
Chapter 8
The Minimax Principle

8.1 Tests with Guaranteed Power

The criteria discussed so far, unbiasedness and invariance, suffer from the disadvan-
tage of being applicable, or leading to optimum solutions, only in rather restricted
classes of problems. We shall therefore turn now to an alternative approach, which
potentially is of much wider applicability. Unfortunately, its application to specific
problems is in general not easy, unless there exists a UMP invariant test.

One of the important considerations in planning an experiment is the number of
observations required to ensure that the resulting statistical procedure will have the
desired precision or sensitivity. For problems of hypothesis testing this means that
the probabilities of the two kinds of errors should not exceed certain preassigned
bounds, say α and 1 − β, so that the tests must satisfy the conditions

Eθϕ(X) ≤ α for θ ∈ �H ,
(8.1)

Eθϕ(X) ≥ β for θ ∈ �K .

If the power function Eθϕ(X) is continuous and if α < β, (8.1) cannot hold when
the sets �H and �K are contiguous. This mathematical difficulty corresponds in
part to the fact that the division of the parameter values θ into the classes �H and
�K for which the two different decisions are appropriate is frequently not sharp.
Between the values for which one or the other of the decisions is clearly correct there
may lie others for which the relative advantages and disadvantages of acceptance
and rejection are approximately in balance. Accordingly we shall assume that � is
partitioned into three sets

� = �H + �I + �K ,

of which �I designates the indifference zone, and �K the class of parameter values
differing so widely from those postulated by the hypothesis that false acceptance of
H is a serious error, which should occur with probability at most 1 − β.
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364 8 The Minimax Principle

To see how the sample size is determined in this situation, suppose that X1,

X2, . . . constitute the sequence of available random variables, and for a moment
let n be fixed and let X = (X1, . . . , Xn). In the usual applications (for a more precise
statement, see Problem 8.1), there exists a test ϕn which maximizes

inf
�k

Eθϕ(X) (8.2)

among all level-α tests based on X . Let βn = inf�K Eθϕn(X), and suppose that for
sufficiently large n there exists a test satisfying (8.1). [Conditions under which this
is the case are given by Berger (1951a) and Kraft (1955).] The desired sample size,
which is the smallest value of n for which βn ≥ β, is then obtained by trial and error.
This requires the ability of determining for each fixed n the test that maximizes (8.2)
subject to

Eθϕ(X) ≤ α for θ ∈ �H . (8.3)

A method for determining a test with this maximin property (of maximizing the
minimum power over �K ) is obtained by generalizing Theorem 3.8.1. It will be
convenient in this discussion to make a change of notation, and to denote by ω and
ω′ the subsets of � previously denoted by �H and �K . Let P = {Pθ , θ ∈ ω ∪ ω′}
be a family of probability distributions over a sample space (X ,A) with densities
pθ = d Pθ /dμ with respect to a σ -finite measure μ, and suppose that the densities
pθ (x) considered as functions of the two variables (x, θ) aremeasurable (A × B) and
(A × B′), whereB andB′ are given σ -fields overω andω′. Under these assumptions,
the following theorem gives conditions under which a solution of a suitable Bayes
problem provides a test with the required properties.

Theorem 8.1.1 For any distributions 	 and 	′ over B and B′, let ϕ	,	′ be the most
powerful test for testing

h(x) =
∫

ω

pθ (x) d	(θ)

at level α against

h′(x) =
∫

ω′
pθ (x) d	′(θ)

and let β	,	′ be its power against the alternative h′. If there exist 	 and 	′ such that

sup
ω

Eθϕ	,	′(X) ≤ α,

(8.4)
inf
ω′ Eθϕ	,	′(X) = β	,	′ ,
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then:

(i) ϕ	,	′ maximizes infω′ Eθϕ(X) among all level-α tests of the hypothesis H :
θ ∈ ω and is the unique test with this property if it is the unique most powerful
level-α test for testing h against h′.

(ii) The pair of distributions 	, 	′ is least favorable in the sense that for any
other pair ν, ν ′ we have

β	,	′ ≤ βν,ν ′ .

Proof. (i): If ϕ∗ is any other level-α test of H , it is also of level α for testing the
simple hypothesis that the density of X is h, and the power of ϕ∗ against h′ therefore
cannot exceed β	,	′ . It follows that

inf
ω′ Eθϕ

∗(X) ≤
∫

ω′
Eθϕ

∗(X) d	′(θ) ≤ β	,	′ = inf
ω′ Eθϕ		′(X),

and the second inequality is strict if ϕ		′ is unique.
(ii): Let ν, ν ′ be any other distributions over (ω,B) and (ω′,B′), and let

g(x) =
∫

ω

pθ (x)dν(θ), g′(x) =
∫

ω′
pθ (x) dν ′(θ).

Since both ϕ	,	′ and ϕν,ν ′ are level-α tests of the hypothesis that g(x) is the density
of X , it follows that

βν,ν ′ ≥
∫

ϕ	,	′(x)g′(x) dμ(x) ≥ inf
ω′ Eθϕ	,	′(X) = β	,	′ . �

Corollary 8.1.1 Let 	, 	′ be two probability distributions and C a constant such
that

ϕ	,	′(x) =
⎧⎨
⎩
1 if

∫
ω′ pθ (x) d	′(θ) > C

∫
ω

pθ (x) d	(θ)

γ if
∫
ω′ pθ (x) d	′(θ) = C

∫
ω

pθ (x) d	(θ)

0 if
∫
ω′ pθ (x) d	′(θ) < C

∫
ω

pθ (x) d	(θ)

(8.5)

is a size-α test for testing that the density of X is
∫
ω

pθ (x) d	(θ) and such that

	(ω0) = 	′(ω′
0) = 1, (8.6)

where

ω0 =
{
θ : θ ∈ ω and Eθϕ	,	′(X) = sup

θ ′∈ω

Eθ ′ϕ	,	′(X)
}

ω′
0 =

{
θ : θ ∈ ω′ and Eθϕ	,	′(X) = inf

θ ′∈ω′ Eθ ′ϕ	,	′(X)
}
.

Then the conclusions of Theorem 8.1.1 hold.
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Proof. If h, h′, and β	,	′ are defined as in Theorem 8.1.1, the assumptions imply
that ϕ	,	′ is a most powerful level-α test for testing h against h′, that

sup
ω

Eθϕ	,	′(X) =
∫

ω

Eθϕ	,	′(X) d	(θ) = α,

and that

inf
ω′ Eθϕ	,	′(X) =

∫
ω′

Eθϕ	,	′(X) d	′(θ) = β	,	′ .

Condition (8.4) is thus satisfied and Theorem 8.1.1 applies. �
The following remark is often useful in applying the theorem. Suppose ϕ	,	′

satisfies: its power function is constant and smallest over ω′ on ω′
0 ≡ the support of

	′. Then, the condition
β	,	′ = inf

θ∈ω′ Eθϕ	,	′

holds. To see why, note that

inf
θ∈ω′ Eθϕ	,	′ = inf

θ∈ω′
0

Eθϕ	,	′ =
∫

θ∈ω′
Eθϕ	,	′d	′(θ)

=
∫ ∫

ϕ	,	′ pθ (x)d	′(θ)μ(dx) =
∫

ϕ	,	′ h′(x)μ(dx) = β	,	′ .

Example 8.1.1 (Simple example) Suppose X ∼ N (ξ, 1). Test H : ξ = 0 versus
H ′ : |ξ | ≥ ε, where ε > 0 is fixed. Let 	′ put equal mass at ±ε. To see why this
works, calculate theNeyman–Pearson test ϕ	,	′ given (8.5); it rejects for large values
of

exp[− 1
2 (X − ε)2] + exp[− 1

2 (X + ε)2]
exp(− 1

2 X2)
∝ [exp(εX) + exp(−εX)] .

The last expression is clearly a function of |X | and it is easy to check that it is an
increasing function of |X |. So, the test rejects for large |X |, i.e., when |X | ≥ z1− α

2
.

Its minimum power occurs when |ξ | = ε (because the family of distributions of |X |
has monotone likelihood ratio), and its power is the same at ε and −ε. So, it is
maximin. It is also UMPI. However, it is not UMPU for the alternatives considered
(Problem 8.2). �

Example 8.1.2 (Many normal means) Suppose X1, . . . , Xn are independent with
Xi ∼ N (ξi , 1). The null hypothesis specifes H : ξ1 = · · · ξn = 0 while the alterna-
tive specifies exactly one of the ξi = ξ , where ξ > 0 is assumed known. The least
favorable distribution 	′ is uniform on the n vectors

(ξ, 0, . . . , 0), (0, ξ, 0, . . . , 0), . . . , (0, . . . , 0, ξ) .
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The resulting test ϕ	,	′ rejects for large values of T = ∑n
i=1 exp(ξ Xi ) To see why,

the average likelihood under the alternative divided by the likelihood under the null
is given by:

1
n

∑n
i=1 exp[− 1

2 (Xi − ξ)2]� j �=i exp[− 1
2 X2

j ]
�n

i=1 exp[− 1
2 X2

i ]
,

which is equivalent to T . By symmetry, its power is the same for all n alternative
mean vectors, and so it is maximin. �

Example 8.1.3 (Many normal means with different ω′) Under the setup of
Example 8.1.2, suppose the alternative parameter space is specified by

ω′ = {(ξ1, . . . , ξn) :
∑

i

ξ 2
i = δ2} ,

where δ > 0 is fixed. Now, let 	′ be the uniform distribution on Sn , the sphere of
radius δ centered at the origin. Letting U denote the uniform distribution on Sn , the
test ϕ	,	′ rejects for large values of

∫
Sn

�i exp[− 1
2 (Xi − ξi )

2]dU (ξ)

�i exp[− 1
2 X2

i ]

∝
∫

Sn

exp(
∑

i

ξi Xi )dU (ξ) = C E[exp(�� X)] ,

where � = (�1, . . . , �n)
� is random and uniform on Sn and the above expectation

is with respect to the distribution of the �i with the Xi fixed.
By symmetry, the test ϕ	,	′ must be invariant with respect to orthogonal trans-

formations. Indeed, E[exp(�� X)] is the same for X = (X1, . . . , Xn)
� and O X , if

O is orthogonal. To see why, note that ��O X = (O�)� X . Since the distribution of
O� and � are the same, then the distribution of ��O X is the same as that of �� X ,
giving the result.

Therefore, the maximin test is invariant, and so it cannot improve upon the UMPI
test. Therefore, the UMPI test must be maximin. By Example 6.3.3, the UMPI
test rejects for large values of T = ∑

i X2
i . If we did not know the UMPI test

already, we just need to show that E[exp(�� X)] is an increasing function of T ; see
Problem 8.3. �

Suppose that the sets �H , �I , and �K are defined in terms of a nonnegative
function d, which is a measure of the distance of θ from H , by

�H = {θ : d(θ) = 0}, �I = {θ : 0 < d(θ) < �},
�K = {0 : d(θ) ≥ �}.
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Suppose also that the power function of any test is continuous in θ . In the limit as
� = 0, there is no indifference zone. Then �K becomes the set {θ : d(θ) > 0}, and
the infimum of β(θ) over �K is ≤ α for any level-α test. This infimum is therefore
maximized by any test satisfying β(θ) ≥ α for all θ ∈ �K , that is, by any unbiased
test, so that unbiasedness is seen to be a limiting form of the maximin criterion. A
more useful limiting form, since it will typically lead to a unique test, is given by
the following definition. A test ϕ0 is said to maximize the minimum power locally1

if, given any other test ϕ, there exists �0 such that

inf
ω�

βϕ0(θ) ≥ inf
ω�

βϕ(θ) for all 0 < � < �0, (8.7)

where ω� is the set of θ ’s for which d(θ) ≥ �.

8.2 Further Examples

In Chapter 3 it was shown for a family of probability densities depending on a real
parameter θ that a UMP test exists for testing H : θ ≤ θ0 against θ > θ0 provided
for all θ < θ ′ the ratio pθ ′(x)/pθ (x) is a monotone function of some real-valued
statistic. This assumption, although satisfied for a one-parameter exponential family,
is quite restrictive, and a UMP test of H will in fact exist only rarely. A more
general approach is furnished by the formulation of the preceding section. If the
indifference zone is the set of θ ’s with θ0 < θ < θ1, the problem becomes that of
maximizing the minimum power over the class of alternatives ω′ : θ ≥ θ1. Under
appropriate assumptions, one would expect the least favorable distributions 	 and
	′ of Theorem 8.1.1 to assign probability 1 to the points θ0 and θ1, and hence the
maximin test to be given by the rejection region pθ1(x)/pθ0(x) > C . The following
lemma gives sufficient conditions for this to be the case.

Lemma 8.2.1 Let X1, …, Xn be identically and independently distributed with prob-
ability density fθ (x), where θ and x are real-valued, and suppose that for any θ < θ ′
the ratio fθ ′(x)/ fθ (x) is a nondecreasing function of x. Then the level-α test ϕ of H
which maximizes the minimum power over ω′ is given by

ϕ(x1, . . . , x1) =
⎧⎨
⎩
1 if r(x1, . . . , xn) > C,

γ if r(x1, . . . , xn) = C,

0 if r(x1, . . . , xn) < C,

(8.8)

where r(x1, . . . , xn) = fθ1(x1) . . . fθ1(xn)/ fθ0(x1) . . . fθ0(xn) and where C and γ are
determined by

Eθ0ϕ(X1, . . . , Xn) = α. (8.9)

1 A different definition of local minimaxity is given by Giri and Kiefer (1964).
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Proof. The function ϕ(x1, . . . , xn) is nondecreasing in each of its arguments, so that
by Lemma 3.4.2,

Eθϕ(X1, . . . , Xn) ≤ Eθ ′ϕ(X1, . . . , Xn)

when θ < θ ′. Hence the power function of ϕ is monotone and ϕ is a level-α test.
Since ϕ = ϕ	,	′ , where 	 and 	′ are the distributions assigning probability 1 to the
points θ0 and θ1, Condition (8.4) is satisfied, which proves the desired result as well
as the fact that the pair of distributions (	,	′) is least favorable. �

Example 8.2.1 Let θ be a location parameter, so that fθ (x) = g(x − θ), and sup-
pose for simplicity that g(x) > 0 for all x .Wewill show that a necessary and sufficient
condition for fθ (x) to have monotone likelihood ratio in x is that − log g is convex.
The condition of monotone likelihood ratio in x ,

g(x − θ ′)
g(x − θ)

≤ g(x ′ − θ ′)
g(x ′ − θ)

for all x < x ′, θ < θ ′,

is equivalent to

log g(x ′ − θ) + log g(x − θ ′) ≤ log g(x − θ) + log g(x ′ − θ ′).

Since x − θ = t (x − θ ′) + (1 − t)(x ′ − θ) and x ′ − θ ′ = (1 − t)(x − θ ′) + t (x ′ −
θ),where t = (x ′ − x)/(x ′ − x + θ ′ − θ), a sufficient condition for this to hold is that
the function − log g is convex. To see that this condition is also necessary, let a < b
be any real numbers, and let x − θ ′ = a, x ′ − θ = b, and x ′ − θ ′ = x − θ . Then
x − θ = 1

2 (x ′ − θ + x − θ ′) = 1
2 (a + b), and the condition of monotone likelihood

ratio implies
1
2 [log g(a) + log g(b)] ≤ log g

[
1
2 (a + b)

]
.

Since log g is measurable, this in turn implies that − log g is convex.2

A density g for which − log g is convex is called strongly unimodal. Basic prop-
erties of such densities were obtained by Ibragimov (1956). Strong unimodality is
a special case of total positivity. A density of the form g(x − θ) which is totally
positive of order r is said to be a Polya frequency function of order r . It follows from
Example 8.2.1 that g(x − θ) is a Polya frequency function of order 2 if and only if it
is strongly unimodal. [For further results concerning Polya frequency functions and
strongly unimodal densities, see Karlin (1968), Marshall and Olkin (1979), Huang
and Ghosh (1982), and Loh (1984a, b).]

Two distributions which satisfy the above condition [besides the normal distri-
bution, for which the resulting densities pθ (x1, . . . , xn) form an exponential family]
are the double-exponential distribution with

g(x) = 1
2e−|x |

2 See Sierpinski (1920).
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and the logistic distribution, whose cumulative distribution function is

G(x) = 1

1 + e−x
,

so that the density is g(x) = e−x/(1 + e−x )2. �

Example 8.2.2 To consider the corresponding problem for a scale parameter, let
fθ (x) = θ−1h(x/θ)where h is an even function. Without loss of generality one may
then restrict x to be nonnegative, since the absolute values |X1|, . . . , |Xn| form a set
of sufficient statistics for θ . If Yi = log Xi and η = log θ , the density of Yi is

h(ey−η)ey−η.

By Example 8.2.1, if h(x) > 0 for all x ≥ 0, a necessary and sufficient condition for
fθ ′(x)/ fθ (x) to be a nondecreasing function of x for all θ < θ ′ is that− log[eyh(ey)]
or equivalently − log h(ey) is a convex function of y. An example in which this
holds—in addition to the normal and double-exponential distributions, where the
resulting densities form an exponential family—is the Cauchy distribution with

h(x) = 1

π

1

1 + x2
.

Since the convexity of− log h(y) implies that of− log h(ey), it follows that if h is
an even function andh(x − θ)hasmonotone likelihood ratio, so doesh(x/θ).Whenh
is the normal or double-exponential distribution, this property of h(x/θ) also follows
from Example 8.2.1. That monotone likelihood ratio for the scale-parameter family
does not conversely imply the same property for the associated location parameter
family is illustrated by the Cauchy distribution. The condition is therefore more
restrictive for a location than for a scale parameter. �

The chief difficulty in the application of Theorem 8.1.1 to specific problems is the
necessity of knowing, or at least being able to guess correctly, a pair of least favor-
able distributions (	,	′). Guidance for obtaining these distributions is sometimes
provided by invariance considerations. If there exists a group G of transformations
of X such that the induced group Ḡ leaves both ω and ω′ invariant, the problem is
symmetric in the various θ ’s that can be transformed into each other under Ḡ. It then
seems plausible that unless 	 and 	′ exhibit the same symmetries, they will make
the statistician’s task easier, and hence will not be least favorable.

Example 8.2.3 In the problem of paired comparisons considered in Example 6.3.6,
the observations Xi (i = 1, . . . , n) are independent variables taking on the values 1
and 0 with probabilities pi and qi = 1 − pi . The hypothesis H to be tested specifies
the set ω : max pi ≤ 1

2 . Only alternatives with pi ≥ 1
2 for all i are considered, and

as ω′ we take the subset of those alternatives for which max pi ≥ 1
2 + δ. One would
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expect 	 to assign probability 1 to the point p1 = · · · pn = 1
2 , and 	′ to assign

positive probability only to the n points (p1, . . . , pn) which have n − 1 coordinates
equal to 1

2 and the remaining coordinate equal to 1
2 + δ. Because of the symmetrywith

regard to the n variables, it seems plausible that 	′ should assign equal probability
1/n to each of these n points. With these choices, the test ϕ	,	′ rejects when

n∑
i=1

(
1
2 + δ

1
2

)xi

> C.

This is equivalent to
∑n

i=1 xi > C , which had previously been seen to beUMP invari-
ant for this problem. Since the critical function ϕ	,	′(x1, . . . , xn) is nondecreasing
in each of its arguments, it follows from Lemma 3.4.2 that pi ≤ p′

i for i = 1, . . . , n
implies

E p1,...,pn ϕ	,	′(X1, . . . , Xn) ≤ E p′
1,...,p′

n
ϕ	,	′(X1, . . . , Xn)

and hence the conditions of Theorem 8.1.1 are satisfied. �

Example 8.2.4 Let X = (X1, . . . , Xn) be a sample from N (ξ, σ 2), and consider
the problem of testing H : σ = σ0 against the set of alternatives ω′ : σ ≤ σ1 or
σ ≥ σ2 (σ1 < σ0 < σ2). This problem remains invariant under the transformations
X ′

i = Xi + c, which in the parameter space induce the group Ḡ of transformations
ξ ′ = ξ + c, σ ′ = σ . One would therefore expect the least favorable distribution 	

over the line ω : −∞ < ξ < ∞, σ = σ0, to be invariant under Ḡ. Such invariance
implies that 	 assigns to any interval a measure proportional to the length of the
interval. Hence 	 cannot be a probability measure and Theorem 8.1.1 is not directly
applicable. The difficulty can be avoided by approximating 	 by a sequence of
probability distributions, in the present case, for example, by the sequence of normal
distributions N (0, k), k = 1, 2, ….

In the particular problem under consideration, it happens that there also exist
least favorable distributions 	 and 	′, which are true probability distributions and
therefore not invariant. These distributions can be obtained by an examination of
the corresponding one-sided problem in Section 3.9, as follows. On ω, where the
only variable is ξ , the distribution 	 of ξ is taken as the normal distribution with an
arbitrary mean ξ1 and with variance (σ 2

2 − σ 2
0 )/n. Under 	′ all probability should

be concentrated on the two lines σ = σ1 and σ = σ2 in the (ξ, σ ) plane, and we put
	′ = p	′

1 + q	′
2, where 	′

1 is the normal distribution with mean ξ1 and variance
(σ 2

2 − σ 2
1 )/n, while 	′

2 assigns probability 1 to the point (ξ1, σ2). A computation
analogous to that carried out in Section 3.9 then shows the acceptance region to be
given by



372 8 The Minimax Principle

p

σ n−1
1 σ2

exp

[ −1

2σ 2
1

∑
(xi − x̄)2 − n

2σ 2
2

(x̄ − ξ1)
2

]

+ q

σ n
2

exp

[ −1

2σ 2
2

{∑
(xi − x̄)2 + n(x̄ − ξ1)

2
}]

1

σ n−1
0 σ2

exp

[ −1

2σ 2
0

∑
(xi − x̄)2 − n

2σ 2
2

(x̄ − ξ1)
2

] < C ,

which is equivalent to
C1 ≤

∑
(xi − x̄)2 ≤ C2.

The probability of this inequality is independent of ξ , and hence C1 and C2 can be
determined so that the probability of acceptance is 1 − α when σ = σ0, and is equal
for the two values σ = σ1 and σ = σ2.

It follows from Section 3.7 that there exist p and C which lead to these values
of C1 and C2 and that the above test satisfies the conditions of Corollary 8.1.1 with
ω0 = ω, and with ω′

0 consisting of the two lines σ = σ1 and σ = σ2. �

8.3 Comparing Two Approximate Hypotheses

As in Section 3.2, let P0 �= P1 be two distributions possessing densities p0 and
p1 with respect to a measure μ. Since distributions even at best are known only
approximately, let us assume that the true distributions are approximately P0 or P1

in the sense that they lie in one of the families

Pi = {Q : Q = (1 − εi )Pi + εi Gi }, i = 0, 1, (8.10)

with ε0, ε1 given and the Gi arbitrary unknown distributions. We wish to find the
level-α test of the hypothesis H that the true distribution lies inP0, which maximizes
the minimum power over P1. This is the problem considered in Section 8.1 with θ

indicating the true distribution, �H = P0, and �K = P1.
The following theorem shows the existence of a pair of least favorable distributions

	 and 	′ satisfying the conditions of Theorem 8.1.1, each assigning probability 1 to
a single distribution,	 to Q0 ∈ P0 and	′ to Q1 ∈ P1, and exhibits the Qi explicitly.

Theorem 8.3.1 Let

q0(x) =
{

(1 − ε0)p0(x) if p1(x)

p0(x)
< b,

(1−ε0)p1(x)

b if p1(x)

p0(x)
≥ b,

(8.11)

q1(x) =
{

(1 − ε1)p1(x) if p1(x)

p0(x)
> a,

a(1 − ε1)p0(x) if p1(x)

p0(x)
≤ a.
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(i) For all 0 < εi < 1, there exist unique constants a and b such that q0 and q1

are probability densities with respect to μ; the resulting qi are members of
Pi (i = 0, 1).

(ii) There exist δ0, δ1 such that for all εi ≤ δi the constants a and b satisfy a < b
and that the resulting q0 and q1 are distinct.

(iii) If εi ≤ δi for i = 0, 1, the families P0 and P1 are nonoverlapping and the pair
(q0, q1) is least favorable, so that the maximin test of P0 against P1 rejects
when q1(x)/q0(x) is sufficiently large.

Note. Suppose a < b, and let

r(x) = p1(x)

p0(x)
, r∗(x) = q1(x)

q0(x)
, and k = 1 − ε1

1 − ε0
.

Then

r∗(x) =
⎧⎨
⎩

ka when r(x) ≤ a,

kr(x) when a < r(x) < b,

kb when b ≤ r(x).

(8.12)

The maximin test thus replaces the original probability ratio with a censored version.

Proof. The proof will be given under the simplifying assumption that p0(x) and
p1(x) are positive for all x in the sample space.

(i): For q1 to be a probability density, a must satisfy the equation

P1[r(X) > a] + a P0[r(X) ≤ a] = 1

1 − ε1
. (8.13)

If (8.13) holds, it is easily checked that q1 ∈ P1 (Problem 8.15). To prove existence
and uniqueness of a solution a of (8.13), let

γ (c) = P1[r(X) > c] + cP0[r(X) ≤ c].

Then
γ (0) = 1 and γ (c) → ∞ as c → ∞. (8.14)

Furthermore (Problem 8.17)

γ (c + �) − γ (c) = �

∫
r(x)≤c

p0(x) dμ(x) (8.15)

+
∫

c<r(x)≤c+�

[c + � − r(x)]p0(x) dμ(x).

It follows from (8.15) that 0 ≤ γ (c + �) − γ (c) ≤ �, so that −γ is continuous and
nondecreasing. Together with (8.14) this establishes the existence of a solution. To
prove uniqueness, note that
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γ (c + �) − γ (c) ≥ �

∫
r(x)<c

p0(x) dμ(x) (8.16)

and that γ (c) = 1 for all c for which

Pi [r(x) ≤ c] = 0 (i = 0, 1). (8.17)

If c0 is the supremum of the values for which (8.17) holds, (8.16) shows that γ is
strictly increasing for c > c0 and this proves uniqueness. The proof for b is exactly
analogous (Problem 8.16).

(ii): As ε1 → 0, the solution a of (8.13) tends to c0. Analogously, as ε1 → 0,
b → ∞ (Problem 8.16).

(iii): This will follow from the following facts:

(a) When X is distributed according to a distribution in P0, the statistic r∗(X) is
stochastically largest when the distribution of X is Q0.

(b) When X is distributed according to a distribution in P1, r∗(X) is stochastically
smallest for Q1.

(c) r∗(X) is stochastically larger when the distribution of X is Q1 than when it is
Q0.

These statements are summarized in the inequalities

Q′
0[r∗(X) < t] ≥ Q0[r∗(X) < t] ≥ Q1[r∗(X) < t] ≥ Q′

1[r∗(X) < t] (8.18)

for all t and all Q′
i ∈ Pi .

From (8.12), it is seen that (8.18) is obvious when t ≤ ka or t > kb. Suppose
therefore that ak < t ≤ bk, and denote the event r∗(X) < t by E . Then Q′

0(E) ≥
(1 − ε0)P0(E) by (8.10). But r∗(x) < t < kb implies r(X) < b and hence Q0(E) =
(1 − ε)P0(E). Thus Q′

0(E) ≥ Q0(E), and analogously Q′
1(E) ≤ Q1(E). Finally,

the middle inequality of (8.18) follows from Corollary 3.2.1.
If the ε’s are sufficiently small so that Q0 �= Q1, it follows from (a)–(c) that P0

and P1 are nonoverlapping.
That (Q0, Q1) is least favorable and the associated test ϕ is maximin now follows

from Theorem 8.1.1, since the most powerful test ϕ for testing Q0 against Q1 is a
nondecreasing function of q1(X)/q0(X). This shows that Eϕ(X) takes on its sup
over P0 at Q0 and its inf over P1 at Q1, and this completes the proof. �

Generalizations of this theorem are given by Huber and Strassen (1973,1974).
See also Rieder (1977) and Bednarski (1984). An optimum permutation test, with
generalizations to the case of unknown location and scale parameters, is discussed
by Lambert (1985).

When the data consist of n identically, independently distributed randomvariables
X1, . . . , Xn , the neighborhoods (8.10) may not be appropriate, since they do not
preserve the assumption of independence. If Pi has density

pi (x1, . . . , xn) = fi (x1) . . . fi (xn) (i = 0, 1), (8.19)
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amore appropriatemodel approximating (8.19)may then assign to X = (X1, . . . , Xn)

the family P∗
i of distributions according to which the X j are independently dis-

tributed, each with distribution

(1 − εi )Fi (x j ) + εi Gi (x j ), (8.20)

where Fi has density fi and where as before the Gi are arbitrary.

Corollary 8.3.1 Suppose q0 and q1 defined by (8.11) with x = x j satisfy (8.18)
and hence are a least favorable pair for testing P0 against P1 on the basis of the
single observation X j . Then the pair of distributions with densities qi (x1) . . . qi (xn)

(i = 0, 1) is least favorable for testing P∗
0 against P∗

1 , so that the maximin test is
given by

ϕ(x1, . . . , xn) =
⎧⎨
⎩

1
γ

0
if

n∏
j=1

[
q1(x j )

q0(x j )

]
>=<c. (8.21)

Proof.By assumption, the random variables Y j = q1(X j )/q0(X j ) are stochastically
increasing as one moves successively from Q′

0 ∈ P0 to Q0 to Q1 to Q′
1 ∈ P1. The

same is then true of any function ψ(Y1, . . . , Yn) which is nondecreasing in each of
its arguments by Lemma 3.4.1, and hence of ϕ defined by (8.21). The proof now
follows from Theorem 8.3.1. �

Instead of the problem of testing P0 against P1, consider now the situation of
Lemma 8.2.1 where H : θ ≤ θ0 is to be tested against θ ≥ θ1 (θ0 < θ1) on the basis
of n independent observations X j , each distributed according to a distribution Fθ (x j )

whose density fθ (x j ) is assumed to have monotone likelihood ratio in x j .
A robust version of this problem is obtained by replacing Fθ with

(1 − ε)Fθ (x j ) + εG(x j ), j = 1, . . . , n, (8.22)

where ε is given and for each θ the distribution G is arbitrary. Let P∗∗
0 and P∗∗

1 be
the classes of distributions (8.22) with θ ≤ θ0 and θ ≥ θ1, respectively; and let P∗

0
and P∗

1 be defined as in Corollary 8.3.1 with fθi in place of fi . Then the maximin
test (8.21) of P∗

0 against P∗
1 retains this property for testing P∗∗

0 against P∗∗
1 .

This is proved in the same way as Corollary 8.3.1, using the additional fact that
if Fθ ′ is stochastically larger than Fθ , then (1 − ε)Fθ ′ + εG is stochastically larger
than (1 − ε)Fθ + εG.

8.4 Maximin Tests and Invariance

When the problem of testing �H against �K remains invariant under a certain group
of transformations, it seems reasonable to expect the existence of an invariant pair of
least favorable distributions (or at least of sequences of distributions which in some
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sense are least favorable and invariant in the limit), and hence also of a maximin
test which is invariant. This suggests the possibility of bypassing the somewhat
cumbersome approach of the preceding sections. If it could be proved that for an
invariant problem there always exists an invariant test that maximizes the minimum
power over �K , attention could be restricted to invariant tests; in particular, a UMP
invariant test would then automatically have the desired maximin property (although
it would not necessarily be admissible). These speculations turn out to be correct for
an important class of problems, although unfortunately not in general. To find out
under what conditions they hold, it is convenient first to separate out the statistical
aspects of the problem from the group-theoretic ones by means of the following
lemma.

Lemma 8.4.1 Let P = {Pθ , θ ∈ �} be a dominated family of distributions on
(X ,A), and let G be a group of transformations of (X ,A), such that the induced
group Ḡ leaves the two subsets �H and �K of � invariant. Suppose that for any
critical function ϕ there exists an (almost) invariant critical function ψ satisfying

inf
Ḡ

Eḡθϕ(X) ≤ Eθψ(X) ≤ sup
Ḡ

Eḡθϕ(X) (8.23)

for all θ ∈ �. Then if there exists a level-α test ϕ0 maximizing inf�k Eθϕ(X), there
also exists an (almost) invariant test with this property.

Proof. Let inf�K Eθϕ0(X) = β, and let ψ0 be an (almost) invariant test such that
(8.23) holds with ϕ = ϕ0, ψ = ψ0. Then

Eθψ0(X) ≤ sup
Ḡ

Eḡθϕ0(X) ≤ α for all θ ∈ �H

and
Eθψ0(X) ≥ inf

Ḡ
Eḡθϕ0(X) ≥ β for all θ ∈ �K ,

as was to be proved. �
To determine conditions under which there exists an invariant or almost invariant

test ψ satisfying (8.23), consider first the simplest case that G is a finite group,
G = {g1, . . . , gN } say. If ψ is then defined by

ψ(x) = 1

N

N∑
i=1

ϕ(gi x), (8.24)

it is clear that ψ is again a critical function, and that it is invariant under G. It
also satisfies (8.23), since Eθϕ(gX) = Eḡθϕ(X) so that Eθψ(X) is the average of a
number of terms of which the first and last member of (8.23) are the minimum and
maximum, respectively.

An illustration of the finite case is furnished by Example 8.2.3. Here the prob-
lem remains invariant under the n! permutations of the variables (X1, . . . , Xn).
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Lemma 8.4.1 is applicable and shows that there exists an invariant test maximizing
inf�K Eθϕ(X). Thus in particular the UMP invariant test obtained in Example 6.3.6
has this maximin property and therefore constitutes a solution of the problem.

It also follows that, under the setting of Theorem 6.3.1, the UMPI test given by
(6.10) is maximin.

The definition (8.24) suggests the possibility of obtainingψ(x) also in other cases
by averaging the values of ϕ(gx) with respect to a suitable probability distribution
over the group G. To see what conditions would be required of this distribution, letB
be a σ -field of subsets of G and ν a probability distribution over (G,B). Disregarding
measurability problems for the moment, let ψ be defined by

ψ(x) =
∫

ϕ(gx) dν(g). (8.25)

Then 0 ≤ ψ ≤ 1, and (8.23) is seen to hold by applying Fubini’s Theorem (Theo-
rem 2.2.4) to the integral of ψ with respect to the distribution Pθ . For any g0 ∈ G,

ψ(g0x) =
∫

ϕ(gg0x) dν(g) =
∫

ϕ(hx) dν∗(h) ,

where h = gg0 and where ν∗ is the measure defined by

ν∗(B) = ν(Bg−1
0 ) for all B ∈ B,

into which ν is transformed by the transformation h = gg0. Thus ψ will have the
desired invariance property, ψ(g0x) = ψ(x) for all g0 ∈ G, if ν is right invariant,
that is, if it satisfies

ν(Bg) = ν(B) for all B ∈ B, g ∈ G. (8.26)

Such a condition was previously used in (6.18).
The measurability assumptions required for the above argument are: (i) For any

A ∈ A, the set of pairs (x, g) with gx ∈ A is measurable (A × B). This insures that
the function ψ defined by (8.25) is again measurable. (ii) For any B ∈ B, g ∈ G, the
set Bg belongs to B.
Example 8.4.1 If G is a finite group with elements g1, . . . , gN , let B be the class of
all subsets of G and ν the probability measure assigning probability 1/N to each of
the N elements. Condition (8.26) is then satisfied, and the definition (8.25) of ψ in
this case reduces to (8.24). �

Example 8.4.2 Consider the group G of orthogonal n × n matrices �, with the
group product �1�2 defined as the corresponding matrix product. Each matrix can
be interpreted as the point in n2-dimensional Euclidean space whose coordinates are
the n2 elements of the matrix. The group then defines a subset of this space; the Borel
subsets of G will be taken as the σ -field B. To prove the existence of a right invariant
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probability measure over (G,B), we shall define a random orthogonal matrix whose
probability distribution satisfies (8.26) and is therefore the required measure. With
any nonsingularmatrix x = (xi j ), associate the orthogonalmatrix y = f (x) obtained
by applying the following Gram–Schmidt orthogonalization process to the n row
vectors xi = (xi1, . . . , xin) of x : y1 is the unit vector in the direction of x1; y2 the
unit vector in the plane spanned by x1 and x2 which is orthogonal to y1 and forms an
acute angle with x2; and so on. Let y = (yi j ) be the matrix whose i th row is yi .

Suppose now that the variables Xi j (i , j = 1, . . . , n) are independently distributed
as N (0, 1), let X denote the random matrix (Xi j ), and let Y = f (X). To show that
the distribution of the random orthogonal matrix Y satisfies (8.26), consider any fixed
orthogonal matrix � and any fixed set B ∈ B. Then P{Y ∈ B�} = P{Y�′ ∈ B} and
from the definition of f it is seen that Y�′ = f (X�′). Since the n2 elements of the
matrix X�′ have the same joint distribution as those of the matrix X , the matrices
f (X�′) and f (X) also have the same distribution, as was to be proved. �

Examples 8.4.1 and 8.4.2 are sufficient for the applications to be made here.
General conditions for the existence of an invariant probability measure, of which
these examples are simple special cases, are given in the theory of Haar measure.
[This is treated, for example, in the books by Halmos (1974), Loomis (1953), and
Nachbin (1965). For a discussion in a statistical setting, see Eaton (1983, 1989),
Farrell (1998a), and Wijsman (1990), and for a more elementary treatment Berger
(1985a).]

8.5 The Hunt–Stein Theorem

Invariant measures exist (and are essentially unique) for a large class of groups, but
unfortunately they are frequently not finite and hence cannot be taken to be prob-
ability measures. The situation is similar and related to that of the nonexistence of
a least favorable pair of distributions in Theorem 8.1.1. There it is usually possible
to overcome the difficulty by considering instead a sequence of distributions which
has the desired property in the limit. Analogously we shall now generalize the con-
struction of ψ as an average with respect to a right-invariant probability distribution,
by considering a sequence of distributions over G which are approximately right
invariant for n sufficiently large.

Let P = {Pθ , θ ∈ �} be a family of distributions over a Euclidean space (X ,A)

dominated by a σ -finitemeasureμ, and letG be a group of transformations of (X ,A)

such that the induced group Ḡ leaves � invariant.

Theorem 8.5.1 (Hunt–Stein.) Let B be a σ -field of subsets of G such that for any
A ∈ A the set of pairs (x, g) with gx ∈ A is in A × B and for any B ∈ B and g ∈ G
the set Bg is in B. Suppose that there exists a sequence of probability distributions νn

over (G,B) which is asymptotically right invariant in the sense that for any g ∈ G,
B ∈ B,
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lim
n→∞ |νn(Bg) − νn(B)| = 0. (8.27)

Then given any critical function ϕ, there exists a critical function ψ which is almost
invariant and satisfies (8.23).

Proof. Let

ψn(x) =
∫

ϕ(gx) dνn(g),

which as before is measurable and between 0 and 1. By the weak compactness
theorem (Theorem A.5.1 of the Appendix) there exists a subsequence {ψni } and a
measurable function ψ between 0 and 1 satisfying

lim
i→∞

∫
ψni p dμ =

∫
ψp dμ

for all μ-integrable functions p, so that in particular

lim
i→∞ Eθψni (X) = Eθψ(X)

for all θ ∈ �. By Fubini’s Theorem,

Eθψni (X) =
∫

[Eθϕ(gX)] dνni (g) =
∫

Eḡθϕ(X) dνni (g) ,

so that
inf
Ḡ

Eḡθϕ(X) ≤ Eθψni (X) ≤ sup
Ḡ

Eḡθϕ(X),

and ψ satisfies (8.23).
In order to prove that ψ is almost invariant we shall show below that for all x and

g,
ψni (gx) − ψni (x) → 0. (8.28)

Let IA(x) denote the indicator function of a set A ∈ A. Using the fact that Ig A(gx) =
IA(x), we see that (8.28) implies

∫
A
ψ(x) d Pθ (x) = lim

i→∞

∫
ψni (x)IA(x) d Pθ (x)

= lim
i→∞

∫
ψni (gX)Ig A(gx) d Pθ (x)

=
∫

ψ(x)Ig A(x) d Pḡθ (x) =
∫

A
ψ(gx) d Pθ (x) ,

and hence ψ(gx) = ψ(x) (a.e. P), as was to be proved.
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To prove (8.28), consider any fixed x and any integer m, and let G be partitioned
into the mutually exclusive sets

Bk =
{

h ∈ G : ak < ϕ(hx) ≤ ak + 1

m

}
, k = 0, . . . , m,

where ak = (k − 1)/m. In particular, B0 is the set {h ∈ G : ϕ(hx) = 0}. It is seen
from the definition of the sets Bk that

m∑
k=0

akνni (Bk) ≤
m∑

k=0

∫
Bk

ϕ(hx) dνni (h) ≤
m∑

k=0

(
ak + 1

m

)
νni (Bk)

≤
m∑

k=0

akνni (Bk) + 1

m
,

and analogously that

∣∣∣∣∣
m∑

k=0

∫
Bk g−1

ϕ(hgx) dνni (h) −
m∑

k=0

akνni (Bk g−1)

∣∣∣∣∣ ≤ 1

m
,

from which it follows that

ψni (gx) − ψni (x) :≤
∑

|ak | · |νni (Bk g−1) − νni (Bk)| + 2

m
.

By (8.27) the first term of the right-hand side tends to zero as i tends to infinity, and
this completes the proof. �

When there exist a right-invariant measure ν over G and a sequence of subsets
Gn of G with Gn ⊆ Gn+1, ∪Gn = G, and ν(Gn) = cn < ∞, it is suggestive to take
for the probability measures νn of Theorem 8.5.1 the measures ν/cn truncated on
Gn . This leads to the desired result in the example below. On the other hand, there
are cases in which there exists such a sequence of subsets of Gn but no invariant test
satisfying (8.23) and hence no sequence νn satisfying (8.27).

Example 8.5.1 Let x = (x1, . . . , xn), A be the class of Borel sets in n-space, and
G the group of translations (x1 + g, . . . , xn + g), −∞ < g < ∞. The elements of
G can be represented by the real numbers, and the group product gg′ is then the sum
g + g′. If B is the class of Borel sets on the real line, the measurability assumptions
of Theorem 8.5.1 are satisfied. Let ν be Lebesgue measure, which is clearly invariant
under G, and define νn to be the uniform distribution on the interval I (−n, n) = {g :
−n ≤ g ≤ n}. Then for all B ∈ B, g ∈ G,

|νn(B) − νn(Bg)| = 1

2n
|ν[B ∩ I (−n, n)] − ν[B ∩ I (−n − g, n − g)]| ≤ |g|

2n
,

so that (8.27) is satisfied.
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This argument also covers the group of scale transformations (ax1, . . . , axn), 0 <

a < ∞, which can be transformed into the translation group by taking
logarithms. �

When applying the Hunt–Stein Theorem to obtain invariant minimax tests, it is
frequently convenient to carry out the calculation in steps, as was done in Theo-
rem 6.6.1. Suppose that the problem remains invariant under two groups D and E ,
and denote by y = s(x) a maximal invariant with respect to D and by E∗ the group
defined in Theorem 6.2.2, which E induces in y-space. If D and E∗ satisfy the con-
ditions of the Hunt–Stein Theorem, it follows first that there exists a maximin test
depending only on y = s(x), and then that there exists a maximin test depending
only on a maximal invariant z = t (y) under E∗.

Example 8.5.2 Consider a univariate linear hypothesis in the canonical form in
which Y1, . . . , Yn are independently distributed as N (ηi , σ

2), where it is given that
ηs+1 = · · · = ηn = 0, and where the hypothesis to be tested is η1 = · · · = ηr = 0. It
was shown in Section 7.1 that this problem remains invariant under certain groups of
transformations and thatwith respect to these groups there exists aUMP invariant test.
The groups involved are the group of orthogonal transformations, translation groups
of the kind considered in Example 8.5.1, and a group of scale changes. Since each
of these satisfies the assumptions of the Hunt–Stein Theorem, and since they leave
invariant the problem of maximizing the minimum power over the set of alternatives

r∑
i=1

η2
i

σ 2
≥ ψ2

1 (ψ1 > 0), (8.29)

it follows that the UMP invariant test of Chapter 7 is also the solution of this maximin
problem. It is also seen slightly more generally that the test which is UMP invariant
under the same groups for testing

r∑
i=1

η2
i

σ 2
≤ ψ2

0

(Problem 7.4) maximizes the minimum power over the alternatives (8.29) for
ψ0 < ψ1. �
Example 8.5.3 (Stein) Let G be the group of all nonsingular linear transformations
of p-space. That for p > 1 this does not satisfy the conditions of Theorem 8.5.1 is
shown by the following problem, which is invariant under G but for which the UMP
invariant test does not maximize the minimum power. Generalizing Example 6.2.1,
let X = (X1, . . . , X p), Y = (Y1, . . . , Yp) be independently distributed according to
p-variate normal distributions with zero means and nonsingular covariance matrices
E(Xi X j ) = σi j and E(Yi Y j ) = �σi j , and let H : � ≤ �0 be tested against� ≥ �1

(�0 < �1), the σi j being unknown.
This problem remains invariant if the two vectors are subjected to any common

nonsingular transformation, and since with probability 1 this group is transitive over
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the sample space, the UMP invariant test is trivially ϕ(x, y) ≡ α. The maximin
power against the alternatives � ≥ �1 that can be achieved by invariant tests is
therefore α. On the other hand, the test with rejection region Y 2

1 /X2
1 > C has a

strictly increasing power function β(�), whose minimum over the set of alternatives
� ≥ �1 is β(�1) > β(�0) = α. �

It is a remarkable feature of Theorem 8.5.1 that its assumptions concern only the
group G and not the distributions Pθ .3 When these assumptions hold for a certain G it
follows from (8.23) as in the proof of Lemma 8.4.1 that for any testing problemwhich
remains invariant underG and possesses aUMP invariant test, this testmaximizes the
minimum power over any invariant class of alternatives. Suppose conversely that a
UMP invariant test under G has been shown in a particular problem not to maximize
the minimum power, as was the case for the group of linear transformations in
Example 8.5.3. Then the assumptions of Theorem 8.5.1 cannot be satisfied. However,
this does not rule out the possibility that for another problem remaining invariant
under G, the UMP invariant test may maximize the minimum power. Whether or not
it does is no longer a property of the group alone but will in general depend also on
the particular distributions.

Consider in particular the problemof testing H : ξ1 = · · · = ξp = 0on the basis of
a sample (Xα1, . . . , Xαp), α = 1, . . . , n, from a p-variate normal distribution with
mean E(Xαi ) = ξi and common covariance matrix (σi j ) = (ai j )

−1. This problem
remains invariant under a number of groups, including that of all nonsingular linear
transformations of p-space, and a UMP invariant test exists. An invariant class of
alternatives under these groups is

∑∑ ai jξiξ j

σ 2
≥ ψ2

1 . (8.30)

Here, Theorem 8.5.1 is not applicable, and the question of whether the T 2-test of
H : ψ = 0 maximizes the minimum power over the alternatives

∑ ∑
ai jξiξ j = ψ2

1 (8.31)

[and hence a fortiori over the alternatives (8.30)] presents formidable difficulties.
The minimax property was proved for the case p = 2, n = 3 by Giri, Kiefer, and
Stein (1963), for the case p = 2, n = 4 by Linnik, Pliss, and Salaevskii (1968),
and for p = 2 and all n ≥ 3 by Salaevskii (1971). The proof is effected by first
reducing the problem through invariance under the group G1 of Example 6.6.2, to
which Theorem 8.5.1 is applicable, and then applying Theorem 8.1.1 to the reduced
problem. It is a consequence of this approach that it also establishes the admissibility
of T 2 as a test of H against the alternatives (8.31). In view of the inadmissibility

3 These assumptions are essentially equivalent to the condition that the group G is amenable.
Amenability and its relationship to the Hunt–Stein Theorem are discussed by Bondar and Milnes
(1982) and (with a different terminology) by Stone and von Randow (1968).
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results for point estimation when p ≥ 3 (see Lehmann and Casella (1998), Sections
5.4, 5.5, it seems unlikely that T 2 is admissible for p ≥ 3, and hence that the same
method can be used to prove the minimax property in this situation.

The problem becomes much easier when the minimax property is considered
against local or distant alternatives rather than against (8.31). Precise definitions and
proofs of the fact that T 2 possesses these properties for all p and n are provided by
Giri and Kiefer (1964) and in the references given in Section 7.9.

The theory of this and the preceding section can be extended to confidence sets
if the accuracy of a confidence set at level 1 − α is assessed by its volume or some
other appropriate measure of its size. Suppose that the distribution of X depends
on the parameters θ to be estimated and on nuisance parameters ϑ , and that μ is a
σ -finite measure over the parameter set ω = {θ : (θ, ϑ) ∈ �}, with ω assumed to be
independent of ϑ . Then the confidence sets S(X) for θ are minimax with respect to
μ at level 1 − α if they minimize

sup Eθ,ϑμ[S(X)]

among all confidence sets at the given level.
The problem of minimizing Eμ[S(X)] is related to that of minimizing the proba-

bility of covering false values (the criterion for accuracy used so far) by the relation
(Problem 8.39)

Eθ0,ϑμ[S(X)] =
∫

θ �=θ0

Pθ0,ϑ [θ ∈ S(X)] dμ(θ), (8.32)

which holds provided μ assigns measure zero to the set {θ = θ0}. (For the special
case that θ is real-valued and μ Lebesgue measure, see Problem 5.26.)

Suppose now that the problem of estimating θ is invariant under a group G in the
sense of Section 6.11 and that it satisfies the invariance condition

μ[S(gx)] = μ[S(x)]. (8.33)

If uniformly most accurate equivariant confidence sets exist, they minimize (8.32)
among all equivariant confidence sets at the given level, and one may hope that under
the assumptions of the Hunt–Stein Theorem, they will also be minimax with respect
to μ among the class of all (not necessarily equivariant) confidence sets at the given
level. Such a result does hold and can be used to show for example that the most
accurate equivariant confidence sets of Examples 6.11.2 and 6.11.3 minimize their
maximum expected Lebesgue measure. A more general class of examples is pro-
vided by the confidence intervals derived from the UMP invariant tests of univariate
linear hypotheses such as the confidence spheres for θi = μ + αi or for αi given in
Section 7.4.
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Minimax confidence sets S(x) are not necessarily admissible; that is, there may
exist sets S′(x) having the same confidence level but such that

Eθ,ϑμ[S′(X)] ≤ Eθ,ϑμ[S(X)] for all θ, ϑ

with strict inequality holding for at least some (θ, ϑ).

Example 8.5.4 Let Xi (i = 1, . . . , s) be independently normally distributed with
mean E(Xi ) = θi and variance 1, and let G be the group generated by translations
Xi + ci (i = 1, . . . , s) and orthogonal transformations of (X1, . . . , Xs). (G is the
Euclidean group of rigid motions in s-space.) In Example 6.12.2, it was argued that
the confidence sets

C0 = {(θ1, . . . , θs) :
∑

(θi − Xi )
2 ≤ c} (8.34)

are uniformly most accurate equivariant. The volume μ[S(X)] of any confidence set
S(X) remains invariant under the transformations g ∈ G, and it follows from the
results of Problems 8.31 and 8.7 and Examples 8.5.1 and 8.5.2 that the confidence
sets (8.34) minimize the maximum expected volume.

However, very surprisingly, they are not admissible unless s = 1 or 2. In the
case s ≥ 3, Stein (1962) suggested the region (8.34) can be improved by recentered
regions of the form

C1 = {(θ1, . . . , θs) : (θi − b̂Xi )
2 ≤ c} , (8.35)

where b̂ = max(0, 1 − (s − 2)/
∑

i X2
i ). In fact, Brown (1966) proved that,

for s ≥ 3,
Pθ {θ ∈ C1} > Pθ {θ ∈ C0}

for all θ . This result, which will not be proved here, is closely related to the inad-
missibility of X1, . . . , Xs as a point estimator of (θ1, . . . , θs) for a wide variety of
loss functions. The work on point estimation, which is discussed in Lehmann and
Casella (1998), Sections 5.4–5.6, for squared error loss, provides easier access to
these ideas than the present setting. Further entries into the literature on admissi-
bility are Stein (1981), Hwang and Casella (1982), and Tseng and Brown (1997);
additional references are provided in Lehmann and Casella (1998), p.423.

The inadmissibility of the confidence sets (8.34) is particularly surprising in that
the associated UMP invariant tests of the hypotheses H : θi = θi0 (i = 1, . . . , s) are
admissible (Problems 8.29, 8.30). �
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8.6 Most Stringent Tests

One of the practical difficulties in the consideration of tests that maximize the min-
imum power over a class �K of alternatives is the determination of an appropriate
�K . If no information is available on which to base the choice of this set, and if a
natural definition is not imposed by invariance arguments, a frequently reasonable
definition can be given in terms of the power that can be achieved against the various
alternatives. The envelope power function β∗

α was defined in Problem 6.27 by

β∗
α(θ) = supβϕ(θ),

where βϕ denotes the power of a test ϕ and where the supremum is taken over all
level-α tests of H . Thus β∗

α(θ) is the maximum power that can be attained at level
α against the alternative θ . (That it can be attained follows under mild restrictions
from Theorem A.5.1 of the Appendix.) If

S∗
� = {θ : β∗

α(θ) = �},

then of two alternatives θ1 ∈ S∗
�1
, θ2 ∈ S∗

�2
, θ1 can be considered closer to H , equidis-

tant, or further away than θ2 as �1 is <, =, or > �2.
The idea of measuring the distance of an alternative from H in terms of the

available information has been encountered before. If, for example, X1, . . . , Xn is a
sample from N (ξ, σ 2), the problem of testing H : ξ ≤ 0 was discussed (Section 5.2)
both when the alternatives ξ are measured in absolute units and when they are mea-
sured in σ -units. The latter possibility corresponds to the present proposal, since it
follows from invariance considerations (Problem 6.27) that β∗

α(ξ, σ ) is constant on
the lines ξ/σ = constant.

Fixing a value of� and taking as�K the class of alternatives θ for which β∗
α(θ) ≥

�, one can determine the test that maximizes the minimum power over�K . Another
possibility, which eliminates the need of selecting a value of �, is to consider for
any test ϕ the difference β∗

α(θ) − βϕ(θ). This difference measures the amount by
which the actual power βϕ(θ) falls short of the maximum power attainable. A test
that minimizes

sup
�−ω

[β∗
α(θ) − βϕ(θ)] (8.36)

is said to be most stringent. Thus a test is most stringent if it minimizes its maximum
shortcoming.

Letϕ� be a test thatmaximizes theminimumpower over S∗
�, and henceminimizes

the maximum difference between β∗
α(θ) and βϕ(θ) over S∗

�. If ϕ� happens to be
independent of �, it is most stringent. This remark makes it possible to apply the
results of the preceding sections to the determination of most stringent tests. Suppose
that the problem of testing H : θ ∈ ω against the alternatives θ ∈ � − ω remains
invariant under a group G, that there exists a UMP almost invariant test ϕ0 with
respect to G, and that the assumptions of Theorem 8.5.1 hold. Since β∗

α(θ) and
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hence the set S∗
� is invariant under Ḡ (Problem 6.27), it follows that ϕ0 maximizes

the minimum power over S∗
� for each �, and ϕ0 is therefore most stringent.

As an example of this method consider the problem of testing H : p1, . . . , pn ≤ 1
2

against the alternative K : pi > 1
2 for all i , where pi is the probability of success in

the i th trial of a sequence of n independent trials. If Xi is 1 or 0 as the i th trial is a
success or failure, then the problem remains invariant under permutations of the X ’s,
and the UMP invariant test rejects (Example 6.3.6) when

∑
Xi > C . It now follows

from the remarks above that this test is also most stringent.
Another illustration is furnished by the general univariate linear hypothesis. Here

it follows from the discussion in Example 8.5.2 that the standard test for testing
H : η1 = · · · = ηr = 0 or H ′ : ∑r

i=1 η2
i /σ

2 ≤ ψ2
0 is most stringent.

When the invariance approach is not applicable, the explicit determination ofmost
stringent tests typically is difficult. The following is a class of problems forwhich they
are easily obtained by a direct approach. Let the distributions of X constitute a one-
parameter exponential family, the density of which is given by (3.19), and consider
the hypothesis H : θ = θ0. Then according as θ > θ0 or θ < θ0, the envelope power
β∗

α(θ) is the power of the UMP one-sided test for testing H against θ > θ0 or θ < θ0.
Suppose that there exists a two-sided test ϕ0 given by (4.3), such that

sup
θ<θ0

[β∗
α(θ) − βϕ0(θ)] = sup

θ>θ0

[β∗
α(θ) − βϕ0(θ)], (8.37)

and that the supremum is attained on both sides, say at points θ1 < θ0 < θ2. If
βϕ0(θi ) = βi , i = 1, 2, an application of the fundamental lemma [Theorem 3.6.1(iii)]
to the three points θ1, θ2, θ0 shows that among all tests ϕ with βϕ(θ1) ≥ β1 and
βϕ(θ2) ≥ β2, only ϕ0 satisfies βϕ(θ0) ≤ α. For any other level-α test, therefore, either
βϕ(θ1) < β1 or βϕ(θ2) < β2, and it follows that ϕ0 is the unique most stringent test.
The existence of a test satisfying (8.37) can be proved by a continuity consideration
[with respect to variation of the constants Ci and γi which define the boundary of
the test (4.3)] from the fact that for the UMP one-sided test against the alternatives
θ > θ0 the right-hand side of (8.37) is zero and the left-hand side positive, while the
situation is reversed for the other one-sided test.

8.7 Monotone Tests

In some testing problems, it may be reasonable to restrict attention to tests that are
monotone in an appropriate sense. We begin with a motivating example.

Example 8.7.1 (Testing For Superiority) Suppose (X1, . . . , Xs)
� is multivariate

normal with unknown mean θ = (θ1, . . . , θs)
� and known covariance matrix �.

Assume� = Is , the identity. The null hypothesis H0 : θ ∈ �0 specfies not all θi > 0
so that

�0 = {θ : θi ≤ 0 for some i} ,
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and the alternative specifies all θi > 0, or �1 = �c
0. By Problem 4.8, the only

unbiased test is φ ≡ α, and so trivially it is UMPU. However, there are reason-
able tests for this problem. The likelihood ratio test rejects for large values of
T = min(X1, . . . , Xs) (Problem 8.41), say when T exceeds an appropriate threshold
c. In order to determine the critical value c so that the level of the test is controlled,
we must ensure that

Pθ {T > c} ≤ α , for all θ ∈ �0 .

As a function of θ , this rejection probability is increasing in each of the θi . Hence, this
probability is maximized over θ ∈ �0 when one of the θi is zero and the remaining
are tending to ∞. By symmetry, let θ1 = 0. Then, for θ ∈ �0,

Pθ {T > c} ≤ Pθ1=0{X1 > c}

and
sup
θ∈�0

Pθ {T > c} = Pθ1=0{X1 > c} ,

because for any c and i > 1, Pθi {Xi > c} → 0 as θi → ∞. Hence, the test that rejects
when T > z1−α has size α. Such a test seems intuitively reasonable, for in order to
claim that all θi are positive, large values of the smallest Xi support this claim.
However, we would like to know if there is a more principled reason to support this
test. Note that when all θi = 0, the rejection probability becomes

P0{min(X1, . . . , Xs) > z1−α} = αs ,

which is < α. Hence, the likelihood ratio test is biased (since the power near the
origin will be < α). Also notice that the likelihood ratio test is monotone in the
following sense. If x = (x1, . . . , xs)

� is in the rejection region and x ′
i ≥ xi for all i ,

then x ′ = (x ′
1, . . . , x ′

s)
� is also in the rejection region. Intuitively, if you are willing

to reject based on X , you should be willing to reject based on X ′ if all the components
of X ′ are at least as large as the corresponding components of X . We will return to
this example shortly. �

The principle of monotonicity is based on the following idea. Suppose
(X1, . . . , Xs)

� is distributed according to Pθ , where θ = (θ1, . . . , θs)
�. Let θ ′ =

(θ ′
1, . . . , θ

′
s)

�. If θ ≤ θ ′ (meaning θi ≤ θ ′
i for all i), then we will assume that θ ′ typi-

cally produces larger values of X than does θ . In order to formalize the sense inwhich
the Pθ are appropriately stochastically increasing, we will generalize the univariate
definition in Section 3.4 to s dimensions.

A set ω ∈ RI s is said to be monotone increasing if

x = (x1, . . . , xs)
� ∈ ω and xi ≤ x ′

i for all i implies x ′ ∈ ω . (8.38)

(Similarly,ω ismonotone decreasing if−ω = {x : −x ∈ ω} ismonotone increasing.)
A nonrandomized test is calledmonotone increasing, or justmonotone, if its rejection
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region ismonotone increasing in the sense (8.38). In this section,wewill restrict atten-
tion to nonrandomized tests. (More generally, onemay call a testφ = φ(X1, . . . , Xn)

monotone if it is nondecreasing in each of its arguments.) The restriction to mono-
tone rejection regionsmay be appropriatewhen the distributions Pθ are stochastically
increasing; that is, θi ≤ θ ′

i for all i implies

∫
ω

d Pθ ≤
∫

ω

d Pθ ′ (8.39)

for every monotone increasing set ω.
We now consider sufficient conditions to verify (8.39). Let θ ≤ θ ′ (component-

wise) and X ∼ Pθ . Suppose we can find a function h such that X ′ = h(X), with
X ≤ X ′ and X ′ ∼ Pθ ′ . Another possibility is to assume that, for some random vector
Z , we may write X = f (Z) and X ′ = f ′(Z), where f and f ′ are such that X ≤ X ′,
X ∼ Pθ , and X ′ ∼ Pθ ′ . Then (8.39) holds in either case because

∫
ω

d Pθ = P{X ∈ ω} ≤ P{X ′ ∈ ω} =
∫

ω

d Pθ ′ .

For example, in a generalmultivariate locationmodel, Pθ is the distribution of Z +
θ where Z is a random vector with any fixed known distribution. If we take f (Z) =
Z + θ and f ′(Z) = Z + θ ′, then the conditions are satisfied. Thus, Condition (8.39)
holds in Example 8.7.1.

Assume, as in Example 8.7.1, that the alternative parameter space�1 is monotone
increasing. Then, the case for the restriction to monotone tests is particularly com-
pellingwhen, as in the above sufficient conditions for (8.39), we canwrite X = f (Z),
X ′ = f ′(Z) and X ≤ X ′, where X ∼ Pθ and X ′ ∼ Pθ ′ with θ ≤ θ ′. Consider the fol-
lowing (unrealistic) situation. Michael is testing H0 on the basis of X = f (Z) and
Azeem is testing H0 on the basis of X ′ = f ′(Z) (for the same Z , so that X ≤ X ′). Sup-
pose Michael rejects H0 and claims θ ∈ �1. Michael would also conclude θ ′ ∈ �1

for any θ ′ ≥ θ , and so Azeem should reject H0 as well. Thus, if Michael and Azeem
are using the same test φ, then when Michael rejects H0 on the basis of X , so must
Azeem on the basis of X ′. Since X ≤ X ′, the test must be monotone. Finally, even if
Michael’s and Azeem’s testing problems are not coupled, Michael should still want
to apply the same test φ when faced with the problem of testing H0 based on X .

The restriction to monotone tests sometimes allows one to find an optimal proce-
dure, as we now show.

Example 8.7.2 (Continuation of Example 8.7.1)Wewill show that, amongmono-
tone level α tests, the likelihood ratio test is UMP. Recall that the rejection region is
the set

E = {(x1, . . . , xs)
� : min(x1, . . . , xs) ≥ z1−α} .

Suppose E ′ is any other monotone increasing rejection region and that E ′ includes
some point y that is not in E . Therefore, yi < z1−α for some i . Without loss of
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generality, assume y1 < z1−α . Then, since E ′ is monotone, y ∈ E ′ implies the set
Ry ⊂ E ′, where

Ry = {(x1, . . . , xs)
� : xi ≥ yi for all i} .

Then, the size of the test with rejection region E ′ is at least

sup
θ∈�0

Pθ {Ry} ≥ sup
θ1=0,θi →∞

Pθ {Xi ≥ yi , i = 1, . . . , s}

= P0{X1 ≥ y1} > P0{X1 > z1−α} = α .

Hence, such a test is not level α. Therefore, any other level α test with rejection
region E ′ must satisfy E ′ ⊆ E . If E ′ is a strict subset of E with the set difference
E \ E ′ having positive Lebesgue measure, then the power against any alternative of
the test with rejection region E is strictly bigger than that of E ′, as claimed.

Despite the likelihood ratio test being UMP among monotone tests, it is not α-
admissible. In order to construct a level α test with better power, one can enlarge the
rejection region E of the likelihood ratio test in such a way so that the new rejection
region is still level α. Since the rejection probability of the likelihood ratio test is αs

at the origin, one can add a region F to E where F is some region in the quadrant
where all components are negative. For example, one may consider

F = {x : max
i

xi ≤ d}

for some d < 0. If d is chosen far enough away from 0 so that

P0{F} < α − αs ,

then the test that has rejection region E ∪ F has probability of a Type 1 error under
θ = 0 equal to

P0{E ∪ F} = P0{E} + P0{F} = αs + P0{F} < α .

One just needs to make sure that the level is controlled for all θ ∈ �0 (Problem 8.43).
Such a test is clearly nonsensical because X ∈ F means that all components of X
are negative, which is not evidence against the null hypothesis. While the test with
rejection region E ∪ F increases power, it does so at the expense of increasing Type
1 error, i.e., the rejection probability under θ ∈ �0. Although the likelihood ratio test
is not α-admissible, it is in fact d-admissible; see Cohen et al. (1983) and Nomakuchi
and Sakata (1987). Perlman and Wu (1999) advocate for the use of the likelihood
ratio test and question the utility of the notion of α-admissibility. �
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Monotonicity does not always reduce the problem sufficiently far so that a UMP
monotone test exists.However, as the next example shows,we canobtain themaximin
monotone level α test, i.e., the test that maximizes minimum power amongmonotone
level α tests.

Example 8.7.3 (Moment Inequalities) Assume X = (X1, . . . , Xs)
� is multivari-

ate normal with unknown mean θ = (θ1, . . . , θs)
� and known invertible covariance

matrix �. The problem now is to test the null hypothesis H0 : θ ∈ �0, where

�0 = {θ : θi ≤ 0 for all i = 1, . . . s} .

Note that �1 = �c
0 is a monotone increasing set. As in Example 8.7.1, the UMPU

level α test is the trivial test φ ≡ α, but monotonicity considerations apply.4

First, let’s consider the likelihood ratio test. It rejects for large values of T given
by

T = inf
θ∈�0

(X − θ)��−1(X − θ) . (8.40)

One can check that T is monotone increasing in each of its arguments, and therefore
the test that rejects when T > c is monotone. For this problem, any monotone test
has its largest probability of rejection under θ ∈ �0 occur at θ = 0. Therefore, the
constant c = c1−α should be determined so that

P0{T ≥ c1−α} = α .

In the special case that � is the identity matrix, the test statistic T reduces to T =∑
i max2(Xi , 0).
In order to determine themaximinmonotone test, let us assume that� has diagonal

elements equal to one (or simply divide each Xi by its standard deviation). Consider
the region in the alternative parameter space ω(ε) defined, for some fixed ε > 0, by

ω(ε) = {θ : θi ≥ ε for some i} .

The goal is to maximize
inf

θ∈ω(ε)
Pθ {reject H0}

among level α monotone tests. Letting M = max(X1, . . . , Xs), consider the test
that rejects H0 if M > d for some constant d. Such a test is clearly monotone and
d = d1−α can be determined so that

P0{M ≥ d1−α} = α .

4 When the null hypothesis parameter space is described as a number of inequalities about means
being satisfied, the problem is known in econometrics as testing moment inequalities; for a review,
see Canay and Shaikh (2017).
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Of course, if � is the identity matrix, then

d1−α = �−1
[
(1 − α)1/s

]
. (8.41)

We now argue that the test that rejects when M ≥ d1−α is the maximin monotone
test. The worst-case power of this test over the region ω(ε) is

inf
θ∈ω(ε)

Pθ {M ≥ d1−α} ,

which occurs when some θi = ε and the remaining θ j satisfy θ j → −∞. In such a
case, M = Xi with probability tending to one, and the worse case power becomes

Pθi =ε{Xi ≥ d1−α} = 1 − �(d1−α − ε) . (8.42)

Assume φ is another monotone level α test with acceptance region A and rejection
region R = Ac. Suppose φ includes some point x ∈ A that falls in the interior of the
rejection region of the test based on M , so that xi > d1−α for some i . Without loss
of generality, assume x1 > d1−α . Let

Ax = {y : yi ≤ xi for all i} .

Then, Ax is a monotone decreasing set and x ∈ A imples Ax ⊆ A. Therefore,
Pθ {A} ≥ Pθ {Ax } and so

sup
θ∈ω(ε)

Pθ {A} ≥ sup
θ∈ω(ε)

Pθ {X1 ≤ x1, . . . , Xs ≤ xs} .

But as θ j → −∞, the event {X j ≤ x j } has probability tending to one. So,

sup
θ∈ω(ε)

Pθ {A} ≥ lim
θ1=ε,θ j →−∞, j>1

Pθ {X1 ≤ x1, . . . , Xs ≤ xs} =

Pθ1=ε{X1 ≤ x1} = �(x1 − ε) .

Therefore,
inf

θ∈ω(ε)
Pθ (R) ≤ 1 − �(x1 − ε) < 1 − �(d1−α − ε) ,

since x1 > d1−α . Therefore, the worst-case power of φ is worse than that of the
claimed optimal test, by (8.42). The assumption that x1 > d1−α cannot hold in order
for φ to be optimal. Hence, the rejection region R of φ must be contained in the
rejection region {M ≥ d1−α}. But then it cannot have better power than the test
based on M . Hence, the test that rejects for large M is maximin among monotone
tests. Note that, by taking ε = 0 in the argument, the test is also the monotone test
with smallest worst-case bias; that is,
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α − inf
θ∈�c

0

Pθ {reject H0}

is minimized among monotone tests.
In this example, the case for tests that are not monotone is motivated by the

following observations. First, the critical value of the test based on M increases with
the dimension s; see (8.41) in the case where� is the identity. Therefore, one strategy
is to reduce the dimension so that a reduced critical value makes it easier to reject H0.
For example, if one observes a large negative X j , onemight feel confident that θ j ≤ 0
and remove such an index j from consideration. That is, for some threshold t < 0, let
J = { j : X j > t}, and only test θ j for j ∈ J . For example, onemight use the statistic
max j∈J X j with critical value determined when all corresponding θ j = 0. However,
it is not clear that such a procedure controls the size of the test. Such procedures are
known in the econometrics literature as moment selection procedures. Note that such
a procedure is not monotone. As such, the probability of a Type 1 error as a function
of θ ∈ � need not be maximized at the origin, and one must take into account the
selection step. Moment selection methods that provide error control are provided in
Andrews and Barwick (2012) and Romano et al. (2014), who also provide references
to this growing literature. �

Unfortunately, the test that ismaximin amongmonotone tests need not bemaximin
without the monotonicity restriction. Such is the case in Example 8.7.3, but we next
show it in another example.

Example 8.7.4 (Cauchy Location Model) Let X be an observation from the
Cauchy location model with center θ ; X has density f (x − θ), where

f (x) = 1

π(1 + x2)
.

Consider the problem of testing H0 : θ = 0 against θ > 0. By Problem 3.33, no
UMP test exists. The only monotone tests are those with rejection regions {X ≥ c}
(or {X > c}) for some c. Hence, if c = c1−α is the 1 − α quantile of the Cauchy
distributed centered at 0, then the test that rejects if X ≥ c1−α is trivially UMP
among monotone tests.

Next, consider the problem of finding a maximin test over the region θ ≥ a for
some fixed a > 0, without the restriction to monotone tests. We now argue that the
UMP monotone test is generally not maximin, depending on the value of a. First,
note that the power of the UMP monotone test over θ ≥ a attains its minimum at
θ = a. Also, for testing θ = 0 against θ = a, the likelihood ratio is

f (X − a)

f (X)
= 1 + X2

1 + (X − a)2
, (8.43)

which is≥ 1 if and only if X ≥ a/2. Therefore, by the Neyman–Pearson Lemma, the
test that rejects if X ≥ a/2 is most powerful at level P0{X ≥ a/2}. If a/2 = c1−α ,
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aa
2

c1−α

(0, 1)

Figure 8.1 Cauchy likelihood ratio

then this MP level α test is in fact the UMP monotone level α test. It follows easily
that, in this case, the test that rejects if X ≥ a/2 is maximin among all level α tests.
Indeed, if it were not, there would be another test whose power at θ = a would be
less than that of the UMP monotone test, a contradiction since the UMP monotone
test maximizes power at a.

On the other hand, consider the casewhere a/2 < c1−α . Then, theUMPmonotone
test is no longer maximin. To appreciate why, again consider the likelihood ratio for
testing θ = 0 against θ = a. The likelihood ratio at a/2 is 1, it exceeds 1 for X > a/2
and it tends to 1 as X → ∞. The likelihood ratio (8.43) is plotted in Figure 8.1 as
a function of X . Since a/2 < c1−α , we may therefore modify the rejection region
{X ≥ c1−α} by removing a small interval of very large X values and including values
of X near c1−α . The new rejection region now includes an interval [c1−α − ε, c1−α)

for some small enough ε. The result is an increase in power at θ = a, and it can be
done in such a way that the worst-case power is not decreased (Problem 8.48).

By a similar argument, it follows that, again in the case a/2 < c1−α , the rejection
region of the maximin test cannot include any semi-infinite interval (b,∞). On the
other hand, the rejection region of the maximin test cannot be a bounded set, because
the probability of any bounded set tends to 0 as θ → ∞. It follows that the rejection
region of the maximin test is unbounded but does not include a semi-infinite interval.
That is, to the right of any point b, both the rejection region and the acceptance region
contains subsets with positive measure. A conjecture is that it is an infinite sequence
of intervals, though it is clearly not monotone.

Finally, in the case a/2 > c1−α , similar arguments show that the maximin mono-
tone level α test is not maximin among all level α tests. �
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8.8 Problems

Section 8.1

Problem 8.1 Existence of maximin tests.5 Let (X ,A) be a Euclidean sample space,
and let the distributions Pθ , θ ∈ �, be dominated by a σ -finite measure over (X ,A).
For any mutually exclusive subsets �H , �K of � there exists a level-α test maxi-
mizing (8.2).
[Let β = sup[inf�k Eθϕ(X)], where the supremum is taken over all level-α tests of
H : θ ∈ �H . Let ϕn be a sequence of level-α tests such that inf�K Eθϕn(X) tends
to β. If ϕni is a subsequence and ϕ a test (guaranteed by Theorem A.5.1 of the
Appendix) such that Eθϕni (X) tends to Eθϕ(X) for all θ ∈ �, then ϕ is a level-α
test and inf�k Eθϕ(X) = β.]

Problem 8.2 In Example 8.1.1, explain why the maximin test is not UMPU for the
alternatives considered.

Problem 8.3 In Example 8.1.3, complete the argument using Corollary 8.1.1 to find
the maximin test without assuming you already know the UMPI test. What if the
alternative specifies

∑n
i=1 ξ 2

i ≥ δ2?

Problem 8.4 Locally most powerful tests. 6 Let d be a measure of the distance of an
alternative θ from a given hypothesis H . A level-α test ϕ0 is said to be locally most
powerful (LMP) if, given any other level-α test ϕ, there exists � such that

βϕ0(θ) ≥ βϕ(θ) for all θ with 0 < d(θ) < �. (8.44)

Suppose that θ is real-valued and that the power function of every test is continuously
differentiable at θ0.

(i) If there exists a unique level-α test ϕ0 of H : θ = θ0, maximizing β ′
ϕ(θ0), then

ϕ0 is the unique LMP level-α test of H against θ > θ0 for d(θ) = θ − θ0.
(ii) To see that (i) is not correct without the uniqueness assumption, let X take on

the values 0 and 1 with probabilities Pθ (0) = 1
2 − θ3, Pθ (1) = 1

2 + θ3, − 1
2 <

θ3 < 1
2 , and consider testing H : θ = 0 against K : θ > 0. Then every test ϕ

of size α maximizes β ′
ϕ(0), but not every such test is LMP. [Kallenberg et al.

(1984).]
(iii) The following7 is another counterexample to (i) without uniqueness, in which

in fact no LMP test exists. Let X take on the values 0, 1, 2 with probabilities

5 The existence of maximin tests is established in considerable generality in Cvitanic and Karatzas
Karatzas (2001).
6 Locally optimal tests for multiparameter hypotheses are given in Gupta and Vermeire (1986).
7 Due to John Pratt.
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Pθ (x) = α + ε
[
θ + θ2 sin

( x

θ

)]
for x = 1, 2,

Pθ (0) = 1 − pθ (1) − pθ (2),

where −1 ≤ θ ≤ 1 and ε is a sufficiently small number. Then a test ϕ at level
α maximizes β ′(0) provided

ϕ(1) + ϕ(2) = 1 ,

but no LMP test exists.
(iv) A unique LMP test maximizes the minimum power locally provided its power

function is bounded away from α for every set of alternatives which is bounded
away from H .

(v) Let X1, . . . , Xn be a sample from a Cauchy distribution with unknown location
parameter θ , so that the joint density of the X ’s is π−n

∏n
i=1[1 + (xi − θ)2]−1.

The LMP test for testing θ = 0 against θ > 0 at level α < 1
2 is not unbiased

and hence does not maximize the minimum power locally.
[(iii): The unique most powerful test against θ is

{
ϕ(1)
ϕ(2)

= 1 if sin

(
1

θ

)
>=< sin

(
2

θ

)
,

and each of these inequalities holds at values of θ arbitrarily close to 0.
(v): There exists M so large that any point with xi ≥ M for all i = 1, . . . , n lies
in the acceptance region of the LMP test. Hence the power of the test tends to
zero as θ tends to infinity.]

Problem 8.5 Under the setting of Problem3.35, determine the locallymost powerful
test.

Problem 8.6 A level-α test ϕ0 is locally unbiased (loc. unb.) if there exists �0 > 0
such that βϕ0(θ) ≥ α for all θ with 0 < d(θ) < �0; it is LMP loc. unb. if it is loc.
unb. and if, given any other loc. unb. level-α test ϕ, there exists � such that (8.44)
holds. Suppose that θ is real-valued and that d(θ) = |θ − θ0|, and that the power
function of every test is twice continuously differentiable at θ = θ0.

(i) If there exists a unique test ϕ0 of H : θ = θ0 against K : θ �= θ0 which among
all loc. unb. tests maximizes β ′′(θ0), then ϕ0 is the unique LMP loc. unb. level-α
test of H against K .

(ii) The test of part (i) maximizes the minimum power locally provided its power
function is bounded away from α for every set of alternatives that is bounded
away from H .

[(ii): A necessary condition for a test to be locally minimax is that it is loc. unb.]

Problem 8.7 Locally uniformly most powerful tests. If the sample space is finite
and independent of θ , the test ϕ0 of Problem 8.4(i) is not only LMP but also locally
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uniformly most powerful (LUMP) in the sense that there exists a value � > 0 such
that ϕ0 maximizes βϕ(θ) for all θ with 0 < θ − θ0 < �.

Problem 8.8 The following two examples show that the assumption of a finite-
sample space is needed in Problem 8.7.

(i) Let X1, …, Xn be i.i.d. according to a normal distribution N (σ, σ 2) and test
H : σ = σ0 against K : σ > σ0.

(ii) Let X and Y be independent Poisson variables with E(X) = λ and E(Y ) =
λ + 1, and test H : λ = λ0 against K : λ > λ0. In each case, determine the LMP
test and show that it is not LUMP.

[Compare the LMP test with the most powerful test against a simple alternative.]

Section 8.2

Problem 8.9 Let the distribution of X depend on the parameters (θ, ϑ) =
(θ1, . . . , θr , ϑ1, . . . , ϑs). A test of H : θ = θ0 is locally strictly unbiased if for each
ϕ, (a) βϕ(θ0, ϕ) = α, (b) there exists a θ -neighborhood of θ0 in which βϕ(θ, ϑ) > α

for θ �= θ0.

(i) Suppose that the first and second derivatives

β i
ϕ(ϑ) = ∂

∂θi
βϕ(θ, ϑ)

∣∣∣∣
θ0

and β i j
ϕ (ϑ) = ∂2

∂θi∂θ j
βϕ(θ, ϑ)

∣∣∣∣
θ0

exist for all critical functions ϕ and all ϑ . Then a necessary and sufficient con-
dition for ϕ to be locally strictly unbiased is that β ′

ϕ = 0 for all i and ϑ , and that

the matrix (β
i j
ϕ (ϑ)) is positive definite for all ϑ .

(ii) A test of H is said to be of type E (type D is s = 0 so that there are no nui-
sance parameters) if it is locally strictly unbiased and among all tests with this
property maximizes the determinant |(β i j

ϕ )|.8 (This determinant under the stated
conditions turns out to be equal to the Gaussian curvature of the power surface
at θ0.) Then the test ϕ0 given by (7.7) for testing the general linear univariate
hypothesis (7.3) is of type E.

[(ii): With θ = (η1, . . . , ηr ) and ϑ = (ηr+1, . . . , ns, σ ), the test ϕ0, by Problem 7.5,
has the property of maximizing the surface integral

∫
S
[βϕ(η, σ 2) − α] d A

8 An interesting example of a type-D test is provided by Cohen and Sackrowitz (1975), who show
that the χ2-test of Chapter 16.3 has this property. Type D and E tests were introduced by Isaacson
(1951).
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among all similar (and hence all locally unbiased) tests where S = {(η1, . . . , ηr ) :∑r
i=1 η2

i = ρ2σ 2}. Letting ρ tend to zero and utilizing the conditions

β i
ϕ(ϑ) = 0,

∫
S
ηiη j d A = 0 for i �= j,

∫
S
η2

i d A = k(ρσ),

one finds that ϕ0 maximizes
∑r

i=1 β i i
ϕ (η, σ 2) among all locally unbiased tests. Since

for any positive definite matrix, |(β i j
ϕ )| ≤ ∏

β i i
ϕ , it follows that for any locally strictly

unbiased test ϕ,

|(β i j
ϕ )| ≤

∏
β i i

ϕ ≤
[

�β i i
ϕ

r

]r

≤
[

�β i i
ϕ0

r

]r

= [β11
ϕ0

]r = |(β i j
ϕ0

)|.]

Problem 8.10 Let Z1, . . . , Zn be identically independently distributed according to
a continuous distribution D, of which it is assumed only that it is symmetric about
some (unknown) point. For testing the hypothesis H : D(0) = 1

2 , the sign test max-
imizes the minimum power against the alternatives K : D(0) ≤ q(q < 1

2 ). [A pair
of least favorable distributions assign probability 1, respectively, to the distributions
F ∈ H , G ∈ K with densities

f (x) = 1 − 2q

2(1 − q)

(
q

1 − q

)[|x |]
, g(x) = (1 − 2q)

(
q

1 − q

)|[x]|

where for all x (positive, negative, or zero) [x] denotes the largest integer ≤ x .]

Problem 8.11 Let fθ (x) = θg(x) + (1 − θ)h(x)with 0 ≤ θ ≤ 1. Then fθ (x) satis-
fies the assumptions of Lemma 8.2.1 provided g(x)/h(x) is a nondecreasing function
of x .

Problem 8.12 Let x = (x1, . . . , xn), and let gθ (x, ξ) be a family of probability den-
sities depending on θ = (θ1, . . . , θr ) and the real parameter ξ , and jointly measur-
able in x and ξ . For each θ , let hθ (ξ) be a probability density with respect to a σ -
finite measure ν such that pθ (x) = ∫

gθ (x, ξ)hθ (ξ) dν(ξ) exists. We shall say that
a function f of two arguments u = (u1, . . . , ur ), v = (v1, . . . , vs) is nondecreasing
in (u, v) if f (u′, v)/ f (u, v) ≤ f (u′, v′)/ f (u, v′) for all (u, v) satisfying ui ≤ u′

i ,
v j ≤ v′

j (i = 1, . . . , r; j = 1, . . . , s). Then pθ (x) is nondecreasing in (x, θ) pro-
vided the product gθ (x, ξ)hθ (ξ) is (a) nondecreasing in (x, θ) for each fixed ξ ;
(b) nondecreasing in (θ, ξ) for each fixed x ; (c) nondecreasing in (x, ξ) for each
fixed θ .
[Interpreting gθ (x, ξ) as the conditional density of x given ξ , and hθ (ξ) as the a
priori density of ξ , let ρ(ξ) denote the a posteriori density of ξ given x , and let ρ ′(ξ)

be defined analogously with θ ′ in place of θ . That pθ (x) is nondecreasing in its two
arguments is equivalent to
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∫
gθ (x ′, ξ)

gθ (x, ξ)
ρ(ξ) dν(ξ) ≤

∫
gθ ′(x ′, ξ)

gθ ′(x, ξ)
ρ ′(ξ) dν(ξ).

By (a) it is enough to prove that

D =
∫

gθ (x ′, ξ)

gθ (x, ξ)
[ρ ′(ξ) − ρ(ξ)] dν(ξ) ≥ 0.

Let S− = {ξ : ρ ′(ξ)/ρ(ξ) < 1} and S+ = {ξ : ρ(ξ)/ρ(ξ) ≥ 1}. By (b) the set S−
lies entirely to the left of S+. It follows from (c) that there exists a ≤ b such that

D = a
∫

S−
[ρ ′(ξ) − ρ(ξ)] dν(ξ) + b

∫
S+

[ρ ′(ξ) − ρ(ξ)] dν(ξ),

and hence that D = (b − a)
∫

S+[ρ ′(ξ) − ρ(ξ)] dν(ξ) ≥ 0.]
Problem 8.13 (i) Let X have binomial distribution b(p, n), and consider testing

H : p = p0 at level α against the alternatives�K : p/q ≤ 1
2 p0/q0 or≥ 2p0/q0.

For α = .05 determine the smallest sample size for which there exists a test with
power ≥ .8 against �K if p0 = .1, .2, .3, .4, .5.

(ii) Let X1, …, Xn be independently distributed as N (ξ, σ 2). For testing σ = 1 at
level α = .05, determine the smallest sample size for which there exists a test
with power ≥ .9 against the alternatives σ 2 ≤ 1

2 and σ 2 ≥ 2.
[See Problem 4.5.]

Problem 8.14 Double-exponential distribution. Let X1, …, Xn be a sample from
the double-exponential distribution with density 1

2e−|x−θ |. The LMP test for testing
θ ≤ 0 against θ > 0 is the sign test, provided the level is of the form

α = 1

2n

m∑
k=0

(
n

k

)
,

so that the level-α sign test is nonrandomized.
[Let Rk (k = 0, . . . , n) be the subset of the sample space in which k of the X ’s are
positive and n − k are negative. Let 0 ≤ k < l < n, and let Sk , Sl be subsets of Rk ,
Rl such that P0(Sk) = P0(Sl) �= 0. Then it follows from a consideration of Pθ (Sk)

and P0(Sl) for small θ that there exists � such that Pθ (Sk) < Pθ (Sl) for 0 < θ < �.
Suppose now that the rejection region of a nonrandomized test of θ = 0 against θ > 0
does not consist of the upper tail of a sign test. Then it can be converted into a sign
test of the same size by a finite number of steps, each of which consists in replacing
an Sk by an Sl with k < l, and each of which therefore increases the power for θ

sufficiently small.]
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Section 8.3

Problem 8.15 If (8.13) holds, show that q1 defined by (8.11) belongs to P1.

Problem 8.16 Show that there exists a unique constant b for which q0 defined by
(8.11) is a probability density with respect to μ, that the resulting q0 belongs to P0,
and that b → ∞ as ε0 → 0.

Problem 8.17 Prove the formula (8.15).

Problem 8.18 Show that ifP0 �= P1 and ε0, ε1 are sufficiently small, then Q0 �= Q1.

Problem 8.19 Evaluate the test (8.21) explicitly for the case that Pi is the normal
distribution with mean ξi and known variance σ 2, and when ε0 = ε1.

Problem 8.20 Determine whether (8.21) remains the maximin test if in the model
(8.20) Gi is replaced by Gi j .

Problem 8.21 Write out a formal proof of the maximin property outlined in the last
paragraph of Section 8.3.

Section 8.4

Problem 8.22 Let X1, …, Xn be independent and normally distributed with means
E(Xi ) = μi and variance 1. The test of H : μ1 = · · · = μn = 0 that maximizes the
minimum power over ω′ : ∑

μi ≥ d rejects when
∑

Xi ≥ C .
[If the least favorable distribution assigns probability 1 to a single point, invariance
under permutations suggests that this point will be μ1 = · · · = μn = d/n].
Problem 8.23 (i)9 In the preceding problem determine the maximin test if ω′ is

replaced by
∑

aiμi ≥ d, where the a’s are given positive constants.
(ii) Solve part (i) with V ar(Xi ) = 1 replaced by V ar(Xi ) = σ 2

i (known).
[(i): Determine the point (μ∗

1, . . . , μ
∗
n) in ω′ for which the MP test of H against

K : (μ∗
1, . . . , μ

∗
n) has the smallest power, and show that the MP test of H against K

is a maximin solution.]

Problem 8.24 Let X1, …, Xn be independent normal variables with variance 1 and
means ξ1, …, ξn , and consider the problem of testing H : ξ1 = · · · = ξn = 0 against
the alternatives K = {K1, . . . , Kn}, where Ki : ξ j = 0 for j �= i , ξi = ξ (known and
positive). Show that the problem remains invariant under permutation of the X ’s and
that there exists a UMP invariant test φ0 which rejects when

∑
eξ Xi > C , by the

following two methods.

(i) The order statistics X(1) < · · · < X(n) constitute a maximal invariant.

9 Due to Fritz Scholz.
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(ii) Let f0 and fi denote the densities under H and Ki respectively. Then the level-α
test φ0 of H versus K ′ : f = (1/n)

∑
fi is UMP invariant for testing H versus

K .

[(ii): If φ0 is not UMP invariant for H versus K , there exists an invariant test φ1

whose (constant) power against K exceeds that of φ0. Then φ1 is also more powerful
against K ′.]

Problem 8.25 The UMP invariant test φ0 of Problem 8.24

(i) maximizes the minimum power over K ;
(ii) is admissible.
(iii) For testing the hypothesis H of Problem 8.24 against the alternatives K ′ =

{K1, . . . , Kn, K ′
1, . . . , K ′

n}, where under K ′
i : ξ j = 0 for all j �= i , ξi = −ξ ,

determine the UMP test under a suitable group G ′, and show that it is both
maximin and invariant.

[ii): Suppose φ′ is uniformly at least as powerful as φ0, and more powerful for at
least one Ki , and let

φ∗(x1, . . . , xn) =
∑

φ′(xi1 , . . . , xin )

n! ,

where the summation extends over all permutations. Then φ∗ is invariant, and its
power is independent of i and exceeds that of φ0.]

Problem 8.26 Suppose Problems 8.24–8.25 are modified so that the one nonzero
mean may ξ or −ξ . How do the results change?

Problem 8.27 Suppose X1, . . . , Xn are independent normal variables with Xi ∼
N (ξi , 1). The null hypothesis specifies all ξi = 0. Fix an integer k ≥ 1. Suppose ω′
specifies that at least k of the Xi have mean at least ξ , where ξ is known and positive.
Determine a maximin test as explicitly as possible.

Problem 8.28 For testing H : f0 against K : { f1, . . . , fs}, suppose there exists a
finite groupG = {g1, . . . , gN }which leaves H and K invariant andwhich is transitive
in the sense that given f j , f j ′(1 ≤ j, j ′) there exists g ∈ G such that ḡ f j = f j ′ . In
generalization of Problems 8.24, 8.25, determine a UMP invariant test, and show that
it is both maximin against K and admissible.

Problem 8.29 To generalize the results of the preceding problem to the testing of
H : f versus K : { fθ , θ ∈ ω}, assume:

(i) There exists a group G that leaves H and K invariant.
(ii) Ḡ is transitive over ω.
(iii) There exists a probability distribution Q over G which is right invariant in the

sense of Section 8.4.

Determine a UMP invariant test, and show that it is both maximin against K and
admissible.
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Problem 8.30 Let X1, …, Xn be independent normal with means θ1, …, θn and
variance 1.

(i) Apply the results of the preceding problem to the testing of H : θ1 = · · · = θn =
0 against K : ∑

θ2
i = r2, for any fixed r > 0.

(ii) Show that the results of (i) remain valid if H and K are replaced by H ′ : ∑
θ2

i ≤
r20 , K ′ : ∑

θ2
i ≥ r21 (r0 < r1).

Problem 8.31 Suppose in Problem 8.30(i) the variance σ 2 is unknown and that the
data consist of X1, . . . , Xn together with an independent random variable S2 for
which S2/σ 2 has a χ2-distribution. If K is replaced by

∑
θ2

i /σ 2 = r2, then

(i) the confidence sets
∑

(θi − Xi )
2/S2 ≤ C are uniformly most accurate equivari-

ant under the group generated by the n-dimensional generalization of the group
G0 of Example 6.11.2, and the scale changes X ′

i = cXi , S′2 = c2S2.
(ii) The confidence sets of (i) are minimax with respect to the measure μ given by

μ[C(X, S2)] = 1

σ 2
[ volume of C(X, S2)].

[Use polar coordinates with |θ2| = ∑
θ2

i .]

Section 8.5

Problem 8.32 Let X = (X1, . . . , X p) and Y = (Y1, . . . , Yp) be independently dis-
tributed according to p-variate normal distributions with zero means and covariance
matrices E(Xi X j ) = σi j and E(Yi Y j ) = �σi j .

(i) The problem of testing H : � ≤ �0 remains invariant under the group G of
transformations X∗ = X A,Y ∗ = Y A, where A = (ai j ) is any nonsingular p × p
matrix with ai j = 0 for i > j , and there exists a UMP invariant test under G with
rejection region Y 2

1 /X2
1 > C .

(ii) The test with rejection region Y 2
1 /X2

1 > C maximizes the minimum power for
testing � ≤ �0 against � ≥ �1 (�0 < �1).
[(ii): That the Hunt–Stein Theorem is applicable to G can be proved in steps by
considering the group Gq of transformations X ′

q = α1X1 + · · · + αq Xq , X ′
i =

Xi for i = 1, …, q − 1, q + 1, …, p, successively for q = 1, …, p − 1. Here
αq �= 0, since thematrix A is nonsingular if and only ifaii �= 0 for all i . The group
product (γ1, . . . , γq) of two such transformations (α1, . . . , αq) and (β1, . . . , βq)

is given by γ1 = αq + β1, γ2 = a2βq + β2, …, γq−1 = αq−1βq + βq−1, γq =
αq , βq , which shows Gq to be isomorphic to a group of scale changes (multipli-
cation of all components by βq ) and translations [addition of (β1, . . . , βq−1, 0)].
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The result now follows from the Hunt–Stein Theorem and Example 8.5.1, since
the assumptions of the Hunt–Stein Theorem, except for the easily verifiable
measurability conditions, concern only the abstract structure (G,B), and not the
specific realization of the elements of G as transformations of some space.]

Problem 8.33 Suppose that the problem of testing θ ∈ �H against θ ∈ �K remains
invariant under G, that there exists a UMP almost invariant test ϕ0 with respect
to G, and that the assumptions of Theorem 8.5.1 hold. Then ϕ0 maximizes
inf�K [w(θ)Eθϕ(X) + u(θ)] for any weight functionsw(θ) ≥ 0, u(θ) that are invari-
ant under Ḡ.

Problem 8.34 Suppose X has the multivariate normal distribution in Rk with
unknownmean vector h and knownpositive definite covariancematrixC−1. Consider
testing h = 0 versus |C1/2h| ≥ b for some b > 0, where | · | denotes the Euclidean
norm.
(i) Show the test that rejects when |C1/2X |2 > ck,1−α is maximin, where ck,1−α

denotes the 1 − α quantile of the Chi-squared distribution with k degrees of freedom.
(ii) Show that the maximin power of the above test is given P{χ2

k (b2) > ck,1−α},
where χ2

k (b2) denotes a random variable that has the noncentral Chi-squared distri-
bution with k degrees of freedom and noncentrality parameter b2.

Problem 8.35 Suppose X1, . . . , Xk are independent, with Xi ∼ N (θi , 1). Consider
testing the null hypothesis θ1 = · · · = θk = 0 against max |θi | ≥ δ, for some δ > 0.
Find a maximin level α test as explicitly as possible. Compare this test with the
maximin test if the alternative parameter spacewere

∑
i θ2

i ≥ δ2. Argue they are quite
similar for small δ. Specifically, consider the power of each test against (δ, 0, . . . , 0)
and show that it is equal to α + Cαδ2 + o(δ2) as δ → 0, and the constant Cα is the
same for both tests.

Section 8.6

Problem 8.36 Existence of most stringent tests. Under the assumptions of Problem
8.1 there exists a most stringent test for testing θ ∈ �H against θ ∈ � − �H .

Problem 8.37 Let {��} be a class of mutually exclusive sets of alternatives such
that the envelope power function is constant over each�� and that∪�� = � − �H ,
and let ϕ� maximize the minimum power over ��. If ϕ� = ϕ is independent of �,
then ϕ is most stringent for testing θ ∈ �H .

Problem 8.38 Let (Z1, . . . , Z N ) = (X1, . . . , Xm, Y1, . . . , Yn) be distributed
according to the joint density (5.55), and consider the problem of testing H : η = ξ

against the alternatives that the X ’s and Y ’s are independently normally distributed
with common variance σ 2 and means η �= ξ . Then the permutation test with
rejection region |Ȳ − X̄ | > C[T (Z)], the two-sided version of the test (5.54), is
most stringent.
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[Apply Problem 8.37 with each of the sets �� consisting of two points (ξ1, η1, σ ),
(ξ2, η2, σ ) such that

ξ1 = ζ − n

m + n
δ, η1 = ζ + m

m + n
δ;

ξ2 = ζ + n

m + n
δ, η2 = ζ − m

m + n
δ

for some ζ and δ.]

Problem 8.39 Show that the UMP invariant test of Problem 8.24 is most stringent.

Section 8.7

Problem 8.40 Show that a region ω is monotone increasing if and only if its com-
plement is monotone decreasing. In the plane, how would you characterize the class
of all monotone increasing regions?

Problem 8.41 In Example 8.7.1, determine the likelihood ratio test for general �,
and show that it reduces to the test that rejects for large values of min(X1, . . . , Xs)

when � is the identity matrix. How do you calculate the critical value for general
�? Is the resulting test monotone?

Problem 8.42 Suppose X = (X1, . . . , Xs)
� ∼ Pθ , where the Pθ formamultivariate

location model. So Pθ is the distribution of Z + θ , where Z has a fixed (known)
distribution in IR. For testing superiority as in Example 8.7.1, determine the UMP
monotone level α test as explicitly as possible.

Problem 8.43 In Example 8.7.1, show how one may add a region F to the rejection
region E of the likelihood ratio test and still maintain the size of the test.

Problem 8.44 Suppose X1, . . . , Xn are i.i.d. N (μ, σ 2) with both parameters
unknown. Show that, for testing μ ≤ 0 against μ > 0, the one-sided t-test is not
monotone increasing. Does the assumption (8.39) hold for the parametrization
(θ1, θ2) = (μ, σ ) or perhaps (μ, 1/σ)? [Consider the monotone sets {X1 > c} when
c is both positive and negative.]

Problem 8.45 In Example 8.7.3, find the most powerful test for testing θ ∈ �0

against a fixed alternative θ = a and compute the power of this test. [The least favor-
able distribution putsmass one at the point θa , where θa minimizes (θ − a)��−1(θ −
a) over θ .]

Problem 8.46 In Example 8.7.3, assume � is the identity matrix. Calculate the
minimum power of the likelihood ratio test over the region ω(ε) and compare it to
the maximin monotone test.
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Problem 8.47 Find the maximin monotone level α test in Example 8.7.3 for gen-
eral �. Also allow the region ω(ε) to be generalized and have the form {θ : θi ≥
εi for some i}, where the εi may vary with i .

Problem 8.48 Provide the missing details in Example 8.7.4. What happens in the
case a > 2c1−α?

8.9 Notes

The concepts and results of Section 8.1 are essentially contained in the minimax
theory developed by Wald for general decision problems. An exposition of this
theory and some of its applications is given in Wald’s book (1950). For more recent
assessments of the important role of the minimax approach, see Brown (1994, 2000).
The ideas of Section 8.3, and in particular Theorem8.3.1, are due toHuber (1965) and
form the core of his theory of robust tests [Huber (1981, Chapter 10)]. The material
of Sections 8.4 and 8.5, including Lemma 8.4.1, Theorem 8.5.1, and Example 8.5.2,
constitutes the main part of an unpublished paper of Hunt and Stein (1946).

Section 8.7 was inspired by Lehmann (1952a). Problem 8.45 is taken from
Romano, Shaikh, and Wolf (2014). The α-inadmissibility of the likelihood ratio
test in Example 8.7.1 has been studied in Berger (1989), Liu and Berger (1995) and
McDermott and Wang (2002). Perlman and Wu (1999) advocate the use of likehood
ratio tests and reject the utility of α-admissibility; they provide numerous examples
and references.
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