
Chapter 6
Invariance

6.1 Symmetry and Invariance

Many statistical problems exhibit symmetries, which provide natural restrictions
to impose on the statistical procedures that are to be employed. Suppose, for
example, that X1, . . . , Xn are independently distributed with probability densities
pθ1(x1), . . . , pθn (xn). For testing the hypothesis H : θ1 = · · · = θn against the alter-
native that the θ’s are not all equal, the test should be symmetric in x1, . . . , xn ,
since otherwise the acceptance or rejection of the hypothesis would depend on the
(presumably quite irrelevant) numbering of these variables.

As another example consider a circular target with center O , on which are marked
the impacts of a number of shots. Suppose that the points of impact are independent
observations on a bivariate normal distribution centered on O . In testing this distribu-
tion for circular symmetry with respect to O , it seems reasonable to require that the
test itself exhibit such symmetry. For if it lacks this feature, a two-dimensional (for
example, Cartesian) coordinate system is required to describe the test, and acceptance
or rejection will depend on the choice of this system, which under the assumptions
made is quite arbitrary and has no bearing on the problem.

The mathematical expression of symmetry is invariance under a suitable group
of transformations. In the first of the two examples above the group is that of all
permutations of the variables x1, . . . , xn since a function of n variables is symmetric
if and only if it remains invariant under all permutations of these variables. In the
second example, circular symmetry with respect to the center O is equivalent to
invariance under all rotations about O . A third example is the following.

Example 6.1.1 (Testing a Fair Coin) Suppose X is the number of successes in n
i.i.d. Bernoulli trials, each with success probability p. The problem is to test H :
p = 1/2 against K : θ �= 1/2. Erich is given the data X and he seeks a test function
φ = φ(X) to test H . Meanwhile, Julie is given the number of failures X ′ = n − X .
Then, X ′ is also binomial with parameters n and θ′ = 1 − θ. From Julie’s point of
view, she faces the identical problem Erich faces, testing that a binomial distribution
with n trials has success probability 1/2 versus not 1/2. It would be inconsistent
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242 6 Invariance

for Erich and Julie to reach different conclusions, and thus invariance considerations
would then require that

φ(X) = φ(n − X). (6.1)

Tests satisfying (6.1) are said to be invariant, and such tests represent a restriction on
the class of tests. The goal is to find a UMP level α test among such invariant tests.

In general, let X be distributed according to a probability distribution Pθ, θ ∈
�, and let g be a transformation of the sample space X . All such transformations
considered in connection with invariance will be assumed to be 1 : 1 transformations
of X onto itself. Denote by gX the random variable that takes on the value gx when
X = x , and suppose that when the distribution of X is Pθ, θ ∈ �, the distribution of
gX is Pθ′ with θ′ also in �. The element θ′ of � which is associated with θ in this
manner will be denoted by ḡθ, so that

Pθ{gX ∈ A} = Pḡθ{X ∈ A}. (6.2)

Here the subscript θ on the left member indicates the distribution of X , not that of
gX . Equation (6.2) can also be written as Pθ(g

−1A) = Pḡθ(A) and hence as

Pḡθ(gA) = Pθ(A). (6.3)

The parameter set � remains invariant under g (or is preserved by g) if ḡθ ∈ �

for all θ ∈ �, and if in addition for any θ′ ∈ � there exists θ ∈ � such that ḡθ = θ′.
These two conditions can be expressed by the equation

ḡ� = �. (6.4)

The transformation ḡ of� onto itself defined in this way is 1 : 1 provided the distribu-
tions Pθ corresponding to different values of θ are distinct. To see this let ḡθ1 = ḡθ2.
Then Pḡθ1(gA) = Pḡθ2(gA) and therefore Pθ1(A) = Pθ2(A) for all A, so that θ1 = θ2.

Lemma 6.1.1 Let g, g′ be two transformations preserving �. Then the transforma-
tions g′g and g−1 defined by

(g′g)x = g′(gx) and g(g−1x) = x for all x ∈ X

also preserve � and satisfy

g′g = g′ · ḡ and (g−1) = (ḡ)−1. (6.5)

Proof. If the distribution of X is Pθ then that of gX is Pḡθ and that of g′gX = g′(gX)

is therefore Pḡ′ ḡθ. This establishes the first equation of (6.5); the proof of the second
one is analogous.
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We shall say that the problem of testing H : θ ∈ �H against K : θ ∈ �K remains
invariantunder a transformation g if ḡ preserves both�H and�K , so that the equation

ḡ�H = �H (6.6)

holds in addition to (6.4). Let C be a class of transformations satisfying these two
conditions, and let G be the smallest class of transformations containing C such that
g, g′ ∈ G implies that g′g and g−1 belong toG. ThenG is a group of transformations,
all of which by Lemma 6.1.1 preserve both� and�H . Any class C of transformations
leaving the problem invariant can therefore be extended to a group G. It follows
further from Lemma 6.1.1 that the class of induced transformations ḡ form a group
Ḡ. The two equations (6.5) express the fact that Ḡ is a homomorphism of G.

In the presence of symmetries in both the sample and parameter spaces represented
by the groups G and Ḡ, it is natural to restrict attention to tests φ which are also
symmetric, that is, which satisfy

φ(gx) = φ(x) for all x ∈ X and g ∈ G. (6.7)

A test φ satisfying (6.7) is said to be invariant under G. The restriction to invariant
tests is a particular case of the principle of invariance formulated in Section 1.5.
As was indicated there and in the examples above, a transformation g can be inter-
preted as a change of coordinates. From this point of view, a test is invariant if it is
independent of the particular coordinate system in which the data are expressed.1

A transformation g, in order to leave a problem invariant, must in particular
preserve the class A of measurable sets over which the distributions Pθ are defined.
This means that any set A ∈ A is transformed into a set of A and is the image of
such a set, so that gA and g−1A both belong toA. Any transformation satisfying this
condition is said to be bimeasurable. Since a group with each element g also contains
g−1 its elements are automatically bimeasurable if all of them are measurable. If g′
and g are bimeasurable, so are g′g and g−1. The transformations of the group G
above generated by a class C are therefore all bimeasurable provided this is the case
for the transformations of C.

6.2 Maximal Invariants

If a problem is invariant under a group of transformations, the principle of invariance
restricts attention to invariant tests. In order to obtain the best of these, it is convenient
first to characterize the totality of invariant tests.

1 The relationship between this concept of invariance under reparametrization and that considered
in differential geometry is discussed in Barndorff–Nielson, Cox and Reid (1986).
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Let two points x1, x2 be considered equivalent under G,

x1 ∼ x2( mod G),

if there exists a transformation g ∈ G for which x2 = gx1. This is a true equivalence
relation, sinceG is a group and the sets of equivalent points, the orbits ofG, therefore
constitute a partition of the sample space. (Cf. Appendix, Section A.1.) A point x
traces out an orbit as all transformations g of G are applied to it; this means that the
orbit containing x consists of the totality of points gx with g ∈ G. It follows from
the definition of invariance that a function is invariant if and only if it is constant on
each orbit.

A function M is said to be maximal invariant if it is invariant and if

M(x1) = M(x2) implies x2 = gx1 for some g ∈ G, (6.8)

that is, if it is constant on the orbits but for each orbit takes on a different value. All
maximal invariants are equivalent in the sense that their sets of constancy coincide.

Theorem 6.2.1 Let M(x) be a maximal invariant with respect to G. Then, a neces-
sary and sufficient condition for φ to be invariant is that it depends on x only through
M(x); that is, that there exists a function h for which φ(x) = h[M(x)] for all x.
Proof. If φ(x) = h[M(x)] for all x , then φ(gx) = h[M(gx)] = h[M(x)] = φ(x)
so that φ is invariant. On the other hand, if φ is invariant and if M(x1) = M(x2), then
x2 = gx1 for some g and therefore φ(x2) = φ(x1).

Example 6.2.1 (i) Let x = (x1, . . . , xn), and let G be the group of translations

gx = (x1 + c, . . . , xn + c), −∞ < c < ∞.

Then the set of differences y = (x1 − xn, . . . , xn−1 − xn) is invariant under G. To
see that it is maximal invariant suppose that xi − xn = x ′

i − x ′
n for i = 1, . . . , n − 1.

Putting x ′
n − xn = c, one has x ′

i = xi + c for all i , as was to be shown. The function
y is of course only one representation of the maximal invariant. Others are for exam-
ple (x1 − x2, x2 − x3, . . . , xn−1 − xn) or the redundant (x1 − x̄, . . . , xn − x̄). In the
particular case that n = 1, there are no invariants. The whole space is a single orbit,
so that for any two points there exists a transformation ofG taking one into the other.
In such a case the transformation group G is said to be transitive. The only invariant
functions are then the constant functions φ(x) ≡ c.

(ii) if G is the group of transformations

gx = (cx1, . . . , cxn), c �= 0,

a special role is played by any zero coordinates. However, in statistical applications
the set of points for which none of the coordinates is zero typically has probability
1; attention can then be restricted to this part of the sample space, and the set of
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ratios x1/xn, . . . , xn−1/xn is a maximal invariant. Without this restriction, two points
x , x ′ are equivalent with respect to the maximal invariant partition if among their
coordinates there are the same number of zeros (if any), if these occur at the same
places, and if for any two nonzero coordinates xi , x j the ratios x j/xi and x ′

j/x
′
i are

equal.
(iii) Let x = (x1, . . . , xn)�, and let G be the group of all orthogonal transforma-

tions x ′ = Ox of n-space. Then
∑

x2i is maximal invariant, that is, two points x and
x ′ can be transformed into each other by an orthogonal transformation if and only if
they have the same distance from the origin. The proof of this is immediate if one
restricts attention to the plane containing the points x , x ′ and the origin.

Example 6.2.2 (i) Let x = (x1, . . . , xn), and let G be the set of n! permutations
of the coordinates of x . Then the set of ordered coordinates (order statistics) x(1) ≤
· · · ≤ x(n) is maximal invariant. A permutation of the xi obviously does not change
the set of values of the coordinates and therefore not the x(i). On the other hand,
two points with the same set of ordered coordinates can be obtained from each other
through a permutation of coordinates.

(ii) Let G be the totality of transformations x ′
i = f (xi ), i = 1, . . . , n, such that

f is continuous and strictly increasing, and suppose that attention can be restricted
to the points that have n distinct coordinates. If the xi are considered as n points on
the real line, any such transformation preserves their order. Conversely, if x1, . . . , xn
and x ′

1, . . . , x
′
n are two sets of points in the same order, say xi1 < · · · < xin and x

′
i1

<

· · · < x ′
in
, there exists a transformation f satisfying the required conditions and such

that x ′
i = f (xi ) for all i . It can be defined, for example, as f (x) = x + (x ′

i1
− xi1)

for x ≤ xi1 , f (x) = x + (x ′
in

− xin ) for x ≥ xin , and to be linear between xik and xik+1

for k = 1, . . . , n − 1. A formal expression for the maximal invariant in this case is
the set of ranks (r1, . . . , rn) of (x1, . . . , xn). Here the rank ri of xi is defined through

xi = x(ri )

so that ri is the number of x’s≤ xi . In particular, ri = 1 if xi is the smallest x, ri = 2
if it is the second smallest, and so on.

Example 6.2.3 Let x be an n × s matrix (s ≤ n) of rank s, and let G be the group
of linear transformations gx = x B, where B is any nonsingular s × s matrix. Then
a maximal invariant under G is the matrix t (x) = x(x�x)−1x�, where x� denotes
the transpose of x . Here (x�x)−1 is meaningful because the s × s matrix x�x is
nonsingular; see Problem 6.3. That t (x) is invariant is clear, since

t (gx) = x B(B�x�x B)−1B�x� = x(x�x)−1x� = t (x).

To see that t (x) is maximal invariant, suppose that

x1(x
�
1 x1)

−1x�
1 = x2(x

�
2 x2)

−1x2.
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Since (x�
i xi )

−1 is positive definite, there exist nonsingular matrices Ci such that
(x�

i xi )
−1 = CiC�

i and hence

(x1C1)(x1C1)
� = (x2C2)(x2C2)

�.

This implies the existence of an orthogonal matrix Q such that x2C2 = x1C1Q and
thus x2 = x1B with B = C1QC−1

2 , as was to be shown.
In the special case s = n, we have t (x) = I , so that there are no nontrivial invari-

ants. This corresponds to the fact that in this caseG is transitive, since any two nonsin-
gular n × n matrices x1 and x2 satisfy x2 = x1B with B = x−1

1 x2. This result can be
made more intuitive through a geometric interpretation. Consider the s-dimensional
subspace S of Rn spanned by the s columns of x . Then P = x(x�x)−1x� has the
property that for any y in Rn , the vector Py is the projection of y onto S. (This will be
proved in Section 7.2.) The invariance of P expresses the fact that the projection of
y onto S is independent of the choice of vectors spanning S. To see that it is maximal
invariant, suppose that the projection of every y onto the spaces S1 and S2 spanned
by two different sets of s vectors is the same. Then S1 = S2, so that the two sets of
vectors span the same space. There then exists a nonsingular transformation taking
one of these sets into the other.

A somewhat more systematic way of determining maximal invariants is obtained
by selecting, by means of a specified rule, a unique point M(x) on each orbit. Then
clearly M(X) is maximal invariant. To illustrate this method, consider once more
two of the earlier examples.

Example 6.2.1 (i) (continued). The orbit containing the point (a1, . . . , an) under
the group of translations is the set {(a1 + c, . . . , an + c),−∞ < c < ∞}, which is
a line in En .

(a) As representative point M(x) on this line, take its intersection with the hyper-
plane xn = 0. Since then an + c = 0, this point corresponds to the value c = −an
and thus has coordinates (a1 − an, . . . , an−1 − an, 0). This leads to the maximal
invariant (x1 − xn, . . . , xn−1 − xn).

(b) An alternative point on the line is its intersection with the hyperplane
∑

xi = 0.
Then c = −ā, and M(a) = (a1 − ā, . . . , an − ā).

(c) The point need not be specified by an intersection property. It can, for instance,
be taken as the point on the line that is closest to the origin. Since the value of c
minimizing

∑
(ai + c)2 is c = −ā, this leads to the same point as (b).

Example 6.2.1(iii) (continued). The orbit containing the point (a1, . . . , an) under
the group of orthogonal transformations is the hypersphere containing (a1, . . . , an)
and with center at the origin. As representative point on this sphere, take its north
pole, i.e., the point with a1 = · · · = an−1 = 0. The coordinates of this point are

(0, . . . , 0,
√∑

a2i ) and hence lead to the maximal invariant
∑

x2i . (Note that in this
example, the determination of the orbit is essentially equivalent to the determination
of the maximal invariant.)
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Frequently, it is convenient to obtain a maximal invariant in a number of steps,
each corresponding to a subgroup of G. To illustrate the process and a difficulty that
may arise in its application, let x = (x1, . . . , xn), suppose that the coordinates are
distinct, and consider the group of transformations

gx = (ax1 + b, . . . , axn + b), a �= 0, −∞ < b < ∞.

Applying first the subgroup of translations x ′
i = xi + b, a maximal invariant is y =

(y1, . . . , yn−1) with yi = xi − xn . Another subgroup consists of the scale changes
x ′′
i = axi . This induces a corresponding change of scale in the y’s: y′′

i = ayi ,
and a maximal invariant with respect to this group acting on the y-space is
z = (z1, . . . , zn−2) with zi = yi/yn−1. Expressing this in terms of the x’s, we get
zi = (xi − xn)/(xn−1 − xn), which is maximal invariant with respect to G.

Suppose now the process is carried out in the reverse order. Application first of the
subgroup x ′′

i = axi yields as maximal invariant u = (u1, . . . , un−1)with ui = xi/xn .
However, the translations x ′

i = xi + b do not induce transformations in u-space, since
(xi + b)/(xn + b) is not a function of xi/xn .

Quite generally, let a transformation group G be generated by two subgroups
D and E in the sense that it is the smallest group containing D and E . Then G
consists of the totality of products emdm . . . e1d1 for m = 1, 2, . . . , with di ∈ D,
ei ∈ E (i = 1, . . . ,m).2 The following theorem shows that whenever the process
of determining a maximal invariant in steps can be carried out at all, it leads to a
maximal invariant with respect to G.

Theorem 6.2.2 Let G be a group of transformations, and let D and E be two
subgroups generating G. Suppose that y = s(x) is maximal invariant with respect
to D, and that for any e ∈ E

s(x1) = s(x2) implies s(ex1) = s(ex2). (6.9)

If z = t (y) is maximal invariant under the group E∗ of transformations e∗ defined
by

e∗y = s(ex) when y = s(x),

then z = t[s(x)] is maximal invariant with respect to G.

Proof. To show that t[s(x)] is invariant, let x ′ = gx, g = emdm · · · e1d1. Then

t[s(x ′)] = t[s(emdm · · · e1d1x)] = t[e∗
ms(dm · · · e1d1x)]

= t[s(em−1dm−1 · · · e1d1x)],

and the last expression can be reduced by induction to t[s(x)]. To see that t[s(x)] is in
factmaximal invariant, suppose that t[s(x ′)] = t[s(x)]. Setting y′ = s(x ′), y = s(x),

2 See Section A.1 of the Appendix.
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one has t (y′) = t (y), and since t (y) is maximal invariant with respect to E∗, there
exists e∗ such that y′ = e∗y. Then s(x ′) = e∗s(x) = s(ex), and by the maximal
invariance of s(x) with respect to D there exists d ∈ D such that x ′ = dex . Since
de is an element of G this completes the proof.

Techniques for obtaining the distribution of maximal invariants are discussed
by Andersson (1982), Eaton (1983, 1989), Farrell (1985b), Wijsman (1990) and
Anderson (2003).

6.3 Uniformly Most Powerful Invariant Tests

In the presence of symmetries, one may wish to restrict attention to invariant tests,
and it then becomes of interest to determine the uniformly most powerful invariant
(UMPI) test. The following is a simple example.

Example 6.3.1 Let X1, . . . , Xn be i.i.d. on (0, 1) and consider testing the hypothesis
H0 that the common distribution of the X ’s is uniform on (0, 1) against the two
alternatives H1:

p1(x1, . . . , xn) = f (x1) · · · f (xn)

and
p2(x1, . . . , xn) = f (1 − x1) · · · f (1 − xn) ,

where f is a fixed (known) density.
(i) This problem remains invariant under the 2 element group G consisting of the
transformations

g : x ′
i = 1 − xi , i = 1, . . . , n

and the identity transformation x ′
i = xi for i = 1, . . . , n.

(ii) The induced transformation ḡ in the space of alternatives takes p1 into p2 and p2
into p1.
(iii) A test φ(x1, . . . , xn) remains invariant under G if and only if

φ(x1, . . . , xn) = φ(1 − x1, . . . , 1 − xn) .

(iv) There exists a UMP invariant test (i.e., an invariant test which is simultaneously
most powerful against both p1 and p2), and it rejects H0 when the average

p̄(x1, . . . , xn) = 1

2
[p1(x1, . . . , xn) + p2(x1, . . . , xn)]

is sufficiently large.
We leave the proof of (i)–(iii) to Problem 6.5. To prove (iv), note that any invariant

test satisfies



6.3 Uniformly Most Powerful Invariant Tests 249

Ep1 [φ(X1, . . . , Xn)] = Ep2 [φ(X1, . . . , Xn)] = E p̄[φ(X1, . . . , Xn)] .

Therefore, maximizing the power against p1 or p2 is equivalent to maximizing the
power under p̄, and the result follows from the Neyman–Pearson Lemma.

This example is a special case of the following result.

Theorem 6.3.1 Suppose the problem of testing �0 against �1 remains invariant
under a finite group G = {g1, . . . , gN } and that Ḡ is transitive over �0 and over �1.
Then there exists a UMP invariant test of �0 against �1, and it rejects �0 when

∑N
i=1 pḡiθ1(x)/N

∑N
i=1 pḡi θ0(x)/N

(6.10)

is sufficiently large, where θ0 and θ1 are any elements of �0 and �1, respectively.

The proof is exactly analogous to that of the preceding example; see Problem 6.6.
The results of the previous section provide an alternative approach to the determi-

nation of most powerful invariant tests. By Theorem 6.2.1, the class of all invariant
functions can be obtained as the totality of functions of a maximal invariant M(x).
Therefore, in particular the class of all invariant tests is the totality of tests depending
only on the maximal invariant statistic M . The latter statement, while correct for all
the usual situations, actually requires certain qualifications regarding the class of
measurable sets in M-space. These conditions will be discussed at the end of the
section; they are satisfied in the examples below.

Example 6.3.2 Let X = (X1, . . . , Xn), and suppose that the density of X is fi (x1 −
θ, . . . , xn − θ) under Hi (i = 0, 1), where θ ranges from −∞ to ∞. The problem of
testing H0 against H1 is invariant under the group G of transformations

gx = (x1 + c, . . . , xn + c), −∞ < c < ∞

which in the parameter space induces the transformations

ḡθ = θ + c.

By Example 6.2.1, a maximal invariant underG is Y = (X1 − Xn, . . . , Xn−1 − Xn).
The distribution of Y is independent of θ and under Hi has the density

∫ ∞

−∞
fi (y1 + z, . . . , yn−1 + z, z) dz.

When referred to Y , the problem of testing H0 against H1 therefore becomes one
of testing a simple hypothesis against a simple alternative. The most powerful test
is then independent of θ, and therefore UMP among all invariant tests. Its rejection
region by the Neyman–Pearson Lemma is
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∫ ∞
−∞ f1(y1 + z, . . . , yn−1 + z, z) dz
∫ ∞
−∞ f0(y1 + z, . . . , yn−1 + z, z) dz

=
∫ ∞
−∞ f1(x1 + u, . . . , xn + u) du
∫ ∞
−∞ f0(x1 + u, . . . , xn + u) du

> C.

(6.11)

A general theory of separate families of hypotheses (in which the family K of
alternatives does not adjoin the hypothesis H but, as above, is separated from it)
was initiated by Cox (1961, 1962). A bibliography of the subject is given in Pereira
(1977); see also Loh (1985), Pace and Salvan (1990) and Rukhin (1993).

Example 6.3.2 illustrates the fact, also utilized in Theorem 6.3.1, that if the group
Ḡ is transitive over both �0 and �1, then the problem reduces to one of testing
a simple hypothesis against a simple alternative, and a UMP invariant test is then
obtained by the Neyman–Pearson Lemma. Note also the close similarity between
Theorem 6.3.1 and Example 6.3.2 shown by a comparison of (6.10) and the right
side of (6.11), where the summation in (6.10) is replaced by integration with respect
to Lebesgue measure.

In Ḡ is not transitive, the existence of a UMPI test is not guaranteed. The problem
then is to determine whether or not there exists a UMP test based on a maximal
invariant T . If the family of distributions of T has monotone likelihood ratio, then a
UMPI test may exist, as illustrated in the following example.

Example 6.3.3 Testing many normal means) Assume X1, . . . , Xn are indepen-
dentwith Xi ∼ N (ξi ,σ

2), wherewe assumeσ is knownand equal to 1. The parameter
space � is n-dimensional Euclidean space as ξ1, . . . , ξn vary freely. The problem is
to test

H0 : ξ1 = ξ2 = · · · = ξn = 0

against the alternative where not all ξi are 0. Note there does not exist even a UMPU
test unless n = 1. Let X = (X1, . . . , Xn)

� (where the superscript T denotes trans-
pose), and consider an orthogonal matrix O . If X ′ = OX , then X ′ consists of inde-
pendent normals, each with variance one and possibly different means. Moreover,
X ′ has mean 0 iff X has mean 0. (Here the prime in X ′ just denotes that it is a trans-
formation of X , so not X�.) So, the problem of testing the mean vector is 0 based on
X ′ is identical to the problem based on X . For this reason, invariance or symmetry
requires restricting to tests φ satisfying

φ(X) = φ(OX) for all orthogonal matrices O . (6.12)

If G is the group of orthogonal transformations, then from Example 6.2.1(iii), T =∑n
i=1 X

2
i is a maximal invariant. The distribution of T is noncentral Chi-squared

with n degrees of freedom and noncentrality parameter ψ2 = ∑n
i=1 ξ2i . Its density

function is
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pψ2(t) = exp(−ψ2/2)
∞∑

k=0

(ψ2/2)k

k! · t
n
2 −1+k exp(−t/2)

22k+n�(k + n
2 )

.

The central Chi-squared just corresponds to the k = 0 term. Then,

pψ2(t)

p0(t)
= exp(−ψ2/2)

∞∑

k=0

ck(ψ
2/2)k tk ,

for constants ck . Since each term is increasing in t , the whole ratio is increasing in
t . Therefore, the family of distributions of T has monotone likelihood ratio. Hence,
the UMPI test rejects when T > cn(1 − α), where cn(1 − α) is the 1 − α quantile
of the Chi-squared distribution with n degrees of freedom.

Before applying invariance, it is frequently convenient first to reduce the data to
a sufficient statistic T . If there exists a test φ0(T ) that is UMP among all invariant
tests depending only on T , one would like to be able to conclude that φ0(T ) is also
UMP among all invariant tests based on the original X . Unfortunately, this does not
follow, since it is not clear that for any invariant test based on X there exists an
equivalent test based on T , which is also invariant. Sufficient conditions for φ0(T )

to have this property are provided by Hall et al. (1965) and Hooper (1982a), and a
simple version of such a result (applicable to Examples 6.3.4 and 6.3.5 below) will
be given by Theorem 6.5.3 in Section 6.5. For a review and clarification of this and
later work on invariance and sufficiency see Berk et al. (1996), Nogales and Oyola
(1996) and Nogales et al. (2000).

Example 6.3.4 If X1, . . . , Xn is a sample from N (ξ,σ2), the hypothesis H : σ ≥ σ0

remains invariant under the transformations X ′
i = Xi + c,−∞ < c < ∞. In terms

of the sufficient statistics Y = X̄ , S2 = �(Xi − X̄)2 these transformations become
Y ′ = Y + c, (S2)′ = S2, and a maximal invariant is S2. The class of invariant tests is
therefore the class of tests depending on S2. It follows from Theorem 3.4.1 that there
exists a UMP invariant test, with rejection region �(Xi − X̄)2 ≤ C . This coincides
with the UMP unbiased test (5.9).

Example 6.3.5 If X1, . . . , Xm and Y1, . . . ,Yn are samples from N (ξ,σ2) and
N (η, τ 2), a set of sufficient statistics is T1 = X̄ , T2 = Ȳ , T3 =

√
�(Xi − X̄)2,

and T4 =
√

�(Y j − Ȳ )2. The problem of testing H : τ 2/σ2 ≤ �0 remains invariant

under the transformations T ′
1 = T1 + c1, T ′

2 = T2 + c2, T ′
3 = T3, T ′

4 = T4,−∞ < c1,
c2 < ∞, and also under a common change of scale of all four variables. A maxi-
mal invariant with respect to the first group is (T3, T4). In the space of this max-
imal invariant, the group of scale changes induces the transformations T ′′

3 = cT3,
T ′′
4 = cT4, 0 < c, which has as maximal invariant the ratio T4/T3. The statistic
Z = [T 2

4 /(n − 1)] ÷ [T 2
3 /(m − 1)] on division by� = τ 2/σ2 has an F-distribution

with density given by (5.21), so that the density of Z is
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c(�)z
1
2 (n−3)

(

� + n − 1

m − 1
z

) 1
2 (m+n−2)

, z > 0.

For varying �, these densities constitute a family with monotone likelihood ratio, so
that among all tests of H based on Z , and therefore among all invariant tests, there
exists a UMP one given by the rejection region Z > C . This coincides with the UMP
unbiased test (5.20).

Example 6.3.6 In themethod of paired comparisons for testing whether a treatment
has a beneficial effect, the experimental material consists of n pairs of subjects. From
each pair, a subject is selected at random for treatment while the other serves as
control. Let Xi be 1 or 0 as for the i th pair the experiment turns out in favor of the
treated subject or the control, and let pi = P{Xi = 1}. The hypothesis of no effect,
H : pi = 1

2 for i = 1, . . . , n, is to be tested against the alternatives that pi > 1
2 for

all i .
The problem remains invariant under all permutations of the n variables

X1, . . . , Xn , and amaximal invariant under this group is the total number of successes
X = X1 + · · · + Xn . The distribution of X is

P{X = k} = q1 · · · qn
∑ pi1

qi1
· · · pik

qik
,

whereqi = 1 − pi andwhere the summation extends over all
(n
k

)
choices of subscripts

i1 < · · · < ik . The most powerful invariant test against an alternative (p′
1, . . . , p

′
n)

rejects H when

f (k) = 1
(n
k

)
∑ p′

i1

q ′
i1

· · · p
′
ik

q ′
ik

> C.

To see that f is an increasing function of k, note that ai = p′
i/q

′
i > 1, and that

∑

j

∑
a jai1 · · · aik = (k + 1)

∑
ai1 · · · aik+1

and ∑

j

∑
ai1 · · · aik = (n − k)

∑
ai1 · · · aik1 .

Here, in both equations, the second summation on the left-hand side extends over all
subscripts i1 < · · · < ik of which none is equal to j , and the summation on the right-
hand side extends over all subscripts i1 < · · · < ik+1 and i1 < · · · < ik respectively
without restriction. Then
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f (k + 1) = 1
( n
k+1

)
∑

ai1 · · · aik+1 = 1

(n − k)
(n
k

)
∑

j

∑
a jai1 · · · aik

>
1
(n
k

)
∑

ai1 · · · aik = f (k),

as was to be shown. Regardless of the alternative chosen, the test therefore rejects
when X > C , and hence is UMP invariant. If the i th comparison is considered plus
or minus as Xi is 1 or 0, this is seen to be another example of the sign test. (Cf.
Example 3.8.1 and Section 4.9.)

Sufficient statistics provide a simplification of a problem by reducing the sample
space; this process involves no change in the parameter space. Invariance, on the other
hand, by reducing the data to amaximal invariant statisticM , whose distributionmay
dependonly on a function of the parameter, typically also shrinks the parameter space.
The details are given in the following theorem.

Theorem 6.3.2 If M(x) is invariant under G, and if υ(θ) maximal invariant under
the induced group Ḡ, then the distribution of M(X) depends only on v(θ).

Proof. Let υ(θ1) = υ(θ2). Then θ2 = ḡθ1, and hence

Pθ2{M(X) ∈ B} = Pḡθ1{M(X) ∈ B} = Pθ1{M(gX) ∈ B}
= Pθ1{M(X) ∈ B}.

This result can be paraphrased by saying that the principle of invariance identifies
all parameter points that are equivalent with respect to Ḡ.

In applications, for instance, in Examples 6.3.4 and 6.3.5, the maximal invariants
M(x) and δ = v(θ) under G and Ḡ are frequently real-valued, and the family of
probability densities pδ(m) of M has monotone likelihood ratio. For testing the
hypothesis H : δ ≤ δ0 there exists then a UMP test among those depending only on
M , and hence a UMP invariant test. Its rejection region is M ≥ C , where

∫ ∞

C
Pδ0(m) dm = α. (6.13)

Consider this problem now as a two-decision problem with decisions d0 and d1 of
accepting or rejecting H , and a loss function L(θ, di ) = Li (θ). Suppose that Li (θ)
depends only on the parameter δ, Li (θ) = L ′

i (δ) say, and satisfies

L ′
1(δ) − L ′

0(δ) ≷ 0 as δ ≶ δ0. (6.14)

It then follows from Theorem 3.4.2 that the family of rejection regions M ≥ C(α),
as α varies from 0 to 1, forms a complete family of decision procedures among
those depending only on M , and hence a complete family of invariant procedures.



254 6 Invariance

As before, the choice of a particular significance level α can be considered as a
convenient way of specifying a test from this family.

At the beginning of the section it was stated that the class of invariant tests coin-
cides with the class of tests based on a maximal invariant statistic M = M(X).
However, a statistic is not completely specified by a function, but requires also
specification of a class B of measurable sets. If in the present case B is the class
of all sets B for which M−1(B) ∈ A, the desired statement is correct. For let
φ(x) = ψ[M(x)] and φ byA-measurable, and let C be a Borel set on the line. Then
φ−1(C) = M−1[ψ−1(C)] ∈ A and hence ψ−1(C) ∈ B, so that ψ is B-measurable
and φ(x) = ψ[M(x)] is a test based on the statistic M .

In most applications, M(x) is a measurable function taking on values in a
Euclidean space and it is convenient to take B as the class of Borel sets. If
φ(x) = ψ[M(x)] is then an arbitrary measurable function depending only on M(x),
it is not clear that ψ(m) is necessarily B-measurable. This measurability can be con-
cluded ifX is also Euclidean withA the class of Borel sets, and if the range of M is a
Borel set.We shall prove it here only under the additional assumption (which in appli-
cations is usually obvious, and which will not be verified explicitly in each case) that
there exists a vector-valued Borel-measurable function Y (x) such that [M(x),Y (x)]
maps X onto a Borel subset of the product space M × Y , that this mapping is
1 : 1, and that the inverse mapping is also Borel-measurable. Given any measur-
able function φ of x , there exists then a measurable function φ′ of (m, y) such that
φ(x) ≡ φ′[M(x),Y (x)]. If φ depends only on M(x), then φ′ depends only on m, so
that φ′(m, y) = ψ(m) say, and ψ is a measurable function ofm.3 In Example 6.2.1(i)
for instance,where x = (x1, . . . xn) andM(x) = (x1 − xn, . . . , xn−1 − xn), the func-
tion Y (x) can be taken as Y (x) = xn .

6.4 Sample Inspection by Variables

Asample is drawn froma lot of somemanufacturedproduct in order to decidewhether
the lot is of acceptable quality. In the simplest case, each sample item is classified
directly as satisfactory or defective (inspection by attributes), and the decision is
based on the total number of defectives. More generally, the quality of an item is
characterized by a variable Y (inspection by variables), and an item is considered
satisfactory if Y exceeds a given constant u. The probability of a defective is then

p = P{Y ≤ u}

and the problem becomes that of testing the hypothesis H : p ≥ p0.
As was seen in Example 3.8.1, no use can be made of the actual value of Y

unless something is known concerning the distribution of Y . In the absence of such
information, the decisionwill be based, as before, simply on the number of defectives

3 The last statement follows, for example, from Theorem 18.1 of Billingsley (1995).
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in the sample. We shall consider the problem now under the assumption that the
measurements Y1, . . . ,Yn constitute a sample from N (η,σ2). Then

p =
∫ u

−∞
1√
2πσ

exp

[

− 1

2σ2
(y − η)2

]

dy = �

(
u − η

σ

)

,

where

�(y) =
∫ y

−∞
1√
2π

exp
(− 1

2 t
2
)
dt

denotes the cumulative distribution function of a standard normal distribution, and the
hypothesis H becomes (u − η)/σ ≥ �−1(p0). In terms of the variables Xi = Yi − u,
which have mean ξ = η − u and variance σ2, this reduces to

H : ξ

σ
≤ θ0

with θ0 = −�−1(p0). This hypothesis, which was considered in Section 5.2, for
θ0 = 0, occurs also in other contexts. It is appropriate when one is interested in the
mean ξ of a normal distribution, expressed in σ units rather than on a fixed scale.

For testing H , attention can be restricted to the pair of variables X̄ and S =√∑
(Xi − X̄)2, since they form a set of sufficient statistics for (ξ,σ), which satisfy

the conditions of Theorem 6.5.3 of the next section. These variables are independent,
the distribution of X̄ being N (ξ,σ2/n) and that of S/σ being χn−1. Multiplication of
X̄ and S by a common constant c > 0 transforms the parameters into ξ′ = cξ,σ′ =
cσ, so that ξ/σ and hence the problem of testing H remain invariant. A maximal
invariant under these transformations is x̄/s or

t =
√
nx̄

s/
√
n − 1

,

the distribution of which depends only on the maximal invariant in the parameter
space θ = ξ/σ (cf. Section 5.2). Thus, the invariant tests are those depending only
on t , and it remains to find the most powerful test of H : θ ≤ θ0 within this class.

The probability density of t is (Problem 5.3)

pδ(t) = C
∫ ∞

0
exp

[

−1

2

(

t

√
w

n − 1
− δ

)2
]

w
1
2 (n−2) exp

(− 1
2w

)
dw,

where δ = √
nθ/σ is the noncentrality parameter, and this will now be shown to

constitute a family with monotone likelihood ratio. To see that the ratio
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r(t) =
∫ ∞
0 exp

[

− 1
2

(
t
√

w
n−1 − δ1

)2
]

w
1
2 (n−2) exp(− 1

2w) dw

∫ ∞
0 exp

[

− 1
2

(
t
√

w
n−1 − δ0

)2
]

w
1
2 (n−2) exp(− 1

2w) dw

is an increasing function of t for δ0 < δ1, suppose first that t < 0 and let υ =
−t

√
w/(n − 1) . The ratio then becomes proportional to

∫ ∞
0 f (υ) exp

[
−(δ1 − δ0)υ − (n−1)υ2

2t2

]
dv

∫ ∞
0 f (υ) exp

[
− (n−1)υ2

2t2

]
dv

=
∫

exp[−(δ1 − δ0)υ]gt2(υ) dv,

where
f (υ) = exp(−δ0υ)υn−1 exp(−υ2/2)

and

gt2(υ) =
f (υ) exp

[
− (n−1)υ2

2t2

]

∫ ∞
0 f (z) exp

[
− (n−1)z2

2t2

]
dz

.

Since the family of probability densities gt2(υ) is a family with monotone likelihood
ratio, the integral of exp[−(δ1 − δ0)υ] with respect to this density is a decreasing
function of t2 (Problem 3.41), and hence an increasing function of t for t < 0.
Similarly one finds that r(t) is an increasing function of t for t > 0 by making the
transformation v = t

√
w/(n − 1). By continuity it is then an increasing function of

t for all t .
There exists therefore a UMP invariant test of H : ξ/σ ≤ θ0, which rejects when

t > C , where C is determined by (6.13). In terms of the original variables Yi the
rejection region of the UMP invariant test of H : p ≥ p0 becomes

√
n(ȳ − u)

√∑
(yi − ȳ)2/(n − 1)

> C. (6.15)

If the problem is considered as a two-decision problem with losses L0(p) and L1(p)
for accepting or rejecting p ≥ p0, which depend only on p and satisfy the condition
corresponding to (6.14), the class of tests (6.15) constitutes a complete family of
invariant procedures as C varies from −∞ to ∞.

Consider next the comparison of two probabilities on the basis of samples
X1, . . . , Xm; Y1, . . . ,Yn from N (ξ,σ2) and N (η,σ2). If

p = �

(
u − ξ

σ

)

, π = �

(
u − η

σ

)

,
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one wishes to test the hypothesis p ≤ π, which is equivalent to

H : η ≤ ξ.

The statistics X̄ , Ȳ , and S =
√∑

(Xi − X̄)2 + ∑
(Y j − Ȳ )2 are a set of sufficient

statistics for ξ, η, σ. The problem remains invariant under the addition of an arbitrary
common constant to X̄ and Ȳ , which leaves Ȳ − X̄ and S as maximal invariants.
It is also invariant under multiplication of X̄ , Ȳ , and S, and hence of Ȳ − X̄ and
S, by a common positive constant, which reduces the data to the maximal invariant
(Ȳ − X̄)/S. Since

t =
(ȳ − x̄)/

√
1
m + 1

n

s/
√
m + n − 2

has a noncentral t-distribution with noncentrality parameter δ = √
mn(η − ξ)/√

(m + n)σ, the UMP invariant test of H : η − ξ ≤ 0 rejects when t > C . This coin-
cides with the UMP unbiased test (5.27). Analogously, the corresponding two-sided
test (5.30), with rejection region |t | ≥ C , is UMP invariant for testing the hypothesis
p = π against the alternatives p �= π (Problem 6.19).

6.5 Almost Invariance

LetG be agroupof transformations leaving a familyP = {Pθ, θ ∈ �}of distributions
of X invariant. A test φ is said to be equivalent to an invariant test if there exists an
invariant test ψ such that φ(x) = ψ(x) for all x except possibly on a P-null set N ;
φ is said to be almost invariant with respect to G if

φ(gx) = φ(x) for all x ∈ X − Ng, g ∈ G, (6.16)

where the exceptional null set Ng is permitted to depend on g. This concept is required
for investigating the relationship of invariance to unbiasedness and to certain other
desirable properties. In this connection it is important to know whether a UMP
invariant test is also UMP among almost invariant tests. This turns out to be the case
under assumptions which are made precise in Theorem 6.5.1 below and which are
satisfied in all the usual applications.

If φ is equivalent to an invariant test, then φ(gx) = φ(x) for all x /∈ N ∪ g−1N .
Since Pθ(g

−1N ) = Pḡθ(N ) = 0, it follows that φ is then almost invariant. The fol-
lowing theorem gives conditions under which conversely any almost invariant test is
equivalent to an invariant one.

Theorem 6.5.1 Let G be a group of transformations of X , and let A and B be
σ-fields of subsets of X and G such that for any set A ∈ A the set of pairs (x, g)

for which gx ∈ A is measurable A × B. Suppose further that there exists a σ-finite
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measure ν over G such that ν(B) = 0 implies ν(Bg) = 0 for all g ∈ G. Then any
measurable function that is almost invariant under G (where “almost” refers to some
σ-finite measure μ) is equivalent to an invariant function.

Proof. Because of the measurability assumptions, the function φ(gx) considered
as a function of the two variables x and g is measurable A × B. It follows that
φ(gx) − φ(x) is measurable A × B, and so therefore is the set S of points (x, g)

with φ(gx) �= φ(x). If φ is almost invariant, any section of S with fixed g is a μ-null
set. By Fubini’s Theorem (Theorem 2.2.4), there exists therefore a μ-null set N such
that for all x ∈ X − N

φ(gx) = φ(x) a.e. ν.

Without loss of generality suppose that ν(G) = 1, and let A be the set of points x
for which ∫

φ(g′x) dν(g′) = φ(gx) a.e. ν.

If

f (x, g) =
∣
∣
∣
∣

∫

φ(g′x) dν(g′) − φ(gx)

∣
∣
∣
∣ ,

then A is the set of points x for which

∫

f (x, g) dν(g) = 0.

Since this integral is a measurable function of x , it follows that A is measurable. Let

ψ(x) =
{∫

φ(gx)dν(g) if x ∈ A,

0 if x /∈ A.

Thenψ is measurable andψ(x) = φ(x) for x /∈ N , sinceφ(gx) = φ(x) a.e. ν implies
that

∫
φ(g′x) dν(g′) = φ(x) and that x ∈ A. To show that ψ is invariant it is enough

to prove that the set A is invariant. For any point x ∈ A, the function φ(gx) is
constant except on a null subset Nx of G. Then φ(ghx) has the same constant value
for all g /∈ Nxh−1, which by assumption is again a ν-null set. Hence hx ∈ A, which
completes the proof.

Additional results concerning the relation of invariance and almost invariance are
given by Berk and Bickel (1968) and Berk (1970). In particular, the basic idea of the
following example is due to Berk (1970).

Example 6.5.1 (Counterexample) Let Z , Y1, . . . ,Yn be independently distributed
as N (θ, 1), and consider the 1 : 1 transformations y′

i = yi (i = 1, . . . , n) and

z′ = z except for a finite number of points a1, . . . , ak for which a′
i = a ji , for some permu-

tation ( j1, . . . , jk) of (1, . . . , k).
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If the group G is generated by taking for (a1, . . . , ak), k = 1, 2, . . . , all finite sets
and for ( j1, . . . , jk) all permutations of (1, . . . , k), then (z, y1, . . . , yn) is almost
invariant. It is however not equivalent to an invariant function, since (y1, . . . , yn) is
maximal invariant.

Corollary 6.5.1 Suppose that the problemof testing H : θ ∈ ω against K : θ ∈ � −
ω remains invariant under G and that the assumptions of Theorem 6.5.1 hold. Then
if φ0 is UMP invariant, it is also UMP within the class of almost invariant tests.

Proof. If φ is almost invariant, it is equivalent to an invariant test ψ by Theorem
6.5.1. The tests φ and ψ have the same power function, and hence φ0 is uniformly at
least as powerful as φ.

In applications,P is usually a dominated family, andμ anyσ-finitemeasure equiv-
alent to P (which exists by Theorem A.4.2 of the Appendix). If φ is almost invariant
with respect to P , it is then almost invariant with respect to μ and hence equivalent
to an invariant test. Typically, the sample spaceX is n-dimensional Euclidean space,
A is the class of Borel sets, and the elements of G are transformations of the form
y = f (x, τ ), where τ ranges over a set of positive measure in an m-dimensional
space and f is a Borel-measurable vector-valued function of m + n variables. If B
is taken as the class of Borel sets in m-space the measurability conditions of the
theorem are satisfied.

The requirement that for all g ∈ G and B ∈ B

ν(B) = 0 implies ν(Bg) = 0 (6.17)

is satisfied in particular when

ν(Bg) = ν(B) for all g ∈ G, B ∈ B. (6.18)

The existence of such a right invariant measure is guaranteed for a large class of
groups by the theory of Haar measure. (See, for example, Eaton 1989.) Alternatively,
it is usually not difficult to check Condition (6.17) directly.

Example 6.5.2 Let G be the group of all nonsingular linear transformations of n-
space. Relative to a fixed coordinate system the elements of G can be represented
by nonsingular n × n matrices A = (ai j ), A′ = (a′

i j ), . . . with the matrix product
serving as the group product of two such elements. The σ-field B can be taken
to be the class of Borel sets in the space of the n2 elements of the matrices, and
the measure ν can be taken as Lebesgue measure over B. Consider now a set S of
matrices with ν(S) = 0, and the set S∗ of matrices A′A with A′ ∈ S and A fixed.
If a = max |ai j |, C ′ = A′A, and C ′′ = A′′A, the inequalities |a′′

i j − a′
i j | ≤ ε for all

i , j imply |c′′
i j − c′

i j | ≤ naε. Since a set has ν-measure zero if and only if it can be
covered by a union of rectangles whose total measure does not exceed any given
ε > 0, it follows that ν(S∗) = 0, as was to be proved.
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In the preceding chapters, tests were compared purely in terms of their power
functions (possibly weighted according to the seriousness of the losses involved).
Since the restriction to invariant tests is a departure from this point of view, it is of
interest to consider the implications of applying invariance to the power functions
rather than to the tests themselves. Any test that is invariant or almost invariant under
a group G has a power function which is invariant under the group Ḡ induced by G
in the parameter space.

To see that the converse is in general not true, let X1, X2, X3 be independently,
normally distributed with mean ξ and variance σ2, and consider the hypothesis σ ≥
σ0. The test with rejection region

|X2 − X1| > k when X̄ < 0,

|X3 − X2| > k when X̄ ≥ 0

is not invariant under the group G of transformations X ′
i = Xi + c, but its power

function is invariant under the associated group Ḡ.
The two properties, almost invariance of a test φ and invariance of its power

function, become equivalent if before the application of invariance considerations the
problem is reduced to a sufficient statistic whose distributions constitute a boundedly
complete family.

Lemma 6.5.1 Let the family PT = {PT
θ , θ ∈ �} of distributions of T be boundedly

complete, and let the problem of testing H : θ ∈ �H remain invariant under a group
G of transformations of T . Then a necessary and sufficient condition for the power
function of a test ψ(t) to be invariant under the induced group Ḡ over � is that ψ(t)
is almost invariant under G.

Proof. For all θ ∈ � we have Eḡθψ(T ) = Eθψ(gT ). If ψ is almost invariant,
Eθψ(T ) = Eθψ(gT ) and hence Eḡθψ(T ) = Eθψ(T ), so that the power function of
ψ is invariant. Conversely, if Eθψ(T ) = Eḡθψ(T ), then Eθψ(T ) = Eθψ(gT ), and
by the bounded completeness of PT , we have ψ(gt) = ψ(t) a.e. PT .

As a consequence, it is seen that UMP almost invariant tests also possess the
following optimum property.

Theorem 6.5.2 Under the assumptions of Lemma 6.5.1, let v(θ) be maximal invari-
ant with respect to Ḡ, and suppose that among the tests of H based on the sufficient
statistic T there exists a UMP almost invariant one, say ψ0(t). Then ψ0(t) is UMP
in the class of all tests based on the original observations X, whose power function
depends only on v(θ).

Proof. Let φ(x) be any such test, and let ψ(t) = E[φ(X)|t]. The power function
of ψ(t), being identical with that of φ(x), depends then only on v(θ), and hence is
invariant under Ḡ. It follows from Lemma 6.5.1 that ψ(t) is almost invariant under
G, and ψ0(t) is uniformly at least as powerful as ψ(t) and therefore as φ(x).
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Example 6.5.3 For the hypothesis τ 2 ≤ σ2 concerning the variances of two normal
distributions, the statistics (X̄ , Ȳ , S2x , S

2
Y ) constitute a complete set of sufficient statis-

tics. It was shown in Example 6.3.5 that there exists a UMP invariant test with respect
to a suitable group G, which has rejection region S2Y /S2X > C0. Since in the present
case almost invariance of a test with respect to G implies that it is equivalent to an
invariant one (Problem 6.23), Theorem 6.5.2 is applicable with v(θ) = � = τ 2/σ2,
and the test is therefore UMP among all tests whose power function depends only
on �.

Theorem 6.5.1 makes it possible to establish a simple condition under which
reduction to sufficiency before the application of invariance is legitimate.

Theorem 6.5.3 Let X be distributed according to Pθ, θ ∈ �, and let T be sufficient
for θ. Suppose G leaves invariant the problem of testing H : θ ∈ �H , and that T
satisfies

T (x1) = T (x2) implies T (gx1) = T (gx2) for all g ∈ G,

so that G induces a group G̃ of transformations of T -space through

g̃T (x) = T (gx).

(i) If ϕ(x) is any invariant test of H, there exists an almost invariant test ψ based
on T , which has the same power function as ϕ.

(ii) If in addition the assumptions of Theorem 6.5.1 are satisfied, the test ψ of (i)
can be taken to be invariant.

(iii) If there exists a test ψ0(T ) which is UMP among all G̃-invariant tests based
on T , then under the assumptions of (ii), ψ0, is also UMP among all G-invariant
tests based on X.

This theorem justifies the derivation of the UMP invariant tests of Examples 6.3.4
and 6.3.5.
Proof. (i): Let ψ(t) = E[ϕ(X)|t]. Then ψ has the same power function as ϕ. To
complete the proof, it suffices to show that ψ(t) is almost invariant, i.e., that

ψ(g̃t) = ψ(t) (a.e. PT ).

It follows from (6.2) that

Eθ[ϕ(gX)|g̃t] = Eḡθ[ϕ(X)|t] (a.e. Pθ).

Since T is sufficient, both sides of this equation are independent of θ. Furthermore
ϕ(gx) = ϕ(x) for all x and g, and this completes the proof.

Part (ii) follows immediately from (i) and Theorem 6.5.1, and part (iii) from (ii).



262 6 Invariance

6.6 Unbiasedness and Invariance

The principles of unbiasedness and invariance complement each other in that each
is successful in cases where the other is not. For example, there exist UMP unbiased
tests for the comparison of two binomial or Poisson distributions, problems to which
invariance considerations are not applicable. UMPunbiased tests also exist for testing
the hypothesis σ = σ0 against σ �= σ0 in a normal distribution, while invariance does
not reduce this problem sufficiently far. Conversely, there exist UMP invariant tests
of hypotheses specifying the values of more than one parameter (to be considered
in Chapter 7) but for which the class of unbiased tests has no UMP member. There
are also hypotheses, for example, the one-sided hypothesis ξ/σ ≤ θ0 in a univariate
normal distribution or ρ ≤ ρ0 in a bivariate one (Problem 6.20) with θ0, ρ0 �= 0,
where a UMP invariant test exists but the existence of a UMP unbiased test does not
follow by the methods of Chapter 5 and is an open question.

On the other hand, to some problems both principles have been applied success-
fully. These include Student’s hypotheses ξ ≤ ξ0 and ξ = ξ0 concerning the mean
of a normal distribution, and the corresponding two-sample problems η − ξ ≤ �0

and η − ξ = �0 when the variances of the two samples are assumed equal. Other
examples are the one-sided hypotheses σ2 ≥ σ2

0 and τ 2/σ2 ≥ �0 concerning the
variances of one or two normal distributions. The hypothesis of independence ρ = 0
in a bivariate normal distribution is still another case in point (Problem 6.20). In
all these examples the two optimum procedures coincide. We shall now show that
this is not accidental but is the case whenever the UMP invariant test is UMP also
among all almost invariant tests and the UMP unbiased test is unique. In this sense,
the principles of unbiasedness and of almost invariance are consistent.

Theorem 6.6.1 Suppose that for a given testing problem there exists a UMP unbi-
ased test φ∗ which is unique (up to sets of measure zero), and that there also exists
a UMP almost invariant test with respect to some group G. Then the latter is also
unique (up to sets of measure zero), and the two tests coincide a.e.

Proof. If U (α) is the class of unbiased level-α tests, and if g ∈ G, then φ ∈ U (α)

if and only if φg ∈ U (α).4 Denoting the power function of the test φ by βφ(θ), we
thus have

βφ∗g(θ) = βφ∗(ḡθ) = sup
φ∈U (α)

βφ(ḡθ) = sup
φ∈U (α)

βφg(θ)

= sup
φg∈U (α)

βφg(θ) = βφ∗(θ).

It follows that φ∗ and φ∗g have the same power function, and, because of the
uniqueness assumption, that φ∗ is almost invariant. Therefore, if φ′ is UMP almost
invariant, we have βφ′(θ) ≥ βφ∗(θ) for all θ. On the other hand, φ′ is unbiased, as
is seen by comparing it with the invariant test φ(x) ≡ α, and hence βφ′(θ) ≤ βφ∗(θ)

4 φg denotes the critical function which assigns to x the value φ(gx).
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for all θ. Since φ′ and φ∗ therefore have the same power function, they are equal a.e.
because of the uniqueness of φ∗, as was to be proved.

This theorem provides an alternative derivation for some of the tests of Chapter 5.
In Theorem 4.4.1, the existence of UMP unbiased tests was established for one- and
two-sided hypotheses concerning the parameter θ of the exponential family (4.10).
For this family, the statistics (U, T ) are sufficient and complete, and in terms of these
statistics the UMP unbiased test is therefore unique. Convenient explicit expressions
for some of these tests, which were derived in Chapter 5, can instead be obtained by
noting that when a UMP almost invariant test exists, the same test by Theorem 6.6.1
must also be UMP unbiased. This proves, for example, that the tests of Examples
6.3.4 and 6.3.5 are UMP unbiased.

The principles of unbiasedness and invariance can be used to supplement each
other in cases where neither principle alone leads to a solution but where they do
so when applied in conjunction. As an example consider a sample X1, . . . , Xn from
N (ξ,σ2) and the problem of testing H : ξ/σ = θ0 �= 0 against the two-sided alter-
natives that ξ/σ �= θ0. Here sufficiency and invariance reduce the problem to the
consideration of t = √

nx̄/
√∑

(xi − x̄)2/(n − 1). The distribution of this statistic
is the noncentral t-distribution with noncentrality parameter δ = √

nξ/σ and n − 1
degrees of freedom. For varying δ, the family of these distributions can be shown
to be STP∞. [Karlin (1968, pp. 118–119; see Problem 3.55] and hence in partic-
ular STP3. It follows by Problem 3.57 that among all tests of H based on t , there
exists a UMP unbiased one with acceptance region C1 ≤ t ≤ C2, where C1,C2 are
determined by the conditions

Pδ0 {C1 ≤ t ≤ C2} = 1 − α and
∂Pδ {C1 ≤ t ≤ C2}

∂δ

∣
∣
∣
∣
δ=δ0

= 0.

In terms of the original observations, this test then has the property of being UMP
among all tests that are unbiased and invariant. Whether it is also UMP unbiased
without the restriction to invariant tests is an open problem.

An analogous example occurs in the testing of the hypotheses H : ρ = ρ0 and
H ′ : ρ1 ≤ ρ ≤ ρ2 against two-sided alternatives on the basis of a sample from a
bivariate normal distribution with correlation coefficient ρ. (The testing of ρ ≤ ρ0
against ρ > ρ0 is treated in Problem 6.20.) The distribution of the sample correlation
coefficient has not only monotone likelihood ratio as shown in Problem 6.20, but is
in fact STP∞. [Karlin (1968, Section 3.4)]. Hence there exist tests of both H and H ′
which are UMP among all tests that are both invariant and unbiased.

Another case in which the combination of invariance and unbiasedness appears
to offer a promising approach is the Behrens–Fisher problem. Let X1, . . . , Xm and
Y1, . . . ,Yn be samples from normal distributions N (ξ,σ2) and N (η, τ 2), respec-
tively. The problem is that of testing H : η ≤ ξ (or η = ξ) without assuming equal-
ity of the variances σ2 and τ 2. A set of sufficient statistics for (ξ, η,σ, τ ) is then
(X̄ , Ȳ , S2X , S2Y ), where S2X = ∑

(Xi − X̄)2/(m − 1) and S2Y = ∑
(Y j − Ȳ )2/(n −

1). Adding the same constant to X̄ and Ȳ reduces the problem to Ȳ − X̄ , S2X , S
2
Y , and
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multiplication of all variables by a common positive constant to (Ȳ − X̄)/

√
S2X + S2Y

and S2Y /S2X . One would expect any reasonable invariant rejection region to be of the
form

Ȳ − X̄
√
S2X + S2Y

≥ g

(
S2Y
S2X

)

(6.19)

for some suitable function g. If this test is also to be unbiased, the probability of (6.19)
must equal α when η = ξ for all values of τ/σ. It has been shown by Linnik and
others that only pathological functions g with this property can exist. [This work is
reviewed by Pfanzagl (1974).] However, approximate solutions are available which
provide tests that are satisfactory for all practical purposes. These are the Welch
approximate t-solution described in Section 13.2, and the Welch–Aspin test. Both
are discussed, and evaluated, in Scheffé (1970) and Wang (1971); see also Cher-
noff (1949), Wallace (1958), Davenport and Webster (1975) and Robinson (1982).
The Behrens–Fisher problem will be revisited in Examples 15.5.4 and 18.5.4 and
Section 17.3.

The property of a test φ1 being UMP invariant is relative to a particular group G1,
and does not exclude the possibility that there might exist another test φ2 which is
UMP invariant with respect to a different groupG2. Simple instances can be obtained
from Examples 6.5.1 and 6.6.2.

Example 6.6.1 If G1 is the group G of Example 6.5.1, a UMP invariant test of
H : θ ≤ θ0 against θ > θ0 rejects when Y1 + · · · + Yn > C . Let G2 be the group
obtained by interchanging the role of Z and Y1. Then a UMP invariant test with
respect to G2 rejects when Z + Y2 + · · · + Yn > C . Analogous UMP invariant tests
are obtained by interchanging the role of Z and any one of the other Y ’s and further
examples by applying the transformations of G in Example 6.5.1 to more than one
variable. In particular, if it is applied independently to all n + 1 variables, only the
constants remain invariant, and the test φ ≡ α is UMP invariant.

Example 6.6.2 For another example (due to Charles Stein), let (X11, X12) and
(X21, X22) be independent and have bivariate normal distributions with zero means
and covariance matrices

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

and

(
�σ2

1 �ρσ1σ2

�ρσ1σ2 �σ2
2

)

.

Suppose that these matrices are nonsingular, or equivalently that |ρ| �= 1, but that
all σ1, σ2, ρ, and � are otherwise unknown. The problem of testing � = 1 against
� > 1 remains invariant under the group G1 of all nonsingular transformations

X ′
i1 = bXi1

X ′
i2 = a1Xi1 + a2Xi2

, (a2, b > 0).
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Since the probability is 0 that X11X22 = X12X21, the 2 × 2 matrix (Xi j ) is nonsin-
gular with probability 1, and the sample space can therefore be restricted to be the
set of all nonsingular such matrices. A maximal invariant under the subgroup corre-
sponding to b = 1 is the pair (X11, X21). The argument of Example 6.3.5 then shows
that there exists a UMP invariant test under G1 which rejects when X2

21/X
2
11 > C .

By interchanging 1 and 2 in the second subscript of the X ’s one sees that under
the corresponding group G2 the UMP invariant test rejects when X2

22/X
2
12 > C .

A third group leaving the problem invariant is the smallest group containing both
G1 and G2, namely, the group G of all common nonsingular transformations

X ′
i1 = ai1Xi1 + a12Xi2

X ′
i2 = a21Xi1 + a22Xi2

, (i = 1, 2).

Given any two nonsingular sample points Z = (Xi j ) and Z ′ = (X ′
i j ), there exists

a nonsingular linear transformation A such that Z ′ = AZ . There are therefore no
invariants under G, and the only invariant size-α test is φ ≡ α. It follows vacuously
that this is UMP invariant under G.

6.7 Admissibility

Any UMP unbiased test has the important property of admissibility (Problem 4.1), in
the sense that there cannot exist another test which is uniformly at least as powerful
and against some alternatives actually more powerful than the given one. The corre-
sponding property does not necessarily hold for UMP invariant tests, as is shown by
the following example.

Example 6.7.1 (continued) Under the assumptions of Example 6.6.2 it was seen
that the UMP invariant test under G is the test ϕ ≡ α which has power β(�) ≡
α. On the other hand, X11 and X21 are independently distributed as N (0,σ2

1) and
N (0,�σ2

1). On the basis of these observations there exists a UMP test for testing
� = 1 against� > 1with rejection region X2

21/X
2
11 > C (Problem 3.67). The power

function of this test is strictly increasing in � and hence > α for all � > 1.

Admissibility of optimum invariant tests therefore cannot be taken for granted but
must be established separately for each case.

We shall distinguish two slightly different concepts of admissibility. A testϕ0 will
be called α-admissible for testing H : θ ∈ �H against a class of alternatives θ ∈ �′
if for any other level-α test ϕ

Eθϕ(X) ≥ Eθϕ0(X) for all θ ∈ �′ (6.20)

implies Eθϕ(X) = Eθϕ0(X) for all θ ∈ �′. This definition takes no account of the
relationship of Eθϕ(X) and Eθϕ0(X) for θ ∈ �H beyond the requirement that both
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tests are of level α. For some unexpected, and possibly undesirable consequences of
α-admissibility, see Example 8.7.1 and Perlman and Wu (1999). A concept closer
to the decision-theoretic notion of admissibility discussed in Section 1.8, defines ϕ0

to be d-admissible for testing H against �′ if (6.20) and

Eθϕ(X) ≤ Eθϕ0(X) for all θ ∈ �H (6.21)

jointly imply Eθϕ(X) = Eθϕ0(X) for all θ ∈ �H ∪ �′ (see Problem 6.34).
Any level-α test ϕ0 that is α-admissible is also d-admissible provided no other

test ϕ exists with Eθϕ(X) = Eθϕ0(X) for all θ ∈ �′ but Eθϕ(X) �= Eθϕ0(X) for
some θ ∈ �H . That the converse does not hold is shown by the following example.

Example 6.7.2 Let X be normally distributed with mean ξ and known variance σ2.
For testing H : ξ ≤ −1 or ≥ 1 against �′ : ξ = 0, there exists a level-α test ϕ0,
which rejects when C1 ≤ X ≤ C2 and accepts otherwise, such that (Problem 6.35)

Eξϕ0(X) ≤ Eξ=−1ϕ0(X) = α for ξ ≤ −1

and
Eξϕ0(X) ≤ Eξ=+1ϕ0(X) = α′ < α for ξ ≥ +1.

A slight modification of the proof of Theorem 3.7.1 shows that ϕ0 is the unique test
maximizing the power at ξ = 0 subject to

Eξϕ(X) ≤ α for ξ ≤ −1 and Eξϕ(X) ≤ α′ for ξ ≥ 1,

and hence that ϕ0 is d-admissible.
On the other hand, the test ϕwith rejection region |X | ≤ C , where Eξ=−1ϕ(X) =

Eξ=1ϕ(X) = α, is the unique test maximizing the power at ξ = 0 subject to
Eξϕ(X) ≤ α for ξ ≤ −1 or ≥ 1, and hence is more powerful against �′ than ϕ0, so
that ϕ0 is not α-admissible.

A test that is admissible under either definition against�′ is also admissible against
any �′′ containing �′ and hence in particular against the class of all alternatives
�K = � − �H . The termsα- andd-admissiblewithout qualificationwill be reserved
for admissibility against�K . Unless a UMP test exists, any α-admissible test will be
admissible against some�′ ⊂ �K and inadmissible against others. Both the strength
of an admissibility result and the method of proof will depend on the set �′.

Consider in particular the admissibility of a UMP unbiased test mentioned at
the beginning of the section. This does not rule out the existence of a test with
greater power for all alternatives of practical importance and smaller power only
for alternatives so close to H that the value of the power there is immaterial. In
the present section, we shall discuss two methods for proving admissibility against
various classes of alternatives.
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Theorem 6.7.1 Let X be distributed according to an exponential family with density

pθ(x) = C(θ) exp

⎛

⎝
s∑

j=1

θ j Tj (x)

⎞

⎠

with respect to a σ-finite measure μ over a Euclidean sample space (X ,A), and let
� be the natural parameter space of this family. Let�H and�′ be disjoint nonempty
subsets of�, and suppose that ϕ0 is a test of H : θ ∈ �H based on T = (T1, . . . , Ts)
with acceptance region A0 which is a closed convex subset of Rs possessing the
following property: If A0 ∩ {∑ ai ti > c} is empty for some c, there exists a point
θ∗ ∈ � and a sequence λn → ∞ such that θ∗ + λna ∈ �′ [where λn is a scalar and
a = (a1, . . . , as)]. Then if A is any other acceptance region for H satisfying

Pθ(X ∈ A) ≤ Pθ(X ∈ A0) for all θ ∈ �′,

A is contained in A0, except for a subset of measure 0, i.e., μ(A ∩ Ac
0) = 0.

Proof. Suppose to the contrary thatμ(A ∩ Ac
0) > 0. Then it follows from the closure

and convexity of A0, that there exist a ∈ Rs and a real number c such that

A0 ∩
{
t :

∑
ai ti > c

}
is empty (6.22)

and
A ∩

{
t :

∑
ai ti > c

}
has positive μ-measure, (6.23)

that is, the set A protrudes in some direction from the convex set A0. We shall show
that this fact and the exponential nature of the densities imply that

Pθ(A) > Pθ(A0) for some θ ∈ �′, (6.24)

which provides the required contradiction. Let ϕ0 and ϕ denote the indicators of Ac
0

and Ac, respectively, so that (6.24) is equivalent to

∫

[ϕ0(t) − ϕ(t)] dPθ(t) > 0 for some θ ∈ �′.

If θ = θ∗ + λna ∈ �′, the left side becomes

C(θ∗ + λna)

C(θ∗)
ecλn

∫

[ϕ0(t) − ϕ(t)]eλn(
∑

ai ti−c) dPθ∗(t).

Let this integral be I+
n + I−

n , where I+
n and I−

n denote the contributions over the
regions of integration {t : ∑ ai ti > c} and {t : ∑ ai ti ≤ c}, respectively. Since I−

n is
bounded, it is enough to show that I+

n → ∞ as n → ∞. By (6.22), ϕ0(t) = 1 and
hence ϕ0(t) − ϕ(t) ≥ 0 when

∑
ai ti > c, and by (6.23)
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μ
{
ϕ0(t) − ϕ(t) > 0 and

∑
ai ti > c

}
> 0.

This shows that I+
n → ∞ as λn → ∞ and therefore completes the proof.

Corollary 6.7.1 Under the assumptions of Theorem 6.7.1, the test with acceptance
region A0 is d-admissible. If its size is α and there exists a finite point θ0 in the
closure �̄H of �H for which Eθ0ϕ0(X) = α, then ϕ0 is also α-admissible.

Proof.

(i) Suppose ϕ satisfies (6.20). Then by Theorem 6.7.1, ϕ0(x) ≤ ϕ(x)
(a.e. μ). If ϕ0(x) < ϕ(x) on a set of positive measure, then Eθϕ0(X) < Eθϕ(X)

for all θ and hence (6.21) cannot hold.
(ii) By the argument of part (i), (6.20) impliesα = Eθ0ϕ0(X) < Eθ0ϕ(X), and hence

by the continuity of Eθϕ(X) there exists a point θ ∈ �H for whichα < Eθϕ(X).
Thus ϕ is not a level-α test.

Theorem 6.7.1 and the corollary easily extend to the case where the competitors
ϕ of ϕ0 are permitted to be randomized but the assumption that ϕ0 is nonrandomized
is essential. Thus, the main applications of these results are to the case that μ is
absolutely continuous with respect to Lebesgue measure. The boundary of A0 will
then typically have measure zero, so that the closure requirement for A0 can be
dropped.

Example 6.7.3 (Normal mean) If X1, . . . , Xn is a sample from the normal dis-
tribution N (ξ,σ2), the family of distributions is exponential with T1 = X̄ , T2 =∑

X2
i , θ1 = nξ/σ2, θ2 = −1/2σ2. Consider first the one-sided problem H : θ1 ≤ 0,

K : θ1 > 0 with α < 1
2 . Then the acceptance region of the t-test is A : T1/√T2 ≤ C

(C > 0), which is convex (Problem6.36(i)). The alternatives θ ∈ �′ ⊆ K will satisfy
the conditions of Theorem 6.7.1 if for any half plane a1t1 + a2t2 > c that does not
intersect the set t1 ≤ C

√
t2 there exists a ray (θ∗

1 + λa1, θ∗
2 + λa2) in the direction

of the vector (a1, a2) for which (θ∗
1 + λa1, θ∗

2 + λa2) ∈ �′ for all sufficiently large
λ. In the present case, this condition must hold for all a1 > 0 > a2. Examples of sets
�′ satisfying this requirement (and against which the t-test is therefore admissible)
are

�′
1 : θ1 > k1 or

ξ

σ2
> k ′

1

and

�′
2 : θ1√−θ2

> k2 or
ξ

σ
> k ′

2.

On the other hand, the condition is not satisfied for �′ : ξ > k (Problem 6.36).
Analogously, the acceptance region A : T 2

1 ≤ CT2 of the two-sided t-test for
testing H : θ1 = 0 against θ1 �= 0 is convex, and the test is admissible against
�′

1 : |ξ/σ2| > k1 and �′
2 : |ξ/σ| > k2.
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In decision theory, a quite general method for proving admissibility consists in
exhibiting a procedure as a unique Bayes solution. In the present case, this is justified
by the following result, which is closely related to Theorem 3.8.1.

Theorem 6.7.2 Assume the set {x : fθ(x) > 0} is independent of θ, and let a σ-field
be defined over the parameter space �, containing both �H and �K and such that
the densities fθ(x) (with respect to μ) of X are jointly measurable in θ and x. Let �0

and �1 be probability distributions over this σ-field with �0(�H ) = �1(�K ) = 1,
and let

hi (x) =
∫

fθ(x) d�i (θ).

Suppose ϕ0 is a nonrandomized test of H against K defined by

ϕ0(x) =
{
1 when h1(x) ≥ kh0(x)
0 when h1(x) < kh0(x)

(6.25)

and that μ{x : h1(x)/h0(x) = k} = 0.
(i) Then, ϕ0 is d-admissible for testing H against K .
(ii) Let sup�H

Eθϕ0(X) = α and

ω = {θ :∈ �H : Eθϕ0(X) = α} .

If �0(ω) = 1, then ϕ0 is also α-admissible.
(iii) If �1 assigns probability 1 to �′ ⊂ �K , then the conclusions of (i) and (ii)

apply with �′ in place of �K .

Proof. (i): Suppose ϕ is any other test, satisfying (6.20) and (6.21) with �′ = �K .
Then also ∫

Eθϕ(X) d�0(θ) ≤
∫

Eθϕ0(X) d�0(θ)

and ∫

Eθϕ(X) d�1(θ) ≥
∫

Eθϕ0(X) d�1(θ).

By the argument of Theorem 3.8.1, these inequalities are equivalent to

∫

ϕ(x)h0(x) dμ(x) ≤
∫

ϕ0(x)h0(x) dμ(x)

and ∫

ϕ(x)h1(x) dμ(x) ≥
∫

ϕ0(x)h1(x) dμ(x),

and the hi (x) (i = 0, 1) are probability densities with respect to μ. This contradicts
the uniqueness of the most powerful test of h0 against h1 at level

∫
ϕ(x)h0(x) dμ(x).
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(ii): By assumption,
∫
Eθϕ0(x) d�0(θ) = α, so that ϕ0 is a level-α test of h0. If

ϕ is any other level-α test of H satisfying (6.20) with �′ = �K , it is also a level-α
test of h0 and the argument of part (i) can be applied as before.

(iii): This follows immediately from the proofs of (i) and (ii).

Example 6.7.4 In the two-sided normal problem of Example 6.7.3 with H : ξ = 0,
K : ξ �= 0 consider the class �′

a,b of alternatives (ξ,σ) satisfying

σ2 = 1

a + η2
, ξ = bη

a + η2
, −∞ < η < ∞ (6.26)

for some fixed a, b > 0, and the subset ω, of�H of points (0,σ2)with σ2 < 1/a. Let
�0,�1 be distributions over ω and �′

a,b defined by the densities (Problem 6.37(i))

λ0(η) = C0

(a + η2)n/2

and

λ1(η) = C1e(n/2)b2η2/(a+η2)

(a + η2)n/2
.

Straightforward calculation then shows (Problem 6.37(ii)) that the densities h0 and
h1 of Theorem 6.7.2 become

h0(x) = C0e−(a/2)
∑

x2i
√∑

x2i

and

h1(x) =
C1 exp

(

− a
2

∑
x2i + b2(

∑
xi)

2

2
∑

x2i

)

√∑
x2i

,

so that the Bayes test ϕ0 of Theorem 6.7.2 rejects when x̄2/
∑

x2i > k and hence
reduces to the two-sided t-test.

The condition of part (ii) of the theorem is clearly satisfied so that the t-test is
both d- and α-admissible against �′

a,b.
When dealing with invariant tests, it is of particular interest to consider admissi-

bility against invariant classes of alternatives. In the case of the two-sided test ϕ0,
this means sets �′ depending only on |ξ/σ|. It was seen in Example 6.7.4 that ϕ0

is admissible against �′ : |ξ/σ| ≥ B for any B, that is, against distant alternatives,
and it follows from the test being UMP unbiased or from Example 6.7.4 (continued)
that ϕ0, is admissible against �′ : |ξ/σ| ≤ A for any A > 0, that is, against alter-
natives close to H . This leaves open the question whether ϕ0 is admissible against
sets �′ : 0 < A < |ξ/σ| < B < ∞, which include neither nearby nor distant alter-
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natives. It was in fact shown by Lehmann and Stein (1953) that ϕ0 is admissible for
testing H against |ξ|/σ = δ for any δ > 0 and hence that it is admissible against
any invariant �′. It was also shown there that the one-sided t-test of H : ξ = 0 is
admissible against ξ/σ = δ′ for any δ′ > 0. These results will not be proved here.
The proof is based on assigning to log σ the uniform density on (−N , N ) and letting
N → ∞, thereby approximating the “improper” prior distribution which assigns to
log a the uniform distribution on (−∞,∞), that is, Lebesgue measure.

That the one-sided t-test ϕ1 of H : ξ < 0 is not admissible against all�′ is shown
by Brown and Sackrowitz (1984), who exhibit a test ϕ satisfying

Eξ,σϕ(X) < Eξ,σϕ1(X) for all ξ < 0, 0 < σ < ∞

and

Eξ,σϕ(X) > Eξ,σϕ1(X) for all 0 < ξ1 < ξ < ξ2 < ∞, 0 < σ < ∞.

Example 6.7.5 (Normal variance) For testing the variance σ2 of a normal distri-
bution on the basis of a sample X1, . . . , Xn from N (ξ,σ2), the Bayes approach of
Theorem 6.7.2 easily proves α-admissibility of the standard test against any loca-
tion invariant set of alternatives �′, that is, any set �′ depending only on σ2. Con-
sider first the one-sided hypothesis H : σ ≤ σ0 and the alternatives �′ : σ = σ1 for
any σ1 > σ0. Admissibility of the UMP invariant (and unbiased) rejection region∑

(Xi − X̄)2 > C follows immediately from Section 3.9, where it was shown that
this test is Bayes for a pair of prior distributions (�0,�1), namely, �1 assigning
probability 1 to any point (ξ1,σ1), and �0 putting σ = σ0 and assigning to ξ the
normal distribution N (ξ1, (σ

2
1 − σ2

0)/n). Admissibility of
∑

(Xi − X̄)2 ≤ C when
the hypothesis is H : σ ≥ σ0 and �′ = {(ξ,σ) : σ = σ1}, σ1 < σ0, is seen by inter-
changing �0 and �1, σ0 and σ1.

A similar approach proves α-admissibility of any size-α rejection region

∑
(Xi − X̄)2 ≤ C1 or ≥ C2 (6.27)

for testing H : σ = σ0 against �′ : {σ = σ1} ∪ {σ = σ2} (σ1 < σ0 < σ2). On �H ,
where the only variable is ξ, the distribution �0 for ξ can be taken as the normal
distribution with an arbitrary mean ξ1 and variance (σ2

2 − σ2
0)/n. On �′, let the

conditional distribution of ξ given σ = σ2 assign probability 1 to the value ξ1, and
let the conditional distribution of ξ given σ = σ1 be N (ξ1, (σ

2
2 − σ2

1)/n). Finally, let
�1 assign probabilities p and 1 − p to σ = σ1 and σ = σ2, respectively. Then the
rejection region satisfies (6.27), and any constants C1 and C2 for which the test has
size a can be attained by proper choice of p (Problem 6.38(i)).

The results of Examples 6.7.4 and 6.7.5 can be used as the basis for proving admissi-
bility results in many other situations involving normal distributions. The main new
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difficulty tends to be the presence of additional (nuisance) means. These can often
be eliminated by use of the following lemma.

Lemma 6.7.1 For any given σ2 and M2 > σ2 there exists a distribution �σ such
that

I (z) =
∫

1√
2πσ

e−(1/2σ2)(z−ζ)2d�σ(ζ)

is the normal density with mean zero and variance M2.

Proof. Let θ = ζ/σ, and let θ be normally distributed with zero mean and variance
τ 2. Then it is seen (Problem 6.38(ii)) that

I (z) = 1√
2πσ

√
1 + τ 2

exp

[

− 1

2σ2(1 + τ 2)
z2
]

.

The result now follows by letting τ 2 = (M2/σ2) − 1, so that σ2(1 + τ 2) = M2.

Example 6.7.6 Let X1, . . . , Xm ; Y1, . . . ,Yn be samples from N (ξ,σ2) and
N (η, τ 2), respectively, and consider the problem of testing H : τ/σ = 1 against
τ/σ = � > 1.

(i) Suppose first that ξ = η = 0. If �0 and �1 assign probability 1 to the points
(σ0, τ0 = σ0) and (σ1, τ1 = �σ1), respectively, the ratio h1/h0 of Theorem 6.7.2 is
proportional to

exp

{

−1

2

[(
1

�2σ2
1

− 1

σ2
0

)∑
y2j −

(
1

σ2
0

− 1

σ2
1

)∑
x2i

]}

,

and for suitable choice of critical value and σ1 < σ0, the rejection region of the Bayes
test reduces to ∑

y2j
∑

x2i
>

�2σ2
1 − σ2

0

σ2
0 − σ2

1

.

The values σ2
0 and σ2

1 can then be chosen to give this test any preassigned size α.
(ii) If ξ and η are unknown, then X̄ , Ȳ , S2X = ∑

(Xi − X̄)2, S2Y = ∑
(Y j − Ȳ )2

are sufficient statistics, and S2X and S2Y can be represented as S2X = ∑m−1
i=1 U 2

i , S
2
Y =

∑n−1
j=1 V

2
j , with the Ui , Vj independent normal with means 0 and variances σ2 and

τ 2 respectively.
To σ and τ assign the distributions �0 and �1 of part (i) and conditionally, given

σ and τ , let ξ and η be independently distributed according to �0σ,�0τ , over �H

and �1σ , �1τ over �K , with these four conditional distributions determined from
Lemma 6.7.1 in such a way that

∫ √
m√

2πσ0

e−(m/2σ2
0 )(x̄−ξ)2 d�0σ0(ξ) =

∫ √
m√

2πσ1

e−(m/2σ2
1 )(x̄−ξ)2 d�0σ1(ξ),
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and analogously for η. This is possible by choosing the constant M2 of Lemma 6.7.1
greater than both σ2

0 and σ2
1. With this choice of priors, the contribution from x̄

and ȳ to the ratio h1/h0 of Theorem 6.7.2 disappears, so that h1/h0 reduces to the
expression for this ratio in part (i), with

∑
x2i and

∑
y2j replaced by

∑
(xi − x̄)2 and

∑
(y j − ȳ)2, respectively.

This approach applies quite generally in normal problems with nuisance means,
provided the prior distribution of the variances σ2, τ 2, … assigns probability 1 to a
bounded set, so thatM2 can be chosen to exceed all possible values of these variances.

Admissibility questions have been considered not only for tests but also for confi-
dence sets. These will not be treated here (but see Example 8.5.4); convenient entries
to the literature are Cohen and Strawderman (1973) and Joshi (1982). For additional
results, see Hooper (1982a) and Arnold (1984).

6.8 Rank Tests

One of the basic problems of statistics is the two-sample problem of testing the
equality of two distributions. A typical example is the comparison of a treatment with
a control, where the hypothesis of no treatment effect is tested against the alternatives
of a beneficial effect. This was considered in Chapter 5 under the assumption of
normality, and the appropriate test was seen to be based on Student’s t . It was also
shown that when approximate normality is suspected but the assumption cannot be
trusted, one is led to replacing the t-test by its permutation analogue, which in turn
can be approximated by the original t-test. For further details, see Chapter 17.

We shall consider the same problem below without, at least for the moment,
making any assumptions concerning even the approximate form of the underlying
distributions, assuming only that they are continuous. The observations then con-
sist of samples X1, . . . , Xm and Y1, . . . ,Yn from two distributions with continuous
cumulative distribution functions F and G, and the problem becomes that of testing
the hypothesis

H1 : G = F.

If the treatment effect is assumed to be additive, the alternatives are G(y) = F(y −
�). We shall here consider the more general possibility that the size of the effect
may depend on the value of y (so that � becomes a nonnegative function of y) and
therefore test H1 against the one-sided alternatives that the Y ’s are stochastically
larger than the X ’s,

K1 : G(z) ≤ F(z) for all z, and G �= F.

An alternative experiment that can be performed to test the effect of a treatment
consists of the comparison of N pairs of subjects, which have been matched so as to
eliminate as far as possible any differences not due to the treatment. One member of
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eachpair is chosen at random to receive the treatmentwhile the other serves as control.
If the normality assumption of Section 5.10 is dropped and the pairs of subjects can
be considered to constitute a sample, the observations (X1,Y1), . . . , (XN ,YN ) are
a sample from a continuous bivariate distribution F . The hypothesis of no effect is
then equivalent to the assumption that F is symmetric with respect to the line y = x :

H2 : F(x, y) = F(y, x).

Another basic problem, which occurs in many different contexts, concerns the
dependenceor independenceof twovariables. In particular, if (X1,Y1), . . . , (XN ,YN )

is a sample from a bivariate distribution F , one will be interested in the hypothesis

H3 : F(x, y) = G1(x)G2(y)

that X and Y are independent, which was considered for normal distributions in
Section 5.13. The alternatives of interest may, for example, be that X and Y are
positively dependent. An alternative formulation results when x , instead of being
random, can be selected for the experiment. If the chosen values are x1 < · · · < xN
and Fi denotes the distribution of Y given xi , the Y ’s are independently distributed
with continuous cumulative distribution functions F1, . . . , FN . The hypothesis of
independence of Y from x becomes

H4 : F1 = · · · = FN ,

while under the alternatives of positive regression dependence the variables Yi are
stochastically increasing with i .

In these and other similar problems, invariance reduces the data so completely that
the actual values of the observations are discarded and only certain order relations
between different groups of variables are retained. It is nevertheless possible on this
basis to test the various hypotheses in question, and the resulting tests frequently are
nearly as powerful as the standard normal tests.We shall now carry out this reduction
for the four problems above.

The two-sample problem of testing H1 against K1 remains invariant under the
group G of all transformations

x ′
i = ρ(xi ), y′

j = ρ(y j ) (i = 1, . . . ,m, j = 1, . . . , n)

such that ρ is continuous and strictly increasing. This follows from the fact that these
transformations preserve both the continuity of a distribution and the property of
two variables being either identically distributed or one being stochastically larger
than the other. As was seen (with a different notation) in Example 6.2.3, a maximal
invariant under G is the set of ranks

(R′; S′) = (R′
1, . . . , R

′
m; S′

1, . . . , S
′
n)
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of X1, . . . , Xm; Y1, . . . ,Yn in the combined sample. Since the distribution of
(R′

1, . . . , R
′
m; S′

1, . . . , S
′
n) is symmetric in the first m and in the last n variables for

all distributions F and G, a set of sufficient statistics for (R′, S′) is the set of the
X -ranks and that of the Y -ranks without regard to the subscripts of the X ’s and Y ’s.
This can be represented by the ordered X -ranks and Y -ranks

R1 < · · · < Rm and S1 < · · · < Sn,

and therefore by one of these sets alone since each of them determines the other.
Any invariant test is thus a rank test, that is, it depends only on the ranks of the
observations, for example, on (S1, . . . , Sn).

That almost invariant tests are equivalent to invariant ones in the present con-
text was shown first by Bell (1964). A streamlined and generalized version of his
approach is given by Berk and Bickel (1968) and Berk (1970), who also show that
the conclusion of Theorem 6.5.3 remains valid in this case.

To obtain a similar reduction for H2, it is convenient first to make the transfor-
mation Zi = Yi − Xi , Wi = Xi + Yi . The pairs of variables (Zi ,Wi ) are then again
a sample from a continuous bivariate distribution. Under the hypothesis this dis-
tribution is symmetric with respect to the w-axis, while under the alternatives the
distribution is shifted in the direction of the positive z-axis. The problem is unchanged
if all the w’s are subjected to the same transformation w′

i = λ(wi ), where λ is 1 : 1
and has at most a finite number of discontinuities, and (Z1, . . . , ZN ) constitutes a
maximal invariant under this group. [Cf. Problem 6.2(ii).]

The Z ’s are a sample from a continuous univariate distribution D, for which the
hypothesis of symmetry with respect to the origin,

H ′
2 : D(z) + D(−z) = 1 for all z,

is to be tested against the alternatives that the distribution is shifted toward positive
z-values. This problem is invariant under the group G of all transformations

z′
i = ρ(zi ) (i = 1, . . . , N )

such that ρ is continuous, odd, and strictly increasing. If zi1 , . . . , zim < 0 <

z j1 , . . . , z jn , where i1 < · · · < im and j1 < · · · < jn , let s ′
1, . . . , s

′
n denote the ranks

of z ji , . . . , z jn , among the absolute values |z1|, . . . , |zN |, and r ′
1, . . . , r

′
m the ranks

of |zi1 |, . . . , |zim | among |z1|, . . . , |zN |. The transformations ρ preserve the sign of
each observation, and hence in particular also the numbersm and n. Since ρ is a con-
tinuous, strictly increasing function of |z|, it leaves the order of the absolute values
invariant and therefore the ranks r ′

i and s
′
j . To see that the latter are maximal invari-

ant, let (z1, . . . , zN ) and (z′
1, . . . , z

′
N ) be two sets of points with m ′ = m, n′ = n,

and the same r ′
i and s

′
j . There exists a continuous, strictly increasing function on the

positive real axis such that |z′
i | = ρ(|zi |) and ρ(0) = 0. If ρ is defined for negative

z by ρ(−z) = −ρ(z), it belongs to G and z′
i = ρ(zi ) for all i , as was to be proved.

As in the preceding problem, sufficiency permits the further reduction to the ordered
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ranks r1 < · · · < rm and s1 < · · · < sn . This retains the information for the rank of
each absolute value whether it belongs to a positive or negative observation, but not
with which positive or negative observation it is associated.

The situation is very similar for the hypotheses H3 and H4. The problem of
testing for independence in a bivariate distribution against the alternatives of positive
dependence is unchanged if the Xi and Yi are subjected to transformations X ′

i =
ρ(Xi ),Y ′

i = λ(Yi ) such that ρ and λ are continuous and strictly increasing. This
leaves as maximal invariant the ranks (R′

1, . . . , R
′
N ) of (X1, . . . , XN ) among the

X ’s and the ranks (S′
1, . . . , S

′
N ) of (Y1, . . . ,YN ) among the Y ’s. The distribution of

(R′
1, S

′
1), . . . , (R

′
N , S′

N ) is symmetric in these N pairs for all distributions of (X,Y ).
It follows that a sufficient statistic is (S1, . . . , SN ) where (1, S1), . . . , (N , SN ) is
a permutation of (R′

1, S
′
1), . . . , (R

′
N , S′

N ) and where therefore Si is the rank of the
variable Y associated with the i th smallest X .

The hypothesis H4 that Y1, . . . ,Yn constitutes a sample is to be tested against
the alternatives K4 that the Yi are stochastically increasing with i . This problem is
invariant under the group of transformations y′

i = ρ(yi ) where ρ is continuous and
strictly increasing.Amaximal invariant under this group is the set of ranks S1, . . . , SN
of Y1, . . . ,YN .

Some invariant tests of the hypotheses H1 and H2 will be considered in the
next two sections. Corresponding results concerning H3 and H4 are given in
Problems 6.62–6.64.

6.9 The Two-Sample Problem

The problem of testing the two-sample hypothesis H : G = F against the one-sided
alternatives K that the Y ’s are stochastically larger than the X ’s is reduced by the
principle of invariance to the consideration of tests based on the ranks S1 < · · · < Sn
of the Y ’s. The specification of the Si is equivalent to specifying for each of the
N = m + n positions within the combined sample (the smallest, the next smallest,
etc.) whether it is occupied by an x or a y. Since for any set of observations n of the N
positions are occupied by y’s and since the

(N
n

)
possible assignments of n positions

to the y’s are all equally likely when G = F , the joint distribution of the Si under H
is

P{S1 = s1, . . . , Sn = sn} = 1
/(

N

n

)

(6.28)

for each set 1 ≤ s1 < s2 < · · · < sn ≤ N . Any rank test of H of size

α = k
/(

N

n

)

therefore has a rejection region consisting of exactly k points (s1, . . . , sn).
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For testing H against K there exists no UMP rank test, and hence no UMP
invariant test. This follows, for example, from a consideration of two of the standard
tests for this problem, since each is most powerful among all rank tests against some
alternative. The two tests in question have rejection regions of the form

h(s1) + · · · + h(sn) > C. (6.29)

One, the Wilcoxon two-sample test, is obtained from (6.29) by letting h(s) = s, so
that it rejects H when the sumof the y-ranks is too large.We shall show below that for
sufficiently small�, this ismost powerful against the alternatives that F is the logistic
distribution F(x) = 1/(1 + e−x ), and that G(y) = F(y − �). The other test, the
normal scores test, has the rejection region (6.29)withh(s) = E(W(s)),whereW(1) <

· · · < W(N ), is an ordered sample of size N from a standard normal distribution.5

This is most powerful against the alternatives that F and G are normal distributions
with common variance and means ξ and η = ξ + �, when � is sufficiently small.

To prove that these tests have the stated properties it is necessary to know the
distribution of (S1, . . . , Sn) under the alternatives. If F and G have densities f and
g such that f is positive whenever g is, the joint distribution of the Si is given by

P{S1 = s1, . . . , Sn = sn} = E

[
g(V(s1))

f (V(s1))
· · · g(V(sn))

f (V(sn))

]/(
N

n

)

, (6.30)

where V(1) < · · · < V(N ) is an ordered sample of size N from the distribution F . (See
Problem 6.44.) Consider in particular the translation (or shift) alternatives

g(y) = f (y − �),

and the problem of maximizing the power for small values of �. Suppose that f is
differentiable and that the probability (6.30), which is now a function of �, can be
differentiated with respect to � under the expectation sign. The derivative of (6.30)
at � = 0 is then

∂

∂�
P�{S1 = s1, . . . , Sn = Sn}

∣
∣
∣
∣
�=0

= −
n∑

i=1

E

[
f ′(V(si ))

f (V(si ))

]/(
N

n

)

.

Since under the hypothesis the probability of any ranking is given by (6.28), it follows
from the Neyman–Pearson Lemma in the extended form of Theorem 3.6.1, that the
derivative of the power function at � = 0 is maximized by the rejection region

−
n∑

i=1

E

[
f ′(V(si ))

f (V(si ))

]

> C. (6.31)

5 Tables of the expected order statistics from a normal distribution are given in Biometrika Tables
for Statisticians, Vol. 2, Cambridge U. P., 1972, Table 9. For additional references, see David (1981,
Appendix, Section 3.2).
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The same test maximizes the power itself for sufficiently small �. To see this let s
denote a general rank point (s1, . . . , sn), and denote by s( j) the rank point giving the
j th largest value to the left-hand side of (6.31). If

α = k
/(

N

n

)

,

the power of the test is then

β(�) =
k∑

j=1

P�(s( j)) =
k∑

j=1

[
1
(N
n

) + �
∂

∂�
P�(s( j))

∣
∣
∣
∣
�=0

+ · · ·
]

.

Since there is only a finite number of points s, there exists for each j a number� j > 0
such that the point s( j) also gives the j th largest value to P�(s) for all � < � j . If �

is less than the smallest of the numbers

� j , j = 1, . . . ,

(
N

n

)

,

the test also maximizes β(�).
If f (x) is the normal density N (ξ,σ2), then

− f ′(x)
f (x)

= − d

dx
log f (x) = x − ξ

σ2
,

and the left-hand side of (6.31) becomes

∑
E
V(si ) − ξ

σ2
= 1

σ

∑
E(W(si )),

whereW(1) < · · · < W(N ) is an ordered sample from N (0, 1). The test thatmaximizes
the power against these alternatives (for sufficiently small �) is therefore the normal
scores test.

In the case of the logistic distribution,

F(x) = 1

1 + e−x
, f (x) = e−x

(1 + e−x )2
,

and hence

− f ′(x)
f (x)

= 2F(x) − 1.

The locally most powerful rank test therefore rejects when
∑

E[F(V(xi ))] > C .
If V has the distribution F , then U = F(V ) is uniformly distributed over (0, 1)
(Problem 3.22). The rejection region can therefore be written as

∑
E(U(si )) > C ,
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whereU(1) < · · · < U(N ) is an ordered sample of size N from the uniformdistribution
U (0, 1). Since E(U(si )) = si/(N + 1), the test is seen to be the Wilcoxon test.

Both the normal scores test and the Wilcoxon test are unbiased against the one-
sided alternatives K . In fact, let φ be the critical function of any test determined by
(6.29) with h nondecreasing. Then φ is nondecreasing in the y’s and the probability
of rejection isα for all F = G. By Lemma 5.9.1 the test is therefore unbiased against
all alternatives of K .

It follows from the unbiasedness properties of these tests that the most power-
ful invariant tests in the two cases considered are also most powerful against their
respective alternatives among all tests that are invariant and unbiased. The nonexis-
tence of a UMP test is thus not relieved by restricting the tests to be unbiased as well
as invariant. Nor does the application of the unbiasedness principle alone lead to a
solution, as was seen in the discussion of permutation tests in Section 5.9. With the
failure of these two principles, both singly and in conjunction, the problem is left
not only without a solution but even without a formulation. A possible formulation
(stringency) will be discussed in Chapter 8. However, the determination of a most
stringent test for the two-sample hypothesis is an open problem.

For testing H : G = F against the two-sided alternatives that the Y ’s are either
stochastically smaller or larger than the X ’s, two-sided versions of the rank tests of
this section can be used. In particular, suppose that h is increasing and that h(s) +
h(N + 1 − s) is independent of s, as is the case for the Wilcoxon and normal scores
statistics. Then under H , the statistic �h(s j ) is symmetrically distributed about
n�N

i=1h(i)/N = μ, and (6.29) suggests the rejection region

∣
∣
∣
∑

h(s j ) − μ
∣
∣
∣ = 1

N

∣
∣
∣
∣
∣
∣
m

n∑

j=1

h(s j ) − n
m∑

i=1

h(ri )

∣
∣
∣
∣
∣
∣
> C.

The theory here is still less satisfactory than in the one-sided case. These tests need not
even be unbiased [Sugiura (1965)], and it is not known whether they are admissible
within the class of all rank tests.On the other hand, the relative asymptotic efficiencies
are the same as in the one-sided case.

The two-sample hypothesis G = F can also be tested against the general alter-
natives G �= F . This problem arises in deciding whether two products, two sets of
data, or the like can be pooled when nothing is known about the underlying distri-
butions. Since the alternatives are now unrestricted, the problem remains invariant
under all transformations x ′

i = f (xi ), y′
j = f (y j ), i = 1, . . . ,m, j = 1, . . . , n, such

that f has only a finite number of discontinuities. There are no invariants under this
group, so that the only invariant test is φ(x, y) ≡ α. This is however not admissi-
ble, since there do exist tests of H that are strictly unbiased against all alternatives
G �= F (Problem 6.56). One of the tests most commonly employed for this problem
is the Kalmogorov-Smirnov test. Let the empirical distribution functions of the two
samples be defined by

Sx1,...,xm (z) = a

m
, Sy1,...,yn (z) = b

n
,
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where a and b are the numbers of x’s and y’s less or equal to z respectively. Then H
is rejected according to this test when

sup
z

∣
∣Sx1,...,xm (z) − Sy1,...,yn (z)

∣
∣ > C.

Accounts of the theory of this and related tests are given, for example, in Durbin
(1973), Serfling (1980), Gibbons and Chakraborti (1992) and Hájek, Sidák, and Sen
(1999).

Two-sample rank tests are distribution-free for testing H : G = F but not for the
nonparametric Behrens–Fisher situation of testing H : η = ξ when the X ’s and Y ’s
are samples from F((x − ξ)/σ) and F((y − η)/τ ) with σ, τ unknown. A detailed
study of the effect of the difference in scales on the levels of theWilcoxon and normal
scores tests is provided by Pratt (1964).

6.10 The Hypothesis of Symmetry

When themethod of paired comparisons is used to test the hypothesis of no treatment
effect, the problem was seen in Section 6.8 to reduce through invariance to that of
testing the hypothesis

H ′
2 : D(z) + D(−z) = 1 for all z,

which states that the distribution D of the differences Zi = Yi − Xi (i = 1, . . . , N )

is symmetric with respect to the origin. The distribution D can be specified by the
triple (ρ, F,G) where

ρ = P{Z ≤ 0}, F(z) = P{|Z | ≤ z | Z > 0},
G(z) = P{Z ≤ z | Z > 0},

and the hypothesis of symmetry with respect to the origin then becomes

H : p = 1
2 ,G = F.

Invariance and sufficiency were shown to reduce the data to the ranks S1 < · · · <

Sn of the positive Z ’s among the absolute values |Z1|, . . . , |ZN |. The probability of
S1 = s1, . . . , Sn = sn is the probability of this event given that there are n positive
observations multiplied by the probability that the number of positive observations
is n. Hence

P{S1 = s1, . . . , Sn = sn}
=

(
N

n

)

(1 − ρ)nρN−n PF,G{S1 = s1, . . . , Sn = sn | n},
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where the second factor is given by (6.30). Under H , this becomes

P{S1 = s1, . . . , Sn = sn} = 1

2N

for each of the
N∑

n=0

(
N

n

)

= 2N

n-tuples (s1, . . . , sn) satisfying 1 ≤ s1 < · · · < sn ≤ N . Any rank test of size
α = k/2N therefore has a rejection region containing exactly k such points
(s1, . . . , sn).

The alternatives K of a beneficial treatment effect are characterized by the fact
that the variable Z being sampled is stochastically larger than some random variable
which is symmetrically distributed about 0. It is again suggestive to use rejection
regions of the form h(s1) + · · · + h(sn) > C , where however n is no longer a constant
as it was in the two-sample problem, but depends on the observations. Two particular
cases are theWilcoxonone-sample test, which is obtained byputting h(s) = s, and the
analogue of the normal scores test with h(s) = E(W(s)) where W(1) < · · · < W(N )

are the ordered values of |V1|, . . . , |VN |, the V ’s being a sample from N (0, 1). The
W ’s are therefore an ordered sample of size N from a distribution with density√
2/πe−w2/2 for w ≥ 0.
As in the two-sample problem, it can be shown that each of these tests is most

powerful (among all invariant tests) against certain alternatives, and that they are
both unbiased against the class K . Their asymptotic efficiencies relative to the t-
test for testing that the mean of Z is zero have the same values 3/π and 1 as the
corresponding two-sample tests, when the distribution of Z is normal.

In certain applications, for example, when the various comparisons are made
under different experimental conditions or by different methods, it may be unreal-
istic to assume that the variables Z1, . . . , ZN have a common distribution. Suppose
instead that the Zi are still independently distributed but with arbitrary continuous
distributions Di . The hypothesis to be tested is that each of these distributions is
symmetric with respect to the origin.

This problem remains invariant under all transformations z′
i = fi (zi ) i =

1, . . . , N , such that each fi is continuous, odd, and strictly increasing. A maximal
invariant is then the number n of positive observations, and it follows from Example
6.5.1 that there exists a UMP invariant test, the sign test, which rejects when n is
too large. This test reflects the fact that the magnitude of the observations or of their
absolute values can be explained entirely in terms of the spread of the distributions
Di , so that only the signs of the Z ’s are relevant.

Frequently, it seems reasonable to assume that the Z ’s are identically distributed,
but the assumption cannot be trusted. One would then prefer to use the information
provided by the ranks si but require a test which controls the probability of false
rejection even when the assumption fails. As is shown by the following lemma, this
requirement is in fact satisfied for every (symmetric) rank test. Actually, the lemma
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will not require even the independence of the Z ’s; it will show that any symmetric
rank test continues to correspond to the stated level of significance provided only the
treatment is assigned at random within each pair.

Lemma 6.10.1 Let φ(z1, . . . , zN ) be symmetric in its N variables and such that

EDφ(Z1, . . . , ZN ) = α (6.32)

when the Z’s are a sample from any continuous distribution D which is symmetric
with respect to the origin. Then

Eφ(Z1, . . . , ZN ) = α (6.33)

if the joint distribution of the Z’s is unchanged under the 2N transformations Z ′
1 =

±Z1, . . . , Z ′
N = ±ZN .

Proof. Condition (6.32) implies

∑

( j1,..., jN )

∑ φ(±z j1 , . . . ,±z jN )

2N · N ! = α a.e., (6.34)

where the outer summation extends over all N ! permutations ( j1, . . . , jN ) and the
inner one over all 2N possible choices of the signs + and −. This is proved exactly
as was Theorem 5.8.1. If in addition φ is symmetric, (6.34) implies

∑ φ(±z1, . . . ,±zN )

2N
= α. (6.35)

Suppose that the distribution of the Z ’s is invariant under the 2N transformations in
question. Then the conditional probability of any sign combination of Z1, . . . , ZN

given |Z1|, . . . , |ZN | is 1/2N . Hence (6.35) is equivalent to

E[φ(Z1, . . . , ZN ) | |Z1|, . . . , |ZN |] = α a.e., (6.36)

and this implies (6.33) which was to be proved.

The tests discussed above can be used to test symmetry about any known value
θ0 by applying them to the variables Zi − θ0. The more difficult problem of testing
for symmetry about an unknown point θ will not be considered here. Tests of this
hypothesis are discussed, among others, by Antille et al. (1982), Bhattacharya et al.
(1982), Boos (1982), and Koziol (1983).

As will be seen in Section 13.2.1, the one-sample t-test is not robust against
dependence. Unfortunately, this is also true-although to a somewhat lesser extent—
of the sign and one-sample Wilcoxon tests [Gastwirth and Rubin (1971)].
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6.11 Equivariant Confidence Sets

Confidence sets for a parameter θ in the presence of nuisance parameters ϑ were
discussed in Chapter 5 (Sections 5.4 and 5.5) under the assumption that θ is real-
valued. The correspondence between acceptance regions A(θ0) of the hypotheses
H(θ0) : θ = θ0 and confidence sets S(x) for θ given by (5.33) and (5.34) is, however,
independent of this assumption; it is valid regardless of whether θ is real-valued,
vector-valued, or possibly a label for a completely unknown distribution function
(in the latter case, confidence intervals become confidence bands for the distribution
function). This duality, which can be summarized by the relationship

θ ∈ S(x) if and only if x ∈ A(θ), (6.37)

was the basis for deriving uniformly most accurate and uniformly most accurate
unbiased confidence sets. In the present section, it will be used to obtain uniformly
most accurate equivariant confidence sets.

We begin by defining equivariance for confidence sets. Let G be a group of trans-
formations of the variable X preserving the family of distributions {Pθ,ϑ, (θ,ϑ) ∈ �}
and let Ḡ be the induced group of transformations of�. If ḡ(θ,ϑ) = (θ′,ϑ′), we shall
suppose that θ′ depends only on ḡ and θ and not on ϑ, so that ḡ induces a transfor-
mation in the space of θ. In order to keep the notation from becoming unnecessarily
complex, it will then be convenient to write also θ′ = ḡθ. For each transformation
g ∈ G, denote by g∗ the transformation acting on sets S in θ-space and defined by

g∗S = {ḡθ : θ ∈ S}, (6.38)

so that g∗S is the set obtained by applying the transformation ḡ to each point θ of
S. The invariance argument of Section 1.5 then suggests restricting consideration to
confidence sets satisfying

g∗S(x) = S(gx) for all x ∈ X , g ∈ G. (6.39)

We shall say that such confidence sets are equivariant under G. This terminology
is preferable to the older term invariance which creates the impression that the con-
fidence sets remain unchanged under the transformation X ′ = gX . If the transfor-
mation g is interpreted as a change of coordinates, (6.39) means that the confidence
statement does not depend on the coordinate system used to express the data. The
statement that the transformed parameter ḡθ lies in S(gx) is equivalent to stating
that θ ∈ g∗−1S(gx), which is equivalent to the original statement θ ∈ S(x) provided
(6.39) holds.

Example 6.11.1 Let X , Y be independently normally distributed with means ξ, η
and unit variance, and let G be the group of all rigid motions of the plane, which
is generated by all translations and orthogonal transformations. Here ḡ = g for all
g ∈ G. An example of an equivariant class of confidence sets is given by
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S(x, y) = {
(ξ, η) : (x − ξ)2 + (y − η)2 ≤ C

}
,

the class of circles with radius
√
C and center (x, y). The set g∗S(x, y) is the set of

all points g(ξ, η) with (ξ, η) ∈ S(x, y) and hence is obtained by subjecting S(x, y)
to the rigid motion g. The result is the circle with radius

√
C and center g(x, y), and

(6.39) is therefore satisfied.

In accordance with the definitions given in Chapters 3 and 5, a class of confidence
sets for θ will be said to be uniformly most accurate equivariant at confidence level
1 − α if among all equivariant classes of sets S(x) at that level it minimizes the
probability

Pθ,ϑ{θ′ ∈ S(X)} for all θ′ �= θ.

In order to derive confidence sets with this property from families of UMP invariant
tests, we shall now investigate the relationship between equivariance of confidence
sets and invariance of the associated tests.

Suppose that for each θ0 there exists a group of transformations Gθ0 which leaves
invariant the problem of testing H(θ0) : θ = θ0, and denote by G the group of trans-
formations generated by the totality of groups Gθ.

Lemma 6.11.1 (i) Let S(x) be any class of confidence sets that is equivariant under
G, and let A(θ) = {x : θ ∈ S(x)}; then the acceptance region A(θ) is invariant under
Gθ for each θ.

(ii) If in addition, for each θ0 the acceptance region A(θ0) is UMP invariant for
testing H(θ0) at level α, the class of confidence sets S(x) is uniformly most accurate
among all equivariant confidence sets at confidence level 1 − α.

Proof. (i): Consider any fixed θ, and let g ∈ Gθ. Then

gA(θ) = {gx : θ ∈ S(x)} = {x : θ ∈ S(g−1x)} = {x : θ ∈ g∗−1S(x)}
= {x : ḡθ ∈ S(x)} = {x : θ ∈ S(x)} = A(θ).

Here the third equality holds because S(x) is equivariant, and the fifth one because
g ∈ Gθ and therefore ḡθ = θ.
(ii): If S′(x) is any other equivariant class of confidence sets at the prescribed level, the
associated acceptance regions A′(θ) by (i) define invariant tests of the hypotheses
H(θ). It follows that these tests are uniformly at most as powerful as those with
acceptance regions A(θ) and hence that

Pθ,ϑ{θ′ ∈ S(X)} ≤ Pθ,ϑ{θ′ ∈ S′(X)} for all θ′ �= θ

as was to be proved.

It is an immediate consequence of the lemma that if UMP invariant acceptance
regions A(θ) have been found for each hypothesis H(θ) (invariant with respect to
Gθ), and if the confidence sets S(x) = {θ : x ∈ A(θ)} are equivariant under G, then
they are uniformly most accurate equivariant.
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Example 6.11.2 Under the assumptions of Example 6.11.1, the problem of testing
ξ = ξ0, η = η0 is invariant under the group Gξ0,η0 of orthogonal transformations
about the point (ξ0, η0):

X ′ − ξ0 = a11(X − ξ0) + a12(Y − η0),

Y ′ − η0 = a21(X − ξ0) + a22(Y − η0),

where the matrix (ai j ) is orthogonal. There exists under this group a UMP invariant
test, which has acceptance region (Problem 7.8)

(X − ξ0)
2 + (Y − η0)

2 ≤ C.

Let G0 be the smallest group containing the groups Gξ,η, for all ξ, η. Since this is a
subgroup of the group G of Example 6.11.1 (the two groups actually coincide, but
this is immaterial for the argument), the confidence sets (X − ξ)2 + (Y − η)2 ≤ C
are equivariant under G0 and hence uniformly most accurate equivariant.

Example 6.11.3 Let X1, . . . , Xn be independently normally distributed with mean
ξ and variance σ2. Confidence intervals for ξ are based on the hypotheses H(ξ0) :
ξ = ξ0, which are invariant under the groups Gξ0 of transformations X ′

i = a(Xi −
ξ0) + ξ0 (a �= 0). The UMP invariant test of H(ξ0) has acceptance region

√
(n − 1)n|X̄ − ξ0|
√∑

(Xi − X̄)2
≤ C,

and the associated confidence intervals are

X̄ − C√
n(n − 1)

√
∑

(Xi − X̄)2 ≤ ξ ≤ X̄ + C√
n(n − 1)

√
∑

(Xi − X̄)2. (6.40)

The group G in the present case consists of all transformations g : X ′
i = aXi +

b (a �= 0), which on ξ induces the transformation ḡ : ξ′ = aξ + b. Application of
the associated transformation g∗ to the interval (6.40) takes it into the set of points
aξ + b for which ξ satisfies (6.40), that is, into the interval with end points

a X̄ + b − |a|C√
n(n − 1)

√
∑

(Xi − X̄)2, a X̄ + b + |a|C√
n(n − 1)

√
∑

(Xi − X̄)2.

Since this coincideswith the interval obtained by replacing Xi in (6.40)with aXi + b,
the confidence intervals (6.40) are equivariant under G0 and hence uniformly most
accurate equivariant.

Example 6.11.4 In the two-sample problem of Section 6.9, assume the shift model
in which the X ’s and Y ’s have densities f (x) and g(y) = f (y − �), respectively,
and consider the problem of obtaining confidence intervals for the shift parameter �
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which are distribution-free in the sense that the coverage probability is independent
of the true f . The hypothesis H(�0) : � = �0 can be tested, for example, by means
of the Wilcoxon test applied to the observations Xi , Y j − �0, and confidence sets
for � can then be obtained by the usual inversion process. The resulting confidence
intervals are of the form D(k) < � < D(mn+1−k) where D(1) < · · · < D(mn) are the
mn ordered differencesY j − Xi . [For details see Problem6.54 and for fuller accounts
nonparametric books such as Randles and Wolfe (1979), Gibbons and Chakraborti
(1992) and Lehmann (1998).] By their construction, these intervals have coverage
probability 1 − α, which is independent of f . However, the invariance considerations
of Sections 6.8 and 6.9 do not apply. The hypothesis H(�0) is invariant under the
transformations X ′

i = ρ(Xi ), Y ′
j = ρ(Y j − �0) + �0 with ρ continuous and strictly

increasing, but the shift model, and hence the problem under consideration, is not
invariant under these transformations.

6.12 Average Smallest Equivariant Confidence Sets

In the examples considered so far, the invariance and equivariance properties of the
confidence sets corresponded to invariant properties of the associated tests. In the
following examples this is no longer the case.

Example 6.12.1 Let X1, . . . , Xn , be a sample from N (ξ,σ2), and consider the prob-
lem of estimating σ2.

The model is invariant under translations X ′
i = Xi + a, and sufficiency and

invariance reduce the data to S2 = ∑
(Xi − X̄)2. The problem of estimating σ2

by confidence sets also remains invariant under scale changes X ′
i = bXi , S′ = bS,

σ′ = bσ (0 < b), although these do not leave the corresponding problem of testing
the hypothesis σ = σ0 invariant. (Instead, they leave invariant the family of these
testing problems, in the sense that they transform one such hypothesis into another.)
The totality of equivariant confidence sets based on S is given by

σ2

S2
∈ A, (6.41)

where A is any fixed set on the line satisfying

Pσ=1

(
1

S2
∈ A

)

= 1 − α. (6.42)

That any set σ2 ∈ S2 · A is equivariant is obvious. Conversely, suppose that σ2 ∈
C(S2) is an equivariant family of confidence sets for σ2. Then C(S2) must satisfy
b2C(S2) = C(b2S2) and hence
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σ2 ∈ C(S2) if and only if
σ2

S2
∈ 1

S2
C(S2) = C(1),

which establishes (6.41) with A = C(1).
Among the confidence sets (6.41) with A satisfying (6.42) there does not exist one

that uniformly minimizes the probability of covering false values (Problem 6.75).
Consider instead the problem of determining the confidence sets that are physically
smallest in the sense of having minimum Lebesgue measure. This requires minimiz-
ing

∫
A dv subject to (6.42). It follows from the Neyman–Pearson Lemma that the

minimizing A∗ is
A∗ = {v : p(v) > C}, (6.43)

where p(v) is the density of V = 1/S2 when σ = 1, and where C is determined by
(6.42). Since p(v) is unimodal (Problem 6.76), these smallest confidence sets are
intervals, aS2 < σ2 < bS2. Values of a and b are tabled by Tate and Klett (1959),
who also table the corresponding (different) values a′, b′ for the uniformly most
accurate unbiased confidence intervals a′S2 < σ2 < b′S2 (given in Example 5.5.1).

Instead of minimizing the Lebesgue measure
∫
A dv of the confidence sets A, one

may prefer to minimize the scale-invariant measure

∫

A

1

v
dv. (6.44)

To an interval (a, b), (6.44) assigns, in place of its length b − a, its logarithmic
length log b − log a = log(b/a). The optimum solution A∗∗ with respect to this new
measure is again obtained by applying the Neyman–Pearson Lemma, and is given
by

A∗∗ = {v : vp(v) > C}, (6.45)

which coincideswith the uniformlymost accurate unbiased confidence sets (Problem
6.77(i)).

One advantage of minimizing (6.44) instead of Lebesgue measure is that it then
does not matter whether one estimates σ or σ2 (or σr for some other power of r ),
since under (6.44), if (a, b) is the best interval for σ, then (ar , br ) is the best interval
for σr (Problem 6.77(ii)).

Example 6.12.2 Let Xi (i = 1, . . . , r) be independently normally distributed as
N (ξ, 1). A slight generalization of Example 6.11.2 shows that uniformly most accu-
rate equivariant confidence sets for (ξ1, . . . , ξr ) exist with respect to the group G of
all rigid transformations and are given by

∑
(Xi − ξi )

2 ≤ C. (6.46)

Suppose that the context of the problem does not possess the symmetry which would
justify invoking invariance with respect to G, but does allow the weaker assump-
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tion of invariance under the group G0 of translations X ′
i = Xi + ai . The totality of

equivariant confidence sets with respect to G0 is given by

(X1 − ξ1, . . . , Xr − ξr ) ∈ A, (6.47)

where A is any fixed set in r -space satisfying

Pξ1=···=ξr=0((X1, . . . , Xr ) ∈ A) = 1 − α. (6.48)

Since uniformly most accurate equivariant confidence sets do not exist (Problem
6.75), let us consider instead the problem of determining the confidence sets of
smallest Lebesgue measure. (This measure is invariant under G0.) This is given by
(6.43) with v = (v1, . . . , vr ) and p(v) the density of (X1, . . . , Xr ) when ξ1 = · · · =
ξr = 0, and hence coincides with (6.46).

Quite surprisingly, the confidence sets (6.46) are inadmissible if and only if r ≥ 3.
A further discussion of this fact and references are deferred to Example 8.5.4.

Example 6.12.3 In the preceding example, suppose that the Xi are distributed as
N (ξi ,σ

2) with σ2 unknown, and that a variable S2 is available for estimating σ2.
Assume S2 is independent of the X ’s and that S2/σ2 has a χ2 -distribution with f
degrees of freedom.

The estimation of (ξ1, . . . , ξr ) by confidence sets on the basis of X ’s and S2

remains invariant under the group G0 of transformations

X ′
i = bXi + ai , S′ = bS, ξ′

i = bξi + ai , σ′ = bσ,

and the most general equivariant confidence set is of the form

(
X1 − ξ1

S
, . . . ,

Xr − ξr

S

)

∈ A, (6.49)

where A is any fixed set in r -space satisfying

Pξ1=···=ξr=0

[(
X1

S
, . . . ,

Xr

S

)

∈ A

]

= 1 − α. (6.50)

The confidence sets (6.49) can be written as

(ξ1, . . . , ξr ) ∈ (X1, . . . , Xr ) − SA, (6.51)

where −SA is the set obtained by multiplying each point of A by the scalar −S.
To see (6.51), suppose that C(X1, . . . , Xr ; S) is an equivariant confidence set for

(ξ1, . . . , ξr ). Then the r -dimensional set C must satisfy

C(bX1 + a1, . . . , bXr + ar ; bS) = b[C(X1, . . . , Xr ; S)] + (a1, . . . , ar )
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for all a1, . . . , ar and all b > 0. It follows that (ξ1, . . . , ξr ) ∈ C if and only if

(
X1 − ξ1

S
, . . . ,

Xr − ξr

S

)

∈ (X1, . . . , Xr ) − C(X1, . . . , Xr ; S)

S
= C(0, . . . , 0; 1)
= A.

The equivariant confidence sets of smallest volume are obtained by choosing for
A the set A∗ given by (6.43) with v = (v1, . . . , vr ) and p(v) the joint density of
(X1/S, . . . , Xr/S) when ξ1 = · · · = ξr = 0. This density is a decreasing function
of

∑
v2
i (Problem 6.78), and the smallest equivariant confidence sets are therefore

given by ∑
(Xi − ξi )

2 ≤ CS2. (6.52)

[Under the larger group G generated by all rigid transformations of (X1, . . . , Xr )

together with the scale changes X ′
i = bXi , S′ = bS, the same sets have the stronger

property of being uniformly most accurate equivariant; see Problem 6.79.]

Examples 6.12.1–6.12.3 have the common feature that the equivariant confidence
sets S(X) for θ = (θ1, . . . , θr ) are characterized by an r -valued pivotal quantity,
that is, a function h(X, θ) = (h1(X, θ), . . . , hr (X, θ)) of the observations X and
parameters θ being estimated that has a fixed distribution, and such that the most
general equivariant confidence sets are of the form

h(X, θ) ∈ A (6.53)

for some fixed set A.6 When the functions hi are linear in θ, the confidence setsC(X)

obtained by solving (6.53) for θ are linear transforms of A (with random coefficients),
so that the volume or invariant measure of C(X) is minimized by minimizing

∫

A
ρ(v1, . . . , vr ) dv1 . . . dvr (6.54)

for the appropriate ρ. The problem thus reduces to that of minimizing (6.54) subject
to

Pθ0{h(X, θ0) ∈ A} =
∫

A
p(v1, . . . , vr ) dv1 . . . dvr = 1 − α, (6.55)

where p(v1, . . . , vr ) is the density of the pivotal quantity h(X, θ). The minimizing
A is given by

A∗ =
{

v : p(v1, . . . , vr )

ρ(v1, . . . , vr )
> C

}

, (6.56)

with C determined by (6.55).

6 More general results concerning the relationship of equivariant confidence sets and pivotal quan-
tities are given in Problems 6.71–6.74.
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The following is one more illustration of this approach.

Example 6.12.4 Let X1, . . . , Xm and Y1, . . . ,Yn be samples from N (ξ,σ2) and
N (η, τ 2) respectively, and consider the problem of estimating � = τ 2/σ2. Suffi-
ciency and invariance under translations X ′

i = Xi + a1, Y ′
j = Y j + a2 reduce the

data to S2X = ∑
(Xi ,−X̄)2 and S2Y = ∑

(Y j − Ȳ )2. The problem of estimating �

also remains invariant under the scale changes

X ′
i = b1Xi , Y ′

j = b2Y j , 0 < b1, b2 < ∞,

which induce the transformations

S′
X = b1SX , S′

Y = b2SY , σ′ = b1σ, τ ′ = b2τ . (6.57)

The totality of equivariant confidence sets for � is given by �/V ∈ A, where V =
S2Y /S2X and A is any fixed set on the line satisfying

P�=1

(
1

V
∈ A

)

= 1 − α. (6.58)

To see this, suppose that C(SX , SY ) are any equivariant confidence sets for �.
Then C must satisfy

C(b1SX , b2SY ) = b22
b21

C(SX , SY ), (6.59)

and hence � ∈ C(SX , SY ) if and only if the pivotal quantity V/� satisfies

�

V
= S2X�

S2Y
∈ S2X

S2Y
C(SX , SY ) = C(1, 1) = A.

As in Example 6.12.1, one may now wish to choose A so as to minimize either
its Lebesgue measure

∫
A dv or the invariant measure

∫
A(1/v) dv. The resulting con-

fidence sets are of the form

p(v) > C and vp(v) > C, (6.60)

respectively. In both cases, they are intervals V/b < � < V/a (Problem 6.80(i)).
The values of a and b minimizing Lebesgue measure are tabled by Levy and Narula
(1974); those for the invariant measure coincide with the uniformly most accurate
unbiased intervals (Problem 6.80(ii)).
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6.13 Confidence Bands for a Distribution Function

Suppose that X = (X1, . . . , Xn) is a sample froman unknown continuous cumulative
distribution function F , and that lower and upper bounds LX and MX are to be
determined such that with preassigned probability 1 − α the inequalities

LX (u) ≤ F(u) ≤ MX (u) for all u

hold for all continuous cumulative distribution functions F . This problem is invariant
under the group G of transformations

X ′
i = g(Xi ), i = 1, . . . , n,

where g is any continuous strictly increasing function. The induced transformation
in the parameter space is ḡF = F(g−1).

If S(x) is the set of continuous cumulative distribution functions

S(x) = {F : Lx (u) ≤ F(u) ≤ Mx (u) for all u},

then

g∗S(x) = {ḡF : Lx (u) ≤ F(u) ≤ Mx (u) for all u}
= {F : Lx [g−1(u)] ≤ F(u) ≤ Mx [g−1(u)] for all u}.

For an equivariant procedure, this must coincide with the set

S(gx) = {
F : Lg(x1),...,g(xn)(u) ≤ F(u) ≤ Mg(x1),...,g(xn)(u) for all u

}
.

The condition of equivariance is therefore

Lg(x1),...,g(xn)[g(u)] = Lx (u),

Mg(x1),...,g(xn)[g(u)] = Mx (u) for all x and u.

To characterize the totality of equivariant procedures, consider the empirical distri-
bution function (EDF) Tx given by

Tx (u) = i

n
for x(i) ≤ u < x(i+1), i = 0, . . . , n,

where x(1) < · · · < x(n) is the ordered sample and where x(0) = −∞, x(n+1) = ∞.
Then a necessary and sufficient condition for L and M to satisfy the above equivari-
ance condition is the existence of numbers a0, . . . , an; a′

0, . . . , a
′
n such that

Lx (u) = ai , Mx (u) = a′
i for x(i) < u < x(i+1).
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That this condition is sufficient is immediate. To see that it is also necessary, let u,
u′ be any two points satisfying x(i) < u < u′ < x(i+1). Given any y1, . . . , yn and v

with y(i) < v < y(i+1), there exist g, g′ ∈ G such that

g(y(i)) = g′(y(i)) = x(i), g(v) = u, g′(v) = u′.

If Lx , Mx are equivariant, it then follows that Lx (u′) = Ly(v) and Lx (u) = Ly(v),
and hence that Lx (u′) = Lx (u) and similarly Mx (u′) = Mx (u), as was to be proved.
This characterization shows Lx and Mx to be step functions whose discontinuity
points are restricted to those of Tx .

Since any two continuous strictly increasing cumulative distribution functions can
be transformed into one another through a transformation ḡ, it follows that all these
distributions have the same probability of being covered by an equivariant confidence
band. (See Problem 6.86.) Suppose now that F is continuous but no longer strictly
increasing. If I is any interval of constancy of F , there are no observations in I , so
that I is also an interval of constancy of the sample cumulative distribution function.
It follows that the probability of the confidence band covering F is not affected by
the presence of I and hence is the same for all continuous cumulative distribution
functions F .

For any numbers ai , a′
i let �i , �′

i be determined by

ai = i

n
− �i , a′

i = i

n
− �′

i .

Then it was seen above that any numbers �0, . . . ,�n; �′
0, . . . ,�

′
n define a confi-

dence band for F , which is equivariant and hence has constant probability of covering
the true F . From these confidence bands a test can be obtained of the hypothesis of
goodness of fit F = F0 that the unknown F equals a hypothetical distribution F0.
The hypothesis is accepted if F0 ties entirely within the band, that is, if

−�i < F0(u) − Tx (u) < �′
i

for all x(i) < u < x(i+1) and all i = 1, . . . , n.

Within this class of tests there exists no UMP member, and the most common
choice of the �’s is �i = �′

i = � for all i . The acceptance region of the result-
ing Kolmogorov–Smirnov test can be written as

sup
−∞<u<∞

|F0(u) − Tx (u)| < �. (6.61)

Tables of the null distribution of the Kolmogorov–Smirnov statistic are given
by Birnbaum (1952). For large n, approximate critical values can be obtained from
the limit distribution K of

√
n sup |F0(u) − Tx (u)|, due to Kolmogorov and tabled

by Smirnov (1948). Derivations of K can be found, for example, in Feller (1948),
Billingsley (1968), and Hájek et al. (1999). The large-sample properties of this test
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will be studied in Example 11.4.2 and Section 16.2. The more general problem of
testing goodness of fit will be presented in Chapter 16.

6.14 Problems

Section 6.1

Problem 6.1 Let G be a group of measurable transformations of (X ,A) leav-
ing P = {Pθ, θ ∈ �} invariant, and let T (x) be a measurable transformation to
(T ,B). Suppose that T (x1) = T (x2) implies T (gx1) = T (gx2) for all g ∈ G, so
that G induces a group G∗ on T through g∗T (x) = T (gx), and suppose further
that the induced transformations g∗ are measurable B. Then G∗ leaves the family
PT = {PT

θ , θ ∈ �} of distributions of T invariant.

Section 6.2

Problem 6.2 (i) LetX be the totality of points x = (x1, . . . , xn) for which all coor-
dinates are different from zero, and let G be the group of transformations x ′

i =
cxi , c > 0. Then a maximal invariant under G is (sgn xn, x1/xn, . . . , xn−1/xn)
where sgn x is 1 or −1 as x is positive or negative.

(ii) Let X be the space of points x = (x1, . . . , xn) for which all coordinates are
distinct, and let G be the group of all transformations x ′

i = f (xi ), i = 1, . . . , n,
such that f is a 1 : 1 transformation of the real line onto itself with at most a
finite number of discontinuities. Then G is transitive over X .

[(ii): Let x = (x1, . . . , xn) and x ′ = (x ′
1, . . . , x

′
n) be any two points of X . Let

I1, . . . , In be a set ofmutually exclusive open intervals which (together with their end
points) cover the real line and such that x j ∈ I j . Let I ′

1, . . . , I
′
n be a corresponding

set of intervals for x ′
1, . . . , x

′
n . Then there exists a transformation f which maps each

I j continuously onto I ′
j , maps x j into x ′

j , and maps the set of n − 1 end points of
I1, . . . , In onto the set of end points of I ′

1, . . . , I
′
n .]

Problem 6.3 SupposeM is anym × pmatrix. Show thatM�M is positive semidef-
inite. Also, show the rank of M�M equals the rank of M , so that in particular M�M
is nonsingular if and only if m ≥ p and M is of rank p.

Problem 6.4 (i) A sufficient condition for (6.9) to hold is that D is a normal sub-
group of G.

(ii) If G is the group of transformations x ′ = ax + b, a �= 0,−∞ < b < ∞, then
the subgroup of translations x ′ = x + b is normal but the subgroup x ′ = ax is
not.
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[The defining property of a normal subgroup is that given d ∈ D, g ∈ G, there exists
d ′ ∈ D such that gd = d ′g. The equality s(x1) = s(x2) implies x2 = dx1 for some
d ∈ D, and hence ex2 = edx1 = d ′ex1. The result (i) now follows, since s is invariant
under D.]

Section 6.3

Problem 6.5 Prove statements (i)-(iii) of Example 6.3.1.

Problem 6.6 Prove Theorem 6.3.1
(i) by analogy with Example 6.3.1, and
(ii) by the method of Example 6.3.2. [Hint: A maximal invariant under G is the set
{g1x, . . . , gN x}.]
Problem 6.7 Consider the situation of Example 6.3.1 with n = 1, and suppose that
f is strictly increasing on (0, 1).
(i) The likelihood ratio test rejects if X < α/2 or X > 1 − α/2.
(ii) The MP invariant test agrees with the likelihood ratio test when f is convex.
(iii) When f is concave, the MP invariant test rejects when

1

2
− α

2
< X <

1

2
+ α

2
,

and the likelihood ratio test is the least powerful invariant test against both alternatives
and has power ≤ α. When does the power = α?

Problem 6.8 In Example 6.1.1, find a maximal invariant and the UMPI level α test.

Problem 6.9 Let X,Y have the joint probability density f (x, y). Then the integral
h(z) = ∫ ∞

−∞ f (y − z, y)dy is finite for almost all z, and is the probability density of
Z = Y − X .
[Since P{Z ≤ b} = ∫ b

−∞ h(z)dz, it is finite and hence h is finite almost everywhere.]

Problem 6.10 (i) Let X = (X1, . . . , Xn) have probability density (1/θn) f [(x1 −
ξ)/θ, . . . , (xn − ξ)/θ], where −∞ < ξ < ∞, 0 < θ are unknown, and where f
is even. The problem of testing f = f0 against f = f1 remains invariant under
the transformations x ′

i = axi + b (i = 1, . . . , n), a �= 0, −∞ < b < ∞ and the
most powerful invariant test is given by the rejection region

∫ ∞

−∞

∫ ∞

0
vn−2 f1(vx1 + u, . . . , vxn + u) dv du

> C
∫ ∞

−∞

∫ ∞

0
vn−2 f0(vx1 + u, . . . , vxn + u) dv du.
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(ii) Let X = (X1, . . . , Xn) have probability density f (x1 − ∑k
j=1 w1 jβ j , . . . , xn −

∑k
j=1 wnjβ j )where k < n, thew’s are given constants, thematrix (wi j ) is of rank

k, the β’s are unknown, and we wish to test f = f0 against f = f1. The prob-
lem remains invariant under the transformations x ′

i = xi + �k
j=1wi jγ j ,−∞ <

γ1, . . . , γk < ∞, and the most powerful invariant test is given by the rejection
region

∫ · · · ∫ f1(x1 − ∑
w1 jβ j , . . . , xn − ∑

wnjβ j )dβ1, . . . , dβk∫ · · · ∫ f0(x1 − ∑
w1 jβ j , . . . , xn − ∑

wnjβ j )dβ1, . . . , dβk
> C.

[A maximal invariant is given by y =
(

x1 −
n∑

r=n−k+1

a1r xr , x2 −
n∑

r=n−k+1

a2r xr , . . . , xn−k −
n∑

r=n−k+1

an−k,r xr

)

for suitably chosen constants air .]

Problem 6.11 Let X1, . . . , Xm; Y1, . . . ,Yn be samples from exponential distribu-
tions with densities for σ−1e−(x−ξ)/σ , for x ≥ ξ, and τ−1e−(y−η)/τ for y ≥ η.

(i) For testing τ/σ ≤ � against τ/σ > �, there exists a UMP invariant test with
respect to the group G : X ′

i = aXi + b,Y ′
j = aY j + c, a > 0,−∞ < b, c <

∞, and its rejection region is

∑[y j − min(y1, . . . , yn)]
∑[xi − min(x1, . . . , xm)] > C.

(ii) This test is also UMP unbiased.
(iii) Extend these results to the case that only the r smallest X ’s and the s smallest

Y ’s are observed.

[(ii): See Problem 5.15.]

Problem 6.12 If X1, . . . , Xn and Y1, . . . ,Yn are samples from N (ξ,σ2) and
N (η, τ 2), respectively, the problem of testing τ 2 = σ2 against the two-sided alterna-
tives τ 2 �= σ2 remains invariant under the group G generated by the transformations
X ′
i = aXi + b, Y ′

i = aYi + c, (a �= 0), and X ′
i = Yi , Y ′

i = Xi . There exists a UMP
invariant test under G with rejection region

W = max

{∑
(Yi − Ȳ )2

∑
(Xi − X̄)

,

∑
(Xi − X̄)2

∑
(Yi − Ȳ )2

}

≥ k.

[The ratio of the probability densities ofW for τ 2/σ2 = � and τ 2/σ2 = 1 is propor-
tional to [(1 + w)/(� + w)]n−1 + [(1 + w)/(1 + �w)]n−1 for w ≥ 1. The deriva-
tive of this expression is ≥ 0 for all �.]
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Problem 6.13 Let X1, . . . , Xn be a sample from a distribution with density

1

τ n
f
( x1

τ

)
. . . f

( xn
τ

)
,

where f (x) is either zero for x < 0 or symmetric about zero. The most powerful
scale-invariant test for testing H : f = f0 against K : f = f1 rejects when

∫ ∞
0 vn−1 f1(vx1) . . . f1(vxn) dv
∫ ∞
0 vn−1 f0(vx1) . . . f0(vxn) dv

> C.

Problem 6.14 Normal versus double exponential. For f0(x) = e−x2/2/
√
2π,

f1(x) = e−|x |/2, the test of the preceding problem reduces to rejecting when√∑
x2i /

∑ |xi | < C .

(Hogg, 1972.)

Note. The corresponding test when both location and scale are unknown is
obtained in Uthoff (1973). Testing normality against Cauchy alternatives is discussed
by Franck (1981).

Problem 6.15 Uniform versus triangular.

(i) For f0(x) = 1 (0 < x < 1), f1(x) = 2x (0 < x < 1), the test of Problem 6.13
reduces to rejecting when T = x(n)/x̄ < C .

(ii) Under f0, the statistic 2n log T is distributed as χ2
2n .

(Quesenberry and Starbuck, 1976.)

Problem 6.16 Show that the test of Problem 6.10(i) reduces to

(i) [x(n) − x(1)]/S < c for normal versus uniform;
(ii) [x̄ − x(1)]/S < c for normal versus exponential;
(iii) [x̄ − x(1)]/[x(n) − x(1)] < c for uniform versus exponential.

(Uthoff, 1970.)

Note. When testing for normality, one is typically not interested in distinguishing
the normal from some other given shape but would like to know more generally
whether the data are or are not consonant with a normal distribution. This is a special
case of the problem of testing for goodness of fit, which is briefly discussed at the
end of Section 6.13 and forms the topic of Chapter 16; also, see the many references
in the notes to Chapter 16.

Problem 6.17 Let X1, . . . , Xn be independent and normally distributed. Suppose
Xi has mean μi and variance σ2 (which is the same for all i). Consider testing the null
hypothesis thatμi = 0 for all i . Using invariance considerations, find aUMP invariant
test with respect to a suitable group of transformations in each of the following cases:
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(i) σ2 is known and equal to one.
(ii) σ2 is unknown.

Section 6.4

Problem 6.18 (i) When testing H : p ≤ p0 against K : p > p0 by means of the
test corresponding to (6.15), determine the sample size required to obtain power
β against p = p1, α = 0.05, β = 0.9 for the cases p0 = 0.1, p1 = 0.15, 0.20,
0.25; p0 = 0.05, p1 = 0.10, 0.15, 0.20, 0.25; p0 = 0.01, p1 = 0.02, 0.05, 0.10,
0.15, 0.20.

(ii) Compare this with the sample size required if the inspection is by attributes and
the test is based on the total number of defectives.

Problem 6.19 Two-sided t-test.

(i) Let X1, . . . , Xn be a sample from N (ξ,σ2). For testing ξ = 0 against ξ �= 0,
there exists a UMP invariant test with respect to the group X ′

i = cXi , c �= 0,
given by the two-sided t-test (5.17).

(ii) Let X1, . . . , Xm , and Y1, . . . ,Yn be samples from N (ξ,σ2) and N (η,σ2) respec-
tively. For testing η = ξ against η �= ξ there exists a UMP invariant test with
respect to the group X ′

i = aXi + b,Y ′
j = aY j + b, a �= 0, given by the two-

sided t-test (5.30).

[(i): Sufficiency and invariance reduce the problem to |t |, which in the notation
of Section 4 has the probability density pδ(t) + pδ(−t) for t > 0. The ratio of this
density for δ = δ1 to its value for δ = 0 is proportional to

∫ ∞
0 (eδ1v + e−δ1v)gt2(v) dv,

which is an increasing function of t2 and hence of |t |.]
Problem 6.20 Testing a correlation coefficient. Let (X1,Y1), . . . , (Xn,Yn) be a
sample from a bivariate normal distribution.

(i) For testing ρ ≤ ρ0 against ρ > ρ0 there exists aUMP invariant test with respect to
the group of all transformations X ′

i = aXi + b,Y ′
i = cY1 + d for which a, c >

0. This test rejects when the sample correlation coefficient R is too large.
(i) The problem of testing ρ = 0 against ρ �= 0 remains invariant in addition under

the transformation Y ′
i = −Yi , X ′

i = Xi . With respect to the group generated by
this transformation and those of (i) there exists a UMP invariant test, with rejec-
tion region |R| ≥ C .

[(i): To show that the probability density pρ(r) of R has monotone likelihood ratio,
apply the condition of Problem 3.28(i), to the expression given for this density in
Problem 5.67. Putting t = ρr + 1, the second derivative ∂2 log pρ(r)/∂ρ∂r up to a
positive factor is

∑∞
i, j=0 ci c j t

i+ j−2
[
( j − i)2(t − 1) + (i + j)

]

2
[∑∞

i=0 ci t
i
]2 .
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To see that the numerator is positive for all t > 0, note that it is greater than

2
∞∑

i=0

ci t
i−2

∞∑

j=i+1

c j t
j
[
( j − i)2(t − 1) + (i + j)

]
.

Holding i fixed and using the inequality c j+1 < 1
2c j , the coefficient of t j in the

interior sum is ≥ 0.]

Problem 6.21 Let (Xi ,Yi ) be independent N (μi ,σ
2) for i = 1, . . . , n. The param-

eters μ1, . . . ,μn and σ2 are all unknown. For testing σ = 1 against σ > 1, determine
the UMPI level α test. Is the test also UMPU?

Problem 6.22 For testing the hypothesis that the correlation coefficient ρ of a bivari-
ate normal distribution is ≤ ρ0, determine the power against the alternative ρ = ρ1,
when the level of significance α is .05, ρ0 = .3, ρ1 = .5, and the sample size n is
50, 100, 200.

Section 6.5

Problem 6.23 Almost invariance of a test φ with respect to the group G of either
Problem 6.11(i) or Example 6.3.5 implies that φ is equivalent to an invariant test.

Problem 6.24 The totality of permutations of K distinct numbers a1, . . . , aK , for
varying a1, . . . , aK can be represented as a subset CK of Euclidean K -space RK ,
and the group G of Example 6.5.1 as the union of C2, C3, … . Let ν be the measure
over G which assigns to a subset B of G the value

∑∞
k=2 μK (B ∩ CK ), where μK

denotes Lebesgue measure in EK . Give an example of a set B ⊂ G and an element
g ∈ G such that ν(B) > 0 but ν(Bg) = 0.

[If a, b, c, d are distinct numbers, the permutations g, g′ taking (a, b) into (b, a)

and (c, d) into (d, c) respectively are points in C2, but gg′ is a point in C4.]

Section 6.6

Problem 6.25 Show that

(i) G1 of Example 6.6.2 is a group;
(ii) the test which rejects when X2

21/X
2
11 > C is UMP invariant under G1;

(iii) the smallest group containing G1 and G2 is the group G of Example 6.6.2.

Problem 6.26 Consider a testing problem which is invariant under a group G of
transformations of the sample space, and let C be a class of tests which is closed under
G, so that φ ∈ C implies φg ∈ C, where φg is the test defined by φg(x) = φ(gx). If
there exists an a.e. unique UMP member φ0 of C, then φ0 is almost invariant.
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Problem 6.27 Envelope power function. Let S(α) be the class of all level-α tests of
a hypothesis H , and let β∗

α(θ) be the envelope power function, defined by

β∗
α(θ) = sup

φ∈S(α)

βφ(θ),

where βφ denotes the power function of φ. If the problem of testing H is invariant
under a group G, then β∗

α(θ) is invariant under the induced group Ḡ.

Problem 6.28 (i) A generalization of equation (6.2) is

∫

A
f (x) dPθ(x) =

∫

gA
f (g−1x) dPḡθ(x).

(ii) If Pθ1 is absolutely continuous with respect to Pθ0 , then Pḡθ1 is absolutely con-
tinuous with respect to Pḡθ0 and

dPθ1

dPθ0

(x) = dPḡθ1

dPḡθ0

(gx)
(
a.e. Pθ0

)
.

(iii) The distribution of dPθ1/dPθ0(X) when X is distributed as Pθ0 is the same as
that of dPḡθ1/dPḡθ0(X

′) when X ′ is distributed as Pḡθ0 .

Problem 6.29 Invariance of likelihood ratio. Let the family of distributions P =
{Pθ, θ ∈ �} be dominated by μ, let pθ = dPθ/dμ, let μg−1 be the measure defined
by μg−1(A) = μ[g−1(A)], and suppose that μ is absolutely continuous with respect
to μg−1 for all g ∈ G.

(i) Then

pθ(x) = pḡθ(gx)
dμ

dμg−1
(gx) (a.e. μ).

(ii) Let � and ω be invariant under Ḡ, and countable. Then the likelihood ratio
sup� pθ(x)/ supω pθ(x) is almost invariant under G.

(iii) Suppose that pθ(x) is continuous in θ for all x , that � is a separable pseudo-
metric space, and that� and ω are invariant. Then the likelihood ratio is almost
invariant under G.

Problem 6.30 Inadmissible likelihood ratio test. In many applications in which a
UMP invariant test exists, it coincides with the likelihood ratio test. That this is,
however, not always the case is seen from the following example. Let P1, . . . , Pn
be n equidistant points on the circle x2 + y2 = 4, and Q1, . . . , Qn on the circle
x2 + y2 = 1. Denote the origin in the (x, y) plane by O , let 0 < α ≤ 1

2 be fixed, and
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let (X,Y ) be distributed over the 2n + 1 points P1, . . . , Pn, Q1, . . . , Qn , O with
probabilities given by the following table:

Pi Qi O
H α/n (1 − 2α)/n α
K pi/n 0 (n − 1)/n,

where
∑

pi = 1. The problem remains invariant under rotations of the plane by the
angles 2kπ/n (k = 0, 1, . . . , n − 1). The rejection region of the likelihood ratio test
consists of the points P1, . . . , Pn , and its power is 1/n. On the other hand, the UMP
invariant test rejects when X = Y = 0 and has power (n − 1)/n.

Problem 6.31 Let G be a group of transformations of X , and let A be a σ-field of
subsets of X , and μ a measure over (X ,A). Then a set A ∈ A is said to be almost
invariant if its indicator function is almost invariant.

(i) The totality of almost invariant sets forms a σ-field A0, and a critical function
is almost invariant if and only if it is A0-measurable.

(ii) Let P = {Pθ, θ ∈ �} be a dominated family of probability distributions over
(X ,A), and suppose that ḡθ = θ for all ḡ ∈ Ḡ, θ ∈ �. Then the σ-field A0 of
almost invariant sets is sufficient for P .

[Let λ = ∑
ci Pθi , be equivalent to P . Then

dPθ

dλ
(gx) = dPg−1θ

∑
ci d Pg−1θi

(x) = dPθ

dλ
(x) (a.e. λ),

so that dPθ/dλ is almost invariant and hence A0-measurable.]

Problem 6.32 The UMP invariant test of Problem 6.14 is also UMP similar.
[Consider the problem of testing α = 0 versus α > 0 in the two-parameter expo-

nential family with density

C(α, τ ) exp

(

− α

2τ 2

∑
x2i − 1 − α

τ

∑
|xi |

)

, 0 ≤ α < 1.]

Note. For the analogous result for the tests of Problem 6.15, 6.16, see Quesenberry
and Starbuck (1976).

Problem 6.33 The following UMP unbiased tests of Chapter 5 are also UMP invari-
ant under change in scale:

(i) The test of g ≤ g0 in a gamma distribution (Problem 5.30).
(ii) The test of b1 ≤ b2 in Problem 5.18(i).
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Section 6.7

Problem 6.34 The definition of d-admissibility of a test coincides with the admissi-
bility definition given in Section 1.8 when applied to a two-decision procedure with
loss 0 or 1 as the decision taken is correct or false.

Problem 6.35 (i) The following example shows that α-admissibility does not
always imply d-admissibility. Let X be distributed as U (0, θ), and consider the
tests ϕ1 and ϕ2 which reject when, respectively, X < 1 and X < 3

2 for testing
H : θ = 2 against K : θ = 1. Then for α = 3

4 , ϕ1 and ϕ2 are both α-admissible
but ϕ2 is not d-admissible.

(ii) Verify the existence of the test ϕ0 of Example 6.7.2.

Problem 6.36 (i) The acceptance regionT1/
√
T2 ≤ C ofExample 6.7.3 is a convex

set in the (T1, T2) plane.
(ii) In Example 6.7.3, the conditions of Theorem 6.7.1 are not satisfied for the sets

A : T1/√T2 ≤ C and �′ : ξ > k.

Problem 6.37 (i) In Example 6.7.4 show that there exist C0, C1 such that λ0(η)

and λ1(η) are probability densities (with respect to Lebesgue measure).
(ii) Verify the densities h0 and h1.

Problem 6.38 Verify

(i) the admissibility of the rejection region (6.27);
(ii) the expression for I (z) given in the proof of Lemma 6.7.1.

Problem 6.39 Let X1, . . . , Xm ; Y1, . . . ,Yn be independent N (ξ,σ2) and N (η,σ2)

respectively. The one-sided t-test of H : δ = ξ/σ ≤ 0 is admissible against the alter-
natives (i) 0 < δ < δ1 for any δ1 > 0; (ii) δ > δ2 for any δ2 > 0.

Problem 6.40 For the model of the preceding problem, generalize Example 6.7.3
(continued) to show that the two-sided t-test is a Bayes solution for an appropriate
prior distribution.

Problem 6.41 Suppose X = (X1, . . . , Xk)
� is multivariate normal with unknown

mean vector (θ1, . . . , θk)
� and known nonsingular covariance matrix �. Consider

testing the null hypothesis θi = 0 for all i against θi �= 0 for some i . Let C be any
closed convex subset of k-dimensional Euclidean space, and let φ be the test that
accepts the null hypothesis if X falls in C . Show that φ is admissible. Hint: First
assume � is the identity and use Theorem 6.7.1. [An alternative proof is provided
by Strasser (1985, Theorem 30.4).]

Section 6.9

Problem 6.42 Wilcoxon two-sample test. Let Ui j = 1 or 0 as Xi < Y j or Xi > Y j ,
and let U = ∑∑

Ui j be the number of pairs Xi , Y j with Xi < Y j .



302 6 Invariance

(i) Then U = ∑
Si − 1

2n(n + 1), where S1 < · · · < Sn are the ranks of the Y ’s so
that the test with rejection region U > C is equivalent to the Wilcoxon test.

(ii) Any given arrangement of x’s and y’s can be transformed into the arrangement
x . . . xy . . . y through a number of interchanges of neighboring elements. The
smallest number of steps in which this can be done for the observed arrangement
is mn −U .

Problem 6.43 Expectation and variance of Wilcoxon statistic. If the X ’s and Y ’s are
samples from continuous distributions F and G, respectively, the expectation and
variance of the Wilcoxon statistic U defined in the preceding problem are given by

E

(
U

mn

)

= P{X < Y } =
∫

F dG (6.62)

and

mnVar

(
U

mn

)

=
∫

F dG + (n − 1)
∫

(1 − G)2 dF (6.63)

+(m − 1)
∫

F2 dG − (m + n − 1)

(∫

F dG

)2

.

Under the hypothesis G = F , these reduce to

E

(
U

mn

)

= 1

2
, Var

(
U

mn

)

= m + n + 1

12mn
. (6.64)

Problem 6.44 (i) Let Z1, . . . , ZN be independently distributed with densities
f1, . . . , fN , and let the rank of Zi be denoted by Ti . If f is any probability
density which is positive whenever at least one of the fi is positive, then

P{T1 = t1, . . . , TN = tn} = 1

N ! E
[
f1
(
V(t1)

)

f
(
V(t1)

) · · · fN
(
V(tN )

)

f
(
V(tN )

)

]

, (6.65)

where V(1) < · · · < V(N ) is an ordered sample from a distributionwith density f .
(ii) If N = m + n, f1 = · · · = fm = f , fm+1 = · · · = fm+n = g, and S1 < · · · <

Sn denote the ordered ranks of Zm+1, . . . , Zm+n among all the Z ’s, the probability
distribution of S1, . . . , Sn is given by (6.30).

[(i): The probability in question is
∫

. . .
∫

f1(z1) . . . fN (zN ) dz1 · · · dzN integrated
over the set inwhich zi is the ti th smallest of the z’s for i = 1, . . . , N . Under the trans-
formation wti = zi the integral becomes

∫
. . .

∫
f1(wt1) . . . fN (wtN ) dw1 · · · dwN

integrated over the set w1 < · · · < wN . The desired result now follows from
the fact that the probability density of the order statistics V(1) < · · · < V(N ) is
N ! f (w1) · · · f (wN ) for w1 < . . . < wN .]
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Problem 6.45 (i) For any continuous cumulative distribution function F , define
F−1(0) = −∞, F−1(y) = inf{x : F(x) = y} for 0 < y < 1, F−1(1) = ∞ if
F(x) < 1 for all finite x , and otherwise inf{x : F(x) = 1}. Then F[F−1(y)] =
y for all 0 ≤ y ≤ 1, but F−1[F(y)] may be < y.

(ii) Let Z have a cumulative distribution function G(z) = h[F(z)], where F and h
are continuous cumulative distribution functions, the latter defined over (0,1).
If Y = F(Z), then P{Y < y} = h(y) for all 0 ≤ y ≤ 1.

(iii) If Z has the continuous cumulative distribution function F , then F(Z) is uni-
formly distributed over (0, 1).

[(ii): P{F(Z) < y} = P{Z < F−1(y)} = F[F−1(y)] = y.]

Problem 6.46 Let Zi have a continuous cumulative distribution function Fi (i =
1, . . . , N ), and let G be the group of all transformations Z ′

i = f (Zi ) such that f is
continuous and strictly increasing.

(i) The transformation induced by f in the space of distributions is F ′
i = Fi ( f −1).

(ii) Two N -tuples of distributions (F1, . . . , FN ) and (F ′
1, . . . , F

′
N )belong to the same

orbit with respect to Ḡ if and only if there exist continuous distribution func-
tions h1, . . . , hN defined on (0,1) and strictly increasing continuous distribution
functions F and F’ such that Fi = hi (F) and F ′

i = hi (F ′).

[(i): P{ f (Zi ) ≤ y} = P{Zi ≤ f −1(y)} = Fi [ f −1(y)].
(ii): If Fi = hi (F) and the F ′

i are on the same orbit, so that F ′
i = Fi ( f −1), then

F ′
i = hi (F ′)with F ′ = F( f −1). Conversely, if Fi = hi (F), F ′

i = hi (F ′), then F ′
i =

Fi ( f −1) with f = F ′−1(F).]

Problem 6.47 Under the assumptions of the preceding problem, if Fi = hi (F), the
distribution of the ranks T1, . . . , TN of Z1, . . . , ZN depends only on the hi , not on
F . If the hi are differentiable, the distribution of the Ti is given by

P{T1 = t1, . . . , TN = tn} = E
[
h′
1

(
U(t1)

)
. . . h′

N

(
U(tN )

)]

N ! , (6.66)

where U(1) < · · · < U(N ) is an ordered sample of size N from the uniform distri-
bution U (0, 1). [The left-hand side of (6.66) is the probability that of the quantities
F(Z1), . . . , F(ZN ), the i th one is the ti th smallest for i = 1, . . . , N . This is given
by

∫
. . .

∫
h′
1(y1) . . . h′

N (yN ) dy integrated over the region in which yi is the ti th
smallest of the y’s for i = 1, . . . , N . The proof is completed as in Problem 6.44.]

Problem 6.48 Distribution of order statistics.

(i) If Z1, . . . , ZN is a sample from a cumulative distribution function F with den-
sity f , the joint density of Yi = Z(si ), i = 1, . . . , n, is

N ! f (y1) . . . f (yn)

(s1 − 1)!(s2 − s1 − 1)! . . . (N − sn)! (6.67)

×[F(y1)]s1−1[F(y2) − F(y1)]s2−s1−1 . . . [1 − F(yn)]N−sn



304 6 Invariance

for y1 < · · · < yn .
(ii) For the particular case that the Z ’s are a sample from the uniform distribution

on (0,1), this reduces to

N !
(s1 − 1)!(s2 − s1 − 1)! . . . (N − sn)! (6.68)

ys1−1
1 (y2 − y1)

s2−s1−1 . . . (1 − yn)
N−sn .

Forn = 1, (6.68) is the density of the beta distribution Bs,N−s+1,which therefore
is the distribution of the single order statistic Z(s) from U (0, 1).

(iii) Let the distribution of Y1, . . . ,Yn be given by (6.68), and let Vi be defined by
Yi = ViVi+1 . . . Vn for i = 1, . . . , n. Then the joint distribution of the Vi is

N !
(s1 − 1)! . . . (N − sn)!

n∏

i=1

v
si−1
i (1 − vi )

si+1−si−1 (sn+1 = N + 1),

so that the Vi are independently distributed according to the beta distribution
Bsi−i+1,si+1−si .

[(i): If Y1 = Z(s1), . . . ,Yn = Z(sn) and Yn+1, . . . ,YN are the remaining Z ’s in the
original order of their subscripts, the joint density ofY1, . . . , Yn is N (N − 1) . . . (N −
n + 1)

∫
. . .

∫
f (yn+1) . . . f (yN ) dyn+1 . . . dyN integrated over the region in which

s1 − 1 of the y’s are < y1, s2 − s1 − 1 between y1 and y2, . . ., and N − sn > yn .
Consider any set where a particular s1 − 1 of the y’s is < y1, a particular s2 − s1 −
1 of them is between y1 and y2, and so on, There are N !/(s1 − 1)! . . . (N − sn)!
of these regions, and the integral has the same value over each of them, namely
[F(y1)]s1−1[F(y2) − F(y1)]s2−s1−1 . . . [1 − F(yn)]N−sn .]

Problem 6.49 (i) If X1, . . . , Xm and Y1, . . . ,Yn are samples with continuous
cumulative distribution functions F and G = h(F) respectively, and if h is
differentiable, the distribution of the ranks S1 < . . . < Sn of the Y ’s is given
by

P{S1 = s1, . . . , Sn = sn} = E
[
h′ (U(s1)

)
. . . h′ (U(sn)

)]

(m+n
m

) , (6.69)

where U(1) < · · · < U(m+n) is an ordered sample from the uniform distribution
U (0, 1).

(ii) If in particular G = Fk , where k is a positive integer, (6.69) reduces to

P{S1 = s1, . . . , Sn = sn} (6.70)

= kn
(m+n

m

)
n∏

j=1

�
(
s j + jk − j

)

�
(
s j
) · �

(
s j+1

)

�
(
s j+1 + jk − j

) .
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Problem 6.50 For sufficiently small θ > 0, the Wilcoxon test at level

α = k

/(
N

n

)

, k a positive integer,

maximizes the power (among rank tests) against the alternatives (F,G) with G =
(1 − θ)F + θF2.

Problem 6.51 An alternative proof of the optimum property of theWilcoxon test for
detecting a shift in the logistic distribution is obtained from the preceding problem
by equating F(x − θ) with (1 − θ)F(x) + θF2(x), neglecting powers of θ higher
than the first. This leads to the differential equation F − θF ′ = (1 − θ)F + θF2, the
solution of which is the logistic distribution.

Problem 6.52 Let F0 be a family of probability measures over (X ,A), and let C
be a class of transformations of the space X . Define a class F1 of distributions by
F1 ∈ F1 if there exists F0 ∈ F0 and f ∈ C such that the distribution of f (X) is F1

when that of X is F0. If φ is any test satisfying (a) EF0φ(X) = α for all F0 ∈ F0, and
(b) φ(x) ≤ φ[ f (x)] for all x and all f ∈ C, then φ is unbiased for testing F0 against
F1

Problem 6.53 Let X1, . . . , Xm ; Y1, . . . ,Yn be samples from a common continuous
distribution F . Then the Wilcoxon statistic U defined in Problem 6.42 is distributed
symmetrically about 1

2mn even when m �= n.

Problem 6.54 (i) If X1, . . . , Xm and Y1, . . . ,Yn are samples from F(x) and
G(y) = F(y − �), respectively, (F continuous), and D(1) < · · · < D(mn)

denote the ordered differences Y j − Xi , then

P
[
D(k) < � < D(mn+1−k)

] = P0[k ≤ U ≤ mn − k],

whereU is the statistic defined in Problem 6.42 and the probability on the right
side is calculated for � = 0.

(ii) Determine the above confidence interval for�whenm = n = 6, the confidence
coefficient is 20

21 , and the observations are x : 0.113, 0.212, 0.249, 0.522, 0.709,
0.788, and y : 0.221, 0.433, 0.724, 0.913, 0.917, 1.58.

(iii) For the data of (ii) determine the confidence intervals based on Student’s t for
the case that F is normal.

Hint: D(i) ≤ � < D(i+1) if and only ifU� = mn − i , whereU� is the statisticU of
Problem 6.42 calculated for the observations

X1, . . . , Xm; Y1 − �, . . . ,Yn − �.

[An alternative measure of the amount by which G exceeds F (without assuming
a location model) is p = P{X < Y }. The literature on confidence intervals for p is
reviewed in Mee (1990).]
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Problem 6.55 (i) Let X , X ′ and Y , Y ’ be independent samples of size 2 from
continuous distributions F and G, respectively. Then

p = P{max(X, X ′) < min(Y,Y ′)} + P{max(Y,Y ′) < min(X, X ′)}
= 1

3 + 2�,

where � = ∫
(F − G)2 d[(F + G)/2].

(ii) � = 0 if and only if F = G.
[(i): p = ∫

(1 − F)2 dG2 + ∫
(1 − G)2 dF2 which after some computation reduces

to the stated form.
(ii): � = 0 implies F(x) = G(x) except on a set N which has measure zero both
under F andG. Suppose thatG(x1) − F(x1) = η > 0. Then there exists x0 such that
G(x0) = F(x0) + 1

2η and F(x) < G(x) for x0 ≤ x ≤ x1. SinceG(x1) − G(x0) > 0,
it follows that � > 0.]

Problem 6.56 Continuation.

(i) There exists at every significance level α a test of H : G = F which has power
> α against all continuous alternatives (F,G) with F �= G.

(ii) There does not exist a nonrandomized unbiased rank test of H against allG �= F
at level

α = 1

/(
m + n

n

)

.

[(i): let Xi , X ′
i ; Yi ,Y ′

i (i = 1, . . . , n) be independently distributed, the X ’s with dis-
tribution F , the Y ’s with distributionG, and let Vi = 1 ifmax(Xi , X ′

1) < min(Yi ,Y ′
i )

or max(Yi ,Y ′
i ) < min(Xi , X ′

i ), and Vi = 0 otherwise. Then
∑

Vi has a binomial dis-
tribution with the probability p defined in Problem 6.55, and the problem reduces to
that of testing p = 1

3 against p > 1
3 .

(ii): Consider the particular alternatives for which P{X < Y } is either 1 or 0.]

Problem 6.57 (i) Let X1, . . . , Xm ; Y1, . . . ,Yn be i.i.d. according to a continuous
distribution F , let the ranks of the Y ’s be S1 < · · · < Sn , and let T = h(S1) +
· · · + h(Sn). Then if either m = n or h(s) + h(N + 1 − s) is independent of s,
the distribution of T is symmetric about n

∑N
i=1 h(i)/N .

(ii) Show that the two-sample Wilcoxon and normal scores statistics are symmetri-
cally distributed under H , and determine their centers of symmetry.

[(i): Let S′
i = N + 1 − Si , and use the fact that T ′ = ∑

h(S′
j ) has the same distri-

bution under H as T .]

Section 6.10

Problem 6.58 (i) Letm and n be the numbers of negative and positive observations
among Z1, . . . , ZN , and let S1 < · · · < Sn denote the ranks of the positive Z ’s
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among |Z1|, . . . |ZN |. Consider the N + 1
2N (N − 1) distinct sums Zi + Z j with

i = j as well as i �= j . The Wilcoxon signed-rank statistic
∑

Sj , is equal to the
number of these sums that are positive.

(ii) If the common distribution of the Z ’s is D, then

E
(∑

Sj

)
= 1

2N (N + 1) − ND(0) − 1
2N (N − 1)

∫

D(−z) dD(z).

[(i) Let K be the required number of positive sums. Since Zi + Z j is positive if
and only if the Z corresponding to the larger of |Zi | and |Z j | is positive, K =
∑N

i=1

∑N
j=1Ui j where Ui j = 1 if Z j > 0 and |Zi | ≤ Z j and Ui j = 0 otherwise.]

Problem 6.59 Let Z1, . . . , ZN be a sample from a distribution with density f (z −
θ), where f (z) is positive for all z and f is symmetric about 0, and let m, n, and the
Sj be defined as in the preceding problem.

(i) The distribution of n and the Sj is given by

P{the number of positive Z ’s is n and S1 = s1, . . . , Sn = sn} (6.71)

= 1

2N
E

[
f
(
V(r1) + θ

)
. . . f

(
V(rm ) + θ

)
f
(
V(s1) − θ

)
. . . f

(
V(sn) − θ

)

f
(
V(1)

)
. . . f

(
V(N )

)

]

,

where V(1) < · · · < V(N ), is an ordered sample from a distribution with density
2 f (v) for v > 0, and 0 otherwise.

(ii) The rank test of the hypothesis of symmetry with respect to the origin, which
maximizes the derivative of the power function at θ = 0 and hence maximizes
the power for sufficiently small θ > 0, rejects, under suitable regularity condi-
tions, when

−E

⎡

⎣
n∑

j=1

f ′(V(s j )

f (V(s j )

⎤

⎦ > C.

(iii) In the particular case that f (z) is a normal density with zero mean, the rejection
region of (ii) reduces to

∑
E(V (s j ) > C , whereV(1) < · · · < V(N ) is an ordered

sample from a χ-distribution with 1 degree of freedom.
(iv) Determine a density f such that the one-sampleWilcoxon test is most powerful

against the alternatives f (z − θ) for sufficiently small positive θ.

[(i): Apply Problem 6.44(i) to find an expression for P{S1 = s1, . . . , Sn = sn given
that the number of positive Z ’s is n}.]

Problem 6.60 An alternative expression for (6.71) is obtained if the distribution
of Z is characterized by (ρ, F,G). If then G = h(F) and h is differentiable, the
distribution of n and the Sj is given by
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ρm(1 − ρ)n E
[
h′(U(s1)) · · · h′(U(sn))

]
, (6.72)

where U(1), < · · · < U(N ) is an ordered sample from U (0, 1).

Problem 6.61 Unbiased tests of symmetry. Let Z1, . . . , ZN , be a sample, and let φ
be any rank test of the hypothesis of symmetry with respect to the origin such that
zi ≤ z′

i for all i implies φ(z1, . . . , zN ) ≤ φ(z′
1, . . . , z

′N ). Then φ is unbiased against
the one-sided alternatives that the Z ’s are stochastically larger than some random
variable that has a symmetric distribution with respect to the origin.

Problem 6.62 The hypothesis of randomness.7 Let Z1, . . . , ZN be independently
distributed with distributions F1, . . . , FN , and let Ti denote the rank of Zi among the
Z ’s. For testing the hypothesis of randomness F1 = · · · = FN against the alternatives
K of an upward trend, namely, that Zi is stochastically increasing with i , consider
the rejection regions ∑

i ti > C (6.73)

and ∑
i E(V(ti )) > C, (6.74)

where V(1) < · · · < V(N ) is an ordered sample from a standard normal distribution
and where ti is the value taken on by Ti .

(i) The second of these tests is most powerful among rank tests against the normal
alternatives F = N (γ + iδ,σ2) for sufficiently small δ.

(ii) Determine alternatives against which the first test is a most powerful rank test.
(iii) Both tests are unbiased against the alternatives of an upward trend; so is any

rank test φ satisfying φ(z1, . . . , zN ) ≤ φ(z′
1, . . . , z

′
N ) for any two points for

which i < j, zi < z j implies z′
i < z′

j for all i and j .

[(iii): Apply Problem 6.52 with C the class of transformations z′
1 = z1, z′

i = fi (zi )
for i > 1, where z < f2(z) < · · · < fN (z) and each fi is nondecreasing. If F0 is
the class of N -tuples (F1, . . . , FN ) with F1 = · · · = FN , then F1 coincides with the
class K of alternatives.]

Problem 6.63 In the preceding problem let Ui j = 1 if ( j − i)(Z j − Zi ) > 0, and
= 0 otherwise.

(i) The test statistic
∑

iTi , can be expressed in terms of theU ’s through the relation

N∑

i=1

iTi =
∑

i< j

( j − i)Ui j + N (N + 1)(N + 2)

6
.

(ii) The smallest number of steps [in the sense of Problem 6.42(ii)] by which
(Z1, . . . , ZN ) can be transformed into the ordered sample (Z(1), . . . , Z(N )) is

7 Some tests of randomness are treated in Diaconis (1988).
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[N (N − 1)/2] −U , where U = ∑
i< j Ui j . This suggests U > C as another

rejection region for the preceding problem.

[(i): Let Vi j = 1 or 0 as Zi ≤ Zi or Zi > Z j . Then Tj = ∑N
i=1 Vi j , and Vi j = Ui j or

1 −Ui j as i < j or i ≥ j . Expressing
∑N

j=1 jTj = ∑N
j=1 j

∑N
i=1 Vi j in terms of the

U ’s and using the fact that Ui j = Uji , the result follows by a simple calculation.]

Problem 6.64 The hypothesis of independence. Let (X1,Y1), . . . , (XN ,YN ) be a
sample from a bivariate distribution, and (X(1), Z1), . . . , (X(N ), ZN ) be the same
sample arranged according to increasing values of the X ’s so that the Z ’s are a
permutation of the Y ’s. Let Ri be the rank of Xi among the X ’s, Si the rank of Yi
among the Y ’s, and Ti the rank of Zi among the Z ’s, and consider the hypothesis of
independence of X and Y against the alternatives of positive regression dependence.

(i) Conditionally, given (X(1), . . . , X(N )), this problem is equivalent to testing the
hypothesis of randomness of the Z ’s against the alternatives of an upward trend.

(ii) The test (6.73) is equivalent to rejecting when the rank correlation coefficient

∑
(Ri − R̄)(Si − S̄)

√∑
(Ri − R̄2)

∑
(Si − S̄)2

= 12

N 3 − N

∑(

Ri − N + 1

2

)(

Si − N + 1

2

)

is too large.
(iii) An alternative expression for the rank correlation coefficient8 is

1 − 6

N 3 − N

∑
(Si − Ri )

2 = 1 − 6

N 3 − N

∑
(Ti − i)2.

(iv) The test U > C of Problem 6.63(ii) is equivalent to rejecting when Kendall’s
t-statistic

∑
i< j Vi j/N (N − 1) is too large where Vi j is +1 or −1 as (Y j −

Yi )(X j − Xi ) is positive or negative.
(v) The tests (ii) and (iv) are unbiased against the alternatives of positive regression

dependence.

Section 6.11

Problem 6.65 In Example 6.11.1, a family of sets S(x, y) is a class of equivariant
confidence sets if and only if there exists a set R of real numbers such that

S(x, y) =
⋃

r∈R
{(ξ, η) : (x − ξ)2 + (y − η)2 = r2}.

8 For further material on these and other tests of independence, see Kendall (1970), Aiyar, Guillier,
and Albers (1979), Kallenberg and Ledwina (1999).
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Problem 6.66 Let X1, . . . , Xn; Y1, . . . ,Yn be samples from N (ξ,σ2) and N (η, τ 2),
respectively. Then the confidence intervals (5.42) for τ 2/σ2, which can be written as

∑
(Y j − Ȳ )2

k
∑

(Xi − X̄)2
≤ τ 2

σ2
≤ k

∑
(Y j − Ȳ )2

∑
(Xi − X̄)2

,

are uniformly most accurate equivariant with respect to the smallest group G con-
taining the transformations X ′

i = aX + b, Y ′
i = aY + c for all a �= 0, b, c and the

transformation X ′
i = dYi , Y ′

i = Xi/d for all d �= 0.
[Cf. Problem 6.12.]

Problem 6.67 (i) One-sided equivariant confidence limits. Let θ be real-valued,
and suppose that, for each θ0, the problem of testing θ ≤ θ0 against θ > θ0 (in
the presence of nuisance parameters ϑ) remains invariant under a group Gθ0 and
that A(θ0) is a UMP invariant acceptance region for this hypothesis at level α.
Let the associated confidence sets S(x) = {θ : x ∈ A(θ)} be one-sided intervals
S(x) = {θ : θ(x) ≤ θ}, and suppose they are equivariant under all Gθ and hence
under the group G generated by these. Then the lower confidence limits θ(X)

are uniformly most accurate equivariant at confidence level 1 − α in the sense
of minimizing Pθ,ϑ{θ(X) ≤ θ′} for all θ′ < θ.

(ii) Let X1, . . . , Xn be independently distributed as N (ξ,σ2). The upper confidence
limits σ2 ≤ ∑

(Xi − X̄)2/C0 of Example 5.5.1 are uniformly most accurate
equivariant under the group X ′

i = Xi + c, −∞ < c < ∞. They are also equiv-
ariant (and hence uniformly most accurate equivariant) under the larger group
X ′
i = aXi + c, −∞ < a, c < ∞.

Problem 6.68 Counterexample. The following example shows that the equivariance
of S(x) assumed in the paragraph following Lemma 6.11.1 does not follow from the
other assumptions of this lemma. In Example 6.5.1, let n = 1, let G(1) be the group
G of Example 6.5.1, and let G(2) be the corresponding group when the roles of Z
and Y = Y1 are reversed. For testing H(θ0) : θ = θ0 against θ �= θ0 let Gθ0 be equal
to G(1) augmented by the transformation Y ′ = θ0 − (Y1 − θ0) when θ ≤ 0, and let
Gθ0 be equal to G(2) augmented by the transformation Z ′ = θ0 − (Z − θ0) when
θ > 0. Then there exists a UMP invariant test of H(θ0) under Gθ0 for each θ0, but the
associated confidence sets S(x) are not equivariant underG = {Gθ,−∞ < θ < ∞}.
Problem 6.69 (i) Let X1, . . . , Xn be independently distributed as N (ξ,σ2), and let

θ = ξ/σ. The lower confidence bounds θ for θ, which at confidence level 1 − α
are uniformly most accurate invariant under the transformations X ′

i = aXi , are

θ = C−1

⎛

⎝
√
n X̄

√∑
(Xi − X̄)2/(n − 1)

⎞

⎠ ,

where the function C(θ) is determined from a table of noncentral t so that
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Pθ

⎧
⎨

⎩

√
n X̄

√∑
(Xi − X̄)2/(n − 1)

≤ C(θ)

⎫
⎬

⎭
= 1 − α.

(ii) Determine θ when the x’s are 7.6, 21.2, 15.1, 32.0, 19.7, 25.3, 29.1, 18.4 and
the confidence level is 1 − α = .95.

Problem 6.70 (i) Let (X1,Y1), . . . , (Xn,Yn) be a sample from a bivariate normal
distribution, and let

ρ = C−1

⎛

⎝
∑

(Xi − X̄)(Yi − Ȳ )
√∑

(Xi − X̄)2
∑

(Yi − Ȳ )2

⎞

⎠ ,

where C(ρ) is determined such that

Pθ

⎧
⎨

⎩

∑
(Xi − X̄)(Yi − Ȳ )

√∑
(Xi − X̄)2

∑
(Yi − Ȳ )2

≤ C(ρ)

⎫
⎬

⎭
= 1 − α.

Then ρ is a lower confidence limit for the population correlation coefficient ρ at
confidence level 1 − α; it is uniformlymost accurate invariant with respect to the
group of transformations X ′

i = aXi + b, Y ′
i = cYi + d, with ac > 0, −∞ < b,

d < ∞.
(ii) Determine ρ at level 1 − α = .95when the observations are (12.9,.56), (9.8,.92),

(13.1,.42), (12.5,1.01), (8.7,.63), (10.7,.58), (9.3,.72), (11.4,.64).

Note. The following problems explore the relationship between pivotal quantities
and equivariant confidence sets. For more details see Arnold (1984).

Let X be distributed according Pθ,ϑ, and consider confidence sets for θ that are
equivariant under a group G∗, as in Section 6.11. If w is the set of possible θ-values,
define a group G̃ on X × w by g̃(θ, x) = (gx, ḡθ).

Problem 6.71 Let V (X, θ) be any pivotal quantity [i.e., have a fixed probability
distribution independent of (θ,ϑ)], and let B be any set in the range space of V with
probability P(V ∈ B) = 1 − α. Then the sets S(x) defined by

θ ∈ S(x) if and only if V (θ, x) ∈ B (6.75)

are confidence sets for θ with confidence coefficient 1 − α.

Problem 6.72 (i) If G̃ is transitive over X × w and V (X, θ) is maximal invariant
under G̃, then V (X, θ) is pivotal.

(ii) By (i), any quantity W (X, θ) which is invariant under G̃ is pivotal; give an
example showing that the converse need not be true.
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Problem 6.73 Under the assumptions of the preceding problem, the confidence set
S(x) is equivariant under G∗.

Problem 6.74 Under the assumptions of Problem 6.72, suppose that a family of
confidence sets S(x) is equivariant under G∗. Then there exists a set B in the range
space of the pivotal V such that (6.75) holds. In this sense, all equivariant confidence
sets can be obtained from pivotals.

[Let A be the subset ofX × w given by A = {(x, θ) : θ ∈ S(x)}. Show that g̃A =
A, so that any orbit of G̃ is either in A or in the complement of A. Let the maximal
invariant V (x, θ) be represented as in Section 6.2 by a uniquely defined point on
each orbit, and let B be the set of these points whose orbits are in A. Then V (x, θ) ∈
B if and only if (x, θ) ∈ A.] Note. Problem 6.74 provides a simple check of the
equivariance of confidence sets. In Example 6.12.2, for instance, the confidence
sets (6.46) are based on the pivotal vector (X1 − ξ1, . . . , Xr − ξr ), and hence are
equivariant.

Section 6.12

Problem 6.75 In Examples 6.12.1 and 6.12.2 there do not exist equivariant sets that
uniformly minimize the probability of covering false values.

Problem 6.76 In Example 6.12.1, the density p(v) of V = 1/S2 is unimodal.

Problem 6.77 Show that in Example 6.12.1,

(i) the confidence sets σ2/S2 ∈ A∗∗ with A∗∗ given by (6.45) coincide with the
uniformly most accurate unbiased confidence sets for σ2;

(ii) if (a, b) is best with respect to (6.44) for σ, then (ar , br ) is best for σr (r > 0).

Problem 6.78 Let X1, . . . , Xr be i.i.d. N (0, 1), and let S2 be independent of the X ’s
and distributed as χ2

ν . Then the distribution of (X1/S
√

ν, . . . , Xr/S
√

ν) is a central
multivariate t-distribution, and its density is

p(v1, . . . , vr ) = �( 12 (ν + r))

(πν)r/2�(ν/2)

(

1 + 1

ν

∑
v2
i

)− 1
2 (ν+r)

.

Problem 6.79 The confidence sets (6.52) are uniformly most accurate equivariant
under the group G defined at the end of Example 6.12.3.

Problem 6.80 In Example 6.12.4, show that

(i) both sets (6.60) are intervals;
(ii) the sets given by vp(v) > C coincide with the intervals (5.41).

Problem 6.81 Let X1, . . . , Xm ; Y1, . . . ,Yn be independently normally distributed
as N (ξ,σ2) and N (η,σ2) respectively. Determine the equivariant confidence sets for
η − ξ that have smallest Lebesgue measure when
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(i) σ is known;
(ii) σ is unknown.

Problem 6.82 Generalize the confidence sets of Example 6.11.3 to the case that the
Xi are N (ξi , diσ2) where the d’s are known constants.

Problem 6.83 Solve the problem corresponding to Example 6.12.1 when

(i) X1, . . . , Xn is a sample from the exponential density E(ξ,σ), and the parameter
being estimated is σ;

(ii) X1, . . . , Xn is a sample from the uniform densityU (ξ, ξ + τ ), and the parameter
being estimated is τ .

Problem 6.84 Let X1, . . . , Xn be a sample from the exponential distribution
E(ξ,σ). With respect to the transformations X ′

i = bXi + a determine the smallest
equivariant confidence sets

(i) for σ, both when size is defined by Lebesgue measure and by the equivariant
measure (6.44);

(ii) for ξ.

Problem 6.85 Let Xi j ( j = 1, . . . , ni ; i = 1, . . . , s) be samples from the expo-
nential distribution E(ξi ,σ). Determine the smallest equivariant confidence sets for
(ξ1, . . . , ξr ) with respect to the group X ′

i j = bXi j + ai .

Section 6.13

Problem 6.86 If the confidence sets S(x) are equivariant under the group G, then
the probability Pθ{θ ∈ S(X)} of their covering the true value is invariant under the
induced group Ḡ.

Problem 6.87 Consider the problem of obtaining a (two-sided) confidence band for
an unknown continuous cumulative distribution function F .

(i) Show that this problem is invariant both under strictly increasing and strictly
decreasing continuous transformations X ′

i = f (Xi ), i = 1, . . . , n, and deter-
mine a maximal invariant with respect to this group.

(ii) Show that the problem is not invariant under the transformation

X ′
i =

⎧
⎨

⎩

Xi if |Xi | ≥ 1,
Xi − 1 if 0 < Xi < 1,
Xi + 1 if − 1 < Xi < 0.

[(ii): For this transformation g, the set g∗S(x) is no longer a band.]
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6.15 Notes

Invariance considerations were introduced for particular classes of problems by
Hotelling (1936) and Pitman (1939b). The general theory of invariant and almost
invariant tests, together with its principal parametric applications, was developed by
Hunt and Stein (1946) in an unpublished paper. In their paper, invariance was not
proposed as a desirable property in itself but as a tool for deriving most stringent
tests (cf. Chapter 8). Apart from this difference in point of view, the present account
is based on the ideas of Hunt and Stein, about which E. L. Lehmann learned through
conversations with Charles Stein during the years 1947–1950.

Of the admissibility results of Section 6.7, Theorem 6.7.1 is due to Birnbaum
(1955) and Stein (1956a); Example 6.7.3 (continued) and Lemma 6.7.1, to Kiefer
and Schwartz (1965).

The problem of minimizing the volume or diameter of confidence sets is treated
in DasGupta (1991).

Deuchler (1914) appears to contain the first proposal of the two-sample procedure
known as the Wilcoxon test, which was later discovered independently by many
different authors. A history of this test is given by Kruskal (1957). Hoeffding (1951)
derives a basic rank distribution of which (6.22) is a special case, and from it obtains
locally optimum tests of the type (6.23).
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