
Chapter 12
Extensions of the CLT to Sums
of Dependent Random Variables

12.1 Introduction

In this chapter, we consider some extensions of the Central Limit Theorem to classes
of sums (or averages) of dependent random variables. Many further extensions
are possible, but we focus on ones that will be useful in the sequel. Section 12.2
considers sampling without replacement from a finite population. As an applica-
tion, the potential outcomes framework is introduced in order to study treatment
effects. The class of U -statistics is studied in Section 12.3, with applications to the
classical one-sample signed-rank statistic and the two-sample Wilcoxon rank-sum
statistic. Section 12.4 considers CLTs for stationary, mixing sequences, which pro-
vides a basis for understanding robustness of procedures under dependence, as in
Section 13.2.2. These three sections may be read independently of each other. A very
general approach is provided by Stein’s method in Section 12.5.

12.2 Random Sampling Without Replacement
from a Finite Population

Let �N = {xN ,1, . . . , xN ,N } denote a population consisting of N real-valued units.
Let X1, . . . , Xn be a random sample takenwithout replacement from�N (so n ≤ N ),
and let X̄n =∑n

i=1 Xi/n be the sample mean. Let x̄N =∑N
j=1 xN ,i/N be the mean

of population �N and let

s2N = 1

N

N∑

j=1

(xN , j − x̄N )2 (12.1)

denote its variance, so that Var(Xi ) = s2N for simple random sampling. Then, it is
easy to check (Problem 12.1) that
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E(X̄n) = x̄N (12.2)

and

Var(X̄n) = s2N
n

· N − n

N − 1
. (12.3)

Under certain conditions where both n and N tend to infinity, one might expect that
(X̄n − x̄N )/

√
Var(X̄n) is asymptotically N (0, 1). The following theorem gives a

sufficient condition.

Theorem 12.2.1 Under the above setup, assume

1

min(n, N − n)
· max1≤ j≤N (xN , j − x̄N )2

s2N
→ 0 . (12.4)

Then, as N → ∞,
(X̄n − x̄N )
√
Var(X̄n)

d→ N (0, 1) . (12.5)

Example 12.2.1 (Two-Sample Wilcoxon Rank-Sum Test) Consider the case
where xN , j = j . In other words, X̄n is the average of n numbers taken without
replacement from {1, . . . , N }. Then x̄N = (N + 1)/2 and

s2N = N 2 − 1

12
. (12.6)

Therefore, (12.3) reduces to

Var(X̄n) = (N + 1)(N − n)

12n
. (12.7)

Also,

max
1≤ j≤N

(

j − N + 1

2

)2
= (N − 1)2

4

and so the left side of (12.4) reduces to

1

min(n, N − n)
· 3(N − 1)2

N 2 − 1
→ 0 .

If min(n, N − n) → ∞, then (12.5) follows.
In a statistical context, assume that Y1, . . . ,Ym are i.i.d. F and, independently,

Z1, . . . , Zn are i.i.d. G. Let N = m + n. Under the null hypothesis F = G and
the assumption that F is continuous, the

(N
n

)
assignment of ranks are all equally
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likely. The Wilcoxon statistic, Wn , denotes the sum of the ranks of the Yi s. So, the
distribution of Wn under F = G is that of the sum of n numbers taken at random
from {1, . . . , N }, or Wn = n X̄n in the statement of Theorem 12.2.1. Therefore, we
conclude

Wn − 1
2n(N + 1)√

mn(N + 1)/12
d→ N (0, 1) .

The necessary and sufficient conditions for (12.5) were obtained from Hájek
(1960), stated next.

Theorem 12.2.2 Under the above setup, let

δN , j = (xN , j − x̄N )/sN .

Assume min(n, N − n) → ∞. Then, (12.5) holds if and only if, for every ε > 0,

1

N

∑

j : |δN , j |>ε
√
n(N−n)/N

δ2N , j → 0 . (12.8)

Proof. We only prove the sufficiency part. Without loss of generality, assume
x̄N = 0. Write X̄n =∑N

j=1 Hj xN , j/n, where (H1, . . . , HN ) are indicator variables,
with Hj = 1 if and only if item j is chosen in the sample (so that

∑
j Hj = n).

Let I1, . . . , IN be i.i.d. Bernoulli variables with success probability n/N . Let
X̃n =∑N

j=1 I j xN , j/n. Note that X̃n is an average of independent random variables,
whose limiting distribution (after normalization) can be obtained by the Lindeberg
Central Limit Theorem. Indeed, (12.5) holds with X̄n replaced by X̃n . We will show
that X̃n and X̄n have the same limiting distributions. We will apply Lemma 11.3.1
to Sn = n X̄n and S̃n = nS̃n , and therefore the result follows once we show that

E[(S̃n − Sn)2]
Var(S̃n)

→ 0 . (12.9)

To do this, we will first construct I = (I1, . . . , IN ) and then construct H =
(H1, . . . , HN ) so that H is uniform over all vectors of length N with exactly n ones
and N − n zeroes in which case H and I are appropriately close (or “coupled”).

First, let BN =∑N
j=1 I j , which has the binomial distribution with parameters N

and n/N . If BN = n, just take H = I . If BN < n, then let Hj = 1 whenever I j = 1,
which generates BN out of the required n observations in the sample. Then, choose
n − BN remaining indices at random without replacement among the remaining
N − BN observations, and set Hj = 1 for those chosen indices. Similarly, if BN > n,
then there are too many j for which I j = 1, so choose a subset of size n from BN

randomly without replacement.
Next, note that if BN > n, then
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S̃n − Sn =
N∑

j=1

xN , j I {I j = 1, Hj = 0}

(because the terms xN , j for which I j = Hj = 1 cancel and we cannot have Hj = 1
and I j = 0 if BN > n). Conditional on a value of BN > n, S̃n − Sn is a sum of
BN − n observations taken without replacement from the xN , j s, and hence has mean
0. Moreover, using (12.3) with n replaced by Bn − n,

Var(S̃n − Sn|BN ) = (BN − n)s2N · N − BN + n

N − 1
≤ |BN − n|s2N , (12.10)

if Bn > n.
Similarly, if BN < n, then S̃n is a sum of BN variables and we need n − BN

more observations to construct the sample of size n. So, Sn − S̃n is a sum of n − BN

variables, yielding the same bound as in (12.10). Since the bound is clearly true when
BN = n, (12.10) holds for all BN .

Therefore, we can conclude that

E[(S̃n − Sn)
2] = E[Var(S̃n − Sn)|BN ] ≤ s2N E(|Bn − n|)

≤ s2N
√
Var(BN ) ≤ s2N

√

n(1 − n

N
) .

(Note that if S̃n and Sn were independent, this term would be order n, not
√
n, a

consequence of the coupling.) Since

Var(S̃n) = s2Nn(1 − n

N
) ,

the left side of (12.9) is 1/τN , where

τN =
√

n(1 − n

N
) . (12.11)

But, τN → ∞ as min(n, N − n) → ∞ (Problem 12.5), as required.

In the above results, the xN , j are fixed, but in the study of permutation tests later
on, they may sometimes be considered as outcomes of random variables. One might
then apply Theorems 12.2.1 and 12.2.2 conditional on the outcomes. For this, we
develop a simple and perhaps more intuitive sufficient condition. First, let�N denote
a random variable which is uniform on the N standardized values (xN , j − x̄N )/sN ,
with its distribution denoted by GN . (Note here and below that ties are allowed and
GN is just the distribution of �N .) In an asymptotic framework where the xN , j are
fixed, we may nevertheless envision them settling down in such a way that GN is
getting close to some G.
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Theorem 12.2.3 Under the above setup withmin(n, N − n) → ∞, assume GN
d→

G, where G is a distribution with variance one. Then, (12.5) holds.

Proof. Let � denote a random variable with distribution G. Let τN be defined in
(12.11), so that τN → ∞. We need to check condition (12.8). Fix any β > 0. Then,
as soon as N is large enough so that ετN ≥ β, the left side of (12.8) is bounded above
by

1

N

∑

j : |δN , j |>β

δ2N , j = E(�2
N I {|�N | > β}) → E(�2 I {|�| > β})

if β is a continuity point of G, by (11.40). Since the set of continuity points of G
is dense, β can be chosen large enough, while being a continuity point, to make the
last expression as small as desired.

Note that since GN itself has variance one, the condition requires that GN con-
verges in distribution to G and the variance of GN converges to that of G. In the
study of treatment effects, it is useful to generalize Theorem 12.2.2 to the bivariate
case. The first part just restates the theorem under the assumptions that s2N converges
to a finite value (as it would when the xN , j mimic the population setting).

Corollary 12.2.1 Assume min(n, N − n) → ∞ with n/N → p.
(i) Let FN be the distribution placing mass 1/N at each of the xN , j in �N . Let s2N be

defined as in (12.1) and assume s2N → σ2 < ∞. Further assume FN
d→ F, where F

has variance σ2. Then,

√
n(X̄n − x̄N )

d→ N (0, (1 − p)σ2) . (12.12)

(ii) Generalizing to the bivariate case, suppose the population�N consists of paired
units xN , j = (uN , j , vN , j ), j = 1, . . . , N. Let FN be the (joint) distribution placing
mass 1/N at each (uN , j , vN , j ). Let

ūN = 1

N

N∑

j=1

uN , j and v̄N = 1

N

N∑

j=1

vN , j .

Let s2N ,u denote the population variance of the uN , j , as defined in (12.1), and let s2N ,v

denote the population variance of the vN , j . Define the population covariance as

sN ,uv = 1

N

N∑

j=1

(uN , j − ūN )(vN , j − v̄N ) .

Let (U1, V1)
�, . . . , (Un, Vn)

� denote a random sample taken without replacement
from �N , and let Ūn and V̄n be the corresponding sample means. Assume
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s2N ,u → σ2
u and s2N ,v → σ2

v .

Finally, assume FN
d→ F, where F is a bivariate distribution with marginal vari-

ances σ2
u and σ2

v . Then, sN ,uv converges to a limit σuv (which is the covariance of the
bivariate distribution F) and

√
n(Ūn − uN , V̄n − vN )� d→ N (0, (1 − p)�) , (12.13)

where � is the covariance matrix

� =
[

σ2
u σuv

σuv σ2
v

]

.

Proof. Since Theorem 12.2.3 applies, (12.5) holds. But

nVar(X̄n) = s2N · N − n

N − 1
→ σ2(1 − p) ,

and (i) follows. To prove (ii), note the fact that sN ,uv → σuv , where σuv is the covari-
ance of F , follows by Problem 11.79. The bivariate asymptotic normality follows by
using (i) together with the Cramér-Wold Device.

Example 12.2.2 (Potential Outcomes and Treatment Effects) Consider an exper-
imentwhereY j is the observed outcomeof interest for unit j , for j = 1, . . . , N . Some
units are treated while others serve as controls, and the outcomes could potentially
vary under the two scenarios. Denote by Y j (1) the potential outcome for unit j if
treated and Y j (0) the potential outcome for unit j if untreated. Let Dj denote an
indicator variable that is 1 if unit j is treated and 0 if not. The observed outcomes
can be expressed in terms of the potential outcomes and treatment assignments by
the relationship

Y j = Y j (1)Dj + Y j (0)(1 − Dj ) . (12.14)

It is assumed that the Y j and Dj are observed, so that Y j (1) is observed if Dj = 1
but Y j (0) is observed if Dj = 0. Such a framework dates back to Neyman (1923)
and is expanded upon by Rubin (1974).

So far, nothing has been assumed about the distribution of the variables introduced,
observed or not. We now consider a specialized setting where the potential outcomes
are nonrandom, and the randomness comes entirely from the treatment assignment
vector (D1, . . . , DN ). We will assume a fixed number n is allocated to treatment,
with the remaining allocated to control, so that all

(N
n

)
combinations of treatment

vectors are equally likely. The object of interest is the population average causal
effect, θN , defined by
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θN = 1

N

N∑

j=1

[Y j (1) − Y j (0)] = ȲN (1) − ȲN (0) , (12.15)

where

ȲN (k) = 1

N

N∑

j=1

Y j (k) for k = 0, 1 .

The usual unbiased estimator of the average treatment effect, θN , is then

θ̂N = 1

n

N∑

j=1

Y j (1)Dj − 1

N − n

N∑

j=1

Y j (0)(1 − Dj ) . (12.16)

We would like to determine the limiting distribution of θ̂N as N → ∞. Assume
n/N → p ∈ (0, 1). Let the population variances and covariance be denoted by

s2N (k) = 1

N

N∑

j=1

[Y j (k) − ȲN (k)]2 for k = 0, 1

and

sN (0, 1) = 1

N

N∑

j=1

[(Y j (1) − ȲN (1))(Y j (0) − ȲN (0))] .

Assume s2N (k) → s2(k) and sN (0, 1) → s(0, 1). Also, let

τ 2
N = 1

N

N∑

j=1

[(Y j (1) − Y j (0)) − θN ]2 . (12.17)

Simple algebra yields

τ 2
N = s2N (1) + s2N (0) − 2sN (0, 1)

and so
τ 2
N → τ 2 = s2(1) + s2(0) − 2s(0, 1) .

Apply Corollary 12.2.1(ii) by taking uN , j = Y j (1) and vN , j = Y j (0). Then, let
FN denote the (empirical) distribution of the values {Y j (1),Y j (0)}. Assume FN con-
verges in distribution to F with covariance matrix �, and the diagonal elements of
the covariance matrix of FN , say�N , converge to those of�. So,� has diagonal ele-
ments s2(1) and s2(0) with off-diagonal elements s(0, 1). Then, Corollary 12.2.1(ii)
yields that
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√
n

⎡

⎣1

n
(

N∑

j=1

Y j (1)Dj ,

N∑

j=1

Y j (0)Dj ) − (ȲN (1), ȲN (0))

⎤

⎦

d→ N (0, (1 − p)�) . (12.18)

Let the n units sampled correspond to those who receive treatment, and those not
sampled the controls. Then, θ̂N can be expressed as

1

n

N∑

j=1

Y j (1)Dj + n

N − n

1

n

N∑

j=1

Y j (0)Dj − 1

N − n

N∑

j=1

Y j (0) .

Let (U, V ) denote a bivariate normal variable with mean vector 0 and covariance
matrix (1 − p)�. Apply the continuous mapping theorem, noting n/(N − n) →
p/(1 − p), to get √

n(θ̂N − θN )
d→ U + p

1 − p
V .

All that remains is to calculate the variance on the right-hand side. But,

Var(U + p

1 − p
V ) = Var(U ) + p2

(1 − p)2
Var(V ) + 2p

1 − p
Cov(U, V )

= (1 − p)s2(1) + p2

1 − p
s2(0) + 2ps(0, 1)

= (1 − p)s2(1) + p2

1 − p
s2(0) + p[s2(1) + s2(0) − τ 2]

= s2(1) + p

1 − p
s2(0) − pτ 2 .

Therefore,
√
n(θ̂N − θN )

d→ N

(

0, s2(1) + p

1 − p
s2(0) − pτ 2

)

,

(which actually holds even if p = 0 as long as n → ∞) or equivalently

√
N (θ̂N − θN )

d→ N

(

0,
s2(1)

p
+ s2(0)

1 − p
− τ 2

)

. (12.19)

The above result is summarized in the following theorem.

Theorem 12.2.4 Consider the above setup,where FN is the distribution of the poten-
tial outcomes {(Y j (1),Y j (0)), j = 1, . . . , N },

and FN has covariance matrix �N . Suppose n units are treated, where n/N → p ∈
(0, 1). Assume FN

d→ F, where the diagonal elements of �N converge to those of
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�, where � is the covariance matrix of F. Then, the average treatment effect θ̂N
defined in (12.16) satisfies (12.19).

Note that the limiting distribution depends on the limiting value of τ 2
N defined in

(12.17). The individual causal effects Y j (1) − Y j (0), nor the average of their squares,
cannot be estimated without further assumptions. Let us consider the implications
of Theorem 12.2.4 for inference. First, consider Fisher’s “sharp” null hypothesis HF

specified by
HF : Y j (1) = Y j (0) , j = 1, . . . , N .

One can construct an exact level-α test by calculating a permutation test based on θ̂N .
That is, consider the permutation distribution defined as the empirical distribution of
θ̂N recomputed over all

(N
n

)
treatment assignments. Theorem 12.2.4 gives its precise

limiting behavior under HF , where τ = 0 and s1 = s0. Alternatively, one can apply a
normal approximation.Under HF , τ 2 = 0 and the variance in the limiting distribution
(12.19) simplifies, and only depends on s2(1) and s2(0). But, s2(1) can be estimated
consistently (Problem 12.12) by

ŝ2N (1) = 1

n

N∑

j=1

Y 2
j (1)Di −

⎡

⎣1

n

N∑

j=1

Y j (1)Di

⎤

⎦

2

, (12.20)

and similarly for ŝ2N (0). Define σ̂2
N by

σ̂2
N = Nŝ2N (1)

n
+ Nŝ2N (0)

N − n
P→ s2(1)

p
+ s2(0)

1 − p
.

Then, the one-sided test that rejects HF if
√
N θ̂N > σ̂N z1−α has limiting rejection

probability equal to α under HF . (Actually, Fisher proposed an alternative estimator
of variance; see Ding (2017).)

On the other hand, consider Neyman’s “weak” null hypothesis HN specified by
θN = 0. In this case, Theorem 12.2.4 applies, but the limiting variance cannot be
estimated consistently due to the presence of τ 2. Here, the one-sided test which
rejects HN if

√
N θ̂N > σ̂N z1−α has limiting rejection probability under HN which

is ≤ α and is < α if τ > 0. Thus, this approach, while valid, is conservative. Note,
however, that improvements are possible by bounding τ 2, subject to constraints of
the marginal distributions; see Aronow et al. (2015).

We can extend Theorem 12.2.4 to the setting where there is randomness, not only
from treatment assignment, but also due to sampling. That is, assume there are N
units, with N0 of them sampled at random without replacement. Among the N0 units
in the experiment, a random sample of n are treated and N0 − n serve as controls.

Theorem 12.2.5 Consider a population of size N. Let FN be the distribution of the
potential outcomes

{(Y j (1),Y j (0)), j = 1, . . . , N },

and let FN have covariance matrix �N . Assume FN
d→ F, where the diagonal ele-

ments of �N converge to those of �, where � is the covariance matrix of F and



572 12 Extensions of the CLT to Sums of Dependent Random Variables

� has diagonal elements s2(1) and s2(0). Sample N0 without replacement, and
then assign n at random to be treated and N0 − n to serve as controls. Assume
N0/N → f ∈ [0, 1] and n/N0 → p ∈ (0, 1). Let θ̂N0 denote the estimated average
treatment effect based on the N0 units sampled, and let θN denote the population
average treatment effect (for all N items). Then,

√
N0(θ̂N0 − θN )

d→ N

(

0,
s2(1)

p
+ s2(0)

1 − p
− f τ 2

)

, (12.21)

where τ 2 is the limit of τ 2
N defined in (12.17).

Proof. Let Sj = 1 if item j is one of the N0 sampled and 0 otherwise. Let θ̄N0 denote
the average treatment effect for the N0 items sampled; that is,

θ̄N0 = 1

N0

N∑

j=1

[Y j (1) − Y j (0)]Sj .

Write √
N0(θ̂N0 − θN ) = AN + BN ,

where
AN = √N0(θ̂N0 − θ̄N0)

and
BN = √N0(θ̄N0 − θN ) .

By Theorem 12.2.3 applied to xN , j = Y j (1) − Y j (0), j = 1, . . . , N and replacing n
there with N0, it follows that

Bn
d→ N (0, (1 − f )τ 2) .

But, conditional on the N0 items sampled, we can apply Theorem 12.2.4 to conclude
that (Problem 12.13)

AN
d→ N

(

0,
s2(1)

p
+ s2(0)

1 − p
− τ 2

)

. (12.22)

Note that, conditional on the N0 items sampled, AN and BN are conditionally inde-
pendent (since AN is not even random). Therefore, we can apply Problem 11.73(i) to
complete the proof by adding the limiting variances of AN and BN to get (12.21).

As expected, when N0 is small relative to N , so that f =0, the limiting variance
no longer depends on τ 2 and one can construct tests for Neyman’s hypothesis that
are no longer conservative.
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12.3 U-Statistics

We begin by considering the one-sample case. Assume X1, . . . , Xn are i.i.d. P on
some general space. Suppose interest focuses on a real-valued parameter of the form

θ(P) = E[h(X1, . . . , Xb)]

for some function h(·). The function h(·) is called the kernel of the U -statistic. It
is assumed, without loss of generality, that h(·) is symmetric in its arguments. If it
were not, it could be replaced by the average of h computed over all permutations of
X1, . . . , Xb. We will also generally assume that

E[h2(X1, . . . , Xb)] < ∞ . (12.23)

The corresponding U -statistic is defined (for n ≥ b) by

Un = 1
(n
b

)
∑

c

h(Xi1 , . . . , Xib) , (12.24)

where
∑

c denotes summation over the
(n
b

)
combinations of b-tuples {i1, . . . , ib}

consisting of b distinct elements from {1, . . . , n}. Of course, Un is an unbiased
estimator of θ(P). Notice that Un is an average of identically distributed random
variables, but the terms are independent only in the case b = 1. The goal will be to
approximate the distribution of Un , but first we consider some examples.

Example 12.3.1 (Averages) If b = 1, Un =∑n
i=1 h(Xi )/n is indeed an average

of i.i.d. random variables, and so pth sample moments are a special case with
h(x) = x p. Also, fixing t and letting h(x) = I {x ≤ t} yields the empirical c.d.f.
evaluated at t .

Example 12.3.2 (Sample Variance) Consider the kernel

h(x1, x2) = 1

2
(x1 − x2)

2 .

Let σ2(P) = Var(Xi ), assumed finite. Then,

θ(P) = E[1
2
(X1 − X2)

2] = 1

2
[Var(X1) + Var(X2)] = σ2(P) .

Letting X̄n =∑n
i=1 Xi/n, the corresponding U -statistic is

Un = 1

2
(n
2

)
∑

i< j

(Xi − X j )
2 = 1

2n(n − 1)

∑

all i, j

(Xi − X j )
2 =
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1

2n(n − 1)

∑

all i, j

(X2
i − 2Xi X j + X2

j ) = 1

2n(n − 1)

n∑

i=1

(2nX2
i − 2n2 X̄2

n) =

1

n − 1
(

n∑

i=1

X2
i − n X̄2

n) = 1

n − 1

n∑

i=1

(Xi − X̄n)
2 ,

the usual (unbiased version of the) sample variance.

Example 12.3.3 (Gini’s mean difference) Let h(x1, x2) = |x1 − x2|, so that
θ(P) = E(|X1 − X2|). The corresponding U -statistic

Un = 1
(n
2

)
∑

i< j

|Xi − X j |

is known as Gini’s mean difference.

In order to derive the limiting distribution of Un , it is first helpful to derive its
variance. Toward this end, for 1 ≤ k ≤ b, define functions hk as follows:

hk(x1, . . . , xk) = E[h(x1, . . . , xk, Xk+1, . . . , Xb)] . (12.25)

Of course, E[hk(X1, . . . , Xk)] = θ(P). Then, define

ζk = Var [hk(X1, . . . , Xk)] . (12.26)

As we will soon see, asymptotic normality depends heavily on ζ1 (and it being
nonzero).

Example 12.3.4 (Continuation of Example 12.3.2) Here, h1(x1) is given by

h1(x1) = 1

2
E[(x1 − X2)

2] = 1

2
[σ2(P) + (x1 − μ(P))2] .

Then,

ζ1 = 1

4

{
E[(X − μ(P))4] − σ4(P)

}
.

Also, h2 = h and

ζ2 = Var [h(X1, X2)] = 1

4
E(X1 − X2)

4 − σ4(P)

= 1

2
{E[(X − μ(P))4] + σ4(P)} . (12.27)

Next, we consider a formula for the exact variance of a U -statistic.
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Theorem 12.3.1 Assume (12.23). Then, the variance of Un is given by

Var(Un) = 1
(n
b

)
b∑

k=1

(
b

k

)(
n − b

b − k

)

ζk . (12.28)

Proof.Consider two combinations (i1, . . . , ib) and ( j1, . . . , jb) of numbers between
1 and b, possibly overlapping. Suppose for the moment that in fact there are k indices
in common. Then,

Cov[h(Xi1 , . . . , Xib), h(X j1 , . . . , X jb)]

= E[h(Xi1 , . . . , Xib)h(X j1 , . . . , X jb)] − θ2(P)

= E
{
E[h(Xi1, . . . , Xib), h(X j1 , . . . , X jb)|X1, . . . , Xk]

}− θ2(P).

Since, by symmetry, we can assume that the common indices are 1, . . . , k, this
becomes

E
{
E[h(X1, . . . , Xk , Xk+1, . . . , Xb)h(X1, . . . , Xk , X

′
k+1, . . . , X

′
b)|X1, . . . , Xk ]

}− θ2(P) ,

where the X ′
i are i.i.d. P and independent of the Xi . By (conditional) independence,

this in turn becomes

E[h2k(X1, . . . , Xk)] − θ2(P) = ζk .

Therefore, if there are k indices in common, we have

Cov[h(Xi1 , . . . , Xib), h(X j1 , . . . , X jb ] = ζk . (12.29)

If
∑

c and
∑

d both denote summation over all combinations, we can now calculate

Var(Un) = Cov

[(
n

b

)−1∑

c

h(Xi1, . . . , Xib),

(
n

b

)−1∑

d

h(X j1 , . . . , X jb)

]

=
(
n

b

)−2∑

c

∑

d

Cov[h(Xi1 , . . . , Xib), h(X j1 , . . . , X jb)] .

Each of the covariance terms that has k indices in common contributes ζk to the sum,
by (12.29). But, the number of such terms sharing k indices is

(
n

b

)(
b

k

)(
n − b

b − k

)

,
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because there are
(n
b

)
ways to first pick i1, . . . , ib, then

(b
k

)
ways to determine the

indices in common, and then there are
(n−b
b−k

)
remaining ways to fill out j1, . . . , jb.

Putting this together yields

Var(Un) =
(
n

b

)−2 b∑

k=1

(
n

b

)(
b

k

)(
n − b

b − k

)

ζk ,

and the result follows.

For any fixed nonnegative integers i and j , and n large enough so that n − i > j ,

(
n − i

j

)

= 1

j ! (n − i)(n − i − 1) · · · (n − i − j + 1) ∼ n j

j ! ,

where pn ∼ qn means pn/qn → 1 as n → ∞. It follows that the factor multiplying
ζk in the kth term of (12.28) is equal to

1
(n
b

)

(
b

k

)(
n − b

b − k

)

∼ b!
nb

(
b

k

)
nb−k

(b − k)! ∼ k!
(
b

k

)2 1

nk
.

Therefore, the following corollary is true.

Corollary 12.3.1 Assume (12.23). Then, the variance of Un satisfies

Var(Un) = b2

n
ζ1 + o

(
1

n

)

. (12.30)

In fact, the error term in (12.30) is at most O(1/n2). Similarly, if ζ1 = 0, then

Var(Un) = 2

(
b

2

)2 1

n2
ζ2 + o

(
1

n2

)

.

Clearly, the rate of convergence of Var(Un) to zero depends on the smallest value
of j for which ζ j > 0. That is, if ζ1 = · · · ζ j−1 = 0 but ζ j > 0, then

n j V ar(Un) → j !
(
b

j

)2
ζ j .

We are now in a position to prove asymptotic normality of Un .

Theorem 12.3.2 Assume (12.23) and ζ1 > 0. Then,

√
n[Un − θ(P)] − b

n

n∑

i=1

[h1(Xi ) − θ(P)] P→ 0 (12.31)
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and so √
n[Un − θ(P)] d→ N (0, b2ζ1) (12.32)

Proof. Define Ûn so that

Ûn − θ(P) = b

n

n∑

i=1

[h1(Xi ) − θ(P)] . (12.33)

By the Central Limit Theorem

√
n[Ûn − θ(P)] d→ N (0, b2ζ1) .

The result will follow by Slutsky’s Theorem if we can show

√
n[(Un − θ(P)) − (Ûn − θ(P))] P→ 0 . (12.34)

But, U ′
n = Un − Ûn is a U -statistic based on the kernel

h′(x1, . . . , xb) = [h(x1, . . . , xb) − θ(P)] −
b∑

i=1

[h1(xi ) − θ(P)] .

Indeed, averaging h′ over all combinations yields

U ′
n = 1
(n
b

)
∑

c

h′(Xi1 , . . . , Xib)

= Un − θ(P) − 1
(n
b

)
∑

c

b∑

j=1

[h1(Xi j ) − θ(P)]

= Un − θ(P) −
(n−1
b−1

)

(n
b

)
n∑

i=1

[h1(Xi ) − θ(P)]

= Un − θ(P) − b

n

n∑

i=1

[h1(Xi ) − θ(P)] = Un − Ûn ,

as claimed. But, in obvious notation, the h′
1 corresponding to the kernel h′ is zero,

and so its variance ζ ′
1 is 0 as well. By Corollary 12.3.1,

Var(U ′
n) = Var(Un − Ûn) = O(1/n2) ,

which certainly implies



578 12 Extensions of the CLT to Sums of Dependent Random Variables

E{[√n(Un − Ûn)]2} → 0 .

By Chebychev’s Inequality, (12.34) holds and the result follows.

Note the theorem is true as stated even if ζ1 = 0, if N (0, 0) is interpreted as point
mass at 0.

Example 12.3.5 (Continuation of Example 12.3.2)WithUn the (unbiased) version
of the sample variance, we can conclude that

√
n(Un − σ2(P))

d→ N (0, 4ζ1) ,

where

ζ1 = 1

4

{
E[(X − μ(P))4] − σ4(P)

}
.

Note that it is possible that ζ1 = 0, as occurs when Xi is Bernoulli with success
probability 1/2. In this case, Un = n p̂n(1 − p̂n)/(n − 1), where p̂n = X̄n . Then,
similar to Example 11.3.5, we can deduce in this case that (Problem 12.18)

n

(

Un − 1

4

)
d→ −1

4
χ2
1 + 1

4
. (12.35)

Example 12.3.6 (One-Sample Wilcoxon Signed-Rank Statistic) Assume
X1, . . . , Xn are i.i.d. on the real line with c.d.f. F . Assume F is continuous (though
the argument generalizes if F is not continuous). Let h(x1, x2) = I {x1 + x2 > 0}
and θ(F) = P{X1 + X2 > 0}. Typically, Un is used as a test of the null hypothesis
H0 that the center of the underlying distribution (assumed symmetric) is 0, in which
case θ(F) = 1/2. Then,

h1(x) = 1 − F(−x) .

Under H0,
ζ1 = Var [F(−X)] = Var F[(X)] = 1/12 ,

since F(X) is distributed as U (0, 1). Hence,

√
n(Un − θ(F))

d→ N (0,
1

3
) .

Avariation is based on the usual one-sampleWilcoxon statisticVn , which is described
as follows. The assumption that F is continuous implies there are no ties with prob-
ability one. Rank |X1|, |X2|, . . . , |Xn| from smallest to largest and let Ri denote the
rank of |Xi |. Define

Vn =
n∑

i=1

Ri I {Xi > 0} . (12.36)
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Then (Problem 12.19),

Vn =
(
n

2

)

Un + Sn , (12.37)

where Sn is the number of positive Xi s. Since Sn is small compared with Vn , the
limiting distribution of Vn can be obtained from Un as

n−3/2[Vn − E(Vn)] d→ N (0,
1

12
) , (12.38)

where E(Vn) = n(n + 1)/4.

The proof of asymptotic normality ofUn was facilitated by introducing Ûn in the
proof, as defined in (12.33). At this point, this choice of definition may perhaps seem
mysterious.But,we now investigate it as a special case of a general projection concept
that has great utility. To begin, suppose X1, . . . , Xn aremutually independent, though
not necessarily i.i.d. The basic goal is to study the distribution of some statistic,
say Tn = Tn(X1, . . . , Xn). If one suspects that Tn is asymptotically normal, then it
seems plausible that Tn can be approximated by a sum of independent variables of the
form

∑n
i=1 gi (Xi ). The following result describes an optimal choice of the gi when

minimizing the expected squared difference between Tn and the approximation.

Theorem 12.3.3 Let X1, . . . , Xn be independent, and E(T 2
n ) < ∞.

(i) The choice of
∑n

i=1 gi (Xi ) minimizing

E

{

[Tn −
n∑

i=1

gi (Xi )]2
}

(12.39)

is given by

T̂n =
n∑

i=1

E(Tn|Xi ) − (n − 1)E(Tn) ; (12.40)

that is, taking gi (Xi ) = E(Tn|Xi ) − n−1
n E(Tn) minimizes (12.39).

(ii) For this choice, E(T̂n) = E(Tn) and

E[(Tn − T̂n)
2] = Var(Tn) − Var(T̂n) . (12.41)

Proof. For any random variable Y with finite second moment, the choice of g
minimizing E{[Y − g(Z)]2} is g(Z) = E(Y |Z). Fix i , and apply this to (12.39)
with Y = Tn −∑ j �=i g j (X j ) and Z = Xi . Then, gi must satisfy

gi (Xi ) = E(Tn|Xi ) −
∑

j �=i

E[g j (X j )]
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or

gi (Xi ) − E[gi (Xi )] = E(Tn|Xi ) −
n∑

j=1

E[g j (X j )] .

Summing over i yields

n∑

i=1

gi (Xi ) =
n∑

i=1

E(Tn|Xi ) − (n − 1)
n∑

j=1

E[g j (X j )] .

But certainly,
∑

j E[g j (X j )] must be E(Tn) because otherwise one could subtract
the difference and further minimize (12.39).

To prove (ii), first calculate

Cov(Tn, T̂n) = Cov(Tn,
n∑

i=1

E(Tn|Xi )) =
n∑

i=1

Cov(Tn, E(Tn|Xi ))

=
n∑

i=1

{
E[TnE(Tn|Xi )] − E2(Tn)

} =
n∑

i=1

{
E[E2(Tn|Xi )] − E2(Tn)

}

=
n∑

i=1

Var [E(Tn|Xi )] = Var(
n∑

i=1

E(Tn|Xi )) = Var(T̂n) .

Therefore,

Var(Tn − T̂n) = Var(Tn) + Var(T̂n) − 2Cov(Tn, T̂n) = Var(Tn) − Var(T̂n) ,

yielding (ii).

The function T̂n is called the projection, because it projects Tn onto the linear
space of all functions that are sums of independent random variables.

As a check, when Tn = Un is a U-statistic, then

E(Un|Xi ) = b

n
h1(Xi ) + (1 − b

n
)θ(P) , (12.42)

and T̂n agrees with Ûn previously introduced in (12.33). Moreover, by Theorem
12.3.3(ii),

Var(Un − Ûn) = Var(Un) − Var(Ûn) = b2

n
ζ1 + O(

1

n2
) − b2

n
ζ1 = O(

1

n2
) .

Therefore,
√
n(Un − θ(P)) and

√
n(Ûn − θ(P)) have the same normal limiting dis-

tribution as obtained before.
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Next, we extend one-sample U -statistics to two-sample U -statistics. Suppose
X1, . . . , Xm are i.i.d. P and, independently, Y1, . . . ,Yn are i.i.d. Q. The parameter
of interest θ = θ(P, Q) is given by

θ(P, Q) = E[h(X1, . . . , Xa,Y1, . . . ,Yb)] ,

where the kernel h is a function of a + b arguments, and assumed symmetric in its
first a and its last b arguments. Also assume the kernel has a finite second moment.
The corresponding U -statistic is then

Um,n = 1
(m
a

)(n
b

)
∑

c

∑

d

h(Xi1 , . . . , Xia ,Y j1 , . . . ,Y jb) .

Define
h1,0(x) = E[h(x, X2, . . . , Xa,Y1, . . . .Yb)]

and
h0,1(y) = E[h(X1, . . . , Xa, y,Y2, . . . ,Yb)] .

Then, one can check (Problem 12.21) that the projection Ûm,n of Um,n is given by

Ûm,n = a

m

m∑

i=1

[h1,0(Xi ) − θ] + b

n

n∑

j=1

[h0,1(Y j ) − θ] + θ . (12.43)

Let ζ1,0 = Var [h1,0(X)] and ζ0,1 = Var [h0,1(Y )]. If min(m, n) → ∞withm/n →
λ < ∞, then by the CLT,

√
m[Ûm,n − θ(P, Q)] d→ N (0, a2ζ1,0 + λb2ζ0,1) . (12.44)

The same is true if Ûm,n is replaced by Um,n . The argument requires showing that

√
m(Ûm,n −Um,n)

P→ 0

and is similar to the one-sample U -statistics case (Problem 12.22).

Example 12.3.7 (Two-Sample Wilcoxon Statistic) Let h(x, y) = I {x ≤ y}, so
that θ(F,G) = P{X ≤ Y } when X and Y are independent, X has c.d.f. F and Y
has c.d.f. G. Then,

Um,n =
m∑

i=1

n∑

j=1

I {Xi ≤ Y j } .
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The statistic mnUm,n is known as the Mann–Whitney statistic and is closely related
to the Wilcoxon rank-sum statistic Wn in Example 12.2.1 (Problem 12.24). Now,

h1,0(x) = 1 − G−(x)

and
h0,1(y) = F(y) ,

where G−(x) = P{Y < x} (so that G− = G if G is continuous). Then,

ζ1,0 = Var [1 − G−(X)] = E
{
E[I {X ≤ Y }|X ]2}− θ2(F,G)

= P{X1 ≤ Y1 , X1 ≤ Y2} − θ2(F,G) .

If F is continuous and F = G, ζ1,0 = 1/3 − 1/4 = 1/12. Similarly,

ζ0,1 = P{X1 ≤ Y1, X2 ≤ Y1} − θ2(F,G) , (12.45)

which again reduces to 1/12 when F is continuous and F = G. Note, however, that
thismethod of proving asymptotic normality does not rely on the assumption F = G,
unlike the method presented in Example 12.2.1.

Assume F is continuous. Under H0 : F = G, the test that rejects H0 when

√
m|Un − 1

4
| ≥
√
1 + λ

12
z1− α

2
(12.46)

has null rejection probability tending to α. On the other hand, for testing the
null hypothesis H ′

0 : P{X ≤ Y } = 1/2 against two-sided alternatives where P{X ≤
Y } �= 1/2, the same test does not control the probability of a Type 1 error, even in
large samples. That is, there exists F and G satisfying H ′

0 such that the probability
of a Type 1 error tends to some value > α. Worse yet, the probability of a Type 3 or
directional error can be large (Problem 12.25).

12.4 Stationary Mixing Processes

A stochastic process {Xt , t ∈ I } is a collection of random variables, indexed by I ,
that are defined on some common probability space. In this section, we consider the
case where I is the set of integers Z, in which case the process may be referred to
as a time series {X j , j ∈ Z}. Note that the X j ’s may be random vectors, or more
generally they may take values in some space S, though we focus on the case S = R.

Dependence is typically the norm when considering random variables that evolve
in time (or space). Data X1, . . . , Xn may be regarded as a stretch of some time series.
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In this section, we discuss some basic asymptotic theory for the normalized sum or
average of such dependent random variables. Further references and historical notes
are provided at the end of the chapter.

Any attempt to generalize central limit theorems from independent to dependent
random variables must in some way rule out strong dependence. Indeed, in the
example where X j = X1 for all j , asymptotic normality fails (unless X1 is normal).
Therefore, various types of weak dependence conditions have been used to capture
the idea that observations separated far in time are approximately independent. In
particular, Rosenblatt (1956) suggested the following notion of strong mixing, also
called α-mixing.

Definition 12.4.1 For a time series X = {X j , j ∈ Z}, let Fn
m denote the σ-algebra

generated by {X j , m ≤ j ≤ n}. The corresponding mixing coefficients are defined
by

αX (k) = sup
n

sup
A,B

|P(A ∩ B) − P(A)P(B)| ,

where A and B vary over Fn−∞ and F∞
n+k , respectively. Then, the process X is called

strong mixing (or α-mixing) if αX (k) → 0 as k → ∞.

A special case is the following.

Definition 12.4.2 The sequence X = {X j , j ∈ Z} ism-dependent if αX (k) = 0 for
all k > m.

Evidently, a 0-dependent sequence corresponds to a sequence of independent
random variables.

Stochastic processes having a probabilistic structure that is invariant to shifts in
time are called strictly stationary, or stationary for short.

Definition 12.4.3 The sequence X = {X j , j ∈ Z} is stationary if, for any integers
c, k and j1, . . . , jk , the joint distribution of (X j1 , . . . , X jk ) is the same as that of
(X j1+c, . . . , X jk+c).

In contrast, processes X satisfying E(X j ) and E(X2
j ) do not depend on j , as well

as Cov(X j , Xk) depends on ( j, k) only through k − j , are called weakly stationary
or covariance stationary. In the case where Cov(X j , Xk) = σ2 I { j = k}, the process
X is sometimes called a white noise process, or simply an uncorrelated sequence.
Note that, for a covariance stationary process X , the function

R(k) = Cov(X1, Xk+1) (12.47)

is called the autocovariance (or just covariance) function of the process X .

Example 12.4.1 (Moving Averages) Suppose {ε j , j ∈ Z} is a collection of inde-
pendent random variables. Then, the sequence

X j = h(ε j , ε j+1, . . . , ε j+m)
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is a sequence ofm-dependent randomvariables, where h is any (measurable) function
from Rm+1 to R. In the special case where h is of the form

h(ε1, . . . , εm+1) =
m+1∑

i=1

wiεi

for constants w1, . . . wm+1, the process X = {X j , j ∈ Z} is known as a moving
average process of order m. The case wi = 1/(m + 1) is a simple moving average
process. If the ε j are also i.i.d., then the process X is stationary as well. If the ε j
sequence is weakly stationary, then so is X . Moreover, if the ε j is an uncorrelated
sequence with variance σ2

ε , then an easy calculation (Problem 12.30) gives

R(k) = σ2
ε (w1w1+k + · · · + wm+1−kwm+1) if 0 ≤ k ≤ m , (12.48)

and R(k) = 0 if k > m.

Example 12.4.2 (Autoregressive Process) Suppose

X j = ρX j−1 + ε j , (12.49)

where the ε j are i.i.d. with distribution F (though one can also consider the case
where the ε j are just weakly stationary). Such a process is known as an autoregressive
process of order 1, denoted by AR(1). At this point, it may not be clear that a process
X satisfying the X j − ρX j−1 are i.i.d. with distribution F even exists. Assuming its
existence for the moment, we may iterate (12.49) to get

X j = ρX j−1 + ε j = ρ(ρX j−2 + ε j−1) + ε j = ρ2X j−2 + ρε j−1 + ε j

and, in general,

X j = ρm X j−m +
m−1∑

i=0

ρiε j−i . (12.50)

Moreover, (12.50) suggests that, when |ρ| < 1, we can define

X j =
∞∑

i=0

ρiε j−i , (12.51)

where the infinite series is a well-defined random variable if the ε j have a finite first
moment. Indeed,

E

( ∞∑

i=0

|ρiε j−i |
)

≤ E(|ε1|)
∞∑

i=0

|ρ|i < ∞ ,
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which implies that
∑∞

i=0 |ρiε j−i | is finite with probability one, and so is the right
side of (12.51) with probability one. 1

The representation (12.51) may be viewed as a moving average process of infinite
order. Furthermore, with X j defined as in (12.51), one may now check that the ran-
dom variables X j − ρX j−1 = ε j are i.i.d. F . It also follows from the representation
(12.51) that {X j , j ∈ Z} is stationary.

Assume the distribution F of the ε j ’s has mean με and finite variance σ2
ε . Then,

(12.51) also implies that (Problem 12.31)

E(X j ) = με

1 − ρ

and

R(k) = σ2
ε · ρk

1 − ρ2
(12.52)

so that the covariances decay geometrically (or exponentially) fast.
Finally, if the distribution F is absolutely continuous with respect to Lebesgue

measure, then it is known that the process X is α-mixing, and the mixing coefficients
decay geometrically fast as well; see Mokkadem (1988). Surprisingly, a stationary
AR(1) process need not be mixing. A well-known counterexample can be obtained
with ρ = 1/2 and taking F to be the distribution placing mass 1/2 at both 0 and 1;
see Section 2.3.1 of Doukhan (1995).

Strong mixing has important implications concerning the covariance between
random variables separated in time.

Lemma 12.4.1 Give a sequence X = {X j , j ∈ Z} with mixing coefficients αX (·),
assume U and V are Fn−∞ and F∞

n+k measurable.
(i) If U and V are bounded by one in absolute value, then

|Cov(U, V )| ≤ 4αX (k) .

(ii) If E(|U |p) < ∞ and E(|V |q) < ∞ for some p and q with 1
p + 1

q < 1, then

|Cov(U, V )| ≤ 8[E(|U |p)]1/p[E(|V |q)]1/qα1− 1
p − 1

q

X (k) .

A proof of Lemma 12.4.1 can be found in the appendix of Hall and Heyde (1980).
As usual, let X̄n =∑n

i=1 Xi/n. Before considering asymptotic normality of√
n[X̄n − E(X̄n)], we consider its variance. If the Xi have a finite variance, then

1 Alternatively, the celebrated Kolmogorov Three-Series Theorem may be used to easily show that
the series (12.51) converges with probability one; see Billingsley (1995), Theorem 22.8. In addition,
if Var(ε j ) < ∞, we may write, X j = limm→∞ Xm, j , where Xm, j =∑m−1

i=0 ρi ε j−i , and the limit
can be interpreted in the mean-squared sense; see Problem 11.65.
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Var(
√
n X̄n) = 1

n

n∑

i=1

Var(Xi ) + 2

n

∑

i< j

Cov(Xi , X j ) . (12.53)

Further assume weak stationarity and recall R(k) = Cov(X1, Xk+1). Then, (12.53)
simplifies to (Problem 12.32)

Var(
√
n X̄n) = Var(X1) + 2

n−1∑

k=1

(1 − k

n
)R(k) . (12.54)

If R(k) → 0 sufficiently fast as k → ∞, then we can expect

Var(
√
n X̄n) → Var(X1) + 2

∞∑

k=1

R(k) < ∞ . (12.55)

Certainly, (12.55) holds if the process is also m-dependent because the infinite sum
becomes a finite sum. If the process X is stationary and bounded in absolute value by
one with α-mixing coefficients αX (·) that are summable, then by Lemma 12.4.1(i),
|R(k)| ≤ 4αX (k). Thus,

n−1∑

k=1

(1 − k

n
)|R(k)| →

∞∑

k=1

|R(k)| ≤ 4
∞∑

k=1

αX (k) < ∞ ,

and then (12.55) holds. Finally, if X is stationary with E(|X1|2+δ) < ∞ for some
δ > 0, then by Lemma 12.4.1(ii),

|R(k)| ≤ Cα
δ

2+δ

X (k) ,

for some constant C < ∞ (which depends on δ). Thus, if the mixing coefficients
satisfy

∞∑

k=1

α
δ

2+δ

X (k) < ∞ , (12.56)

then we can also conclude that (12.55) holds (Problem 12.33). Assuming asymptotic
normality holds, we can then expect

√
n[X̄n − E(X1)] d→ N (0,σ2

∞) ,

where σ2∞ is given by the right-hand side of (12.55). In the m-dependent case, the
following holds. (References for proofs are provided in the notes at the end of the
chapter.)
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Theorem 12.4.1 Assume X1, X2, . . . is a stationary m-dependent sequence with
mean μ and Var(X1) < ∞. Then,

√
n(X̄n − μ)

d→ N (0,σ2
∞) , (12.57)

where

σ2
∞ = Var(X1) + 2

m∑

k=1

R(k) . (12.58)

Example 12.4.3 (Runs of Bernoulli Trials) Suppose ε1, ε2, . . . is an i.i.d. sequence
of Bernoulli trials, each trial having success probability p. Fix m and let

Yi,m = I {εi = · · · = εi+m = 1}

denote the indicator of the event of m + 1 heads in a row starting at i . We would
like to determine the limiting distribution of

∑n−m
i=1 Yi,m , suitably normalized. But,

the Yi,m form an m-dependent strictly stationary sequence, and so Theorem 12.4.1
applies. We need to calculate σ2∞ in (12.58). Note that E(Yi,m) = pm+1. Moreover,
for k ≥ 0,

Cov(Y1,m,Y1+k,m) = E(Y1,mY1+k,m) − E(Y1,m)E(Y1+k,m) = pm+1+k − p2m+2 .

Therefore,

σ2
∞ = pm+1(1 − pm+1) + 2

m∑

k=1

(pm+1+k − p2m+2)

= pm+1 − p2m+2 + (2
m∑

k=1

pm+1+k) − 2mp2m+2

= pm+1 − (2m + 1)p2m+2 + 2pm+1

(
p(1 − pm)

1 − p

)

= pm+1 − (2m + 1)p2m+2 + 2pm+2 − 2p2m+2

1 − p
.

It follows that

(n − m)−1/2
n−m∑

i=1

(Yi,m − pm+1)
d→ N (0,σ2

∞) .

Statistics like
∑n−m

i=1 Yi,m have been used to test alternatives to Bernoulli sequences;
see Ritzwoller and Romano (2021) and their analysis of various tests as applied to
the so-called hot hand fallacy.
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Example 12.4.4 In Theorem 12.4.1, it is possible to have σ2∞ = 0 even when
Var(X1) > 0. To see how, let {ε j , j ∈ Z} be i.i.d. N(0,1) and set X j = ε j − ε j−1.
Then, the X j s form a stationary 1-dependent sequence with mean μ = 0 and

σ2
∞ = Var(X1) + 2R(1) = 2 + 2Cov(ε2 − ε1, ε1 − ε0) = 0 .

The theorem still holds with the interpretation
√
n X̄n

P→ 0.

The following theorem, due to Ibragimov (1962), provides a Central Limit The-
orem for stationary strong mixing sequences.

Theorem 12.4.2 Suppose X = {X j , j ∈ Z} is stationary, mean μ, with
E(|X1|2+δ) < ∞ for some δ > 0. Assume the mixing coefficients αX (·) of X sat-
isfy

∞∑

j=1

[αX ( j)] δ
2+δ < ∞ . (12.59)

Then,

n1/2(X̄n − μ)
d→ N (0,σ2

∞) ,

where σ2∞ is finite and given by (12.55).

Example 12.4.5 (Sample Autocovariance)Let X be a stationaryprocesswithmean
μ and covariance function R(·). Assume E(|X1|4+2δ) < ∞ for some δ, and assume
(12.59) as well. Let R̂n(1) be the sample autocovariance at lag 1; that is,

R̂n(1) = 1

n − 1

n−1∑

i=1

(Xi − X̄n)(Xi+1 − X̄n) .

In order to obtain the limiting distribution of
√
n[R̂n(1) − R(1)], first consider R̄n(1)

defined by

R̄n(1) = 1

n − 1

n−1∑

i=1

Yi ,

where Yi = (Xi − μ)(Xi+1 − μ). Then, Y1,Y2, . . . is stationary with mean R(1). We
can apply Theorem 12.4.2 to deduce that

√
n[R̄n(1) − R(1)] d→ N

(

0, Var(Y1) + 2
∞∑

k=1

Cov(Y1,Y1+k)

)

.
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Then, by simple algebra and the fact that
√
n(X̄n − μ)2

P→ 0, it follows that
(Problem 12.37) √

n[R̂n(1) − R̄n(1)] P→ 0 , (12.60)

and so R̂n(1) and R̄n(1) have the same limiting distribution.

12.5 Stein’s Method

In this section, Stein’s (1972)method is introduced as a general technique for approxi-
mating the distribution of a sum (or average) of possibly dependent randomvariables.
In particular, we focus on normal approximation, though the method is more general;
see the notes at the end of the chapter. As will be seen, the method also produces
error bounds, similar to that in the Berry–Esseen Theorem.

A useful starting point is the following characterization of a random variable W
having the standard normal distribution. A random variable W satisfies

E[ f ′(W )] = E[W f (W )] (12.61)

for all “smooth” f if and only if W has the standard normal distribution. We will
formalize this characterization below. But, note that if f is bounded and absolutely
continuous and φ is the standard normal density, then integration by parts yields

E[ f ′(W )] =
∫ ∞

−∞
f ′(w)φ(w)dw = f (w)φ(w)

∣
∣∞−∞ −

∫ ∞

−∞
f (w)φ′(w)dw

= 0 +
∫ ∞

−∞
f (w)wφ(w)dw = E[W f (W )] .

A rough strategy will be to argue that W is approximately standard normal if

E[ f ′(W )] − E[W f (W )] ≈ 0

in some sense. Unlike classical Fourier methods, this will be accomplished by using
local perturbations of W . In order to get a quick idea of how this may be possible,
consider the simple casewhere X1, . . . , Xn are i.i.d. with E(Xi ) = 0 and Var(Xi ) =
1. Let

W = X1 + · · · Xn√
n

and

Wi = W − Xi√
n

,
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so that Wi and Xi are independent. It follows that

E[Xi f (Wi )] = E(Xi )E[ f (Wi )] = 0

and also
E[Xi f (W )] = E{Xi [ f (W ) − f (Wi )]}

≈ E[Xi (W − Wi ) f
′(W )] = 1√

n
E[X2

i f
′(W )] . (12.62)

Therefore,

E[W f (W )] = 1√
n

n∑

i=1

E[Xi f (W )] ≈ 1

n

n∑

i=1

E[X2
i f

′(W )]

= E

[

f ′(W ) · 1
n

n∑

i=1

X2
i

]

≈ E[ f ′(W )] ,

since by the law of large numbers,
∑

X2
i /n ≈ 1. Such an approach will be made

rigorous later, and it will also produce error bounds.
A more formal statement of the characterization (12.61) is given by the following

lemma. For any function g(·) of a real-variable, let ‖g‖ = supw |g(w)‖.
Lemma 12.5.1 If Z has the standard normal distribution, denoted by Z ∼ N (0, 1),
then E[ f ′(Z)] = E[Z f (Z)] for all absolutely continuous f with E | f ′(Z)| < ∞.
Conversely, if a random variable W satisfies E[ f ′(W )] = E[W f (W )] for all abso-
lutely continuous f with ‖ f ′‖ < ∞, then W ∼ N (0, 1).

Proof of Lemma 12.5.1. Assume Z ∼ N (0, 1) with E | f ′(Z)| < ∞. By Fubini’s
Theorem,

E[ f ′(Z)] = 1√
2π

∫ ∞

−∞
f ′(z)e−z2/2dz

= 1√
2π

∫ ∞

0
f ′(z)

∫ ∞

z
xe−x2/2dxdz + 1√

2π

∫ 0

−∞
f ′(z)

∫ z

−∞
−xe−x2/2dxdz

= 1√
2π

∫ ∞

0
xe−x2/2

∫ x

0
f ′(z)dzdx + 1√

2π

∫ 0

−∞
−xe−x2/2

∫ 0

x
f ′(z)dzdx

= E{Z [ f (Z) − f (0)]} = E[Z f (Z)] .

The proof of the second part of Lemma 12.5.1 is left as Problem 12.39, but follows
easily from Lemma 12.5.2 below.

As usual, let �(·) denote the standard normal c.d.f.
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Lemma 12.5.2 Fix x ∈ R. The unique bounded solution fx (·) to the differential
equation

f ′
x (w) − w fx (w) = I {w ≤ x} − �(x) (12.63)

is given by

fx (w) = ew2/2
∫ ∞

w

e−t2/2[�(x) − I {t ≤ x}]dt (12.64)

= −ew2/2
∫ w

−∞
e−t2/2[�(x) − I {t ≤ x}]dt . (12.65)

Hence,

fx (w) =
{√

2πew2/2�(w)[1 − �(x)] if w ≤ x√
2πew2/2�(x)[1 − �(w)] if w > x .

(12.66)

Proof.Multiply both sides of (12.63) by e−w2/2 to get

d(e−w2/2 fx (w))

dw
= e−w2/2[I {w ≤ x} − �(x)] .

Integration then yields, for an arbitrary constant C ,

fx (w) = ew2/2
∫ w

−∞
[I {t ≤ x} − �(x)]e−t2/2dt + Cet

2/2 . (12.67)

The only bounded solution requiresC = 0, and then (12.67) agrees with (12.65). The
equivalence of (12.64) and (12.65) is easy to check, as is (12.66) (Problem 12.40).

By replacingw with a random variableW in (12.63) and then taking expectations,
it follows that

|P{W ≤ x} − �(x)| = |E[ f ′
x (W ) − W fx (W )]| .

Therefore, Stein’s method is to bound the right side.
In general, normal approximation may be specified by E[h(W )] ≈ E[h(Z)] for

certain functions h in some specified class H. Define, for random variables X and
Y , the distance dH(X,Y ) by

dH(X,Y ) = sup
h∈H

|E[h(X)] − E[h(Y )]| .

Note that d really is a measure of closeness on the space of distributions of X and Y
and, depending on the choice of H, is a metric in the usual sense. For example, the
choice

H = {I {· ≤ x] : x ∈ R}
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corresponds to the Kolmogorov metric, denoted by dK . The choice

H = {h : R → R : |h(x) − h(y)| ≤ |x − y|}

is the Wasserstein metric, denoted by dW . Finally, the choice

H = {I {· ∈ A} : A ∈ Borel sets}

is the total variation metric dTV .
For a random variable W and Z ∼ N (0, 1), in order to compare E[h(W )] with

E[h(Z)], fix a function h with E |h(Z)| < ∞. Let f = fh be the solution to the Stein
equation given by

f ′
h(w) − w fh(w) = h(w) − E[h(Z)] . (12.68)

Then,
dH(W, Z) = sup

h∈H
|E[ f ′

h(W )] − E[W fh(W )]| . (12.69)

(Thus, for a real number x , the notation fx introduced earlier really corresponds to
fh with h(·) = I {· ≤ x}.)
Before we can exploit (12.69), it is helpful to record certain smoothness properties

of the solution fh to (12.68).

Lemma 12.5.3 The solution fh to the Stein equation (12.68) can be written as

fh(w) = −ew2/2
∫ ∞

w

e−t2/2[h(t) − Eh(Z)]dt (12.70)

= ew2/s
∫ w

−∞
e−t2/2[h(t) − Eh(Z)]dt . (12.71)

If h is bounded, i.e. ‖h‖ < ∞, then

‖ fh‖ = sup
w

| fh(w)| ≤
√

π

2
‖h − Eh(Z)‖

and
‖ f ′

h‖ ≤ 2‖h − Eh(Z)‖ .

If h is absolutely continuous, then

‖ fh‖ ≤ 2‖h′‖ , ‖ f ′
h‖ ≤

√
2

π
‖h′‖ , and ‖ f ′′

h ‖ ≤ 2‖h′‖ . (12.72)

The proof of (12.70) and (12.71) is analogous to the proof of (12.64) and (12.65).
The rest of the proof is somewhat technical, but an argument can be found in the
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appendix to Chapter 2 in Chen et al. (2011). At least intuitively, the solution fh
should be smoother than h since Equation (12.68) equates a function of fh and f ′

h to
a shift of h. In what follows, the bounds in (12.72) will be important, but otherwise
the arguments will be self-contained.

The next goal is to prove a result in the spirit of Berry–Esseen, except that, for
simplicity, we work with the metric dW . Of course, when W = Wn is indexed by
n, then dW (Wn, Z) → 0 implies weak convergence. Results for dK may be found
in Ross (2011) or Chen et al. (2011). The first step is the following lemma, where
independence is assumed.

Lemma 12.5.4 Assume X1, . . . , Xn are independent with E(Xi ) = 0 and
Var(Xi ) = 1. Let W = n−1/2∑n

i=1 Xi . Let f satisfy ‖ f ′′‖ ≤ C < ∞. Then,

|E[W f (W )] − E[ f ′(W )]| ≤ 3C

2n3/2

n∑

i=1

E(|Xi |3) . (12.73)

Proof. Let Wi = W − n−1/2Xi , so that Wi and Xi are independent. Then
E[Xi f (Wi )] = 0 and so

E[Xi f (W )] = E{Xi [ f (W ) − f (Wi )]} =

E{Xi [ f (W ) − f (Wi )] − Xi (W − Wi ) f
′(Wi )} + E[Xi (W − Wi ) f

′(Wi )] .

Summing over i and dividing by
√
n yields

E[W f (W )] = 1√
n

n∑

i=1

E{Xi [ f (W ) − f (Wi ) − (W − Wi ) f
′(Wi )]}

+1

n

n∑

i=1

E[X2
i f

′(Wi )]

= 1√
n

n∑

i=1

E{Xi [ f (W ) − f (Wi ) − (W − Wi ) f
′(Wi )]} (12.74)

+ 1

n

n∑

i=1

E[ f ′(Wi )] . (12.75)

Therefore, to get a bound on the left side of (12.73), we get a bound on the absolute
value of (12.74) and a bound on the absolute difference between E[ f ′(W )] and
(12.75). But, by Taylor’s Theorem,

|Xi [ f (W ) − f (Wi ) − (W − Wi ) f
′(Wi )]| ≤ |Xi |1

2
(W − Wi )

2C = C

2
· |Xi |3

n
.
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Therefore, the absolute value of (12.74) is bounded above by

C

2n3/2

n∑

i=1

E(|Xi |3) . (12.76)

Also, by Taylor’s Theorem,

| f ′(Wi ) − f ′(W )| ≤ |Wi − W |C = C |Xi |√
n

,

and so the absolute difference between (12.75) and E[ f ′(W )] is

|1
n
E[ f ′(Wi ) − f ′(W )] ≤ C

n3/2

n∑

i=1

E |Xi | . (12.77)

Combining (12.76) and (12.77) yields

|E[W f (W ) − f ′(W )]| ≤ C

2n3/2

n∑

i=1

E(|Xi |3) + C

n3/2

n∑

i=1

E |Xi | . (12.78)

But, E |Xi | ≤ E(|Xi |3) if E(X2
i ) = 1 (Problem12.45), so that the right side of (12.78)

is bounded by the right side of the result (12.73).

Theorem 12.5.1 Under the assumptions of Lemma 12.5.4,

dW (W, Z) ≤ 3

n3/2

n∑

i=1

E[|Xi |3] .

Proof. The proof follows from Lemma 12.5.4 upon recalling from Lemma 12.5.3
that ‖ f ′′‖ ≤ C = 2 for any fh such that h is Lipschitz (withLipschtiz constant one).

Next, we consider sums of certain classes of dependent random variables.

Definition 12.5.1 We say that (X1, . . . , Xn) has dependency neighborhoods Ni ⊆
{1, . . . , n} if Xi is independent of {X j } j /∈Ni .

An immediate example is an m-dependent time series, where Ni is the set of
indices in {1, . . . , n} such that | j − i | ≤ m.

The dependence structure of the Xi may be represented in terms of a graph with
vertices {1, . . . , n}, where i and j are connected with an edge if j ∈ Ni . If the
cardinality of Ni , |Ni |, is not too big, then a normal approximation can be obtained.
One such version is given in Ross (2011), which is stated next.

Theorem 12.5.2 Suppose (X1, . . . , Xn) has dependency neighborhoods Ni with
D = maxi |Ni |. Assume E(Xi ) = 0, E(X4

i ) < ∞ and set
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σ2 = Var

(
n∑

i=1

Xi

)

= E

⎛

⎝
n∑

i=1

∑

j∈Ni

Xi X j

⎞

⎠ .

Let W =∑n
i=1 Xi/σ. Then,

dW (W, Z) ≤ D2

σ3

n∑

i=1

E(|Xi |3) +
√
28D3/2

√
πσ2

√
√
√
√

n∑

i=1

E(X4
i ) . (12.79)

Proof. From (12.69) and the inequalities (12.72), it is enough to bound |E[ f ′(W ) −
W f (W )]| for f satisfying ‖ f ′‖ ≤ √

2/π and ‖ f ′′‖ ≤ 2. Let Wi =∑ j /∈Ni
X j/σ.

Then, Xi andWi are independent, and so E[Xi f (Wi )] = 0.By the triangle inequality,

|E[ f ′(W ) − W f (W )]| ≤ A + B ,

where

A =
∣
∣
∣
∣
∣
E

{
1

σ

n∑

i=1

Xi [ f (W ) − f (Wi ) − (W − Wi ) f
′(W )]

}∣
∣
∣
∣
∣

and

B =
∣
∣
∣
∣
∣
E

{

f ′(W )[1 − 1

σ

n∑

i=1

Xi (W − Wi )]
}∣
∣
∣
∣
∣

.

We claim that these two terms are bounded above by the corresponding two terms
on the right side of (12.79). But by bringing the absolute value inside the expectation
and applying Taylor’s Theorem, it follows that

A ≤ 1

σ

n∑

i=1

E

∣
∣
∣
∣Xi

(W − Wi )
2

2
f ′′(W ∗

i )

∣
∣
∣
∣ ,

where W ∗
i is between Wi and W . Since ‖ f ′′‖ ≤ 2,

A ≤ 1

σ

n∑

i=1

|Xi (W − Wi )
2| = 1

σ3

n∑

i=1

E

∣
∣
∣
∣
∣
∣
Xi

⎛

⎝
∑

j∈Ni

X j

⎞

⎠

2∣∣
∣
∣
∣
∣

≤ 1

σ3

n∑

i=1

∑

j,k∈Ni

E |Xi X j Xk |

≤ 1

σ3

n∑

i=1

∑

j,k∈Ni

1

3
[E(|Xi |3) + E(|X j |3) + E(|Xk |3)] ,
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where the last inequality follows from the arithmetic-geometric mean inequality.2

But,
n∑

i=1

∑

j,k∈Ni

E(|Xi |3) ≤ D2
n∑

i=1

E(|Xi |3)

and also

n∑

i=1

∑

j∈Ni

∑

k∈Ni

E(|X j |3) =
n∑

j=1

∑

i∈N j

∑

k∈Ni

E(|X j |3) ≤ D2
n∑

j=1

E(|X j |3) .

Therefore,

A ≤ D2

σ3

n∑

i=1

E(|Xi |3) ,

as previously announced. Next,

B ≤ ‖ f ′‖
σ2

E

∣
∣
∣
∣
∣
∣
σ2 −

n∑

i=1

∑

j∈Ni

Xi X j

∣
∣
∣
∣
∣
∣

.

By the Cauchy–Schwarz Inequality, this is bounded above by

√
2

π

1

σ2

√
√
√
√Var(

n∑

i=1

∑

j∈Ni

Xi X j ) .

The remainder of the proof consists of bounding the variance term in the last expres-
sion; see Problem 12.47.

Example 12.5.1 (U-statistics) As in Section 12.3, consider the U -statistic, Un ,
given by (12.24) based on a symmetric kernel h. Then, we can write W = (nb

)
Un/σ,

where σ2 = (nb
)2
Var(Un). Theorem 12.5.2 applies if n is changed to

(n
b

)
and we

identify an index i in the sum with a particular b-tuple {i1, . . . , ib} of b distinct
indices. The number of terms in the sum for Un , say N{i1,...,ib}, that share one of
its b indices in common with {i1, . . . , ib}, can be bounded above by b

(n−1
b−1

)
, and so

we can set D equal to this bound. Theorem 12.5.2 applies to yield a bound for dW
(Problem 12.48).

2 The arithmetic-geometric mean inequality says that, for yi ≥ 0, (y1 + · · · + yk)/k ≥
(y1 · · · yk)1/k .
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Example 12.5.2 (Erdös-Rényi Random Graph) Consider anErdös-Rényi random
graph, constructed as follows. Fix 0 < p < 1. There are n vertices, and any pair of
vertices is connected with an edge with probability p, independently for each pair of
edges. For the sake of argument, assume the vertices are labeled from 1 to n. Let T be
the number of triangles formed; that is, a particular triple of distinct vertices {i, j, k}
forms a triangle if all three pairs i and j , j and k, and i and k are connected with an
edge. So, each of the N = (n3

)
possible triangles occurs with probability p3. Let Yi

be the indicator of the event that the i th triple of N possible triangles is formed. Note
that i indexes the possible N triangles that may be formed (in any specified order).
So, T =∑N

i=1 Yi . Let W = (T − ET )/σ, where σ2 = Var(T ). Let Ni \ {i} be the
triples of indices which share exactly two edges with those specified by the index i .
Then, Theorem 12.5.2 applies to with |Ni | = 3(n − 3) + 1, and so D = 3n − 8. In
order to compute σ2, let Xi = Yi − p3. Suppose j �= i and j ∈ Ni . Then,

Cov(Yi ,Y j ) = p5 − p6 .

To seewhy, if, for example, i corresponds to the vertices {1, 2, 3} and j to the vertices
{1, 2, 4}, then both triangles are formed if the 5 edges connecting 1 and 2, 2 and 3, 1
and 3, 1 and 4, and 2 and 4 are all present and so E(YiY j ) = p5. An easy calculation
(Problem 12.51) then gives that, for any positive integer k,

E(|Xi |k) = p3(1 − p3)[(1 − p3)k−1 + p3(k−1)] (12.80)

and

σ2 =
(
n

3

)

p3[1 − p3 + 3(n − 3)p2(1 − p)] . (12.81)

It follows that

dW (W, Z) ≤ (3n − 8)2

σ3

(
n

3

)

p3(1 − p3)[(1 − p3)2 + p6] (12.82)

+
√
28(3n − 8)3/2√

πσ2

√(
n

3

)

p3(1 − p3)[(1 − p3)3 + p9] .

For fixed p, σ2 = O(n4) and so the bound (12.82) tends to zero and a central limit
theorem for T holds.Onemay even let p → 0 and still derive a normal approximation
to the distribution of T ; see Problem 12.51.

The power of Stein’s method goes significantly beyond the introduction presented
here. For further information, see the notes at the end of the chapter.
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12.6 Problems

Section 12.2

Problem 12.1 Show (12.2) and (12.3).

Problem 12.2 Show (12.6) and (12.7).

Problem 12.3 Use Theorem 12.2.1 to prove an asymptotic normal approximation
to the hypergeometric distribution.

Problem 12.4 Show why Theorem 12.2.1 is a special case of Theorem 12.2.2.

Problem 12.5 Show that τN defined in the proof of Theorem 12.2.3 satisfies τN →
∞ as min(n, N − n) → ∞.

Problem 12.6 In the context of Example 12.2.1, find the limiting distribution of the
Wn using Theorem 12.2.3. Identify Gn and G.

Problem 12.7 In Example 12.2.1, rather than considering the sum of the ranks of
the Yi s, consider the statistic given by the sum of the squared ranks of the Yi s. Find
its limiting distribution, properly normalized, under F = G.

Problem 12.8 In the setting of Section 12.2, assume N = m + n and

(xN ,1, . . . , xN ,N ) = (y1, . . . , ym, z1, . . . , zn) .

Let ȳm =∑m
i=1 yi/m and z̄n =∑n

j=1 z j/n. Let x̄N =∑N
j=1 xN , j/N . Also let s2m,y =

∑m
i=1(yi − ȳm)2/m and similarly define s2n,z . Let Y1, . . . ,Ym denote a sample

obtained without replacement from the N values, with sample mean Ȳm . Assume
m/n → λ < ∞. Assume ȳm → ȳ and z̄n → z̄, as well as sm,y → sy and sn,z → sz .
Finally assume the uniform distribution on y1, . . . , ym converges weakly to a c.d.f.
Gy with variance s2y , and similarly the uniform distribution on z1, . . . , zn converges
weakly to a c.d.f. Gz with variance s2z .
(i) Find the limiting distribution of

√
m(Ȳm − x̄N ).

(ii) If Z1, . . . , Zn denote the outcomes in �N not sampled by Y1, . . . ,Ym , and Z̄n =∑n
j=1 Z j/n, then find the limiting distribution of

√
m(Ȳm − Z̄n).

(iii) Simplify your answers in the case ȳm = z̄n and so ȳ = z̄.

Problem 12.9 Complete the proof of Corollary 12.2.1(ii) using the Cramér-Wold
Device.

Problem 12.10 In the setting of Corollary 12.2.1(ii), find an exact formula for
Cov(Ūn, V̄n) and then calculate the limit of nCov(Ūn, V̄n).

Problem 12.11 The limiting expression for NVar(θ̂N ) is given in (12.19). Find an
exact expression for NVar(θ̂N ) that has a similar representation.
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Problem 12.12 Consider the estimator ŝ2N (1) defined in (12.20). Show that ŝ2N (1)
P→

s2(1). State your assumptions.

Problem 12.13 Provide the details to show (12.22). Hint: Use Theorem 12.2.4 and
Problem 12.12.

Problem 12.14 Prove an analogous result to Theorem 12.2.5 when sampling from
an infinite population, where the asymptotic variance has the same form as (12.21)
with f = 0. Assuming s2(1) and s2(0) are known, howwould you allocate treatment
among the N0 units to minimize the asymptotic variance? (The solution is known as
Neyman allocation.)

Problem 12.15 Prove a Glivenko–Cantelli Theorem (Theorem 11.4.2) for sampling
without replacement from a finite population. Specifically, assume X1, . . . , Xn are
sampled at random without replacement from the population with N = Nn ele-
ments given by {xN ,1, . . . , xN ,N }. Let F̂n(t) = n−1∑n

i=1 I {Xi ≤ t} and let FN (t) =
N−1∑N

j=1 I {xN , j ≤ t}. Show that supt |F̂n(t) − FN (t)| P→ 0. (First, consider the
case where FN converges in distribution to some F , but is this needed?)

Section 12.3

Problem 12.16 Verify (12.27).

Problem 12.17 Suppose (X1,Y1), . . . , (Xn,Yn) are i.i.d. P , with E(X2
i ) < ∞ and

E(Y 2
i ) < ∞. The parameter of interest is θ(P) = Cov(Xi ,Yi ). Find a kernel for

which the corresponding U -statistic Un is an unbiased estimator of θ(P). Under an
appropriate moment assumption, find the limiting distribution ofUn .Hint: Compute
E[(X1 − X2)(Y1 − Y2)].
Problem 12.18 Verify (12.35).

Problem 12.19 In Example 12.3.6, show (12.37). Verify the limiting distribution of
Vn in (12.38).

Problem 12.20 Show (12.42).

Problem 12.21 Show (12.43)

Problem 12.22 Show that (12.44) holds if Ûn is replaced by Un .

Problem 12.23 Verify (12.45).

Problem 12.24 Show that Wn in Example 12.2.1 and Um,n in Example 12.3.7 are
related by Wn = mnUm,n + n(n + 1)/2, at least in the case of no ties in the data.
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Problem 12.25 In Example 12.3.7, find F and G so that ζ0,1 and ζ1,0 are not 1/12,
even when P{X ≤ Y } = 1/2. Explore how large the rejection probability of the test
with rejection region (12.46) can be under H ′

0. What does this imply about a Type 3
or directional error? That is, if the test rejects H ′

0 and then declares θ(F,G) > 1/2
because

√
m(Un − 1/2) ≥

√
1 + λ

12
z1− α

2
,

then how large can this probability be even if P{X ≤ Y } < 1/2?

Problem 12.26 Consider testing the null hypothesis that a sample X1, . . . , Xn is
i.i.d. against the alternative that the distributions of the Xi are stochastically increas-
ing. Mann (1945) proposed the test which rejects for large values of N , where N is
the number of pairs (Xi , X j ) with i < j and Xi < X j . Determine the limiting dis-
tribution of N , suitably normalized. How large should we choose the critical value
(for large n) in order to control the Type 1 error at α?

Problem 12.27 Let X1, . . . , Xn be i.i.d. P . Consider estimating θ(P) defined by

θ(P) = E[h(X1, . . . , Xb)] ,

where h is a symmetric kernel.Assume P is such that E |h(X1, . . . , Xb)| < ∞, so that

θ(P) is also well-defined. Show thatUn
P→ θ(P). In fact, E |Un − θ(P)| → 0.Hint:

First how Un is consistent by comparing Un with a consistent estimator obtained
by averaging the kernel over nonoverlapping subsets of the data of size b, and then
apply Rao-Blackwell. Then, use Problem 11.76.

Problem 12.28 Let X1, . . . , Xn be i.i.d. P . Consider estimating θ(P) defined by

θ(P) = E[h(X1, . . . , Xb)] ,

where h is a symmetric kernel. Assume P is such that E[h2(X1, . . . , Xb)] < ∞, so
that θ(P) is also well-defined. Let Un be the corresponding U -statistic defined by
(12.24). Let P̂n be the empirical measure, and also consider the estimator

θ(P̂n) = 1

nb

n∑

i1=1

· · ·
n∑

ib=1

h(Xi1 , . . . , Xib) .

Do
√
n[Un − θ(P)] and √

n[θ(P̂n) − θ(P)] converge to the same limiting distri-
bution? If further conditions are needed, state them. Find the limiting behavior of
n[Un − θ(P̂n)]. Again, state any conditions you might need.

Problem 12.29 Consider aU -statistic of degree 2, based on a kernel h. Let h1(x) =
E[h(x, X2)] and ζ1 = Var [h1(X1)]. Assume ζ1 > 0, so that we know that

√
n[Un −

θ(P)] converges in distribution to the normal distribution with mean 0 and variance
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4ζ1. Consider estimating the limiting variance 4ζ1. SinceUn averages h(Xi , X j ) over
the
(n
2

)
pairs (Xi , X j ) with i �= j , one might use the sample variance of these

(n
2

)

pairs as an estimator. That is, define

S2n = 1
(n
2

)
∑

i< j

[h(Xi , X j ) −Un]2 .

Determine whether or not S2n is a consistent estimator. State any added conditions
you might need. Generalize to U -statistics of degree b.

Section 12.4

Problem 12.30 Verify (12.48).

Problem 12.31 In Example 12.4.2 with the ε j having finite variance, derive the
formulae for the mean and covariance (12.52) of the process.

Problem 12.32 Verify (12.54).

Problem 12.33 Assume X is stationary, E(|X1|2+δ) < ∞ for some δ > 0 and
(12.56) holds. Show that (12.55) holds, and hence R(k) → 0 as k → ∞.

Problem 12.34 Suppose X is a stationary process with mean μ and covariance

function R(k). Assume R(k) → 0 as k → ∞. Show X̄n
P→ μ. (A sufficient condition

for R(k) → 0 is X is strongly mixing with E(|X1|2+δ) < ∞; see Problem 12.33.)

Problem 12.35 Generalize Theorem 12.4.1 to the case where the Xi are vector-
valued.

Problem 12.36 Consider the setup of Example 12.4.3.
(i) Find the joint limiting distribution of

∑n−1
i=1 (Yi,1,Yi,0)�, suitably normalized.

(ii) Let R̂n =∑n−1
i=1 Yi,1/

∑n−1
i=1 Yi,0, which is the proportion of successes following

a success. Show that
√
n(R̂n − p)

d→ N (0, 1 − p).

Problem 12.37 In Example 12.4.5, show the convergence (12.60).

Section 12.5

Problem 12.38 IfW ∼ N (0,σ2)with σ �= 1, what is the generalization of the char-
acterization (12.61)?

Problem 12.39 Complete the proof of the converse in Lemma 12.5.1. Hint: Use
Lemma 12.5.2.
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Problem 12.40 Complete the proof of Lemma 12.5.2 by showing that (12.64) and
(12.65) are equivalent, and then showing that (12.66) follows.

Problem 12.41 Show that, for w > 0,

1 − �(w) ≤ min

(
1

2
,

1

w
√
2π

)

e−w2/2 .

Show that this inequality implies ‖ fx‖ ≤ √
π/2 and ‖ f ′

x‖ ≤ 2.

Problem 12.42 Show that the Wasserstein metric implies weak convergence; that

is, if dW (Xn, X) → 0, then Xn
d→ X . Give a counterexample to show the converse

is false. Prove or disprove the following claim: For random variables Xn and X

with finite first moments, show that dW (Xn, X) → 0 if and only if Xn
d→ X and

E(Xn) → E(X).

Problem 12.43 Investigate the relationships between dW , dK and dTV , as well as
the bounded Lipschitz metric introduced in Problem 11.24. Does convergence of
one of them imply convergence of any of the others? If not, illustrate by finding
counterexamples.

Problem 12.44 If Z is a real-valued random variable with density bounded by C ,
then show that, for any random variable W ,

dK (W, Z) ≤ √2CdW (W, Z) ,

where dK is the Kolmogorov–Smirnov (or sup or uniform) metric between distribu-
tion functions, and dW is the Wasserstein metric.

Problem 12.45 Show that, if E(X2) = 1, then E |X | ≤ E(|X |3).
Problem 12.46 Theorem 12.5.1 provides a bound for dW (W, Z) where W =
n−1/2∑n

i=1 Xi and the Xi are independent with mean 0 and variance one. Extend the
result so that Var(Xi ) = σ2

i may depend on i .

Problem 12.47 Finish the proof of Theorem 12.5.2 by showing

Var

⎛

⎝
n∑

i=1

∑

j∈Ni

Xi X j

⎞

⎠ ≤ 14D3
n∑

i=1

E(|Xi |4) .

Hint: Use the arithmetic–geometric mean inequality.

Problem 12.48 Complete the details in Example 12.5.1 to get an explicit bound
from Theorem 12.5.2 for dW . What conditions are you assuming?



12.6 Problems 603

Problem 12.49 Use Theorem 12.5.2 to derive a Central Limit Theorem for the
sample mean of an m-dependent stationary process. State your assumptions and
compare with Theorem 12.4.1.

Problem 12.50 An alternative characterization of the Wasserstein metric is the fol-
lowing (which you do not have to show): dW (X,Y ) is the infimum of E |X ′ − Y ′|
over all possible joint distributions of (X ′,Y ′) such that the marginal distributions
of X ′ and Y ′ are those of X and Y , respectively. However, do show that

dW (X,Y ) =
∫ 1

0
|F−1(u) − G−1(u)|du =

∫ ∞

−∞
|F(x) − G(x)|dx ,

where F and G are the c.d.f.s of X and Y , respectively.

Problem 12.51 Verify (12.80), (12.81) and (12.82). Based on the bound (12.82),
consider an asymptotic regime where p ∼ n−β for some β ≥ 0. For what β does the
bound tend to zero, so that a central limit theorem for T holds?

Problem 12.52 Consider points on a lattice of the form (i, j) where i and j are
integers from 0 to n. Each of these (n + 1)2 points can be considered a vertex of
a graph. Consider connecting edges adjoining (i, j) and (i + 1, j) or (i, j) and
(i, j + 1), so that only edges between nearest vertices are considered in the graph
(and each edge is either horizontal or vertical). Suppose each edge appears with
probability p, independently of all other edges. For each little square of area one
on the lattice, the square is colored red if all four edges appear. So for example, the
region in the square with vertices (0, 0), (1, 0), (0, 1) and (1, 1) is colored red if
all four edges appear, which has probability p4, meaning the edge connecting (0, 0)
and (1, 0), the edge connecting (1, 0) and (1, 1), the edge connecting (0, 1) and
(1, 1), and the edge connecting (0, 0) and (0, 1). Let θ̂n be the proportion of the big
square with area n2 that is colored red. Find the limiting distribution of θ̂n , suitably
normalized.

12.7 Notes

Theorem 12.2.2 is due to Hájek (1960). For further discussion on the literature of
CLTs for sampling from a finite population, see Li and Ding (2017). An interest-
ing comparison of Fisher’s sharp null versus Neyman’s weak null is studied in Ding
(2017). The potential outcomes framework has been used extensively in causal infer-
ence; Imbens and Rubin (2015), and the references therein.

The foundational paper onU -statistics is due to Hoeffding (1948). Further results
on “projections” are due to Hájek (1968). Full length treatments on U -statistics can
be found in Lee (1990) and Kowalski and Tu (2008).
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The notion of α-mixing or strong mixing is due to Rosenblatt (1956). Various
types of mixing are discussed in Doukhan (1995), Bradley (2007), and Dedecker, et
al. (2007). Proofs of the mixing inequalities in Lemma 12.4.1 can be found in the
appendix in Hall and Heyde (1980), though the results date back to Wolkonoski and
Rozanov (1959) andDavydov (1979).ACentral Limit Theoremunderm-dependence
appeared in Hoeffding and Robbins (1948) (assuming 2 + δ moments), and under
mixing in Ibragimov (1962). A quite general Central Limit Theorem under weak
dependence, as well as references to others, is given in Neumann (2013). Theorem
12.4.1 is included as a special case of Neumann’s result.

Section 12.5 on Stein’s method was inspired by Stein (1972, 1986), Chen et al.
(2011), and Ross (2011). See also the survey by Chatterjee (2014). The scope of
application of Stein’s method has been ever-expanding. Stein’s method is actually
a collection of tools, some of which are based on what Stein (1986) calls “aux-
iliary randomization”, exchangeable pairs, and zero bias coupling. In particular,
one can develop approximations in the Kolmogorov–Smirnov metric, and even in
high dimensions. Moreover, Stein’s method applies to distributional approximation
beyond normality; see Ross (2011).
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