
Chapter 3
Uniformly Most Powerful Tests

3.1 Stating the Problem

We now begin the study of the statistical problem that forms the principal subject
of this book, the problem of hypothesis testing. As the term suggests, one wishes
to decide whether or not some hypothesis that has been formulated is correct. The
choice here lies between only two decisions: accepting or rejecting the hypothesis. A
decision procedure for such a problem is called a test of the hypothesis in question.

The decision is to be based on the value of a certain random variable X , the
distribution Pθ of which is known to belong to a class P = {Pθ, θ ∈ �}. We shall
assume that if θ were known, one would also know whether or not the hypothesis is
true. The distributions ofP can then be classified into those for which the hypothesis
is true and those for which it is false. The resulting twomutually exclusive classes are
denoted by H and K , and the corresponding subsets of� by�H and�K respectively,
so that H ∪ K = P and�H ∪ �K = �.Mathematically, the hypothesis is equivalent
to the statement that Pθ is an element of H . It is therefore convenient to identify the
hypothesis with this statement and to use the letter H also to denote the hypothesis.
Analogously we call the distributions in K the alternatives to H , so that K is the
class of alternatives.

Let the decisions of accepting or rejecting H be denoted by d0 and d1 respectively.
A nonrandomized test procedure assigns to each possible value x of X one of these
two decisions and thereby divides the sample space into two complementary regions
A and R. If X falls into A, the hypothesis is accepted; otherwise it is rejected. The set
A is called the region of acceptance, and the set R the region of rejection or critical
region.

When performing a test onemay arrive at the correct decision, or onemay commit
one of two errors: rejecting the hypothesis when it is true (error of the first kind or
Type 1 error) or accepting it when it is false (error of the second kind or Type 2
error). The consequences of these are often quite different. For example, if one tests
for the presence of some disease, incorrectly deciding on the necessity of treatment
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may cause the patient discomfort and financial loss. On the other hand, failure to
diagnose the presence of the ailment may lead to the patient’s death.

It is desirable to carry out the test in a manner which keeps the probabilities of the
two types of error to a minimum. Unfortunately, when the number of observations
is given, both probabilities cannot be controlled simultaneously. It is customary
therefore to assign a bound to the probability of incorrectly rejecting H when it is
true and to attempt to minimize the other probability subject to this condition. Thus
one selects a number α between 0 and 1, called the level of significance, and imposes
the condition that

Pθ{δ(X) = d1} = Pθ{X ∈ R} ≤ α for all θ ∈ �H . (3.1)

Subject to this condition, it is desired to minimize Pθ{δ(X) = d0} for θ in �K or,
equivalently, to maximize

Pθ{δ(X) = d1} = Pθ{X ∈ R} for all θ ∈ �K . (3.2)

Although (3.1) usually implies that

sup
�H

Pθ{X ∈ R} = α, (3.3)

it is convenient to introduce a term for the left-hand side of (3.3): it is called the size
of the test or critical region R. The condition (3.1) therefore restricts consideration
to test whose size does not exceed the given level of significance. The probability of
rejection (3.2) evaluated for a given θ in �K is called the power of the test against
the alternative θ. Considered as a function of θ for all θ ∈ �, the probability (3.2) is
called the power function of the test and is denoted by β(θ).

Although we may formally decide between accepting H when X ∈ A and reject-
ing H when X ∈ R, it must be emphasized that “accepting” H does not prove that
H is true. Failure to reject H may result from insufficient data or poor power, so that
accepting H should be interpreted as the data provide insufficient evidence against
the null hypothesis.

The choice of a level of significance α is usually somewhat arbitrary, since in
most situations there is no precise limit to the probability of an error of the first kind
that can be tolerated.1 Standard values, such as 0.01 or 0.05, were originally chosen
to effect a reduction in the tables needed for carrying out various tests. By habit,
and because of the convenience of standardization in providing a common frame of
reference, these values gradually became entrenched as the conventional levels to
use. This is unfortunate, since the choice of significance level should also take into
consideration the power that the test will achieve against the alternatives of interest.
There is little point in carrying out an experiment which has only a small chance

1 The standard way to remove the arbitrary choice of α is to report the p-value of the test, defined
as the smallest level of significance leading to rejection of the null hypothesis. This approach will
be discussed toward the end of Section 3.3.
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of detecting the effect being sought when it exists. Surveys by Cohen (1962) and
Freiman et al. (1978) suggest that this is in fact the case for many studies. Ideally, the
sample size should then be increased to permit adequate values for both significance
level and power. If that is not feasible one may wish to use higher values ofα than the
customary ones. The opposite possibility, that one would like to decrease α, arises
when the latter is so close to 1 thatα can be lowered appreciably without a significant
loss of power (cf. Problem 3.11). Rules for choosing α in relation to the attainable
power are discussed by Lehmann (1958), Arrow (1960), and Sanathanan (1974), and
from a Bayesian point of view by Savage (1962, pp. 64–66). See also Rosenthal and
Rubin (1985).

Another consideration that may enter into the specification of a significance level
is the attitude toward the hypothesis before the experiment is performed. If one firmly
believes the hypothesis to be true, extremely convincing evidence will be required
before one is willing to give up this belief, and the significance level will accordingly
be set very low. (A low significance level results in the hypothesis being rejected
only for a set of values of the observations whose total probability under hypothesis
is small, so that such values would be most unlikely to occur if H were true.)

Let us next consider the structure of a randomized test. For any values x , such a test
chooses between the two decisions, rejection or acceptance, with certain probabilities
that depend on x and will be denoted by φ(x) and 1 − φ(x) respectively. If the value
of X is x , a random experiment is performed with two possible outcomes R and R̄,
the probabilities of which are φ(x) and 1 − φ(x). If in this experiment R occurs,
the hypothesis is rejected, otherwise it is accepted. A randomized test is therefore
completely characterized by a functionφ, the critical function, with 0 ≤ φ(x) ≤ 1 for
all x . If φ takes on only the values 1 and 0, one is back in the case of a nonrandomized
test. The set of points x for which φ(x) = 1 is then just the region of rejection, so
that in a nonrandomized test φ is simply the indicator function of the critical region.

If the distribution of X is Pθ, and the critical function φ is used, the probability
of rejection is

Eθφ(X) =
∫

φ(x) dPθ(x),

the conditional probability φ(x) of rejection given x , integrated with respect to the
probability distribution of X . The problem is to select φ so as to maximize the power

βφ(θ) = Eθφ(X) for all θ ∈ �K (3.4)

subject to the condition

Eθφ(X) ≤ α for all θ ∈ �H . (3.5)

A level α test that maximizes (3.4) is called a most powerful (MP) level α test. The
same difficulty now arises that presented itself in the general discussion of Chapter 1.
Typically, the test that maximizes the power against a particular alternative in K
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depends on this alternative, so that some additional principal has to be introduced
to define what is meant by an optimum test. There is one important exception: if K
contains only one distribution, that is, if one is concernedwith a single alternative, the
problem is completely specified by (3.4) and (3.5). It then reduces to themathematical
problem of maximizing an integral subject to certain side conditions. The theory of
this problem, and its statistical applications, constitutes the principle subject of the
present chapter. In special cases itmay of course turn out that the same testmaximizes
the power of all alternatives in K even when there is more than one. Examples of
such uniformly most powerful (UMP) tests will be given in Sections 3.4 and 3.7.

In the above formulation the problem can be considered a special case of the
general decision problem with two types of losses. Corresponding to the two kinds
of error, one can introduce the two-component loss functions,

L1(θ, d1) = 1 or 0 as θ ∈ �H or θ ∈ �K ,

L1(θ, d0) = 0 for all θ

and
L2(θ, d0) = 0 or 1 as θ ∈ �H or θ ∈ �K ,

L2(θ, d1) = 0 for all θ .

With this definition the minimization of EL2(θ, δ(X)) subject to the restriction
EL1(θ, δ(X)) ≤ α is exactly equivalent to the problem of hypothesis testing as given
above.

The formal loss functions L1 and L2 clearly do not represent in general the true
losses. The loss resulting froman incorrect acceptance of the hypothesis, for example,
will not be the same for all alternatives. The more the alternative differs from the
hypothesis, the more serious are the consequences of such an error. As was discussed
earlier, we have purposely foregone the more detailed approach implied by this
criticism. Rather than working with a loss function which in practice one does not
know, it seems preferable to base the theory on the simpler and intuitively appealing
notion of error. It will be seen later that at least some of the results can be justified
also in the more elaborate formulation.

3.2 The Neyman–Pearson Fundamental Lemma

A class of distributions is called simple if it contains a single distribution, and oth-
erwise it is said to be composite. The problem of hypothesis testing is completely
specified by (3.4) and (3.5) if K is simple. Its solution is easiest and can be given
explicitly when the same is true of H . Let the distributions under a simple hypothesis
H and alternative K be P0 and P1, and suppose for a moment that these distributions
are discrete with Pi {X = x} = Pi (x) for i = 0, 1. If at first one restricts attention to
nonrandomized tests, the optimum test is defined as the critical region S satisfying
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∑
x∈S

P0(x) ≤ α (3.6)

and ∑
x∈S

P1(x) = maximum .

It is easy to see which points should be included in S. To each point are attached two
values, its probability under P0 and under P1. The selected points are to have a total
value not exceeding α on the one scale, and as large as possible on the other. This is
a situation that occurs in many contexts. A buyer with a limited budget who wants to
get “the most for his money” will rate the items according to their value per dollar.
In order to travel a given distance in the shortest possible time, one must choose the
quickest mode of transportation, that is, the one that yields the largest number of
miles per hour. Analogously in the present problem the most valuable points x are
those with the highest value of

r(x) = P1(x)

P0(x)
.

The points are therefore rated according to the value of this ratio and selected
for S in this order, as many as one can afford under restriction (3.6). Formally this
means that S is the set of all points x for which r(x) > c, where c is determined by
the condition

P0{X ∈ S} =
∑

x :r(x)>c

P0(x) = α .

Here a difficulty is seen to arise. It may happen that when a certain point is included,
the valueαhas not yet been reachedbut that itwouldbe exceeded if the pointwere also
included. The exact valueα can then either not be achieved at all, or it can be attained
only by breaking the preference order established by r(x). The resulting optimization
problem has no explicit solution. (Algorithms for obtaining the maximizing set S are
given by the theory of linear programming.) The difficulty can be avoided, however,
by a modification which does not require violation of the r -order and which does
lead to a simple explicit solution, namely by permitting randomization.2 This makes
it possible to split the next point, including only a portion of it, and thereby to obtain
the exact value α without breaking the order of preference that has been established
for inclusion of the various sample points. These considerations are formalized in
the following theorem, the fundamental lemma of Neyman and Pearson.

2 In practice, typically neither the breaking of the r -order nor randomization is considered accept-
able. The common solution, instead, is to adopt a value ofα that can be attained exactly and therefore
does not present this problem.
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Theorem 3.2.1 Let P0 and P1 be probability distributions possessing densities p0
and p1 respectively with respect to a measure μ.3

(i) Existence. For testing H : p0 against the alternative K : p1 there exists a test
φ and a constant k such that

E0φ(X) = α (3.7)

and

φ(x) =
{
1 when p1(x) > kp0(x),
0 when p1(x) < kp0(x).

(3.8)

(ii) Sufficient condition for a most powerful test. If a test satisfies (3.7) and (3.8)
for some k, then it is most powerful for testing p0 against p1 at level α.

(iii) Necessary condition for a most powerful test. If φ is most powerful at level
α for testing p0 against p1, then for some k it satisfies (3.8) a.e. μ. It also satisfies
(3.7) unless there exists a test of size < α and with power 1.

Proof. For α = 0 and α = 1 the theorem is easily seen to be true provided the value
k = + ∞ is admitted in (3.8) and 0 · ∞ is interpreted as 0. Throughout the proof we
shall therefore assume 0 < α < 1.

(i): Letα(c) = P0{p1(X) > cp0(X)}. Since the probability is computed under P0,
the inequality needs to be considered only for the set where p0(x) > 0, so that α(c)
is the probability that the random variable p1(X)/p0(X) exceeds c. Thus 1 − α(c) is
a cumulative distribution function, and α(c) is nonincreasing and continuous on the
right, α(c−) − α(c) = P0{p1(X)/p0(X) = c},α(−∞) = 1, and α(∞) = 0. Given
any 0 < α < 1, let c0 be such thatα(c0) ≤ α ≤ α(c−

0 ), and consider the testφ defined
by

φ(x) =
⎧⎨
⎩
1 when p1(x) > c0 p0(x),

α−α(c0)
α(c−

0 )−α(c0)
when p1(x) = c0 p0(x),

0 when p1(x) < c0 p0(x).

Here the middle expression is meaningful unless α(c0) = α(c−
0 ); since then

P0{p1(X) = c0 p0(X)} = 0, φ is defined a.e. The size of φ is

E0φ(X) = P0

{
p1(X)

p0(X)
> c0

}
+ α − α(c0)

α(c−
0 ) − α(c0)

P0

{
p1(X)

p0(X)
= c0

}
= α,

so that c0 can be taken as the k of the theorem.
(ii): Suppose that φ is a test satisfying (3.7) and (3.8) and that φ∗ is any other

test with E0φ
∗(X) ≤ α. Denote by S+ and S− the sets in the sample space where

φ(x) − φ∗(x) > 0 and< 0, respectively. If x is in S+,φ(x)must be> 0 and p1(x) ≥
kp0(x). In the same way p1(x) ≤ kp0(x) for all x in S−, and hence

∫
(φ − φ∗)(p1 − kp0) dμ =

∫
S+∪S−

(φ − φ∗)(p1 − kp0) dμ ≥ 0.

3 There is no loss of generality in this assumption, since one can take μ = P0 + P1.
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The difference in power between φ and φ∗ therefore satisfies

∫
(φ − φ∗)p1 dμ ≥ k

∫
(φ − φ∗)p0 dμ ≥ 0,

as was to be proved.
(iii): Let φ∗ be most powerful at level α for testing p0 against p1, and let φ

satisfy (3.7) and (3.8). Let S be the intersection of the set S+ ∪ S−, on which φ
and φ∗ differ, with the set {x : p1(x) �= kp0(x)}, and suppose that μ(S) > 0. Since
(φ − φ∗)(p1 − kp0) is positive on S, it follows from Problem 2.4 that

∫
S+∪S−

(φ − φ∗)(p1 − kp0) dμ =
∫
S
(φ − φ∗)(p1 − kp0) dμ > 0

and henceφ ismore powerful against p1 thanφ∗. This is a contradiction, and therefore
μ(S) = 0, as was to be proved.

If φ∗ were of size < α and power < 1, it would be possible to include in
the rejection region additional points or portions of points and thereby to increase
the power until either the power is 1 or the size is α. Thus either E0φ

∗(X) =
α or E1φ

∗(X) = 1.

The proof of part (iii) shows that the most powerful test is uniquely determined
by (3.7) and (3.8) except on the set on which p1(x) = kp0(x). On this set, φ can be
defined arbitrarily provided the resulting test has size α. Actually, we have shown
that it is always possible to define φ to be constant over this boundary set. In the
trivial case when there exists a test of power 1, the constant k of (3.8) is 0, and one
will accept H for all points for which p1(x) = kp0(x) even though the test may then
have size < α.

It follows from these remarks that the most powerful test is determined uniquely
(up to sets of measure zero) by (3.7) and (3.8) whenever the set on which p1(x) =
kp0(x) has μ-measure zero. This unique test is then clearly nonrandomized. More
generally, it is seen that randomization is not required except possibly on the boundary
set, where it may be necessary to randomize in order to get the size equal to α. When
there exists a test of power 1, (3.7) and (3.8) will determine a most powerful test, but
it may not be unique in that there may exist a test also most powerful and satisfying
(3.7) and (3.8) for some α′ < α.

Corollary 3.2.1 Let β denote the power of the most powerful level-α test
(0 < α < 1) for testing P0 against P1. Then α < β unless P0 = P1.

Proof. Since the level-α test given by φ(x) ≡ α has power α, it is seen that α ≤ β.
If α = β < 1, the test φ(x) ≡ α is most powerful and by Theorem 3.2.1(iii) must
satisfy (3.8). Then p0(x) = p1(x) a.e. μ and hence P0 = P1.

An alternative method for proving some of the results of this section is based on
the following geometric representation of the problem of testing a simple hypothesis
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against a simple alternative. Let N be the set of all points (α,β) for which there
exists a test φ such that

α = E0φ(X), β = E1φ(X).

This set is convex, contains the points (0,0) and (1,1), and is symmetricwith respect to
the point ( 12 ,

1
2 ) in the sense that with any point (α,β) it also contains the point (1 −

α, 1 − β). In addition, the set N is closed. [This follows from the weak compactness
theorem for critical functions, Theorem A.5.1 of the Appendix; the argument is the
same as that in the proof of Theorem 3.6.1(i).]

For each value 0 < α0 < 1, the level-α0 tests are represented by the points whose
abscissa is ≤ αo. The most powerful of these tests (whose existence follows from
the fact that N is closed) corresponds to the point on the upper boundary of N with
abscissa α0. This is the only point corresponding to a most powerful level-α0 test
unless there exists a point (α, 1) in N with α < α0 (Figure 3.1b).

As an example of this geometric approach, consider the following alternative proof
of Corollary 3.2.1. Suppose that for some 0 < α0 < 1 the power of themost powerful
level-α0 test is α0. Then it follows from the convexity of N that (α,β) ∈ N implies
β ≤ α, and hence from the symmetry of N that N consists exactly of the line segment
connecting the points (0,0) and (1,1). This means that

∫
φpo dμ = ∫ φp1 dμ for all

φ and hence that p0 = p1 (a.e.μ), as was to be proved. A proof of Theorem 3.2.1
along these lines is given in a more general setting in the proof of Theorem 3.6.1.

Example 3.2.1 (Normal Location Model) Suppose X is an observation from
N (ξ,σ2), with σ2 known. The null hypothesis specifies ξ = 0 and the alternative
specifies ξ = ξ1 for some ξ1 > 0. Then, the likelihood ratio is given by

p1(x)

p0(x)
= exp[− 1

2σ2 (x − ξ1)
2]

exp[− 1
2σ2 x2]

= exp[ξ1x
σ2

− ξ21
2σ2

] . (3.9)

(1,1)1

10

(1–
2
, 1–

2)

(a)

(1,1)1

10

(1–
2
, 1–

2)

(b)

Figure 3.1 Possible Values of (α,β) for Varying φ
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Since the exponential function is strictly increasing and ξ1 > 0, the set of x where
p1(x)/p0(x) > k is equivalent to the set of x where x > k ′. In order to determine k ′,
the level constraint

P0{X > k ′} = α

must be satisfied, and so k ′ = σz1−α, where z1−α is the 1 − α quantile of the standard
normal distribution. Therefore, the most powerful (MP) level α test rejects if X >

σz1−α. Several points are worth mentioning. First, the MP level α test is unique
up to sets of Lebesgue measure 0, by the Neyman–Pearson Lemma, Theorem 3.2.1
(iii). Second, since this test is MP for any alternative ξ1 > 0, the test is UMP level
α against the composite alternatives ξ1 > 0. Third, by a similar argument, the test
that rejects if X < σzα is UMP level α against the composite alternatives ξ1 < 0.
Finally, it follows that no UMP level α test exists against all two-sided alternatives
ξ1 �= 0.

3.3 p-values

Testing at a fixed level α, as described in Sections 3.1 and 3.2, is one of two standard
(non-Bayesian) approaches to the evaluation of hypotheses. To explain the other,
suppose that, under P0, the distribution of p1(X)/p0(X) is continuous. Then, the
most powerful level α test is nonrandomized and rejects if p1(X)/p0(X) > k, where
k = k(α) is determined by (3.7). For varyingα, the resulting tests provide an example
of the typical situation in which the rejection regions Rα are nested in the sense that

Rα ⊆ Rα′ if α < α′ . (3.10)

When this is the case,4 it is good practice to determine not onlywhether the hypothesis
is accepted or rejected at the given significance level, but also to determine the
smallest significance level, or more formally

p̂ = p̂(X) = inf{α : X ∈ Rα} , (3.11)

at which the hypothesis would be rejected for the given observation. This number, the
so-called p-value gives an idea of how strongly the data contradict the hypothesis.5 It
also enables others to reach a verdict based on the significance level of their choice.

4 See Problems 3.17 and 3.63 for examples where optimal nonrandomized tests need not be nested.
5 One could generalize the definition of p-value to include randomized level α tests φα assum-
ing that they are nested in the sense that φα(x) ≤ φα′ (x) for all x and α < α′. Simply define
p̂ = inf{α : φα(X) = 1}; in words, p̂ is the smallest level of significance where the hypothesis is
rejected with probability one.
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Example 3.3.1 (Continuation of Example) 3.2.1 Let� denote the standard normal
c.d.f. Then, the rejection region can be written as

Rα = {X : X > σz1−α} = {X : �(
X

σ
) > 1 − α} = {X : 1 − �(

X

σ
) < α} .

For a given observed value of X , the inf over all α where the last inequality holds is

p̂ = 1 − �(
X

σ
) .

Alternatively, the p-value is P0{X ≥ x}, where x is the observed value of X . Note
that, under ξ = 0, the distribution of p̂ is given by

P0{ p̂ ≤ u} = P0{1 − �(
X

σ
) ≤ u} = P0{�(

X

σ
) ≥ 1 − u} = u ,

because �(X/σ) is uniformly distributed on (0,1) (see Problem 3.22); therefore, p̂
is uniformly distributed on (0,1).

A general property of p-values is given in the following lemma, which applies to
both simple and composite null hypotheses.

Lemma 3.3.1 Suppose X hasdistribution Pθ for someθ ∈ �, and thenull hypothesis
H specifies θ ∈ �H . Assume the rejection regions satisfy (3.10).
(i) If

sup
θ∈�H

Pθ{X ∈ Rα} ≤ α for all 0 < α < 1, (3.12)

then the distribution of p̂ under θ ∈ �H satisfies

Pθ{ p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1 . (3.13)

(ii) If, for θ ∈ �H ,
Pθ{X ∈ Rα} = α for all 0 < α < 1 , (3.14)

then
Pθ{ p̂ ≤ u} = u for all 0 ≤ u ≤ 1 ;

i.e., p̂ is uniformly distributed over (0, 1).

Proof. (i) If θ ∈ �H , then the event { p̂ ≤ u} implies {X ∈ Rv} for all u < v. The
result follows by letting v → u.

(ii) Since the event {X ∈ Ru} implies { p̂ ≤ u}, it follows that

Pθ{ p̂ ≤ u} ≥ Pθ{X ∈ Ru} .

Therefore, if (3.14) holds, then Pθ{ p̂ ≤ u} ≥ u, and the result follows from (i).
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Example 3.3.2 Suppose X takes values 1, 2, . . . , 10. Under H , the distribution is
uniform, i.e., p0( j) = 1

10 for j = 1, . . . , 10. Under K , suppose p1( j) = j/55. The
MP levelα = i/10 test rejects if X ≥ 11 − i . However, unlessα is amultiple of 1/10,
the MP level α test is randomized. If we want to restrict attention to nonrandomized
procedures, consider the conservative approach by defining

Rα = {X ≥ 11 − i} if
i

10
≤ α <

i + 1

10
.

If the observed value of X is x , then the p-value is given by (11 − x)/10. Then, the
distribution of p̂ under H is given by

P{ p̂ ≤ u} = P{11 − X

10
≤ u} = P{X ≥ 11 − 10u} ≤ u , (3.15)

and the last inequality is an equality if and only if u is of the form i/10 for some
integer i = 0, 1, . . . , 10, i.e., the levels for which the MP test is nonrandomized
(Problem 3.21).

In general, we say a p-value is valid if it satisfies (3.13) for all θ ∈ �H , even if
p̂ is not specified through a family of rejection regions. If (3.13) holds, then the test
that rejects H if p̂ ≤ α is level α. A direct approach is given next.

Example 3.3.3 (Constructing P-values for a Simple H ) Suppose for a given fam-
ily indexed by θ ∈ �, the problem is to test a simple null hypothesis θ = θ0. Here
θ is quite general; it can be real-valued, vector-valued, or even be function-valued.
(As an example, if θ corresponds to a c.d.f. on the real line, θ0 could specify the uni-
form distribution.) Let T = T (X) be any real-valued test statistic, and let its c.d.f.
be denoted by Fθ(·). Then, p̂ = Fθ0(T ) serves as a valid p-value for testing the null
hypothesis θ = θ0. To see why, note that if Y is any real-valued random variable with
c.d.f. G(·), then (Problem 3.23)

P{G(Y ) ≤ u} ≤ u for all 0 ≤ u ≤ 1 .

Hence, for any 0 ≤ u ≤ 1,

Pθ0{ p̂ ≤ u} = Pθ0{Fθ0(T ) ≤ u} ≤ u ,

verifying (3.13). A test based on Fθ0(T ) is appropriate if small values of T indicate
departures from H . Similarly, if large values of T indicate departures from H , then
1 − F−

θ0
(T ) is a valid p-value, where F−

θ0
(t) = Pθ0{T < t}.

P-values, with the additional information they provide, are typically more appro-
priate than fixed levels in scientific problems, whereas a fixed predetermined α is
unavoidable when acceptance or rejection of H implies an imminent concrete deci-
sion. A review of some of the issues arising in this context, with references to the
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literature, are given in Kruskal (1978), Wasserstein and Lazar (2016), and Kuffner
and Walker (2019).

3.4 Distributions with Monotone Likelihood Ratio

The case that both the hypothesis and the class of alternatives are simple is mainly of
theoretical interest, since problems arising in applications typically involve a para-
metric family of distributions depending on one or more parameters. In the simplest
situation of this kind the distributions depend on a single real-valued parameter θ,
and the hypothesis is one sided, say H : θ ≤ θ0. In general, the most powerful test
of H against an alternative θ1 > θ0 depends on θ1 and is then not UMP. However, a
UMP test does exist if an additional assumption is satisfied. The real-valued parame-
ter family of densities pθ(x) is said to havemonotone likelihood ratio6 if there exists
a real-valued function T (x) such that for any θ < θ′ the distributions Pθ and Pθ′ are
distinct, and the ratio pθ′(x)/pθ(x) is a nondecreasing function of T (x).

Theorem 3.4.1 Let θ be a real parameter, and let the random variable X have
probability density pθ(x) with monotone likelihood ratio in T (x).

(i) For testing H : θ ≤ θ0 against K : θ > θ0, there exists a UMP test, which is
given by

φ(x) =
⎧⎨
⎩
1 when T (x) > C,

γ when T (x) = C,

0 when T (x) < C,

(3.16)

where C and γ are determined by

Eθ0φ(X) = α. (3.17)

(ii) The power function
β(θ) = Eθφ(X)

of this test is strictly increasing for all points θ for which 0 < β(θ) < 1.
(iii) For all θ′, the test determined by (3.16) and (3.17) is UMP for testing

H ′ : θ ≤ θ′ against K ′ : θ > θ′ at level α′ = β(θ′).
(iv) For any θ < θ0 the test minimizes β(θ) (the probability of an error of the first

kind) among all tests satisfying (3.17).

Proof. (i) and (ii): Consider first the hypothesis H0 : θ = θ0 and some simple alter-
native θ1 > θ0. The most desirable points for rejection are those for which r(x) =
pθ1(x)/pθ0(x) = g[T (x)] is sufficiently large. If T (x) < T (x ′), then r(x) ≤ r(x ′)

6 This definition is in terms of specific versions of the densities pθ . If instead the definition is to be
given in terms of the distribution Pθ , various null-set considerations enter which are discussed in
Pfanzagl (1967).



3.4 Distributions with Monotone Likelihood Ratio 73

and x ′ is at least as desirable as x . Thus the test which rejects for large values of T (x)
is most powerful. As in the proof of Theorem 3.2.1(i), it is seen that there exist C
and γ such that (3.16) and (3.17) hold. By Theorem 3.2.1(ii), the resulting test is also
most powerful for testing Pθ′ against Pθ′′ at level α′ = β(θ′) provided θ′ < θ′′. Part
(ii) of the present theorem now follows from Corollary 3.2.1. Since β(θ) is therefore
nondecreasing the test satisfies

Eθφ(X) ≤ α for θ ≤ θ0. (3.18)

The class of tests satisfying (3.18) is contained in the class satisfying Eθ0φ(X) ≤ α.
Since the given test maximizes β(θ1)within this wider class, it also maximizes β(θ1)
subject to (3.18); since it is independent of the particular alternative θ1 > θ0 chosen,
it is UMP against K .

(iii) is proved by an analogous argument.
(iv) follows from the fact that the test whichminimizes the power for testing a sim-

ple hypothesis against a simple alternative is obtained by applying the fundamental
lemma (Theorem 3.2.1) with all inequalities reversed.

By interchanging inequalities throughout, one obtains in an obvious manner the
solution of the dual problem, H : θ ≥ θ0, K : θ < θ0.

The proof of (i) and (ii) exhibits the basic property of families with monotone
likelihood ratio: every pair of parameter values θ0 < θ1 establishes essentially the
same preference order of the sample points (in the sense of the preceding section).
A few examples of such families, and hence of UMP one-sided tests, will be given
below. However, the main applications of Theorem 3.4.1 will come later, when
such families appear as the set of conditional distributions given a sufficient statistic
(Chapters 4 and 5) and as distributions of a maximal invariant (Chapters 6 and 7).

Example 3.4.1 (Hypergeometric)Froma lot containing N items of amanufactured
product, a sample of size n is selected at random, and each item in the sample is
inspected. If the total number of defective items in the lot is D, the number X of
defectives found in the sample has the hypergeometric distribution

P{X = x} = PD(x) =
(D
x

)(N−D
n−x

)
(N
n

) , max(0, n + D − N ) ≤ x ≤ min(n, D).

Interpreting PD(x) as a density with respect to the measure μ that assigns to any set
on the real line as measure the number of integers 0, 1, 2, . . . that it contains, and
nothing that for values of x within its range

PD+1(x)

PD(x)
=
{ D+1

N−D
N−D−n+x
D+1−x if n + D + 1 − N ≤ x ≤ D,

0 or ∞ if x = n + D − N or D + 1,

it is seen that the distributions satisfy the assumption of monotone likelihood
ratios with T (x) = x . Therefore there exists a UMP test for testing the hypothesis
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H : D ≤ D0 against K : D > D0, which rejects H when X is too large, and an
analogous test for testing H ′ : D ≥ D0.

An important class of families of distributions that satisfy the assumptions of
Theorem 3.4.1 are the one-parameter exponential families.

Corollary 3.4.1 Let θ be a real parameter, and let X have probability density (with
respect to some measure μ)

pθ(x) = C(θ)eQ(θ)T (x)h(x), (3.19)

where Q is strictly monotone. Then there exists a UMP test φ for testing H : θ ≤ θ0
against K : θ > θ0. If Q is increasing,

φ(x) = 1, γ, 0 as T (x) >,=,< C,

where C and γ are determined by Eθ0φ(X) = α. If Q is decreasing, the inequalities
are reversed.

A converse of Corollary 3.4.1 is given by Pfanzagl (1968), who shows under weak
regularity conditions that the existence of UMP tests against one-sided alternatives
for all sample sizes and one value of α implies an exponential family.

As in Example 3.4.1, we shall denote the right-hand side of (3.19) by Pθ(x)
instead of pθ(x)when it is a probability, that is, when X is discrete and μ is counting
measure.

Example 3.4.2 (Binomial) The binomial distributions b(p, n) with

Pp(x) =
(
n

x

)
px (1 − p)n−x

satisfy (3.19) with T (x) = x, θ = p, Q(p) = log[p/(1 − p)]. The problem of test-
ing H : p ≥ p0 arises, for instance, in the situation of Example 3.4.1 if one supposes
that the production process is in statistical control, so that the various items consti-
tute independent trials with constant probability p of being defective. The number of
defectives X in a sample of size n is then sufficient statistic for the distribution of the
variables Xi (i = 1, . . . , n), where Xi is 1 or 0 as the i th item drawn is defective or
not, and X is distributed as b(p, n). There exists therefore a UMP test of H , which
rejects H when X is too small.

An alternative sampling plan which is sometimes used in binomial situations is
inverse binomial sampling. Here the experiment is continued until a specified number
m of successes—for example, cures effected by some new medical treatment—has
been obtained. If Yi denotes the number of trials after the (i − 1)st success, up to but
not including the i th success, the probability that Yi = y is pqy for y = 0, 1, . . ., so
that the joint distribution of Y1, . . . ,Ym is

Pp(y1, . . . , ym) = pmq
∑

yi , yk = 0, 1, . . . , k = 1, . . . ,m.
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This is an exponential family with T (y) =∑ yi and Q(p) = log(1 − p). Since
Q(p) is a decreasing function of p, the UMP test of H : p ≤ p0 rejects H when T
is too small. This is what one would expect, since the realization of m successes in
only a few more than m trials indicates a high value of p. The test statistic T , which
is the number of trials required in excess of m to get m successes, has the negative
binomial distribution (Problem 1.1(i))

P(t) =
(
m + t − 1

m − 1

)
pmqt , t = 0, 1, . . . ..

Example 3.4.3 (Poisson) If X1, . . . , Xn are independent Poisson variables with
E(Xi ) = λ, their joint distribution is

Pλ(x1, . . . , xn) = λx1+···+xn

x1! · · · xn!e
−nλ.

This constitutes an exponential family with T (x) =∑ xi , and Q(λ) = logλ. One-
sided hypotheses concerning λ might arise if λ is a bacterial density and the X ’s
are a number of bacterial counts, or if the X ’s denote the number of α-particles
produced in equal time intervals by a radioactive substance, etc. The UMP test of
the hypothesis λ ≤ λ0 rejects when

∑
Xi is too large. Here the test statistic

∑
Xi

has itself a Poisson distribution with parameter nλ.
Instead of observing the radioactive material for given time periods or counting

the number of bacteria in given areas of a slide, one can adopt an inverse sampling
method. The experiment is then continued, or the area over which the bacteria are
counted is enlarged, until a count ofm has been obtained. The observations consist of
the times T1, . . . , Tm that it takes for the first occurrence, from the first to the second,
and so on. If one is dealing with a Poisson process and the number of occurrences
in a time or space interval τ has the distribution

P(x) = (λτ )x

x ! e−λτ , x = 0, 1, . . . ,

then the observed times are independently distributed, each with the exponential
density λe−λt for t ≥ 0 (Problem 1.1(ii)). The joint densities

pλ(t1, . . . , tm) = λm exp

(
−λ

m∑
i=1

ti

)
, t1, . . . , tm ≥ 0,

form an exponential family with T (t1, . . . , tm) =∑ ti and Q(λ) = −λ. The UMP
test of H : λ ≤ λ0 rejectswhen T =∑ Ti is too small. Since 2λTi has density 1

2e
−u/2

for u ≥ 0, which is the density of a χ2-distribution with 2 degrees of freedom, 2λT
has a χ2-distribution with 2m degrees of freedom. The boundary of the rejection
region can therefore be determined from a table of χ2.
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The formulation of the problem of hypothesis testing given at the beginning of
the chapter takes account of the losses resulting from wrong decisions only in terms
of the two types of error. To obtain a more detailed description of the problem of
testing H : θ ≤ θ0 against the alternatives θ > θ0, one can consider it as a decision
problemwith the decisions d0 and d1 of accepting and rejecting H and a loss function
L(θ, di ) = Li (θ). Typically, L0(θ) will be 0 for θ ≤ θ0 and strictly increasing for
θ ≥ θ0, and L1(θ) will be strictly decreasing for θ ≤ θ0 and equal to 0 for θ ≥ θ0.
The difference then satisfies

L1(θ) − L0(θ)
>

<
0 as θ

<

>
θ0. (3.20)

The following theorem is a special case of complete class results of Karlin and Rubin
(1956) and Brown et al. (1976).

Theorem 3.4.2 (i) Under the assumptions of Theorem 3.4.1, the family of tests
given by (3.16) and (3.17) with 0 ≤ α ≤ 1 is essentially complete provided the loss
function satisfies (3.20).

(ii) This family is also minimal essentially complete if the set of points x for which
pθ(x) > 0 is independent of θ.

Proof. (i): The risk function of any test φ is

R(θ,φ) =
∫

pθ(x){φ(x)L1(θ) + [1 − φ(x)]L0(θ)} dμ(x)

=
∫

pθ(x){L0(θ) + [L1(θ) − L0(θ)]φ(x)} dμ(x),

and hence the difference of two risk functions is

R(θ,φ′) − R(θ,φ) = [L1(θ) − L0(θ)]
∫

(φ′ − φ)pθ dμ.

This is ≤ 0 for all θ if

βφ′(θ) − βφ(θ) =
∫

(φ′ − φ)pθ dμ>=< 0 for θ >=< θ0.

Given any test φ, let Eθ0φ(X) = α. It follows from Theorem 3.4.1(i) that there exists
a UMP level-α test φ′ for testing θ = θ0 against θ > θ0, which satisfies (3.16) and
(3.17). By Theorem 3.4.1(iv), φ′ also minimizes the power for θ < θ0. Thus the two
risk functions satisfy R(θ,φ′) ≤ R(θ,φ) for all θ, as was to be proved.

(ii): Let φα and φα′ be of sizes α < α′ and UMP for testing θ0 against θ > θ0.
Then βφα

(θ) < βφα′ (θ) for all θ > θ0 unless βφα
(θ) = 1. By considering the problem

of testing θ = θ0 against θ < θ0, it is seen analogously that this inequality also holds
for all θ < θ0 unless βφα′ (θ) = 0. Since the exceptional possibilities are excluded by
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the assumptions, it follows that R(θ,φ′)<
>
R(θ,φ) as θ

>

<
θ0. Hence each of the two

risk functions is better than the other for some values of θ.

The class of tests previously derived as UMP at the various significance levelsα is
now seen to constitute an essentially complete class for amuchmore general decision
problem, inwhich the loss function is only required to satisfy certain broad qualitative
conditions. From this point of view, the formulation involving the specification of
a level of significance can be considered a simple way of selecting a particular
procedure from an essentially complete family.

The property of monotone likelihood ratio defines a very strong ordering of a
family of distributions. For later use,we consider also the following somewhatweaker
definition. A family of cumulative distribution functions Fθ on the real line is said
to be stochastically increasing (and the same term is applied to random variables
possessing these distributions) if the distributions are distinct and if θ < θ′ implies
Fθ(x) ≥ Fθ′(x) for all x . If then X and X ′ have distributions Fθ and F ′

θ, respectively,
it follows that P{X > x} ≤ P{X ′ > x} for all x so that X ′ tends to have larger values
than X . In this case the variable X ′ is said to be stochastically larger than X . This
relationship is mademore intuitive by the following characterization of the stochastic
ordering of two distributions.

Lemma 3.4.1 Let F0 and F1 be twocumulative distribution functions on the real line.
Then F1(x) ≤ F0(x) for all x if and only if there exist two nondecreasing functions
f0 and f1, and a random variable V such that (a) f0(v) ≤ f1(v) for all v, and (b) the
distributions of f0(V ) and f1(V ) are F0 and F1, respectively.

Proof. Suppose first that the required f0, f1 and V exist. Then

F1(x) = P{ f1(V ) ≤ x} ≤ P{ f0(V ) ≤ x} = F0(x)

for all x . Conversely, suppose that F1(x) ≤ F0(x) for all x , and let fi (y) =
inf{x : Fi (x − 0) ≤ y ≤ F1(x)}, i = 0, 1. These functions are nondecreasing and for
fi = f, Fi = F satisfy

f [F(x)] ≤ x and F[ f (y)] ≥ y for all x and y.

It follows that y ≤ F(x0) implies f (y) ≤ f [F(x0)] ≤ x0 and that conversely
f (y) ≤ x0 implies F[ f (y)] ≤ F(x0)] and hence y ≤ F(x0), so that the two inequal-
ities f (y) ≤ x0 and y ≤ F(x0) are equivalent. Let V be uniformly distributed on
(0,1). Then P{ fi (V ) ≤ x} = P{V ≤ Fi (x)} = Fi (x). Since Fi (x) ≤ F0(x) for all x
implies f0(y) ≤ f1(y) for all y, this completes the proof.

One of the simplest examples of a stochastically ordered family is a location
parameter family, that is, a family satisfying

Fθ(x) = F(x − θ).
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To see that this is stochastically increasing, let X be a random variable with distri-
bution F(x). Then θ < θ′ implies

F(x − θ) = P{X ≤ x − θ} ≥ P{X ≤ x − θ′} = F(x − θ′),

as was to be shown.
Another example is furnished by families with monotone likelihood ratio. This

is seen from the following lemma, which establishes some basic properties of these
families.

Lemma 3.4.2 Let pθ(x) be a family of densities on the real line with monotone
likelihood ratio in x.

(i) If ψ is a nondecreasing function of x, then Eθψ(X) is a nondecreasing
function of θ; if X1, . . . , Xn are independently distributed with density pθ and ψ′
is a function of x1, . . . , xn which is nondecreasing in each of its arguments, then
Eθψ

′(X1, . . . , Xn) is a nondecreasing function of θ.
(ii) For any θ < θ′, the cumulative distribution functions of X under θ and θ′

satisfy
Fθ′(x) ≤ Fθ(x) for all x .

(iii) Let ψ be a function with a single change of sign. More specifically, suppose
there exists a value x0 such that ψ(x) ≤ 0 for x < x0 and ψ(x) ≥ 0 for x ≥ x0. Then
there exists θ0 such that Eθψ(X) ≤ 0 for θ < θ0 and Eθψ(X) ≥ 0 for θ > θ0, unless
Eθψ(X) is either positive for all θ or negative for all θ.

(iv) Suppose that pθ(x) is positive for all θ and all x, that pθ′(x)/pθ(x) is strictly
increasing in x for θ < θ′, and that ψ(x) is as in (iii) and is �= 0 with positive
probability. If Eθoψ(X) = 0, then Eθψ(X) < 0 for θ < θ0 and > 0 for θ > θ0.

Proof. (i): Let θ < θ′, and let A and B be the sets for which pθ′(x) < pθ(x) and
pθ′(x) > pθ(x) respectively. If a = supA ψ(x) and b = inf B ψ(x), then b − a ≥ 0
and

∫
ψ(pθ′ − pθ) dμ ≥ a

∫
A
(pθ′ − pθ) dμ + b

∫
B
(pθ′ − pθ) dμ

= (b − a)

∫
B
(pθ′ − pθ) dμ ≥ 0,

which proves the first assertion. The result for general n follows by induction.
(ii): This follows from (i) by lettingψ(x) = 1 for x > x0 andψ(x) = 0 otherwise.
(iii): We shall show first that for any θ′ < θ′′, Eθ′ψ(X) > 0 implies Eθ′′ψ(X) ≥

0. If pθ′′(x0)/pθ′(x0) = ∞, then pθ′(x) = 0 for x ≥ x0 and hence Eθ′ψ(X) ≤ 0.
Suppose therefore that pθ′′(x0)/pθ′(x0) = c < ∞. Then ψ(x) ≥ 0 on the set S =
{x : pθ′(x) = 0 and pθ′′(x) > 0}, and
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Eθ′′ψ(X) ≥
∫
S̃
ψ
pθ′′

pθ′
pθ′ dμ

≥
∫ x0−

−∞
cψ pθ′ dμ +

∫ ∞

x0

cψ pθ′ dμ = cEθ′ψ(X) ≥ 0.

The result now follows by letting θ0 = inf{θ : Eθψ(X) > 0}.
(iv): The proof is analogous to that of (iii).

Part (ii) of the lemma shows that any family of distributions with monotone
likelihood ratio in x is stochastically increasing. That the converse does not hold is
shown for example by the Cauchy densities

1

π

1

1 + (x − θ)2
·

The family is stochastically increasing, since θ is a location parameter; however,
the likelihood ratio is not monotone. Conditions under which a location parameter
family possesses monotone likelihood ratio are given in Example 8.2.1.

Lemma 3.4.2 is a special case of a theorem of Karlin (1957, 1968) relating the
number of sign changes of Eθψ(X) to those of ψ(x) when the densities pθ(x) are
totally positive (defined in Problem 3.55). The application of totally positive—or
equivalently, variation diminishing—distributions to statistics is discussed by Brown
et al. (1981); see also Problem 3.58.

3.5 Confidence Bounds

The theory of UMP one-sided tests can be applied to the problem of obtaining a lower
or upper bound for a real-valued parameter θ. The problem of setting a lower bound
arises, for example, when θ is the breaking strength of a new alloy; that of setting an
upper bound, when θ is the toxicity of drug or the probability of an undesirable event.
The discussion of lower and upper bounds is completely parallel, and it is therefore
enough to consider the case of a lower bound, say θ.

Since θ = θ(X) will be a function of the observations, it cannot be required to
fall below θ with certainty, but only with specified high probability. One selects a
number 1 − α, the confidence level, and restricts attention to bounds θ satisfying

Pθ{θ(X) ≤ θ} ≥ 1 − α for all θ. (3.21)

The function θ is called a lower confidence bound for θ at confidence level 1 − α;
the infimum of the left-hand side of (3.21), which in practice will be equal to 1 − α,
is called the confidence coefficient of θ.

Subject to (3.21), θ should underestimate θ by as little as possible. One can ask,
for example, that the probability of θ falling below any θ′ < θ should be a minimum.
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A function θ for which
Pθ{θ(X) ≤ θ′} = minimum (3.22)

for all θ′ < θ subject to (3.21) is a uniformly most accurate lower confidence bound
for θ at confidence level 1 − α.

Let L(θ, θ) be a measure of the loss resulting from underestimating θ, so that
for each fixed θ the function L(θ, θ) is defined and nonnegative for θ < θ, and is
nonincreasing in this second argument. One would then wish to minimize

EθL(θ, θ) (3.23)

subject to (3.21). It can be shown that a uniformly most accurate lower confidence
bound θ minimizes (3.23) subject to (3.21) for every such loss function L . (See
Problem 3.49.)

The derivation of uniformly most accurate confidence bounds is facilitated by
introducing the following more general concept, which will be considered in more
detail in Chapter 5. A family of subsets S(x) of the parameter space � is said to
constitute a family of confidence sets at confidence level 1 − α if

Pθ{θ ∈ S(X)} ≥ 1 − α for all θ ∈ �, (3.24)

that is, if the random sets S(X) covers the true parameter point with probability
≥ 1 − α. A lower confidence bound corresponds to the special case that S(x) is a
one-sided interval

S(x) = {θ : θ(x) ≤ θ < ∞}.

Theorem 3.5.1 (i) For each θ0 ∈ � let A(θ0) be the acceptance region of a level-α
test for testing H(θ0) : θ = θ0, and for each sample point x let S(x) denote the set
of parameter values

S(x) = {θ : x ∈ A(θ), θ ∈ �}.

Then S(x) is a family of confidence sets for θ at confidence level 1 − α.
(ii) If for all θ0, A(θ0) is UMP for testing H(θ0) at levelα against the alternatives

K (θ0), then for each θ0 /∈ �, S(X) minimizes the probability

Pθ{θ0 ∈ S(X)} for all θ ∈ K (θ0)

among all level 1 − α families of confidence sets for θ.

Proof. (i) By definition of S(x),

θ ∈ S(x) if and only if x ∈ A(θ), (3.25)

and hence
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Pθ{θ ∈ S(X)} = Pθ{X ∈ A(θ)} ≥ 1 − α.

(ii) If S∗(x) is any other family of confidence sets at level 1 − α, and if A∗(θ) =
{x : θ ∈ S∗(x)}, then

Pθ{X ∈ A∗(θ)} = Pθ{θ ∈ S∗(X)} ≥ 1 − α

so that A∗(θ0) is the acceptance region of a level-α test of H(θ0). It follows from the
assumed property of A(θ0) that for any θ ∈ K (θ0)

Pθ{X ∈ A∗(θ0)} ≥ Pθ{X ∈ A(θ0)}

and hence that
Pθ{θ0 ∈ S∗(X)} ≥ Pθ{θ0 ∈ S(X)},

as was to be proved.

The equivalence (3.25) shows the structure of the confidence sets S(x) as the
totality of parameter values θ for which the hypothesis H(θ) is accepted when x
is observed. A confidence set can therefore be viewed as a combined statement
regarding the tests of the various hypotheses H(θ), which exhibits the values for
which the hypothesis is accepted [θ ∈ S(x)] and those for which it is rejected [θ ∈
S̄(x)]. Such a method of constructing confidence sets for parameters is known as
“test inversion”.

Note that a lower confidence bound θ satisfying (3.21) corresponds to the interval
[θ,∞). However, one can typically also conclude the open interval (θ,∞) contains
the true θ with probability at least 1 − α. This occurs under the conditions of Corol-
lary 3.5.1 below. So, the resulting confidence interval may or may not include the
endpoint, and those obtained through “test inversion” will include the endpoint or
not depending on the exact construction of the tests. The first definition where the
confidence set includes the lower endpoint was a convenient way to initiate the dis-
cussion. In practice, confidence intervals are usually presented with the endpoints
included. Certainly, if the open interval satisfies the coverage constraint, so does its
closure.

Corollary 3.5.1 Let the family of densities pθ(x), θ ∈ �, have monotone likelihood
ratio in T (x), and suppose that the cumulative distribution function Fθ(t) of T =
T (X) is a continuous function in each of the variables t and θ when the other is
fixed.

(i) There exists a uniformly most accurate confidence bound θ for θ at each
confidence level 1 − α.

(ii) If x denotes the observed values of X and t = T (x), and if the equation

Fθ(t) = 1 − α (3.26)

has a solution θ = θ̂ in � then this solution is unique and θ(x) = θ̂.
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Proof. (i): There exists for each θ0 a constant C(θ0) such that

Pθ0{T > C(θ0)} = α,

and by Theorem 3.4.1, T > C(θ0) is a UMP level-α rejection region for testing
θ = θ0 against θ > θ0. By Corollary 3.2.1, the power of this test against any alterna-
tive θ1 > θ0 exceeds α, and hence C(θ0) < C(θ1) so that the function C is strictly
increasing; it is also continuous. Let A(θ0) denote the acceptance region T ≤ C(θ0),
and let S(x) be defined by (3.25). If follows from the monotonicity of the function
C that S(x) consists of those values θ ∈ � which satisfy θ ≤ θ, where

θ = inf{θ : T (x) ≤ C(θ)}.

By Theorem 3.5.1, the sets {θ : θ(x) ≤ θ}, restricted to possible values of the param-
eter, constitute a family of confidence sets at level 1 − α, whichminimize Pθ{θ ≤ θ′}
for all θ ∈ K (θ′), that is, for all θ > θ′. This shows θ to be a uniformly most accurate
confidence bound for θ.

(ii): It follows from Corollary 3.2.1 that Fθ(t) is a strictly decreasing function of
θ at any point t for which 0 < Fθ(t) < 1, and hence that (3.26) can have at most
one solution. Suppose now that t is the observed value of T and that the equation
Fθ(t) = 1 − α has the solution θ̂ ∈ �. Then Fθ̂(t) = 1 − α, and by definition of the

function C,C(θ̂) = t . The inequality t ≤ C(θ) is then equivalent to C(θ̂) ≤ C(θ)

and hence to θ̂ ≤ θ. It follows that θ = θ̂, as was to be proved.

Under the same assumptions, the corresponding upper confidence bound with
confidence coefficient 1 − α is the solution θ̄ of the equation Pθ{T ≥ t} = 1 − α or
equivalently of Fθ(t) = α.

Example 3.5.1 (Exponential waiting times) To determine an upper bound for the
degree of radioactivity λ of a radioactive substance, the substance is observed until a
count ofm has been obtained on aGeiger counter. Under the assumptions of Example
3.4.3, the joint probability density of the times Ti (i = 1, . . . ,m) elapsing between
the (i − 1)st count and the i th one is

p(t1, . . . , tm) = λme−λ
∑

ti , t1, . . . , tm ≥ 0.

If T =∑ Ti denotes the total time of observation, then 2λT has a χ2-distribution
with 2m degrees of freedom, and, as was shown in Example 3.4.3, the acceptance
region of the most powerful test of H(λ0) : λ = λ0 against λ < λ0 is 2λ0T ≤ C ,
where C is determined by the equation

∫ C

0
χ2
2m = 1 − α .
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The set S(t1, . . . , tm) defined by (3.25) is then the set of valuesλ such thatλ ≤ C/2T ,
and it follows fromTheorem 3.5.1 that λ̄ = C/2T is a uniformlymost accurate upper
confidence bound for λ. This result can also be obtained through Corollary 3.5.1.

If the variables X or T are discrete, Corollary 3.5.1 cannot be applied directly
since the distribution functions Fθ(t) are not continuous, and for most values of θ0
the optimum test of H : θ = θ0 is randomized. However, any randomized test based
on X has the following representation as a nonrandomized test depending on X and
an independent variableU distributed uniformly over (0, 1). Given a critical function
φ, consider the rejection region

R = {(x, u) : u ≤ φ(x)}.

Then
P{(X,U ) ∈ R} = P{U ≤ φ(X)} = Eφ(X),

whatever the distribution of X , so that R has the same power function as φ and
the two tests are equivalent. The pair of variables (X,U ) has a particularly simple
representation when X is integer-valued. In this case the statistic

T = X +U

is equivalent to the pair (X,U ), since with probability 1

X = [T ], U = T − [T ],

where [T ] denotes the largest integer ≤ T . The distribution of T is continuous, and
confidence bounds can be based on this statistic.

Example 3.5.2 (Binomial) An upper bound is required for a binomial probability
p—for example, the probability that a batch of polio vaccinemanufactured according
to a certain procedure contains any live virus. Let X1, . . . , Xn denote the outcome of
n trials, Xi being 1 or 0 with probabilities p and q respectively, and let X =∑ Xi .
Then T = X +U has probability density

(
n

[t]
)
p[t]qn−[t], 0 ≤ t < n + 1.

This satisfies the conditions of Corollary 3.5.1, and the upper confidence bound p̄ is
therefore the solution, if it exists, of the equation

Pp{T < t} = α , (3.27)

where t is the observed value of T . A solution does exist for all valuesα ≤ t ≤ n + α.
For n + α < t , the hypothesis H(p0) : p = p0 is accepted against the alternative
p < p0 for all values of p0 and hence p̄ = 1. For t < α, H(p0) is rejected for all
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values of p0 and the confidence set S(t) is therefore empty. Consider instead the sets
S∗(t) which are equal to S(t) for t ≥ α and which for t < α consist of the single
point p = 0. They are also confidence sets at level 1 − α, since for all p,

Pp{p ∈ S∗(T )} ≥ Pp{p ∈ S(T )} = 1 − α.

On the other hand, Pp{p′ ∈ S∗(T )} = Pp{p′ ∈ S(T )} for all p′ > 0 and hence

Pp{p′ ∈ S∗(T )} = Pp{p′ ∈ S(T )} for all p′ > p.

Thus the family of sets S∗(t) minimizes the probability of covering p′ for all p′ > p
at confidence level 1 − α. The associated confidence bound p̄∗(t) = p̄(t) for t ≥ α
and p̄∗(t) = 0 for t < α is therefore a uniformly most accurate upper confidence
bound for p at level 1 − α.

In practice, so as to avoid randomization and obtain a bound not dependent on the
extraneous variableU , one usually replaces T by X + 1 = [T ] + 1. Since p̄∗(t) is a
nondecreasing function of t , the resulting upper confidence bound p̄∗([t] + 1) is then
somewhat larger than necessary; as a compensation it also gives a correspondingly
higher probability of not falling below the true p.

Equivalently, rather than finding the solution to (3.27), first note that for x = [t],

Pp{T < t} ≤ Pp{T < x + 1} = Pp{X ≤ x} .

Therefore, a conservative solution is to find the value of p, say p̂U , satisfying

Pp{X ≤ x} = α ,

where x is the observed value of X .When x = n, there is no solution, but then p̂U = 1
serves as the upper confidence bound. Otherwise, the value p̂U of p for which

x∑
j=0

(
n

j

)
p j (1 − p)n− j = α

serves as an upper 1 − α confidence bound for p. For x = 0, the solution is p̂U =
1 − α1/n . In fact, for 0 < x < n, p̂U can be expressed as the 1 − α quantile of the
Beta distribution with parameters x + 1 and n − x (Problem 3.48). Similarly, a lower
1 − α confidence bound is the value p̂L satisfying

n∑
j=x

(
n

j

)
p j (1 − p)n− j = α .

When 0 < x < n, p̂L can be expressed as the α quantile of the Beta distribution
with parameters x and n − x + 1. If x = 0, then we take p̂U = 0, and if x = n,
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the solution is α1/n . The interval [ p̂L , p̂U ] then serves as a level 1 − 2α confidence
interval for p.

The conservative solution p̂U dates back to Clopper and Pearson (1934).
References to tables for the confidence bounds and a careful discussion of various
approximations can be found in Hall (1982) and Blyth (1986). Two-sided intervals
will be discussed in Example 5.5.4. Large-sample approaches will be discussed in
Example 11.3.4.

More generally, when X or T is discrete, a reasonable approach to constructing
a 1 − α upper confidence bound for some parameter θ that avoids randomization is
the following (whether or not T is optimal in any sense). Let Fθ(t) = Pθ{T ≤ t}.
Assume, for fixed t , Fθ(t) is continuous and strictly monotone decreasing in θ.
Suppose θ̄ satisfies

Fθ̄(t) = α , (3.28)

where t is the observed value of T .7 Then, θ̄ serves as a level 1 − α upper confidence
bound for θ. In Figure 3.2, Fθ(t) is plotted as a function of θ with T = t fixed. The
solution to (3.28) is shown as θ̄. Alternatively, Figure 3.3 shows how the confidence
bounds may be obtained from the inverse function F−1

θ (α). (In Figure 3.3, the func-
tions displayed are linear in θ, as would be the case in a location model, though this
is not generally the case.)

The confidence bounds can also be derived simply from “test inversion”. Indeed,
the test of H(θ0) against θ < θ0 that rejects H(θ0) for small values of T has (possibly
conservative) p-value given by Fθ0(t); see Example 3.3.3. Therefore, any θ0 for
which Fθ0(t) > α should be included in the confidence region, while any θ0 for
which Fθ0(t) ≤ α should not be included in the confidence region. Such an approach
is consistent with the solution to (3.28) when such a solution exists, but it also
applies if no solution exists (as can happen in the binomial example). Similarly, a
level 1 − α lower confidence band for θ, θ may be obtained as the solution to the
equation F−

θ (t) = 1 − α; if no solution exists, the region consists of all θ0 for which
F−

θ0
(t) < 1 − α.

Let θ and θ̄ be lower and upper bounds for θ with confidence coefficients 1 − α1

and 1 − α2 respectively and suppose that θ(x) < θ̄(x) for all x . This will be the case
under the assumptions of Corollary 3.5.1 if α1 + α2 < 1. The intervals (θ, θ̄) are
then confidence intervals for θ with confidence coefficient 1 − α1 − α2; that is, they
contain the true parameter value with probability 1 − α1 − α2, since

Pθ{θ ≤ θ ≤ θ̄} = 1 − α1 − α2 for all θ.

7 An explicit solution for the value of θ satisfying (3.28) may be unavailable, and one may resort
to approximate numerical approaches, such as by discretization of θ or the “automatic percentile”
method of DiCiccio and Romano (1989).
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Figure 3.3 Confidence Bounds from F−1
θ

If θ and θ̄ are uniformly most accurate, they minimize EθL1(θ, θ) and EθL2(θ, θ̄) at
their respective levels for any function L1 that is nonincreasing in θ for θ < θ and
0 for θ ≥ θ and any L2 that is nondecreasing in θ̄ for θ̄ > θ and 0 for θ̄ ≤ θ. Letting

L(θ; θ, θ̄) = L1(θ, θ) + L2(θ, θ̄),

the intervals (θ, θ̄) therefore minimize EθL(θ; θ, θ̄) subject to

Pθ{θ > θ} ≤ α1, Pθ{θ̄ < θ} ≤ α2.
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An example of such a loss function is

L(θ; θ, θ̄) =
⎧⎨
⎩

θ̄ − θ if θ ≤ θ ≤ θ̄,

θ̄ − θ if θ < θ,

θ − θ if θ̄ < θ,

which provides a natural measure of the accuracy of the intervals. Other possible
measures are the actual length θ̄ − θ of the intervals, or, for example, a(θ − θ)2 +
b(θ̄ − θ)2, which gives an indication of the distance of the two endpoints from the
true value.8

An important limiting case corresponds to the levels α1 = α2 = 1
2 . Under the

assumptions of Corollary 3.5.1 and if the region of positive density is independent of
θ so that tests of power 1 are impossible whenα < 1, the upper and lower confidence
bounds θ̄ and θ coincide in this case. The common bound satisfies

Pθ{θ ≤ θ} = Pθ{θ ≥ θ} = 1

2
,

and the estimate θ of θ is therefore as likely to underestimate as to overestimate the
true value. An estimate with this property is said to be median unbiased. (For the
relation of this to other concepts of unbiasedness, see Problem 1.3.) It follows from
the above result for arbitrary α1 and α2 that among all median unbiased estimates, θ
minimizes EL(θ, θ) for anymonotone loss function, that is, any loss function which
for fixed θ has a minimum of 0 at θ = θ and is nondecreasing as θ moves away
from θ in either direction. By taking in particular L(θ, θ) = 0 when |θ − θ| ≤ 
and = 1 otherwise, it is seen that among all median unbiased estimates, θ minimizes
the probability of differing from θ by more than any given amount; more generally
it maximizes the probability

Pθ{−1 ≤ θ − θ < 2}

for any 1, 2 ≥ 0.
A more detailed assessment of the position of θ than that provided by confidence

bounds or intervals corresponding to a fixed level γ = 1 − α is obtained by stating
confidence bounds for a number of levels, for example upper confidence bounds
corresponding to values such as γ = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95. These con-
stitute a set of standard confidence bounds,9 from which different specific intervals
or bounds can be obtained in the obvious manner.

8 Proposed by Wolfowitz (1950).
9 Suggested by Tukey (1949b).
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3.6 A Generalization of the Fundamental Lemma

The following is a useful extension of Theorem 3.2.1 to the case of more than one
side condition.

Theorem 3.6.1 Let f1, . . . , fm+1 be real-valued functions defined on a Euclidean
space X and integrable μ, and suppose that for given constants c1, . . . , cm there
exists a critical function φ satisfying

∫
φ fi dμ = ci , i = 1, . . . ,m. (3.29)

Let C be the class of critical functions φ for which (3.29) holds.
(i) Among all members of C there exists one that maximizes

∫
φ fm+1 dμ.

(ii) A sufficient condition for a member of C to maximize

∫
φ fm+1 dμ

is the existence of constants k1, . . . , km such that

φ(x) = 1 when fm+1(x) >

m∑
i=1

ki fi (x),

(3.30)

φ(x) = 0 when fm+1(x) <

m∑
i=1

ki fi (x).

(iii) If a member of C satisfies (3.30) with k1, . . . , km ≥ 0, then it maximizes

∫
φ fm+1 dμ

among all critical functions satisfying

∫
φ fi dμ ≤ ci , i = 1, . . . ,m. (3.31)

(iv) The set M of points in m-dimensional space whose coordinates are

(∫
φ f1 dμ, . . . ,

∫
φ fm dμ

)
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for some critical function φ is convex and closed. If (c1, . . . , cm) is an inner point10

of M, then there exist constants k1, . . . , km and a test φ satisfying (3.29) and (3.30),
and a necessary condition for a member of C to maximize

∫
φ fm+1 dμ

is that (3.30) holds a.e. μ.

Here the term “inner point of M” in statement (iv) can be interpreted as meaning
a point interior to M relative to m-space or relative to the smallest linear space (of
dimension ≤ m) containing M . The theorem is correct with both interpretations but
is stronger with respect to the latter, for which it will be proved.

We also note that exactly analogous results hold for the minimization of∫
φ fm+1 dμ.

Proof. (i): Let {φn} be a sequence of functions in C such that
∫

φn fm+1 dμ tends to
supφ

∫
φ fm+1 dμ. By the weak compactness theorem for critical functions (Theorem

3.4.2 of the Appendix), there exists a subsequence {φni } and a critical function φ such
that ∫

φni fk dμ →
∫

φ fk dμ for k = 1, · · · ,m + 1.

It follows that φ is in C and maximizes the integral with respect to fm+1 dμ within C.
(ii) and (iii) are proved exactly as was part (ii) of Theorem 3.2.1.
(iv): That M is closed follows again from the weak compactness theorem, and its

convexity is a consequence of the fact that if φ1 and φ2 are critical functions, so is
αφ1 + (1 − α)φ2 for any 0 ≤ α ≤ 1. If N (see Figure 3.4) is the totality of points in
(m + 1)-dimensional space with coordinates

(∫
φ f1 dμ, . . . ,

∫
φ fm+1 dμ

)
,

where φ ranges over the class of all critical functions, then N is convex and closed
by the same argument. Denote the coordinates of a general point in M and N by
(u1, . . . , um) and (u1, . . . , um+1) respectively. The points of N , the first m coordi-
nates of which are c1, . . . , cm , form a closed interval [c∗, c∗∗].

10 A discussion of the problem when this assumption is not satisfied is given by Dantzig and Wald
(1951).
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um + 1

(c1, …, cm, c**)

(c1, c2, … cm, c)

(c1, …, cm, c*)

M

N

Figure 3.4 The sets M and N

Assume first that c∗ < c∗∗. Since (c1, . . . , cm, c∗∗) is a boundary point of N , there
exists a hyperplane

∏
through it such that every point on N lies below or on

∏
. Let

the equation of
∏

be
m+1∑
i=1

kiui =
m∑
i=1

ki ci + km+1c
∗∗.

Since (c1, . . . , cm) is an inner point of M , the coefficient km+1 �= 0. To see this, let
c∗ < c < c∗∗, so that (c1, . . . cm, c) is an inner point of N . Then there exists a sphere
with this point as center lying entirely in N and hence below

∏
. It follows that the

point (c1, . . . cm, c) does not lie on
∏

and hence that km+1 �= 0. We may therefore
take km+1 = −1 and see that for any point of N

um+1 −
m∑
i=1

kiui ≤ c
∗∗
m+1 −

m∑
i=1

ki ci .

That is, all critical functions φ satisfy

∫
φ

(
fm+1 −

m∑
i=1

ki fi

)
dμ ≤

∫
φ

∗∗
(
fm+1 −

m∑
i=1

ki fi

)
dμ,
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where φ
∗∗
is the test giving rise to the point (c1, . . . , cm, c

∗∗
). Thus φ

∗∗
is the critical

function that maximizes the left-hand side of this inequality. Since the integral in
question is maximized by putting φ equal to 1 when the integrand is positive and
equal to 0 when it is negative, φ

∗∗
satisfies (3.30) a.e. μ.

If c∗ = c
∗∗
, let (c′

1, . . . , c
′
m) be any point of M other than (c1, . . . , cm). We shall

now show that there exists exactly one real number c′ such that (c′
1, . . . , c

′
m, c′) is in

N . Suppose to the contrary that (c′
1, . . . , c

′
m, c′)and (c′

1, . . . , c
′
m, c̄′) are both in N , and

consider any point (c′′
1, . . . , c

′′
m, c′′) of N such that (c1, . . . , cm) is an interior point

of the line segment joining (c′
1, . . . , c

′
m) and (c′′

1, . . . , c
′′
m). Such a point exists since

(c1, . . . , cm) is an inner point of M . Then the convex set spanned by the three points
(c′

1, . . . , c
′
m, c′), (c′

1, . . . , c
′
m, c̄′), and (c′′

1, . . . , c
′′
m, c′′) is contained in N and contains

points (c1, . . . , cm, c) and (c1, . . . , cm, c̄)with c < c̄, which is a contradiction. Since
N is convex, contains the origin, and has at most one point on any vertical line
u1 = c′

1, . . . , um = c′
m , it is contained in a hyperplane, which passes through the

origin and is not parallel to the um+1-axis. It follows that

∫
φ fm+1 dμ =

m∑
i=1

ki

∫
φ fi dμ

for all φ. This arises of course only in the trivial case that

fm+1 =
m∑
i=1

ki fi a.e. μ,

and (3.30) is satisfied vacuously.

Corollary 3.6.1 Let p1, . . . , pm, pm+1 be probability densities with respect to a
measure μ, and let 0 < α < 1. Then there exists a test φ such that Eiφ(X) = α
(i = 1, . . . ,m) and Em+1φ(X) > α, unless pm+1 =∑m

i=1 ki pi , a.e. μ.

Proof. The proof will be by induction over m. For m = 1 the result reduces to
Corollary 3.2.1. Assume now that it has been proved for any set of m distributions,
and consider the case of m + 1 densities p1, . . . , pm+1. If p1, . . . , pm are linearly
dependent, the number of pi can be reduced and the result follows from the induction
hypothesis. Assume therefore that p1, . . . , pm are linearly independent. Then for
each j = 1, . . . ,m there exist by the induction hypothesis tests φ j and φ′

j such that
Eiφ j (X) = Eiφ

′
j (X) = α for all i = 1, . . . , j − 1, j + 1, . . . ,m and E jφ j (X) <

α < E jφ
′
j (X). It follows that the point of m-space for which all m coordinates are

equal to α is an inner point of M , so that Theorem 3.6.1(iv) is applicable. The test
φ(x) ≡ α is such that Eiφ(X) = α for i = 1, . . . ,m. If among all tests satisfying the
side conditions this one is most powerful, it has to satisfy (3.30). Since 0 < α < 1,
this implies
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pm+1 =
m∑
i=1

ki pi a.e.μ,

as was to be proved.

The most useful parts of Theorems 3.2.1 and 3.6.1 are the parts (ii), which give
sufficient conditions for a critical function to maximize an integral subject to certain
side conditions. These results can be derived very easily as follows by the method
of undetermined multipliers.

Lemma 3.6.1 Let F1, . . . , Fm+1 be real-valued functions defined over a space U,
and consider the problem of maximizing Fm+1(u) subject to Fi (u) = ci
(i = 1, . . . ,m). A sufficient condition for a point u0 satisfying the side conditions to
be a solution of the given problem is that among all points of U it maximizes

Fm+1(u) −
m∑
i=1

ki Fi (u)

for some k1, . . . , km.

When applying the lemma one usually carries out the maximization for arbitrary
k’s, and then determines the constants so as to satisfy the side conditions.
Proof. If u is any point satisfying the side conditions, then

Fm+1(u) −
m∑
i=1

ki Fi (u) ≤ Fm+1(u
0) −

m∑
i=1

ki Fi (u
0),

and hence Fm+1(u) ≤ Fm+1(u0).
As an application consider the problem treated in Theorem 3.6.1. Let U be the

space of critical functions φ, and let Fi (φ) = ∫ φ fi dμ. Then a sufficient condition
for φ to maximize Fm+1(φ), subject to Fi (φ) = ci , is that it maximizes Fm+1(φ) −∑

ki Fi (φ) = ∫ ( fm+1 −∑ ki fi )φ dμ. This is achieved by setting φ(x) = 1 or 0 as
fm+1(x) > or <

∑
ki fi (x).

3.7 Two-Sided Hypotheses

UMP tests exist not only for one sided but also for certain two-sided hypotheses of
the form

H : θ ≤ θ1 or θ ≥ θ2 (θ1 < θ2). (3.32)

This problem arises when trying to demonstrate equivalence (or sometimes called
bioequivalence) of treatments; for example, a new drug may be declared equivalent
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to the current standard drug if the difference in therapeutic effect is small, meaning θ
lies in a small interval about 0. Such testing problems also occur when one wishes to
determine whether given specifications have been met concerning the proportion of
an ingredient in a drug or some other compound, or whether a measuring instrument,
for example a scale, is properly balanced. One then sets up the hypothesis that θ
does not lie within the required limits, so that an error of the first kind consists
in declaring θ to be satisfactory when in fact it is not. In practice, the decision to
accept H will typically be accompanied by a statement of whether θ is believed to be
≤ θ1 or ≥ θ2. The implications of H are, however, frequently sufficiently important
so that acceptance will in any case be followed by a more detailed investigation.
If a manufacturer tests each precision instrument before releasing it and the test
indicates an instrument to be out of balance, further work will be done to get it
properly adjusted. If in a scientific investigation the inequalities θ ≤ θ1 and θ ≥ θ2
contradict some assumptions that have been formulated, a more complex theory may
be needed and further experimentation will be required. In such situations there may
be only two basic choices, to act as if θ1 < θ < θ2 or to carry out some further
investigation, and the formulation of the problem as that of testing the hypothesis H
may be appropriate. In the present section, the existence of a UMP test of H will be
proved for one-parameter exponential families.

Theorem 3.7.1 (i) For testing the hypothesis H : θ ≤ θ1 or θ ≥ θ2 (θ1 < θ2)
against the alternatives K : θ1 < θ < θ2 in the one-parameter exponential family
(3.19) there exists a UMP test given by

φ(x) =
⎧⎨
⎩

1 when C1 < T (x) < C2 (C1 < C2),

γi when T (x) = Ci , i = 1, 2,
0 when T (x) < C1 or > C2,

(3.33)

where the C’s and γ’s are determined by

Eθ1φ(X) = Eθ2φ(X) = α. (3.34)

(ii) This test minimizes Eθφ(X) subject to (3.34) for all θ < θ1 and > θ2.
(iii) For 0 < α < 1 the power function of this test has a maximum at a point θ0

between θ1 and θ2 and decreases strictly as θ tends away from θ0 in either direction,
unless there exist two values t1, t2 such that Pθ{T (X) = t1} + Pθ{T (X) = t2} = 1
for all θ.

Proof. (i): One can restrict attention to the sufficient statistic T = T (X), the distri-
bution of which by Lemma 2.7.2 is

dPθ(t) = C(θ)eQ(θ)t dν(t),

where Q(θ) is assumed to be strictly increasing. Let θ1 < θ′ < θ2, and consider first
the problem of maximizing Eθ′ψ(T ) subject to (3.34) with φ(x) = ψ[T (x)]. If M
denotes the set of all points Eθ1ψ(T ), Eθ2ψ(T )) asψ ranges over the totality of critical
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functions, then the point (α,α) is an inner point of M . This follows from the fact that
by Corollary 3.2.1 the set M contains points (α, u1) and (α, u2) with u1 < α < u2
and that it contains all points (u, u) with 0 < u < 1. Hence by part (iv) of Theorem
3.6.1 there exist constants k1, k2 and test ψ0(t) and that φ0(x) = ψ0[T (x)] satisfies
(3.34) and that ψ0(t) = 1 when

k1C(θ1)e
Q(θ1)t + k2C(θ2)e

Q(θ2)t < C(θ′)eQ(θ′)t

and therefore when

a1e
b1t + a2e

b2t < 1 (b1 < 0 < b2),

and ψ0(t) = 0 when the left-hand side is > 1. Here the a’s cannot both be ≤ 0, since
then the test would always reject. If one of the a’s is≤ 0 and the other one is> 0, then
the left-hand side is strictlymonotone, and the test is of the one-sided type considered
in Corollary 3.4.1, which has a strictly monotone power function and hence cannot
satisfy (3.34). Therefore, since both a’s are positive, the test satisfies (3.33). It follows
from Lemma 3.7.1 below that the C’s and γ’s are uniquely determined by (3.33) and
(3.34), and hence from Theorem 3.6.1(iii) that the test is UMP subject to the weaker
restriction Eθi ψ(T ) ≤ α (i = 1, 2). To complete the proof that this test is UMP for
testing H , it is necessary to show that it satisfies Eθψ(T ) ≤ α for θ ≤ θ1 and θ ≥ θ2.
This follows from (ii) by comparison with the test ψ(t) ≡ α.

(ii): Let θ′ < θ1, and apply Theorem 3.6.1(iv) to minimize Eθ′φ(X) subject to
(3.34). Dividing through by eQ(θ1)t , the desired test is seen to have a rejection region
of the form

a1e
b1t + a2e

b2t < 1 (b1 < 0 < b2).

Thus it coincides with the test ψ0(t) obtained in (i). By Theorem 3.6.1(iv) the first
and third conditions of (3.33) are also necessary, and the optimum test is therefore
unique provided P{T = Ci } = 0.

(iii):Without loss of generality let Q(θ) = θ. It follows from (i) and the continuity
of β(θ) = Eθφ(X) that either β(θ) satisfies (iii) or there exist three points θ′ < θ′′ <

θ′′′ such that β(θ′′) ≤ β(θ′) = β(θ′′′) = c, say. Then 0 < c < 1, since β(θ′) = 0
(or 1) implies φ(t) = 0 (or 1) a.e. ν and this is excluded by (3.34). As is seen by
the proof of (i), the test minimizes Eθ′′φ(X) subject to Eθ′φ(X) = Eθ′′′φ(X) = c for
all θ′ < θ′′ < θ′′′. However, unless T takes on at most two values with probability
1 or all θ, pθ′, pθ′′, pθ′′′ are linearly independent, which by Corollary 3.6.1 implies
β(θ′′) > c.

In order to determine the C’s and γ’s, one will in practice start with some trial
values C∗

1 , γ
∗
1 , find C∗

2 , γ
∗
2 such that β∗(θ1) = α, and compute β∗(θ2), which will

usually be either too large or too small. For the selection of the next trial values it is
then helpful to note that if β∗(θ2) < α, the correct acceptance region is to the right of
the one chosen, that is, it satisfies either C1 > C∗

1 or C1 = C∗
1 and γ1 < γ∗

1 , and that
the converse holds if β∗(θ2) > α. This is a consequence of the following lemma.
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Lemma 3.7.1 Let pθ(x) satisfy the assumptions of Lemma 3.4.2(iv).
(i) If φ and φ∗ are two tests satisfying (3.33) and Eθ1φ(T ) = Eθ1φ

∗(T ), and if
φ∗ is to the right of φ, then β(θ) < or > β∗(θ) as θ > θ1 or < θ1.

(ii) If φ and φ∗ satisfy (3.33) and (3.34), then φ = φ∗ with probability one.

Proof. (i): The result follows from Lemma 3.4.2(iv) with ψ = φ∗ − φ. (ii): Since
Eθ1φ(T ) = Eθ1φ

∗(T ),φ∗ lies either to the left or the right of φ, and application of
(i) completes the proof.

Although aUMP test exists for testing that θ ≤ θ1 or≥ θ2 in an exponential family,
the same is not true for the dual hypothesis H : θ1 ≤ θ ≤ θ2 or for testing θ = θ0
(Problem 3.59). There do, however, exist UMP unbiased tests of these hypotheses,
as will be shown in Chapter 4.

3.8 Least Favorable Distributions

It is a consequence of Theorem 3.2.1 that there always exists a most powerful test
for testing a simple hypothesis against a simple alternative. More generally, consider
the case of a Euclidean sample space; probability densities fθ, θ ∈ ω, and g with
respect to a measure μ; and the problem of testing H : fθ, θ ∈ ω, against the simple
alternative K : g. The existence of a most powerful level α test then follows from the
weak compactness theorem for critical functions (Theorem A.5.1 of the Appendix)
as in Theorem 3.6.1(i).

Theorem 3.2.1 also provides an explicit construction for the most powerful test
in the case of a simple hypothesis. We shall now extend this theorem to composite
hypotheses in the direction of Theorem 3.6.1 by the method of undetermined multi-
pliers. However, in the process of extension the result becomes much less explicit.
Essentially it leaves open the determination of the multipliers, which now take the
form of an arbitrary distribution. In specific problems this usually still involves con-
siderable difficulty. From another point of view the method of attack, as throughout
the theory of hypothesis testing, is to reduce the composite hypothesis to a simple
one. This is achieved by consideringweighted averages of the distributions of H . The
composite hypothesis H is replaced by the simple hypothesis H� that the probability
density of X is given by

h�(x) =
∫

ω

fθ(x) d�(θ),

where � is a probability distribution over ω. The problem of finding a suitable
� is frequently made easier by the following consideration. Since H provides no
information concerning θ and since H� is to be equivalent to H for the purpose
of testing against g, knowledge of the distribution � should provide as little help
for this task as possible. To make this precise suppose that θ is known to have a
distribution �. Then the maximum power β� that can be attained against g is that of
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the most powerful test φ� for testing H� against g. The distribution � is said to be
least favorable (at level-α) if for all �′ the inequality β� ≤ β�′ holds.

Theorem 3.8.1 Let a σ-field be defined over ω such that the densities fθ(x) are
jointly measurable in θ and x. Suppose that over this σ-field there exists a probability
distribution � such that the most powerful level-α test φ� for testing H� against g
is of size ≤ α also with respect to the original hypothesis H.

(i) The test φ� is most powerful for testing H against g.
(ii) If φ� is the unique most powerful level α for testing H� against g, it is also

the unique most powerful test of H against g.
(iii) The distribution � is least favorable.

Proof. We note first that h� is again a density with respect to μ, since by Fubini’s
theorem (Theorem 2.2.4)

∫
h�(x) dμ(x) =

∫
ω

d�(θ)

∫
fθ(x) dμ(x) =

∫
ω

d�(θ) = 1.

Suppose that φ� is a level-α test for testing H , and let φ∗ be any other level-α
test. Then since Eθφ

∗(X) ≤ α for all θ ∈ ω, we have

∫
φ∗(x)h�(x) dμ(x) =

∫
ω

Eθφ
∗(X)d�(θ) ≤ α.

Therefore φ∗ is a level-α test also for testing H� and its power cannot exceed that
of φ�. This proves (i) and (ii). If �′ is any distribution, it follows further that φ� is
a level-α test also for testing H�′ , and hence that its power against g cannot exceed
that of the most powerful test, which by definition is β�′ .

The conditions of this theorem can be given a somewhat different form by noting
that φ� can satisfy

∫
ω Eθφ�(X) d�(θ) = α and Eθφ�(X) ≤ α for all θ ∈ ω only if

the set of θ′’s with Eθφ�(X) = α has �-measure one.

Corollary 3.8.1 Suppose that � is a probability distribution over ω and that ω′ is
a subset of ω with �(ω′) = 1. Let φ� be a test such that

φ�(x) =
{
1 if g(x) > k

∫
fθ(x) d�(θ),

0 if g(x) < k
∫

fθ(x) d�(θ).
(3.35)

Then φ� is a most powerful level-α for testing H against g provided

Eθ′φ�(X) = sup
θ∈ω

Eθφ�(X) = α for θ′ ∈ ω′. (3.36)

Theorems 3.4.1 and 3.7.1 constitute two simple applications of Theorem 3.8.1.
The set ω′ over which the least favorable distribution � is concentrated consists of
the single point θ0 in the first of these examples and of the two points θ1 and θ2 in the
second. This is what one might expect, since in both cases these are the distributions
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of H that appear to be “closest” to K . Another example in which the least favorable
distribution is concentrated at a single point is the following.

Example 3.8.1 (Sign test) The quality of items produced by a manufacturing pro-
cess is measured by a characteristic X such as the tensile strength of a piece of
material, or the length of life or brightness of a light bulb. For an item to be sat-
isfactory X must exceed a given constant u, and one wishes to test the hypothesis
H : p ≥ p0, where

p = P{X ≤ u}

is the probability of an item being defective. Let X1, . . . , Xn be the measurements
of n sample items, so that the X ’s are independently distributed with common dis-
tribution about which no knowledge is assumed. Any distribution on the real line
can be characterized by the probability p together with the conditional probability
distributions P− and P+ of X given X ≤ u and X > u respectively. If the distribu-
tions P− and P+ have probability densities p− and p+, for example with respect
to μ = P− + P+, then the joint density of X1, . . . , Xn at a sample point x1, . . . , xn
satisfying

xi1 , . . . , xim ≤ u < x j1 , . . . , x jn−m

is
pm(1 − p)n−m p−(xi1) · · · p−(xim )p+(x j1) · · · p+(x jn−m ).

Consider now a fixed alternative to H , say (p1, P−, P+), with p1 < p0. One would
then expect the least favorable distribution � over H to assign probability 1 to the
distribution (p0, P−, P+) since this appears to be closest to the selected alternative.
With this choice of �, the test (3.35) becomes

φ�(x) = 1 or 0 as

(
p1
p0

)m (q1
q0

)n−m

> or < C,

and hence as m < or > C . The test therefore rejects when the number M of defec-
tives is sufficiently small, or more precisely, when M < C and with probability γ
when M = C , where

P{M < C} + γP{M = C} = α for p = p0. (3.37)

The distribution of M is the binomial distribution b(p, n), and does not depend on
P+ and P−. As a consequence, the power function of the test depends only on p and
is a decreasing function of p, so that under H it takes on its maximum for p = p0.
This proves � to be least favorable and φ� to be most powerful. Since the test is
independent of the particular alternative chosen, it is UMP.
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Expressed in terms of the variables Zi = Xi − u, the test statisticM is the number
of variables≤ 0, and the test is the so-called sign test (cf. Section 4.9). It is an example
of a nonparametric test, since it is derived without assuming a given functional form
for the distribution of the X ’s such as the normal, uniform, or Poisson, in which only
certain parameters are unknown.

The above argument applies, with only the obvious modifications, to the case
that an item is satisfactory if X lies within certain limits: u < X < v. This occurs,
for example, if X is the length of a metal part or the proportion of an ingredient
in a chemical compound, for which certain tolerances have been specified. More
generally the argument applies also to the situation in which X is vector-valued.
Suppose that an item is satisfactory only when X lies in a certain set S, for example,
if all the dimensions of ametal part or the proportions of several ingredients lie within
specified limits. The probability of a defective is then

p = P{X ∈ Sc},

and P− and P+ denote the conditional distributions of X given X ∈ S and X ∈ Sc

respectively. As before, there exists a UMP test of H : p ≥ p0, and it rejects H when
the number M of defectives is sufficiently small, with the boundary of the test being
determined by (3.37).

A distribution � satisfying the conditions of Theorem 3.8.1 exists in most of the
usual statistical problems, and in particular under the following assumptions. Let the
sample space be Euclidean, let ω be a closed Borel set in s-dimensional Euclidean
space, and suppose that fθ(x) is a continuous function of θ for almost all x . Then
given any g there exists a distribution � satisfying the conditions of Theorem 3.8.1
provided

lim
n→∞

∫
S
fθn (x) dμ(x) = 0

for every bounded set S in the sample space and for every sequence of vectors θn
whose distance from the origin tends to infinity.

From this it follows as did Corollaries 1 and 4 from Theorems 3.2.1 and 3.6.1, that
if the above conditions hold and if 0 < α < 1, there exists a test of power β > α for
testing H : fθ, θ ∈ ω, against g unless g = ∫ fθ d�(θ) for some �. An example of
the latter possibility is obtained by letting fθ and g be the normal densities N (θ,σ2

0)

and N (0,σ2
1) respectively with σ2

0 < σ2
1. (See the following section.)

The above and related results concerning the existence and structure of least
favorable distributions are given in Lehmann (1952b) (with the requirement that ω
be closedmistakenly omitted), in Reinhardt (1961), and in Krafft andWitting (1967),
where the relation to linear programming is explored.
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3.9 Applications to Normal Distributions

3.9.1 Univariate Normal Models

Because of their wide applicability, the problems of testing the mean ξ and variance
σ2 of a normal distribution are of particular importance. Here and in similar problems
later, the parameter not being tested is assumed to be unknown, but will not be shown
explicitly in a statement of the hypothesis.We shallwrite, for example,σ ≤ σ0 instead
of the more complete statement σ ≤ σ0,−∞ < ξ < ∞. The standard (likelihood
ratio) tests of the two hypotheses σ ≤ σ0 and ξ ≤ ξ0 are given by the rejection
regions ∑

(xi − x̄)2 ≥ C (3.38)

and √
n(x̄ − ξ0)√

1
n−1

∑
(xi − x̄)2

≥ C. (3.39)

The corresponding tests for the hypotheses σ ≥ σ0 and ξ ≥ ξo are obtained from the
rejection regions (3.38) and (3.39) by reversing the inequalities. As will be shown
in later chapters, these four tests are UMP both within the class of unbiased and
within the class of invariant test (but see Section 13.2 for problems arising when the
assumption of normality does not hold exactly). However, at the usual significance
levels only the first of them is actually UMP.

Example 3.9.1 (One-sided tests of variance.) Let X1, . . . , Xn be a sample from
N (ξ,σ2), and consider first the hypotheses H1 : σ ≥ σ0 and H2 : σ ≤ σ0, and a
simple alternative K : ξ = ξ1,σ = σ1. It seems reasonable to suppose that the least
favorable distribution� in the (ξ,σ)-plane is concentrated on the line σ = σ0. Since
Y =∑ Xi/n = X̄ andU =∑(Xi − X̄)2 are sufficient statistics for the parameters
(ξ,σ), attention can be restricted to these variables. Their joint density under H� is

Cou
(n−3)/2 exp

(
− u

2σ2
0

)∫
exp

[
− n

2σ2
o

(y − ξ)2
]
d�(ξ),

while under K it is

C1u
(n−3)/2 exp

(
− u

2σ2
1

)
exp

[
− n

2σ2
1

(y − ξ1)
2

]
.

The choice of � is seen to affect only the distribution of Y . A least favorable �

should therefore have the property that the density of Y under H�,
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∫ √
n√

2πσ2
0

exp

[
− n

2σ2
0

(y − ξ)2
]
d�(ξ),

comes as close as possible to the alternative density,

√
n√

2πσ2
1

exp

[
− n

2σ2
1

(y − ξ1)
2

]
.

At this point one must distinguish between H1 and H2. In the first case σ1 < σ0. By
suitable choice of � the mean of Y can be made equal to ξ1, but the variance will if
anything be increased over its initial value σ2

0. This suggests that the least favorable
distribution assigns probability 1 to the point ξ = ξ1, since in this way the distribution
of Y is normal both under H and K with the samemean in both cases and the smallest
possible difference between the variances. The situation is somewhat different for
H2, for which σ0 < σ1. If the least favorable distribution � has a density, say �′, the
density of Y under H� becomes

∫ ∞

−∞

√
n√

2πσ0
exp

[
− n

2σ2
0

(y − ξ)2
]

�′(ξ) dξ.

This is the probability density of the sum of two independent random variables,
one distributed as N (0,σ2

0/n) and the other with density �′(ξ). If � is taken to be
N (ξ1, (σ

2
1 − σ2

0)/n), the distribution of Y under H� becomes N (ξ1,σ
2
1/n), the same

as under K .
We now apply Corollary 3.8.1 with the distributions� suggested above. For H1 it

ismore convenient toworkwith the original variables thanwithY andU . Substitution
in (3.35) gives φ(x) = 1 when

(2πσ2
1)

−n/2 exp
[
− 1

2σ2
1

∑
(xi − ξ1)

2
]

(2πσ2
0)

−n/2 exp
[
− 1

2σ2
0

∑
(xi − ξ1)2

] > C,

that is, when ∑
(xi − ξ1)

2 ≤ C. (3.40)

To justify the choice of �, one must show that

P
{∑

(Xi − ξ1)
2 ≤ C |ξ,σ

}

takes on its maximum over the half plane σ ≥ σ0 at the point ξ = ξ1, σ = σ0. For
any fixed σ, the above is the probability of the sample point falling in a sphere
radius, computed under the assumption that the X ’s are independently distributed
as N (ξ,σ2). This probability is maximized when the center of the sphere coincides
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with that of the distribution, that is, when ξ = ξ1. (This follows for example from
Problem 7.15.) The probability then becomes

P

{∑(
xi − ξ1

σ

)2

≤ C

σ2

∣∣∣ ξ1,σ
}

= P

{∑
V 2
i ≤ C

σ2

}
,

where V1, . . . , Vn are independently distributed as N (0, 1). This is a decreasing
function of σ and therefore takes on its maximum when σ = σ0.

In the case of H2, application of Corollary 3.8.1 to the sufficient statistics (Y,U )

gives φ(y, u) = 1 when

C1u(n−3)/2 exp
(
− u

2σ2
1

)
exp
[
− n

2σ2
1
(y − ξ1)

2
]

C0u(n−3)/2 exp
(
− u

2σ2
0

) ∫
exp
[
− n

2σ2
0
(y − ξ)2

]
�′(ξ) dξ

= C ′ exp
[
−u

2

(
1

σ2
1

− 1

σ2
0

)]
≥ C,

that is, when
u =

∑
(xi − x̄)2 ≥ C. (3.41)

Since the distribution of
∑

(Xi − X̄)2/σ2 does not depend on ξ or σ, the probability
P{∑(Xi − X̄)2 ≥ C | ξ,σ} is independent of ξ and increases with σ so that the
conditions of Corollary 3.8.1 are satisfied. The test (3.41), being independent of ξ1
and σ1, is UMP for testing σ ≤ σ0 against σ > σ0. It is also seen to coincide with
the likelihood ratio test (3.38). On the other hand, the most powerful test (3.40) for
testing σ ≥ σ0 against σ < σ0 does depend on the value ξ1 of ξ under the alternative.

It has been tacitly assumed so far thatn > 1. Ifn = 1, the argument applieswithout
change with respect to H1, leading to (3.40) with n = 1. However, in the discussion
of H2 the statistic U now drops out, and Y coincides with the single observation X .
Using the same � as before, one sees that X has the same distribution under H� as
under K , and the test φ� therefore becomes φ�(x) ≡ α. This satisfies the conditions
of Corollary 3.8.1 and is therefore the most powerful test for the given problem. It
follows that a single observation is of no value for testing the hypothesis H2, as seems
intuitively obvious, but that it could be used to test H1 if the class of alternatives were
sufficiently restricted.

The corresponding derivation for the hypothesis ξ ≤ ξ0 is less straightforward.
It turns out11 that Student’s test given by (3.39) is most powerful if the level of
significance α is ≥ 1

2 , regardless of the alternative ξ1 > ξ0, σ1. This test is therefore
UMP for α ≥ 1

2 . On the other hand, when α < 1
2 the most powerful test of H rejects

when
∑

(xi − a)2 ≤ b, where the constants a and b depend on the alternative (ξ1,σ1)

and on α. Thus for the significance levels that are of interest, a UMP test of H does

11 See Lehmann and Stein (1948).
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not exist. No new problem arises for the hypothesis ξ ≥ ξ0, since this reduces to the
case just considered through the transformation Yi = ξ0 − (Xi − ξ0).

3.9.2 Multivariate Normal Models

Let X denote a k × 1 random vector whose ith component, Xi , is a real-valued
random variable. The mean of X , denoted E(X), is a vector with i th component
E(Xi ) (assuming it exists). The covariance matrix of X , denoted �, is the k × k
matrix with (i, j) entryCov(Xi , X j ).� is well-defined iff E(|X |2) < ∞, where | · |
denotes the Euclidean norm. Note that if A is anm × k matrix, then them × 1 vector
Y = AX has mean (vector) AE(X) and covariance matrix A�A�, where A� is the
transpose of A (Problem 3.68).

Themultivariate generalization of a real-valued normally distributed random vari-
able is a random vector X = (X1, . . . , Xk)

� with themultivariate normal probability
density √|A|

(2π)
1
2 k

exp
[
− 1

2

∑∑
ai j (xi − ξi )(x j − ξ j )

]
, (3.42)

where the matrix A = (ai j ) is positive definite, and |A| denotes its determinant. The
means and covariance matrix of the X ’s are given by

E(Xi ) = ξi , E(Xi − ξi )(X j − ξ j ) = σi j , (σi j ) = A−1. (3.43)

The column vector ξ = (ξ1, . . . , ξk)
� is the mean vector and � = A−1 is the covari-

ance matrix of X .
Such a definition only applies when A is nonsingular, in which case we say that X

has a nonsingular multivariate normal distribution. More generally, we say that Y has
amultivariate normal distribution ifY = BX + μ for somem × kmatrix of constants
B and m × 1 constant vector μ, where X has some nonsingular multivariate normal
distribution. Then, Y is multivariate normal if and only if

∑m
i=1 ciYi is univariate

normal for all c, where N (ξ,σ2) with σ = 0 is interpreted to be the distribution that
is point mass at ξ. Basic properties of the multivariate normal distribution are given
in Anderson (2003).

Example 3.9.2 (One-sided tests of a combination of means.) Assume X is multi-
variate normal with unknown mean ξ = (ξ1, . . . , ξk)

� and known covariance matrix
�. Assume a = (a1, . . . , ak)� is a fixed vector with a��a > 0. The problem is to
test

H :
k∑

i=1

aiξi ≤ δ vs. K :
k∑

i=1

akξi > δ .
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We will show that a UMP level α test exists, which rejects when
∑

i ai Xi > σz1−α,
whereσ2 = a��a. To seewhy,12 wewill consider four cases of increasing generality.

Case 1. If k = 1 and the problem is to test the mean of X1, the result follows by
Problem 3.1.

Case 2. Consider now general k, so that (X1, . . . , Xk) has mean (ξ1, . . . , ξk)
and covariance matrix �. However, consider the special case (a1, . . . , ak) =
(1, 0, . . . , 0). Also, assume X1 and (X2, . . . , Xk) are independent. Then, for any
fixed alternative (ξ′

1, . . . , ξ
′
k) with ξ′

1 > δ, the least favorable distribution concen-
trates on the single point (δ, ξ′

2, . . . , ξ
′
k) (Problem 3.70).

Case 3. As in case 2, consider a1 = 1 and ai = 0 if i > 1, but now allow � to be an
arbitrary covariance matrix. We can reduce the problem to case 2 by an appropriate
linear transformation. Simply let Y1 = X1 and, for i > 1, let

Yi = Xi − Cov(X1, Xi )

Var(X1)
X1 .

Then, it is easily checked that Cov(Y1,Yi ) = 0 if i > 1. Moreover, Y is just a 1:1
transformation of X . But, the problem of testing E(Y1) = E(X1) based on Y =
(Y1, . . . ,Yk) is in the form already studied in case 2, and the UMP test rejects for
large values of Y1 = X1.

Case 4. Now, consider arbitrary (a1, . . . , ak) satisfying a��a > 0. Let Z = OX ,
where O is any orthogonal matrix with first row (a1, . . . , ak). Then, E(Z1) =∑k

i=1 aiξi , and the problem of testing E(Z1) ≤ δ versus E(Z1) > δ reduces to case
3. Hence, the UMP test rejects for large values of Z1 =∑k

i=1 ai Xi .

Example 3.9.3 (Equivalence tests of a combination of means.) As in
Example 3.9.2, assume X is multivariate normal N (ξ, �) with unknown mean vec-
tor ξ and known covariance matrix �. Fix δ > 0 and any vector a = (a1, . . . , ak)�
satisfying a��a > 0. Consider testing

H : |
k∑

i=1

aiξi | ≥ δ vs K : |
k∑

i=1

aiξi | < δ .

Then, a UMP level α test also exists and it rejects H if

|
k∑

i=1

ai Xi | < C ,

where C = C(α, δ,σ) satisfies

12 Proposition 15.2 of van der Vaart (1998) provides an alternative proof in the case � is invertible.
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�

(
C − δ

σ

)
− �

(−C − δ

σ

)
= α (3.44)

and σ2 = a��a. Hence, the power of this test against an alternative (ξ1, . . . , ξk)
with |∑i aiξi | = δ′ < δ is

�

(
C − δ′

σ

)
− �

(−C − δ′

σ

)
.

To seewhy,we again consider four cases of increasing generality. Case 1.Suppose

k = 1, so that X1 = X is N (ξ,σ2) and we are testing |ξ| ≥ δ versus |ξ| < δ. (This
case follows by Theorem 3.7.1, but we argue independently so that the argument
applies to the other cases as well.) Fix an alternative ξ = m with |m| < δ. Reduce
the composite null hypothesis to a simple one via a least favorable distribution that
places mass p on N (δ,σ2) and mass 1 − p on N (−δ,σ2). The value of p will be
chosen shortly so that such a distribution is least favorable (andwill be seen to depend
on m, α, σ and δ). By the Neyman–Pearson Lemma, the MP test of

pN (δ,σ2) + (1 − p)N (−δ,σ2) vs N (m,σ2)

rejects for small values of

p exp
[− 1

2σ2 (X − δ)2
]+ (1 − p) exp

[− 1
2σ2 (X + δ)2

]
exp
[− 1

2σ2 (X − m)2
] , (3.45)

or equivalently for small values of f (X), where

f (x) = p exp[(δ − m)X/σ2] + (1 − p) exp[−(δ + m)X/σ2] .

We can now choose p so that f (C) = f (−C), so that p must satisfy

p

1 − p
= exp[(δ + m)C/σ2] − exp[−(δ + m)C/σ2]

exp[(δ − m)C/σ2] − exp[−(δ − m)C/σ2] . (3.46)

Since δ − m > 0 and δ + m > 0, both the numerator and denominator of the right
side of (3.46) are positive, so the right side is a positive number. On the other hand,
p/(1 − p) is a nondecreasing function of p with range [0,∞) as p varies from 0 to
1. Thus, p is well-defined. Also, observe f ′′(x) ≥ 0 for all x . It follows that (for this
special choice of C)

{X : f (X) ≤ f (C)} = {X : |X | ≤ C}

is the rejection region of the MP test. Such a test is easily seen to be level α for
the original composite null hypothesis because its power function is symmetric and
decreases away from zero. Thus, the result follows by Theorem 3.8.1.
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Case 2. Consider now general k, so that (X1, . . . , Xk) has mean (ξ1, . . . , ξk) and
covariancematrix�.However, consider the special case (a1, . . . , ak) = (1, 0, . . . , 0),
so we are testing |ξ1| ≥ δ versus |ξ1| < δ. Also, assume X1 and (X2, . . . , Xk) are
independent, so that the first row and first column of� are zero except the first entry,
which is σ2 (assumed positive). Using the same reasoning as case 1, fix an alternative
m = (m1, . . . ,mk) with |m1| < δ and consider testing

pN ((δ,m2, . . . ,mk),�) + (1 − p)N ((−δ,m2, . . . ,mk),�)

versus N ((m1, . . . ,mk),�). The likelihood ratio is in fact the same as (3.45) because
each term is now multiplied by the density of (X2, . . . , Xk) (by independence), and
these densities cancel. The UMP test from case 1, which rejects when |X1| ≤ C , is
UMP in this situation as well.

Case 3. As in case 2, consider a1 = 1 and ai = 0 if i > 1, but now allow � to be an
arbitrary covariance matrix. By transforming X to Y as in Case 3 of Example 3.9.2,
the result follows (Problem 3.71).

Case 4. Now, consider arbitrary (a1, . . . , ak) satisfying a��a > 0. As in case 4 of
Example 3.9.2, transform X to Z and the result follows (Problem 3.71).

3.10 Problems

Section 3.2

Problem 3.1 Let X1, . . . , Xn be a sample from the normal distribution N (ξ,σ2).

(i) If σ = σ0 (known), there exists a UMP test for testing H : ξ ≤ ξ0 against ξ > ξ0,
which rejects when

∑
(Xi − ξ0) is too large.

(ii) If ξ = ξ0 (known), there exists a UMP test for testing H : σ ≤ σ0 against K :
σ > σ0, which rejects when

∑
(Xi − ξ0)

2 is too large.

Problem 3.2 UMP test for U (0, θ). Let X = (X1, . . . , Xn) be a sample from the
uniform distribution on (0, θ).

(i) For testing H : θ ≤ θ0 against K : θ > θ0 any test is UMP at level α for which
Eθ0φ(X) = α, Eθφ(X) ≤ α for θ ≤ θ0, and φ(x) = 1 when max(x1, . . . , xn) >

θ0.
(ii) For testing H : θ = θ0 against K : θ �= θ0 a unique UMP test exists, and is

given by φ(x) = 1 when max(x1, . . . , xn) > θ0 or max(x1, . . . , xn) ≤ θ0 n
√

α,
and φ(x) = 0 otherwise.

[(i): For each θ > θ0 determine the ordering established by r(x) = pθ(x)/pθ0(x)
and use the fact that many points are equivalent under this ordering.
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(ii): Determine the UMP tests for testing θ = θ0 against θ < θ0 and combine this
result with that of part (i).]

Problem 3.3 Suppose N i.i.d. random variables are generated from the same known
strictly increasing absolutely continuous cdf F(·). We are told only X , the maximum
of these random variables. Is there a UMP size α test of

H0 : N ≤ 5 versus H1 : N > 5?

If so, find it.

Problem 3.4 UMP test for exponential densities. Let X1, . . . , Xn be a sample from
the exponential distribution E(a, b)ofProblem1.18, and let X(1) = min(X1, . . . , Xn).

(i) Determine the UMP test for testing H : a = a0 against K : a �= a0 when b is
assumed known.

(ii) The power of any MP level-α test of H : a = a0 against K : a = a1 < a0 is
given by

β∗(a1) = 1 − (1 − α)e−n(a0−a1)/b.

(iii) For the problem of part (i), when b is unknown, the power of any level α test
which rejects when

X(1) − a0∑[Xi − X(1)] ≤ C1 or ≥ C2

against any alternative (a1, b) with a1 < a0 is equal to β∗(a1) of part (ii) (inde-
pendent of the particular choice of C1 and C2).

(iv) The test of part (iii) is a UMP level-α test of H : a = a0 against K : a �= a0 (b
unknown).

(v) Determine the UMP test for testing H : a = a0, b = b0 against the alternatives
a < a0, b < b0.

(vi) Explain the (very unusual) existence in this case of aUMP test in the presence of
a nuisance parameter [part(iv)] and for a hypothesis specifying two parameters
[part(v)].

[(i) The variables Yi = e−Xi /b are a sample from the uniform distribution on
(0, e−a/b).]

Note. For more general versions of parts (ii)–(iv), see Takeuchi (1969) and Kabe
and Laurent (1981).

Problem 3.5 In the proof of Theorem 3.2.1(i), consider the set of c satisfying
α(c) ≤ α ≤ α(c − 0). If there is only one such c, c is unique; otherwise, there is
an interval of such values [c1, c2]. Argue that, in this case, if α(c) is continuous at
c2, then Pi (C) = 0 for i = 0, 1, where
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C =
{
x : p0(x) > 0 and c1 <

p1(x)

p0(x)
≤ c2

}
.

If α(c) is not continuous at c2, then the result is false.

Problem 3.6 Let P0, P1, P2 be the probability distributions assigning to the integers
1, . . . , 6 the following probabilities:

1 2 3 4 5 6

P0 0.03 0.02 0.02 0.01 0 0.92

P1 0.06 0.05 0.08 0.02 0.01 0.78

P2 0.09 0.05 0.12 0 0.02 0.72

Determine whether there exists a level-α test of H : P = P0 which is UMP against
the alternatives P1 and P2 when (i) α = 0.01; (ii) α = 0.05; (iii) α = 0.07.

Problem 3.7 Let the distribution of X be given by

x 0 1 2 3

Pθ(X = x) θ 2θ 0.9 − 2θ 0.1 − θ

where 0 < θ < 0.1. For testing H : θ = 0.05 against θ > 0.05 at level α = 0.05,
determine which of the following tests (if any) is UMP:

(i) φ(0) = 1,φ(1) = φ(2) = φ(3) = 0;
(ii) φ(1) = 0.5,φ(0) = φ(2) = φ(3) = 0;
(iii) φ(3) = 1,φ(0) = φ(1) = φ(2) = 0.

Problem 3.8 A random variable X has the Pareto distribution P(c, τ ) if its density
is cτ c/xc+1, 0 < τ < x, 0 < C .

(i) Show that this defines a probability density.
(ii) If X has distribution P(c, τ ), then Y = log X has exponential distribution

E(ξ, b) with ξ = log τ , b = 1/c.
(iii) If X1, . . . , Xn is a sample from P(c, τ ), use (ii) and Problem 3.4 to obtain UMP

tests of (a) H : τ = τ0 against τ �= τ0 when b is known; (b) H : c = c0, τ = τ
against c > c0, τ < τ0.

Problem 3.9 Let X be distributed according to Pθ, θ ∈ �, and let T be sufficient
for θ. If ϕ(X) is any test of a hypothesis concerning θ, then ψ(T ) given by ψ(t) =
E[ϕ(X) | t] is a test depending on T only, and its power function is identical with
that of ϕ(X).

Problem 3.10 In the notation of Section 3.2, consider the problem of testing H0 :
P = P0 against H1 : P = P1, and suppose that known probabilities π0 = π and
π1 = 1 − π can be assigned to H0 and H1 prior to the experiment.
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(i) The overall probability of an error resulting from the use of a test ϕ is

πE0ϕ(X) + (1 − π)E1[1 − ϕ(X)].

(ii) The Bayes test minimizing this probability is given by (3.8) with k = π0/π1.
(iii) The conditional probability of Hi given X = x , the posterior probability of Hi

is
πi pi (x)

π0 p0(x) + π1 p1(x)
,

and the Bayes test therefore decides in favor of the hypothesis with the larger
posterior probability.

Problem 3.11 (i) For testing H0 : θ = 0 against H1 : θ = θ1 when X is N (θ, 1),
given any 0 < α < 1 and any 0 < π < 1 (in the notation of the preceding
problem), there exists θ1 and x such that (a) H0 is rejected when X = x but (b)
P(H0 | x) is arbitrarily close to 1.

(ii) The paradox of part (i) is due to the fact that α is held constant while the power
against θ1 is permitted to get arbitrarily close to 1. The paradox disappears if α
is determined so that the probabilities of type I and type II error are equal [but
see Berger and Sellke (1987)].

[For a discussion of such paradoxes, see Lindley (1957), Bartlett (1957), Schafer
(1982, 1988) and Robert (1993).]

Problem 3.12 Let X1, . . . , Xn be independently distributed, each uniformly over
the integers 1, 2, . . . , θ. Determine whether there exists a UMP test for testing H :
θ = θ0, at level 1/θn0 against the alternatives (i) θ > θ0; (ii) θ < θ0; (iii) θ �= θ0.

Problem 3.13 The following example shows that the power of a test can sometimes
be increased by selecting a random rather than a fixed sample size even when the
randomization does not depend on the observations. Let X1, . . . , Xn be indepen-
dently distributed as N (θ, 1), and consider the problem of testing H : θ = 0 against
K : θ = θ1 > 0.

(i) The power of the most powerful test as a function of the sample size n is not
necessarily concave.

(ii) In particular for α = 0.005, θ1 = 1
2 , better power is obtained by taking 2 or

16 observations with probability 1
2 each than by taking a fixed sample of 9

observations.
(iii) The power can be increased further if the test is permitted to have different

significance levels α1 and α2 for the two sample sizes and it is required only
that the expected significance level be equal to α = 0.005. Examples are: (a)
with probability 1

2 take n1 = 2 observations and perform the test of significance
at level α1 = 0.001, or take n2 = 16 observations and perform the test at level
α2 = 0.009; (b) with probability 1

2 take n1 = 0 or n2 = 18 observations and let
the respective significance levels be α1 = 0,α2 = 0.01.
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Note. This and related examples were discussed by Kruskal in a seminar held at
Columbia University in 1954. A more detailed investigation of the phenomenon has
been undertaken by Cohen (1958).

Problem 3.14 If the sample space X is Euclidean and P0, P1 have densities with
respect to Lebesgue measure, there exists a nonrandomized most powerful test for
testing P0 against P1 at every significance level α.13 [This is a consequence of The-
orem 3.2.1 and the following lemma.14 Let f ≥ 0 and

∫
A f (x) dx = a. Given any

0 ≤ b ≤ a, there exists a subset B of A such that
∫
B f (x) dx = b.]

Problem 3.15 Fully informative statistics. A statistic T is fully informative if for
every decision problem the decision procedures based only on T form an essentially
complete class. If P is dominated and T is fully informative, then T is sufficient.
[Consider any pair of distributions P0, P1 ∈ P with densities p0, p1, and let gi =
pi/(p0 + p1). Suppose that T is fully informative, and letA′ be the subfield induced
by T . Then A′ contains the subfield induced by (g0, g1) since it contains every
rejection which is unique most powerful for testing P0 against P1 (or P1 against P0)
at some level α. Therefore, T is sufficient for every pair of distributions (P0, P1),
and hence by Problem 2.11 it is sufficient for P .]

Problem 3.16 Based on X with distribution indexed by θ ∈ �, the problem is to
test θ ∈ ω versus θ ∈ ω′. Suppose there exists a test φ such that Eθ[φ(X)] ≤ β for
all θ in ω, where β < α. Show there exists a level α test φ∗(X) such that

Eθ[φ(X)] ≤ Eθ[φ∗(X)] ,

for all θ in ω′ and this inequality is strict if Eθ[φ(X)] < 1.

Problem 3.17 A counterexample. Typically, as α varies the most powerful level α
tests for testing a hypothesis H against a simple alternative are nested in the sense
that the associated rejection regions, say Rα, satisfy Rα ⊆ Rα′ , for any α < α′. Even
if the most powerful tests are nonrandomized, this may be false. Suppose X takes
values 1, 2, and 3 with probabilities 0.85, 0.1, and 0.05 under H and probabilities
0.7, 0.2, and 0.1 under K respectively.
(i) At any level < 0.15, the MP test is not unique.
(ii) At α = 0.05 and α′ = 0.1, there exist unique nonrandomized MP tests and they
are not nested.
(iii) At these levels there exist MP tests φ and φ′ that are nested in the sense that
φ(x) ≤ φ′(x) for all x . [This example appears as Example 10.16 in Romano and
Siegel (1986).]

Problem 3.18 Under the setup of Theorem 3.2.1, show that there always exist MP
tests that are nested in the sense of Problem 3.17(iii).

13 For more general results concerning the possibility of dispensing with randomized procedures,
see Dvoretzky et al. (1951).
14 For a proof of this lemma see Halmos (1974, p. 174). The lemma is a special case of a theorem
of Lyapounov (1940); see Blackwell (1951a).
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Problem 3.19 Suppose X1, . . . , Xn are i.i.d. N (ξ,σ2) with σ known. For testing
ξ = 0 versus ξ �= 0, the average power of a test φ = φ(X1, . . . , Xn) is given by

∫ ∞

−∞
Eξ(φ)d�(ξ) ,

where � is a probability distribution on the real line. Suppose that � is symmetric
about 0; that is,�{E} = �{−E} for all Borel sets E . Show that, among α level tests,
the one maximizing average power rejects for large values of |∑i Xi |. Show that
this test need not maximize average power if � is not symmetric.

Problem 3.20 Let fθ, θ ∈ �, denote a family of densities with respect to a measure
μ. (We assume � is endowed with a σ-field so that the densities fθ(x) are jointly
measurable in θ and x .) Consider the problem of testing a simple null hypothesis
θ = θ0 against the composite alternatives�K = {θ : θ �= θ0}. Let� be a probability
distribution on �K .
(i) As explicitly as possible, find a test φ that maximizes

∫
�K

Eθ(φ)d�(θ), subject
to it being level α.
(ii) Let h(x) = ∫ fθ(x)d�(θ). Consider the nonrandomized φ test that rejects if
and only if h(x)/ fθ0(x) > k, and suppose μ{x : h(x) = k fθ(x)} = 0. Then, φ is
admissible at level α = Eθ0(φ) in the sense that it is impossible that there exists
another level α test φ′ such that Eθ(φ

′) ≥ Eθ(φ) for all θ.
(iii) Show that the test of Problem 3.19 is admissible.

Section 3.3

Problem 3.21 In Example 3.21, show that p-value is indeed given by p̂ = p̂(X) =
(11 − X)/10. Also, graph the c.d.f. of p̂ under H and show that the last inequality
in (3.15) is an equality if and only if u is of the form 0, . . . , 10.

Problem 3.22 Suppose X has a continuous distribution function F . Show that F(X)

is uniformly distributed on (0, 1). [The transformation from X to F(X) is known as
the probability integral transformation.]

Problem 3.23 (i) Show that if Y is any random variable with c.d.f. G(·), then

P{G(Y ) ≤ u} ≤ u for all 0 ≤ u ≤ 1 .

If G−(t) = P{Y < t}, then show

P{1 − G−(Y ) ≤ u} ≤ u for all 0 ≤ u ≤ 1 .

(ii) In Example 3.3.3, show that Fθ0(T ) and 1 − F−
θ0

(T ) are both valid p-values, in
the sense that (3.13) holds.
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Problem 3.24 Under the setup of Lemma 3.3.1, suppose the rejection regions are
defined by

Rα = {X : T (X) ≥ k(α)} (3.47)

for some real-valued statistic T (X) and k(α) satisfying

sup
θ∈�H

Pθ{T (X) ≥ k(α)} = α .

Then, show
p̂ = sup

θ∈�H

P{T (X) ≥ t} ,

where t is the observed value of T (X).

Problem 3.25 Under the setup of Lemma 3.3.1, show that there exists a real-valued
statistic T (X) so that the rejection region is necessarily of the form (3.47). [Hint:
Let T (X) = − p̂.]

Problem 3.26 (i) If p̂ is uniform on (0, 1), show that−2 log( p̂) has the Chi-squared
distribution with 2 degrees of freedom.
(ii) Suppose p̂1, . . . , p̂s are i.i.d. uniformon (0, 1). Let F = −2 log( p̂1 · · · p̂s). Argue
that F has the Chi-squared distribution with 2s degrees of freedom. What can you
say about F if the p̂i are independent and satisfy P{ p̂i ≤ u} ≤ u for all 0 ≤ u ≤ 1?
[Fisher (1934a) proposed F as a means of combining p-values from independent
experiments.]

Section 3.4

Problem 3.27 Let X be the number of successes in n independent trials with prob-
ability p of success, and let φ(x) be the UMP test (3.16) for testing p ≤ p0 against
p > p0 at the level of significance α.

(i) For n = 6, p0 = 0.25 and the levels α = 0.05, 0.1, 0.2 determine C and γ, and
the power of the test against p1 = 0.3, 0.4, 0.5, 0.6, 0.7.

(ii) If p0 = 0.2 and α = 0.05, and it is desired to have power β ≥ 0.9 against p1 =
0.4, determine the necessary sample size (a) by using tables of the binomial
distribution, (b) by using the normal approximation.15

(iii) Use the normal approximation to determine the sample size required when
α = 0.05, β = 0.9, p0 = 0.01, p1 = 0.02.

Problem 3.28 (i) A necessary and sufficient condition for densities pθ(x) to have
monotone likelihood ratio in x , if themixed secondderivative∂2 log pθ(x)/∂θ ∂x
exists, is that this derivative is ≥ 0 for all θ and x .

15 Tables and approximations are discussed, for example, in Chapter 3 of Johnson and Kotz (1969).
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(ii) An equivalent condition is that

pθ(x)
∂2 pθ(x)

∂θ ∂x
≥ ∂ pθ(x)

∂θ

∂ pθ(x)

∂x
for all θ and x .

Problem 3.29 Let the probability density pθ of X have monotone likelihood ratio in
T (x), and consider the problem of testing H : θ ≤ θ0 against θ > θ0. If the distribu-
tion of T is continuous, the p-value p̂ of the UMP test is given by p̂ = Pθ0{T ≥ t},
where t is the observed value of T . This holds alsowithout the assumption of continu-
ity if for randomized tests p̂ is defined as the smallest significance level at which the
hypothesis is rejected with probability 1. Show that, for any θ ≤ θ0, Pθ{ p̂ ≤ u} ≤ u
for any 0 ≤ u ≤ 1.

Problem 3.30 Let X1, . . . , Xn be independently distributed with density (2θ)−1

e−x/2θ, x ≥ 0, and let Y1 ≤ · · · ≤ Yn be the ordered X ’s. Assume that Y1 becomes
available first, then Y2, and so on, and that observation is continued until Yr has been
observed. On the basis of Y1, . . . ,Yr it is desired to test H : θ ≥ θ0 = 1000 at level
α = 0.05 against θ < θ0.

(i) Determine the rejection region when r = 4, and find the power of the test against
θ1 = 500.

(ii) Find the value of r required to get power β ≥ 0.95 against the alternative.

[In Problem 2.15 the distribution of [∑r
i=1 Yi + (n − r)Yr ]/θ was found to be χ2

with 2r degrees of freedom.]

Problem 3.31 When a Poisson process with rate λ is observed for a time interval
of length τ , the number X of events occurring has the Poisson distribution P(λτ ).
Under an alternative scheme, the process is observed until r events have occurred,
and the time T of observation is then a random variable such that 2λT has a χ2-
distribution with 2r degrees of freedom. For testing H : λ ≤ λ0 at level α one can,
under either design, obtain a specified power β against an alternative λ1 by choosing
τ and r sufficiently large.

(i) The ratio of the time of observation required for this purpose under the first
design to the expected time required under the second is λτ/r .

(ii) Determine for which values of λ each of the two designs is preferable when
λ0 = 1,λ1 = 2,α = 0.05,β = 9.

Problem 3.32 Let X = (X1, . . . , Xn) be a sample from the uniform distribution
U (θ, θ + 1).

(i) For testing H : θ ≤ θ0 against K : θ > θ0 at level α, there exists a UMP
test which rejects when min(X1, . . . , Xn) > θ0 + C(α) or max(X1, . . . , Xn) >

θ0 + 1 for suitable C(α).
(ii) The family U (θ, θ + 1) does not have monotone likelihood ratio. [Additional

results for this family are given in Birnbaum (1954b) and Pratt (1958).]
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[(ii) By Theorem 3.4.1, monotone likelihood ratio implies that the family of UMP
test of H : θ ≤ θ0 against K : θ > θ0 generated asα varies from 0 to 1 is independent
of θ0.]

Problem 3.33 Let X be a single observation from the Cauchy density given at the
end of Section 3.4.

(i) Show that no UMP test exists for testing θ = 0 against θ > 0.
(ii) Determine the totality of different shapes the MP level-α rejection region for

testing θ = θ0 against θ = θ1 can take on for varying α and θ1 − θ0.

Problem 3.34 Let Xi be independently distributed as N (i�, 1), i = 1, . . . , n. Show
that there exists a UMP test of H : � ≤ 0 against K : � > 0, and determine it as
explicitly as possible.

Problem 3.35 Suppose a time series X0, X1, X2, . . . evolves in the following way.
The process starts at 0, so X0 = 0. For any i ≥ 1, conditional on X0, . . . , Xi−1, Xi =
ρXi−1 + εi , where the εi are i.i.d. standard normal. You observe X0, X1, X2, . . . , Xn .
For testing the null hypothesis ρ = 0 versus a fixed alternative ρ = ρ′ > 0, determine
a MP level α test. Determine whether or not there exists a uniformly most powerful
test against all ρ > 0.

Note. The following problems (and some in later chapters) refer to the gamma,
Pareto, Weibull, and inverse Gaussian distributions. For more information about
these distributions, see Chapters 17, 19, 20, and 25 respectively of Johnson and Kotz
(1970).

Problem 3.36 Let X1, . . . , Xn be a sample from the gamma distribution �(g, b)
with density

1

�(g)bg
xg−1e−x/b, 0 < x, 0 < b, g.

Show that there exists a UMP test for testing

(i) H : b ≤ b0 against b > b0 when g is known;
(ii) H : g ≤ g0 against g > g0 when b is known.

In each case give the form of the rejection region.

Problem 3.37 A random variable X has theWeibull distribution W (b, c) if its den-
sity is

c

b

( x
b

)c−1
e−(x/b)c , x > 0, b, c > 0.

Show that this defines a probability density. If X1, . . . , Xn is a sample fromW (b, c),
with the shape parameter c known, show that there exists a UMP test of H : b ≤ b0
against b > b0 and give its form.
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Problem 3.38 Consider a single observation X from W (1, c).

(i) The family of distributions does not have a monotone likelihood ratio in x .
(ii) The most powerful test of H : c = 1 against c = 2 rejects when X < k1 and

when X > k2. Show how to determine k1 and k2.
(iii) Generalize (ii) to arbitrary alternatives c1 > 1, and show that a UMP test of

H : c = 1 against c > 1 does not exist.
(iv) For any c1 > 1, the power function of the MP test of H : c = 1 against c = c1

is an increasing function of c.

Problem 3.39 Let X1, . . . , Xn be a sample from the inverse Gaussian distribution
I (μ, τ ) with density

√
τ

2πx3
exp

(
− τ

2xμ2
(x − μ)2

)
, x > 0, τ ,μ > 0.

Show that there exists a UMP test for testing

(i) H : μ ≤ μ0 against μ > μ0 when τ is known;
(ii) H : τ ≤ τ0 against τ > τ0 when μ is known. In each case give the form of the

rejection region.
(iii) The distribution of V = r(Xi − μ)2/Xiμ

2 is χ2
1 and hence that of τ

∑[(Xi −
μ)2/Xiμ

2] is χ2
n .

[Let Y = min(Xi ,μ
2/Xi ), Z = τ (Y − μ)2/μ2Y . Then Z = V and Z isχ2

1 [Shus-
ter (1968)].] Note. The UMP test for (ii) is discussed in Chhikara and Folks (1976).

Problem 3.40 Let X1, · · · , Xn be a sample from a location family with common
density f (x − θ), where the location parameter θ ∈ R and f (·) is known. Consider
testing the null hypothesis that θ = θ0 versus an alternative θ = θ1 for some θ1 > θ0.
Suppose there exists amost powerful levelα test of the form: reject the null hypothesis
iff T = T (X1, · · · , Xn) > C , where C is a constant and T (X1, . . . , Xn) is location
equivariant, i.e., T (X1 + c, . . . , Xn + c) = T (X1, . . . , Xn) + c for all constants c.
Is the test also most powerful level α for testing the null hypothesis θ ≤ θ0 against
the alternative θ = θ1. Prove or give a counterexample.

Problem 3.41 Extension of Lemma 3.4.2. Let P0 and P1 be two distributions with
densities p0, p1 such that p1(x)/p0(x) is a nondecreasing function of a real-valued
statistic T (x).

(i) If T = T (X) has probability density p′
i when the original distribution of X is

Pi , then p′
1(t)/p

′
0(t) is nondecreasing in t .

(ii) E0ψ(T ) ≤ E1ψ(T ) for any nondecreasing function ψ.
(iii) If p1(x)/p0(x) is a strictly increasing function of t = T (x), so is p′

1(t)/p
′
0(t),

and E0ψ(T ) < E1ψ(T )unlessψ[T (x)] is constant a.e. (P0 + P1) or E0ψ(T ) =
E1ψ(T ) = ± ∞.
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(iv) For any distinct distributions with densities p0, p1,

−∞ ≤ E0 log

[
p1(X)

p0(X)

]
< E1 log

[
p1(X)

p0(X)

]
≤ ∞.

[(i): Without loss of generality suppose that p1(x)/p0(x) = T (x). Then for any
integrable φ,

∫
φ(t)p′

1(t) dv(t) =
∫

φ[T (x)]T (x)p0(x) dμ(x) =
∫

φ(t)tp′
0(t) dv(t),

and hence p′
1(t)/p

′
0(t) = t a.e.

(iv): The possibility E0 log[p1(X)/p0(X)] = ∞ is excluded, since by the con-
vexity of the function log,

E0 log

[
p1(X)

p0(X)

]
< log E0

[
p1(X)

p0(X)

]
= 0.

Similarly for E1. The strict inequality now follows from (iii) with T (x) =
p1(x)/p0(x).]

Problem 3.42 F0, F1 are two cumulative distribution functions on the real line, then
Fi (x) ≤ F0(x) for all x if and only if E0ψ(X) ≤ E1ψ(X) for any nondecreasing
function ψ.

Problem 3.43 Let F and G be two continuous, strictly increasing c.d.f.s, and let
k(u) = G[F−1(u)], 0 < u < 1.
(i) Show F and G are stochastically ordered, say F(x) ≤ G(x) for all x , if and only
if k(u) ≤ u for all 0 < u < 1.
(ii) If F and G have densities f and g, then show they are monotone likelihood ratio
ordered, say g/ f nondecreasing, if and only if k is convex.
(iii) Use (i) and (ii) to give an alternative proof of the fact thatMLR implies stochastic
ordering.

Problem 3.44 Let f (x)/[1 − F(x)] be the “mortality” of a subject at time x given
that it has survived to this time. A c.d.f. F is said to be smaller than G in the hazard
ordering if

g(x)

1 − G(x)
≤ f (x)

1 − F(x)
for all x . (3.48)

(i) Show that (3.48) is equivalent to

1 − F(x)

1 − G(x)
is nonincreasing. (3.49)
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(ii) Show that (3.48) holds if and only if k is starshaped. [A function k defined on an
interval I ⊆ [0,∞) is starshaped on I if k(λx) ≤ λk(x) whenever x ∈ I , λx ∈ I ,
0 ≤ λ ≤ 1. Problems 3.43 and 3.44 are based on Lehmann and Rojo (1992).]

Section 3.5

Problem 3.45 Typically, lower confidence bounds θ(X) satisfying (3.21) also sat-
isfy

Pθ{θ(X) < θ} ≥ 1 − α for all θ

so that θ is strictly greater than θ(X) with probability ≥ 1 − α. A similar issue of
course also applies to upper confidence bounds. Investigate conditions where one
can claim the endpoints are open endpoints. What happens in Example 3.5.2 for both
the uniformly most accurate upper confidence bound, as well as the Clopper-Pearson
solution?

Problem 3.46 In Example 3.5.2, what is an explicit formula for the uniformly most
accurate upper bound at level 1 − α when X = 0 and U = u? Compare it to the
Clopper-Pearson bound in the same situation.

Problem 3.47 (i) For n = 5, 10 and 1 − α = 0.95, graph the upper confidence
limits p̄ and p̄∗ of Example 3.5.2 as functions of t = x + u.

(ii) For the same values of n and α1 = α2 = 0.05, graph the lower and upper con-
fidence limits p and p̄.

Problem 3.48 (i) Suppose U1, . . . ,Un are i.i.d. U (0, 1) and let U(k) denote the kth
largest value (or kth order statistic). Find the density of U(k) and show that

P{U(k) ≤ p} =
∫ p

0

n!
(k − 1)!(n − k)!u

k−1(1 − u)n−kdu ,

which in turn is equal to
n∑
j=k

(
n

j

)
p j (1 − p)n− j .

(ii) Use (i) to show that, in Example 3.5.2 with 0 < x < n, the Clopper-Pearson
solution p̂U for an upper 1 − α confidence bound for p can be expressed as the
1 − α quantile of the Beta distribution with parameters x + 1 and n − x .

Problem 3.49 Confidence bounds with minimum risk. Let L(θ, θ) be nonnegative
and nonincreasing in its second argument for θ < θ, and equal to 0 for θ ≥ θ. If θ
and θ∗ are two lower confidence bounds for θ such that

P0{θ ≤ θ′} ≤ Pθ{θ∗ ≤ θ′} for all θ′ ≤ θ,
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then
EθL(θ, θ) ≤ EθL(θ, θ∗).

[Define two cumulative distribution functions F and F∗ by F(u) = Pθ{θ ≤
u}/Pθ{θ∗ ≤ θ}, F∗(u) = Pθ{θ∗ ≤ u}/Pθ{θ∗ ≤ θ} for u < θ, F(u) = F∗(u) = 1 for
u ≥ θ. Then F(u) ≤ F∗(u) for all u, and it follows from Problem 3.42 that

Eθ[L(θ, θ)] = Pθ{θ∗ ≤ θ}
∫

L(θ, u)dF(u)

≤ Pθ{θ∗ ≤ θ}
∫

L(θ, u)dF∗(u) = Eθ[L(θ, θ∗)].]

Section 3.6

Problem 3.50 If β(θ) denotes the power function of the UMP test of Corollary
3.4.1, and if the function Q of (3.19) is differentiable, then β′(θ) > 0 for all θ for
which Q′(θ) > 0.

[To show that β′(θ0) > 0, consider the problem of maximizing, subject to
Eθ0φ(X) = α, the derivative β′(θ0) or equivalently the quantity Eθ0 [T (X) φ(X)].]
Problem 3.51 Optimum selection procedures. On each member of a population n
measurements (X1, . . . , Xn) = X are taken, for example the scores of n aptitude
tests which are administered to judge the qualifications of candidates for a certain
training program. A future measurement Y such as the score in a final test at the end
of the program is of interest but unavailable. The joint distribution of X and Y is
assumed known.

(i) One wishes to select a given proportion α of the candidates in such a way as
to maximize the expectation of Y for the selected group. This is achieved by
selecting the candidates for which E(Y |x) ≥ C , where C is determined by the
condition that the probability of a member being selected is α. When E(Y |x) =
C , it may be necessary to randomize in order to get the exact value α.

(ii) If instead the problem is to maximize the probability with which in the selected
population Y is greater than or equal to some preassigned score y0, one selects
the candidates for which the conditional probability P{Y ≥ y0|x} is sufficiently
large.

[(i): Let φ(x) denote the probability with which a candidate with measurements
x is to be selected. Then the problem is that of maximizing

∫ [∫
ypY |x (y) φ(x)dy

]
px (x)dx
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subject to ∫
φ(x)px (x)dx = α.]

Problem 3.52 The following example shows that Corollary 3.6.1 does not extend to
a countably infinite family of distributions. Let pn be the uniform probability density
on [0, 1 + 1/n], and p0 the uniform density on (0, 1).

(i) Then p0 is linearly independent of (p1, p2, . . .), that is, there do not exist con-
stants c1, c2, . . . such that p0 =∑ cn pn .

(ii) There does not exist a test φ such that
∫

φpn = α for n = 1, 2, . . . but∫
φp0 > α.

Problem 3.53 Let F1, . . . , Fm+1 be real-valued functions defined over a space U .
A sufficient condition for u0 to maximize Fm+1 subject to Fi (u) ≤ ci (i = 1, . . . ,m)

is that it satisfies these side conditions, that it maximizes Fm+1(u) −∑ ki Fi (u) for
some constants ki ≥ 0, and that Fi (uo) = ci for those values i for which ki > 0.

Section 3.7

Problem 3.54 For a random variable X with binomial distribution b(p, n), deter-
mine the constants Ci , γ (i = 1, 2) in the UMP test (3.33) for testing H : p ≤ 0.2 or
≤ 0.7 when α = 0.1 and n = 15. Find the power of the test against the alternative
p = 0.4.

Problem 3.55 Totally positive families. A family of distributions with probability
densities pθ(x), θ and x real-valued and varying over � and X , respectively, is said
to be totally positive of order r(TPr ) if for all x1 < · · · < xn and θ1 < · · · < θn

n =
∣∣∣∣ pθ1(x1) · · · pθ1(xn)
pθn (x1) · · · pθn (xn)

∣∣∣∣ ≥ 0 for all n = 1, 2, . . . , r. (3.50)

It is said to be strictly totally positive of order r (ST Pr ) if strict inequality holds
in (3.50). The family is said to be (strictly) totally positive of infinity if (3.50) holds
for all n = 1, 2, . . . . These definitions apply not only to probability densities but to
any real-valued functions pθ(x) of two real variables.

(i) For r = 1, (3.50) states that pθ(x) ≥ 0; for r = 2, that pθ(x) has monotone
likelihood ratio in x .

(ii) If a(θ) > 0, b(x) > 0, and pθ(x) is STPr then so is a(θ)b(x)pθ(x).
(iii) If a and b are real-valued functions mapping � and X onto �′ and X ′ and are

strictly monotone in the same direction, and if pθ(x) is STPr , then pθ′(x ′) with
θ′ = a−1(θ) and x ′ = b−1(x) is (ST P)r over (�′,X ′).
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Problem 3.56 Exponential families. The exponential family (3.19) with T (x) = x
and Q(θ) = θ is STP∞, with � the natural parameter space and X = (−∞,∞).

[That the determinant |eθi x j |, i, j = 1, . . . , n, is positive can be proved by induc-
tion. Divide the i th column by eθ1xi , i = 1, . . . , n; subtract in the resulting determi-
nant the (n − 1)st column from the nth, the (n − 2)nd from the (n − 1)st, . . . , the
1st from the 2nd; and expand the determinant obtained in this way by the first row.
Then n is seen to have the same sign as

′
n = |eηi x j − eηi x j−1|, i, j = 2, . . . , n,

where ηi = θi − θ1. If this determinant is expanded by the first column, one obtains
a sum of the form

a2(e
η2x2 − eη2x1) + · · · + an(e

ηn x2 − eηn x1) = h(x2) − h(x1)

= (x2 − x1)h
′(y2),

where x1 < y2 < x2. Rewriting h′(y2) as a determinant of which all columns but
the first coincide with those of ′

n and proceeding in the same manner with the
columns, one reduces the determinant to |eηi y j |, i, j = 2, . . . , n, which is positive by
the induction hypothesis.]

Problem 3.57 STP3. Let θ and x be real-valued, and suppose that the probability
densities pθ(x) are such that pθ′(x)/pθ(x) is strictly increasing in x for θ < θ′. Then
the following two conditions are equivalent: (a) For θ1 < θ2 < θ3 and k1, k2, k3 > 0,
let

g(x) = k1 pθ1(x) − k2 pθ2(x) + k3 pθ3(x).

If g(x1) − g(x3) = 0, then the function g is positive outside the interval (x1, x3) and
negative inside. (b) The determinant 3 given by (3.50) is positive for all θ1 < θ2 <

θ3, x1 < x2 < x3. [It follows from (a) that the equation g(x) = 0 has at most two
solutions.]

[That (b) implies (a) can be seen for x1,< x2 < x3 by considering the determinant

∣∣∣∣∣∣
g(x1) g(x2) g(x3)
pθ2(x1) pθ2(x2) pθ2(x3)
pθ3(x1) pθ3(x2) pθ3(x3)

∣∣∣∣∣∣
Suppose conversely that (a) holds. Monotonicity of the likelihood ratios implies
that the rank of 3 is at least two, so that there exist constants k1, k2, k3 such that
g(x1) = g(x3) = 0. That the k’s are positive follows again from the monotonicity of
the likelihood ratios.]

Problem 3.58 Extension of Theorem 3.7.1. The conclusions of Theorem 3.7.1
remain valid if the density of a sufficient statistic T (which without loss of gen-
erality will be taken to be X ), say pθ(x), is STP3 and is continuous in x for
each θ.
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[The two properties of exponential families that are used in the proof of
Theorem 3.7.1 are continuity in x and (a) of the preceding problem.]

Problem 3.59 For testing the hypothesis H ′ : θ1 ≤ θ ≤ θ2(θ1 ≤ θ2) against the
alternatives θ < θ1 or θ > θ2, or the hypothesis θ = θ0 against the alternatives
θ �= θ0, in an exponential family or more generally in a family of distributions satis-
fying the assumptions of Problem 3.58, a UMP test does not exist.

[This follows from a consideration of the UMP tests for the one-sided hypotheses
H1 : θ ≥ θ1 and H2 : θ ≤ θ2.]

Problem 3.60 Let f , g be two probability densities with respect to μ. For testing
the hypothesis H : θ ≤ θ0 or θ ≥ θ1(0 < θ0 < θ1 < 1) against the alternatives θ0 <

θ < θ1, in the family P = {θ f (x) + (1 − θ)g(x), 0 ≤ θ ≤ 1}, the test ϕ(x) ≡ α is
UMP at level α.

Section 3.8

Problem 3.61 Let the variables Xi (i = 1, . . . , s) be independently distributed with
Poisson distribution P(λi ). For testing the hypothesis H :∑λ j ≤ a (for example,
that the combined radioactivity of a number of pieces of radioactive material does
not exceed a), there exists a UMP test, which rejects when

∑
X j > C .

[If the joint distribution of the X ’s is factored into the marginal distribution of∑
X j (Poisson with mean

∑
λ j ) times the conditional distribution of the variables

Yi = X j/
∑

X j given
∑

X j (multinomial with probabilities pi = λi/
∑

λ j ), the
argument is analogous to that given in Example 3.8.1.]

Problem 3.62 Confidence bounds for a median. Let X1, . . . , Xn be a sample from
a continuous cumulative distribution functions F . Let ξ be the unique median of F
if it exists, or more generally let ξ = inf{ξ′ : F(ξ′) ≥ 1

2 }.
(i) If the ordered X ’s are X(1) < · · · < X(n), a uniformly most accurate lower con-

fidence bound for ξ is ξ = X(k) with probability ρ, ξ = X(k+1) with probability
1 − ρ, where k and ρ are determined by

ρ

n∑
j=k

(
n

j

)
1

2n
+ (1 − ρ)

n∑
j=k+1

(
n

j

)
1

2n
= 1 − α.

(ii) This bound has confidence coefficient 1 − α for any median of F .
(iii) Determine most accurate lower confidence bounds for the 100p-percentile ξ of

F defined by ξ = inf{ξ′ : F(ξ′) = p}.
[For fixed ξ0, the problem of testing H : ξ = ξ0 to against K : ξ > ξ0 is equivalent
to testing H ′ : p = 1

2 against K ′ : p < 1
2 .]
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Problem 3.63 A counterexample. Typically, as α varies, the most powerful level α
tests for testing a hypothesis H against a simple alternative are nested in the sense
that the associated rejection regions, say Rα, satisfy Rα ⊆ Rα′ , for any α < α′. The
following example shows that this need not be satisfied for composite H . Let X take
on the values 1, 2, 3, 4 with probabilities under distributions P0, P1, Q:

1 2 3 4

P0
2
13

4
13

3
13

4
13

P1
4
13

2
13

1
13

6
13

Q 4
13

3
13

2
13

4
13

Then the most powerful test for testing the hypothesis that the distribution of X is
P0 or P1 against the alternative that it is Q rejects at level α = 5

13 when X = 1 or 3,
and at level α = 6

13 when X = 1 or 2.

Problem 3.64 Let X and Y be the number of successes in two sets of n binomial
trials with probabilities p1 and p2 of success.

(i) The most powerful test of the hypothesis H : p2 ≤ p1 against an alternative
(p′

1, p
′
2)with p′

1 < p′
2 and p′

1 + p′
2 = 1 at levelα < 1

2 rejects when Y − X > C
and with probability γ when Y − X = C .

(ii) This test is not UMP against the alternatives p1 < p2.

[(i): Take the distribution � assigning probability 1 to the point p1 = p2 = 1
2 as

an a priori distribution over H . The most powerful test against (p′
1, p

′
2) is then the

one proposed above. To see that � is least favorable, consider the probability of
rejection β(p1, p2) for p1 = p2 = p. By symmetry this is given by

2β(p, p) = P{|Y − X | > C} + γP{|Y − X | = C}.

Let Xi be 1 or 0 as the i th trial in the first series is a success or failure, and let Y1,
be defined analogously with respect to the second series. Then Y − X =∑n

i−1(Yi −
Xi ), and the fact that 2β(p, p) attains its maximum for p = 1

2 can be proved by
induction over n.

(ii): Since β(p, p) < α for p �= 1, the power β(p1, p2) is < α for alternatives
p1 < p2 sufficiently close to the line p1 = p2. That the test is not UMP now follows
from a comparison with φ(x, y) ≡ α.]

Problem 3.65 Sufficient statistics with nuisance parameters.

(i) A statistic T is said to be partially sufficient for θ in the presence of a nuisance
parameter η if the parameter space is the direct product of the set of possible
θ- and η-values, and if the following two conditions hold: (a) the conditional
distribution given T = t depends only on η; (b) the marginal distribution of T
depends only on θ. If these conditions are satisfied, there exists a UMP test
for testing the composite hypothesis H : θ = θ0 against the composite class of
alternatives θ = θ1, which depends only on T .
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(ii) Part (i) provides an alternative proof that the test of Example 3.8.1 is UMP.

[Let ψ0(t) be the most powerful level α test for testing θ0 against θ1 that depends
only on t , letφ(x) be any level-α test, and letψ(t) = Eη1[φ(X) | t]. Since Eθi ψ(T ) =
Eθi ,η1φ(X), it follows that ψ is a level-α test of H and its power, and therefore the
power of φ, does not exceed the power of ψ0.]

Note. For further discussion of this and related concepts of partial sufficiency see
Fraser (1956), Dawid (1975), Sprott (1975), Basu (1978), and Barndorff-Nielsen
(1978).

Section 3.9

Problem 3.66 Let X1, . . . , Xm andY1, . . . ,Yn be independent samples from N (ξ, 1)
and N (η, 1), and consider the hypothesis H : η ≤ ξ against K : η > ξ. There exists
a UMP test, and it rejects the hypothesis when Ȳ − X̄ is too large.

[If ξ1 < η1 is a particular alternative, the distribution assigning probability 1 to
the point η = ξ = (mξ1 + nη1)/(m + n) is least favorable.]

Problem 3.67 Let X1, . . . , Xm; Y1, . . . ,Yn be independently, normally distributed
with means ξ and η, and variances a σ2 and τ 2 respectively, and consider the hypoth-
esis H : τ ≤ σ a against K : σ < τ .

(i) If ξ and η are known, there exists a UMP test given by the rejection region∑
(Y j − η)2/

∑
(Xi − ξ)2 ≥ C .

(ii) No UMP test exists when ξ and η are unknown.

Problem 3.68 Suppose X is a k × 1 random vector with E(|X |2) < ∞ and covari-
ance matrix �. Let A be an m × k (nonrandom) matrix and let Y = AX . Show Y
has mean vector AE(X) and covariance matrix A�A�.

Problem 3.69 Suppose (X1, . . . , Xk) has the multivariate normal distribution with
unknown mean vector ξ = (ξ1, . . . , ξk) and known covariance matrix �. Suppose
X1 is independent of (X2, . . . , Xk). Show that X1 is partially sufficient for ξ1 in the
sense of Problem 3.65. Provide an alternative argument for Case 2 of Example 3.9.2.

Problem 3.70 In Example 3.9.2, Case 2, verify the claim for the least favorable
distribution.

Problem 3.71 In Example 3.9.3, provide the details for Cases 3 and 4.
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3.11 Notes

Hypothesis testing developed gradually, with early instances frequently being rather
vague statements of the significance or nonsignificance of a set of observations.
Isolated applications are found in the eighteenth century [Arbuthnot (1710), Daniel
Bernoulli (1734), and Laplace (1773), for example] and centuries earlier in the Royal
Mint’s Trial of the Pyx [discussed by Stigler (1977)]. They became more frequent
in the nineteenth century in the writings of such authors as Gavarret (1840), Lexis
(1875, 1877), and Edgeworth (1885). A new stage began with the work of Karl
Pearson, particularly his χ2 paper of 1900, followed in the decade 1915–1925 by
Fisher’s normal theory and χ2 tests. Fisher presented this work systematically in his
enormously influential book Statistical Methods for Research Workers (1925b).

The first authors to recognize that the rational choice of a test must involve con-
sideration not only of the hypothesis but also of the alternatives against which it
is being tested were Neyman and Pearson (1928). They introduced the distinction
between errors of the first and second kind, and thereby motivated their proposal of
the likelihood ratio criterion as a general method of test construction. These con-
siderations were carried to their logical conclusion by Neyman and Pearson in their
paper of 1933, in which they developed the theory of UMP tests. Accounts of their
collaboration can be found in Pearson’s recollections (1966), and in the biography
of Neyman by Reid (1982).

The Neyman–Pearson Lemma has been generalized in many directions, including
the results in Sections 3.6, 3.8, and 3.9. Dantzig and Wald (1951) give necessary
conditions including those of Theorem 3.6.1, for a critical function which maximizes
an integral subject to a number of integral side conditions, to satisfy (3.30). The role of
the Neyman–Pearson Lemma in hypothesis testing is surveyed in Lehmann (1985a).

An extension to a selection problem, proposed byBirnbaum andChapman (1950),
is sketched in Problem 3.51. Further developments in this area are reviewed in Gib-
bons (1986, 1988). Grenander (1981) applies the fundamental lemma to problems in
stochastic processes.

Lemmas 3.4.1, 3.4.2, and 3.7.1 are due to Lehmann (1961).
Complete class results for simple null hypothesis testing problems are obtained

in Brown and Marden (1989).
The earliest example of confidence intervals appears to occur in the work of

Laplace (1812), who points out how an (approximate) probability statement con-
cerning the difference between an observed frequency and a binomial probability p
can be inverted to obtain an associated interval for p. Other examples can be found
in the works of Gauss (1816), Fourier (1826), and Lexis (1875). However, in all
these cases, although the statements made are formally correct, the authors appear to
consider the parameter as the variable which with the stated probability falls in the
fixed confidence interval. The proper interpretation seems to have been pointed out
for the first time by E. B. Wilson (1927). About the same time two examples of exact
confidence statements were given by Working and Hotelling (1929) and Hotelling
(1931).
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A general method for obtaining exact confidence bounds for a real-valued param-
eter was proposed by Fisher (1930), who however later disavowed this interpretation
of his work. For a discussion of Fisher’s controversial concept of fiducial probability,
see Section 5.7. At about the same time,16 a completely general theory of confidence
statements was developed by Neyman and shown by him to be intimately related to
the theory of hypothesis testing. A detailed account of this work, which underlies
the treatment given here, was published by Neyman in his papers of 1937 and 1938.

The calculation of p-values was the standard approach to hypothesis testing
throughout the nineteenth century and continues to be widely used today. For vari-
ous questions of interpretation, extensions, and critiques, see Cox (1977), Berger and
Sellke (1987), Marden (1991), Hwang et al. (1992), Lehmann (1993), Robert (1994),
Berger et al. (1994), Meng (1994), Blyth and Staudte (1995, 1997), Liu and Singh
(1997), Sackrowitz and Samuel-Cahn (1999), Marden (2000), Sellke et al. (2001),
and Berger (2003).

Extensions of p-values to hypotheses with nuisance parameters are discussed
by Berger and Boos (1994) and Bayarri and Berger (2000), and the large-sample
behavior of p-values in Lambert and Hall (1982) and Robins et al. (2000). An opti-
mality theory in terms of p-values is sketched by Schweder (1988), and p-values for
the simultaneous testing of several hypotheses is treated by Schweder and Spjøtvoll
(1982), Westfall and Young (1993), and by Dudoit et al. (2003).

An important use of p-values occurs in meta-analysis when one is dealing with
the combination of results from independent experiments. The early literature on
this topic is reviewed in Hedges and Olkin (1985, Chapter 3). Additional references
are Marden (1982b, 1985), Scholz (1982), and a review article by Becker (1997).
Associated confidence intervals are proposed by Littell and Louv (1981).

16 Cf. Neyman (1941b).
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