the acquired PPG
signal. The exploration of additional characteristics of PPG
signals and their normalization in order to eliminate differ-
ences in these signals due to characteristics such as variabil-
ity in the elasticity of arteries among individuals should be
explored in future works, with the potential to obtain better
results.
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Table 1 Results for the method proposed in [11] according to the pressure range

Range Method DBP (mmHg) SBP (mmHg)

Full range MLR 7.57± 6.36 16.98± 12.53

DTR 9.68± 10.20 19.34± 17.84

RNA 7.34± 7.05 15.58± 14.78

SVR 7.19± 6.82 16.81± 13.48

80–100 mmHg MLR 6.65± 6.16 5.63± 3.42

DTR 7.20± 5.67 4.39± 4.24

RNA 5.36± 6.29 5.63± 3.75

SVR 6, 12± 5.94 5.58± 3.22

100–140 mmHg MLR 6.51± 5.90 9.80± 6.64

DTR 8.57± 11.65 11.58± 9.43

RNA 6.49± 5.78 8.49± 6.19

SVR 5.68± 5.73 10.45± 6.84

140–180 mmHg MLR 8.25± 7.75 9.17± 5.44

DTR 8.38± 8.88 9.73± 6.96

RNA 7.63± 6.57 8.78± 5.49

SVR 7.52± 6.94 8.82± 5.25

Table 2 Results for the method proposed in [13] according to the pressure range

Range Method DBP (mmHg) SBP (mmHg)

Full range DTR 10.05± 9.84 24.89± 21.51

RNA 9.16± 7.43 22.08± 16.74

SVR 6.51± 5.73 21.97± 16.79

80–100 mmHg DTR 8.46± 7.86 6.28± 4.61

RNA 6.68± 7.13 5.47± 2.87

SVR 7.61± 7.65 6.06± 3.50

100–140 mmHg DTR 10.51± 12.20 10.72± 8.32

RNA 7.71± 5.85 8.89± 6.34

SVR 4.54± 3.48 8.41± 6.02

140–180 mmHg DTR 11.31± 11.06 13.16± 9.15

RNA 10.21± 10.00 11.09± 8.48

SVR 6.67± 5.86 11.44± 8.63

Table 3 Results for the method proposed in [11] according to the number of features

# caract. Method DBP (mmHg) SBP (mmHg)

8 MLR 7.80± 6.50 19.75± 12.88

DTR 8.67± 9.50 20.74± 19.32

RNA 7.45± 6.77 14.81± 13.23

SVR 7.00± 6.81 19.86± 13.13

2 (PCA) MLR 8.26± 6.20 22.68± 12.60

DTR 9.29± 8.92 23.54± 19.25

RNA 8.03± 6.55 17.87± 13.34

SVR 7.30± 6.76 21.49± 12.35



1914 G. S. Cardoso et al.

Table 4 Results for the method proposed in [13] using 12 principal components

Method DBP (mmHg) SBP (mmHg)

DTR 9.81± 9.30 24.68± 20.80

RNA 7.16± 5.81 21.19± 17.04

SVR 6.54± 5.77 21.99± 16.94

Table 5 Results for the proposed method using both time and frequency domains features according to the pressure range

Range Method DBP (mmHg) SBP (mmHg)

Full range MLR 6.89± 5.34 15.25± 12.86

DTR 9.46± 8.66 15.82± 14.93

RNA 6.68± 5.18 13.58± 10.53

SVR 6.52± 5.75 13.19± 11.90

80–100 mmHg MLR 6.56± 5.33 5.12± 4.13

DTR 6.79± 7.15 4.42± 3.71

RNA 4.85± 6.52 2.29± 2.52

SVR 4.95± 6.00 4.85± 4.60

100–140 mmHg MLR 7.04± 5.22 7.50± 6.45

DTR 9.14± 12.87 7.56± 7.23

RNA 5.03± 5.87 6.58± 5.46

SVR 4.92± 5.51 6.76± 6.49

140–180 mmHg MLR 9.33± 7.39 8.60± 5.80

DTR 10.72± 9.74 9.63± 6.78

RNA 7.63± 8.15 6.18± 4.37

SVR 6.63± 7.36 6.29± 5.53

Table 6 Comparison of the results of this paper with other works

Work Signal Error SBP (mmHg) DBP (mmHg)

[9] ECG+PPG MAE ± SD 12.38± 16.17 6.34± 8.45

[10] PPG ME ± SD 1.15± 7.98 0.86± 6.36

[11] PPG MAE ± SD 3.80± 3.46 2.21± 2.09

[12] PPG ME ± SD −0.1± 6.5 −0.6± 5.2

[13] PPG ME ± SD 0.06± 7.8 0.01± 4.66

[14] PPG MAE 9.43 6.88

[20] PPG MAE ± SD 3.97± 7.99 2.43± 3.37

[22] PPG MAE 4.47 3.21

[23] PPG MAE ± SD 11.64± 8.20 7.62± 6.78

[16] PPG MAE ± SD 8.54± 10.9 4.34± 5.8

[17] PPG MAE ± SD 1.87± 7.20 0.79± 3.40

Our PPG MAE ± SD 13.19± 11.90 6.52± 5.75
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