
Chapter 11
Basic Large-Sample Theory

11.1 Introduction

Chapters 3, 4, 5, 6, and 7 were concerned with the derivation of UMP, UMP unbi-
ased, and UMP invariant tests. Unfortunately, the existence of such tests turned out
to be restricted essentially to one-parameter families with monotone likelihood ratio,
exponential families, and group families, respectively. Tests maximizing the mini-
mum or average power over suitable classes of alternatives exist fairly generally, but
are difficult to determine explicitly, and their derivation in Chapter 8 was confined
primarily to situations in which invariance considerations apply.

Despite their limitations, these approaches have proved their value by application
to large classes of important situations. On the other hand, they are unlikely to be
applicable to complex new problems. What is needed for such cases is a simpler, less
detailed, more generally applicable formulation. The development and implementa-
tion of such an approach will be the subject of the remaining chapters. It replaces
optimality by asymptotic optimality obtained by embedding the actual situation in
a sequence of situations of increasing sample size, and applying optimality to the
limit situation. These limits tend to be of a simple type for which optimality has been
established in earlier chapters.

A feature of asymptotic optimality is that it refers not to a single test but to a
sequence of tests, although this distinction will often be suppressed. An important
consequence is that asymptotically optimal procedures—unlike most optimal proce-
dures in the small-sample approach—are not unique since many different sequences
have the same limit. In fact, quite different methods of construction may lead to
procedures which are asymptotically optimal.

The following are some specific examples to keep in mind where finite-sample
considerations fail to provide optimal procedures, but for which a large-sample
approach will be more successful.

Example 11.1.1 (One-parameter families) Suppose X1, . . . , Xn are i.i.d. accord-
ing to some family of distributions Pθ indexed by a real-valued parameter θ. Then, it
was mentioned after Corollary 3.4.1 that UMP tests for testing θ = θ0 against θ > θ0

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, Springer Texts
in Statistics, https://doi.org/10.1007/978-3-030-70578-7_11

521

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70578-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-70578-7_11


522 11 Basic Large-Sample Theory

exist for all sample sizes (under weak regularity conditions) only when the distri-
butions Pθ constitute an exponential family. For example, location models typically
do not have a monotone likelihood ratio, and so UMP tests rarely exist in this situa-
tion, though the normal location model is a happy exception. On the other hand, we
shall see that under weak assumptions, there generally exist tests for one-parameter
families which are asymptotically UMP in a suitable sense; see Section 15.3. For
example, we shall derive an asymptotically optimal one-sided test in the Cauchy
location model, among others.

Example 11.1.2 (Behrens–Fisher Problem)Consider testing the equality ofmeans
for two independent samples, from normal distributions with possibly different
(unknown) variances. As previously mentioned, finite-sample optimality considera-
tions such as unbiasedness or invariance do not lead to an optimal test, even though
the setting is a multiparameter exponential family. An optimal test sequence will be
derived in Example 15.5.4.

Example 11.1.3 (The Chi-squared Test) Consider n multinomial trials with k + 1
possible outcomes, labeled 1 to k + 1. Suppose p j denotes the probability of a result
in the j th category. Let Y j denote the number of trials resulting in category j , so
that (Y1, . . . ,Yk+1) has the multinomial distribution with joint density obtained in
Example 2.7.2. Suppose the null hypothesis is that p = π = (π1, . . . ,πk+1). The
alternative hypothesis is unrestricted and includes all p �= π (with

∑k+1
j=1 p j = 1).

The class of alternatives is too large for a UMP test to exist, nor do unbiasedness or
invariance considerations rescue the problem. The usual Chi-squared test, which is
based on the test statistic Qn given by

Qn =
k+1∑

j=1

(Y j − nπ j )
2

nπ j
, (11.1)

will be seen to possess an asymptotic maximin property; see Section 16.3.

Example 11.1.4 (Nonparametric Mean) Suppose X1, . . . , Xn are i.i.d. from a dis-
tribution F withfinitemeanμ andfinite variance. Theproblem is to testμ = 0.Except
when F is assumed to belong to a number of simple parametric families, optimal
tests for the mean rarely exist. Moreover, if we assume only a second moment, it is
impossible to construct reasonable tests that are of a given size (Theorem 13.4.4).
But, by making a weak restriction on the family, we will see that it is possible to con-
struct tests that are approximately level α and that in addition possess an asymptotic
maximin property; see Sections 13.4 and 15.6.

In the remaining chapters, we shall consider hypothesis testing and estimation by
confidence sets from a large-sample or asymptotic point of view. In this approach,
exact results are replaced by approximate ones that have the advantage of both greater
simplicity and generality. But, the large-sample approach is not just restricted to situ-
ations where no finite-sample optimality approach works. As the following example
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shows, limit theorems often provide an easy way to approximate the critical value
and power of a test (whether it has any optimality properties or not).

Example 11.1.5 (Simple versus Simple) Suppose that X1, . . . , Xn are i.i.d. with
common distribution P . The problem is to test the simple null hypothesis P = P0
versus the simple alternative P = P1. Let pi denote the density of Pi with respect
to a measure μ. By the Neyman–Pearson Lemma, the optimal test rejects for large
values of

∑n
i=1 log[p1(Xi )/p0(Xi )]. The exact null distribution of this test statistic

may be difficult to obtain since, in general, an n-fold integration is required. On
the other hand, since the statistic takes the simple form of a sum of i.i.d. variables,
large-sample approximations to the critical value and power are easily obtained from
the Central Limit Theorem (Theorem 11.2.4).

Another application of the large-sample approach (discussed in Section 13.2)
is the study of the robustness of tests when the assumptions under which they are
derived do not hold. Here, asymptotic considerations have been found to be indis-
pensable. The problem is just too complicated for the more detailed small-sample
methods to provide an adequate picture. In general, two distinct types of robustness
considerations arise, which may be termed robustness of validity and robustness of
efficiency; this distinction has been pointed out by Tukey and McLaughlin (1963),
Box and Tiao (1964), and Mosteller and Tukey (1977). For robustness of validity,
the issue is whether a level α test retains its level and power if the parameter space
is enlarged to include a wider class of distributions. For example, in testing whether
the mean of a normal population is zero, we may wish to consider the validity of
a test without assuming normality. However, even when a test possesses a robust-
ness of validity, are its optimality properties preserved when the parameter space is
enlarged? This question is one of robustness of efficiency (or inference robustness).
In the context of the one-sample normal location model, for example, one would
study the behavior of procedures (such as a one-sample t-test) when the underlying
distribution has thicker tails than the normal, or perhaps when the observations are
not assumed independent. Large-sample theory offers valuable insights into these
issues, as will be seen in Section 13.2.

When neither finite-sample nor large-sample optimal procedures exist for a given
problem, it becomes important to determine procedures which have at least reason-
able performance characteristics. Large-sample considerations often lead to suitable
definitions andmethods of construction. An example of this nature that will be treated
later is the problem of testing whether an i.i.d. sample is uniformly distributed or,
more generally, of goodness of fit.

As the starting point of a large-sample theory of inference, we now define asymp-
totic analogs of the concepts of size, level of significance, confidence coefficient, and
confidence level. Suppose that data X (n) comes from amodel indexed by a parameter
θ ∈ �. Typically, X (n) refers to an i.i.d. sample of n observations, and an asymptotic
approach assumes that n → ∞. Of course, two-sample problems can be considered
in this setup, as well as more complex data structures. Nothing is assumed about the
family �, so that the problem may be parametric or nonparametric. First, consider
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testing a null hypothesis H that θ ∈ �H versus the alternative hypothesis K that
θ ∈ �K , where �H and �K are two mutually exclusive subsets of �. We will be
studying sequences of tests φn(X (n)).

Definition 11.1.1 For a given level α, a sequence of tests {φn} is pointwise asymp-
totically level α if, for any θ ∈ �H ,

lim sup
n→∞

Eθ[φn(X
(n))] ≤ α . (11.2)

Condition (11.2) guarantees that for any θ ∈ �H and any ε > 0, the level of the
test will be less than or equal to α + ε when n is sufficiently large. However, the
condition does not guarantee the existence of an n0 (independent of θ) such that

Eθ[φn(X
(n))] ≤ α + ε

for all θ ∈ �H and all n ≥ n0. We can therefore not guarantee the behavior of the
size

sup
θ∈�H

Eθ[φn(X
(n))]

of the test, no matter how large n is.

Example 11.1.6 (Uniform versus Pointwise Convergence) To illustrate the above
point, consider the function

fn(θ) = α + (1 − α) exp(−n/θ) ,

defined for positive integers n and θ > 0. Then, for any θ > 0, fn(θ) → α as n → ∞;
that is, fn(θ) converges toα pointwise in θ. However, this convergence is not uniform
in θ because

sup
θ>0

fn(θ) = α + (1 − α) sup
θ>0

exp(−n/θ) = 1 .

To cast this example in the context of hypothesis testing, assume X1, . . . , Xn are
i.i.d. with the exponential distribution function

Fθ(t) = Pθ{Xi ≤ t} = 1 − exp(−t/θ) .

Define
φn(X1, . . . , Xn) = α + (1 − α)I {min(X1, . . . , Xn) > 1} .

Here and throughout, the notation I {E} denotes an indicator random variable that
is 1 if the event E occurs and is 0 otherwise. Then, Eθ[φn(X1, . . . , Xn)] = fn(θ).
Hence, if�H is the positive real line, the test sequence φn satisfies (11.2), but its size
is 1 for every n.
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In order to guarantee the behavior of the limiting size of a test sequence, we
require the following stronger condition.

Definition 11.1.2 The sequence {φn} is uniformly asymptotically level α if

lim sup
n→∞

sup
θ∈�H

Eθ[φn(X
(n))] ≤ α . (11.3)

If instead of (11.3), the sequence {φn} satisfies

lim
n→∞ sup

θ∈�H

Eθ[φn(X
(n))] = α , (11.4)

then this value of α is called the limiting size of {φn}.
Of course, we will also study the behavior of tests under the alternative hypothesis.
The following is a weak condition that we expect reasonable tests to satisfy.

Definition 11.1.3 The sequence {φn} is pointwise consistent in power if, for any θ
in �K ,

Eθ[φn(X
(n))] → 1 (11.5)

as n → ∞.

Example 11.1.7 (One-parameter families, Example 11.1.1, continued) Let Tn =
Tn(X1, . . . , Xn) be a sequence of statistics, with distributions depending on a real-
valued parameter θ. For testing H : θ = θ0 against K : θ > θ0, consider the tests φn

that reject H when Tn ≥ Cn . In many applications, it will turn out that, when θ = θ0,
n1/2(Tn − θ0) has a limiting normal distribution with mean 0 and variance τ 2(θ0) in
the sense that, for any real number t ,

Pθ0{n1/2(Tn − θ0) ≤ t} → �(t/τ (θ0)) , (11.6)

where �(·) is the standard normal c.d.f. Let zα satisfy �(zα) = α. Then, the test
with

Cn = θ0 + τ (θ0)

n1/2
z1−α

has limiting size α, since

Pθ0{Tn ≥ θ0 + τ (θ0)

n1/2
z1−α} → α .

Consider next the power of φn under the assumption that not only (11.6) holds, but
that it remains valid when θ0 is replaced by any θ > θ0. Then, the power of φn against
θ is

βn(θ) = Pθ{n1/2(Tn − θ) ≥ z1−ατ (θ0) − n1/2(θ − θ0)}
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and hence βn(θ) → 1 for any θ > θ0, so that the test sequence is pointwise consistent
in power.

Similar definitions apply to the construction of confidence sets. Let g = g(θ) be
the parameter function of interest, for some mapping g from � to some space �g .
Let Sn = Sn(X (n)) ∈ �g denote a sequence of confidence sets for g(θ).

Definition 11.1.4 Asequence of confidence sets Sn is pointwise asymptotically level
1 − α if, for any θ ∈ �,

lim inf
n→∞ Pθ{g(θ) ∈ Sn(X

(n))} ≥ 1 − α . (11.7)

The sequence {Sn} is uniformly asymptotically level 1 − α if

lim inf
n→∞ inf

θ∈�
Pθ{g(θ) ∈ Sn(X

(n))} ≥ 1 − α . (11.8)

If the lim inf in the left-hand side of (11.8) can be replaced by a lim, then the left-hand
side is called the limiting confidence coefficient for {Sn}.

Most of the asymptotic theory we shall consider is local in a sense that we now
briefly describe. In the hypothesis testing context, any reasonable test sequence φn is
pointwise consistent in power. However, any actual situation has finite sample size n
and its power against any fixed alternative is typically less than one. In order to obtain
a meaningful assessment of power, one therefore considers sequences of alternatives
θn tending to �H at a suitable rate, so that the limiting power of φn against θn is less
than one. (See Example 11.3.2 for a simple example of such a local approach.)

An alternative to the local approach is to consider the rate at which the power
tends to one against a fixed alternative. Although there exists a large literature on
this approach based on large-deviation theory, the resulting approximations tend to
be less accurate and we shall not treat this topic here.

It is also important to mention that asymptotic results may provide poor approx-
imations to the actual finite-sample setting. Furthermore, convergence to a limit
as n → ∞ certainly does not guarantee that the approximation will improve with
increasing n; an example is provided byHodges (1957).Any asymptotic result should
therefore be accompanied by an investigation of its reliability for finite sample sizes.
Such checks can be carried out by simulations studies or higher-order asymptotic
analysis.

The concepts and definitions presented in this introduction will be explored more
fully in the remaining chapters. First, we need techniques to be able to approximate
significance levels, power functions, and confidence coefficients. To this end, the rest
of this chapter is devoted to useful results from the theory of weak convergence and
other convergence concepts.
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11.2 Weak Convergence and Central Limit Theorems

In this section, the basic notation, definitions, and results from the theory of weak
convergence are introduced. The main theorems will be presented without proof,
but we will provide illustrations of their use. For a more complete background, the
reader is referred to Pollard (1984), Dudley (1989), or Billingsley (1995).

Let X denote a k × 1 random vector (which is just a vector-valued random vari-
able), so that the ith component Xi of X is a real-valued random variable. Then,
X� = (X1, . . . , Xk). The (multivariate) cumulative distribution function (c.d.f.) of
X is defined to be:

FX (x1, . . . , xk) = P{X1 ≤ x1, . . . , Xk ≤ xk} .

Here, the probability P refers to the probability on whatever space X is defined. A
point x� = (x1, . . . , xk) at which the c.d.f. FX (·) is continuous is called a continuity
point of FX . Alternatively, x is a continuity point of FX if the boundary of the set
of (y1, . . . , yk) such that yi ≤ xi for all i has probability 0 under the distribution of
X .1 As an example, the multivariate normal distribution was first studied in Section
3.9.2.

Definition 11.2.1 A sequence of random vectors {Xn} with c.d.f.s {FXn (·)} is said
to converge in distribution (or in law) to a random vector X with c.d.f. FX (·) if

FXn (x1, . . . , xk) → FX (x1, . . . , xk)

at all continuity points x� = (x1, . . . , xk) of FX (·). This convergence will also be

denoted Xn
d→ X . Because it really only has to do with the laws of the random

variables (and not with the random variables themselves), we may also equivalently

say FXn converges weakly to FX , written FXn

d→ FX .2

The limiting random vector X plays an auxiliary role, since any random variable
with the same distribution would serve the same purpose. Therefore, the notation
will sometimes be abused so that we also say Xn converges in distribution to the

c.d.f. F , written Xn
d→ F .

1 In general, the boundary of a set E in IRk , denoted by ∂E is defined as follows. The closure of E ,
denoted by Ē , is the set of x ∈ IRk for which there exists a sequence xn ∈ E with xn → x . The set
E is closed if E = Ē . The interior of E , denoted by E◦, is the set of x such that, for some ε > 0,
the Euclidean ball with center x and radius ε, defined by {y ∈ IRk : |y − x | < ε}, is contained in
E . Here | · | denotes the usual Euclidean norm. The set E is open if E = E◦. If Ec denotes the
complement of a set E , then evidently E◦ is the complement of the closure of Ec, and so E is open
if and only if Ec is closed. The boundary ∂E of a set E is then defined to be Ē − E◦ = Ē ∩ (E◦)c.
2 The term weak convergence (also sometimes called weak star convergence) distinguishes this
type of convergence from stronger convergence concepts to be discussed later. However, the term is
used because it is a special case of convergence in the weak star topology for elements in a Banach
space (such as the space of signed measures on IRk ), though we will make no direct use of any such
topological notions.
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There are many equivalent characterizations of weak convergence, some of which
are recorded in the next theorem.

Theorem 11.2.1 (Portmanteau Theorem) Suppose Xn and X are random vectors
in IRk. The following are equivalent:

(i) Xn
d→ X.

(ii) E f (Xn) → E f (X) for all bounded, continuous real-valued functions f .
(iii) For any open set O in IRk, lim inf P(Xn ∈ O) ≥ P(X ∈ O).
(iv) For any closed set G in IRk, lim sup P(Xn ∈ G) ≤ P(X ∈ G).
(v) For any set E in IRk for which ∂E, the boundary of E, satisfies P(X ∈ ∂E) = 0,

P(Xn ∈ E) → P(X ∈ E).
(vi) lim inf E f (Xn) ≥ E f (X) for any nonnegative continuous f .

Another equivalent characterization of weak convergence is based on the notion
of the characteristic function of a random vector.

Definition 11.2.2 The characteristic function of a random vector X (taking values
in IRk) is the function ζX (·) from IRk to the complex plane given by

ζX (t) = E(ei〈t,X〉).

In the definition, 〈t, X〉 refers to the usual inner product, so that

〈t, X〉 = t T X =
k∑

j=1

t j X j .

Two important properties of characteristic functions are the following. First, the
distribution of X is uniquely determined by its characteristic function. Second, the
characteristic function of a sum of independent real-valued random variables is the
product of the individual characteristic functions (Problem 11.7).

Example 11.2.1 (Multivariate Normal Distribution) Suppose a random vector
X� = (X1, . . . , Xk) is N (μ, �), the multivariate normal distribution with mean vec-
tor μ� = (μ1, . . . ,μk) and covariance matrix �. In the case k = 1, if X is normally
distributed with mean μ and variance σ2, its characteristic function is:

E(eit X ) =
∫ ∞

−∞
eitx

1√
2πσ

e[−(x−μ)2/2σ2]dx = exp(i tμ − 1

2
σ2t2) , (11.9)

which can be verified by a simple integration (Problem 11.8). To obtain the charac-
teristic function for k > 1, note that

ζX (t) = E(ei〈t,X〉)

is the characteristic function

ζ〈t,X〉(λ) = E(eλi〈t,X〉)
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of 〈t, X〉 evaluated at λ = 1. Now if X is multivariate normal N (μ, �), then 〈t, X〉
is univariate normal with mean 〈t,μ〉 and variance 〈�t, t〉 = t��t . Therefore, by
the case k = 1, we find that

E(ei〈t,X〉) = exp(i〈t,μ〉 − 1

2
〈�t, t〉) . (11.10)

Theorem 11.2.2 (Continuity Theorem) Xn
d→ X in IRk if and only if

ζXn (t) → ζX (t)

for all t in IRk.

Note that it is not enough to assume ζXn (t) → ζ(t) for some limit function ζ(·)
in order to conclude Xn

d→ X ; one must know that ζ(·) is the characteristic function
of some random variable (or that ζ(·) is continuous at 0) (Problem 11.9).

Weak convergence of random vectors on IRk can be reduced to studying weak
convergence on the real line by means of the following result, the proof of which
follows immediately from Theorem 11.2.2 (Problem 11.10).

Theorem 11.2.3 (Cramér–Wold Device) A sequence of random vectors Xn on IRk

satisfies Xn
d→ X iff 〈t, Xn〉 d→ 〈t, X〉 for every t ∈ IRk.

The following result is crucial for this and the following chapters.

Theorem 11.2.4 (Multivariate Central Limit Theorem) Let X�
n =

(Xn,1, . . . , Xn,k) be a sequence of i.i.d. random vectors with mean vector
μ� = (μ1, . . . ,μk) and covariance matrix �. Let Xn, j = 1

n

∑n
i=1 Xi, j . Then

(n1/2(Xn,1 − μ1), . . . , n
1/2(Xn,k − μk))

� d→ N (0, �) .

To cover situations in which the distribution varies with sample size, we will deal
with a triangular array of variables {Xn,i : 1 ≤ i ≤ rn, n = 1, 2, . . .}, where it is
assumed rn → ∞ as n → ∞. Typically, rn = n, and so the term triangular array
is an appropriate description, but note that the term triangular array is used even if
rn �= n. The following limit theorem provides sufficient conditions for asymptotic
normality for a normalized sum of real-valued variables making up a triangular array.
(See Billingsley (1995), p. 369.)

Theorem 11.2.5 (Lindeberg Central Limit Theorem) Suppose, for each n,
Xn,1, . . . , Xn,rn are independent real-valued random variables. Assume E(Xn,i ) = 0
and σ2

n,i = E(X2
n,i ) < ∞. Let s2n = ∑rn

i=1 σ2
n,i . Suppose, for each ε > 0,

rn∑

i=1

1

s2n
E[X2

n,i I {|Xn,i | > εsn}] → 0 as n → ∞. (11.11)

Then,
∑rn

i=1 Xn,i/sn
d→ N (0, 1).
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For most applications, Lindeberg’s condition (11.11) can be verified by Lya-
pounov’s Condition, which says that, for some δ > 0, |Xn,i |2+δ are integrable and

lim
n→∞

rn∑

i=1

1

s2+δ
n

E[|Xn,i |2+δ] = 0 . (11.12)

Indeed, (11.12) implies (11.11) (Problem 11.11), and the result may be stated as
follows.

Corollary 11.2.1 (Lyapounov Central Limit Theorem). Suppose, for each n,
Xn,1, . . . , Xn,rn are independent. Assume E(Xn,i ) = 0 and σ2

n,i = E(X2
n,i ) < ∞. Let

s2n = ∑rn
i=1 σ2

n,i . Suppose, for some δ > 0, (11.12) holds. Then,

rn∑

i=1

Xn,i/sn
d→ N (0, 1).

Example 11.2.2 (Uniformly Bounded 2 + δ Moments) Suppose, for each n,
Xn,1, . . . , Xn,n are independent. Assume E(Xn,i ) = 0 and, for some δ > 0,

sup
n,i

E(|Xn,i |2+δ) < ∞ .

Let σ2
n,i = E(X2

n,i ) and set

σ̄2
n = 1

n

n∑

i=1

σ2
n,i .

Assume σ̄2
n → σ2∞ < ∞. Then, Lyapounov’s Condition (11.12) holds (Problem

11.12) and, letting X̄n = ∑n
i=1 Xn,i/n, we have

√
n X̄n

d→ N (0,σ2
∞) .

The result holds even if σ2∞ = 0with the interpretation that N (0, 0) is the distribution
that is point mass at zero.

There also exists a partial converse to Lindeberg’s Central Limit Theorem, due to
Feller and Lévy. (See Billingsley (1995) , p. 574.)

Theorem 11.2.6 Suppose, for each n, Xn,1, . . . , Xn,rn are independent, mean 0,
σ2
n,i = E(X2

n,i ) < ∞ and s2n = ∑rn
i=1 σ2

n,i . Also, assume the array is uniformly
asymptotically negligible; that is,

max
1≤i≤rn

P{|Xn,i/sn| ≥ ε} → 0 (11.13)

for any ε > 0. If
∑rn

i=1 Xn,i/sn
d→ N (0, 1) , then the Lindeberg Condition (11.11) is

satisfied.
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Corollary 11.2.2 Suppose, for each n, Xn,1, . . . , Xn,n are i.i.d. with mean 0 and

variance σ2
n. Let s

2
n = nσ2

n. Assume
∑n

i=1 Xn,i/sn
d→ N (0, 1). Then, the Lindeberg

Condition (11.11) is satisfied.

Corollary 11.2.2 follows from Theorem 11.2.6 because the assumption that the
nth row of the triangular array is i.i.d. implies the array is uniformly asymptotically
negligible, so the condition (11.13) holds. Indeed,

P{|Xn,i |/sn ≥ ε} ≤ E(|Xn,i |2)
s2nε

2
= 1

nε2
→ 0 .

The followingBerry–EsseenTheoremgives information on the error in the normal
approximation provided by the Central Limit Theorem.

Theorem 11.2.7 Suppose X1, . . . , Xn are i.i.d. real-valued random variables with
c.d.f. F. Let μ(F) denote the mean of F and let σ2(F) denote the variance of
F, assumed finite and nonzero. Let Sn = ∑n

i=1 Xi . Then, there exists a universal
constant C (not depending on F, n, or x) such that

∣
∣
∣
∣P

{
Sn − nμ(F)

n1/2σ(F)
≤ x

}

− �(x)

∣
∣
∣
∣ ≤ C

n1/2
EF [|X1 − μ(F)|3]

σ(F)3
, (11.14)

where �(·) denotes the standard normal c.d.f.

The Berry–Esseen Theorem holds if C = 0.4748; see Shevstova (2014). The
smallest value of C for which the result holds is unknown, but it is known that it fails
for C < 0.4097 (van Beek (1972)).

If F is a fixed distribution with finite third moment and nonzero variance, the
right side of (11.14) tends to zero and hence the left side of (11.14) tends to zero
uniformly in x . Furthermore, if F is the family of distributions F with

EF [|X − μ(F)|3]
σ3(F)

< B , (11.15)

for some fixed B < ∞, then this convergence is also uniform in F as F varies in F.
Thus, if Sn is the sum of n i.i.d. variables with distribution Fn in F, then

sup
x

∣
∣
∣
∣P

{
Sn − nμ(Fn)

n1/2σ(Fn)
≤ x

}

− �(x)

∣
∣
∣
∣ → 0 . (11.16)

Example 11.2.3 Suppose X1, . . . , Xn are i.i.d. Bernoulli trials with probability
of success p. Then, Sn = ∑

i Xi is binomial based on n trials and success prob-
ability p, and the usual Central Limit Theorem asserts that the probability that
(Sn − np)/[np(1 − p)]1/2 is less or equal to x converges to �(x), if p is not zero
or one. It follows from the Berry–Esseen Theorem that this convergence is uniform
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in both x and p as long as p ∈ [ε, 1 − ε] for some ε > 0. To see why, we show that
condition (11.15) is satisfied. Observe that

E[|X1 − p|3] = p(1 − p)[(1 − p)2 + p2] ≤ p(1 − p) .

Thus,
E[|X1 − p|3]/[p(1 − p)]3/2 ≤ [ε(1 − ε)]−1/2 ,

so that (11.15) holdswith B2 = ε(1 − ε). Thus, (11.16) holds, so that if Sn is binomial
based on n trials and success probability pn → p ∈ (0, 1), then

P{ Sn − npn
[npn(1 − pn)]1/2 ≤ xn} → �(x) (11.17)

whenever xn → x .

Example 11.2.4 (The Sample Median) As an application of the Berry–Esseen
Theorem and the previous example, the following result establishes the asymptotic
normality of the sample median. Given a sample X1, . . . , Xn with order statistics
X(1) ≤ · · · ≤ X(n), the median X̃n is defined to be the middle-order statistic X(k) if
n = 2k − 1 is odd and the average of X(k) and X(k+1) if n = 2k is even.

Theorem 11.2.8 Suppose X1, . . . , Xn are i.i.d. real-valued random variables with
c.d.f. F. Assume F(θ) = 1/2, and that F is differentiable at θ with F ′ = f and
f (θ) > 0. Let X̃n denote the sample median. Then

n1/2(X̃n − θ)
d→ N(0,

1

4 f 2(θ)
) .

Proof. Assume first that n tends to ∞ through odd values and, without loss of
generality, that θ = 0. Fix any real number a and let Sn be the number of Xi that
exceed a/n1/2. Then the event {X̃n ≤ a/n1/2} is equivalent to the event {Sn ≤ (n −
1)/2}. But, Sn is binomial with parameters n and success probability pn = 1 −
F(a/n1/2). Thus,

P{n1/2 X̃n ≤ a} = P{Sn ≤ n − 1

2
} = P{ Sn − npn

[npn(1 − pn)]1/2 ≤ xn} ,

where

xn =
1
2 (n − 1) − npn

[npn(1 − pn)]1/2 = n1/2( 12 − pn) − 1/(2n1/2)

[pn(1 − pn)]1/2 .

As n → ∞, pn → 1/2 and

n1/2(
1

2
− pn) = a · F(a/n1/2) − F(0)

a/n1/2
→ a f (0) ,
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which implies xn → 2a f (0). Therefore, by (11.17),

P{n1/2 X̃n ≤ a} → �[2 f (0)a] ,

which completes the proof for odd n. For the case of even n, see Problem 11.16.

Another result concerning uniformity in weak convergence is the following the-
orem of Polyá.

Theorem 11.2.9 (Polyá’s Theorem) Suppose Xn
d→ X and X has a continuous

c.d.f FX . Let FXn denote the c.d.f. of Xn. Then, FXn (x) converges to FX (x), uniformly
in x.

It is interesting and important to know that weak convergence of Fn to F can be
expressed in terms of ρ(Fn, F), where ρ is a metric on the space of distributions.
(Some basic properties of metrics are reviewed in the appendix, Section A.2.) To be
specific, on the real line, define the Lévy distance between distributions F and G as
follows.

Definition 11.2.3 Let F and G be distribution functions on the real line. The Lévy
distance between F and G, denoted ρL(F,G) is defined by

ρL(F,G) = inf{ε > 0 : F(x − ε) − ε ≤ G(x) ≤ F(x + ε) + ε for all x} .

The definition implies that ρL(F,G) = ρL(G, F) and that ρL is a metric on the
space of distribution functions (Problem 11.21). Moreover, if Fn and F are distribu-
tion functions, then weak convergence of Fn to F is equivalent to ρL(Fn, F) → 0
(Problem 11.23). In this sense, ρL metrizes weak convergence.

We shall next consider the implication of weak convergence for the convergence
of quantiles. Ideally, the (1 − α) quantile x1−α of a distribution F is defined by

F(x1−α) = 1 − α . (11.18)

For the solutions of (11.18), it is necessary to distinguish three cases. First, if F is
continuous and strictly increasing, the equation (11.18) has a unique solution. Second,
if F is not strictly increasing, it may happen that F(x) = 1 − α on an interval [a, b)
or [a, b], so that any x in such an interval could serve as a 1 − α quantile. Then, we
shall define the 1 − α quantile as the left hand endpoint of the interval. Third, if F has
discontinuities, then (11.18) may have no solutions. This happens if F(x) > 1 − α
and sup{F(y) : y < x} ≤ 1 − α, but in this case we would call x the 1 − α quantile
of F . A general definition encompassing all these possibilities is given by

x1−α = inf{x : F(x) ≥ 1 − α} . (11.19)

This is also sometimes written as x1−α = F−1(1 − α) although F may not have a
proper inverse function.
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Weak convergence of Fn to F is not enough to guarantee that F−1
n (1 − α) con-

verges to F−1(1 − α), but the following result shows this is true if F is continuous
and strictly increasing at F−1(1 − α).

Lemma 11.2.1 Let {Fn} be a sequence of distribution functions on the real line
converging weakly to a distribution function F. Assume F is continuous and strictly
increasing at y = F−1(1 − α). Then,

F−1
n (1 − α) → F−1(1 − α) .

Proof. Fix δ > 0. Let y − ε and y + ε be continuity points of F for some 0 < ε ≤ δ.
Then,

Fn(y − ε) → F(y − ε) < 1 − α

and
Fn(y + ε) → F(y + ε) > 1 − α.

Hence, for all sufficiently large n,

y − ε ≤ F−1
n (1 − α) ≤ y + ε ,

and so, |F−1
n (1 − α) − y| ≤ δ for all sufficiently large n. Since δ was arbitrary, the

result is proved.

The following result is of fundamental importance.

Theorem 11.2.10 (Continuous Mapping Theorem) Suppose Xn
d→ X. Let g be

a (measurable) map from IRk to IRs. Let C be the set of points in IRk for which g is

continuous. If P(X ∈ C) = 1, then g(Xn)
d→ g(X).

Example 11.2.5 Suppose Xn is a sequence of real-valued random variables such

that Xn
d→ N (0,σ2). By the Continuous Mapping Theorem, it follows that

X2
n

σ2

d→ χ2
1 ,

where χ2
k denotes the Chi-squared distribution with k degrees of freedom. More

generally, suppose Xn is a sequence of k × 1 vector-valued random variables such
that

Xn
d→ N (0, �) ,

where � is assumed positive definite. Then, there exists a unique positive defi-
nite symmetric matrix C such that C · C = � and we write C = �1/2. (For the
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construction of the square root of a positive definite symmetric matrix, see Lehmann
(1999), p. 306.) By the Continuous Mapping Theorem, it follows that

∣
∣C−1Xn

∣
∣2 d→ χ2

k .

11.3 Convergence in Probability and Applications

As pointed out earlier, convergence in law of Xn to X asserts only that the distribution
of Xn tends to that of X , but says nothing about Xn itself becoming close to X . The
following stronger form of convergence provides that Xn and X themselves are close
for large n.

Definition 11.3.1 A sequence of random vectors {Xn} converges in probability to

X , written Xn
P→ X , if, for every ε > 0,

P{|Xn − X | > ε} → 0 as n → ∞.

Convergence in probability implies convergence in distribution (Problem 11.32);
the converse is false in general. However, if Xn converges in distribution to a distribu-
tion assigning probability one to a constant vector c, then Xn converges in probability
to c, and conversely. Note that, unlike weak convergence, Xn and X must be defined
on the same probability space in order for Definition 11.3.1 to make sense.

Convergence in probability of a sequence of random vectors Xn is equivalent to
convergence in probability of their components. That is, if Xn = (Xn,1, . . . , Xn,k)

�

and X = (X1, . . . , Xk)
�, then Xn

P→ X iff for each i = 1, . . . , k, Xn,i
P→ Xi . More-

over, Xn
P→ 0 if and only if |Xn| P→ 0 (Problem 11.33).

A sequenceof real-valued randomvariables Xn converges in probability to infinity,

written Xn
P→ ∞ if, for any real number B,

P{Xn < B} → 0

as n → ∞.
The next result and the later Theorem 11.4.1 deal with the convergence of the

average of i.i.d. random variables toward their expectation, and are known as the
weak and strong laws of large numbers. The terminology reflects the fact that the
strong law asserts a stronger conclusion than the weak law.

Theorem 11.3.1 (Weak Law of Large Numbers) Let Xi be i.i.d. real-valued ran-
dom variables with mean μ. Then,

X̄n ≡ 1

n

n∑

i=1

Xi
P→ μ .
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Note that it is possible for X̄n to converge in probability to a constant even if the
mean does not exist (Problem 11.29). Also, if the Xi are nonnegative and the mean

is not finite, then X̄n
P→ ∞ (Problem 11.36).

Suppose X1, . . . , Xn are i.i.d. according to a model {Pθ, θ ∈ �}. A sequence of
estimators Tn = Tn(X1, . . . , Xn) is said to be a weakly consistent (or just consistent)
estimator sequence of g(θ) if, for each θ ∈ �,

Tn
P→ g(θ) .

Thus, the consistency of an estimator sequence merely asserts convergence in proba-
bility for each value of the parameter. For example, theWeak Law of Large Numbers
asserts that the sample mean is a consistent estimator of the population mean when-
ever the population mean exists.

Example 11.3.1 Suppose X1, . . . , Xn are i.i.d. according to either P0 or P1. If pi
denotes the density of Pi with respect to a dominating measure, then by the Neyman–
Pearson Lemma, an optimal test rejects for large values of

Tn ≡ 1

n

n∑

i=1

log[p1(Xi )/p0(Xi )] .

By the Weak Law of Large Numbers, under P0,

Tn
P→ −K (P0, P1) , (11.20)

where K (P0, P1) is the so-called Kullback–Leibler Information, defined as

K (P0, P1) = −EP0 [log(p1(X1)/p0(X1))] . (11.21)

The convergence (11.20) assumes K (P0, P1) is well-defined in the sense that the
expectation in (11.21) exists. But, by Jensen’s inequality (since the negative log is
convex),

K (P0, P1) ≥ − log[EP0(p1(X1)/p0(X1))] ≥ 0 .

If P0 and P1 are distinct, then the first inequality is strict, so that K (P0, P1) ≥ 0 with
equality iff P0 = P1. Note, however, that K (P0, P1)may be∞, but even in this case,
the convergence (11.20) holds; see Problem 11.37. Similarly, under the alternative
hypothesis P1,

Tn
P→ EP1[log(p1(X1)/p0(X1)] = K (P1, P0) ≥ 0 .

Note that K (P0, P1) need not equal K (P1, P0).
In summary, Tn converges in probability, under P0, to a negative constant (possibly

−∞), while under P1, Tn converges in probability to a positive constant (assuming
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P0 and P1 are distinct). Therefore, for testing P0 versus P1, the test that rejects when
Tn > 0 is asymptotically perfect in the sense that both error probabilities tend to
zero; that is, P0{Tn > 0} → 0 and P1{Tn ≤ 0} → 0. It also follows that, for fixed
α ∈ (0, 1), if φn is a most powerful level α test sequence for testing P0 versus P1
based on n i.i.d. observations, then the power of φn against P1 tends to one. Thus,
if P0 and P1 are fixed with n → ∞, the problem is degenerate from an asymptotic
point of view.

For convergence in probability to a constant, it is not necessary for the Xn to be
defined on the same probability space. Suppose Pn is a probability on a probability
space (�n,Fn), and let Xn be a random vector from �n to IRk . Then, if c is a fixed
constant vector in IRk , we say that Xn converges to c in Pn-probability if, for every
ε > 0,

Pn{|Xn − c| > ε} → 0 as n → ∞ .

Alternatively, we may say Xn converges to c in probability if it is understood that
the law of Xn is determined by Pn .

For a sequence of numbers xn and yn , the notation xn = o(yn) means xn/yn →
0 as n → ∞. For random variables Xn and Yn , the notation Xn = oP(Yn) means

Xn/Yn
P→ 0. Similarly, Xn = oPn (Yn) means Xn/Yn → 0 in Pn-probability.

The following theorem is very useful for proving limit theorems.

Theorem 11.3.2 (Slutsky’s Theorem) Suppose {Xn} is a sequence of real-valued

random variables such that Xn
d→ X. Further, suppose {An} and {Bn} satisfy An

P→
a, and Bn

P→ b, where a and b are constants. Then, An Xn + Bn
d→ aX + b.

Proof. By Problem 11.34, it follows that

(Xn, An, Bn)
d→ (X, a, b) .

Apply the Continuous Mapping Theorem (Theorem 11.2.10).

The conclusion in Slutsky’s Theoremmaybe strengthened to convergence in prob-

ability if it is assumed that Xn
P→ X . The following corollary to Slutsky’s Theorem

is also fundamental.

Corollary 11.3.1 Suppose {Xn} is a sequence of real-valued random variables such
that Xn tends to X in distribution, where X has a cumulative distribution function
F which is continuous at c. If Cn → c in probability, then

P{Xn ≤ Cn} → F(c) .

Corollary 11.3.1 is useful even when Cn are nonrandom constants tending to
c. Also, the corollary holds even if c = ∞ or c = −∞ (Problem 11.40), with the
interpretation F(∞) = 1 and F(−∞) = 0.
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Note that Slutsky’s Theorem holds more generally if the convergence in proba-
bility assumptions are replaced by convergence in Pn-probability.

Example 11.3.2 (Local Power Calculation) Suppose Sn is binomial based on n
trials and success probability p. Consider testing p = 1/2 versus p > 1/2. The
uniformly most powerful test rejects for large values of Sn . By Example 11.2.3,

Zn ≡ (Sn − n

2
)/

√
n/4

d→ N (0, 1) ,

and so the test that rejects the null hypothesis when this quantity exceeds the normal
critical value z1−α is asymptotically level α. Let βn(p) denote the power of this test
against a fixed alternative p > 1/2. Then, (Sn − np)/

√
np(1 − p) is asymptotically

standard normal if p is the true value. Hence,

βn(p) = Pp{Zn > z1−α} = Pp{ Sn − np√
np(1 − p)

> dn(p)} ,

where

dn(p) = z1−α

[4p(1 − p)]1/2 +
√
n( 12 − p)√
p(1 − p)

→ −∞

if p > 1/2. Thus, βn(p) → 1 as n → ∞ for any p > 1/2, and so the test sequence
is pointwise consistent.

This result does not distinguish between alternative values of p. Better discrim-
ination is obtained by considering alternatives for which the power tends to a value
less than 1. This is achieved by replacing a fixed alternative p by a sequence pn
tending to 1/2, so that the task of distinguishing between 1/2 and pn becomes more
difficult as information accumulates with increasing n. It turns out that the power
will tend to a limit less than one but greater than α if pn = 1/2 + hn−1/2 if h > 0.
To see this, note that, by Example 11.2.3, under pn , (Sn − npn)/

√
npn(1 − pn) is

asymptotically standard normal. Then,

βn(pn) = Ppn {Zn > z1−α} = Ppn {
Sn − npn√
npn(1 − pn)

> dn(pn)} .

But, dn(pn) → z1−α − 2h. Hence, if Z denotes a standard normal variable,

βn(pn) → P{Z > z1−α − 2h} = 1 − �(z1−α − 2h) .

Also, note that βn(pn) → 1 if
√
n(pn − 1/2) → ∞ and βn(pn) → α if

√
n(pn −

1/2) → 0 (Problem 11.41).

The following is another useful result concerning convergence in probability.

Theorem 11.3.3 Suppose Xn and X are random vectors in IRk with Xn
P→ X. Let

g be a continuous function from IRk to IRs . Then, g(Xn)
P→ g(X).
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Example 11.3.3 (Sample Standard Deviation) Let X1, . . . , Xn be i.i.d. real-
valued random variables with common mean μ and finite variance σ2. The usual
unbiased sample variance estimator is given by

S2n = 1

n − 1

n∑

i=1

(Xi − X̄n)
2 , (11.22)

where X̄n = n−1 ∑n
i=1 Xi is the sample mean. By the Weak Law of Large Num-

bers, X̄n → μ in probability and n−1 ∑n
i=1 X

2
i → E(X2

1) = μ2 + σ2 in probability.
Hence,

n − 1

n
S2n = n−1

n∑

i=1

X2
i − X̄2

n → σ2

in probability, by Slutsky’s Theorem. Thus, S2n → σ2 in probability, which implies
Sn → σ in probability, by Theorem 11.3.3.

Example 11.3.4 (Confidence Intervals for a Binomial p) Suppose Sn is binomial
based on n trials and unknown success probability p. Let p̂n = Sn/n. By Example
11.2.3, for any p ∈ (0, 1),

√
n( p̂n − p) converges in distribution to N (0, p(1 − p)).

This implies p̂n
P→ p and so

√
p̂n(1 − p̂n)

P→ √
p(1 − p)

as well. Therefore, by Slutsky’s Theorem, for any p ∈ (0, 1),

n1/2( p̂n − p)
√
p̂n(1 − p̂n)

d→ N (0, 1) .

This implies that the confidence interval

p̂n ± z1− α
2

√
p̂n(1 − p̂n)

n
(11.23)

is pointwise consistent in level, for any fixed p in (0, 1), where zβ is the β quantile of
N (0, 1). Note, however, that this confidence interval is not uniformly consistent in
level; in fact, for any n, the coverage probability can be arbitrarily close to 0 (Problem
11.42).

Unfortunately, an accumulating literature has shown that the coverage of the
interval in (11.23) is quite unreliable even for large values of n or np(1 − p), and
varies quite erratically as the sample size increases. To cite just one example, the
probability of the interval (11.23) covering the true p when p = 0.2 and 1 − α =
0.95 is 0.946 when n = 30, and it is 0.928 when n = 98. This example is taken
from Table 1 of Brown Cai and DasGupta (2001), who survey the literature and
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recommend more reliable alternatives. Because of the great practical importance of
the problem, we summarize some of their principal recommendations.

For small n, the authors recommend two procedures. The first, which goes back
to Wilson (1927) , is based on the quadratic inequality

| p̂n − p| ≤ z1− α
2

√
p(1 − p)

n
, (11.24)

which has probability under p tending to 1 − α. So, if we were testing the simple
null hypothesis that p is true, we can invert the test with acceptance region (11.24).
Solving for p in (11.24), one obtains the Wilson interval (Problem 11.43)

p̃n ± z1− α
2

√
n

ñ

√

p̂nq̂n +
z21− α

2

4n
, (11.25)

where p̃n = S̃n/ñ, S̃n = Sn + 1
2 z

2
1− α

2
, ñ = n + z21− α

2
, and q̂n = 1 − p̂n . As an alter-

native, the authors recommend an equal-tailed Bayes interval based on the Beta prior
with a = b = 1/2; see Example 5.7.2.

Theoretical and additional numerical support are provided in Brown, Cai and
DasGupta (2002). Other approximations are reviewed in Johnson et al. (1992).

An immediate consequence of Slutsky’s Theorem is the following. If T̃n
d→ T and

if E(T̃n − Tn)2 → 0, then Tn
d→ T . A less obvious but useful result is the following,

due to Hajék (Problem 11.44).

Lemma 11.3.1 Suppose that, as n → ∞,

T̃n − E(T̃n)
√

Var(T̃n)

d→ T

and
E[(T̃n − Tn)2]

Var(T̃n)
→ 0 .

Then,
Tn − E(Tn)√

Var(Tn)

d→ T .

The followingmethod is often used to prove limit theorems, especially asymptotic
normality.

Theorem 11.3.4 (Delta Method) Suppose X1, X2, . . . and X are random vectors

in IRk. Assume τn(Xn − μ)
d→ X where μ is a constant vector and {τn} is a sequence

of constants τn → ∞.
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(i) Suppose g is a function from IRk to IR which is differentiable at μ with gradient
(vector of first partial derivatives) of dimension 1 × k at μ equal to ġ(μ).3 Then,

τn[g(Xn) − g(μ)] d→ ġ(μ)X . (11.26)

In particular, if X is multivariate normal in IRk with mean vector 0 and covariance
matrix �, then

τn[g(Xn) − g(μ)] d→ N (0, ġ(μ)�ġ(μ)�) . (11.27)

(ii) More generally, suppose g = (g1, . . . , gq)� is a mapping from IRk to IRq , where
gi is a function from IRk to IR which is differentiable at μ. Let D be the q × k matrix
with (i, j) entry equal to ∂gi (y1, . . . , yk)/∂y j evaluated at μ. Then,

τn[g(Xn) − g(μ)] = τn[g1(Xn) − g1(μ), . . . , gq(Xn) − gq(μ)]� d→ DX .

In particular, if X is multivariate normal in IRk with mean vector 0 and covariance
matrix �, then

τn[g(Xn) − g(μ)] d→ N (0, D�D�) .

Proof.Weprove (i) with (ii) left as an exercise (Problem 11.49). Note that Xn − μ =
oP(1). Differentiability of g at μ implies

g(x) = g(μ) + ġ(μ)(x − μ) + R(x − μ) ,

where R(y) = o(|y|) as |y| → 0. Now,

τn[g(Xn) − g(μ)] − ġ(μ)τn(Xn − μ) = τn R(Xn − μ) .

By Slutsky’s Theorem, it suffices to show τn R(Xn − μ) = oP(1). But,

τn R(Xn − μ) = τn|Xn − μ| · h(Xn − μ) ,

where h(y) = R(y)/|y| and h(0) is defined to be 0, so that h is continuous at 0.
The weak convergence hypothesis and the Continuous Mapping Theorem imply
τn|Xn − μ| has a limiting distribution. So, by Slutsky’s Theorem, it is enough to
show h(Xn − μ) = oP(1). But, this follows by the Continuous Mapping Theorem
as well.

Note that (11.26) and (11.27) remain true if ġ(μ) = 0 with the interpretation that
the limit distribution places all its mass at zero, in which case we can conclude

τn[g(Xn) − g(μ)] P→ 0 .

3 When k = 1, we may also use the notation g′(μ) for the ordinary first derivative of g with respect
to μ, as well as g′′(μ) for the second derivative.
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Example 11.3.5 (Binomial Variance) Suppose Sn is binomial based on n trials and
success probability p. Let p̂n = Sn/n. By the Central Limit Theorem,

n1/2( p̂n − p)
d→ N (0, p(1 − p)) .

Consider estimating g(p) = p(1 − p). By the Delta Method,

n1/2[g( p̂n) − g(p)] d→ N (0, (1 − 2p)2 p(1 − p)) .

If p = 1/2, then ġ(1/2) = 0, so that

n1/2[g( p̂n) − g(p)] P→ 0 .

In order to obtain a nondegenerate limit distribution in this case, note that

n[g( p̂n) − 1

4
] = −[n1/2( p̂n − 1

2
)]2 .

Therefore, by the Continuous Mapping Theorem,

n[g( p̂n) − 1

4
] d→ −X2 ,

where X is N (0, 1/4), or

n[g( p̂n) − 1

4
] d→ −1

4
χ2
1 ,

where χ2
1 is a random variable distributed as Chi-squared with one degree of

freedom.

In the case ġ(μ) = 0, it is not surprising that the limit distribution is a multiple of
a Chi-squared variable with one degree of freedom. Indeed, suppose k = 1 and g is
twice differentiable at μ with second derivative g′′(μ), so that

g(x) = g(μ) + 1

2
g′′(μ)(x − μ)2 + R(x − μ) ,

where R(x − μ) = o[(x − μ)2] as x → μ. Arguing as in the proof of Theorem11.3.4
yields

τ 2
n [g(Xn) − g(μ)] − τ 2

n

g′′(μ)

2
(Xn − μ)2 = τ 2

n R(Xn − μ) = oP(1) (11.28)

(Problem 11.51). By the Continuous Mapping Theorem,
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τn(Xn − μ)
d→ X

implies

τ 2
n

g′′(μ)

2
(Xn − μ)2

d→ g′′(μ)

2
X2 .

By Slutsky’s Theorem, τ 2
n [g(Xn) − g(μ)] has this same limiting distribution. Of

course, if X is N (μ,σ2), then this limiting distribution is g′′(μ)σ2

2 χ2
1.

Example 11.3.6 (Sample Correlation) Let (Ui , Vi ) be i.i.d. bivariate random
vectors in the plane, with both Ui and Vi assumed to have finite nonzero vari-
ances. Let σ2

U = Var(Ui ), σ2
V = Var(Vi ), μU = E(Ui ), μV = E(Vi ) and let ρ =

Cov(Ui , Vi )/(σUσV ) be the population correlation coefficient. The usual sample
correlation coefficient is given by

ρ̂n =
∑n

i=1(Ui − Ūn)(Vi − V̄n)/n

SU SV
, (11.29)

where Ūn = ∑
Ui/n, V̄n = ∑

Vi/n, S2U = ∑
(Ui − Ūn)

2/n, and S2V = ∑
(Vi −

V̄n)
2/n. Then, n1/2(ρ̂n − ρ) is asymptotically normal. The important observation

is that ρ̂n is a smooth function of the vector of means X̄n , where Xi is the vector
Xi = (Ui , Vi ,U 2

i , V 2
i ,UiVi )

�. In fact, ρ̂n = g(X̄n), where

g((y1, y2, y3, y4, y5)
�) = y5 − y1y2

(y3 − y21 )
1/2(y4 − y22 )

1/2
.

Note that g is smooth and ġ is readily computed. Let μ = E(Xi ) denote the mean
vector. Further assume that Ui and Vi have finite fourth moments. Then, by the
multivariate CLT,

n1/2(X̄n − μ)
d→ N (0, �) ,

where � is the covariance matrix of X1. For example, the (1, 5) component of � is
Cov(U1,U1V1). Hence, by the Delta Method,

n1/2[g(X̄n) − g(μ)] = n1/2(ρ̂n − ρ)
d→ N (0, ġ(μ)�ġ(μ)�) . (11.30)

As an example, suppose that (Ui , Vi ) is bivariate normal; in this case, (11.30)
reduces to (Problem 11.52)

n1/2(ρ̂n − ρ)
d→ N (0, (1 − ρ2)2) . (11.31)

This implies (1 − ρ̂2n)
P→ 1 − ρ2. Then, by Slutsky’s Theorem,

n1/2(ρ̂n − ρ)/(1 − ρ̂2n)
d→ N (0, 1) ,
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and so the confidence interval

ρ̂n ± n−1/2z1− α
2
(1 − ρ̂2n)

is a pointwise asymptotically level 1 − α confidence interval for ρ. The error in
this asymptotic approximation derives from both the normal approximation to the
distribution of ρ̂n and the fact that one is approximating the limiting variance. To
counter the second of these effects, the following variance stabilization technique
can be used. By the Delta Method, if h is differentiable, then

n1/2[h(ρ̂n) − h(ρ)] d→ N (0, [h′(ρ)]2(1 − ρ2)2) .

The idea is to choose h so that the limiting variance does not depend on ρ and is a
constant; such a transformation is then called a variance stabilizing transformation.
The solution is known as Fisher’s z-transformation and is given by

h(ρ) = 1

2
log(

1 + ρ

1 − ρ
) = arctanh(ρ) .

Then,
h(ρ̂n) ± n−1/2z1− α

2

is a pointwise asymptotically level 1 − α confidence interval for h(ρ). The inverse
function of h is the hyperbolic tangent function

tanh(y) = h−1(y) = ey − e−y

ey + e−y
,

so that

[tanh(arctanh(ρ̂n) − n−1/2z1− α
2
), tanh(arctanh(ρ̂n) + n−1/2z1− α

2
)] (11.32)

is also a pointwise asymptotically level 1 − α confidence interval for ρ.4

Sometimes, {Xn} may not have a limiting distribution, but the weaker property of
tightness may hold, which only requires that no probability escapes to ±∞.

Definition 11.3.2 A sequence of random vectors {Xn} is tight (or uniformly tight)
if ∀ε > 0, there exists a constant B such that

inf
n

P{|Xn| ≤ B} ≥ 1 − ε .

4 For discussion of this transformation, see Mudholkar (1983), Stuart and Ord, Vol. 1 (1987) and
Efron and Tibshirani (1993), p. 54. Numerical evidence supports replacing n by n − 3 in (11.32).
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A bounded sequence of numbers {xn} is sometimes written xn = O(1); more
generally xn = O(yn) if xn/yn = O(1). If {Xn} is tight, we sometimes also say

Xn is bounded in probability, and write |Xn| = OP(1). If Xn is tight and Yn
P→ 0

(sometimes written Yn = oP(1)), then |XnYn| P→ 0 (Problem 11.64). The notation
|Xn| = OP(|Yn|) means |Xn|/|Yn| is tight.

Tightness of a sequence of random vectors in IRk is equivalent to each of the com-
ponent variables being tight (Problem 11.45). Note that tightness, like convergence
in distribution, really refers to the sequence of laws of Xn , denoted L(Xn). Thus,
we shall interchangeably refer to tightness of a sequence of random variables or the
sequence of their distributions.

In a statistical context, suppose X1, . . . , Xn are i.i.d. according to amodel {Pθ, θ ∈
�}. Recall that an estimator sequence Tn is a (weakly) consistent estimator of g(θ)
if, for every θ ∈ �,

Tn − g(θ) → 0

in probability when Pθ is true. An estimator sequence Tn is said to be τn-consistent
for g(θ) if, for every θ ∈ �,

τn[Tn − g(θ)]

is tightwhen Pθ is true. For example, if the underlying population has a finite variance,
it follows from the Central Limit Theorem that the sample mean is a n1/2-consistent
estimator of the population mean.

Whenever Xn converges in distribution to a limit distribution, then {Xn} is tight,
and the following partial converse is true. Just as any bounded sequence of real num-
bers has a subsequence which converges, so does any sequence of random variables
Xn that is OP(1). This important result is stated next.

Theorem 11.3.5 (Prohorov’s Theorem) Suppose {Xn} is tight on IRk. Then, there

exists a subsequence n j and a random vector X such that Xn j

d→ X.

11.4 Almost Sure Convergence

On occasion, we shall utilize a form of convergence of Xn to X stronger than con-
vergence in probability.

Definition 11.4.1 Suppose Xn and X are random vectors in IRk , defined on a com-
mon probability space (X ,F). Then, Xn is said to converge almost surely (a.s.) to
X if Xn(ω) → X (ω) on a set of points ω which has probability one; that is, if

P{ω ∈ X : lim
n→∞ |Xn(ω) − X (ω)| = 0} = 1 .

This is denoted by Xn → X a.s..
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Equivalently, we say that Xn converges to X with probability one, since there
is a set of outcomes ω having probability one such that Xn(ω) → X (ω). If Xn

converges almost surely to X , then Xn converges in probability to X , but the converse
is false (but see Problem 11.72). Indeed, convergence in probability does not even
guarantee Xn(ω) → X (ω) for any outcome ω. The following provides a classic
counterexample.

Example 11.4.1 (Convergence in probability, but not a.s.) Suppose U is uni-
formly distributed on [0, 1), so that X is [0,1), F is the class of Borel sets,
U = U (ω) = ω, and P is the uniform probability measure. For m = 1, 2, . . . and
j = 1, . . . ,m, let Ym, j be one ifU ∈ [( j − 1)/m, j/m) and zero otherwise. For any
m, exactly one of the Ym, j is one and the rest are zero; also, P{Ym, j = 1} = 1/m → 0
as m → ∞. String together all the variables so that X1 = Y1, X2 = Y2,1, X3 = Y2,2,
X4 = Y3,1, X5 = Y3,2, etc. Then, Xn → 0 in probability. But Xn does not converge
to 0 for any outcome U since Xn oscillates infinitely often between 0 and 1.

Theorem 11.4.1 (Strong Law of Large Numbers) Let Xi be i.i.d. real-valued
random variables with mean μ. Then

X̄n ≡ 1
n

n∑

i=1

Xi → μ a.s.

Conversely, if Xn → μ, a.s. with |μ| < ∞, then E |X1| < ∞.

In a statistical context, suppose X1, . . . , Xn are i.i.d. according to amodel {Pθ, θ ∈
�}. Suppose, under each θ, Tn = Tn(X1, . . . , Xn) converges almost surely to g(θ).
Then, Tn is said to be strongly consistent estimator of g(θ).

One of the most fundamental examples of almost sure convergence is provided
by the Glivenko–Cantelli Theorem. To state the result, first define the Kolmogorov–
Smirnov distance between c.d.f.s F and G as

dK (F,G) = sup
t

|F(t) − G(t)| . (11.33)

Theorem 11.4.2 (Glivenko–Cantelli Theorem) Suppose X1, . . . , Xn are i.i.d.
real-valued random variables with c.d.f. F. Let F̂n be the empirical c.d.f. defined
by

F̂n(t) = 1

n

n∑

i=1

I {Xi ≤ t} . (11.34)

Then,
dK (F̂n, F) → 0 a.s.

To prove the Glivenko–Cantelli Theorem, note that, for every fixed t , F̂n(t) →
F(t) almost surely, by the Strong Law of Large Numbers. That this convergence is
uniform in t follows from the fact that F is monotone (Problem 11.62).
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Example 11.4.2 (Kolmogorov–Smirnov Test) The Glivenko–Cantelli Theorem
11.4.2 forms the basis for the Kolmogorov–Smirnov goodness of fit test, previously
introduced in Section 6.13. Specifically, consider the problem of testing the simple
null hypothesis that F = F0 versus F �= F0. TheGlivenko-Cantelli Theorem implies
that, under F ,

dK (F̂n, F0) → dK (F, F0) a.s.

(and hence in probability as well), where the right side is zero if and only if F =
F0. Thus, the statistic dK (F̂n, F0) tends to be small under the null hypothesis and
large under the alternative. In order for this statistic to have a nondegenerate limit
distribution under F0, we normalize by multiplication of n1/2 and the Kolmogorov–
Smirnov goodness of fit test statistic is given by

Tn ≡ sup
t∈IR

n1/2|F̂n(t) − F0(t)| = n1/2dK (F̂n, F0) . (11.35)

The Kolmogorov–Smirnov test rejects the null hypothesis if Tn > sn,1−α, where
sn,1−α is the 1 − α quantile of the null distribution of Tn when F0 is the uniform
U (0, 1) distribution. Recall from Section 6.13 that the finite sampling distribution
of Tn under F0 is the same for all continuous F0 (also see Problem 11.68), but its
exact form is difficult to express. Some approaches to obtaining this distribution
are discussed in Durbin (1973) and Section 4.3 of Gibbons and Chakraborti (1992).
Values for sn,1−α have been tabled in Birnbaum (1952). For exact power calculations
in both the continuous and discrete case, see Niederhausen (1981) and Gleser (1985).

By the duality of tests and confidence regions, the Kolmogorov–Smirnov test can
be inverted to yield uniform confidence bands for F , given by

Rn,1−α = {F : n1/2 sup
t

|F̂n(t) − F(t)| ≤ sn,1−α} . (11.36)

By construction, PF {F ∈ Rn,1−α} = 1 − α if F is continuous; furthermore, the con-
fidence band is conservative if F is not continuous (Problem 11.69).

The limiting behavior of Tn will be discussed in Section 16.2. In fact, when
F = F0, Tn has a continuous strictly increasing limiting distribution with 1 − α
quantile s1−α (and so sn,1−α → s1−α). It follows that the width of the band (11.36)
is O(n−1/2). Alternatives to the Kolmogorov–Smirnov bands that are more narrow
in the tails and wider in the middle are discussed in Owen (1995).

The following useful inequality, which holds for finite sample sizes, actually
implies the Glivenko–Cantelli Theorem (Problem 11.70).

Theorem 11.4.3 (Dvoretzky, Kiefer, Wolfowitz Inequality) Suppose X1, . . . , Xn

are i.i.d. real-valued random variables with c.d.f. F. Let F̂n be the empirical c.d.f.
(11.34). Then, for any d > 0 and any positive integer n,

P{dK (F̂n, F) > d} ≤ C exp(−2nd2) , (11.37)

where C is a universal constant.
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Massart (1990) shows that we can takeC = 2, which greatly improves the original
value obtained by Dvoretzy et al. (1956).

Example 11.4.3 (Monte Carlo Simulation)Suppose X1, . . . , Xn are i.i.d. observa-
tions with common distribution P . Assume P is known. The problem is to determine
the distribution or quantile of some real-valued statistic Tn(X1, . . . , Xn) for a fixed
finite sample size n. Denote this distribution by Jn(t), so that

Jn(t) = P{Tn(X1, . . . , Xn) ≤ t} .

This distribution may not have a tractable form or may not be explicitly computable,
but the following simulation scheme allows the distribution J (t) to be estimated
to any desired level of accuracy. For j = 1, . . . , B, let X j,1, . . . , X j,n be a sample
of size n from P; then, one simply evaluates Tn(X j,1, . . . , X j,n), and the empiri-
cal distribution of these B values serves as an approximation to the true sampling
distribution Jn(t). Specifically, Jn(t) is approximated by

Ĵn,B(t) = B−1
B∑

j=1

I {Tn(X j,1, . . . , X j,n) ≤ t} .

For large B, Ĵn,B(t) will be a good approximation to the true sampling distribution
Jn(t, P). One (thoughperhaps crude)wayof quantifying the closeness of this approx-
imation is the following.By theDvoretsky,Kiefer,Wolfowitz inequality (11.37) (with
B now taking over the role of n), there exists a universal constant C so that

P{dK ( Ĵn,B, Jn) > d} ≤ C exp(−2Bd2).

Hence, if we desire the probability of the supremum distance between Ĵn,B(·) and
Jn(·, P) to be greater thand with probability less than ε, allweneed to do is ensure that
B is large enough so that C exp(−2Bd2) ≤ ε. Since B, the number of simulations,
is determined by the statistician (assuming enough computing power), the desired
accuracy can be obtained. Further results on the choice of B are given in Jockel
(1986).

Here, we are tacitly assuming that one can easily accomplish the sampling of
observations from P . Of course, when P corresponds to a cumulative distribution
function F on the real line, one can usually just obtain observations from F by
F−1(U ), where U is a random variable having the uniform distribution on (0, 1).
This construction assumes an ability to calculate an inverse function F−1(·).A sample
X j,1, . . . , X j,n of n i.i.d. F variables can then be obtained from n i.i.d. Uniform (0,
1) observations Uj,1, . . . ,Uj,n by the prescription X j,n = F−1(Uj,n). If F−1 is not
tractable, other methods for generating observations with prescribed distributions
are available in statistical software packages, such as R, Excel, or Maple.
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Note, however, that we have ignored any error from the use of a pseudo-random
number generator, which presumably would be needed to generate the Uniform (0,
1) variables. The above idea forms the basis of many approximation schemes; for
some general references on Monte Carlo simulation, see Devroye (1986) and Ripley
(1987).

Almost sure convergence is the strongest type of convergence we have introduced
and it has many consequences. For example, suppose Xn → X almost surely and
|Xn| ≤ 1 with probability one. Then, |X | ≤ 1 with probability one, and so E(|X |) ≤
1; by the Lebesgue-dominated convergence theorem (Theorem 2.2.2), it follows that
E(Xn) → E(X). If the assumption that Xn → X almost surely is replaced by the
weaker condition that Xn converges in distribution to X , then the argument to show
E(Xn) → E(X) breaks down. However, we shall now show that the result continues
to hold since the conclusion pertains only to distributional properties of Xn and X .
The argument is based on the following theorem.

Theorem 11.4.4 (Almost Sure Representation Theorem) Suppose Xn
d→ X in

IRk. Then, there exist random vectors X̃n and X̃ defined on some common probability
space such that X̃n has the same distribution as Xn and X̃n → X̃ a.s. (and so X̃ has
the same distribution as X).

Example 11.4.4 (Convergence of Moments) Suppose Xn and X are real-valued

random variables and Xn
d→ X . If the Xn are uniformly bounded, then E(Xn) →

E(X). To see why, construct X̃n and X̃ by the Almost Sure Representation Theorem
and then apply the Dominated Convergence Theorem (Theorem 2.2.2) to the X̃n to
conclude

E(Xn) = E(X̃n) → E(X̃) = E(X) . (11.38)

If the Xn are not uniformly bounded, but Xn ≥ 0, then by Fatou’s Lemma (Theorem
2.2.1), we may conclude

E(X) = E(X̃) ≤ lim inf
n

E(X̃n) = lim inf
n

E(Xn) .

As a final result, suppose Xn
d→ X and |X | has distribution F which is continuous

at t . Then, by the Continuous Mapping Theorem,

|Xn|I {|Xn| ≤ t} d→ |X |I {|X | ≤ t} .

By (11.38), we may conclude

E[|Xn|I {|Xn| ≤ t}] → E[|X |I {|X | ≤ t}] . (11.39)

If, in addition, E |Xn| → E |X |, then

E[|Xn|I {|Xn| > t}] → E[|X |I {|X | > t}] . (11.40)
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More generally, convergence of moments (which are not truncated) holds under
uniform integrability, which we now define.

Definition 11.4.5 A sequence of random variables X1, X2, . . . is called uniformly
integrable if, given any ε > 0, there exists λ < ∞ such that

sup
n

E[|Xn|I {|Xn| > λ}] < ε .

The sequence is {Xn} is called asymptotically uniformly integrable if

lim
λ→∞

lim sup
n→∞

E[|Xn|I {|Xn| > λ}] = 0 .

Uniform integrability is slightly stronger than asymptotic uniform integrabil-
ity. A sufficient condition for uniform integrability of {Xn} is, for some δ > 0,
supn E(|Xn|1+δ) < ∞. A useful result is the following.

Theorem 11.4.5 Suppose Xn
d→ X and {Xn} is asymptotically uniformly integrable.

Then, E(Xn) → E(X).

11.5 Problems

Section 11.1

Problem 11.1 For each θ ∈ �, let fn(θ) be a real-valued sequence. We say fn(θ)
converges uniformly (in θ) to f (θ) if

sup
θ∈�

| fn(θ) − f (θ)| → 0

as n → ∞. If � if a finite set, show that the pointwise convergence fn(θ) → f (θ)
for each fixed θ implies uniform convergence. However, show the converse can fail
even if � is countable.

Section 11.2

Problem 11.2 For a univariate c.d.f. F , show that the set of points of discontinuity
is countable.

Problem 11.3 Let X be N (0, 1) and Y = X . Determine the set of continuity points
of the bivariate distribution of (X,Y ).
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Problem 11.4 Show that x = (x1, . . . , xk)� is a continuity point of the distribution
FX of X if the boundary of the set of (y1, . . . , yk) such that yi ≤ xi for all i has
probability 0 under the distribution of X . Show by example that it is not sufficient
for x to have probability 0 under FX in order for x to be a continuity point.

Problem 11.5 Prove the equivalence of (i) and (vi) in the Portmanteau Theorem
(Theorem 11.2.1).

Problem 11.6 Suppose Xn
d→ X . Show that E f (Xn) need not converge to E f (X)

if f is unbounded and continuous, or if f is bounded but discontinuous.

Problem 11.7 Show that the characteristic function of a sum of independent real-
valued random variables is the product of the individual characteristic functions.
(The converse is false; counterexamples are given in Romano and Siegel (1986),
Examples 4.29–4.30.)

Problem 11.8 Verify (11.9).

Problem 11.9 Let Xn have characteristic function ζn . Find a counterexample to
show that it is not enough to assume ζn(t) converges (pointwise in t) to a function
ζ(t) in order to conclude that Xn converges in distribution.

Problem 11.10 Show that Theorem 11.2.3 follows from Theorem 11.2.2.

Problem 11.11 Show that Lyapounov’s Central Limit Theorem (Corollary 11.2.1)
follows from the Lindeberg Central Limit Theorem (Theorem 11.2.5).

Problem 11.12 In Example 11.2.2, show that Lyapounov’s Condition holds.

Problem 11.13 Suppose Xk is a noncentral Chi-squared variable with k degrees of
freedom and noncentrality parameter δ2k .

(i) Show that (Xk − k)/(2k)1/2
d→ N (μ, 1) if δ2k/(2k)

1/2 → μ as k → ∞.
(ii) If ck,1−α is the 1 − α quantile of the Chi-squared distribution with k degrees of
freedom, deduce that (cn,1−α − k)/

√
2k → z1−α.

Problem 11.14 Suppose Xn,1, . . . , Xn,n are i.i.d. Bernoulli trials with success prob-
ability pn . If pn → p ∈ (0, 1), show that

n1/2[X̄n − pn] d→ N (0, p(1 − p)) .

Is the result true even if p is 0 or 1?

Problem 11.15 Let X1, . . . , Xn be i.i.d. with density p0 or p1, and consider testing
the null hypothesis H that p0 is true. The MP level-α test rejects when �n

i=1r(Xi ) ≥
Cn , where r(Xi ) = pi (Xi )/p0(Xi ), or equivalently when

1√
n

{∑
log r(Xi ) − E0[log r(Xi )]

}
≥ kn. (11.41)
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(i) Show that, under H , the left side of (11.41) converges in distribution to N (0,σ2)

with σ2 = Var0[log r(Xi )], provided σ < ∞.
(ii) From (i) it follows that kn → σz1−α, where zα is the α quantile of N (0, 1).
(iii) The power of the test (11.41) against p1 tends to 1 as n → ∞.Hint: Use Problem

3.41(iv).

Problem 11.16 Complete the proof of Theorem 11.2.8 by considering n even.

Problem 11.17 Generalize Theorem 11.2.8 to the case of the pth sample quantile.

Problem 11.18 Let X1, . . . , Xn be i.i.d. normal with mean θ and variance 1. Let X̄n

be the usual sample mean and let X̃n be the sample median. Let pn be the probability
that X̄n is closer to θ than X̃n is. Determine limn→∞ pn .

Problem 11.19 Suppose X1, . . . , Xn are i.i.d. real-valued random variables with
c.d.f. F . Assume ∃θ1 < θ2 such that F(θ1) = 1/4, F(θ2) = 3/4, and F is differen-
tiable, with density f taking positive values at θ1 and θ2. Show that the sample inter-
quartile range (defined as the difference between the 0.75 quantile and 0.25 quantile)
is a

√
n- consistent estimator of the population inter-quartile range (θ2 − θ1).

Problem 11.20 Prove Polyá’s Theorem 11.2.9. Hint: First consider the case of dis-
tributions on the real line.

Problem 11.21 Show that ρL(F,G) defined in Definition 11.2.3 is a metric; that is,
show ρL(F,G) = ρL(G, F), ρL(F,G) = 0 if and only if F = G, and

ρL(F,G) ≤ ρL(F, H) + ρL(H,G) .

Problem 11.22 For cumulative distribution functions F and G on the real line,
define the Kolmogorov–Smirnov distance between F and G to be

dK (F,G) = sup
x

|F(x) − G(x)| .

Show that dK (F,G) defines a metric on the space of distribution functions; that is,
show dK (F,G) = dK (G, F), dK (F,G) = 0 implies F = G and

dK (F,G) ≤ dK (F, H) + dK (H,G) .

Also, show that ρL(F,G) ≤ dK (F,G), where ρL is the Lévy metric. Construct a
sequence Fn such that ρL(Fn, F) → 0 but dK (Fn, F) does not converge to zero.

Problem 11.23 Let Fn and F be c.d.f.s on IR. Show that weak convergence of Fn

to F is equivalent to ρL(Fn, F) → 0, where ρL is the Lévy metric.

Problem 11.24 Suppose F and G are two probability distributions on IRk . Let L be
the set of (measurable) functions f from IRk to IR satisfying | f (x) − f (y)| ≤ |x − y|
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and supx | f (x)| ≤ 1, where | · | is the usual Euclidean norm. Define the Bounded-
Lipschitz Metric as

λ(F,G) = sup{|EF f (X) − EG f (X)| : f ∈ L} .

Show that Fn
d→ F is equivalent to λ(Fn, F) → 0. Thus, weak convergence on IRk

is metrizable. [See examples 21–22 in Pollard (1984).]

Problem 11.25 For a c.d.f. F with quantile function defined by

F−1(u) = inf{x : F(x) ≥ u} ,

show that: (i) F(x) ≥ u is equivalent to F−1(u) ≤ x .
(ii) F−1(·) is nondecreasing and left continuous with right-hand limits.
(iii) F(F−1(u)) ≤ u with equality if F is continuous at F−1(u).

Problem 11.26 (i) Construct a sequence of distribution functions {Fn} on the real

line such that Fn
d→ F , but the convergence F−1

n (1 − α) → F−1(1 − α) fails, even
if F is assumed continuous. (ii) On the other hand, if F is assumed continuous (but
not necessarily strictly increasing), show that

Fn(F
−1
n (1 − α)) → F(F−1(1 − α)) = 1 − α .

[Note the left side need not be 1 − α since Fn is not assumed continuous.]

Section 11.3

Problem 11.27 (Markov’s Inequality) Let X be a real-valued random variable with
X ≥ 0. Show that, for any t > 0,

P{X ≥ t} ≤ E[X I {X ≥ t}]
t

≤ E(X)

t
;

here I (X ≥ t) is the indicator variable that is 1 if X ≥ t and is 0 otherwise.

Problem 11.28 (Chebyshev’s Inequality) (i) Show that, for any real-valued random
variable X and any constants a > 0 and c,

E(X − c)2 ≥ a2P{|X − c| ≥ a} .

(ii) Hence, if Xn is any sequence of random variables and c is a constant such that
E(Xn − c)2 → 0, then Xn → c in probability. Give a counterexample to show the
converse is false.
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Problem 11.29 Give an example of an i.i.d. sequence of real-valued random vari-
ables such that the sample mean converges in probability to a finite constant, yet the
mean of the sequence does not exist.

Problem 11.30 Prove the following generalization of Lemma 11.2.1. Suppose {F̂n}
is a sequence of random distribution functions satisfying F̂n(x)

P→ F(x) at all x
which are continuity points of afixeddistribution function F .Assume F is continuous
and strictly increasing at F−1(1 − α). Then,

F̂−1
n (1 − α)

P→ F−1(1 − α) .

Problem 11.31 Prove a result analogous to Problem 11.26 if {F̂n} is a random
sequence, similar to how Problem 11.30 is a generalization of Lemma 11.2.1.

Problem 11.32 Suppose Xn and X are real-valued random variables (defined on a
common probability space). Prove that, if Xn converges to X in probability, then Xn

converges in distribution to X . Show by counterexample that the converse is false.
However, show that if X is a constant with probability one, then Xn converging to X
in distribution implies Xn converges to X in probability.

Problem 11.33 Suppose Xn is a sequence of random vectors.

(i) Show Xn
P→ 0 if and only if |Xn| P→ 0 (where the first zero refers to the zero

vector and the second to the real number zero).
(ii) Show that convergence in probability of Xn to X is equivalent to convergence in
probability of their components to the respective components of X .

Problem 11.34 Assume Xn
d→ X and Yn

P→ c, where c is a constant. Show that

(Xn,Yn)
d→ (X, c).

Problem 11.35 Generalize Slutsky’s Theorem (Theorem 11.3.2) to the case where
Xn is a vector, An is a matrix, and Bn is a vector.

Problem 11.36 Suppose X1, . . . , Xn are i.i.d. real-valued random variables. Write
Xi = X+

i − X−
i , where X+

i = max(Xi , 0). Suppose X−
i has a finite mean, but X+

i

does not. Let X̄n be the sample mean. Show X̄n
P→ ∞.Hint: For B > 0, let Yi = Xi

if Xi ≤ B and Yi = B otherwise; apply the Weak Law to Ȳn .

Problem 11.37 (i) Let K (P0, P1) be the Kullback–Leibler Information, defined in
(11.21). Show that K (P0, P1) ≥ 0 with equality iff P0 = P1.
(ii) Show the convergence (11.20) holds even when K (P0, P1) = ∞. Hint: Use
Problem 11.36.

Problem 11.38 As in Example 11.3.1, consider the problem of testing P = P0 ver-
sus P = P1 based on n i.i.d. observations. The problem is an alternative way to show
that a most powerful level α (0 < α < 1) test sequence has limiting power one. If
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P0 and P1 are distinct, there exists E such that P0(E) �= P1(E). Let p̂n denote the
proportion of observations in E and construct a level-α test sequence based on p̂n
which has power tending to one.

Problem 11.39 If Xn is a sequence of real-valued random variables, prove that
Xn → 0 in Pn-probability if and only if EPn [min(|Xn|, 1)] → 0.

Problem 11.40 (i) Prove Corollary 11.3.1.

(ii) Suppose Xn
d→ X and Cn

P→ ∞. Show P{Xn ≤ Cn} → 1.

Problem 11.41 In Example 11.3.2, show that βn(pn) → 1 if n1/2(pn − 1/2) → ∞
and βn(pn) → α if n1/2(pn − 1/2) → 0.

Problem 11.42 In Example 11.3.4, let In be the interval (11.23). Show that, for any
n,

inf
p
Pp{p ∈ În} = 0 .

Hint: Consider p positive but small enough so that the chance that a sample of size
n results in 0 successes is nearly 1.

Problem 11.43 Show how the interval (11.25) is obtained from (11.24).

Problem 11.44 Prove Lemma 11.3.1

Problem 11.45 Show that tightness of a sequence of random vectors in IRk is equiv-
alent to each of the component variables being tight.

Problem 11.46 Suppose Pn is a sequence of probabilities and Xn is a sequence of
real-valued random variables; the distribution of Xn under Pn is denoted L(Xn|Pn).
Prove that L(Xn|Pn) is tight if and only if Xn/an → 0 in Pn-probability for every
sequence an ↑ ∞.

Problem 11.47 Suppose Xn
d→ N (μ,σ2). (i). Show that, for any sequence of num-

bers cn , P(Xn = cn) → 0. (ii). If cn is any sequence such that P(Xn > cn) → α,
then cn → μ + σz1−α, where z1−α is the 1 − α-quantile of N (0, 1).

Problem 11.48 Let X1, · · · , Xn be i.i.d. normal with mean θ and variance 1. Sup-
pose θ̂n is a location equivariant sequence of estimators such that, for every fixed
θ, n1/2(θ̂n − θ) converges in distribution to the standard normal distribution (if θ is
true). Let X̄n be the usual sample mean. Show that, if θ is fixed at the true value, then
n1/2(θ̂n − X̄n) tends to 0 in probability under θ.

Problem 11.49 Prove part (ii) of Theorem 11.3.4.

Problem 11.50 Suppose R is a real-valued function on IRk with R(y) = o(|y|p) as
|y| → 0, for some p > 0. If Yn is a sequence of random vectors satisfying |Yn| =
oP(1), then show R(Yn) = oP(|Yn|p).Hint: Let g(y) = R(y)/|y|p with g(0) = 0 so
that g is continuous at 0; apply the Continuous Mapping Theorem.
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Problem 11.51 Use Problem 11.50 to prove (11.28).

Problem 11.52 Assume (Ui , Vi ) is bivariate normal with correlation ρ. Let ρ̂n
denote the sample correlation given by (11.29). Verify the limit result (11.31).

Problem 11.53 Consider the setting of Problem 6.21, where (Xi ,Yi ) are indepen-
dent N (μi ,σ

2) for i = 1, . . . , n. The parameters μ1, . . . ,μn and σ2 are all unknown.
For testing σ = 1 against σ > 1, determine the limiting power of the UMPI level-α
test against alternatives 1 + hn−1/2.

Problem 11.54 (i) If X1, . . . , Xn is a sample from a Poisson distribution with mean
E(Xi ) = λ, then

√
n(

√
X̄ − √

λ) tends in law to N (0, 1
4 ) as n → ∞.

(ii) If X has the binomial distribution b(p, n), then
√
n[arcsin√

X/n − arcsin
√
p]

tends in law to N (0, 1
4 ) as n → ∞.

Note. Certain refinements of variance stabilizing transformations are discussed by
Anscombe (1948), Freeman and Tukey (1950), and Hotelling (1953). Transforma-
tions of data to achieve approximately a normal linear model are considered by Box
and Cox (1964); for later developments stemming from this work see Bickel and
Doksum (1981), Box and Cox (1982), and Hinkley and Runger (1984).

Problem 11.55 Suppose (X1, . . . , Xk) is multinomial based on n trials and cell
probabilities (p1, . . . , pk). Show that

√
n

⎡

⎣
k∑

j=1

X j

n
log

(
X j

n

)

− c

⎤

⎦

converges in distribution to F , for some constant c and distribution F . Identify c and
F .

Problem 11.56 Suppose Xi, j are independently distributed as N (μi ,σ
2
i ); i =

1, . . . , s; j = 1, . . . , ni . Let S2n,i = ∑
j (Xi, j − X̄i )

2, where X̄i = n−1
i

∑
j Xi, j . Let

Zn,i = log[S2n,i/(ni − 1)]. Show that, as ni → ∞,

√
ni − 1[Zn,i − log(σ2

i )] d→ N (0, 2) .

Thus, for large ni , the problem of testing equality of all the σi can be approximately
viewed as testing equality of means of normally distributed variables with known
(possibly different) variances. Use Problem 7.12 to suggest a test.

Problem 11.57 Let X1, · · · , Xn be i.i.d. Poisson with mean λ. Consider estimating
g(λ) = e−λ by the estimator Tn = e−X̄n . Find an approximation to the bias of Tn;
specifically, find a function b(λ) satisfying

Eλ(Tn) = g(λ) + n−1b(λ) + O(n−2)
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as n → ∞. Such an expression suggests a new estimator Tn − n−1b(λ), which has
bias O(n−2). But, b(λ) is unknown. Show that the estimator Tn − n−1b(X̄n) has bias
O(n−2).

Problem 11.58 Let X1, . . . , Xn be a random sample from the Poisson distribu-
tion with unknown mean λ. The uniformly minimum variance unbiased estimator
(UMVUE) of exp(−λ) is known to be [(n − 1)/n]Tn , where Tn = ∑n

i=1 Xi . Find the
asymptotic distribution of the UMVUE (appropriately normalized). Hint: It may be
easier to first find the asymptotic distribution of exp(−Tn/n).

Problem 11.59 Let Xi, j , 1 ≤ i ≤ I , 1 ≤ j ≤ n be independent with Xi, j Poisson
with mean λi . The problem is to test the null hypothesis that the λi are all the same
versus they are not all the same. Consider the test that rejects the null hypothesis iff

T ≡ n
∑I

i=1(X̄i − X̄)2

X̄

is large, where X̄i = ∑
j Xi, j/n and X̄ = ∑

i X̄ i/I .
(i) How large should the critical values be so that, if the null hypothesis is correct,
the probability of rejecting the null hypothesis tends (as n → ∞ with I fixed) to the
nominal level α.
(ii) Show that the test is pointwise consistent in power against any (λ1, . . . ,λI ), as
long as the λi are not all equal.

Problem 11.60 Assume X1, . . . , Xn are i.i.d. N (0,σ2). Let σ̂2
n be the maximum

likelihood estimator of σ2 given by σ̂2
n = ∑n

i=1 X
2
i /n.

(i) Find the limiting distribution of
√
n(σ̂n − σ).

(ii) For a constant c, let Tn,c = c
∑n

i=1 |Xi |/n. For what constant c is Tn,c a consistent
estimator of σ?
(iii) Determine the limiting distribution of

√
n(Tn,c − σ) with c chosen as your con-

sistent estimator.
(iv) Determine the limiting distribution of

√
n log(σ̂n/Tn,c) (again with c chosen

from (ii) above).

Problem 11.61 Suppose X1, . . . , XI are independent and binomially distributed,
with Xi ∼ b(ni , pi ); that is, Xi is the number of successes in ni Bernoulli trials.
Suppose that pi satisfies

log[pi/(1 − pi )] = θdi

for known constants di , which implies

pi = edi θ

1 + edi θ

(Think of di as the dose given to ni subjects, and you observe Xi deaths at the dosage
level di .) Both di and ni are known.
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(i) For testing the null hypothesis θ = 0 against θ = 1, find the form of the most
powerful level-α test and show that it rejects for large values of a test statistic T .
(ii) If the null hypothesis is true and the sample sizes ni are moderately large, what
is the approximate distribution of T ?
(iii) If I = 5, di = i and ni = 100, approximate the p-value of your test if you
observe X1 = 40, X2 = 51, X3 = 64, X4 = 73 and X5 = 80.

Section 11.4

Problem 11.62 Prove the Glivenko–Cantelli Theorem. Hint: Use the Strong Law
of Large Numbers and the monotonicity of F .

Problem 11.63 Let X1, . . . , Xn be i.i.d. P on S. Suppose S is countable and let E
be the collection of all subsets of S. Let P̂n be the empirical measure; that is, for any
subset E of E , P̂n(E) is the proportion of observations Xi that fall in E . Prove, with
probability one,

sup
E∈E

|P̂n(E) − P(E)| → 0 .

Problem 11.64 Suppose Xn is a tight sequence and Yn
P→ 0. Show that XnYn

P→ 0.
If it is assumed Yn → 0 almost surely, can you conclude XnYn → 0 almost surely?

Problem 11.65 Suppose Xn is a sequence of real-valued random variables.
(i) Assume Xn is Cauchy in probability; that is, for all ε > 0,

lim
min(m,n)→∞

P{|Xn − Xm | > ε} → 0 .

Then, show there exists a random variable X such that Xn
P→ X , in which case we

may write X = limn→∞ Xn .
(ii) Assume Xn satisfies E(|Xn|p) < ∞. Also, assume Xn is Cauchy in L p; that is,

lim
min(m,n)→∞

E(|Xn − Xm |p) → 0 .

Then, show there exist a random variable X such that E(|Xn − X |p) → 0 and
E(|X |p) < ∞.

Problem 11.66 For a c.d.f. F , define the quantile transformation Q by

Q(u) = inf{t : F(t) ≥ u} .

(i) Show the event {F(t) ≥ u} is the same as {Q(u) ≤ t}.
(ii) If U is uniformly distributed on (0, 1), show the distribution of Q(U ) is F .
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Problem 11.67 Assume Xn has c.d.f. Fn . Fix α ∈ (0, 1).
(i) If Xn is tight, show that F−1

n (1 − α) is uniformly bounded.

(ii) If Xn
P→ c, show that F−1

n (1 − α) → c.

Problem 11.68 LetU1, . . . ,Un be i.i.d. with c.d.f. G(u) = u and let Ĝn denote the
empirical c.d.f. of U1, . . . ,Un . Define

Bn(u) = n1/2[Ĝn(u) − u] .

(Note that Bn(·) is a random function, called the uniform empirical process).
(i) Show that the distribution of the Kolmogorov–Smirnov test statistic
n1/2dK (Ĝn,G) under G is that of supu |Bn(u)|.
(ii) Suppose X1, . . . , Xn are i.i.d. F (not necessarily continuous), and let F̂n denote
the empirical c.d.f. of X1, . . . , Xn . Show that the distribution of the Kolmogorov–
Smirnov test statistic n1/2dK (F̂n, F) under F is that of supt |Bn(F(t))|, where Bn

is defined in (i). Deduce that this distribution does not depend on F when F is
continuous.

Problem 11.69 Consider the uniform confidence band Rn,1−α for F given by
(11.36). Let F be the set of all distributions on IR. Show,

inf
F∈F

PF {F ∈ Rn,1−α} ≥ 1 − α .

Problem 11.70 Show how Theorem 11.4.3 implies Theorem 11.4.2. Hint: Use the
Borel–Cantelli Lemma; see Billingsley (1995, Theorem 4.3).

Problem 11.71 (i) If X1, . . . , Xn are i.i.d. with c.d.f. F and empirical distribution
F̂n , use Theorem 11.4.3 to show that n1/2 sup |F̂n(t) − F(t)| is a tight sequence.
(ii) Let Fn be any sequence of distributions, and let F̂n be the empirical distribution
based on a sample of size n from Fn . Show that n1/2 sup |F̂n(t) − Fn(t)| is a tight
sequence.

Problem 11.72 Show that Xn → X in probability is equivalent to the statement that,
for any subsequence Xn j , there exists a further subsequence Xn jk

such that Xn jk
→ X

with probability one.

Problem 11.73 (i) Suppose random variables Xn , Yn and a random vector Wn are
such that, given Wn , Xn and Yn are conditionally independent. Assume, for nonneg-
ative constants σX and σY , and for all z,

P{Xn ≤ z|Wn} P→ �(z/σX }

and
P{Yn ≤ z|Wn} P→ �(z/σY } .
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Show that

P{Xn + Yn ≤ z|Wn} P→ �(z/
√

σ2
X + σ2

Y ) .

How do the unconditional distributions behave?
(ii) Suppose F̂n and Ĝn are (random) distributions, and assume F = N (0,σ2

F ) and
G = N (0,σ2

G) are nonrandom. Let ρ be any metric metrizing weak convergence,
such as the Lévy metric. If

ρ(F̂n, F)
P→ 0

and
ρ(ĜN ,G)

P→ 0 ,

then show
ρ(F̂n ∗ Ĝn, F ∗ G)

P→ 0 ,

where F ∗ G denotes the convolution between distributions F and G.

Problem 11.74 (i) Show that if {Xn} is uniformly integrable, then {Xn} is asymp-
totically uniformly integrable, but the converse is false.
(ii) Show that a sufficient condition for {Xn} to be uniformly integrable is, for some
δ > 0, supn E(|Xn|1+δ) < ∞.

Problem 11.75 If Xn
P→ 0 and

sup
n

E[|Xn|1+δ] < ∞ for some δ > 0 , (11.42)

then show E[|Xn|] → 0. (More generally, if the Xn are uniformly integrable in the
sense supn E[|Xn|I {|Xn| > t}] → 0 as t → ∞, then E[|Xn|] → 0. A converse is
given in Dudley (1989), p. 279.)

Problem 11.76 (i) Show that {Xn} is uniformly integrable if and only if
supn E |Xn| < ∞ and

sup
n

E[|Xn|IA} =
∫

A
|Xn(ω)|dP(ω) → 0

as P{A} → 0.
(ii) Suppose X1, . . . , Xn are i.i.d. with finite mean μ. Show that X̄n is uniformly
integrable and hence E |X̄n − μ| → 0. (The fact that X̄n is uniformly integrable
holds if the Xi are just identically distributed with finite mean.)

Problem 11.77 If Xn
d→ X and {Xn} is asymptotically uniformly integrable, show

that for any 0 < p < 1, E(X p
n ) → E(X p).
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Problem 11.78 Assume X1, . . . , Xn are i.i.d. with E(|Xi |p] < ∞. Then, show that

n− 1
p max
1≤i≤n

|Xi | P→ 0 .

Problem 11.79 (i) Suppose Xn
d→ X and Var(Xn) → Var(X) < ∞. Show

E(Xn) → E(X).

(ii) Suppose (Xn,Yn)
d→ (X,Y ) in the plane, with Var(Xn) → Var(X) < ∞ and

Var(Yn) → Var(Y ) < ∞. Show that Cov(Xn,Yn) → Cov(X,Y ).

11.6 Notes

The convergence concepts in this chapter are classical and can be found in most
graduate probability texts such as Billingsley (1995) or Dudley (1989). The Central
Limit Theory for Bernoulli trials dates back to de Moivre (1733) and for more
general distributions to Laplace (1812). Their treatment was probabilistic and did
not involve problems in inference. Normal experiments were first treated in Gauss
(1809). Further history is provided in Stigler (1986) and Hald (1990, 1998).


	11 Basic Large-Sample Theory 
	11.1 Introduction
	11.2 Weak Convergence and Central Limit Theorems
	11.3 Convergence in Probability and Applications
	11.4 Almost Sure Convergence
	11.5 Problems
	11.6 Notes


