
Chapter 13
Applications to Inference

13.1 Introduction

In this chapter, we apply some basic asymptotic concepts and results to gain insight
into the large-sample behavior of some fundamental tests. Section13.2 considers the
robustness of some classical tests, like the t-test, when the underlying assumptions
may not hold. For example, for testing the null hypothesis that the underlyingmean is
zero, it is seen that the t-test is pointwise asymptotically level α for any distribution
F with finite nonzero variance. However, such a robustness of validity result does
not always extend to other parametric procedures, as will be seen. Although the
probability of a Type 1 error tends to the nominal level as n → ∞, it is also important
to investigate the speed of convergence. For this reason, Edgeworth expansions are
discussed in Section13.3. Further results are developed for testing a univariate mean
in a nonparametric setting in Section13.4. The question of whether or not the t-
test is uniformly asymptotically level α is investigated, where uniformity refers to
some broad nonparametric family. In order to obtain uniformity, some restrictions
are needed for any method, as demonstrated by a result of Bahadaur and Savage.
Section13.5 serves as an introduction to testing many means in a high-dimensional
setting.

13.2 Robustness of Some Classical Tests

Optimality theory postulates a statistical model and then attempts to determine a
best procedure for that model. Since model assumptions tend to be unreliable, it is
necessary to go a step further and ask how sensitive the procedure and its optimality
are to the assumptions. In the normal models of Chapters 4–7, three assumptions
are made: independence, identity of distribution, and normality. In the two-sample
t-test, there is the additional assumption of equality of variance. We shall consider
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the effects of nonnormality and inequality of variance in the first subsection, and that
of dependence in the next subsection.

The natural first question to ask about the robustness of a test concerns the behav-
ior of the significance level. If an assumption is violated, is the significance level still
approximately valid? Such questions concerning robustness of validity are typically
answered by combining two methods of attack. The actual significance level under
some alternative distribution is either calculated exactly or, more usually, estimated
by simulation. In addition, asymptotic results are obtained which provide approxi-
mations to the true significance level for a wide variety of models. We here restrict
ourselves to a brief sketch of the latter approach.

13.2.1 Effect of Distribution

Consider the one-sample problem where X1, . . . , Xn are independently distributed
as N (ξ,σ2). Tests of H : ξ = ξ0 are based on the test statistic

tn = tn(X1, . . . , Xn) =
√
n(X̄ n − ξ0)

Sn
=

√
n(X̄ n − ξ0)

σ

/
Sn
σ

, (13.1)

where
S2n =

∑
(Xi − X̄ n)

2/(n − 1) ;

see Section 5.2. When ξ = ξ0 and the X ’s are normal, tn has the t-distribution with
n − 1 degrees of freedom. Suppose, however, that the normality assumption fails and
the X ’s instead are distributed according to some other distribution F with mean ξ0
and finite variance. Then by theCentral Limit Theorem,

√
n(X̄ n − ξ0)/σ has the limit

distribution N (0, 1); furthermore Sn/σ tends to 1 in probability by Example 11.3.3.
Therefore, by Slutsky’s Theorem, tn has the limit distribution N (0, 1) regardless of
F . This shows in particular that the t-distribution with n − 1 degrees of freedom
tends to N (0, 1) as n → ∞.

To be specific, consider the one-sided t-test which rejects when tn ≥ tn−1,1−α,
where tn−1,1−α is the 1 − α quantile of the t-distribution with n − 1 degrees of
freedom. It follows from Corollary 11.3.1 and the asymptotic normality of the t-
distribution that (see Problem 11.47 (ii))

tn−1,1−α → z1−α = �−1(1 − α) .

In fact, the difference tn−1,1−α − z1−α is O(n−1), as will be seen in Section13.3.
Let αn(F) be the true probability of the rejection region tn ≥ tn−1,1−α when the

distribution of the X ’s is F . Then

αn(F) = PF {tn ≥ tn−1,1−α}
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has the same limit as P�{tn ≥ z1−α}, which is α. Thus, the t-test is pointwise asymp-
totically level α, assuming the underlying distribution has a finite nonzero variance.
However, the t-test is not uniformly asymptotically levelα. This issue will be studied
more closely in Section13.4. For sufficiently large n, the actual rejection probability
αn(F)will be close to the nominal levelα; how close depends on F and n. For entries
to the literature dealing with this dependence, see Cressie (1980), Tan (1982), Ben-
jamini (1983), and Edelman (1990). Other robust approaches for testing the mean are
discussed in Sutton (1993) and Chen (1995). The use of permutation and resampling
methods will be deferred to Chapters 17 and 18.

To study the corresponding test of variance, supposefirst that themean ξ is 0.When
F is normal, theUMP test of H : σ = σ0 againstσ > σ0 rejectswhen

∑
X2
i /σ

2
0 is too

large, where the null distribution of
∑

X2
i /σ

2
0 is χ2

n . By the Central Limit Theorem,

1√
n
(
∑

X2
i − nσ2

0)
d→ N (0, 2σ4

0)

as n → ∞, since Var(X2
i ) = 2σ4

0. If the rejection region is written as

∑
X2
i − nσ2

0√
2nσ2

0

≥ Cn ,

it follows that Cn → z1−α.
Suppose now instead that the X ’s are distributed according to a distribution F

with E(Xi ) = 0, E(X2
i ) = Var(Xi ) = σ2, and Var(X2

i ) = γ2. Then,

∑
(X2

i − nσ2
0)/

√
n

d→ N (0, γ2)

when σ = σ0, and the rejection probability αn(F) of the test tends to

lim P

{∑
X2
i − nσ2

0√
2nσ2

0

≥ z1−α

}
= 1 − �

(
z1−α

√
2σ2

0

γ

)
.

Depending on γ, which can take on any positive value, the sequence αn(F) can thus
tend to any limit< 1

2 . Even asymptotically and under rather small departures from
normality (if they lead to big changes in γ), the size of the χ2-test is thus completely
uncontrolled.

For sufficiently large n, the difficulty can be overcome by Studentization,1 where
one divides the test statistic by a consistent estimate of the asymptotic standard
deviation. Letting Yi = X2

i and E(Yi ) = η = σ2, the test statistic then reduces to√
n(Ȳ − η0). To obtain an asymptotically valid test, it is only necessary to divide by

a suitable estimator of
√
VarYi such as

√∑
(Yi − Ȳ )2/n. (However, since Y 2

i = X4
i ,

1 Studentization is defined in a more general context at the end of Section 7.3.
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small changes in the tail of Xi may have large effects on Y 2
i , and n may have to be

rather large for the asymptotic result to give a good approximation.)
When ξ is unknown, the normal theory test for σ2 is based on

∑
(Xi − X̄ n)

2, and
the sequence

1√
n

[∑
(Xi − X̄ n)

2 − nσ2
0

]
= 1√

n

(∑
X2
i − nσ2

0

)
− 1√

n
n X̄2

again has the limit distribution N (0, γ2). To see this, note that the distribution of∑
(Xi − X̄ n)

2 is independent of ξ and put ξ = 0. Since
√
n X̄ has a (normal) limit

distribution, n X̄2 is bounded in probability and so n X̄2/
√
n tends to zero in proba-

bility. The result now follows from that for ξ = 0 and Slutsky’s Theorem.
The above results carry over to the corresponding two-sample problems that were

considered in Section 5.3. Consider the two-sample t-statistic given by (5.28). An
extension of the one-sample argument shows that as m, n → ∞,

Ȳ n − X̄m

σ
√
1/m + 1/n

d→ N (0, 1)

while ∑
(Xi − X̄m)2 +∑(Y j − Ȳ n)

2

(m + n − 2)σ2

P→ 1

for samples X1, . . . , Xm ; Y1, . . . ,Yn from any common distribution F with finite
variance. Thus, the rejection probability αm,n(F) tends to α for any such F . As will
be seen in Section13.2.3, the same robustness property for the UMP invariant test
of equality of s means also holds.

On the other hand, the F-test for variances, just like the one-sample χ2-test, is
extremely sensitive to the assumption of normality. To see this, express the rejection
region in terms of log S2Y − log S2X , where

S2X =
∑

(Xi − X̄m)2

m − 1

and

S2Y =
∑

(Y j − Ȳ n)
2

n − 1
.

Also, suppose that as m and n → ∞, m/(m + n) remains fixed at ρ. By the result
for the one-sample problem and the delta method with g(u) = log u (Theorem
11.3.4), it is seen that

√
m[log S2X − logσ2] and

√
n[log S2Y − logσ2] both tend

in law to N (0, γ2/σ4) when the X ’s and Y ’s are distributed as F , and hence that√
m + n[log S2Y − log S2X ] tends in law to the normal distribution with mean 0 and

variance
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γ2

σ4

(
1

ρ
+ 1

1 − ρ

)
= γ2

ρ(1 − ρ)σ4
.

In the particular case that F is normal, γ2 = 2σ4 and the variance of the limit dis-
tribution is 2/ρ(1 − ρ). For other distributions γ2/σ4 can take on any positive value
and, as in the one-sample case, αn(F) can tend to any limit less than 1

2 . [For an entry
into the extensive literature on more robust alternatives, see for example Conover et
al. (1981), Tiku and Balakrishnan (1984), Boos and Brownie (1989), Baker (1995),
Hall and Padmanabhan (1997), and Section2.10 of Hettmansperger and McKean
(1998)].

Having found that the rejection probability of the one- and two-sample t-tests is
relatively insensitive to nonnormality (at least for large samples), let us turn to the
corresponding question concerning the power of these tests. By similar asymptotic
calculations, it can be shown that the same conclusion holds. Power values of the t-
tests obtained under normality are asymptotically valid also for all other distributions
with finite variance. This is a useful result if it has been decided to employ a t-test
and one wishes to know what power it will have against a given alternative ξ/σ or
(η − ξ)/σ, or what sample sizes are required to obtain a given power.

Recall that there exists a modification of the t-test, the permutation version of the
t-test discussed inSection5.9,whose size is independent of F not only asymptotically
but exactly. Moreover, we will see in Section 17.2 that its asymptotic power is equal
to that of the t-test. It may seem that the permutation t-test has all the properties
one could hope for. However, this overlooks the basic question of whether the t-test
itself, which is optimal under normality, will retain a high standing with respect to
its competitors under other distributions. The t-tests are in fact not robust in this
sense. Some tests which are preferable when a broad spectrum of distributions F
is considered possible were discussed in Section 6.9. A permutation test with this
property has been proposed by Lambert (1985).

As a last problem, consider the level of the two-sample t-test when the variances
Var(Xi ) = σ2 and Var(Y j ) = τ 2 may differ (as in the Behrens–Fisher problem),
and the assumption of normality may fail as well. As before, one finds that (Ȳ m −
X̄ n)/

√
σ2/m + τ 2/n tends in law to N (0, 1) as m, n → ∞, while S2X =∑(Xi −

X̄m)2/(m − 1) and S2Y =∑(Yi − Ȳ n)
2/(n − 1), respectively, tend to σ2 and τ 2 in

probability. If m and n tend to ∞ through a sequence with fixed proportion m/(m +
n) = ρ, the squared denominator of the t-statistic,

D2 = m − 1

m + n − 2
S2X + n − 1

m + n − 2
S2Y ,

tends in probability to ρσ2 + (1 − ρ)τ 2, and the limit of

t = 1√
1
m + 1

n

⎛
⎝ Ȳ n − X̄m√

σ2

m + τ 2

n

·
√

σ2

m + τ 2

n

D

⎞
⎠
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is normal with mean zero and variance

(1 − ρ)σ2 + ρτ 2

ρσ2 + (1 − ρ)τ 2
. (13.2)

The ratio (13.2) is exactly one if and only if ρ = 1
2 or σ = τ . When m = n, so

that ρ = 1
2 , the t-test thus has approximately the right level even if σ and τ are far

apart. The accuracy of this approximation for different values of m = n and τ/σ is
discussed by Ramsey (1980) and Posten et al. (1982). However, when ρ �= 1

2 , the
actual size of the test can differ greatly from the nominal level α even for largem and
n. An approximate test of the hypothesis H : η = ξ when σ, τ are not assumed equal,
which asymptotically is free of this difficulty, can be obtained throughStudentization,
i.e., by replacing D2 with (1/m)S2X + (1/n)S2Y and referring the resulting statistic to
the standard normal distribution. This approximation is very crude, and not reliable
unlessm and n are fairly large. A refinement, theWelch approximate t-test, refers the
resulting statistic not to the standard normal but to the t-distribution with a random
number of degrees of freedom f given by

1

f
=
(

R

1 + R

)2 1

m − 1
+ 1

(1 + R)2
· 1

n − 1
,

where R = (nS2X )/(mS2Y ).2 When the X ’s and Y ’s are normal, the actual level of this
test has been shown to be quite close to the nominal level for sample sizes as small
as m = 4, n = 8 and m = n = 6 [see Wang (1971)]. A further refinement will be
mentioned in Section 18.5. A simple but crude approach that controls the level is to
use as degrees of freedom the smaller of n − 1 and m − 1, as remarked by Scheffé
(1970). Two-sample permutation tests will be studied in Section 17.3.

The robustness of the level of Welch’s test against nonnormality is studied by
Yuen (1974), who shows that for heavy-tailed distributions the actual level tends to
be considerably smaller than the nominal level (which leads to an undesirable loss
of power), and who proposes an alternative. Some additional results are discussed in
Scheffé (1970) and in Tiku and Singh (1981). The robustness of some quite different
competitors of the t-test is investigated in Pratt (1964).

For testing the equality of s normalmeanswith s > 2, the classical test basedon the
F-statistic (7.19) is not robust, even if all the observations are normally distributed,
regardless of the sample sizes (Scheffé (1959), Problem 13.25); again, the problem
is due to the assumption of a common variance. More appropriate tests for this
generalized Behrens–Fisher problem have been proposed by Welch (1951), James
(1951), and Brown and Forsythe (1974a), and is further discussed by Clinch and
Kesselman (1982), Hettmansperger and McKean (1998) and Chapter10 of Pesarin
(2001). The corresponding robustness problem for more general linear hypotheses is
treated by James (1954a, 1954b) and Johansen (1980); see also Rothenberg (1984).

2 For a variant see Fenstad (1983).
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13.2.2 Effect of Dependence

The one-sample t-test arises when a sequence of measurements X1, . . . , Xn , is taken
of a quantity ξ, and the X ’s are assumed to be independently distributed as N (ξ,σ2).
The effect of nonnormality on the level of the test was discussed in the preceding
subsection. Independence may seem like a more innocuous assumption. However, it
has been found that observations occurring close in time or space are often positively
correlated [Student (1927), Hotelling (1961), Cochran (1968)]. The present section
will therefore be concerned with the effect of this type of dependence.

Lemma 13.2.1 Let X1, . . . , Xn be jointly normally distributed with common mar-
ginal distribution N (0,σ2) and with correlation coefficients ρi, j = corr(Xi , X j ).
Assume that

1

n

∑∑
i �= j

ρi, j → γ (13.3)

and
1

n2
∑∑

i �= j

ρ2i, j → 0 (13.4)

as n → ∞. Then,
(i) the distribution of the t-statistic tn defined in Equation (13.1) (with ξ0 = 0) tends
to the normal distribution N (0, 1 + γ);
(ii) if γ �= 0, the level of the t-test is not robust even asymptotically as n → ∞.
Specifically, if γ > 0, the asymptotic level of the t-test carried out at nominal level
α is

1 − �

(
z1−α√
1 + γ

)
> 1 − �(z1−α) = α .

Proof. (i): Since the Xi are jointly normal, the numerator
√
n X̄n of tn is also normal,

with mean zero and variance

Var
(√

n X̄
) = σ2

⎡
⎣1 + 1

n

∑∑
i �= j

ρi, j

⎤
⎦→ σ2(1 + γ) , (13.5)

and hence tends in law to N (0,σ2(1 + γ)). The denominator of tn is the square root
of

S2n = 1

n − 1

∑
X2
i − n

n − 1
X̄2

n .

By (13.5), Var(X̄n) → 0 and so X̄n
P→ 0. A calculation similar to (13.5) shows that

Var(n−1∑n
i=1 X

2
i ) → 0 (Problem 13.4). Thus, n−1∑n

i=1 X
2
i

P→ σ2 and so Sn
P→ σ.

By Slutsky’s Theorem, the distribution of tn therefore tends to N (0, 1 + γ).
The implications (ii) are obvious.
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Under the assumptions of Lemma 13.2.1, the joint distribution of the X ’s is deter-
mined by σ2 and the correlation coefficients ρi, j , with the asymptotic level of the
t-test depending only on γ. The following examples illustrating different correlation
structures show that even under rather weak dependence of the observations, the
assumptions of Lemma 13.2.1 are satisfied with γ �= 0, and hence that the level of
the t-test is quite sensitive to the assumption of independence.

Model A. (Cluster Sampling) Suppose the observations occur in s groups (or
clusters) of size m, and that any two observations within a group have a common
correlation coefficient ρ, while those in different groups are independent. (This may
be the case, for instance, when the observations within a group are those taken on
the same day or by the same observer, or involve some other common factor.) Then
(Problem 13.6),

Var(X̄) = σ2

ms
[1 + (m − 1)ρ] ,

which tends to zero as s → ∞. The conditions of the lemmaholdwith γ = (m − 1)ρ,
and the level of the t-test is not asymptotically robust as s → ∞. In particular, the
test overstates the significance of the results when ρ > 0.

To provide a specific structure leading to this model, denote the observations in
the i th group by Xi, j ( j = 1, . . . ,m), and suppose that Xi, j = Ai +Ui, j , where Ai

is a factor common to the observations in the i th group. If the A’s and U ’s (none of
which are observable) are all independent with normal distributions N (ξ,σ2

A) and
N (0,σ2

0), respectively, then the joint distribution of the X ’s is that prescribed by
Model A with σ2 = σ2

A + σ2
0 and ρ = σ2

A/σ
2.

Model B. (Moving- Average Process)When the dependence of nearby obser-
vations is not due to grouping as inModel A, it is often reasonable to assume that ρi, j
depends only on | j − i | and is nonincreasing in | j − i |. Let ρi,i+k then be denoted
by ρk , and suppose that the correlation between Xi and Xi+k is negligible for k > m
(m an integer < n), so that one can put ρk = 0 for k > m. Then the conditions for
Lemma 13.2.1 are satisfied with

γ = 2
m∑

k=1

ρk .

In particular, if ρ1, . . . , ρm are all positive, the t-test is again too liberal.
A specific structure leading to Model B is given by the moving-average process

Xi = ξ +
m∑
j=0

β jUi+ j ,

where the U ’s are independent N (0,σ2
0). Such a process was discussed in

Example 12.4.1 and Theorem 12.4.1. The variance σ2 of the X ’s is then σ2 =
σ2
0

∑m
j=0 β2

j and



13.2 Robustness of Some Classical Tests 613

ρk =

⎧⎪⎪⎨
⎪⎪⎩

m−k∑
i=0

βiβi+k

m∑
j=0

β2
j

for k ≤ m,

0 for k > m.

Model C. (First- Order Autoregressive Process)Asimplemodel for depen-
dence in which the |ρk | are decreasing in k but �= 0 for all k is the first-order autore-
gressive process previously introduced in Example 12.4.2. Here, we assume the
underlying distribution of the observations is normal. Define

Xi+1 = ξ + β(Xi − ξ) +Ui+1, |β| < 1, i = 1, . . . , n ,

with theUi independent N (0,σ2
0). If X1 is N (ξ, τ 2), the marginal distribution of Xi

for i > 1 is normal with mean ξ and variance σ2
i = β2σ2

i−1 + σ2
0. The variance of Xi

will thus be independent of i provided τ 2 = σ2
0/(1 − β2). For the sake of simplicity

we shall assume this to be the case, and take ξ to be zero. From

Xi+k = βk Xi + βk−1Ui+1 + βk−2Ui+2 + · · · + βUi+k−1 +Ui+k

it then follows that ρk = βk , so that the correlation between Xi and X j decreases
exponentially with increasing | j − i |. The assumptions of Lemma 13.2.1 are again
satisfied, and γ = 2β/(1 − β). Thus, in this case too, the level of the t-test is not
asymptotically robust. [Some values of the actual asymptotic level when the nominal
level is 0.05 or 0.01 are given by Gastwirth and Rubin (1971).]

In Models A, B, and C, we have seen that the null rejection probability may be
far from the nominal level, even in large samples and when the underlying distribu-
tions are normal. One can consider alternatives to both normality and independence
simultaneously, using the results in Section 12.4, but the general conclusions remain
the same. In summary, the effect of dependence on the level of the t-test is more
serious than that of nonnormality.

In order to robustify the test against general dependence through studentization
(as was done in the two-sample case with unequal variances), it is necessary to con-
sistently estimate γ, which implicitly depends on estimation of all the ρi, j . Unfortu-
nately, the number of parameters ρi, j exceeds the number of observations. However,
robustification is possible against some types of dependence. For example, it may be
reasonable to assume a model such as A–C so that it is only required to estimate a
reduced number of correlations.3 Some specific procedures of this type are discussed
by Albers (1978), [and for an associated sign test by Falk and Kohne (1984)]. Such
robust procedures will in fact often also be insensitive to the assumption of normality,
as can be shown by appealing to an appropriate Central Limit Theorem for depen-
dent variables, such as those in Section 12.4. The validity of these procedures is of

3 Models of a sequence of dependent observations with various covariance structures are discussed
in books on time series such as Brockwell and Davis (1991), Hamilton (1994), Fuller (1996) or
McElroy and Politis (2020).
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course limited to the particular model assumed, including the value of a parameter
such as m in Models A and B. In fact, robustification is achievable for fairly general
classes of models with dependence by using an appropriate bootstrap method; see
Problem 18.19 and Lahiri (2003). Alternatively, one can use subsampling, as in
Romano and Thombs (1996); see Section 18.7.

The results of the present section easily extend to the case of the two-sample
t-test, when each of the two series of observations shows dependence of the kind
considered here.

13.2.3 Robustness in Linear Models

In this section, we consider the large-sample robustness properties of some of the
linear model tests discussed in Chapter 7. As in Section13.2.1, we focus on the effect
of distribution.

A large class of these testing situations is covered by the following general model,
which was discussed in Problem 7.8. Let X1, . . . , Xn be independent with E(Xi ) =
ξi and Var(Xi ) = σ2 < ∞, where we assume the vector ξ to lie in an s-dimensional
subspace �� of IRn , defined by the following parametric set of equations

ξi =
s∑

j=1

ai, jβ j , i = 1, . . . , n. (13.6)

Here the ai, j are known coefficients and the β j are unknown parameters. In matrix
form, the n × 1 vector ξ with i th component ξi satisfies

ξ = Aβ , (13.7)

where A is an n × s matrix having (i, j) entry ai, j and β is an s × 1 vector with j th
component β j . It is assumed A is known and of rank s. In the asymptotics below, the
ai, j may depend on n, as will ξ, but s remains fixed. Throughout, the notation will
suppress this dependence on n. The parameter vector β does not change with n.

The least squares estimators ξ̂1, . . . , ξ̂n of ξ1, . . . , ξn are defined as the values of
ξi minimizing

n∑
i=1

(Xi − ξi )
2

subject to ξ ∈ ��, where �� is the space spanned by the s columns of A. Corre-
spondingly, the least squares estimators β̂1, . . . , β̂s of β1, . . . ,βs are the values of
β j minimizing

n∑
i=1

(Xi −
s∑

j=1

ai, jβ j )
2 .
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By taking partial derivatives of this last expression with respect to the β j , it is seen
that the β̂ j are solutions of the equations

A	Aβ = A	X

and so
β̂ = (A	A)−1A	X .

(The fact that A	A is nonsingular follows from Problem 6.3.) Thus,

ξ̂ = PX ,

where
P = A(A	A)−1A	 . (13.8)

In fact, ξ̂ is the projection of X into the space��. (These estimators formed the basis
of optimal invariant tests studied in Chapter 7.) Some basic properties of P and ξ̂
are recorded in the following lemma.

Lemma 13.2.2 (i) Thematrix P defined by (13.8) is symmetric (P = P	) and idem-
potent (P2 = P).
(ii) X − ξ̂ is orthogonal to ξ̂; that is,

ξ̂	(X − ξ̂) = 0 .

Proof. The proof of (i) follows by matrix algebra (Problem 13.10). To prove (ii),
note that

ξ̂	(X − ξ̂) = (PX)	(X − PX) = X	P	(X − PX)

= X	P	X − X	P	PX = 0 ,

since by (i) P	P = P	.

Note that β̂ j is a linear combination of the Xi . Thus, if the Xi are normally
distributed, so are the β̂ j . However, we would like to understand their properties
when then the Xi are not normally distributed. We shall now suppose that the model
(13.6) is embedded in a sequence of such models defined by matrices A(n)

i, j , with s
fixed and n → ∞. Suppose that the Xs are not normal but given by

Xi = Ui + ξi ,

where the Us are i.i.d. according to a distribution F with mean 0 and variance
σ2 < ∞. Since E(X) = ξ = Aβ, the least squares estimator β̂ is unbiased; that is,

E(β̂) = (A	A)−1A	E(X) = β . (13.9)
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Without the assumption of normality, the asymptotic normality of β̂ j can be estab-
lished by the following lemma, which can be obtained as a consequence of the
Lindeberg Central Limit Theorem (Problem 13.11).

Lemma 13.2.3 Let Y1, Y2, . . . be independent and identically distributed with mean
zero and finite variance σ2. (i) Let c1, c2, . . . be a sequence of constants. Then a
sufficient condition for ∑n

i=1 ciYi√∑
c2i

d→ N (0,σ2)

is that
max

i=1,...,n
c2i

n∑
j=1

c2j

→ 0 as n → ∞ . (13.10)

(ii) More generally, suppose Cn,1, . . . ,Cn,n is a sequence of random variables, inde-
pendent of Y1, . . . ,Yn. Then, a sufficient condition for

∑n
i=1 Cn,i Yi√∑

C2
n,i

d→ N (0,σ2)

is
max

i=1,...,n
C2
n,i

n∑
j=1

C2
n, j

P→ 0 as n → ∞ . (13.11)

Moreover, (13.11) implies that

P

⎧⎨
⎩

Cn,i Yi√∑
C2
n,i

≤ z|Cn,1, . . . ,Cn,n

⎫⎬
⎭

P→ �(
z

σ
) .

Condition (13.10) prevents the c’s from increasing so fast that the last term essen-
tially dominates the sum, in which case there is no reason to expect asymptotic
normality.

Example 13.2.1 Suppose U1,U2, . . . are i.i.d. with mean 0 and finite nonzero vari-
ance σ2. Consider the simple regression model

Xi = α + βti +Ui ,

where the ti are known and not all equal. The least squares estimator β̂ of β satisfies
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β̂ − β =
∑

(Xi − α − βti )(ti − t̄)∑
(ti − t̄)2

.

By Lemma 13.2.3,
(β̂ − β)

√∑
(ti − t̄)2

σ

d→ N (0, 1)

provided
max(ti − t̄)2∑

(t j − t̄)2
→ 0 . (13.12)

Condition (13.12) holds in the case of equal spacing ti = a + i�, but not when the
t’s grow exponentially, for example, when ti = 2i (Problem 13.12).

Consider the hypothesis

H : θ =
s∑

j=1

b jβ j = 0 , (13.13)

where the b’s are known constants with
∑

b2j = 1. Assumewithout loss of generality
that A	A = I , the identity matrix, so that the columns of A are mutually orthogonal
and of length one. The least squares estimator of θ is given by

θ̂ =
s∑

j=1

b j β̂ j =
n∑

i=1

di Xi , (13.14)

where by (13.7)

di =
s∑

j=1

ai, j b j (13.15)

(Problem 13.13). By the assumption that the columns of A are orthogonal,
∑

d2
i =∑

b2j = 1. So, under H ,

E(θ̂) =
s∑

j=1

E(b j β̂ j ) =
s∑

j=1

b jβ j = 0

and

Var(θ̂) = Var(
n∑

i=1

di Xi ) = σ2
n∑

i=1

d2
i = σ2 .

The uniformly most powerful invariant test rejects H when the t-statistic satisfies
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|θ̂|√∑
(Xi − ξ̂i )2/(n − s)

≥ C . (13.16)

Wewould now like to examine the levelwhen then the Xi are not normally distributed.
Assume

Xi = Ui + ξi ,

where the Us are i.i.d. according to a distribution F with mean 0 and variance
σ2 < ∞.

The denominator of (13.16) tends in probability to σ. To see why, with s fixed, it
suffices to show

1

n

∑
(Xi − ξ̂i )

2 P→ σ2 .

But, the left side is

∑
(Xi − ξi )

2

n
+ 2

∑
(Xi − ξi )(ξi − ξ̂i )

n
+
∑

(ξi − ξ̂i )
2

n
.

The first term tends in probability to σ2, by the Weak Law of Large Numbers. By
the Cauchy–Schwarz inequality, half the middle term is bounded by the square root
of the product of the first and third terms. Therefore, it suffices to show the third
term tends to 0 in probability. Since this term is nonnegative, it suffices to show its
expectation tends to 0, by Markov’s Inequality (Problem 11.27). But its expectation
is the trace of the covariance matrix of ξ̂ divided by n. Letting In denote the n × n
identity matrix, the covariance matrix of ξ̂ = PX is

σ2P In P
	 = σ2PP	 = σ2P .

But, the trace of P is

tr(P) = tr(A(A	A)−1A	) = tr(A	A(A	A)−1) = tr(Is) = s ,

since tr(BC) = tr(CB) for any n × s matrix B and s × n matrix C . Hence, the
denominator of (13.16) converges in probability to σ. By Lemma 13.2.3, the numer-
ator of (13.16) converges in distribution to N (0,σ2) provided

max d2
i → 0 as n → ∞ . (13.17)

Under this condition, the level of the t-test is therefore robust against nonnormality.
So far, b = (b1, . . . , bs)	 has been fixed. To determine when the level of (13.16)

is robust for all b with
∑

b2j = 1, it is only necessary to find the maximum value of
d2
i as b varies. By the Cauchy–Schwarz inequality



13.2 Robustness of Some Classical Tests 619

d2
i =

⎛
⎝∑

j

ai, j b j

⎞
⎠

2

≤
s∑

j=1

a2i, j ,

with equality holding when b j = ai, j/
√∑

k a
2
i,k . The desired maximum of d2

i is

therefore
∑

j a
2
i, j , and

max
i

s∑
j=1

a2i, j → 0 as n → ∞ (13.18)

is a sufficient condition for the asymptotic normality of every θ̂ of the form (13.14).
Condition (13.18) depends on the particular parametrization (13.6) chosen for

��. Note however that
s∑

j=1

a2i, j = �i,i , (13.19)

where �i, j is the (i, j) element of the projection matrix P .
This shows that the value of �i,i is coordinate free, i.e., it is unchanged by an

arbitrary change of coordinates β∗ = B−1β, where B is a nonsingular matrix, since

ξ = Aβ = ABβ∗ = A∗β∗

with A∗ = AB, and

P∗ = AB(B	A	AB)−1B	A	 = ABB−1(A	A)−1(B	)−1BA = P .

Hence, (13.18) is equivalent to the coordinate-free Huber condition

max
i

�i,i → 0 as n → ∞ . (13.20)

For evaluating �i,i , it is helpful to note that

ξ̂i =
n∑
j=1

�i, j X j (i = 1, . . . , n),

so that�i,i is simply the coefficient of Xi in ξ̂i , which must be calculated in any case
to carry out the test.

If �i,i ≤ Mn for all i = 1, . . . , n, then also �i, j ≤ Mn for all i and j . This fol-
lows from the fact that there exists a nonsingular E with P = EE	, on applying
the Cauchy–Schwarz inequality to the (i, j) element of EE	. Condition (13.20) is
therefore equivalent to
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max
i, j

�i, j → 0 as n → ∞ . (13.21)

Example 13.2.2 (Example 13.2.1, continued) In Example 13.2.1, the coefficient
of Xi in ξ̂i = α̂ + β̂ti is

�i,i = 1

n
+ (ti − t̄)2∑

(t j − t̄)2

and the Huber condition reduces to Condition (13.12) found earlier.

Example 13.2.3 (Two-way Layout) Consider the two-way layout with m observa-
tions per cell and the additive model

ξi, j,k = E(Xi, j,k) = μ + αi + β j

with ∑
i

αi =
∑
j

β j = 0 ,

i = 1, . . . , a; j = 1, . . . b; k = 1, . . .m. It is easily seen (Problem 13.14) that, for
fixed a and b, the Huber condition is satisfied as m → ∞.

Let us next generalize the hypothesis (13.13) to hypotheses which impose several
linear constraints. Without loss of generality, choose the parametrization in (13.6) in
such a way that the s columns of A are orthogonal and of length one and make the
transformation

Y = CX

(as used in (7.1)), where C is orthogonal and the first s rows of C are equal to those
of A	, say

C =
(
A	
D

)
(13.22)

for some (n − s) × n matrix D. If ηi = E(Yi ), we then have that

η =
(
A	
D

)
Aβ = (β1, . . . ,βs, 0, . . . , 0)

	 . (13.23)

By the orthogonality of C , the Yi are independent with Yi distributed as N (ηi ,σ
2),

where ηi = βi for i = 1, . . . , s and ηi = 0 for i = s + 1, . . . , n. We want to test

H :
s∑

j=1

αi, jη j = 0 ; i = 1, . . . , r

where we shall assume that the r vectors (αi,1, . . . ,αi,s)
	 are orthogonal and of

length one. Then the variables
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Zi =
{∑n

j=1 αi, j Y j i = 1, . . . , r

Yi i = s + 1, . . . , n
(13.24)

are independent N (ζi ,σ
2) with

ζi =

⎧⎪⎨
⎪⎩

∑s
j=1 αi, jη j i = 1, . . . , r

ηi i = r + 1, . . . , s

0 i = s + 1, . . . , n

(13.25)

The standard UMPI test of H : ζ1 = · · · = ζr = 0 rejects when

∑r
i=1 Z

2
i /r∑n

j=s+1 Z
2
j/(n − s)

> k , (13.26)

where k is determined so that the probability of (13.26) is α when the Zs are normal
and H holds.

As before, suppose that the model (13.6) is embedded in a sequence of models
defined by matrices A(n)

i, j , with s fixed and n → ∞. Suppose that the Xs satsify

Xi = Ui + ξi ,

where the Us are i.i.d. according to a distribution F with mean 0 and variance
σ2 < ∞. We then have the following robustness result.

Theorem 13.2.1 Let αn(F) denote the rejection probability of the test (13.26) when
the Us have distribution F and the null hypothesis constraints are satisfied. Then,
αn(F) → α provided

max
i

s∑
j=1

(a(n)
i, j )

2 → 0 (13.27)

or equivalently
max�

(n)
i,i → 0 ,

where �
(n)
i,i is the i th diagonal element of P = A(A	A)−1A	.

Proof. We must show that the limiting distribution of (13.26) is the same as when
F is normal. First, we shall show that the denominator of (13.26) satisfies

1

n − s

n∑
j=s+1

Z2
j

P→ σ2 . (13.28)

Note that X = C	Y and Y = QZ where C	 and Q are both orthogonal. Therefore,
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1

n − s

n∑
j=s+1

Z2
j = n

n − s

[
1

n

n∑
i=1

Z2
i

]
− 1

n − s

s∑
i=1

Z2
i

= n

n − s
· 1
n

n∑
i=1

X2
i − 1

n − s

s∑
i=1

Z2
i .

To see that this tends to σ2 in probability, we first show that

1

n

n∑
i=1

X2
i

P→ σ2 .

But, ∑n
i=1 X

2
i

n
=
∑n

i=1(Xi − ξi )
2

n
+ 2

∑n
i=1 ξi Xi

n
−
∑n

i=1 ξ2i
n

.

The first term on the right tends to σ2 in probability, by the Weak Law of Large
Numbers. By the orthogonality of C , the last term is equal to

∑s
i=1 β2

i /n, which
tends to 0 since s is fixed. It is easily checked that the middle term has a mean and
variance which tend to 0. Hence,

∑
X2
i /n tends in probability to σ2. Next, we show

that
∑s

i=1 Z
2
i

n
P→ 0 .

It suffices to show
∑s

i=1 E(Z2
i )

n
=
∑s

i=1 Var(Zi )

n
+
∑s

i=1[E(Zi )]2
n

→ 0 .

Since s is fixed and Var(Zi ) = σ2, we only need to show

∑s
i=1[E(Zi )]2

n
→ 0 .

For i ≤ r ,

E(Zi ) =
s∑

j=1

αi, jη j =
s∑

j=1

αi, jβ j

and

[E(Zi )]2 ≤
s∑

j=1

α2
i, j

s∑
j=1

β2
j =

s∑
j=1

β2
j .

For r + 1 ≤ i ≤ s, E(Zi ) = βi , in which case the same bound holds. Therefore,



13.2 Robustness of Some Classical Tests 623

∑s
i=1[E(Zi )]2

n
≤ s

∑s
j=1 β2

j

n
→ 0 ,

and the result (13.28) follows.
Next, we consider the numerator of (13.26). We show the joint asymptotic nor-

mality of (Z1, . . . , Zr ). By the Cramér–Wold device, it suffices to show that, for any
constants γ1, . . . , γr with

∑
i γ

2
i = 1,

r∑
i=1

γi Zi
d→ N (0,σ2) .

Indeed, since the columns of A are orthogonal, β̂i = Yi for 1 ≤ i ≤ s and so Zi is a
linear combination of β̂1, . . . , β̂s . But then so is

∑
i γi Zi and asymptotic normality

follows from the argument for θ̂ of the form (13.14).

Example 13.2.4 (Test of Homogeneity) Let Xi, j ( j = 1, . . . ni ; i = 1, . . . , s) be
independently distributed as N (μi ,σ

2). The problem is to test the null hypothesis

H : μ1 = · · · = μs .

In this case, the test (13.26) is UMP invariant and reduces to

W ∗ =
∑

ni (Xi · − X ··)2/(s − 1)∑∑
(Xi, j − Xi ·)2/(n − s)

, (13.29)

where
Xi · =

∑
j

Xi, j/ni , X ·· =
∑
i

∑
j

Xi, j/n

and n =∑i ni . If instead of Xi, j being N (μi ,σ
2), assume that Xi, j has a distribution

F(x − μi ),where F is an arbitrary distributionwithfinite variance.Then, the theorem
implies that, if mini ni → ∞, then the rejection probability tends to α. In fact, the
distributions may even vary within each sample, but it is important that the different
samples have a common variance or the result fails; see Problems 13.24 and 13.25.

13.3 Edgeworth Expansions

Suppose X1, . . . , Xn are i.i.d. with c.d.f. F . Let μ(F) denote the mean of F , and
consider the problem of testing μ(F) = 0. As in Section13.2.1, let αn(F) denote
the actual rejection probability of the one-sided t-test under F . It was seen that the
t-test is pointwise consistent in level in the sense that αn(F) → α whenever F has a
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finite nonzero variance σ2(F). We shall now examine the rate at which the difference
αn(F) − α tends to 0.

In order to study this problem, we will consider expansions of the distribution
function of the sample mean, as well as its studentized version. Such expansions are
known as Edgeworth expansions. Let�(·) denote the standard normal c.d.f. andϕ(·)
the standard normal density. Also let

γ = γ(F) = EF [(Xi − μ(F))3]
σ3(F)

and

κ = κ(F) = EF [Xi − μ(F))4]
σ4(F)

− 3 .

The values γ and κ are known as the skewness and kurtosis of F , respectively.

Theorem 13.3.1 Assume EF (|Xi |k+2) < ∞. Let ψF denote the characteristic func-
tion of F, and assume

lim sup
|s|→∞

|ψF (s)| < 1 . (13.30)

Then,

PF {n
1/2[X̄n − μ(F)]

σ(F)
≤ x} = �(x) +

k∑
j=1

n− j/2ϕ(x)p j (x, F) + rn(x, F) ,

(13.31)
where rn(x, F) = o(n−k/2) and p j (x, F) is a polynomial in x of degree 3 j − 1which
depends on F through its first j + 2 moments. In particular,

p1(x, F) = −1

6
γ(x2 − 1) , (13.32)

and

p2(x, F) = −x

[
1

24
κ(x2 − 3) + 1

72
γ2(x4 − 10x2 + 15)

]
. (13.33)

Moreover, the expansion holds uniformly in x in the sense that, for fixed F,

nk/2 sup
x

|rn(x, F)| → 0 as n → ∞.

Assumption (13.30) is known as Cramér’s condition and can be viewed as a
smoothness assumption on F . It holds, for example, if F is absolutely continuous
(or more generally is nonsingular) but fails if F is a lattice distribution, i.e., X1 can
only take on values of the form a + jb for some fixed a and b as j varies through the
integers. A proof of Theorem 13.3.1 can be found in Feller (1971, Section XVI.4)
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or Bhattacharya and Rao (1976), who also provide formulae for the p j (x, F) when
j > 2. The proofs hinge on expansions of characteristic functions.

Note that the term of order n−1/2 is zero if and only if the underlying skewness
γ(F) is zero. This shows that the dominant error in using a standard normal approxi-
mation to the distribution of the standardized sample mean is due to skewness of the
underlying distribution. Expansions such as these hold for many classes of statistics
and provide more information than a weak convergence result, such as that provided
by the Central Limit Theorem. As an example, the following result provides an Edge-
worth expansion for the studentized samplemean. Let S2n =∑i (Xi − X̄n)

2/(n − 1).

Theorem 13.3.2 Assume EF (|Xi |k+2) < ∞ and that F is absolutely continuous.4

Then, uniformly in t ,

PF {n
1/2[X̄n − μ(F)]

Sn
≤ t} = �(t) +

k∑
j=1

n− j/2ϕ(t)q j (t, F) + r̄n(t, F) , (13.34)

where nk/2 supt |r̄n(t, F)| → 0 and q j (t, F) is a polynomial which depends on F
through its first j + 2 moments. In particular,

q1(t, F) = 1

6
γ(2t2 + 1) , (13.35)

and

q2(t, F) = t

[
1

12
κ(t2 − 3) − 1

18
γ2(t4 + 2t2 − 3) − 1

4
(t2 + 1)

]
. (13.36)

Note that some authors prefer to provide an Edgeworth expansion as in (13.34).
except that S2n replaces its denominator n − 1 with n; then, q2(t, F) would have to
be modified as well.

Example 13.3.1 (Expansion for the t-distribution) Suppose F is normal N (μ,σ2).
Let tn = n1/2(X̄n − μ)/Sn . Then, γ(F) = κ(F) = 0. By Theorem 13.3.2,

PF {tn ≤ t} = �(t) − 1

4n
(t + t3)ϕ(t) + o(n−1) . (13.37)

This result implies a corresponding expansion for the quantiles of the t-distribution,
known as a Cornish–Fisher expansion. Specifically, let t = tn−1,1−α be the 1 − α
quantile of the t-distribution with n − 1 degrees of freedom. We would like to deter-
mine c = c1−α such that

tn−1,1−α = z1−α + c1−α

n
+ o(n−1) .

4 Alternatively, one can assume EF (|Xi |2 j+2) < ∞ and the distribution of (Xi , X2
i ) satisfies the

multivariate analogue of Cramér’s condition; see Hall (1992), Chapter2.
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When t = tn−1,1−α, the left side of (13.37) is 1 − α and the right side is by a Taylor
expansion,

�(z) + c

n
ϕ(z) − 1

4n
(z + z3)ϕ(z) + o(n−1) ,

where z = z1−α. Since �(z) = 1 − α, we must have

c

n
ϕ(z) − 1

4n
(z + z3)ϕ(z) = o(n−1)

so that

c = c1−α = 1

4
z1−α(1 + z21−α) .

Therefore,

n(tn−1,1−α − z1−α) → 1

4
z1−α(1 + z21−α) . (13.38)

In Section13.2.1, we showed that the t-test has error in rejection probability
tending to 0 as long as the underlying distribution has a finite nonzero variance. We
will nowmake use of Edgeworth expansions in order to determine the orders of error
in rejection probability for tests of the mean. All tests considered are based on the
t-statistic tn . In order to study this problem, we consider three factors: the one-sided
case which rejects for large tn versus the two-sided case which rejects for large |tn|;
the use of a normal critical value versus a t critical value; and the dependence on
F , especially whether γ(F) is 0 or not. For j = 1, 2, let αz

n, j (F) denote the error in
rejection probability under F of the j-sided test using the normal quantile, and let
αt
n, j (F) denote the analogous quantity using the appropriate t-quantile. For example,

αt
n,2(F) = PF {|tn| ≥ tn−1,1− α

2
} .

We assume EF (X4
i ) < ∞ and that F is absolutely continuous so that we can apply

the Edgeworth expansions in Theorems 13.3.1 and 13.3.2 with k = 2.

The One-sided Case. First, consider the test using the normal quantile. By (13.34),

αz
n,1(F) − α = n−1/2ϕ(z1−α)q1(z1−α, F) + n−1ϕ(z1−α)q2(z1−α, F) + o(n−1) .

It follows that
αz
n,1(F) − α = O(n−1/2) .

However, if γ(F) = 0, then q1(z1−α, F) = 0 and so

αz
n,1(F) − α = O(n−1)

in this case. Using the t-quantiles instead of the normal quantiles yields
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αt
n,1(F) − α = �(tn−1,α) − α + n−1/2ϕ(tn−1,1−α)q1(tn−1,1−α, F) + O(n−1) .

Then, applying (13.38), tn−1,1−α − z1−α = O(n−1), so that a Taylor’s expansion
yields

αt
n,1(F) − α = n−1/2ϕ(z1−α)q1(z1−α, F) + O(n−1) .

Therefore,
αt
n,1(F) − α = O(n−1/2) ,

but the error in rejection probability is O(n−1) if γ(F) = 0.

The Two-sided Case. Let z = z1− α
2
. Then, using the fact that ϕ(z) = ϕ(−z),

αz
n,2(F) = PF {|tn| ≥ z} = 1 − [PF {tn ≤ z} − PF {tn ≤ −z}]

= α + n−1/2ϕ(z)[q1(z, F) − q1(−z, F)] + O(n−1) .

But, q1(·, F) is an even function, which implies

αz
n,2(F) − α = O(n−1) ,

even if γ(F) is not zero. Similarly, it can be shown that (Problem 13.30)

αt
n,2(F) − α = O(n−1) . (13.39)

13.4 Nonparametric Inference for the Mean

13.4.1 Uniform Behavior of t-test

It was seen in Section13.2.1 that the classical t-test of the mean is asymptotically
pointwise consistent in level for the class F of all distributions with finite nonzero
variance. In Section13.3, the orders of error in rejection probability were obtained
for a given F . However, these results are not reassuring unless the convergence is
uniform in F . If it is not, then for any n, no matter how large, there will exist F in F
for which the rejection probability under F , αn(F), is not even close to α. We shall
show below that the convergence is not uniform and that the situation is even worse
than what this negative result suggests. Namely, we shall show that for any n, there
exist distributions F for which αn(F) is arbitrarily close to 1; that is, the size of the
t-test is 1.

Suppose X1, . . . , Xn are i.i.d. real-valued random variables with unknown c.d.f.
F ∈ F, where F is a large nonparametric class of distributions. Let μ(F) denote
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the mean of F and σ2(F) the variance of F . The goal is to test the null hypothesis
μ(F) = 0 versus μ(F) > 0, or perhaps the two-sided alternative μ(F) �= 0.

Theorem 13.4.1 For every n, the size of the t-test is 1 for the family F0 of all
distributions with finite variance.

Proof. Let c be an arbitrary positive constant less than one and let pn = 1 − c1/n so
that (1 − pn)n = c. Let F = Fn,c be the distribution that places mass 1 − pn at pn
andmass pn at pn − 1, so thatμ(F) = 0.With probability c, we have all observations
equal to pn . For such a sample, the numerator n1/2 X̄n of the t-statistic is n1/2 pn > 0
while the denominator is 0. Thus, the t-statistic blows up and the hypothesis will
be rejected. The probability of rejection is therefore ≥ c, and by taking c arbitrarily
close to 1 the theorem is proved. (Note that one can modify the distributions Fn,c

used in the proof to be continuous rather than discrete.)

It follows that the t-test is not even uniformly asymptotically levelα for the family
F0.

Instead of F0, one may wish to consider the behavior of the t-test against other
nonparametric families. If F2 is the family of all symmetric distributions with finite
variance, it turns out that the t-test is still not uniformly level α, and this is true
even if the symmetric distributions have their support on (−1, 1) or any other fixed
compact set; see Romano (2004). In fact, the size of the t-test under symmetry is one
for moderate values of α; see Basu and DasGupta (1995). However, it can be shown
that the size of the t-test is bounded away from 1 for small values of α, by a result
of Edelman (1990). Basu and DasGupta (1995) also show that if F3 is the family of
all symmetric unimodal distributions (with no moment restrictions), then the largest
rejection probability under F of the t-test occurs when F is uniform on [−1, 1], at
least in the case of very small α.

On the other hand, we will now show that the t-test is uniformly consistent over
certain large subfamilies of distributions with two finite moments. For this purpose,
consider a family of distributions F̃ on the real line satisfying

lim
λ→∞

sup
F∈F̃

EF

[ |X − μ(F)|2
σ2(F)

I

{ |X − μ(F)|
σ(F)

> λ

}]
= 0 . (13.40)

For example, for any ε > 0 and b > 0, letF2+ε
b be the set of distributions satisfying

EF

[ |X − μ(F)|2+ε

σ2+ε(F)

]
≤ b .

Then, F̃ = F2+ε
b satisfies (13.40). To see why, take expectations of both sides of the

inequality
λεY 2 I {|Y | > λ} ≤ |Y |2+ε .
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Lemma 13.4.1 Suppose Xn,1, . . . , Xn,n are i.i.d. Fn with Fn ∈ F̃, where F̃ satisfies
(13.40). Let X̄n =∑n

i=1 Xn,i/n. Then, under Fn,

n1/2[X̄n − μ(Fn)]
σ(Fn)

d→ N (0, 1) .

Proof.LetYn,i = [Xn,i − μ(Fn)]/σ(Fn).Weverify theLindebergCondition (11.11),
which in the case of n i.i.d. variables reduces to showing

lim sup
n

E[Y 2
n,i I {|Yn,i | > εn1/2}] = 0

for every ε > 0. But, for every λ > 0,

lim sup
n

E[Y 2
n,i I {|Yn,i | > εn1/2}] ≤ lim sup

n
E[Y 2

n,i I {|Yn,i | > λ}] .

Let λ → ∞ and the right side tends to zero.

Lemma 13.4.2 Let Yn,1, . . . ,Yn,n be i.i.d. with c.d.f. Gn and finite mean μ(Gn)

satisfying

lim
β→∞

lim sup
n→∞

EGn

[|Yn,i − μ(Gn)|I {|Yn,i − μ(Gn)| ≥ β}] = 0 . (13.41)

Let Ȳn =∑n
i=1 Yn,i/n. Then, under Gn, Ȳn − μ(Gn) → 0 in probability.

Proof.Without loss of generality, assume μ(Gn) = 0. Define

Zn,i = Yn,i I {|Yn,i | ≤ n} .

Let mn = E(Zn,i ) and Z̄n =∑n
i=1 Zn,i/n. Then, the event {|Ȳn − mn| > ε} implies

either {|Z̄n − mn| > ε} occurs or {Ȳn �= Z̄n} occurs. Hence, for any ε > 0,

P{|Ȳn − mn| > ε} ≤ P{|Z̄n − mn| > ε} + P{Ȳn �= Z̄n} . (13.42)

The last term is bounded above by

P{
n⋃

i=1

{Yn,i �= Zn,i }} ≤
n∑

i=1

P{Yn,i �= Zn,i } = nP{|Yn,i | > n} .

The first term on the right side of (13.42) can be bounded by Chebyshev’s inequality,
so that

P{|Ȳn − mn| > ε} ≤ (nε2)−1E(Z2
n,1) + nP{|Yn,1| > n} . (13.43)

For t > 0, let
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τn(t) = t[1 − Gn(t) + Gn(−t)]

and

κn(t) = 1

t

∫ t

−t
x2dGn(t) = −τn(t) + 2

t

∫ t

0
τn(x)dx ; (13.44)

the last equality follows by integration by parts (Problem 13.37) and corrects (7.7),
p. 235 of Feller (1971). Hence,

P{|Ȳn − mn| > ε} ≤ ε−2κn(n) + τn(n) . (13.45)

But, for any t > 0,
τn(t) ≤ E[|Yn,1|I {|Yn,1| ≥ t}] ,

so τn(n) → 0 by (13.41). Fix any δ > 0 and let β0 be such that

lim sup
n

E
[|Yn,1|I {|Yn,1| > β0}

]
<

δ

4
.

Then, there is an n0 such that, for all n ≥ n0,

E
[|Yn,1|I {|Yn,1| > β0}

]
<

δ

2
,

and so

E |Yn,1| ≤ β0 + δ

2

for all n ≥ n0 as well. Then, if n ≥ n0 > β0,

1

n

∫ n

0
τn(x)dx ≤ 1

n

∫ n

0
E
[|Yn,1|I {|Yn,1| ≥ x}] dx

≤ 1

n

∫ β0

0
E |Yn,1|dx + 1

n

∫ n

β0

δ

2
dx ≤ β0(β0 + δ

2 )

n
+ δ

2
,

which is less than δ for all sufficiently large n. Thus, κn(n) → 0 as n → ∞ and so
(13.45) tends to 0 as well. Therefore, Ȳn − mn → 0 in probability. Finally, mn → 0;
to see why, observe

0 = E(Yn,i ) = mn + E
[
Yn,1 I {|Yn,1| > n}] ,

so that
|mn| ≤ E

[|Yn,1|I {|Yn,1| > n}]→ 0 ,

by assumption (13.41).
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Lemma 13.4.3 Let F̃ be a family of distributions satisfying (13.40). Suppose
Xn,1, . . . , Xn,n are i.i.d. Fn ∈ F̃ and μ(Fn) = 0. Then, under Fn,

1
n

∑n
i=1 X

2
n,i

σ2(Fn)
→ 1 in probabili t y.

Proof.Apply Lemma 13.4.2 to Yn,i = [X2
n,i/σ

2(Fn)] − 1. To see that Lemma 13.4.2
applies, note that if β > 1, then the event {|Yn,i | > β} implies X2

n,i/σ
2(Fn) > β + 1

(since X2
n,i/σ

2(Fn) > 0) and also |Yn,i | < X2
n,i/σ

2(Fn). Hence, for β > 1,

E
[|Yn,i |I {|Yn,i | ≥ β}] ≤ E

[
X2
n,i

σ2(Fn)
I { |Xn,i |

σ(Fn)
>
√

β + 1}
]

.

The sup over n then tends to 0 as β → ∞ by the assumption Fn ∈ F̃.

We are now in a position to study the behavior of the t-test uniformly across a
fairly large class of distributions.

Theorem 13.4.2 Let Fn ∈ F̃, where F̃ satisfies (13.40). Assume

n1/2μ(Fn)/σ(Fn) → δ as n → ∞

(where |δ| is allowed to be ∞). Let X1, . . . , Xn be i.i.d. with c.d.f Fn, and consider
the t-statistic

tn = n1/2 X̄n/Sn ,

where X̄n is the sample mean and S2n is the sample variance. If |δ| < ∞, then under
Fn,

tn
d→ N (δ, 1) .

If δ → ∞ (respectively,−∞), then tn → ∞ (respectively,−∞) in probability under
Fn.

Proof.Write

tn = n1/2[X̄n − μ(Fn)]
Sn

+ n1/2μ(Fn)/σ(Fn)

Sn/σ(Fn)
.

The proof will follow if we show Sn/σ(Fn) → 1 in probability under Fn and if

n1/2[X̄n − μ(Fn)]
σ(Fn)

d→ N (0, 1) . (13.46)

But the latter follows by Lemma 13.4.1. To show S2n/σ
2(Fn) → 1 in probability, use

Lemma 13.4.3 (Problem 13.34).
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Theorem 13.4.2 now allows us to deduce that the t-test is uniformly consistent in
level, and it also yields a limiting power calculation.

Theorem 13.4.3 Let F̃ satisfy (13.40) and let F̃0 be the set of F in F̃ with μ(F) = 0.
For testing μ(F) = 0 versus μ(F) > 0, the t-test that rejects when tn > z1−α (or
tn−1,1−α) is uniformly asymptotically level α over F̃0; that is,

| sup
F∈F̃0

PF {tn > z1−α} − α| → 0 (13.47)

as n → ∞. Also, the limiting power against Fn ∈ F̃ with n1/2μ(Fn)/σ(Fn) → δ is
given by

lim
n

PFn {tn > z1−α} = 1 − �(z1−α − δ) . (13.48)

Furthermore,

inf
{F∈F̃: n1/2μ(F)/σ(F)≥δ}

PF {tn > z1−α} → 1 − �(z1−α − δ) . (13.49)

Proof. To prove (13.47), if the result failed, one could extract a subsequence {Fn}
with Fn ∈ F̃0 such that

PFn {tn > z1−α} → β �= α .

But this contradicts Theorem 13.4.2 since tn is asymptotically standard normal
under Fn . The proof of (13.48) follows from Theorem 13.4.2 as well. To prove
(13.49), again argue by contradiction and assume there exists a subsequence {Fn}
with n1/2μ(Fn)/σ(Fn) ≥ δ such that

PFn {tn > z1−α} → γ < 1 − �(z1−α − δ) .

The result follows from (13.48) if n1/2μ(Fn)/σ(Fn) has a limit; otherwise, pass to
any convergent subsequence and apply the same argument.

Note that (13.49) does not hold if F̃ is replaced by all distributions with finite
second moments or finite fourth moments, or even the more restricted family of dis-
tributions supported on a compact set. In fact, there exists a sequence of distributions
{Fn} supported on a fixed compact set and satisfying n1/2μ(Fn)/σ(Fn) ≥ δ such
that the limiting power of the t-test against this sequence of alternatives is α; see
Problem 13.38 for a construction. Nevertheless, the t-test behaves well for typical
distributions, as demonstrated in Theorem 13.4.3. However, it is important to realize
the t-test does not behave uniformly well across distributions with large skewness,
as the limiting normal theory fails.
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13.4.2 A Result of Bahadur and Savage

The negative results for the t-test under the families of all distributions with finite
variance, or even the family of symmetric distributionswith infinitelymanymoments
are perhaps unexpected in view of the fact that the t-test is pointwise consistent in
level for any distribution with finite (nonzero) variance, but they should not really be
surprising. After all, the t-test was designed for the family of normal distributions
and not for nonparametric families. This raises the question whether there do exist
more satisfactory tests of the mean for nonparametric families.

For the family of distributions with finite variance and for some related families,
this questionwas answered byBahadur and Savage (1956). The desired results follow
from the following basic lemma.

Lemma 13.4.4 Let F be a family of distributions on IR satisfying:

(i) For every F ∈ F, μ(F) exists and is finite.
(ii) For every real m, there is an F ∈ F with μ(F) = m.
(iii) The family F is convex in the sense that, if Fi ∈ F and γ ∈ [0, 1], then γF1 +

(1 − γ)F2 ∈ F.

Let X1, . . . , Xn be i.i.d. F ∈ F and let φn = φn(X1, . . . , Xn) be any test function.
Let Gm denote the set of distributions F ∈ F with μ(F) = m. Then,

inf
F∈Gm

EF (φn) and sup
F∈Gm

EF (φn)

are independent of m.

Proof. To show the result for the sup, fix m0 and let Fj ∈ Gm0 be such that

lim
j
EFj (φn) = sup

F∈Gm0

EF (φn) ≡ s .

Fix m1. The goal is to show
sup

F∈Gm1

EF (φn) = s .

Let Hj be a distribution in F with mean h j satisfying

m1 = (1 − 1

j
)m0 + 1

j
h j

and define

G j = (1 − 1

j
)Fj + 1

j
Hj .

Thus, G j ∈ Gm1 . An observation from G j can be obtained through a two-stage
procedure. First, a coin is flipped with probability of heads 1/j . If the outcome is a
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head, then the observation has the distribution Hj ; otherwise, the observation is from
Fj . So, with probability [1 − (1/j)]n , a sample of size n from G j is just a sample
from Fj . Then,

sup
G∈Gm1

EG(φn) ≥ EG j (φn) ≥ (1 − 1

j
)n EFj (φn) → s

as j → ∞. Thus,
sup

G∈Gm1

EG(φn) ≥ sup
G∈Gm0

EG(φn) .

Interchanging the roles of m0 and m1 and applying the same argument makes the
last inequality an equality. The result for the inf can be obtained by applying the
argument to 1 − φn .

Theorem 13.4.4 Let F satisfy (i)–(iii) of Lemma 13.4.4.
(i) Any test of H : μ(F) = 0 which has size α for the family F has power ≤ α for
any alternative F in F.
(ii) Any test of H : μ(F) = 0 which has power β against some alternative F in F
has size ≥ β.

Among the families satisfying (i)–(iii) of Lemma 13.4.4 is the family F0 of distri-
butions with finite secondmoment and that with infinitely manymoments. Part (ii) of
the above theorem provides an alternative proof of Theorem 13.4.1 since the power
of the t-test against the normal alternatives N (μ, 1) tends to 1 as μ → ∞. Theorem
13.4.4 now shows that the failure of the t-test for the family of all distributions with
finite variance is not the fault of the t-test; in this setting, there exists no reasonable
test of the mean. The reason is that slight changes in the tails of the distribution can
result in enormous changes in the mean.

13.4.3 Alternative Tests

Another family satisfying conditions (i)–(iii) of Theorem 13.4.4 is the family of all
distributions with compact support. However, the family of all distributions on a
fixed compact set is excluded because it does not satisfy Condition (ii). In fact, the
following construction due to Anderson (1967) shows that reasonable tests of the
mean do exist if we assume the family of distributions is supported on a specified
compact set. Specifically, let G be the family of distributions supported on [−1, 1],
and let G0 be the set of distributions on [−1, 1] having mean 0. We will exhibit a
test that has size α for any fixed sample size n and all F ∈ G0, and is pointwise
consistent in power. First, recall the Kolmogorov–Smirnov confidence band Rn,1−α

given by (11.36). This leads to a conservative confidence interval In,1−α for μ(F) as
follows. Include the value μ in In,1−α if and only if there exists some G in Rn,1−α

with μ(G) = μ. Then,
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{F ∈ Rn,1−α} ⊆ {μ(F) ∈ In,1−α}

and so
PF {μ(F) ∈ In,1−α} ≥ PF {F ∈ Rn,1−α} ≥ 1 − α ,

where the last inequality follows by construction of the Kolmogorov–Smirnov con-
fidence bands. Finally, for testing μ(F) = 0 versus μ(F) �= 0, let φn be the test that
accepts the null hypothesis if and only if the value 0 falls in In,1−α. By construction,

sup
F∈G0

EF (φn) ≤ α .

We claim that
In,1−α ⊆ X̄n ± 2n−1/2sn,1−α , (13.50)

where sn,1−α is the 1 − αquantile of the null distributionof theKolmogorov–Smirnov
test statistic. The result (13.50) follows from the following lemma.

Lemma 13.4.5 Suppose F and G are distributions on [−1, 1] with

sup
t

|F(t) − G(t)| ≤ ε .

Then, |μ(F) − μ(G)| ≤ 2ε.

For a proof, see Problem 13.35. The result (13.50) now follows by applying the
lemma to F and the empirical cdf F̂n .

Let F be a distribution with mean μ(F) �= 0. Suppose without loss of generality
that μ(F) > 0. Also, let Ln,1−α be the lower endpoint of the interval In,1−α. Then,

EF (φn) ≥ PF {Ln,1−α > 0} ≥ PF {X̄n > 2n−1/2sn,1−α} → 1 , (13.51)

by Slutsky’s Theorem, since X̄n → μ(F) > 0 and n−1/2sn,1−α → 0. Thus, the test
is pointwise consistent in power against any distribution inG having nonzero mean.
In fact, if {Fn} is such that |n1/2μ(Fn)| → ∞, then the limiting power against such
a sequence is one (Problem 13.36).

While Anderson’s method controls the level and is pointwise consistent in power,
it is not efficient; an efficient test construction which is of exact level α can be based
on the confidence interval construction of Romano and Wolf (2000).

Let us next consider the family of symmetric distributions. Here the mean coin-
cides with the center of symmetry, and reasonable level α tests for this center exist.
They can, for example, be based on the signed ranks. The one-sampleWilcoxon test is
an example, studied in Examples 12.3.6 and 14.3.11. A large family of randomization
tests that control the level is discussed in Section 17.2.

Finally, we mention a quite different approach to the problem considered in this
section concerning the validity of the t-test in a nonparametric setting. Originally,
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the t-test was derived for testing the mean, μ, on the basis of a sample X1, . . . , Xn

from N (μ,σ2). But, μ is not only the mean of the normal distribution but it is also,
for example, its median. Instead of embedding the normal family in the family of
all distributions with finite mean (and perhaps finite variance), we could obtain a
different viewpoint by embedding it in the family of all continuous distributions F ,
and then test the hypothesis that the median of F is 0. A suitable test is then the sign
test.

13.5 Testing Many Means: The Gaussian Sequence Model

In this section, the problem of testing many normal means is considered. Assume
X1, X2, . . . Xn are independent with Xi ∼ N (μi , 1). The problem is to test the global
null hypothesis H0 : μi = 0 for i = 1, . . . , n against someclass of alternatives. There
is no UMP test, nor is there a UMPU test if n > 1. However, there do exist UMPI
and maximin tests, which depend on the choice of group and the class of alternatives,
respectively. Since the procedures depend on the choice of optimality criteria, we
consider the high-dimensional situation where the number of parameters n tends to
infinity. Such an approach clarifies the type of alternatives where the procedures offer
good power.Wefirst review theChi-squared test, and then consider some alternatives.

13.5.1 Chi-Squared Test

Let Tn =∑n
i=1 X

2
i . The problem is invariant with respect to the group of orthogonal

transformations, resulting in the UMPI test that rejects when Tn > cn,1−α, where
cn,1−α is the 1 − α quantile of theChi-squared distributionwith n degrees of freedom.
In addition, for any fixed δ > 0, this test is maximin against alternatives defined by

ω1 = {(μ1, . . . ,μn) :
n∑

i=1

μ2
i = δ2} , (13.52)

as well as

ω2 = {(μ1, . . . ,μn) :
n∑

i=1

μ2
i ≥ δ2} . (13.53)

Moreover, the test maximizes average power with respect to the uniform distribution
on ω1.

By Problem 11.13, we can calculate its limiting power against alternatives for
which δ2n/

√
2n → h, where δ2n =∑n

i=1 μ2
i . In particular, under such a sequence of

alternatives,
P{Tn > cn,1−α} → 1 − �(z1−α − h) .
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Therefore, δ2n/
√
2n must not tend to 0 in order to get the limiting power to exceed

α, i.e., δ2n must be of strict order
√
n. Note that if δ2n/

√
2n → ∞, then the limiting

power tends to one; see Problem 13.39. Therefore, in the special case that μi = μ is
constant and nonzero, then the power of the test tends to one. Or, if p of the n means
has constant value μ, then p must be of strict order

√
n in order to achieve nontrivial

power.More generally, the Chi-squared test performs reasonablywell when, roughly,
there are many contributions from many of the μi , resulting in a larger value of δ2n .

On the other hand, the Chi-squared test’s ability to detect sparse alternativeswhere
a great majority of the μi are zero is poor. In the extreme case where only one μi

is nonzero and is equal to μ, then μ must be of strict order at least n1/4. As we will
soon see, there are tests that can detect a much smaller value of μ.

13.5.2 Maximin Test for Sparse Alternatives

Fix δ > 0. Consider the maximin test, not for alternatives (13.52) and (13.53), but
for alternatives

ω3 = {(μ1, . . . ,μn) : exactly one μi = δ and remaining μ j = 0} (13.54)

or
ω4 = {(μ1, . . . ,μn) : maxi μi ≥ δ}. (13.55)

In such a sparse setting where only one mean is nonzero, the problem is some-
times referred to as the problem of detecting the “needle” in a “haystack.” The least
favorable distribution places equal mass on the n points in ω3 and the maximin test
rejects for large values of the (average) likelihood ratio Ln given by

Ln = 1

n

n∑
i=1

exp(δXi − δ2

2
) ; (13.56)

see Problem 8.24.
The question we now address is the following. If one of the μi = δ and the

remaining are zero (but it is not known for which i that μi is the nonzero value), what
is the order of the smallest value of δ for which the test rejects H0 with probability
tending to one. First, the following lemma is needed.

Lemma 13.5.1 Assume the above Gaussian setup. Fix r > 0 and let

δ = δn = √2r log n . (13.57)
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Under H0 and r < 1,

Ln
P→ 1 . (13.58)

Proof. Note that Ln is an average of i.i.d. random variables with mean 1, so the
result is somewhat expected. However, Var(Ln) need not tend to 0 (depending on
the value of r ), and so a careful argument is required. A proof based on truncation is
given in Problem 13.43, or one can apply the triangular array law of large numbers
stated in Lemma 13.4.2; see Problem 13.44.

We now claim that if 0 < r < 1 in (13.57), then the limiting power of the optimal
maximin test based on Ln against an alternative where exactly one Xi has mean δn
and the remaining have mean 0 tends to α. In other words, the test is essentially no
better than the randomized test which rejects with probability α. Let dn,1−α be the
1 − α quantile of the distribution of Ln under H0.

Theorem 13.5.1 Assume the above Gaussian setup with μ1 = δn specified by
(13.57) and the remaining μi = 0. If 0 < r < 1, then

P{reject H0} = P{Ln ≥ dn,1−α} → α .

Proof.Let Pn,1 denote the joint distribution of (X1, . . . , Xn) specified by themixture
distribution where, with probability 1/n, the mean vector has δn in the i th component
and 0 in all others. Also, let Pn,0 denote the joint distribution when all Xi are i.i.d.
N (0, 1). Then, the likelihood ratio is dPn,1/dPn,0 = Ln . Moreover, the power under
Pn,1 is the same as the power when μ1 is the nonzero mean. But, the power under
Pn,1 is given by

1 − Pn,1{Ln < dn,1−α} = 1 −
∫

I {Ln < dn,1−α}dPn,1

dPn,0
dPn,0

= 1 −
∫

I {Ln < dn,1−α}LndPn,0

= α −
∫

I {Ln < dn,1−α}(Ln − 1)dPn,0 . (13.59)

By Lemma 13.5.1, under Pn,0, Ln
P→ 1, so that

I {Ln < dn,1−α}(Ln − 1)
P→ 0 . (13.60)

Moreover, dn,1−α is bounded (by Problem 11.67), so that the left side of (13.60) is
bounded. By bounded convergence, the last integral in (13.59) tends to 0.

Therefore, for testing against the alternatives ω3 or ω4, no test can have better
limiting maximin power than α if δn = √

2r log n and r < 1. We will soon see that
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a test based on maxi Xi does have limiting power one when r > 1, and therefore so
must the maximin test based on Ln . But, to be clear, a test based on Ln must specify
δn , whereas the test based on maxi Xi does not.

13.5.3 Test Based on Maximum and Bonferroni

As in the sparse setting of the previous section where one of the means is nonzero
but positive, an intuitive test is one that rejects for large values of

Mn = max(X1, . . . , Xn) .

(Or course, if the nonzero mean could also be negative, then one could based a test on
|Mn|.) It is worth noting that, under H0, Mn has a limiting distribution; see Galambos
(1977).

Theorem 13.5.2 Assume X1, X2, . . .are i.i.d. N (0, 1)and Mn = max(X1, . . . , Xn).
Then, for −∞ < t < ∞,

P

{√
2 log n

(
Mn −√2 log n + log log n + log 4π

2
√
2 log n

)
≤ t

}
→ G(t) = e−e−t

,

where the c.d.f. G is the Gumbel distribution.

Let mn,1−α be the 1 − α quantile of the distribution of Mn under H0. Then, it is
easy to check (Problem 13.45) that

mn,1−α = z(1−α)1/n . (13.61)

Alternatively, an approximate conservative critical value may be used in place of
mn,1−α. Under H0, by Bonferroni,

P{Mn ≥ c} = P{
n⋃

i=1

{Xi ≥ c}} ≤
n∑

i=1

P{Xi ≥ c} = n[1 − �(c)] .

In order for the right-hand side to benobigger than thenominal levelα,we should take
c = z1− α

n
. This method which reject when Mn ≥ z1− α

n
is then called the Bonferroni

method. Note, by Problem 13.40,

z1− α
n

∼ √2 log n ,

where an ∼ bn means an/bn → 1. In fact,
√
2 log n is, for any fixed α ∈ (0, 1) an

upper bound for all large n (even though this approximation does not depend on α).
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An alternative description of the Bonferroni method is based on p-values com-
puted from each Xi . To that end, when testing μi = 0 against a positive alternative
based on Xi , the resulting p-value is p̂i = 1 − �(Xi ). Then, the Bonferroni method
described above is equivalent to the test that rejects Hi if min p̂i ≤ α/n (Problem
13.46).

We now show that the Bonferroni test has power tending to one when one of the
μi is as large as δn = √

2r log n, if r > 1. Hence, the same is true of the test that
rejects when Mn ≥ mn,1−α (as well as the minimax test in Section13.5.2).

Theorem 13.5.3 Assume the Gaussian setup where one of the μi = δn specified
by (13.57) and the remaining μi = 0. If r > 1, then the Bonferroni test has power
satisfying

P{reject H0} = P{Mn ≥ z1− α
n
} → 1 .

Proof.Without loss of generality, assumeμ1 = δn andμi = 0 for i > 1. By Problem
13.40, z1− α

n
≤ √

2 log n for sufficiently large n. Therefore, for sufficiently large n,

P{Mn ≥ z1− α
n
} ≥ P{Mn ≥ √2 log n} .

But,
P{Mn ≥ √2 log n} ≥ P{X1 ≥ √2 log n} =

1 − �(
√
2 log n − δn) = 1 − �((1 − √

r)
√
2 log n) → 1 .

To summarize, by Theorem 13.5.1, no level α test can have minimum power
tending to one against all alternatives in ω3 (or ω4), where at least one of the means is
δn = √

2r log n and r < 1. On the other hand, the Bonferroni test, or the test based
on Mn , has power tending to one when r > 1. Therefore,

√
2 log n can be viewed as

a sharp threshold for detecting the nonzero mean.

13.5.4 Some Comparisons and the Higher Criticism

The following comparisons between the Chi-squared test and the Bonferroni test can
be made. In order for the Chi-squared test to be powerful, the quantity

∑
i μ

2
i /

√
2n

needs to be large. As an example, if all of theμi are equal toμ = Cn−1/4 withC large,
then the Chi-squared test has large power. However, in this setting, the power of the
Bonferroni test is poor. On the other hand, in the sparse setting where o(n1/2) of the
means are as large as

√
2r log n with r > 1, Bonferroni is powerful (as long as at least

one of the means is
√
2r log n). But, the Chi-squared test has poor limiting power in

this setting. In summary, we can say that roughly the Chi-squared test performs well
for many (possibly) small effects while Bonferroni is better for a smaller number of
large effects.
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Fortunately, there exists a method that performs well in both settings, dating back
to Tukey (1953). The test is based on Tukey’s Higher Criticism statistic, which we
nowmotivate. First, recall p-values p̂1, . . . , p̂n , where in the context of manymeans,
p̂i = 1 − �(Xi ). (Note that the Higher Criticism approach applies more generally
whenever one has p-values that are i.i.d.U (0, 1) under a global null hypothesis H0.)
Let F̂n(·) be the empirical distribution of the p-values, so that

F̂n(t) = 1

n

n∑
i=1

I { p̂i ≤ t} .

For a given level of significance β and under H0, nF̂n(β) is distributed as binomial
based on n trials and success probability β. So, H0 can be rejected for large values
of nF̂n(β), or equivalently, large values of

√
n[F̂n(β) − β]√

β(1 − β)
.

Such a binomial test can be traced back to Clopper and Pearson (1934). But, rather
than using a fixed pre-specified level of significance β, the Higher Criticism statistic
rejects for large values of HCn defined by

HCn = sup
0<β<β0

[√
n[F̂n(β) − β]√

β(1 − β)

]
,

where β0 is a tuning parameter. A value of β0 = 0.5 is suggested in Donoho and Jin
(2015).

We now briefly describe the optimality of HCn . As before, H0 specifies that
X1, . . . , Xn are i.i.d. N (0, 1). The alternative H1 specifies a mixture model where
the X1, . . . , Xn are i.i.d. according to the mixture distribution (1 − εn)N (0, 1) +
εnN (δ, 1). Let

εn = n−γ 1

2
< γ < 1

and
δn = √2r log n 0 < r < 1 .

Note the needle in haystack problem essentially corresponds to γ = 1 and r = 1
while the many small effects case corresponds to γ = 1/2. Let

ρ∗(γ) =
{

γ − 1
2 for 1

2 < γ ≤ 3
4

(1 − √
1 − γ)2 for 3

4 ≤ γ ≤ 1
(13.62)

Ingster (1999) and Jin (2003) showed that for r > ρ∗(γ), there exists a test
sequence such that the probabilities of both Type 1 and Type 2 errors tend to 0.
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On the other hand, they also showed that, for r < ρ∗(γ), the limiting sum of the
probabilities of Type 1 and Type 2 errors is bounded below by 1. Thus, the function
ρ∗(γ) gives the threshold values of r for detecting H1. Moreover, Donoho and Jin
(2004) proved that, for r > ρ∗(γ), the test based on HCn is optimal in that a critical
value can be chosen (such as

√
2 log log n), so that the sumof error probabilities tends

to 0. Importantly, the test does not require knowledge of εn or δn , or equivalently γ
and r , and thus is optimal across a broad range of sparse alternatives.

13.6 Problems

Section13.2

Problem 13.1 (i) Let X1, . . . , Xn be a sample from N (ξ,σ2). For testing
ξ = 0 against ξ > 0, show that the power of the one-sided one-sample t-test
against a sequence of alternatives N (ξn,σ

2) for which n1/2ξn/σ → δ tends to 1 −
�(z1−α − δ).
(ii) The result of (i) remains valid if X1, . . . , Xn are a sample from any distribution
with mean ξ and finite variance σ2.

Problem 13.2 Generalize the previous problem to the two-sample t-test.

Problem 13.3 Let (Yi , Zi ) be i.i.d. bivariate random vectors in the plane, with both
Yi and Zi assumed to have finite nonzero variances. Let μY = E(Y1) and μZ =
E(Z1), let ρ denote the correlation between Y1 and Z1, and let ρ̂n denote the sample
correlation, as defined in (11.29).
(i).Under the assumptionρ = 0, showdirectly (without appealing toExample 11.3.6)
that n1/2ρ̂n is asymptotically normal with mean 0 and variance

τ 2 = Var [(Y1 − μY )(Z1 − μZ )]/Var(Y1)Var(Z1).

(ii). For testing that Y1 and Z1 are independent, consider the test that rejects when
n1/2|ρ̂n| > z1− α

2
. Show that the asymptotic rejection probability isα, without assum-

ing normality, but under the sole assumption that Y1 and Z1 have arbitrary distribu-
tions with finite nonzero variances.
(iii). However, for testing ρ = 0, the above test is not asymptotically robust. Show
that there exist bivariate distributions for (Y1, Z1) for which ρ = 0 but the limiting
variance τ 2 can take on any given positive value.
(iv). For testing ρ = 0 against ρ > 0, define a denominator Dn and a critical value
cn such that the rejection region n1/2ρ̂n/Dn ≥ cn has probability tending to α, under
any bivariate distribution with ρ = 0 and finite, nonzero marginal variances.

Problem 13.4 Under the assumptions of Lemma 13.2.1, compute Cov(X2
i , X

2
j ) in

terms of ρi, j and σ2. Show that Var(n−1∑n
i=1 X

2
i ) → 0 and hence n−1∑n

i=1 X
2
i

P→
σ2.
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Problem 13.5 (i) Given ρ, find the smallest and largest value of (13.2) as σ2/τ 2

varies from 0 to ∞.
(ii) For nominal level α = 0.05 and ρ = 0.1, 0.2, 0.3, 0.4, determine the smallest
and the largest asymptotic level of the t-test as σ2/τ 2 varies from 0 to ∞.

Problem 13.6 Verify the formula for Var(X̄) in Model A.

Problem 13.7 In Model A, suppose that the number of observations in group i is
ni . if ni ≤ M and s → ∞ show that the assumptions of Lemma 13.2.1 are satisfied
and determine γ.

Problem 13.8 Show that the conditions of Lemma 13.2.1 are satisfied and γ has the
stated value: (i) in Model B; (ii) in Model C.

Problem 13.9 Determine the maximum asymptotic level of the one-sided t-test
when α = .05 and m = 2, 4, 6: (i) in Model A; (ii) in Model B.

Problem 13.10 Prove (i) of Lemma 13.2.2.

Problem 13.11 Prove Lemma 13.2.3. Hint: For part (ii), use Problem 11.72.

Problem 13.12 Verify the claims made in Example 13.2.1.

Problem 13.13 Verify (13.15).

Problem 13.14 In Example 13.2.3, verify the Huber Condition holds.

Problem 13.15 Let Xi jk (k = 1, . . . , ni j ; i = 1, , . . . , a; j = 1, . . . , b) be inde-
pendently normally distributed with mean E(Xi jk) = ξi j and variance σ2. Then the
test of any linear hypothesis concerning the ξi j has a robust level provided ni j → ∞
for all i and j .

Problem 13.16 In the two-way layout of the preceding problem give examples of
submodels �

(1)
� and �

(2)
� of dimensions s1 and s2, both less than ab, such that in one

case Condition (13.20) continues to require ni j → ∞ for all i and j but becomes a
weaker requirement in the other case.

Problem 13.17 Suppose (13.20) holds for some particular sequence�
(n)
� with fixed

s. Then it holds for any sequence �′
�

(n) ⊆ �
(n)
� of dimension s ′ < s.

Hint: If �� is spanned by the s columns of A, let �′
� be spanned by the first s ′

columns of A.

Problem 13.18 Show that (13.10) holds whenever cn tends to a finite nonzero limit,
but the condition need not hold if cn → 0.

Problem 13.19 Let {cn} and {c′
n} be two increasing sequences of constants such that

c′
n/cn → 1 as n → ∞. Then {cn} satisfies (13.10) if and only if {c′

n} does.
Problem 13.20 Let cn = u0 + u1n + · · · + uknk, ui ≥ 0 for all i . Then cn satisfies
(13.10). What if cn = 2n? Hint: Apply Problem 13.19 with c′

n = nk .
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Problem 13.21 If ξi = α + βti + γui , express Condition (13.20) in terms of the t’s
and u’s.

Problem 13.22 If �i,i are defined as in (13.19), show that
∑n

i=1 �2
i,i = s.

Hint: Since the �i,i are independent of A, take A to be orthogonal.

Problem 13.23 The size of each of the following tests is robust against nonnormal-
ity:

1. the test (7.24) as b → ∞,
2. the test (7.26) as mb → ∞,
3. the test (7.28) as m → ∞.

Problem 13.24 For i = 1, . . . , s and j = 1, . . . , ni , let Xi, j be independent, with
Xi, j having distribution Fi , where Fi is an arbitrary distribution with mean μi and
finite common variance σ2. Consider testing μ1 = · · · = μs based on the test statistic
(13.29), which is UMPI under normality. Show the test remains robust with respect
to the rejection probability under H0 even if the Fi differ and are not normal.

Problem 13.25 In the preceding problem, investigate the rejection probability when
the Fi have different variances. Assume min ni → ∞ and ni/n → ρi .

Problem 13.26 Show that the test derived in Problem 11.56 is not robust against
nonnormality.

Problem 13.27 Let X1, . . . , Xn be a sample from N (ξ,σ2), and consider the UMP
invariant level-α test of H : ξ/σ ≤ θ0 (Section 6.4). Let αn(F) be the actual sig-
nificance level of this test when X1, . . . , Xn is a sample from a distribution F with
E(Xi ) = ξ, Var(Xi ) = σ2 < ∞. Then the relation αn(F) → α will not in general
hold unless θ0 = 0. Hint: First find the limiting joint distribution of

√
n(X̄ − ξ) and√

n(S2 − σ2).

Section13.3

Problem 13.28 When sampling from a normal distribution, one can derive an Edge-
worth expansion for the t-statistic as follows. Suppose X1, . . . , Xn are i.i.d. N (μ,σ2)

and let tn = n1/2(X̄n − μ)/Sn , where S2n is the usual unbiased estimate of σ2. Let �
be the standard normal c.d.f. and let �′ = ϕ. Show

P{tn ≤ t} = �(t) − 1

4n
(t + t3)ϕ(t) + O(n−2) (13.63)

as follows. It suffices to let μ = 0 and σ = 1. By conditioning on Sn , we can write

P{tn ≤ t} = E{�[t (1 + S2n − 1)1/2]} .
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By Taylor expansion inside the expectation, along with moments of S2n , one can
deduce (13.63).

Problem 13.29 InTheorem13.3.2, suppose S2n is definedwith its denominatorn − 1
replaced by n. Derive the explicit form for q2(t, F) in the corresponding Edgeworth
expansion.

Problem 13.30 Assuming F is absolutely continuous with 4 moments, verify
(13.39).

Problem 13.31 Let φn be the classical t-test for testing the mean is zero versus the
mean is positive, based on n i.i.d. observations from F . Consider the power of this
test against the distribution N (μ, 1). Show the power tends to one as μ → ∞.

Section13.4

Problem 13.32 In Lemma 13.4.2, show that Condition (13.41) can be replaced by
the assumption that, for some βn = o(n1/2),

lim sup
n→∞

EGn [|Yn,i − μ(Gn)|I {|Yn,i − μ(Gn)| ≥ βn}] = 0.

Moreover, this condition only needs to hold if βn = o(n) if it is also known that
supn EGn |Yn,i − μ(Gn)| < ∞.

Problem 13.33 SupposeF satisfies the conditions of Theorem 13.4.4. Assume there
exists φn such that

sup
F∈F: μ(F)=0

EF (φn) → α .

Show that
lim sup

n
EF (φn) ≤ α

for every F ∈ F.

Problem 13.34 In the proof of Theorem 13.4.2, prove Sn/σ(Fn) → 1 in probability.

Problem 13.35 Prove Lemma 13.4.5.

Problem 13.36 Consider the problem of testing μ(F) = 0 versus μ(F) �= 0, for
F ∈ F0, the class of distributions supported on [0, 1]. Let φn be Anderson’s test.
(i) If

|n1/2μ(Fn)| ≥ δ > 2sn,1−α ,

then show that
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EFn (φn) ≥ 1 − 1

2(2sn,1−α − δ)2
,

where sn,1−α is the 1 − αquantile of the null distributionof theKolmogorov–Smirnov
statistic. Hint: Use (13.51) and Chebyshev’s inequality.
(ii) Deduce that the minimum power of φn over {F : n1/2μ(F)| ≥ δ} is at least
1 − [2(2sn,1−α − δ)−2] if δ > 2sn,1−α.
(iii) Use (ii) to show that, if Fn ∈ F0 is any sequence of distributions satisfying
n1/2|μ(Fn)| → ∞, then EFn (φn) → 1.

Problem 13.37 Prove the second equality in (13.44). In the proof of Lemma 13.4.2,
show that κn(n) → 0.

Problem 13.38 Let Yn,1, . . . ,Yn,n be i.i.d. bernoulli variableswith success probabil-
ity pn , where npn = λ and λ1/2 = δ. LetUn,1, . . . ,Un,n be i.i.d. uniform variables on
(−τn, τn), where τ 2

n = 3p2n . Then, let Xn,i = Yn,i +Ui , so that Fn is the distribution
of Xn,i . (Note that n1/2μ(Fn)/σ(Fn) = δ.)

(i) If tn is the t-statistic, show that, under Fn , tn
d→ V 1/2 , where V is Poisson with

mean δ2, and so if z1−α is not an integer,

PFn {tn > tn−1,1−α} → P{V 1/2 > z1−α} .

(ii) Show, for α < 1/2, the limiting power of the t-test against Fn satisfies

P{V 1/2 > z1−α} ≤ 1 − P{V = 0} = exp(−δ2) .

This is strictly smaller than 1 − �(z1−α − δ) if and only if

�(z1−α − δ) < exp(−δ2) .

Certainly, for small δ, this inequality holds, since the left-hand side tends to 1 − α
as δ → 0 while the right-hand side tends to 1.

Section13.5

Problem 13.39 For the Chi-squared test discussed in Section13.5.1, assume that
δ2n/

√
2n → ∞. Show that the limiting power of the Chi-squared test against such an

alternative sequence tends to one.

Problem 13.40 (i) If φ(·) denotes the standard normal density and Z ∼ N (0, 1),
then for any t > 0,

(
1

t
− 1

t3
)φ(t) < P{Z ≥ t} ≤ φ(t)

t
. (13.64)
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Prove the right-hand inequality.
(ii) Prove the left inequality in (13.64). Hint: Feller (1968) p.179 notes the negative
of the derivative of the left side ( 1t − 1

t3 )φ(t) is equal to (1 − 3t−4)φ(t), which is
certainly less than φ(t).
(iii) Use (13.64) to show that, for any fixed α, any δ > 0, and all large enough n:

√
(1 − δ)2 log n ≤ z1− α

n
≤ √2 log n . (13.65)

Problem 13.41 Let X1, . . . , Xn be i.i.d. N (0, 1). Let Mn = max(X1, . . . , Xn).
(i) Show that P{Mn ≥ √

2 log n} → 0.
(ii) Compute the limit of P{Mn ≥ z1− α

n
}.

Problem 13.42 Under the setting of Lemma 13.5.1 calculate Var(Ln) and deter-
mine which values of r it tends to 0.

Problem 13.43 Prove Lemma 13.5.1 as follows. Let η = 1 − √
r . Let

L̃n = 1

n

n∑
i=1

exp(δn Xi − δ2n
2

)I {Xi ≤ √2 log n} .

First, show Ln − L̃n
P→ 0 (using Problem 13.41). Then, show

E(L̃n) = �(η
√
2 log(n)) → 1 .

The proof then follows by showing Var(L̃n) → 0. To this end, show

Var(L̃n) ≤ 1

n
E[X2

i I {Xi ≤ √2 log n}] = 1

n
exp(δ2n)�((2η − 1)

√
2 log n)

≤ 1

n
exp(δ2n)φ((1 − 2η)

√
2 log n) = 1√

2π
exp[−η2 log n] → 0 .

Problem 13.44 Prove Lemma 13.5.1 by using Problem 13.32. That is, if 1 < βn =
o(n) and

Yn,i = exp(δn Xi − δ2n
2

) ,

show that
E[|Yn,i − 1|I {|Yn,i − 1| > βn}] → 0 . (13.66)

Since Yn,i > 0 and βn > 1, this is equivalent to showing

E[(Yn,i − 1)I {Yn,i > βn + 1}] → 0 . (13.67)

The event {Yn,i > λ + 1} is equivalent to {Xi > bn(βn)}, where
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bn(βn) = log(βn + 1)

δn
+ δn

2
.

Show the left side of (13.67) is equal to

∫ ∞

bn(βn)

[exp(δnx − δ2n
2

) − 1]φ(x)dx = �(bn(βn)) − �(bn(βn) − δn) ,

and show this last expression tends to zero by appropriate choice of βn .

Problem 13.45 Prove (13.61).

Problem 13.46 In the setting of Section13.5.3, show that the Bonferroni test that
rejects H0 when Mn ≥ z1− α

n
is equivalent to the test that rejects Hi if min p̂i ≤ α/n,

where p̂i = 1 − �(Xi ).

13.7 Notes

Concern about the robustness of classical normal theory tests began to be voiced in
the 1920s (Neyman andPearson, 1928; Shewhart andWinters, 1928; Sophister, 1928;
Pearson, 1929) and has been an important topic ever since. Particularly influential
were Box (1953), where the term robustnesswas introduced; also see Scheffé (1959,
10), Tukey (1960) and Hotelling (1961). The robustness of regression tests studied
in Section13.2.3 is based on Huber (1973).

As remarked in Example 13.2.4, the F-test for testing equality of means is not
robust if the underlying variances differ, even if the sample sizes are equal and
s > 2; see Scheffé (1959). More appropriate tests for this generalized Behrens–
Fisher problem have been proposed by Welch (1951), James (1951), and Brown and
Forsythe (1974b), and are further discussed by Clinch and Kesselman (1982). The
corresponding robustness problem for more general linear hypotheses is treated by
James (1954a, 1954b) and Johansen (1980); see also Rothenberg (1984).

The linear model F-test—as was seen to be the case for the t-test—is highly
nonrobust against dependence of the observations. Tests of the hypothesis that the
covariance matrix is proportional to the identity against various specified forms of
dependence are considered in King and Hillier (1985). For recent work on robust
testing in linear models, see Müller (1998) and the references cited there.

The usual test for equality of variances is Bartlett’s test, which is discussed in Cyr
and Monoukian (1982) and Glaser (1982). Bartlett’s test is highly sensitive to the
assumption of normality, and therefore is rarely appropriate. More robust tests for
this latter hypothesis are reviewed in Conover et al. (1981). For testing homogeneity
of covariance matrices, see Beran and Srivastava (1985) and Zhang and Boos (1992).

Robustness properties of the t-test are studied in Efron (1969), Lehmann and
Loh (1990), Basu and DasGupta (1995), Basu (1999) and Romano (2004). The
nonexistence results of Bahadur and Savage (1956), and also Hoeffding (1956),
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have been generalized to other problems; see Donoho (1988) and Romano (2004)
and the references there.

The idea of expanding the distribution of the sample mean in order to study the
error in normal approximation can be traced to Chebyshev (1890) and Edgeworth
(1905). But it was not until later that Cramér (1928, 1937) provided some rigorous
results. The fundamental theory of Edgeworth expansions is developed in Bhat-
tacharya and Rao (1978); also see Bickel (1974), Bhattacharya and Ghosh (1978),
Hall (1992) and Hall and Jing (1995).

Section13.5 was inspired by class notes of Emmanuel Candés. Much more gen-
eral results are available in Arias-Castro et al. (2011). The “needles” in “haystack”
problem is attributed to Johnstone and Silverman (2004). Much further discussion
of the Higher Criticism can be found in Donoho and Jin (2004). Extensions to the
sparse regression setting appear in Ingster and Tsybakov (2010).
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