
Chapter 14
Quadratic Mean Differentiable Families

14.1 Introduction

As mentioned at the beginning of Chapter 11, the finite-sample theory of optimality
for hypothesis testing is applied only to rather special parametric families, primarily
exponential families and group families. On the other hand, asymptotic optimality
will apply more generally to parametric families satisfying smoothness conditions.
In particular, we shall assume a certain type of differentiability condition, called
quadratic mean differentiability. Such families will be considered in Section 14.2. In
Section 14.3, the notion of contiguity will be developed, primarily as a technique for
calculating the limiting distribution or power of a test statistic under an alternative
sequence, especially when the limiting distribution under the null hypothesis is easy
to obtain. In Section 14.4, these techniques will then be applied to classes of tests
based on the likelihood function, namely the Wald, Rao, and likelihood ratio tests.
The asymptotic optimality of these tests will be established in Chapter 15.

14.2 Quadratic Mean Differentiability (q.m.d.)

Consider a parametric model {Pθ, θ ∈ �}, where, throughout this section, � is
assumed to be an open subset of IRk. The probabilitymeasures Pθ are defined on some
measurable space (X , C). Assume each Pθ is absolutely continuous with respect to
a σ-finite measure μ, and set pθ(x) = dPθ(x)/dμ(x). In this section, smooth para-
metric models will be considered. To motivate the smoothness condition given in
Definition 14.2.1 below, consider the case of n i.i.d. random variables X1, . . . , Xn

and the problemof testing a simple null hypothesis θ = θ0 against a simple alternative
θ1 (possibly depending on n). The most powerful test rejects when the loglikelihood
ratio statistic

log[Ln(θ1)/Ln(θ0)]
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is sufficiently large, where

Ln(θ) =
n∏

i=1

pθ(Xi ) (14.1)

denotes the likelihood function. We would like to obtain certain expansions of the
loglikelihood ratio, and the smoothness conditionwe imposewill ensure the existence
of such an expansion.

Example 14.2.1 (Normal Location Model) Suppose Pθ is N (θ,σ2), where σ2 is
known. It is easily checked that

log[Ln(θ1)/Ln(θ0)] = n

σ2
[(θ1 − θ0)X̄n − 1

2
(θ21 − θ20)] , (14.2)

where X̄n = ∑n
i=1 Xi/n. By the Weak Law of Large Numbers, under θ0,

(θ1 − θ0)X̄n − 1

2
(θ21 − θ20)

P→ (θ1 − θ0)θ0 − 1

2
(θ21 − θ20) = −1

2
(θ1 − θ0)

2 ,

and so log[Ln(θ1)/Ln(θ0)] P→ −∞. Therefore, log[Ln(θ1)/Ln(θ0)] is asymptoti-
cally unbounded in probability under θ0. As in Example 11.3.2, a more useful result
is obtained if θ1 in (14.2) is replaced by θ0 + hn−1/2. We then find

log[Ln(θ0 + hn−1/2)/Ln(θ0)] = hn1/2(X̄n − θ0)

σ2
− h2

2σ2
= hZn − h2

2σ2
, (14.3)

where Zn = n1/2(X̄n − θ0)/σ
2 is N (0, 1/σ2). Notice that the expansion (14.3) is

a linear function of Zn and a simple quadratic function of h, with the coeffi-
cient of h2 nonrandom. Furthermore, log[Ln(θ0 + hn−1/2)/Ln(θ0)] is distributed
as N (−h2/2σ2, h2/σ2) under θ0 for every n. (The relationship that the mean is the
negative of half the variance will play a key role in the next section.)

The following more general family permits an asymptotic version of (14.3).

Example 14.2.2 (One-parameter Exponential Family) Let X1, . . . , Xn be i.i.d.
having density

pθ(x) = exp[θT (x) − A(θ)]

with respect to a σ-finite measure μ. Assume θ0 lies in the interior of the natural
parameter space. Then,

log[Ln(θ0 + hn−1/2)/Ln(θ0)] = hn−1/2
n∑

i=1

T (Xi ) − n[A(θ0 + hn−1/2) − A(θ0)] .

Recall (Problem 2.16) that Eθ0 [T (Xi )] = A′(θ0) and Varθ0 [T (Xi )] = A′′(θ0). By a
Taylor expansion,
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n[A(θ0 + hn−1/2) − A(θ0)] = hn1/2A′(θ0) + 1

2
h2A′′(θ0) + o(1)

as n → ∞, so that

log[Ln(θ0 + hn−1/2)/Ln(θ0)] = hZn − 1

2
h2A′′(θ0) + o(1) , (14.4)

where, under θ0,

Zn = n−1/2
n∑

i=1

{T (Xi ) − Eθ0 [T (Xi )]} d→ N (0, A′′(θ0)) .

Thus, the loglikelihood ratio (14.4) behaves asymptotically like the loglikelihood
ratio (14.3) from a normal location model. As we will see, such approximations
allow one to deduce asymptotic optimality properties for the exponential model (or
any model whose likelihood ratios satisfy an appropriate generalization of (14.4))
from optimality properties of the simple normal location model.

Wewould like to obtain an approximate result like (14.4) formoregeneral families.
Classical smoothness conditions usually assume that, for fixed x , the function pθ(x)
is differentiable in θ at θ0; that is, for some function ṗθ(x),

pθ0+h(x) − pθ0(x) − 〈 ṗθ0(x), h〉 = o(|h|)

as |h| → 0. In addition, higher order differentiability is typically assumed with fur-
ther assumptions on the remainder terms. In order to avoid such strong assumptions,
it turns out to be useful to work with square roots of densities. For fixed x , differ-
entiability of p1/2θ (x) at θ = θ0 requires the existence of a function η(x, θ0) such
that

R(x, θ0, h) ≡ p1/2θ0+h(x) − p1/2θ0
(x) − 〈η(x, θ0), h〉 = o(|h|) .

To obtain a weaker, more generally applicable condition, we will not require
R2(x, θ0, h) = o(|h|2) for every x , butwewill impose the condition that R2(X, θ0, h)

averaged with respect to μ is o(|h|2). Let L2(μ) denote the space of functions g such
that

∫
g2(x) dμ(x) < ∞. The convenience of working with square roots of densities

is due in large part to the fact that p1/2θ (·) ∈ L2(μ), a fact first exploited by Le Cam;
see Pollard (1997) for an explanation. The desired smoothness condition is now given
by the following definition.

Definition 14.2.1 The family {Pθ, θ ∈ �} is quadratic mean differentiable (abbre-
viated q.m.d.) at θ0 if there exists a vector of real-valued functions η(·, θ0) =
(η1(·, θ0), . . . , ηk(·, θ0))	 such that

∫

X

[√
pθ0+h(x) − √

pθ0(x) − < η(x, θ0), h >
]2

dμ(x) = o(|h|2) (14.5)
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as |h| → 0.1

The vector-valued function η(·, θ0) will be called the quadratic mean derivative
of Pθ at θ0. Clearly, η(x, θ0) is not unique since it can be changed on a set of x values
having μ-measure zero. If q.m.d. holds at all θ0, then we say the family is q.m.d.

The following are useful facts about q.m.d. families.

Lemma 14.2.1 Assume {Pθ, θ ∈ �} is q.m.d. at θ0. Let h ∈ IRk.

(i) Under Pθ0 , 〈 η(X,θ0)

p1/2θ0
(X)

, h〉 is a random variable with mean 0; i.e., satisfying

∫
p1/2θ0

(x)〈η(x, θ0), h〉dμ(x) = 0 .

(ii) The components of η(·, θ0) are in L2(μ); that is, for i = 1, . . . , k,

∫
η2
i (x, θ0) dμ(x) < ∞ .

Proof. In the definition of q.m.d., replace h by hn−1/2 to deduce that

∫ {
n1/2

[
p1/2θ0+hn−1/2(x) − p1/2θ0

(x)
]

− 〈η(x, θ0), h〉
}2

dμ(x) → 0

as n → ∞. But, if
∫
(gn − g)2 dμ → 0 and

∫
g2ndμ < ∞, then

∫
g2dμ < ∞ (Prob-

lem 14.3). Hence, for any h ∈ IRk, 〈η(x, θ0), h〉 ∈ L2(μ). Taking h equal to the vector
of zeros except for a 1 in the i th component yields (ii). Also, if

∫
(gn − g)2dμ → 0

and
∫
p2dμ < ∞ then

∫
pgndμ → ∫

pg dμ (Problem 14.4). Taking p = p1/2θ0
and

gn = n1/2
[
p1/2θ0+hn−1/2(x) − p1/2θ0

(x)
]
yields

∫
p1/2θ0

(x)〈η(x, θ0), h〉dμ(x)

= lim
n→∞ n1/2

∫
p1/2θ0

(x)[p1/2θ0+hn−1/2(x) − p1/2θ0
(x)] dμ(x)

= lim
n→∞ n1/2

[∫
p1/2θ0

(x) p1/2θ0+hn−1/2(x) dμ(x) − 1

]

= − 1
2 lim n−1/2 n

∫
[p1/2θ0

(x) − p1/2θ0+hn−1/2(x)]2dμ(x) .

But,

1 The definition of q.m.d. is a special case of Fréchet differentiability of the map θ → p1/2θ (·) from
� to L2(μ).
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n
∫ [

p1/2θ0
(x) − p1/2θ0+hn−1/2(x)

]2
dμ(x)

→
∫

|〈η(x, θ0), h〉|2dμ(x) < ∞ , (14.6)

and (i) follows.

Note that Lemma 14.2.1 (i) asserts that the finite-dimensional set of vectors
{〈η(·, θ0), h〉, h ∈ IRk} in L2(μ) is orthogonal to p1/2θ0

(·).
It turns out that, when q.m.d. holds, the integrals of products of the components of
η(·, θ) play a vital role in the theory of asymptotic efficiency. Such values (multiplied
by 4 for convenience) are gathered into amatrix, whichwe call theFisher Information
matrix. The use of the term information is justified by Problem 14.5.

Definition 14.2.2 For a q.m.d. family with derivative η(·, θ), define theFisher Infor-
mation matrix to be the matrix I (θ) with (i, j) entry

Ii, j (θ) = 4
∫

ηi (x, θ)η j (x, θ) dμ(x) .

The existence of I (θ) follows from Lemma 14.2.1 (ii) and the Cauchy–Schwarz
inequality. Furthermore, I (θ) does not depend on the choice of dominating measure
μ (Problem 14.8).

Lemma 14.2.2 For any h ∈ IRk,

∫
|〈h, η(x, θ0)〉|2 dμ(x) = 1

4 〈h, I (θ0)h〉 .

Proof. Of course
〈h, η(x, θ0)〉 = �hiηi (x, θ0) .

Square it and integrate.

Next, we would like to determine simple sufficient conditions for q.m.d. to hold.
Assuming that the pointwise derivative of pθ(x) with respect to θ exists, one would
expect that the quadratic mean derivative η(·, θ0) is given by

ηi (·, θ) = ∂

∂θi
p1/2θ (x) = 1

2

∂
∂θi

pθ(x)

p1/2θ (x)
. (14.7)

In fact, Hájek (1972) gave sufficient conditions where this is the case, and the fol-
lowing result for the case k = 1 is based on his argument.
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Theorem 14.2.1 Suppose � is an open subset of IR and fix θ0 ∈ �. Assume p1/2θ (x)
is an absolutely continuous function of θ in some neighborhood of θ0, for μ-almost
all x.2 Also, assume for μ-almost all x, the derivative p′

θ(x) of pθ(x) with respect to
θ exists at θ = θ0. Define

η(x, θ) = p′
θ(x)

2p1/2θ (x)
(14.8)

if pθ(x) > 0 and p′
θ(x) exists and define η(x, θ) = 0 otherwise. Also, define

I (θ) = 4
∫

η2(x, θ)μ(x) ,

and assume that I (θ) is finite and continuous in θ at θ0. Then, {Pθ} is q.m.d. at θ0
with quadratic mean derivative η(·, θ0) and so I (θ) is the Fisher Information.

Proof. If pθ(x) > 0 and p′
θ(x) exists, then from standard calculus it follows that

d

dθ
p1/2θ (x) = η(x, θ) .

Also, if pθ(x) = 0 and p′
θ(x) exists, then p′

θ(x) = 0 (since pθ(·) is nonnegative).
Now, if x is such that p1/2θ (x) is absolutely continuous in [θ0, θ0 + δ], then
{
1

δ
[p1/2θ0+δ(x) − p1/2θ0

(x)]
}2

= 1

δ2

[∫ δ

0
η(x, θ0 + λ)dλ

]2

≤ 1

δ

∫ δ

0
η2(x, θ0 + λ)dλ .

Integrating over all x with respect to μ yields

∫ {
1

δ
[p1/2θ0+δ(x) − p1/2θ0

(x)]
}2

dμ(x) ≤ 1

4δ

∫ δ

0
I (θ0 + λ)dλ .

By continuity of I (θ) at θ0, the right-hand side tends to

1

4
I (θ0) =

∫
η2(x, θ0)dμ(x)

as δ → 0. But, for μ-almost all x ,

1

δ
[p1/2θ0+δ(x) − p1/2θ0

(x)] → η(x, θ0) .

2 A real-valued function g defined on an interval [a, b] is absolutely continuous if g(θ) = g(a) +∫ θ
a h(x)dx for some integrable function h and all θ ∈ [a, b]; Problem 2 on p. 182 of Dudley (1989)
clarifies the relationship between this notion of absolute continuity of a function and the general
notion of a measure being absolute continuous with respect to another measure, as defined in
Section 2.2.
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The result now follows by Vitali’s Theorem (Corollary 2.2.1).

Corollary 14.2.1 Suppose μ is Lebesgue measure on IR and that pθ(x) = f (x − θ)
is a location model, where f 1/2(·) is absolutely continuous. Let

η(x, θ) = − f ′(x − θ)

2 f 1/2(x − θ)

if f (x − θ) > 0 and f ′(x − θ) exists; otherwise, define η(x, θ) = 0. Also, let

I = 4
∫ ∞

−∞
η2(x, 0)dx ,

and assume I < ∞. Then, the family is q.m.d. at θ0 with quadratic mean derivative
η(x, θ0) and constant Fisher Information I .

The assumption that f 1/2 is absolutely continuous can be replaced by the assump-
tion that f is absolutely continuous; see Hájek (1972), Lemma A.1. For other con-
ditions, see Le Cam and Yang (2000), Section 7.3.

Example 14.2.3 (Cauchy Location Model) The previous corollary applies to the
Cauchy location model, where pθ(x) = f (x − θ) and f (x) = 1

π
1

1+x2 , and I (θ) =
1/2 (Problem 14.9).

Example 14.2.4 (Double Exponential Location Model) Consider the location
model pθ(x) = f (x − θ)where f (x) = 1

2 exp(−|x |). Although f (·) is not differen-
tiable at 0, the corollary shows the family is q.m.d. Also, I (θ) = 1 (Problem 14.9).

Example 14.2.5 Consider the location model pθ(x) = f (x − θ), where

f (x) = C(β) exp{−|x |β},

where β is a fixed positive constant and C(β) is a normalizing constant. By the
previous corollary, this family is q.m.d. if β > 1

2 . In fact, one can check that

∫ ∞

−∞
[ f ′(x)]2
f (x)

dx < ∞

if and only if β > 1
2 (Problem 14.10). This suggests that q.m.d. fails if β ≤ 1

2 , which
is the case; see Rao (1968) or Le Cam and Yang (2000), pp. 188–190.

In the k-dimensional case, sufficient conditions for a family to be q.m.d. in terms
of “ordinary” differentiation can be obtained by an argument similar to the proof of
Theorem 14.2.1. As an example, we state the following (Problem 14.11, or Bickel
et al. (1993), Proposition 2.1).
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Theorem 14.2.2 Suppose � is an open subset of IRk , and Pθ has density pθ(·) with
respect to a measure μ. Assume pθ(x) is continuously differentiable in θ for μ-almost
all x, with gradient vector ṗθ(x) (of dimension 1 × k). Let

η(x, θ) = ṗθ(x)

2p1/2θ (x)
(14.9)

if pθ(x) > 0 and ṗθ(x) exists, and set η(x, θ) = 0 otherwise. Assume the Fisher
Information matrix I (θ) exists and is continuous in θ. Then, the family is q.m.d. with
derivative η(x, θ).

Example 14.2.6 (Exponential Families in Natural Form) Suppose

dPθ

dμ
(x) = pθ(x) = C(θ) exp[〈θ, T (x)〉],

where

� = int{θ ∈ IRk :
∫

exp[〈θ, T (x)〉] dμ(x) < ∞}

and T (x) = (T1(x), . . . , Tk(x))	 is a Borel vector-valued function on the space X
where μ is defined. This family is q.m.d.

Example 14.2.7 (Three-Parameter Lognormal Family) Suppose Pθ is the distri-
bution of γ + exp(X), where X ∼ N (μ,σ2). Here, θ = (γ,μ,σ), where γ and μ
may take on any real-value and σ any positive value. Note the support of the distri-
bution varies with θ. Theorem 14.2.2 yields that this family is q.m.d., even though
the likelihood function is unbounded.

Example 14.2.8 (UniformFamily) Suppose Pθ is the uniformdistribution on [0, θ].
This family is not q.m.d., which can be seen by the fact that the convergence (14.6)
fails for any choice of η. Indeed, for h > 0,

n
∫

[p1/2θ0
(x) − p1/2θ0+hn−1/2(x)]2dx ≥ n

∫ θ0+hn−1/2

θ0

1

θ0 + hn−1/2
dx → ∞ .

In fact, it is quite typical that familieswhose support depends on unknown parameters
will not be q.m.d., though Example 14.2.7 is an exception.

We are now in a position to obtain an asymptotic expansion of the loglikelihood
ratio whose asymptotic form corresponds to that of the normal location model in
Example 14.2.1. First, define the score function (or score vector) η̃(x, θ) by

η̃(x, θ) = 2η(x, θ)

p1/2θ (x)
(14.10)
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if pθ(x) > 0 and η̃(x, θ) = 0 otherwise. Under the conditions of Theorem 14.2.2,
η̃(x, θ) can often be computed as the gradient vector of log pθ(x). Also, define the
normalized score vector Zn by

Zn = Zn,θ0 = n−1/2
n∑

i=1

η̃(Xi , θ0) . (14.11)

The following theorem, due to Le Cam, is the main result of this section.

Theorem 14.2.3 Suppose {Pθ, θ ∈ �} is q.m.d. at θ0 with derivative η(·, θ0) and
� is an open subset of IRk. Suppose I (θ0) is nonsingular. Fix θ0 and consider the
likelihood ratio Ln,h defined by

Ln,h = Ln(θ0 + hn−1/2)

Ln(θ0)
=

n∏

i=1

pθ0+hn−1/2(Xi )

pθ0(Xi )
, (14.12)

where the likelihood function Ln(·) is defined in (14.1).

(i) Then, as n → ∞,

log(Ln,h) −
[
〈h, Zn〉 − 1

2
〈h, I (θ0)h〉

]
= oPn

θ0
(1). (14.13)

(ii) Under Pn
θ0
, Zn

d→ N (0, I (θ0)) and so

log(Ln,h)
d→ N

(− 1
2 〈h, I (θ0)h〉, 〈h, I (θ0)h〉) . (14.14)

Proof. Consider the triangular array Yn,1, . . . ,Yn,n , where

Yn,i = p1/2θ0+hn−1/2(Xi )

p1/2θ0
(Xi )

− 1.

Note that Eθ0(Y
2
n,i ) ≤ 2 < ∞ and

log(Ln,h) = 2
n∑

i=1

log(1 + Yn,i ) . (14.15)

But,
log(1 + y) = y − 1

2 y
2 + y2r(y) ,

where r(y) → 0 as y → 0, so that
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log(Ln,h) = 2
n∑

i=1

Yn,i −
n∑

i=1

Y 2
n,i + 2

n∑

i=1

Y 2
n,i r(Yn,i ) .

The idea of expanding the likelihood ratio in terms of variables involving square
roots of densities is known as Le Cam’s square root trick; see Le Cam (1969). The
proof of (i) will follow from the following four convergence results:

n∑

i=1

Eθ0(Yn,i ) → − 1
8 〈h, I (θ0)h〉 (14.16)

n∑

i=1

[Yn,i − Eθ0(Yn,i )] − 1

2
〈h, Zn〉

Pn
θ0→ 0 (14.17)

n∑

i=1

Y 2
n,i

Pn
θ0→ 1

4
〈h, I (θ0)h〉 (14.18)

∑
Y 2
n,i r(Yn,i )

Pn
θ0→ 0 . (14.19)

Once these four convergences have been established, part (ii) of the theorem follows
by the Central Limit Theorem and the facts that

Eθ0 [〈η̃(X1, θ0), h〉] = 0 by Lemma 14.2.1(i)

and
Varθ0 [〈η̃(X1, θ0), h〉] = 〈h, I (θ0)h〉 by Lemma 14.2.2.

(a) To show (14.16),

n∑

i=1

Eθ0(Yn,i ) = n
∫ [

p1/2θ0+hn−1/2(x)

p1/2θ0
(x)

− 1

]
pθ0(x) dμ(x)

= − n
2

∫ [
p1/2θ0+hn−1/2(x) − p1/2θ0

(x)
]2

dμ(x)

→ − 1
2

∫
|〈η(x, θ0), h〉|2dμ(x)

by (14.6). This last expression is equal to − 1
8 〈h, I (θ0)h〉 by Lemma 14.2.2, and

(14.16) follows.
(b) To show (14.17), write
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Yn,i = 1

2
n−1/2〈h, η̃(Xi , θ0)〉 + n−1/2 Rn(Xi )

p1/2θ0
(Xi )

, (14.20)

where
∫
R2
n(x) dμ(x) → 0 (by q.m.d.). Hence,

n∑

i=1

[Yn,i − Eθ0(Yn,i )] = 1

2
〈h, Zn〉 + hn−1/2

n∑

i=1

[
Rn(Xi )

p1/2θ0
(Xi )

− Eθ0

(
Rn(Xi )

p1/2θ0
(Xi )

)]
.

The last term, under Pn
θ0
, has mean 0 and variance bounded by

h2Eθ0

[
R2
n(Xi )

pθ0(Xi )

]
= h2

∫
R2
n(x) dμ(x) → 0 .

So, (14.17) follows.
(c) To prove (14.18), by the Weak Law of Large Numbers, under θ0,

1
n

n∑

i=1

[〈h, η̃(Xi , θ0)〉]2 P→ Eθ0{[〈h, η̃(X1, θ0)〉]2} = 〈h, I (θ0)h〉 . (14.21)

Now using Equation (14.20), we get

n∑

i=1

Y 2
n,i = 1

4n

n∑

i=1

[〈h, η̃(Xi , θ0)〉]2 + 1
n

n∑

i=1

R2
n(Xi )

pθ0(Xi )

+ 1
n

n∑

i=1

[〈h, η̃(Xi , θ0)〉]
n∑

j=1

Rn(X j )

p1/2θ0
(X j )

. (14.22)

By (14.21), the first term converges in probability under θ0 to 1
4 〈h, I (θ0)h〉. The

second term is nonnegative and has expectation under θ0 equal to

∫
R2
n(x)μ(dx) → 0 ;

hence, the second term goes to 0 in probability under Pn
θ0
byMarkov’s inequality. The

last term goes to 0 in probability under Pn
θ0
by the Cauchy–Schwarz inequality and

the convergences of the first two terms. Thus, (14.18) follows. By taking expectations
in (14.22), a similar argument shows

nEθ0(Y
2
n,i ) = 1

4
〈h, I (θ0)h〉 + o(1) (14.23)

as n → ∞, which also implies Eθ0(Yn,i ) → 0.
(d) Finally, to prove (14.19), note that
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∣∣∣∣∣

n∑

i=1

Y 2
n,i r(Yn,i )

∣∣∣∣∣ ≤ max
1≤i≤n

|r(Yn,i )|
n∑

i=1

Y 2
n,i .

So, it suffices to show maxi |r(Yn,i )| → 0 in probability under θ0, which follows if
we can show

max
1≤i≤n

|Yn,i |
Pn

θ0→ 0 . (14.24)

But,
∑n

i=1[Yn,i − Eθ0(Yn,i )] is asymptotically normal by (14.17) and the Central
Limit Theorem. Hence, Corollary 11.2.2 is applicable with s2n = O(1), which yields
the Lindeberg Condition

nEθ0 [|Yn,i − Eθ0(Yn,i )|2 I {|Yn,i − Eθ0(Yn,i )| ≥ ε}] → 0 (14.25)

for any ε > 0. But then,

Pθ0{max
1≤i≤n

|Yn,i − Eθ0(Yn,i )| > ε} ≤ nPθ0{|Yn,i − Eθ0(Yn,i )|2 > ε2} ,

which can be bounded by the expression on the left side of (14.25) divided by ε2,
and so max1≤i≤n |Yn,i − Eθ0(Yn,i )| → 0 in probability under θ0. The result (14.24)
follows, since Eθ0(Yn,i ) → 0.

Remark 14.2.1 Since the theorem concerns the local behavior of the likelihood ratio
near θ0, it is not entirely necessary to assume � is open. However, it is important to
assume θ0 is an interior point; see Problem 14.14.

Remark 14.2.2 The theorem holds if h is replaced by hn on the left side of each
part of the theorem where hn → h. Under further assumptions, it is plausible that
the left side of (14.13) tends to 0 in probability uniformly in h as long as h varies
in a compact set; that is, for any c > 0, the supremum over h such that |h| ≤ c of
the absolute value of the left side of (14.13) tends to 0 in probability under θ0; see
Problem 15.12.

14.3 Contiguity

Contiguity is an asymptotic form of a probabilitymeasure Q being absolutely contin-
uous with respect to another probability measure P . In order to motivate the concept,
suppose P and Q are two probability measures on some measurable space (X ,F).
Assume that Q is absolutely continuous with respect to P . This means that E ∈ F
and P(E) = 0 implies Q(E) = 0.
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Suppose T = T (X) is a random vector from X to IRk , such as an estimator, test
statistic, or test function. How can one compute the distribution of T under Q if you
know how to compute probabilities or expectations under P? Specifically, suppose it
is required to compute EQ[ f (T )], where f is some measurable function from IRk to
IR. Let p and q denote the densities of P and Q with respect to a common measure
μ. Then, assuming Q is absolutely continuous with respect to P ,

EQ[ f (T (X))] =
∫

X
f (T (x))dQ(x) (14.26)

=
∫

X
f (T (x))

q(x)

p(x)
p(x)dμ(x) = EP [ f (T (X))L(X)] , (14.27)

where L(X) is the usual likelihood ratio statistic:

L(X) = q(X)

p(X)
. (14.28)

Hence, the distribution of T (X) under Q can be computed if the joint distri-
bution of (T (X), L(X)) under P is known. Let FT,L denote the joint distribu-
tion of (T (X), L(X)) under P . Then, by taking f to be the indicator function
f (T (X)) = IB[T (X)] defined to be equal to one if T (X) falls in B and equal to
zero otherwise, we obtain:

Q{T (X) ∈ B} =
∫

X
I (T (x) ∈ B)L(x)p(x)μ(dx) (14.29)

= EP [I (T (X) ∈ B)L(X)] =
∫

B×IR
rdFT,L(t, r) . (14.30)

Thus, under absolute continuity of Q with respect to P , the problem of finding the
distribution of T (X) under Q can in principle be obtained from the joint distribution
of T (X) and L(X) under P .

More generally, if f = f (t, r) is a function from IRk × IR to IR,

EQ[ f (T (X), L(X))] =
∫

IRk×IR
f (t, r)rdFT,L(t, r) (14.31)

(Problem 14.18).
Contiguity is an asymptotic version of absolute continuity that permits an anal-

ogous asymptotic statement. Consider sequences of pairs of probabilities {Pn, Qn},
where Pn and Qn are probabilities on some measurable space (Xn,Fn). Let Tn be
some random vector fromXn to IRk . Suppose the asymptotic distribution of Tn under
Pn is easily obtained, but the behavior of Tn under Qn is also required. For exam-
ple, if Tn represents a test function for testing Pn versus Qn , the power of Tn is the
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expectation of Tn under Qn . Contiguity provides a means of performing the required
calculation. An example may help fix ideas.

Example 14.3.1 (The Wilcoxon Signed-Rank Statistic) Let X1, . . . , Xn be i.i.d.
real-valued random variables with common density f (·). Assume that f (·) is sym-
metric about θ. The problem is to test the null hypothesis that θ = 0 against the alter-
native hypothesis that θ > 0. Consider the Wilcoxon signed-rank statistic defined
by:

Wn = Wn(X1, . . . , Xn) = n−3/2
n∑

i=1

R+
i,nsign(Xi ) , (14.32)

where sign(Xi ) is 1 if Xi ≥ 0 and is −1 otherwise, and R+
i,n is the rank of |Xi |

among |X1|, . . . , |Xn|. Note that Wn = 2n−3/2[Vn − n(n + 1)], where Vn was pre-
viously studied in Example 12.3.6. Under the null hypothesis, the behavior of Wn

is fairly easy to obtain. (Alternatively, one can use Example 12.3.6.) If θ = 0, the
variables sign(Xi ) are i.i.d., each 1 or −1 with probability 1/2, and are independent
of the variables R+

i,n . Hence, Eθ=0(Wn) = 0. Define Ĩk to be 1 if the kth largest |Xi |
corresponds to a positive observation and −1 otherwise. Then, we have

Varθ=0(Wn) = n−3Var(
n∑

k=1

k Ĩk) (14.33)

= n−3
n∑

k=1

k2 = n−3 n(n + 1)(2n + 1)

6
→ 1

3
(14.34)

as n → ∞. Not surprisingly,Wn
d→ N (0, 1

3 ). To see why, note that (Problem 14.19)

Wn − n−1/2
n∑

i=1

Ui sign(Xi ) = oP(1) , (14.35)

where Ui = G(|Xi |) and G is the c.d.f. of |Xi |. But, under the null hypothesis, Ui

and sign(Xi ) are independent. Moreover, the random variablesUi sign(Xi ) are i.i.d.,
and so the Central Limit Theorem is applicable. Thus, Wn is asymptotically normal
with mean 0 and variance 1/3, and this is true whenever the underlying distribution
has a symmetric density about 0. Indeed, the exact distribution ofWn is the same for
all distributions symmetric about 0. Hence, the test that rejects the null hypothesis
if Wn exceeds 3−1/2z1−α has limiting level 1 − α. Of course, for finite n, critical
values forWn can be obtained exactly. Suppose now that we want to approximate the
power of this test. The above argument does not generalize to even close alternatives
since it heavily uses the fact that the variables are symmetric about zero. Contiguity
provides a fairly simple means of attacking this problem, and we will reconsider this
example later.
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We now return to the general setup.

Definition 14.3.1 Let Pn and Qn be probability distributions on (Xn,Fn). The
sequence {Qn} is contiguous to the sequence {Pn} if Pn(En) → 0 implies Qn(En) →
0 for every sequence {En} with En ∈ Fn .

The following equivalent definition is sometimes useful. The sequence {Qn} is
contiguous to {Pn} if for every sequence of real-valued random variables Tn such
that Tn → 0 in Pn-probability we also have Tn → 0 in Qn-probability.

If {Qn} is contiguous to {Pn} and {Pn} is contiguous to {Qn}, then we say the
sequences {Pn} and {Qn} are mutually contiguous, or just contiguous.
Example 14.3.2 Suppose Pn is the standard normal distribution N (0, 1) and Qn is
N (ξn, 1). Unless ξn is bounded, Pn and Qn cannot be contiguous. Indeed, suppose
ξn → ∞ and consider En = {x : |x − ξn| < 1}. Then, Qn(En) ≈ 0.68 for all n,
but Pn(En) → 0. Note that, regardless of the values of ξn , Pn and Qn are mutually
absolutely continuous for every n.

Example 14.3.3 Suppose Pn is the joint distribution of n i.i.d. observations
X1, . . . , Xn from N (0, 1) and Qn is the joint distribution of n i.i.d. observations from
N (ξn, 1). Unless ξn → 0, Pn and Qn cannot be contiguous. For example, suppose
ξn > ε > 0 for all large n. Let X̄n = n−1 ∑n

i=1 Xi and consider En = {X̄n > ε/2}.
By the law of large numbers, Pn(En) → 0 but Qn(En) → 1. As will be seen shortly,
in order for Pn and Qn to be contiguous, it will be necessary and sufficient for ξn → 0
in such a way so that n1/2ξn remains bounded.

We nowwould like a usefulmeans of determiningwhether or not Qn is contiguous
to Pn . Suppose Pn and Qn have densities pn and qn with respect to μn . For x ∈ Xn ,
define the likelihood ratio of Qn with respect to Pn by

Ln(x) =

⎧
⎪⎨

⎪⎩

qn(x)
pn(x)

ifpn(x) > 0

∞ if pn(x) = 0 < qn(x)

1 if pn(x) = qn(x) = 0.

(14.36)

Under Pn or Qn , the event {pn = qn = 0} has probability 0, so it really doesn’t matter
how Ln is defined in this case (as long as it is measurable). Note that Ln is regarded
as an extended random variable, which means it is allowed to take on the value ∞,
at least under Qn . Of course, under Pn , Ln is finite with probability one.

Observe that

EPn (Ln) =
∫

Xn

Ln(x)pn(x)μn(dx) =
∫

{x : pn(x)>0}
qn(x)μn(dx)

= Qn{x : pn(x) > 0} = 1 − Qn{x : pn(x) = 0} ≤ 1 , (14.37)

with equality if and only if Qn is absolutely continuous with respect to Pn .



666 14 Quadratic Mean Differentiable Families

Example 14.3.4 (Contiguous but not absolutely continuous sequence) Suppose
Pn is uniformly distributed on [0, 1] and Qn is uniformly distributed on [0, θn],
where θn > 1. Then, Qn is not absolutely continuous with respect to Pn . Note that
the likelihood ratio Ln is equal to 1/θn with probability one under Pn , and so

EPn (Ln) = 1

θn
< 1 .

It will follow from Theorem 14.3.1 that Qn is contiguous to Pn if θn → 1.

The notation L(T |P) refers to the distribution of a random variable (or possibly
an extended random variable) T = T (X) when X is governed by P . Let Gn =
L(Ln|Pn), the distribution of the likelihood ratio under Pn . Note that Gn is a tight
sequence, because by Markov’s inequality,

Pn{Ln > c} ≤ EPn (Ln)

c
≤ 1

c
, (14.38)

where the last inequality follows from (14.37).
The statement that EPn (Ln) = 1 implies that Qn is absolutely continuous with

respect to Pn , by (14.37). The following result, known as Le Cam’s First Lemma,
may be regarded as an asymptotic version of this statement.

Theorem 14.3.1 Given Pn and Qn, consider the likelihood ratio Ln defined in
(14.36). Let Gn denote the distribution of Ln under Pn. Suppose Gn converges weakly
to a distribution G. If G has mean 1, then Qn is contiguous to Pn.

Proof. Suppose Pn(En) = αn → 0. Let φn be a most powerful level αn test of Pn
versus Qn . By the Neyman–Pearson Lemma, the test is of the form

φn =
{
1 if Ln > kn
0 if Ln < kn,

(14.39)

for some kn chosen so the test is level αn . Since φn is at least as powerful as the test
that has rejection region En ,

Qn{En} ≤
∫

φndQn ,

so it suffices to show the right side tends to zero. Now, for any y < ∞,

∫
φndQn =

∫

Ln≤y
φndQn +

∫

Ln>y
φndQn

≤ y
∫

φnd Pn +
∫

Ln>y
dQn ≤ y

∫
φnd Pn + 1 −

∫

Ln≤y
dQn
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= yαn + 1 −
∫

Ln≤y
Lnd Pn = yαn + 1 −

∫ y

0
xdGn(x) .

Fix any ε > 0 and take y to be a continuity point of G with

∫ y

0
xdG(x) > 1 − ε

2
,

which is possible since G has mean 1. But Gn converges weakly to G implies

∫ y

0
xdGn(x) →

∫ y

0
xdG(x) , (14.40)

by an argument like that in Example 11.4.4 (Problem 14.27). Thus, for sufficiently
large n,

1 −
∫ y

0
xdGn(x) <

ε

2

and yαn < ε/2. It follows that, for sufficiently large n,

∫
φndQn < ε ,

as was to be proved.

The following result summarizes some equivalent characterizations of contiguity.
The notation L(T |P) refers to the distribution (or law) of a random variable T under
P .

Theorem 14.3.2 The following are equivalent characterizations of {Qn} being con-
tiguous to {Pn}.
(i) For every sequence of real-valued random variables Tn such that Tn → 0 in

Pn-probability, it also follows that Tn → 0 in Qn-probability.
(ii) For every sequence Tn such thatL(Tn|Pn) is tight, it also follows thatL(Tn|Qn)

is tight.
(iii) If G is any limit point 3 of L(Ln|Pn), then G has mean 1.

Proof. First, we show that (ii) implies (i). Suppose Tn → 0 in Pn-probability;
that is, Pn{|Tn| > δ} → 0 for every δ > 0. Then, there exists εn ↓ 0 such that
Pn{|Tn| > εn} → 0. So, |Tn|/εn is tight under {Pn}. By hypothesis, |Tn|/εn is also
tight under {Qn}. Assume the conclusion that Tn → 0 in Qn-probability fails; then,
one could find ε > 0 such that Qn{|Tn| > ε} > ε for infinitely many n. Then, of
course, Qn{|Tn| >

√
εn} > ε for infinitely many n. Since 1/

√
εn ↑ ∞, it follows that

|Tn|/εn cannot be tight under {Qn}, which is a contradiction.

3 G is a limit point of a sequence Gn of distributions if Gn j converges in distribution to G for some
subsequence n j .
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Conversely, to show that (i) implies (ii), assume thatL(Tn|Pn) is tight. Then, given
ε > 0, there exists k such that Pn{|Tn| > k} < ε/2 for all n. If L(Tn|Qn) is not tight,
then for every j , Qn{|Tn| > j} > ε for some n. That is, there exists a subsequence
n j such that Qn j {|Tn j | > j} > ε for every j . As soon as j > k,

Pn j {|Tn j | > j} ≤ Pn j {|Tn j | > k} <
ε

2
,

a contradiction.
To show (iii) implies (i), first recall (14.38), which implies Gn is tight. Assuming

Pn{An} → 0, we must show Qn{An} → 0. Assume that this is not the case. Then,
there exists a subsequence n j and ε > 0 such that Qn j {An j } ≥ ε for all n j . But, there
exists a further subsequence n jk such that Gn jk

converges to some G. Assuming (iii),
G hasmean 1.ByTheorem14.3.1, Pn jk

and Qn jk
are contiguous. Since Qn jk

{An jk
} →

0, this is a contradiction.
Conversely, suppose (i) and thatGn convergesweakly toG (or apply the following

argument to any convergent subsequence). By Example 11.4.4, it follows that

∫
xdG(x) ≤ lim inf

n
EPn (Ln) ≤ 1 ,

so it suffices to show
∫
xdG(x) ≥ 1. Let t be a continuity point of G. Then, also by

Example 11.4.4 (specifically (11.39)),

∫
xdG(x) ≥

∫

{x≤t}
xdG(x) = lim

n
EPn (Ln1{Ln ≤ t}) = lim

n
Qn{Ln ≤ t} .

So, it suffices to show that, given any ε > 0, there exists a t such that Qn{Ln > t} < ε
for all large n. If this fails, then for every j , there exists n j such that Qn j {Ln j > j} >

ε. But, by (14.38),

Pn j {Ln j > j} ≤ 1

j
→ 0

as j → ∞, which would contradict (i).

As will be seen in many important examples, loglikelihood ratios are typically
asymptotically normally distributed, and the following corollary is useful.

Corollary 14.3.1 Consider a sequence {Pn, Qn} with likelihood ratio Ln defined in
(14.36). Assume

L(Ln|Pn) d→ L(eZ ) , (14.41)

where Z is distributed as N (μ,σ2). Then, Qn and Pn are mutually contiguous if and
only if μ = −σ2/2.
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Proof.To show Qn is contiguous to Pn , apply part (iii) of Theorem14.3.2 by showing
E(eZ ) = 1. But, recalling the characteristic function of Z from equation (11.10), it
follows that

E(eZ ) = exp(μ + 1

2
σ2) ,

which equals 1 if and only if μ = −σ2/2. That Pn is contiguous to Qn follows by
Problem 14.23.

We may write (14.41) equivalently as

L(log(Ln)|Pn) d→ L(Z) .

However, since Pn{Ln = 0} may be positive, we may have log(Ln) = −∞ with
positive probability, in which case log(Ln) is regarded as an extended real-valued
randomvariable taking values in IR

⋃{±∞}. If Xn is an extended real-valued random
variable and X is a real-valued random variable with c.d.f. F , we say (as in Definition
11.2.1) Xn converges in distribution to X if

Pn{Xn ∈ (−∞, t]} → F(t)

whenever t is a continuity point of F . It follows that if Xn converges in distribution
to a random variable that is finite (with probability one), then the probability that Xn

is finite must tend to 1.

Example 14.3.5 (Example 14.3.2, continued). Again, suppose that Pn = N (0, 1)
and Qn = N (ξn, 1). In this case,

Ln = Ln(X) = exp(ξn X − 1

2
ξ2n) .

Thus,

L(log(Ln)|Pn) = N

(
−ξ2n

2
, ξ2n

)
.

Such a sequence of distributions will converge weakly along a subsequence n j if
and only if ξn j → ξ (for some |ξ| < ∞), in which case, the limiting distribution is

N (
−ξ2

2 , ξ2) and the relationship between the mean and the variance (μ = −σ2/2) is
satisfied. Hence, Qn is contiguous to Pn if and only if ξn is bounded. In fact, Qn and
Pn are mutually contiguous under the same condition.

Example 14.3.6 (Example 14.3.3, continued). Suppose X1, . . . , Xn are i.i.d. with
common distribution N (ξ, 1). Let Pn represent the joint distribution when ξ = 0 and
let Qn represent the joint distribution when ξ = ξn . Then,
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log(Ln(X1, . . . , Xn)) = ξn

n∑

i=1

Xi − nξ2n
2

, (14.42)

and so

L(log(Ln)|Pn) = N

(
−nξ2n

2
, nξ2n

)
.

By an argument similar to that of the previous example, Qn is contiguous to Pn
if and only if nξ2n remains bounded, i.e., ξn = O(n−1/2); Pn and Qn are mutually
contiguous if and only if the same condition holds. Note that, even if ξn → 0, but at
a rate slower than n−1/2, Qn is not contiguous to Pn . This is related to the assertion
that the problem of testing Pn versus Qn is degenerate unless ξn � n−1/2, in the sense
that the most powerful level α test φn has asymptotic power satisfying Eξn (φn) → 1
if n1/2|ξn| → ∞ and Eξn (φn) → α if n1/2ξn → 0.4 Indeed, suppose without loss of
generality that ξn > 0. Then, the most powerful level α test rejects when n1/2 X̄n >

z1−α, where X̄n = ∑
i=1 Xi/n and z1−α denotes the 1 − α quantile of the standard

normal distribution. The power of φn against ξn is then

Pξn {n1/2 X̄n > z1−α} == P{Z > z1−α − n1/2ξn},

where Z is a standard normal variable. Clearly, the last expression tends to 1 if and
only if n1/2ξn → ∞; furthermore, it tends toα if and only if n1/2ξn → 0. The limiting
power is bounded away from α and 1 if and only if ξn � n−1/2.

Example 14.3.7 (Q.m.d. families) Let {Pθ, θ ∈ �} with � an open subset of IRk

be q.m.d., with corresponding densities pθ(·). By Theorem 14.2.3, under θ0,

log(
dPn

θ0+hn−1/2

dPn
θ0

) = n−1/2
n∑

i=1

〈h, η̃(Xi , θ0)〉 − 1

2
〈h, I (θ0)h〉 + oPn

θ0
(1), (14.43)

where η̃(x, θ) = 2η(x, θ)/p1/2θ (x), η(·, θ) is the quadratic mean derivative at θ, and
I (θ) is the Information matrix at θ. Hence, by Corollary 14.3.1, Pn

θ0+hn−1/2 and Pn
θ0

are mutually contiguous.

Suppose Qn is contiguous to Pn . As before, let Ln be the likelihood ratio defined
by (14.28). Let Tn be an arbitrary sequence of real-valued statistics. The following
theorem allows us to determine the asymptotic behavior of (Tn, Ln) under Qn from
the behavior of (Tn, Ln) under Pn .

Theorem 14.3.3 Suppose Qn is contiguous to Pn. Let Tn be a sequence of real-
valued random variables. Suppose, under Pn, (Tn, Ln) converges in distribution to

4 Two real-valued sequences {an} and {bn} are said to be of the same order, written an � bn if
|an/bn | is bounded away from 0 and ∞.



14.3 Contiguity 671

a limit law F(·, ·); that is, for any bounded continuous function f on (−∞,∞) ×
[0,∞),

EPn [ f (Tn, Ln)] →
∫ ∫

f (t, r)dF(t, r) . (14.44)

Then, the limiting distribution of (Tn, Ln) under Qn has density rdF(t, r); that is,

EQn [ f (Tn, Ln)] →
∫ ∫

f (t, r)rdF(t, r) (14.45)

for any bounded continuous f . Equivalently, if under Pn (Tn, log(Ln)) converges
weakly to a limit law F̄(·, ·), then

EQn [ f (Tn, log(Ln))] →
∫ ∫

f (t, r)erd F̄(t, r) (14.46)

for any bounded continuous f .

Note that equation (14.45) is simply an asymptotic version of (14.31).

Remark 14.3.1 The result is also true if Tn is vector-valued, and the proof is the
same.

Proof. Let Fn = L((Tn, Ln)|Pn) and Gn = L((Tn, Ln)|Qn). Since Ln converges in
distribution under Pn , contiguity and Theorem 14.3.2 (iii) imply that

∫
rdF(t, r) = 1 .

Thus, rdF(t, r) defines a probability distribution on (−∞,∞) × [0,∞).
Let f be a nonnegative, continuous function on (−∞,∞) × [0,∞]. By the Port-

manteau Theorem (11.2.1 (vi)), it suffices to show that

lim inf
n

∫
f (t, r)dGn(t, r) ≥

∫
f (t, r)rdF(t, r) .

Note that
∫

f (t, r)dGn(t, r) = EQn [ f (Tn, Ln)] =
∫

f (Tn, Ln)dQn

≥
∫

{pn>0}
f (Tn, Ln)dQn =

∫
f (Tn, Ln)LndPn =

∫
f (t, r)rdFn(t, r) .

So, it suffices to show

lim inf
n

∫
f (t, r)rdFn(t, r) ≥

∫
r f (t, r)dF(t, r) .
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But, r f (t, r) is a nonnegative, continuous function, and so the result follows again
by the Portmanteau Theorem.

The following special case is often referred to as Le Cam’s Third Lemma.

Corollary 14.3.2 Assume that, under Pn, (Tn, log(Ln))
d→ (T, Z), where (T, Z) is

bivariate normal with E(T ) = μ1, V ar(T ) = σ2
1 , E(Z) = μ2, V ar(Z) = σ2

2 , and
Cov(T, Z) = σ1,2. Assumeμ2 = −σ2

2/2, so that Qn is contiguous to Pn. Then, under
Qn, Tn is asymptotically normal:

L(Tn|Qn)
d→ N (μ1 + σ1,2,σ

2
1) .

Proof. Let F̄(·, ·) denote the bivariate normal distribution of (T, Z). By Theo-
rem 14.3.3, the limiting distribution ofL((Tn, log(Ln))|Qn) has density erd F̄(x, r);
let (T̃ , Z̃) denote a random variable having this distribution. The characteristic func-
tion of T̃ is given by:

E(eiλT̃ ) =
∫

eiλxerd F̄(x, r) = E(eiλT+Z ) , (14.47)

which is the characteristic function of (T, Z) evaluated at t = (t1, t2)	 = (λ,−i)	.
By Example 11.2.1, this is given by

exp(i〈μ, t〉 − 1

2
〈�t, t〉) = exp(iμ1λ + μ2 − 1

2
〈�(λ,−i)	, (λ,−i)	〉)

= exp(iμ1λ + μ2 − 1

2
λ2σ2

1 + λiσ1,2 + σ2
2

2
) = exp[i(μ1 + σ1,2)λ − 1

2
λ2σ2

1] ,

the last equality following from the fact that μ2 = −σ2
2/2 (by contiguity). But, this

last expression is indeed the characteristic function of the normal distribution with
mean μ1 + σ1,2 and variance σ2

1.

Example 14.3.8 (Asymptotically Linear Statistic) Let {Pθ, θ ∈ �} with � an
open subset of IRk be q.m.d., with corresponding densities pθ(·). Recall Example
14.3.7, which shows that Pn

θ0+hn−1/2 and Pn
θ0

are mutually contiguous. The expan-

sion (14.43) shows a lot more. For example, suppose an estimator (sequence) θ̂n is
asymptotically linear in the following sense: under θ0,

n1/2(θ̂n − θ0) = n−1/2
n∑

i=1

ψθ0(Xi ) + oPn
θ0
(1) , (14.48)

where Eθ0 [ψθ0(X1)] = 0 and τ 2 ≡ Varθ0 [ψθ0(X1)] < ∞. Thus, under θ0,

n1/2(θ̂n − θ0)
d→ N (0, τ 2) .
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Then, the joint behavior of θ̂n with the loglikelihood ratio satisfies

(n1/2(θ̂n − θ0), log(
dPn

θ0+hn−1/2

dPn
θ0

)) (14.49)

= [n−1/2
n∑

i=1

(ψθ0(Xi ), 〈h, η̃(Xi , θ0)〉)] + (0,−1

2
〈h, I (θ0)h〉) + oPn

θ0
(1) .

By the bivariate Central Limit Theorem, this converges under θ0 to a bivariate normal
distribution with covariance

σ1,2 ≡ Covθ0(ψθ0(X1), 〈h, η̃(Xi , θ0)〉) . (14.50)

Hence, under Pn
θ0+hn−1/2 , n1/2(θ̂n − θ0) converges in distribution to N (σ1,2, τ

2), by
Corollary 14.3.2. It follows that, under Pn

θ0+hn−1/2 ,

n1/2(θ̂n − (θ0 + hn−1/2))
d→ N (σ1,2 − h, τ 2) .

Example 14.3.9 (t-statistic) Consider a location model f (x − θ) for which f (x)
has mean 0 and variance σ2, and which satisfies the assumptions of Corollary 14.2.1,
which imply this family is q.m.d. For testing θ = θ0 = 0, consider the behavior of
the usual t-statistic

tn = n1/2 X̄n

Sn
= n1/2 X̄n

σ
+ oPθ0

(1) .

Then, (14.48) holds with ψθ0(Xi ) = Xi/σ. We seek the behavior of tn under θn =
h/n1/2. Although this can be obtained by direct means, let us obtain the results by
contiguity. Note that (14.43) holds with

η̃(Xi , θ0) = − f ′(x)
f (x)

.

Thus, σ1,2 in (14.50) reduces to

σ1,2 = − h

σ
Covθ0=0

(
Xi ,

f ′(Xi )

f (Xi )

)
= − h

σ

∫ ∞

−∞
x f ′(x)dx = h

σ
.

Hence, under θn = h/n1/2,

tn
d→ N (

h

σ
, 1) .
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Example 14.3.10 (SignTest) As in the previous example, consider a locationmodel
f (x − θ), where f is a density with respect to Lebesgue measure. Assume the
conditions in Corollary 14.2.1, so that the family is q.m.d. Further suppose that f (x)
is continuous at x = 0 and Pθ=0{Xi > 0} = 1/2. For testing θ = θ0 = 0, consider
the (normalized) sign statistic

Sn = n−1/2
n∑

i=1

[I {Xi > 0} − 1

2
] ,

where I {Xi > 0} is one if Xi > 0 and is 0 otherwise. Then, (14.48) holds with
ψ0(Xi ) = I {Xi > 0} − 1

2 and so

Sn
d→ N (0,

1

4
) .

Under θn = h/n1/2, Sn
d→ N (σ1,2, 1/4), where σ1,2 is given by (14.50) and equals

σ1,2 = −hCov0

[
I {Xi > 0}, f ′(Xi )

f (Xi )

]
= −h

∫ ∞

0
f ′(x)dx = h f (0) .

Hence, under θn = h/n1/2,

Sn
d→ N (h f (0),

1

4
) .

Example 14.3.11 (Example 14.3.1, continued). Recall the Wilcoxon signed-rank
statistic Wn given by (14.32). For illustration, suppose the underlying density f (·)
of the observations is normal with mean θ and variance 1. Under the null hypothesis
θ = 0, Wn is asymptotically normal N (0, 1

3 ). The problem now is to compute the
asymptotic power against the sequence of alternatives θn = h/n1/2 for some h > 0.
Under the null hypothesis, by (14.35) and (14.42),

(Wn, log(Ln)) = (n−1/2
n∑

i=1

Ui sign(Xi ), hn
−1/2

n∑

i=1

Xi − h2

2
) + oPn

0
(1) , (14.51)

whereUi = G(|Xi |) andG is the c.d.f. of |Xi |. This last expression is asymptotically
bivariate normal with covariance under θ = 0 equal to

σ1,2 = hCov0[G(|X1|)sign(X1), X1] = hE0[G(|X1|)|X1|] , (14.52)

and thus σ1,2 is equal to h/
√

π (Problem 14.28). Hence, under θn = h/n1/2, Wn

is asymptotically normal with mean h/
√

π and variance 1/3. Thus, the asymptotic
power of the test that rejects when Wn > 3−1/2z1−α is
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lim
n→∞ Pθn {Wn − h√

π
> 3−1/2z1−α − h√

π
} = 1 − �(z1−α − (3/π)1/2h) ,

where �(·) is the standard normal c.d.f.
More generally, assume the underlyingmodel is a locationmodel f (x − θ), where

f (x) is assumed symmetric about zero. Assume f ′(x) exists for Lebesgue almost
all x and

0 < I ≡
∫ [ f ′(x)]2

f (x)
dx < ∞ .

Then, by Corollary 14.2.1, this model is q.m.d. and (14.43) holds with

η̃(x, 0) = − f ′(x)
f (x)

.

Under the null hypothesis θ = 0,Wn
d→ N (0, 1/3), as in the normal case. Under the

sequence of alternatives θn = h/n1/2,

Wn
d→ N (σ1,2,

1

3
) ,

where σ1,2 is given by (14.50). In this case,

σ1,2 = Covθ=0[Usign(X),−h
f ′(X)

f (X)
] ,

where U = G(|X |) and G is the c.d.f. of |X | when X has density f (·). So, G(x) =
2F(x) − 1, where F is the c.d.f. of X . By an integration by parts (see Problem 14.29),

σ1,2 = −hEθ=0[G(|X |)sign(X)
f ′(X)

f (X)
] = 2h

∫ ∞

−∞
f 2(x)dx . (14.53)

Thus, under θn = h/n1/2,

Wn
d→ N (2h

∫ ∞

−∞
f 2(x)dx,

1

3
) .

An alternative approach that uses the projection of U -statistics is given in
Problem 14.30.

Example 14.3.12 (Neyman–Pearson Statistic) Assume {Pθ, θ ∈ �} is q.m.d. at
θ0, where � is an open subset of IRk and I (θ0) is nonsingular, so that the assump-
tions behind Theorem 14.2.3 are in force. Let pθ(·) be the corresponding density of
Pθ. Consider the likelihood ratio statistic based on n i.i.d. observations X1, . . . , Xn

given by



676 14 Quadratic Mean Differentiable Families

Ln,h = dPn
θ0+hn−1/2

dPn
θ0

=
n∏

i=1

pθ0+hn−1/2(Xi )

pθ0(Xi )
. (14.54)

By Theorem 14.2.3, under Pθ0 ,

log(Ln,h)
d→ N (−σ2

h

2
,σ2

h) , (14.55)

where σ2
h = 〈h, I (θ0)h〉. Apply Corollary 14.3.2 with Tn ≡ log(Ln,h), so that T = Z

and σ1,2 = σ2
h . Then, under P

n
θ0+hn−1/2 , log(Ln,h) is asymptotically N (

σ2
h
2 ,σ2

h). Hence,

the test that rejects when log(Ln,h) exceeds − 1
2σ

2
h + z1−ασh is asymptotically level

α for testing θ = θ0 versus θ = θ0 + hn−1/2, where z1−α denotes the 1 − α quantile
of N (0, 1). Then, the limiting power of this test sequence for testing θ = θ0 versus
θ = θ0 + hn−1/2 is 1 − �(z1−α − σh) (Problem 14.31).

14.4 Likelihood Methods in Parametric Models

The goal of this section is to study some classical large-sample methods based on the
likelihood function. The classical likelihood ratio test, as well as the tests of Wald
and Rao will be introduced, but optimality of these tests will be deferred until the
next chapter. Throughout this section, we will assume that X1, . . . , Xn are i.i.d. with
common distribution Pθ, where θ ∈ � and � is an open subset of IRk . We will also
assume each Pθ is absolutely continuous with respect to a common σ-finite measure
μ, so that pθ denotes the density of Pθ with respect to μ. The likelihood function is
defined by

Ln(θ) =
n∏

i=1

pθ(Xi ) . (14.56)

It is thus the (joint) probability density of the observations at fixed values of
X1, . . . , Xn , viewed as a function of θ. Note that, for the sake of simplicity, the depen-
dence of Ln(θ) on X1, . . . , Xn has been suppressed. (In the case that X1, . . . , Xn are
not i.i.d., Ln(θ) is modified so that the joint density of the Xi ’s is used rather than
the product of the marginal densities.)

14.4.1 Efficient Likelihood Estimation

In preparation for the construction of reasonable large-sample tests and confidence
regions, we begin by studying some efficient point estimators of θ which will serve
as a basis for such tests. If the likelihood Ln(θ) has a unique maximum θ̂n , then
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θ̂n is called the maximum likelihood estimator (MLE) of θ. If, in addition, Ln(θ) is
differentiable in θ, θ̂n will be a solution of the likelihood equations

∂

∂θ j
log Ln(θ) = 0 j = 1, . . . , k .

Example 14.4.1 (Normal Family) Suppose X1, . . . , Xn is an i.i.d. sample from
N (μ,σ2), with both parameters unknown, so θ = (μ,σ2)	. In this case, the loglike-
lihood function is

log Ln(μ,σ2) = −n

2
log(2π) − n log(σ) − 1

2σ2

n∑

i=1

(Xi − μ)2 ,

and the likelihood equations reduce to

1

σ2

n∑

i=1

(Xi − μ) = 0

and

− n

2σ2
+ 1

2σ4

n∑

i=1

(Xi − μ)2 = 0 .

These equations have a unique solution, given by the maximum likelihood estimator
(μ̂n, σ̂

2
n), where μ̂n = X̄n is the usual sample mean and σ̂2

n is the biased version of
the sample variance given by

σ̂2
n = n−1

∑
(Xi − X̄n)

2

(Problem 14.36). By the weak law of large numbers, X̄n → μ in probability; by
Example 11.3.3, σ̂2

n → σ2 in probability as well. A direct argument easily establishes
the joint limiting distribution of the MLE. First note that

n1/2[σ̂2
n − n−1

n∑

i=1

(Xi − μ)2] = n1/2(X̄n − μ)2
P→ 0

since n1/2(X̄n − μ) is N (0,σ2) and X̄n − μ
P→ 0. Hence, by Slutsky’s Theorem,

n1/2((X̄n, σ̂
2
n)

	 − (μ,σ2)	) has the same limiting distribution as

n1/2[(X̄n, n
−1

n∑

i=1

(Xi − μ)2)	 − (μ,σ2)	] ,
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which by the multivariate CLT tends in distribution to N (0, �), where� is the 2 × 2
diagonal matrix with (i, j) entry σi, j given by σ1,1 = σ2 and σ2,2 = Var [(X1 −
μ)2] = 2σ4. In fact, � = I−1(θ) in this case.

Example 14.4.2 (MLE for a one-parameter exponential family) Suppose
X1, . . . , Xn is an i.i.d. sample fromaone-parameter exponential familywith common
density with respect to a σ-finite measure μ given by

pθ(x) = exp[θT (x) − A(θ)] .

Here, θ is assumed to be an interior point of the natural parameter space. From
Problem 2.16, recall that Eθ[T (Xi )] = A′(θ) and Varθ[T (Xi )] = A′′(θ). To show
the maximum likelihood estimator is well-defined and to find an expression for it,
we examine the derivative of the log of Ln(θ), which is equal to

∂ log Ln(θ)

∂θ
=

n∑

i=1

[T (Xi ) − A′(θ)] .

The likelihood equation sets this equal to zero, which reduces to the equation
T̄n = A′(θ), where T̄n = n−1 ∑n

i=1 T (Xi ). Hence, the MLE is found by equating
the sample mean of the T (Xi ) values to its expected value. Assuming the equation
T̄n = A′(θ) can be solved for θ, it must be themaximum likelihood estimator. Indeed,
the second derivative of the loglikelihood is −nA′′(θ) < 0, which also shows there
can be at most one solution to the likelihood equation. Furthermore, by the law of

large numbers, T̄n
P→ A′(θ), which combinedwith the fact that A′′(θ) > 0 yields that,

with probability tending to one, there exists exactly one solution to the likelihood
equation. Thus, θ̂n is well-defined with probability tending to one. To determine its
limiting distribution, first note that

n1/2[T̄n − A′(θ)] d→ N (0, A′′(θ)) ,

by the Central Limit Theorem. Since A′ is strictly increasing, we can define the
inverse function B of A′, so that B(A′(θ)) = θ. Then, θ̂n = B(A′(θ̂n)) = B(T̄n). By
the delta method,

n1/2(θ̂n − θ)
d→ N (0, τ 2) ,

where
τ 2 = A′′(θ)[B ′(A′(θ))]2 .

But using the chain rule to differentiate both sides of the identity B(A′(θ)) = θ yields
B ′(A′(θ))A′′(θ) = 1, so

n1/2(θ̂n − θ)
d→ N

(
0,

1

A′′(θ)

)
.
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In fact, the asymptotic variance [A′′(θ)]−1 is I−1(θ), where I (θ) is the Fisher Infor-
mation.

Problem 14.38 generalizes the previous example to multiparameter exponential
families.

The general theory of asymptotic normality of the MLE is much more difficult
and we shall here only give a heuristic treatment. For precise conditions and rigorous
proofs, see Lehmann and Casella (1998), Chapter 6 and Ibragimov and Has’minskii
(1981), Section 3.3. Let X1, . . . , Xn be i.i.d. according to a family {Pθ} which is
q.m.d. at θ0 with nonsingular Fisher Information matrix I (θ0) and quadratic mean
derivative η(·, θ0). Define

Ln,h = Ln(θ0 + hn−1/2)

Ln(θ0)
. (14.57)

By Theorem 14.2.3,

log(Ln,h) = 〈h, Zn〉 − 1

2
〈h, I (θ0)h〉 + oPn

θ0
(1) , (14.58)

where Zn is the normalized score vector

Zn = Zn(θ0) = 2n−1/2
n∑

i=1

[η(Xi , θ0)/p
1/2
θ0

(Xi )] (14.59)

and satisfies, under θ0,

Zn
d→ N (0, I (θ0)) .

Note that Zn = Zn(θ0) depends on θ0, but we will usually omit this dependence in
the notation.

If the MLE θ̂n is well-defined, then θ̂n = θ0 + ĥnn−1/2, where ĥn is the value of
h maximizing Ln,h . The result (14.58) suggests that, if θ0 is the true value, ĥn is
approximately equal to h̃n which maximizes

log(L̃n,h) ≡ 〈h, Zn〉 − 1

2
〈h, I (θ0)h〉 . (14.60)

Since log(L̃n,h) is a simple (quadratic) function of h, it is easily checked (Problem
14.46) that

h̃n = I−1(θ0)Zn . (14.61)

It then follows that

n1/2(θ̂n − θ0) = ĥn ≈ h̃n = I−1(θ0)Zn
d→ N (0, I−1(θ0)) .
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The symbol≈ is used to indicate an approximation based on heuristic considerations.
Unfortunately, the above approximation is not rigorous without further conditions.
In fact, without further conditions, the maximum likelihood estimator may not even
be consistent. Indeed, an example of Le Cam (presented in Example 4.1 of Chapter
6 in Lehmann and Casella (1998)) shows that the maximum likelihood estimator θ̂n
may exist and be unique but does not converge to the true value θ in probability (i.e.,
it is inconsistent). Moreover, the example shows this can happen even in very smooth
families in which good estimators do exist. Rigorous conditions for the MLE to be
consistent were given by Wald (1949), and have since then been weakened (for a
survey, see Perlman (1972)). Cramér (1943) derived good asymptotic behavior of
the maximum likelihood estimator under just certain smoothness conditions, often
knownasCramér type conditions. Furthermore, he gave conditions underwhich there
exists a consistent sequence of roots θ̂n of the likelihood equations (not necessarily
the MLE) satisfying

n1/2(θ̂n − θ0) = I−1(θ0)Zn + oPn
θ0
(1) , (14.62)

from which asymptotic normality follows. Cramér’s conditions required that the
underlying family of densities was three times differentiable with respect to θ, as
well as further technical assumptions on differentiability inside the integral signs;
see Chapter 6 of Lehmann and Casella (1998). Estimators satisfying (14.62) are
called efficient. In the case where θ̂n is a solution to the likelihood equations, it is
called an efficient likelihood estimator (ELE) sequence.

Determination of an efficient sequence of roots of the likelihood equations tends
to be difficult when the equations have multiple roots. Asymptotically equivalent
estimators can be constructed by startingwith any estimator θ̃n that is n1/2-consistent,
i.e., for which n1/2(θ̃n − θ) is bounded in probability. The resulting estimator can
be taken to be the root closest to θ̃n , or an approximation to it based on a Newton–
Raphson linearization method; for more details, see Section 6.4 of Lehmann and
Casella (1998), Gan and Jiang (1999) and Small, Wang and, Yang (2000). A similar,
but distinct, approach based on discretization of an initial estimator, leads to Le
Cam’s (1956, 1969) one-step maximum likelihood estimator, which satisfies (14.62)
under fairly weak conditions.

If θ̂n is any estimator sequence (not necessarily theMLEor anELE)which satisfies
(14.62), it follows that, under θ0,

n1/2(θ̂n − θ0)
d→ N (0, I−1(θ0)) .

For the remainder of this section, we will assume such an estimator sequence θ̂n is
available, bymeans of verification ofCramér type assumptions presented inLehmann
and Casella (1998), or by direct verification as in the case of exponential families
of Example 14.4.2 and Problem 14.38. For testing applications, it is also important
to study the behavior of the estimator under contiguous alternatives. The following
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theorem assumes the expansion (14.62) (which is only assumed to hold under θ0) in
order to derive the limiting behavior of θ̂n under contiguous sequences θn .

Theorem 14.4.1 Assume X1, . . . , Xn are i.i.d. according to a q.m.d. model {Pθ, θ ∈
�}with nonsingular Information matrix I (θ), θ ∈ �, an open subset of IRk . Suppose
an estimator θ̂n has the expansion (14.62) when θ = θ0. Let θn = θ0 + hnn−1/2,
where hn → h ∈ IRk . Then, under Pn

θn
,

n1/2(θ̂n − θn)
d→ N (0, I−1(θ0)) ; (14.63)

equivalently, under Pn
θn
,

n1/2(θ̂n − θ0)
d→ N (h, I−1(θ0)) . (14.64)

Furthermore, if g(θ) is a differentiable map from � to IR with nonzero gradient ġ(θ)
of dimension 1 × k, then under Pn

θn
,

n1/2(g(θ̂n) − g(θn))
d→ N (0,σ2

θ0
) , (14.65)

where
σ2

θ0
= ġ(θ0)I

−1(θ0)ġ(θ0)
	 . (14.66)

Proof. We prove the result in the case hn = h, the more general case deferred to
Problem 15.13.We will first show (14.64). By the Cramér–Wold Device, it is enough
to show that, for any t ∈ IRk , under Pn

θn
,

〈n1/2(θ̂n − θ0), t〉 d→ N (〈h, t〉, 〈t, I−1(θ0)t〉) .

By the assumption (14.62), we only need to show that, under Pn
θn
,

〈I−1(θ0)Zn, t〉 d→ N (〈h, t〉, 〈t, I−1(θ0)t〉) .

By Example 14.3.7, Pn
θn
is contiguous to Pn

θ0
, so we can apply Corollary 14.3.2 with

Tn = 〈I−1(θ0)Zn, t〉. Then,

(Tn, log(Ln,h)) = (〈I−1(θ0)Zn, t〉, 〈h, Zn〉 − 1

2
〈h, I (θ0)h〉) + oPn

θ0
(1) .

But, under θ0, Zn converges in law to Z , where Z is distributed as N (0, I (θ0)). By
Slutsky’s Theorem and the Continuous Mapping Theorem (or the bivariate Central
Limit Theorem), under θ0,

(Tn, log(Ln,h))
d→ (〈I−1(θ0)Z , t〉, 〈h, Z〉 − 1

2
〈h, I (θ0)h〉) .
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This limiting distribution is bivariate normal with covariance

σ1,2 = Cov(〈I−1(θ0)Z , t〉, 〈h, Z〉) = E[(h	Z)(I−1(θ0)Z)	t]

= h	E(Z1Z
	
1 )I−1(θ0)t = h	 I (θ0)I−1(θ0)t = 〈h, t〉 .

The result (14.64) follows from Corollary 14.3.2. The assertion (14.65) follows from
(14.63) and the delta method.

Under the conditions of the previous theorem, the estimator sequence g(θ̂n)
possesses a weak robustness property in the sense that its limiting distribution is
unchanged by small perturbations of the parameter values. In the literature, such
estimator sequences are sometimes called regular.

Corollary 14.4.1 Assume X1, . . . , Xn are i.i.d. according to aq.m.d.model {Pθ, θ ∈
�} with normalized score vector Zn given by (14.59) and nonsingular Information
matrix I (θ0). Let θn = θ0 + hnn−1/2, where hn → h ∈ IRk . Then, under Pn

θn
,

Zn
d→ N (I (θ0)h, I (θ0)) . (14.67)

The proof is left as an exercise (Problem 14.39).

14.4.2 Wald Tests and Confidence Regions

Wald proposed tests and confidence regions based on the asymptotic distribution of
the maximum likelihood estimator. In this section, we introduce these methods and
study their large-sample behavior; some optimality properties will be discussed in
Sections 15.3 and 15.4. We assume θ̂n is any estimator satisfying (14.62). Let g(θ)
be a mapping from � to the real line, assumed differentiable with nonzero gradient
vector ġ(θ) of dimension 1 × k. Suppose the problem is to test the null hypothesis
g(θ) = 0 versus the alternative g(θ) > 0. Let θ0 denote the true value of θ. Under
the assumptions of Theorem 14.4.1, under θ0,

n1/2[g(θ̂n) − g(θ0)] d→ N (0,σ2
θ0

) ,

where
σ2

θ0
= ġ(θ0)I

−1(θ0)ġ(θ0)
	 .

Assuming that ġ(·) and I (·) are continuous, the asymptotic variance can be consis-
tently estimated by

σ̂2
n ≡ ġ(θ̂n)I

−1(θ̂n)ġ(θ̂n)
	 .

Hence, the test that rejects when
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n1/2g(θ̂n) > σ̂nz1−α

is pointwise asymptotically level α.
We can also calculate the limiting power against a sequence of alternatives θn =

θ0 + hn−1/2. Assume g(θ0) = 0. Then,

Pθn {n1/2g(θ̂n) > σ̂nz1−α} = Pθn {n1/2[g(θ̂n) − g(θn)] > σ̂nz1−α − n1/2g(θn)} .

ByTheorem 14.4.1, n1/2[g(θ̂n) − g(θn)] is asymptotically N (0,σ2
θ0

), under θn . Also,
σ̂n → σθ0 in probability under θn (since this convergence holds under θ0 and therefore
under θn by contiguity). Finally, n1/2g(θn) → ġ(θ0)h. Hence, the limiting power is

lim
n→∞ Pθn {n1/2g(θ̂n) > σ̂nz1−α} = 1 − �(z1−α − σ−1

θ0
ġ(θ0)h) . (14.68)

Similarly, a pointwise asymptotically level 1 − α confidence interval for g(θ) is
given by

g(θ̂n) ± z1− α
2
n−1/2σ̂n .

Example 14.4.3 (Normal Coefficient of Variation) Let X1, . . . , Xn be i.i.d.
N (μ,σ2) with both parameters unknown, as in Example 14.4.1. Consider infer-
ences for g((μ,σ2)	) = μ/σ, the coefficient of variation. Recall that a uniformly
most accurate invariant one-sided confidence bound exists for μ/σ; however, it is
quite complicated to compute since it involves the noncentral t-distribution and no
explicit formula is available. However, a normal approximation leads to an interval
that is asymptotically valid. Note that

ġ((μ,σ2)	) = (
1

σ
,− μ

2σ3
) .

By Example 14.4.1, n1/2[(X̄n, S2n )
	 − (μ,σ2)	] is asymptotically bivariate normal

with asymptotic covariance matrix �, where � is the diagonal matrix with (1, 1)
entry σ2 and (2, 2) entry 2σ4. Then, the delta method implies that

n1/2(
X̄n

Sn
− μ

σ
)

d→ N (0, 1 + μ2

2σ2
) .

Thus, the interval
X̄n

Sn
± n−1/2(1 + X̄2

n

2S2n
)z1− α

2

is asymptotically pointwise level 1 − α.

Consider now the general problem of constructing a confidence region for θ, under
the assumptions of Theorem 14.4.1. The convergence
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n1/2(θ̂n − θ)
d→ N (0, I−1(θ)) (14.69)

implies that

I 1/2(θ)n1/2(θ̂n − θ)
d→ N (0, Ik) ,

themultivariate normal distribution in IRk withmean 0 and identity covariancematrix
Ik . Hence, by the Continuous Mapping Theorem 11.2.10 and Example 11.2.5,

n(θ̂n − θ)	 I (θ)(θ̂n − θ)
d→ χ2

k ,

the Chi-squared distributionwith k degrees of freedom. Thus, a pointwise asymptotic
level 1 − α confidence region for θ is

{θ : n(θ̂n − θ)	 I (θ)(θ̂n − θ) ≤ ck,1−α} , (14.70)

where ck,1−α is the 1 − α quantile of χ2
k . In (14.70), I (θ) is often replaced by a

consistent estimator, such as I (θ̂n) (assuming I (·) is continuous), and the resulting
confidence region is known as Wald’s confidence ellipsoid.

By the duality between confidence regions and tests, this leads to an asymptotic
level α test of θ = θ0 versus θ �= θ0, known as Wald tests. Specifically, for testing
θ = θ0 versus θ �= θ0, Wald’s test rejects if

n(θ̂n − θ0)I (θ̂n)(θ̂n − θ0) > ck,1−α . (14.71)

Alternatively, I (θ̂n) may be replaced by I (θ0) or any consistent estimator of I (θ0).
Under θn = θ0 + hn−1/2, the limiting distribution of the Wald statistic given by the
left side of (14.71) is χ2

k(|I 1/2(θ0)h|2), the noncentral Chi-squared distribution with
k degrees of freedom and noncentrality parameter |I 1/2(θ0)h|2 (Problem 14.50).

More generally, consider inference for g(θ), where g = (g1, . . . , gp)
	 is a map-

ping from IRk to IRp. Assume gi is differentiable and let D = D(θ) denote the p × k
matrix with (i, j) entry given by

Di, j (θ) = ∂gi (θ1, . . . , θk)/∂θ j . (14.72)

Then, the Delta Method and (14.69) imply that

n1/2[g(θ̂n) − g(θ)] d→ N (0, V (θ)) , (14.73)

where V (θ) = D(θ)I−1(θ)D	(θ). Assume V (θ) is positive definite and continuous
in θ. By the Continuous Mapping Theorem,

n[g(θ̂n) − g(θ)]	V−1(θ)[g(θ̂n) − g(θ)] d→ χ2
p .
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Hence, a pointwise asymptotically level 1 − α confidence region for g(θ) is

{θ : n[g(θ̂n) − g(θ)]	V−1(θ̂n)[g(θ̂n) − g(θ)] ≤ χ2
p(1 − α)} .

Next, suppose it is desired to test g(θ) = 0. The Wald test rejects when

Wn = ng(θ̂n)V
−1(θ̂n)g

	(θ̂n)

exceeds χ2
p(1 − α), and it is pointwise asymptotically level α.

14.4.3 Rao Score Tests

Instead of the Wald tests, it is possible to construct tests based directly on Zn in
(14.59), which have the advantage of not requiring computation of a maximum
likelihood estimator. Assume q.m.d. holds at θ0, with derivative η(·, θ0) and, as
usual, set

η̃(x, θ0) = 2η(x, θ0)/p
1/2
θ0

(x) .

Under the assumptions of Theorem 14.2.2, the quadratic mean derivative η(·, θ0) is
given by (14.9) and n1/2Zn can then be computed by

n1/2Zn =
n∑

i=1

η̃(Xi , θ0) =

n∑

i=1

ṗθ0(Xi )

pθ0(Xi )
= (

∂

∂θ1
log Ln(θ), . . . ,

∂

∂θk
log Ln(θ))

∣∣∣∣
θ=θ0

. (14.74)

As mentioned earlier, the statistic Zn is known as the normalized score vector. Its
use stems from the fact that inference can be based on Zn , which involves differen-
tiating the loglikelihood at a single point θ0, avoiding the problem of maximizing
the likelihood. Even if the ordinary differentiability conditions assumed in Theorem
14.2.2 fail, inference can be based on Zn , as we will now see.

Suppose for the moment that θ is real-valued and consider testing θ = θ0 versus
θ > θ0. For a given test φ = φ(X1, . . . , Xn), let

βφ(θ) = Eθ[φ(X1, . . . , Xn)]

denote its power function. ByProblem14.17, assuming q.m.d.,βφ(θ) is differentiable
at θ0 with
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β′
φ(θ0) =

∫
· · ·

∫
φ(x1, . . . , xn)

n∑

i=1

η̃(xi , θ0)
n∏

i=1

pθ0(xi )μ(dx1) · · · μ(dxn) .

Consider the problem of finding the level α test φ that maximizes β′
φ(θ0). By the

general form of theNeyman–Pearson Lemma, the optimal test rejects for large values
of

∑
i η̃(Xi , θ0), or equivalently, large values of Zn . By Problem 8.4, if this is the

unique test maximizing the slope of the power function at θ0, then it is also locally
most powerful. Thus, tests based on Zn are appealing from this point of view.

We turn now to the asymptotic behavior of tests based on Zn . Assume the assump-
tions of quadratic mean differentiability hold for general k, so that under θ0,

Zn
d→ N (0, I (θ0)) .

By Corollary 14.4.1, under θn = θ0 + hn−1/2,

Zn
d→ N (I (θ0)h, I (θ0)) .

It follows that, under θn = θ0 + hn−1/2,

I−1/2(θ0)Zn
d→ N (I 1/2(θ0)h, Ik) . (14.75)

Now, suppose k = 1 and the problem is to test θ = θ0 versus θ > θ0. Rao’s score
test rejectswhen the one-sided score statistic I−1/2(θ0)Zn exceeds z1−α and is asymp-
totically level α. In this case, the Wald test that rejects when I 1/2(θ0)n1/2(θ̂n − θ0)
exceeds z1−α and the score test are asymptotically equivalent, in the sense that the
probability that the two tests yield the same decision tends to one, both under the null
hypothesis θ = θ0 and under a sequence of alternatives θ0 + hn−1/2. The equivalence
follows from contiguity, the expansion (14.62), and the fact that I (θ̂n) → I (θ0) in
probability under θ0 and under θ0 + hn−1/2. Note that the two tests may differ greatly
for alternatives far from θ0; see Example 15.3.3.

Example 14.4.4 (Bivariate Normal Correlation) Assume Xi = (Ui , Vi ) are i.i.d.
according to the bivariate normal distribution with means zero and variances one, so
that the only unknown parameter is ρ, the correlation. In this case,

log Ln(ρ) = −n log(2π) − n

2
log(1 − ρ2) −

n∑

i=1

[ 1

2(1 − ρ2)
(U 2

i − 2ρUiVi + V 2
i )]

and so

∂

∂ρ
log Ln(ρ) = nρ

1 − ρ2
+ 1

1 − ρ2

n∑

i=1

Ui Vi − ρ

(1 − ρ2)2

n∑

i=1

(U2
i − 2ρUi Vi + V 2

i ) .

In the special case θ0 = ρ0 = 0,
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Zn = n−1/2
n∑

i=1

UiVi
d→ N (0, 1) .

For other values of ρ0, the statistic is more complicated; however, we have
bypassed maximizing the likelihood function which may have multiple roots in this
example.

For general k, consider testing a simple null hypothesis θ = θ0 versus a multi-
sided alternative θ �= θ0. Then, assuming the expansion (14.62), we can replace
n1/2(θ̂n − θ0) in the Wald statistic (14.70) by I−1(θ0)Zn . In this case, the score test
rejects the null hypothesis when themulti-sided score statistic Z	

n I
−1(θ0)Zn exceeds

ck,1−α, and is asymptotically level α. Again, the Wald test and Rao’s score test are
asymptotically equivalent in the sense described above.

Next, we consider a composite null hypothesis. Interest focuses on the first p
components of θ, θ1, . . . , θp, with the remaining k − p components viewed as nui-
sance parameters. Let θ1,0, . . . , θp,0 be fixed and consider testing the null hypothesis
θi = θi,0 for i = 1, . . . , p. The Wald test is based on the limit

n1/2(θ̂n,1 − θ1, . . . , θ̂n,p − θp)
d→ N

(
0, �(p)(θ)

)
,

where �(θ) = I−1(θ) and �(p)(θ) is the p × p matrix formed by the intersection of
the first p rows and columns of �(θ). Similarly, define I (p)(θ) as the p × p matrix
formed by the intersection of the first p rows and columns of I (θ). Partition I (θ) as

I (θ) =
(
I (p)(θ) I12(θ)
I21(θ) I22(θ)

)
. (14.76)

Note that (Problem 14.51)

[�(p)(θ)]−1 = [I (p)(θ)] − I12(θ)I
−1
22 (θ)I21(θ) . (14.77)

The score test is based on Z (p)
n (θ), the p-vector obtained as the first p components

of Zn(θ), where Zn(θ) is defined in (14.59). Under q.m.d. at θ,

Z (p)
n (θ)

d→ N
(
0, I (p)(θ)

)
,

and so
Tn(θ) = [Z (p)

n (θ)]	[I (p)(θ)]−1[Z (p)
n (θ)] d→ χ2

p .

However, when the null hypothesis is not completely specified, the Rao score test
statistic is Tn(θ̂n,0), where

θ̂n,0 = (θ1,0, . . . , θp,0, θ̂p+1,0, . . . , θ̂k,0)
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is the constrained maximum likelihood estimator of θ, that is, the maximum likeli-
hood estimator under the restricted parameter space satisfying the constraints of the
null hypothesis. In fact, as argued by Hall and Mathiason (1990), any

√
n-consistent

estimator can be used in the score statistic.
In order to determine the constrained maximum likelihood estimator θ̃n , one typ-

ically introduces the Lagrangian function and maximizes

log Ln(θ) −
p∑

i=1

λi (θi − θi,0)

over θ and the so-called Lagrangemultipliersλ1, . . . ,λp. Assuming differentiability,
the first-order conditions require that

∂

∂θi
log Ln(θ)|θ=θ̃n

= λ̃i i = 1, . . . , p .

Since the left-hand side represents the components of
√
nZ (p)

n (θ̃n), tests based on
Z (p)
n (θ̃n) are equivalent to tests based on λ̃ = (λ̃1, . . . , λ̃p)

	. For this reason, score
tests are sometimes referred to as Lagrange multiplier tests. Such terminology is
particularly popular in econometrics.

More generally, suppose the null hypothesis H0 specifies gi (θ) = ci , for i =
1, . . . , p, where p ≤ k and the ci are fixed. Let θ̃n be the restricted maximum likeli-
hood estimator for the null hypothesis parameter space, assuming it exists. The score
test is based on

Zn(θ̃n)
	 I−1(θ̃n)Zn(θ̃n) ,

which, under smoothness assumptions on the g j , is asymptotically Chi-squared with
p degrees of freedom under H0. Note Zn(θ̃n) can also be represented in terms of
Lagrange multipliers. To see how, let Sn(θ) be the k × 1 score vector with i th com-
ponent

Sn,i (θ) = ∂

∂θi
log Ln(θ) .

(So, Zn(θ) = n−1/2Sn(θ) under usual differentiability; see Theorem 14.2.2 and
(14.74)). The Lagrangian function is

log Ln(θ) −
p∑

i=1

λi [gi (θ) − ci ] .

Let Dn(θ) be the p × k matrix with (i, j) entry given in (14.72). Then, θ̃n satisfies
the first-order conditions if

gi (θ̃n) = ci for i = 1, . . . , p
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and
Sn(θ̃n) − D(θ̃n)

	λ̃ = 0 ,

or Zn(θ̃n) = √
nD(θ̃n)

	λ̃.

14.4.4 Likelihood Ratio Tests

In addition to thatWald and Rao scores tests of Sections 14.4.2 and 14.4.3, let us now
consider a third test of θ ∈ �0 versus θ /∈ �0, based on the likelihood ratio statistic
2 log(Rn), where

Rn = supθ∈� Ln(θ)

supθ∈�0
Ln(θ)

. (14.78)

The likelihood ratio test rejects for large values of 2 log(Rn). If θ̂n and θ̂n,0 are MLEs
for θ as θ varies in � and �0, respectively, then

Rn = Ln(θ̂n)/Ln(θ̂n,0) . (14.79)

In the real-valued casewhen testing the simple null hypothesis θ = θ0, Figure 14.1
plots the logarithm of the likelihood function Ln(θ) as a function of θ. The difference
between the MLE θ̂n and θ0 can easily be seen on the horizontal θ-axis, and serves
as a basis for a Wald test. The difference between the loglikelihood function at θ̂n
and θ0 is depicted as log(Rn). Rao’s score test derives from the tangent (in green) to
the loglikelihood when θ = θ0.

Example 14.4.5 (Multivariate Normal Mean) Suppose X = (X1, . . . , Xk)
	 is

multivariate normal with unknownmean vector θ and known positive definite covari-
ance matrix �. The likelihood function is given by

|�|−1/2

(2π)k/2
exp

[
−1

2
(X − θ)	�−1(X − θ)

]
.

Assume θ ∈ IRk and that the null hypothesis asserts θi = 0 for i = 1, . . . , k. Then,

2 log(R1) = − inf
θ

(X − θ)	�−1(X − θ) + X	�−1X = X	�−1X = |�−1/2X |2 .

Under the null hypothesis, �−1/2X is exactly standard multivariate normal, and so
the null distribution of 2 log(R1) is exactly χ2

k in this case.
Now, consider testing the composite hypothesis θi = 0 for i = 1, . . . , p, with the

remaining parameters θp+1, . . . , θk regarded as nuisance parameters.More generally,
suppose

�0 = {θ = (θ1, . . . , θk) : A(θ − a) = 0} , (14.80)
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θ0 θ̂n θ

logLn(θ)

logRn

Figure 14.1 Loglikelihood Function

where A is a p × k matrix of rank p and a is some fixed k × 1 vector. Then,

2 log(R1) = − inf
θ∈IRk

(X − θ)	�−1(X − θ) + inf
θ∈�0

(X − θ)	�−1(X − θ)

= inf
θ∈�0

(X − θ)	�−1(X − θ) . (14.81)

The null distribution of (14.81) is χ2
p (Problem 14.52).

Let us now consider the large-sample behavior of the likelihood ratio test in greater
generality. First, suppose �0 = {θ0} is simple. Then,

log(Rn) = sup
h

[log(Ln,h)] ,

where Ln,h is defined in (14.57). If the family is q.m.d. at θ0, then

log(Rn) = sup
h

[〈h, Zn〉 − 1

2
〈h, I (θ0)h〉 + oPn

θ0
(1)] .

It is plausible that log(Rn) should behave like

log R̃n ≡ sup
h

[log(L̃n,h)] ,

where L̃n,h is defined by (14.60). But L̃n,h is maximized at h̃n = I−1(θ0)Zn and so
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log(Rn) ≈ log(R̃n) = log(L̃n,h̃n
) = 1

2
Z	
n I

−1(θ0)Zn .

Since, 2 log(R̃n)
d→ χ2

k , the heuristics suggest that 2 log(Rn)
d→ χ2

k as well. In fact,
2 log(R̃n) is Rao’s score test statistic, and so these heuristics also suggest that Rao’s
score test, the likelihood ratio test, and Wald’s test are all asymptotically equiva-
lent in the sense described earlier in comparing the Wald test and the score test.
Note, however, that the tests are not always asymptotically equivalent; some striking
differences will be presented in Section 15.3.

These heuristics can bemade rigorous under stronger assumptions, such asCramér
type differentiability conditions used in proving asymptotic normality of the MLE
or an ELE; see Theorem 7.7.2 in Lehmann (1999). Alternatively, once the general
heuristics point toward the limiting behavior, the approximations may be made rig-
orous by direct calculation in a particular situation. A general theorem based on
the existence of efficient likelihood estimators will be presented following the next
example.

Example 14.4.6 (MultinomialGoodness of Fit) Consider a sequence of n indepen-
dent trials, each resulting in one of k + 1 outcomes 1, . . . , k + 1. Outcome j occurs
with probability p j on any given trial. Let Y j be the number of trials resulting in out-
come j . Consider testing the simple null hypothesis p j = π j for j = 1, . . . , k + 1.
The parameter space � is

� = {(p1, . . . , pk) ∈ IRk : pi ≥ 0,
k∑

j=1

p j ≤ 1} (14.82)

since pk+1 is determined as 1 − ∑k
j=1 p j . In this case, the likelihood can be written

as

Ln(p1, . . . , pk) = n!
Y1! · · · Yk+1! p

Y1
1 · · · pYk+1

k+1 .

By solving the likelihood equations, it is easily checked that the uniqueMLE is given
by p̂ j = Y j/n (Problem 14.57 (i)). Hence, the likelihood ratio statistic is

Rn = Ln(Y1/n, . . . ,Yk/n)

Ln(π1, . . . ,πk)
,

and so (Problem 14.57 (ii))

log(Rn) = n
k+1∑

j=1

p̂ j log(
p̂ j

π j
) . (14.83)

The previous heuristics suggest that 2 log(Rn) converges in distribution to χ2
k , which

will be proved in Theorem 14.4.2 below. Note that the Taylor expansion
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f (x) = x log(x/x0) = (x − x0) + 1

2x0
(x − x0)

2 + o[(x − x0)
2]

as x → x0 implies 2 log(Rn) ≈ Qn , where Qn is Pearson’s Chi-squared statistic
given by

Qn =
k+1∑

j=1

(Y j − nπ j )
2

nπ j
. (14.84)

Indeed, 2 log(Rn) − Qn
P→ 0, under the null hypothesis (Problem 14.59) and so they

have the same limiting distribution. Moreover, it can be checked (Problem 14.58)
that Rao’s Score test statistic is exactly Qn . The Chi-squared test will be treated more
fully in Section 16.3.

Next, we present a fairly general result on the asymptotic distribution of the
likelihood ratio statistic. Actually, we consider a generalization of the likelihood
ratio statistic. Rather than having to compute the maximum likelihood estimators
θ̂n and θ̂n,0 in (14.79), we assume these estimators satisfy (14.62) under the models
with parameter spaces � and �0, respectively.

Theorem 14.4.2 Assume X1, . . . , Xn are i.i.d. according to q.m.d. family {Pθ, θ ∈
�}, where � is an open subset of IRk and I (θ) is positive definite. Further
assume, for θ in a neighborhood of θ0 and a (measurable) function M(x) satisfying
Eθ0 [M(Xi )] < ∞,

| log pθ(x) − log pθ0(x) − (θ − θ0)η̃θ0(x)| ≤ M(x)|θ − θ0|2 . (14.85)

(i) Consider testing the simple null hypothesis θ = θ0. Suppose θ̂n is an efficient
estimator for θ assuming θ ∈ � in the sense that it satisfies (14.62) when θ = θ0.
Then, the likelihood ratio Rn = Ln(θ̂n)/Ln(θ0) satisfies, under θ0,

2 log(Rn)
d→ χ2

k .

(ii) Consider testing the composite null hypothesis θ ∈ �0, where

�0 = {θ = (θ1, . . . , θk) : A(θ − a) = 0} ,

and A is a p × k matrix of rank p and a is a fixed k × 1 vector. Let θ̂n,0 denote
an efficient estimator of θ assuming θ ∈ �0; that is, assume the expansion (14.62)
holds based on the model {Pθ, θ ∈ �0} and any θ ∈ �0. Then, the likelihood ratio
Rn = Ln(θ̂n)/Ln(θ̂n,0) satisfies, under any θ0 ∈ �0,

2 log(Rn)
d→ χ2

p .
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(iii) More generally, suppose �0 is represented as

�0 = {θ : g = (g1(θ), . . . , gp(θ))
	 = 0} ,

where gi (θ) is a continuously differentiable function from IRk to IR. Let D = D(θ)
be the p × k matrix with (i, j) entry ∂gi (θ)/∂θ j , assumed to have rank p. Then,

2 log(Rn)
d→ χ2

p.

Proof. First, consider (i). Let ĥn = n1/2(θ̂n − θ0) so that 2 log(Rn) = 2 log(Ln,ĥn
).

Fix any c > 0 and define

εn,c = sup
|h|≤c

| log(Ln,h) − [〈h, Zn〉 − 1

2
〈h, I (θ0)h〉]| ;

by Problem 15.12, εn,c → 0 in probability under θ0. By the triangle inequality,

2 log(Ln,ĥn
) ≤ 2[〈ĥn, Zn〉 − 1

2
〈ĥn, I (θ0)ĥn〉 + εn,c]

if |ĥn| ≤ c. But, using (14.62),

2[〈ĥn, Zn〉 − 1

2
〈ĥn, I (θ0)ĥn〉] = Z	

n I
−1(θ0)Zn + oPθ0

(1) ;

so,
2 log(Ln,ĥn

) ≤ Z	
n I

−1(θ0)Zn + ε̃n,c

if |ĥn| ≤ c, where ε̃n,c → 0 in probability under θ0 for any c > 0. Therefore,

P{2 log(Ln,ĥn
) ≥ x} ≤ P{Z	

n I
−1(θ0)Zn + ε̃n,c ≥ x, |ĥn| ≤ c} + P{|ĥn| > c}

≤ P{Z	
n I

−1(θ0)Zn + ε̃n,c ≥ x} + P{|ĥn| > c} . (14.86)

But, under θ0 , Z	
n I

−1(θ0)Zn is asymptotically χ2
k and ĥn

d→ Z where Z is
N (0, I−1(θ0)), so (14.86) tends to

P{χ2
k ≥ x} + P{|Z | > c} .

Let c → ∞ to conclude

lim sup
n

P{2 log(Ln,ĥn
) ≥ x} ≤ P{χ2

k ≥ x} .

A similar argument yields
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lim inf
n

P{2 log(Ln,ĥn
) ≥ x} ≥ P{χ2

k ≥ x} , (14.87)

and (i) is proved.
The proof of (ii) is based on a similar argument, combined with the results of

Example 14.4.5 for testing a composite null hypothesis about a multivariate normal
mean vector. The proof of (iii) is left as an exercise (Problem 14.62).

Example 14.4.7 (One-Sample Normal Mean) Suppose X1, . . . , Xn are i.i.d.
N (μ,σ2)with both parameters unknown. Consider testingμ = 0 versusμ �= 0. Then
(Problem 14.47),

2 log(Rn) = n log(1 + t2n
n − 1

) , (14.88)

where t2n = n X̄2
n/S

2
n is the one-sample t-statistic. By Problem 13.28, one can deduce

the following Edgeworth expansion for 2 log(Rn) (Problem 14.48):

P{2 log(Rn) ≤ r} = 1 − 2[�(−z) + 3

4n
zφ(z)] + O(n−2) , (14.89)

where z = √
r , � is the standard normal c.d.f. and �′ = φ. This implies that the test

that rejects when 2 log(Rn) > z1− α
2
has rejection probability equal to α + O(n−1).

But, a simple correction, known as a Bartlett correction, can improve the χ2
1 approx-

imation. Indeed, (14.89) and a Taylor expansion implies

P{2 log(Rn)(1 + b

n
) > z1− α

2
} = α + O(n−2) , (14.90)

if we take b = 3/2. Thus, the error in rejection probability of the Bartlett-corrected
test is O(n−2). Of course, in this example, the exact two-sided t-test is available.

It is worth knowing that, quite generally, a simple multiplicative correction to the
likelihood ratio statistic greatly improves the quality of the approximation. Specifi-
cally, for an appropriate choice of b, comparing 2 log(Rn)(1 + b

n ) to the usual limiting
χ2

p reduces the error in rejection probability from O(n−1) to O(n−2). In practice, b
can be derived by analytical means or estimated. The idea for such a Bartlett correc-
tion originated in Bartlett (1937). For appropriate regularity conditions that imply a
Bartlett correction works, see Barndorff-Nielsen and Hall (1988), Bickel and Ghosh
(1990), Jensen (1993) and DiCiccio and Stern (1994).

For hypotheses of the form assumed in Theorem 14.4.2, the degrees of freedom
can be remembered as the dimension of � minus the dimension of �0. In the special
case where the null hypothesis is specified by θi = θi,0 for i = 1, . . . , p and θ j

regarded as a nuisance parameter for j = p + 1, . . . , k, then the dimension of � is
k and the dimension of �0 is k − p; the degrees of freedom reduces to the number
of parameters p with values specified under the null hypothesis.

However, even for very smooth models, the limiting distribution of the likelihood
ratio test need not be Chi-squared under the null hypothesis when the null parameter
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space takes a different form than assumed in Theorem 14.4.2. The problem of testing
moment inequalities is an important example, as illustrated next.

Example 14.4.8 (Moment Inequalities) The problem of testing moment inequali-
ties was first considered in Example 8.7.3. Assume X1, . . . , Xn are i.i.d. multivariate
normal with unknown mean vector θ ∈ � = IRk and known invertible covariance
matrix �. The problem is to test the null hypothesis θ ∈ �0, where

�0 = {θ : θi ≤ 0 for all i = 1, . . . k} .

Of course, one can reduce by sufficiency to the sample mean vector X̄n . Then, the
argument leading to (14.81) shows that the likelihood ratio statistic in this case
becomes

2 log(Rn) = n inf
θ∈�0

(X̄n − θ)	�−1(X̄n − θ) .

Assume � is the identity matrix. Then, Rn reduces to

2 log(Rn) = n
k∑

i=1

max2(X̄n,i , 0) .

If θ = 0, then the distribution of 2 log(Rn) can be represented (exactly for any n) as
that of

k∑

i=1

max2(Zi , 0) ,

where the Zi are i.i.d. standard normal. Let ck,1−α be the 1 − α quantile of this
distribution. Then, by monotonicity (as in Example 8.7.3), the test that rejects when
2 log(Rn) exceeds ck,1−α has size α. On the other hand, if θ is such that exactly p
components are 0 and the remaining k − p components are negative, then

2 log(Rn)
d→

p∑

i=1

max(Z2
i , 0) .

Note the family of distributions on the right-hand side is stochastically increasing in

p. Finally, if θ lies in the interior of �0, 2 log(Rn)
P→ 0.

Suppose that θn = θ0 + hn−1/2, where θ0 = (θ0,1, . . . , θ0.k) lies on the boundary
of �. Let I be the set of indices i for which θ0,i = 0. Then, the limiting power of the
likelihood ratio test can be represented as (Problem 14.67)

P{
∑

i∈I
max2(Zi + hi , 0) > ck,1−α} . (14.91)
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If p = |I | is the number of indices of θ0 that are zero and p < k, then since cp,1−α <

ck,1−α, (14.92) is bounded above by

P{
∑

i∈I
max2(Zi + hi , 0) > cp,1−α} . (14.92)

Moment selectionmethods allow one to achieve power (14.92); see Problem 14.68.

14.5 Problems

Section 14.2

Problem 14.1 GeneralizeExample 14.2.1 to the casewhere X ismultivariate normal
with mean vector θ and nonsingular covariance matrix �.

Problem 14.2 Generalize Example 14.2.2 to the case of a multiparameter exponen-
tial family. Compare with the result of Problem 14.1.

Problem 14.3 Suppose gn is a sequence of functions in L2(μ); that is,
∫
g2ndμ < ∞.

Assume, for some function g,
∫
(gn − g)2dμ → 0. Prove that

∫
g2dμ < ∞.

Problem 14.4 Suppose gn is a sequence of functions in L2(μ) and, for some function
g,

∫
(gn − g)2dμ → 0. If

∫
h2dμ < ∞, show that

∫
hgndμ → ∫

hgdμ.

Problem 14.5 Suppose X and Y are independent, with X distributed as Pθ and Y
as P̄θ, as θ varies in a common index set �. Assume the families {Pθ} and {P̄θ} are
q.m.d. with Fisher Information matrices IX (θ) and IY (θ), respectively. Show that the
model based on the joint data (X,Y ) is q.m.d. and its Fisher Information matrix is
given by IX (θ) + IY (θ).

Problem 14.6 Fix a probability P . Let u(x) satisfy

∫
u(x)dP(x) = 0 .

(i) Assume supx |u(x)| < ∞, so that

pθ(x) = [1 + θu(x)]

defines a family of densities (with respect to P) for all small |θ|. Show this family is
q.m.d. at θ = 0. Calculate the quadratic mean derivative, score function, and I (0).
(ii) Alternatively, if u is unbounded, define pθ(x) = C(θ) exp(θu(x)), assuming∫
exp(θu(x))dP(x) exists for all small |θ|. For this family, argue the family is q.m.d.

at θ = 0, and calculate the score function and I (0).
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(iii) Suppose
∫
u2(x)dP(x) < ∞. Define

pθ(x) = C(θ)2[1 + exp(−2θu(x))]−1 .

Show this family is q.m.d. at θ = 0, and calculate the score function and I (0). [The
constructions in this problem are important for nonparametric applications, used later
in Chapters 15 and 16. The last construction is given in van der Vaart (1998).]

Problem 14.7 Fix a probability P on S and functions ui (x) such that∫
ui (x)dP(x) = 0 and

∫
u2i (x)dP(x) < ∞, for i = 1, 2. Adapt Problem 14.6 to

construct a family of distributions Pθ with θ ∈ IR2, defined for all small |θ|, such that
P0,0 = P , the family is q.m.d. at θ = (0, 0) with score vector at θ = (0, 0) given by
(u1(x), u2(x)). If S is the real line, construct the Pθ that works even if Pθ is required
to be smooth if P and the ui are smooth (i.e., having differentiable densities) or
subject to moment constraints (i.e., having finite pth moments).

Problem 14.8 Show that the definition of I (θ) in Definition 14.2.2 does not depend
on the choice of dominating measure μ.

Problem 14.9 In Examples 14.2.3 and 14.2.4, find the quadratic mean derivative
and I (θ).

Problem 14.10 In Example 14.2.5, show that
∫ {[ f ′(x)]2/ f (x)}dx is finite iff β >

1/2.

Problem 14.11 Prove Theorem 14.2.2 using an argument similar to the proof of
Theorem 14.2.1.

Problem 14.12 Suppose {Pθ} is q.m.d. at θ0 with derivative η(·, θ0). Show that, on
{x : pθ0(x) = 0}, we must have η(x, θ0) = 0, except possibly on a μ-null set. Hint:
On {pθ0(x) = 0}, write

0 ≤ n1/2 p1/2θ0+hn−1/2(x) = 〈h, η(x, θ0)〉 + rn,h(x) ,

where
∫
r2n,h(x)μ(dx) → 0. This implies, with h fixed, that rn,h(x) → 0 except for

x in μ-null set, at least along some subsequence.

Problem 14.13 Suppose {Pθ} is q.m.d. at θ0. Show

Pθ0+h{x : pθ0(x) = 0} = o(|h|2)

as |h| → 0. Hence, if X1, . . . , Xn are i.i.d. with likelihood ratio Ln,h defined by
(14.12), show that

Pn
θ0+hn−1/2{Ln,h = ∞} → 0 .

Problem 14.14 To see what might happen when the parameter space is not open,
let
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f0(x) = x I {0 ≤ x ≤ 1} + (2 − x)I {1 < x ≤ 2} .

Consider the family of densities indexed by θ ∈ [0, 1) defined by

pθ(x) = (1 − θ2) f0(x) + θ2 f0(x − 2) .

Show that the condition (14.5) holds when θ0 = 0, if it is only required that h tends
to 0 through positive values. Investigate the behavior of the likelihood ratio (14.12)
for such a family. (For a more general treatment, consult Pollard (1997)).

Problem 14.15 Suppose X1, . . . , Xn are i.i.d. and uniformly distributed on (0, θ).
Let pθ(x) = θ−1 I {0 < x < θ} and Ln(θ) = ∏

i pθ(Xi ). Fix p and θ0. Determine
the limiting behavior of Ln(θ0 + hn−p)/Ln(θ0) under θ0. For what p and h is the
limiting distribution nondegenerate?

Problem 14.16 Suppose {Pθ, θ ∈ �} is a model with � an open subset of IRk , and
having densities pθ(x) with respect to μ. Define the model to be L1-differentiable at
θ0 if there exists a vector of real-valued functions ζ(·, θ0) such that

∫
|pθ0+h(x) − pθ0(x) − 〈ζ(x, θ0), h〉|dμ(x) = o(|h|) (14.93)

as |h| → 0. Show that, if the family is q.m.d. at θ0 with q.m. derivative η(·, θ0), then
it is L1-differentiable with

ζ(x, θ0) = 2η(x, θ0)p
1/2
θ0

(x) ,

but the converse is false.

Problem 14.17 Assume {Pθ, θ ∈ �} is L1-differentiable, so that (14.93) holds.
For simplicity, assume k = 1 (but the problem generalizes). Let φ(·) be uniformly
bounded and set β(θ) = Eθ[φ(X)]. Show β′(θ) exists at θ0 and

β′(θ0) =
∫

φ(x)ζ(x, θ0)μ(dx) . (14.94)

Hence, if {Pθ} is q.m.d. at θ0 with derivative η(·, θ0), then

β′(θ0) =
∫

φ(x)η̃(x, θ0)pθ0(x)μ(dx) , (14.95)

where η̃(x, θ0) = 2η(x, θ0)/p
1/2
θ0

(x). More generally, if X1, . . . , Xn are i.i.d. Pθ and
φ(X1, . . . , Xn) is uniformly bounded, then β(θ) = Eθ[φ(X1, . . . , Xn)] is differen-
tiable at θ0 with
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β′(θ0) =
∫

· · ·
∫

φ(x1, . . . , xn)
n∑

i=1

η̃(xi , θ0)
n∏

i=1

pθ0(xi )μ(dx1) · · · μ(dxn) .

(14.96)

Section 14.3

Problem 14.18 Prove (14.31).

Problem 14.19 Show the convergence (14.35).

Problem 14.20 Fix two probabilities P and Q and let Pn = P and Qn = Q. Show
that {Pn} and {Qn} are contiguous iff P and Q are absolutely continuous.

Problem 14.21 Fix two probabilities P and Q and let Pn = Pn and Qn = Qn . Show
that {Pn} and {Qn} are contiguous iff P = Q.

Problem 14.22 Suppose Qn is contiguous to Pn and let Ln be the likelihood ratio
defined by (14.36). Show that EPn (Ln) → 1. Is the converse true?

Problem 14.23 Consider a sequence {Pn, Qn} with likelihood ratio Ln defined in

(14.36). Assume L(Ln|Pn) d→ W , where P{W = 0} = 0; show Pn is contiguous to
Qn . Also, under (14.41), deduce that Pn is contiguous to Qn and hence Pn and Qn

are mutually contiguous if and only if μ = −σ2/2.

Problem 14.24 Suppose, under Pn , Xn = Yn + oPn (1); that is, Xn − Yn → 0 in Pn-
probability. Suppose Qn is contiguous to Pn . Show that Xn = Yn + oQn (1).

Problem 14.25 Suppose Xn has distribution Pn or Qn and Tn = Tn(Xn) is sufficient.
Let PT

n and QT
n denote the distribution of Tn under Pn and Qn , respectively. Prove

or disprove: Qn is contiguous to Pn if and only if QT
n is contiguous to PT

n .

Problem 14.26 Suppose Q is absolutely continuous with respect to P . If P{En} →
0, then Q{En} → 0.

Problem 14.27 Prove the convergence (14.40).

Problem 14.28 Show that σ1,2 in (14.52) reduces to h/
√

π.

Problem 14.29 Verify (14.53) and evaluate it in the casewhere f (x) = exp(−|x |)/2
is the double exponential density.

Problem 14.30 Reconsider Example 14.3.11. Rather than finding the limiting dis-
tribution of Wn under contiguous alternatives, find the limiting distribution of Un

(properly normalized) under the same set of alternatives, whereUn is theU -statistic
introduced in Example 12.3.6. First, find the projection ofUn under the null hypoth-
esis, which representsUn as an asymptotically linear statistic. Then, relatingUn and
Wn , check that your solution agrees with the solution in Example 14.3.11.
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Problem 14.31 Suppose X1, . . . , Xn are i.i.d. according to a model which is q.m.d.
at θ0. For testing θ = θ0 versus θ = θ0 + hn−1/2, consider the test ψn that rejects
H if log(Ln,h) exceeds z1−ασh − 1

2σ
2
h , where Ln,h is defined by (14.54) and σ2

h =
〈h, I (θ0)h〉. Find the limiting value of Eθ0+hn−1/2(ψn).

Problem 14.32 Suppose Pθ is the uniformdistribution on (0, θ). Fixh anddetermine
whether or not Pn

1 and Pn
1+h/n are mutually contiguous. Consider both h > 0 and

h < 0.

Problem 14.33 Generalize Corollary 14.3.2 in the following way. Suppose Tn =
(Tn,1, . . . , Tn,k) ∈ IRk . Assume that, under Pn ,

(Tn,1, . . . , Tn,k, log(Ln))
d→ (T1, . . . , Tk, Z) ,

where (T1, . . . , Tk, Z) is multivariate normal withCov(Ti , Z) = ci . Then, under Qn ,

(Tn,1, . . . , Tn,k)
d→ (T1 + c1, . . . , Tk + ck) .

Problem 14.34 Suppose X1, . . . , Xn are i.i.d. according to a model {Pθ : θ ∈ �},
where � is an open subset of Rk . Assume that the model is q.m.d. Show that there
cannot exist an estimator sequence Tn satisfying

lim
n→∞ sup

|θ−θ0|≤n−1/2

Pn
θ (n1/2|Tn − θ| > ε) = 0 (14.97)

for every ε > 0 and any θ0. (Here Pn
θ means the joint probability distribution of

(X1, . . . , Xn) under θ.) Suppose the above condition (14.97) only holds for some
ε > 0. Does the same conclusion hold?

Problem 14.35 Assume Xi are independent, normally distributedwith E(Xi ) = μi .
Let Pn be the distribution of (X1, . . . , Xn) when μi = 0 for all i . Let Qn be the
distribution of (X1, . . . , Xn) when the μi are arbitrary constants. Find a necessary
and sufficient condition on μ1,μ2, . . . so that Pn and Qn are mutually contiguous.

Section 14.4

Problem 14.36 In Example 14.4.1, show that the likelihood equations have a unique
solution which corresponds to a global maximum of the likelihood function.

Problem 14.37 Suppose X1, . . . , Xn are i.i.d. Pθ according to the lognormal model
of Example 14.2.7.Write down the likelihood function and show that it is unbounded.

Problem 14.38 Generalize Example 14.4.2 to multiparameter exponential families.
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Problem 14.39 Prove Corollary 14.4.1. Hint: Simply define θ̂n = θ0 +
n−1/2 I−1(θ0)Zn and apply Theorem 14.4.1.

Problem 14.40 Let (Xi ,Yi ), i = 1 . . . n be i.i.d. such that Xi and Yi are independent
and normally distributed, Xi has variance σ2, Yi has variance τ 2 and both have
common mean μ.
(i) If σ and τ are known, determine an efficient likelihood estimator (ELE) μ̂ of μ
and find the limit distribution of n1/2(μ̂ − μ).
(ii) If σ and τ are unknown, provide an estimator μ̄ for which n1/2(μ̄ − μ) has the
same limit distribution as n1/2(μ̂ − μ).
(iii)What can you infer from your results (i) and (ii) regarding the Informationmatrix
I (θ), θ = (μ,σ, τ )?

Problem 14.41 Let X1, . . . , Xn be a sample from a Cauchy location model with
density f (x − θ), where

f (z) = 1

π(1 + z2)
.

Compare the limiting distribution of the sample median with that of an efficient
likelihood estimator.

Problem 14.42 Let X1, . . . , Xn be i.i.d. N (θ, θ2). Compare the asymptotic distri-
bution of X̄2

n with that of an efficient likelihood estimator sequence.

Problem 14.43 Let X1, · · · , Xn be i.i.d. with density

f (x, θ) = [1 + θ cos(x)]/2π,

where the parameter θ satisfies |θ| < 1 and x ranges between 0 and 2π. (The obser-
vations Xi may be interpreted as directional data. The case θ = 0 corresponds to the
uniform distribution on the circle.) Construct an efficient likelihood estimator of θ,
as explicitly as possible.

Problem 14.44 Suppose X1, . . . , Xn are i.i.d. with common density function

pθ(x) = θcθ

xθ+1
, 0 < c < x, θ > 0 .

Here, c is fixed and known and θ is unknown.
(i) Show that the maximum likelihood estimator θ̂n is well-defined and determine
the limiting distribution of

√
n(θ̂n − θ) under θ.

(ii) What is the score test for testing the null hypothesis θ = θ0 vs. θ �= θ0?

Problem 14.45 Suppose X1, . . . , Xn are i.i.d., uniformly distributed on [0, θ]. Find
themaximum likelihood estimator θ̂n of θ. Determine a sequence τn such that τn(θ̂n −
θ) has a limiting distribution, and determine the limit law.
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Problem 14.46 Verify that h̃n in (14.61) maximizes L̃n,h .

Problem 14.47 Suppose X1, . . . , Xn are i.i.d. N (μ,σ2) with both parameters
unknown. Consider testing μ = 0 versus μ �= 0. Find the likelihood ratio test
statistic, and determine its limiting distribution under the null hypothesis. Calcu-
late the limiting power of the test against the sequence of alternatives (μ,σ2) =
(h1n−1/2,σ2 + h2n−1/2).

Problem 14.48 In Example 14.4.7, verify (14.89) and (14.90).

Problem 14.49 Suppose a time series X0, X1, X2, . . . evolves in the following way.
The process starts at 0, so X0 = 0. For any i ≥ 1, conditional on X0, . . . , Xi−1, Xi =
ρXi−1 + εi , where the εi are i.i.d. standard normal. You observe X0, X1, X2, . . . , Xn .
For testing the null hypothesis ρ = 0 versus ρ > 0, determine both Wald and Rao
score tests as well as appropriate critical values. (Compare with Problems 3.35 and
14.49).

Problem 14.50 Suppose X1, . . . , Xn are i.i.d. Pθ, with θ ∈ �, an open subset of IRk .
Assume the family is q.m.d. at θ0 and consider testing the simple null hypothesis
θ = θ0. Suppose θ̂n is an estimator sequence satisfying (14.62), and consider the
Wald test statistic n(θ̂n − θ0)

	 I (θ0)(θ̂n − θ0). Find its limiting distribution against
the sequence of alternatives θ0 + hn−1/2, as well as an expression for its limiting
power against such a sequence of alternatives.

Problem 14.51 Prove (14.77). Then, show that

[�(p)(θ)]−1 ≤ [I (p)(θ)] .

What is the statistical interpretation of this inequality?

Problem 14.52 In Example 14.4.5, consider the case of a composite null hypothesis
with �0 given by (14.80). Show that the null distribution of the likelihood ratio
statistic given by (14.81) is χ2

p. Hint: First consider the case a = 0, so that �0 is a
linear subspace of dimension k − p. Let Z = �−1/2X , so

2 log(Rn) = inf
θ∈�0

|Z − �−1/2θ|2 .

As θ varies in �0, �−1/2θ varies in a subspace L of dimension k − p. If P is the
projection matrix onto L and I is the identity matrix, then 2 log(Rn) = |(I − P)Z |2.
Problem 14.53 In Example 14.4.5, determine the distribution of the likelihood ratio
statistic against an alternative, both for the simple and composite null hypotheses.

Problem 14.54 Suppose X1, . . . , Xn are i.i.d. N (μ,σ2) with both parameters
unknown. Consider testing the simple null hypothesis (μ,σ2) = (0, 1). Find and
compare the Wald test, Rao’s Score test, and the likelihood ratio test.
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Problem 14.55 Suppose X1, . . . , Xn are i.i.d. with the gamma �(g, b) density

f (x) = 1

�(g)bg
xg−1e−x/b x > 0 ,

with both parameters unknown (and positive). Consider testing the null hypothesis
that g = 1, i.e., under the null hypothesis the underlying density is exponential.
Determine the likelihood ratio test statistic and find its limiting distribution.

Problem 14.56 Suppose (X1,Y1), . . . , (Xn,Yn) are i.i.d., with Xi also independent
of Yi . Further suppose Xi is normal with mean μ1 and variance 1, and Yi is normal
with mean μ2 and variance 1. It is known that μi ≥ 0 for i = 1, 2. The problem is to
test the null hypothesis that at most one μi is positive versus the alternative that both
μ1 and μ2 are positive.
(i) Determine the likelihood ratio statistic for this problem.
(ii) In order to carry out the test, how would you choose the critical value (sequence)
so that the size of the test is α?

Problem 14.57 (i) In Example 14.4.6, check that the MLE is given by p̂ j = Y j/n.
(ii) Show (14.83).

Problem 14.58 In Example 14.4.6, show that Rao’s Score test is exactly Pearson’s
Chi-squared test.

Problem 14.59 In Example 14.4.6, show that 2 log(Rn) − Qn
P→ 0 under the null

hypothesis.

Problem 14.60 Prove (14.87).

Problem 14.61 Provide the details of the proof to part (ii) of Theorem 14.4.2.

Problem 14.62 Prove (iii) of Theorem14.4.2.Hint: If θ0 satisfies the null hypothesis
g(θ0) = 0, then testing �0 behaves asymptotically like testing the null hypothesis
D(θ0)(θ − θ0) = 0, which is a hypothesis of the form considered in part (ii) of the
theorem.

Problem 14.63 The problem is to test independence in a contingency table. Specif-
ically, suppose X1, . . . , Xn are i.i.d., where each Xi is cross-classified, so that
Xi = (r, s) with probability pr,s , r = 1, . . . , R, s = 1, . . . , S. Under the full model,
the pr,s vary freely, except they are nonnegative and sum to 1. Let pr · = ∑

s pr,s and
p·s = ∑

r pr,s . The null hypothesis asserts pr,s = pr · p·s for all r and s. Determine
the likelihood ratio test and its limiting null distribution.

Problem 14.64 Consider the following model which therefore generalizes model
(iii) of Section 4.7. A sample of ni subjects is obtained from class Ai (i = 1, . . . , a),
the samples from different classes being independent. If Yi, j is the number of sub-
jects from the i th sample belonging to Bj ( j = 1, . . . , b), the joint distribution of
(Yi,1, . . . ,Yi,b) is multinomial, say,
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M(ni ; p1|i , . . . , pb|i ) .

Determine the likelihood ratio statistic for testing the hypothesis of homogeneity that
the vector (p1|i , . . . , pb|i ) is independent of i , and specify its asymptotic distribution.

Problem 14.65 The hypothesis of symmetry in a square two-way contingency table
arises when one of the responses A1, . . . , Aa is observed for each of n subjects on
two occasions (e.g., before and after some intervention). If Yi, j is the number of
subjects whose responses on the two occasions are (Ai , A j ), the joint distribution of
the Yi, j is multinomial, with the probability of a subject response of (Ai , A j ) denoted
by pi, j . The hypothesis H of symmetry states that pi, j = p j,i for all i and j ; that
is, that the intervention has not changed the probabilities. Determine the likelihood
ratio statistic for testing H , and specify its asymptotic distribution. [Bowker (1948)].

Problem 14.66 In the situation of Problem 14.65, consider the hypothesis of
marginal homogeneity H ′ : pi+ = p+i for all i , where pi+ = ∑a

j=1 pii j , p+i =∑a
j=1 p jii .

(i) The maximum-likelihood estimates of the pii j under H ′ are given by ˆ̂pi j =
Yi j/(1 + λi − λ j ), where the λ’s are the solutions of the equations

∑
j Yi j/(1 +

λi − λ j ) = ∑
j Yi j/(1 + λ j − λi ). (These equations have no explicit solutions.)

(ii) Determine the number of degrees of freedom for the limiting χ2-distribution of
the likelihood ratio criterion.

Problem 14.67 In Example 14.4.8, show (14.91).

Problem 14.68 Consider testing moment inequalities under the setting of Exam-
ple 14.4.8. Rather than the likelihood ratio procedure discussed there, consider the
following moment selection procedure. Let J = { j : √

n X̄n, j > − log(n)}. Then,
reject if the likelihood ratio statistic 2 log(Rn) > c|J |,1−α, where |J | is the cardinality
of J .
(i) For any fixed θ ∈ �0, show that the probability of a Type 1 error under θ is
asymptotically no bigger than α. Does the size of the test tend to α?
(ii) Show that this procedure asymptotically achieves the power in (14.92). Can you
think of any criticism of the procedure?
(iii) Consider the test that rejects H0 when

Mn = √
n max

1≤i≤k
(X̄n,i ) > dk,1−α ,

where dk,1−α is the distribution ofmax1≤i≤k Zi when the Zi are i.i.d. standard normal.
Compute the limiting rejection probability under θ = θ0 + hn−1/2 for any θ0 on the
boundary of �0 and any h ∈ IRk .
(iv) As in (ii) above, apply a moment selection procedure based on the test statistic
Mn , and repeat (iii) for the procedure. [Moment selectionmethods for testingmoment
inequalities are discussed in Andrews and Barwick (2012) and Romano, Shaikh and
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Wolf (2014). Special emphasis is placed on error control that is uniform in the
underlying distribution.]

Problem 14.69 Consider the third of the three sampling schemes for a 2 × 2 × K
table discussed in Section 4.8, and the two hypotheses

H1 : �1 = · · · = �K = 1 and H2 : �1 = · · · = �K .

(i) Obtain the likelihood ratio test statistic for testing H1.
(ii) Obtain equations that determine the maximum likelihood estimates of the param-
eters under H2. (These equations cannot be solved explicitly.)
(iii) Determine the number of degrees of freedom of the limiting χ2-distribution of
the likelihood ratio test for testing (a) H1, (b) H2.
[For a discussion of these and related hypotheses, see for example Shaffer (1973),
Plackett (1981), or Bishop, Fienberg, and Holland (1975), and the recent study by
Liang and Self (1985).]

Problem 14.70 Suppose X1, . . . , Xn are i.i.d. N (θ, 1). Consider Hodges’ superef-
ficient estimator of θ (unpublished, but cited in Le Cam (1953)), defined as follows.
Let θ̂n be 0 if |X̄n| ≤ n−1/4; otherwise, let θ̂n = X̄n . For any fixed θ, determine the
limiting distribution of n1/2(θ̂n − θ). Next, determine the limiting distribution of
n1/2(θ̂n − θn) under θn = hn−1/2. Is θ̂n regular?

Problem 14.71 Suppose X1, . . . , Xn are i.i.d. random vectors in Rk having the
multivariate normal distributionwith unknownmean vectorμ and identity covariance
matrix. Fix a constant c > 0 and consider the shrinkage estimator of μ defined by

μ̂n =
(
1 − c

n‖X̄n‖2
)
X̄n ,

where X̄n is the sample mean vector and ‖ · ‖ is Euclidean norm. Determine whether
or not μ̂n is regular at μ = 0 by deriving the limiting distribution of

√
n(μ̂n − μ)

under μn = h/
√
n.

Problem 14.72 Suppose X1, . . . , Xn are i.i.d. according to a quadratic mean differ-
entiable model {Pθ, θ ∈ �}, where � is an open subset of the real line. Suppose an
estimator sequence θ̂n is asymptotically linear in the sense that,

n1/2(θ̂n − θ0) = n−1/2
n∑

i=1

ψθ0(Xi ) + oPn
θ0
(1)

where Eθ0 [ψθ0(Xi )] = 0 and τ 2 = Varθ0 [ψθ0(Xi )] < ∞.
(i) Find the joint limiting behavior of (n1/2(θ̂n − θ0), Zn) under θ0 + hn−1/2, where
Zn is the normalized score statistic given by
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Zn = n−1/2
n∑

i=1

η̃(Xi , θ0)

and η̃(·, θ0) is the usual score function.
(ii) Find a simple if and only if condition for θ̂n to be regular (at θ0). (Your answer
should depend on something about the functions ψθ0(·) and η̃(·, θ0).)
(iii) Find a simple if and only if condition for the statistic

Dn ≡ n1/2(θ̂n − θ0) − I−1(θ0)Zn

to be asymptotically ancillary at θ0, in the sense that its limiting distribution under
θ0 + hn−1/2 does not depend on h.
(iv) Find a simple if and only if condition for Dn and Zn to be asymptotically
independent.
(v)Under the additional assumption of regularity, find a simple if and only if condition
for the statistic sequence Dn defined above to tend in probability under θ0 to 0 (and
hence θ̂n is efficient under this condition).

Problem 14.73 Let (X j,1, X j,2), j = 1, . . . , n be independent pairs of independent
exponentially distributed random variables with E(X j,1) = θλ j and E(X j,2) = λ j .
Here, θ and the λ j are all unknown. The problem is to test θ = 1 against θ > 1.
Compare theRao,Wald, and likelihood ratio tests for this problem.Without appealing
to any general results, find the limiting distribution of your statistics, as well as the
limiting power against suitable local alternatives. (Note: the number of parameters is
increasing with n so you can’t directly appeal to our previous large-sample results.)

14.6 Notes

According to Le Cam andYang (2000), the notion of quadratic mean differentiability
was initiated in conversations between Hájek and Le Cam in 1962. Hájek (1962)
appears to be the first publication making use of this notion. The importance of
q.m.d. was prominent in the fundamental works of Le Cam (1969, 1970) and Hájek
(1972), and has been used extensively ever since.

The notion of (mutual) contiguity is due to Le Cam (1960). Its usefulness was
soon recognized by Hájek (1962), who first considered the one-sided version. Three
of Le Cam’s fundamental lemmas concerning contiguity became known as Le Cam’s
three lemmas, largely due to their prominence in Hájek and Sidák (1967). Further
results can be found in Roussas (1972), Le Cam (1990), Chapter 6, Hájek et al.
(1999), and Le Cam and Yang (2000), Chapter 3.

The methods studied in Section 14.4 are based on the notion of likelihood,
whose general importance was recognized in Fisher (1922, 1925a, 1925b). Rig-
orous approaches were developed byWald (1939, 1943) and Cramér (1943). Cramér
defined the asymptotic efficiency of an asymptotically normal estimator to be the
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ratio of its asymptotic variance to the Fisher Information; that such a definition is
flawed even for asymptotically normal estimatorswasmade clear byHodges superef-
ficient estimator (Problem 14.70). Le Cam (1956) introduced the one-step maximum
likelihood estimator, which is based on a discretization trick coupled with a Newton–
Raphson approximation. Such estimators satisfy (14.62) underweak assumptions and
enjoy other optimality properties; for example, see Section 7.3 of Millar (1983). The
notion of a regular estimator sequence introduced at the end of Section 14.4.1 plays
an important role in the theory of efficient estimation and the Hajék-Inagaki Con-
volution Theorem; see Hajék (1970), Le Cam (1979), Beran (1999), Millar (1985),
and van der Vaart (1988).

The asymptotic behavior of the likelihood ratio statistic was studied in Wilks
(1938) and Chernoff (1954). Pearson’s Chi-squared statistic was introduced in Pear-
son (1900) and the Rao score tests by Rao (1947). In fact, the Rao score test was
actually introduced in the univariate case byWald (1941b). One-sided score tests are
studied in Silvapulle and Silvapulle (1995). In econometrics, score tests are more
commonly known as Lagrange multiplier tests; see Silvey (1959) and Bera and Bil-
ias (2001). The asymptotic equivalence of many of the classical tests is explored in
Hall andMathiason (1990). Methods based on integrated likelihoods are reviewed in
Berger et al. (1999). Caveats about the finite-sample behavior of Rao and Wald tests
are given in Le Cam (1990); also see Fears et al. (1996) and Pawitan (2000). The
behavior of likelihood ratio tests under nonstandard conditions is studied in Vu and
Zhou (1997). Extensions of likelihood methods to semiparametric and nonparamet-
ric models are developed in Murphy and van der Vaart (1997), Owen (1988, 2001),
and Fan et al. (2001). Robust version of the Wald, likelihood, and score tests are
given in Heritier and Ronchetti (1994).
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