
Chapter 10
Conditional Inference

10.1 Mixtures of Experiments

The present chapter has a somewhat different character from the preceding ones. It
is concerned with problems regarding the proper choice and interpretation of tests
and confidence procedures, problems which—despite a large literature—have not
found a definitive solution. The discussion will thus be more tentative than in earlier
chapters, and will focus on conceptual aspects more than on technical ones.

Consider the situation in which either the experiment E of observing a random
quantity X with density pθ (with respect to μ) or the experimentF of observing an X
with density qθ (with respect to ν) is performed with probability p and q = 1 − p,
respectively. On the basis of X , and knowledge of which of the two experiments
was performed, it is desired to test H0 : θ = θ0 against H1 : θ = θ1. For the sake of
convenience it will be assumed that the two experiments have the same sample space
and the same σ-field of measurable sets. The sample space of the overall experiment
consists of the union of the sets

X0 = {(I, x) : I = 0, x ∈ X } and X1 = {(I, x) : I = 1, x ∈ X },

where I is 0 or 1 as E or F is performed.
A level-α test of H0 is defined by its critical function

φi (x) = φ(i, x)

and must satisfy
pE0

[
φ0(X) | E] + qE0

[
φ1(X) | F] =

p
∫

φ0 pθ0 dμ + q
∫

φ1qθ0 dν ≤ α.
(10.1)

Suppose that p is unknown, so that H0 is composite. Then a level-α test of H0 satisfies
(10.1) for all 0 < p < 1, and must therefore satisfy
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α0 =
∫

φ0 pθ0 dμ ≤ α and α1 =
∫

φ1qθ0 dν ≤ α. (10.2)

As a result, a UMP test against H1 exists and is given by

φ0(x) =

⎧
⎪⎨

⎪⎩

1 when pθ1 (x) > c0 pθ0 (x),

γ0 when pθ1 (x) = c0 pθ0 (x),

0 when pθ1 (x) < c0 pθ0 (x),

and φ1(x) =

⎧
⎪⎨

⎪⎩

1 when qθ1 (x) > c1qθ0 (x),

γ1 when qθ1 (x) = c1qθ0 (x),

0 when qθ1 (x) < c1qθ0 (x),

(10.3)

where the ci and γi are determined by

Eθ0

[
φ0(X) | E] = Eθ0

[
φ1(X) | F] = α. (10.4)

The power of this test against H1 is

β(p) = pβ0 + qβ1 (10.5)

with
β0 = Eθ1

[
φ0(X) | E]

, β1 = Eθ1

[
φ1(X) | F]

. (10.6)

The situation is analogous to that of Section 4.4 and, as was discussed there, it may
be more appropriate to consider the conditional power βi when I = i , since this is
the power pertaining to the experiment that has been performed. As in the earlier
case, the conditional power βI can also be interpreted as an estimate of the unknown
β(p), which is unbiased, since

E(βI ) = pβ0 + qβ1 = β(p).

So far, the probability p of performing experiment E has been assumed to be
unknown. Suppose instead that the value of p is known, say p = 1

2 . The hypothesis
H can be tested at level α by means of (10.3) as before, but the power of the test is
now known to be 1

2 (β0 + β1). Suppose that β0 = 0.3, β1 = 0.9, so that at the start of
the experiment the power is 1

2 (0.3 + 0.9) = 0.6. Now a fair coin is tossed to decide
whether to perform E (in case of heads) or F (in case of tails). If the coin shows
heads, should the power be reassessed and scaled down to 0.3?

Let us postpone the answer and first consider another change resulting from the
knowledge of p. A level-α test of H now no longer needs to satisfy (10.2) but only
the weaker condition

1

2

[∫
φ0 pθ0 dμ +

∫
φ1qθ0 dν

]
≤ α. (10.7)

The most powerful test against K is then again given by (10.3), but now with c0 =
c1 = c and γ0 = γ1 = γ determined by (Problem 10.3)
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1
2 (α0 + α1) = α, (10.8)

where
α0 = Eθ0

[
φ0(X) | E]

, α1 = Eθ0

[
φ1(X) | F]

. (10.9)

As an illustration of the change, suppose that experimentF is reasonably informative,
say that the power β1 given by (10.6) is 0.8, but that E has little ability to distinguish
between pθ0 and pθ1 . Then it will typically not pay to put much of the rejection
probability into α0; if β0 [given by (10.6)] is sufficiently small, the best choice of
α0 and α1 satisfying (10.8) is approximately α0 ≈ 0, α1 ≈ 2α. The situation will be
reversed if F is so informative that F can attain power close to 1 with an α1 much
smaller than α/2.

When p is known, there are therefore two issues. Should the procedure be chosen
which is best on the average over both experiments, or should the best conditional
procedure be preferred; and, for a given test or confidence procedure, should proba-
bilities such as level, power, and confidence coefficient be calculated conditionally,
given the experiment that has been selected, or unconditionally? The underlying
question is of course the same: Is a conditional or unconditional point of view more
appropriate?

The answer cannot be found within the model but depends on the context. If the
overall experiment will be performed many times, for example in an industrial or
agricultural setting, the average performance may be the principal feature of interest,
and an unconditional approach suitable. However, if repetitions refer to different
clients, or are potential rather than actual, interest will focus on the particular event
at hand, and conditioning seems more appropriate. Unfortunately, as will be seen in
later sections, it is then often not clear how the conditioning events should be chosen.

The difference between the conditional and the unconditional approaches tends
to be most striking, and a choice between them therefore most pressing, when the
two experiments E and F differ sharply in the amount of information they contain,
if for example the difference |β1 − β0| in (10.6) is large. To illustrate an extreme
situation in which this is not the case, suppose that E and F consist in observing
X with distribution N (θ, 1) and N (−θ, 1) respectively, that one of them is selected
with known probabilities p and q, respectively, and that it is desired to test H : θ = 0
against K : θ > 0. Here E and F contain exactly the same amount of information
about θ. The unconditional most powerful level-α test of H against θ1 > 0 is seen
to reject (Problem 10.5) when X > c if E is performed, and when X < −c if F is
performed, where P0(X > c) = α. The test is UMP against θ > 0, and happens to
coincide with the UMP conditional test.

The issues raised here extend in an obvious way to mixtures of more than two
experiments. As an illustration of a mixture over a continuum, consider a regression
situation. Suppose that X1, . . . , Xn are independent, and that the conditional density
of Xi given ti is

1

σ
f

(
xi − α − βti

σ

)
.
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The ti themselves are obtained with error. They may for example be independently
normally distributed with mean ci and known variance τ 2, where the ci are the
intended values of the ti . Then it will again often be the case that the most appropriate
inference concerning α, β, and σ is conditional on the observed values of the t’s
(which represent the experiment actually being performed). Whether this is the case
will, as before, depend on the context.

The argument for conditioning also applies when the probabilities of performing
the various experiments are unknown, say depend on a parameter ϑ, provided ϑ is
unrelated toθ, so thatwhich experiment is chosenprovides no information concerning
θ. A more precise statement of this generalization is given at the end of the next
section.

10.2 Ancillary Statistics

Mixture models can be described in the following general terms. Let {Ez, z ∈ Z}
denote a collection of experiments of which one is selected according to a known
probability distribution overZ . For any given z, the experiment Ez consists in observ-
ing a random quantity X , which has a distribution Pθ(· | z). Although this structure
seems rather special, it is common to many statistical models.

Consider a general statistical model in which the observations X are distributed
according to Pθ, θ ∈ �, and suppose there exists an ancillary statistic, that is, a
statistic Z whose distribution F does not depend on θ. Then one can think of X
as being obtained by a two-stage experiment: observe first a random quantity Z
with distribution F ; given Z = z, observe a quantity X with distribution Pθ(· | z).
The resulting X is distributed according to the original distribution Pθ. Under these
circumstances, the argument of the preceding section suggests that it will frequently
be appropriate to take the conditional point of view.1 (Unless Z is discrete, these
definitions involve technical difficulties concerning sets of measure zero and the
existence of conditional distributions, which we shall disregard.)

An important class of models in which ancillary statistics exist is obtained by
invariance considerations. Suppose the model P = {Pθ, θ ∈ �} remains invariant
under the transformations

X → gX, θ → ḡθ; g ∈ G, ḡ ∈ Ḡ,

and that Ḡ is transitive over �.2

Theorem 10.2.1 If P remains invariant under G and if Ḡ is transitive over �, then
a maximal invariant T (and hence any invariant) is ancillary.

1 A distinction between experimental mixtures and the present situation, relying on aspects outside
the model, is discussed by Basu (1964) and Kalbfleisch (1975).
2 The family P is then a group family; see Lehmann and Casella (1998), Section 1.3.
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Proof. It follows from Theorem 6.3.2 that the distribution of a maximal invariant
underG is invariant under Ḡ. Since Ḡ is transitive, only constants are invariant under
Ḡ. The probability Pθ(T ∈ B) is therefore constant, independent of θ, for all B, as
was to be proved.

As an example, suppose that X = (X1, . . . , Xn) is distributed according to a
location family with joint density f (x1 − θ, . . . , xn − θ). The most powerful test of
H : θ = θ0 against K : θ = θ1 > θ0 rejects when

f (x1 − θ1, . . . , xn − θ1)

f (x1 − θ0, . . . , xn − θ0)
≥ c. (10.10)

Here the set of differences Yi = Xi − Xn (i = 1, . . . , n − 1) is ancillary. This is
obvious by inspection and follows from Theorem 10.2.1 in conjunction with Exam-
ple 6.2.1(i). It may therefore be more appropriate to consider the testing problem
conditionally given Y1 = y1, . . . ,Yn−1 = yn−1. To determine themost powerful con-
ditional test, transform to Y1, . . . ,Yn , where Yn = Xn . The conditional density of Yn
given y1, . . . , yn−1 is

pθ(yn | y1, . . . , yn−1) = f (y1 + yn − θ, . . . , yn−1 + yn − θ, yn − θ)
∫

f (y1 + u, . . . , yn−1 + u, u) du
(10.11)

and the most powerful conditional test rejects when

pθ1(yn | y1, . . . , yn−1)

pθ0(yn | y1, . . . , yn−1)
> c(y1, . . . , yn−1). (10.12)

In terms of the original variables this becomes

f (x1 − θ1, . . . , xn − θ1)

f (x1 − θ0, . . . , xn − θ0)
> c(x1 − xn, . . . , xn−1 − xn). (10.13)

The constant c(x1 − xn, . . . , xn−1 − xn) is determined by the fact that the conditional
probability of (10.13), given the differences of the x’s, is equal to α when θ = θ0.

For describing the conditional test (10.12) and calculating the critical value
c(y1, . . . , yn−1), it is useful to note that the statistic Yn = Xn could be replaced
by any other Yn satisfying the equivariance condition3

Yn(x1 + a, . . . , xn + a) = Yn(x1, . . . , xn) + a for all a. (10.14)

This condition is satisfied for example by the mean of the X ’s, the median, or any
of the order statistics. As will be shown in Lemma 10.2.1, any two statistics Yn
and Y ′

n satisfying (10.14) differ only by a function of the differences Yi = Xi − Xn

3 For a more detailed discussion of equivariance, see Lehmann and Casella (1998), Chapter 3.
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(i = 1, . . . , n − 1). Thus conditionally, given the values y1, . . . , yn−1, Yn and Y ′
n

differ only by a constant, and their conditional distributions (and the critical values
c(y1, . . . , yn−1)) differ by the same constant. One can therefore choose Yn , subject
to (10.14), to make the conditional calculations as convenient as possible.

Lemma 10.2.1 If Yn and Y ′
n both satisfy (10.14), then their difference � = Y ′

n − Yn
depends on (x1, . . . , xn) only through the differences (x1 − xn, . . . , xn−1 − xn).

Proof. Since Yn and Y ′
n satisfy (10.14),

�(x1 + a, . . . , xn + a) = �(x1, . . . , xn) for all a.

Putting a = −xn , one finds

�(x1, . . . , xn) = �(x1 − xn, . . . , xn−1 − xn, 0),

which is a function of the differences.

The existence of ancillary statistics is not confined to models that remain invariant
under a transitive group Ḡ. The mixture and regression examples of Section10.1
provide illustrations of ancillaries without the benefit of invariance. Further examples
are given in Problems 10.8–10.13.

If conditioning on an ancillary statistic is considered appropriate because it makes
the inference more relevant to the situation at hand, it is desirable to carry the process
as far as possible and hence to condition on a maximal ancillary. An ancillary Z is
said to be maximal if there does not exist an ancillaryU such that Z = f (U )without
Z and U being equivalent. [For a more detailed treatment, which takes account of
the possibility of modifying statistics on sets of measure zero without changing their
probabilistic properties, see Basu (1959).]

Conditioning, like sufficiency and invariance, leads to a reduction of the data. In
the conditional model, the ancillary is no longer part of the random data but has
become a constant. As a result, conditioning often leads to a great simplification of
the inference. Choosing a maximal ancillary for conditioning thus has the additional
advantage of providing the greatest reduction of the data.

Unfortunately, maximal ancillaries are not always unique, and one must then
decide which maximal ancillary to choose for conditioning. [This problem is dis-
cussed by Cox (1971) and Becker and Gordon (1983).] If attention is restricted to
ancillary statistics that are invariant under a given group G, the maximal ancillary of
course coincides with the maximal invariant.

Another issue concerns the order in which to apply reduction by sufficiency and
ancillarity.

Example 10.2.1 Let (Xi ,Yi ), i = 1, . . . , n, be independently distributed according
to a bivariate normal distribution with E(Xi ) = E(Yi ) = 0, Var(Xi ) = Var(Yi ) = 1,
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and unknown correlation coefficient ρ. Then X1, . . . , Xn are independently dis-
tributed as N (0, 1) and are therefore ancillary. The conditional density of the Y ’s
given X1 = xi , . . . , Xn = xn is

C exp

(
− 1

2(1 − ρ2)

∑
(yi − ρxi )

2

)
,

with the sufficient statistics (
∑

Y 2
i ,

∑
xiYi ).

Alternatively, one could begin by noticing that (Y1, . . . ,Yn) is ancillary. The con-
ditional distribution of the X ’s given Y1 = y1, . . . ,Yn = yn then admits the sufficient
statistics (

∑
X2
i ,

∑
Xi yi ). A unique maximal ancillary V does not exist in this case,

since both the X ’s and Y ’s would have to be functions of V . Thus V would have to
be equivalent to the full sample (X1,Y1), . . . , (Xn,Yn), which is not ancillary.

Suppose instead that the data are first reduced to the sufficient statistics T =
(
∑

X2
i + ∑

Y 2
i ,

∑
XiYi ). Based on T , no nonconstant ancillaries appear to exist.4

This example and others like it suggest that it is desirable to reduce the data as
far as possible through sufficiency, before attempting further reduction by means of
ancillary statistics.

Note that contrary to this suggestion, in the location example at the beginning
of the section, the problem was not first reduced to the sufficient statistics X(1) <

· · · < X(n). The omission can be justified in hindsight by the fact that the optimal
conditional tests are the same whether or not the observations are first reduced to the
order statistics.

In the structure described at the beginning of the section, the variable Z that
labels the experiment was assumed to have a known distribution. The argument for
conditioning on the observed value of Z does not depend on this assumption. It
applies also when the distribution of Z depends on an unknown parameter ϑ, which
is independent of θ and hence by itself contains no information about θ, that is,
when the distribution of Z depends only on ϑ, the conditional distribution of X
given Z = z depends only on θ, and the parameter space � for (θ,ϑ) is a Cartesian
product � = �1 × �2, with

(θ,ϑ) ∈ � ⇔ θ ∈ �1 and ϑ ∈ �2 . (10.15)

(the parameters θ and ϑ are then said to be variation independent, or unrelated.)
Statistics Z satisfying this more general definition are called partial ancillary

or S-ancillary. (The term ancillary without modification will be reserved here for a
statistic that has a known distribution.) Note that if X = (T, Z) and Z is a partial
ancillary, then T is a partial sufficient statistic in the sense of Problem 3.65. For a
more detailed discussion of this and related concepts of partial ancillarity, see for
example Basu (1978) and Barndorff-Nielsen (1978).

4 So far, nonexistence has not been proved. It seems likely that a proof can be obtained by the
methods of Unni (1978).
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Example 10.2.2 Let X and Y be independent with Poisson distributions P(λ) and
P(μ), and let the parameter of interest be θ = μ/λ. It was seen in Section10.4 that
the conditional distribution of Y given Z = X + Y = z is binomial b(p, z) with
p = μ/(λ + μ) = θ/(θ + 1) and therefore depends only on θ, while the distribution
of Z is Poisson with mean ϑ = λ + μ. Since the parameter space 0 < λ, μ < ∞ is
equivalent to the Cartesian product of 0 < θ < ∞, 0 < ϑ < ∞, it follows that Z is
S-ancillary for θ.

The UMP unbiased level-α test of H : μ ≤ λ against μ > λ is UMP also
among all tests whose conditional level given z is α for all z. (The class of con-
ditional tests coincides exactly with the class of all tests that are similar on the
boundary μ = λ.)

When Z is S-ancillary for θ in the presence of a nuisance parameter ϑ, the uncon-
ditional power β(θ,ϑ) of a test ϕ of H : θ = θ0 may depend on ϑ as well as on θ.
The conditional power β(ϑ | z) = Eθ[ϕ(X) | z] can then be viewed as an unbiased
estimator of the (unknown) β(θ,ϑ), as was discussed at the end of Section 4.4. On
the other hand, if no nuisance parameters ϑ are present and Z is ancillary for θ, the
unconditional powerβ(θ) = Eθϕ(X) and the conditional powerβ(θ | z) provide two
alternative evaluations of the power of ϕ against θ, which refer to different sampling
frameworks, and of which the latter of course becomes available only after the data
have been obtained.

Surprisingly, the S-ancillarity of X + Y in Example 10.2.2 does not extend to the
corresponding binomial problem.

Example 10.2.3 Let X and Y have independent binomial distributions b(p1,m) and
b(p2, n) respectively. Then it was seen in Section 4.5 that the conditional distribution
of Y given Z = X + Y = z depends only on the cross-product ratio� = p2q1/p1q2
(qi = 1 − pi ). However, Z is not S-ancillary for�. To see this, note that S-ancillarity
of Z implies the existence of a parameter ϑ unrelated to� and such that the distribu-
tion of Z depends only on ϑ. As � changes, the family of distributions {Pϑ,ϑ ∈ �2}
of Z would remain unchanged. This is not the case, since Z is binomial when � = 1
and not otherwise (Problem 10.15). Thus Z is not S-ancillary.

In this example, all unbiased tests of H : � = �0 have a conditional level
given z that is independent of z, but conditioning on z cannot be justified by S-
ancillarity.

Closely related to this example is the situation of the multinomial 2 × 2 table
discussed from the point of view of unbiasedness in Section 4.6.

Example 10.2.4 In the notation of Section 4.6, let the four cell entries of a 2 × 2 table
be X , X ′, Y , Y ′ with row totals X + X ′ = M , Y + Y ′ = N , and column totals X +
Y = T , X ′ + Y ′ = T ′, and with total sample size M + N = T + T ′ = s. Here it is
easy to check that (M, N ) is S-ancillary for θ = (θ1, θ2) = (pAB/pB, pAB̃/pB̃)with
ϑ = pB . Since the cross-product ratio � can be expressed as a function of (θ1, θ2),
it may be appropriate to condition a test of H : � = �0 on (M, N ). Exactly analo-
gously one finds that (T, T ′) is S-ancillary for θ′ = (θ′

1, θ
′
2) = (pAB/pA, pÃB/pÃ),
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and since � is also a function of (θ′
1, θ

′
2), it may be equally appropriate to con-

dition a test of H on (T, T ′). One might hope that the set of all four marginals
(M, N , T, T ′) = Z would be S-ancillary for�. However, it is seen from the preced-
ing example that this is not the case.

Here, all unbiased tests have a constant conditional level given z. However, S-
ancillarity permits conditioning on only one set of margins (without giving any
guidance as to which of the two to choose), not on both.

Despite such difficulties, the principle of carrying out tests and confidence esti-
mation conditionally on ancillaries or S-ancillaries frequently provides an attractive
alternative to the corresponding unconditional procedures, primarily because it is
more appropriate for the situation at hand. However, insistence on such conditioning
leads to another difficulty, which is illustrated by the following example.

Example 10.2.5 Consider N populations
∏

i , and suppose that an observation Xi

from
∏

i has a normal distribution N (ξi , 1). The hypothesis to be tested is H : ξ1 =
· · · = ξN . Unfortunately, N is so large that it is not practicable to take an observation
from each of the populations; the total sample size is restricted to be n < N . A
sample

∏
J1
, . . . ,

∏
Jn
of n of the N populations is therefore selected at random, with

probability 1/
(N
n

)
for each set of n, and an observation X ji is obtained from each of

the populations
∏

ji
, in the sample.

Here the variables J1, . . . , Jn are ancillary, and the requirement of conditioning
on ancillaries would restrict any inference to the n populations from which obser-
vations are taken. Systematic adherence to this requirement would therefore make
it impossible to test the original hypothesis H .5 Of course, rejection of the partial
hypothesis Hj1,..., jn : ξ j1 = · · · = ξ jn would imply rejection of the original H . How-
ever, acceptance of Hj1,..., jn would permit no inference concerning H .

The requirement to condition in this case runs counter to the belief that a sample
may permit inferences concerning the whole set of populations, which underlies
much of statistical practice.

With an unconditional approach such an inference is provided by the test with
rejection region

∑
[

X ji −
(
1

n

n∑

k=1

X jk

)]2

≥ c,

where c is the upper α-percentage point of χ2 with n − 1 degrees of freedom. Not
only does this test actually have unconditional level α, but its conditional level given
J1 = j1, . . . , Jn = jn also equals α for all ( j1, . . . , jn). There is in fact no difference
in the present case between the conditional and the unconditional tests: they will
accept or reject for the same sample points. However, as has been pointed out, there
is a crucial difference between the conditional and unconditional interpretations of
the results.

5 For other implications of this requirement, called the weak conditionality principle, see Birnbaum
(1962) and Berger and Wolpert (1988).
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If β j1,..., jn (ξ j1 , . . . , ξ jn ) denotes the conditional power of this test given J1 =
j1, . . . , Jn = jn , its unconditional power is

∑
β j1,..., jn (ξ j1 , . . . , ξ jn )(N

n

)

summed over all
(N
n

)
n-tuples j1 < . . . < jn . As in the case with any test, the condi-

tional power given an ancillary (in the present case J1, . . . , Jn) can be viewed as an
unbiased estimate of the unconditional power.

10.3 Optimal Conditional Tests

Although conditional tests are often sensible and are beginning to be employed
in practice [see for example Lawless (1972, 1973, 1978) and Kappenman (1975)],
not much theory has been developed for the resulting conditional models. Since
the conditional model tends to be simpler than the original unconditional one, the
conditional point of view will frequently bring about a simplification of the theory.
This possibility will be illustrated in the present section on some simple examples.

Example 10.3.1 Specializing the examplediscussed at the beginningofSection10.1,
suppose that a random variable is distributed according to N (θ,σ2

1) or N (θ,σ2
0) as

I = 1 or 0, and that P(I = 1) = P(I = 0) = 1
2 . Then the most powerful test of

H : θ = θ0 against θ = θ1(> θ0) based on (I, X) rejects when

x − 1
2 (θ0 + θ1)

2σ2
i

≥ k.

A UMP test against the alternatives θ > θ0 therefore does not exist. On the other
hand, if H is tested conditionally given I = i , a UMP conditional test exists and
rejects when X > ci where P(X > ci | I = i) = α for i = 0, 1.

The nonexistence of UMP unconditional tests found in this example is typical for
mixtures with known probabilities of two or more families with monotone likelihood
ratio, despite the existence of UMP conditional tests in these cases.

Example 10.3.2 Let X1, . . . , Xn be a sample from a normal distribution N (ξ, a2ξ2),
ξ > 0, with known coefficient of variation a > 0, and consider the problem of testing

H : ξ = ξ0 against K : ξ > ξ0. Here T = (T1, T2)with T1 = X̄ , T2 =
√

(1/n)
∑

X2
i

is sufficient, and Z = T1/T2 is ancillary. If we let V = √
nT2/a, the conditional

density of V given Z = z is equal to (Problem 10.18)

pξ(v | z) = k

ξn
vn−1 exp

{

−1

2

[
v

ξ
− z

√
n

a

]2
}

. (10.16)
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The density has monotone likelihood ratio, so that the rejection region V > C(z)
constitutes a UMP conditional test.

Unconditionally, Y = X̄ and S2 = ∑
(Xi − X̄)2 are independent with joint den-

sity

cs(n−3)/2 exp

(
− n

2a2ξ2
(y − ξ)2 − 1

2a2ξ2
s2

)
, (10.17)

and a UMP test does not exist. [For further discussion of this example, see Hinkley
(1977).]

An important class of examples is obtained from situations in which the model
remains invariant under a group of transformations that is transitive over the param-
eter space, that is, when the given class of distributions constitutes a group family.
Themaximal invariant V then provides a natural ancillary on which to condition, and
an optimal conditional test may exist even when such a test does not exist uncondi-
tionally. Perhaps the simplest class of examples of this kind are provided by location
families under the conditions of the following lemma.

Lemma 10.3.1 Let X1, . . . , Xn be independently distributed according to f (xi −
θ), with f strongly unimodal. Then the family of conditional densities of Yn = Xn

given Yi = Xi − Xn (i = 1, . . . , n − 1) has monotone likelihood ratio.

Proof. The conditional density (10.11) is proportional to

f (yn + y1 − θ) · · · f (yn + yn−1 − θ) f (yn − θ). (10.18)

By taking logarithms and using the fact that each factor is strongly unimodal, it is
seen that the product is also strongly unimodal, and the result follows from Exam-
ple 8.2.1.

Lemma 10.3.1 shows that for strongly unimodal f there exists a UMP conditional
test of H : θ ≤ θ0 against K : θ > θ0 which rejects when

Xn > c(X1 − Xn, . . . , Xn−1 − Xn). (10.19)

Conditioning has reduced the model to a location family with sample size one. The
double exponential and logistic distributions are both strongly unimodal (Section
9.2), and thus provide examples of UMP conditional tests. In neither case does there
exist a UMP unconditional test unless n = 1.

As a last class of examples, we shall consider a situation with a nuisance param-
eter. Let X1, . . . , Xm and Y1, . . . ,Yn be independent samples from location families
with densities f (x1 − ξ, . . . , xm − ξ) and g(y1 − η, . . . , yn − η) respectively, and
consider the problem of testing H : η ≤ ξ against K : η > ξ. Here the differences
Ui = Xi − Xm and Vj = Y j − Yn are ancillary. The conditional density of X = Xm

and Y = Yn given the u’s and v’s is seen from (10.18) to be of the form
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f ∗
u (x − ξ)g∗

v (y − η), (10.20)

where the subscripts u and v indicate that f ∗ and g∗ depend on the u’s and v’s
respectively. The problem of testing H in the conditional model remains invariant
under the transformations: x ′ = x + c, y′ = y + c, for which Y − X is maximal
invariant. A UMP invariant conditional test will then exist provided the distribution
of Z = Y − X , which depends only on � = η − ξ, has monotone likelihood ratio.
The following lemma shows that a sufficient condition for this to be the case is that
f ∗
u and g∗

v have monotone likelihood ratio in x and y respectively.

Lemma 10.3.2 Let X, Y be independently distributed with densities f ∗(x − ξ),
g∗(y − η) respectively. If f ∗ and g∗ have monotone likelihood with respect to ξ and
η, then the family of densities of Z = Y − X has monotone likelihood ratio with
respect to � = η − ξ.

Proof. The density of Z is

h�(z) =
∫

g∗(y − �) f ∗(y − z) dy. (10.21)

To see that h�(z) has monotone likelihood ratio, one must show that for any� < �′,
h�′(z)/h�(z) is an increasing function of z. For this purpose, write

h�′(z)

h�(z)
=

∫
g∗(y − �′)
g∗(y − �)

· g∗(y − �) f ∗(y − z)
∫
g∗(u − �) f (u − z) du

dy.

The second factor is a probability density for Y ,

pz(y) = Czg
∗(y − �) f ∗(y − z), (10.22)

which has monotone likelihood ratio in the parameter z by the assumption made
about f ∗. The ratio

h�′(z)

h�(z)
=

∫
g∗(y − �′)
g∗(y − �)

pz(y) dy (10.23)

is the expectation of g∗(Y − �′)/g∗(Y − �) under the distribution pz(y). By the
assumption about g∗, g∗(y − �′)/g∗(y − �) is an increasing function of y, and it
follows from Lemma 3.4.2 that its expectation is an increasing function of z.

It follows from (10.18) that f ∗
u (x − ξ) and g∗

v (y − η) have monotone likelihood
ratio provided this condition holds for f (x − ξ) and g(y − η), i.e., provided f and
g are strongly unimodal. Under this assumption, the conditional distribution h�(z)
then has monotone likelihood ratio by Lemma 10.3.2, and a UMP conditional test
exists and rejects for large values of Z . (This result also follows from Problem 8.12.)

The difference between conditional tests of the kind considered in this section
and the corresponding (e.g., locally most powerful) unconditional tests typically
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disappears as the sample size(s) tend(s) to infinity. Some results in this direction are
given by Liang (1984); see also Barndorff-Nielsen (1983).

The following multivariate example provides one more illustration of a UMP
conditional test when unconditionally no UMP test exists. The results will only
be sketched. The details of this and related problems can be found in the original
literature reviewed by Marden and Perlman (1980) and Marden (1983).

Example 10.3.3 Suppose you observem + 1 independent normal vectors of dimen-
sion p = p1 + p2,

Y = (Y1 Y2) and Z1, . . . , Zm,

with common covariance matrix � and expectations

E(Y1) = η1, E(Y2) = E(Z1) = · · · = E(Zm) = 0.

(The normal multivariate two-sample problem with covariates can be reduced to this
canonical form.) The hypothesis being tested is H : η1 = 0. Without the restriction
E(Y2) = 0, the model would remain invariant under the group G of transformations:
Y ∗ = Y B, Z∗ = Z B, where B is any nonsingular p × pmatrix. However, the stated
problem remains invariant only under the subgroup G ′ in which B is of the form
(Problem 10.22(i))

B =
(
B11 0
B21 B22

)
p1

p2
.

p1 p2

If

Z ′Z = S =
(
S11 S12
S21 S22

)
and � =

(
�11 �12

�21 �22

)
,

the maximal invariants under G ′ are the two statistics D = Y2S
−1
22 Y

′
2 and

N = (Y1 − S12S
−1
22 Y2)(S11 − S12S

−1
22 S21)

−1(Y1 − S12S
−1
22 Y2)

′

1 + D
,

and the joint distribution of (N , D) depends only on the maximal invariant under G ′,

� = η1(�11 − �12�
−1
22 �21)

−1η′
1.

The statistic D is ancillary (Problem 10.22(ii)), and the conditional distribution
of N given D = d is that of the ratio of two independent χ2-variables: the numerator
noncentral χ2 with p degrees of freedom and noncentrality parameter �/(1 + d),
and the denominator central χ2 with m + 1 − p degrees of freedom. It follows from
Section 7.1 that the conditional density has monotone likelihood ratio. A condition-
ally UMP invariant test therefore exists, and rejects H when (m + 1 − p)N/p > C ,
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where C is the critical value of the F-distribution with p and m + 1 − p degrees
of freedom. On the other hand, a UMP invariant (unconditional) test does not exist;
comparisons of the optimal conditional test with various competitors are provided
by Marden and Perlman (1980).

10.4 Relevant Subsets

The conditioning variables considered so far have been ancillary statistics, i.e., ran-
dom variables whose distribution is fixed, independent of the parameters governing
the distribution of X , or at least of the parameter of interest. We shall now examine
briefly some implications of conditioning without this constraint. Throughout most
of the section we shall be concerned with the simple case in which the conditioning
variable is the indicator of some subset C of the sample space, so that there are only
two conditioning events I = 1 (i.e., X ∈ C) and I = 0 (i.e., X ∈ Cc, the comple-
ment of C). The mixture problem at the beginning of Section10.1, with X1 = C and
X0 = Cc, is of this type.

Suppose X is distributed with density pθ, and R is a level-α rejection region for
testing the simple hypothesis H : θ = θ0 against some class of alternatives. For any
subset C of the sample space, consider the conditional rejection probabilities

αC = Pθ0(X ∈ R | C) and αCc = Pθ0(X ∈ R | Cc), (10.24)

and suppose that αC > α and αCc < α. Then we are in the difficulty described in
Section10.1. Before X was observed, the probability of falsely rejecting H was
stated to be α. Now that X is known to have fallen into C (or Cc), should the original
statement be adjusted and the higher value αC (or lower value αCc ) be quoted? An
extreme case of this possibility occurs when C is a subset of R or Rc, since then
P(X ∈ R | X ∈ C) = 1 or 0.

It is clearly always possible to choose C so that the conditional level αC exceeds
the stated α. It is not so clear whether the corresponding possibility always exists for
the levels of a family of confidence sets for θ, since the inequality must now hold for
all θ.

Definition 10.4.1 A subset C of the sample space is said to be a negatively biased
relevant subset for a family of confidence sets S(X) with unconditional confidence
level γ = 1 − α if for some ε > 0

γC(θ) = Pθ[θ ∈ S(X) | X ∈ C] ≤ γ − ε for all θ, (10.25)

and a positively biased relevant subset if

P0[θ ∈ S(X) | X ∈ C] ≥ γ + ε for all θ. (10.26)
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The set C is semirelevant, negatively or positively biased, if respectively

Pθ[θ ∈ S(X) | X ∈ C] ≤ γ for all θ (10.27)

or
Pθ[θ ∈ S(X) | X ∈ C] ≥ γ for all θ, (10.28)

with strict inequality holding for at least some θ.

Obvious examples of relevant subsets are provided by the subsets X0 and X1 of
the two-experiment example of Section10.1.

Relevant subsets do not always exist. The following four examples illustrate the
various possibilities.

Example 10.4.1 Let X be distributed as N (θ, 1), and consider the standard confi-
dence intervals for θ:

S(X) = {θ : X − c < θ < X + c},

where �(c) − �(−c) = γ. In this case, there exists not even a semirelevant subset.
To see this, suppose first that a positively biased semirelevant subset C exists, so

that
A(θ) = Pθ[X − c < θ < X + c and X ∈ C] − γPθ[X ∈ C] ≥ 0

for all θ, with strict inequality for some θ0. Consider a prior normal density λ(θ) for
θ with mean 0 and variance τ 2, and let

β(x) = P[x − c < � < x + c | x],

where � has density λ(θ). The posterior distribution of � given x is then normal
withmean τ 2x/(1 + τ 2) and variance τ 2/(1 + τ 2) (Problem 10.24(i)), and it follows
that

β(x) = �

[
x

τ
√
1 + τ 2

+ c
√
1 + τ 2

τ

]

− �

[
x

τ
√
1 + τ 2

− c
√
1 + τ 2

τ

]

≤ �

[
c
√
1 + τ 2

τ

]

− �

[
−c

√
1 + τ 2

τ

]

≤ γ + c√
2πτ 2

.

Next let h(θ) = √
2πτλ(θ) = e−θ2/2τ 2

and

D =
∫

h(θ)A(θ) dθ ≤ √
2πτ

∫
λ(θ){Pθ[X − c < θ < X + c and X ∈ C]

−Eθ[β(X)IC(X)]} dθ + c

τ
.
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The integral on the right side is the difference of two integrals each of which equals
P[X − c < � < X + c and X ∈ C], and is therefore 0, so that D ≤ c/τ .

Consider now a sequence of normal priorsλm(θ)with variances τ 2
m → ∞, and the

corresponding sequences hm(θ) and Dm . Then 0 ≤ Dm ≤ c/τm and hence Dm → 0.
On the other hand, Dm is of the form Dm = ∫ ∞

−∞ A(θ)hm(θ) dθ, where A(θ) is
continuous, nonnegative, and > 0 for some θ0. There exists δ > 0 such that A(θ) ≤
1
2 A(θ0) for |θ − θ0| < δ and hence

Dm ≥
∫ θ0+δ

θ0−δ

1

2
A(θ0)hm(θ) dθ → δA(θ0) > 0 as m → ∞.

This provides the desired contradiction.

That also no negatively semirelevant subsets exist is a consequence of the follow-
ing result.

Theorem 10.4.1 Let S(x) be a family of confidence sets for θ such that Pθ[θ ∈
S(X)] = γ for all θ, and suppose that 0 < Pθ(C) < 1 for all θ.

(i) If C is semirelevant, then its complement Cc is semirelevant with opposite
bias.

(ii) If there exists a constant a such that

1 > Pθ(C) > a > 0 for all θ

and C is relevant, then Cc is relevant with opposite bias.
Proof. The result is an immediate consequence of the identity

Pθ(C)[γC(θ) − γ] = [1 − Pθ(C)][γ − γCc(θ)].

The next example illustrates the situation in which a semirelevant subset exists
but no relevant one.

Example 10.4.2 Let X be N (θ, 1), and consider the uniformly most accurate lower
confidence bounds θ = X − c for θ, where �(c) = γ. Here S(X) is the interval
[X − c,∞) and it seems plausible that the conditional probability of θ ∈ S(X) will
be lowered for a set C of the form X ≥ k. In fact

Pθ(X − c ≤ θ | X ≥ k) =
{

�(c)−�(k−θ)
1−�(k−θ)

when θ > k − c,
0 when θ < k − c.

(10.29)

The probability (10.29) is always < γ, and tends to γ as θ → ∞. The set X ≥ k is
therefore semirelevant negatively biased for the confidence sets S(X).

We shall now show that no relevant subset C with Pθ(C) > 0 exists in this case.
It is enough to prove the result for negatively biased sets; the proof for positive bias
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is exactly analogous. Let A be the set of x-values −∞ < x < c + θ, and suppose
that C is negatively biased and relevant, so that

Pθ[X ∈ A | C] ≤ γ − ε for all θ.

If
a(θ) = Pθ(X ∈ C), b(θ) = Pθ(X ∈ A ∩ C),

then
b(θ) ≤ (y − ε) a(θ) for all θ. (10.30)

The result is proved by comparing the integrated coverage probabilities

A(R) =
∫ R

−R
a(θ) dθ, B(R) =

∫ R

−R
b(θ) dθ

with the Lebesgue measure of the intersection C ∩ (−R, R),

μ(R) =
∫ R

−R
IC(x) dx,

where IC(x) is the indicator of C , and showing that

A(R)

μ(R)
→ 1,

B(R)

μ(R)
→ γ as R → ∞. (10.31)

This contradicts the fact that by (10.30),

B(R) ≤ (γ − ε)A(R) for all R,

and so proves the desired result.
To prove (10.31), suppose first that μ(∞) < ∞. Then if φ is the standard normal

density

A(∞) =
∫ ∞

−∞
dθ

∫

C
φ(x − θ) dx =

∫

C
dx = μ(∞),

and analogously B(∞) = γμ(∞), which establishes (10.31).
When μ(∞) = ∞, (10.31) will be proved by showing that

A(R) = μ(R) + K1(R), B(R) = γμ(R) + K2(R), (10.32)

where K1(R) and K2(R) are bounded. To see (10.32), note that
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μ(R) =
∫ R

−R
IC(x) dx =

∫ R

−R
IC(x)

[∫ ∞

−∞
φ(x − θ) dθ

]
dx

=
∫ ∞

−∞

[∫ R

−R
IC(x)φ(x − θ) dx

]
dθ,

while

A(R) =
∫ R

−R

[∫ ∞

−∞
IC(x)φ(x − θ) dx

]
dθ. (10.33)

A comparison of each of these double integrals with that over the region −R < x <

R,−R < θ < R, shows that the difference A(R) − μ(R) ismade up of four integrals,
each of which can be seen to be bounded by using the fact that

∫ |t |φ(t) dt < ∞
(Problem 10.24(ii)). This completes the proof.

Example 10.4.3 Let X1, . . . , Xn be independently normally distributed as N (ξ,σ2),
and consider the uniformly most accurate equivariant (and unbiased) confidence
intervals for ξ given by (5.36).

It was shown by Buehler and Feddersen (1963) and Brown (1967) that in this case
there exist positively biased relevant subsets of the form

C : |X̄ |
S

≤ k. (10.34)

In particular, for confidence level γ = .5 and n = 2, Brown shows that with C :
|X̄ |/|X2 − X1| ≤ 1

2 (1 + √
2), the conditional level is > 2

3 for all values of ξ and σ.
Goutis and Casella (1992) provide detailed values for general n.

It follows from Theorem 10.4.1 that Cc is negatively biased semirelevant, and
Buehler (1959) shows that any set C∗ : S ≤ k has the same property. These results
are intuitively plausible, since the length of the confidence intervals is proportional
to S, and one would expect short intervals to cover the true value less often than long
ones.

Theorem 10.4.1 does not show that Cc is negatively biased relevant, since the
probability of the set (10.34) tends to zero as ξ/σ → ∞. It was in fact proved by
Robinson (1976) that no negatively biased relevant subset exists in this case.

The calculations for Cc throw some light on the common practice of stating
confidence intervals for ξ only when a preliminary test of H : ξ = 0 rejects the
hypothesis. For a discussion of this practice see Olshen (1973), and Meeks and
D’Agostino (1983).

The only type of example still missing is that of a negatively biased relevant
subset. It was pointed out by Fisher (1956a, 1956b,1959,1973) that theWelch–Aspin
solution of the Behrens–Fisher problem (discussed in Sections 6.6 and 13.2) provides
an illustration of this possibility. The following are much simpler examples of both
negatively and positively biased relevant subsets.
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Example 10.4.4 An extreme form of both positively and negatively biased subsets
was encountered in Section 7.7, where lower and upper confidence bounds � < �

and � < �̄ were obtained in (7.42) and (7.43) for the ratio � = σ2
A/σ

2 in a model
II one-way classification. Since

P(� ≤ � | � < 0) = 1 and P(� ≤ �̄ | �̄ < 0) = 0,

the sets C1 : � < 0 and C2 : �̄ < 0 are relevant subsets with positive and negative
bias respectively.

The existence of conditioning sets C for which the conditional coverage proba-
bility of level-γ confidence sets is 0 or 1, such as in Example 10.4.4 or Problems
10.27, 10.28 are an embarrassment to confidence theory, but fortunately they are rare.
The significance of more general relevant subsets is less clear,6 particularly when a
number of such subsets are available. Especially awkward in this connection is the
possibility [discussed by Buehler (1959)] of the existence of two relevant subsets C
and C ′ with nonempty intersection and opposite bias.

If a conditional confidence level is to be cited for some relevant subsetC , it seems
appropriate to take account also of the possibility that X may fall into Cc and to
state in advance the three confidence coefficients γ, γC , and γCc . The (unknown)
probabilities Pθ(C) and Pθ(Cc) should also be considered. These points have been
stressed by Kiefer, who has also suggested the extension to a partition of the sample
space into more than two sets. For an account of these ideas, see Kiefer (1977a,
1977b), Brownie and Kiefer (1977), and Brown (1978).

Kiefer’s theory does not consider the choice of conditioning set or statistic. The
same question arose in Section10.2 with respect to conditioning on ancillaries. The
problem is similar to that of the choice of model. The answer depends on the context
and purpose of the analysis, and must be determined from case to case.

10.5 Problems

Section10.1

Problem 10.1 Let the experiments of E and F consist in observing X : N (ξ,σ2
0)

and X : N (ξ,σ2
1) respectively (σ0 < σ1), and let one of the two experiments be

performed,with P(E) = P(F) = 1
2 . For testing H : ξ = 0 against ξ = ξ1, determine

values σ0, σ1, ξ1, and α such that

(i) α0 < α1; (ii) α0 > α1,

where the αi are defined by (10.9).

6 For a discussion of this issue, see Buehler (1959), Robinson (1976, 1979a), and Bondar (1977).



512 10 Conditional Inference

Problem 10.2 Under the assumptions of Problem 10.1, determine the most accurate
invariant (under the transformation X ′ = −X ) confidence sets S(X) with

P(ξ ∈ S(X) | E) + P(ξ ∈ S(X) | F) = 2γ.

Find examples in which the conditional confidence coefficients γ0 given E and γ1
given F satisfy

(i) γ0 < γ1; (ii) γ0 > γ1.

Problem 10.3 The test given by (10.3), (10.8), and (10.9) is most powerful under
the stated assumptions.

Problem 10.4 Let X1, . . . , Xn be independently distributed, each with probability
p or q as N (ξ,σ2

0) or N (ξ,σ2
1).

(i) If p is unknown, determine the UMP unbiased test of H : ξ = 0 against K :
ξ > 0.

(ii) Determine the most powerful test of H against the alternative ξ1 when it is
known that p = 1

2 , and show that a UMP unbiased test does not exist in this
case.

(iii) Let αk (k = 0, . . . , n) be the conditional level of the unconditional most pow-
erful test of part (ii) given that k of the X ’s came from N (ξ,σ2

0) and n − k from
N (ξ,σ2

1). Investigate the possible values α0,α1, . . . ,αn .

Problem 10.5 With known probabilities p and q perform either E or F , with X
distributed as N (θ, 1) under E or N (−θ, 1) under F . For testing H : θ = 0 against
θ > 0 there exist a UMP unconditional and a UMP conditional level-α test. These
coincide and do not depend on the value of p.

Problem 10.6 In the preceding problem, suppose that the densities of X under E
and F are θe−θx and (1/θ)e−x/θ respectively. Compare the UMP conditional and
unconditional tests of H : θ = 1 against K : θ > 1.

Section10.2

Problem 10.7 Let X , Y be independently normally distributed as N (θ, 1), and let
V = Y − X and

W =
{
Y − X if X + Y > 0,
X − Y if X + Y ≤ 0.

(i) Both V and W are ancillary, but neither is a function of the other.
(ii) (V,W ) is not ancillary. [Basu (1959).]

Problem 10.8 An experiment with n observations X1, . . . , Xn is planned, with each
Xi distributed as N (θ, 1). However, some of the observations do not materialize (for
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example, some of the subjects die, move away, or turn out to be unsuitable). Let
I j = 1 or 0 as X j is observed or not, and suppose the I j are independent of the X ’s
and of each other and that P(I j = 1) = p for all j .

(i) If p is known, the effective sample size M = ∑
I j is ancillary.

(ii) If p is unknown, there exists a UMP unbiased level-α test of H : θ ≤ 0 versus
K : θ > 0. Its conditional level (given M = m) is αm = α for all m = 0, . . . , n.

Problem 10.9 Consider n tosses with a biased die, for which the probabilities of
1, . . . , 6 points are given by

1 2 3 4 5 6

1−θ
12

2−θ
12

3−θ
12

1+θ
12

2+θ
12

3+θ
12

and let Xi be the number of tosses showing i points.

(i) Show that the triple Z1 = X1 + X5, Z2 = X2 + X4, Z3 = X3 + X6 is amaximal
ancillary; determine its distribution and the distribution of X1, . . . , X6 given
Z1 = z1, Z2 = z2, Z3 = z3.

(ii) Exhibit five other maximal ancillaries. [Basu (1964).]

Problem 10.10 In the preceding problem, suppose the probabilities are given by

1 2 3 4 5 6

1−θ
6

1−2θ
6

1−3θ
6

1+θ
6

1+2θ
6

1+3θ
6

Exhibit two different maximal ancillaries.

Problem 10.11 Let X be uniformly distributed on (θ, θ + 1), 0 < θ < ∞, let [X ]
denote the largest integer ≤ X , and let V = X − [X ].
(i) The statistic V (X) is uniformly distributed on (0, 1) and is therefore ancillary.
(ii) The marginal distribution of [X ] is given by

[X ] =
{ [θ] with probability 1 − V (θ),

[θ] + 1 with probability V (θ).

(iii) Conditionally, given that V = v, [X ] assigns probability 1 to the value [θ] if
V (θ) ≤ v and to the value [θ] + 1 if V (θ) > v. [Basu (1964).]

Problem 10.12 Let X , Y have joint density

p(x, y) = 2 f (x) f (y)F(θxy),

where f is a known probability density symmetric about 0, and F its cumulative
distribution function. Then
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(i) p(x, y) is a probability density.
(ii) X and Y each have marginal density f and are therefore ancillary, but (X,Y )

is not.
(iii) X · Y is a sufficient statistic for θ. [Dawid (1977).]

Problem 10.13 A sample of size n is drawn with replacement from a population
consisting of N distinct unknown values {a1, . . . , aN }. The number of distinct values
in the sample is ancillary.

Problem 10.14 Assuming the distribution (4.22) of Section 4.9, show that Z is
S-ancillary for p = p+/(p+ + p−).

Problem 10.15 In the situation of Example 10.2.3, X + Y is binomial if and only
if � = 1.

Problem 10.16 In the situation of Example 10.2.2, the statistic Z remains S-
ancillary when the parameter space is � = {(λ,μ) : μ ≤ λ}.
Problem 10.17 Suppose X = (U, Z), the density of X factors into

pθ,ϑ(x) = c(θ,ϑ)gθ(u; z)hϑ(z)k(u, z),

and the parameters θ, ϑ are unrelated. To see that these assumptions are not enough
to insure that Z is S-ancillary for θ, consider the joint density

C(θ,ϑ)e− 1
2 (u−θ)2− 1

2 (z−ϑ)2 I (u, z),

where I (u, z) is the indicator of the set {(u, z) : u ≤ z}. [Basu (1978).]

Section10.3

Problem 10.18 Verify the density (10.16) of Example 10.3.2.

Problem 10.19 Let the real-valued function f be defined on an open interval.

(i) If f is logconvex, it is convex.
(ii) If f is strongly unimodal, it is unimodal.

Problem 10.20 Let X1, . . . , Xm and Y1, . . . ,Yn be positive, independent random
variables distributed with densities f (x/σ) and g(y/τ ), respectively. If f and g have
monotone likelihood ratios in (x,σ) and (y, τ ), respectively, there exists a UMP
conditional test of H : τ/σ ≤ �0 against τ/σ > �0 given the ancillary statistics
Ui = Xi/Xm and Vj = Y j/Yn (i = 1, . . . ,m − 1; j = 1, . . . , n − 1).

Problem 10.21 Let V1, . . . , Vn be independently distributed as N (0, 1), and given
V1 = v1, . . . ,

Vn = vn , let Xi (i = 1, . . . , n) be independently distributed as N (θvi , 1).
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(i) There does not exist a UMP test of H : θ = 0 against K : θ > 0.
(ii) There does exist a UMP conditional test of H against K given the ancillary

(V1, . . . , Vn). [Buehler (1982).]

Problem 10.22 In Example 10.3.3,

(i) the problem remains invariant under G ′ but not under G;
(ii) the statistic D is ancillary.

Section 10.4

Problem 10.23 In Example 10.4.1, check directly that the set C = {x : x ≤
−k or x ≥ k} is not a negatively biased semirelevant subset for the confidence inter-
vals (X − c, X + c).

Problem 10.24 (i) Verify the posterior distribution of � given x claimed in
Example 10.4.1.

(ii) Complete the proof of (10.32).

Problem 10.25 Let X be a random variable with cumulative distribution function
F . If E |X | < ∞, then

∫ 0
−∞ F(x) dx and

∫ ∞
0 [1 − F(x)] dx are both finite. [Apply

integration by parts to the two integrals.]

Problem 10.26 Let X have probability density f (x − θ), and suppose that E |X | <

∞. For the confidence intervals X − c < θ there exist semirelevant but no relevant
subsets. [Buehler (1959).]

Problem 10.27 Let X1, . . . , Xn be independently distributed according to the uni-
form distribution U (θ, θ + 1).

(i) Uniformly most accurate lower confidence bounds θ for θ at confidence level
1 − α exist and are given by

θ = max(X(1) − k, X(n) − 1),

where X(1) = min(X1, . . . , Xn), X(n) = max(X1, . . . , Xn), and (1 − k)n = α.
(ii) The set C : x(n) − x(1) ≥ 1 − k is a relevant subset with Pθ(θ ≤ θ | C) = 1 for

all θ.
(iii) Determine the uniformly most accurate conditional lower confidence bounds

θ(v) given the ancillary statistic V = X(n) − X(1) = v, and compare them with
θ. [The conditional distribution of Y = X(1) given V = v is U (θ, θ + 1 − v).]

[Pratt (1961a), Barnard (1976).]
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Problem 10.28 (i) Under the assumptions of the preceding problem, the uni-
formly most accurate unbiased (or invariant) confidence intervals for θ at con-
fidence level 1 − α are

θ = max(X(1) + d, X(n)) − 1 < θ < min(X(1), X(n) − d) = θ̄,

where d is the solution of the equation

2dn = α if α < 1/2n−1,

2dn − (2d − 1)n = α if α > 1/2n−1.

(ii) The sets C1 : X(n) − X(1) > d and C2 : X(n) − X(1) < 2d − 1 are relevant sub-
sets with coverage probability

Pθ[θ < θ < θ̄ | C1] = 1 and Pθ[θ < θ < θ̄ | C2] = 0.

(iii) Determine the uniformlymost accurate unbiased (or invariant) conditional con-
fidence intervals θ(v) < θ < θ̄(v) given V = v at confidence level 1 − α, and
compare θ(v), θ̄(v), and θ̄(v) − θ(v) with the corresponding unconditional
quantities.

[Welch (1939), Pratt (1961a), Kiefer (1977a).]

Problem 10.29 Suppose X1 and X2 are i.i.d. with

P{Xi = θ − 1} = P{Xi = θ + 1} = 1

2
.

Let C be the confidence set consisting of the single point (X1 + X2)/2 if X1 = X2

and X1 − 1 if X1 = X2. Show that, for all θ,

Pθ{θ ∈ C} = 0.75 ,

but
Pθ{θ ∈ C |X1 = X2} = 0.5

and
Pθ{θ ∈ C |X1 = X2} = 1 .

[Berger and Wolpert (1988)]

Problem 10.30 Instead of conditioning the confidence sets θ ∈ S(X) on a set C ,
consider a randomized procedurewhich assigns to each point x a probabilityψ(x) and
makes the confidence statement θ ∈ S(x)with probabilityψ(x)when x is observed.7

7 Randomized and nonrandomized conditioning is interpreted in terms of betting strategies by
Buehler (1959) and Pierce (1973).
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(i) The randomized procedure can be represented by a nonrandomized condition-
ing set for the observations (X,U ), where U is uniformly distributed on (0, 1)
and independent of X , by letting C = {(x, u) : u < ψ(x)}.

(ii) Extend the definition of relevant and semirelevant subsets to randomized con-
ditioning (without the use of U ).

(iii) Let θ ∈ S(X) be equivalent to the statement X ∈ A(θ). Show thatψ is positively
biased semirelevant if and only if the random variables ψ(X) and IA(θ)(X) are
positively correlated, where IA denotes the indicator of the set A.

Problem 10.31 The nonexistence of (i) semirelevant subsets in Example 10.4.1 and
(ii) relevant subsets in Example 10.4.2 extends to randomized conditioning proce-
dures.

10.6 Notes

Conditioning on ancillary statistics was introduced by Fisher (1934a, 1935b, 1936).8

The idea was emphasized in Fisher (1956b,1959,1973) and by Cox (1958), who
motivated it in terms of mixtures of experiments providing different amounts of
information. The consequences of adopting a general principle of conditioning in
mixture situations were explored by Birnbaum (1962) and Durbin (1970). Follow-
ing Fisher’s suggestion (1934), Pitman (1938b) developed a theory of conditional
tests and confidence intervals for location and scale parameters. For recent para-
dox concerning conditioning on an ancillary statistic, see Brown (1990) and Wang
(1999).

The possibility of relevant subsets was pointed out by Fisher (1956a,
1956b,1959,1973) (who called them recognizable). Its implications (in terms of bet-
ting procedures) were developed by Buehler (1959), who in particular introduced
the distinction between relevant and semirelevant, positively and negatively biased
subsets, and proved the nonexistence of relevant subsets in location models. The
role of relevant subsets in statistical inference, and their relationship to Bayes and
admissibility properties, was discussed by Pierce (1973), Robinson (1976, 1979a,
1979b), Bondar (1977), and Casella (1988), among others.

Fisher (1956a, 1956b,1959,1973) introduced the idea of relevant subsets in the
context of the Behrens–Fisher problem. As a criticism of the Welch–Aspin solution,
he established the existence of negatively biased relevant subsets for that procedure. It
was later shown by Robinson (1976) that no such subsets exist for Fisher’s preferred
solution, the so-called Behrens–Fisher intervals. This fact may be related to the
conjecture [supported by substantial numerical evidence in Robinson (1976) but
so far unproved] that the unconditional coverage probability of the Behrens–Fisher
intervals always exceeds the nominal level. For a review of these issues, see Wallace
(1980) and Robinson (1982).

8 Fisher’s contributions to this topic are discussed in Savage (1976, pp. 467–469).
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Maatta and Casella (1987) examine the conditional properties of some confidence
intervals for the variance in the one-sample normal problem. The conditional proper-
ties of some confidence sets for the multivariate normal mean, including confidence
sets centered at James-Stein or shrinkage estimators, see Casella (1987) and George
and Casella (1994). The conditional properties of the standard confidence sets in a
normal linear model are studied in Hwang and Brown (1991).

In testing a simple hypothesis against a simple alternative, Berger et al. (1994)
present a conditional frequentist methodology that agrees with a Bayesian approach.
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