
Chapter 2
The Probability Background

2.1 Probability and Measure

The mathematical framework for statistical decision theory is provided by the the-
ory of probability, which in turn has its foundations in the theory of measure and
integration. The present chapter serves to define some of the basic concepts of these
theories, to establish some notation, and to state without proof some of the principal
results which will be used throughout Chapters 3–9. In the remainder of this chapter,
certain special topics are treated inmore detail. Basic notions of convergence in prob-
ability theory which will be needed for large-sample statistical theory are deferred
to Section 11.2.

Probability theory is concerned with situations which may result in different out-
comes. The totality of these possible outcomes is represented abstractly by the totality
of points in a spaceZ . Since the events to be studied are aggregates of such outcomes,
they are represented by subsets of Z . The union of two sets C1,C2 will be denoted
by C1 ∪ C2, their intersection by C1 ∩ C2, the complement of C by Cc = Z − C ,
and the empty set by 0. The probability P(C) of an eventC is a real number between
0 and 1, in particular,

P(0) = 0 and P(Z) = 1. (2.1)

Probabilities have the property of countable additivity,

P
(⋃

Ci

)
=
∑

P(Ci ) if Ci ∩ C j = 0 for all i �= j. (2.2)

Unfortunately it turns out that the set functions with which we shall be concerned
usually cannot be defined in a reasonable manner for all subsets of Z if they are to
satisfy (2.2). It is, for example, not possible to give a reasonable definition of “area”
for all subsets of a unit square in the plane.

The sets for which the probability function P will be defined are said to be “mea-
surable”. The domain of definition of P should includewith any setC its complement
Cc, and with any countable number of events their union. By (2.1), it should also
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30 2 The Probability Background

include Z . A class of sets that contains Z and is closed under complementation
and countable unions is a σ-field. Such a class is automatically also closed under
countable intersections.

The starting point of any probabilistic considerations is therefore a space Z ,
representing the possible outcomes, and a σ-field C of subsets ofZ , representing the
events whose probability is to be defined. Such a couple (Z, C) is called ameasurable
space, and the elements of C constitute the measurable sets. A countably additive
nonnegative (not necessarily finite) set function μ defined over C and such that
μ(0) = 0 is called ameasure. If it assigns the value 1 toZ , it is a probability measure.
More generally, μ is finite if μ(Z) < ∞ and σ-finite if there exist C1,C2, . . . in
C (which may always be taken to be mutually exclusive) such that ∪Ci = Z and
μ(Ci ) < ∞ for i = 1, 2, . . . . Important special cases are provided by the following
examples.

Example 2.1.1 (Lebesgue measure) Let Z be the n-dimensional Euclidean space
En , and C the smallest σ-field containing all rectangles1

R = {(z1, . . . , zn) : ai < zi ≤ bi , i = 1, . . . , n}.

The elements of C are called the Borel sets of En . Over C a unique measure μ can be
defined, which to any rectangle R assigns as its measure the volume of R,

μ(R) =
n∏

i=1

(bi − ai ).

Themeasureμ can be completed by adjoining to C all subsets of sets of measure zero.
The domain ofμ is thereby enlarged to a σ-field C ′, the class of Lebesgue-measurable
sets. The term Lebesgue measure is used for μ both when it is defined over the Borel
sets and when it is defined over the Lebesgue-measurable sets.

This example can be generalized to any nonnegative set function ν, which is
defined and countably additive over the class of rectangles R. There exists then, as
before, a unique measure μ over (Z, C) that agrees with ν for all R. This measure
can again be completed; however, the resulting σ-field depends on μ and need not
agree with the σ-field C ′ obtained above.

Example 2.1.2 (Counting measure) Suppose the Z is countable, and let C be the
class of all subsets of Z . For any set C , define μ(C) as the number of elements of
C if that number is finite, and otherwise as +∞. This measure is sometimes called
counting measure.

1 If π(z) is a statement concerning certain objects z, then {z : π(z)} denotes the set of all those z for
which π(z) is true.
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In applications, the probabilities over (Z, C) refer to randomexperiments or obser-
vations, the possible outcomes of which are the points z ∈ Z . When recording the
results of an experiment, one is usually interested only in certain of its aspects, typ-
ically some counts or measurements. These may be represented by a function T
taking values in some space T .

Such a function generates in T the σ-field B′ of sets B whose inverse image

C = T−1(B) = {z : z ∈ Z, T (z) ∈ B}

is in C, and for any given probability measure P over (Z, C) a probability measure
Q over (T ,B′) defined by

Q(B) = P(T−1(B)). (2.3)

Frequently, there is given a σ-field B of sets in T such that the probability of
B should be defined if and only if B ∈ B. This requires that T−1(B) ∈ C for all
B ∈ B, and the function (or transformation) T from (Z, C) into2 (T ,B) is then said
to be C-measurable. Another implication is the sometimes convenient restriction of
probability statements to the sets B ∈ B even though there may exist sets B /∈ B for
which T−1(B) ∈ C and whose probability therefore could be defined.

Of particular interest is the case of a single measurement in which the function
of T is real-valued. Let us denote it by X , and letA be the class of Borel sets on the
real line X . Such a measurable real-valued X is called a random variable, and the
probability measure it generates over (X ,A) will be denoted by PX and called the
probability distribution of X . The value this measure assigns to a set A ∈ A will be
denoted interchangeably by PX (A) and P(X ∈ A). Since the intervals {x : x ≤ a}
are in A, the probabilities F(a) = P(X ≤ a) are defined for all a. The function F ,
the cumulative distribution function (cdf) of X , is nondecreasing and continuous
on the right, and F(−∞) = 0, F(+∞) = 1. Conversely, if F is any function with
these properties, a measure can be defined over the intervals by P{a < X ≤ b} =
F(b) − F(a). It follows from Example 2.1.1 that this measure uniquely determines a
probability distribution over the Borel sets. Thus the probability distribution PX and
the cumulative distribution function F uniquely determine each other. These remarks
extend to probability distributions over n-dimensional Euclidean space, where the
cumulative distribution function is defined by

F(a1, . . . , an) = P{X1 ≤ a1, . . . , Xn ≤ an}.

In concrete problems, the space (Z, C), corresponding to the totality of possible
outcomes, is usually not specified and remains in the background. The real starting
point is the set X of observations (typically vector-valued) that are being recorded
and which constitute the data, and the associated measurable space (X ,A), the
sample space. Random variables or vectors that are measurable transformations T

2 The term into indicates that the range of T is in T ; if T (Z) = T , the transformation is said to be
from Z onto T .
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from (X ,A) into some (T ,B) are called statistics. The distribution of T is then
given by (2.3) applied to all B ∈ B. With this definition, a statistic is specified by the
function T and the σ-field B. We shall, however, adopt the convention that when a
function T takes on its values in a Euclidean space, unless otherwise stated the σ-
field B of measurable sets will be taken to be the class of Borel sets. It then becomes
unnecessary to mention it explicitly or to indicate it in the notation.

The distinction between statistics and random variables as defined here is slight.
The term statistic is used to indicate that the quantity is a function of more basic
observations; all statistics in a given problem are functions defined over the same
sample space (X ,A). On the other hand, any real-valued statistic T is a random
variable, since it has a distribution over (T ,B), and it will be referred to as a random
variable when its origin is irrelevant. Which term is used therefore depends on the
point of view and to some extent is arbitrary.

2.2 Integration

According to the conventionof the preceding section, a real-valued function f defined
over (X ,A) is measurable if f −1(B) ∈ A for every Borel set B on the real line. Such
a function f is said to be simple if it takes on only a finite number of values. Let μ be
a measure defined over (X ,A), and let f be a simple function taking on the distinct
values a1, . . . , am on the sets A1, . . . , Am , which are inA, since f is measurable. If
μ(Ai ) < ∞ when ai �= 0, the integral of f with respect to μ is defined by

∫
f dμ =

∑
aiμ(Ai ). (2.4)

Given any nonnegative measurable function f , there exists a nondecreasing
sequence of simple functions fn converging to f . Then the integral of f is defined
as ∫

f dμ = lim
n→∞

∫
fn dμ, (2.5)

which can be shown to be independent of the particular sequence of fn’s chosen. For
any measurable function f its positive and negative parts

f +(x) = max[ f (x), 0] and f −(x) = max[− f (x), 0] (2.6)

are also measurable, and
f (x) = f +(x) − f −(x).

If the integrals of f + and f − are both finite, then f is said to be integrable, and its
integral is defined as



2.2 Integration 33

∫
f dμ =

∫
f + dμ −

∫
f − dμ.

If of the two integrals one is finite and one infinite, then the integral of f is defined
to be the appropriate infinite value; if both are infinite, the integral is not defined.

Example 2.2.1 Let X be the closed interval [a, b], A be the class of Borel sets or
of Lebesgue measurable sets in X , and μ be Lebesgue measure. Then the integral of
f with respect to μ is written as

∫ b
a f (x) dx , and is called the Lebesgue integral of

f . This integral generalizes the Riemann integral in that it exists and agrees with the
Riemann integral of f whenever the latter exists.

Example 2.2.2 Let X be countable and consist of the points x1, x2, . . . ; let A be
the class of all subsets of X , and let μ assign measure bi to the point xi . Then f
is integrable provided

∑
f (xi )bi converges absolutely, and

∫
f dμ is given by this

sum.

Let PX be the probability distribution of a random variable X , and let T be a
real-valued statistic. If the function T (x) is integrable, its expectation is defined by

E(T ) =
∫

T (x) dPX (x). (2.7)

It will be seen from Lemma 2.3.2 in Section 2.3 that the integration can be carried
out alternatively in t-space with respect to the distribution of T defined by (2.3), so
that also

E(T ) =
∫

t d PT (t). (2.8)

Definition (2.5) of the integral permits the basic convergence theorems.

Theorem 2.2.1 Fatou’s Lemma Let fn be a sequence of measurable functions such
that fn(x) ≥ 0 and fn(x) → f (x), except possibly on a set of x values having μ
measure 0. Then, ∫

f dμ ≤ lim inf
∫

fndμ .

Theorem 2.2.2 Let fn be a sequence of measurable functions, and let fn(x) →
f (x), except possibly on a set of x values having μ measure 0. Then

∫
fn dμ →

∫
f dμ

if any one of the following conditions holds:

(i) Lebesgue Monotone Convergence Theorem: the fn’s are nonnegative and
the sequence is nondecreasing;
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or

(ii) Lebesgue Dominated Convergence Theorem: there exists an integrable func-
tion g such that | fn(x)| ≤ g(x) for n and x.

or

(iii) General Form: there exist gn and g with | fn| ≤ gn, gn(x) → g(x) except
possibly on a μ null set, and

∫
gndμ → ∫

gdμ.

Corollary 2.2.1 Vitali’s Theorem Suppose fn and f are real-valued measurable
functions with fn(x) → f (x), except possibly on a set having μ measure 0. Assume

lim sup
n

∫
f 2n (x)dμ(x) ≤

∫
f 2(x)dμ(x) < ∞ .

Then, ∫
| fn(x) − f (x)|2dμ(x) → 0 .

For a proof of this result, see Theorem 6.1.3 of Hájek et al. (1999).
For any set A ∈ A, let IA be its indicator function defined by

IA(x) = 1 or 0 as x ∈ A or x ∈ Ac, (2.9)

and let ∫

A
f dμ =

∫
f IA dμ. (2.10)

If μ is a measure and f a nonnegative measurable function over (X ,A), then

ν(A) =
∫

A
f dμ (2.11)

defines a new measure over (X ,A). The fact that (2.11) holds for all A ∈ A is
expressed by writing

dν = f dμ or f = dν

dμ
. (2.12)

Let μ and ν be two given σ-finite measures over (X ,A). If there exists a function
f satisfying (2.12), it is determined through this relation up to sets of measure zero,
since ∫

A
f dμ =

∫

A
g dμ for all A ∈ A
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implies that f = g a.e. μ.3 Such an f is called the Radon–Nikodym derivative of
ν with respect to μ, and in the particular case that ν is a probability measure, the
probability density of ν with respect to μ.

The question of existence of a function f satisfying (2.12) for given measures μ
and ν is answered in terms of the following definition. A measure ν is absolutely
continuous with respect to μ if

μ(A) = 0 implies ν(A) = 0.

Theorem 2.2.3 (Radon–Nikodym) If μ and ν are σ-finite measures over (X ,A),
then there exists ameasurable function f satisfying (2.12) if and only if ν is absolutely
continuous with respect to μ.

The direct (or Cartesian) product A × B of two sets A and B is the set of all pairs
(x, y) with x ∈ A, y ∈ B. Let (X ,A) and (Y,B) be two measurable spaces, and let
A × B be the smallest σ-field containing all sets A × B with A ∈ A and B ∈ B. If
μ and ν are two σ-finite measures over (X ,A) and (Y,B), respectively, then there
exists a unique measure λ = μ × ν over (X × Y,A × B), the product of μ and ν,
such that for any A ∈ A, B ∈ B,

λ(A × B) = μ(A)ν(B). (2.13)

Example 2.2.3 Let X ,Y be Euclidean spaces of m and n dimensions, and letA,B
be the σ-fields of Borel sets in these spaces. ThenX × Y is an (m + n)-dimensional
Euclidean space, and A × B the class of its Borel sets.

Example 2.2.4 Let Z = (X,Y )be a randomvariable definedover (X × Y,A × B),
and suppose that the random variables X and Y have distributions PX , PY over
(X ,A) and (Y,B). Then X and Y are said to be independent if the probability
distribution PZ of Z is the product PX × PY .

In terms of these concepts the reduction of a double integral to a repeated one is
given by the following theorem.

Theorem 2.2.4 (Fubini) Let μ and ν be σ-finite measures over (X ,A) and (Y,B)

respectively, and let λ = μ × ν. If f (x, y) is integrable with respect to λ, then

(i) for almost all (ν) fixed y, the function f (x, y) is integrable with respect to μ,
(ii) the function

∫
f (x, y) dμ(x) is integrable with respect to ν, and

∫
f (x, y) dλ(x, y) =

∫ [∫
f (x, y) dμ(x)

]
dν(y). (2.14)

3 A statement that holds for all points x except possibly on a set of μ-measure zero is said to hold
almost everywhere μ, abbreviated a.e. μ, or to hold a.e. (A,μ) if it is desirable to indicate the σ-field
over which μ is defined.
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2.3 Statistics and Subfields

According to the definition of Section 2.1, a statistic is ameasurable transformation T
from the sample space (X ,A) into ameasurable space (T ,B). Such a transformation
induces in the original sample space the subfield4

A0 = T−1(B) = {
T−1(B) : B ∈ B

}
. (2.15)

Since the set T−1[T (A)] contains A but is not necessarily equal to A, the σ-field
A0 need not coincide with A and hence can be a proper subfield of A. On the other
hand, suppose for a moment that T = T (X ), that is, that the transformation T is
onto rather than into T . Then

T
[
T−1(B)

] = B for all B ∈ B, (2.16)

so that the relationship A0 = T−1(B) establishes a 1:1 correspondence between the
sets of A0 and B, which is an isomorphism—that is, which preserves the set opera-
tions of intersection, union, and complementation. For most purposes it is therefore
immaterial whether one works in the space (X ,A0) or in (T ,B). These generate two
equivalent classes of events, and therefore of measurable functions, possible decision
procedures, etc. If the transformation T is only into T , the above 1:1 correspondence
applies to the class B′ of subsets of T ′ = T (X ) which belong to B, rather than to
B itself. However, any set B ∈ B is equivalent to B ′ = B ∩ T ′ in the sense that any
measure over (X ,A) assigns the same measure to B ′ as to B. Considered as classes
of events,A0 and B therefore continue to be equivalent, with the only difference that
B contains several (equivalent) representations of the same event.

As an example, let X be the real line and A the class of Borel sets, and let
T (x) = x2. Let T be either the positive real axis or the whole real axis, and let B be
the class of Borel subsets of T . ThenA0 is the class of Borel sets that are symmetric
with respect to the origin. When considering, for example, real-valued measurable
functions, one would, when working in T -space, restrict attention to measurable
function of x2. Instead, one could remain in the original space, where the restriction
would be to the class of even measurable functions of x . The equivalence is clear.
Which representation is more convenient depends on the situation.

That the correspondence between the sets A0 = T−1(B) ∈ A0 and B ∈ B estab-
lishes an analogous correspondence between measurable functions defined over
(X ,A0) and (T ,B) is shown by the following lemma.

4 We shall use this term in place of the more cumbersome “sub-σ-field”.
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Lemma 2.3.1 Let the statistic T from (X ,A) into (T ,B) induce the subfield A0.
Then a real-valued A-measurable function f is A0-measurable if and only if there
exists a B-measurable function g such that

f (x) = g[T (x)]

for all x.

Proof. Suppose first that such a function g exists. Then the set

{x : f (x) < r} = T−1({t : g(t) < r})

is in A0, and f is A0-measurable. Conversely, if f is A0-measurable, then the sets

Ain =
{
x : i

2n
< f (x) ≤ i + 1

2n

}
, i = 0,±1,±2, . . .

are (for fixed n) disjoint sets in A0 whose union is X , and there exist Bin ∈ B such
that Ain = T−1(Bin). Let

B∗
in = Bin ∩ {

⋃
j �=i

B jn}c .

Since Ain and A jn are mutually exclusive for i �= j , the set T−1(Bin ∩ Bjn) is empty
and so is the set T−1(Bin ∩ {B∗

in}c). Hence, for fixed n, the sets B∗
in are disjoint, and

still satisfy Ain = T−1(B∗
in). Defining

fn(x) = i

2n
if x ∈ Ain, i = 0 ± 1,±2, . . . ,

one can write
fn(x) = gn[T (x)],

where

gn(t) =
⎧⎨
⎩

i
2n for t ∈ B∗

in, i = 0 ± 1,±2, . . . ,

0 otherwise.

Since the functions gn are B-measurable, the set B on which gn(t) converges to a
finite limit is in B. Let R = T (X ) be the range of T . Then for t ∈ R,

lim gn[T (x)] = lim fn(x) = f (x)

for all x ∈ X so that R is contained in B. Therefore, the function g defined by g(t) =
lim gn(t) for t ∈ B and g(t) = 0 otherwise possesses the required properties.
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The relationship between integrals of the functions f and g above is given by the
following lemma.

Lemma 2.3.2 Let T be a measurable transformation from (X ,A) into (T ,B), μ a
σ-finite measure over (X ,A), and g a real-valued measurable function of t . If μ∗ is
the measure defined over (T ,B) by

μ∗(B) = μ
[
T−1(B)

]
for all B ∈ B, (2.17)

then for any B ∈ B,
∫

T−1(B)

g[T (x)] dμ(x) =
∫

B
g(t) dμ∗(t) (2.18)

in the sense that if either integral exists, so does the other and the two are equal.

Proof. Without loss of generality let B be the whole space T . If g is the indicator of
a set B0 ∈ B, the lemma holds, since the left- and right-hand sides of (2.18) reduce
respectively to μ[T−1(B0)] and μ∗(B0), which are equal by the definition of μ∗. If
follows that (2.18) holds successively for all simple functions, for all nonnegative
measurable functions, and hence finally for all integrable functions.

2.4 Conditional Expectation and Probability

If two statistics induce the same subfield A0, they are equivalent in the sense of
leading to equivalent classes of measurable events. This equivalence is particularly
relevant to considerations of conditional probability. Thus if X is normally distributed
with zero mean, the information carried by the statistics |X |, X2, e−X2

, and so on, is
the same. Given that |X | = t , X2 = t2, e−X2 = e−t2 , it follows that X is ±t , and any
reasonable definition of conditional probability will assign probability 1

2 to each of
these values. The general definition of conditional probability to be given below will
in fact involve essentially only A0 and not the range space T of T . However, when
referred to A0 alone the concept loses much of its intuitive meaning, and the gap
between the elementary definition and that of the general case becomes unnecessarily
wide. For these reasons it is frequently more convenient to work with a particular
representation of a statistic, involving a definite range space (T ,B).

Let P be a probability measure over (X ,A), T a statistic with range space (T ,B),
andA0 the subfield it induces. Consider a nonnegative function f which is integrable
(A, P), that is, A-measurable and P-integrable. Then

∫
A f d P is defined for all

A ∈ A and therefore for all A0 ∈ A0. If follows from the Radon–Nikodym Theorem
(Theorem 2.2.3) that there exists a function f0 which is integrable (A0, P) and such
that ∫

A0

f d P =
∫

A0

f0 dP for all A0 ∈ A0, (2.19)
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and that f0 is unique (A0, P). By Lemma 2.3.1, f0 depends on x only through T (x).
In the example of a normally distributed variable X with zero mean, and T = X2,
the function f0 is determined by (2.19) holding for all sets A0 that are symmetric
with respect to the origin, so that f0(x) = 1

2 [ f (x) + f (−x)].
The function f0 defined through (2.19) is determined by two properties:

(i) Its average value over any set A0 with respect to P is the same as that of f ;
(ii) It depends on x only through T (x) and hence is constant on the sets Dx over

which T is constant.

Intuitively, what one attempts to do in order to construct such a function is to
define f0(x) as the conditional P-average of f over the set Dx . One would thereby
replace the single averaging process of integrating f represented by the left-hand side
with a two-stage averaging process such as an iterated integral. Such a construction
can actually be carried out when X is a discrete variable and in the regular case
considered in Section 1.9; f0(x) is then just the conditional expectation of f (X)

given T (x). In general, it is not clear how to define this conditional expectation
directly. Since it should, however, possess properties (i) and (ii), and since these
through (2.19) determine f0 uniquely (A0, P), we shall take f0(x) of (2.19) as the
general definition of the conditional expectation E[ f (X) | T (x)]. Equivalently, if
f0(x) = g[T (x)], one can write

E[ f (X) | t] = E[ f (X) | T = t] = g(t),

so that E[ f (X) | t] is a B-measurable function defined up to equivalence (B, PT ).
In the relationship of integrals given in Lemma 2.3.2, if μ = PX , then μ∗ = PT , and
it is seen that the function g can be defined directly in terms of f through

∫

T−1(B)

f (x) dPX (x) =
∫

B
g(t) dPT (t) for all B ∈ B, (2.20)

which is equivalent to (2.19).
So far, f has been assumed to be nonnegative. In the general case, the conditional

expectation of f is defined as

E[ f (X) | t] = E[ f +(X) | t] − E[ f −(X) | t].

Example 2.4.1 (Order statistics) Let X1, . . . , Xn be identically and independently
distributed random variables with continuous distribution function, and let

T (x1, . . . , xn) = (x(1), . . . , x(n)),

where x(1) ≤ · · · ≤ x(n) denote the ordered x’s. Without loss of generality one can
restrict attention to the points with x(1) < · · · < x(n), since the probability of two
coordinates being equal is 0. ThenX is the set of all n-tupleswith distinct coordinates,
T the set of all ordered n-tuples, andA andB are the classes of Borel subsets ofX and
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T . Under T−1 the set consisting of the single point a = (a1, . . . , an) is transformed
into the set consisting of the n! points (ai1 , . . . , ain ) that are obtained from a by
permuting the coordinates in all possible ways. It follows that A0 is the class of all
sets that are symmetric in the sense that if A0 contains a point x = (x1, . . . , xn), then
it also contains all points (xi1 , . . . , xin ).

For any integrable function f , let

f0(x) = 1

n!
∑

f (xi1 , . . . , xin ),

where the summation extends over the n! permutations of (x1, . . . , xn). Then f0 is
A0-measurable, since it is symmetric in its n arguments. Also

∫

A0

f (x1, . . . , xn) dP(x1) . . . dP(xn) =
∫

A0

f (xi1 , . . . , xin ) dP(x1) . . . dP(xn),

so that f0 satisfies (2.19). It follows that f0(x) is the conditional expectation of f (X)

given T (x).
The conditional expectation of f (X) given the above statistic T (x) can also be

found without assuming the X ’s to be identically and independently distributed.
Suppose that X has a density h(x) with respect to a measure μ (such as Lebesgue
measure), which is symmetric in the variables x1, . . . , xn in the sense that for any A ∈
A it assigns to the set {x : (xi1 , . . . , xin ) ∈ A} the same measure for all permutations
(i1, . . . , in). Let

f0(x1, . . . , xn) =
∑

f (xi1 , . . . , xin )h(xi1 , . . . , xin )∑
h(xi1 , . . . , xin )

;

here and in the sums below the summation extends over the n! permutations of
(x1, . . . , xn). The function f0 is symmetric in its n arguments and hence A0-
measurable. For any symmetric set A0, the integral

∫

A0

f0(x1, . . . , xn)h(x j1 , . . . , x jn ) dμ(x1, . . . , xn)

has the same value for each permutation (x j1 , . . . , x jn ), and therefore

∫

A0

f0(x1, . . . , xn)h(x1, . . . , xn) dμ(x1, . . . , xn)

=
∫

A0

f0(x1, . . . , xn)
1

n!
∑

h(xi1 , . . . , xin ) dμ(x1, . . . , xn)

=
∫

A0

f (x1, . . . , xn)h(x1, . . . , xn) dμ(x1, . . . , xn).

It follows that f0(x) = E[ f (X) | T (x)].
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Equivalent to the statistic T (x) = (x(1), . . . , x(n)), the set of order statistics is
U (x) = (∑

xi ,
∑

x2i , . . . ,
∑

xni
)
. This is an immediate consequence of the fact, to

be shown below, that if T (x0) = t0 and U (x0) = u0, then

T−1 ({t0}) = U−1 ({u0}) = S,

where
{
t0
}
and

{
u0
}
denote the sets consisting of the single point t0 and u0, respec-

tively, and where S consists of the totality of points x = (x1, . . . , xn) obtained by
permuting the coordinates of x0 = (x01 , . . . , x

0
n ) in all possible ways.

That T−1
({
t0
}) = S is obvious. To see the corresponding fact for U−1, let

V (x) =
⎛
⎝∑

i

xi ,
∑
i< j

xi x j ,
∑
i< j<k

xi x j xk, . . . , x1x2 · · · xn
⎞
⎠ ,

so that the components of V (x) are the elementary symmetric functions v1 =∑
xi , . . . , vn = x1 . . . xn of the n arguments x1, . . . , xn . Then

(x − x1) . . . (x − xn) = xn − v1x
n−1 + v2x

n−2 − · · · + (−1)nvn.

Hence V (x0) = v0 = (v0
1, . . . , v

0
n) implies that V−1({v0}) = S. That then also

U−1({u0}) = S follows from the 1:1 correspondence between u and v established
by the relations (known as Newton’s identities)5:

uk − v1uk−1 + v2uk−2 − · · · + (−1)k−1vk−1u1 + (−1)kkvk = 0

for 1 ≤ k ≤ n.

It is easily verified from the above definition that conditional expectation pos-
sesses most of the usual properties of expectation. It follows of course from the
nonuniqueness of the definition that these properties can hold only (B, PT ). We
state this formally in the following lemma.

Lemma 2.4.1 If T is a statistic and the functions f , g, … are integrable (A, P),
then a.e. (B, PT )

(i) E[a f (X) + bg(X) | t] = aE[ f (X) | t] + bE[g(X) | t];
(ii) E[h(T ) f (X) | t] = h(t)E[ f (X) | t];
(iii) a ≤ f (x) ≤ b (A, P) implies a ≤ E[ f (X) | t] ≤ b;
(iv) | fn| ≤ g, fn(x) → f (x) (A, P) implies E[ fn(X) | t] → E[ f (X) | t].

A further useful result is obtained by specializing (2.20) to the case that B is the
whole space T . One then has

5 For a proof of these relations, see for example Turnbull (1952), Section 32.
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Lemma 2.4.2 If E[| f (X)|] < ∞, and if g(t) = E[ f (X) | t], then

E[ f (X)] = E[g(T )] , (2.21)

that is, the expectation can be obtained as the expected value of the conditional
expectation.

Since P{X ∈ A} = E[IA(X)], where IA denotes the indicator of the set A, it is
natural to define the conditional probability of A given T = t by

P(A | t) = E[IA(X) | t]. (2.22)

In view of (2.20) the defining equation for P(A | t) can therefore be written as

PX
(
A ∩ T−1(B)

) =
∫

A∩T−1(B)

dPX (x) (2.23)

=
∫

B
P(A | t) dPT (t) for all B ∈ B.

It is an immediate consequence of Lemma 2.4.1 that subject to the appropriate null-
set6 qualifications, P(A | t) possesses the usual properties of probabilities, as sum-
marized in the following lemma.

Lemma 2.4.3 If T is a statistic with range space (T ,B), and A, B, A1, A2, . . . are
sets belonging to A, then a.e. (B, PT )

(i) 0 ≤ P(A | t) ≤ 1;
(ii) if the sets A1, A2, . . . are mutually exclusive,

P
(⋃

Ai | t
)

=
∑

P(Ai | t);

(iii) A ⊂ B implies P(A | t) ≤ P(B | t).
According to definition (2.22), the conditional probability P(A | t) must be con-

sidered for fixed A as a B-measurable function of t . This is in contrast to the ele-
mentary definition in which one takes t as fixed and considers P(A | t) for varying
A as a set function over A. Lemma 2.4.3 suggests the possibility that the interpre-
tation of P(A | t) for fixed t as a probability distribution over A may be valid also
in the general case. However, the equality P(A1 ∪ A2 | t) = P(A1 | t) + P(A2 | t),
for example, can break down on a null set that may vary with A1 and A2, and the
union of all these null sets need no longer have measure zero.

For an important class of cases, this difficulty can be overcome through the
nonuniqueness of the functions P(A | t), which for each fixed A are determined
only up to sets of measure zero in t . Since all determinations of these functions are

6 This term is used as an alternative to the more cumbersome “set of measure zero”.
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equivalent, it is enough to find a specific determination for each A so that for each
fixed t these determinations jointly constitute a probability distribution overA. This
possibility is illustrated by Example 2.4.1, in which the conditional probability dis-
tribution given T (x) = t can be taken to assign probability 1/n! to each of the n!
points satisfying T (x) = t . Sufficient conditions for the existence of such conditional
distributions will be given in the next section. For counterexamples see Blackwell
and Dubins (1975).

2.5 Conditional Probability Distributions

We shall now investigate the existence7 of conditional probability distributions under
the assumption, satisfied in most statistical applications, that X is a Borel set in a
Euclidean space. We shall then say for short that X is Euclidean and assume that,
unless otherwise stated, A is the class of Borel subsets of X .

Theorem 2.5.1 If X is Euclidean, there exist determinations of the functions
P(A | t) such that for each t, P(A | t) is a probability measure over A.

Proof. By setting equal to 0 the probability of any Borel set in the complement
of X , one can extend the given probability measure to the class of all Borel sets
and can therefore assume without loss of generality that X is the full Euclidean
space. For simplicity we shall give the proof only in the one-dimensional case.
For each real x put F(x, t) = P((−∞, x] | t) for some version of this conditional
probability function, and let r1, r2, . . . denote the set of all rational numbers in some
order. Then ri < r j implies that F(ri , t) ≤ F(r j , t) for all t except those in a null
set Ni j , and hence that F(x, t) is nondecreasing in x over the rationals for all t
outside of the null set N ′ = ⋃

Ni j . Similarly, it follows from Lemma 2.4.1(iv) that
for all t not in a null set N ′′, as n tends to infinity lim F(ri + 1/n, t) = F(ri , t) for
i = 1, 2, . . . , lim F(n, t) = 1, and lim F(−n, t) = 0. Therefore, for all t outside of
the null set N ′ ∪ N ′′, F(x, t) considered as a function of x is properly normalized,
monotone, and continuous on the right over the rationals. For t not in N ′ ∪ N ′′ let
F∗(x, t) be the unique function that is continuous on the right in x and agrees with
F(x, t) for all rational x . Then F∗(x, t) is a cumulative distribution function and
therefore determines a probability measure P∗(A | t) over A. We shall now show
that P∗(A | t) is a conditional probability of A given t , by showing that for each fixed
A it is a B-measurable function of t satisfying (2.23). This will be accomplished by
proving that for each fixed A ∈ A

P∗(A | t) = P(A | t) (B, PT ).

7 This section may be omitted at first reading. Its principal application is in the proof of
Lemma 2.7.2(ii) in Section 2.7, which in turn is used only in the proof of Theorem 4.4.1.
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By definition of P∗ this is true whenever A is one of the sets (−∞, x] with x
rational. It holds next when A is an interval (a, b] = (−∞, b] − (−∞, a] with a, b
rational, since P∗ is ameasure and P satisfies Lemma2.4.3(ii). Therefore, the desired
equation holds for the fieldF of all sets A which are finite unions of intervals (ai , bi ]
with rational end points. Finally, the class of sets for which the equation holds is a
monotone class (see Problem 2.1) and hence contains the smallest σ-field containing
F , which is A. The measure P∗(A | t) over A was defined above for all t not in
N ′ ∪ N ′′. However, since neither the measurability of a function nor the values of
its integrals are affected by its values on a null set, one can take arbitrary probability
measures over A for t in N ′ ∪ N ′′ and thereby complete the determination.

If X is a vector-valued random variable with probability distribution PX and T is a
statistic defined over (X ,A), let PX |t denote any version of the family of conditional
distributions P(A | t) over A guaranteed by Theorem 2.5.1. The connection with
conditional expectation is given by the following theorem.

Theorem 2.5.2 If X is a vector-valued random variable and E | f (X)| < ∞, then

E[ f (X) | t] =
∫

f (x) dPX |t (x) (B, PT ). (2.24)

Proof. Equation (2.24) holds if f is the indicator of any set A ∈ A. It then follows
from Lemma 2.4.1 that it also holds for any simple function and hence for any
integrable function.

The determination of the conditional expectation E[ f (X) | t] given by the right-
hand side of (2.24) possesses for each t the usual properties of an expectation, (i),
(iii), and (iv) of Lemma 2.4.1, which previously could be asserted only up to sets of
measure zero depending on the functions f, g, . . . involved.Under the assumptions of
Theorem 2.5.1 a similar strengthening is possible with respect to (ii) of Lemma 2.4.1,
which can be shown to hold except possibly on a null set N not depending on
the function h. It will be sufficient for the present purpose to prove this under the
additional assumption that the range space of the statistic T is also Euclidean. For a
proof without this restriction, see for example Billingsley (1995).

Theorem 2.5.3 If T is a statistic with Euclidean domain and range spaces (X ,A)

and (T ,B), there exists a determination PX |t of the conditional probability distri-
bution and a null set N such that the conditional expectation computed by

E[ f (X) | t] =
∫

f (x) dPX |t (x)

satisfies for all t /∈ N.

E[h(T ) f (X) | t] = h(t)E[ f (X) | t]. (2.25)

Proof. For the sake of simplicity and without essential loss of generality suppose
that T is real-valued. Let PX |t (A) be a probability distribution over A for each t ,
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the existence of which is guaranteed by Theorem 2.5.1. For B ∈ B, the indicator
function IB(t) is B-measurable and

∫

B ′
IB(t) dPT (t)= PT (B ′ ∩ B)= PX (T−1B ′ ∩ T−1B)

for all B ′ ∈ B.

Thus by (2.20)
IB(t) = PX |t (T−1B

)
a.e. PT .

Let Bn, n = 1, 2, . . . , be the intervals of T with rational end points. Then there exists
a P-null set N = ∪Nn such that for t /∈ N

IBn (t) = PX |t (T−1Bn
)

for all n. For fixed t /∈ N , the two set functions PX |t (T−1B
)
and IB(t) are probability

distributions over B, the latter assigning probability 1 or 0 to a set as it does or does
not contain the point t . Since these distributions agree over the rational intervals Bn ,
they agree for all B ∈ B. In particular, for t /∈ N , the set consisting of the single point
t is in B, and if

A(t) = {x : T (x) = t},

it follows that for all t /∈ N
PX |t (A(t)

) = 1. (2.26)

Thus
∫

h[T (x)] f (x) dPX |t (x) =
∫

A(t)

h[T (x)] f (x) dPX |t (x)

= h(t)
∫

f (x) dPX |t (x)

for t /∈ N , as was to be proved.

It is a consequence of Theorem 2.5.3 that for all t /∈ N , E[h(T ) | t] = h(t) and
hence in particular P(T ∈ B | t) = 1 or 0 as t ∈ B or t /∈ B.

The conditional distributions PX |t still differ from those of the elementary case
considered in Section 1.9, in being defined over (X ,A) rather than over the set A(t)

and the σ-field A(t) of its Borel subsets. However, (2.26) implies that for t /∈ N

PX |t (A) = PX |t (A ∩ A(t)).

The calculations of conditional probabilities and expectations are therefore
unchanged if for t /∈ N , PX |t is replaced by the distribution P̄ X |t , which is defined
over (A(t),A(t)) and which assigns to any subset of A(t) the same probability as PX |t .
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Theorem 2.5.3 establishes for all t /∈ N the existence of conditional probability
distributions P̄ X |t , which are defined over (A(t),A(t)) and which by Lemma 2.4.2
satisfy

E[ f (X)] =
∫

T −N

[∫

A(t)

f (x) dP (X |t)(x)
]
dPT (t) (2.27)

for all integrable functions f . Conversely, consider any family of distributions sat-
isfying (2.27), and the experiment of observing first T , and then, if T = t , a random
quantity with distribution P̄ X |t . The result of this two-stage procedure is a point dis-
tributed over (X ,A)with the same distribution as the original X . Thus P̄ X |t satisfies
this “functional” definition of conditional probability.

If (X ,A) is a product space (T × Y,B × C), then A(t) is the product of Y with
the set consisting of the single point t . For t /∈ N , the conditional distribution P̄ X |t
then induces a distribution over (Y, C), which in analogy with the elementary case
will be denoted by PY |t . In this case, the definition can be extended to all of T by
letting PY |t assign probability 1 to a common specified point y0 for all t ∈ N . With
this definition, (2.27) becomes

E f (T,Y ) =
∫

T

[∫

Y
f (t, y) dPY |t (y)

]
dPT (t). (2.28)

As an application, we shall prove the following lemma, which will be used in
Section 2.7.

Lemma 2.5.1 Let (T ,B) and (Y, C) be Euclidean spaces, and let PT,Y
0 be a dis-

tribution over the product space (X ,A) = (T × Y,B × C). Suppose that another
distribution P1 over (X ,A) is such that

d P1(t, y) = a(y)b(t) dP0(t, y),

with a(y) > 0 for all y. Then under P1 the marginal distribution of T and a version
of the conditional distribution of Y given t are given by

dPT
1 (t) = b(t)

[∫
a(y) dPY |t

0 (y)

]
dPT

0 (t)

and

dPY |t
1 (y) = a(y) dPY |t

0 (y)∫
Y a(y′) dPY |t

0 (y′)
.

Proof. The first statement of the lemma follows from the equation

P1{T ∈ B} = E1 [IB(T )] = E0 [IB(T )a(Y )b(T )]

=
∫

B
b(T )

[∫

Y
a(y) dPY |t

0 (y)

]
dPT

0 (t).
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To check the second statement, one need only to show that for any integrable f
the expectation E1 f (Y, T ) satisfies (2.28), which is immediate. The denominator of
dPY |t

1 is positive, since a(y) > 0 for all y.

2.6 Characterization of Sufficiency

We can now generalize the definition of sufficiency given in Section 1.9. If
P = {Pθ, θ ∈ �} is any family of distributions defined over a common sample space
(X ,A), a statistic T is sufficient for P (or for θ) if for each A in A there exists
a determination of the conditional probability function Pθ(A | t) that is indepen-
dent of θ. As an example suppose that X1, . . . , Xn are identically and independently
distributed with continuous distribution function Fθ, θ ∈ �. Then it follows from
Example 2.4.1 that the set of order statistics T (X) = (X(1), . . . , X(n)) is sufficient
for θ.

Theorem 2.6.1 IfX is Euclidean, and if the statistic T is sufficient forP , then there
exist determinations of the conditional probability distributions Pθ(A | t) which are
independent of θ and such that for each fixed t, Pθ(A | t) is a probability measure
over A.

Proof. This is seen from the proof of Theorem 2.5.1. By the definition of sufficiency
one can, for each rational number r , take the functions F(r, t) to be independent of
θ, and the resulting conditional distributions will then also not depend on θ.

In Chapter 1, the definition of sufficiency was justified by showing that in a
certain sense a sufficient statistic contains all the available information. In view
of Theorem 2.6.1, the same justification applies quite generally when the sample
space is Euclidean. With the help of a random mechanism one can then construct
from a sufficient statistic T a random vector X ′ having the same distribution as the
original sample vector X . Another generalization of the earlier result, not involving
the restriction to a Euclidean sample space, is given in Problem 2.13.

The factorization criterion of sufficiency, derived in Chapter 1, can be extended to
any dominated family of distributions, that is, any family P = {Pθ, θ ∈ �} possess-
ing probability densities pθ with respect to some σ-finite measure μ over (X ,A).
The proof of this statement is based on the existence of a probability distribution
λ = ∑

ci Pθi (Theorem 2.2.3 of the Appendix), which is equivalent toP in the sense
that for any A ∈ A

λ(A) = 0 if and only if Pθ = 0 for all θ ∈ �. (2.29)

Theorem 2.6.2 Let P = {Pθ, θ ∈ �} be a dominated family of probability distribu-
tions over (X ,A), and let λ = ∑

ci Pθi satisfy (2.29). Then a statistic T with range
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space (T ,B) is sufficient for P if and only if there exist nonnegative B-measurable
functions gθ(t) such that

d Pθ(x) = gθ[T (x)] dλ(x) (2.30)

for all θ ∈ �.

Proof. Let A0 be the subfield induced by T , and suppose that T is sufficient for θ.
Then for all θ ∈ �, A0 ∈ A0, and A ∈ A

∫

A0

P (A | T (x)) dPθ(x) = Pθ(A ∩ A0),

and since λ = ∑
ci Pθi ,

∫

A0

P (A | T (x)) dλ(x) = λ(A ∩ A0),

so that P (A | T (x)) serves as conditional probability function also for λ. Let
gθ(T (x)) be the Radon–Nikodym derivative dPθ(x)/dλ(x) for (A0,λ). To prove
(2.30) it is necessary to show that gθ(T (x)) is also the derivative of Pθ for (A,λ). If
A0 is put equal to X in the first displayed equation, this follows from the relation

Pθ(A) =
∫

P (A | T (x)) dPθ(x) =
∫

Eλ [IA(x) | T (x)] dPθ(x)

=
∫

Eλ [IA(x) | T (x)] gθ(T (x)) dλ(x)

=
∫

Eλ [gθ(T (x))IA(x) | T (x)] dλ(x)

=
∫

gθ(T (x))IA(x) dλ(x) =
∫

A
gθ(T (x)) dλ(x).

Here the second equality uses the fact, established at the beginning of the proof,
that P(A | T (x)) is also the conditional probability for λ; the third equality holds
because the function being integrated is A0-measurable and because dPθ = gθ dλ
for (A0,λ); the fourth is an application of Lemma 2.4.1(ii); and the fifth employs
the defining property of conditional expectation.

Suppose conversely that (2.30) holds. We shall then prove that the conditional
probability function Pλ(A | t) serves as a conditional probability function for all
P ∈ P . Let gθ(T (x)) = dPθ(x)/ dλ(x) onA and for fixed A and θ define a measure
ν overA by the equation dν = IA d Pθ. Then overA0, dν(x)/ dPθ(x) = Eθ[IA(X) |
T (x)], and therefore

dν(x)

dλ(x)
= Pθ[A | T (x)]gθ(T (x)) over A0.
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On the other hand, dν(x)/dλ(x) = IA(x)gθ(T (x)) over A, and hence

dν(x)

dλ(x)
= Eλ[IA(X)gθ(T (X)) | T (x)]
= Pλ[A | T (x)]gθ(T (x)) over A0.

It follows that Pλ(A | T (x))gθ(T (x)) = Pθ(A | T (x))gθ(T (x)) (A0,λ) and hence
(A0, Pθ). Since gθ(T (x)) �= 0 (A0, Pθ), this shows that Pθ(A | T (x)) =
Pλ(A | T (x)) (A0, Pθ), and hence that Pλ(A | T (x)) is a determination of
Pθ(A | T (x)).

Instead of the above formulation, which explicitly involves the distribution λ, it
is sometimes more convenient to state the result with respect to a given dominating
measure μ.

Corollary 2.6.1 (Factorization Theorem) If the distributions Pθ of P have proba-
bility densities pθ = dPθ/dμwith respect to a σ-finite measureμ, then T is sufficient
for P if and only if there exist nonnegative B-measurable functions gθ on T and a
nonnegative A-measurable function h on X such that

pθ(x) = gθ[T (x)]h(x) (A,μ). (2.31)

Proof. Let λ = ∑
ci Pθi satisfy (2.29). Then if T is sufficient, (2.31) follows from

(2.30) with h = dλ/dμ. Conversely, if (2.31) holds

dλ(x) =
∑

cigθi [T (x)]h(x) dμ(x) = k[T (x)]h(x) dμ(x)

and therefore dPθ(x) = g∗
θ (T (x)) dλ(x) where g∗

θ (t) = gθ(t)/k(t) when k(t) > 0
and may be defined arbitrarily when k(t) = 0.

For extensions of the factorizations theorem to undominated families, see Ghosh
et al. (1981) and the literature cited there.

2.7 Exponential Families

An important family of distributions which admits a reduction by means of sufficient
statistics is the exponential family, defined by probability densities of the form

pθ(x) = C(θ) exp

⎡
⎣

k∑
j=1

Q j (θ)Tj (x)

⎤
⎦ h(x) (2.32)

with respect to a σ-finitemeasureμ over a Euclidean sample space (X ,A). Particular
cases are the distributions of a sample X = (X1, . . . , Xn) from a binomial, Poisson,
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or normal distribution. In the binomial case, for example, the density (with respect
to counting measure) is

(
n

x

)
px (1 − p)n−x = (1 − p)n exp

[
x log

(
p

1 − p

)](
n

x

)
.

Example 2.7.1 If Y1, . . . ,Yn are independently distributed, each with density (with
respect to Lebesgue measure)

pσ(y) = y[( f/2)−1] exp
[−y/

(
2σ2

)]
(
2σ2

) f/2
�( f/2)

, y > 0, (2.33)

then the joint distribution of the Y ’s constitutes an exponential family. For σ = 1,
(2.33) is the density of the χ2-distribution with f degrees of freedom, in particular,
for f an integer this is the density of

∑ f
j=1 X

2
j , where the X ’s are a sample from the

normal distribution N (0, 1).

Example 2.7.2 Consider n independent trials, each of them resulting in one of the
s outcomes E1, . . . , Es with probabilities p1, . . . , ps , respectively. If Xi j is 1 when
the outcome of the i th trial is E j and 0 otherwise, the joint distribution of the X ’s is

P{X11 = x11, . . . , Xns} = p
∑

xi1
1 p

∑
xi2

2 · · · p
∑

xis
s ,

where all xi j = 0or 1 and
∑

j xi j = 1.This forms an exponential familywithTj (x) =∑n
i=1 xi j ( j = 1, . . . , s − 1). The joint distribution of the T ’s is the multinomial

distribution M(n; p1, . . . , ps) given by

P{T1 = t1, . . . , Ts−1 = ts−1} (2.34)

= n!
t1! . . . ts−1!(n − t1 − · · · − ts−1)!

×pt11 . . . pts−1
s−1(1 − p1 − · · · − ps−1)

n−t1−···−ts−1 .

If X1, . . . , Xn is a sample from a distribution with density (2.32), the joint dis-
tribution of the X ’s constitutes an exponential family with the sufficient statistics∑n

i=1 Tj (Xi ), j = 1, . . . , k. Thus there exists a k-dimensional sufficient statistic for
(X1, . . . , Xn) regardless of the sample size. Suppose conversely that X1, . . . , Xn is a
sample from a distribution with some density pθ(x) and that the set over which this
density is positive is independent of θ. Thenunder regularity assumptionswhichmake
the concept of dimensionality meaningful, if there exists a k-dimensional sufficient
statistic with k < n, the densities pθ(x) constitute an exponential family. For a proof
of this result, see Darmois (1935), Koopman (1936), and Pitman (1937,1938a). Reg-
ularity conditions of the result are discussed in Barankin and Maitra (1963), Brown
(1964), Barndorff–Nielsen and Pedersen (1968), and Hipp (1974).
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Employing a more natural parametrization and absorbing the factor h(x) into μ,
we shall write an exponential family in the form dPθ(x) = pθ(x) dμ(x) with

pθ(x) = C(θ) exp

⎡
⎣

k∑
j=1

θ j Tj (x)

⎤
⎦ . (2.35)

For suitable choice of the constantC(θ), the right-hand side of (2.35) is a probability
density provided its integral is finite. The set � of parameter points θ = (θ1, . . . , θk)
for which this is the case is the natural parameter space of the exponential family
(2.35).

Optimum tests of certain hypotheses concerning any θ j are obtained in Chapter 4.
We shall now consider some properties of exponential families required for this
purpose.

Lemma 2.7.1 The natural parameter space of an exponential family is convex.

Proof. Let (θ1, . . . , θk) and (θ′
1, . . . , θ

′
k) be two parameter points for which the

integral of (2.35) is finite. Then by Hölder’s inequality,

∫
exp

[∑[
αθ j + (1 − α)θ′

j

]
Tj (x)

]
dμ(x)

≤
[∫

exp
[∑

θ j Tj (x)
]
dμ(x)

]α [∫
exp

[∑
θ′
j Tj (x)

]
dμ(x)

]1−α

< ∞

for any 0 < α < 1.

If the convex set � lies in a linear space of dimension < k, then (2.35) can be
rewritten in a form involving fewer than k components of T . We shall therefore,
without loss of generality, assume � to be k-dimensional.

It follows from the factorization theorem that T (x) = (T1(x), . . . , Tk(x)) is suf-
ficient for P = {Pθ, θ ∈ �}.
Lemma 2.7.2 Let X be distributed according to the exponential family

d PT
θ,ϑ(x) = C(θ,ϑ) exp

⎡
⎣

r∑
i=1

θiUi (x) +
s∑

j=1

ϑ j Tj (x)

⎤
⎦ dμ(x).

Then there exist measures λθ and νt over s- and r-dimensional Euclidean space
respectively such that

(i) the distribution of T = (T1, . . . , Ts) is an exponential family of the form

dPT
θ,ϑ(t) = C(θ,ϑ) exp

⎛
⎝

s∑
j=1

ϑ j t j

⎞
⎠ dλθ(t), (2.36)
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(ii) the conditional distribution of U = (U1, . . . ,Ur ) given T = t is an exponential
family of the form

dPU |t
θ· (u) = C(θ) exp

(
r∑

i=1

θi ui

)
dνt (u), (2.37)

and hence in particular is independent of ϑ.

Proof. Let (θ0,ϑ0) be a point of the natural parameter space, and let μ∗ = PX
θ0,ϑ0 .

Then

dPX
θ0,ϑ0(x) = C(θ,ϑ)

C(θ0,ϑ0)

× exp

⎡
⎣

r∑
i=1

(θi − θ0i )Ui (x) +
s∑

j=1

(ϑ j − ϑ0
j )Tj (x)

⎤
⎦ dμ∗(x),

and the result follows from Lemma 2.5.1, with

dλθ(t) = exp
(
−
∑

ϑ0
i ti
)[∫

exp

[
r∑

i=1

(θi − θ0i )ui

]
dPU |t

θ0,ϑ0(u)

]
dPT

θ0,ϑ0(t)

and
dνt (u) = exp

(
−
∑

θ0i ui
)
dPU |t

θ0,ϑ0(u). �

Theorem 2.7.1 Let φ be any function on (X ,A) for which the integral

∫
φ(x) exp

⎡
⎣

k∑
j=1

θ j Tj (x)

⎤
⎦ dμ(x) (2.38)

considered as a function of the complex variables θ j = ξ j + iη j ( j = 1, . . . , k) exists
for all (ξ1, . . . , ξk) ∈ � and is finite. Then

(i) the integral is an analytic function of each of the θ’s in the region R of parameter
points for which (ξ1, . . . , ξk) is an interior point of the natural parameter space
�;

(ii) the derivatives of all orders with respect to the θ’s of the integral (2.38) can be
computed under the integral sign.

Proof. Let (ξ1, . . . , ξk) be any fixed point in the interior of �, and consider one of
the variables in question, say θ1. Breaking up the factor

φ(x) exp
[(

ξ02 + iη0
2

)
T2(x) + · · · + (

ξ0k + iη0
k

)
Tk(x)

]
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into its real and complex parts and each of these into its positive and negative parts,
and absorbing this factor in each of the four terms thus obtained into the measure μ,
one sees that as a function of θ1 the integral (2.38) can be written as

∫
exp [θ1T1(x)] dμ1(x) −

∫
exp [θ1T1(x)] dμ2(x)

+ i
∫

exp [θ1T1(x)] dμ3(x) − i
∫

exp [θ1T1(x)] dμ4(x).

It is therefore sufficient to prove the result for integrals of the form

ψ(θ1) =
∫

exp [θ1T1(x)] dμ(x).

Since (ξ01 , . . . , ξ
0
k ) is in the interior of �, there exists δ > 0 such that ψ(θ1) exists

and is finite for all θ1 with |ξ1 − ξ01 | ≤ δ. Consider the difference

ψ(θ1) − ψ(θ01)

θ1 − θ01
=
∫

exp [θ1T1(x)] − exp
[
θ01T1(x)

]

θ1 − θ01
dμ(x).

The integrand can be written as

exp
[
θ01T1(x)

]
[
exp

[
(θ1 − θ01)T1(x)

]− 1

θ1 − θ01

]
.

Applying to the second factor the inequality

∣∣∣∣
exp(az) − 1

z

∣∣∣∣ ≤ exp(δ|a|)
δ

for |z| ≤ δ,

the integrand is seen to be bounded above in absolute value by

1

δ

∣∣∣∣ exp
(
θ01T1 + δ|T1|

) ∣∣∣∣ ≤ 1

δ

∣∣∣∣ exp
[(

θ01 + δ
)
T1
]+ exp

[(
θ01 − δ

)
T1
] ∣∣∣∣

for |θ1 − θ01| ≤ δ. Since the right-hand side integrable, it follows from the Lebesgue
DominatedConvergenceTheorem [Theorem2.2.2(ii)] that for any sequence of points
θ(n)
1 tending to θ01, the difference quotient of ψ tends to

∫
T1(x) exp

[
θ01T1(x)

]
dμ(x).

This completes the proof of (i), and proves (ii) for the first derivative. The proof for
the higher derivatives is by induction and is completely analogous.
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2.8 Problems

Section 2.1

Problem 2.1 Monotone class.A classF of subsets of a space is a field if it contains
the whole space and is closed under complementation and under finite unions; a
classM ismonotone if the union and intersection of every increasing and decreasing
sequence of sets of M is again in M. The smallest monotone class M0 containing
a given field F coincides with the smallest σ-field A containing F . [One proves
first that M0 is a field. To show, for example, that A ∩ B ∈ M0 when A and B are
in M0, consider, for a fixed set A ∈ F , the class MA of all B in M0 for which
A ∩ B ∈ M0. Then MA is a monotone class containing F , and hence MA = M0.
Thus A ∩ B ∈ MA for all B. The argument can now be repeated with a fixed set
B ∈ M0 and the class MB of sets A in M0 for which A ∩ B ∈ M0. Since M0 is
a field and monotone, it is a σ-field containing F and hence contains A. But any
σ-field is a monotone class so that also M0 is contained in A.]

Section 2.2

Problem 2.2 Prove Corollary 2.2.1 using Theorems 2.2.1 and 2.2.2.

Problem 2.3 Radon–Nikodym derivatives.
(i) If λ and μ are σ-finite measures over (X ,A) and μ is absolutely continuous with
respect to λ, then ∫

f dμ =
∫

f
dμ

dλ
dλ

for any μ-integrable function f .
(ii) If λ, μ, and ν are σ-finite measures over (X ,A) such that ν is absolutely contin-
uous with respect to μ and μ with respect to λ, then

dν

dλ
= dν

dμ

dμ

dλ
a.e. λ.

(iii) If μ and ν are σ-finite measures„ which are equivalent in the sense that each is
absolutely continuous with respect to the other, then

dν

dμ
=
(
dμ

dν

)−1

a.e. μ, ν.
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(iv) If μk, k = 1, 2, . . . , and μ are finite measures over (X ,A) such that∑∞
k=1 μk(A) = μ(A) for all A ∈ A, and if the μk are absolutely continuous with

respect to a σ-finite measure λ, then μ is absolutely continuous with respect to λ,
and

d
n∑

k=1
μk

dλ
=

n∑
k=1

dμk

dλ
, lim

n→∞

d
n∑

k=1
μk

dλ
= dμ

dλ
a.e. λ.

[(i): The equation in question holds when f is the indicator of a set, hence when f
is simple, and therefore for all integrable f .
(ii): Apply (i) with f = dν/dμ.]

Problem 2.4 If f (x) > 0 for all x ∈ S and μ is σ-finite, then
∫
S f dμ = 0 implies

μ(S) = 0.
[Let Sn be the subset of S on which f (x) ≥ 1/n. Then μ(S) ≤ ∑

μ(Sn) and
μ(Sn) ≤ n

∫
Sn

f dμ ≤ n
∫
S f dμ = 0.]

Section 2.3

Problem 2.5 Let (X ,A) be a measurable space, and A0 a σ-field contained in A.
Suppose that for any function T , the σ-field B is taken as the totality of sets B such
that T−1(B) ∈ A. Then it is not necessarily true that there exists a function T such
that T−1(B) ∈ A0. [An example is furnished by any A0 such that for all x the set
consisting of the single point x is in A0.]

Section 2.4

Problem 2.6 (i) LetP be any family of distributions X = (X1, . . . , Xn) such that

P{(Xi , Xi+1, . . . , Xn, X1, . . . , Xi−1) ∈ A} = P{(X1, . . . , Xn) ∈ A}

for all Borel sets A and all i = 1, . . . , n. For any sample point (x1, . . . , xn)
define (y1, . . . , yn) = (xi , xi+1, . . . , xn, x1, . . . , xi−1), where xi = x(1) =
min(x1, . . . , xn). Then the conditional expectation of f (X) given Y = y is

f0(y1, . . . , yn) = 1

n
[ f (y1, . . . , yn) + f (y2, . . . , yn, y1)

+ · · · + f (yn, y1, . . . , yn−1)].
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(ii) Let G = {g1, . . . , gr } be any group of permutations of the coordinates
x1, . . . , xn of a point x in n-space, and denote by gx the point obtained by
applying g to the coordinates of x . Let P be any family of distributions P of
X = (X1, . . . , Xn) such that

P{gX ∈ A} = P{X ∈ A} for all g ∈ G. (2.39)

For any point x let t = T (x) be any rule that selects a unique point from the
r points gk x, k = 1, . . . , r (for example the smallest first coordinate if this
defines it uniquely, otherwise also the smallest second coordinate, etc.). Then

E[ f (X) | t] = 1

r

r∑
k=1

f (gk t).

(iii) Suppose that in (ii) the distributions P do not satisfy the invariance condition
(2.39) but are given by

dP(x) = h(x) dμ(x),

where μ is invariant in the sense that μ{x : gx ∈ A} = μ(A). Then

E[ f (X) | t] =

r∑
k=1

f (gk t)h(gk t)

r∑
k=1

h(gk t)
.

Section 2.5

Problem 2.7 Prove Theorem 2.5.1 for the case of an n-dimensional sample space.
[The condition that the cumulative distribution function is nondecreasing is replaced
by P{x1 < X1 ≤ x ′

1, . . . , xn < Xn ≤ x ′
n} ≥ 0; the condition that it is continuous on

the right can be stated as limm→∞ F(x1 + 1/m, . . . , xn + 1/m) = F(x1, . . . , xn).]

Problem 2.8 Let X = Y × T , and suppose that P0, P1 are two probability distri-
butions given by

dP0(y, t) = f (y)g(t) dμ(y) dν(t),

dP1(y, t) = h(y, t) dμ(y) dν(t),

where h(y, t)/ f (y)g(t) < ∞. Then under P1 the probability density of Y with
respect to μ is

pY1 (y) = f (y)E0

[
h(y, T )

f (y)g(T )

∣∣∣ Y = y

]
.
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[We have

pY1 (y) =
∫

T
h(y, t) dν(t) = f (y)

∫

T

h(y, t)

f (y)g(t)
g(t) dν(t).]

Section 2.6

Problem 2.9 Symmetric distributions.

(i) LetP be any family of distributions of X = (X1, . . . , Xn)which are symmetric
in the sense that

P
{(
Xi1 , . . . , Xin

) ∈ A
} = P {(X1, . . . , Xn) ∈ A}

for all Borel sets A and all permutations (i1, . . . , in) of (1, . . . , n). Then the
statistic T of Example 2.4.1 is sufficient forP , and the formula given in the first
part of the example for the conditional expectation E[ f (X) | T (x)] is valid.

(ii) The statistic Y of Problem 2.6 is sufficient.
(iii) Let X1, . . . , Xn be identically and independently distributed according to a con-

tinuous distribution P ∈ P , and suppose that the distributions ofP are symmet-
ric with respect to the origin. Let Vi = |Xi | andWi = V(i). Then (W1, . . . ,Wn)

is sufficient for P .

Problem 2.10 Sufficiency of likelihood ratios. Let P0, P1 be two distributions with
densities p0, p1. Then T (x) = p1(x)/p0(x) is sufficient for P = {P0, P1}. [This
follows from the factorization criterion by writing p1 = T · p0, p0 = 1 · p0.]
Problem 2.11 Pairwise sufficiency. A statistic T is pairwise sufficient for P if it is
sufficient for every pair of distributions in P .

(i) If P is countable and T is pairwise sufficient for P , then T is sufficient for P .
(ii) IfP is a dominated family and T is pairwise sufficient forP , then T is sufficient

for P .

[(i): LetP = {P0, P1, . . .}, and letA0 be the sufficient subfield induced by T . Letλ =∑
ci Pi (ci > 0) be equivalent to P . For each j = 1, 2, . . . the probability measure

λ j that is proportional to (c0/n)P0 + c j Pj is equivalent to {P0, Pj }. Thus by pairwise
sufficiency, the derivative f j = dP0/[(c0/n) dP0 + c j d Pj ] is A0-measurable. Let
Sj = {x : f j (x) = 0} and S = ⋃n

j=1 Sj . Then S ∈ A0, P0(S) = 0, and onX − S the
derivative dP0/d

∑n
j=1 c j Pj equals (

∑n
j=1 1/ f j )

−1 which isA0-measurable. It then
follows from Problem 2.3 that

dP0
dλ

= dP0

d
n∑
j=0

c j Pj

d
n∑
j=0

c j Pj

dλ
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is also A0-measurable. (ii): Let λ = ∑∞
j=1 c j Pθ j be equivalent to P . Then pairwise

sufficiency of T implies for any θ0 that dPθ0/(dPθ0 + dλ) and hence dPθ0/dλ is a
measurable function of T .]

Problem 2.12 If a statistic T is sufficient for P , then for every function f which
is (A, Pθ)-integrable for all θ ∈ � there exists a determination of the conditional
expectation function Eθ[ f (X) | t] that is independent of θ. [If X is Euclidean, this
follows from Theorems 2.5.2 and 2.6.1. In general, if f is nonnegative there exists a
nondecreasing sequence of simple nonnegative functions fn tending to f . Since the
conditional expectation of a simple function can be taken to be independent of θ by
Lemma 2.4.1(i), the desired result follows from Lemma 2.4.1(iv).]

Problem 2.13 For a decision problem with a finite number of decisions, the class
of procedures depending on a sufficient statistic T only is essentially complete. [For
Euclidean sample spaces this follows from Theorem 2.5.1 without any restriction
on the decision space. For the present case, let a decision procedure be given by
δ(x) = (δ(1)(x), . . . , δ(m)(x)) where δ(i)(x) is the probability with which decision
di is taken when x is observed. If T is sufficient and η(i)(t) = E[δ(i)(X) | t], the
procedures δ and η have identical risk functions.] [More general versions of this
result are discussed, for example, by Elfving (1952), Bahadur (1955), Burkholder
(1961), LeCam (1964), and Roy and Ramamoorthi (1979).]

Section 2.7

Problem 2.14 Let Xi (i = 1, . . . , s) be independently distributed with Poisson dis-
tribution P(λi ), and let T0 = ∑

X j , Ti = Xi , λ = ∑
λ j . Then T0 has the Poisson

distribution P(λ), and the conditional distribution of T1, . . . , Ts−1 given T0 = t0 is
the multinomial distribution (2.34) with n = t0 and pi = λi/λ.

Problem 2.15 Life testing. Let X1, . . . , Xn be independently distributed with expo-
nential density (2θ)−1e−x/2θ for x ≥ 0, and let the ordered X ’s be denoted by
Y1 ≤ Y2 ≤ · · · ≤ Yn . It is assumed that Y1 becomes available first, then Y2, and so
on, and that observation is continued until Yr has been observed. This might arise,
for example, in life testing where each X measures the length of life of, say, an
electron tube, and n tubes are being tested simultaneously. Another application is
to the disintegration of radioactive material, where n is the number of atoms, and
observation is continued until r α-particles have been emitted.

(i) The joint distribution of Y1, . . . ,Yr is an exponential family with density

1

(2θ)r
n!

(n − r)! exp

⎡
⎢⎢⎣−

r∑
i=1

yi + (n − r)yr

2θ

⎤
⎥⎥⎦ , 0 ≤ y1 ≤ · · · ≤ yr .
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(ii) The distribution of [∑r
i=1 Yi + (n − r)Yr ]/θ is χ2 with 2r degrees of freedom.

(iii) Let Y1,Y2, . . . denote the time required until the first, second, … event occurs
in a Poisson process with parameter 1/2θ′ (see Problem 1.1). Then Z1 = Y1/θ′,
Z2 = (Y2 − Y1)/θ′, Z3 = (Y3 − Y2)/θ′, . . . are independently distributed asχ2

with 2 degrees of freedom, and the joint density Y1, . . . ,Yr is an exponential
family with density

1

(2θ′)r
exp

(
− yr
2θ′

)
, 0 ≤ y1 ≤ · · · ≤ yr .

The distribution of Yr/θ′ is again χ2 with 2r degrees of freedom.
(iv) The same model arises in the application to life testing if the number n of tubes

is held constant by replacing each burned-out tube with a new one, and if Y1
denotes the time at which the first tube burns out, Y2 the time at which the
second tube burns out, and so on, measured from some fixed time.

[(ii): The random variables Zi = (n − i + 1)(Yi − Yi−1)/θ (i = 1, 2, . . . , r) are
independently distributed as χ2 with 2 degrees of freedom, and [∑r

i=1 Yi + (n −
r)Yr/θ = ∑r

i=1 Zi .]

Problem 2.16 For any θ which is an interior point of the natural parameter space,
the expectations and covariances of the statistics Tj in the exponential family (2.35)
are given by

E
[
Tj (X)

] = −∂ logC(θ)

∂θ j
( j = 1, . . . , k),

E
[
Ti (X)Tj (X)

]− [
ETi (X)ETj (X)

] = −∂2 logC(θ)

∂θi∂θ j
(i, j = 1, . . . , k).

Problem 2.17 Let� be the natural parameter space of the exponential family (2.35),
and for any fixed tr+1, . . . , tk (r < k) let�′

θ1...θr
be the natural parameter space of the

family of conditional distributions given Tr+1 = tr+1, . . . , Tk = tk .

(i) Then �′
θ1,...,θr

contains the projection �θ1,...,θr of � onto θ1, . . . , θr .
(ii) An example in which �θ1,...,θr is a proper subset of �′

θ1,...,θr
is the family of

densities

pθ1θ2(x, y) = C(θ1, θ2) exp(θ1x + θ2y − xy), x, y > 0.
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2.9 Notes

The theory of measure and integration in abstract spaces and its application to proba-
bility theory, including in particular conditional probability and expectation, is treated
in a number of books, among them Dudley (1989), Williams (1991), and Billingsley
(1995). Thematerial on sufficient statistics and exponential families is complemented
by the corresponding sections inLehmann andCasella (1998).Much fuller treatments
of exponential families (as well as sufficiency) are provided by Barndorff–Nielsen
(1978) and Brown (1986).
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