
Chapter 18
Bootstrap and Subsampling Methods

18.1 Introduction

The bootstrap, subsampling, and other resampling methods provide methods for
inference, especially in problems where large-sample approximations are not
tractable. Such methods are not foolproof and require mathematical justification.
In this chapter, fundamental properties of these methods are developed.

In Section 18.2 we first review some basic constructions of confidence regions and
tests, which derive from the limiting distribution of an estimator or test sequence. This
serves to motivate the bootstrap construction studied in Section 18.3; the bootstrap
method offers a powerful approach to approximating the sampling distribution of a
given statistic or estimator. The emphasis here is to find methods that control the
level constraint, at least asymptotically. Like the randomization construction, the
bootstrap approach will be asymptotically efficient if the given statistic is chosen
appropriately; for example, see Theorem 18.3.2 and Corollary 18.3.1.

While the bootstrap is quite general, how does it compare in situations when other
large-sample approaches apply as well? In Section 18.4, we provide some support
to the claim that the bootstrap approach can improve upon methods that rely on a
normal approximation. The use of the bootstrap in the context of hypothesis testing
is studied in Section 18.5.

While the bootstrap method is quite broadly applicable, in some situations, it
can be inconsistent. A more general approach based on subsampling is presented in
Section 18.7. Together, these approaches serve as valuable tools for inferencewithout
having to make strong assumptions about the underlying distribution.

18.2 Basic Large-Sample Approximations

In the previous section, it was shown how permutation and randomization tests can be
used in certain problems where the randomization hypothesis holds. Unfortunately,
randomization tests only apply to a restricted class of problems. In this section,
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we discuss some generally used asymptotic approaches for constructing confi-
dence regions or hypothesis tests based on data X = Xn . In what follows, Xn =
(X1, . . . , Xn) is typically a sample of n i.i.d. random variables taking values in a
sample space S and having unknown probability distribution P , where P is assumed
to belong to a certain collection P of distributions. Even outside the i.i.d. case, we
think of the data Xn as coming from a model indexed by the unknown probability
mechanism P . The collection P may be a parametric model indexed by a Euclidean
parameter, but we will also consider nonparametric models.

We shall be interested in inferences concerning some parameter θ(P). By the
usual duality between the construction of confidence regions and hypothesis tests,
we can restrict the discussion to the construction of confidence regions. Let the range
of θ be denoted by �, so that

� = {θ(P) : P ∈ P} .

Typically,� is a subset of the real line, but we also considermore general parameters.
For example, the problem of estimating the entire cumulative distribution function
(c.d.f.) of real-valued observationsmaybe treated, so that� is an appropriate function
space.

This leads to considering a root Rn(Xn, θ(P)), a termfirst coined byBeran (1984),
which is just some real-valued functional depending on both Xn and θ(P). The idea is
that a confidence interval for θ(P) could be constructed if the distribution of the root
were known. For example, an estimator θ̂n of a real-valued parameter θ(P) might
be given so that a natural choice is Rn(Xn, θ(P)) = [θ̂n − θ(P)], or alternatively
Rn(Xn, θ(P)) = [θ̂n − θ(P)]/sn , where sn is some estimate of the standard deviation
of θ̂n .

When P is suitably large so that the problem is nonparametric in nature, a natural
construction for an estimator θ̂n of θ(P) is the plug-in estimator θ̂n = θ(P̂n), where
P̂n is the empirical distribution of the data, defined by

P̂n(E) = n−1
n∑

i=1

I {Xi ∈ E} .

Of course, this construction implicitly assumes that θ(·) is defined for empirical
distributions so that θ(P̂n) is at least well defined. Alternatively, in parametric prob-
lems for which P is indexed by a parameter ψ belonging to a subset � of IRp so
that P = {Pψ : ψ ∈ �}, then θ(P) can be described as a functional t (ψ). Hence, θ̂n
is often taken to be t (ψ̂n), where ψ̂n is some desirable estimator of ψ , such as an
efficient likelihood estimator.

Let Jn(P) be the distribution of Rn(Xn, θ(P)) under P , and let Jn(·, P) be the
corresponding cumulative distribution function defined by

Jn(x, P) = P{Rn(X
n, θ(P)) ≤ x}.
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In order to construct a confidence region for θ(P) based on the root
Rn(Xn, θ(P)), the sampling distribution Jn(P) or its appropriate quantiles must
be known or estimated. Some standard methods, based on pivots and asymptotic
approximations, are now briefly reviewed. Note that in many of the examples when
the observations are real-valued, it is more convenient and customary to index the
unknown family of distributions by the cumulative distribution function F rather
than P . We will freely use both, depending on the situation.

18.2.1 Pivotal Method

In certain exceptional cases, the distribution Jn(P) of Rn(Xn, θ(P)) under P does
not depend on P . In this case, the root Rn(Xn, θ(P)) is called a pivotal quantity or
a pivot for short. Such quantities were previously considered in Section 6.12. From
a pivot, a level 1 − α confidence region for θ(P) can be constructed by choosing
constants c1 and c2 so that

P{c1 ≤ Rn(X
n, θ(P)) ≤ c2} ≥ 1 − α . (18.1)

Then, the confidence region

Cn = {θ ∈ � : c1 ≤ Rn(X
n, θ) ≤ c2}

contains θ(P) with probability under P at least 1 − α. Of course, the coverage
probability is exactly 1 − α if one has equality in (18.1).

Classical examples where confidence regions may be formed from a pivot are the
following.

Example 18.2.1 (Location and Scale Families) Supposewe are given an i.i.d. sam-
ple Xn = (X1, . . . , Xn) of n real-valued random variables, each having a distribution
function of the form F[(x − θ)/σ ], where F is known, θ is a location parameter, and
σ is a scale parameter. More generally, suppose θ̂n is location and scale equivariant
in the sense that

θ̂n(aX1 + b, . . . , aXn + b) = aθ̂n(X1, . . . , Xn) + b ;

also suppose σ̂n is location invariant and scale equivariant in the sense that

σ̂n(aX1 + b, . . . , aXn + b) = |a|σ̂n(X1, . . . , Xn) .

Then, the root Rn(Xn, θ(P)) = n1/2[θ̂n − θ(P)]/σ̂n is a pivot (Problem 18.1). For
example, in the case where F is the standard normal distribution function, θ̂n is
the sample mean and σ̂ 2

n is the usual unbiased estimate of variance, Rn has a t-
distribution with n − 1 degrees of freedom. For another example, if σ̂n is location



866 18 Bootstrap and Subsampling Methods

invariant and scale equivariant, then σ̂n/σ is also a pivot, since its distribution will
not depend on θ or σ , but will of course depend on F . When F is not normal, exact
distribution theory may be difficult, but one may resort to Monte Carlo simulation of
Jn(P) (discussed below). This example can be generalized to a class of parametric
problems where group invariance considerations apply, and pivotal quantities lead
to equivariant confidence sets; see Section 6.12 and Problems 6.71–6.74.

Example 18.2.2 (Kolmogorov–Smirnov Confidence Bands) Suppose that Xn =
(X1, · · · , Xn) is a sample of n real-valued random variables having a distribution
function F . For a fixed value of x , a (pointwise) confidence interval for F(x) can be
based on the empirical distribution function F̂n(x), by using the fact that nF̂n(x) has
a binomial distribution with parameters n and F(x). The goal now is to construct a
uniform or simultaneous confidence band for θ(F) = F , so that it is required to find
a set of distribution functions containing the true F(x) for all x (or uniformly in x)
with coverage probability 1 − α. Toward this end, consider the root

Rn(X
n, F) = n1/2 sup

x
|F̂n(x) − F(x)|.

Recall that, if F is continuous, then the distribution of Rn(Xn, F) under F does not
depend on F and so Rn(Xn, F) is a pivot (Section 6.13 and Problem 11.68). As
discussed in Sections 6.13 and 16.2, the finite-sample quantiles of this distribution
have been tabled. Without the assumption that F is continuous, the distribution of
Rn(Xn, F) under F does depend on F , both in finite samples and asymptotically.

In general, if Rn(Xn, θ(P)) is a pivot, its distribution may not be explicitly com-
putable or have a known tractable form. However, since there is only one distribution
that needs to be known (and not an entire family indexed by P), the problem is
much simpler than if the distribution depends on P . One can resort to Monte Carlo
simulation to approximate this distribution to any desired level of accuracy, by simu-
lating the distribution of Rn(Xn, θ(P)) under P for any choice of P in P. For further
details, see Example 11.4.3.

18.2.2 Asymptotic Pivotal Method

In general, the above construction breaks down because Rn(Xn, θ(P)) has a distri-
bution Jn(P) which depends on the unknown probability distribution P generating
the data. However, it is then sometimes the case that Jn(P) converges weakly to a
limiting distribution J which is independent of P . In this case, the root (sequence)
Rn(Xn, θ(P)) is called an asymptotic pivot, and then the quantiles of J may be used
to construct an asymptotic confidence region for θ(P).

Example 18.2.3 (Parametric Models) Suppose Xn = (X1, . . . , Xn) is a sample
from a model {Pθ , θ ∈ �}, where � is a subset of IRk . To construct a confidence
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region for θ , suppose θ̂n is an efficient likelihood estimator (as discussed in Section
14.4), satisfying

n1/2(θ̂n − θ)
d→ N (0, I−1(θ)) ,

where I (θ) is the Fisher Information matrix, assumed continuous. Then, the root
(expressed as a function of θ rather than Pθ )

Rn(X
n, θ) = n(θ̂n − θ)� I (θ̂n)(θ̂n − θ)

is an asymptotic pivot. The limiting distribution is theχ2
k , theChi-squared distribution

with k degrees of freedom, and the resulting confidence region is Wald’s confidence
ellipsoid introduced in Section 14.4.2. Alternatively, let

R̃n(X
n, θ) = supβ∈� Ln(β)

Ln(θ)
,

where Ln(θ) is the likelihood function (14.56). As discussed in Section 14.4.2, under
regularity conditions, 2 log R̃n(Xn, θ) is asymptotically χ2

k , in which case R̃n(Xn, θ)

is an asymptotic pivot.

Example 18.2.4 (Nonparametric Mean) Suppose Xn = (X1, . . . , Xn) is a sample
of n real-valued random variables having distribution function F , and we wish to
construct a confidence interval for θ(F) = EF (Xi ), the mean of the observations.
Assume Xi has a finite nonzero varianceσ 2(F). Let the root Rn be the usual t-statistic
defined by Rn(Xn, θ(F)) = n1/2[X̄n − θ(F)]/Sn , where X̄n is the sample mean and
S2n is the (unbiased version of the) sample variance. Then, Jn(F) converges weakly
to J = N (0, 1), and so the t-statistic is an asymptotic pivot.

18.2.3 Asymptotic Approximation

The pivotal method assumes the root has a distribution Jn(P)which does not depend
on P , while the asymptotic pivotal method assumes the root has an asymptotic dis-
tribution J (P) which does not depend on P . More generally, Jn(P) converges to
a limiting distribution J (P) which depends on P , and we shall now consider this
case. Suppose that this limiting distribution has a known form which depends on
P , but only through some unknown parameters. For example, in the nonparamet-
ric mean example, the root n1/2[X̄n − θ(F)] has the N (0, σ 2(F)) distribution, and
so depends on F through the variance parameter σ 2(F). An approximation of the
asymptotic distribution is J (P̂n), where P̂n is some estimate of P . Typically, J (P) is
a normal distribution with mean zero and variance τ 2(P). The approximation then
consists of a normal approximation based on an estimated variance τ 2(P̂n) which
converges in probability to τ 2(P), and the quantiles of Jn(P) may then be approxi-
mated by those of J (P̂n). Of course, this approach depends very heavily on knowing
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the form of the asymptotic distribution as well as being able to construct consis-
tent estimates of the unknown parameters upon which J (P) depends. Moreover,
the method essentially consists of a double approximation; first, the finite sampling
distribution Jn(P) is approximated by an asymptotic approximation J (P), and then
J (P) is in turn approximated by J (P̂n).

The most general situation occurs when the limiting distribution J (P) has an
unknown form, and methods to handle this case will be treated in the subsequent
sections.

Example 18.2.5 (Nonparametric Mean, continued) In the previous example, con-
sider instead the non-studentized root

Rn(X
n, θ(F)) = n1/2[X̄n − θ(F)] .

In this case, Jn(F) converges weakly to J (F), the normal distributionwithmean zero
and variance σ 2(F). The resulting approximation to Jn(F) is the normal distribution
with mean zero and variance S2n . Alternatively, one can estimate the variance by any
consistent estimator, such as the sample variance σ 2(F̂n), where F̂n is the empirical
distribution function. In effect, studentizing an asymptotically normal root converts
it to an asymptotic pivot, and both methods lead to the same solution. (However, the
bootstrap approach in the next section treats the roots differently.)

Example 18.2.6 (Binomial p) As in Example 11.3.4, suppose X is binomial based
on n trials and success probability p. Let p̂n = X/n. Like the previous example, the
non-studentized root n1/2( p̂n − p) and the studentized root n1/2( p̂n − p)/[ p̂n(1 −
p̂n)]1/2 lead to the same approximate confidence interval given by (11.23). On the
other hand, theWilson interval (11.25) based on the root n1/2( p̂n − p)/[p(1 − p)]1/2
leads to a genuinely different solution which performs better in finite samples; see
Brown et al. (2001).

Example 18.2.7 (Trimmed mean) Suppose Xn = (X1, . . . , Xn) is a sample of n
real-valued random variables with unknown distribution function F . Assume that
F is symmetric about some unknown value θ(F). Let θ̂n,α(X1, . . . , Xn) be the
α-trimmed mean; specifically,

θ̂n,α = 1

n − 2[αn]
n−[αn]∑

i=[αn]+1

X(i) ,

where X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics and k = [αn] is the
greatest integer less than or equal to αn. Consider the root Rn(Xn, θ(F)) =
n1/2[θ̂n,α − θ(F)]. Then, under reasonable smoothness conditions on F and assum-
ing 0 ≤ α < 1/2, it is known that Jn(F) converges weakly to the normal distribution
J (F) with mean zero and variance σ 2(α, F), where
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σ 2(α, F) = (18.2)

1

(1 − 2α)2
[
∫ F−1(1−α)

F−1(α)

(t − θ(F))2dF(t) + 2α(F−1(α) − θ(F))2];

see Serfling (1980, p. 236). Then, a very simple first-order approximation to J (F) is
J (F̂n), where F̂n is the empirical distribution. The resulting J (F̂n) is just the normal
distribution with mean zero and variance σ 2(α, F̂n).

The use of the normal approximation in the previous example hinged on the avail-
ability of a consistent estimate of the asymptotic variance. The simple expression
(18.2) easily led to a simple estimator. However, a closed form expression for the
asymptotic variance may not exist. A fairly general approach to estimating the vari-
ance of a statistic is provided by the jackknife estimator of variance, for which we
refer the reader to Shao andTu (1995,Chapter 2).However, the double approximation
based on asymptotic normality and an estimate of the limiting variance may be poor.
An alternative approach that more directly attempts to approximate the finite-sample
distribution will be presented in the next section.

18.3 Bootstrap Sampling Distributions

18.3.1 Introduction and Consistency

In this section, the bootstrap, due to Efron (1979), is introduced as a general method
to approximate a sampling distribution of a statistic or a root (discussed in
Section 18.2) in order to construct confidence regions for a parameter of interest.
The use of the bootstrap to approximate a null distribution in the construction of
hypothesis tests will be considered later as well.

The asymptotic approaches in the previous section are not always applicable, as
when the limiting distribution does not have a tractable form. Even when a root
has a known limiting distribution, the resulting approximation may be poor in finite
samples. The bootstrap procedure discussed in this section is an alternative, more
general, direct approach to approximate the sampling distribution Jn(P). An impor-
tant aspect of the problem of estimating Jn(P) is that, unlike the usual problem of
estimation of parameters, Jn(P) depends on n.

The bootstrap method consists of directly estimating the exact finite sampling
distribution Jn(P) by Jn(P̂n), where P̂n is an estimate of P in P. In this light, the
bootstrap estimate Jn(P̂n) is a simple plug-in estimate of Jn(P).

In nonparametric problems, P̂n is typically taken to be the empirical distribution
of the data. In parametric problems where P = {Pψ : ψ ∈ �}, P̂n may be taken to
be Pψ̂n

, where ψ̂n is an estimate of ψ .
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In general, Jn(x, P̂n) need not be continuous and strictly increasing in x , so that
unique and well-defined quantiles may not exist. To get around this and in analogy
to (11.19), define

J−1
n (1 − α, P) = inf{x : Jn(x, P) ≥ 1 − α} .

If Jn(·, P) has a unique quantile J−1
n (1 − α, P), then

P{Rn(X
n, θ(P)) ≤ J−1

n (1 − α, P)} = 1 − α ;

in general, the probability on the left is at least 1 − α. If J−1
n (1 − α, P)were known,

then the region
{θ ∈ � : Rn(X

n, θ) ≤ J−1
n (1 − α, P)}

would be a level 1 − α confidence region for θ(P). The bootstrap simply replaces
J−1
n (1 − α, P) by J−1

n (1 − α, P̂n). The resulting bootstrap confidence region for
θ(P) of nominal level 1 − α takes the form

Bn(1 − α, Xn) = {θ ∈ � : Rn(X
n, θ) ≤ J−1

n (1 − α, P̂n)} . (18.3)

Suppose the problem is to construct a confidence interval for a real-valued param-
eter θ(P) based on the root |θ̂n − θ(P)| for some estimator θ̂n . The interval (18.3)
would then be symmetric about θ̂n . An alternative equi-tailed interval can be based
on the root θ̂n − θ(P) and uses both tails of Jn(P̂n); it is given by

{θ ∈ � : J−1
n (

α

2
, P̂n) ≤ Rn(X

n, θ) ≤ J−1
n (1 − α

2
, P̂n)} .

A comparison of the two approaches will be made in Section 18.4.
Outside certain exceptional cases, the bootstrap approximation Jn(x, P̂n) can-

not be calculated exactly. Even in the relatively simple case when θ(P) is the
mean of P , the root is n1/2[X̄n − θ(P)], and P̂n is the empirical distribution, the
exact computation of the bootstrap distribution involves an n-fold convolution.1

Typically, one resorts to a Monte Carlo approximation to Jn(P), as introduced
in Example 11.4.3. Specifically, conditional on the data Xn , for j = 1, . . . , B, let
Xn∗

j = (X∗
1, j , . . . , X

∗
n, j ) be a sample of n i.i.d. observations from P̂n; Xn∗

j is referred

to as the j th bootstrap sample of size n. Of course, when P̂n is the empirical distri-
bution, this amounts to resampling the original observations with replacement. The
bootstrap estimator Jn(P̂n) is then approximated by the empirical distribution of the
B values Rn(Xn∗

j , θ̂n). Because B can be taken to be large (assuming enough com-

puting power), the resulting approximation can be made arbitrarily close to Jn(P̂n)
(see Example 11.4.3), and so we will subsequently focus on the exact bootstrap

1 Diaconis and Holmes (1994) show how the exact bootstrap distribution can be calculated in some
examples.
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estimator Jn(P̂n) while keeping in mind it is usually only approximated by Monte
Carlo simulation.

The bootstrap can then be viewed as a simple plug-in estimator of a distribution
function. This simple idea, combined with Monte Carlo simulation, allows for quite
a broad range of applications.

We will now discuss the consistency of the bootstrap estimator Jn(P̂n) of the true
sampling distribution Jn(P) of Rn(Xn, θ(P)). Typically, one can show that Jn(P)

converges weakly to a nondegenerate limit law J (P). Since the bootstrap replaces
P by P̂n in Jn(·), it is useful to study Jn(Pn) under more general sequences {Pn}.
In order to understand the behavior of the random sequence of distributions Jn(P̂n),
it will be easier to first understand how Jn(Pn) behaves for certain fixed sequences
{Pn}. For the bootstrap to be consistent, Jn(P) must be smooth in P since we are
replacing P by P̂n . Thus, we are led to studying the asymptotic behavior of Jn(Pn)
under fixed sequences of probabilities {Pn} which are “converging” to P in a certain
sense. Once it is understood how Jn(Pn) behaves for fixed sequences {Pn}, it is easy
to pass to random sequences {P̂n}.

In the theorem below, the existence of a continuous limiting distribution is
assumed, though its exact form need not be explicit. Although the conditions of
the theorem appear strong, they can be verified in many interesting examples.

Theorem 18.3.1 Let CP be a set of sequences {Pn ∈ P} containing the sequence
{P, P, · · · }. Suppose that, for every sequence {Pn} in CP , Jn(Pn) converges weakly
to a common continuous limit law J (P) having distribution function J (x, P). Let
Xn be a sample of size n from P. Assume that P̂n is an estimate of P based on Xn

such that {P̂n} falls in CP with probability one. Then,

sup
x

|Jn(x, P) − Jn(x, P̂n)| → 0 with probability one. (18.4)

If J (·, P) is continuous and strictly increasing at J−1(1 − α, P), then

J−1
n (1 − α, P̂n) → J−1(1 − α, P) with probability one. (18.5)

Also, the bootstrap confidence set Bn(1 − α, Xn) given by Eq. (18.3) is pointwise
consistent in level; that is,

P{θ(P) ∈ Bn(1 − α, Xn)} → 1 − α . (18.6)

Proof. For the proof of part (18.4), note that the assumptions and Polya’s Theorem
(Theorem 11.2.9) imply that

sup
x

|Jn(x, P) − Jn(x, Pn)| → 0

for any sequence {Pn} in CP . Thus, since {P̂n} ∈ CP with probability one, (18.4)
follows. Lemma 11.2.1 implies J−1

n (1 − α, Pn) → J−1(1 − α, P)whenever {Pn} ∈
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CP ; so (18.5) follows. In order to deduce (18.6), the probability on the left side of
(18.6) is equal to

P{Rn(X
n, θ(P)) ≤ J−1

n (1 − α, P̂n)} . (18.7)

Under P , Rn(Xn, θ(P)) has a limiting distribution J (·, P) and, by (18.5), J−1
n (1 −

α, P̂n) → J−1(1 − α, P) with probability one. Thus, by Slutsky’s Theorem, (18.7)
tends to J (J−1(1 − α, P), P) = 1 − α.

Often, the set of sequences CP can be described as the set of sequences {Pn} such
that d(Pn, P) → 0, where d is an appropriate metric on the space of probabilities.
Indeed, one should think of CP as a set of sequences {Pn} that are converging to P in
an appropriate sense. Thus, the convergence of Jn(Pn) to J (P) is locally uniform in
the sense d(Pn, P) → 0 implies Jn(Pn) converges weakly to J (P). Note, however,
that the appropriate metric d will depend on the precise nature of the root.

When the convergences (18.4) and (18.5) hold with probability one, we say the
bootstrap is strongly consistent. If these convergences hold in probability, we say the
bootstrap is weakly consistent. In any case, (18.6) holds even if (18.4) and (18.5)
only hold in probability; see Problem 18.3. Furthermore, the conclusion (18.6) holds
if J (·, P) is continuous (and not necessarily strictly increasing); see Problem 18.6.

Example 18.3.1 (Parametric Bootstrap) Suppose Xn = (X1, . . . , Xn) is a sample
from a q.m.d. model {Pθ , θ ∈ �}, where � ⊆ IRk . Suppose θ̂n is an efficient likeli-
hood estimator in the sense that (14.62) holds. Let g(θ) be a differentiable map from
� to IR with nonzero gradient vector ġ(θ). Consider the root

Rn(X
n, θ) = n1/2[g(θ̂n) − g(θ)] ,

with distribution function Jn(x, θ). By Theorem 14.4.1,

Jn(x, θ) → J (x, θ) ,

where
J (x, θ) = �(x/σθ )

and
σ 2

θ = ġ(θ)I−1(θ)ġ(θ)� .

One approach to estimating the distribution of n1/2[g(θ̂n) − g(θ)] is to use the normal
approximation N (0, σ̂ 2

n ), where σ̂ 2
n is a consistent estimator of σ 2

θ . For example, if
ġ(θ) and I (θ) are continuous in θ , then a weakly consistent estimator of σ 2

θ is

σ̂ 2
n = ġ(θ̂n)I

−1(θ̂n)ġ(θ̂n)
� .

In order to calculate σ̂ 2
n , the forms of ġ(·) and I (·) must be known. This approach of

using a normal approximation with an estimator of the limiting variance is a special
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case of asymptotic approximation discussed in Section 18.2.3. Because it may be
difficult to calculate a consistent estimator of the limiting variance, and because
the resulting approximation may be poor, it is interesting to consider the bootstrap
method. A discussion of higher order asymptotic comparisons will be discussed in
Section 18.4. For now, we show the bootstrap approximation Jn(x, θ̂n) to J (x, θ) is
weakly consistent.

Theorem 18.3.2 Under the above setup, under θ ,

sup
x

|Jn(x, θ) − J (x, θ)| → 0

and
sup
x

|Jn(x, θ̂n) − Jn(x, θ)| → 0 (18.8)

in probability; therefore, (18.6) holds.

Proof. For purposes of the proof, assume k = 1; the general case is left as an
exercise. By Theorem 14.4.1, for any sequence θn such that n1/2(θn − θ) → h,
Jn(x, θn) → J (x, θ). In trying to apply the previous theorem, define Cθ as the
set of sequences {θn} satisfying n1/2(θn − θ) → h, for some finite h. (Rather than
describe CP as a set of sequences of distributions, we identify Pθ with θ and
describe Cθ as a set of sequences of parameter values.) Unfortunately, θ̂n does not
fall in Cθ with probability one because n1/2(θ̂n − θ) need not converge with prob-
ability one. However, we can modify the argument as follows. Since n1/2(θ̂n − θ)

converges in distribution, we can apply the Almost Sure Representation Theorem
(Theorem 11.4.4). Thus, there exist random variables θ̃n and H defined on a
common probability space such that θ̂n and θ̃n have the same distribution and
n1/2(θ̃n − θ) → H almost surely. Then, {θ̃n} ∈ Cθ with probability one, and we can
conclude

sup
x

|Jn(x, θ̃n) − Jn(x, θ)| → 0

almost surely. Since θ̂n and θ̃n have the same distributional properties, so do Jn(θ̂n)
and Jn(θ̃n), and the result (18.8) follows.

A one-sided bootstrap lower confidence bound for g(θ) takes the form

g(θ̂n) − n−1/2 J−1
n (1 − α, θ̂n) .

The previous theorem implies, under θ ,

J−1
n (1 − α, θ̂n)

P→ σθ z1−α .

Suppose now the problem is to test g(θ) = 0 versus g(θ) > 0. By the duality between
tests and confidence regions, one possibility is to reject the null hypothesis if the
lower confidence bound exceeds zero, or equivalently when n1/2g(θ̂n) > J−1

n (1 −
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α, θ̂n). This test is pointwise asymptotically level α because, by Slutsky’s Theorem,
n1/2g(θ̂n) is asymptotically N (0, σ 2

θ ) if g(θ) = 0. The limiting power of this test
against a contiguous sequence of alternatives is given in the following corollary.

Corollary 18.3.1 Under the setup of Example 18.3.1 with θ satisfying g(θ) = 0, the
limiting power of the test that rejects when n1/2g(θ̂n) > J−1

n (1 − α, θ̂n) against the
sequence θn = θ + hn−1/2 satisfies

Pn
θn

{n1/2g(θ̂n) > J−1
n (1 − α, θ̂n)} → 1 − �(z1−α − σ−1

θ 〈ġ(θ)�, h〉) . (18.9)

Proof. The left-hand side can be written as

Pn
θn

{n1/2[g(θ̂n) − g(θn)] > J−1
n (1 − α, θ̂n) − n1/2g(θn)} . (18.10)

Under Pn
θ , J

−1
n (1 − α, θ̂n) converges in probability to σθ z1−α; by contiguity, under

Pn
θn
, J−1

n (1 − α, θ̂n) converges to the same constant. Also, by differentiability of g
and the fact that g(θ) = 0

n1/2g(θn) → 〈ġ(θ)�, h〉 .

By Theorem 14.4.1, the left-hand side of (18.10) is asymptotically N (0, σ 2
θ ). Letting

Z denote a standard normal variable, by Slutsky’s Theorem, (18.10) converges to

P{σθ Z > σθ z1−α − 〈ġ(θ)�, h〉} ,

and the result follows.

In fact, it follows from Theorem 15.5.1 that this limiting power is optimal. The
moral is that the bootstrap can produce an asymptotically optimal test, but only if the
initial estimator or test statistic is optimally chosen. Otherwise, if the root is based
on a suboptimal estimator, the bootstrap approach to approximating the sampling
distribution of a root is so good that the bootstrap will not be optimal. For example,
in a normal location model N (θ, 1), the bootstrap distribution based on the root
X̄n − θ is exact as previously discussed (except possibly for simulation error), as is
the bootstrap distribution for Tn − θ , where Tn is any location equivariant estimator.
But, taking Tn equal to the sample median would not lead to an AUMP test, since
the bootstrap is approximating the distribution of the sample median, a suboptimal
statistic in this case. Furthermore, this leads to the observation that the bootstrap can
be used adaptively to approximate several distributions, and then inference can be
based on the one with better properties; see Legér and Romano (1990a; 1990b).

In general, one may base the choice of root by an initial estimator θ̂n of θ , and
then bootstrap the root using Jn(θ̃n), where θ̂n and θ̃n may differ. In some instances,
the choice is important. For the problem of construction of confidence sets for a
multivariate normal mean vector based on the James–Stein estimator, Beran (1995)
shows the importance of proper choice of parametric bootstrap, at least when the
dimension is moderately high.
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18.3.2 The Nonparametric Mean

In this section, we consider the case of Example 18.2.4, confidence intervals for
the nonparametric mean. This example deserves special attention because many
statistics can be approximated by linear statistics.Wewill examine this case in detail,
since similar considerations apply to more complicated situations. Given a sample
Xn = (X1, . . . , Xn) from a distribution F on the real line, consider the problem of
constructing a confidence interval for θ(F) = EF (Xi ). Letσ 2(F)denote the variance
of F . The conditions for Theorem 18.3.1 are verified in the following result.

Theorem 18.3.3 Let F be a distribution on the line with finite, nonzero variance
σ 2(F). Let Jn(F) be the distribution of the root Rn(Xn, θ(F)) = n1/2[X̄n − θ(F)].
(i) LetCF be the set of sequences {Fn} such that Fn convergesweakly to F, θ(Fn) →

θ(F), and σ 2(Fn) → σ 2(F). If {Fn} ∈ CF , then Jn(Fn) converges weakly to
J (F), where J (F) is the normal distributionwithmean zero and varianceσ 2(F).

(ii) Let X1, . . . , Xn be i.i.d. F, and let F̂n denote the empirical distribution function.
Then, the bootstrap estimator Jn(F̂n) is strongly consistent so that (18.4), (18.5),
and (18.6) hold.

Proof of Theorem 18.3.3. For the purpose of proving (i), construct variables
Xn,1, . . . , Xn,n which are independent with identical distribution Fn , and set X̄n =∑

i Xn,i/n. We must show that the law of n1/2(X̄n − μ(Fn)) converges weakly to
J (F). It suffices to verify the Lindeberg Condition for Yn,i , where Yn,i = Xn,i −
μ(Fn). This entails showing that, for each ε > 0,

lim
n→∞ E[Y 2

n,11(Y
2
n,1 > nε2)] = 0 . (18.11)

Note that Yn,1
d→ Y , where Y = X − μ(F) and X has distribution F , and E(Y 2

n,1) →
E(Y 2). By the continuous mapping theorem (Theorem 11.2.10), Y 2

n,1
d→ Y 2. Now,

for any fixed β > 0 and all n > β/ε2,

E[Y 2
n,11(Y

2
n,1 > nε2)] ≤ E[Y 2

n,11(Y
2
n,1 > β)] → E[Y 21(Y 2 > β)] ,

where the last convergence holds if β is a continuity point of the distribution of
Y 2, by (11.40). Since the set of continuity points of any distribution is dense and
E[Y 21(Y 2 > β)] ↓ 0 as β → ∞, Lindeberg’s Condition holds.

We now prove (ii) by applying Theorem 18.3.1; we must show that {F̂n} ∈ CF

with probability one. By the Glivenko–Cantelli Theorem,

sup
x

|F̂n(x) − F(x)| → 0 with probability one .

Also, by the Strong Law of Large Numbers, θ(F̂n) → θ(F) with probability one
and σ 2(F̂n) → σ 2(F) with probability one. Thus, bootstrap confidence intervals for
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the mean based on the root Rn(Xn, θ(F)) = n1/2(X̄n − θ(F)) are asymptotically
consistent in the sense of the theorem.

Remark 18.3.1 Let F andG be two distribution functions on the real line and define
dp(F,G) to be the infimumof {E[|X − Y |p]}1/p over all pairs of random variables X
andY such that X has distribution F andY has distributionG. It can be shown that the
infimum is attained and that dp is a metric on the space of distributions having a pth
moment. Further, if F has a finite variance σ 2(F), then d2(Fn, F) → 0 is equivalent
to Fn converging weakly to F and σ 2(Fn) → σ 2(F). Hence, Theorem 18.3.3 may
be restated as follows. If F has a finite variance σ 2(F) and d2(Fn, F) → 0, then
Jn(Fn) converges weakly to J (F). The metric d2 is known as Mallow’s metric. For
details, see Bickel and Freedman (1981).

Continuing the example of the nonparametric mean, it is of interest to consider
roots other than n1/2(X̄n − θ(F)). Specifically, consider the studentized root

Rs
n(X

n, θ(F)) = n1/2(X̄n − θ(F))/σ (F̂n) , (18.12)

where σ 2(F̂n) is the usual bootstrap estimate of variance. To obtain consistency of
the bootstrap method, called the bootstrap-t , we appeal to the following result.

Theorem 18.3.4 Suppose F is a c.d.f. with finite nonzero varianceσ 2(F). Let Kn(F)

be the distribution of the root (18.12) based on a sample of size n from F.

(i) Let CF be defined as in Theorem 18.3.3. Then, for any sequence {Fn} ∈ CF ,
Kn(Fn) converges weakly to the standard normal distribution.

(ii) Hence, the bootstrap sampling distribution Kn(F̂n) is consistent in the sense that
(18.4), (18.5), and (18.6) hold.

Before proving this theorem,wefirst need aweak lawof large numbers for a triangular
array that generalizes Theorem 11.3.1. The following lemma serves as a suitable
version for our purposes.

Lemma 18.3.1 Suppose Yn,1, . . . ,Yn,n is a triangular array of independent random
variables, the n-th row having c.d.f. Gn. Assume Gn converges in distribution to G
and

E[|Yn,1|] → E[|Y |] < ∞

as n → ∞, where Y has c.d.f. G. Then,

Ȳn ≡ n−1
n∑

i=1

Yn,i
P→ E(Y )

as n → ∞.

Proof. Apply Lemma 13.4.2 and (11.40).
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Proof of Theorem 18.3.4. For the proof, let Xn,1, . . . , Xn,n be independent with
distribution Fn . By Theorem 18.3.3 and Slutsky’s Theorem, it is enough to show
σ 2(F̂n) → σ 2(F) in probability under Fn . But,

σ 2(F̂n) = 1

n

∑

i

(Xn,i − X̄n)
2 .

Now, apply Lemma 18.3.1 on theWeak Law of Large Numbers for a triangular array
with Yn,i = Xn,i and also with Yn,i = X2

n,i . The consistency of the bootstrap method
based on the root (18.12) now follows easily.

It is interesting to consider how the bootstrap behaves when the underlying distri-
bution has an infinite variance (but well-defined mean). The short answer is that the
bootstrap procedure considered thus far will fail, in the sense that the convergence
in expression (18.4) does not hold. The failure of the bootstrap for the mean in the
infinite variance case was first noted by Babu (1984); further elucidation is given in
Athreya (1987) and Knight (1989). In fact, a striking theorem due to Giné and Zinn
(1989) asserts that the simple bootstrap studied thus far will work for the mean in the
sense of strong consistency if and only if the variance is finite. For a nice exposition
of related results, see Giné (1997).

Related results for the studentized bootstrap based on approximating the distribu-
tion of the root (18.12)were considered byCsörgö andMason (1989) andHall (1990).
The conclusion is that the bootstrap is strongly or almost surely consistent if and only
if the variance is finite; the bootstrap is weakly consistent if and only if Xi is in the
domain of attraction of the normal distribution.

In fact, it was realized by Athreya (1985) that the bootstrap can be modified so
that consistency ensues even with infinite variance. The modification consists of
reducing the bootstrap sample size. Further results are given in Arcones and Giné
(1989, 1991). In other instances where the simple bootstrap fails, consistency can
often be recovered by reducing the bootstrap sample size. The benefit of reducing
the bootstrap sample size was recognized first in Bretagnolle (1983). An even more
general approach based on subsampling will be considered later in Section 18.7.

18.3.3 Further Examples

Example 18.3.2 (Multivariate Mean) Let Xn = (X1, . . . , Xn) be a sample of n
observations from F , where Xi takes values in IR. Let θ(F) = EF (Xi ) be equal to
the mean vector, and let

Sn(X
n, θ(F)) = n1/2(X̄n − θ(F)) , (18.13)

where X̄n = ∑
i Xi/n is the sample mean vector. Let
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Rn(X
n, θ(F)) = ∥∥Sn(Xn, θ(F))

∥∥ ,

where ‖ · ‖ is any norm on IRk . The consistency of the bootstrap method based on
the root Rn follows from the following theorem.

Theorem 18.3.5 Let Ln(F) be the distribution (in IRk) of Sn(Xn, θ(F)) under F,
where Sn is defined in (18.13). Let�(F) be the covariance matrix of Sn under F. Let
CF be the set of sequences {Fn} such that Fn converges weakly to F and �(Fn) →
�(F), so that each entry of the matrix �(Fn) converges to the corresponding entry
(assumed finite) of �(F).

(i) Then, Ln(Fn) converges weakly to L(F), the multivariate normal distribution
with mean zero and covariance matrix �(F).

(ii) Assume �(F) contains at least one nonzero component. Let ‖ · ‖ be any norm
on IR and let Jn(F) be the distribution of Rn(Xn, θ(F)) = ‖Sn(Xn, θ(F))‖
under F. Then, Jn(Fn) converges weakly to J (F), which is the distribution of
‖Z‖ when Z has distribution L(F).

(iii) Suppose X1, . . . , Xn are i.i.d. F with empirical distribution F̂n (in IR). Then,
the bootstrap approximation satisfies

ρ(Jn(F), Jn(F̂n)) → 0 with probability one ,

and bootstrap confidence regions based on the root Rn are consistent in the
sense that the convergences (18.4) to (18.6) hold.

Proof. The proof of (i) follows by the Cramer–Wold device (Theorem 11.2.3) and
by Theorem 18.3.3 (i). To prove (ii), note that any norm ‖ · ‖ on IR is continuous
almost everywhere with respect to L(F). A proof of this statement can be based on
the fact that, for any norm ‖ · ‖, the set {x ∈ IR : ‖x‖ = c} has Lebesgue measure
zero because it is the boundary of a convex set. So, the continuous mapping theorem
applies and so Jn(Fn) converges weakly to J (F).

Part (iii) follows because {F̂n} ∈ CF with probability one, by the Glivenko–
Cantelli Theorem (on IR) and the strong law of large numbers.

Note the power of the bootstrap method. Analytical methods for approximating
the distribution of the root Rn = ‖Sn‖ would depend heavily on the choice of norm
‖ · ‖, but the bootstrap handles them all with equal ease.

Let �̂n = �(F̂) be the sample covariance matrix. As in the univariate case, one
can also bootstrap the root defined by

R̃n(X
n, θ(F)) = ‖�̂−1/2

n (X̄n − θ(F))‖, (18.14)

provided �(F) is assumed positive definite. In the case where ‖ · ‖ is the usual
Euclidean norm, this root leads to confidence ellipsoid, i.e., a confidence set whose
shape is an ellipsoid.
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Example 18.3.3 (Smooth Functions of Means) Let X1, . . . , Xn be i.i.d. S-valued
random variables with distribution P . Suppose θ = θ(P) = (θ1, . . . , θp), where
θ j = EP [h j (Xi )] and the h j are real-valued functions defined on S. Interest
focuses on θ or some function f of θ . Let θ̂n = (θ̂n,1, . . . , θ̂n,p), where θ̂n, j =∑n

i=1 h j (Xi )/n. Assume moment conditions on the h j (Xi ). Then, by the multi-
variate mean case, the bootstrap approximation to the distribution of n1/2(θ̂n − θ) is
appropriately close in the sense

ρ
(
LP(n1/2(θ̂n − θ)),LP∗

n
(n1/2(θ̂∗

n − θ̂n))
)

→ 0 (18.15)

with probability one, where ρ is any metric metrizing weak convergence in IRp (such
as the Bounded–Lipschitz metric introduced in Problem 11.24). Here, P∗

n refers to
the distribution of the data resampled from the empirical distribution conditional on
X1, . . . Xn . Moreover,

ρ
(
LP(n1/2(θ̂n − θ)),L(Z)

)
→ 0 , (18.16)

where Z is multivariate normal with mean zero and covariance matrix � having
(i, j)-th component

Cov(Zi , Z j ) = Cov[hi (X1), h j (X1)].

To see why, define Yi to be the vector in IRp with j-th component h j (Xi ), so that
we are exactly back in themultivariatemean case. Now, suppose f is an appropriately
smooth function from IRp to IRq , and interest now focuses on the parameterμ = f (θ).
Assume f = ( f1, . . . , fq)�, where fi (y1, . . . , yp) is a real-valued function from IRp

having a nonzero continuous differential at (y1, · · · , yp) = (θ1, . . . , θp). Let D be
the q × p matrix with (i, j) entry ∂ fi (y1, . . . , yp)/∂y j evaluated at (θ1, . . . , θp).
Then, the following is true.

Theorem 18.3.6 Suppose f is a function satisfying the above smoothness assump-
tions. If E[h2j (Xi )] < ∞, then Eqs. (18.15) and (18.16) hold. Moreover,

ρ
(
LP(n1/2[ f (θ̂n) − f (θ)]),LP∗

n
(n1/2[ f (θ̂∗

n ) − f (θ̂n)])
)

→ 0

with probability one and

sup
s

∣∣∣P{‖ f (θ̂n) − f (θ)‖ ≤ s} − P∗
n {‖ f (θ̂∗

n ) − f (θ̂n)‖ ≤ s}
∣∣∣ → 0

with probability one.

Proof. The proof follows as Eqs. (18.15) and (18.16) are immediate from the mul-
tivariate mean case. The smoothness assumptions on f and the Delta Method imply
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that n1/2[ f (θ̂n) − f (θ)] has a limiting multivariate normal distribution with mean 0
and covariance matrix D�D�; see Theorem 11.3.4. Similar arguments apply to the
bootstrap counterpart. Details are left to the reader (Problem 18.18).

Example 18.3.4 (Joint Confidence Rectangles) Under the assumptions of
Theorem 18.3.6, a joint confidence set can be constructed for ( f1(θ), . . . , fq(θ))

with asymptotic coverage 1 − α. In the case where ‖x‖ = max |xi |, the set is a rect-
angle in IRq . Such a set is easily described as

{ f (θ) : | fi (θ̂n) − fi (θ)| ≤ b̂n(1 − α) for all i },

where b̂n(1 − α) is the bootstrap approximation to the 1 − α quantile of the distribu-
tion of maxi | fi (θ̂n) − fi (θ)|. Thus, a value for fi (θ) is included in the region if and
only if fi (θ) ∈ fi (θ̂n) ± b̂n(1 − α). Note, however, the intervals fi (θ̂n) ± b̂n(1 − α)

may be unbalanced in the sense that the limiting coverage probability for each
marginal parameter fi (θ) may depend on i . To fix this, one could instead bootstrap
the distribution of maxi | fi (θ̂n) − fi (θ)|/σ̂n,i , where σ̂ 2

n,i is some consistent estimate

of the (i, i) entry of the asymptotic covariance matrix D�D� for n1/2 f (θ̂n). For fur-
ther discussion, see Beran (1988a), who employs a transformation called prepivoting
to achieve balance.

Example 18.3.5 (Uniform Confidence Bands for a c.d.f. F) Consider a sample
Xn = (X1, . . . , Xn) of real-valued observations having c.d.f. F . The empirical c.d.f.
F̂n is then

F̂n(t) = n−1
n∑

i=1

I {Xi ≤ t} .

For two distribution functions F and G, define the Kolmogorov–Smirnov (or uni-
form) metric

dK (F,G) = sup
t

|F(t) − G(t)| .

Now, consider the root

Rn(X
n, θ(F)) = n1/2dK (F̂n, F) ,

whose distribution under F is denoted by Jn(F). As discussed in Example 11.4.2,
Jn(F) has a continuous limiting distribution. In fact, the following triangular array

convergence holds. If dK (Fn, F) → 0, then Jn(Fn)
d→ J (F); for a proof, see Politis

et al. (1999, p. 20). Thus, we can define CF to be the set of sequences {Fn} satisfying
dK (Fn, F) → 0. By the Glivenko–Cantelli Theorem, dK (F̂n, F) → 0 with proba-
bility one, and strong consistency of the bootstrap follows. The resulting uniform
confidence bands for F are then consistent in the sense that (18.6) holds, and no
assumption on continuity of F is needed (unlike the classical limit theory). This
example has been generalized considerably, and the proof depends on the behavior
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of n1/2[F̂n(t) − F(t)], which can be viewed as a random function and is called the
empirical process. The general theory of bootstrapping the empirical processes is
developed in van der Vaart and Wellner (1996) and in Chapter 2 of Giné (1997). In
particular, the theory generalizes to quite general spaces S, so that the observations
need not be real-valued. In the special case when S is k-dimensional Euclidean space,
the k-dimensional empirical process was considered in Beran and Millar (1986).
Confidence sets for a multivariate distribution based on the bootstrap can then be
constructed which are pointwise consistent in level.

18.4 Higher Order Asymptotic Comparisons

One of the main reasons the bootstrap approach is so valuable is that it can be
applied to approximate the sampling distribution of an estimator in situations where
the finite-sample or large-sample distribution theory is intractable, or depends on
unknown parameters. However, even in relatively simple situations, we will see
that there are advantages to using a bootstrap approach. For example, consider the
problem of constructing a confidence interval for a mean. Under the assumption of
a finite variance, the standard normal theory interval and the bootstrap-t are each
pointwise consistent in level. In order to compare them, we must consider higher
order asymptotic properties. More generally, suppose In is a nominal 1 − α level
confidence interval for a parameter θ(P). Its coverage error under P is

P{θ(P) ∈ In} − (1 − α) ,

andwewould like to examine the rate at which this tends to zero. In typical problems,
this coverage error is a power of n−1/2. It will be necessary to distinguish one-sided
and two-sided confidence intervals because their orders of coverage error may differ.

Throughout this section, attention will focus on confidence intervals for the
mean in a nonparametric setting. Specifically, we would like to compare some
asymptotic methods based on the normal approximation and the bootstrap. Let
Xn = (X1, . . . , Xn) be i.i.d. with c.d.f. F , mean θ(F), and variance σ 2(F). Also, let
F̂n denote the empirical c.d.f., and let σ̂n = σ(F̂n).

Before addressing coverage error, we recall from Section 13.3 the Edgeworth
expansions for the distributions of the roots

Rn(X
n, F) = n1/2(X̄n − θ(F))

and
Rs
n(X

n, F) = n1/2(X̄n − θ(F))/σ̂n ;

as in Section 18.3.2, their distribution functions under F are denoted by Jn(·, F) and
Kn(·, F), respectively. Let � and ϕ denote the standard normal c.d.f. and density,
respectively.
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Theorem 18.4.1 Assume EF (X4
i ) < ∞. Let ψF denote the characteristic function

of F, and assume
lim sup
|s|→∞

|ψF (s)| < 1 . (18.17)

Then,

Jn(t, F) = �(t/σ(F)) − 1

6
γ (F)ϕ(t/σ(F))(

t2

σ 2(F)
− 1)n−1/2 + O(n−1) ,

(18.18)
where

γ (F) = EF [X1 − θ(F)]3/σ 3(F)

is the skewness of F. Moreover, the expansion holds uniformly in t in the sense that

Jn(t, F) = [�(t/σ(F)) − 1

6
γ (F)ϕ(t/σ(F))(

t2

σ 2(F)
− 1)n−1/2] + Rn(t, F) ,

where |Rn(t, F)| ≤ C/n for all t and some C = CF which depends on F.

Theorem 18.4.2 Assume EF (X4
i ) < ∞ and that F is absolutely continuous. Then,

uniformly in t ,

Kn(t, F) = �(t) + 1

6
γ (F)ϕ(t)(2t2 + 1)n−1/2 + O(n−1) . (18.19)

Note that the term of order n−1/2 is zero if and only if the underlying skewness
γ (F) is zero, so that the dominant error in using a standard normal approximation to
the distribution of the studentized statistic is due to skewness of the underlying distri-
bution. We will use these expansions in order to derive some important properties of
confidence intervals. Note, however, that the expansions are asymptotic results, and
for finite n, including the correction term (i.e., the term of order n−1/2) may worsen
the approximation.

Expansions for the distribution of a root such as (18.18) and (18.19) imply corre-
sponding expansions for their quantiles, which are known asCornish–Fisher Expan-
sions. For example, K−1

n (1 − α, F) is a value of t satisfying Kn(t, F) = 1 − α. Of
course, K−1

n (1 − α, F) → z1−α . We would like to determine c = c(α, F) such that

K−1
n (1 − α, F) = z1−α + cn−1/2 + O(n−1) .

Set 1 − α equal to the right-hand side of (18.19) with t = z1−α + cn−1/2, which
yields

�(z1−α + cn−1/2) + 1

6
γ (F)ϕ(z1−α + cn−1/2)(2z21−α + 1)n−1/2 + O(n−1) = 1 − α .
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By expanding � and ϕ about z1−α , we find that

c = −1

6
γ (F)(2z21−α + 1) .

Thus,

K−1
n (1 − α, F) = z1−α − 1

6
γ (F)(2z21−α + 1)n−1/2 + O(n−1) . (18.20)

In fact, under the assumptions of Theorem 18.4.2, the expansion (18.19) holds uni-
formly in t , and so the expansion (18.20) holds uniformly in α ∈ [ε, 1 − ε], for any
ε > 0 (Problem 18.20). Similarly, one can show (Problem 18.21) that, under the
assumptions of Theorem 18.4.1,

J−1
n (1 − α, F) = σ(F)z1−α + 1

6
σ(F)γ (F)(z21−α − 1)n−1/2 + O(n−1) , (18.21)

uniformly in α ∈ [ε, 1 − ε].
Normal Theory Intervals. The most basic approximate upper one-sided confidence
interval for the mean θ(F) is given by

X̄n + n−1/2σ̂nz1−α , (18.22)

where σ̂ 2
n = σ 2(F̂n) is the (biased) sample variance. Its one-sided coverage error is

given by
PF {θ(F) ≤ X̄n + n−1/2σ̂nz1−α} − (1 − α)

= α − PF {n1/2(X̄n − θ(F))/σ̂n < zα} . (18.23)

By (18.19), the one-sided coverage error of this normal theory interval is

− 1

6
γ (F)ϕ(zα)(2z2α + 1)n−1/2 + O(n−1) = O(n−1/2) . (18.24)

Analogously, the coverage error of the two-sided confidence interval of nominal level
1 − 2α,

X̄n ± n−1/2σ̂nz1−α , (18.25)

satisfies
PF {−z1−α ≤ n1/2(X̄n − θ(F))/σ̂n ≤ z1−α} − (1 − 2α)

= P{n1/2(X̄n − θ(F))/σ̂n ≤ z1−α} − P{n1/2(X̄n − θ(F))σ̂n < −z1−α} − (1 − 2α) ,

which by (18.19) is equal to
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[�(z1−α) + 1

6
γ (F)ϕ(z1−α)(2z21−α + 1)n−1/2 + O(n−1)]

−[�(−z1−α) + 1

6
γ (F)ϕ(−z1−α)(2z21−α + 1)n−1/2 + O(n−1)] − (1 − 2α) = O(n−1) ,

using the symmetry of the function ϕ. Thus, while the coverage error of the one-
sided interval (18.22) is O(n−1/2), the two-sided interval (18.25) has coverage
error O(n−1). The main reason the one-sided interval has coverage error O(n−1/2)

derives from the fact that a normal approximation is used for the distribution of
n1/2(X̄n − θ(F))/σ̂n and no correction is made for skewness of the underlying dis-
tribution. For example, if γ (F) > 0, the one-sided upper confidence bound (18.22)
undercovers slightly while the one-sided lower confidence bound overcovers. The
combination of overcoverage and undercoverage yields a net result of a reduction
in the order of coverage error of two-sided intervals. Analytically, this fact derives
from the key property that the n−1/2 term in (18.19) is an even polynomial. (Note,
however, that the one-sided coverage error is O(n−1) if γ (F) = 0.) These results
are in complete analogy with the corresponding results in Section 13.3 for error in
rejection probability of tests of the mean based on the normal approximation.

Basic Bootstrap Intervals.Next, we consider bootstrap confidence intervals for θ(F)

based on the root
Rn(X

n, θ(F)) = n1/2(X̄n − θ(F)) . (18.26)

It is plausible that the bootstrap approximation Jn(t, F̂n) to Jn(t, F) satisfies an
expansion like (18.18) with F replaced by F̂n . In fact, it is the case that

Jn(t, F̂n) = �(t/σ̂n) − 1

6
γ (F̂n)ϕ(t/σ̂n)(

t2

σ̂ 2
n

− 1)n−1/2 + OP(n−1) . (18.27)

Both sides of (18.27) are random and the remainder term is now of order n−1 in prob-
ability. Similarly, the bootstrap quantile function J−1

n (1 − α, F̂n) has an analogous
expansion to (18.21) and is given by

J−1
n (1 − α, F̂n) = σ̂n[z1−α + 1

6
γ (F̂n)(z

2
1−α − 1)n−1/2] + OP(n−1) . (18.28)

The validity of these expansions is quite technical and is proved in Hall (1992,
Section 5.2), and a sufficient condition for them to hold is that F satisfies Cramér’s
condition and has infinitely many moments; such assumptions will remain in force
for the remainder of this section. From (18.18) and (18.27), it follows that

Jn(t, F̂n) − Jn(t, F) = OP(n−1/2)

because
σ̂n − σ(F) = OP(n−1/2) .
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Thus, the bootstrap approximation Jn(t, F̂n) to Jn(t, F) has the same order of error
as that provided by the normal approximation.

Turning now to coverage error, consider the one-sided coverage error of the nom-
inal level 1 − α upper confidence bound X̄n − n−1/2 J−1

n (α, F̂n), given by

PF {θ(F) ≤ X̄n − n−1/2 J−1
n (α, F̂n)} − (1 − α)

= α − PF {n1/2(X̄n − θ(F)) < J−1
n (α, F̂n)}

= α − PF {n1/2(X̄n − θ(F))/σ̂n < zα + 1

6
γ (F)(z2α − 1)n−1/2 + OP(n−1)}

= α − PF {n1/2(X̄n − θ(F))/σ̂n < zα + 1

6
γ (F)(z2α − 1)n−1/2} + O(n−1) .

The last equality, though plausible, requires a rigorous argument, but follows from
Problem 18.22. The last expression, by (18.19) and a Taylor expansion, becomes

−1

2
γ (F)ϕ(zα)z2αn

−1/2 + O(n−1) ,

so that the one-sided coverage error is of the same order as that provided by the
basic normal approximation.Moreover, by similar reasoning, the two-sided bootstrap
interval of nominal level 1 − 2α, given by

[X̄n − n−1/2 J−1
n (1 − α, F̂n), X̄n − n−1/2 J−1

n (α, F̂n)] , (18.29)

has coverage error O(n−1). Although these basic bootstrap intervals have the same
orders of coverage error as those based on the normal approximation, there is evi-
dence that the bootstrap does provide some improvement (in terms of the size of the
constants); see Liu and Singh (1987).

Bootstrap-t Confidence Intervals. Next, we consider bootstrap confidence intervals
for θ(F) based on the studentized root

Rs
n(X

n, θ(F)) = n1/2(X̄n − θ(F))/σ̂n , (18.30)

whose distribution under F is denoted by Kn(·, F). The bootstrap versions of the
expansions (18.19) and (18.20) are

Kn(t, F̂n) = �(t) + 1

6
γ (F̂n)ϕ(t)(2t2 + 1)n−1/2 + OP(n−1) (18.31)

and

K−1
n (1 − α, F̂n) = z1−α − 1

6
γ (F̂n)(2z

2
1−α + 1)n−1/2 + OP(n−1) . (18.32)
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Again, these results are obtained rigorously in Hall (1992), and a sufficient condition
for their validity is that F is absolutely continuous with infinitely many moments.
By comparing (18.19) and (18.31), it follows that

Kn(t, F̂n) − Kn(t, F) = OP(n−1) , (18.33)

since γ (F̂n) − γ (F) = OP(n−1/2). Similarly,

K−1
n (1 − α, F̂n) − K−1

n (1 − α, F) = OP(n−1) . (18.34)

Thus, the bootstrap is more successful at estimating the distribution or quantiles of
the studentized root than its non-studentized version.

Now, consider the nominal level 1 − α upper confidence bound X̄n −
n−1/2σ̂nK−1

n (α, F̂n). Its coverage error is given by

PF {θ(F) ≤ X̄n − n−1/2σ̂nK
−1
n (α, F̂n)} − (1 − α)

= α − PF {n1/2(X̄n − θ(F))/σ̂n < K−1
n (α, F̂n)}

= α − PF {n1/2(X̄n − θ(F))/σ̂n < zα − 1

6
γ (F)(2z2α + 1)n−1/2 + OP(n−1)} ,

since (18.32) implies the same expansion for K−1
n (α, F̂n) with γ (F̂n) replaced by

γ (F) (again using the fact that γ (F̂n) − γ (F) = OP(n−1/2)). By Problem 18.22,
this last expression becomes

α − PF {n1/2(X̄n − θ(F))/σ̂n < zα − 1

6
γ (F)(2z2α + 1)n−1/2} + O(n−1) .

Let

tn = tn(α, F) = zα − 1

6
γ (F)(2z2α + 1)n−1/2 ,

so that (tn − zα) = O(n−1/2). Then, the coverage error becomes

α − [�(tn) + 1

6
γ (F)ϕ(tn)(2t

2
n + 1)n−1/2 + O(n−1)] .

By expanding � and ϕ about zα and combining terms that are O(n−1), the last
expression becomes

α − �(zα) − (tn − zα)ϕ(zα) + O(n−1)

−1

6
γ (F)[ϕ(zα) + (tn − zα)ϕ′(zα) + O(n−1)](2z2α + 1)n−1/2 + O(n−1) = O(n−1) .
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Thus, the one-sided coverage error of the bootstrap-t interval is O(n−1) and is of
smaller order than that provided by the normal approximation or the bootstrap based
on a non-studentized root. Intervals with one-sided coverage error of order O(n−1)

are said to be second-order accurate, while intervals with one-sided coverage error
of order O(n−1/2) are only first-order accurate.

A heuristic reason why the bootstrap based on the root (18.30) outperforms the
bootstrap based on the root (18.26) is as follows. In the case of (18.26), the bootstrap
is estimating a distribution that has mean 0 and unknown variance σ 2(F). The main
contribution to the estimation error is the implicit estimation of σ 2(F) by σ 2(F̂n).
On the other hand, the root (18.30) has a distribution that is nearly independent of F
since it is an asymptotic pivot.

The two-sided interval of nominal level 1 − 2α,

[X̄n − n−1/2σ̂nK
−1
n (1 − α, F̂n), X̄n − n−1/2σ̂nK

−1
n (α, F̂n)] , (18.35)

also has coverage error O(n−1) (Problem 18.24). This interval was formed by com-
bining two one-sided intervals. Instead, consider the absolute studentized root

Rt
n(X

n, θ(F)) = |n1/2(X̄n − θ(F))|/σ̂n ,

whose distribution and quantile functions under F are denoted by Ln(t, F) and
L−1
n (1 − α, F), respectively. An alternative two-sided bootstrap confidence interval

for θ(F) of nominal level 1 − α is given by

X̄n ± n−1/2σ̂n L
−1
n (1 − α, F̂n) .

Note that this interval is symmetric about X̄n . Its coverage error is actually O(n−2).
The arguments for this claim are similar to the previous claims about coverage error,
but more terms are required in expansions like (18.19).

Bootstrap Calibration. By considering a studentized statistic, the bootstrap-t yields
one-sided confidence intervals with coverage error smaller than the non-studentized
case. However, except in some simple problems, it may be difficult to standardize
or studentize a statistic because an explicit estimate of the asymptotic variance may
not be available. An alternative approach to improving coverage error is based on
the following calibration idea of Loh (1987). Let In = In(1 − α) be any interval
with nominal level 1 − α, such as one given by the bootstrap, or a simple normal
approximation. Its coverage is defined to be

Cn(1 − α, F) = PF {θ(F) ∈ In(1 − α)} .

We can estimate Cn(1 − α, F) by its bootstrap counterpart Cn(1 − α, F̂n). Then,
determine α̂n to satisfy

Cn(1 − α̂n, F̂n) = 1 − α ,
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so that α̂n is the value that results in the estimated coverage to be the nominal level.
The calibrated interval then is defined to be In(1 − α̂n).

To fix ideas, suppose In(1 − α) is the one-sided normal theory interval
(−∞, X̄n + n−1/2σ̂nz1−α]. We argued its coverage error is O(n−1/2). More specifi-
cally,

Cn(1 − α, F) = PF {n1/2(X̄n − θ(F))/σ̂n < zα}

= 1 − α + 1

6
ϕ(zα)(2z2α + 1)n−1/2 + O(n−1) .

Under smoothness and moment assumptions, the bootstrap estimated coverage
satisfies

Cn(1 − α, F̂n) = 1 − α + 1

6
ϕ(zα)γ (F̂n)(2z

2
α + 1)n−1/2 + OP(n−1) ,

and the value of α̂n is obtained by setting the estimated coverage equal to 1 − α. One
can then show that

α̂n − α = −1

6
ϕ(zα)γ (F)(2z2α + 1)n−1/2 + OP(n−1) . (18.36)

By using this expansion and (18.19), it can be shown that the interval In(1 − α̂n)

has coverage 1 − α + O(n−1), and hence is second-order accurate (Problem 18.25).
Thus, calibration reduces the order of coverage error.

Other BootstrapMethods. There are nowmany variations on the basic bootstrap idea
that yield confidence regions that are second-order accurate, assuming the validity
of Edgeworth Expansions like the ones used in this section. The calibration method
described above is due to Loh (1987, 1991) and is essentially equivalent to Beran’s
(1987, 1988b) method of prepivoting (Problem 18.29). Given an interval In(1 − α)

of nominal level 1 − α, calibration produces a new interval, say I 1n (1 − α) = In(1 −
α̂n), where α̂n is chosen by calibration. It is tempting to iterate this idea to further
reduce coverage error. That is, now calibrate I 1n to yield a new interval I 2n , and so on.
Further reduction in coverage error is indeed possible (at the expense of increased
computational effort). For further details on these and other methods such as Efron’s
BCa method, see Hall and Martin (1988), Hall (1992) and Efron and Tibshirani
(1993).

The analysis of this section was limited to methods for constructing confidence
intervals for a mean, assuming the underlying distribution is smooth and has suffi-
ciently many moments. But, many of the conclusions extend to smooth functions of
means studied in Example 18.3.3. In particular, in order to reduce coverage error, it is
desirable to use a root that is at least asymptotically pivotal, such as a studentized root
that is asymptotically standard normal. Otherwise, the basic bootstrap interval (18.3)
has the same order of coverage error as one based on approximating the asymptotic
distribution. However, whether or not the root is asymptotically pivotal, bootstrap
calibration reduces the order of coverage error. Of course, some qualifications are
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necessary. For one, even in the context of themean, Cramér’s conditionmay not hold,
as in the context of a binomial proportion. Edgeworth expansions for such discrete
distributions supported on a lattice are studied in Chapter 5 of Bhattacharya and
Rao (1976) and Kolassa and McCullagh (1990); also see Brown et al. (2001), who
study the binomial case. In other problems where smoothness is assumed, such as
inference for a density or quantiles, Edgeworth expansions for appropriate statistics
behave somewhat differently than they do for a mean. Such problems are treated in
Hall (1992).

18.5 Hypothesis Testing

In this section, we consider the use of the bootstrap for the construction of hypoth-
esis tests. Assume the data Xn is generated from some unknown law P . The null
hypothesis H asserts that P belongs to a certain family of distributions P0, while the
alternative hypothesis K asserts that P belongs to a family P1. Of course, we assume
the intersection of P0 and P1 is the empty set, and the unknown law P belongs to P,
the union of P0 and P1.

There are several approaches one can take to construct a hypothesis test. First,
consider the case when the null hypothesis can be expressed as a hypothesis about
a real- or vector-valued parameter θ(P). Then, one can exploit the familiar duality
between confidence regions and hypothesis tests to test hypotheses about θ(P). Thus,
a consistent in level test of the null hypothesis that θ(P) = θ0 can be constructed by a
consistent in level confidence region for θ(P) by the rule: accept the null hypothesis if
and only if the confidence region includes θ0. Therefore, all themethods we have thus
far discussed for constructing confidence regions may be utilized: methods based on
a pivot, an asymptotic pivot, an asymptotic approximation, or the bootstrap. Indeed,
this was the bootstrap approach already considered in Corollary 18.3.1, and it is also
the basis for the multiple test construction in Section 18.6.

Example 18.5.1 (Testing Moment Inequalities Using Bootstrap) Consider a non-
parametric version of the moment inequality testing problem in Example 14.4.8.
Assume the random vectors X1, . . . , Xn are i.i.d. P in IR with unknown invertible
covariance matrix � = �(P) and mean vector θ = θ(P). The problem is to test the
null hypothesis

H0 : θi (P) ≤ 0 for all i = 1, . . . , k .

One can exploit the duality between confidence sets and testing to first construct a
bootstrap joint “lower” confidence set for θ(P) as follows. Let P̂n be the empirical
measure, let X̄ be the sample mean vector, let �̂ = �(P̂n) be the sample covariance
matrix, and let σ̂ 2

n,i be the i th diagonal entry of �̂. Consider the root

Jn(x, P) = P

{
max
1≤i≤k

X̄n,i − θi (P)

σ̂n,i
≤ x

}
.
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This leads to the bootstrap confidence set

{
θ : max

1≤i≤k

X̄n,i − θi

σ̂n,i
≤ J−1

n (1 − α, P̂n)

}
,

which yields the joint lower confidence set as

[X̄n,i − σ̂n,i J
−1
n (1 − α, P̂n),∞) .

These k semi-infinite intervals simultaneously contain the true θi (P)with asymptotic
probability 1 − α. The argument is very similar to that in Example 18.3.4.

Returning to the moment inequality testing problem, a solution is to reject the
null hypothesis H0 if the 0 vector is not included in the joint confidence set. Such a
method asymptotically controls the probability of a Type 1 error. The power of this
test is considered in Problem 18.30.

However, not all hypothesis testing problems fit nicely into the framework of
testing parameters. For example, consider the problem of testing whether the data
come from a certain parametric submodel (such as the family of normal distributions)
of a nonparametric model, the so-called goodness of fit problem. Or, when Xi is
vector-valued, consider the problem of testing whether Xi has a distribution that is
spherically symmetric.

Given a test statistic Tn , its distributionmust be known, estimated, or approximated
(at least under the null hypothesis), in order to construct a critical value. The approach
taken in this section is to estimate the null distribution of Tn by resampling from a
distribution obeying the constraints of the null hypothesis.

To be explicit, assume we wish to construct a test based on a real-valued test
statistic Tn = Tn(Xn) which is consistent in level and power. Large values of Tn
reject the null hypothesis. Thus, having picked a suitable test statistic Tn , our goal is
to construct a critical value, say cn(1 − α), so that the test which rejects if and only
if Tn exceeds cn(1 − α) satisfies

P{Tn(Xn) > cn(1 − α)} → α as n → ∞

when P ∈ P0. Furthermore, we require this rejection probability to tend to one when
P ∈ P1. Unlike the classical case, the critical value will be constructed to be data-
dependent (as in the case of a permutation test). To see how the bootstrap can be
used to determine a critical value, let the distribution of Tn under P be denoted by

Gn(x, P) = P{Tn(Xn) ≤ x} .

Note that we have introduced Gn(·, P) instead of utilizing Jn(·, P) to distinguish
from the case of confidence intervals where Jn(·, P) represents the distribution of a
root which may depend both on the data and on P . In the hypothesis testing context,
Gn(·, P) represents the distribution of a statistic (and not a root) under P . Let



18.5 Hypothesis Testing 891

gn(1 − α, P) = inf{x : Gn(x, P) ≥ 1 − α} .

Typically, Gn(·, P) will converge in distribution to a limit law G(·, P), whose 1 − α

quantile is denoted by g(1 − α, P).
The bootstrap approach is to estimate the null sampling distribution byGn(·, Q̂n),

where Q̂n is an estimate of P in P0 so that Q̂n satisfies the constraints of the null
hypothesis, since critical values should be determined as if the null hypothesis were
true. A bootstrap critical value can then be defined by gn(1 − α, Q̂n). The resulting
nominal level α bootstrap test rejects H if and only if Tn > gn(1 − α, Q̂n).

Notice that we would not want to replace a Q̂n satisfying the null hypothesis con-
straints by the empirical distribution function P̂n , the usual resamplingmechanism of
resampling the data with replacement. One might say that the bootstrap is so adept at
estimating the distribution of a statistic that Gn(·, P̂n) is a good estimate of Gn(·, P)

whether or not P satisfies the null hypothesis constraints. Hence, the test that rejects
when Tn exceeds gn(1 − α, P̂n) will (under suitable conditions) behave asymptot-
ically like the test that rejects when Tn exceeds gn(1 − α, P), and this test has an
asymptotic probability of α of rejecting the null hypothesis, even if P ∈ P1. But,
when P ∈ P1, we would want the test to reject with probability that is approaching
one.

Thus, the choice of resampling distribution Q̂n should satisfy the following. If
P ∈ P0, Q̂n should be near P so that Gn(·, P) ≈ Gn(·, Q̂n); then, gn(1 − α, P) ≈
gn(1 − α, Q̂n) and the asymptotic rejection probability approaches α. If, on the other
hand, P ∈ P1, Q̂n should not approach P , but some P0 in P0. In this way, the critical
value should satisfy

gn(1 − α, Q̂n) ≈ gn(1 − α, P0) → g(1 − α, P0) < ∞

as n → ∞. Then, assuming the test statistic is constructed so that Tn → ∞ under P
when P ∈ P1, we will have

P{Tn > gn(1 − α, Q̂n)} ≈ P{Tn > g(1 − α, P0)} → 1

as n → ∞, by Slutsky’s Theorem.
As in the construction of confidence intervals, Gn(·, P) must be smooth in P in

order for the bootstrap to succeed. In the theorem below, rather than specifying a set
of sequences CP as was done in Theorem 18.3.1, smoothness is described in terms
of a metric d, but either approach could be used. The proof is analogous to the proof
of Theorem 18.3.1.

Theorem 18.5.1 Let Xn begenerated fromaprobability law P ∈ P0. Assume the fol-
lowing triangular array convergence: d(Pn, P) → 0 and P ∈ P0 implies Gn(·, Pn)
converges weakly to G(·, P) with G(·, P) continuous. Moreover, assume Q̂n is an
estimator of P based on Xn which satisfies d(Q̂n, P) → 0 in probability whenever
P ∈ P0. Then,

P{Tn > gn(1 − α, Q̂n)} → α as n → ∞ .
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Example 18.5.2 (Normal Correlation) Suppose (Yi , Zi ), i = 1, . . . , n are i.i.d.
bivariate normal with unknownmeans, variances, and correlation ρ. The null hypoth-
esis specifies ρ = ρ0 versus ρ > ρ0. Let Tn = n1/2ρ̂n , where ρ̂n is the usual sample
correlation. Under the null hypothesis, the distribution of Tn doesn’t depend on any
unknown parameters. So, if Q̂n is any bivariate normal distribution with ρ = ρ0, the
bootstrap sampling distribution Gn(·, Q̂n) is exactly equal to the true null sampling
distribution. Note, however, that inverting a parametric bootstrap confidence bound
using the root n1/2(ρ̂n − ρ) would not be exact.

Example 18.5.3 (Likelihood Ratio Tests) Suppose X1, . . . , Xn are i.i.d. according
to a model {Pθ , θ ∈ �}, where � is an open subset of IRk . Assume θ is parti-
tioned as (ξ, μ), where ξ is a vector of length p and μ is a vector of length k − p.
The null hypothesis parameter space �0 specifies ξ = ξ0. Under the conditions of
Theorem 14.4.2, the likelihood ratio statistic Tn = 2 log(Rn) is asymptotically χ2

p
under the null hypothesis. Suppose (ξ0, μ̂n,0) is an efficient likelihood estimator of
θ for the model �0. Rather than using the critical value obtained from χ2

p, one could
bootstrap Tn . So, let Gn(x, θ) denote the distribution of Tn under θ . An appropri-
ate parametric bootstrap test obeying the null hypothesis constraints is to reject the
null when Tn exceeds the 1 − α quantile of Gn(x, (ξ0, μ̂n,0)). Beran and Ducharme
(1991) argue that, under regularity conditions, the bootstrap test has error in rejection
probability equal to O(n−2), while the usual likelihood ratio test has error O(n−1).
Moreover, the bootstrap test can be viewed as an analytical approximation to a
Bartlett-corrected likelihood ratio test (see Section 14.4.4). In essence, the bootstrap
automatically captures the Bartlett correction and avoids the need for analytical cal-
culation. As an example, recall Example 14.4.7, where it was observed the Bartlett-
corrected likelihood ratio test has error O(n−2). Here, the bootstrap test is exact
(Problem 18.33).

Example 18.5.4 (Behrens–Fisher Problem Revisited) For j = 1, 2, let Xi, j , i =
1, . . . , n j be independent with Xi, j distributed as N (μ j , σ

2
j ). All four parameters

are unknown and vary independently. The null hypothesis asserts μ1 = μ2 and the
alternative isμ1 > μ2. Letn = n1 + n2, and for simplicity assumen1 to be the integer
part of λn for some 0 < λ < 1. Let (X̄n, j , S2n, j ) be the usual unbiased estimators of
(μ j , σ

2
j ) based on the j th sample. Consider the test statistic

Tn = (X̄1 − X̄2)/

√
S2n,1

n1
+ S2n,2

n2
.

By Example 15.5.4, the test that rejects the null hypothesis when Tn > z1−α is effi-
cient. However, we now study its actual rejection probability.

The null distribution of Tn depends only on σ 2 = (σ 2
1 , σ 2

2 ) through the ratio σ1/σ2,
and we denote this distribution by Gn(·, σ 2). Let S2n = (S2n,1, S

2
n,2). Like the method

used in Problem 13.28, by conditioning on S2n , we can write

Gn(x, σ
2) = E[a(S2n , σ

2, x)] ,
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where
a(S2n , σ

2, x) = �[(1 + δ)1/2x]

and

δ =
2∑

j=1

n−1
j (S2n, j − σ 2

j )/

2∑

j=1

n−1
j σ 2

j .

By Taylor expansion and the moments of S2n , it follows that (Problem 18.34)

Gn(x, σ
2) = �(x) + 1

n
bn(x, σ

2) + O(n−2) , (18.37)

where
1

n
bn(x, σ

2) = −(x + x3)φ(x)ρ2
n/4

is O(n−1) and

ρ2
n =

2∑

j=1

(n j − 1)−1n−2
j σ 4

j /(

2∑

j=1

n−1
j σ 2

j )
2 .

Correspondingly, the quantile function satisfies

G−1
n (1 − α, σ 2) = z1−α + (z1−α + z31−α)ρ2

n/4 + O(n−2) . (18.38)

It follows that the rejection probability of the asymptotic test that rejects when Tn >

z1−α is α + O(n−1).
Consider next the (parametric) bootstrap-t , which rejects when Tn > G−1

n (1 −
α, S2n ). Its rejection probability can be expressed as

1 − E[a(S2n , σ
2,G−1

n (1 − α, S2n ))] .

By Taylor expansion, it can be shown that the rejection probability of the test is
α + O(n−2) (Problem 18.35). Thus, the bootstrap-t improves upon the asymptotic
expansion. In fact, bootstrap calibration (or the use of prepivoting) further reduces
the error in rejection probability to O(n−3). Details are in Beran (1988), who further
argues that theWelch method described in Section 13.2.1 behaves like the bootstrap-
t method. Although the Welch approximation is based on elegant mathematics, the
bootstrap approach essentially reproduces the analytical approximation automati-
cally.

Example 18.5.5 (Nonparametric Mean) Let X1, . . . , Xn be i.i.d. observations on
the real line with probability law P , mean μ(P) and finite variance σ 2(P). The
problem to test μ(P) = 0 against either a one-sided or two-sided alternative. Let
P0 be the set of distributions with mean zero and finite variance. In the one-sided
case, consider the test statistic Tn = n1/2 X̄n , where X̄n is the sample mean, since
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test statistics based on X̄n were seen in Section 13.4 to possess a certain optimality
property. We will also consider the studentized statistic T ′

n = n1/2 X̄n/Sn , where we
shall take S2n to be the unbiased estimate of variance. To apply Theorem 18.5.1, let
Q̂n be the empirical distribution P̂n shifted by X̄n so it has mean 0. Then, the error
in rejection probability will be O(n−1/2) for Tn , and will be O(n−1) for T ′

n , at least
under the assumptions that F is smooth and has infinitely many moments; these
statements follow from the results in Section 18.4 (Problem 18.37).

While shifting the empirical distribution works in this example, it is not easy
to generalize when testing other parameters. Therefore, we consider the following
alternative approach. The idea is to choose the distribution in P0 that is in some
sense closest to the empirical distribution P̂n . One way to describe closeness is the
following. For distributions P and Q on the real line, let δK L(P, Q) be the (forward)
Kullback–Leibler divergence between P and Q (studied in Example 11.3.1), defined
by

δK L(P, Q) =
∫

log(
dP

dQ
)dP . (18.39)

Note that δK L(P, Q)may be∞, δK L is not ametric, and it is not even symmetric in
its arguments. Let Q̂n be the Q that minimizes δK L(P̂n, Q) over Q in P0. This choice
for Q̂n can be shown to be well-defined and corresponds to finding the nonparametric
maximum likelihood estimator of P assuming P is constrained to have mean zero.
(Another possibility is to minimize the (backward) Kullback–Leibler divergence
δK L(Q, P̂n).) By Efron (1981) (Problem 18.38), Q̂n assigns mass wi to Xi , where
wi satisfies

wi ∝ (1 + t Xi )
−1

∑n
j=1(1 + t X j )−1

and t is chosen so that
∑n

i=1 wi Xi = 0. Now, one could bootstrap either Tn or T ′
n

from Q̂n .
In fact, this approach suggests an alternative test statistic given by T ′′

n =
nδK L(P̂n, Q̂n), where Q̂n is the Q minimizing the Kullback–Leibler divergence
δK L(P̂n, Q) over Q in P0. This is equivalent to the test statistic used by Owen (1988,
2001) in his construction of empirical likelihood, who shows the limiting distribution
of 2T ′′

n under the null hypothesis is Chi-squared with 1 degree of freedom. The wide
scope of empirical likelihood is presented in Owen (2001).

Example 18.5.6 (Goodness of fit) The problem is to test whether the under-
lying probability distribution P belongs to a parametric family of distributions
P0 = {Pθ , θ ∈ �0}, where �0 is an open subset of k-dimensional Euclidean space.
Let P̂n be the empirical measure based on X1, . . . , Xn . Let θ̂n ∈ �0 be an estimator
of θ . Consider the test statistic

Tn = n1/2δ(P̂n, Pθ̂n
) ,
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where δ is some measure (typically a metric) between P̂n and Pθ̂n
. (In fact, δ need not

even be symmetric, which is useful sometimes: for example, consider the Cramér–
vonMises statistic.) Beran (1986) considers the case where θ̂n is a minimum distance
estimator, while Romano (1988) assumes that θ̂n is some asymptotically linear esti-
mator (like an efficient likelihood estimator). For the resampling mechanism, take
Q̂n = Pθ̂n

. Beran (1986) and Romano (1988) give different sets of conditions so
that the above theorem is applicable, both requiring the machinery of empirical pro-
cesses.

Example 18.5.7 (Moment inequalties) Consider testing moment inequalities as in
Example 18.5.1 based on the test statistic

Tn = max
1≤i≤k

X̄n,i

σ̂n,i
.

To simplify the point of the example, assume a parametric model with P = Pθ

multivariate normal with unknown mean vector θ and known covariance matrix �.
In order to apply Theorem 18.5.1, a reasonable choice for resampling distribution
under the null hypothesiswould be Q̂n = Pμ̂n , where μ̂n is an estimator of θ under H0.
If we further assume� is the identity, then a reasonable choice for μ̂n is themaximum
likelihood estimator under the null hypothesis constraint; so, μ̂n has i th component
μ̂n,i = min(X̄n,i , 0). Then, the conditions in Theorem 18.5.1 do not hold, and the
bootstrap is too liberal; see Problem 18.31. Intuitively, the level of the test would be
controlled by using a critical value based on the distribution of the test statistic when
θ = 0. Instead, the bootstrap procedure sometimes uses a critical value based on the
distribution of the test statistic under μ̂n , which is component-wise no bigger than
X̄n and therefore leads to a smaller critical value.

18.6 Stepdown Multiple Testing

Suppose data X = Xn is generated from some unknown probability distribution P ,
where P belongs to a certain family of probability distributions�. For j = 1, . . . , s,
consider the problem of simultaneously testing hypotheses Hj : P ∈ ω j .

For any subset K ⊆ {1, . . . , s}, let HK = ⋂
j∈K Hj be the hypothesis that P ∈⋂

j∈K ω j . Suppose that a test of the individual hypothesis Hj is based on a test
statistic Tn, j , with large values indicating evidence against the Hj .

The goal is to construct a stepdown method that controls the familywise error rate
(FWER). Recall that the FWER is the probability of rejecting at least one true null
hypothesis.More specifically, if P is the true probabilitymechanism, let I = I (P) ⊆
{1, . . . , s} denote the indices of the set of true hypotheses; that is, i ∈ I if and only
P ∈ ωi . Then, FWER is the probability under P that any Hi with i ∈ I is rejected.
To show its dependence on P , we may write FWER = FWERP . We require that any
procedure satisfy that the FWER be no bigger than α (at least asymptotically).



896 18 Bootstrap and Subsampling Methods

Suppose Hi is specifiedby a real-valuedparameterβi (P) = 0.Then, one approach
to constructing a multiple test is to invert a simultaneous confidence region. Under
the setup of Example 18.3.4, with βi (P) = fi (θ(P)), any hypothesis Hi is rejected
if fi (θ̂n) > b̂n(1 − α). A procedure that uses a common critical value b̂n(1 − α) for
all the hypotheses is called a single-step method.

Another approach is to compute (or approximate) a p-value for each individual
test, and then use Holm’smethod discussed in Section 9.1, However, Holm’smethod,
which makes no assumptions about the dependence structure of the test statistics,
can be improved by methods that implicitly or explicitly estimate this dependence
structure. In this section, we consider a stepdown procedure that incorporates the
dependence structure and thereby improves upon the two methods just described.

Let
Tn,r1 ≥ Tn,r2 ≥ · · · ≥ Tn,rs (18.40)

denote the observed ordered test statistics, and let Hr1 , Hr2 , . . . , Hrs be the corre-
sponding hypotheses.

Recall the stepdown method presented in Procedure 9.1.1. The problem now is
how to construct the ĉn,K (1 − α) so that the FWER is controlled, at least asymptot-
ically. The following is an immediate consequence of Theorem 9.1.3, and reduces
the multiple testing problem of asymptotically controlling the FWER to the single
testing problem of asymptotically controlling the probability of a Type 1 error.

Corollary 18.6.1 Let P denote the true distribution generating the data. Consider
Procedure 9.1.1 based on critical values ĉn,K (1 − α) which satisfy the monotonicity
requirement: for any K ⊇ I (P),

ĉn,K (1 − α) ≥ ĉn,I (P)(1 − α) . (18.41)

If ĉn,I (P)(1 − α) satisfies

lim sup
n

P{max(Tn, j : j ∈ I (P)) > ĉn,I (P)(1 − α)} ≤ α , (18.42)

then lim supn FW ERP ≤ α as n → ∞.

Under the monotonicity requirement (18.41), the multiplicity problem is effec-
tively reduced to testing a single intersection hypothesis at a time. So, the problem
now is to construct intersection tests whose critical values are monotone and asymp-
totically control the rejection probability.

We now specialize a bit and develop a concrete construction based on the boot-
strap. Suppose hypothesis Hi is specified by {P : θi (P) = 0} for some real-valued
parameter θi , and θ̂n,i is an estimate of θi . Also, let Tn,i = τn|θ̂n,i | for some non-
negative (nonrandom) sequence τn → ∞; usually, τn = n1/2. The bootstrap method
relies on its ability to approximate the joint distribution of {τn[θ̂n,i − θi (P)] : i ∈ K },
whose distribution we denote by Jn,K (P). Also, let Ln,K (P) denote the distribution
under P of max{τn|θ̂n,i − θi (P)| : i ∈ K }, with corresponding distribution function
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Ln,K (x, P) and α-quantile

bn,K (α, P) = inf{x : Ln,K (x, P) ≥ α} .

Let Q̂n be some estimate of P . Then, a nominal 1 − α level bootstrap confidence
region for the subset of parameters {θi (P) : i ∈ K } is given by

{(θi : i ∈ K ) : max
i∈K τn|θ̂n,i − θi | ≤ bn,K (1 − α, Q̂n)} .

So a value of 0 for θi (P) falls outside the region iff

Tn,i = τn|θ̂n,i | > bn,K (1 − α, Q̂n) .

By the usual duality of confidence sets and hypothesis tests, this suggests the use of
the critical value

ĉn,K (1 − α) = bn,K (1 − α, Q̂n) , (18.43)

at least if the bootstrap is a valid asymptotic approach for confidence region con-
struction.

Note that, regardless of asymptotic behavior, themonotonicity assumption (18.41)
is always satisfied for the choice (18.43). Indeed, for any Q and if I ⊆ K ,
bn,I (1 − α, Q) is the 1 − α quantile under Q of the maximum of |I | variables,
while bn,K (1 − α, Q) is the 1 − α quantile of these same |I | variables together with
|K | − |I | variables.

Therefore, in order to apply Theorem 18.6.1 to conclude lim supn FWERP ≤ α,
it is now only necessary to study the asymptotic behavior of bn,K (1 − α, Q̂n) in the
case K = I (P). For this, we assume the usual conditions for bootstrap consistency
when testing the single hypothesis that θi (P) = 0 for all i ∈ I (P); that is, we assume
the bootstrap consistently estimates the joint distribution of τn[θ̂n,i − θi (P)] for i ∈
I (P). In particular, we assume

Jn,I (P)(P)
d→ JI (P)(P) , (18.44)

a nondegenerate limit law. Assumption (18.44) implies Ln,I (P)(P) has a limiting
distribution L I (P)(P), with c.d.f. denoted by L I (P)(x, P). We will further assume
L I (P)(P) is continuous and strictly increasing on its support. It follows that

bn,I (P)(1 − α, P) → bI (P)(1 − α, P) , (18.45)

where bI (P)(α, P) is the α-quantile of the limiting distribution L I (P)(P).

Theorem 18.6.1 Fix P and assume (18.44) and that L I (P)(P) is continuous and
strictly increasing on its support. Let Q̂n be an estimate of P satisfying: for any
metric ρ metrizing weak convergence on IR|I (P)|,
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ρ
(
Jn,I (P)(P), Jn,I (P)(Q̂n)

)
P→ 0 . (18.46)

Consider the generic stepdown method in Procedure 9.1.1 with cn,K (1 − α) equal
to bn,K (1 − α, Q̂n). Then, lim supn FW ERP ≤ α.

Proof.By the ContinuousMapping Theorem and a subsequence argument (Problem
18.40), the assumption (18.44) implies

ρ1

(
Ln,I (P)(P), Ln,I (P)(Q̂n)

)
P→ 0 , (18.47)

where ρ1 is any metric metrizing weak convergence on IR. It follows from Problem
11.30, which is a generalization of Lemma 11.2.1, that

bn,I (P)(1 − α, Q̂n)
P→ bI (P)(1 − α, P) .

By Slutsky’s Theorem,

P{max(Tn, j : j ∈ I (P))} > bn,I (P)(1 − α, Q̂n)} → 1 − L I (P)(bI (P)(1 − α, P), P),

and the last expression is α.

Example 18.6.1 (Multivariate Mean) Assume Xi = (Xi,1, . . . , Xi,s) are n i.i.d.
random vectors with E(|Xi |2) < ∞ and mean vector μ = (μ1, . . . , μs). Note that
the vector Xi can have an arbitrary s-variate distribution, so that multivariate nor-
mality is not assumed as it was in Example 9.1.7. Suppose Hi specifies μi = 0 and
Tn,i = n−1/2| ∑n

j=1 X j,i |. Then, the conditions of Theorem 18.6.1 are satisfied by
Example 18.3.2. Alternatively, one can also consider the studentized test statistic
tn,i = Tn,i/Sn,i , where S2n,i is the sample variance of the i th components of the data
(Problem 18.41).

Example 18.6.2 (Comparing Treatment Means) For i = 1, . . . , k, suppose we
observe k independent samples, and the i th sample consists of ni i.i.d. observa-
tions Xi,1, . . . , Xi,ni with mean μi and finite variance σ 2

i . Hypothesis Hi, j spec-
ifies μi = μ j , so that the problem is to compare all s = (k

2

)
means. (Note that

we are indexing hypotheses and test statistics now by 2 indices i and j .) Let
Tn,i, j = n1/2|X̄n,i − X̄n, j |, where X̄n,i = ∑n

j=1 Xi, j/ni . Let Q̂ni ,i be the empirical
distribution of the i th sample. The bootstrap resampling scheme is to indepen-
dently resample ni observations from Q̂n,i , i = 1, . . . , k. Then, Theorem 18.6.1
applies and it also applies to appropriately studentized statistics (Problem 18.42).
The setup can easily accommodate comparisons of k treatments with a control group
(Problem 18.43).

Example 18.6.3 (Testing Correlations) Suppose X1, . . . , Xn are i.i.d. random vec-
tors in IRk , so that Xi = (Xi,1, . . . , Xi,k). Assume E |Xi, j |2 < ∞ and Var(Xi, j ) > 0,
so that the correlation between X1,i and X1, j , namely ρi, j is well defined. Let Hi, j
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denote the hypothesis that ρi, j = 0, so that the multiple testing problem consists in
testing all s = (k

2

)
pairwise correlations. Also let Tn,i, j denote the ordinary sample

correlation between variables i and j . (Note that we are indexing hypotheses and
test statistics now by 2 indices i and j .) By Example 18.3.3, the conditions for the
bootstrap hold because correlations are smooth functions of means.

18.7 Subsampling

In this section, a general theory for the construction of approximate confidence sets
or hypothesis tests is presented, so the goal is the same as that of the bootstrap.
The basic idea is to approximate the sampling distribution of a statistic based on
the values of the statistic computed over smaller subsets of the data. For example,
in the case where the data are n observations which are independent and identically
distributed, a statistic θ̂n is computed based on the entire data set and is recomputed
over all

(n
b

)
data sets of size b. Implicit is the notion of a statistic sequence, so that

the statistic is defined for samples of size n and b. These recomputed values of the
statistic are suitably normalized to approximate the true sampling distribution.

This approach based on subsamples is perhaps the most general one for approxi-
mating a sampling distribution, in the sense that consistency holds under extremely
weak conditions. That is, it will be seen that, under very weak assumptions on b, the
method is consistent whenever the original statistic, suitably normalized, has a limit
distribution under the true model. The bootstrap, on the other hand, requires that the
distribution of the statistic is somehow locally smooth as a function of the unknown
model. In contrast, no such assumption is required in the theory for subsampling.
Indeed, the method here is applicable even in the several known situations which
represent counterexamples to the bootstrap. However, when both subsampling and
the bootstrap are consistent, the bootstrap is typically more accurate.

To appreciate why subsampling behaves well under such weak assumptions, note
that each subset of size b (taken without replacement from the original data) is
indeed a sample of size b from the true model. If b is small compared to n (meaning
b/n → 0), then there aremany (namely

(n
b

)
) subsamples of size b available. Hence, it

should be intuitively clear that one can at least approximate the sampling distribution
of the (normalized) statistic θ̂b by recomputing the values of the statistic over all these
subsamples. But, under the weak convergence hypothesis, the sampling distributions
based on samples of size b and n should be close. The bootstrap, on the other hand, is
based on recomputing a statistic over a sample of size n from some estimated model
which is hopefully close to the true model.

The use of subsample values to approximate the variance of a statistic is well
known. The Quenouille-Tukey jackknife estimates of bias and variance based on
computing a statistic over all subsamples of size n − 1 has been well studied and is
closely related to the mean and variance of our estimated sampling distribution with
b = n − 1. For further history of subsampling methods, see Politis et al. (1999).
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18.7.1 The Basic Theorem in the I.I.D. Case

Suppose X1, . . . , Xn is a sample of n i.i.d. random variables taking values in an arbi-
trary sample space S. The common probability measure generating the observations
is denoted by P . The goal is to construct a confidence region for some parame-
ter θ(P). For now, assume θ is real-valued, but this can and will be generalized
to allow for the construction of confidence regions for multivariate parameters or
confidence bands for functions.

Let θ̂n = θ̂n(X1, . . . , Xn) be an estimator of θ(P). It is desired to estimate the
true sampling distribution of θ̂n in order to make inferences about θ(P). Nothing is
assumed about the form of the estimator.

As in previous sections, let Jn(P) be the sampling distribution of the root τn(θ̂n −
θ(P)) based on a sample of size n from P , where τn is a normalizing constant. Here,
τn is assumed known and does not depend on P . Also define the corresponding
cumulative distribution function:

Jn(x, P) = P{τn[θ̂n(X1, . . . , Xn) − θ(P)] ≤ x} .

Essentially, the only assumption that we will need to construct asymptotically
valid confidence intervals for θ(P) is the following.

Assumption 18.7.1 There exists a limiting distribution J (P) such that Jn(P) con-
verges weakly to J (P) as n → ∞.

This assumption will be required to hold for some sequence τn . Themost informative
case occurs when τn is such that the limit law J (P) is nondegenerate.

To describe the subsampling method, consider the Nn = (n
b

)
subsets of size b of

the data {X1, . . . , Xn}; call them Y1, . . . ,YNn , ordered in any fashion. Thus, each Yi
constitutes a sample of size b from P . Of course, the Yi depend on b and n, but this
notation has been suppressed. Only a very weak assumption on b will be required.
In the consistency results that follow, it will be assumed that b/n → 0 and b → ∞
as n → ∞. Now, let θ̂n,b,i be equal to the statistic θ̂b evaluated at the data set Yi . The
approximation to Jn(x, P) we study is defined by

Ln,b(x) = N−1
n

Nn∑

i=1

I {τb(θ̂n,b,i − θ̂n) ≤ x} . (18.48)

The motivation behind the method is the following. For any i , Yi is actually a
random sample of b i.i.d. observations from P . Hence, the exact distribution of
τb(θ̂n,b,i − θ(P)) is Jb(P). The empirical distribution of the Nn values of τb(θ̂n,b,i −
θ(P)) should then serve as a good approximation to Jn(P). Of course, θ(P) is
unknown, so we replace θ(P) by θ̂n , which is asymptotically permissible because
τb(θ̂n − θ(P)) is of order τb/τn , and τb/τn will be assumed to tend to zero.
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Theorem 18.7.1 Suppose Assumption 18.7.1 holds. Also, assume τb/τn → 0, b →
∞, and b/n → 0 as n → ∞.

(i) If x is a continuity point of J (·, P), then Ln,b(x) → J (x, P) in probability.
(ii) If J (·, P) is continuous, then

sup
x

|Ln,b(x) − Jn(x, P)| → 0 in probability . (18.49)

(iii) Let
cn,b(1 − α) = inf{x : Ln,b(x) ≥ 1 − α} .

and
c(1 − α, P) = inf{x : J (x, P) ≥ 1 − α} .

If J (·, P) is continuous at c(1 − α, P), then

P{τn[θ̂n − θ(P)] ≤ cn,b(1 − α)} → 1 − α as n → ∞ . (18.50)

Therefore, the asymptotic coverage probability under P of the confidence inter-
val [θ̂n − τ−1

n cn,b(1 − α),∞) is the nominal level 1 − α.

Proof. Let

Un(x) = Un,b(x, P) = N−1
n

Nn∑

i=1

I {τb[θ̂n,b,i − θ(P)] ≤ x} . (18.51)

Note that the dependence ofUn(x) on b and P will now be suppressed for notational
convenience. To prove (i), it suffices to show Un(x) converges in probability to
J (x, P) for every continuity point x of J (x, P). To see why, note that

Ln,b(x) = N−1
n

∑

i

I {τb[θ̂n,b,i − θ(P)] + τb[θ(P) − θ̂n] ≤ x} ,

so that for every ε > 0,

Un(x − ε)I {En} ≤ Ln,b(x)I {En} ≤ Un(x + ε)I {En} ,

where I {En} is the indicator of the event En ≡ {τb|θ(P) − θ̂n| ≤ ε}. But, the event
En has probability tending to one. So, with probability tending to one,

Un(x − ε) ≤ Ln,b(x) ≤ Un(x + ε)

for any ε > 0. Hence, if x + ε and x − ε are continuity points of J (·, P), then
Un(x ± ε) → J (x ± ε, P) in probability implies
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J (x − ε, P) − ε ≤ Ln,b(x) ≤ J (x + ε, P) + ε

with probability tending to one. Now, let ε → 0 so that x ± ε are continuity points of
J (·, P). Then, it suffices to show Un(x) → J (x, P) in probability for all continuity
points x of J (·, P). But, 0 ≤ Un(x) ≤ 1 and

E[Un(x)] = Jb(x, P) .

Since Jb(x, P) → J (x, P), it suffices to show Var [Un(x)] → 0. To this end,
suppose k is the greatest integer less than or equal to n/b. For j =
1, . . . , k, let Rn,b, j be equal to the statistic θ̂b evaluated at the data set
θ̂b(Xb( j−1)+1, Xb( j−1)+2, . . . , Xb( j−1)+b) and set

Ūn(x) = k−1
k∑

j=1

I {τb[Rn,b, j − θ(P)] ≤ x} .

Clearly, Ūn(x) andUn(x) have the same expectation. But, since Ūn(x) is the average
of k i.i.d. variables (each of which is bounded between 0 and 1), it follows that

Var [Ūn(x)] ≤ 1

4k
→ 0

as n → ∞. Intuitively, Un(x) should have a smaller variance than Ūn(x), because
Ūn(x) uses the ordering in the sample in an arbitrary way. Formally, we can write

Un(x) = E[Ūn(x)|Xn] ,

where Xn is the information containing the original sample but without regard to
their order. Applying the inequality [E(Y )]2 ≤ E(Y 2) (conditionally) yields

E[U 2
n (x)] = E{E[Ūn(x)|Xn]}2 ≤ {E[Ū 2

n (x)|Xn]} = E[Ū 2
n (x)] .

Thus, Var [Un(x)] → 0 and (i) follows.
To prove (ii), given any subsequence {nk}, one can extract a further subsequence

{nk j } so that Lnk j
(x) → J (x, P) almost surely. Therefore, Lnk j

(x) → J (x, P)

almost surely for all x in some countable dense set of the real line. So, Lnk j
tends

weakly to J (x, P) and this convergence is uniform by Polya’s Theorem. Hence, the
result (ii) holds.

To prove (iii), if J (·, P) is also assumed strictly increasing at c(1 − α, P), then

cn,b(1 − α)
P→ c(1 − α, P)
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by Problem 11.30, which is a generalization of Lemma 11.2.1. The limiting coverage
probability now follows from Slutsky’s Theorem. To complete the proof without the
strictly increasing assumption, see Problem 18.6.

The assumptions b/n → 0 and b → ∞ need not imply τb/τn → 0. For example,
in the unusual case τn = log(n), if b = nγ and γ > 0, the assumption τb/τn → 0
is not satisfied. In fact, a slight modification of the method is consistent without
assuming τb/τn → 0; see Politis et al. (1999), Corollary 2.2.1. In regular cases,
τn = n1/2, and the assumptions on b simplify to b/n → 0 and b → ∞.

The assumptions on b are as weak as possible under the weak assumptions of
the theorem. However, in some cases, the choice b = O(n) yields similar results;
this occurs in Wu (1990), where the statistic is approximately linear with an asymp-
totic normal distribution and τn = n1/2. This choice will not work in general; see
Example 18.7.2.

Assumption 18.7.1 is satisfied in numerous examples, including all previous
examples considered by the bootstrap.

18.7.2 Comparison with the Bootstrap

The usual bootstrap approximation to Jn(x, P) is Jn(x, Q̂n), where Q̂n is some
estimate of P . In many nonparametric i.i.d. situations, Q̂n is taken to be the empir-
ical distribution of the sample X1, . . . , Xn . In Section 18.3, we proved results like
(18.49) and (18.50) with Ln,b(x) replaced by Jn(x, Q̂n). While the consistency of
the bootstrap requires arguments specific to the problem at hand, the consistency of
subsampling holds quite generally.

To elaborate a little further, we proved bootstrap limit results in the following
manner. For some choice of metric (or pseudo-metric) d on the space of probability
measures, it must be known that d(Pn, P) → 0 implies Jn(Pn) converges weakly to
J (P). That is, Assumption 18.7.1 must be strengthened so that the convergence of
Jn(P) to J (P) is suitably locally uniform in P . In addition, the estimator Q̂n must
then be known to satisfy d(Q̂n, P) → 0 almost surely or in probability under P . In
contrast, no such strengthening of Assumption 18.7.1 is required in Theorem 18.7.1.
In the known counterexamples to the bootstrap, it is precisely a certain lack of
uniformity in convergence which leads to failure of the bootstrap.

In some special cases, it has been realized that a sample size trick can often remedy
the inconsistency of the bootstrap. To describe how, focus on the case where Q̂n is
the empirical measure, denoted by P̂n . Rather than approximating Jn(P) by Jn(P̂n),
the suggestion is to approximate Jn(P) by Jb(P̂n) for some b which usually satisfies
b/n → 0 and b → ∞. The resulting estimator Jb(x, P̂n) is obviously quite similar to
our Ln,b(x) given in (2.1). In words, Jb(x, P̂n) is the bootstrap approximation defined
by the distribution (conditional on the data) of τb[θ̂b(X∗

1, . . . , X
∗
b) − θ̂n], where

X∗
1, . . . , X

∗
b are chosenwith replacement from X1, . . . , Xn . In contrast, Ln,b(x) is the

distribution (conditional on the data) of τb[θ̂b(Y ∗
1 , . . . ,Y ∗

b ) − θ̂n)], where Y ∗
1 , . . . ,Y ∗

b
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are chosenwithout replacement from X1, . . . , Xn . Clearly, these twoapproachesmust
be similar if b is so small that sampling with and without replacement are essentially
the same. Indeed, if one resamples b numbers (or indices) from the set {1, . . . , n},
then the chance that none of the indices is duplicated is �b−1

i=1 (1 − i
n ). This prob-

ability tends to 0 if b2/n → 0. (To see why, take logs and do a Taylor expansion
analysis.) Hence, the following is true.

Corollary 18.7.1 Under the further assumption that b2/n → 0, parts (i)–(iii) of
Theorem 18.7.1 remain valid if Ln,b(x) is replaced by the bootstrap approximation
Jb(x, P̂n).

The bootstrap approximation with smaller resample size, Jb(P̂n), is further studied
in Bickel, Götze, and van Zwet (1997). In spite of the Corollary, we point out that
Ln,b is more generally valid. Indeed, without the assumption b2/n → 0, Jb(x, P̂n)
can be inconsistent. To see why, let P be any distribution on the real line with a
density (with respect to Lebesgue measure). Consider any statistic θ̂n , τn , and θ(P)

satisfying Assumption 18.7.1. Even the sample mean will work here. Now, modify
θ̂n to θ̃n so that the statistic θ̃n(X1, . . . , Xn) completely misbehaves if any pair of the
observations X1, . . . , Xn are identical. The bootstrap approximation to the distribu-
tion of θ̃n must then misbehave as well unless b2/n → 0, while the consistency of
Ln,b remains intact.

The above example, though artificial, was designed to illustrate a point. We now
consider some further examples.

Example 18.7.1 (U-statistics of Degree 2) Let X1, . . . , Xn be i.i.d. on the line with
c.d.f. F . Denote by F̂n the empirical distribution of the data. Let

θ(F) =
∫ ∫

ω(x, y)dF(x)dF(y)

and assume ω(x, y) = ω(y, x). Assume

∫
ω2(x, y)dF(x)dF(y) < ∞ .

Set τn = n1/2 and

θ̂n =
∑

i< j

ω(Xi , X j )/

(
n

2

)
.

Then, by Theorem 12.3.2, Jn(F) converges weakly to J (F), the normal distribution
with mean 0 and variance given by

v2(F) = 4

{∫
[ω(x, y)dF(y)]2dF(x) − θ2(F)

}
.

Hence, Assumption 18.7.1 holds. However, in order for the bootstrap to succeed,
the additional condition

∫
ω2(x, x)dF(x) < ∞ is required. Bickel and Freedman
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(1981) give a counterexample to show the inconsistency of the bootstrap without
this additional condition.

Interestingly, the bootstrap may fail even if
∫

ω2(x, x)dF(x) < ∞, stemming
from the possibility that v2(F) = 0. (Otherwise, Bickel and Freedman’s argument
justifies the bootstrap.) As an example, let w(x, y) = xy. In this case,

θ(F̂n) = X̄2
n − S2n/n ,

where S2n is the usual unbiased sample variance. If θ(F) = 0, then v(F) = 0. Then,
n[θ(F̂n) − θ(F)] converges weakly to σ 2(F)(Z2 − 1), where Z denotes a standard
normal random variable and σ 2(F) denotes the variance of F . However, it is easy
to see that the bootstrap approximation to the distribution of n[θ(F̂n) − θ(F)] has a
representation σ 2(F)Z2 + 2Zσ(F)n1/2 X̄n . Thus, failure of the bootstrap follows.

In the context of U-statistics, the possibility of using a reduced sample size in the
resampling has been considered in Bretagnolle (1983); an alternative correction is
given by Arcones (1991).

Example 18.7.2 (Extreme Order Statistic) The following counterexample is
taken from Bickel and Freedman (1981). If X1, . . . , Xn are i.i.d. according to a uni-
formdistribution on (0, θ), let X(n) be themaximumorder statistic. Then, n[X(n) − θ ]
has a limit distribution given by the distribution of −θX , where X is exponential
with mean one. Hence, Assumption 18.7.1 is satisfied here. However, the usual boot-
strap fails. To see why, let X∗

1, . . . , X
∗
n be n observations sampled from the data with

replacement, and let X∗
(n) be the maximum of the bootstrap sample. The bootstrap

approximation to the distribution of n[X(n) − θ ] is the distribution of n[X∗
(n) − X(n)],

conditional on X1, . . . , Xn . But, the probability mass at 0 for this bootstrap distribu-
tion is the probability that X∗

(n) = X(n), which occurs with probability

1 − (1 − 1

n
)n → 1 − exp(1) .

However, the true limiting distribution is continuous. Note in Theorem 18.7.1 that
the conditions on b (with τn = n) reduce to b/n → 0 and b → ∞. In this example, at
least, it is clear that we cannot assume b/n → c, where c > 0. Indeed, Ln,b(x) places
mass b/n at 0. Thus, while it is sometimes true that, under further conditions such as
Wu (1990) assumes, we can take b to be of the same order as n, this example makes
it clear that we cannot in general weaken our assumptions on b without imposing
further structure.

Example 18.7.3 (Superefficient Estimator) Assume X1, . . . , Xn are i.i.d. accord-
ing the normal distribution with mean θ(P) and variance one. Fix c > 0. Let
θ̂n = cX̄n if |X̄n| ≤ n−1/4 and θ̂n = X̄n otherwise. The resulting estimator is known
as Hodges’ superefficient estimator; see Lehmann and Casella (1998), p. 440 and
Problem 14.70. It is easily checked that n1/2(θ̂n − θ(P)) has a limit distribution for
every θ , so the conditions for Theorem 18.7.1 remain applicable. However, Beran
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(1984) showed that the distribution of n1/2(θ̂n − θ(P)) cannot be bootstrapped, even
if one is willing to apply a parametric bootstrap!

We have claimed that subsampling is superior to the bootstrap in a first-order
asymptotic sense, since it is more generally valid. However, in many typical situa-
tions, the bootstrap is far superior and has some compelling second-order asymptotic
properties. Some of these were studied in Section 18.4; also see Hall (1992). In nice
situations, such as when the statistic or root is a smooth function of sample means,
a bootstrap approach is often very satisfactory. In other situations, especially those
where it is not known that the bootstrap works even in a first-order asymptotic sense,
subsampling is preferable. Still, in other situations (such as the mean in the infinite
variance case), the bootstrap may work, but only with a reduced sample size. The
issue becomes whether to sample with or without replacement (as well as the choice
of resample size). Although this question is not yet answered unequivocally, some
preliminary evidence inBickel et al. (1997) suggests that the bootstrap approximation
Jb(x, P̂n)might be more accurate; more details on the issue of higher order accuracy
of the subsampling approximation Ln,b(x) are given in Chapter 10 of Politis et al.
(1999).

Because
(n
b

)
can be large, Ln,b may be difficult to compute. Instead, an approx-

imation may be employed. For example, let I1, . . . IB be chosen randomly with or
without replacement from {1, 2, . . . , Nn}. Then, Ln,b(x) may be approximated by

L̂n,b(x) = 1

B

B∑

i=1

I {τb(θ̂n,b,Ii − θ̂n) ≤ x}. (18.52)

Corollary 18.7.2 Under the assumptions of Theorem 18.7.1 and the assumption
B → ∞ as n → ∞, the results of Theorem 18.7.1 are valid if Ln,b(x) is replaced
by L̂n,b(x).

Proof. If the Ii are sampled with replacement, supx |L̂n,b(x) − Ln,b(x)| → 0 in
probability by the Dvoretzky, Kiefer, Wolfowitz inequality. This result is also true in
the case the Ii are sampled without replacement; apply Proposition 4.1 of Romano
(1989b).

An alternative approach, which also requires fewer computations, is the following.
Rather than employing all

(n
b

)
subsamples of size b from X1, . . . , Xn , just use the

n − b + 1 subsamples of size b of the form {Xi , Xi+1, . . . , Xi+b−1}. Notice that
the ordering of the data is fixed and retained in the subsamples. Indeed, this is the
approach that is applied for time series data; see Chapter 3 of Politis et al. (1999),
where consistency results in data-dependent situations are given. Even when the i.i.d.
assumption seems reasonable, this approach may be desirable to ensure robustness
against possible serial correlation. Most inferential procedures based on i.i.d. models
are simply not valid (i.e., not even first-order accurate) if the independence assump-
tion is violated, so it seems worthwhile to account for possible dependencies in the
data if we do not sacrifice too much in efficiency.
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18.7.3 Hypothesis Testing

In this section, we consider the use of subsampling for the construction of hypothesis
tests. As before, X1, . . . , Xn is a sample of n independent and identically distributed
observations taking values in a sample space S. The common unknown distribution
generating the data is denoted by P . This unknown law P is assumed to belong to
a certain class of laws P. The null hypothesis H asserts P ∈ P0, and the alternative
hypothesis K is P ∈ P1, where Pi ⊂ P and P0

⋃
P1 = P.

The goal is to construct an asymptotically valid test based on a given test statistic,

Tn = τntn(X1, . . . , Xn) ,

where, as before, τn is a fixed nonrandom normalizing sequence. Let

Gn(x, P) = P{τntn(X1, . . . , Xn) ≤ x} .

We will be assuming that Gn(·, P) converges in distribution, at least for P ∈ P0. Of
course, thiswould imply (as long as τn → ∞) that tn(X1, . . . , Xn) → 0 inprobability
for P ∈ P0. Naturally, tn should somehow be designed to distinguish between the
competing hypotheses. The theorem we will present will assume tn is constructed to
satisfy the following: tn(X1, . . . , Xn) → t (P) in probability,where t (P) is a constant
which satisfies t (P) = 0 if P ∈ P0 and t (P) > 0 if P ∈ P1. This assumption easily
holds in typical examples.

To describe the test construction, as in Section 18.7.1, let Y1, . . . ,YNn be equal
to the Nn = (n

b

)
subsets of {X1, . . . , Xn}, ordered in any fashion. Let tn,b,i be equal

to the statistic tb evaluated at the data set Yi . The sampling distribution of Tn is then
approximated by

Ĝn,b(x) = N−1
n

Nn∑

i=1

I {τbtn,b,i ≤ x} . (18.53)

Using this estimated sampling distribution, the critical value for the test is obtained
as the 1 − α quantile of Ĝn,b(·); specifically, define

gn,b(1 − α) = inf{x : Ĝn,b(x) ≥ 1 − α} . (18.54)

Finally, the nominal level α test rejects H if and only if Tn > gn,b(1 − α).
The following theorem gives the asymptotic behavior of this procedure, showing

the test is pointwise consistent in level and pointwise consistent in power. In addition,
an expression for the limiting power of the test is obtained under a sequence of
alternatives contiguous to a distribution in the null hypothesis.

Theorem 18.7.2 Assume b/n → 0 and b → ∞ as n → ∞.

(i) Assume, for P ∈ P0, Gn(P) converges weakly to a continuous limit law G(P),
whose corresponding cumulative distribution function is G(·, P) and whose
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1 − α quantile is g(1 − α, P). If G(·, P) is continuous at g(1 − α, P) and
P ∈ P0, then

gn,b(1 − α) → g(1 − α, P) in probability

and
P{Tn > gn,b(1 − α)} → α as n → ∞.

(ii) Assume the test statistic is constructed so that tn(X1, . . . , Xn) → t (P) in proba-
bility, where t (P) is a constant which satisfies t (P) = 0 if P ∈ P0 and t (P) > 0
if P ∈ P1. Assume lim infn(τn/τb) > 1. Then, if P ∈ P1, the rejection proba-
bility satisfies

P{Tn > gn,b(1 − α)} → 1 as n → ∞.

(iii) Suppose Pn is a sequence of alternatives such that, for some P0 ∈ P0, {Pn
n } is

contiguous to {Pn
0 }. Then,

gn,b(1 − α) → g(1 − α, P0) in Pn
n -probability.

Hence, if Tn converges in distribution to T under Pn and G(·, P0) is continuous
at g(1 − α, P0), then

Pn
n {Tn > gn,b(1 − α)} → Prob{T > g(1 − α, P0)}.

The proof is similar to that of Theorem 18.7.1 (Problem 18.45).

Example 18.7.4 Consider the special case of testing a real-valued parameter. Specif-
ically, suppose θ(·) is a real-valued function from P to the real line. The null hypoth-
esis is specified by P0 = {P : θ(P) = θ0}. Assume the alternative is one sided and
is specified by {P : θ(P) > θ0}. Suppose we simply take

tn(X1, . . . , Xn) = θ̂n(X1, . . . , Xn) − θ0 .

If θ̂n is a consistent estimator of θ(P), then the hypothesis on tn in part (ii) of the the-
orem is satisfied (just take the absolute value of tn for a two-sided alternative). Thus,
the hypothesis on tn in part (ii) of the theorem boils down to verifying a consistency
property and is rather weak, though this assumption can in fact be weakened further.
The convergence hypothesis of part (i) is satisfied by typical test statistics; in regular
situations, τn = n1/2.

The interpretation of part (iii) of the theorem is the following. Suppose, instead
of using the subsampling construction, one could use the test that rejects when Tn >

gn(1 − α, P), where gn(1 − α, P) is the exact 1 − α quantile of the true sampling
distribution Gn(·, P). Of course, this test is not available in general because P is
unknown and so is gn(1 − α, P). Then, the asymptotic power of the subsampling
test against a sequence of contiguous alternatives {Pn} to P with P in P0 is the
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same as the asymptotic power of this fictitious test against the same sequence of
alternatives. Hence, to the order considered, there is no loss in efficiency in terms of
power.

Example 18.7.5 (Moment Inequalities Using Subsampling) Reconsider the
moment inequality testing problem in Example 18.5.1, where the problem is to test
all components of a mean vector are less than or equal to zero. Let τn = √

n and

tn(X1, . . . , Xn) = max
1≤i≤k

X̄n,i .

The subsampling distribution is then defined as in (18.53). Theorem 18.7.2 applies
and the subsampling test controls Type 1 error asymptotically. (In fact, it con-
trols Type 1 error uniformly over a large collection of underlying distributions; see
Romano and Shaikh (2008, 2012).) Looking at the local asymptotic power proper-
ties of this test, suppose θ0 = (θ0,1, . . . , θ0,k)

� lies on the boundary of the parameter
space, so that θ0,i ≤ 0 for all i and equal to 0 for some i . Also, let

I = {i : θi (P) = 0}

and h = (h1, . . . , hk)�. To keep it simple, suppose P = Pθ is multivariate normal
with mean θ and covariance matrix �. Then, under θ0 + hn−1/2,

Tn = √
ntn

d→max
i∈I (Zi + hi ) , (18.55)

where (Z1, . . . , Zk)
� is multivariate normal with mean 0 and covariance matrix �.

Under such a sequence, the subsampling distribution Ĝn,b(x) satisfies, for any x ,

Ĝn,b(x)
P→ P{max

i∈I Zi ≤ x} . (18.56)

Therefore, if dI,1−α denotes the 1 − α quantile of maxi∈I Zi , then the subsampling
quantile gn,b(1 − α) satisfies

gn,b(1 − α)
P→ dI,1−α .

Hence, the limiting power against θ0 + hn−1/2 of the subsampling test can be
expressed as (Problem 18.48)

P{max
i∈I (Zi + hi ) > dI,1−α} . (18.57)

In particular, this limiting power is greater than it would be if dI,1−α were replaced
by dI0,1−α , where I0 = {1, . . . , k}. In other words, subsampling implicitly is apply-
ing a moment selection procedure. Compare with the bootstrap in Problems 14.68
and 18.30.
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18.8 Problems

Section 18.2

Problem 18.1 Assume X1, . . . , Xn are i.i.d. according to a location-scale model
with distribution of the form F[(x − θ)/σ ], where F is known, θ is a location
parameter, and σ is a scale parameter. Suppose θ̂n is a location and scale equivariant
estimator and σ̂n is a location invariant, scale equivariant estimator. Then, show that
the roots [θ̂n − θ ]/σ̂n and σ̂n/σ are pivots.

Problem 18.2 Let X = (X1, . . . , Xn)
� and consider the linear model

Xi =
s∑

j=1

ai, jβ j + σεi ,

where the εi are i.i.d. F , where F has mean 0 and variance 1. Here, the ai, j are
known, β = (β1, . . . , βs)

� and σ are unknown. Let A be the n × s matrix with (i, j)
entry ai, j and assume A has rank s. As in Section 13.2.3, let β̂n = (A�A)−1A�X be
the least squares estimate of β. Consider the test statistic

Tn = (n − s)(β̂n − β)(A�A)(β̂n − β)

sS2n
,

where S2n = (X − Aβ̂n)
�(X − Aβ̂n)/(n − s). Is Tn a pivot when F is known?

Section 18.3

Problem 18.3 Suppose the convergence (18.4) only holds in probability and that
J (·, P) is continuous and strictly increasing at J−1(1 − α, P). Show that (18.5)
holds in probability. Then, show that (18.6) still holds.

Problem 18.4 InTheorem18.3.1, one cannot deduce theuniformconvergence result
(18.4) without the assumption that the limit law J (P) is continuous. Show that,
without the continuity assumption for J (P),

ρL(Jn(P̂n), Jn(P)) → 0

with probability one, where ρL is the Lévy metric defined in Definition 11.2.3.

Problem 18.5 In Theorem 18.3.3 (i), show that the assumption that θ(Fn) → θ(F)

actually follows from the other assumptions.
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Problem 18.6 Under the assumptions ofTheorem18.3.1 butwithout the assumption
that J (·, P) is strictly increasing, show that the conclusion (18.6) still holds. [Hint:
See Problems 11.26 and 11.31.]

Problem 18.7 Reprove Theorem 18.3.3(ii) under the assumption E(|Xi |3) < ∞ by
using the Berry–Esseen Theorem.

Problem 18.8 Prove the following extension of Theorem 18.3.3 holds. Let DF be
the set of sequences {Fn} such that Fn converges weakly to a distribution G and
σ 2(Fn) → σ 2(G) = σ 2(F). Then, Theorem (18.3.3) holds with CF replaced by DF.
(Actually, one really only needs to define DF so that and sequence {Fn} is tight
and any weakly convergent subsequence of {Fn} has the above property.) Thus, the
possible choices for the resampling distribution are quite large in the sense that the
bootstrap approximation Jn(Ĝn) can be consistent even if Ĝn is not at all close to
F . For example, the choice where Ĝn is normal with mean X̄n and variance equal
to a consistent estimate of the sample variance results in consistency. Therefore,
the normal approximation can in fact be viewed as a bootstrap procedure with a
perverse choice of resampling distribution. Show the bootstrap can be inconsistent
if σ 2(G) �= σ 2(F).

Problem 18.9 Assume X1, . . . , Xn are i.i.d. with c.d.f. F , mean μ(F) and variance
σ 2(F) < ∞. Let X̄n = μ(F̂n), where F̂n is the empirical c.d.f. Conditional on F̂n , let
X∗
1, . . . , X

∗
n be i.i.d. according to F̂n , with sample mean X̄∗

n . Find the (unconditional)
joint limiting distribution of

n1/2[X̄∗
n − X̄n, X̄n − μ(F)] .

Problem 18.10 Under the setup of Problem 18.9, the problem now is to con-
struct a confidence interval for μ(F), but now it is known and assumed that
μ(F) ≥ 0. Inference is based on the estimator μ̂n = max(X̄n, 0). Consider the
root Rn(X1, . . . , Xn, μ(F)) = n1/2[μ̂n − μ(F)], with distribution Jn(F). Investi-
gate bootstrap consistency. Separate out cases by μ(F) > 0 and μ(F) = 0. Hint:
In the case μ(F) = 0, first find the limiting behavior of Jn(F). For any c > 0, if
n1/2 X̄n < −c, show that the bootstrap distribution is dominated in the limit by that
of σ(F)max(Z − c, 0), where Z ∼ N (0, 1). Use the almost sure representation the-
orem to argue that the bootstrap fails, at least along a subsequence.

Problem 18.11 In the case that θ(P) is real-valued, Efron initially proposed the
following construction, called the bootstrap percentilemethod. Let θ̂n be an estimator
of θ(P), and let J̃n(P) be the distribution of θ̂n under P . Then, Efron’s two-sided
percentile interval of nominal level 1 − α takes the form

[ J̃−1
n (

α

2
, P̂n), J̃

−1
n (1 − α

2
, P̂n)] . (18.58)

Also, consider the root Rn(Xn, θ(P)) = n1/2(θ̂n − θ(P)), with distribution Jn(P).
Write (18.58) as a function of θ̂n and the quantiles of Jn(P̂n), assuming θ(P̂n) = θ̂n .
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Suppose Theorem 18.3.1 holds for the root Rn , so that Jn(P) converges weakly to
J (P). What must be assumed about J (P) so that P{θ(P) ∈ In} → 1 − α?

Problem 18.12 Let θ̂n be an estimate of a real-valued parameter θ(P). Suppose
there exists an increasing transformation g such that

g(θ̂n) − g(θ(P))

is a pivot, so that its distribution does not depend on P . Also, assume this distribution
is continuous, strictly increasing, and symmetric about zero.
(i) Show that Efron’s percentile interval (18.58), which may be constructed without
knowledge of g, has exact coverage 1 − α.
(ii) Show that the percentile interval is transformation equivariant. That is, if
φ = m(θ) is a monotone transformation of θ , then the percentile interval for φ is
the percentile interval for θ transformed by m when φ̂n is taken to be m(θ̂n). This
holds true for the theoretical percentile interval as well as its approximation due to
simulation.
(iii) If the parameter θ only takes values in an interval I and θ̂n does as well, then
the percentile interval is range-preserving in the sense that the interval is always a
subset of I .

Problem 18.13 Suppose θ̂n is an estimate of some real-valued parameter θ(P). Let
Hn(x, θ) denote the c.d.f. of θ̂n under θ , with inverse H−1

n (1 − α, θ). The percentile
interval lower confidence bound of level 1 − α is then H−1

n (α, θ̂n). Suppose that, for
some increasing transformation g, and constants z0 (called the bias correction) and
a (called the acceleration constant),

P{g(θ̂n) − g(θ)

1 + ag(θ)
+ z0 ≤ x} = �(x) , (18.59)

where � is the standard normal c.d.f.
(i) Letting φ̂n = g(θ̂n), show that θ̂n,L given by

θ̂n,L = g−1
{
φ̂n + (zα + z)(1 + aφ̂n)/[1 − a(zα + z0)]

}

is an exact 1 − α lower confidence bound for θ .
(ii) Because θ̂n,L requires knowledge of g, let

θ̂n,BCa = H−1
n (β, θ̂n) ,

where
β = �(z + (zα + z0)/[1 − a(zα + z0)] .
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Show that θ̂n,BCa = θ̂n,L . [The lower bound θ̂n,BCa is called the BCa lower bound
and Efron shows one may take z = �−1(Hn(θ̂n, θ̂n)) and gives methods to estimate
a; see Efron and Tibshirani (1993, Chapter 14).]

Problem 18.14 Assume the setup of Problem 18.13 and condition (18.59). Let θ0
be any value of θ and let θ1 = H−1

n (1 − α, θ0). Let

θ̂n,AP = H−1
n (β ′, θ̂n) ,

where
β ′ = Hn(θ0, θ1) .

Show that θ̂n,AP is an exact level 1 − α lower confidence bound for θ . [This is called
the automatic percentile lower bound of DiCiccio and Romano (1989), and may be
computed without knowledge of g, a or z. Its exactness holds under assumptions
even weaker than (18.59).]

Problem 18.15 Let X1, . . . , XnX be i.i.d. with distribution FX , and let Y1, . . . ,YnY
be i.i.d. with distribution FY . The two samples are independent. Let μ(F) denote the
mean of a distribution F , and letσ 2(F) denote the variance of F . Assumeσ 2(FX ) and
σ 2(FY ) are finite. Suppose we are interested in θ = θ(FX , FY ) = μ(FX ) − μ(FY ).
Construct a bootstrap confidence interval for θ of nominal level 1 − α, and prove that
it asymptotically has the correct coverage probability, assuming min(nX , nY ) → ∞.

Problem 18.16 Let X1, · · · , Xn be i.i.d. Bernoulli trials with success probability θ .
(i). As explicitly as possible, find a uniformly most accurate upper confidence bound
for θ of nominal level 1 − α. State the bound explicitly in the case Xi = 0 for
every i .
(ii). Describe a bootstrap procedure to obtain an upper confidence bound for θ of
nominal level 1 − α. What does it reduce to for the previous data set?
(iii). Let B̂1−α denote your upper bootstrap confidence bound for θ . Then, Pθ (θ ≤
B̂1−α) → 1 − α as n → ∞. Prove the following.

sup
θ

|Pθ (θ ≤ B̂1−α) − (1 − α)|

does not tend to 0 as n → ∞.

Problem 18.17 Let X1, . . . , Xn be i.i.d. with c.d.f. F , meanμ(F) andfinite variance
σ 2(F). Consider the root Rn = n1/2(X̄2

n − μ2(F)) and the bootstrap approximation
to its distribution Jn(F̂n), where F̂n is the empirical c.d.f. Determine the asymptotic
behavior of Jn(F̂n). Hint: Distinguish the cases μ(F) = 0 and μ(F) �= 0.

Problem 18.18 Prove the remaining details for Theorem 18.3.6. Furthermore, with-
out assuming the differential of f is continuous, one can replace the convergence
with probability one results by convergence in probability. (More general results are
available in van der Vaart and Wellner (1996).)



914 18 Bootstrap and Subsampling Methods

Problem 18.19 Let ε1, ε2, . . . be i.i.d. N (0, 1). Let Xi = μ + εi + βεi+1 with β a
fixed nonzero constant. The Xi form a moving-average process studied in Section
13.2.1.
(i) Examine the behavior of the nonparametric bootstrap method for estimating the
mean using the root n1/2(X̄n − μ) and resampling from the empirical distribution.
Show that the coverage probability need not tend to the nominal level under such a
moving-average process.
(ii) Suppose n = bk for integers b and k. Consider the following moving blocks
bootstrap resampling scheme. Let Li,b = (Xi , Xi+1, . . . , Xi+b−1) be the block of
b observations beginning at “time” i . Let X∗

1, . . . , X
∗
n be obtained by randomly

choosing with replacement k of the n − b + 1 blocks Li,b; that is, X∗
1, . . . , X

∗
b are the

observations in the first sampled block, X∗
b+1, . . . , X

∗
2b are the observations from the

second sampled block, etc. Then, the distribution of n1/2[X̄n − μ] is approximated by
the moving blocks bootstrap distribution given by the distribution of n1/2[X̄∗

n − X̄n],
where X̄∗

n = ∑n
i=1 X

∗
i /n. If b is fixed, determine the mean and variance of this

distribution as n → ∞. Now let b → ∞ as n → ∞. At what rate should b → ∞
so that the mean and variance of the moving blocks distribution tends to the same
limiting values as the true mean and variance, at least in probability? [The moving
blocks bootstrap was independently discovered by Künsch (1989) and Liu and Singh
(1992). The stationary bootstrap of Politis and Romano (1994a) and other methods
designed for dependent data are studied in Lahiri (2003).]

Section 18.4

Problem 18.20 Under the assumptions of Theorem 18.4.2, show that, for any ε > 0,
the expansion (18.20) holds uniformly in α ∈ [ε, 1 − ε].
Problem 18.21 Under the assumptions of Theorem 18.4.1, show that, for any ε > 0,
the expansion (18.21) holds uniformly in α ∈ [ε, 1 − ε].
Problem 18.22 Suppose Yn is a sequence of random variables satisfying

P{Yn ≤ t} = g0(t) + g1(t)n
−1/2 + O(n−1) ,

uniformly in t , where g0 and g1 have uniformly bounded derivatives. If Tn =
OP(n−1), then show, for any fixed (nonrandom) sequence tn ,

P{Yn ≤ tn + Tn} = g0(tn) + g1(tn)n
−1/2 + O(n−1) .

Problem 18.23 Assuming the expansions in the section hold, show that the two-
sided bootstrap interval (18.29) has coverage error of order n−1.

Problem 18.24 Assuming the expansions in the section hold, show that the two-
sided bootstrap-t interval (18.35) has coverage error of order n−1.
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Problem 18.25 Verify the expansion (18.36) and argue that the resulting interval
In(1 − α̂n) has coverage error O(n−1).

Problem 18.26 In the nonparametric mean setting, determine the one- and two-
sided coverage errors of Efron’s percentile method described in (18.58).

Problem 18.27 Assume F has infinitely many moments and is absolutely continu-
ous. Under the notation of this section, argue that n1/2[Jn(t, F̂n) − Jn(t, F)] has an
asymptotically normal limiting distribution, as does n[Kn(t, F̂n) − Kn(t, F)].
Problem 18.28 (i) In a normal location model N (μ, σ 2), consider the root Rn =
n1/2(X̄n − μ), which is not a pivot. Show that bootstrap calibration, by parametric
resampling, produces an exact interval.
(ii) Next, consider the root n1/2(S2n − σ 2), where S2n is the usual unbiased estimate
of variance. Show that bootstrap calibration, by parametric resampling, produces an
exact interval.

Problem 18.29 (i) Show the bootstrap interval (18.3) can be written as

{θ ∈ � : Jn(Rn(X
n, θ), P̂n) ≤ 1 − α} (18.60)

if, for the purposes of this problem, Jn(x, P) is defined as the left continuous c.d.f.

Jn(x, P) = P{Rn(X
n, θ(P)) < x}

and J−1
n (1 − α, P) is now defined as

J−1
n (1 − α, P) = sup{x : Jn(x, P) ≤ 1 − α} .

[Hint: If a random variable Y has left continuous c.d.f. F(x) = P{Y < x} and
F−1(1 − α) is the largest 1 − α quantile of F , then the event {X ≤ F−1(1 − α)}
is identical to {F(X) ≤ 1 − α} for any random variable X (which need not have
distribution F). Why?]
(ii) The bootstrap interval (18.60) pretends that

Rn,1(X
n, θ(P)) ≡ Jn(Rn(X

n, θ(P)), P̂n)

has the uniform distribution on (0, 1). Let Jn,1(P) be the actual distribution of
Rn,1(Xn, θ(P)) under P , with left continuous c.d.f. denoted by Jn,1(x, P). This
results in a new interval with Rn and Jn replaced by Rn,1 and Jn,1 in (18.60). Show
that the resulting interval is equivalent to bootstrap calibration of the initial interval.
[The mapping of Rn into Rn,1 by estimated c.d.f. of the former is called prepivot-
ing. Beran (1987, 1988b) argues that the interval based on Rn,1 has better coverage
properties than the interval based on Rn .]
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Section 18.5

Problem 18.30 In Example 18.5.1, assume P is multivariate normal. Fix θ0 on the
boundary of the null hypothesis parameter space, so that θ0 = (θ0,1, . . . , θ0,k)

� has
θ0,i ≤ 0 for all i and equal to zero for at least one i . Fix h = (h1, . . . , hk)� and
calculate the limiting power of the bootstrap test against alternatives θ0 + hn−1/2.
Compare with Problem 14.68.

Problem 18.31 Explainwhy the parametric bootstrapmethod described in Example
18.5.7 fails if k > 1. What happens if k = 1? [By sufficiency, you may assume you
observe X = (X1, . . . , Xk)

� multivariate normal. In the case k = 2, plot the rejection
region. Recall Examples 8.7.3 and 14.4.8).]

Problem 18.32 In Example 18.5.2, rather than exact evaluation of Gn(·, Q̂n),
describe a simulation test of H that has exact level α.

Problem 18.33 In Example 18.5.3, why is the parametric bootstrap test exact for
the special case of Example 14.4.7?

Problem 18.34 In the Behrens–Fisher problem, show that (18.37) and (18.38) hold.

Problem 18.35 In the Behrens–Fisher problem, verify the bootstrap-t has rejection
probability equal to α + O(n−2).

Problem 18.36 In the Behrens–Fisher problem, what is the order of error in rejec-
tion probability for the likelihood ratio test? What is the order of error in rejection
probability if you bootstrap the non-studentized statistic n1/2(X̄n,1 − X̄n,2).

Problem 18.37 In Example 18.5.5, with resampling from the empirical distribution
shifted to have mean 0, what are the errors in rejection for the tests based on Tn and
T ′
n? How do these tests differ from the corresponding tests obtained through inverting

bootstrap confidence bounds?

Problem 18.38 Let X1, . . . , Xn be i.i.d. with a distribution P on the real line, and
let P̂n be the empirical distribution function. Find Q that minimizes δK L(P̂n, Q),
where δK L is the Kullback–Leibler divergence defined by (18.39).

Problem 18.39 Suppose X1, . . . , Xn are i.i.d. real-valuedwith c.d.f. F . Theproblem
is to test the null hypothesis that F is N (μ, σ 2) for some (μ, σ 2). Consider the test
statistic

Tn = n1/2 sup
t

|F̂n(t) − �((t − X̄n)/σ̂n)| ,

where F̂n is the empirical c.d.f. and (X̄n, σ̂
2
n ) is the MLE for (μ, σ 2) assuming

normality. Argue that the distribution of Tn does not depend on (μ, σ 2) and describe
an exact bootstrap test construction. [Such problems are studied in Romano (1988)].
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Section 18.6

Problem 18.40 Show why (18.47) is true.

Problem 18.41 (i) Under the setup of Example 18.6.1, prove that Theorem 18.6.1
applies if studentized statistics are used.
(ii) In addition to the X1, . . . , Xn , suppose i.i.d. Y1, . . . ,Yn′ are observed, with Yi =
(Yi,1, . . . ,Yi,s). The distribution of Yi need not be that of Xi . Suppose the mean of
Yi is (μ′

1, . . . , μ
′
s). Generalize Example 18.6.1 to simultaneously test Hi : μi = μ′

i .
Distinguish between two cases, first where the Xi s are independent of the Y j s, and
next where (Xi ,Yi ) are paired (so n = n′) and Xi need not be independent of Yi .

Problem 18.42 Under the setup of Example 18.6.2, provide the details to show that
the FWER is asymptotically controlled.

Problem 18.43 Under the setup of Example 18.6.2, suppose that there is also an
i.i.d. control sample X0,1, . . . , X0,n0 , independent of the other Xs. Let μ0 denote the
mean of the controls. Now consider testing Hi : μi = μ0. Describe a method that
asymptotically controls the FWER.

Problem 18.44 Under the setup of Example 18.6.2, let Fi denote the distribution
of the i th sample. Now, consider H ′

i, j : Fi = Fj based on the same test statistics.
Describe a randomization test that controls the FWER.

Section 18.7

Problem 18.45 Prove Theorem 18.7.2. [Hint: For (ii), rather than considering
Ĝn,b(x), just look at the empirical distribution, Ĝ0

n,b, of the values of tn,b,i (not

scaled by τb) and show Ĝ0
n,b(·) converges in distribution to a point mass at t (P).]

Problem 18.46 Prove a general subsampling theorem for two-sample problems.
Here, you observe X1, . . . , Xm i.i.d. P and independently Y1, . . . ,Yn are i.i.d. Q. The
problem is to get a confidence interval for θ(Q) − θ(P). Assume min(m, n) → ∞.
Describe the method, state a theorem, and prove it.

Problem 18.47 Prove a result for subsampling analogous to Theorem 18.6.1, but
that does not require assumption (18.46). [Theorem 18.6.1 applies to testing real-
valued parameters; a more general multiple testing procedure based on subsampling
is given by Theorem 4.4 of Romano and Wolf (2005a).]

Problem 18.48 In Example 18.7.5, verify (18.55), (18.56), and (18.57).

Problem 18.49 To see how subsampling extends to a dependent time series model,
assume X1, . . . , Xn are sampled from a stationary time series model that is m-
dependent. [Stationarity means the distribution of the X1, X2, . . . is the same as
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that of Xt , Xt+1, . . . for any t . The process is m-dependent if, for any t and m,
(X1, . . . , Xt ) and (Xt+m+1, Xt+m+2, . . .) are independent; that is, observations sep-
arated in time by more than m units are independent.] Suppose the sum in the def-
inition (18.48) of Ln,b extends only over the n − b + 1 subsamples of size b of the
form (Xi , Xi+1, . . . , Xi+b−1); call the resulting estimate L̃n,b. Under the assumption
of stationarity and m-dependence, prove a theorem analogous to Theorem 18.7.1.
Then, extend the argument to strong mixing sequences, which were discussed in
Section 12.4.

18.9 Notes

The bootstrap was discovered by Efron (1979), who coined the name. Much of the
theoretical foundations of the bootstrap are laid out in Bickel and Freedman (1981)
and Singh (1981). The development in Section 18.3 is based on Beran (1984). The
use of Edgeworth expansions to study the bootstrap was initiated in Singh (1981) and
Babu and Singh (1983), and is used prominently in Hall (1992). There have since
been hundreds of papers on the bootstrap, as well as several book length treatments,
including Hall (1992), Efron and Tibshirani (1993), Shao and Tu (1995), Davison
and Hinkley (1997) and Lahiri (2003). Comparisons of bootstrap and randomiza-
tion tests are made in Romano (1989b) and Janssen and Pauls (2003b). Westfall and
Young (1993) and van der Lann et al. (2004) apply resampling to multiple testing
problems. Theorem 18.6.1 is based on Romano and Wolf (2005a). Efficient compu-
tation of adjusted p-values for resampling based stepdown multiple testing methods
are discussed in Romano and Wolf (2016) and Clarke, Romano and Wolf (2020).
Simultaneous bootstrap confidence intervals for differences as described in Example
18.6.2, form a basis for inference for ranks of populations; see Mogstad et al. (2020).
Bootstrap results in high-dimensional problems are developed in Chernozhukov et
al. (2017) and Xue and Yao (2020).

The method of empirical likelihood referred to in Example 18.5.5 is fully treated
in Owen (2001). Similar to parametric models, the method of empirical likelihood
can be improved through a Bartlett correction, yielding two-sided tests with error
in rejection probability of O(n−2); see DiCiccio et al. (1991). Alternatively, rather
than using the asymptotic Chi-squared distribution to get critical values, a direct
bootstrap approach resamples from Q̂n . Higher order properties of such procedures
are considered in DiCiccio and Romano (1990).

The roots of subsampling can be traced to Quenouille’s (1949) and Tukey’s
(1958a) jackknife. Hartigan (1969) and Wu (1990) used subsamples to construct
confidence intervals, but in a very limited setting. A general theory for using sub-
sampling to approximate a sampling distribution is presented in Politis and Romano
(1994b), including i.i.d. and data-dependent settings. Multi-samples are treated in
Politis and Romano (2008, 2010) and McMurry et al. (2012). A full treatment
with numerous earlier references is given by Politis et al. (1999). Romano and
Shaikh (2012) discuss the uniform asymptotic validity of both the bootstrap and
subsampling.
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