
Chapter 17
Permutation and Randomization Tests

17.1 Introduction

In this chapter, and Chapter 18, we shall deal with situations where both the null
hypothesis and the class of alternatives may be nonparametric and so, as a result,
it may be difficult even to construct tests (or confidence regions) that satisfactorily
control the level (exactly or asymptotically). For such situations, we shall develop
methods which achieve this modest goal under fairly general assumptions. A sec-
ondary aim will then be to obtain some idea of the power of the resulting tests.

In Section 17.2, we consider the class of randomization tests as a generalization
of permutation tests. Under the randomization hypothesis (see Definition 17.2.1),
the empirical distribution of the values of a given statistic recomputed over trans-
formations of the data serves as a null distribution; this leads to exact control of
the level in such models. When the randomization hypothesis holds, the construc-
tion applies broadly to any statistic. The appeal of these methods in semiparametric
or nonparametric problems stems from their finite-sample validity, but their valid-
ity may not hold when the randomization hypothesis fails. Asymptotic analysis
allows one to study the robustness of the methods when assumptions may not hold,
and it also allows one to study power properties of the methods. Asymptotic effi-
ciency properties ensue if the statistic is chosen appropriately. Section 17.3 discusses
two-sample permutation tests in some depth. Further examples are provided in
Section 17.4. Section 17.5 extends the use of randomization tests to problems in
multiple testing.

17.2 Permutation and Randomization Tests

Permutation tests were introduced in Chapter 5 as a robust means of controlling
the level of a test if the underlying parametric model only holds approximately. For
example, the two-sample permutation t-test for testing equality of means studied in
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Section 5.11 of Chapter 5 has level α whenever the two populations have the same
distribution under the null hypothesis (without the assumption of normality). In
this section, we consider the large-sample behavior of permutation tests and, more
generally, randomization tests. The use of the term randomization here is distinct
from its meaning in Section 5.10. There, randomization was used as a device prior to
collecting data, for example, by randomly assigning experimental units to treatment
or control. Such a device allows for a meaningful comparison after the data has been
observed, by considering the behavior of a statistic recomputed over permutations in
the data. Thus, the term randomization referred to both the experimental design and
the analysis of data by recomputing a statistic over permutations or randomizations
(sometimes called rerandomizations) of the data. It is this latter use of randomization
that we now generalize. Thus, the term randomization test will refer to tests obtained
by recomputing a test statistic over transformations (not necessarily permutations)
of the data.

A general test construction will be presented that yields an exact level α test for
a fixed sample size, under a certain group invariance hypothesis. Then, two main
questions will be addressed. First, we shall consider the robustness of the level.
For example, in the two-sample problem just mentioned, the underlying populations
may have the same mean under the null hypothesis, but differ in other ways, as in
the classical Behrens–Fisher problem, where the underlying populations are normal
but may not have the same variance. Then, the rejection probability under such
populations is no longer α, and it becomes necessary to investigate the behavior
of the rejection probability. In addition, we also consider the large-sample power of
permutation and randomization tests. In the two-sample problemwhen the underlying
populations are normal with common variance, for example, we should like to know
whether there is a significant loss in powerwhen using a permutation test as compared
to the UMPU t-test.

17.2.1 The Basic Construction

Based on data X taking values in a sample space X , it is desired to test the null
hypothesis H that the underlying probability law P generating X belongs to a certain
family �0 of distributions. Let G be a finite group of transformations g of X onto
itself. The following assumption, which we will call the randomization hypothesis,
allows for a general test construction.

Definition 17.2.1 (RandomizationHypothesis) Under the null hypothesis, the dis-
tribution of X is invariant under the transformations in G, that is, for every g in G,
gX and X have the same distribution whenever X has distribution P in �0.

The randomization hypothesis asserts that the null hypothesis parameter space
�0 remains invariant under g inG. However, here we specifically do not require the
alternative hypothesis parameter space to remain invariant (unlike what was assumed
in Chapter 6).
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As an example, consider testing the equality of distributions based on two inde-
pendent samples (Y1, . . . ,Ym) and (Z1, . . . , Zn), which was previously considered
in Sections 5.8–5.11. Under the null hypothesis that the samples are generated from
the same probability law, the observations can be permuted or assigned at random to
either of the two groups, and the distribution of the permuted samples is the same as
the distribution of the original samples. (Note that a test that is invariant with respect
to all permutations of the data would be useless here.)

To describe the general construction of a randomization test, let T (X) be any
real-valued test statistic for testing H . Suppose the group G has M elements. Given
X = x , let

T (1)(x) ≤ T (2)(x) ≤ · · · ≤ T (M)(x)

be the ordered values of T (gx) as g varies in G. Fix a nominal level α, 0 < α < 1,
and let k be defined by

k = M − [Mα] , (17.1)

where [Mα] denotes the largest integer less than or equal to Mα. Let M+(x) and
M0(x) be the number of values T ( j)(x) ( j = 1, . . . , M) which are greater than
T (k)(x) and equal to T (k)(x), respectively. Set

a(x) = Mα − M+(x)

M0(x)
.

SinceG is a group, T (k)(gx) = T (k)(x), and similarly for the functionsM+(·),M0(·),
and a(·).

Generalizing the construction presented in Section 5.8, define the randomization
test function φ(x) to be equal to 1, a(x), or 0 according to whether T (x) > T (k)(x),
T (x) = T (k)(x), or T (x) < T (k)(x), respectively. By construction, for every x in X ,

∑

g∈G
φ(gx) = M+(x) + a(x)M0(x) = Mα . (17.2)

The following theorem shows that the resulting test is levelα, under the hypothesis
that X and gX have the same distribution whenever the distribution of X is in �0.
Note that this result is true for any choice of test statistic T .

Theorem 17.2.1 Suppose X has distribution P on X and the problem is to test the
null hypothesis P ∈ �0. Let G be a finite group of transformations of X onto itself.
Suppose the randomization hypothesis holds, so that, for every g ∈ G, X and gX
have the same distribution whenever X has a distribution P in �0. Given a test
statistic T = T (X), let φ be the randomization test as described above. Then,

EP [φ(X)] = α f or all P ∈ �0 . (17.3)
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Proof. To prove (17.3), by (17.2),

Mα = EP [
∑

g

φ(gX)] =
∑

g

EP [φ(gX)] .

By hypothesis EP [φ(gX)] = EP [φ(X)], so that

Mα =
∑

g

EP [φ(X)] = MEP [φ(X)] ,

and the result follows.

To gain further insight as to why the construction works, for any x ∈ X , let Gx

denote the G-orbit of x ; that is,

Gx = {gx : g ∈ G} .

Recall from Section 6.2 that these orbits partition the sample space. The hypothesis
in Theorem 17.2.1 implies that the conditional distribution of X given X ∈ Gx is
uniform onGx , as will be seen in the next theorem. Since this conditional distribution
is the same for all P ∈ �0, a test can be constructed to be level α conditionally, which
is then level α unconditionally as well. Because the event {X ∈ Gx } typically has
probability zero for all x , we need to be careful about how we state a result. As x
varies, the setsGx form a partition of the sample space. LetG be the σ -field generated
by this partition.

Theorem 17.2.2 Under the null hypothesis of Theorem 17.2.1, for any real-valued
statistic T = T (X), any P ∈ �0, and any Borel subset B of the real line,

P{T (X) ∈ B|X ∈ G} = M−1
∑

g

I {T (gX) ∈ B} (17.4)

with probability one under P. In particular, if the M values of T (gx) as g varies
in G are all distinct, then the uniform distribution on these M values serves as a
conditional distribution of T (X) given that X ∈ Gx .

Proof. First, we claim that, for any g ∈ G and E ∈ G, gE = E . To see why, assume
y ∈ E . Then, g−1y ∈ E , because g−1y is on the same orbit as y. Then, gg−1y ∈ gE
or y ∈ gE . A similar argument shows that, if y ∈ gE , then y ∈ E , so that gE = E .
Now, the right-hand side of (17.4) is clearly G-measurable, since the right-hand side
is constant on any orbit. We need to prove, for any E ∈ G,

∫

E
M−1

∑

g

I {T (gx) ∈ B}dP(x) = P{T (X) ∈ B, X ∈ E} .
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But, the left-hand side is

M−1
∑

g

∫

E
I {T (gx) ∈ B}dP(x) = M−1

∑

g

P{T (gX) ∈ B, X ∈ E}

= M−1
∑

g

P{T (gX) ∈ B, gX ∈ gE} = M−1
∑

g

P{T (gX) ∈ B, gX ∈ E} ,

since gE = E . Hence, this last expression becomes (by the randomization hypoth-
esis)

M−1
∑

g

P{T (X) ∈ B, X ∈ E} = P{T (X) ∈ B, X ∈ E} ,

as was to be shown.

Example 17.2.1 (One-SampleTests) Let X = (X1, . . . , Xn), where the Xi are i.i.d.
real-valued random variables. Suppose that, under the null hypothesis, the distribu-
tion of the Xi is symmetric about 0. This applies, for example, to the parametric nor-
mal locationmodelwhen the null hypothesis specifies themean is 0, but it also applies
to the nonparametric model that consists of all distributions with the null hypothesis
specifying the underlying distribution is symmetric about 0. For i = 1, . . . , n, let εi
take on either the value 1 or −1. Consider a transformation g = (ε1, . . . , εn) of RI n

that takes x = (x1, . . . , xn) to (ε1x1, . . . , εnxn). Finally, letG be the M = 2n collec-
tion of such transformations. Then, the randomization hypothesis holds, i.e., X and
gX have the same distribution under the null hypothesis.

Example 17.2.2 (Two-Sample Tests) Suppose Y1, . . . ,Ym are i.i.d. observations
from a distribution PY and, independently, Z1, . . . , Zn are i.i.d. observations from a
distribution PZ . Here, X = (Y1, . . . ,Ym, Z1, . . . , Zn). Suppose that, under the null
hypothesis, PY = PZ . This applies, for example, to theparametric normal two-sample
problem for testing equality ofmeanswhen the populations have a common (possibly
unknown) variance.Alternatively, it also applies to the parametric normal two-sample
problem where the null hypothesis is that the means and variances are the same, but
under the alternative either the means or the variances may differ; this model was
advocated by Fisher (1935a, pp. 122–124). Lastly, this setup also applies to the non-
parametric model where PY and PZ may vary freely, but the null hypothesis is that
PY = PZ . Todescribe an appropriateG, let N = m + n. For x = (x1, . . . , xN ) ∈ RI N ,
let gx ∈ RI N be defined by (xπ(1), . . . , xπ(N )), where (π(1), . . . , π(N )) is a permuta-
tion of {1, . . . , N }. LetG be the collection of all such g, so that M = N !. Whenever
PY = PZ , X and gX have the same distribution. In essence, each transformation g
produces a new data set gx , of which the first m elements are used as the Y sample
and the remaining n as the Z sample to recompute the test statistic. Note that, if a
test statistic is chosen that is invariant under permutations within each of the Y and Z
samples (which makes sense by sufficiency), it is enough to consider the

(N
m

)
trans-

formed data sets obtained by takingm observations from all N as the Y observations
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and the remaining n as the Z observations (which, of course, is equivalent to using
a subgroup G′ of G).

As a special case, suppose the observations are real-valued and the underlying
distribution is assumed continuous. Suppose T is any statistic that is a function of the
ranks of the combined observations, so that T is a rank statistic (previously studied
in Sections 6.8 and 6.9). The randomization (or permutation) distribution can be
obtained by recomputing T over all permutations of the ranks. In this sense, rank
tests are special cases of permutation tests.

Example 17.2.3 (Tests of Independence) Suppose that X consists of i.i.d. ran-
dom vectors X = ((Y1, Z1), . . . , (Yn, Zn)) having common joint distribution P and
marginal distributions PY and PZ . Assume, under the null hypothesis, Yi and Zi

are independent, so that P is the product of PY and PZ . This applies to the para-
metric bivariate normal model when testing that the correlation is zero, but it also
applies to the nonparametric model when the null hypothesis specifies Yi and Zi are
independent with arbitrary marginal distributions. To describe an appropriate G, let
(π(1), . . . , π(n)) be a permutation of {1, . . . n}. Let g be the transformation that takes
((y1, z1), . . . , (yn, zn)) to the value ((y1, zπ(1)), . . . , (yn, zπ(n))). LetG be the collec-
tion of such transformations, so that M = n!. Whenever Yi and Zi are independent,
X and gX have the same distribution.

In general, one can define a p-value p̂ of a randomization test by

p̂ = 1

M

∑

g

I {T (gX) ≥ T (X)} . (17.5)

It can be shown (Problem 17.2) that p̂ satisfies, under the null hypothesis,

P{ p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1 . (17.6)

Therefore, the nonrandomized test that rejects when p̂ ≤ α is level α.
Because G may be large, one may resort to an approximation to construct the

randomization test, for example, by randomly sampling transformations g from G
with or without replacement. In the former case, for example, suppose g1, . . . , gB−1

are i.i.d. and uniformly distributed on G. Let

p̃ = 1

B

[
1 +

B−1∑

i=1

I {T (gi X) ≥ T (X)}
]

. (17.7)

Then, it can be shown (Problem 17.3) that, under the null hypothesis,

P{ p̃ ≤ u} ≤ u for all 0 ≤ u ≤ 1 , (17.8)

where this probability reflects variation in both X and the sampling of the gi . Note
that (17.8) holds for any B, and so the test that rejects when p̃ ≤ α is level α even
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when a stochastic approximation is employed. Of course, the larger the value of B,
the closer p̂ and p̃ are to each other; in fact, p̂ − p̃ → 0 in probability as B → ∞
(Problem 17.4). Approximations based on auxiliary randomization (such as the sam-
pling of gi ) are known as stochastic approximations.

17.2.2 Asymptotic Results

We next study the limiting behavior of the randomization test in order to derive
its large-sample power properties. For example, for testing the mean of a normal
distribution is zero with unspecified variance, one would use the optimal t-test. But
if we use the randomization test based on the transformations in Example 17.2.1,
we will find that the randomization test has the same limiting power as the t-test
against contiguous alternatives, and so is LAUMP. Of course, for testing the mean,
the randomization test can be used without the assumption of normality, and we will
study its asymptotic properties both when the underlying distribution is symmetric so
that the randomization hypothesis holds, and alsowhen the randomization hypothesis
fails.

Consider a sequence of situations with X = Xn , P = Pn ,X = Xn ,G = Gn , T =
Tn , etc. defined for n = 1, 2, . . .; notice we use a superscript for the data X = Xn .
Typically, X = Xn = (X1, . . . , Xn) consists of n i.i.d. observations and the goal is
to consider the behavior of the randomization test sequence as n → ∞.

Let R̂n denote the randomization distribution of Tn defined by

R̂n(t) = M−1
n

∑

g∈Gn

I {Tn(gXn) ≤ t} . (17.9)

We seek the limiting behavior of R̂n(·) and its 1 − α quantile, which we now denote
r̂n(1 − α) (but in the previous subsection was denoted by T (k)(X)); thus,

r̂n(1 − α) = R̂−1
n (1 − α) = inf{t : R̂n(t) ≥ 1 − α} .

We will study the behavior of R̂n under the null hypothesis and under a sequence of
alternatives. First, observe that

E[R̂n(t)] = P{Tn(GnX
n) ≤ t} ,

whereGn is a randomvariable that is uniformonGn . So, in the case the randomization
hypothesis holds, GnXn and Xn have the same distribution and so

E[R̂n(t)] = P{Tn(Xn) ≤ t} .
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Then, if Tn converges in distribution to a c.d.f. R(·)which is continuous at t , it follows
that

E[R̂n(t)] → R(t) .

In order to deduce R̂n(t)
P→ R(t) (i.e., the randomization distribution asymptoti-

cally approximates the unconditional distribution of Tn), it is then enough to show
Var [R̂n(t)] → 0. This approach for proving consistency of R̂n(t) and r̂n(1 − α) is
used in the following result. The sufficiency part is due to Hoeffding (1952), and
the necessity part is from Chung and Romano (2013). Note that the randomization
hypothesis is not assumed.

Theorem 17.2.3 Suppose Xn has distribution Pn in Xn, and Gn is a finite group
of transformations from Xn to Xn. Let Gn be a random variable that is uniform on
Gn. Also, let G ′

n have the same distribution as Gn, with Xn, Gn, and G ′
n mutually

independent.
(i) Suppose, under Pn,

(Tn(GnX
n), Tn(G

′
n X

n))
d→ (T, T ′) , (17.10)

where T and T ′ are independent, each with common c.d.f. R(·). Then, under Pn,

R̂n(t)
P→ R(t) (17.11)

for every t which is a continuity point of R(·). Let

r(1 − α) = inf{t : R(t) ≥ 1 − α} .

Suppose R(·) is continuous and strictly increasing at r(1 − α). Then, under Pn,

r̂n(1 − α)
P→ r(1 − α) .

(ii) Conversely, if (17.11) holds for some limiting c.d.f. RT (·) whenever t is a conti-
nuity point, then (17.10) holds.

Proof. To prove (i), let t be a continuity point of R(·). Then,

EPn [R̂n(t)] = Pn{Tn(GnX
n) ≤ t} → R(t) ,

by the convergence hypothesis (17.10). It therefore suffices to show that
VarPn [R̂n(t)] → 0 or, equivalently, that

EPn [R̂2
n(t)] → R2(t) .
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But,
EPn [R̂2

n(t)] = M−2
n

∑

g

∑

g′
Pn{Tn(gXn) ≤ t, Tn(g

′Xn) ≤ t}

= Pn{Tn(GnX
n) ≤ t, Tn(G

′
n X

n) ≤ t} → R2(t) ,

again by the convergence hypothesis (17.10). Hence, R̂n(t) → R(t) in Pn-
probability. The convergence of r̂n(1 − α) now follows from Problem 11.30, which
is a generalization of Lemma 11.2.1.

To prove (ii), let s and t be continuity points of RT (·). Then,

P{Tn(GnX
n) ≤ s, Tn(G

′
n X

n) ≤ t} = E[P{Tn(GnX
n) ≤ s, Tn(G

′
n X

n) ≤ t |Xn}]

= E[R̂T
n (s)R̂T

n (t)] → RT (s)RT (t) ,

since convergence in probability of a bounded sequence of random variables implies
convergence of moments. But, convergence in the plane for a dense set of rectangles
entails weak convergence.

Note that, if the randomization hypothesis holds, then Tn(Xn) and Tn(GnXn) have
the same distribution. Assumption (17.10) then implies the unconditional distribu-
tion of Tn(Xn) under Pn converges to R in distribution. The conclusion is that the
randomization distribution approximates this (unconditional) limit distribution in the
sense that (17.11) holds.

Example 17.2.4 (One-Sample Test, continuation of Example 17.2.1) In Example
17.2.1, first consider Tn = n1/2 X̄n . If P denotes the common distribution of the Xi ,
then Pn = Pn is the joint distribution of the sample. Let P be any distribution with
mean 0 andfinite nonzero varianceσ 2(P) (not necessarily symmetric).Wewill verify
(17.10) with R(t) = �(t/σ(P)). Let ε1, . . . , εn, ε′

1, . . . , ε
′
n bemutually independent

random variables, each 1 or −1 with probability 1
2 each. We must find the limiting

distribution of
n−1/2

∑

i

(εi Xi , ε
′
i Xi ) .

But, the vectors (εi Xi , ε
′
i Xi ), 1 ≤ i ≤ n, are i.i.d. with

EP(εi Xi ) = EP(ε′
i Xi ) = E(εi )EP(Xi ) = 0 ,

EP [(εi Xi )
2] = E(ε2i )EP(X2

i ) = σ 2(P) = EP [(ε′
i Xi )

2] ,

and
CovP(εi Xi , ε

′
i Xi ) = EP(εiε

′
i X

2
i ) = E(εi )E(ε′

i )EP(X2
i ) = 0 .
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By the bivariate Central Limit Theorem,

n−1/2
∑

i

(εi Xi , ε
′
i Xi )

d→ (T, T ′) ,

where T and T ′ are independent, each distributed as N (0, σ 2(P)). Hence, by Theo-
rem 17.2.3, we conclude

R̂n(t)
P→ �(t/σ(P))

and
r̂n(1 − α)

P→ σ(P)z1−α .

Let φn be the randomization test which rejects when Tn > r̂n(1 − α), accepts when
Tn < r̂n(1 − α) and possibly randomizes when Tn = r̂n(1 − α). Since Tn is asymp-
totically normal, it follows by Slutsky’s Theorem that

EP(φn) = P{Tn > r̂n(1 − α)} + o(1) → P{σ(P)Z > σ(P)z1−α} = α ,

where Z denotes a standard normal variable. In other words, we have deduced the
following for the problem of testing the mean of P is zero versus the mean exceeds
zero. By Theorem 17.2.1, φn is exact level α if the underlying distribution is sym-
metric about 0; otherwise, it is at least asymptotically pointwise level α as long as
the variance is finite.

Wenow investigate the asymptotic power ofφn against the sequence of alternatives
that the observations are N (hn−1/2, σ 2). By the above, under N (0, σ 2), r̂n(1 − α) →
σ z1−α in probability. By contiguity, it follows that, under N (hn−1/2, σ 2), r̂n(1 −
α) → σ z1−α in probability as well. Under N (hn−1/2, σ 2), Tn is N (h, σ 2). Therefore,
by Slutsky’s Theorem, the limiting power of φn against N (hn−1/2, σ 2) is then

EPn (φn) → P{σ Z + h > σ z1−α} = 1 − �

(
z1−α − h

σ

)
.

In fact, this is also the limiting power of the optimal t-test for this problem. Thus,
there is asymptotically no loss in efficiency when using the randomization test as
opposed to the optimal t-test, but the randomization test has the advantage that its
size is α over all symmetric distributions. In the terminology of Section 15.2, the
efficacy of the randomization test is 1/σ and its ARE with respect to the t-test is 1.
In fact, the ARE is 1 whenever the underlying family is a q.m.d. location family with
finite variance (Problem 17.6).

Note that the randomization test that is based on Tn is identical to the random-
ization test that is based on the usual t-statistic tn . To see why, first observe that
the randomization test based on Tn is identical to the randomization test based on
Sn = Tn/(

∑
i X

2
i )

1/2, simply because all “randomizations” of the data have the same
value for the sum of squares. But, as was seen in Section 5.2, tn is an increasing func-
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tion of Sn for positive Sn . Hence, the one-sample t-test which rejects when tn exceeds
tn−1,1−α , the 1 − α quantile of the t-distribution with n − 1 degrees of freedom, is
equivalent to a randomization test based on the statistic tn , except that tn−1,1−α is
replaced by the data-dependent value. Such an analogy was previously made for the
two-sample test in Section 5.8.

One benefit of the randomization test is that one does not have to assumenormality.
In addition, the asymptotic results allow one to avoid the exact computation of the
randomization distribution by approximating the critical value by the normal quantile
z1−α or even tn−1,1−α . The problem of whether to use z1−α or tn−1,1−α is discussed in
Diaconis and Holmes (1994), who also give algorithms for the exact evaluation of
the randomization distribution. In practice, critical values should be obtained from
the exact randomization distribution, or its Monte Carlo approximation by randomly
sampling elements of G. In summary, two additional benefits are revealed by the
asymptotics. First, the randomization test may be used in large samples even when
the randomization hypothesis fails; in the one-sample case, thismeans the assumption
of symmetry is not required. Second, asymptotics allow us to perform local power
calculations and show that, even under normality, very little power is lost when using
a randomization test as compared to the t-test; in fact, the randomization test and
the t-test have the same limiting local power function against normal contiguous
alternatives.

In the previous example, it was seen that the randomization distribution approxi-
mates the (unconditional) null distribution of Tn in the sense that

R̂n(t) − P{Tn ≤ t} P→ 0

if P has mean 0 and finite variance, since P{Tn ≤ t} → �(t/σ(P)). The following
is a more general version of this result.

Theorem 17.2.4 (i) Suppose X1, . . . , Xn are i.i.d. real-valued random variables
with distribution P, assumed symmetric about 0. Assume Tn is asymptotically linear
in the sense that, for some function ψP ,

Tn = n−1/2
n∑

i=1

ψP(Xi ) + oP(1) , (17.12)

where EP [ψP(Xi )] = 0 and τ 2
P = VarP [ψP(Xi )] < ∞. Also, assume ψP is an odd

function. Let R̂n denote the randomization distribution based on Tn and the group of
sign changes in Example 17.2.1. Then, the hypotheses of Theorem 17.2.3 hold with
Pn = Pn and R(t) = �(t/τ(P)), and so

R̂n(t)
P→ �(t/τ(P)) .
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(ii) If P is not symmetric about 0, let F denote its c.d.f. and define a symmetrized
version P̃ of P as the probability with c.d.f.

F̃(t) = 1

2
[F(t) + 1 − F(−t)] .

Assume Tn satisfies (17.12) under P̃. Then, under P,

R̂n(t)
P→ �(t/τ(P̃)) and r̂n(1 − α)

P→ τ(P̃)z1−α .

Proof. Independent of Xn = (X1, . . . , Xn) let ε1, . . . , εn and ε′
1, . . . , ε

′
n be mutu-

ally independent, each ±1 with probability 1
2 . Then, in the notation of Theorem

17.2.3, GnXn = (ε1X1, . . . , εn Xn). Set

δn(X1, . . . , Xn) = Tn − n−1/2
∑

ψP(Xi )

so that δn(X1, . . . , Xn)
P→ 0. Since εi Xi has the same distribution as Xi , it follows

that δn(ε1X1, . . . , εn Xn)
P→ 0, and the same is true with εi replaced by ε′

i . Then,

(
Tn(GnX

n), Tn(G
′
n X

n)
) = n−1/2

n∑

i=1

(
ψP(εi Xi ), ψP(ε′

i Xi )
) + oP(1) .

But since ψP is odd, ψP(εi Xi ) = εiψP(Xi ). By the bivariate CLT,

n−1/2
n∑

i=1

(
εiψP(Xi ), ε

′
iψP(Xi )

) d→ (T, T ′) ,

where (T, T ′) is bivariate normal, each with mean 0 and variance τ 2
P , and

Cov(T, T ′) = Cov
(
εiψP(Xi ), ε

′
iψP(Xi )

) = E(εi )E(ε′
i )EP [ψ2

P(Xi )] = 0 ,

and so (i) follows.
To prove (ii), observe that, if X has distribution P and X̃ has distribution P̃ , then

|X | and |X̃ | have the same distribution. But, the construction of the randomization
distribution only depends on the values |X1|, . . . , |Xn|. Hence, the behavior of R̂n

under P and P̃ must be the same. But, the behavior of R̂n under P̃ is given in (i).

Example 17.2.5 (One-Sample Location Models) Suppose X1, . . . , Xn are i.i.d.
f (x − θ), where f is assumed symmetric about θ0 = 0. Assume the family is q.m.d.

at θ0 with score statistic Zn . Thus, under θ0, Zn
d→ N (0, I (θ0)). Consider the ran-

domization test based on Tn = Zn (and the group of sign changes). It is exact level
α for all symmetric distributions. Moreover, Zn = n−1/2 ∑

i η̃(Xi , θ0), where η̃ can



17.2 Permutation and Randomization Tests 843

always be taken to be an odd function if f is even. So, the assumptions of Theo-
rem 17.2.4 (i) hold. Hence, when θ0 = 0,

r̂n(1 − α) → I 1/2(θ0)z1−α .

By contiguity, the same is true under θn,h = hn−1/2. By Theorem 15.2.1, the efficacy
of the randomization test is I 1/2(θ0). By Corollary 15.2.1, the ARE of the random-
ization test with respect to the Rao test that uses the critical value z1−α I 1/2(θ0) (or
even an exact critical value based on the true unconditional distribution of Zn under
θ0) is 1. Indeed, the randomization test is LAUMP. Therefore, there is no loss of
efficiency in using the randomization test, and it has the advantage of being level α
across symmetric distributions.

17.3 Two-Sample Permutation Tests

In this section, we derive the asymptotic behavior of some two-sample permuta-
tion tests introduced in Example 17.2.2. Recall the setup of Example 17.2.2 where
Y1, . . . ,Ym are i.i.d. PY and, independently, Z1, . . . , Zn are i.i.d. PZ , and PY and PZ

are now assumed to be distributions on the real line. Let μ(P) and σ 2(P) denote the
mean and variance, respectively, of a distribution P . Consider the test statistic

Tm,n = m1/2(Ȳm − Z̄n) = m−1/2[
m∑

i=1

Yi − m

n

n∑

j=1

Z j ] . (17.13)

Assume m/n → λ ∈ (0,∞) as m, n → ∞. If the variances of PY and PZ are finite
and nonzero and μ(PY ) = μ(PZ ), then

Tm,n
d→ N

(
0, σ 2(PY ) + λσ 2(PZ )

)
. (17.14)

We wish to study the limiting behavior of the randomization test based on the test
statistic Tm,n . If the null hypothesis implies that PY = PZ , then the randomization
test is exact level α, though we may still require an approximation to its power.
On the other hand, we may consider using the randomization test for testing the
null hypothesis μ(PY ) = μ(PZ ), and the randomization test is no longer exact if the
distributions differ.

Let N = m + n and write

(X1, . . . , XN ) = (Y1, . . . , Ym, Z1, . . . , Zn) .

Independent of the Xs, let (π(1), . . . , π(N )) and (π ′(1), . . . , π ′(N )) be indepen-
dent random permutations of 1, . . . , N . In order to verify the conditions for Theo-
rem 17.2.3, we need to determine the joint limiting behavior of
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(Tm,n, T
′
m,n) = m−1/2(

N∑

i=1

XiWi ,

N∑

i=1

XiW
′
i ) , (17.15)

whereWi = 1 ifπ(i) ≤ m andWi = −m/n otherwise;W ′
i is definedwithπ replaced

by π ′. Note that E(Wi ) = E(XiWi ) = 0. Moreover, an easy calculation (Problem
17.8) gives

Var(Tm,n) = m

n
σ 2(PY ) + σ 2(PZ ) (17.16)

and

Cov(Tm,n, T
′
m,n) = m−1

N∑

i=1

N∑

j=1

E(Xi X jWiW
′
j ) = 0 , (17.17)

by the independence of the Wi and the W ′
i . These calculations suggest the following

result.

Theorem 17.3.1 Assume the above setup with m/n → λ ∈ (0,∞). If σ 2(PY ) and
σ 2(PZ ) are finite and nonzero andμ(PY ) = μ(PZ ), then (17.15) converges in law to
a bivariate normal distribution with independent, identically distributed marginals
having mean 0 and variance

τ 2 = λσ 2(PY ) + σ 2(PZ ) . (17.18)

Hence, the randomization distribution Rm,n(·) based on the statistic Tm,n satisfies

R̂m,n(t)
P→ �(t/τ) .

Proof. Assume without loss of generality that μ(PY ) = 0. By the Cramér–Wold
device (Theorem 11.2.3), it suffices to show, for any a and b (not both 0)

m−1/2
N∑

i=1

Xi (aWi + bW ′
i )

d→ N
(
0, (a2 + b2)τ 2

)
.

Write the left side as

m−1/2
m∑

i=1

Yi (aWi + bW ′
i ) + m−1/2

n∑

j=1

Z j (aWm+ j + bW ′
m+ j ) , (17.19)

which conditional on the Wi and W ′
i is a sum of two independent terms, with each

term a linear combination of independent variables. We can handle each of the two
terms in (17.19) by appealing to Lemma 13.2.3. So, we must verify
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maxi |aWi + bW ′
i |2∑m

i=1(aWi + bW ′
i )

2

P→ 0 . (17.20)

But, the numerator is bounded above by 2a2 + 2b2(m/n)2, which is uniformly
bounded since m/n → λ. Thus, it suffices to show that

1

m

m∑

i=1

(aWi + bW ′
i )

2 = 1

m
a2

m∑

i=1

W 2
i + 1

m
2ab

m∑

i=1

WiW
′
i + 1

m
b2

m∑

i=1

W ′2
i

(17.21)
converges in probability to a positive constant. On the right side of (17.21) we now
consider the first of the three terms and show

1

m

m∑

i=1

W 2
i

P→ λ . (17.22)

But,

E(W 2
i ) = 1 · m

N
+ m2

n2
· n

N
= m

n
→ λ . (17.23)

But, 1
m

∑m
i=1 Wi is an average ofm uniformly bounded random variables taken with-

out replacement from a population with m items labeled one and n items labeled
(m/n)2s, so that its variance tends to zero by (12.2). By Chebyshev’s inequality,
(17.22) follows. Since the Wi s and W ′

i s have the same distribution, it also follows
that

1

m

m∑

i=1

W ′2
i

P→ λ . (17.24)

We now claim that
1

m

m∑

i=1

WiW
′
i

P→ 0 . (17.25)

Since the left side of (17.25) has mean 0, it suffices to show its variance tends to 0.
First, note that

Var(WiW
′
i ) = E(W 2

i W
′2
i ) = [E(W 2

i )]2 = m2

n2
,

by (17.23). Also,
Cov(W1W

′
1,W2W

′
2) = [E(W1W2)]2

and

E(W1W2) = m

N

m − 1

N − 1
+ n

N

n − 1

N − 1

(m
n

)2 − 2
m

n

m

N

n

N − 1
= −m

n

1

N − 1
.
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Therefore,

Var

(
1

m

m∑

i=1

WiW
′
i

)
= 1

m

[(m
n

)2 + m(m − 1)

(
m2

n2(N − 1)2

)]
= O(

1

m
) → 0 .

It now follows that (17.21) converges in probability to (a2 + b2)λ > 0, as was
required. Thus, (17.20) holds and the left side of (17.19) converges in distribu-
tion to N (0, λ(a2 + b2)σ 2(PY )). The right side of (17.19) is similar. Thus, Lemma
13.2.3 can be applied (conditionally) to each term in (17.19) and the result follows
by Problem 11.73.

Note that the proof also shows that the result holds with λ = 0 as long asm → ∞.
An alternative proof of the limiting behavior of the permutation distribution can be
based on Theorem 12.2.3 (Problem 17.11).

The problem of testing equality of means in the two-sample problem without
imposing parametric assumptions on the underlying distributions can be viewed as a
nonparametric version of the Behrens–Fisher problem. Theorem 17.2.3 and Theorem
17.3.1 show that, under the null hypothesis that μ(PY ) = μ(PZ ), the randomization
distribution is, in large samples, approximately a normal distribution with mean 0
and variance τ 2. Hence, the critical value of the randomization test that rejects for
large values of Tm,n converges in probability to z1−ατ . On the other hand, the true
sampling distribution of Tm,n is approximately normal with mean 0 and variance

σ 2(PY ) + λσ 2(PZ ) ,

if μ(PY ) = μ(PZ ). These two distributions are identical if and only if λ = 1 or
σ 2(PY ) = σ 2(PZ ). Therefore, for testing equality of means (and not distributions),
the randomization testwill be pointwise consistent in level even if PY and PZ differ, as
long as the variances of the populations are the same, or the sample sizes are roughly
the same. In particular, when the underlying distributions have the same variance (as
in the normal-theory model assumed in Section 5.3 for which the two-sample t-test
is UMPU), the two-sample t-test is asymptotically equivalent to the corresponding
randomization test. This equivalence is not limited to the behavior under the null
hypothesis; see Problem 17.10.

In order to gain some insight into Theorem 17.3.1, the permutation distribution is
invariant under permutations, and therefore its behavior under m observations from
PY and n from PZ should not be too different from the permutation distribution based
on N = m + n observations from the mixture distribution, where each observation
is taken from PY with probabilitym/N and from PZ with probability n/N . Consider
the mixture distribution

P̄ = λ

1 + λ
PY + 1

1 + λ
PZ . (17.26)

Note that when μ(PY ) = μ(PZ ),
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σ 2(P̄) = λ

1 + λ
σ 2(PY ) + 1

1 + λ
σ 2(PZ ) . (17.27)

Since the permutation test is exact in the i.i.d. case when all N observations are from
P̄ , one might expect that the permutation distribution for Tm,n in this case behaves
like its unconditional distribution. Its limiting distribution is (from 17.14) given by

N (0, σ 2(P̄) + λσ 2(P̄)) = N (0, (1 + λ)σ 2(P̄)) = N (0, τ 2) ,

which agrees with (17.18) in Theorem 17.3.1.
If the underlying variances differ and λ �= 1, the permutation test based on Tm,n

given in (17.13) will have rejection probability that does not tend to α. Further results
are given in Romano (1990). For example, two-sample permutations tests based on
sample medians lead to tests that are not even pointwise consistent in level, unless
the strict randomization hypothesis of equality of distributions holds. Thus, if testing
equality of population medians based on the difference between sample medians, the
asymptotic rejection probability of the randomization test need not be α even with
the underlying populations have the same median.

However, if one replaces Tm,n by the studentized version

T̃m,n = Tm,n/DN , (17.28)

where
D2

m.n = D2
m,n(X1, . . . , XN ) = S2Y + m

n
S2Z , (17.29)

S2Y = 1

m

m∑

i=1

(Yi − Ȳm)2 and S2Z = 1

n

n∑

j=1

(Z j − Z̄n)
2 ,

then the permutation test is pointwise consistent in level for testing equality ofmeans,
even when the underlying distributions have possibly different variances and the
sample sizes differ. This important result is due to Janssen (1997) (with a different
proof than the one below).

In order to prove this result, note that the unconditional distribution of (17.28)
is asymptotically standard normal under the assumption of finite variances. Indeed,
this is a simple exercise in applying Slutsky’s Theorem. When considering the ran-
domization distribution of (17.28), the following result can be viewed as Slutsky’s
Theorem for randomization distributions.

Given sequences of statistics Tn , An , and Bn , let R̂ AT+B
n (·) denote the randomiza-

tion distribution corresponding to the statistic sequence AnTn + Bn , i.e., replace Tn
in (17.9) by AnTn + Bn , so

R̂ AT+B
n (t) ≡ 1

|Gn|
∑

g∈Gn

I {An(gX
n)Tn(gX

n) + Bn(gX
n) ≤ t} . (17.30)
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Theorem 17.3.2 (Slutsky’s Theorem for Randomization Distributions) Let Gn

and G ′
n be independent and uniformly distributed overGn (and independent of Xn).

Assume Tn satisfies (17.10). Further assume that, for constants a and b,

An(GnX
n)

P→ a (17.31)

and
Bn(GnX

n)
P→ b . (17.32)

Let RaT+b(·) denote the distribution of aT + b, where T is the limiting random
variable in (17.10). Then,

R̂ AT+B
n (t)

P→ RaT+b(t) ,

if the distribution RaT+b(·) of aT + b is continuous at t . (Note RaT+b(t) = RT ( t−b
a )

if a �= 0.)

Proof. The assumptions imply (see Problem 11.34) that

(Tn(GnX
n), An(GnX

n), Bn(GnX
n), Tn(G

′
n X

n), An(G
′
n X

n), Bn(G
′
n X

n))

converges in distribution to (T, a, b, T ′, a, b, ), where (T, T ′) are independent and
given in Assumption (17.10). By the Continuous Mapping Theorem (Theorem
11.3.2), it follows that

(An(GnX
n)Tn(GnX

n) + Bn(GnX
n), (An(G

′
n X

n)Tn(G
′
n X

n) + Bn(G
′
n X

n))

converges in distribution to the distribution of (aT + b, aT ′ + b), so that the asymp-
totic independence condition in Theorem 17.2.3 holds. Therefore, the result follows
by Theorem 17.2.3.

Returning to the two-sample problem studied in Theorem 17.3.1, we are now
in a position to provide the limiting behavior of the randomization based on the
studentized statistic T̃m,n in (17.28). By Theorem 17.3.2, the problem is reduced to
studying the statistic Dm,n given in (17.29).

Theorem 17.3.3 Under the setup of Theorem 17.3.1, let R̂T̃
m,n denote the random-

ization distribution for T̃m,n. Assume H0 : μ(PY ) = μ(PZ ). Then,

R̂T̃
m,n(t)

P→ �(t) . (17.33)

Since also
T̃m,n

d→ N (0, 1) ,

the randomization test based on T̃m,n is pointwise consistent in level.
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Proof. Combining Theorems 17.3.1 and 17.3.2, it suffices to show that, when
(π(1), . . . , π(N )) is a random permutation, then Dm,n given by (17.29) satisfies

D2
m,n(Xπ(1), . . . , Xπ(N ))

P→ τ 2 ,

where τ 2 is given in (17.18). Equivalently, it suffices to show that each of S2Y and S2Z
under random permutation converges in probability to σ 2(P̄) given in (17.27). By
symmetry it suffices to look at a randomly permuted value of

S2Y = 1

m

m∑

i=1

X2
i − (

1

m

m∑

i=1

Xi )
2 .

Thus, it suffices to show that, for j = 1, 2,

1

m

m∑

i=1

X j
π(i)

P→ E(M j ), (17.34)

where M ∼ P̄ . Looking at j = 1, it is easy to calculate (Problem 17.14) that

E

(
1

m

m∑

i=1

Xπ(i)

)
= m

N
μ(PY ) + n

N
μ(PZ ) → λ

1 + λ
μ(PY ) + 1

λ
μ(PZ ) = μ(P̄)

and that Var
(
1
m

∑m
i=1 Xπ(i)

) → 0, so that

1

m

m∑

i=1

Xπ(i)
P→ μ(P̄) .

The argument for j = 2 is left for Problem 17.14.

To summarize, Theorem 17.3.3 shows that for testing the equality of population
means, the studentized permutation controls the probability of a Type 1 error asymp-
totically, but also retains exact Type 1 error control when the underlying distributions
are equal (because in this case the randomization hypothesis holds). A test based on
an asymptotic normal approximation does not have such a property.

In order to generalize Theorem 17.3.3 to other test statistics, it is important to
understand the intuition behind the analysis. For a given test statistic T = Tm,n , let
Jm,n(PY , PZ ) denote the distribution of Tm,n based on m observations from PY and
n from PZ . Just as in the case of the unstudentized test statistic, the asymptotic
behavior of the randomization distribution R̂T

m,n based on m observations from PY
andn observations from PZ should be the same aswhen all observations are i.i.d. from
the mixture distribution P̄ defined in (17.26). But the latter should be approximately
equal to the true sampling distribution Jm,n(P̄, P̄) because the permutation test is
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exact under the randomization hypothesis that both distributions are the same. If
we assume that Jm,n(PY , PZ ) converges to a limit law J which does not depend on
(PY , PZ ), then we have the randomization distribution R̂T

m,n is approximately equal
to J , which is also approximately equal to Jm,n(PY , PZ ). Therefore, the conclusion
is that one should construct test statistics that have a limiting distribution free of any
unknown parameters, at least under the null hypothesis. In the two-sample problem
for testing differences of means, this is easily achieved by studentization. In fact,
these ideas hold quite generally and apply to broad classes of test statistics; see
Chung and Romano (2013, 2016a, 2016b).

17.4 Further Examples

In this section, randomization and permutation tests are applied to some other situ-
ations.

Example 17.4.1 (Testing Means From Independent Observations) Assume
X1, . . . , Xn are independent, but not necessarily i.i.d. Let E(Xi ) = μi , assumed
to exist. Also, let

μ̄n = 1

n

n∑

i=1

μi ,

Var(Xi ) = σ 2
i and

σ̄ 2
n = 1

n

n∑

i=1

σ 2
i .

First, examine the case where μi = μ for all i . For testing H0 : μ = 0, consider
the group of sign changes as in Example 17.2.4. Even if the Xi have distinct dis-
tributions but these distributions are symmetric about μ, then the randomization
hypothesis holds. Therefore, one may construct exact level α randomization tests
under symmetry.

The question we would now like to investigate is Type 1 error control when
symmetry does not hold. Let Tn = √

n X̄n . Assume σ̄ 2
n → σ 2∞ > 0 and that, for some

δ > 0, supi E(|Xi − μi |2+δ) < ∞. By an argument similar to Example 17.2.4, one
can show (Problem 17.18) that the conditions of Theorem 17.2.3 hold with the
limit distribution R equal to N (0, σ 2∞), where σ 2∞ = limn σ̄ 2

n . On the other hand, by
Example 11.2.2, under μ = 0,

√
n X̄n

d→ N (0, σ 2
∞) . (17.35)

Thus, the true sampling distribution and the randomization distribution are asymp-
totically equal, and therefore, under the above moment assumptions, the probability
of a Type 1 error tends to the nominal level even under asymmetry.
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Under the same setup and assumptions, we now consider the problem of test-
ing the null hypothesis that μ̄n = 0 (so that the μi may differ even under the null
hypothesis). In this case, the randomization test has exact Type 1 error control when
all the underlying distributions are symmetric about 0. So, we wish to also consider
the asymptotic behavior under asymmetry as well as heterogeneity in means (and
underlying distributions). Assume that

1

n

n∑

i=1

μ2
i → v∞ < ∞ .

Then, the conditions of Theorem 17.2.3 hold with R now equal to N (0, σ 2∞ + v∞). It
then follows that the critical value, r̂n(1 − α), based on the randomization distribution
satisfies

r̂n(1 − α)
P→ z1−α

√
σ 2∞ + v∞ .

On the other hand, under the null hypothesis μ̄n = 0, (17.35) still holds. Hence, if
v∞ > 0, we see that these limiting distributions do not match. Therefore, under the
null hypothesis, by Slutsky’s Theorem,

P
{√

n X̄n > r̂n(1 − α)
} → 1 − �

(
z1−α

√
1 + v∞

σ 2∞

)
.

The limiting probability is≤ α and only equals α when v∞ = 0, so that the resulting
randomization test is in general conservative.

Example 17.4.2 (Matched Pairs) In paired comparisons, data (Yi , Zi ), i =
1, . . . , n, are observed. For example, pairing may arise in studies of twins, where
one receives treatment and the other does not. Alternatively, paired data may repre-
sent before and after treatment of the same unit. In general, units may be matched
according to other observed covariates, such as age, sex, blood pressure, etc. If the
Zi s represents the treated observations and Yi s the untreated, then the differences
Di = Zi − Yi may be used to make inferences about the treatment effect E(Di ).
(More generally, matched pairs may be viewed as a special case of a randomized
block design, where units are divided into subgroups or blocks according to covari-
ates, so that smaller variability within blocks leads to more efficient estimate of
treatment effects.)

Upon reduction to the Di s, the one-sample tests studied in Examples 17.2.4 and
17.4.1 may apply. However, if observations are paired according to covariates, then
the Di may no longer be independent, and so the analysis becomes more involved. If
observations are assigned to treatment at random within pairs once pairs are formed,
then the Di are conditionally independent given the covariates, in which case the
analysis of Example 17.4.1 may be used a starting point. The details are beyond the
scope here; see Bugni et al. (2019) and Bai et al. (2021).
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Example 17.4.3 (Hotelling Test for Multivariate Mean) Let X1, . . . , Xn be i.i.d.
random vectors with distribution P onRp. Assume EP |Xi |2 < ∞. Letμ = μ(P) be
the mean vector and let � = �(P) be the covariance matrix, assumed positive defi-
nite. The problem is to test the null hypothesis H0 : μ(P) = 0 versus the alternative
hypothesis H1 : μ(P) �= 0 (or possibly a subset thereof).

Under the assumption of multivariate normality, one can perform an exact test
using Hotelling’s T-squared statistic. Specifically, let X̄n denote the sample mean
vector, and let �̂n denote the sample covariance matrix, defined as

�̂n = 1

n − 1

n∑

i=1

(Xi − X̄n)(Xi − X̄n)
� .

Note that �̂n is invertible with probability one. Then, Hotelling’s T-squared statistic
is defined as

Tn = Tn(X1, . . . , Xn) = n X̄�
n �̂−1

n X̄n .

If H0 is true, then under the assumption of multivariate normality, Tn has Hotelling’s
T-squared distribution with parameters p and n − 1, fromwhich exact critical values
may be obtained. As n → ∞, this distribution tends to the Chi-squared distribution
with p degrees of freedom.

Instead, we may construct exact tests without the multivariate normality assump-
tion by constructing a randomization test. Under normality and if H0 is true, it follows
that Xi and −Xi have the same distribution. But, this holds for many more distribu-
tions. In fact, exact Type 1 error control holds for distributions withmean 0 satisfying
Xi and −Xi have the same distribution; that is, the randomization hypothesis holds
for this family of distributions with respect to the group of sign changes. Of course,
this holds for any p, so that it applies even in the high-dimensional setting.

The question we now consider is the asymptotic behavior of the randomization
test if the randomization hypothesis fails (for large n, and fixed p). We wish to show
that the probability of rejecting H0 tends to the nominal level α as n → ∞, without
assuming Xi and −Xi have the same distribution under H0.

To do this, let ε1, . . . , εn and ε′
1, . . . , ε

′
n be mutually independent and identically

distributed, and independent of the Xi s, each εi either 1 or −1 with probability 1/2
each. We claim that

(Tn(ε1X1, . . . , εn Xn), Tn(ε
′
1X1, . . . , ε

′
n Xn))

d→ (T, T ′) , (17.36)

where T and T ′ are i.i.d., each with the Chi-squared distribution with p degrees
of freedom. The result then follows immediately from Theorem 17.2.3. To prove
(17.36), we need the following lemma.

Lemma 17.4.1 Assume X1, . . . , Xn are i.i.d. P with positive definite covariance
matrix � = �(P). Under the above assumptions, and if μ(P) = 0, then
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n−1/2(

n∑

i=1

εi Xi ,

n∑

i=1

ε′
i Xi )

d→ (Z1, Z2) , (17.37)

where Z1 and Z2 are i.i.d., each with the multivariate normal distribution with mean
0 and covariance matrix �.

Remark 17.4.1 Even if μ(P) �= 0, then the same argument applies with the same
result as long as � is replaced by the matrix with ( j, k) component given by
E(Xi, j Xi,k).

Proof of Lemma 17.4.1. Apply the Cramér–Wold Device. Fix vectors a and b. It
suffices to show the unconditional distribution of

n−1/2
n∑

i=1

(εi a
�Xi + ε′

i b
�Xi ) (17.38)

tends in distribution to that of a�Z1 + b�Z2, which of course is N (0, a��a +
b��b). But (17.38) is a normalized sum of i.i.d. real-valued random variables, with
mean 0 and variance

E[(εi a�Xi + ε′
i b

�Xi )
2]

= Eε2i E[(a�Xi )
2] + E((ε′

i )
2)E[(b�Xi )

2] + Eεi Eε′
i E(a�Xib

�Xi )

= E[(a�Xi )
2] + E[(b�Xi )

2] = E(a�Xi X
′
i a) + E(b�Xi X

′
i b) = a��a + b��b .

The result follows from the ordinary Central Limit Theorem.

Next, we consider the randomization distribution based on a modified T-squared
statistic. Instead of �̂n , define �̄n to be

�̄n = 1

n

n∑

i=1

Xi X
�
i .

Let
T̄n = T̄n(X1, . . . , Xn) = n X̄�

n �̄−1
n X̄n ,

so that �̂n replaces �̄n in Tn , and the denominator n − 1 is changed to n. There are
two reasons for considering this modification. First, �̄n is, under H0, an unbiased
and consistent estimator for �. More importantly for our purposes, �̄n is invariant
with respect to sign changes of the observations; that is, replacing Xi by −Xi for
any of the i results in the same estimator.

Lemma 17.4.2 Under the assumptions of Lemma 17.4.1 and if μ(P) = 0, we have

(T̄n(ε1X1, . . . , εn Xn), T̄n(ε
′
1X1, . . . , ε

′
n Xn))

d→ (Z�
1 �−1Z1, Z

�
2 �−1Z2) ,
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and hence the limiting joint distribution is a product of independent Chi-squared
distributions each with p degrees of freedom.

Proof of Lemma 17.4.2. As mentioned, for any εi , �̄n(ε1X1, . . . , εn Xn) =
�̄n(X1, . . . , Xn), with each term converging in probability to that of �. The result
follows by the Continuous Mapping Theorem.

Next, we consider Hotelling’s T-squared statistic.

Lemma 17.4.3 Under the assumptions of Lemma 17.4.1 and if μ(P) = 0, we have

(Tn(ε1X1, . . . , εn Xn), Tn(ε
′
1X1, . . . , ε

′
n Xn))

d→ (Z�
1 �−1Z1, Z

�
2 �−1Z2) ,

and hence the limiting joint distribution is a product of independent Chi-squared
distributions each with p degrees of freedom.

Proof of Lemma 17.4.3. Trivially,

n − 1

n
�̂n(ε1X1, . . . , εn Xn) = �̄n − (

1

n

n∑

i=1

εi Xi )(
1

n

n∑

i=1

εi Xi )
� .

But, n−1 ∑
i εi Xi is an average ofmean 0 randomvectorswith finite secondmoments,

and hence converges in probability to 0. Sincewe already established �̄n is consistent,
it follows that �̂n is a consistent estimator of �. The result then follows again by the
Continuous Mapping Theorem.

Thus, the conditions for Theorem 17.2.3 have been verified and so the permutation
distribution is asymptotically Chi-squared with p degrees of freedom. Since the true
unconditional limiting distribution is alsoChi-squaredwith p degrees of freedom, the
conclusion is that the randomization test based on the T-squared statistic (or modified
T-squared statistic) has rejection probability tending to the nominal level under any
P with μ(P) = 0 (and having second moments). Moreover, it retains exact control
of the Type 1 error as long as the randomization hypothesis holds, i.e., Xi and −Xi

have the same distribution (actually even if second moments don’t exist).

Example 17.4.4 (MaximumTest forMultivariateMean) Assume the same setup
as Example 17.4.3. But rather than Hotelling’s T-squared statistic, consider the max-
imum studentized statistic Mn , given by

Mn = Mn(X1, . . . , Xn) = max
1≤ j≤p

Tn, j , (17.39)

where

Tn, j =
√
n|X̄n, j |
sn, j

, (17.40)

X̄n, j is the j th component of the sample mean vector X̄n , and s2n, j is the ( j, j)

component of �̂n . As before, when Xi and −Xi have the same distribution under
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the null hypothesis, the rejection probability is exactly the nominal level (and this is
true for any choice of test statistic). We would like to examine the asymptotic Type
1 error rate of the randomization test based on the test statistic Mn under the null
hypothesis H0 that specifies μ(P) = 0. For this, we assume as in Example 17.4.3
that � exists, and also that all diagonal elements of � are positive.

Under H0, the true sampling distribution of Mn satisfies (Problem 17.19)

Mn
d→ max

1≤ j≤p
(|Y1|, . . . , |Yp|) , (17.41)

where (Y1, . . . ,Yp) is multivariate normal with mean 0 and covariance matrix �′,
where �′ is the correlation matrix corresponding to �. In other words, the (i, j)
component of �′ is the (i, j) component of � divided by σiσ j , and σ 2

i is the i th
diagonal element of �.

We claim that the randomization distribution asymptotically approximates the
distribution of max j |Y j | under H0. To see this, we again apply Theorem 17.2.3.
First, note that, under H0,

n − 1

n
s2n, j (ε1X1, . . . , εn Xn) = 1

n

n∑

i=1

X2
i, j − X̄2

n, j
P→ σ 2

j . (17.42)

Therefore, by Lemma 17.4.1 and (17.42), we can apply the argument used in the
proof of Theorem 17.3.2 to deduce that

(Mn(ε1X1, . . . , εn Xn), Mn(ε
′
1X1, . . . , ε

′
n Xn))

d→ (M, M ′) , (17.43)

where M and M ′ are i.i.d. with distribution that of max j (|Y j |) given in (17.41). Thus,
the conditions of Theorem 17.2.3 hold. Therefore, similar conclusions apply to the
randomization test based on Mn as for Hotelling’s T-squared statistic. That is, the
probability of a Type 1 error control is exactly the nominal level when Xi and −Xi

have the same distribution, but otherwise, the probability of a Type 1 error tends to
the nominal level.

17.5 Randomization Tests and Multiple Testing

So far, randomization and permutation tests have been developed for tests of a single
null hypothesis. Extensions to multiple testing are possible and desirable. Some
obvious ways to do this are as follows:

• Since randomization tests can be used to generate p-values of individual tests, such
as by (17.5) or (17.7), one can apply any of a number ofmultiple testing procedures
based on marginal p-values. Many such tests were discussed in Chapter 9. For
example, one may apply:



856 17 Permutation and Randomization Tests

– The Holm method to control the FWER (Theorem 9.1.2).
– The Benjamini–Yekutieli method to control the FDR (Theorem 9.3.2).

• Apply the closure method discussed in Section 9.2, where tests of intersection
hypotheses are constructed via randomization tests.

Example 17.5.1 (Example 17.4.3, continued) In Example 17.4.3, a randomization
test based onHotelling’s T-squared statistic was discussed for testing the null hypoth-
esis that a mean vector μ(P) = 0. If one wishes to know which components of the
mean vector might be nonzero, then the problem should be regarded as a multiple
testing problem. Let Hi specify the ith component, μi (P), of μ(P) is 0. The closure
method may be applied here as a means of constructing a procedure that controls the
FWER. All that is needed are tests of the intersection hypotheses HK , where

HK : μi (P) = 0 for all i ∈ K .

Example 17.4.3 shows how to test HK when K = {1, . . . , p}. For general K , one can
simply apply the same test, but just to those components specified by K . If I denotes
the set of indices i of hypotheses corresponding toμi (P) = 0, and XI = (Xi , i ∈ I ),
then the FWER is controlled exactly if XI and −XI have the same distribution.
Without the symmetry assumption, the FWER tends to α (under the second moment
assumption considered in Example 17.4.3).

In the previous example, the number of subsets K required to test may be of order
2p. By using the maximum statistic, we now instead develop a stepdown method
(as in Example 9.1.7) that is feasible for large p. By using randomization tests, the
assumption of multivariate normality is not needed. For power considerations when
comparing the two test statistics, see Section 13.5.4.

Example 17.5.2 (Example 17.4.4, continued)We now develop a stepdownmethod
for testing means based on the maximum statistic Mn defined in (17.39). The method
is a special case of Procedure 9.1.1, though we provide the details here. For i =
1, . . . , p, Hi specifies μi (P) = 0. With Tn, j defined in (17.40), order the observed
test statistics as

Tn,r1 ≥ Tn,r2 ≥ · · · ≥ Tn,rp

and let H(1), H(2), . . . , H(p) be the corresponding hypotheses.
The stepdown procedure begins with the most significant test statistic Tn,r1 , which

is also Mn . First, test the joint null hypothesis H{1,...,p} that all null hypotheses are
true, using the randomization test based on the maximum statistic Mn described in
Example 17.4.4. This hypothesis is rejected if Tn,r1 is large. If it is not large, accept
all hypotheses; otherwise, reject the hypothesis H(1) corresponding to the largest test
statistic. Once a hypothesis is rejected, remove it and test the remaining hypotheses
by rejecting for large values of the maximum of the remaining test statistics, and so
on.
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We just need to specify the construction of critical values in each step. When test-
ing HK , let ĉn,K (1 − α) denote the 1 − α quantile of the randomization distribution
corresponding to the statistic

Mn,K = max
j∈K Tn, j .

(Note that one could use the exact randomization test, which allows randomization in
order to achieve exact level α, but for simplicity we opt for the slightly conservative
procedure that does not randomize. The method can be adapted to maintain exact
error control if desired.) Then, the stepdown algorithm can be described as follows.

Procedure 1 (Stepdown Method Based on Randomization Tests)

1. Let K1 = {1, . . . , p}. If Tn,r1 ≤ ĉn,K1(1 − α), then accept all hypotheses and stop;
otherwise, reject H(1) and continue.

2. Let K2 be the indices of the hypotheses not previously rejected. If Tn,r2 ≤
ĉn,K2(1 − α), then accept all remaining hypotheses and stop; otherwise, reject
H(2) and continue.

...

j. Let K j be the indices of the hypotheses not previously rejected. If Tn,r j ≤
ĉn,K j (1 − α), then accept all remaining hypotheses and stop; otherwise, reject
H( j) and continue.

...

s. If Tn,rp ≤ ĉn,Kp (1 − α), then accept H(p); otherwise, reject H(p).

Theorem 9.1.3 shows that the FWER is controlled at level α under the symmetry
assumption that XI and −XI have the same distribution, just as in Example 17.5.1.
Moreover, even if the symmetry assumption does not hold, the FWER tends to α

under the assumption of finite nonzero variances.

17.6 Problems

Section 17.2

Problem 17.1 Generalize Theorem 17.2.1 to the case where G is an infinite group.

Problem 17.2 With p̂ defined in (17.5), show that (17.6) holds.

Problem 17.3 (i) Suppose Y1, . . . ,YB are exchangeable real-valued random vari-
ables; that is, their joint distribution is invariant under permutations. Let q̃ be defined
by
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q̃ = 1

B

[
1 +

B−1∑

i=1

I {Yi ≥ YB}
]

.

Show, P{q̃ ≤ u} ≤ u for all 0 ≤ u ≤ 1. Hint: Condition on the order statistics.
(ii) With p̃ defined in (17.7), show that (17.8) holds.
(iii) How would you construct a p-value based on sampling without replacement
from G?

Problem 17.4 With p̂ and p̃ defined in (17.5) and (17.7), respectively, show that
p̂ − p̃ → 0 in probability.

Problem 17.5 As an approximation to (17.9), let g1, . . . , gB−1 be i.i.d. and uniform
on G. Also, set gB to be the identity. Define

R̃n,B(t) = 1

B

B∑

i=1

I {Tn(gi X) ≤ t} .

Show, conditional on X ,

sup
t

|R̃n,B(t) − R̂n(t)| → 0

in probability as B → ∞, and so

sup
t

|R̃n,B(t) − R̂n(t)| → 0

in probability (unconditionally) as well. Do these results hold only under the null
hypothesis? Hint: Apply Theorem 11.4.3. For a similar result based on sampling
without replacement, see Problem 12.15.

Problem 17.6 Suppose X1, . . . , Xn are i.i.d. according to a q.m.d. location model
with finite variance. Show the ARE of the one-sample t-test with respect to the
randomization t-test (based on sign changes) is 1 (even if the underlying density is
not normal).

Problem 17.7 In Theorem 17.2.4, show the conclusion may fail if ψP is not an odd
function.

Problem 17.8 Verify (17.16) and (17.17). Hint: Let S be the number of positive
integers i ≤ m with Wi = 1, and condition on S.

Problem 17.9 (i) Assume X1, X2, . . . are independent, with Xi ∼ N (μi , 1), with
μi ≥ 0. For testing the null hypothesis that allμi = 0, compute the limiting power of
the one-sided t-test test against alternatives μi such that

∑
i μ

2
i < ∞. (Even though

the variance is known, you are asked to consider the t-test.)
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(ii) Rather than being normally distributed, suppose Xi has density fi , where fi is
symmetric about some μi , but is otherwise unknown. Assume μi ≥ 0. For testing
μi = 0 for all i , how can you construct a randomization test that is level α in finite
samples? (Note the Xi can have different distributions even under the null hypothe-
sis.) Show your test is reasonable by calculating its limiting power against the same
alternatives as in (i) when the Xi are normally distributed but heterogeneous with
different means.

Section 17.3

Problem 17.10 In the two-sample problem of Section 17.3, suppose the underlying
distributions are normal with common variance. For testing μ(PY ) = μ(PZ ) against
μ(PY ) > μ(PZ ) compute the limiting power of the randomization test based on
the test statistic Tm,n given in (17.13) against contiguous alternatives of the form
μ(PY ) = μ(PZ ) + hn−1/2. Show this is the same as the optimal two-sample t-test.
Argue that the two tests are asymptotically equivalent in the sense of Problem 15.25.

Problem 17.11 In the two-sample problem of Section 17.3, reprove the limiting
behavior of the permutation distribution by using Theorem 12.2.3.

Problem 17.12 Show (17.27). Does it hold if μ(PY ) �= μ(PZ )?

Problem 17.13 Use Theorem 17.3.2 to deduce the limiting behavior of the random-
ization distribution using the classical t-statistic in Example 17.2.4.

Problem 17.14 Complete the argument to show (17.34) for j = 1 and j = 2.

Problem 17.15 Under the setting of Problem 11.59 for testing equality of Poisson
means λi based on the test statistic T , show how to construct a randomization test
based on T . Examine the limiting behavior of the randomization distribution under
the null hypothesis and contiguous alternatives.

Problem 17.16 Suppose (X1,Y1), . . . (Xn,Yn) are i.i.d. bivariate observations in
the plane, and let ρ denote the correlation between X1 and Y1. Let ρ̂n be the sample
correlation

ρ̂n =
∑

(Xi − X̄n)(Yi − Ȳn)

[∑i (Xi − X̄n)2
∑

j (X j − Ȳn)2]2
.

(i) For testing independence of Xi and Yi , construct a randomization test based on
the test statistic Tn = n1/2|ρ̂n| .
(ii) For testing ρ = 0 versus ρ > 0 based on the test statistic ρ̂n , determine the
limit behavior of the randomization distribution when the underlying population
is bivariate Gaussian with correlation ρ = 0. Determine the limiting power of the
randomization test under local alternativesρ = hn−1/2. Argue that the randomization
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test and the optimal UMPU test (5.75) are asymptotically equivalent in the sense of
Problem 15.25.
(iii) Investigate what happens if the underlying distribution has correlation 0, but Xi

and Yi are dependent.

Problem 17.17 Prove a version of the Continuous Mapping Theorem (Theorem
11.2.10) for randomization distributions. That is, assume the randomization distri-
bution R̂n(·) of some test statistic Tn satisfies R̂n(t) converges in probability to R(t)
for all t for which R(·) is continuous. Let g be a continuous function, at least on a
set of points where R has probability one. Prove a limit result for the randomization
distribution based on the statistic g(Tn).

Section 17.4

Problem 17.18 In Example 17.4.1, for testing the null hypothesis that all μi =
0, verify the asymptotic behavior of the randomization distribution under the null
hypothesis. Hint: Problem 11.12.

Problem 17.19 Show (17.41).

Problem 17.20 Prove (17.43).

17.7 Notes

Early references to permutations tests were provided at the end of Chapter 5. An
elementary account is provided by Good (1994), who provides an extensive bib-
liography, and Edgington (1995). Multivariate permutation tests are developed in
Pesarin (2001). The present large-sample approach originated in Hoeffding (1952).
Applications to block experiments are discussed in Robinson (1973). Expansions
for the power of rank and permutation tests in the one- and two-sample problems
are obtained in Albers et al. (1976) and Bickel and Van Zwet (1978), respectively.
A full account of the large-sample theory of rank statistics is given in Hájek et al.
(1999). Robust two-sample permutation tests are obtained in Lambert (1985). The
role of studentization in providing Type 1 error control for permutation tests was first
recognized in Neuhaus (1993) and Janssen (1997, 1999), Janssen and Pauls (2005).
A growing literature allows for application of randomization tests even when the
randomization hypothesis fails. Some general results were provided in Chung and
Romano (2013, 2016a, 2016b). Also, see Neubert and Brunner (2007) and Janssen
and Pauls (2003a, 2005). Omelka and Pauly (2012) use permutation tests to compare
correlations. Jentsch and Pauly (2015) apply randomization tests to testing equal-
ity of spectral densities. DiCiccio and Romano (2017) apply permutation tests for
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inference about correlation and regression coefficients. Bugni et al. (2019) apply ran-
domization schemes to randomized controlled studies where units are stratified into
a finite number of strata according to covariates. Bai et al. (2021) apply randomiza-
tion methods to paired comparisons where the number of strata grows with sample
size. Ritzwoller and Romano (2021) develop permutation tests for tests of streaki-
ness in Bernoulli sequences with applications to the “hot hand” hypothesis. Romano
and Tirlea (2020) consider permutation tests for dependence in time series models.
Randomization methods have been extended to situations where the randomization
hypothesis only holds in an asymptotic sense; see Canay et al. (2017).
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