
A General Pseudo-Random Number
Generator Based on Chaos

Jianwen Lv, Xiaodong Li, Tao Yang, Haoyang Yu, and Beisheng Liu

Abstract In view of the shortcomings and problems of the commonly used C
language pseudo-random number generation function, the existing C language
pseudo-random number generation function is improved, a general pseudo-random
number generator based on chaos is proposed, and multiple types of random number
acquisition interface are introduced.While improving the randomness of the original
C language pseudo-random number function, the procedure of improvement also
enhances its versatility and can better meet the needs of different types of random
numbers. The test results of the pseudo-random number generator show that the
random number generated by it has good randomness, and the function call is
convenient and flexible.

Keywords Chaos · Pseudo-random number generator · Random sequence
retrieval · Universality

1 Introduction

Pseudo-random number generator (PRNG) is widely used in various fields such as
system simulation and security [1]. Based on a reliable and efficient pseudo-random
number generator, the system’s operation, evolution, and development process are
truly described in the system simulation. In the field of information security based on
cryptography, pseudo-random number generators also play an important role. Key
generation, digital signatures, authentication and identification, and various secure
communication protocols are inseparable from high-quality random numbers. In a

J. Lv · X. Li (�) · H. Yu · B. Liu
Beijing Electronic Science and Technology Institute, Beijing, China

T. Yang (�)
The Third Research Institute of Ministry of Public Security, Shanghai, China
e-mail: yangtao@stars.org.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Mu et al. (eds.), 4th EAI International Conference on Robotic Sensor Networks,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-70451-3_9

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70451-3_9&domain=pdf
mailto:yangtao@stars.org.cn
https://doi.org/10.1007/978-3-030-70451-3_9


104 J. Lv et al.

sense, the security of random numbers determines the security of the entire security
system [2].

There are four commonly used pseudo-random number generation functions
in the C language standard library <stdlib.h> – rand function, srand function,
randomize function, and random function. But these functions have obvious defects
and poor ease of use. This chapter analyzes the existing pseudo-random number
generation function in C language, proposes a general pseudo-random number
generator scheme based on chaos, and designs a more general function interface.
Compared with the original random number generation algorithm in C language,
the pseudo-random number generator has enhanced anti-cracking ability and can
generate pseudo-random numbers of different lengths, different ranges, and differ-
ent types according to the needs of users. In addition, a key string is generated
after the pseudo-random sequence is generated, which can be used to retrieve the
lost pseudo-random number sequence under special circumstances. The test results
show that the method proposed in this chapter has good performance in terms of
randomness, key sensitivity, and compatibility.

2 Analysis of Commonly Used Pseudo-Random Number
Generating Functions

2.1 Rand Function

The principle of the rand function in generating a pseudo-random number is to read
a number as the seed parameter of the function. This parameter is determined after
the computer is turned on. The function performs initialization operations based on
the seed parameter and generates a pseudo-random sequence by iteration.

2.2 Srand Function

The principle of the srand function in generating pseudo-random numbers is the
same as the rand unction, however, to make up for the shortcoming that the rand
function generates the same pseudo-random sequence every time it is turned on, the
srand function provides the function of customizing seed parameters.

2.3 Randomize Function

The randomize function is a random number generator initialization function, which
is equivalent to a function that can modify the system seed parameters. Therefore,



A General Pseudo-Random Number Generator Based on Chaos 105

as long as the randomize function is called before the rand function to modify
the system seed parameters, it can also generate a non-repetitive pseudo-random
number sequence. However, the highest accuracy of the system time it obtains is
still seconds, which is also vulnerable to exhaustive cracking attacks.

2.4 Random Function

Although the random function is similar to the rand function in usage, it can
limit the pseudo-random number generation range by setting the value of formal
parameters [4]. This function limits the value of the pseudo-random sequence by
taking the remainder of the seed parameter iteration, but its shortcomings are also
very obvious, that is, the minimum value of the range of values cannot be limited
and the minimum value can only be 0.

3 One-Dimensional Logistic Map

Due to the ergodic, random, and initial value and parameter sensitivity character-
istics of chaotic maps, chaotic sequences generated using this property have good
cryptographic properties [3].

The one-dimensional logistic map is a very simple chaotic map from the
mathematical form. As early as the 1950s, many ecologists used this simple
difference equation to describe the change of population [5]. This system has
extremely complex dynamic behavior and is widely used in the field of secure
communications. Its mathematical expression is as follows:

f (x) = µx (1 − x) , x ∈ [0, 1] (1)

Among them, µ ∈ [0,4] is called logistic parameter. Research shows that when x
∈ [0,1], the logistic mapping function is in a chaotic state [6].

The chaotic system is extremely sensitive to the initial value, the difference
between the initial value is very small, and the difference between the values after
several iterations is extremely large. For example, when µ = 4 and the initial value
x(0) = 0.3, after 20 iterations, x(20) = 0.3794. When the initial values differ by
only 0.00001, that is, x(0) = 0.300001, x(20) = 0.0084, and after 20 iterations,
x(20) = 0.0084. The iteration result differs by 45 times. The results of the two
iterations are shown in Figs. 1 and 2. The extremely sensitive nature of the initial
value determines that the time series generated by the chaotic system is highly
unpredictable [7].



106 J. Lv et al.

Fig. 1 x iteration result with
initial value of 0.3

1

0.8

0.6

0.4

0.2

0
10 20

(h) r=4

30
n

x
(n

)

40 50

Fig. 2 x iteration result with
initial value of 0.300001

1

0.8

0.6

0.4

0.2

0 10 20 30
n

x
(n

)

40 50

Time parameter: 
sk

Hexadecimal 
parameter: mk

normalization XOR Iteration initial 
value: x

Normalized 
parameters: sk

Normalized 
parameter: mk

Iterate n 

Iteration initial 
value: x

Parameter: µ

Calculate 
and 

normalize

Generate 
sequence

Fig. 3 Algorithm workflow

4 Algorithm Design Principles

For the two initial parameters μ and x of the traditional one-dimensional logistic
mapping function, only when their values are within the specified interval, the
sequence generated by the logistic mapping function is non-periodic and non-
convergent. In addition, the generated sequence must converge to a certain value
[5] (Fig. 3).

This chapter proposes not to directly generate the entire pseudo-random number
sequence, but to generate a single pseudo-random number at a time through
grouping iterations, etc., to effectively improve the randomness of the generated
sequence. At the same time, the two parameters of this improved one-dimensional
logistic mapping function can be determined by multiple factors. This system uses
the results of four sets of parameter iterations as the coefficient µ of the system. The
initial value x of the chaotic sequence is determined by three parameters mk, sk, and
n, and they are defined as follows:

µ: This parameter is four sets of system parameters used for iteration, and its
range is (0 ≤ µ ≤ 4).

sk: The parameter sk is obtained by multiplying the system parameters year,
month, day, hour, minute, second, and microsecond in this scheme.



A General Pseudo-Random Number Generator Based on Chaos 107

mk: The parameter mk is a set of four fixed hexadecimal parameters. Each time,
one of the four sets of parameters is used to iterate in order to prevent the
problem of randomness caused by using only one parameter.

n: The parameter n represents the number of system pre-iterations before
generating chaotic sequences. By increasing the number of iterations, a more
random chaotic sequence can be generated.

5 General Pseudo-Random Generation Interface Design

A good pseudo-random number generator needs to take into account both random-
ness and versatility. Randomness can be tested with NIST and other related testing
software. At present, the randomness of most pseudo-random number generators
can pass the test, but the versatility is not strong. In order to improve the versatility,
this chapter proposes a set of pseudo-random number generator functions and
provides an external interface to facilitate other programs to call. The required
pseudo-random sequence can be obtained by entering the relevant parameters.

Different functions of the interface are implemented in different interface func-
tions. This chapter provides three basic types of random number generation inter-
faces, which can generate corresponding integer pseudo-random numbers, floating-
point pseudo-random numbers, and character pseudo-random sequences. The cor-
responding functions are: hdintrand function, hddoublerand function, hdcharrand
function.

6 Performance Test

Regarding the testing of random/pseudorandom sequences, the NIST (National
Institute of Standards and Technology) provides 16 detection indicators [8]. For
each binary sequence, each test indicator will give a P-value as the test result. If the
value is greater than a pre-set threshold α, it means that the randomness of the test
sequence is 1-α, or the sequence has passed the randomness test of the detection
index; otherwise, it means that the index has not passed test. In this paper, α is set
to 0.01, that is, if the sequence passes the test, the credibility of its randomness is
99%.

At the same time, 100 pseudo-random sequences were generated using the
algorithm and random module based on the work described in this chapter, and each
sequence has a length of 100,000 bits. These sequences are applied in randomness
tests, the P- value of each detection index is shown in Table 1. Based on randomness
test, the results generated by the pseudo-random number generator in this paper are
better than the random function test results overall. Based on the comprehensive
experimental results, it can be considered that the pseudo-random number generator



108 J. Lv et al.

Table 1 Randomness test results according to NIST indicators

Test item
P-value generated by
our algorithm

Random number
generated by random
module

(Frequency) 0.017912 0.920402
(Block frequency) (m = 128) 0.107293 0.038105
(CumulativeSums) – forward 0.242986 0.855781
(CumulativeSums) – reverse 0.186566 0.929658
(Runs) 0.689019 0.362766
(LongestRunofOnes) 0.392456 0.237054
(Rank) 0.105618 0.329090
(FFT) 0.186566 0.912193
NonOverlappingTemplate 0.392456 0.531696
(OverlappingTemplate) (m = 9) 0.141256 0.136782
(Universal) 0.689019 0.439164
(ApproximateEntropy) (m = 10) 0.311542 0.826978
(RandomExcursions) (x = +1) 0.275709 0.152625
(RandomExcursionsVariant) (x = −1) 0.162606 0.496248
(Serial) (m = 16) 0.141256 0.161351
(LinearComplexity) (M = 500) 0.179129 0.088454

proposed in this chapter can generate pseudo-random number sequences with good
cryptographic characteristics [8].

7 Conclusion

In this chapter, a C-language universal pseudo-random number generator based on
chaotic system is designed. The algorithm of this pseudo-random number generator
is described in detail, its versatility and security are introduced, and its chaotic
characteristics are analyzed. At the same time, this chapter analyzes some defects
of the existing pseudo-random number generation function in C language. The
comparison test results show that the random number generator design scheme given
in this chapter has good random performance and strong versatility. According to the
random sequence and other characteristics, the pseudo-random sequence generated
in this study is enough to meet the randomness requirements.

Acknowledgments This work was partially supported by the National Natural Science Founda-
tion of China (grant number 62072014), the Beijing Natural Science Foundation (grant number
L192040), the Open Project Program of State Key Laboratory of Virtual Reality Technology and
Systems, Beihang University (grant number VRLAB2019C03), and the Key Lab of Information
Network Security, Ministry of Public Security (grant number C18612).



A General Pseudo-Random Number Generator Based on Chaos 109

References

1. Liu, P.H., Lu, H.X., Gong, G.L., et al.: High-speed arbitrary distributed pseudo-random number
generator based on FPGA[J]. J. Appl. Sci. 30(3), 306–310 (2012) (in Chinese)

2. Su G.P.: Research on random sequence and application of wavelet analysis in information
security[D]. Graduate School of Chinese Academy of Sciences (Institute of Electronics), 2002
(in Chinese)

3. Zhang, X.F., Fan, J.L.: A new piecewise nonlinear chaotic map and its performance[J]. Acta
Phys. Sin. 59(04), 2298–2304 (2010) (in Chinese)

4. Li, K.J.: On the random number problem in C language[J]. J. Changchun Univ. 6, 64–68 (2008)
(in Chinese)

5. Zhu, Y.P.: Performance comparison research of various chaotic systems[J]. Microcomput. Appl.
35(12), 4–6 (2016) +9. (in Chinese)

6. Zhao, G., Tian, Y.L., Yin, S.: Progresses and perspectives of Chaotic Cipher algorithm[J]. J.
Beijing Inst. Electron. Technol. 24(04), 9–14 (2016) (in Chinese)

7. Sun, X.H., Lin, Q.H., He, Y.W.: Pseudorandom number generator based on combined chaotic
map[J]. Chin. J. Sci. Instrum. (S1), 805–807 (2006) (in Chinese)

8. Zhang, Y.Q., Li, S.B., Qu, S., Lv, K.L., Liu, C., Xu, X.R.: NIST randomness test method and
application[J]. Comput. Knowl. Technol. 10(26), 6064–6066 (2014)


	A General Pseudo-Random Number Generator Based on Chaos
	1 Introduction
	2 Analysis of Commonly Used Pseudo-Random Number Generating Functions
	2.1 Rand Function
	2.2 Srand Function
	2.3 Randomize Function
	2.4 Random Function

	3 One-Dimensional Logistic Map
	4 Algorithm Design Principles
	5 General Pseudo-Random Generation Interface Design
	6 Performance Test
	7 Conclusion
	References


