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Abstract

Population aging and the increasing costs of health care,
especially for the elderly affected by chronic diseases,
requires new medical assistance strategies that makes it
possible tomonitor these people remotely and provide reli-
able information on their routines. In this context, human
activity recognition (HAR) systems are an important ele-
ment to overcoming theproblem.Therefore, this paper pro-
poses aHARsystemprototype containing amultilayer per-
ceptron (MLP) as a classifier. The model hyperparameters
were selected using a publicly available dataset. Then, data
was collected from accelerometers and gyroscopes embed-
ded in wearable devices of 15 subjects while performing
six basic activities (walking, sitting, lying down, stand-
ing, walking upstairs andwalking downstairs). The system
reached an average accuracy of 90.74% and weighted F-
measure of 90.03% based on leave-one-subject-out cross-
validation.
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1 Introduction

The population aging is a global scale phenomenon. As a
result, virtually all countries around the world are experienc-
ing an increase in the proportion of elderly people among their
inhabitants. In Brazil, according to the 2018 review of the
Population Projection, conducted by the Brazilian Institute of
Geography and Statistics (IBGE), about 25.5% of Brazilians
will be over 65 years old in the year 2060 [1]. In this sce-
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nario, the health care of these people needs special attention,
especially when they are affected by chronic diseases.

The main types of these diseases are cardiovascular dis-
eases, cancer, diabetes and others that together are responsible
for a high number of deaths and life quality reduction in sev-
eral countries. In addition, when neglected or not adequately
treated, these diseases are responsible for reducing family
income, since treatment is usually a prolonged and expensive
process [2]. Thus, in order to mitigate such consequences, it
is necessary to employ complementary strategies to monitor
people’s habits and health, making it possible to recognize
changes that may highlight more serious conditions, espe-
cially for individuals who are in advanced age.

In this context, human activity recognition (HAR) systems
present a growing importance, since it is a strategy capable
of assisting medical teams in the accompaniment of their
patients, especially the chronically ill, who must follow a
well structured routine of activities and exercises in their daily
lives [3].

Several studies on HAR use publicly available datasets
with samples generated by inertial sensors located at differ-
ent parts of the human body. The data are used for training and
testing machine learning models, where the most frequently
employed are: k-Nearest Neighbors (kNN) [4–6], Support
Vector Machines (SVM) [4–7], Artificial Neural Networks
(ANN) [6–8] and even complex deep learning models [9,10].

Considering the importance of building a prototype for
a real application with chronic elderly patients, this work
proposes and validates a prototype of an inertial sensor data
acquisition and activity recognition system. The data acqui-
sition system is based on a mobile application developed to
capture the data generated by the inertial sensors through a
smartphone. 15 healthy subjects participated in this study.
The recorded data are used in the tests of the human activ-
ity recognition system, which employs an ANN as a clas-
sification algorithm. The activities performed belong to two
categories: static activities (lying, sitting and standing) and
dynamic activities (walking, walking upstairs and walking
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downstairs). After the acquisition, the data are provided to
the other stages of the process, which consist of: filtering, seg-
mentation, feature extraction, classification and evaluation.

Another contribution of the work lies in the fact that the
selection of parameters of the ANN is performed in a publicly
available dataset and is trained and evaluated in a different
dataset, built with the developed prototype.

2 Materials andMethods

2.1 Application

The application developed for data acquisition was pro-
grammed in Java through the Android Studio IDE. Its
interface can be seen in Fig. 1. The software connects to the
monitoring devices through bluetooth low energy (BLE).
Then, some parameters can be defined, such as the sampling
frequency, the label of the activity that will be executed and
the identification code of the participant. The time period for
data collection is pre-determined by the application.

Once these parameters are established, it is possible to
start capturing the signals by pressing the “start acquisition”
button. Thus, the application sends a command that enables
the sensors and starts the storage of the data that are returned
by them. The information received is organized in a table
format, where each sample obtained receives a time label, the
identification code of the subject and the label of the activity
being developed.

2.2 Data Acquisition

In compliance with the National Health Council Resolution
No. 466ofDecember 2012,which establishes rules andguide-
lines regulating research involving human beings, this project
was submitted to and approved by the Ethics and Research
Committee of the Federal Institute of Espírito Santo through
the “Plataforma Brasil” (CAAE 89787518.5.0000.5072).

Data collectionwas carried out in a laboratory environment
with individuals over 18 years of age. A total of 15 healthy
volunteers participated. All of them wore a device tied to the
right wrist and another at the waist. The devices adopted were
the SimpleLink™SensorTag CC2650STK from Texas Instru-
ments, which contains a number of ten sensors, including an
inertial measurement unit MPU-9250 from InvenSense, used
in this work. The place of attachment on the body was defined
based on the activities of interest. Figure2 illustrates the posi-
tions at which the devices were attached.

The sensors were configured with a range of ± 8G for
the accelerometer and± 250◦/s for the gyroscope. According
to [11], human activity recognition improves with higher
sampling frequencies, but such gains are smaller at rates above

Fig. 1 App interface

Fig.2 Body locations where SensorTagswere attached: one at the waist
and the other at the right wrist
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20Hz. Therefore, in order to ensure better results, a frequency
of 50Hz has been set for capturing data from the sensors used.

2.3 Signal Preprocessing

In its raw form, the recorded data may present noises and
errors related to the acquisition process, interfering negatively
on the performance of the HAR system. Therefore, prepro-
cessing is necessary in order to prepare the data for the con-
secutive steps.

Thus, to recover the corrupted information, a linear
interpolation was adopted at these locations. Furthermore,
a 3rd order Butterworth low-pass filter (LPF) with a cutoff
frequency of 20Hz was used to reduce noise present in the
signals. This choice is related to the characteristics of human
body movements, which mainly have frequency components
lower than 20Hz [12].

2.4 Segmentation

The signal segmentation is intended to accommodate the data
in reduced blocks, from which will be extracted the features
that will allow the classifier to distinguish one activity from
another. The determination of the type and size of such block
must consider not only the characteristics of the activities of
interest, but also the balance between amount of information
and computational cost.

The activities of interest of this work have periodicity char-
acteristics. In this case, based on previous proposals found in
the literature, the sliding windows method presents promis-
ing results, with two second windows showing a good rela-
tionship between amount of information and computational
cost [3,13,14].

Thus, segmentation in two seconds blocks was adopted,
resulting in data windows with 100 samples. In addition, an
overlap of 50% between adjacent windows was defined. This

strategy provides a greater amount of data, in addition to
ensuring smooth transitions between neighboring windows,
a desirable feature when handling continuous data [15].

2.5 Feature Extraction

The features, or attributes, can be classified according to
which domain they belong, and frequently those of the time
and frequency domains are adopted.

In this way, attributes from both domains were extracted in
the proposed system. Additionally, new data were generated
from the raw sensor readings, such as the root mean square
(RMS) of the accelerometer and gyroscope readings, the
extraction of the gravitational component of the accelerome-
ter by applying an LPF with a cutoff frequency of 0.3 Hz, and
the application of the first derivative in certain components.

Tables1 and 2 show the features that were adopted and
from which data were extracted (marked with “X”).

Based on the tables, the resulting feature vector has a total
of 156 attributes. In order to minimize influences caused by
the different orders of magnitude of the sensors to the classi-
fication, the attributes were scaled by the Z-score.

2.6 Model Selection

The model selection aims to optimally combine the inter-
nal parameters of a machine learning algorithm in order to
improve its performance during the execution of a given task.
Thus, the following parameters of MLP were evaluated for
best performance: the number of hidden layers, the number
of neurons in these layers, the initial learning rate, the activa-
tion and optimization functions, and the momentum.

As highlighted in [7,16], adopting different datasets neg-
atively influences the overall accuracy of the classifier due to
variations in the data of one dataset in relation to the other.
However, since the performance achieved by the HAR system

Table 1 Features extracted from the accelerometer data

Features Raw (X,Y,Z) RMS Grav. (X,Y,Z)

Mean X X X

Median – X X

Standard deviation X X X

Variance – X X

Minimum value – X X

Maximum value – X X

Kurtosis – X X

Skewness – X X

Spectral energy X – –

Spectral entropy X – –
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Table 2 Features extracted from the gyroscope data

Features 1st deriv. (X,Y,Z) RMS 1st deriv. (RMS)

Mean X X X

Median X X –

Standard deviation X X X

Variance X X –

Minimum value X X –

Maximum value X X –

Kurtosis X X –

Skewness X X –

Spectral energy – – –

Spectral entropy – – –

becomes less dependent on a specific dataset, this approach
can benefit your evaluation by making it more realistic. Thus,
a publicly available dataset, distinct from the one developed
in this work, was adopted for model selection.

The dataset selected was the Opportunity dataset [17,18].
This set contains information from multiple sensors modali-
ties, collected while four subjects performed daily activities
in a laboratory similar to a residential kitchen. However, only
data from accelerometers and gyroscopes tied to the user’s
body and in positions similar to those defined in this work
were selected. Then, the same procedures described above
were applied to this subset.

Therefore, the selection was made using the grid search
tool, present in the Scikit-learnmachine learning library [19].
This strategy performs a search within a range of predefined
parameters and selects the configuration that obtained the best
performance based on some evaluation metrics, in this work,
the weighted F-measure. The data splitting and the classifier
evaluation were implemented based on leave-one-subject-out
cross-validation (LOSOCV). This technique ensures that data
from the same individual does not appear in training and test
sets at the same time.

2.7 Classification

Once the MLP network hyperparameters were defined, the
feature vectors of the 15 subjects of this work were provided
to the classification stage. The training and test sets were also
created based on the LOSOCV. Thus, the performance of the
classifier consists on the average of the results obtained in
each partition created by the cross-validation.

3 Results and Discussion

3.1 Dataset Development

In data acquisition, each activity (lying down, sitting, stand-
ing, walking, walking upstairs and walking downstairs) was
executed for 1min. However, the activities “walking upstairs
and walking downstairs”, were performed in sessions of 10 s
and up to a total of 30 s, due to the physical limitation of
the stairs used and in order to mitigate any discomfort to the
subjects.

During the data acquisition of the static activities, sam-
ples of transitions between postures were also collected, such
as “sitting-standing”, “standing-lying down” etc. In addition,
fall simulations were performed (a mattress was used for
reduce impact), such as: “forwards”, “backwards”, “lateral”
and another one that scenes a fall after getting up quickly from
a chair. However, the samples of both activity categories were
not used in this work.

A total of 202,425 samples of the activities of interest were
collected. Figure3 shows the number of samples for each
activity.

3.2 Model Selection

The following intervals from Table3 were defined for the
parameters tested in the model selection.

A total of 960 combinations were evaluated based on
the weighted F-measure, which performs a harmonic mean
between recall and precision, weighted by the number of sam-
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Fig. 3 Number of samples
collected for each activity

Table 3 Hyperparameters evaluated in model selection

Hyperparameter Values

Hidden layers (HL) 1–2

Neurons in each hidden layer (NHL) 80 -225 (increments of 5)

Initial learning rate (ILR) 0.001; 0.002; 0.01; 0.02

Activation function (AF) Tanh and ReLU

Optimization function (OF) stochastic gradient descent (SGD) and Adam

Momentuma 0.9
aOnly in combination with SGD

Table 4 MLP networks that have achieved the best performance (opportunity dataset)

HL NHL ILR AF OF F-measure

2 130 0.01 Tanh Adam 85.48%±1.85%

2 205 0.002 Tanh Adam 85.27%±2.82%

1 165 0.002 Tanh Adam 85.02%±1.95%

Table 5 Classifier performance based on LOSOCV

Accuracy Recall Precision F-measure

90.74% ± 7.72% 92.26% ± 5.60% 90.74% ± 7.72% 90.03% ± 9.20%

ples present in each class. This metric was chosen because it
reliably evaluates the performance of classifiers in an unbal-
anced dataset, that is, where there is the predominance of one
class over another.

Thus, Table4 presents the models that obtained the three
best performances during the grid search. As it can be
observed, an MLP network with 2 hidden layers and 130
neurons in these layers, initial learning rate of 0.01, hyper-
bolic tangent activation function and Adam optimization
function presented the highest performance, being adopted
in the data classification of the volunteers of this work.

It should be noted that in the tests of all configurations
the network was initiated in an identical way, a factor that

eliminates a possible favorable condition to a certain param-
eter combination due, for example, to the initial values of the
synaptic weights of the ANN.

3.3 Classification Results

The classification performance in the dataset developed in this
studywas assessed based on the LOSOCV. TheMLP network
that was elected in the model selection reached the results
shown in Table5 and in the confusion matrix of Table6.

From the analysis of the confusion matrix, there was diffi-
culty in recognizing the classes “walking upstairs”, “walking
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Table 6 Confusion matrix for the MLP classifier based on LOSOCV

Standing (%) Lying down (%) Sitting (%) W. Downstairs (%) W. Upstairs (%) Walking (%)

Standing 93.30 0.61 4.72 0.00 0.61 0.76

Lying down 1.38 97.08 0.92 0.00 0.61 0.00

Sitting 12.52 1.60 85.44 0.00 0.15 0.29

W. Downstairs 0.00 0.18 0.00 87.97 10.23 1.62

W. Upstairs 0.85 0.17 0.00 12.90 83.02 3.06

Walking 0.23 0.00 0.23 1.24 2.60 95.71

The bold values related to the percentage of correctly classified samples for each activity

Fig. 4 Comparison between
walking upstairs and walking
downstairs activities based on
standard deviation of
accelerometers data attached on a
waist and b wrist

downstairs” and “sitting”. Such behavior can be explained
because these activities present similar characteristics to each
other (in the case of walking upstairs and walking downstairs)
or to others activities present in the dataset.

As an illustration of this behavior, Fig. 4 makes a com-
parison based on the standard deviation of the acceleration
observed by theXandYaxis of thewaist andwrist accelerom-
eters during the “walking upstairs” and “walking downstairs”
activities. It can be seen that such activities keep a high simi-
larity between them, so that the values appear overlapped in
the figure.

However, it was easier for the classifier to distinguish static
activities from dynamic activities, since such classes present
a clearer separation, as shown in Fig. 5.

3.4 Comparison with RelatedWorks

Table7 presents a comparison of results based on the accuracy
metric, commonly adopted in other studies. The listed works
were chosen because they performed the activity recognition
taskwith similar approaches to the one presented in this study.

However, some approaches differ in the way that data were
collected and in the method in which the classification was
performed or evaluated, as an example, by the application of
k-fold cross-validation or the simple division of data between
training and testing set, which gives overestimated results

when compared to the LOSOCV technique used in this study.
Even so, the ANN chosen presented results comparable to the
studies shown in Table7.

4 Conclusion

From the results presented, it can be seen that the system
developed achieved satisfactory performance compared to
others found in the literature. In this work, collection sessions
with volunteers were conducted, acquiring accelerometers
and gyroscopes data from simple activities. These samples
were processed and later used in the training and classifica-
tion of a multilayer perceptron neural network. The hyperpa-
rameters of this algorithm were defined using the grid search
technique, using the content of the Opportunity dataset.

Although the classifier has a fundamental role in a HAR
system, requiring a careful definition of its internal parame-
ters, special attention should be given to the previous steps,
as they are crucial factors for the best performance of the
algorithm.

Future improvements can be made to the proposed system,
making it suitable for a real context, such as the inclusion of
sensors in the environment and the consequent acquisition
of new samples of activities, tests with unhealthy and older
subjects and real-time response, with the ability to generate
emergency alerts, for example. Also, the evaluation of the
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Fig. 5 Comparison between
static and dynamic activities
based on standard deviation of
accelerometer data from a waist
and b wrist and gyroscope data
from c waist and d wrist

Table 7 Comparison with related studies

Classifier Evaluation Accuracy Reference

MLP LOSOCV 90.74% This work

MLP Train/Test split 86.20% [8]

MLP LOSOCV 83.00% [20]

kNN k-fold CV 94.13% [21]

system performance on a short, medium and long term basis
need to be assessed.
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