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Preface

Magnetic Materials pervade every aspect of our daily lives, being used in a wide
variety of important commercial and technological applications. These range from
mobility applications, as an integral part of the power train of personal mobility
devices (PMD), to anti-counterfeiting measures implemented in bank notes, passing
through the storage of information in multiple formats. The sustainability of
our energy-hungry way of life depends on the discovery and use of efficient
and environmentally friendly energy conversion devices. Many of these energy
conversion processes rely on magnetic materials and their improvement would have
a significant influence on society. From a materials perspective, permanent magnetic
materials are used in electrical motors, hybrid vehicles, etc. Soft magnetic materials
are used for high frequency power electronics, power conditioning, and grid
integration systems. Magnetic thin films and multilayers are used in high density
recording media. Magneto-caloric effect materials have application in magnetic
refrigeration systems. Nanomagnetic materials have applications in spintronics,
medical diagnostics, and targeted drug delivery.

The discovery of new materials for any specific application goes through
different stages that involve formulation, synthesis, and characterization. And while
characterization techniques in quality control laboratories can be performed in a
routine way, the use of the same characterization methods in the materials discovery
process requires a thorough understanding of the experimental techniques used for
their characterization. When the materials properties are not previously known, it
is necessary to evaluate if the newly found features are intrinsic to the material,
if they are related to the specific characteristics of the sample under study, or if
they are the consequence of some peculiarities of the experimental technique being
employed. The use of advanced and costly equipment as a “black box,” rather
extended nowadays among those researchers who start on a new topic, can lead
to blunt artifacts in the measurements or erroneous interpretation of the data. While
the scientific literature has valuable research articles on the different techniques, it
is rare in the literature to find a single source where the most relevant techniques are
presented and compared, showing their advantages and limitations.
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This book aims to fill this gap and will discuss the most commonly used tech-
niques for characterizing magnetic material properties and will present examples of
their application to several relevant magnetic materials.

The target audience of the book is rather broad, including graduate students
starting their research on magnetic materials, more senior researchers who want
to know more details about the fundamentals of the techniques that they are using
or they plan to use, and those who are changing their focus of research into other
types of materials and would like to know which are the appropriate techniques for
the characterization of the properties that they are interested in.

Magnetism is probably the only field of research in which two systems of units
unofficially coexist in the scientific literature. The reluctance to change is not only
due to tradition, but also because even the equations of magnetism change in
the different systems of units. The recent redefinition of the International System
of Units (SI) in 2019 had some fundamental effects on the magnetic constants.
Therefore, Part I of the book starts with a chapter on the units for magnetic
quantities. We hope that the coexistence of different systems of units in magnetism
will soon fade out, with all of us adhering to SI. There are some research subtopics
in magnetism where the centimeter-gram-second (CGS) system of units still prevails
and, therefore, you will still find such legacy units in some of the chapters of this
book.

The rest of the book is structured into five parts. The first four, consisting of
15 chapters, focus on the description of the measurement techniques, showing the
underlying principles that make them operate in the way they do and possible
limitations for their use. We have grouped the techniques by the principle of
measurement. Magnetization is most frequently measured by using inductive- or
force-based methods, which are described in Part II. These methods provide average
information of the magnetic response of a material. In current technology, it is
necessary to have more local information and the ability to visualize the different
domains in which magnetic moments arrange; this is dealt by imaging techniques
that use visible light, X-ray photons or electrons. These techniques are presented
in Part III. There are additional techniques that are for more specific applications,
or so general that they do not fit in the previous more restricted approaches. These
are grouped in Part IV. Field sensing is necessary in any magnetic technique, but
it is also possible to use it to infer the magnetization of a sample by detecting the
field produced by it. In this part, we have also included two chapters on neutron
scattering targeted to different audiences: the first is a description of the possibilities
of neutron techniques oriented to those who are new to the technique, and the second
is a thorough description of the fundamentals accompanied by practical examples.
While most of the previous techniques are quasistatic or involve relatively low
frequencies, technology is continuously evolving towards higher frequencies in the
MHz to GHz range. Characterization of materials in these higher frequency ranges
yield fundamental information about magnetization dynamics and are described in
Part V.
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Part VI of the book, consisting of 10 chapters, presents a set of current examples
in which the magnetic properties of the materials are relevant, the peculiarities
associated with measuring that kind of material or property are discussed, and
illustrative results are presented. First-order reversal curves (FORC) has become a
go-to technique for the characterization of hysteresis of any kind. In magnetism,
it is used in fields as different as geomagnetism and nanomagnetism. Efficient
energy conversion using magnetic materials is related to soft magnetic materials,
permanent magnets, and magneto-caloric materials. In this latter case, it is shown
that magneto-caloric characterization is, by itself, a tool to study phase transitions
even for materials that will never be used in a magnetic refrigerator. The study
of thermomagnetic hysteresis by FORC is also included in this chapter. Magnetic
actuation or sensing by magnetostrictive materials, new trends in information stor-
age technology using heat-assisted magnetic recording (HAMR), and the biological
and medical applications of magnetic nanoparticles close the spectrum of emerging
applications.

The idea for this book was developed by the Editors in October 2018 while
Victorino Franco was a visiting scientist at Lake Shore Cryotronics. In December of
2018, Springer Nature authorized the Editors to develop the book. The Editors then
proposed a table of contents, identified and invited authors to contribute chapter
content. The broad distribution of scientific topics of the chapters in the book is
also matched by a geographical distribution of the sources. Authors of the different
chapters are all specialists in their respective fields and are from 9 countries:
the United States, Canada, Austria, Germany, Romania, Spain, Switzerland, the
United Kingdom, and Japan. Magnetics research nowadays is focused both on
fundamental science and technological applications, thus authors from Academia,
Industry and National Laboratories have contributed (each sector contributing 16, 6
and 4 chapters, respectively). This distribution is also evident in the editors of the
book, with one being from Academia and the other from Industry.

Every project is always subject to contingencies and, in the case of this book, it
was given the name of the novel Coronavirus COVID-19. This severely impacted
the schedules of the contributing authors in 2020. All authors had to implement
remote (virtual) learning curriculum, or adapt to remote working conditions with
limited access to labs, which caused delays in research programs, etc. Despite the
COVID-19 situation, authors never waivered in their enthusiasm for the book, and
in their commitment to contribute high-quality content.

We would like to thank Springer Nature for providing us with the opportunity
to develop this book. We are also deeply indebted to all authors for their excellent
contributions, and their support of this project. Each of them had their public or
private funding sources, listed at the end of each chapter. The whole collection is too
long to be mentioned here. But we want to explicitly acknowledge all those funding
agencies, foundations, and companies that financially support advancements in
science that ultimately improve our society. At the same time, we also acknowledge
the enthusiastic support of Lake Shore Cryotronics and the University of Seville
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that enabled the successful completion of this endeavor. We hope this book proves
to be a valuable resource for researchers, engineers, and students working in the
field of magnetism and, equally importantly, to those who are new to this rich field
of research.

Seville, Spain Victorino Franco

Westerville, OH, USA Brad Dodrill



Contents

Part I Units in Magnetism

Units for Magnetic Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Ronald B. Goldfarb

Part II Inductive and Force-Based Techniques for Measuring
Bulk Magnetic Properties

Vibrating Sample Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Brad Dodrill and Jeffrey R. Lindemuth

Recent Advances in SQUID Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Randy K. Dumas and Tom Hogan

AC Susceptometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Neil R. Dilley and Michael McElfresh

DC Hysteresigraphs for Hard and Soft Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Thomas Bapu

Radio-Frequency Transverse Susceptibility as a Probe to Study
Magnetic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Sayan Chandra and Hariharan Srikanth

Alternating Gradient Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Brad Dodrill and Harry S. Reichard

Nanomechanical Torque Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Joseph E. Losby, Vincent T. K. Sauer, and Mark R. Freeman

Part III Imaging Techniques

Magneto-Optical Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Rudolf Schäfer and Jeffrey McCord

ix



x Contents

X-Ray Magnetic Circular Dichroism and X-Ray Microscopy . . . . . . . . . . . . . . 231
Joachim Gräfe

Transmission, Scanning Transmission, and Scanning Electron
Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Akira Sugawara

Part IV Field Sensing and Neutron Scattering in Magnetism

Magnetic Field Sensing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Philip Keller

Introduction to Neutron Scattering
as a Tool for Characterizing Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Cindi L. Dennis

Neutron Scattering in Magnetism: Fundamentals and Examples . . . . . . . . . . 321
Javier Campo and Víctor Laliena

Part V High Frequency Magnetization Dynamics

Radio-Frequency (RF) Permeameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Shingo Tamaru

Ferromagnetic Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Tim Mewes and Claudia K. A. Mewes

Part VI Applications to Current Magnetic Materials

Magnetic Characterization of Geologic Materials with
First-Order Reversal Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Ramon Egli

Characterization of Magnetic Nanostructures
with the First-Order Reversal Curves (FORC) Diagram
Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Alexandru Stancu

FORC Diagrams in Magnetic Thin Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
Dustin Gilbert

First-Order Reversal Curve (FORC) Measurements for Decoding
Mixtures of Magnetic Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
Mohammad Reza Zamani Kouhpanji and Bethanie J. H. Stadler

Soft Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
Michael E. McHenry, Paul R. Ohodnicki, Seung-Ryul Moon,
and Yuval Krimer

Permanent Magnet Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
Satoshi Okamoto



Contents xi

Magnetocaloric Characterization of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
Victorino Franco

Magnetostrictive Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
Alfredo García-Arribas

Magnetic Properties of Granular L10 FePt Films for
Heat-Assisted Magnetic Recording (HAMR) Applications . . . . . . . . . . . . . . . . . . 751
Cristian Papusoi, Mrugesh Desai, Sergiu Ruta, and Roy W. Chantrell

Biological and Medical Applications of Magnetic Nanoparticles . . . . . . . . . . . 771
María Salvador, José C. Martínez-García, M. Paz Fernández-García,
M. Carmen Blanco-López, and Montserrat Rivas

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805



About the Editors

Victorino Franco is a professor in the Condensed Matter Physics Department of the
University of Seville, Spain. His main research interests cover magnetic materials
for energy applications, including soft magnetic and magnetocaloric materials. He
has published more than 200 peer-reviewed technical articles on these topics. He
received the Young Scientist Award from the Royal Physical Society of Spain in
2000 and was named IEEE Magnetic Society Distinguished Lecturer in 2019. He
has served as chair of the Spain Chapter of the IEEE Magnetics Society, chair of the
Magnetic Materials Committee of the Minerals, Metals & Materials Society (TMS),
and member of the Steering Committee of the European School of Magnetism.
He has been Editor and Publications Chair of several Magnetism and Magnetic
Materials (MMM) conferences and the General Chair of the 2022 Joint MMM-
INTERMAG Conference.

Brad Dodrill graduated from the Ohio State University in 1982 with a BSc degree
in Physics. He completed 2 years of graduate studies in Physics and Electrical
Engineering and took a position with Lake Shore Cryotronics in 1984 as a Research
Scientist. He was promoted to Systems Applications Engineer (1989–1996) and
served a key role in the development of a commercial AC susceptometer/DC mag-
netometer and a vibrating sample magnetometer. He later served as an Applications
Scientist and Product Manager (1996–2002), and in 2002 he was appointed VP of
Sales. In 2018 he transitioned to his current position as VP of Applications and
Senior Scientist. He has 49 paper publications to his credit and holds 3 U.S. patents.
He has lectured at numerous universities and given invited and contributed talks at
technical conferences in the U.S., Europe, Asia, and Mexico on vibrating sample
magnetometry, AC susceptometry, alternating gradient magnetometry, and on the
use of the first-order reversal curve (FORC) measurement and analysis technique
for the characterization of magnetic materials.

xiii



Part I
Units in Magnetism



Units for Magnetic Quantities

Ronald B. Goldfarb

Abstract The centimeter-gram-second (CGS) system of units was adopted by the
pioneers of electromagnetism in the nineteenth century. By the early twentieth
century, two limitations of the CGS system became apparent: its inability to
gracefully incorporate the electrical units common in engineering and inconvenient
factors of 4π in electromagnetic equations. Giovanni Giorgi was most responsible
for the development of the rationalized meter-kilogram-second-ampere system,
which evolved into the International System of Units (SI). In 2019, the SI was
redefined in terms of seven defining constants of nature, which set the value of
the elementary charge. A direct consequence is that the value of the magnetic
constant, the permeability of vacuum, is no longer fixed in the SI. Some conversions
from CGS electromagnetic units to SI units in an updated conversion table thus
involve the redefined permeability of vacuum, whereas other conversions require
only powers of 10 and factors of 4π. The effect on magnetism and magnetic
measurements is more philosophical than practical.

Keywords Magnetism · Magnetism history · Magnetic units · Electromagnetic
units · International System of Units · Giorgi system · Permeability of vacuum ·
Magnetic constant · Conversion table · Units of measure · Magnetic quantities ·
International Bureau of Weights and Measures

1 The Centimeter-Gram-Second System of Units

In 1873, the same year that James Clerk Maxwell published the first edition of
A Treatise on Electricity and Magnetism, the Committee for the Selection and
Nomenclature of Dynamical and Electrical Units, under the leadership of William
Thomson (later known as Lord Kelvin), presented its first report at the 43rd
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meeting of the British Association for the Advancement of Science. It formally
recommended the adoption of the centimeter-gram-second (CGS) system of units
[1].

The following year, noting that “students usually find peculiar difficulty in
questions relating to units,” the Committee commissioned a book to explain the new
CGS system and give examples of its application to physical measurements [2]. The
book, authored by the Committee’s secretary, Joseph David Everett, contained an
appendix that reproduced the Committee’s first report to the British Association [3].

However, the appendix omitted the dissent for the record by Committee member
George Johnstone Stoney, who objected that “the centimetre was recommended
as the unit of length against my earnest remonstrance,” stating that “it is far too
small.” Stoney predicted that “the metre must in the end be accepted as the standard
unit of length” [1] (the British spelling “metre” is used in the original). Indeed, the
Committee’s recommendation reversed the decision of its predecessor, the British
Association’s Committee for Standards of Electrical Resistance, which had adopted
the meter-gram-second (MGS) system [4, 5]. But by 1873, the CGS system was
preferred over the MGS system because it had the advantage “of making the value
of the density of water practically equal to unity” [1].

The CGS system is an “absolute” system, that is, one based on the fundamental
mechanical units of length L, mass M, and time T. Thus, the quantities in the
electrostatic (ESU) and electromagnetic (EMU) subsystems of CGS all resolve
to whole or fractional powers of centimeters, grams, and seconds. For example,
the dimensions for magnetic moment in EMU are L5/2 M1/2 T−1, with units
cm5/2·g1/2·s−1. Although magnetic moment has no named unit in EMU (recourse
is often made to writing “emu” as a pseudo-unit), the units for magnetic moment
correspond to those for the ratio of ergs per gauss: cm2·g·s−2/cm−1/2·g1/2·s−1. (The
name “erg” was recommended as the unit for work and energy by the British
Association in 1873. The name “gauss” was assigned, initially, to magnetic field
strength by the International Electrical Congress in 1900 and, later, to magnetic flux
density by the International Electrotechnical Commission in 1930.)

It was the intent of the British Association’s Committee for the Selection and
Nomenclature of Dynamical and Electrical Units that “one definite selection of
three fundamental units be made once for all” so “that there will be no subsequent
necessity for amending it” [1].

It was not to be.

2 The Rationalized Meter-Kilogram-Second-Ampere System

One of Oliver Heaviside’s many accomplishments was the reformulation of
Maxwell’s cartesian equations in compact vector calculus notation. He believed that
the factor of 4π in electromagnetic equations was simply an illogical convention,
and he made a strong case for rationalization of the CGS system, that is, removal of
the irrational number 4π in most equations, including those of Maxwell [6].
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Giovanni Giorgi viewed rationalization as an optional but convenient adjunct
to a four-dimensional, meter-kilogram-second (MKS) system, in which the fourth,
electromagnetic unit was initially not specified [7]. Giorgi respectfully submitted
preprints of his papers to Heaviside, who was 21 years his senior and quite famous.
Heaviside was skeptical, as evidenced by his notations on Giorgi’s correspondence,
currently in the archives of the International Electrotechnical Commission [8].
In Giorgi’s typewritten letter of 11 March 1902 to Heaviside, he outlined the
differences between their two systems: “My object was in fact not only to get rid
of the 4π, but to bring the practical electrical units into agreement with a set of
mechanical units of reasonable size, and then to have a system which is absolute and
practical at the same time.” Years later, Giorgi extended the classical definition of
an absolute system of units by noting the equivalence of mechanical and electrical
energy and thus applied the coveted “absolute” adjective to his four-dimensional
MKS system [9].

The meaning of the permeability of vacuum μ0 was central to Giorgi’s system
[10]. He noted, “In my system, [μ0] is not a numeric, nor do I assume any special
value for it; it is a physical quantity, having dimensions, and to be measured by
experiment” [11]. Thus, he regarded both μ0 and the permittivity of vacuum ε0
as subject to experimental refinement, with μ0 ≈ 1.256 × 10−6 henries per meter
and ε0 ≈ 8.842 × 10−12 farads per meter, and both subject to the condition that
(μ0 ε0)−½ is equal to the speed of light c ≈ 3 × 108 m/s. He noted that his four-
dimensional system “is neither electrostatic nor electromagnetic, because neither the
electric nor the magnetic constant of free ether is assumed as a fundamental unit”
[12].

Opposition to the full adoption of Giorgi’s system was led by Richard Glaze-
brook, a former student and intellectual heir of Maxwell, who served as the chair
of the Symbols, Units, and Nomenclature (SUN) Commission of the International
Union of Pure and Applied Physics. The SUN Commission accepted the three-
dimensional MKS as a parallel system but with μ0 as just a fixed scaling factor
with respect to the CGS system [10].

3 The International System of Units

Eventually, in 1954, the 10th General Conference on Weights and Measures
(CGPM) approved the ampere as the fourth base unit, thereby formalizing the
“MKSA” practical system of units. In 1960, the 11th CGPM adopted the name
Système International d’Unitès, with the abbreviation “SI,” for the practical system
of units. In the SI, the “definition of the ampere was based on the force between two
current carrying conductors and had the effect of fixing the value of the vacuum
magnetic permeability μ0 (also known as the magnetic constant) to be exactly
4π × 10−7 H·m−1 = 4π × 10−7 N·A−2” [13].

On 16 November 2018, in Versailles, France, the 26th CGPM adopted the
most significant change in units of measure since 1954. It went into effect on
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20 May 2019, World Metrology Day. The revised SI fixed the values of for-
merly measurable constants: the Planck constant, h; the elementary charge, e; the
Boltzmann constant, k; and the Avogadro constant, NA, thereby, individually or in
combination, redefining the units kilogram, ampere, kelvin, and mole. The cesium
133 hyperfine transition frequency, �νCs; the luminous efficacy of radiation of
frequency 540 × 1012 Hz, Kcd; and the speed of light in vacuum, c, had already
been fixed by the CGPM in 1967, 1979, and 1983, respectively, which defined the
units second, candela, and meter [13].

The motivation for the use of defining constants is explained carefully in the 9th
edition of the SI Brochure [[13], pp. 125–126]:

Historically, SI units have been presented in terms of a set of—most recently seven—base
units. All other units, described as derived units, are constructed as products of powers of
the base units.

Different types of definitions for the base units have been used: specific properties of
artefacts such as the mass of the international prototype for the unit kilogram; a specific
physical state such as the triple point of water for the unit kelvin; idealized experimental
prescriptions as in the case of the ampere and the candela; or constants of nature such as the
speed of light for the definition of the unit metre.

To be of any practical use, these units not only have to be defined, but they also have
to be realized physically for dissemination. In the case of an artefact, the definition and
the realization are equivalent—a path that was pursued by advanced ancient civilizations.
Although this is simple and clear, artefacts involve the risk of loss, damage or change. The
other types of unit definitions are increasingly abstract or idealized. Here, the realizations
are separated conceptually from the definitions so that the units can, as a matter of principle,
be realized independently at any place and at any time. In addition, new and superior
realizations may be introduced as science and technologies develop, without the need to
redefine the unit. These advantages—most obviously seen with the history of the definition
of the metre from artefacts through an atomic reference transition to the fixed numerical
value of the speed of light—led to the decision to define all units by using defining constants.

The choice of the base units was never unique, but grew historically and became familiar
to users of the SI. This description in terms of base and derived units is maintained in the
present definition of the SI, but has been reformulated as a consequence of adoption of the
defining constants.

Instead of the definition of the ampere fixing the value of μ0, the 2019 revision
of the SI defines the ampere in terms of the fixed value of e. As a result, the value
of μ0 must be determined experimentally. Similarly, the permittivity of vacuum
ε0 = 1/(μ0c2) must be determined experimentally (as it was before c was fixed
in 1983). The product μ0ε0 = 1/c2 remains exact. The experimental value of μ0
is now based on that of the dimensionless fine-structure constant α, the coupling
constant of the electromagnetic force: μ0 = 2hα/ce2, where h is the newly fixed
Planck constant, c is the fixed speed of light in vacuum, and e is the newly fixed
elementary charge (equal to the absolute value of the electron charge). The relative
standard uncertainties in μ0, ε0, and α are identical [14].

It was reasonable to fix the value of e instead of μ0 because, by the 1990s, the
realization of the ampere was by Ohm’s law, the Josephson effect for voltage, and
the quantum Hall effect for resistance (both in terms of the 1990 recommended
values of e and h [15]), not by the force on currents in parallel wires. A definition
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of the ampere and the kilogram in terms of fixed values of e and h, respectively,
brought the practical quantum electrical standards into exact agreement with the SI
[13].

4 Conversion Factors

Conversion tables are helpful for magnetics researchers who want to compare data
appearing in published articles. The need will diminish with time as the SI becomes
universal for instruction in electromagnetism. Magnetics researchers who currently
measure in SI units and analyze using SI equations do not have to worry about
conversion factors, but even they occasionally need to refer to published data in
EMU.

Units of measure have been examined and reexamined vigorously. The mono-
graph by Silsbee is noteworthy for its completeness [16]. The appendixes in the
textbooks by Jackson [17] and Coey [18] are good resources. Few articles deal
specifically with units for magnetic properties. Bennett et al. published a conversion
guide especially for magnetics in which they pointed out, to the surprise of many,
that “emu” is not actually a unit [19]. During an evening panel discussion on
magnetic units at the 1994 Joint Magnetism and Magnetic Materials—International
Magnetics Conference, different perspectives were advanced by seven practitioners
[20], some of whom recapitulated their recent articles or prefaced their future
articles on the subject [21, 22, 23].

In the MKSA system and the SI of 1960, μ0 served both as a conversion factor
and as a means for rationalization with respect to EMU. Thus, the 2019 revision of
the SI, which made μ0 an experimental constant, has consequences for magnetics.
A conversion guide for magnetic quantities from EMU to SI may now distinguish
between conversions based on an experimental determination of μ0 and conversions
based on rationalization of EMU. As first noted by Davis, conversion factors to CGS
systems, such as EMU, which made use of the exact relation {μ0/4π} ≡ 10−7, are
no longer exactly correct after the SI revision of 2019 [24] (The curly brackets mean
that one removes the units associated with the quantity within.)

Table 1 is a conversion guide from EMU to SI that reflects the redefinition of
the SI. Conversion factors formerly based on the fixed permeability of vacuum
{μ0} ≡ 4π × 10−7 are here replaced explicitly by the symbol {μ0}. However, factors
based only on the conversion of centimeters to meters, grams to kilograms, and
rationalization of EMU retain the factor of 4π; for example, the sum of the three
axial demagnetizing factors of an ellipsoid is 4π in EMU and unity in the SI.

Magnetism in the SI is concordant with the Sommerfeld constitutive relation
B = μ0(H + M) for magnetic flux density B, magnetic field strength H, and
magnetization M. However, magnetic polarization J and magnetic dipole moment j,
derived from the Kennelly convention, B = μ0H + J, are also recognized. In both
conventions, B and H have units different from each other.
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Table 1 Conversion of units for magnetic quantities. In the right column, {μ0} refers to the
numerical value of μ0, the recommended value of which may change slightly over time. Factors
of 4π originate from the conversion of unrationalized EMU to rationalized SI units. In the absence
of units, a dimensionless quantity is labeled with its associated system of units (EMU or SI). The
arrows (→) indicate correspondence, not equality. From [10], after [25]

SI Symbol SI Quantity Conversion from EMU and Gaussian Units to SI Units (a)

Φ Magnetic flux 1 Mx = 1 G·cm2 → 10−8 Wb = 10−8 V·s
B Magnetic flux density, magnetic induction 1 G → 10−4 T = 10−4 Wb/m2

µ Permeability (b) 1 (EMU) → {µ0} H/m = {µ0} N/A2 = {µ0} Wb/(A·m)

H Magnetic field strength, magnetizing force 1 Oe → 10−4/{µ0} A/m
m Magnetic moment 1 erg/G = 1 emu  → 10−3 A·m2 = 10−3 J/T

j Magnetic dipole moment 1 erg/G = 1 emu  → 10−3{µ0} Wb·m

M Magnetization, volume magnetization 1 erg/(G·cm3) = 1 emu/cm3 → 103 A/m

1 G → 10−4/{µ0} A/m
J, I Magnetic polarization, intensity of magnetization 1 G → 10−4 T = 10−4 Wb/m2

σ Specific magnetization, mass magnetization 1 erg/(G·g) = 1 emu/g → 1 A·m2/kg

χ Susceptibility, volume susceptibility 1 (EMU) → 4π (SI)

χρ , χm Specific susceptibility, mass susceptibility 1 cm3/g → 4π × 10−3 m3/kg
w, W Energy product, volume energy density (c) 1 erg/cm3 → 10−1 J/m3

N, D Demagnetizing factor 1 (EMU) → (4π)−1 (SI)

(a) EMU are the same as Gaussian units for magnetostatics: Mx = maxwell, G = gauss, Oe = oersted. SI: Wb = weber, T = tesla, H = henry, N = newton, J = joule. 
(b) In the SI, relative permeability µr = µ /µ0 = 1 + χ . In EMU, permeability µ = 1 + 4πχ . Relative permeability µr in the SI corresponds to permeability µ in EMU.
(c) In the SI, w [J/m3] = B [T] · H [A/m] = µ0 [Wb/(A·m)] · M [A/m] · H [A/m]. In EMU, w [erg/cm3] = (4π)−1 B [G] · H [Oe] = M [erg/(G·cm3)] · H [Oe].

In EMU, B = H + 4πM, where B and H have the same units with different
names, gauss (G) and oersted (Oe). As has been noted, “the magnetization, when
written as 4πM, is also in gausses and may be thought of as a field arising from
the magnetic moment. When magnetization is expressed simply as M (the magnetic
moment m per unit volume), its units are erg·G−1·cm−3. In terms of base units,
erg = cm2·g·s−2 and G = cm−1/2·g1/2·s−1; therefore, erg·G−1·cm−3, the units for
M, are dimensionally but not numerically equivalent to G” [21].

In the table, dimensionless quantities are labeled with their associated system
of units (EMU or SI) to distinguish them. In magnetic materials with permeability
μ, B = μH, where μ is dimensionless in EMU. The conversion of dimensionless
volume susceptibility χ from EMU to SI is based on the correspondence between
μ = 1 + 4πχ in EMU and relative permeability μr = μ /μ0 = 1 + χ in SI; that is,
4πχ (EMU) corresponds to χ (SI); {μ0} is not involved. This also follows from the
definition χ = M/H, in both EMU and SI, and 4πχ (EMU) having units of gausses
per oersted (dimensionless). The conversion of specific (mass) susceptibility follows
from that of volume susceptibility.

The SI redefinition of the ampere implies that the EMU abampere (the prefix
“ab” means “absolute”) does not convert exactly to 10 amperes, as was similarly
footnoted by Quincey and Brown in relation to the abcoulomb and coulomb
[26]. This affects the conversion of magnetic field strength H from oersteds (the
named unit for gilberts per centimeter, which corresponds to (4π)−1 abamperes per
centimeter) to amperes per meter by requiring the use of {μ0}. Alternatively, the
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conversion factor of 10−4/{μ0} in the table may be considered to arise from the
equivalence of oersted and gauss in EMU, the conversion of gauss to tesla, and
the relationship B = μ0H in vacuum. The same factor is used in the table for the
conversion of magnetization M, when formulated as 4πM in gausses, to amperes
per meter.

Conversions based on transformations from gausses to teslas and ergs to joules
do not involve {μ0}. For example, magnetization in gausses converts to magnetic
polarization in teslas without involvement of {μ0}. However, magnetic moment,
when expressed in EMU as ergs per gauss (or “emu”), converts to magnetic dipole
moment in weber meters with a required factor of {μ0}.

5 Epilogue

While the accepted value of {μ0} will change slightly over time with changes
in the experimental fine-structure constant α, {μ0} is currently equal to
1.256 637 0621 × 10−6 ± 0.000 000 0019 × 10−6, based on the latest quadrennial
adjustment to the fundamental physical constants by the International Science
Council’s Committee on Data [27]. That is, the value of {μ0} is equal to 4π × 10−7

to nine significant figures. Thus, the distinction between {μ0} and 4π × 10−7 is
largely philosophical and hardly practical; their difference is much smaller than the
total uncertainty in any magnetic measurement.

In the revised SI, it is compelling to regard B as the primary magnetic field
vector, μ0 as an experimental constant, and H as an arithmetically derived auxiliary
vector [10]. For displays of measurement data, the symbol B0 could be used for
applied magnetic field in units of teslas, much as μ0H is sometimes used, where
B0 is distinguished from the flux density B in magnetic materials. Magnetic volume
susceptibility χ should remain defined as M/H (dimensionless), not M/B0, because
M/H is embedded historically in EMU, the MKSA system, and the SI.
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Part II
Inductive and Force-Based Techniques for

Measuring Bulk Magnetic Properties



Vibrating Sample Magnetometry

Brad Dodrill and Jeffrey R. Lindemuth

Abstract A magnetometer is an instrument to measure the magnitude and direction
of a magnetic field. The most commonly used magnetometric technique to char-
acterize magnetic materials is vibrating sample magnetometry (VSM). VSMs can
measure the magnetic properties of magnetically soft (low coercivity) and hard (high
coercivity) materials in many forms: solids, powders, single crystals, thin films, or
liquids. They can be used to perform measurements from low to high magnetic fields
employing electromagnets, Halbach rotating permanent magnet arrays, or high-field
superconducting magnets. They can be used to perform measurements from very
low to very high temperatures with integrated cryostats or furnaces, respectively.
And, they possess a dynamic range extending from 10−8 emu (10−11 Am2) to above
103 emu (1 Am2), enabling them to measure materials that are both weakly magnetic
(ultrathin films, nanoscale structures, etc.) and strongly magnetic (permanent
magnets). In this chapter, we will discuss the VSM measurement technique and its
implementation in an electromagnet. We will also discuss relevant extensions of the
technique that provide variable temperature capability, a vector VSM for magnetic
anisotropy studies, and implementation of data acquisition algorithms for first-order
reversal curve (FORC) measurements for characterizing magnetic interactions and
coercivity distributions in magnetic materials. We will present typical measurement
results over a range of experimental conditions for various materials to demonstrate
the VSM capability for magnetic materials characterization.
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1 Magnetic Measurement Techniques

Magnetometry techniques can be classified into several broad classes: inductive-
based, for example, vibrating sample magnetometry (VSM) and superconducting
quantum interference device (SQUID) [1] magnetometry; force-based, for example,
alternating gradient magnetometry (AGM) [2] and Faraday [3] and Gouy balance
[4]; and optically based, for example, nitrogen vacancy defects in diamond [5].

Some magnetic materials such as nanowires, nanoparticles, thin films, etc.,
typically possess weak magnetic signatures, owing to the small amount of mag-
netic material that is present. Thus, one of the most important considerations
in determining which type of magnetometer is best suited to specific materials
is its sensitivity, as this determines the smallest magnetic moment that may be
measured with acceptable signal-to-noise ratio. Measurement speed, i.e., the time
required to measure a hysteresis loop, is also important because it determines sample
throughput, and it is particularly important for First Order Reversal Curve (FORC)
measurements because a typical series of FORCs can contain thousands to tens of
thousands of data points. The final consideration is the temperature and field range
over which measurements are to be performed, and this is dictated largely by the
magnetic materials that are being studied.

Commercial VSM systems provide measurements to field strengths of ~34 kOe
(3.4 T) using conventional electromagnets [6, 7], as well as systems employing
superconducting magnets to produce fields to 160 kOe (16 T) [8, 9]. In an
electromagnet-based VSM, the magnetic field can be swept at up to 10 kOe/s (1 T/s),
and a typical hysteresis loop measurement can take as little as a few seconds to a
few minutes, and a typical series of FORCs takes minutes to hours. When used with
superconducting magnets, higher field strengths are possible, which are necessary to
saturate some magnetic materials such as rare-earth permanent magnets; however,
the measurement speed is inherently slower due to the speed at which the magnetic
field can be varied using superconducting magnets due to their large inductance.
Field sweep rates are typically limited to 200 Oe/s (20 mT/s), and thus a typical
hysteresis loop measurement can take tens of minutes or more, and a typical series
of FORCs can take a day or longer. Magnetometers employing superconducting
magnets are more costly to operate since they require liquid helium. Cryogen-free
systems employing closed-cycle refrigerators, or liquefiers that recover helium in
liquid helium-based systems, are available, but these represent an expensive capital
equipment investment. The noise floor of commercially available VSMs is in the
10−7–10−8 emu (10−10–10−11 Am2) range.

The most common measurement used to characterize a material’s magnetic prop-
erties is measurement of the major hysteresis or M(H) loop as illustrated in Fig. 1.
The main parameters extracted from the hysteresis loop that are used to characterize
the properties of magnetic materials include the saturation magnetization Ms (the
magnetization at maximum applied field), the remanence Mr (the magnetization at
zero applied field after applying a saturating field), and the coercivity Hc (the field
required to demagnetize the sample).
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Fig. 1 A typical hysteresis loop showing the extracted parameters Ms, Mr, and Hc

More complex magnetization curves covering states with field and magnetization
values located inside the major hysteresis loop, such as minor hysteresis loops and
FORCs, can give additional information that can be used for characterization of
magnetic interactions [10].

All VSM results presented in this chapter were recorded using a Lake Shore
Cryotronics Model 8600 electromagnet-based VSM.

2 Electromagnet-Based VSM

The vibrating sample magnetometer was originally developed by Simon Foner [11]
of MIT’s Lincoln Laboratory. Foner patented the VSM technology [12] and sold
an exclusive license to Princeton Applied Research Corporation (PARC) to develop
and market the VSM. The early VSMs were called Foner magnetometers.

In an electromagnet-based VSM, a magnetic material is vibrated within a
uniform magnetic field H generated by an electromagnet, inducing an electric
current in suitably placed sensing coils. The resulting voltage induced in the sensing
coils is proportional to the magnetic moment of the sample. Variable temperature
measurements can be performed from <4.2 to 1273 K using integrated cryostats and
furnaces, respectively.

Figure 2 shows a schematic representation of an electromagnet-based VSM. A
variable magnetic field in the x direction is produced by an electromagnet energized
by an appropriate bipolar power supply. Four-coil transverse detection or sensing
coils [13] are mounted on the pole faces of the magnet, two on each face. The coils
are balanced so as to produce zero signal (voltage) in the absence of a sample. A Hall
probe, which is connected to a gaussmeter, is also mounted on the electromagnet
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Fig. 2 Schematic representation of a VSM. The red and black contours represent the dipole
magnetic field of a magnetized sample

pole face for closed-loop control of the magnetic field. A sample of any form (solid,
powder, thin film, etc.) is placed in a suitable non-magnetic sample holder which
is attached to the end of the VSM sample rod, which is in turn attached to the
VSM head. The sample is vibrated in the z direction within the sensing coils, and
the resulting induced voltage is passed through a preamplifier and then to a narrow
bandwidth lock-in amplifier (LIA). The LIA reference is phased locked to the head
drive vibration frequency.

The voltage induced in the VSM sensing coils is given by:

Vemf = mAfS (1)

where:
m = magnetic moment.
A = amplitude of vibration.
f = frequency of vibration.
S = sensitivity function of the VSM sensing coils.

S is determined by calibrating the VSM with a magnetic calibrant [14], i.e., a
material with known magnetization at a specified applied field H.

A VSM’s sensitivity depends on a number of factors:

• Electronic sensitivity.
• Noise rejection through signal conditioning.
• Amplitude and frequency of mechanical drive.
• Thermal noise of sensing coils.
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• Optimized design and coupling (proximity) of sensing coils to the sample under
test.

• Vibration isolation of the mechanical head assembly from the electromagnet and
VSM sensing coils.

• Minimization of environmental mechanical and electrical noise sources, which
can deleteriously effect VSM sensitivity.

It is clear from Eq. (1) that increasing A, f, or S will improve moment sensitivity;
however, there are practical limitations to each. Frequencies of less than ~100 Hz are
typically used so as to minimize eddy current generation in magnetic materials that
are electrically conductive, and it is also important to avoid frequencies that are close
to the line frequency and its higher-order harmonics. The vibration amplitude should
be sufficiently small to ensure that the sample is not subjected to inhomogeneous
magnetic fields arising from the field source. S may be increased by optimizing
the design of the sensing coils (i.e., number of windings, coil geometry, etc.)
and by increasing the coupling between the sense coils and the sample under
test (i.e., minimize gap spacing). When the sensing coils and sample are very
close together, finite sample size effects [15] can lead to errors in the measured
sample magnetization. These errors can be mitigated by using a calibrant that is
geometrically identical to the sample. At first glance, it would seem that all that
one needs to do to increase S is to maximize the number of windings in the
coils; however, this increases the resistance of the coils, which in turn increases
their thermal noise which negatively impacts their signal-to-noise ratio. Finally,
increasing signal averaging of the LIA also improves signal-to-noise ratio.

VSM Sensitivity Examples: Figure 3 shows typical noise measurement results
at 100 ms/point (top) and 10 s/point (bottom) averaging. Note that the vertical axis
is expressed in nemu = 10−9 emu (10−12 Am2). The RMS noise values are noted
in the figure caption.

Figure 4 shows typical low moment measurement results for a CoPt bit-
patterned (bit size <100 nm) magnetic media (thin film) sample with saturation
moment msat < 20 μemu (20 × 10−9 Am2). The hysteresis loop was recorded
to ±5 kOe (0.5 T) in 25 Oe (2.5 mT) steps at 100 ms/point averaging. The total
loop measurement time was 1 min 25 s. Figure 5 shows results for a synthetic
antiferromagnetic thin film with msat < 2 μemu (2 × 10−9 Am2). The hysteresis
loop was recorded to ±500 Oe (50 mT) in 2.5 Oe (0.25 mT) steps at 2 s/point
averaging. The total loop measurement time was 28 min.

3 VSM Components and Extensions

Aside from the electromagnet and associated bipolar power supply, the principal
VSM components include the sensing coils, vibration head, control and measure-
ment electronics, and data acquisition software. In this section, we will discuss the
coils, head, and electronics.
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Fig. 3 (a, b) Noise at 100 ms/point and 10 s/point (a, top) and 10 sec/point (b, bottom) averaging.
The observed noise is 119.5 nemu and 13 nemu RMS, respectively

Sensing Coils: Various transverse detection or sensing coil configurations have
been proposed, but the most commonly employed in an electromagnet VSM is
the four-coil configuration proposed by Mallinson [16] shown in Fig. 6. Practical
detection coil arrangements utilize an even number of coils to minimize sensitivity
to sample position. The coils are typically balanced (i.e., geometrically identical
with precisely the same number of windings). A perfectly balanced coil set produces
zero signal in the absence of a sample. A nonzero signal is a consequence of not
having a perfectly balanced coil set, but such offsets are usually small and can
be removed with appropriate nulling electronics. Finding the appropriate balance
between the number of windings and the resistance of the coils is important to
maximize their sensitivity without creating thermal noise. The size (or diameter
in the case of circular coils) of the coils should be larger than the sample under
test and at the same time sufficiently small to ensure they are in a homogeneous
magnetic field. In the configuration shown in Fig. 6, the axes of the coils are parallel
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Fig. 4 Hysteresis loop for a 20 μemu CoPt nanomagnet array

Fig. 5 Hysteresis loop for a < 2 μemu synthetic antiferromagnetic thin film

to the applied field (x) and transverse to the sample vibration (z). A magnetic sample
is properly positioned within the sensing coils by adjusting the xyz position of the
sample via micrometers attached to the vibrating head to maximize the signals in
the z and y directions and minimize the signal in the x direction.

Vibrating Head: The vibrating head must provide a vibration of constant
frequency and amplitude as a function of time. If either drifts, then the voltage
induced in the sensing coils drifts, which produces an apparent drift in a samples
magnetization. Frequencies should not be close to the line frequency or its higher-
order harmonics and should be less than 100 Hz to minimize eddy currents in
electrically conductive materials. The drive amplitude should be sufficiently small
to ensure that a sample is not subjected to an inhomogeneous magnetic field, and
it should be less than the sensing coil diameter. The head should provide a stable
reference signal for lock-in detection of the signal induced in the sensing coils.
And, finally, the head should be either passively or dynamically decoupled from the
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Fig. 6 Four-coil Mallinson configuration with xyz coordinates

electromagnet and sensing coils to minimize induced coherent noise in the coils due
to vibration coupling.

Home-built VSMs commonly use a simple loud speaker [17–20] or stepper
motor [21] as the head drive. While these are simple to implement and use
inexpensive commercially available parts, they also have their limitations. When
using loudspeakers, the drive amplitude tends to be small at typical operating
frequencies, which limits VSM sensitivity, and they can’t typically drive more
massive samples. More sophisticated electromechanical assemblies incorporating
dynamically decoupled drives for vibration isolation have been developed [6]. A
cross-sectional schematic of an electromechanical VSM head is shown in Fig. 7.

VSM Electronics: A VSM requires gaussmeter and Hall sensor for closed-
loop field control, electronics to drive the VSM head, a lock-in amplifier (LIA)
to provide the head with an AC reference signal and to measure the induced
voltage in the sensing coils, and a temperature controller if the VSM is equipped
with variable temperature apparatus. Home-built VSMs commonly use a sine wave
generator fed into a power amplifier to drive the head, a commercial gaussmeter or
multimeter interfaced to the Hall sensor, and a commercial LIA. Data acquisition
and control software is commonly written in LabVIEW or Python. A schematic of
the electronics is illustrated in Fig. 8.

VSM Variable Temperature Measurements: VSMs can be configured with
crysotats or furnaces for low- and high-temperature measurements, respectively.
Such fixtures may be custom built or procured from commercial sources. Wet
cryostats may be used with either liquid helium or nitrogen for measurements to 4.2
and 77.3 K, respectively. These can be continuous flow or bath cryostats. A liquid
helium bath cryostat may be pumped to achieve temperatures to <2 K. Closed-cycle
refrigerators (CCR) providing cryogen-free operation can be adapted to VSMs as
well; however, special care must be taken to decouple the CCR cold-head vibrations
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Fig. 7 Cross-sectional view of an electromechanical VSM head [6]

from the VSM or its sensitivity will degrade. High-temperature furnaces providing
temperatures to as high as 1273 K (1000 ◦C) can be similarly adapted to VSMs.
Figure 9 shows cross-sectional views of a continuous flow cryostat that can operate
with either liquid helium or nitrogen (left) and a high-temperature furnace assembly
(right).

Variable Temperature Measurement Examples: Figure 10 shows low-
temperature (120–300 K) field-cooled (FC) and zero-field-cooled (ZFC)
magnetization curves for Fe3O4 core (10 nm)/CoO shell (3 nm) nanoparticles
(NPs). The peak in the ZFC curve at each applied field corresponds to the
blocking temperature TB. Figure 11 shows hysteresis loops for a high-temperature
YBa2Cu3O7-x (YBCO) superconductor at T = 10, 20, 30, 40, 50, 60, 70, and 80 K.
Figure 12 shows a high-temperature magnetization curve for a NiFe alloy sample
recorded with an applied field of 5 kOe (0.5 T) for temperatures ranging from 323 K
to 1123 K (50–850 ◦C). The lower- and higher-temperature transitions correspond
to the Curie temperatures (Tc) of Ni and Fe, respectively.
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Fig. 8 Schematic of VSM electronics

Fig. 9 Cross-sectional views of a typical VSM cryostat (left) and furnace (right) [6]

Vector VSM: A vector VSM (VVSM), or biaxial VSM [22–26], provides
measurement of the angular dependence of the vector components of the total mag-
netization. The VVSM can be used to determine anisotropy constants from torque
curves. The usual method for anisotropy determinations is torque magnetometry,
which directly measures the macroscopic torque exerted by an applied field on the
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Fig. 11 M(H) at T = 10, 20, 30, 40, 50, 60, 70, and 80 K for a YBCO high-temperature
superconductor

magnetization of a sample that is not precisely aligned with the field. Although
torque magnetometers enjoy the advantage of high sensitivity and accuracy, they
are unsuited to other magnetic measurements of interest, e.g., major and minor
hysteresis loops, remanence curves, first-order reversal curves (FORC), etc. A
normal or single-axis VSM measures only MII, the component of the magnetization
parallel (or longitudinal) to the applied field, while the VVSM measures both
MII and M⊥, the magnetization component perpendicular (or transverse) to the
applied field. M⊥ is directly related to the macroscopic torque, and hence the
VVSM provides information that is essentially identical to that provided by a torque
magnetometer.
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Fig. 13 Schematic top view
of the VVSM

Measurement Methodology: A schematic top view illustration of the VVSM
is shown in Fig. 13 with different angles defining the directions of magnetization
and applied field. One pair of sensing coils is parallel to the applied field and senses
the magnetization component longitudinal to the field MII = Mx. A second set of
coils is mounted at right angles to the applied field and senses the magnetization
component transverse to the field M⊥ = My. Hence, the VVSM may be used to
measure anisotropy in the xy plane. Sample rotation, ψ, in the xy plane is achieved
by rotating the sample about the z axis via a computer-controlled motor attached to
the VSM head. For measuring in-plane (IP) anisotropy, a sample is mounted to a
bottom mount sample holder so that the applied field is parallel to the sample plane.
For measuring out-of-plane (OOP) anisotropy, a sample is mounted to a side mount
sample holder so that the orientation of the applied field can be varied from parallel
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(IP) to perpendicular (OOP) with respect to the sample plane. The easy and hard axis
of magnetization of either IP or OOP samples may be determined by measuring Mx

and My as a function of angle at remanence (H = 0). Figure 14 shows Mx and My

as a function of angle from 0◦ to 360◦ for a magnetic tape with IP anisotropy. At
remanence, My = 0 and Mx = maximum when the easy axis is aligned with the x-
axis coils (i.e., parallel to the applied field direction). Alternatively, My = maximum
and Mx = 0 when the easy axis is aligned with the y-axis coils (i.e., perpendicular
to the applied field direction).

Theory: Anisotropy Constants from Vector Magnetization Data

The energy density of the system is given by the sum of anisotropy and magnetic
potential energy densities:

ET = Ea + Ep

In the case of uniaxial symmetry, we have:

Ea = Ko + K1sin2θ + K2sin4θ + . . . ..

where θ is the angle between M and the easy direction of magnetization of the
sample, and Ko is a constant and independent of angle. The potential energy is given
by −μo M•H; hence:

Ep = –μo MH cos (ψ–θ)
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where ψ is the angle between H and the easy direction of magnetization (see Fig.
13). If K2 < < K1:

ET ≈ Ko + K1sin2θ–μo MHcos (ψ–θ)

At equilibrium, the total energy is minimized, which requires that dET/dθ = 0;
hence:

K1 sin (2θ) = μo MHsin (ψ–θ) .

The expression on the left is the torque τ = −dEa/dθ exerted on the magnetization
M due to the intrinsic anisotropy of the material, and the expression on the right is
the torque exerted on M by the applied magnetic field. Since Msin(ψ − θ) = M⊥,
the transverse magnetization:

K1 sin (2θ) = μo M⊥H.

When M⊥ is a maximum, sin(2θ) = 1. Hence:

K1 = μo M⊥maxH.

Measurement of M⊥ as a function of angle ψ therefore allows determination of
the anisotropy constant K1 and torque τ.

An alternative method of extracting a value for K1 and also a value for K2 is by
fitting the torque curve to a Fourier series. All data in the torque curve is then used
to calculate the anisotropy, not just the peak value.

Keeping terms in the energy to order sin4θ, the torque is:

τ (θ) ≈ (K1 + K2) sin (2θ) − 2K2 sin (4θ) . (2)

K1 and K2 can both be extracted by least squares fitting the torque curve to this
function. If the magnitudes of the Fourier components for 2θ and 4θ are τ2θ and τ4θ,
respectively, then K2 = −τ4θ/2, K1 = τ2θ − K2. If we only keep terms to order sin2θ

in the energy, then K1 = τ2θ.
Vector VSM examples: Figures 15 and 16 show the major hysteresis loops,

Mx(H) and My(H), respectively, as a function of IP angle for a uniaxially anisotropic
magnetic tape. The loops were measured to applied fields of ±16 kOe (1.6 T) as a
function of IP angle (ψ) from 0◦ (H || easy axis) to 90◦ (H || hard axis) in 15◦
increments.

My(ψ) for IP angles ranging from 0◦ ≤ ψ ≤ 360◦ in 2.5◦ increments at an applied
field of 25 kOe (2.5 T) was measured, and the torque curve in dyne-cm derived from
the Fourier analysis of the My(ψ) results is shown in Fig. 17. Least squares fitting
the torque curve to Eq. (2) yields anisotropy constants of K1 = 5.1 × 10−2 dyne-cm
and K2 = −6.53 × 10−4 dyne-cm.
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Fig. 16 My(H) versus IP angle for a uniaxially anisotropic magnetic tape

4 First-Order Reversal Curves (FORC)

While the most common measurement used to characterize a material’s magnetic
properties is measurement of the major hysteresis or M(H) loop as illustrated in Fig.
1, more complex magnetization curves covering states with field and magnetization
values located inside the major hysteresis loop, such as minor hysteresis loops and
first-order reversal curves (FORCs), can give additional information that can be used
for characterization of magnetic interactions.

FORC is relevant to any hysteretic magnetic material that is comprised of fine
micron- or nano-scale particles, grains, etc. It has been extensively used by earth
and planetary scientists studying the magnetic properties of natural samples (rocks,
soils, sediments, etc.) because FORC can distinguish between single-domain (SD),
multi-domain (MD), and pseudo single-domain (PSD) behavior and because it
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Fig. 17 Torque curve (dyne-cm) as a function of IP angle for a uniaxially anisotropic magnetic
tape at H = 25 kOe (2.5 T)

can discriminate between different magnetic mineral species [27, 28]. FORC has
proven to be useful in better understanding the nature of magnetization reversal and
interactions in magnetic nanowires [29–33], nanomagnet arrays [34–37], thin-film
magnetic recording media [38–40], exchange bias magnetic nanodot arrays [41] and
thin-film magnetic multilayers [42, 43], nanostructured permanent magnet materials
[44, 45], soft magnetic bilayers [46], and magnetocaloric effect (MCE) materials
[47]. It has also been used to differentiate between phases in multiphase magnetic
materials because it is very difficult to unravel the complex magnetic signatures of
such materials from a hysteresis loop measurement alone [48, 49].

A FORC is measured by saturating a sample in a field Hsat, decreasing the field to
a reversal field Ha, then measuring moment versus field Hb as the field is swept back
to Hsat. This process is repeated for many values of Ha, yielding a series of FORCs
as shown in Fig. 18 for a ferrite permanent magnet sample. The FORC distribution
ρ(Ha, Hb) is the mixed second derivative:

ρ (Ha,Hb) = − (1/2) ∂2 M (Ha,Hb) /∂Ha∂Hb

A FORC diagram is a 2D or 3D contour plot of ρ(Ha, Hb). It is common to
change the coordinates from (Ha, Hb) to:

Hc = (Hb − Ha) /2,Hu = (Hb + Ha) /2

Hu represents the distribution of interaction or reversal fields, and Hc represents
the distribution of switching or coercive fields of the hysterons. The 2D FORC
diagram for the ferrite permanent magnet sample is shown in Fig. 19.
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Fig. 18 Measured first-order reversal curves for a permanent ferrite magnet

Fig. 19 FORC diagram for a permanent ferrite magnet

A FORC diagram not only provides information regarding the distribution of
interaction and switching fields but also serves as a “fingerprint” that gives insight
into the domain state and nature of interactions occurring in magnetic materials. In
a FORC diagram, entirely closed contours are usually associated with SD behavior,
while open contours that diverge toward the Hu axis are associated with MD,
and open and closed contours together are associated with PSD. The peak in the
FORC distribution is usually centered at a switching field Hc that correlates with
the coercivity as determined from a hysteresis loop measurement. If the peak in
the FORC distribution is centered at an interaction field Hu = 0, this means that
interactions between particles, grains, etc. are weak. Conversely, if the peak is
shifted toward positive Hu they are strong. Multiple peaks in a FORC diagram mean
there are multiple magnetic phases in a material. And the very shape of the FORC
distribution provides insight into the nature of interactions (dipolar, exchange) that
are occurring in a magnetic material.
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Fig. 21 FORCs for BaFe12O19 nanoparticles

There are a number of open-source FORC analysis software packages such as
FORCinel [50] and VARIFORC [51]. In the results that follow, FORCinel was used
to calculate the FORC distributions and plot the FORC diagrams.

FORC Examples: To demonstrate the utility of FORC measurements and
analysis for differentiating magnetic phases, FORC data were acquired at T = 300 K
on a sample consisting of nanometer-sized (~60 nm) barium hexaferrite BaFe12O19
exchange-coupled nanocomposite.

Figures 20 and 21 show the measured hysteresis M(H) loop and FORCs,
respectively. Figure 22 shows the resultant FORC diagram. There is a subtle “kink”
in the M(H) loop (Fig. 21) at low fields suggesting the presence of a low- and high-
coercivity phase. The FORC diagram (Fig. 23) shows two peaks corresponding to
the low- and high-coercivity components, and the region between the two peaks is
related to the exchange coupling between the two phases [52].
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Fig. 22 FORC diagram for BaFe12O19 nanoparticles, the low- and high-coercivity phases are
clearly differentiated

Fig. 23 FORCs for an array of nickel nanowires

Figure 23 shows a series of FORCs measured at T = 300 K for a periodic array
of Ni nanowires with a mean diameter of 70 nm and interwire spacing of 250 nm.
Figure 24 shows the FORC diagram and shows the distribution of coercive and
interaction fields resulting from coupling between adjacent nanowires. The long tail
centered at Hu = 0 has been theoretically shown to be due to interwire interactions
occurring between higher coercivity wires within the array [53].

A typical series of FORCs can contain thousands to tens of thousands of data
points, making the measurement very time-consuming if the measurement speed of
the magnetometer is slow or if long signal averages are required to improve signal-
to-noise ratio for low moment samples. Figure 25 shows 100 FORCs (8818 data
points) recorded at 500 ms/point averaging in 1 h and 20 min for a CoPt bit-patterned
magnetic media (thin-film) sample with saturation moment msat < 100 μemu
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Fig. 24 FORC diagram for an array of nickel nanowires. The upper and right curves correspond
to the profile of the distribution along the horizontal and vertical marked lines, respectively
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Fig. 25 FORCs for an array of sub-100 nm CoPt nanomagnets

(1 × 10−7 Am2). This is a fraction of the time that would be required if using a
superconducting magnet-based magnetometer. Figure 26 shows the resultant FORC
diagram. Note that the peak in the FORC distribution is shifted toward negative
interaction fields (Hu) and that the distribution has a “boomerang” shape. These
features are usually associated with exchange interactions [54] suggesting that
exchange interactions are occurring between adjacent CoPt nanomagnets within the
array.
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Fig. 26 FORC diagram for an array of sub-100 nm CoPt nanomagnets

5 Summary

Vibrating sample magnetometry (VSM) is the most common technique employed
to characterize the magnetic properties of all manner of magnetic materials in any
form as a function of magnetic field and temperature. In this chapter, we have
described the principles of operation and its implementation in an electromagnet
and discussed extensions for both low- and high-temperature measurements, vec-
tor measurements for torque curve and anisotropy constant determinations, and
FORC measurements and analysis for characterization of magnetic interactions
and coercivity distributions. We have also presented typical measurement results
demonstrating the sensitivity, speed, and versatility of the VSM for magnetic
materials characterization.
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Recent Advances in SQUID
Magnetometry

Randy K. Dumas and Tom Hogan

Abstract This chapter aims to provide a contemporary overview of Supercon-
ducting quantum interference device (SQUID)-based magnetometry. As there are
many existing, and well-written, resources devoted to SQUID-based magnetom-
etry (Clarke and Braginski. The SQUID Handbook Vol. 1: Fundamentals and
Technology of SQUIDs and SQUID Sytems, New York: Wiley, 2004, Clarke and
Braginski. The SQUID Handbook, Vol. 2: Applications of SQUIDs and SQUID
Systems, New York: Wiley, 2004, Fagaly, Rev. Sci. Instrum 77:101101, 2006),
the goal of this chapter is to highlight some of the most recent innovations
rather than to repeat much of what has already been published. For example,
advances in sample transport, magnet technology, and SQUID detection modes
have dramatically improved measurement sensitivity and throughput over the past
decade. A discussion on techniques to improve measurement accuracy is also
provided near the end of this chapter.

Keywords Magnetometry · Superconducting quantum interference device ·
SQUID · DC SQUID · Josephson junction · Superconducting magnet ·
Cryogenics · Gradiometer · Flux-locked loop · Persistent switch · SQUID-VSM

1 Introduction to SQUID Magnetometry

A magnetometer’s primary function is to measure the extrinsic material quantity of
magnetic dipole moment as a function of an externally varied parameter, typically
applied magnetic field or temperature, or in some cases time. As discussed at length
in other chapters in this book, there are many different types of magnetometers
that rely on a variety of physical mechanisms (e.g., induction, force, optical, etc.)
to measure the magnetic moment with varying degrees of precision, accuracy, and

R. K. Dumas (�) · T. Hogan
Quantum Design Inc., San Diego, CA, USA
e-mail: dumas@qdusa.com

© Springer Nature Switzerland AG 2021
V. Franco, B. Dodrill (eds.), Magnetic Measurement Techniques for Materials
Characterization, https://doi.org/10.1007/978-3-030-70443-8_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70443-8_3&domain=pdf
mailto:dumas@qdusa.com
https://doi.org/10.1007/978-3-030-70443-8_3


40 R. K. Dumas and T. Hogan

ease of use. As the SQUID, which relies on superconductivity and the Josephson
effect, intrinsically requires cryogenic temperatures to function, minimal additional
infrastructure is needed to then provide a variable temperature environment (1.8–
400 K typical) and the cooling necessary for a superconducting magnet, which
allows for measurements in high (7 T typical) fields. In sum, the SQUID-based
magnetometer therefore provides the experimenter the ability to study a wide
variety of materials over a large environmental parameter space with extremely high
precision (10−8 emu typical).

2 Primary Components of a SQUID-Based Magnetometer

Sample Transport

As with any induction-based magnetometer, it is necessary to move the sample
through (or at least in close proximity to) a gradiometer or pickup coil. A
gradiometer in this context is a specifically designed coil of wire which is sensitive
to changes in the magnetic flux due to the moving magnetic sample. The second-
order gradiometer typically used in SQUID-based magnetometers will be described
in more detail in the following section. To enable multiple measurement modes (e.g.,
DC extraction, SQUID-VSM, AC susceptibility), it is critical not only to reliably
translate the sample over a long (~6 cm) distance at a well-defined speed but also to
vibrate the sample at a given frequency (~10 Hz) and amplitude (0.1–8 mm) with
high precision.

Second-Order Gradiometer

The fundamental principle of operation in an induction-based magnetometer is to
move a sample of some unknown moment through, or near, a set of pickup coils;
Faraday’s law then relates the associated change in magnetic flux with the induced
electric fields which cause charges to flow in a conductor. If the details of the
coil construction are known, and the motion is precisely controlled, the task then
becomes to quantify the results of this induction, from which the moment can be
determined. For a gradiometer comprised of wire in the normal state, it would be
sufficient to simply measure the voltage across the terminals of the sets of wire turns
as the sample is moved in some characteristic way through the coils. The magnitude
of the observed voltage is equivalent to the time derivative of the flux through the
gradiometer, and the moment can readily be calculated.1 The dissipative nature

1This is, in fact, the underlying principle of operation for VSM instruments which do not employ
SQUID detection.
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Fig. 1 Superconducting elements, including the SQUID, flux transformer, and gradiometer coils,
are shown in red. Normal wiring is shown in black with external electronics indicated by green.
The gradiometer geometry parameters R and L are labeled; gray arrows indicate the directionality
of the coil windings. A small blue circle shows the position of a vibrating sample during a VSM
measurement. The inset image depicts an example of a SQUID chip configuration

of normal (i.e., non-superconducting) wire and sensitivity limits of commercially
available electronics, however, set a lower bound on the size of moments which can
be resolved.

For the most precise inductive magnetometers, the gradiometer coil is instead
made from a closed loop of superconducting wire. Here, measuring the induced
current is not straightforward. A voltmeter is not helpful since a superconductor
cannot support a voltage drop across itself, and no real ammeter would have
sufficiently low input impedance (when compared with the true zero resistance
of a superconducting state) not to perturb the system. Instead, the method used
to couple to the gradiometer is to wire it in a series with another coil to make a
superconducting flux transformer as shown schematically in Fig. 1.

Of the many potential gradiometer designs, a balanced second-order gradiometer
configuration is typically chosen with the geometry shown in Fig. 1: the upper
coil is wound clockwise, the center coil is then comprised of twice as many
counterclockwise wound coils, and the bottom coil is again wound clockwise.
This configuration is chosen to reduce noise in the detection circuit caused by
uncontrolled fluctuations in the magnetic field and rejects external magnetic fields
as well as linear field gradients. Further, such an arrangement also minimizes the
influence of drifts in the (potentially large) applied magnetic field as the nearly
balanced design ensures that any flux change in the center coil is cancelled by
the flux change in the top and bottom coils. Any small difference in the enclosed
area between the sets of turns of the gradiometer will lead to a small imbalance
and as the external field is ramped, allowing persistent currents to build up in the
detection coil. To eliminate these, it is crucial to include a mechanism allowing for
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a small portion of the detection coil to be temporarily quenched (i.e., heated above
the superconducting transition temperature) to dissipate any such trapped currents.

For the utmost sensitivity, it would be ideal for the gradiometer to be as small
as possible in order to better couple to the sample (i.e., not have magnetic field
flux lines return within the pickup loop). Conversely, to minimize effects related
to sample geometry and radial offsets within the gradiometer, it is desirable to
ensure that the detection coils are relatively large compared to the sample size. If the
sample occupies a sufficiently small volume within the gradiometer, it can be easily
modeled as a point-dipole source. There is therefore a trade-off that needs to be
optimized, and realistically, experimental samples will always fill a nonzero volume
within the gradiometer and in turn impact the measurement accuracy. Unless the
sample is the exact same size and shape as the reference sample used to calibrate
the system, the reported moment value will have a systematic offset from the true
moment. There are several techniques to then calculate additional scale factors to
account for different sample sizes and shapes and improve measurement accuracy,
which are discussed later.

It is a property of a closed superconducting circuit that the total flux enclosed by
its constituent elements (i.e., the various sets of wire turns) remains constant. This
results in a “flux linkage” between the larger turns of the gradiometer itself and the
smaller ones which couple it to the detection circuit. Any change in flux resulting
from translating a magnetic moment through the primary coils induces a screening
current which causes a flux change of the same magnitude to be produced at the
secondary coils. Since the conserved quantity is flux, a proper choice of the loop
area and number of turns of the secondary coils can produce significantly larger
magnetic fields than those of the sample which generated the flux in the primary
pickup coil.

In this way, the flux generated by the sample can be “transported” to a different
spatial location to couple into a circuit which can measure it directly. As before, if
the details of the gradiometer construction are known, and the sample (for now) can
reasonably be approximated as a point dipole, then an analytic solution for the flux
as a function of position can readily be determined from the application of basic
magnetostatics. A measurement of that flux, as the sample is translated according
to a known scheme, is thus an indirect measurement of the moment itself, which
is the goal. One of the most sensitive techniques used to measure small changes in
magnetic flux in modern magnetometers makes use of a superconducting quantum
interference device, or a SQUID.

The DC SQUID

SQUID construction in principal is relatively simple—a device called a Josephson
junction is placed in line with a superconducting loop of wire. Historically,
commercial SQUID magnetometers utilized radio frequency (RF) SQUIDs, which
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employ a single junction. The direct-current (DC) SQUID requires two nearly
identical Josephson junctions within the superconducting loop, which can prove
to be challenging to fabricate. However, advances in film deposition, lithography,
and device fabrication have made producing DC SQUIDs at the commercial scale
feasible. While slightly more involved to fabricate, the DC SQUID has several
advantages over RF SQUIDS. For example, DC SQUIDs do not require RF signals
to function, thus simplifying the electronics, and they typically offer a much larger
dynamic range. The functionality of a DC SQUID is built up subsequently in the
following sections.

Properties of SC Loops

First, then properties of a simple, singular loop of superconducting wire are
examined. It can be shown that any supercurrent flowing in this loop is subject
to constraints which derive from the London equations. In the case of a multiply-
connected region (such as a loop), a quantity referred to as the “fluxoid” is both
quantized and conserved [4, 5] and can take a nonzero value. For a loop with self-
inductance L subject to an applied magnetic flux �a and passing a supercurrent IS,
the fluxoid �

′
can be represented as [6]:

�′ = �a + LIs +
∮

	 Js · dl

where Js is the supercurrent density and 	 is a phenomenological quantity related
to the density of superconducting carriers and their effective charge and mass. The
conservation condition simply means that the value of the fluxoid quantity remains
constant in time:

∂

∂t
�′ = 0

∴ �′ = C

while the quantization condition is represented as:

�′ = C = n�0

where �0 is the fundamental flux quantum.2 The expression can be further
simplified if the line integral of the current density is evaluated along a contour

2This is sometimes referred to a “fluxon” and has a value of �0 = 2.067 · 10−15 Wb.
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chosen to be within the bulk of the material. Since all the supercurrent travels in the
skin, JS = 0 in the bulk. This leaves a more basic relation governing the flux inside
the loop:

n�0 = �a + LIS

Thus, after undergoing a transition to the superconducting state, the total flux
penetrating a loop is always a fixed integer number of flux quanta. A few cases are
discussed briefly to make this point clear:

1. A loop is cooled to the superconducting state with zero applied field, making
n = 0. A small amount of flux �a = 0.25 �0 is then applied. The induced
screening current would then be IS = −0.25�0

L
, where the negative sign denotes

the direction of current such that the applied flux is canceled. The screening
current will scale linearly in this fashion with the applied flux indefinitely until
the screening current exceeds the critical current of the superconductor and the
state is quenched.

2. Alternatively, a loop is cooled to the superconducting state under a small applied
field �a = 0.75 �0. In this case, the smallest screening current3 required to bring
the total flux to an integer number would then be IS = +0.25�0

L
, where the

positive sign denotes the direction of current which aids the applied flux. Here,
n = 1. If the applied flux is increased to �a = 1.5 �0, however, the expected
screening current changes magnitude and direction to become IS = −0.5�0

L
, in

order to preserve the n = 1 condition henceforth.

With this property of superconducting loops now articulated, the other primary,
and necessary, component of a SQUID is discussed: the Josephson junction.

Josephson Junctions

These junctions occur when two superconductors are joined by a thin barrier of
normal (non-superconducting) material. If this barrier is thin enough (typically
defined as being smaller than the coherence length of the Cooper pairs in the
superconductor), then it will exhibit some unique properties. Namely, if the current
is below some critical threshold current IC defined by the comprising materials and
geometry of the junction, then there will be no observed voltage drop across the
normal segment of the junction: �V = 0. Above the critical current, the behavior
rapidly recovers that of a typical Ohmic element, where the observed voltage drop

3Generally, the system will choose the state which satisfies the quantization condition and requires
the least amount of screening current. For this example, while IS = −0.75�0

L
also satisfies the

condition with n = 0, this state requires �U = 1
2L

(
0.752 − 0.252) (

�0
L

)2 = 0.25
�2

0
L

more energy

and so is not “preferred.”
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Fig. 2 A representation of
the generalized
current-voltage (IV) response
curve of a Josephson junction
is shown in blue. The dashed
red line corresponds to the
Ohmic resistance of the
normal portion of the device
once the current through the
junction exceeds IC beyond
the narrow transition region

is simply proportional to the flowing current and scales with the resistance of the
normal segment of the junction. This behavior is summarized in Fig. 2.

The transition region, where I ≈ IC, is of particular interest: here, a very small
variation in current results in a large change in the measured voltage. The utility of
a Josephson junction in constructing a SQUID lies largely in the steepness of the IV
curve slope in this transition region, which sets the sensitivity of the device.

SQUID Functionality

A complete DC SQUID is constructed by placing two Josephson junctions (indi-
cated schematically with an “X”) in series within a superconducting loop, as shown
in Fig. 1. To operate the SQUID, it is first cooled below the superconducting
transition with no applied field, and then a bias current IB ≈ 2IC is applied. This
bias current is tuned such that it is just sufficient to bring the Josephson junction
of each separate “branch” near the transition region of their nominally identical IV
curves.

Consider now the impact of adding some small amount of applied flux
�a = 0.45 �0 to the SQUID. The superconducting loop wants to maintain
the quantization of total flux condition for n = 0, so a screening current of
IS = −0.45�0

L
is observed. If this applied flux is increased to �a = 0.55 �0,

what then? From the discussion of the basic loop, one anticipates a screening
current of IS = −0.55�0

L
, but instead a current of IS = +0.45�0

L
is actually

observed. What happened?
As mentioned prior, the system “prefers” to meet the quantization condition with

as low of an energy cost as possible, so instead of canceling the increasingly larger
applied flux �a, the induced current changes direction to produce additional flux
in the same direction, such that now n�0 = �a + �ind is satisfied for n = 1.
The difference in the case of the DC SQUID is that while the condition of flux
quantization remains enforced, from the inclusion of the Josephson junctions on
the circuit, the total flux in the loop is no longer conserved. As the threshold of
�a = n · 0.5 �0 is crossed, the junctions temporarily revert to the normal state, and
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Fig. 3 The induced current
in a DC squid is shown by the
blue curve, which is periodic
in the applied flux. The
discontinuous jumps
represent the allowance of a
flux line corresponding to one
flux quanta Φ0 to enter the
SQUID loop

an additional flux line of value �0 enters the loop and the induced current begins
flowing in the opposite direction. As �a → n�0, the screening current approaches
zero. If the applied flux increases further, this process simply repeats itself, resulting
in the periodic behavior shown in Fig. 3.

A consequence of this is that the induced current is no longer a single-valued
function of the applied flux. Knowing the current relates the applied flux only insofar
as its value relative to the nearest modulus n�0, meaning the DC SQUID by itself is
not generally useful to determine the absolute amount of flux it is subject to. Instead,
the utility lies in the ability to measure very precisely small relative changes in the
magnetic flux coupled in.

Next, the voltage observed across one of the Josephson junctions of the DC
SQUID is considered. As discussed earlier, the measured voltage is a function of
the current passed by the junction. The current through each junction is simply a
sum of the bias and screening currents to give IJJ = IB

2 ± IS . Since the bias current
is chosen to bring the device into the transition region in the IV curve, now small
changes in the screening current IS will register as comparatively large changes in
voltage due to the steepness of the curve. This is the fundamental operating principle
leveraged by SQUID detection generally, and their function is readily summarized
as a high-gain current-to-voltage amplifier [3].

Flux Locking

Since the absolute amount of flux applied to the SQUID cannot be determined from
the voltage measurement alone, a feedback circuit, shown in Fig. 1, is required to
ascertain this value. The scheme described here constitutes an external feedback
implementation (though the corresponding internal version can be implemented
as well). The setup is as follows: the SQUID is quenched with zero applied field
(imagine the sample is far away from the pickup coils of the gradiometer); this
dissipates any current flowing within the loop. When it reenters the superconducting
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state, there are no screening currents. The SQUID is then biased to near the
transition region of the IV curve of its Josephson junctions.4

As the sample translates toward the gradiometer, a small amount of flux is “seen”
by the pickup coils. This flux is coupled to the SQUID by the flux linkage property
of the primary and secondary coils of the gradiometer. Thus, the SQUID is now
subject to a small amount of applied field, and in turn the resulting screening current
is generated to maintain the flux quantization (assume for the moment that this is less
than 0.5 �0 worth of flux). The detection circuitry sees the corresponding change in
the voltage across a junction compared with the baseline from the biasing current.
Since the inductance of the DC SQUID is known, it can be inferred from the voltage
the precise amount of additional flux that originates from the sample.

To balance this additional flux, a new component is added to the system. An
additional source of flux, controlled by an external voltage source, is coupled into
the gradiometer loop, as shown in Fig. 1. The feedback circuit applies a voltage
Vext to generate a current Iext through an inductor Lext to produce some flux
Iext · Lext = �ext; this current is chosen such that �ext = − �a. As a result,
no additional screening current persists in the gradiometer loop, and in turn, no
additional current is induced in the DC SQUID. As a result, the DC SQUID remains
at the nominal center of the transition region of the IV curve. In other words, the
SQUID is essentially used as a very sensitive null detector. The electronics applying
the adjustment (to cancel out the applied flux) are sufficiently fast that the sample
can be moved as quickly as the transport motor can carry it, and the SQUID is
not reset. This condition, of keeping the flux through the DC SQUID constant, is
referred to as “flux locking,” and the feedback scheme as a whole is a “flux-locked
loop.”

Ultimately, it is the voltage applied to the external inductor which is interpreted as
the “signal” from the SQUID. This voltage is directly proportional to the amount of
flux from the sample which penetrates the area enclosed by the gradiometer coils.
With the precise position of the sample known by way of the transport motor, a
calibrated SQUID detection circuit readily allows for sample flux as a function of
position, �(z), to be measured. The sample moment can be extracted from this data
using several techniques, which are examined in the following section.

3 Detection Modes

As with any magnetometer which relies on magnetic induction, the sample must
move through, or in close proximity, to the pickup coils. A traditional vibrating

4Though not denoted explicitly in the figures here, it should be mentioned that the bias current
is itself modulated (typically at frequencies of a few 100 s of kHz) with some small additional
amplitude. This permits lock-in detection of the associated voltage drop across the SQUID
junctions, increasing the overall signal-to-noise ratio of the measurement.
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sample magnetometer (VSM), which relies on conventional Cu-wire pickup coils,
requires that the sample be continuously vibrated, usually at frequencies near
50 Hz. Conversely, the all-superconducting nature of the SQUID and second-order
gradiometer enforces no such requirement on continuous sample motion. In fact, the
sample could in theory move through the gradiometer quasi-statically. However, in
the interest in increasing measurement throughput, the sample is either translated or
vibrated within the gradiometer such that a typical measurement takes ~1 s. The
following sections will describe two distinct detection modes where the sample
is either translated (the so-called DC scan) or vibrated (the so-called SQUID-
VSM mode) within the second-order gradiometer. The distinct advantages of each
detection mode will then be compared.

Traditional DC Scan

The traditional DC scan relies on moving the sample through the entire length
of the second-order gradiometer. The resulting SQUID response, measured via
the aforementioned compensation (or feedback) voltage from the flux-locked loop
within the SQUID detection electronics, is then recorded as a function of sample
position, defining the so-called SQUID waveform, V(z), shown in Fig. 4 (black
circles). The basic functional form of the SQUID waveform can be generally
expressed as:

Fig. 4 SQUID signal, and corresponding fit (red line), as a function of position as small magnetic
sample is translated through the second-order gradiometer
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V (z) =O + Sz + C

{
2
[
R2 + (z − z0)

2
]−3/2 −

[
R2 + (L + z − z0)

2
]−3/2

−
[
R2 + (−L + z − z0)

2
]−3/2

}

where O is an offset voltage, S is a slope term proportional to the linear SQUID drift,
C provides the amplitude or scale of the response, R is the radius of the gradiometer,
L is half the length of the gradiometer, and z0 is the sample center position. This
fit function assumes the sample can be represented as a physically small (relative
to the gradiometer) magnetic dipole. By simply fitting the experimental SQUID
waveform, the extracted amplitude C is then directly proportional to the magnetic
moment via a system-dependent calibration factor. The sample center position, z0,
can be fixed or allowed to vary slightly to correct for longitudinal sample centering
errors or a small drift in the sample position as the temperature is varied. The quality
of resulting fit to the experimental data (Fig. 4, red line) is directly related to the
accuracy of the resulting calculated moment. If a given waveform is poorly fit,
then the resulting moment data point should be discarded. If the resulting fits are
persistently poor over a large parameter space, and the instrument itself is known to
be working properly and outside sources of noise have been considered, this could
be indicative of:

• A sample which is physically too large and can therefore no longer be considered
a point dipole.

• A sample magnetic moment which is too small and below the detection limit of
the instrument.

• A large and/or inhomogeneous background of the sample holder.

These issues can often be remedied simply by changing the sample size and
improving the sample holder, techniques which are discussed later.

Squid-VSM

The SQUID-VSM [7] detection mode relies on sinusoidally oscillating the sample at
the center of the second-order gradiometer at an angular frequency of ω = 2πf. For
small oscillation amplitudes, A, the local voltage profile is approximately quadratic,
namely, V(z) ≈ Cz2, where z = Asin(ωt). Therefore, the generated voltage will pass
through a minimum and maximum twice during each oscillation period, resulting in
a generated voltage with twice the oscillation frequency (2ω) when compared with
the physical vibration. This is shown schematically in Fig. 5. The time dependence
of the resulting voltage signal can then be expressed as:

V (t) ≈ CA2/
2 [1 − cos (2ωt)]
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Fig. 5 A schematic depiction of the oscillating parameters in VSM mode. A portion of the
response function V(z) is shown in red for only the peak at the center; due to the geometry of the
gradiometer,s this can be locally approximated as a quadratic function. The periodic displacement
about the center of the gradiometer of the sample in time z(t) with frequency f is shown in blue. Due
to the symmetric nature of V(z), this produces a signal V(t) which osccilates in time with frequency
2f, as shown in green. The drop lines highlight the doubling in frequency of the time-varying signal
as compared with mechanical vibration which generates it

Lock-in-based detection is used to measure amplitude of the voltage response
component with twice the physical oscillation frequency. Several aspects of V(t)
can be exploited to improve measurement precision and accuracy, for example:

• As the generated voltage signal varies at 2f, SQUID-VSM is less susceptible to
mechanical noise, which primarily presents itself at the fundamental physical
oscillation frequency, f.

• The induced voltage is proportional to A2, resulting in a large dynamic range.
Small magnetic moments will benefit from using the largest possible amplitude
to maximize the generated voltage. Conversely, very large magnetic moments
can be still be measured by employing the lowest available range of oscillation
amplitudes.

• The magnitude of the induced voltage response is independent of the oscillation
frequency. Therefore, relatively slow ~10 Hz frequencies can be employed. A
lower frequency minimizes both mechanical noise issues and complications from
eddy current generation in the sample or sample environment.

• The relatively small oscillation amplitudes (<8 mm typical) ensure that any
temperature and magnetic field gradients seen by the sample are much smaller
than those experienced during a traditional DC scan (30–60 mm typical).
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Strengths and Weaknesses of each Detection Mode

While each detection mode described above utilizes the output voltage generated by
the SQUID detection electronics, the resulting magnetic moment is extracted in two
very different ways. The DC scan mode relies on fitting the spatial variation of the
voltage, V(z), to a specific functional form that assumes a point (or at least relatively
small) dipole moving through the second-order gradiometer. Very differently, the
SQUID-VSM mode relies on simply measuring the amplitude of the time varying
voltage, V(t), by using lock-in detection as the sample is slowly oscillated at the
center of the gradiometer. These differences can be leveraged to the benefit of the
experimenter depending on the needs and constraints of the measurement.

For example, if the sample mounting technique results in any components not
rigidly mounted to the holder, and the sample holder has a diameter that spans a
significant fraction of the sample chamber diameter or is particularly massive (as is
commonly the case for pressure cell sample holders), then the relatively slow and
gentle motion of the sample provided by a DC scan will generally yield superior
results. If a high density of data points is desired, the SQUID-VSM detection mode
offers much higher acquisition rates, typically ~1 s per point. The SQUID-VSM
detection mode is also preferential for measurements of very low magnetic moment
samples for two primary reasons: Firstly, the SQUID-VSM mode will generally
have an intrinsically lower noise floor owing to the narrow-band lock-in amplifier-
based detection scheme. Secondly, as will be discussed in more detail later, if
background subtraction is required to minimize the contribution from the sample
holder, a simple point-by-point technique can be utilized.

4 Sample Environment

As the SQUID and certain other components of the circuitry require a 4 K cryogenic
temperature environment, the same cooling infrastructure can be leveraged to
generate large magnetic fields and provide a variable temperature environment for
the sample.

Temperature Control and Thermometry

Temperature control is made possible by placing the sample in a sealed variable
temperature insert along with an exchange gas (usually high purity helium). As
placing a temperature sensor at the sample location would generate an undesirable
magnetic background, thermometry must be performed away from the sample
location, generally at the sample chamber wall. The helium exchange gas then
provides the necessary medium to equilibrate the sample to the sample chamber
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temperature, where the reading is taken. It is therefore critical to allow a sample to
properly thermalize with the sample chamber wall for the most accurate temperature
readings. For especially massive sample holders, e.g., a pressure cell, this can take
a significant length of time to achieve thermal equilibrium. It is also crucial that no
oxygen contaminates the sample chamber: oxygen undergoes a variety of complex
magnetic transition in the 30–60 K temperature range that are easily detected in a
SQUID-based magnetometer and can unnecessarily complicate interpretation of the
desired sample response. Finally, as a DC scan measurement relies on moving the
sample through the second-order gradiometer, potentially travelling distances up to
60 mm, it is critical that the temperature profile within the sample chamber be as
uniform as possible.

Magnetic Field Control

The 4 K cryogenic environment also enables the use of superconducting magnets,
allowing the user to conduct magnetometry at fields far above what can be
achieved using a conventional dipole electromagnet. The vast majority of commer-
cial SQUID-based magnetometers utilize superconducting solenoids to producing
vertical axial fields. As the SQUID detection electronics are incredibly sensitive,
in addition to optimizing the uniformity of the magnetic field, great care must also
be taken to ensure measurement noise, from both the boiling cryogenic bath and
magnet power supply, is minimized.

The superconducting magnet cannot be simply submerged in a cryogen bath
as the bubbling diamagnetic helium would strongly couple to the gradiometer,
resulting in a significant amount of measurement noise. Therefore, alternate tech-
niques must be devised to efficiently cool the magnet. In situations which do rely
on submerging the magnet in the cryogenic liquid, only the outer diameter of
the superconducting magnet should be exposed to the boiling cryogen. The inner
diameter, and the location of the second-order gradiometer, can then be conduction
cooled via a thermally conductive medium (usually copper or a related alloy), which
is in direct contact with the cryogen bath. Yet another, and often preferred, technique
relies on keeping the superconducting magnet out of the cryogen bath entirely, and
instead relying on the cold helium vapor above the bath keeps the magnet below the
critical temperature of its superconducting coils.

An additional source of noise often derives from the magnet power supply (PSU).
Given the inductive nature of the solenoid magnet, any variation in the amount of
electric current will necessarily correlate directly to a corresponding change in the
magnetic field. There are two primary techniques to mediate this parasitic power
supply noise.

The first relies on a traditional superconducting persistent switch, depicted
schematically in Fig. 6(a). The persistent switch comprises a region of the super-
conducting path that has been thermally sunk to a nearby resistive element of a
separate circuit. This small segment of the superconducting path can then be toggled
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Fig. 6 Magnet charging protocols. (a) The traditional persistent switch allows for the magnet
power supply to be discharged and is ideal for long-term measurements requiring stable fixed
fields. (b) The QuickSwitch™, which requires the power supply to remain energized, can open
and close quickly due to its small thermal mass, facilitating rapid measurements over many fields.
When closed, the QuickSwitch™ shunts high-frequency noise from the magnet power supply away
from the superconducting solenoid

between a normal (switch open) and superconducting (switch closed) state simply
by sourcing current to the resistive element which locally heats the segment above
its critical temperature. When the persistent switch is open, the magnet power supply
can efficiently apply a potential difference across the “open” superconducting
circuit. This applied voltage is proportional to the rate of change of the current
in the solenoid. Thus, the power supply can charge the magnet to a specified field
value by choosing the correct amount of voltage and length of time to apply it. After
the desired current/field is achieved, the persistent switch is allowed to cool and
therefore close, thus short-circuiting the magnet.

At this point, the current supplied by the magnet power supply can be ramped
to zero. With the exception of small transient relaxation of the field due to flux
creep, as long as the magnet windings remain superconducting, the field will, from
a practical standpoint, persist indefinitely. In addition to completely eliminating any
power supply noise issues, being able to reduce the current from the power supply
to zero has the added benefit of significantly reducing liquid helium boil-off in the
case of non-superconducting magnet leads.

As the wire that constitutes the persistent switch must also be able to carry the
same current as the superconducting magnet, it has to be thick enough to support
a large (several 10s of amps) electric current. It can therefore take a significant
amount of time (10s of seconds) to heat and cool this segment of wire to “flip” the
switch. Furthermore, before opening the switch to change the magnetic field, the
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voltage of the magnet power supply must be increased to sufficiently accelerate
charges to match the current within the magnet, which takes additional time. If
there is a significant difference between the current in the magnet and that supplied
by the power supply, a magnet quench can occur in which the magnet will no
longer be superconducting. While superconducting magnets have protection diodes
to prevent any damage in the event of a quench, a rapid boil-off of any liquid
cryogens will still occur. The traditional persistent switch technique is ideal for
extended measurements, e.g., moment vs. temperature or time, which requires a
limited number of fixed magnetic fields. However, measurements requiring a large
number of magnetic fields, e.g., a moment vs. field hysteresis loop, could take
prohibitively long as the additional overhead in heating/cooling the persistent switch
and charging the power supply can easily add 30 seconds or more per measurement
point. An obvious solution to this particular problem would be to simply leave the
magnet power constantly energized and the switch open all the time for quick field
response during measurements that require ramping. The drawback, as cited earlier
however, is the resulting field noise. Thus, the user is forced to prioritize either data
quality or throughput when using systems that employ a persistent switch.

A relatively recent variant of the superconducting switch described above can
actually resolve both the issues of magnetic field noise and slow response when
changing field. This switch purposefully utilizes a very thin superconducting wire
segment with a much larger normal-state resistance, as shown in Fig. 6(b). With the
switch open (switch heater on), the magnet can be charged to a given field value, as
is accomplished in the traditional persistent switch described above. Just as before,
little to no electric current will pass through the relatively resistive parallel path as
the superconducting magnet will act as an efficient DC current shunt. However,
when the switch is closed (switch heater off), the low inductance parallel path
defined by the switch will efficiently shunt higher-frequency AC noise from the
power supply away from the superconducting solenoid and ultimately the detection
circuit. Note that with the power supply always energized, the superconducting
switch does not have to carry the same high electric current as the traditional switch
described prior and can therefore be made much thinner. By virtue of being thin,
the thermal mass of the superconducting switch is much smaller, and the switch is
thus more susceptible to rapid heat transfer and can therefore open and close much
more quickly (<500 ms typical). Additionally, this arrangement relies on keeping the
magnet power supply continually connected to the magnet (in the so-called “driven”
mode), and therefore changes to the magnetic field can be made rapidly. As current
is supplied continuously to the magnet it becomes essential to use superconducting
magnet leads to minimize the heat load on the cryogens and mitigate boil-off. This
QuickSwitch™ [8] technology provides a “best of both worlds” scenario in which
the field generated by the superconducting magnet can be quickly changed while
simultaneously shunting away parasitic noise.
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5 Improving Measurement Accuracy

The commercial SQUID-based magnetometer is capable of precisely measuring
the magnetic moment, often with better than 10−7 emu sensitivity. However,
measurement accuracy is dependent on many variables including:

• Magnetic response of the sample holder (background signal).
• Sample centering—both longitudinally and radially within the gradiometer.
• Sample size and shape.
• Magnetic field accuracy.

Failure to account for these aforementioned variables can easily result in
differences between the reported and true moments of 10% or more. The following
sections will discuss techniques to improve measurement accuracy.

Sample Mounting Considerations: Basics

In terms of minimizing the background signal contribution of the sample holder,
the user should always first use a sample holder which is as uniform as possible,
particularly along its length direction (i.e., along the axis of the gradiometer).
Manufacturers will often provide suitable sample holders, often made of quartz
or brass, which have been explicitly designed for this purpose. Clear drinking
straws have also historically been a favorite sample holder within the SQUID-
based magnetometer community. Note that imperfections in the sample holder, e.g.,
cracks, holes, dents, etc., can potentially manifest as a detected magnetic moment.
For very small moment samples, such imperfections in the sample holder become
significant if these two signals are of comparable magnitude.

Once a suitably uniform holder is found, the sample needs to be adhered such
that it is mechanically stable (over the intended temperature and magnetic field
range) and will not break free or become loose when the sample is moved within
the gradiometer. Ideally, the best-case scenario is that no adhesives are needed. For
example, some samples (thin films on rigid substrates, powder-filled capsules, etc.)
can be pressure-fit by hand within a drinking straw. More often than not though,
some adhesive is necessary. Cryogenic varnish (GE7031 is a commonly used type)
can provide a secure hold from sub-kelvin temperatures up to 400 K. Common
rubber cement is also a versatile adhesive that holds well over a wide temperature
range and is easily removed from many types of samples. Whatever adhesive is
chosen should be free of magnetic contaminants and used sparingly.
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Background Subtraction

Most often SQUID-based magnetometry is sought by the experimenter because of
its inherent high sensitivity and ability to measure small (<10−7 emu) moments.
This can be, however, a blessing and a curse in that the induced signals from
magnetically impure or intrinsically inhomogeneous sample holders (e.g., a pressure
cell) can often compete with that of the sample of interest. In these situations, sample
holder background subtraction is required. Depending on the measurement mode
(traditional DC scan or SQUID-VSM) chosen, background subtraction is treated
differently, as discussed below. Central to any background subtraction protocol is to
ensure that the sample holder remains unchanged when measuring with and without
the sample present.

Background Subtraction: Traditional DC Scan

For a traditional DC scan, the magnetic moment is calculated by fitting an entire
V(z) waveform generated as the sample is translated through the gradiometer, as
discussed previously. Therefore, background subtraction relies on first subtracting
a background waveform, VBG(z), from the total sample + background waveform,
VS + BG(z). Ideally, this will then result in a waveform from the sample alone,
VS + BG(z) − VBG(z) = VS(z), which itself must be fit to extract the magnetic
moment value. Example data of VS + BG(z) and VBG(z) waveforms are seen in Fig.
7(a), showing only a subtle difference between the two. These measurements, which
were performed under a 7 T field, clearly illustrate how a significant background

Fig. 7 Background subtraction using a DC scan measurement mode. (a) SQUID voltage wave-
forms as a function of position of the sample holder with (black squares) and without (red circles)
the sample present. (b) By subtracting the two waveforms shown in (a), the SQUID voltage
waveform of the sample alone can be extracted (black squares). By fitting this response (red line),
the resulting moment can be calculated
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Fig. 8 Background
subtraction using the
SQUID-VSM measurement
mode. The measured
magnetic moment of the
sample holder with (black
squares) and without (red
circles) the sample present
can be simply subtracted
from one another to extract
the moment of the sample
alone (blue triangles)

signal can completely mask the response of the sample, which has a magnetic
moment of only ~20 μemu at 7 T in this case. Only after subtracting VBG(z)
from VS + BG(z) can the resulting VS(z) waveform be reasonably well fit, as seen
in Fig. 7(b). The scale parameter C is proportional to the magnetic moment (with
the proportionality set by system-dependent calibration constants). Note that the fit
is still far from ideal, likely due to the difficulty in ensuring the sample holder is
completely unchanged between measuring VS + BG(z) and VBG(z) (except for the
presence of the sample itself of course).

Background Subtraction: SQUID-VSM

Background subtraction is more straightforward when using the SQUID-VSM
detection mode as no V(z) waveform must be fit to extract the moment. A
simple point-by-point subtraction of background moment, MBG, from the sam-
ple + background moment, MS + BG, yields the response of the sample only,
MS + BG − MBG = MS. An illustrative example is shown in Fig. 8 for a thin
permalloy film on a Si substrate (mounted such that the applied field is perpen-
dicular to the plane of the film). Such point-by-point subtraction is most easily
accomplished by measuring the moment for the exact same field or temperature
control points. Note, for this example, the sample holder was purposefully chosen
to yield a large response (relative to the sample), and therefore MS + BG and MBG are
of a similar magnitude. After the described subtraction operation, the resulting data
appear consistent with the expected behavior for this material. More specifically, a
saturation field of approximately 1 T and the weak diamagnetism of the Si substrate
are clearly observed. To extract the response of the permalloy film alone, one would
then subtract the linear diamagnetic response of the Si substrate.
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Sample Centering and Size/Shape Effects

The accuracy of the reported moment is sensitive to how well the sample is
centered longitudinally and, as is often overlooked, radially in the gradiometer.
Longitudinal misalignments will result in a reported value smaller than the true
moment, while radial offsets will report a moment larger than the true one. A
SQUID-based magnetometer is typically calibrated against a given reference sample
which provides the overall scale constants to accurately convert measured voltages
into magnetic moments. For the most accurate results, an experimental sample to
be measured should be of the same size/shape as the reference sample. In instances
where the sample geometry unavoidably deviates from the shape of the reference,
then additional corrections must be applied to ensure an accurate value.

A variety of analytical or finite element techniques [9, 10] can be employed
to calculate the additional scale factors needed to correct for radial offsets and
varying sample sizes and shapes when the utmost accuracy is required. A test
case showing hysteresis loops of a 4 mm x 4 mm ferromagnet thin film on a Si
substrate measured with the applied field parallel and perpendicular to the film
plane is shown in Fig. 9(a). Not only is this test sample significantly different
in size/shape compared to the reference sample used to calibrate the system, but
both field orientations will require their own unique scale factor given that the
sample couples differently to the gradiometer for each. The different loop shapes are
expected due to the shape anisotropy of the thin magnetic film, but one would expect
the measured moment to overlap at high fields, which is clearly not consistent with
the uncorrected measurement. By using a sample size/shape calculator employing a

Fig. 9 Sample geometry effects and corrections. (a) As-measured response of a 4 mm x 4 mm
thin-film sample with the applied field parallel (black squares) and perpendicular (red circles) to
the film plane. Note the different saturation moments at large field magnitudes. (b) Additional scale
factors are then applied to correct for sample geometry effects
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finite element method, scale factors of 0.996 and 0.834 are calculated for the parallel
and perpendicular field orientations, respectively. The corrected dataset is shown in
Fig. 9(b), clearly indicating much better agreement (overlapping at high fields) of
the measured moment.

Superconducting Solenoids-Remanent Field

SQUID-based magnetometers often utilize superconducting solenoids to generate
fields simply for magnetizing a sample and/or exploring specific regions of a
material’s phase diagram. While a superconducting magnet can easily generate a
field on the order of several teslas, they can present additional challenges when
trying to accurately set fields of less than tens of oersteds due to subtle phenomena
such as flux trapping and pinning. Further, the construction of such solenoids within
a SQUID-based magnetometer leaves no clear location for an independent field
sensor, e.g., a Hall sensor, and the reported magnetic field is often based only on
the current through the windings as reported from the magnet power supply. If
a significant remanent field exists, field errors up to several tens of oersted can
be present. To minimize the magnet remanence, the field should first be set to
1 T and then reduced to zero using an oscillating approach algorithm such that
the field will alternatively slew to positive and negative values with a decreasing
amplitude. Yet another way to reduce the remanent field is to perform a magnet
reset operation, in which a portion of the superconducting magnet is temporarily
heated above its critical temperature. While these techniques are suitable if one
would like to, for example, zero-field cool a sample, they are not practical in
many measurement situations which rely on measuring at large and small fields
within the same experiment. As an example, such remanent field errors can present
significant artifacts to hysteresis loop measurements of ferromagnetic samples with
low coercivities, often resulting in an “inverted” loop where the switching field
along the descending (ascending) branch of the hysteresis loop occurs for positive
(negative) fields, as shown in Fig. 10(a) for an Fe thin-film test sample with an
expected coercivity near 20 Oe. Obviously the as-measured data are unrealistic and
due solely to the remanent field effect in the superconducting solenoid.

This remanent field artifact can be mostly remedied by measuring a sample
with zero coercivity (hysteresis) and a known susceptibility, e.g., a paramagnet
such as Pd, as shown in Fig. 10(b). The hysteresis observed in Fig. 10(b) is due
to the remanent field. However, if the magnetic susceptibility is known, the true
field can be calculated by simply dividing the measured moment by the product
of the susceptibly and the mass of the paramagnetic reference sample: HTrue =
measured moment

χg ·mass . This true field can then simply be substituted for the reported field
(Fig. 10c), providing a corrected dataset with the expected hysteretic dependence.
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Fig. 10 Correcting for low-field remanent field errors. (a) As measured response of a magnetically
soft Fe thin-film sample exhibiting an unphysical “inverted” hysteresis loop. (b) By measuring a
paramagnetic sample of a known susceptibility, the true field can be calculated to (c) provide a
corrected field axis

6 Additional Capabilities of the SQUID Magnetometer

Concentric with the superconducting solenoid, modulation and trim coils can
expand the measurement capabilities of the SQUID magnetometer. The modulation
coils are wound as a long solenoid that when energized uniformly modulate the
field strength at the sample position by a small fraction. In contrast, the trim coils
are wound in such a fashion that when energized only modify the field profile
above and below the sample location. Together, the modulation and trim coils can
be used to actively null (i.e., reduce the magnitude and curvature) the generally
inhomogeneous remanent field left over from the superconducting solenoid. Such
“ultra-low-field” capabilities are often needed for experiments that require zero-field
cooling or hysteresis measurements of magnetically soft materials.

The modulation coils can also provide the necessary excitation field for AC
susceptibility measurements. For this application, the trim coils can be utilized
to remove a significant fraction of the frequency-dependent background signals
inherent to AC susceptibility measurements which often make quantitative results
difficult to obtain. Removing these background signals dramatically improves the
measurement precision.

A variety of specialized sample holders also expand the measurement parameter
space. Several examples include:

• High Temperatures: A sample holder with an integrated resistive heater and
thermometer can be used to increase the maximum available temperature,
typically up to 1000 K, by locally heating the sample.

• Sub-Kelvin Temperatures: A specialized closed-cycle He3 insert can be inte-
grated within the sample chamber to decrease the measurement temperature
below 0.5 K.

• Photomagnetism: Sample holders with integrated fiber optic cables allow for
magnetometry studies in the presence of electromagnetic radiation.
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• Electrical Transport: Sample holders with integrated wiring allow for electrical
resistance measurements and voltage-controlled magnetism studies of, e.g.,
multiferroic samples.

• High Pressure: Specially designed hydrostatic and diamond anvil cells allow for
magnetometry measurements in excess of 1 GPa.

• Sample Rotation: Motorized sample holders allow for in situ rotation of
anisotropic samples.

Due to their complex design, the specialized sample holders mentioned above
typically have a relatively large and inhomogeneous background signature. For
measurements of small magnetic signals, one must typically perform a careful
background subtraction protocol, as discussed earlier in this chapter, for improved
accuracy.

7 Conclusions

In summary, the SQUID magnetometer is an ideal instrument for the magnetician
who requires the utmost sensitivity and versatility to efficiently characterize their
samples over a wide range of temperatures and magnetic fields. The latest advances
described in this chapter, most notably the SQUID-VSM detection mode, have
dramatically improved measurement throughput and precision.
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AC Susceptometry

Neil R. Dilley and Michael McElfresh

Abstract AC susceptometry is a highly sensitive and versatile tool which has
long been used in materials characterization for the identification of magnetic or
superconducting phase transitions and in probing magnetic relaxation processes
among other applications. The reader is introduced to the principle of the technique,
the origins of AC magnetic responses in materials, AC susceptometer design, and
considerations for good experiment protocol. The chapter concludes with research
examples of AC susceptometry including its application to high-Tc superconductiv-
ity and how this showcases both the strengths and limitations of the technique.

Keywords AC susceptometry · Magnetic relaxation · Screening ·
Superconductor · HTS · Superparamagnetism · Spin glass · Molecular
magnetism

1 Introduction

The technique of AC susceptometry has been a valuable experimental tool for
investigating both static and dynamic magnetic properties of materials for almost a
century [1]. The term “AC susceptometry” refers to the application of a time-varying
magnetic field stimulus to a sample specimen and the detection of its dynamic
magnetic response. The typical setup is essentially a transformer using the sample
as the core, where a small and frequency-selectable oscillatory magnetic field is
generated in the primary windings and an inductive voltage is measured across the
secondary windings. The popularity of the technique owes to several factors:
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– Ease of the sample preparation, i.e., no need for any electrical contacts to be
made.

– Familiarity of the measurement principles to students of physics and electrical
engineering.

– Compactness of the design which permits it to be used at cryogenic temperatures,
in ovens, and in high-pressure environments.

– High sensitivity afforded by lock-in amplifiers and nulling techniques in the
susceptometer, enabling small samples (e.g., single crystals) to be measured.

– Ability to study magnetic response over several decades of frequency and thus
better understand the underlying mechanisms for the magnetic dynamics.

– Phase-sensitive detection of the sample’s magnetic response at the drive fre-
quency or at harmonic multiples (further benefits of using lock-in amplifiers),
enabling the instrument to quantify dissipative and nonlinear magnetic responses
even at small signal levels.

The research applications of AC susceptometry span various disciplines of
physics, chemistry, materials science, and engineering and mostly fall into cate-
gories of magnetic relaxation, screening effects in conductors, identifying phase
transitions, or as a sensitive probe of the differential magnetic response. Possible
variables in the measurement include temperature, DC applied magnetic field, AC
frequency, or AC applied magnetic field. A ramp of temperature during AC mea-
surements may reveal a sharp peak in the AC susceptibility at a magnetic ordering
temperature, while a ramp of frequency can identify a relaxation time constant in
a superparamagnet. The screening currents in a conductor will lead to a similar
peak in the frequency response of the AC susceptibility, in this case originating
from the skin depth of the currents. The richness of the phenomena which produce
signatures in the AC magnetic response, together with the multidimensional space
of parameters that can be varied, is both an asset and a liability to the technique as
researchers often must work hard to determine the origin of the features.

There are some well-written reviews of the AC susceptibility technique in
the literature to which we refer the interested reader [2–5]. The present chapter
offers a practical perspective which hopes to edify a casual reader, properly
orient a newcomer to the field, offer advice and tips to a student performing AC
measurements, and provide a refreshing overview to veterans of the field.

Section “Theory of AC Susceptibility” provides the theoretical framework for
understanding AC susceptibility and describes the origin of AC magnetic response
in materials; Section “AC Susceptometer Design” familiarizes the reader with
the basic aspects of AC susceptometer design; Section “Working with an AC
Susceptometer” provides practical guidance for successful measurements; Section
“Research Examples” gives research examples from several fields which illustrate
the strengths and broad applicability but also the challenges in interpreting results
of AC magnetic measurements.
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Theory of AC Susceptibility

We start with the equation describing magnetic fields in matter, where the magnetic
field B is the sum of the material’s magnetization density M and the applied field H:

B = μ0 (H + M) (1)

The constant μ0 is the permeability of free space. Consider that the applied field
H is made of a constant Hdc and sinusoidal component at frequency ω = 2πf:

H (t) = Hdc + Hac cos (ωt) (2)

For this chapter, we will assume that Hdc and Hac are both directed along the
z-axis, and we will consider the magnetization component along the z-axis, unless
otherwise stated, so we will dispense with the vector notation and the z subscript:
H = Hz → H and M = Mz → M.

Since the material’s magnetization is a function of the applied field, we know
that M(t) must be periodic with the same fundamental frequency ω. With the benefit
of Fourier’s theorem for any periodic function, we can express this as:

M(t) = Mdc (Hdc) + Hac

∞∑
n=1

[
χ ′
ncos (nωt) + χ ′′

n sin (nωt)
]

(3)

The coefficients of the Fourier expansion of χ describe components of the
differential magnetic susceptibility. The n = 1 terms of the expansion correspond
to a linear response of the material’s magnetization to the applied field, and they are
almost always dominant. Higher-order harmonics (n > 1) due to nonlinear magnetic
response will be discussed later. To build some intuition about the above equation,
let us set Hdc = 0, assume that Mdc(0) = 0, apply a small Hac, and let the AC
frequency ω → 0 which produces a change of δM to find:

χ ′
1 = δM/Hac ≡ χdc(H) = dMdc

dH
(4)

At low frequencies, the χ
′

term (in-phase with the drive field) is ascribed to
instantaneous magnetization of the material and can be thought of as the local slope
of the magnetization curve M(H). χ

′
is referred to as the reactive or dispersive

component, while χ
′ ′

is the dissipative or absorptive component. The dissipative
aspect of χ

′ ′
can be seen by computing the energy loss E per unit volume per period

T of AC field using an expression for energy loss in magnetic materials (see Ref.
[6]) and the periodic expressions for M and H given above:

E = μ0

∮
HdM = μ0

∫ T

0
H
dM

dt
dt = μ0H

2
acχ

′′
1 (5)



66 N. R. Dilley and M. McElfresh

Of all the terms in the integral that result from putting the time derivative of
Eq. 3 into Eq. 5, only cos2(ωt) does not average to zero when integrated over one
period. That implies that only the χ1

′ ′
fundamental dissipative response contributes

to energy loss. This dissipation can be quantified graphically by the enclosed area of
the small hysteresis loop traced out over one AC cycle in the M(H) plane. Magnetic
hysteresis in M(H) indicates that M lags in time behind the applied H due to a
viscosity, and the energy expended through this viscosity is measurable as heating
of the material. When the magnetization curve M(H) is reversible, this loss will be
zero. Note that that energy loss, and hence χ1

′ ′
, cannot be a negative value.

AC susceptibility results are reported in terms of χ
′
and χ

′ ′
or equivalently as the

magnitude χ and phase ϕ which are related as follows:

χ =
√
χ ′2 + χ ′′2 (6)

ϕ = tan−1 (
χ ′′/χ ′) (7)

These quantities can be visually represented in the complex (Argand) plane
where real values (χ

′
) lie along the x-axis and imaginary values (χ

′ ′
) along the y-

axis, and we write the complex susceptibility
∼
χ = χ ′ + iχ ′′. We see that the phase

corresponds to the lag and losses mentioned above such that ϕ = 0 when χ
′ ′ = 0. In

this chapter, we will use χ when referring to the magnitude of the AC susceptibility
(Eq. 6) and

∼
χ when explicitly dealing with the complex AC susceptibility.

The dynamic magnetization M(t) arises from two distinct phenomena. Clearly,
the sample’s magnetism seen at DC fields will be reflected in χ

′
as discussed above,

and magnetic hysteresis leads to χ
′ ′
. But in the case of an electrically conducting

sample, there is an additional contribution to M(t): screening, or eddy currents which
oppose the changing magnetic field in the material. Both of these effects will be
discussed below.

Units and Conventions

In this chapter, we will work in SI units (amp, meter, joule, tesla) instead of CGS
units (emu, cm, gauss, oersted), though many instruments report in CGS due to them
formerly being favored in physics research. Magnetic susceptibility per unit volume
is dimensionless in both systems, with χSI = 4πχcgs. In this chapter, it is assumed
that χ refers to the AC (rather than the DC) volume susceptibility unless otherwise
stated (see Ref. [7] for help with magnetic unit conversions).

Demagnetizing Factors

When the magnetic flux vector B exits from the surface of the pole of a uniformly
magnetized bar magnet, the magnetization goes to zero at the surface because
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M exists only inside the material; meanwhile, B = μ0(H + M) must be con-
tinuous (from the Maxwell equation ∇ • B = 0). Continuity of B requires that
there be a component of H existing only inside the material and in a direction
opposing M, which furthermore starts and stops at the poles of the magnet.
This is called the demagnetizing field Hd. The field inside the sample is then
H = Ha + Hd = Ha − NM, where Ha is the externally applied field and
N is the demagnetizing tensor which is defined only by the sample shape. For
ellipsoidal samples magnetized along a principle axis, N becomes a scalar (N), and
the magnetization is uniform in the material. In all other sample geometries, the
magnetization in a DC magnetic field will be non-uniform. This is a complication
that is usually put aside in analyzing volume-averaged magnetometry data but
should be kept in mind. The demagnetizing factor N can assume a value between 0
and 1, with some common examples being a sphere (N = 1/3), a needle magnetized
along its axis (N ≈ 0), and a thin plate magnetized normal to its surface (N ≈ 1). Due
to the modified internal magnetic field, the measured AC susceptibility

∼
χext (Ha) is

therefore different than the material’s intrinsic susceptibility
∼
χ(H):

∼
χext =

∼
χ

1 + N
∼
χ

(8)

Due to both
∼
χand

∼
χext being complex, separation into χ ′ will contain both χext

′
and χext

′′ terms, and the same is true for χ ′′. We refer the reader to Ref. [2] for the
explicit expressions.

The main points to note about demagnetizing effects in magnetic measurements
are:

• The relative systematic error introduced into the measured susceptibility is N
∼
χ

which will be relevant for a material with high susceptibility and shaped to have
a significant value of N. In all other cases, the correction can be dismissed.

• In strongly diamagnetic materials such as superconductors in the screened state
(χ ’ = −1), |χext| > |χ | because the internal field �Ha; this leads to an apparent
compression of the measured M(H) curves along the field axis.

• When χ � 1, such as in ferromagnetic materials, this implies χext < χ , which
results in an apparent expansion of the measured M(H) curves along the field
axis, sometimes referred to as a “shearing” effect [6].

Magnetic Relaxation

Electrons interact with an applied magnetic field through both their intrinsic spin and
their orbital motion. First, let us consider the various types of electronic magnetism
that exist in the absence of any type of magnetic ordering such as ferro-, anti-ferro-,
or ferrimagnetism. For electrons in insulators, or for those electrons in metals which
remain localized, unpaired electron spins show Curie-Weiss spin paramagnetism



68 N. R. Dilley and M. McElfresh

(χdc > 0) and van Vleck spin paramagnetism, while paired electron spins exhibit
Larmor orbital diamagnetism (χdc < 0). In metals, additional magnetic responses
come into play from the electrons in conduction bands: Pauli paramagnetism and
Landau diamagnetism arise from the spin and orbital motion of these electrons,
respectively. In all these cases, the response to a magnetic field is instantaneous
on the experimental time scales relevant to this chapter, so there is no dissipation
arising from these magnetic responses. The largest effect is generally Curie-Weiss
paramagnetism (when unpaired electrons are present) which follows a χdc ∝ 1/T
law with a typical volume susceptibility of χdc∼10−2 even at room temperature. In
contrast, the other susceptibilities are typically |χdc|∼10−5 or smaller and depend
on temperature weakly (see Ref. [8] for a detailed discussion of the various magnetic
responses listed above).

Dynamic effects in magnetism come into play when interactions between
electron spins in paramagnetic materials give rise to magnetic ordering and the
spins become “frozen” into an ordered phase. Near the ordering temperature, then,
we expect the time scale for magnetic relaxation to cross through the time scale
for AC magnetic measurements and, as we will show below, results in a resonant
behavior in the magnetic response to an AC applied field. The simplest way to model
a process of “freezing” the spins is to slow the dynamics using a damping coefficient
α which retards the alignment of spins to an applied field as expressed in this first
order differential equation:

M = χdcHac − α
dM

dt
(9)

A small applied field Hac would instantly lead to a magnetization M according
to the DC susceptibility Xdc, but it is slowed by the presence of damping.

If we take Hac = H0e−iωt, we can solve the above equation for the complex
magnetization M and write that in terms of the magnetic susceptibility as:

∼
χ (ω) = M (ω)

Hac (ω)
= χdc

1 − iωτ
(10)

where the relaxation time constant is given by τ = αχdc. That is, if the field H
were stepped from H = Hdc to H = 0 at time t = 0, the moment would relax
as M(t) = M(0)e− t

τ , which is the familiar exponential decay seen, for instance,
when monitoring the voltage across a capacitor in an RC circuit while it is being
discharged. The complex susceptibility can be broken into the real and imaginary
parts which are plotted in Fig. 1:

χ ′

χdc
= 1

1 + ω2τ 2
(11)

χ ′′

χdc
= ωτ

1 + ω2τ 2
(12)
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Fig. 1 Frequency (ω)
dependence of AC
susceptibility for Debye
relaxor with time constant τ

The peak in χ
′ ′

occurs at ωτ = 1 and provides a practical method for identifying
a relaxation time constant in a material using variable frequency AC susceptibility.
While this peak in χ

′ ′
is often referred to as a resonance, we should point out that

this is not the harmonic oscillator self-resonance of spins as is observed in magnetic
resonance measurements (NMR, EPR, FMR).

There are three regions of interest in Fig. 1:

1. Low-frequency ωτ � 1: the moments can follow the applied field in phase
(χ

′ ≈ χdc), and at low frequencies, the dissipation term αdM/dt from Eq. 9 is
small (χ

′ ′ ≈ 0).
2. High-frequency ωτ � 1: the moments are not able to respond fast enough to the

applied field due to the damping, so all magnetic response falls off (χ
′
, χ

′ ′ → 0).
3. Intermediate-frequency ωτ ≈ 1: the moments are lagging behind the applied

field, so the in-phase response χ
′

decreases and dissipation χ
′ ′

increases. Since
χ

′ ′
must eventually fall back to zero at high frequency, there results a maximum

where the oscillating field is most effectively dissipating heat in the sample.

The above model is known as Debye relaxation [9] and was first formulated in
the context of relaxation in dielectrics in response to AC applied electric fields. It
has been very helpful in the study of systems like superparamagnets and single-
molecule magnets, where spins “freeze” at low temperatures, though it is important
to note that this model ignores interactions between spins. The Debye model
can be extended to incorporate these interactions by considering a distribution of
relaxation times instead of a single τ , as discussed in a recent review [5]. As a
final example, the sharp peak in χ

′ ′
(T) in magnetic phase transitions has long been

used to identify the magnetic ordering temperature in zero DC applied field. Once
again, this peak occurs when the AC field frequency matches the relaxation rate
of the spins (ωτ ≈ 1) as they go from the paramagnetic to the frozen ordered
state. More examples of magnetic relaxation effects will be given in Sect. “Research
Examples” below.
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Screening

An electrically conducting material will attempt to screen out changes in the
magnetic field in its interior, an effect known as Lenz’s law which derives from
the Maxwell equation ∇ × E = − ∂B

dt
, where E is the induced electric field which

creates the eddy currents.
In a material with isotropic resistivity ρ placed in an external magnetic field

H oscillating at frequency ω as described above, Maxwell’s equations lead to this
relation [10]:

∇2H = − iω
∼
μ

ρ
H = −2i

δ2
H (13)

The material’s magnetic permeability μ enters into the equation, which is related

to the complex susceptibility by
∼
μ = μ0

(
1 + ∼

χ
)

. The skin depth:

δ =
[
2ρ/

(
ω

∼
μ
)] 1

2 (14)

describes the screening of the magnetic field: at a depth δ inside the material,
the magnetic field has fallen to 1/e (∼37%) of its value at the surface. Magnetic
susceptibility due to screening is found by solving the above differential equation is
much simpler in a high symmetry geometry, such as a sphere of radius r, where the
measured susceptibility is found to be [2]:

χ ′
ext = 9

4

(δ/r) [sinh (2r/δ) − sin (2r/δ)]

cosh (2r/δ) − cos (2r/δ)
− 3

2
(15)

χ ′′
ext = 9

4

(δ/r) [sinh (2r/δ) + sin (2r/δ)]

cosh (2r/δ) − cos (2r/δ)
− 9

4

(
δ2/r2

)
(16)

Figure 2 plots the real and imaginary susceptibilities as a function of r/δ which
shows a peak in χ

′ ′
when the field penetration is approximately equal to the sample

size. As r/δ approaches zero (low AC frequency), both components of the screening
susceptibility go to zero as would be expected in the limit of static magnetic field. At
large values of r/δ (small skin depth, which occurs as ρ → 0 or at high frequency),
χ ′
ext → −3/2 . Since the demagnetizing factor N = 1/3 for a sphere, then the

material’s intrinsic susceptibility χ
′ → − 1 (see Eq. 8) which corresponds to B = 0

inside the material, that is, a state of perfect diamagnetism.
At this point, several comments are in order:

1. This screening susceptibility is an electrical transport phenomenon, except that
currents circulate in the sample around the axis of the AC field rather than in
a straight line as for standard electrical transport. It is therefore a reflection of
sample geometry and any sample imperfections which affect the conduction
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Fig. 2 AC susceptibility of a
conducting sphere of radius r
as a function of AC
frequency ω

paths. In a uniform sample of known geometry, however, the screening effect
can be exploited to measure the resistivity without making electrical contact to
the sample which will be discussed below in Sect. “Research Examples”.

2. Sample properties are probed roughly within a depth δ of the surface. If δ � r, the
interior of the sample is shielded from the applied magnetic field and thus does
not participate in the measurement. The possibility of screened material must be
considered when making statements about the average magnetic properties of a
specimen.

3. As seen in Eq. 14 above, the skin depth is a function of the permeability
∼
μ,

so a magnetic conductor may have a much smaller skin depth than even a
low resistivity metal of the same shape. This is important in the design of
transformer cores working at power line frequency (50–60 Hz): eddy currents
are detrimental to performance, so the core is composed of laminate steel sheets
each with thickness t � δ (see Chap. 13 in Ref. [11]) which are insulated from
each other. For higher-frequency magnetic applications, the cores are composed
of (ferromagnetic) ferrites which are insulators and therefore free of screening
effects.

AC Susceptometer Design

There are two elements necessary for the design of a mutual inductance AC
susceptometer: (1) a drive coil to produce the alternating field Hac and (2) a
detection coil around the sample to inductively measure the sample’s response. A
susceptometer with only these elements allows for the study of susceptibility as a
function of frequency and drive amplitude of Hac at ambient conditions. To achieve
any measure of sensitivity, the mutual inductance between the drive and detection
coils should be balanced, so that an inductive voltage is generated only when the

http://dx.doi.org/10.1007/978-3-030-70443-8_13
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Fig. 3 Schematic
cross-section cut of the
solenoid coils of an inductive
ac susceptometer. For each
coil, dark (light) windings are
passing into (out of) the page

sample is placed in the detection coil. This is often strived for [11, 12] by having two
identical series detection coils (innermost red coils in Fig. 3) placed symmetrically
within the drive coil which are wound in opposite directions to balance each other’s
coupling to the drive coil (blue coil in Fig. 3). In reality, it is not possible to remove
all mutual inductance by coil design, so a further sophistication is to mitigate this
by having a “trim” drive coil which is inductively coupled to the detection coils
and is driven at a selectable phase and amplitude relative to the main drive coil
to further null the imbalance. The trim coil calibration as a function of temperature
and AC frequency must be mapped out with no sample in the detection coil. Another
technique to remove imbalance effects is shown in Fig. 3: the two detection coils are
coaxial which allows the sample (green) to be positioned in either coil (position 1
or 2) by attaching to a sample rod accessible from the top of the instrument. This
provides the great advantage of separating the sample signal from the imbalance
between drive and detection coils: when placed in the other detection coil, the signal
due to the sample will be reversed, but any coil imbalance will remain the same. A
further advantage of a variable position sample system is that a trim coil can be
used at each measurement point by placing the sample between the detection coils
(position 3 in Fig. 3) during the imbalance nulling procedure [13, 14].

Assuming any oppositely wound detection coil design, the voltage in the two
detection coils (1,2) of N windings each and cross-section A is generated by time-
changing magnetic flux � = N

∫
B • dA according to Faraday’s law:

Vac(t) = −d (�1 − �2)

dt
= −μ0NA

dM

dt

= μ0NAωHac

∞∑
n=1

n
[
χ ′′
n cos(nwt) − χ ′

n sin(nwt)
]

(17)



AC Susceptometry 73

Note that the time derivative creates a 90-degree phase shift in the detected
voltage relative to the sample’s magnetization. The benefit of the oppositely wound
detection coils is nulling the applied field H since it appears equally in both �1
and �2. The above equation assumes the sample and detection coils both have a
cross-section A; however in real systems, the coils will be larger than the sample so
the coupling, referred to as the filling factor, will be lower, and this will reduce the
detected AC voltage.

To investigate the sample’s dependence on DC magnetic field, the susceptometer
is placed within an external field source (Hdc and outermost solenoid in Fig. 3). It is
common to use a superconducting solenoid operating at liquid helium temperature
for generating fields up to 10 tesla or greater. For low-temperature studies, the
DC magnet remains at the liquid helium temperature, while the AC drive and
detection coils are typically located in the variable temperature space in order to
increase sample coupling and reduce coupling to other materials in the cryostat.
In the case of SQUID-based AC susceptometry, however, the detection coils also
use superconducting wire and thus must be held near liquid helium temperature.
In our instrument description below, we will assume a conventional conducting
susceptometer unless explicit comparison is made to SQUID-based designs.

The drive coil is connected to an AC current source with high enough compliance
voltage to overcome the component of voltage due to the inductance L of the drive
coil: V = − L • dI/dt. This compliance puts an upper limit on the drive frequency,
typically in the range of 10 kHz, though a cryogenic AC susceptometer design
optimized for frequencies from kHz to MHz range has recently been reported [15].
The detection coil is connected to a lock-in amplifier which is phase-referenced to
the drive coil current. Copper wire is chosen for drive coils (due to low resistance)
and detection coils (due to low Johnson noise). Since the induced voltage is
proportional to the drive frequency (Eq. 17), it places a lower limit of typically
1–10 Hz on the measurement. More detection coil windings, while increasing the
flux �, will reduce the maximum usable frequency due to the larger coil inductance.

If the detection coils are the superconducting pickup coils for a SQUID gra-
diometer, however, the SQUID output voltage V ∝ � is not directly dependent on
frequency, and this allows SQUID AC susceptometry to extend down to 0.01 Hz or
lower [16], limited ultimately by voltage drifts in the SQUID due generally to 1/f
noise and primarily from SQUID drifts induced by magnetic flux relaxation (“flux
creep”) in the superconducting wiring of the magnet used to create the DC applied
field. Ultra-low-frequency SQUID AC measurements allow for the suppression of
screening signals and detection of magnetic phase transitions in situations where
the sample holder contains conducting material, such as a Be-Cu high-pressure cell
in which a small sample specimen is placed inside: as ω → 0, screening currents
from the cell approach zero (see Fig. 2), while the magnetic response of the sample
approaches χdc (see Fig. 1).

Inductive coupling should be minimized elsewhere in the system wiring, and for
this reason, it is important to wind the wires leading to the drive and detection coils
separately as tightly and uniformly twisted pairs. Capacitively coupled noise from
the environment is reduced by electrically shielding the cable and referencing this



74 N. R. Dilley and M. McElfresh

shield to a quiet analog ground in the measurement electronics. It is important to
connect the instrument to ground through only one path in order to avoid currents
in the shielding due to “ground loops.” The other elements of the susceptometer
are ideally free of any magnetic materials or conductors within the range of the AC
drive field, since these will introduce parasitic signals which will change with AC
frequency, temperature, and DC magnetic field and will also change the phase and
amplitude of the drive field Hac as seen at the sample location. These background
signals can complicate matters greatly and must be minimized.

Note that the detection of the time-dependent magnetization can also be done by
methods other than magnetic induction. Other magnetic detection schemes like X-
ray magnetic circular dichroism (XMCD) and magneto-optical Kerr effect (MOKE)
can also be phase-detected in the presence of a small Hac to obtain χ

′
and χ

′ ′
as has

been demonstrated for monolayer magnetic films [17].
If one orients the AC drive coils and AC detection along the same axis but

perpendicular to the applied DC magnetic field, then the “transverse susceptibility”
χT can be measured. It was theoretically predicted [18] and experimentally verified
using such a susceptometer design [19] that χT has a singularity at the anisotropy
field of a ferromagnet (see Sect. “Differential Probe of Magnetism”). Note that
magnetic resonance techniques (NMR, EPR, FMR) are designed to measure the
transverse susceptibility and do so using a waveguide transmission line in place of a
drive coil due to the high frequencies (MHz–GHz) required. Another coil-based AC
susceptometer design [20] uses a high-frequency (MHz) resonant LC “tank circuit”
for the detection with the sample placed in the coil of the inductor L, so that changes
in sample permeability μ at the resonant frequency will change the inductance and
induce a shift in the circuit’s resonance frequency = 1/

√
LC .

As we mention resonant circuits for measuring magnetic properties, it is worth
pointing out the usual AC susceptometer design depicted in Fig. 3 does not
operate near resonance of the LCR circuits comprised of the inductances L, stray
capacitances C, and wire resistances R in the drive or detection wiring. In fact,
measures are taken to avoid exciting any resonances (often occurring in the range
of 0.1–1 MHz) that will induce “ringing” and loss of sensitivity at the measurement
frequency.

Working with an AC Susceptometer

After reading the preceding discussion of the many factors which place limits
on the performance of even the most carefully designed AC susceptometer, the
experimentalist will hopefully appreciate that these factors must be kept in mind
during sample preparation, mounting, and measurement of magnetic properties
using a dynamic technique like AC susceptometry. Starting with the sample itself,
its geometry determines the demagnetizing factor N (see Sect. “Demagnetizing
Factors”). Choosing a regular geometry like a cylinder [21] is often practical; an
ellipsoidal or thin needle-shaped sample is ideal but often not practical. Recall
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that in non-ellipsoidal samples, the magnetization in the sample will not be
homogeneous. One consequence is that the best approximation for N will depend
on how the magnetic moment is measured: if the detection coil height h is much
less than the height of a sample, then it averages the flux over a surface near the
middle of the sample and the fluxmetric Nf should be used, while if the detection
coil measures the entire sample volume, then the magnetometric Nm should be used
(the latter design is depicted in Fig. 3) [22]. AC susceptometers typically measure
the volume averaged magnetic moment, so we will assume N = Nm in this chapter.

The susceptometer’s sample holder should be chosen to be non-magnetic and
uniform along the length which couples to the detection coils. It should also be free
of metallic parts whose geometry allows screening currents to be generated. It is
important to realize that these conditions are never perfectly met, e.g., there is a gap
in the sample holder where the sample is clamped, so the goal for the experimentalist
is to ensure that the sample signal dominates that from the sample holder or that the
sample and holder signals can be separated in post-measurement analysis.

Phase calibration of an AC susceptometer is necessary in order to discern χ
′
and

χ
′ ′

and can be done using a sample with a large signal and known phase such as a
paramagnetic insulator (ϕ = 0) like Dy2O3 or gadolinium gallium garnet (GGG), or
a superconductor at low fields (ϕ = 180

◦
). Phase of the coil response is dependent

on AC frequency and also changes with temperature due to coil thermal contraction
and other instrument background signals mentioned above. Such a reference sample
should be kept at hand, and the experimentalist must check any results against
both the sample blank and this reference sample in order to have confidence in
their conclusions. Since phase calibration is affected by demagnetizing effects, this
correction (Sect. “Demagnetizing Factors”) must be applied to both the reference
and research samples.

An important experimental practice in all cases is to perform the intended
measurement on a sample “blank” in which all materials are present except for the
material under investigation (e.g., the blank substrate on which a superconducting
film will later be deposited).

Amplitude calibration of the AC response is yet more challenging and requires
measuring χ of a standard sample with known magnetic moment over the range
of AC frequency, temperature, and sometimes DC magnetic field relevant to the
experiment. For this reason, many research articles report χ in “arbitrary units (au)”
and focus on identifying phase transitions and analyzing the phase ϕ of the sample’s
response. A susceptometer design [12] which achieves absolute amplitude and
phase calibration of χ uses an in situ calibration scheme to temporarily imbalance
the detection coils by a fixed amount, thus producing a signal which emulates a
paramagnetic sample with a known moment. The sample is placed between the
detection coils (position 3 in Fig. 3, as done when nulling with a trim coil) during
the process so that it does not contribute to the imbalance. This scheme is done at
each measurement point, and the susceptibility is reported in units of m3 (SI) or
emu/Oe (cgs). Dividing by the sample volume produces

∼
χext (see Eq. 8).



76 N. R. Dilley and M. McElfresh

The sample temperature must be monitored during the measurement and there-
fore should be thermally anchored to the susceptometer through a thin layer of
cryogenic grease like Apiezon N or H grease (in the case of a stationary sample
design for low temperatures) or coupled to the susceptometer via >0.1 torr of
helium thermal exchange gas (in the case of a design which allows repositioning of
the sample between detection coils; He exchange gas is effective for temperatures
above 1.5 K). Accurately assessing the sample temperature requires great care in
AC susceptibility measurements, especially at low temperatures, due to thermal
gradients created by Joule heating from the resistance of the drive coil or eddy
current heating in metal parts of the susceptometer or a conducting sample. The
measurement of a sample with strong temperature dependence (say, GGG) at the
temperatures of interest should show an asymptotic approach to thermal equilibrium
as AC drive frequency and AC amplitude decrease. In this sense, the sample is being
used as a thermometer to identify heating in the coil system.

Research Examples

Differential Probe of Magnetism

The in-phase AC susceptibility χ
′

produces a sensitive measure of the local slope
dMdc/dH at low frequencies. This inherently differential measurement reveals subtle
features in the DC magnetization curve that may be lost when numerically differ-
entiating even a very densely spaced Mdc(H) curve. In the context of ferromagnetic
materials, this principle has been used to determine the magnetic anisotropy: the
tendency of the ferromagnetic polarization to align along a certain “easy axis.” The
anisotropy energy can be quantified as an equivalent magnetic field by applying
a large enough DC magnetic field perpendicular to the easy axis (known as the
“hard axis”) to overcome that anisotropy. The anisotropy field HA corresponds to
the saturation in the magnetization (or DC magnetic moment “m (emu)” in Fig.
4) at high fields applied along the hard axis. It was also shown that the transverse
susceptibility χT peaks at the anisotropy field [18], as we mentioned in Sect. “AC
Susceptometer Design”. However, transverse susceptometers are uncommon due
to the inconvenient coil geometry. In one study, it was shown that HA could be
identified using a conventional AC susceptometer [23]. The polycrystalline samples
(with randomly oriented grains) were challenging because only a fraction of the
grains were magnetized along the hard axis during the measurement, while the
rest of the material contributed a large broad background signal due to grains
which were partially or fully aligned with the applied field. Identifying HA within
the Mdc(H) curve is not practical in such a case. The sample’s in-phase AC
susceptibility χ

′
(shown as the dashed line M

′ = χ
′ · Hac in Fig. 4) reveals an

inflection point at HA, which implies that the derivative dχ
′
/dH = d2Mdc/dH2 must

have a peak there. In a finite AC excitation field Hac, it can be shown that, in
addition to the signal from the sample at ω which is proportional to χ

′
, there is
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Fig. 4 Measured high-field
DC magnetic moment m and
AC response of a
polycrystalline ferromagnet;
moments M’ and M” are
defined in the text. (Figure
reproduced from Ref. [23]
with permission from
Elsevier)

3
1.5

1

0.5

20 Hs (kOe)

2

1

0
10

HA

5

10

M
”(

μV
)

m
 (

em
u)

M
’ (

m
V

)
a signal at 2ω which is proportional d2Mdc/dH2 [23], and in Fig. 4, we indeed see
a peak in M

′ ′ = d2Mdc/dH2 (note the difference in notation and that this is not
related to χ

′ ′
). Said differently, d2Mdc/dH2 is the curvature of Mdc(H) which will

peak when the magnetization crosses over from a linear dependence at intermediate
fields to saturation at HA. The lock-in amplifier can easily be set to measure the
2ω signal instead of the fundamental at ω. The 2ω signal depends on the amplitude
of the AC drive as V2ω ∝ H 2

ac (compared to Vω ∝ Hac) because nonlinearity in
the Mdc(H) curve only becomes evident at larger AC drive amplitudes. At larger
amplitude of Hac, the signal of the peak will be higher but broadened due to the
averaging effect of the AC field, so the researcher must determine the optimal
value for Hac for their purposes. This example shows the power of differential
magnetic measurements and AC harmonics analysis in revealing subtle features in
the magnetic response which would otherwise remain hidden. The principles of
using AC modulation to reject large background signals and harmonic detection to
highlight nonlinear responses are important for experimentalists to keep in mind.

Determining the Skin Depth in Conducting Samples

The screening AC susceptibility of a conductor displays a characteristic frequency
dependence which depends on the material resistivity and sample geometry, as
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Fig. 5 Temperature and frequency dependence of AC susceptibility of a Cu cylinder, with arrows
indicating direction of increasing frequency (a and b, left), electrical conductivity derived from the
measurement data (c upper right), and example of magnetic relaxation in a molecular magnet after
calibration correction based on the new Cu cylinder standard (d and e). (Figure reproduced from
Ref. [21] with permission from AIP)

shown in Sect. “Screening”. If a conductor has a known and regular geometry,
then it is possible to measure the electrical resistivity without the need of wire
contacts as is usually required [24]. The authors of Ref. [21] used this principle
to establish a precisely machined copper cylinder as a calibration check of a
commercial AC susceptometer which can be used over the entire temperature range
of the instrument. The temperature dependence of χ

′
and χ

′ ′
for this sample at

various AC drive frequencies from 11 Hz (red) to 1111 Hz (black) is plotted in Figs.
5a and 5b. Arrows in both panels indicate the direction of increasing frequency. The
skin depth (Eq. 14), together with the knowledge that copper resistivity ρ drops at
low temperature, can be used to understand all the features in the data. Using the
theoretical solution for screening in the known cylindrical geometry (in this case,
diameter = height = 5 mm), the temperature dependence of the conductivity (σ
=1/ρ) was also inferred (see Fig. 5c). Note that the diamagnetic screening in χ

′
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increases at lower temperatures due to the drop in ρ and gets close to full screening
for the highest frequency and lowest temperature (full screening corresponds to
χ

′ = −1.45 due to demagnetizing effects in the cylinder). The peak in χ
′ ′

occurs
when δ =0.57r where r is the radius of the cylinder [25], and this peak occurs at
higher temperature when using higher AC frequency. At low frequencies, the skin
depth remains larger than the sample dimension at all temperatures, so there is no
peak in χ

′ ′
. The susceptibility is independent of AC drive field Hac (called “Hm” in

Figs. 5a and 5b) as expected, with drive amplitudes from Hm = 0.8 A/m to 800 A/m
(0.01–10 Oe) indicated by different data symbols which overlay each other except
at lowest AC drive where the precision is poor due to the low signal generated in the
detection coil. After quantifying the temperature-dependent electrical conductivity
of the copper sample, the authors of Ref. [21] go on to propose it as a calibration
standard for AC susceptometry and check it against the standards of Pd and Dy2O3
used in that commercial apparatus. Because of the well-known screening properties
of a copper cylinder, this allowed for a further refinement of the susceptometer at
all temperatures and AC frequencies. The resulting small correction in the phase
ϕ of the AC susceptibility at low temperatures removed a χ

′ ′
< 0 artifact that is

sometimes reported at low temperatures (see Fig. 5e). A negative dissipation is
unphysical, but this systematic error can easily result from a small phase error when
χ

′ � χ
′ ′

as is the case in the molecular magnet sample measured in Figs. 5d and 5e
(see Sect. “Superparamagnetism in Molecular Magnets” for more about molecular
magnetism).

Measuring Spin Relaxation in Magnetic Materials

Relaxation in a Paramagnetic Salt at Low Temperatures

One of the primary applications of AC susceptibility is possibly in its power to
quantify temperature and field dependence of magnetic relaxation owing to the
broad frequency range accessible to AC susceptometers. Casimir and du Pré [26]
may have been the first to analyze slow-spin relaxation observed in a magnetic
material. Their goal was to understand data on the AC magnetic properties of a
paramagnetic salt, an insulating material with large magnetic moments which follow
the χdc∼1/T Curie paramagnetic law down to very low temperatures T < 1 K. The
application of a small magnetic field produces some magnetic alignment of the spins
with the field, and this large decrease in magnetic entropy leads to an increase in
the temperature of the spins due to thermodynamics (this magnetocaloric effect is
exploited for magnetic refrigeration). Both these effects take place instantly on the
time scale of a typical AC susceptometer. However, the heat generated in the spins
must equilibrate with the rest of the crystal lattice, and at very low temperature,
the spin-lattice thermal coupling is weak so that the thermal time constant for the
sample under study in Ref. [26] was τ SL ∼ 0.01 seconds. The cooling of the spins
during thermal equilibration produces a large change in the magnetic susceptibility
according to the 1/T Curie law, and this is registered easily on the susceptometer
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as a magnetic relaxation. The time dependence of the relaxation is found to
follow the Debye relaxation model mentioned earlier where the response at low
frequencies (ω �1/τ SL) is referred to as the isothermal susceptibility because the
spins have time to thermally equilibrate with the lattice, while at high frequencies
(ω � 1/τ SL), the spin temperature fluctuates too fast to exchange any heat with
the lattice, and this limit is referred to as the adiabatic susceptibility. The peak in
χ

′ ′
occurs for ω ≈ 1/τ SL because the spin heat is continually being dissipated to

the lattice during the measurement. At low frequencies, χ
′ ′ → 0 in the DC field

limit, and at high frequencies, χ
′ ′ → 0 because no heat is exchanged. Note that the

adiabatic susceptibility (χ
′
(ω → ∞)) is zero in the simple Debye model we have

described in Sect. “Magnetic Relaxation”, but in the above example, there is clearly
a paramagnetic response of the spins at high frequencies, so a constant χS must be
added to χ

′
in Eq. 11. Because an adiabatic magnetic response is often present in

systems studied for spin relaxation phenomena, the χS term is included in order to
fit the experimental data to the model.

Superparamagnetism in Molecular Magnets

Single-domain ferromagnetic materials at the nanoscale can fluctuate spontaneously
when the energy barrier to spin reversal EA � kBT, where kB is the Boltzmann
constant and T is the temperature in kelvin. The barrier EA = KV, where V
is the particle volume and K is the ferromagnet’s intrinsic magnetic anisotropy
energy density which causes the spins to align along a certain easy axis. This
behavior is termed superparamagnetism since the single-domain particle behaves as
a paramagnetic macrospin and follows the Curie law at high temperature. At lower
temperatures such that kBT < KV, thermal spin reversal is slowed, and the magnetic
relaxation time constant τ becomes observable with AC susceptometry. For particles
which are immobilized and non-interacting, there will be a single time constant
which follows the Arrhenius law for thermal activation over a barrier, which in the
context of superparamagnets is also referred to as Néel relaxation: τN = τ0e

KV/kBT .
The inverse attempt frequency τ 0 is a material property and sets the lower bound
for the reversal time. It is typically assumed to be on the order of 10−9 s but can
be 2–3 orders of magnitude longer in some cases. Particle size will greatly affect
the dynamics due to the exponential dependence on particle volume, so it is very
helpful to have a narrow distribution of particle sizes. Remarkably, it is possible
to chemically synthesize bulk crystals of identical superparamagnets such as the
Mn12Ac cluster [27] in which the clusters of 12 Mn ions are isolated from each other
by organic ligands (abbreviated as “Ac” in the chemical formula) and magnetically
order at very low temperatures with a total spin S = 10. Fig. 6 plots the temperature
dependence of AC susceptibility at various AC frequencies from 10 to 1000 Hz
where χ

′
(data points) has a crossover from the Curie 1/T trend at high temperature

to a low susceptibility at low temperature where spin reversal is blocked, while χ
′ ′

(lines) shows a peak which occurs when ω·τN ∼ 1. This is akin to Fig. 1 inverted
along the x-axis where high temperatures correspond to short τN and vice versa.
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Fig. 6 Blocking behavior in molecular magnet Mn12 complex revealed in the temperature
dependence of χ’ (data points) and χ” (lines) at various AC frequencies. The peaks shift to
higher temperature as frequency increases. (Figure reproduced from Ref. [27] with permission
from Elsevier)

Plotting τN vs. T found at various frequencies and fitting to the Néel relaxation
equation reveals the material properties KV and τ 0. The time constant in the low-
temperature “blocked” state is so slow that molecular magnets display magnetic
hysteresis in Mdc(H) with high coercivity and dramatic step-like features in the
field dependence which are interpreted as resonant magnetic tunneling between spin
multiplet states [28]. The peak in χ

′ ′
(T) identifies a “blocking temperature” TB, but

it is important to note that the value depends directly on the AC frequency as seen in
Fig. 6 and in the Néel relaxation equation which shows an exponential temperature
dependence of relaxation time.

Superparamagnetism in Nanoparticles

Magnetic nanoparticles coupled to drugs or other functional biological units are
of great interest in medicine due to the ability to move them to a target region
remotely with magnetic field gradients (DC magnetic fields pass through the body
essentially unhindered). Furthermore, magnetic relaxation of the particles in AC
magnetic fields can be exploited by choosing an AC frequency to match the peak
in χ

′ ′
and generate localized heating, referred to as magnetic hyperthermia. AC

susceptibility is a critical tool in this field which is used to characterize the particle
sizes and magnetic properties in order to determine their suitability for applications.
The nanoparticles in this case are in a liquid solution, unlike the above example of
molecular magnets which are locked in a crystal lattice. To prevent agglomeration of
the magnetic material due to dipole interactions between particles, each must have
a sufficiently thick non-magnetic coating around it. In addition to Néel relaxation
explained in the previous example, magnetic particles in solution are able to change
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Fig. 7 Brownian relaxation of superparamagnetic nanoparticles of iron oxide. (Figure reproduced
from Ref. [29] with permission from Elsevier)

the direction of the magnetic moment in an applied field by physical rotation
of the whole particle. This is known as Brownian relaxation, and it follows the
law: τB = (πηDH

3)/(2kBT), where η is the dynamic viscosity of the fluid, and
DH is the hydrodynamic diameter of the particle including the magnetic core and
coatings. The time constant depends linearly on hydrodynamic volume, in contrast
to Néel relaxation which has an exponential dependence on core volume. At small
particle sizes, the time scales for these two relaxation mechanisms can overlap and
complicate the determination of either the hydrodynamic size or core volume. The
frequency-dependent AC properties of an aqueous solution of magnetite (Fe3O4)
nanoparticles coated with dextran, a water-soluble polysaccharide, are shown in
Fig. 7 [29]. The average DH of the particles was found to be 116 nm, and in this
regime, τN � τB so that the shift in the observed peak in χ

′ ′
can be attributed to

a change in DH between the dextran-coated particles (“uncoated MNP” in Fig. 7)
and those with an additional RGD tripeptide polymer. The shift to lower frequencies
was found to correspond to an increase in the hydrodynamic diameter of 6 nm which
was attributable to the tripeptide molecule.

Spin Glasses

While the freezing of magnetic fluctuations in superparamagnets can be explained
by the magnetic properties of non-interacting particles, spin freezing can also occur
at low temperatures due to magnetic frustration, and at the freezing temperature
Tg, it will lead to a sharp peak in χ

′
and an onset of dissipation in χ

′ ′
below Tg.

In some solids, there are interacting magnetic moments, yet there is no transition
to a periodic long-range order at low temperatures (e.g., ferro-, ferri-, or anti-
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Fig. 8 Spin glass freezing in
AuMn (2.98 at % Mn).
(Figure reproduced from Ref.
[30] with permission from
APS)

ferromagnetic). The magnetic interactions between moments vary in direction
and magnitude non-periodically in the material, and this leads to a collective
freezing at low temperatures in one of the many possible metastable configurations.
“Frustration” refers to the inability of the ensemble of moments to find a unique
spin arrangement which minimizes the energy of the system. In disordered alloys,
this is known as a spin glass, while in crystallographically ordered but magnetically
frustrated systems, it is called a spin ice. The most thoroughly studied spin glass
systems are disordered alloys of a nonmagnetic metallic host with a few percent
of a miscible magnetic element substituting at random sites, e.g., AuMn, CuMn,
AgMn, AuFe, or CuCo. In Fig. 8 are temperature-dependent AC data on AuMn
alloy (3% Mn), where a freezing temperature was identified by a sharp peak in
χ

′
and also a dissipation (χ

′ ′
) peak similar to the molecular magnet from Fig.

6. However, unlike the molecular magnet blocking behavior, the χ
′

peak in spin
glasses is very weakly dependent on AC frequency. Note that the researchers took
care to remove screening effects from the conducting sample by crushing the sample
and mixing it with Al2O3 powder to electrically isolate the grains. Due to the fact
that magnetic interactions are central to the spin glass state, it is understandable
that the simple Debye model for non-interacting spins does not fit the observed
frequency dependence of the AC response. Regarding the temperature dependence,
a modification to Arrhenius activation, known as the Vogel-Fulcher law, is seen to
fit spin glass systems:τ = τ0e

E/kB(T−T0) where E is an activation energy and T0

is a parameter which describes the strength of the interactions between moments
and represents the temperature at which the relaxation time diverges. Note that
this will be below the experimentally determined Tg due to the finite time scale
of measurements.

As relaxation becomes slower than the longest time scale for conventional
AC susceptometry (τmax ≈ 1 s), researchers turn to SQUID AC susceptometry
(τmax ≈ 1 min) or relaxation using repeated measurements of the DC magnetic
moment (τmax ≈ 1 day). Any slow measurements are plagued by instrument
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and environmental drifts, so it is crucial to separate background and sample
contributions. Methods to achieve this include measuring a “null” reference sample
of similar signal size which shows no relaxation or a “blank” without any sample to
rule out other instrument drifts.

Temperature-dependent DC magnetometry Mdc(T) also provides a method of
revealing the onset of magnetic irreversibility that occurs at freezing transitions
(frustrated spin systems, superparamagnets) or magnetic phase transitions. The
usual “ZFC/FC” method is to cool the sample in zero field well below the transition
temperature of interest (ZFC), apply a small magnetic field (typically 1–10 mT),
start measurements while warming through the transition until well above it, and
continue measurements in the applied field upon cooling again (FC). The ZFC and
FC curves will separate at an irreversibility temperature that is related to the peak in
χ

′
and for a similar reason: irreversibility appears at a temperature where magnetic

relaxation of the moments becomes much longer than the measurement time for
a DC magnetic measurement (1–10 s). The ZFC/FC method is also used in the
superconducting state to probe the onset of flux pinning (to be discussed in the next
section).

Superconductivity

Superconductors are a certain class of conductors which undergo a phase transition
at low temperatures to a state of zero electrical resistance. They have the remarkable
property that under certain circumstances the magnetic field is spontaneously
expelled from the interior: B = 0, or χ = −1. However, in all cases, the interaction
with a magnetic field is very different from other materials. As we have pointed
out in Sect. “Theory of AC Susceptibility”, we can expect signatures in the AC
susceptibility arising from both the dramatic change in resistivity (producing a
peak in χ

′ ′
due to screening) and the onset of strong diamagnetism (χ

′
< 0) that

occurs in the superconducting state. The situation becomes even more subtle when
a magnetic field is applied at T < Tc and the perfect diamagnetic state yields to the
mixed state in which magnetic field penetrates into the superconductor in the form of
quantized flux lines. This vortex matter can take the form of a periodic or disordered
lattice and interacts with defects (voids, grain boundaries, inclusions, etc.) in the
superconductor, which tend to pin them in place. Depending on conditions, the
lattice can behave as a solid or glass (pinned strongly by defects) or a liquid (free
to move under magnetic forces). The magnetism of the vortex matter under AC and
DC applied fields, together with the diamagnetism of the superconducting state and
the screening properties of electrically connected regions of the superconductor,
richly showcases both magnetic relaxation and screening phenomena at the same
time and requires careful examination in order to identify the relevant physics in a
given measurement of AC susceptibility. We will describe one such superconductor
system below in order to illustrate these points.

There are thousands of materials that are known to superconduct, including
elements, intermetallic compounds and alloys, ceramics, and even organic com-
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Fig. 9 (a) Temperature dependence the first and third harmonic AC voltages for a YBa2Cu3O7
(YBCO) thin film; (b) frequency dependence of the onset of the AC response for a YBa2Cu3O7
(YBCO) thin film; (c) H(T) boundaries determined using different experimental methods for a
YBa2Cu3O7 (YBCO) thin film. (Figures a–c reproduced from Ref. [34] with permission from
APS)

pounds. The onset temperature for superconductivity (Tc) was observed to be
below 30 K in all of these materials until a large new class of copper oxide-based
ceramics were discovered in the 1980s which became known as high-temperature
superconductors (HTS) because the Tc could be as high as 150 K (the highest
Tc values, however, have been recently reported in hydrides when subjected to
extremely high hydrostatic pressures, with LaH10 currently holding the record of
Tc ≈ 250 K at a pressure of P = 170 GPa [31]).

Prior to the discovery of HTS materials, it was very common to use AC suscep-
tibility and electrical transport measurements interchangeably when determining Tc

and its dependence on applied magnetic field, H. Although many understood that
these measurements were actually measuring different phenomena—a voltage drop
in one case and screening in the other—it is the rapid change in resistivity as Tc is
approached in these low-Tc materials that results in a near coincidence of the two
measurements. The resistivity is measured directly in one case, and in the other,
the change in resistivity results in a change in the screening depth which produces
the conditions for the behavior shown in Fig. 9a, in which the AC susceptibility
loss component (χ”) goes through a maximum when the penetration depth is on the
order of the sample dimension. To have this coincidence of measurements required
that there was an onset of strong flux pinning at Tc.
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After the discovery of HTS materials, what was initially thought to be Tc(H) was
observed to follow a glass-like dependence [(1 − t)3/2 where t = T/Tc], and for a
time, this dependence was attributed to the combination of low coherence length
and granular nature of the earliest HTS samples [32]. However, after studying high-
quality single-crystal and thin-film YBCO samples, it became clear that the onset
of strong flux pinning was in all cases following a glass-like dependence and a
new region of the field-temperature (H-T) diagram existed between the onset of
superconductivity, which became identified as Tc2(H) [33] and the boundary where
flux pinning was strong enough to allow a persistence condition (ρ = 0). This is
referred to as the vortex glass transition Tg(H) which is the same boundary initially
thought to be Tc(H) for HTS materials. In the HTS case, the results of the two
measurements no longer coincided in applied magnetic fields. Within this region
between Tc2(H) and Tg(H), the sample is superconducting and flux vortices exist,
but their pinning is not strong enough to maintain a persistent state.

Shown in Fig. 9a are χ for a YBCO film with an applied field Hdc = 1 T, AC
field Hac = 0.8 mT, at f = 70 kHz. Both DC and AC fields are applied normal to the
surface of the film. Several features are notable including the fact that both the first
and third harmonic χ(T) change temperature dependence at the same temperature
identified as Ton(H) in Fig. 9a. In contrast to earlier suggestions, which identified
the peak in the first harmonic as Tc2 and the peak in the third harmonic as Tg, it
can be seen in the superconducting H-T phase diagram in Fig. 9c that the spread in
temperature between Tc2 and Tg at H = 1 T is actually much larger than the first and
third harmonic peak separations and the order in temperature is actually reversed,
i.e., the third harmonic peak is higher in T, not lower.

In order to better understand what phenomena are actually being measured by
AC susceptometry, the results of DC magnetization and E-J transport measurements
(voltage-current curves normalized to the sample dimensions) are included in the
H-T diagram in Fig. 9c [34] for a YBCO thin film with H applied normal to the
film surface. The E-J transport curves were used to determine several of these
boundaries that can help provide insight into the χ measurements. From the E-J
isotherms, the temperature at which the curvature changes from positive to negative
identifies the boundary below which a persistent state exists, identified as Tg, while
Tohm identifies the temperature above which only dissipative behavior (linear E-
J) is observed. The onset Ton of the change in χ is observed between Tg and
Tohm for reasons to be discussed below. The onset of superconductivity, Tc2(H),
is estimated from DC magnetization using Ginzburg-Landau theory of reversible
superconductors with knowledge of the penetration depth and coherence length [33],
while Tdc is the point where irreversibility appeared in the temperature-dependent
DC magnetization ZFC/FCC measurements and was the method originally used to
try to measure Tc(H).

Either the temperature of the peak (Tp, as described in Sect. “Theory of AC
Susceptibility”) or the onset of the χ′′ screening response can be used to identify
the point where the resistivity condition is such that the screening skin depth, δ,
is on the order of the sample size [35]. In Fig. 9c, the temperature of the onset
Ton of both first and third harmonic χac responses, measured at f = 70 kHz, is
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plotted as a function of H and is seen to fall well above Tg . Plotted in Fig. 9b is
Ton at H = 5 T measured over a range of frequencies. Fig. 9b fits the data to the
form Ton(f ) = Tg + C(2π f ){1/[(z − 1)ν]} with z = 6.8 and ν = 1.7 determined from
scaling of the E-J data using the vortex glass model of Fisher [36] which allows
the determination Tg by extrapolation to f = 0. This frequency dependence results
from the existence of a metastable current (or magnetization) above Tg. Due to this
frequency dependence, it is not possible to determine Tg from a temperature sweep
at a single frequency; however, measuring Ton at a series of frequencies allows a
fairly accurate determination of Tg to be made using AC susceptometry.

In a high-field superconductor with vortex pinning, the presence of a third
harmonic in AC susceptibility is a direct consequence of magnetic hysteresis during
the AC excitation as pointed out by Bean [37]. Within the model for flux pinning put
forward in that work, the predicted third harmonic magnetization M3 ∝ 1/Jc, which
explains qualitatively the peak in χ ′

3 near Tc. While the Bean model is applicable
to HTS below Tg, where time-independent hysteresis loops in DC magnetization
are observed, it is not completely clear that this model applies when flux pinning is
weak, and DC hysteresis loops are not observable, as it is in the region between Tg

and Tc2, yet a third harmonic is observed in that region. This is, however, consistent
with the metastable vortex state and associated magnetic relaxation mentioned
above [36].

We have seen that the AC susceptibility measurements of HTS were initially
misunderstood as it was not appreciated that the physics of HTS was different than
that of low-Tc superconductors. The combination of effects occurring in HTS could
not have been understood nor distinguished without additional measurements and
a relevant theory to explain the physics. In addition, the physics of HTS is such
that measurement at a single frequency cannot identify the key feature (Tg) that AC
susceptometry excels at identifying. The sensitivity of AC susceptometry to all of
the relevant phenomena can be both a strength and a liability. The hatched region in
Fig. 9c shows that we can measure crossovers that are dependent on frequency and
not just phase transitions.

Summary

As has been shown, AC susceptibility is a very versatile method that can be used
to study magnetic relaxation phenomena, changes in resistance of materials, and
magnetic susceptibility. It can be a fairly simple method to implement and has been
widely used for rapid screening of materials. This is especially true of phenomena
like phase transitions where a variable like temperature or magnetic field can be
swept and the location of the transition or crossover observed. The sample can
be held stationary, and it usually does not require a specific geometry, thereby
simplifying sample preparation and allowing for relatively rapid measurements. In
addition, electrical contacts are not needed.



88 N. R. Dilley and M. McElfresh

The fact that there are different ways that the AC susceptibility signal can be
generated means that additional independent measurements are generally required
to understand the physics that is producing the observed response. We saw that in the
case of HTS, AC susceptibility results were initially improperly interpreted and that
it took some time before the behavior could be understood. This required various
other measurements to clarify the associated observations. Initial misunderstandings
resulted primarily from assumptions and methods used in the past on low-Tc

superconductors which were no longer valid for the new HTS materials.
AC susceptibility measurements can also be complicated by the competition

between screening of a sample’s interior—due to the sample’s conductivity—and
other phenomena to be observed, like magnetic susceptibility or relaxation. In
addition, the temperature dependence of a sample’s conductivity can add further
complexity to a measurement.

AC susceptibility can be used to quantitatively determine physical parameters
like resistivity or magnetic susceptibility. In this case, the measurement is more
involved, and the system will require much more care including calibration and runs
with control samples. Several commercially available systems exist that allow for
quantitative measurements of physical properties, but the need for control samples
and calibration checks is just as great in these systems.
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DC Hysteresigraphs for Hard and Soft
Materials

Thomas Bapu

Abstract The DC hysteresigraphs we are discussing here are devices that utilize
an inductive magnetic measurement technique combined with a closed magnetic
circuit for the evaluation of the magnetic material properties of bulk samples. Two
distinct variants of these machines will be discussed to cover both hard and soft
magnetic material testing of larger, bulk physical samples. The DC hysteresigraph
for hard magnetic materials is focused on the measurement of higher-coercivity
magnetic materials such as permanent magnets. It utilizes a high-field (1–3 T)
laboratory electromagnet yoke to magnetize the sample under test and create the
closed magnetic circuit during the measurement. The DC hysteresigraph for soft
magnetic materials utilizes a toroidal/ring-shaped specimen of the sample under
test as the closed magnetic circuit itself and incorporates windings about the toroid
to magnetize the sample. Once magnetized, inductive coil sensing is utilized in
both devices to acquire flux density information while varying the applied field.
Depending on the device, this reveals either the second quadrant demagnetization
curve or the entire major magnetic hysteresis loop and associated magnetic material
properties for the sample under test.
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1 Introduction to DC Hysteresigraphs for Hard Magnetic
Materials

We will begin with the DC hysteresigraphs for hard magnetic materials. These
devices were designed with the purpose of measuring the properties of permanent
magnets. They are essential equipment in permanent magnet material manufac-
turer’s sites as well as their customer’s facilities for ongoing quality control
(QC) evaluation and refinement of product. They are also found in testing labs
for independent evaluation of material properties as well as laboratories focused
on research of novel permanent magnet materials as they draw closer to their
production form (Fig. 1).

In typical use, a saturated sample under test is placed within the air gap of
a laboratory electromagnet. Inductive sensing coils read the flux density from
the sample. Current from a magnet power supply applies an increasing negative
magnetizing field to the sample sufficient to drive the sample through its second
quadrant demagnetization curve. The curve is processed to reveal various material
properties of the permanent magnet, as show in Fig. 2 below. If the sample began
the measurement in a saturated magnetic state, these properties are representative of
data from the major hysteresis loop.

Higher-coercivity samples require external equipment such as capacitive dis-
charge magnetizers to saturate the sample prior to test. But with a sufficiently
high-field electromagnet, some materials with lower coercivities can be fully

Fig. 1 DC hysteresigraph for hard materials with electromagnet, power supply, and instrumenta-
tion, courtesy of Lake Shore Cryotronics [1]
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Fig. 2 Second quadrant demagnetization curve

magnetized and reverse magnetized within the magnet yoke, allowing the entire
hysteresis loop to be measured. The initial magnetization curve and recoil loops
may also be acquired with the device. Measurements at variable temperatures are
possible with the correct supplemental equipment.

2 Why Do we Need a DC Hysteresigraph for Hard Magnetic
Materials?

In the modern era, there is some overlap between this device and other measurement
technologies. Simpler devices such as Helmholtz coils coupled with integrating
fluxmeters or more complex equipment such as VSMs [2] and SQUIDs [3] can also
be used to perform similar measurements. But those devices are not as well suited
for the specific task at hand. VSMs and SQUIDs cannot be used with very large or
massive samples, or if the material being measured is so strongly magnetic that it
overloads the VSM or SQUID detection circuitry. Helmholtz coils only measure a
single operating point on the hysteresis loop. And all of these techniques measure
samples in an open magnetic circuit condition which requires corrections for sample
demagnetization to accurately determine intrinsic material parameters.

A DC hysteresigraph for hard magnetic materials is optimized to perform rapid
magnetic measurements of permanent magnet materials in their larger, bulk form
while operating within a closed magnetic circuit. A closed magnetic circuit is ideally
free of the self-demagnetization fields (and associated corrections) that exist when
a bulk sample is tested in an open-circuit condition.
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In an open-circuit condition, the applied magnetic field strength, Happ, is
modified by the following equation to resolve the resultant H internal field, Hint
[4]:

Hint = Happ − NdM

where
Hint = internal or effective field, seen by sample [A/m].
Happ = applied magnetic field strength [A/m].
Nd = sample under test demagnetization factor.
M = volume magnetization of the sample under test [A/m].
and:

B = μ0 (H + M.)

where
B = magnetic flux density [Tesla]
μ0 = permeability of free space = 4π x 10−7 [Henry/m]

Failure to correct this error alters the H field and distorts the M vs. H loop shapes
during open-circuit testing.

Magnetic circuit closure during measurement of magnetic material properties is
of primary concern when a sample’s magnetic length dimension is small compared
to the dimensions of its cross-section or diameter. This is a common condition for
samples diced or cored from production permanent magnet geometries. A large
length to cross-section or diameter ratio minimizes the impact of self-demagnetizing
fields. Bulk samples, however, generally have a very poor ratio, often less than 1, so
they are heavily influenced by self-demagnetization fields. Bulk permanent magnet
samples are typically larger than 3 mm × 3 mm in cross-section and greater than
3 mm in magnetic length dimension, with typical samples in the 10 mm cube or
cylinder range. Maximum sample dimensions are limited by the size of the pole cap
and field uniformity.

Tables of self-demagnetization correction factors (Nd) do exist for simple, ideal
shapes (cylinders, ellipsoids, etc.) [5, 6]. However, in practice, applying analytically
determined correction factors to samples being measured does not always yield
accurate corrections. And if the corrected loop shapes appear unnaturally overcor-
rected or undercorrected (as indicated by “shear” in the shape of the hysteresis loop
as shown in Fig. 3), the user’s best guess for correction factors replaces analytical
data tables, making the resulting measurement exercise somewhat subjective. DC
hysteresigraphs utilize a closed magnetic circuit path. This provides for accurate
determination of the second quadrant of the major hysteresis loop without the need
for self-demagnetization field corrections.
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Fig. 3 Sheared and corrected hysteresis loop

3 Materials to Test

Alnico, hard ferrites, samarium cobalt (SmCo), and neodymium iron boron (NdFeB)
permanent magnets are some of the materials most frequently measured by
such equipment. But new classes of materials such as MnBi and nanostructured
exchange-coupled soft (low coercivity)/hard (high coercivity) materials commonly
referred to as exchange-spring magnets [7, 8] are now being developed and
analyzed toward eventual commercialization. These developments are motivated by
procurement concerns and the rising cost of rare-earth materials used today in the
higher energy product (BHmax) materials such as SmCo and NdFeB. The goal is to
develop permanent magnet materials with high energy product but with either no or
less rare-earth constituents.

Some testing of soft magnetic materials is possible with this type of equipment,
but it requires more care from the operator to ensure greater attention is paid to
minimize air gaps in the sample to pole cap interfaces to avoid self-demagnetizing
field effects. But typically, soft magnetic material specimens with coercivities below
8000 A/m are not evaluated with a large laboratory electromagnet. A return path
with greater precision, such as a double Fahy-type yoke [9], is preferred. A Fahy-
type yoke has provisions for the sample to be clamped to the ends of a C-shaped
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iron return path to minimize air gaps in the circuit. A double Fahy yoke duplicates
the C-shaped structure to create a more symmetric return path and is represented in
Fig. 15.

In addition to testing homogenous, solid bulk hard magnetic samples, ferrofluids
may also be measured, but some interpretation of the results is required due to
effects related to shear forces in the suspended media. Thin-film samples are
not compatible with this measurement technique due to instrument sensitivity
limitations.

4 Theory

In order to extract the magnetic material properties from bulk test samples of
permanent magnet materials, we need to start with the basic relation between
magnetic flux density, magnetic polarization, and magnetic field strength [10]. In
SI units:

B = μ0H + J (1)

Magnetic polarization, J, is commonly represented on the Y axis for hysteresi-
graph measurements as opposed to volume magnetization, M. They are related as
follows:

J = μ0M

Sensing coils will inductively measure B. With the addition of an H field sensor,
typically an H coil of similar sensitivity to the B coil, we have enough information
to determine B, H, and J. Coaxial B and H sense coils in an electromagnet gap are
illustrated in Fig. 4.

Since the sensing coils are inductive devices, an electronic fluxmeter is per-
forming the integration of the induced voltages due to the flux linked by the B
surrounding coil as the magnetic field varies. The apparent change in magnetic flux
density is determined using the fluxmeter’s integrated voltage divided by the area of
the coil and number of turns. Here, we will follow IEC 60404–5 derivations [10]:

ΔBap = B2 − B1 = 1

AN

∫ t2

t1

Udt

where
B2 = magnetic flux density at instant 2 [Tesla]
B1 = magnetic flux density at instant 1 [Tesla]
A = cross-sectional area of sample under test [m2]
N = number of turns on the search coil∫ t2
t1
Udt = integrated induced voltage from time t1 to t2 [Weber’s]
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Fig. 4 Coaxial B and H sense coil in electromagnet gap

Since the B surrounding coil contains a combination of sample flux and air flux,
we need to remove the air flux contribution to arrive at the change in magnetic flux
density of the sample:

ΔB = ΔBap − μ0ΔH
(At − A)

A

where
ΔH = change in magnetic field strength [A/m]
At = cross-section of search coil [m2]

The magnetic field strength, H, can be obtained with the presence of another coil,
similar in sensitivity to the B coil. This H sensing coil can be located next to the B
coil and sample. If the H coil is similar in shape to the B coil and situated beside the
B coil, the coil set is said to be using a side-by-side coil arrangement as shown in
Fig. 5 below.

The side-by-side coil arrangement has the effect of measuring the H field in
a localized area off to one side of the sample, and cannot sense the air flux
immediately surrounding the sample. An alternative coil arrangement can remedy
this. Winding an H coil with a sensing area that immediately surrounds the
periphery of the B coil eliminates the localized area concern and “sees” the H
field immediately surrounding the sample. Shrinking this coil’s diameter so the
entirety of the H coil is located very close to the B coil further improves the coil’s
ability to “see” the same H field as the B coil and sample. This is referred to as a
coaxial coil arrangement. Side-by-side coils are useful in variable temperature coil
sets as their symmetric shapes can counter some errors that occur during thermal
expansion/contraction.
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Fig. 5 Two common B and
H coil set configurations

Other variations in coil set design and signal acquisition exist. In some circum-
stances, a Hall probe and Gaussmeter are used to acquire magnetic field strength,
instead of an H coil. However, the use of an H coil and fluxmeter is preferred as it
enables the use of the superior surrounding H coil technique, described earlier.

In a DC hysteresigraph, magnetic polarization, J, cannot be directly acquired
from a simple coil wound around a sample under test [11]. J must be extracted from
the acquired B and μ0H acquisition channels exploiting the fact that J = B − μ0H.
This can be performed pre- or post-fluxmeter integration. The post-fluxmeter
calculation primarily involves mathematical subtraction of the integrated voltages.
Pre-fluxmeter methods subtract μ0H from the B coil electrically to create a J-
compensated coil set. The B and H coils can be balanced and wired in series
opposition to generate J instead of B. The J and H signal are then sent to
independent integrating fluxmeters. This results in a coil set specifically optimized
for extraction of magnetic polarization, J.

For simplicity, only B and H coils are shown in the block diagrams (J is
calculated post-fluxmeter).

5 Measurement Equipment/Block Diagram

Figure 6 shows a block diagram of a typical DC hysteresigraph for hard mag-
netic materials. The laboratory electromagnet provides the applied field for the
measurement and the magnetic yoke to close the magnetic circuit path. The
electromagnet should provide sufficient field uniformity within the measurement
volume containing the sample under test and associated coils. The electromagnet
should have an easy-to-manipulate pole adjuster and locking mechanism to fine-
tune the air gap of the electromagnet to specifically fit the length of each sample
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Fig. 6 Block diagram of DC hysteresigraph for hard materials

under test. Typically, a 2:1 ratio of pole cap face diameter to magnet air gap is
utilized. That, along with a few other geometric constraints, ensures a 1% field
uniformity in the volume where the sample and sensors reside. For convenience
with sample exchange, a vertical field orientation is preferred. The lower pole of the
electromagnet is generally held in a fixed location, while the upper pole height is
manipulated to accommodate various sample lengths.

A magnet power supply must energize the electromagnet to sufficiently high
magnetic fields. For second quadrant demagnetization curves, it should be able to
drive the sample beyond the intrinsic coercivity field HcJ of the sample under test.
To measure an entire major hysteresis loop, the electromagnet and power supply
combination must provide sufficient magnetizing field to fully saturate the sample
in both forward and reverse field directions. A bipolar magnet power supply or other
design with a smooth zero-current crossing is useful to avoid discontinuities in the
measurements near zero field. Since the measurement incorporates a continuously
varying field, a variety of methods can be utilized to control field. This can range
from simple, linear programming of a voltage mode power supply to utilization of
current mode supplies and more sophisticated proportional-integral-derivative (PID)
field control loops.

A B,H coil set incorporating inductive sensing coils will be used to measure
flux from the sample and magnetizing field during the measurement. These will
be connected to electronic integrating fluxmeters. Since electronic fluxmeters drift,
a fluxmeter with a microprocessor-aided integrator drift feature is preferred for
minimal user interaction in managing integrator drift.

A Hall effect gaussmeter will be used in the process of calibration. It can be used
for measuring magnetizing fields when calibrating sense coil area turns for the B or
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H coils. They may also be used for setting magnetizing fields as part of a calibration
method using physical standard reference materials for B coils.

High-purity nickel is often used as a material reference standard for B channels
of hysteresigraphs. NIST does not offer reference standards in suitable shapes and
sizes for DC hysteresigraphs for hard magnetic materials. Therefore, anneal state
and purity should be well understood when using standards. Typically 99.995%
or higher-purity nickel is used. Transfer standards comprised of well-characterized
reference magnets may also be used for calibration or system verification. Com-
pensation for the temperature coefficient of induction of the reference material is
required to account for variation in temperature during instrument calibration.

A personal computer (PC) is used to acquire voltages from the fluxmeters and
gaussmeter. The PC can also handle field sweep programming for the electromagnet
power supply. The complexity of the field sweep is up to the user to determine.
Typically, the sweep is slow enough to minimize eddy current effects. Second
quadrant demagnetization curve sweep times on the order of tens of seconds
to a couple minutes are typically employed to yield a reasonable compromise
between going slow enough to extract DC properties and going fast enough to
minimize integrator drift in the fluxmeter. An example of a typical second quadrant
demagnetization curve is shown in Fig. 7.

6 Making a Measurement

Next, we will go through the process of performing a measurement:

1. Optionally saturate the sample under test in an external magnetizer (in the case
of high-coercivity samples that cannot be saturated in the electromagnet).

2. Introduce sample under test.

(a) Remove the B and H coil set from the electromagnet gap.
(b) Reset the fluxmeter integrators to establish a zero flux reference.
(c) Insert the sample under test in the coil set, and place the coil set into the

electromagnet gap.
(d) Fine-tune the electromagnet gap to fit the sample length.

3. Magnetize sample under test.

(a) Fully magnetize the electromagnet in the positive field direction.
(b) Reduce the current to zero quickly, within the limitations of the magnet

power supply.

4. Smoothly increase negative magnetizing field, and continue demagnetization of
the sample until intrinsic coercivity, HcJ, is reached. (The B vs. H and J vs. H
curves are calculated and plotted during the sweep).
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Fig. 7 Measurement of the second quadrant demagnetization curve

5. Return the field to 0.
6. Remove the coil set from the electromagnet and the sample under test from the

coil set.
7. Check integrator drift by determining how far the indicated flux reading is from

zero established in step 2b.

The data that was acquired reveals a second quadrant demagnetization curve.
Various parameters can now be extracted from the curve, but the most common
include but are not limited to:

Br or Jr, remanence, [tesla].
Hc or HcB, normal coercivity [A/m].
Hci or HcJ, intrinsic coercivity [A/m].
(BH)max, maximum energy product [J/m3].
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Sample Magnetization

To determine the material properties of a sample, the sample under test must be
magnetically saturated. For lower-coercivity samples, this simply involves magne-
tizing within the gap of the electromagnet until saturation is achieved. Typically, an
applied field of three to five times the coercivity field is required. For high-coercivity
magnets, this is not possible within the electromagnet gap. In those instances, a
separate apparatus is used to achieve saturation. Often, a capacitive discharge pulse
magnetizer is used. The magnetizer stores energy in an array of capacitor banks and
then quickly discharges this energy in the form of a rapid, very high-current pulse
(on the order of 100,000 Amperes) into a low turns count and low inductance air
core solenoid that contains the sample under test.

Since external magnetization occurs in a separate device, an open-circuit condi-
tion will be seen by the sample prior to return to the electromagnet for measurement.
It is accepted that a saturated, high-coercivity sample placed into the closed
magnetic circuit of the hysteresigraph and re-magnetized beyond +1600 kA/m will
regain most of the flux density lost by the prior open-circuit condition. This is an
experimental reality.

Initial Curves

If an initial curve is to be performed, the sample should be demagnetized prior
to the measurement. This is often performed in the electromagnet yoke. Apply a
current high enough to saturate the sample, and then perform an alternating polarity
decay of field in sufficiently small steps to smoothly demagnetize the sample to zero
induction.

7 Alternative Measurement Sensors

Both the B,H surrounding coaxial coil arrangement and the B,H side-by-side coil
arrangement utilize a non-magnetic structure (usually phenolic) to house the coil
set. This phenolic structure is inserted and removed into the electromagnet air gap
during each test cycle and is optimized for use with samples of a specific cross-
section.

An alternative method of inductive coil sensing are embedded pole coils as
illustrated in Fig. 8. It involves moving the B and H sensing coils to a position
below the pole cap’s surface. The B coil is located directly under the sample. The H
coil is next to it but only measures air flux. The B and H coils are now wound upon
an iron core identical to the pole caps of iron composition.
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Fig. 8 Embedded pole coil with B and H coils

Maxwell’s equations and Gauss’ theorem tell us that the normal component
of flux density, B, on either side of a transition boundary of two materials with
different permeabilities is identical [12]. Therefore, a coil embedded within the pole
cap surface may be used to determine the flux density of samples placed in direct
contact with it. Using the embedded coil to read the flux density of the iron in the
pole cap will also tell us the flux density in the sample. As long as the sample
covers the embedded coil’s cross-section, the flux density of the sample can be
determined. The flux from the coil is divided by the area of the embedded coil to
determine the sample flux density. This method is commonly used in quality control
applications for test of nonstandard or highly varied geometries. A limitation of this
sensing technique is that it requires that the pole caps are operating far away from
the saturation region of the pole cap iron. This technique is commonly used for the
measurement of low energy product permanent magnets such as Alnico and hard
ferrites. Higher-coercivity materials such as NdFeB are typically not measured using
this technique since the sense coils will become nonlinear as the iron in the sense
coil core approaches saturation. Air gaps between sample and pole caps will degrade
this technique, as they introduce a third material for flux to move through (pole
iron to air gap to sample), which complicates the two-material boundary transition
condition we started with.

Embedded pole coils are often wired so that the B and H coils are in series
opposition to acquire magnetic polarization, J, and a Hall probe is used as the
magnetic field strength sensor.

More complex geometries can also be evaluated with embedded pole coils. Upper
and lower pole caps can be fabricated with radii that match the inner radius and
outer radius of motor arc segments as shown in Fig. 9. Embedded B and H coils can
be shaped and constructed to follow these contours as well. With these arc-shaped
embedded pole coils, an entire ferrite motor arc segment can be placed into the air
gap of an electromagnet and evaluated without the destructive process of extracting
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Fig. 9 Arc-shaped embedded pole coils with B and H coils

a core test specimen. Some attention must be placed on pole cap design as well as
the interpretation of results, particularly when measuring arc segments with large
differences in radii, creating slight non-uniformities in H fields.

8 Temperature Measurements

Magnetic materials respond to variation in temperature. As samples approach their
Curie temperatures, they lose their permanent magnetic properties. Usually, flux
densities and energy products tend to decrease with increasing temperatures. In
certain cases, however, coercivities may actually see regions of increase with
temperature [13]. And since practical magnetic materials are used in a wide
variety of ambient/operating environments, knowledge of magnetic performance as
a function of temperature is desirable.

Temperature monitoring of samples is preferred for magnetic materials, par-
ticularly those with high-temperature coefficients of induction and coercivity
(hard ferrites, NdFeB, etc.). The lower the Curie point, the more significant the
temperature effects. For this reason, even room temperature measurements should
be monitored to account for variations in the measured response as a function of
ambient temperature.

Ancillary equipment may be added to a DC hysteresigraph to allow for mea-
surements above and below room temperature. Typically, a heated pole cap allows
for measurements from room temperature up to +100 to 150C (+373 to 423 K).
Thermal conduction can be exploited with a pole-mounted cartridge heater to
raise the temperature of the sample under test. The cartridge heater or other
heating element is connected to a power supply. A temperature sensor is used
for feedback control of the pole cap/sample temperature. The large mass of the
electromagnet can absorb the incremental added thermal energy from the heated
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Fig. 11 DC hysteresigraph with variable temperature chamber in electromagnet gap

pole without significant negative effects. Figure 10 shows a series of second
quadrant demagnetization curves at temperatures ranging from 40 to 150 ◦C for
a permanent magnet sample.

Temperature measurements at lower temperatures require a variable temperature
chamber to be fitted to the electromagnet as shown in Fig. 11. This temperature
chamber encloses the sample, pole caps, sense coil sets, and variable temperature
components within a nonmagnetic, yet thermally conductive enclosure (typically
aluminum). The body of the temperature chamber contains the pole caps, heaters,
and liquid nitrogen cooling lines. A removable variable temperature coil set contains
the sample and sensing coils and temperature sensors. This entire assembly is
placed between the poles of the electromagnet. Thin, thermally insulating spacers
isolate the temperature chamber from the electromagnet. The thin spacers add to
the reluctance of the magnetic circuit, but these losses are tolerated owing to the
added utility of variable temperature measurement capability. The reluctance in the
magnetic circuit reduces the flux in the circuit. It is proportional to the spacer’s
thickness divided by both the cross-section of the interface and permeability of the
spacer.

With the additional thermal isolation from the electromagnet via the insulating
spacers, additional heating power as well as cooling power can be administered to
the chamber, creating a combination of high- and low-temperature chamber, with
temperature capability ranging from below −150 to over +250C (123–523 K). A
high/low variable temperature chamber and supplemental equipment are shown in
Fig. 12.
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Fig. 12 Variable temperature chamber and supplemental equipment

9 Limitations of this Technique

Not Useful for Thin Films

The volume of a thin-film sample provides insufficient total flux for the typical
electronic fluxmeter and sense coil combination used in a DC hysteresigraph.
Therefore, a DC hysteresigraph does not have sufficient sensitivity to measure thin
films.

Quality of the Closed Circuit

Establishing an ideal closed magnetic circuit is the goal, but not fully realized. There
is always some short circuited flux escaping from/within an ideal closed circuit.
Of primary interest is when a reluctance occurs at the interface between the pole
caps and the sample under test. In operation, the air gap between the magnet pole
caps is initially set slightly larger than the sample’s length. Once energized, the gap
between the magnet pole caps will decrease slightly due to the pull forces created
by the energized electromagnet. In a perfect world, this reduction in electromagnet
gap allows the sample and pole caps to touch. In reality, however, that is not always
the case. Too little gap, the pull forces of the electromagnet will break more brittle
samples (e.g., hard ferrites). Too much gap creates an air gap in the magnetic circuit.
Various methods are utilized to optimize the air gap—spacer shims are used to
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define the air gap and protect the sample; pole locks, electronic pole adjusters, and
gap monitors are also used to minimize this effect. These small reluctances can be
estimated and compensated for, but the corrections are small and are generally not
applied.

Assumes Homogeneous Materials

B surrounding coils measure the average flux density seen within the coil’s effective
diameter and across its height. Material properties are biased toward the sample’s
mid-section and will not reveal pressing density, material distribution, or other non-
homogeneity issues occurring along the sample’s magnetic length.

H Field Accuracy

Poor H field uniformity in the air gap of the electromagnet, particularly in the
vicinity of the sample, will result in a poor representation of the applied field, H,
particularly when using a side-by-side B,H coil set.

Low-Coercivity Materials

Soft materials with coercivities below 8000 A/m are not deemed suitable for this
measurement technique. However, they are measured on occasion. In that case, self-
demagnetization fields can easily yield shears in the shape of the B vs. H curve,
and corrections for self-demagnetization factors may be required. Care should be
taken to minimize magnetic reluctances by ensuring excellent sample to pole cap
interfaces (highly parallel contact surfaces and minimized air gaps from the sample
to pole cap face). In this case, an alternate yoke design, such as a double Fahy yoke
or a toroidal specimen measured in a DC hysteresigraph for soft magnetic materials,
will yield superior results.

10 Introduction to DC Hysteresigraphs for Soft Magnetic
Materials

There are DC hysteresigraphs specifically designed for the measurement of bulk
samples of soft magnetic materials. These larger forms of magnetically soft materi-
als are often present in return paths of a variety of magnetic circuits. Motor stators,
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rotors, and flux carrying elements of solenoids, relays, etc. are just a few of the
large-scale commercial applications where the performance of the magnetic circuit
is critical. And optimization of these products for reduced mass and efficiency also
facilitates changes in the flux carrying portion of designs. Soft magnetic materials
are highly impacted by anneal state and machining and forming stresses endured
in mass production. Additionally, lot-to-lot variation of procured material is not
uncommon. For these reasons, DC hysteresigraphs are present in quality control labs
of soft magnetic material manufacturers, their customer’s sites, independent testing
groups, and labs focused on development of soft materials in near-production form.

11 Why Do we Need a DC Hysteresigraph for Soft Magnetic
Materials?

As with permanent magnets, soft magnetic materials are also impacted by the
geometry-based self-demagnetization effects described earlier. And once again,
the larger samples are not suitable for VSM or SQUID testing, and open-circuit
testing brings along the associated concerns regarding the accuracy of measured
hysteresis loop shapes. One form of the DC hysteresigraph solves this problem by
utilizing a toroidal or ring specimen. The toroid shape creates an excellent closed
magnetic circuit which eliminates the need to correct for self-demagnetization fields
and therefore yields highly accurate B,H loop shapes. By exchanging a high-field
electromagnet and massive power supply with a smaller, high-precision power
supply allows for a superior field control at the lower magnetizing fields required
for measurement of low-coercivity samples.

12 Theory and Test Circuit

Figure 13 is a block diagram of a DC hysteresigraph for soft materials. The toroid
or ring-shaped test specimen will function much like a DC transformer. We can
magnetize the sample under test by applying current to a primary winding randomly
distributed about the sample’s circumference. In this case, the ring is considered
uniformly magnetized as long as it adheres to a simple geometry constraint for a
thin-walled ring (the ring’s inner diameter is greater than 0.82 times the ring’s outer
diameter) [15]. The gauge of the winding should be chosen to carry the current
required to fully magnetize the sample. A precision DC power supply is required
to provide current to magnetize the sample. A bipolar supply is preferred to avoid
switching transients near zero field that are caused by unipolar power sources and
their associated reversal hardware. An ammeter (usually in the form of a precision
resistor shunt + precision voltmeter) should be installed in the magnetizing circuit
to monitor magnetizing current.
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Fig. 13 Block diagram of DC hysteresigraph for soft materials

Below, we will follow ASTM A773 derivations [15].
The primary magnetizing winding generates magnetizing field, H:

H = NI

lm

where
H = magnetic field strength [A/m]
N = number of turns in the primary winding
lm = mean magnetic path length (average circumference of the toroid) [m]

The addition of a secondary winding to the ring creates the B flux sensing “coil.”
The resistance of the winding should be small compared to the input impedance
of the fluxmeter’s input stage, or a correction for loading effects should be made
as it can otherwise impact the integrator circuit’s accuracy. The secondary winding
picks up a voltage responding to the instantaneous flux change within the sample as
the applied field is varied. Utilizing a fluxmeter, we can integrate the voltage change
and determine the DC voltage proportional to the change in flux. Dividing the cross-
sectional area of the toroidal sample allows us to derive the observed flux density,
Bobs [Tesla].

We must then correct for air flux in the B winding to arrive at an accurate flux
density, B.

The correction constant, K2, is defined as:
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K2 = aC − AC

AC

where
aC = cross-sectional area of B coil [m2]
AC = cross-sectional area of test specimen [m2]
And the flux density correction is:
B = Bobs − K2μ0H

The flux reported by the fluxmeter should be acquired and coordinated with
the magnetizing current reported by the ammeter. The signal acquisition from the
fluxmeter, current monitoring from the ammeter, and the power supply program-
ming are performed by a PC. Since there is no physical reference standard to conduct
this experiment, we rely on accurate fluxmeter and ammeter calibration to ensure
accuracy of the electronics. If the ammeter is comprised of a discrete shunt and
voltmeter, those devices should also be calibrated.

13 Making a Measurement

Next, we will go through the process of performing a measurement on a low-
coercivity material:

1. Demagnetize the sample (if the initial curve and associated permeabilities are of
interest).

2. Zero the fluxmeter.
3. Magnetize the sample to saturation.
4. Smoothly sweep the magnetizing field to drive the sample through remanence,

coercivity, and again saturation in the negative direction.
5. Repeat step 4 but toward the positive applied field direction.
6. Return the current to 0.

Re-center the B axis of the measurement by averaging the extremes of the flux
density readings at +/− saturation. If this central value does not equal zero, a
fault may have occurred due to poor demagnetization, integrator drift, or failure
to magnetize the sample to saturation.

The data that are acquired reveal the material’s major hysteresis loop as
illustrated in Fig. 14. Various parameters can now be extracted from the curve, but
the most common include but are not limited to:

• Permeability (initial, relative, and maximum): μ = B/H [Henry/m].
• Remanent induction: Br [T].
• Normal coercivity: Hc [A/m].
• Saturation induction: Bsat[T].

Minor loops, recoils loops, and initial curves may also be generated with this
instrumentation.
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Fig. 14 Measured hysteresis loop

Magnetizing Field Control

The nature of control of the magnetizing field is somewhat dependent on the user’s
preferences. Some use a fixed value of dH/dt to control field. More sophisticated
methods modulate current to control dB/dt. The correct methodology is really
a function of what variable the user deems critical for their measurements. The
measurement is considered a DC technique, so very rapid field sweep rates are
discouraged during measurement acquisition. This is balanced by the need to
complete the measurement quickly enough to avoid excessive fluxmeter drift.
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Initial Curve

If an initial curve is to be measured, the sample should be demagnetized prior to
the measurement. Demagnetization of the sample can be performed by applying
a current high enough to saturate the sample and then performing an alternating
polarity logarithmic (or similar) decay of current in sufficiently small steps to
smoothly demagnetize the sample to zero induction.

14 Alternative Testing Circuits for Bulk Soft Magnetic
Materials

A variation of this instrumentation is used for testing larger soft magnetic materials
in rod or bar form. A yoke similar in concept to the DC electromagnet is used for
testing rod-shaped specimen. It is essentially a smaller electromagnet that uses a
clamping method to make the specimen one leg of the magnetic circuit path. A
permanent magnetizing winding is also located in the circuit around the yoke’s iron
core. This is referred to as a Fahy yoke [9]. Another interpretation of this concept
has two symmetric return paths, magnetizing coils, and cores and is referred to
as a double Fahy yoke and is illustrated in Fig. 15. B sensing is performed by
a surrounding B coil and fluxmeter. H sensing can be performed by H coil and
fluxmeter or a Hall effect probe and gaussmeter.

Another variation of the ring specimen hysteresigraph uses an Epstein frame for
testing strip steel samples as shown in Fig. 16. An Epstein frame recreates the closed
circuit path of a “ring” in four linear segments. Each segment is a stack of lamination
steel strips. The strips are stacked and overlap at the corners. The Epstein frame
uses a pre-formed H magnetizing and B sense winding coils, both of which cover
much of the segment lengths. The pre-formed windings make sample exchange far

Fig. 15 Modern double Fahy yoke, used with soft magnetic rod and bar specimens
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Fig. 16 Epstein frame for strip specimens to simulate a “ring” sample

easier than the winding process for ring specimens. The frame incorporates a mutual
inductor setup for air flux compensation. The dimensions and turns count have
become standardized in an effort to maintain measurement consistency of results
across various user’s Epstein frames.

Hysteresis loop AC testing is also possible in the case of ring and Epstein testing
setups. The samples remain the same, but some changes are required in the test
instrumentation. For AC testing, the H field is excited by an AC sine wave generated
by an AC power supply/linear amplifier. An RMS or peak AC voltmeter with shunt
or ammeter measures the magnetizing field strength. A mean/average response AC
voltmeter replaces the fluxmeter for reading the B flux. The ring specimen or Epstein
frame itself is essentially unchanged. AC core loss measurements may also be
determined with a Wattmeter in the circuit.

15 Temperature Measurements

Since many technologically relevant soft magnetic materials do not exhibit large
temperature coefficients of induction or coercivity, tests do not usually compensate
for variations in room temperature. However, temperature should be recorded,
particularly for samples that are more temperature-sensitive. Some temperature
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increase is expected due to the nature of driving current through the magnetizing
winding and is accepted. Oil cooling of the sample under test is sometimes required
for higher-power test setups.

Elevated variable temperature testing using a DC hysteresigraph for soft mag-
netic materials is possible. The means to achieve this is fairly straightforward
and commonly available. A laboratory oven may be used as an environmental
test chamber. The ring specimen is placed in the oven and allowed to equilibrate.
The normal test methodology is then performed. Thermocouples may be added to
monitor the sample temperature. This method’s primary drawback is that changing
resistance of the B winding as temperature is varied and influences the drift of
the electronic fluxmeter. Once the drift characteristics of the elevated temperature
testing are controlled, elevated temperature testing may be performed.

16 Limitations of this Technique

Specimen Shape

The ring-shaped specimen is not always a convenient shape. Fortunately, many
motor housings, stators, etc. are close to the correct shape, though they do not
always adhere to the thin-walled ring geometry constraint (ID > 0.82 OD). In this
case, the properties from the test are considered to be “core” properties (with results
dependent on shape of the test “core”) as opposed to geometry-independent material
properties. Care should be taken with respect to orientation when fashioning a ring
specimen from a bulk material as the ring’s orientation averages some anisotropy
effects. Wire electrical discharge machining (EDM) processing is considered an
acceptable method to create a ring specimen without altering its anneal state.

Need to Wind the Ring

For higher-field experiments, a large turns count may be required. Winding a toroid
in this manner may be time-consuming or require specialized toroid winding equip-
ment. Epstein frames are a practical variant of the ring specimen that eliminates this
requirement, as the strip-shaped specimens are placed inside pre-formed windings.

Integrator Drift

Electronic fluxmeters will drift. This makes extended duration measurements more
prone to flux reading errors. Computer-controlled drift management and correction
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aids in reducing these effects. Variable temperature measurements and associated
changes in winding resistance also contribute to fluxmeter stability concerns.

17 Summary

DC hysteresigraphs allow for the measurement of bulk samples of new magnetic
materials as they approach commercialization and ensure the quality control of
materials already in mass production. In this chapter, we have discussed the basis of
operation of the equipment to make room temperature DC hysteresigraphs measure-
ments, including sensing techniques and instrumentation. We have also described
the supplemental equipment required to extend that measurement capability to
variable temperatures. Two basic types of machines were described: a laboratory
electromagnet-based DC hysteresigraph for the measurement of magnetically hard
magnetic materials and a wound ring specimen-based DC hysteresigraph for the
measurement of magnetically soft materials. Both utilize inductive sensing within a
closed magnetic circuit and integrating fluxmeters to process flux from the sample
to quickly generate a second quadrant demagnetization curve or the entire hysteresis
loop.

These test methods have their limitations. However, when rapid measurements
of bulk forms of magnetic materials are required, the DC hysteresigraph is an
extremely efficient tool for extracting a sample’s magnetic material properties.
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Radio-Frequency Transverse
Susceptibility as a Probe to Study
Magnetic Systems

Sayan Chandra and Hariharan Srikanth

Abstract The direct measurement of magnetic anisotropy in magnetic systems
provides invaluable insights into the physical processes that enable researchers to
engineer materials for a wide range of applications including spintronics, mag-
netic memory, hyperthermia treatments, and magnetic refrigeration. This chapter
showcases the transverse susceptibility (TS) measurement technique using a self-
resonant tunnel diode oscillator circuit as a versatile tool for the direct measurement
of the effective magnetic anisotropy. We provide a brief history of the development
of the theoretical description of TS followed by the evolution of experimental
measurement configurations over the past two decades. The applicability of the TS
technique to investigate magnetic anisotropy in different systems is highlighted. We
summarize that the TS technique has proven to be a highly sensitive and reliable
method that complements the conventional magnetic measurement techniques,
thereby facilitating a comprehensive understanding of complex magnetic systems.

Keywords Transverse susceptibility · Tunnel diode oscillator · Magnetic
anisotropy · Magnetization dynamics

1 Introduction

The study of reversible susceptibility (RS) of a material as a function of tem-
perature and magnetic field reveals fascinating fundamental physical processes
occurring in a material. Over the past several decades, reversible susceptibility
in ferromagnetic, ferrimagnetic, paramagnetic, and superconducting materials has
been actively investigated around the world. While reversible parallel susceptibility
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(χp) has been studied for over a century, experimental measurements of reversible
transverse susceptibility (TS) (χT ) have gained traction in the last 20 years and have
provided insightful understanding of a variety of systems, including paramagnetic
susceptibility in salts, penetration depth in superconductors, superparamagnetism in
nanocomposites, and deciphering magnetic phase diagrams in strongly correlated
electron systems, particularly oxides and ferrites. The gain in popularity of TS
measurement technique has established it as a reliable method and is now featured
as an alternative probe for magnetic systems by multiple scientific equipment
manufacturing companies.

2 Theoretical Background

The development of the TS measurement technique discussed in this chapter is
based off the seminal theoretical work on the Stoner-Wohlfarth model by Aharoni
et al. in 1957 [1]. Prior to Aharoni et al., the first theoretical calculations on TS
were carried out by Gans in 1909 [2], followed by Grimes and Martin in 1954
[3] where they considered the magnetization reversal occurring due to domain wall
motion. The Stoner-Wohlfarth (SW) model simplifies the magnetization reversal
by considering only rotational processes in ellipsoidal ferromagnetic particles,
each assumed to be a single domain, having uniaxial anisotropy energy that may
be a combination of magnetocrystalline, magnetostriction, or shape anisotropy.
These particles will be referred to as SW particles from here on. To simplify the
calculation, all SW particles were considered identical, with random orientation
and no interparticle interaction energy. The reversible susceptibility tensor χij of
the SW particle was defined as χij = dMi/dHj, where the diagonal terms included
the longitudinal susceptibility component χp (along the bias magnetic field) and
the two transverse susceptibility components χT1 and χT2 (along the orthogonal
directions to the bias magnetic field).

The description of a randomly oriented SW particle of volume V, anisotropy K1,
and saturation magnetization MS is shown in Fig. 1a. Here, the DC bias magnetic

field
−→
HDC is along the z-axis, the easy axis of the SW particle lies along the prolate

of the ellipsoid at an angle (θK ,ϕK), and MS makes an angle (θM ,ϕM) such that the
total energy (E) of the particle is minimized and is in equilibrium as:

∂E

∂θM
= 0; ∂

2E

∂θ2
M

≥ 0 and
∂E

∂ϕM
= 0; ∂

2E

∂ϕ2
M

≥ 0 (1)

−→
HRF is a small perturbation field along the x-axis that is necessary for the

experimental measurement; however in the theoretical treatment, we consider
Hx = Hy = 0. The total energy, E = EK + EH , of a SW particle can be expressed as

the sum of the anisotropy energy, EK = −K1

(−→
MS.

−→μK
)2
, and the Zeeman energy,
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Fig. 1 (a) Diagram of a TS measurement geometry of a uniaxial magnetic particle [4], (b) typical
TS unipolar curve as a function of HDC for a collection of randomly oriented particles. The arrows
show the direction of change in DC magnetic field

EH = −−→
MS.

−→
HDC , which accounts for the interaction between the magnetization

and
−→
HDC . Here, −→μK is the unit vector along the easy axis. By defining the reduced

magnetic field, h = −→
HDC.

−→
MS/2K1, and χ0 = −→

MS

2
/3K1,the TS for the case ϕK = 0

is given by:

χT 1 = 3

2
χ0

(
cos2ϕK

cos2θM

hcosθM + cos2 (θM + θK)
+ sin2ϕK

sin (θK − θM)

hsinθK

)

(2)

Extending the calculation for a randomly oriented array of SW particles, the
average TS can be expressed as:

〈χT 〉 = 1

2π

2π∫

0

∫ π/2

0
χT 1sinθKdθKdϕK (3)

〈χT 〉 = 3

4
χ0

∫ π/2

0

(
cos2ϕK

cos2θM

hcosθM + cos2 (θM + θK)
+ sin2ϕK

sin (θK − θM)

hsinθK

)
sinθKdθK

(4)

This indicates that for the RS, tensor is diagonalized in the case of randomly
oriented particles by the components χp and 〈χT〉 = 〈χT1〉 = 〈χT2〉. The theoretical
values of 〈χT〉 calculated using Eq. (4) for a system of SW particles having positive
uniaxial anisotropy oriented at random are plotted in Fig. 1b. As can be seen,
three peaks emerge, one that corresponds to the magnetic switching field (HS) and
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coincides with the reversible parallel susceptibility and two peaks located at ±HK at
the effective magnetic anisotropy field.

3 Measurement Technique

The direct measurement of the effective anisotropy field was first done by Pareti
et al. in 1986 by carefully measuring the out-of-phase component in an electronic

bridge circuit where an AC field
(−→
HRF

)
of magnitude ~1 Oe at a frequency of 1–

60 kHz was applied to study BaFe12O19 particles ranging in diameter from 150 to
3000 nm [5]. Using this setup, the authors were able to successfully measure the
anisotropy and switching fields (Fig. 2b) as predicted in Aharoni’s paper; however,
the measurements were limited to room temperature. In addition, the particles
studied were not “nano” by the modern definition (<100 nm) but polycrystalline
and thereby deviated from the definition of a SW particle. Furthermore, the setup
suffered from mechanical vibrations of the coil systems, which gave rise to spurious
signals at the same frequency as the drive signal. The vibrations originated from the
Lorentz interactions between the bias field H and the AC current that was supplied
to the drive coil. The spurious signal diminished at a higher frequency of 50 kHz
which was determined by performing measurements with and without the sample.
This hints to the fact that the signal-to-noise ratio of TS measurements could be
enhanced by operating at higher frequencies.

Oscillators have been considered as useful transducers for making measurements
due to the great precision with which frequency can be measured [6]. They
have higher sensitivity than AC bridge circuits, for example, the best commercial
capacitance bridges have sensitivity �C/C~10−8, whereas oscillators can detect
changes ~�C/C~10−10. Furthermore, oscillators can be designed to operate at MHz
frequencies; however, AC bridges are limited from DC to few kHz. Additionally,
oscillators consume less power and operate at lower voltages than AC bridges.
These advantages of oscillators over conventional AC bridge circuits motivated the
research on tunnel diode oscillators for the measurement of magnetic materials.

Inspired by the first work on tunnel diode oscillators for low-temperature
applications by O.W.G Heybey at Cornell University in 1962 and Boghosian et al.
in 1966, Van Degrift showed for the first time in 1975 that tunnel diode oscillators
(TDO) can be used for ultrasensitive measurements, with a precision of 0.001 ppm at
low temperatures [6]. Following this, TDOs that operate in the negative differential
resistance (NDR) (Fig. 3a) regime gained popularity to investigate phenomena like
RF penetration depth of cuprate superconductors, borocarbide superconductos, and
phase transitions in complex oxide systems [7–11]. Srikanth and co-workers at the
University of New Orleans adopted this technique and extended it to investigate
magnetic switching behavior and effective anisotropy in SW particles [12–20]. This
proved to have several advantages over the setup presented by Pareti with significant
improvements over previous instruments from other groups.
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Fig. 2 (a) Experimental
apparatus used to measure
transverse susceptibility. C1
is the driving field (h) coil; C2
and C3 are the pickup coils; P
indicated the electromagnet
poles. The directions of both
bias (H) and driving (h) fields
are indicated. (b) TS as a
function f magnetic field for
different particle sizes [5]

Let us understand how the self-resonant oscillations are sustained in a TDO
operating at the NDR. The tunnel diode is connected to a LC tank circuit and forward
biased by an external source precisely to drive it to the NDR. The LC tank circuit
is maintained at a constant amplitude resonance where the power supplied by the
tunnel diode sustains the continuous oscillations at a frequency determined by the
expression:

ω = 1/
√
LC (5)

The negative AC resistance of the tunnel diode cancels losses of the tuned circuit.
In an ideal case, we expect minimal drift and noise in the resonance frequency;
however, factors like parasitic impedance can introduce high-frequency parasitic
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Fig. 3 (a) Tunnel diode IN3716 (left) and I-V characteristic of a tunnel diode showing the NDR.
Inset shows the electronic symbol of a tunnel diode. Circuit diagram used for TDO (b) Van Degrift
[6] and (c) Srikanth et al. [14]

oscillations, thereby deteriorating oscillator performance. Degrift showed that by
carefully choosing a parasitic suppression resistor (Rp in Fig. 3b), one can avoid
unintentional circuit oscillations arising from stray capacity of the diode. This
resulted in a 40-fold improvement in TDO stability over previous studies.

For the TS measurements, the sample is placed inside a gelcap that is then
snugly inserted into the inductor coil (Fig. 4f). The respective geometry of the

applied magnetic fields is also shown with the condition that
∣∣∣−→HDC

∣∣∣ �
∣∣∣−→HRF

∣∣∣.
Following the theoretical paper by Aharoni et al., the DC magnetic field is swept
from positive to negative saturation for a unipolar measurement. Any change in the
inductance (�L) will translate to a change in the resonance frequency (�ω) obtained
by differentiating Eq. (5):

�ω

ω
= −�L

2L
(6)

The total inductance of the coil is the sum of the inductance from the empty
coil (L0) and contribution from the sample (LS). The complex permeability of the
sample is given by μ = μ

′ + iμ
′ ′
, which in terms of magnetic susceptibility (χ )

can be expressed as μ = μ0(1 + χ ). For a coil of volume V0, length l, and a total
number of turns, N, the total inductance can be written as:

L = μ0

(
N

/
l

)2
(V0 + χVS) (7)

where VS is the volume of the sample such that the fill fraction of the coil is

η = VS
/
V0

. A differential change in the inductance is related to change in the

susceptibility (χ ) as:
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Fig. 4 (a) Schematic of the LC tank depicting the sample inside the inductor coil and the
respective RF and DC field directions. Schematic of the (b) TDO circuit inside a cryostat and
(c) image of the sample holder with TDO circuit and coil [21]; (d) schematic of the (d) TDO
circuit integrated to a quantum design physical property measurement system (PPMS), (d), (e) and
(f) show images of the multifunctional probe and coil [14]

�L = μ0

(
N

/
l

)2
�χVS (8)

Therefore, dividing Eq. 8 by Eq. 7, we get:

�L

L
= �χVS

(V0 + χVS)
(9)

In the case of V0 � χVS, we get:

�L

L
≈ �χ

χ
(10)

And for the case of V0 � χVS, which is associated with a very low fill fraction:

�L

L
≈ �χη (11)

From Eqs. (6), (10), and (11), we get:

�ω

ω
= −�L

2L
= −�χ

2χ
and

�ω

ω
= −�L

2L
= −�χη

2
(12)
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We also know from classical electrodynamics that the complex impedance of a
material with resistivity (ρ) is given by Z = (1 + i)

ρ
δ

, where δ is the skin depth δ =√
2ρ/μω. It can be shown that �L ∝ �Z ∝ �

√
μρ. It is clear from the expression

that a measurement of the resonance frequency shift (�ω) will directly correlate to
change in both material resistivity and permeability. Therefore, the TDO technique
enables a contactless measurement of the spin and charge dynamics in a single
experiment. This makes it attractive to study strongly correlated electron systems
that show strong coupling of the structural, electronic, and magnetic properties.

4 Choice of Circuit Components

The greatest slope of the negative resistance region corresponds to the minimum
value for the magnitude of the negative resistance (Rn). Optimal performance of the
circuit can be obtained by adjusting the DC voltage bias to the inflection point of
the current-voltage curves of the tunnel diode using a voltage divider (resistances
R1 and R2 in Fig. 3c) [6]. At the onset of self-oscillations, the AC voltage amplitude
(vd~10 mV) is expected to vary about the DC voltage bias.

Typical germanium diodes have peak and valley voltages of about 40 mV and
300 mV, respectively, but they widely differ in terms of the peak current which
is limited by |Rn|. For sustained oscillations, the rf power (P) loss in the LC tank
circuit should match the rf power supplied by the tunnel diode. Therefore, the tunnel
diode chosen should satisfy Rn ≈ −v2

d/P ≈ −10−4/P�. A large bypass filter
(C1 in Fig. 3b) is chosen such that it provides isolation from thermally induced
impedance changes within the coaxial cable. If the oscillation amplitude is small,
a preamplifier may be used to properly trigger the frequency counter as done by
Srikanth et al. High-Q chip capacitors were used. The inductor in the tank circuit
was hand-wound using AWG42 insulated copper wire around a hollow ceramic tube
(0.5 cm diameter) and potted with polystyrene epoxy resin. A coating of GE varnish
was applied to improve thermal conductivity (Figs. 4e, f). Tapped inductors may be
used to dictate the impedance of the LC tank at resonance, with the inductance
values between 1 and 5 μH. Using these guidelines, the damping factor of the
circuit (γ = R/2L) was regulated to satisfy the condition γ � ω at resonance,
which yields well-defined oscillations with sinusoidal line form (Fig. 5b). This is
also associated with high Q which, in combination with the capacitance of the
coaxial cable, determines the upper limit for the resonance frequency of the TDO
circuit. Furthermore, the entire TDO circuit except the inductor coil L, the DC power
supply, and the measurement instruments were shielded for stability in resonance
frequency. This was done by mounting the circuit on a PCB and enclosing it in an
aluminum box. The ground of the circuit was connected to the aluminum chassis
which was also grounded. The sinusoidal nature (Fig. 5b) of the stable oscillations
was monitored over ~24-h time period to account for the stability of the resonance
frequency from the central value of ~6 MHz. The drift in resonance over a short
period of time (20–30 min) which is the realistic time for a TS unipolar curve
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Fig. 5 (a) Layout of the complete TDO measurement system displaying the computer control
and data acquisition stages as implemented by Srikanth et al. [14]; (b) snapshot of the sinusoidal
output waveform from the TDO circuit with the central resonance frequency at ~6 MHz; and (c)
temperature-dependent shift in the resonance frequency of an empty coil. Inset shows the magnetic
field dependence of the coil cooled to 100 K

measurement was found to be about 2–3 Hz which is ~1 ppm. Such drift has little
influence on the measurements; however, it could not be completely removed.

Two approaches were adopted for the integration of the TDO circuit into the
cryostat: (a) cooling the tunnel diode inside the cryostat (Figs. 4b, c) [21] and (b)
cooling the inductor coil only, while the tunnel diode remained at room temperature
(Figs. 4d–f). The current-voltage characteristic curves for tunnel diodes are highly
temperature-dependent near room temperature, but at temperatures below 30 K,
they appear to change their properties by only a few parts per million per Kelvin.
Therefore, in the case where the tunnel diode circuit is cooled inside the cryostat,
one must optimize the DC bias voltage as a function of temperature for the stable
operation of the TDO. This can be avoided in the second case where only the
inductor coil is cooled and the TDO circuit always remains at room temperature.
In either case, the circuit must be connected to the measurement instruments using a
coaxial cable with minimal temperature-dependent change in impedance. Srikanth
et al. used a semirigid RG 402 coaxial cable assembly with the end at room
temperature terminated by a type A (SMA) connector that could be mated to the rest
of the TDO circuit. The lower (cold) end of the coaxial cable held the inductor coil
by connecting it to the inner and outer shielding. The coaxial cable was electrically
insulated by wrapping in Teflon tape, and baffles were connected along the probe
arm as heat shields. The integration of the TDO circuit was done using a customized
cryogenic user probe that fitted into the bore of a commercial quantum design
physical property measurement system; however, in principle, this can be designed
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to work with any cryostat in the presence of a magnetic field. The temperature and
magnetic field specifications of the cryostat and the superconducting/electromagnet
determine the measurement ranges of the TDO setup.

A temperature-dependent shift in the resonance frequency is unavoidable in the
TDO circuit which arises from the decrease in resistivity of the Cu wire making up
the coil and the effect of thermal contraction. However, a careful characterization
of this relative shift as a function of temperature revealed a drift of ~1400 Hz as
the inductor coil was cooled from room temperature to 20 K. This relative shift
in resonance frequency (�ω = ωRT − ω(T)) at a given temperature, T, can be
expressed as �ω/ωRT as shown in Fig. 5c.

5 Magnetic Systems Investigated Using Transverse
Susceptibility

In this section, we discuss selected studies to highlight the versatility of the TS
measurement technique to probe various magnetic phenomena.

Dipolar Interactions within Soft Ferrite Particles

With the development of elegant chemical synthesis routes in the early 2000s,
researchers were able to realize the closest resemblance to SW particles. These parti-
cles typically are sub-20 nm in diameter and monodisperse that can be approximated
to have uniaxial anisotropy and are termed superparamagnetic. A tremendous surge
in the research on the synthesis and physical property characterization of super-
paramagnetic particles followed in the subsequent years targeted toward potential
applications in cancer treatment using magnetic hyperthermia. In this context, some
of the fundamental questions that needed to be answered were as follows: (a) What
role does interparticle interaction have on the magnetic anisotropy of the ensemble
of superparamagnetic particles? (b) How does the magnetic anisotropy evolve when
such particles undergo superparamagnetic to ferromagnetic transitions? Answers
to these questions provide valuable knowledge necessary to synthesize designer
superparamagnetic particles for intended applications.

Poddar et al. performed one of the first comprehensive investigations in deter-
mining the dipolar interactions in soft ferrite nanoparticles and used TS to analyze
the evolution of anisotropy as a function of dipolar interactions [4]. In their
study, they used high-quality monodisperse 15-nm manganese zinc ferrite (MZFO)
nanoparticles and varied their concentration in paraffin wax matrix which is a
nonmagnetic host. By varying the concentration, the authors were able to tune
the average interparticle distance, thereby controlling the dipolar interactions and
magnetic anisotropy. By diluting the MZFO particle concentration in paraffin wax,
the authors found a steady decrease in the blocking transition temperature (Fig.
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Fig. 6 (a) Temperature-dependent field-cooled (FC) and zero-field-cooled (ZFC) magnetization
curves, (b) at 30 and 35 K, and (c) anisotropy peak locations versus temperature for different
concentrations of MZFO in paraffin wax [4]

6a) and coercive field (not shown), which is a signature of the superparamagnetic
to ferromagnetic transition. In their experiment, they consider the anisotropy field
dispersion of the randomly oriented particles to be the same for samples of all
concentrations.

Figure 6b shows the representative TS curves obtained at 30 and 35 K for
different concentrations of MZFO, where one can see the enhanced anisotropy
(consistent with anisotropy peaks at higher DC magnetic fields) for higher con-
centration of particles. A careful analysis of the anisotropy peak positions as a
function of temperature (Fig. 6c) showed the effect of dipolar interaction strength
on the effective anisotropy of the nanoparticles. They showed that at temperatures
above the blocking transition temperatures, as the nanoparticle ensemble becomes
superparamagnetic, the anisotropy peaks disappear. Interestingly, the authors found
an asymmetry in the anisotropy peak height and width, which they attributed
to interparticle interaction strength and concluded that the asymmetry disappears
for the most concentrated sample. The different energy landscapes seen by the
interacting versus non-interacting/weakly interacting particles manifested into their
effective anisotropy field probed by TS.
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Magnetic Anisotropy in Exchange-Biased Nanostructures

Over the years, the TS technique has been adopted to investigate anisotropy-driven
magnetic phenomena occurring in variedly shaped nanostructures like nanowires,
nanorods, core/shells, and hybrid nanoparticles [12, 23–28]. One such intensely
studied magnetic phenomenon is the exchange bias effect that is known to develop
due to anisotropy and interfacial effects between two or more materials with
different magnetic states. The exchange bias effect is accompanied by the horizontal
shift of the magnetization M(H) hysteresis loops along the field-cooled direction,
but in some cases, there is an additional vertical shift in the M(H) loops. In this case
we present here, Chandra et al. used the TS technique to investigate the origin of
the asymmetry in field-cooled M(H) loops in core/shell nanoparticles [22]. Figure
7a shows TEM images of core/shell Co/CoO nanoparticles (~19 nm), which are
a complex ferromagnet (Co)/ anti-ferromagnet (CoO) system and are known to
exhibit the exchange bias effect. By analyzing the temperature- and field-dependent
magnetization and unipolar TS curves (Fig. 7b), the authors identified the distinct
freezing and blocking temperature of the core and shell. The TS measurements
showed compelling evidence of the competing Zeeman and anisotropy energy that
leads to the origin of anisotropy in the exchange bias loops. They quantified the
competing nature of the two energies by analyzing the difference in TS peak heights
of the magnetization and return curves in the bipolar TS scans (Fig. 7c). The location
of the anisotropy peaks obtained from the TS curves (Fig. 7d) gives a comprehensive
picture of effective anisotropy in such complex nanostructures as they undergo
multiple temperature-dependent changes in their magnetic state.

Magnetic Anisotropy in Ferromagnetic Epitaxial Thin Films

The applicability of the TS measurement technique in ferromagnetic thin films was
first demonstrated by Spinu et al. where they studied chromium oxide (CrO2) films
(~200 nm) that were grown epitaxially on TiO2 substrates [17, 18].

The study was conducted to obtain direct estimation of the anisotropy along the
well-defined magnetic easy [001] (c-axis) and hard [010] (b-axis) axes (Fig. 8a). The
accurate determination of anisotropy field in such materials is critical to the design
of spin-based devices that take advantage of its spin-polarized states and large
magnetoresistance. The TS measurements showed evidence of varying anisotropy
due to temperature-dependent strain arising from lattice mismatch between the film
and the substrate. The sharp contrast in the anisotropy field associated with the hard
and easy axes of CrO2 films is shown in the respective TS curves obtained at room
temperature. Upon saturation of the magnetization (MS), the anisotropy constant K1
obtained from the magnetic anisotropy field (HK = 2 K1/MS) for the case of Ψ = 0
(hard axis) was 1.9 × 105 erg/cm3. This was in excellent agreement with previously
measured values of K1 for CrO2 using other techniques, thereby establishing TS as
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Fig. 7 (a) TEM and HRTEM image of Co/CoO core/shell nanoparticles, (b) unipolar TS curves
for different temperatures (left) and representative TS curve at 20 K (right); (c) bipolar TS curves
at 20 K (left) and 130 K (left); (d) temperature-dependent anisotropy field [22]
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Fig. 8 (a) M(H) hysteresis loops and (b) TS curves for CrO2 films along the magnetic hard and
easy axes, TS as a function of (c) temperature and (d) angular orientation with respect to applied
DC magnetic field [17, 18]; (e) TS curves of CrO2/Cr2O3 bilayer films for varying concentrations
of CrO2 and (f) magnetic anisotropy field for different concentrations of CrO2 as a function of
temperature [29]

a reliable technique to probe ferromagnetic thin films. Their analysis demonstrated
a property of CrO2 that the sample behaved like a Stoner-Wohlfarth single-domain
particle, i.e., coherent rotation dominated the magnetization process. Further, high
sensitivity of the TS technique could detect misalignment in the angle between the
applied DC field and the easy axis in the perpendicular geometry consistent with the
coherent rotation model (Figs. 7c, d). This angular deviation between the applied
field and the easy axis of the film was attributed to a net magnetoelastic energy
term related to the in-plane strain. This caused the easy axis to deviate by a small
angular orientation from the c-axis toward the b-axis. This study on ferromagnetic
films demonstrated the versatility of the TS technique to provide valuable insights
into the rich anisotropic properties of technologically important oxides.

A few years later, Frey et al. performed a detailed investigation of the anisotropic
properties of epitaxial bilayer CrO2/ Cr2O3 (ferromagnetic/antiferromagnetic) thin
films [29]. This work showed TS as an excellent method to directly probe dynamic
magnetization and the effective anisotropy (magnetic field direction-dependent) in
exchange-biased thin films composed of a spin-polarized ferromagnet (CrO2) and
Cr2O3 that is known to be magnetoelectric. The TS measurements shed light on the
dependence of anisotropy field to the relative thicknesses of CrO2 and Cr2O3 films
(see Table 1 and Figs. 7e, f) and how the interfacial coupling and the magnetoelectric
effects were intrinsically correlated.
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Magnetocrystalline Anisotropy-Driven Phase Transition
in Strongly Correlated Electron Systems

Rare-earth-based compounds like manganites and cobaltites exhibit fascinating
magnetic behavior associated with magnetic and structural phase transitions
and charge ordering, phenomena that are closely tied to the magnetocrystalline
anisotropy in such strongly correlated electron systems [30, 31]. Several research
groups across the world have studied these materials with potential applications
in magnetocalorics and spintronics. Frey et al. utilized the TS measurement
technique to investigate half-doped Pr0.5Sr0.5CoO3 that is known to exhibit
anomalous magnetism driven by magnetocrystalline anisotropy that results in a
structural transition at ~120 K where the magnetization undergoes a ferromagnetic
to ferromagnetic transition associated with the rotation of the anisotropy vector
[31].

TS measurements in such a magnetic system were instrumental in identifying the
nature of magnetocrystalline anisotropy that was not evident in traditional magne-
tometry and transport measurements. The TS measurements were able to precisely
identify the anisotropy fields and switching fields as a function of temperature.
From the TS plots (Fig. 9a), the authors identified a peak that was observed only
upon decreasing the magnetic field after positive (or negative) saturation. They
found the presence of this peak to be associated with a crossover field describing
the transition between the lower field-cooled and higher field-cooled magnetic
states. The temperature evolution of the anisotropy field, switching field, and the
crossover field (Fig. 9b) provided qualitative evidence of the magnetocrystalline
anisotropy-driven structural transition between the two ferromagnetic states. The
transition was associated with a dramatic increase in the measured anisotropy. The
temperature-dependent switching field intensity obtained from the TS curves shown
(Fig. 9c) is from those crystallites in the sample whose hard axes were aligned
with the DC magnetic field. By comparing the relative change in magnitude of the
parallel susceptibility and TS switching peaks, the authors demonstrated compelling
evidence of the rotation in the anisotropy vector direction at the phase transition
temperature. They concluded that TS is a very useful method to obtain insightful
information on the unusual magnetic properties of doped perovskites.

6 The Future of Transverse Susceptibility

Without a doubt, the TS method is indeed unique and proved to be a well-grounded
technique in advancing the direct measurement of magnetic anisotropy. The original
TS setup used a tunnel diode to sustain self-resonant oscillations (TDO) when
biased in the negative differential resistance regime; however, tunnel diodes are rare
electronic components that are not easily available. Figueroa et al. implemented
the use of CMOS transistors as active devices instead of tunnel diodes to generate



Radio-Frequency Transverse Susceptibility as a Probe to Study Magnetic Systems 135

Fig. 9 (a) Bipolar TS scans at 20, 95, 110, and 225 K, (b) temperature-dependent anisotropy
peaks, crossover fields and switching behavior, and (c) evolution of the switching field intensity
with temperature obtained from TS and perpendicular susceptibility curves [31]

the self-resonant oscillations [32]. It consists of a simple inverter cell in cross-
coupled topology, which compensated the energy loss in the LC tank. Among the
benefits of considering CMOS transistors as the active element are (a) significantly
lower parasitic losses and noise rendering the TS measurements more sensitive and
(b) reproducible resonant circuits with robust performance and reduced costs. The
response of the CMOS transistors can be easily modelled, thereby minimizing errors
in determining the shift in resonance frequency from the inductance change. We
believe the future of the TS research and development lies with the making of
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highly sensitive CMOS-based frequency tunable ultra-stable resonant circuits for
temperature- and magnetic field-dependent investigations. That being said, the first
theoretical and experimental studies on transverse susceptibility and the successful
capability of the TDO-based circuits in studying complex anisotropy-dependent
physical phenomena in a variety of magnetic systems are remarkable.
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Alternating Gradient Magnetometry

Brad Dodrill and Harry S. Reichard

Abstract Force methods involve determination of the apparent change in weight
for a material when placed in an inhomogeneous magnetic field. The equipment
required for such force methods is either an electromagnet or superconducting
magnet and a microbalance for force measurements. A commercial variant of these
methods is the alternating gradient magnetometer (AGM) with a noise floor ranging
from 10−8 to 10−9 emu (10−11–10−12 Am2). Commercial AGM systems can be
used for room temperature measurements at fields up to the moderate ~30 kOe (3 T),
which are achievable with electromagnets.

Keywords Force magnetometry · Hysteresis · Alternating gradient
magnetometer, AGM · High-sensitivity magnetic measurements

1 Introduction

The alternating gradient force magnetometer (AGFM, or simply AGM) is the
direct descendant of the Faraday balance, a very early technique for characterizing
magnetic materials by measuring the force exerted on a magnetic sample by an
externally applied magnetic field.

More particularly, the AGM makes use of the magnetic force exerted on a
magnetic dipole by a non-uniform magnetic field. The relevant relation is shown
in Eq. 1:

F = ∇ (m · B) (1)

where.
F = force (N).
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Fig. 1 Alternating gradient
magnetometer—basic
principle

m = magnetic moment (Am2).
B = magnetic field (T).

A practical instrument responds to a single component of the vector force, usually
the component aligned with a coordinate axis. If this axis is denominated x, we have:

Fx = mx

(
∂Bx

∂x

)
+ my

(
∂By

∂x

)
+ mz

(
∂Bz

∂x

)
(2)

Figure 1 depicts a typical configuration: gradient, in the X-direction, of the X-
component of the gradient field Bx operates on the X-directed component of the
sample magnetic moment to produce a force (also in the X-direction), corresponding
to the first term of Eq. 2. The field gradient is made to reverse direction at
some relatively low frequency, e.g., 500 Hz, so the resultant force is modulated
accordingly. The magnetic moment of the sample can be calculated from the
magnitude of the field gradient and the measured value of the alternating force.

The second and third terms of Eq. 2 represent undesired responses that, in the
usual case, are minimized by sample isotropy (such that my and mz are much smaller

than mx) and by symmetrical gradient coil pairing that minimizes ∂By

∂x
and ∂Bz

∂x
over

the sample volume.
Figure 2 is a diagram of a practical embodiment of the alternating gradi-

ent magnetometer [1], with additional detail of sample and force sensor shown
in Fig. 3.

In the apparatus of Figs. 2 and 3, the AGM probe utilizes a piezoelectric bimorph
as a force sensor. Two fused silica extensions connect the bimorph to a glass carrier
(typically 5 mm square, 100 μm thick), on which the sample is secured. A field-
controlled electromagnet applies a uniform field, to which the AC gradient field
is added, directed along the X-axis, generated by the alternating gradient coils.
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Fig. 2 Schematic representation of an AGM

Fig. 3 Sample and force
sensor (detail)

An electrical signal at the same frequency as the gradient coil excitation, and
proportional to the force on the sample, is generated by the piezoelectric bimorph.
This signal is amplified and detected by a lock-in amplifier (LIA). Control software
serves to tune the gradient coil excitation frequency to the mechanical resonance of
the sample bimorph assembly.
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Various other arrangements are possible, and AGMs have been realized in many
different configurations [2–11], but the gradient coils are invariably arranged so that
the gradient field is zero at the geometric center (the nominal sample position). The
magnitude of the gradient field to which the sample is exposed is therefore a function
of sample dimensions, as well as the amplitude of the field gradient.

While the gradient field is zero at the geometric center, it is important to note
that the gradient (of the gradient field) is not zero at the geometric center. Ideally,
the gradient is constant over the volume occupied by the sample. Gradient coils
are typically connected in series opposition. In principle, a parallel-opposition
arrangement could also be employed, but the series configuration is better suited
to achieving a stable field gradient at the geometric center, where the sample is
positioned.

All results presented in this chapter were recorded using a commercial Model
2900 AGM and Model 8600 vibrating sample magnetometer (VSM) from Lake
Shore Cryotronics [12].

2 Sensitivity

The AGM is one of the most sensitive techniques for measuring the magnetic
properties of materials, making it ideal for performing field-dependent measure-
ments such as major hysteresis loops, minor hysteresis loops, first-order reversal
curves (FORC), etc. on magnetically diluted or weak samples whose magnetization
(or magnetic moment) is small. Owing to its high sensitivity, it can perform
such measurements faster than other magnetometric techniques because less signal
averaging is required to obtain adequate signal-to-noise ratio (SNR).

Using a quartz tuning fork as the piezoelectric sensor and a gradient field of
5 kOe/cm (50 T/m), Todorovic et al. [7] achieved noise levels of 1 pemu (10−15

Am2). Richter et al. [13] reported noise levels of 100 pemu (10−13 Am2) at a
gradient field of 4.7 kOe/cm (47 T/m). Both instruments were optimized to measure
microscopic samples with linear dimensions <10 μm.

Using a much smaller gradient field 150 Oe/cm (1.5 T/m), and adapted for
macroscopic samples with linear dimensions of several mm, the Lake Shore
Cryotronics Model 2900 [12] specified 10 nemu (10−11 Am2) standard deviation
at an averaging time of 1 sec/point. This is approximately ten times lower noise
than is achievable using a vibrating sample (VSM) or superconducting quantum
interference device (SQUID) magnetometer at the same signal averaging.

When using conventional VSM or SQUID magnetometers to acquire very
high-density data sets (e.g., minor loops, FORC) for magnetically weak samples,
measurement times can extend over many hours or even days. For these types of
applications, the signal-to-noise advantage of ten of the AGM can translate into a
hundred-fold reduction in measurement time.

The factors that impact the sensitivity of the AGM include:

• Acoustic forces (noise).
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Fig. 4 VSM and AGM noise measurements at 1 s/point averaging

• Inertial forces (conducted vibration).
• Preamplifier noise.
• Magnitude of the gradient field.
• Thermal noise [7] of sample and carrier (Brownian motion).
• Choice of operating frequency.

The piezoelectric bimorph is effectively a microphone, and hence acoustic noise
is the primary limitation of AGM sensitivity. Thus, to achieve optimal sensitivity,
audible environmental noise sources (e.g., HVAC systems, electronics cooling fans,
etc.) should be minimized as much as possible by either locating the AGM in a room
where such noise sources are minimized or by enclosing the AGM in a sound-proof
enclosure.

Figure 4 shows typical AGM and VSM noise measurements recorded at 1 s/point
averaging. The AGM noise σ = 5.8 nemu (5.8 × 10−12 Am2) is approximately ten
times lower than the VSM noise σ = 64.8 nemu (64.8 × 10−12 Am2).

Figure 5 shows AGM and VSM hysteresis loop measurement results for a
synthetic anti-ferromagnetic thin film with saturation moment msat < 2 μemu
(2 × 10−9 Am2). The hysteresis loops were recorded to ±500 Oe (50 mT) in 2.5 Oe
(0.25 mT) steps. The VSM data were recorded at 2 s/point averaging (total loop
measurement time = 28 mins), while the AGM data were recorded at 100 ms/point
averaging (total loop measurement time = 1 min 30 s). The results show that an
AGM can measure hysteresis loops (and other field-dependent data) for very low
moment samples with comparable signal-to-noise ratio in less than one tenth the
time required in a VSM.

Figure 6 shows an AGM hysteresis loop for a thin-film sample with saturation
moment msat ≈ 0.6 μemu (6 × 10−10 Am2). The hysteresis loop was recorded
to ±5 kOe (0.5 T) in 40 Oe (4 mT) steps at 100 ms/point averaging, with a total
loop measurement time of 56 s. Obtaining similar results with comparable signal-
to-noise ratio using conventional VSM or SQUID magnetometers would require ≈
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5–10 s/point signal averaging, and the measurement would take approximately 50–
100 times longer.

Examples of the speed with which an AGM can acquire high-density data are
illustrated in Figs. 7 and 8. Fig. 7 shows 19 ascending minor hysteresis loops for
a thin-film recording media sample with saturation moment msat = 400 μemu
(4 × 10−7 Am2). The minor loops were recorded from an initially demagnetized
state to maximum applied fields of ±2 kOe (0.2 T) in 15.8 Oe (1.58 mT) steps
at 100 ms/point averaging. The data set consists of 4844 points and the total
measurement time was only 9 min 24 s.
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Fig. 8 FORCs (23,585 data points) for CoFe nanoparticles dispersed in a 30% volume fraction of
SiO2

Figure 8 shows 176 FORCs (23,585 data points) for a thin-film nanocomposite
consisting of ≈ 10 nm CoFe nanoparticles dispersed in a 30% volume fraction of
non-magnetic SiO2. The saturation moment is only 130 μemu (1.3 × 10−7 Am2).
At 50 ms/point averaging, these data were recorded in only 58 min. Similar results
could be obtained in an electromagnet-based VSM [12], but the measurement would
take approximately 2 times longer, and similar results using a superconducting
magnet-based VSM or SQUID magnetometer would require measurement times
10–20 times longer. Two factors contribute to this longer measurement time: (1)
longer signal averages would be required to obtain comparable signal-to-noise ratio,
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and (2) while the magnetic field can be swept at rates up to 10 kOe/s (1 T/s) in
an electromagnet, superconducting magnets are usually limited to ≈ 200 Oe/s (20
mT/s).

3 AGM Limitations

While sensitivity is the principal advantage of the AGM technique, there are
significant limitations relative to other magnetometric techniques.

Environmental Effects: As noted previously, environmental factors can sig-
nificantly degrade AGM sensitivity by an order of magnitude or more. Audible
noise, air flow fluctuations (HVAC), ambient temperature fluctuations, electronic
noise sources, and mechanical vibrations due to either nearby machinery or human
traffic can all impact AGM performance. To achieve the best sensitivity, the AGM
should either be located in a room where such noise sources are minimized or
be enclosed within a sound-proof enclosure that also minimizes air flow and
temperature fluctuations.

Sample Accommodation: While a VSM, for example, can accommodate sam-
ples of any form (solids, thin films, powders, liquids) with dimensions ranging from
a few to tens of millimeters (mm) and sample masses ranging from <1 milligram
(mg) to tens of grams, the AGM can only accommodate relatively small samples
(typically <5 mm) that are not too massive (typically < tens of milligrams). And,
while small solid samples (thin films, single crystals, etc.) can be easily affixed
to the AGM probe, powder and liquid samples need to be encapsulated in a non-
magnetic sample holder that in turn can be secured to the probe. Additionally, while
a VSM can measure strongly magnetic samples (e.g., permanent magnets) with large
magnetic moments (i.e., hundreds of emu), it is challenging to measure them in
an AGM. This is because the AGM probe is suspended from the AGM head with
springs; thus, the freely suspended probe to which a strongly magnetic sample is
attached will be attracted to, and thus will move toward, the electromagnet poles
at high applied fields. To measure such samples in the AGM, one must measure
physically small, low-weight samples to minimize the moment and, therefore, the
force.

AGM Probe Drift: Although the force sensing piezoelectric bimorph used in
the commercial 2900 AGM is subject to long-term drift of the bimorph transducer
constant owing to “aging” of the piezoelectric ceramic, this is rarely a limitation.
Users of the AGM typically perform a calibration using a magnetic moment
standard, such as NIST SRM2853 (yttrium iron garnet), on a daily, or weekly, basis.

Typically the operating frequency of the AGM is set to the mechanical resonant
frequency of the AGM probe, consisting of piezoelectric bimorph, fused silica
extensions, and sample carrier. In this situation, the instrument response is strongly
influenced by ambient temperature fluctuations, which affect resonant frequency
and quality factor Q. These effects can be mitigated by operating off-resonance,
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where their impact is greatly reduced, although operating off-resonance also slightly
reduces AGM sensitivity.

Robustness: VSM systems are very robust and often serve as the “work horse”
magnetometer in multi-user magnetics labs. The AGM probes, however, are very
fragile and require careful and delicate handling when attaching and removing
samples to prevent the fused silica extensions from breaking.

Variable Temperature Measurements: While VSMs and SQUIDs are capable
of temperature-dependent measurements from low (<4.2 K) to high (1273 K)
temperatures, the AGM is somewhat limited for variable temperature measurements.
The materials used in the 2900 AGM probe cannot withstand high temperatures.
For low-temperature operation, the piezoelectric bimorph must be removed from
the variable temperature environment because its force constant is temperature-
dependent, leading to a reduction in AGM sensitivity. Because the low-temperature
cryostat employed in the 2900 AGM is a liquid cryogen (liquid helium or nitrogen)-
based flow cryostat, the flowing gas causes instabilities/movement of the freely
suspended AGM probe, leading to an additional reduction of sensitivity. For low-
temperature measurements, the AGM sensitivity will typically degrade by a factor
of 10–100, rendering it less sensitive than VSMs or SQUIDs.

Low-temperature operation can be improved by isolating the AGM probe from
the cryostat gas flow, although this partially thermally isolates the sample from the
cryostat which leads to temperature differences (errors) between the sample and
cryostat. Static exchange gas-type cryostats which minimize instabilities/movement
of the AGM probe can also be employed, but these tend to have slower thermal
response times than gas flow cryostats, which increase the time required to conduct
typical variable temperature magnetic measurements. Other techniques that address
AGM operation at variable temperatures have been implemented as well [14–19].

High-Field Measurements: Faraday [20] and electromechanical [21] force
magnetometers have been developed for high-field (9 T) and very low-temperature
measurements (100 mK). The 2900 AGM could be adapted to high-field supercon-
ducting magnets. The electromagnet shown in Fig. 2 could be replaced by a room
temperature bore, horizontal field split-coil superconducting magnet which would
provide for high-field room temperature measurements to ≈ 60–70 kOe (6–7 T).
The AGM could be similarly adapted to a cold bore horizontal field superconducting
magnet for low-temperature measurements; however, the limitations discussed
previously regarding low-temperature AGM operation would still apply.

Magnetically Soft (Low Coercivity) Materials: The AGM cannot be used
to measure very low-coercivity (sub-mT) samples. This is a consequence of the
measurement technique itself [8, 15]. The small-amplitude AC gradient field
produces “distortions” in the hysteresis loops of soft magnetic materials, e.g., minor
loop excursions, etc. These effects can be minimized by reducing the magnitude
of the gradient field amplitude, but this in turn reduces the force, and hence the
sensitivity, of the AGM.

Figure 9 shows hysteresis loops for a 3-nm-thick permalloy (NiFe) thin film
with intrinsic coercivity of <1 Oe (0.1 mT) and saturation moment msat ≈ 30
μemu (30 × 10−9 Am2) at gradient field amplitudes of 15 Oe/cm (150 mT/m)
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and 1.5 Oe/cm (15 mT/m). The higher-field gradient distorts the loop leading to an
erroneous coercivity determination. The lower-field amplitude correctly measures
the loop but at the expense of increased moment noise because of the reduced AGM
sensitivity.

4 Summary

In this chapter, we have described the principles of operation of the AGM measure-
ment technique and its advantages and limitations relative to conventional VSM
and SQUID magnetometers. We’ve also presented typical measurement results that
demonstrate its sensitivity and resultant measurement speed for magnetically diluted
or weak samples.
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Nanomechanical Torque Magnetometry

Joseph E. Losby, Vincent T. K. Sauer, and Mark R. Freeman

Abstract Over recent decades, there has been considerable effort devoted toward
the miniaturization of mechanical magnetometry platforms. With the backdrop of
ever-increasing detection sensitivity, torque magnetometry has provided new insight
into materials with spin textures confined to nanoscale geometries. Torque sensing
allows for broadband characterization of a wide range of magnetic materials,
through quasistatic hysteresis to spin resonances. In this chapter, we present the
basic principles of nanomechanical torque magnetometry, outline its capabilities,
and offer a guide for application of the method.

Keywords Magnetometry · Nanomagnetism · Magnetic torque · Mechanical
torque sensing · Hysteresis · Spin resonance · Nanofabrication · Cavity
optomechanics

1 Introduction

As are the subjects of this volume, magnetic properties of materials can be probed
through a plethora of means, including electromagnetic interactions (inductively
detected spin resonance, Faraday and magneto-optical Kerr effects) and particle
scattering (magnetoresistance, Hall effects, neutron diffraction, muon spin relax-
ation). The focus of this chapter is on mechanical methods and more specifically
on mechanical torque [1, 2], arguably the archetypal physical probe of magnetism
(see Ref [3], Ch. 1). Because magnetization is manifest through dipoles, torque is
the fundamental coupling to fields; forces are an extremely useful but particular
consequence of gradients in dipolar potential energies.
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2 Torque Sensing and Magnetometry Basics

Fig. 1 illustrates the conceptual elements of a mechanical measurement of magnetic
torque. Fundamentally, a magnetic torsion stiffness must exist against rotation of
magnetization within the sample, in order for a nonzero torque to develop and
hence for the rotation of an external applied field, ultimately, to do mechanical
work that results in displacement of the specimen’s physical support. In the
limiting (and unachievable) case of a perfectly spherical specimen of a perfectly
isotropic material, the magnetic torsion stiffness will be zero, and there will be
no torque. Figure 1 indicates a scenario for a monocrystalline magnet that has
been polished into a sphere and attached and centered to the circular end face of
a cylindrical torsion rod and with a specific crystallographic orientation relative to
the cylinder axis. Observations of magnetic torque in such a configuration probe the
magnetocrystalline anisotropy intrinsic to the material.

Traditional (millennia-old) measurements of magnetic torque concentrated on
the equilibrium, constant, or DC orientation of the specimen in an external field. The
past century has seen the development of very sensitive mechanically resonant AC
measurements, as were required famously for pioneering measurements of Einstein
and de Haas. The figure also indicates an additional advantage of more recent
implementations of AC mechanical measurements, in which all three orthogonal
components of magnetic torque can be monitored simultaneously through separate
mechanical resonances (in the case of Fig. 2, one twisting/torsional mode and
two bending/cantilever modes). Other compelling features of mechanical torque
measurements include their scalability across many orders of magnitude in sample
size, thanks to micro- and nanofabrication, and their compatibility with other
mechanisms that pump angular momentum into the magnetic system, such as
spin resonances and spin currents. In an emerging direction, ultrasensitive torque
measurements are being performed in experiments invoking levitation via optical,
ion, or superconducting traps to eliminate solid mechanical supports [4–6].

Fig. 1 Schematic
representation of a
mechanical torque sensor
affixed to a magnetic
monocrystalline sphere.
Magnetic moments, located at
the lattice points, are canted
away from the
magnetocrystalline easy axis
(e.g., along the y direction)
due to an applied external
field H0
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Fig. 2 Simulated mechanical profiles of the (a) torsional and (b) lateral flexing modes for the
basic sensor of Fig. 1. The wire frame indicates the resting position of the structure

3 Experimental Apparatus, Sensor Design, and Fabrication

Optical Detection Schemes

The most sensitive, and generally noninvasive, methods of mechanical displacement
detection have so far been through free-space or integrated optical schemes. In
the former, the most straightforward implementation is an optical “beam bounce”
method off of a (mirrored) armature of a torque sensor which experiences the
highest amount of deflection, and the modulation of the reflected light intensity is
recorded. As sensor dimensions are further miniaturized toward increased sensitivity
and higher operating frequencies, sub-picometer displacement detection has been
accomplished by incorporating free-space lasers with interferometers. Two common
approaches are path-stabilized Michelson interferometry, where the light reflected
off of the oscillating sensor is modulated with a reference beam, and Fabry-Perot
interferometry, in which the optical modulation is enhanced through interaction with
an etalon created by the torque sensor and a substrate (both shown schematically
in Fig. 1. of [7]). The etalon gap width is ideally tuned to the appropriate optical
wavelength and can be lithographically defined through removal of a sacrificial
layer between the sensor and substrate or by affixing a mirror behind the mechanical
sensor.

Recent advances in resonant optical cavity transduction of nanoscale mechanical
resonators have granted extraordinary sensitivities, including the detection of
standard quantum-limited motion. “Cavity optomechanics” approaches generally
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rely on the interaction of a moving object with an optical standing wave, thus
affecting its path length (dispersive coupling), or by mechanical motion creating
absorption or other losses in the resonant optical system (dissipative coupling) [8].
In each case, the mechanical transduction occurs through modulation of the output
power from the system.

Apparatus

The key components of a measurement system for high-sensitivity mechanical
displacement detection through free-space or integrated optical schemes are shown
in Fig. 3. The torque sensor (A) can be housed in a vacuum chamber to primarily
minimize viscous (squeeze-film) damping effects with the atmosphere (usually
pressures on the order of a millitorr are sufficient), though operation in ambient
conditions can be achieved. The sensors (and/or light source) are often mounted
on multi-axis piezo-actuated stages with positioning resolution consistent with the
scale of the sensor for focusing and alignment of the optical readout. Temperature
control can be achieved by, for example, mounting the device chip on a cold
finger connected to nitrogen or helium closed-cycle cryostats. Adequate vibration
damping of vacuum and/or cooling lines to the chamber is necessary, and ideally all
components in the setup within applied magnetic fields should be non-magnetic.

As discussed earlier, the optical cavity (B) can be designed using various
methods. In- and out-coupling of light can be done directly through free-space optics
[9] or via evanescent coupling to tapered optical fibers (with diameters suited for
single-mode optical transmission) [10]. For integrated systems, light is coupled into
and detected out of integrated waveguides through grating couplers [11] or bonded
fibers.

Fig. 3 The mechanical
torque sensor (A) is measured
using an optical cavity (B)
created by light source (C).
Magnetic fields (D) are
applied at the specimen and
consist of either DC bias
fields or AC dither fields
along desired axes. The signal
acquisition system (E)
measures the specimen
motion using the optical
modulations detected at the
photodetector (F)
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Continuous-wave (CW) lasers are often used as the light source (C) for both free-
space and integrated optics implementations of torque sensing, as nanomechanical
resonators operating in the MHz range are ideal for measuring equilibrium to slow
magnetization processes. General requirements for the light source are operation
wavelengths beyond the range of high optical absorption coefficients in the materials
comprising the optomechanical system, stable power output in order to minimize
mechanical frequency shifts, and low-power (micro- to milliwatt range) operation.
Channels of thermal conduction in nanoscale torque sensors generally occur through
clamping points which are designed to be narrow in order to decrease mechanical
spring constants and increase deflection amplitudes, making higher laser fluences
problematic to their operation. Tunable narrow-linewidth CW lasers with wave-
length operation through optical resonances are generally implemented in cavity
optomechanics setups. Pulsed ultrafast lasers have been used for stroboscopically
measuring fast nanomechanical systems [12] and non-equilibrium magneto-optics.
Low-measurement duty cycles are required to allow thermal relaxation between
pulses, but applications in torque magnetometry can be anticipated as a future
thread.

Uniform magnetic fields applied at the specimen (D) are generally classified as
static (DC) with magnitudes ideally capable of saturating the magnetization and
smaller (on the order of tens to hundreds of microtesla) AC fields which serve to
perturb (“dither”) the spin texture to generate torques. The applied field directions
for both the DC and AC fields depend on the torque directions of interest. High DC
fields are achieved with the use of electromagnets or permanent magnets. For low-
field (1 T or lower) operation, permanent magnets offer less instrumental complexity
than required for electromagnets. For field variation, the magnets are placed on
linear (motorized) stepper rails and offer very precise field stability for repeated,
fine hysteresis measurements. AC fields can be generated from coils placed near the
specimen, with the simplest implementation being a single loop of magnet wire
placed above the torque sensor (which will generally allow up to tens of MHz
operation, and extended through the use of tuned LC circuits). Printed circuit boards
with impedance-matched transmission lines can grant local AC fields up to several
GHz and can be designed using multiple layers to generate fields along different
directions [13].

Data acquisition (E) in most cases is done in the frequency domain using lock-in
amplification with the demodulation and output (AC field drive) frequencies set to
the mechanical resonance of the torque sensor. Operating frequencies in the MHz
range immunize the measurements from 1/f technical noise sources, with a trade-
off being that care is required at radio frequencies to eliminate direct crosstalk from
drive to photoreceiver. Computer control of optical wavelength, magnetic drive
frequency, and bias field strength are required for hysteresis measurements and
precursor optical and mechanical characterizations. Phase-locked loop capability
is important for tracking mechanical frequency shifts arising from the contribution
of the field-dependent DC magnetic torsion stiffness.
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Torque Sensor Design

Computer simulations play a very significant role in the present evolution of
mechanical torque studies of magnetism. The principles are not complicated, but
neither the mechanics of the sensors nor the magnetics of the specimens are fully
amenable to analytical descriptions. Numerical simulations play a role in initial
experimental design and again in interpretation of measurements made with as-
fabricated structures.

Torque sensor design is guided by finite element mechanical simulations. The
mechanical resonance frequencies can be predicted, usually within 20% or better
using bulk elastic constants and densities, and the mechanical displacement profiles
visualized. The mechanical quality factors of the resonant modes are more difficult
to predict from simulation, but reasonable guesses can be made based on the
literature and from experience with similar devices. Q ∼ 1000 is a good starting
estimate for operation in vacuum. This is a very low Q in absolute terms, and there is
a large phase space to be exploited for increased torque sensitivity through reduction
of mechanical dissipation.

Continuing from mechanical mode simulation, sensor integration with a dis-
placement detection modality can be optimized. State-of-the-art displacement
detectors using microwave or optical microcavities require separate finite element
electromagnetic simulations. In practice, the capability to resolve thermomechanical
noise remains a good litmus test of sensitivity. With sensitivity limited by Brownian
motion, the accessible science from a given study might be independent of other
parameters, such as overall measurement time (provided the signal integrations are
not degraded by 1/f noise).

Within an initially unbound design parameter space, the torsion stiffness of the
sensor introduces a trade-off between mechanical frequency and torque sensitivity:
higher torsional compliance yields larger displacements and lower resonant frequen-
cies. With the addition of constraints imposed by the fabrication process (minimum
feature size, integrating the magnetic material, device robustness, and fabrication
yield) and by the measurement (sample environment, temperature, pressure, fields,
additional infrastructure within the sample locale for signal transduction), the
same sample geometry and/or fabrication approach might not scale over orders
of magnitude in resonant frequency. For example, whereas MHz-range cantilever
and doubly clamped torsion devices are conveniently fabricated from silicon-on-
insulator platforms, a kHz-range device of similarly thin material may necessitate
patterning a “trampoline” from a silicon nitride window in a silicon frame [14, 15].

Torque Sensor Fabrication

The ongoing progress in nanofabrication methods allows for feature sizes on the
order of tens of nanometers to be defined in a wide variety of materials, making
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it feasible to design and fabricate torque sensors with high geometric precision
(which is of special importance for integrated optomechanical cavities). The
fabrication of hybrid magneto-mechanical torque sensors is generally approached
from the direction of affixing magnetic specimens to (non-magnetic, and often pre-
fabricated) mechanical sensors or by creating the sensor completely out of magnetic
material. A common theme behind each is the need to protect (or avoid completely)
the magnetic material from exposure with incompatible processing used in standard
lithography such as dry or wet chemical etching, which can induce pits and other
geometric defects or induced chemistry and/or damage to the magnetic lattice from
implantation during focused ion beam milling (creating a magnetic “dead layer” in
the region exposed to ions).

Silicon-on-insulator (SOI) substrates have been widely utilized as precursors
for nanomechanical resonators in both cases of free-space or integrated optical
detection. The SOI architecture (engineered to minimize current leakage in inte-
grated circuits) comprises of a thin silicon “device layer” (which can range from
several microns down to tens of nanometers thick) atop a silicon oxide insulating
layer which is sandwiched by a bulk silicon “handle” layer below. Mechanical
structures are defined in the device layer generally through electron beam or optical
lithography in an appropriate photosensitive resist, which serves as a mask for
subsequent etching of the silicon device layer. Sections of the oxide layer are then
removed in order to release the mechanical structures. In the case of Fabry-Perot
detection, the thickness of the oxide layer can be tuned such that the etalon created
by the device and handle layers provide maximum constructive interference of the
reflected intensity through the oscillation cycle of the mechanical resonator. In the
case of integrated optics (waveguides and optomechanical devices) in silicon, the
thickness of the device layer is set to around 220 nm to optimize single-mode optical
confinement at telecommunication wavelengths.

Another popular starting material for nanomechanical systems are silicon nitride
membranes, which are commercially available in differing stresses and thicknesses
(down to 10 s of nanometers). The mechanical structures can be defined lithograph-
ically or through focused ion beam milling, though, owing to their thinness, care
must be taken during the processing steps. With high optical transmittance at visible
and telecommunication wavelengths, they are ideal candidates for membrane-in-
the-middle optomechanical systems.

The recent emergence of single-crystal diamond optomechanics aims to take
advantage of their remarkable optical, mechanical, and thermal properties [16,
17]. Diamond in the infrared and visible wavelengths has a maximum theoretical
transmission of 70%, owing to its large bandgap, and allows for high optical
power confinement. The optical properties combined with a high Young’s modulus
(about five times higher than single-crystal silicon), high thermal conductivity, and
low mechanical dissipation make diamond an ideal candidate for integration with
optomechanical systems.

Several methods have been and are continuing to be developed for the attachment
of magnetic material to torque sensors and are dependent on the material of interest
and their compatibility with fabrication processing. For micro- to nanometer-
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scale geometrically confined magnetic thin films, where specific shapes are to be
controllably patterned, pre-fabricated sensors are coated with photoresist using
procedures to protect from effects of stiction, and the shapes are exposed using
optical or electron beam lithography. The developed photoresist serves as a mask
for liftoff of the deposited magnetic thin film [18]. Thin films can also be deposited
onto thin membranes, through predefined shadow masks (e.g., through holes in
another thin membrane), and the mechanical sensor can be defined around the
magnetic material with focused ion beam milling [19]. For materials not amenable
to standard lithographic processes, such as those that need to be grown epitaxially on
specialized surfaces (an example being synthetic ferrimagnets such as yttrium iron
garnet), the focused ion beam can be used to mill micromagnetic shapes out of a
bulk material, which can be “plucked and placed” onto the sensor using appropriate
nanomanipulation tools [13]. Mechanical resonators fully comprised of magnetic
material have also been developed [20].

4 Magnetic Properties and Parameters

Magnetic Hysteresis

Nanomechanical torque magnetometry is ideal for the measurement of equilibrium
magnetic hysteresis and slow dynamics (such as those that are thermally activated)
of nanoscale materials. The ability to measure the equilibrium response of single
specimens, as opposed to arrays of similar structures (as required by most other
methods for sufficient signal-to-noise ratio), grants access to magnetic “fingerprints”
unresolvable through averaging across multiple structures. These are often on
account of fabrication-induced inhomogeneities in the magnetic microstructure
(such as surface and edge roughness or grain boundaries), which affect local
magnetic properties (saturation magnetization, anisotropy, and exchange coupling).

The interaction of the high exchange energy present in domain walls with
local energy minima created by inhomogeneities (pinning sites) manifests as the
Barkhausen effect, which are observed as small, abrupt transitions (steps) in the
hysteresis loop. An example illustrating the sensitivity of nanomechanical torque
detection is shown through the measurement of thermally activated hopping of a
single vortex core (a high exchange density zero-dimensional domain wall) between
adjacent pinning sites, of which the hopping rates as a function of applied field and
temperature, as shown in Fig. 4a, can be used to quantitatively determine the energy
barriers. The vortex core, with a width on the order of 10 nanometers, can also
be rastered across the magnetic specimen using externally applied fields to subtly
probe minor hysteresis loops induced by disorder caused by the Barkhausen effect,
as shown in Fig. 4b, which can be used to recreate the 2D magnetic energy landscape
with resolution on the order of 10 meV (Fig. 4c).
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Fig. 4 Quantification of the Barkhausen effect. (a) Thermally activated vortex core hopping
between pinning sites in a 1 μm diameter, 42-nm-thick permalloy disk as a function of temperature.
At room temperature, no hysteresis is observed as the hopping rate is much higher than the
measurement bandwidth. The hopping rate is decreased at room temperature and telegraph noise is
observed. At lower temperatures, thermal activation is further suppressed and shown through small
variation of transitions in the minor hysteresis. (b) Mapping minor hysteresis loops over small steps
of Hx and Hy and (designated by inset values, in Am−1). (c) The energy landscape from the minor
hysteresis data in (b) constructed using an analytical model of vortex core pinning [21]. Minimum
energy paths are solid lines, while dashed lines connect vortex core hopping regions. Reprinted
with permission from [22]

Mechanical Torque Detection of Spin Resonance

Torque magnetometry has been applied primarily to magnetostatic studies where
the magnetic system remains in equilibrium with the total applied field, and
furthermore the magnetic torque determines instantaneously the mechanical drive
torque. Beyond this, nonequilibrium spins undergoing precession and relaxation
have a time-rate-of-change angular momentum that can be registered as a net
mechanical torque. The pioneering demonstration of electron spin resonance detec-
tion via mechanical torques was carried out by Alzetta et al. in 1967 [23]. Their
system consisted of a paramagnetic free radical solid specimen (DPPH) suspended
with a torsion fiber pendulum that was RF driven at magnetic resonance with an
amplitude modulation at the mechanical torsional resonance frequency. A DC field
applied along the torsion axis provided the net polarization in the specimen, and
the angular momentum transferred through spin-lattice relaxation registered as a
resonant mechanical torque. The same group would later miniaturize their system
geometry to the micrometer scale in 1996 [24].

For application to ferromagnets, the ingenious method of Alzetta et al. must
be modified to enable concurrent sensing of both the equilibrium magnetization
(hysteresis) and dynamics (spin resonances). The application of the DC bias
field along the torsion axis in the original method results in the equilibrium
magnetization being parallel to the necessary torque direction which, following
the orthogonality condition in the magnetic torque expression, would not yield a
mechanical deflection. A “torque-mixing” method lifts this constraint by generating
a net AC mechanical torque from a driven spin resonance with the DC field
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Fig. 5 Applied field configurations and sensor geometry enabling torque mixing magnetic
resonance spectroscopy. The torque sensor supports a micromagnetic disk on a paddle, operating
at a fundamental torsional mode (axis along the torsion rods) at frequency fmech. H0 biases the
magnetization along z-direction, while H1 (at f1) drives the transverse magnetic resonance in-plane
with the sensor. H2 (at f2) is applied such that f1 − f2 = fmech

applied perpendicular to the torsion axis, in the usual magnetometry configuration
[13]. In the geometry of Fig. 5, the static field H0 is applied in the z-direction,
polarizing the spins in a micromagnetic specimen mounted on a nanomechanical
torsional resonator. An RF field at H1 (at frequency f1) pumps (in a classical
picture) the precession of magnetic moments at fres. An additional RF field H2 (at
f2) multiplies with H1 to generate sum and difference torque-mixing components
which are proportional to the magnetic resonance amplitude and linear to H1 and
H2. By spacing f1 and f2 such that their difference is the mechanical resonance
frequency fmech, the spin dynamics can be read out with high sensitivity. An
additional RF tone (at f3, detuned slightly off fmech) applied in the z-direction
(the standard torque magnetometry configuration) allows for demodulation of the
equilibrium magnetization signal. Sweeping the two torque-mixing RF tones (f1
and f2 with constant separation fmech) while monitoring the signal at f3 allows
for characterization of the spin dynamics as well as the underlying equilibrium
magnetization, both of which are necessary for a comprehensive understanding of
the system. The torque-mixing magnetic resonance detection scheme is broadband,
as long as the mechanical resonance frequency does not far exceed the spin-
lattice relaxation rate. With ever-increasing sensitivities granted by the advances
in optomechanical detection, torque magnetometry has potential for becoming a
standard tool for magnetic resonance spectroscopy in small, geometrically confined
spin systems.

Multi-Axis Torque Magnetometry

Geometrically confined micromagnetic structures investigated to date have predom-
inantly been thin-film based. In standard torque magnetometry measurements of thin
specimens, the magnetic torque is parallel to the mechanical rotation axis, generated
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Fig. 6 Two-axis torque sensor geometry. (a) The fundamental torsion mode, τy, is driven via
torques directed in the y-direction. (b) Out-of-plane magnetic torques are transduced through the
τz mode

as a cross-product of the net magnetic moment and perpendicular applied field. This
torque is dominated by the in-plane net moment as shape anisotropy suppresses
out-of-plane magnetization. The perpendicular magnetic torque, on the other hand,
is dominated by in-plane anisotropy. Complementary information (with net moment
measurements) is gained from the perpendicular torques as they can directly probe
diagonal magnetic susceptibility contributions which arise due to microstructural
inhomogeneities in the film.

The ability to measure both components of magnetic torque is enabled by precise
design and nanofabrication of sensors that grant first-order sensitivity to vibrational
modes which respond independently to in- and out-of-plane torques. Two such
modes are depicted in Fig. 6 for a nanomechanical resonator embedded with a
split-beam photonic crystal cavity. Magnetic torques are generated at the thin-film
element on the square paddle end of the torque sensor (opposite the split-beam). An
out-of-plane RF field generates a y-torque, τy (Fig. 6a), while the RF field in the
y-direction drives the τz mode (Fig. 6b). In terms of vector cross-products of the
magnetic moment mi and field Hi, and differential volume susceptibilities, χi, the
torque expressions for each mechanical mode are:

τRF
y = −mxμ0H

RF
z + HRF

z χzVμ0H
DC
x , (1)

τRF
z = +mxμ0H

RF
y − HRF

y χyVμ0H
DC
x (2)

This coupled system of equations can be applied to paired measurements of
hysteresis through the τy and τz to extract the differential susceptibility components
[25]. In the limit of thin films, the analysis is simplified as χz approaches zero.
When the torque is hysteretic at or near Hx = 0, the quantity (χy – χz)Hx can
be directly extracted as a function of field. The method can be further extended
to the third orthogonal torque axis for full measurement of the diagonal magnetic
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susceptibility components (and necessary for comprehensive analysis of three-
dimensional structures).

Einstein-de Haas Torques

The intrinsic connection between mechanical angular momentum and magnetic
moment is described through the magnetomechanical ratio, g’, which is generally
determined through Einstein-de Haas (EdH) effect measurements. Historically,
EdH measurements have been difficult on the account of very small EdH torque
amplitudes in comparison to conventional cross-product torques generated by the
magnetic moment and applied field. Wallis et al. reported a pioneering microme-
chanical measurement of the EdH effect in 2006 [26]. Nanoscale torque sensors,
with very high mechanical resonance frequencies, offer a path of continued
resurgence for EdH studies. The amplitude of the EdH effect scales with frequency,
becoming comparable to or even exceeding cross-product torques when driven at
radio frequencies. In the quasistatic regime, the EdH torque is also 90 degrees out of
phase to conventional magnetic torques, allowing one to distinguish each component
in quadrature measurements [27].

5 Micromagnetic Simulation

Micromagnetic simulations based on the Landau-Lifshitz-Gilbert equation, as used
to model magnetization dynamics in geometrically confined microstructures, are
very helpful for extending insight into the measurables from micromechanical
torque experiments. Using open-source code such as Mumax3 [28, 29], the change
in system energy can be calculated due to a change in applied fields, and torque
calculations can be extracted from these results.

The most familiar occurrences of mechanical torque from magnetic systems are
constant (DC) torques, while the torques measured in micromechanical studies all
are AC torques; it can be helpful to connect the two scenarios. DC torques will
rotate two bar magnets into anti-alignment (such as a compass needle in the Earth’s
magnetic field). Traditional torsion balances use this phenomenon to determine the
anisotropies of bulk specimens by measuring the mechanical counter-torque to the
equilibrium magnetic torque on a specimen. This is done as a function of the angle
between a coordinate system fixed in the specimen’s frame of reference and an
external DC field. An AC torque measurement, in contrast, employs an AC drive
(“dither”) field perpendicular to the DC field direction to modulate the equilibrium
torque. When the dither field amplitude is small in comparison to the DC field, the
AC perturbation effectively measures the first derivative of the DC torque versus
field direction.
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Fig. 7 (a) Magnetic torque studies of exchange-biased antiferromagnetic/ferromagnetic bilayers.
The left axis (red circles) is the simulated torque for a 448 nm diameter permalloy disk with a
height of 35 nm. The right axis (blue squares) is the measured torque from reference [30] of a NiFe
(30 nm)/FeMn (15 nm) bilayer of 6 μm diameter at 20 mT. (b) The simulated representation of
the spins in the exchange-biased permalloy system. The exchange bias direction is 0 degrees and
at the base of the disk, with the magnetization direction of the ferromagnet in plane indicated by
the colorbar scale

Micromagnetic simulations can similarly be scripted to calculate both DC and
AC torque components for model specimens. As in other applications of finite
element micromagnetic simulation, tests of scaling behavior versus cell size, and
other controls such as testing for linear response to small-field amplitude or
anisotropy parameter changes, are performed to ensure that physically meaningful
conclusions are drawn. This is especially important when the type of simulation
grid is not ideally suited to the problem, as, for example, in a prototypical case of a
circular magnetic disk simulated on a rectangular grid.

These torque simulations can be used to gain insight into more complex mag-
netic material systems such as exchange-biased antiferromagnetic/ferromagnetic
bilayers. Exchange bias introduces a unidirectional anisotropy, describable as a
negative cosinusoidal variation of energy as a function of the angle between
the exchange bias (EB) direction and the magnetization in the ferromagnet. The
corresponding torsion spring constant, κEB, from the angular second derivative of
energy, is positive/negative for magnetic moment aligned/anti-aligned with the EB
direction. The out-of-plane torque measurements on a macroscopic circular disk of
(nominally) isotropic ferromagnetic thin film can isolate the EB contribution and
are shown in Fig. 7(a) (sample details in caption). In this case, the ferromagnetic
film also contained an unintentional uniaxial anisotropy, revealed upon increasing
the strength of the external magnetic field [30]. An illustrative simulation of the
DC torque on a microdisk in a similar bilayer system qualitatively agrees with the
experimental results, as shown in Fig. 7(a). The magnitude difference on the order
of one billion (compare left- and right-axis scales) stems from the ratio of magnetic
volumes. A representation of the spin configuration in the simulated microdisk is
shown in Fig. 7(b).
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6 Calibration and Sensitivity

Calibration methods based on the intrinsic Brownian motion of the sensor have
been borrowed from the atomic force microscopy community and adapted from
calibrating linear displacement and force to angular displacement and torque. The
torque calibration follows from the fluctuation-dissipation theorem [31]. In the
nanomechanical device, mechanical losses, characterized by the mechanical quality
factor Qm, couple energy to the environment as heat. Conversely, the external
thermal bath couples energy into the nanomechanical mode as Brownian motion,
resulting in the TM noise signal. This occurs at each mechanical mode of motion.
Since the thermal motion is in the form of white noise, the angular displacement
spectral density is given by:
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where kB is the Boltzmann constant, T is the temperature, and fn is the mechanical
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The effective moment of inertia, Ieff, n, can be calculated analytically for simple
structures or by using finite element modelling for more complex devices [32].

The angular spectral density is then related to the mean square angular displace-
ment through:

〈θ〉2 =
∞∫

0

Sθ (f )df. (4)

This can be calibrated using the equipartition theorem equating the thermal
energy of the mode with the energy of the torsional spring, 1

2kBT = 1
2ktor,n〈�〉2. If

the mechanical device is driven in the linear regime, the driven torque displacements
can be calculated by comparing these signals to the TM noise measurement. The
conversion to torque occurs through τ n = κ tor, nθn.

Next, the sensitivity of these devices can be extracted from the TM noise
measurement. Once converted to angular displacement and torque, the minimal
detectable levels are determined by the (white) noise floor in the experiment off of
the mechanical resonance. However, one powerful property of using a mechanical
resonator to measure magnetic torque is the fact that the signal is enhanced through
the resonator’s ability to store energy as characterized by its Qm. As such, on-
resonance displacement and torque sensitivities are improved by a factor of

√
Qm
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[33]. Record torque sensitivities at the level of 10−24Nm
√

Hz have been achieved
in a dilution refrigerator used to suppress the TM noise. This sensitivity level also
had the added restriction of a 20-ms optical sampling limitation required to prevent
sensitivity degradation due to heating [34]. At atmospheric conditions (where the
Q-enhancement is significantly reduced due to air damping), torque sensitivity has
been measured in the 10−20Nm

√
Hz range [35]. It should be noted that both of

these measurements used optical cavities to achieve their high sensitivity.
If the net magnetic moment of the sample is known, as well as the applied

field magnitude, the magnetic moment sensitivity of the sensor can be determined
through scaling to the TM noise amplitude [36]. The conservative assumption for
all magnetic moments contributing to torque generally applies to mechanical modes
with compliant torque axes perpendicular to a saturated sample. Often is the case
of micromagnetic structures that the net moment is unknown, and micromagnetic
simulations assist in providing a close approximation.

7 Nanomechanical Torque Magnetometry in Comparison
to Other Methods: Summary

Nanoscale optomechanical torque magnetometry is ideally suited for harnessing the
direct transfer of angular momentum between the magnetic and mechanical subsys-
tems to investigate underlying spin mechanical effects (such as magnetomechanical
ratios and spin-lattice coupling), as well as properties of the magnetic material from
torques communicated through quasistatic and dynamic magnetization processes.
The exquisite detection sensitivity allows for measurement of single nanoscale
specimens, making it highly competitive with (as well as offering complementary
information to) other existing methods. The construction of hybrid torque sensors
is amenable to various fabrication platforms, allowing for the measurement of a
wide range of materials and magnetic systems. Optical transduction methods can be
designed to be generally noninvasive to the magnetic system.

The ability to clearly measure equilibrium magnetization responses (such as
hysteresis) in single, nanoscale samples is a key feature of nanoscale torque
magnetometry and not as easily realized using other techniques. Although possible
in principle to acquire static magnetization using magneto-optical methods (such
as MOKE), in practice, it is difficult to achieve due to the low laser fluences
generally needed in order to avoid sample heating while at the same time attempting
to detect sub-microradian polarization changes. Signal averaging times required
approach 1/f noise, limiting the signal-to-noise ratio. DC magnetization detection
is possible using local probing methods such as MRFM and nitrogen-vacancy
center magnetometry, or X-ray circular magnetic dichroism (XMCD), though
generally numerical reconstruction methods are needed on top of long averaging
times (in other words, not a one-shot measurement possible through mechanical
torque detection). SQUID measurements are commonly used for highly sensitive
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static magnetization measurements, though they offer limitations for operation in
high temperature. Coupling to small specimens inductively for DC measurements
is possible through superconducting electronics, though as size scales decrease,
parasitic inductances hamper adequate signal-to-noise ratio.

Torque detection of slow dynamics (such as those induced through thermal
activation or domain wall resonances) and AC susceptibility can be achieved
at the mechanical resonance frequencies, while spin resonances at much higher
frequencies can be measured through drive signal modulation or detection demod-
ulation schemes. The ability to monitor simultaneously the dynamics alongside the
underlying equilibrium magnetization in small specimens gives nanomechanical
torque magnetometry an advantage not yet served by other methods.

As detection frequencies increase, Einstein-de Haas torques amplitudes will
grow in magnitude and become a routine component of the measured data. Further-
more, a materials-dependent upper limit of mechanical detection frequencies will be
imposed when the spin-lattice relaxation time becomes longer than the oscillation
cycle of the sensor. These effects speak in particular to the most exciting aspect of
nanoscale torque sensors, in which the method goes beyond simple miniaturization
to providing access to new physical information.
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Imaging Techniques



Magneto-Optical Microscopy

Rudolf Schäfer and Jeffrey McCord

Abstract Magneto-optical microscopy, prominently represented by Kerr
microscopy, is the most versatile in-lab imaging technique for magnetic
microstructure analysis on any kind of magnetic material being microscopically
ordered in magnetic domains. Domains can be studied on a wide range of
lateral scales reaching from centimetres down to 200 nanometres, under static
conditions as well as under dynamic magnetic field excitation ranging between
quasistatic and beyond the microwave regime, at temperatures between 4 K and
800 K, and in applied fields exceeding the Tesla range in arbitrary directions. The
surface magnetisation vector field of soft magnetic materials can be quantitatively
measured, and the magnetic layers in superlattices may be imaged separately. By
plotting the image intensity as a function of magnetic field, local magnetisation
curves are obtained that can be interpreted straightforwardly as the underlying
magnetisation process is imaged simultaneously. In this chapter the physical
and technical basics of magneto-optical microscopy are reviewed together with
examples that demonstrate the benefits of the technique.
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1 Introduction

Magneto-optical microscopy is based on physical effects that lead to an influence of
the spontaneous magnetisation of matter on the emission and propagation of light.
Such effects occur at visible light frequencies as well as at X-ray wavelengths. The
former, which may be called ‘conventional’ effects [1], include the magneto-optical
Faraday, Kerr, Voigt, and gradient effects that are applied in optical polarisation
microscopes (often laxly called ‘Kerr microscopes’) for imaging, while for X-ray
microscopy, tunable X-rays are required as they are available at synchrotron radia-
tion sources. This chapter is devoted to the conventional effects and their application
for domain imaging; for X-ray spectro-microscopy, we refer to Chapt. 2.c.vii.

While the history of magneto-optical domain observation dates back to the 1950s,
it was in the nineteenth century already when the most important underlying effects
have been discovered (see Fig. 1). In 1846, Michael Faraday reported that plane-
polarised light is rotated by traversing glass if a magnetic field is applied along the
propagation direction [2]. The Faraday effect can also be observed in transparent
materials with spontaneous magnetisation like magnetic garnets, where it is caused
by the magnetisation rather than by a magnetic field. As it is limited to optically
transparent materials, Faraday microscopy can only rarely be employed. After its
first application for domain imaging on garnet films by Fowler and Fryer [3] in
1956, the method has nevertheless played a decisive role for the development of
the magnetic bubble memory in the 1970s. Also the Voigt effect, discovered as
magnetic double refraction in vapour by Woldemar Voigt in 1898 [4] and later in
paramagnetic liquids [5], played an established role for the observation of in-plane
domains in garnets [6]. In recent years, the interest in transmission microscopy has
raised again because garnet films have retrieved renewed popularity for magnonic
and spintronic applications. Also ultrathin metallic films, being thinner than the
penetration depth of light and deposited on transparent substrates, can favourably
be studied in transmission geometry. Due to strong magnetic contrasts, Faraday and
(transmission) Voigt microscopy could always be easily performed without the need
for electronic contrast enhancement.

This is different for domain observation on non-transparent samples. The
magneto-optical effect, corresponding to the Faraday effect but in reflection, was
discovered on iron by John Kerr in the 1870s for the cases of the magnetisation
being perpendicular [7] to the surface, called polar Kerr effect, and parallel [8] to
the surface along the plane of incidence, called longitudinal effect. A third variant
in which the magnetisation is in-plane but orthogonal to the plane of incidence was
later found by Zeeman [9], now called transverse Kerr effect. The first Kerr images
were reported independently by Williams et al. [10] and by Fowler and Fryer [11]
on iron and cobalt crystals, respectively. As the Kerr effect on in-plane magnetised
material is weak and technically difficult, for a long time, meaningful domain
images could only be obtained in carefully optimised polarisation microscopes on
favourable and well-prepared samples. Despite significant contrast enhancement
by coating the samples with optical interference layers [12], Kerr microscopy was
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considered a niche technique for many years, only being used by a few specialists.
This has changed with the introduction of digital image processing in the 1980s
[13, 14]. In the standard difference technique, a background image (obtained, e.g.
by saturating the specimen in a magnetic field) is digitally subtracted from an image
containing domain information, leading to a difference image with pure magnetic
contrast that can be enhanced by electronic means. After the introduction of
electronic contrast enhancement, continuous methodical developments have boosted
the capabilities of Kerr microscopy, which has evolved into a universal, affordable
but yet very powerful in-lab domain imaging technique that allows for domain
studies on virtually all magnetic materials. Image processing has also opened the
path for the discovery of the Voigt effect in reflection and of the magneto-optical
gradient effect [15] in 1990.

In this chapter the basics of magneto-optical domain imaging are reviewed. After
introducing the conventional magneto-optical effects in Sect. 2, physical aspects of
magneto-optical microscopy like domain contrast and resolution are addressed in
Sect. 3. In Sect. 4 the state-of-the-art technology is presented, followed by Sect. 5
that collects various methodologies. Emphasise will be on Kerr microscopy, which
is the most commonly applied technique. We will nevertheless also introduce the
basics of the other effects—imaging on the basis of the Voigt and gradient effects
certainly plays a niche role, but both effects can contribute to any domain contrast
in Kerr microscopy. It is therefore worth being aware of them. Imaging by Faraday
microscopy is of timeless importance anyway, and the application of the Faraday
effect in magneto-optical indicator films experiences increasing attention. Previous
reviews on magneto-optical microscopy can be found in refs. [1, 16, 17]. Section 2
in ref. [18] contains a general overview of domain observation techniques.

2 Magneto-Optical Effects

The phenomenological difference between the conventional magneto-optical effects
is apparent from the right column of Fig. 1. For the Kerr, Voigt, and gradient
effects, a four-phase domain pattern of an FeSi crystal, in which the surface
domains are magnetised along two orthogonal easy axes, was imaged in reflection
in an optical polarisation microscope. For each effect a typical domain contrast
was adjusted by properly setting the optical components of the microscope and
by choosing the appropriate incidence of light as indicated. In the Kerr effect,
the four domain phases appear in up to four different grey levels as this effect
depends linearly on the magnetisation vector. Since the Voigt effect has a quadratic
dependence on magnetisation, the same domain pattern displays only two grey
levels in Voigt microscopy, one for each magnetisation axis and independent of
the magnetisation direction. Imaged in the gradient effect, which is sensitive to
changes in magnetisation, the domain boundaries show up with a contrast that
depends on the relative magnetisation directions of the neighbouring domains. Both
gradient and Voigt effects require a compensator (i.e. a rotatable retardation plate
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Fig. 1 Summary of the four conventional magneto-optical effects that can be applied for magnetic
domain imaging. Listed are, from left to right, effect name with its year of discovery, optical
description, sensitivity to the magnetisation vector M , authors and year of the first application
to imaging, and the typical contrast appearance in an optical polarisation microscope. The domain
images were taken from a single-crystal garnet film with perpendicular anisotropy (upper row) and
on a (100) surface of an Fe 3 wt% Si sheet with a thickness of 0.5 mm (other rows). Indicated is the
polarisation direction of the illuminating light and its plane of incidence. The arrows in the images
indicate the local magnetisation directions of the domains. Identical domain patterns are shown for
the Kerr and Voigt effect, while a very similar domain state was imaged for the gradient effect. The
images on the FeSi material are adapted from ref. [1] with kind permission from Springer Verlag

that transforms elliptically polarised light into plane-polarised light) for optimal
contrast adjustment. They are strongest at perpendicular incidence where a Kerr
contrast of in-plane domains is not possible. If a transparent material with similar
domain phases would be imaged in transmission, the same contrast features would
be observed, but now in the Faraday, the transmission Voigt, and the transmission
gradient effects. In Fig. 1, a perpendicularly magnetised garnet film at perpendicular
incidence was chosen to represent the Faraday effect as this polar geometry is most
frequently used in Faraday microscopy.

To apply the conventional effects for microscopy, the sample is illuminated by
plane-polarised light, i.e. by a transverse electromagnetic wave, which moves along
the propagation vector k with electric and magnetic field components that oscillate
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Fig. 2 (a) Visualisation of elliptically polarised light being generated by the phase-shifted
superposition of two partial waves that are plane-polarised in the (s, k)- and (p, k)-planes. Shown
is the spatial and time evolution of the electric field vector E. By assuming that the elliptical
wave is caused by reflection of plane-polarised light from a magnetic specimen, the schematics
illustrate the Kerr effect (in a strongly exaggerated way, though). (b) Representation of elliptical
polarisation as superposition of right- and left-handed circularly polarised waves with different
amplitudes and phases. (c) If the two circular waves are out of phase, but equal in amplitude, a
rotated plane-polarised wave emerges by superposition. Adapted from ref. [1] with kind permission
from Springer Verlag

within planes, both being perpendicular to each other (see textbooks on optics, e.g.
refs. [19, 20]). The electric field of the wave can be described by the function

E = E0 exp[i(k · r − ωt)] , (1)

which is harmonic both in time, t , and position, r . The frequency and the amplitude
of the oscillating field are represented by ω and E0, respectively. Due to the
interaction with the magnetisation of the specimen, the plane-polarised wave is
transformed into rotated and/or elliptically polarised light as illustrated in Fig. 2a.
Rotation and ellipticity are then converted into a domain contrast by properly setting
an analyser and compensator as explained below in section “Domain Contrast”. Like
other optical properties of solids (dispersion, absorption, double refraction, optical
activity, etc.), also the magneto-optical interactions can be treated within the frame
of classical electromagnetic theory. The basic ideas of this phenomenological theory
and their specific relevance for the magneto-optical effects are briefly outlined in the
following subsections. For a comprehensive description, we refer to ref. [1].
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Electromagnetic Basics

The starting point of electromagnetic theory is the Maxwell equations (div D = ρ ;
div B = 0 ; rot E = −Ḃ ; rot H = j + Ḋ) that connect the various field vectors
of electromagnetism. The magnetic and electric fields are represented by H and E,
respectively, B is the magnetic induction, D is the dielectric displacement field, and
j and ρ are the electric current and charge density, respectively. The field equations
are linked by material-specific relations, most importantly by

D = ε0εrE (2)

as well as by B = μ0μrH and j = σE. In those equations, which are given
here for isotropic media, ε0 and μ0 are the dielectric constant and permeability
of free space and εr , μr , and σ are the (relative) dielectric permittivity, magnetic
permeability, and electric conductivity, respectively, of the material. While in free
space the speed of the electromagnetic wave is given by c0 = 1/

√
ε0μ0, it is defined

as v = 1/
√
ε0εrμ0μr in matter. The index of refraction of the material, n, relates

the two velocities, i.e. n = c0/v = √
εrμr . The refractive index thus describes the

fact that the light velocity in matter is different from that in free space and that it
differs in different materials.

Electromagnetic theory applies to both transparent (dielectric) and absorbing
(conductive) media. Electrical conductivity, allowing for light-induced electrical
currents and thus being responsible for absorption in metallic materials, is con-
sidered by introducing a complex refractive index (n = n′ + in′′). The real part
is the true refractive index, while the imaginary part, called extinction coefficient,
accounts for absorption. This becomes obvious by entering n into the plane wave
equation (1). With |k| = n k0 = ω/v and k0 = ω/c0 (with k0 being the wave
propagation number in free space), the plane wave (1) is expressed by

E = E0e
i[ ω
c0
(n′+in′′)z−ωt] = E0e

− ω
c0
n′′z

e
i[ω n′

c0
z−ωt]

. (3)

According to the term exp(i[ω n′
c0
z − ωt]), the wave advances in the z-direction

with the speed c0/n
′. By propagating through the conductor, its amplitude,

E0exp(−ωn′′z/c0), is exponentially damped, i.e. the energy of the wave is more
and more absorbed by the material. The power of the electromagnetic radiation
(irradiance), which is proportional to the square of the amplitude, is then given
by I (r) = I0e−αz. Here I0 is the irradiance at the surface of the metal and
α = 2ωn′′/c0 = 4πn′′/λ is the absorption coefficient. The energy density thus
falls to e−1 ≈ 1/3 of its value after the wave has propagated a distance of 1/α. This
distance is known as the skin depth. For typical magnetic materials like iron, the
skin depth is about 15 nm (with n′′ = 3 and at a wavelength of 560 nm).

Four facts need to be taken into account: (1) If the refractive index is complex,
also the wave vector and the field terms are complex due to the connecting relations.
(2) In the case of optically anisotropic materials, the factor εr in Eq. (2) is a tensor!
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This means that the direction of the D-vector, which represents the electric field
vector within the material, may deviate from the direction of the incoming E-
vector. (3) The components of the ε-tensor are frequency dependent; the wave
propagation is thus dispersive. (4) The typical Larmor precession frequency of
magnetic moments (<100 GHz) is much lower than the 500 THz frequency of
visible light. Therefore at optical frequencies the magnetic moments are too ‘slow’
to follow the alternating magnetic field of the electromagnetic wave. All material-
specific optical properties, including the magneto-optical effects, are therefore
dominated by ‘gyroelectric’ terms and incorporated in the dielectric ε-tensor, while
the ‘gyromagnetic’ terms and the permeability tensor μ do not play a role.

By properly combining the material and Maxwell equations, a wave equation for
the E-field is obtained. With the plane wave ansatz (1) and by assuming visible light
(i.e. μ = 1), the wave equation can be written as a system of three linear equations
for the three vector components Ei of the E-field amplitude [1]:

ki(k · E) − k2Ei +
3∑

j=1

k2
0 εij Ej = 0 . (4)

The non-trivial solutions for E to this equation system, the so-called eigenmodes,
describe the propagable light waves in the medium. It turns out that not one but
two waves of different velocity and possibly different absorption may in general
propagate through the material. These can be plane- or circularly polarised waves.
For a visualisation of circularly polarised light, we refer to Fig. 2a—the elliptical
wave becomes circular if the two orthogonal field amplitudes are equal and shifted in
phase by 90◦. Also note that a plane-polarised wave may be seen as being composed
of two circularly polarised waves of equal amplitude and opposite rotation sense as
indicated in Fig. 2c. According to Eq. (4), the knowledge of the components εij of the
ε-tensor is required to obtain the eigenmodes. We will therefore start the discussion
of the conventional magneto-optical effects by introducing the dielectric tensors in
the following subsections. Although the Kerr effect applies to metallic or otherwise
light-absorbing magnetic material, whereas the Faraday effect occurs in optically
transparent media, both effects are treated together as both are predominantly
rotational effects that follow the same phenomenology.

Kerr and Faraday Effect

For the Kerr and Faraday effect (and for materials with cubic crystal symmetry), the
magneto-optic permittivity tensor is

εKF = εiso

⎛
⎝ 1 −iQVmz iQVmy

iQVmz 1 −iQVmx

−iQVmy iQVmx 1

⎞
⎠ , (5)
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with εiso representing an isotropic dielectric constant as defined below. If the off-
diagonal elements of the tensor are zero, Eq. (2) would explicitly be written as
(D1,D2,D3) = ε0εiso(E1, E2, E3), i.e. the displacement vector would be along the
same direction as the E-vector of the incident light. The light would then interact
with the matter without rotation of its polarisation plane. Rotation (and ellipticity)
of the out-coming light requires non-zero off-diagonal elements. They contain the
direction cosines of the magnetisation vector m = M/Ms (with |m|2 = 1) along
the three spacial directions defined in Fig. 2a and the Voigt constant QV, which is
a frequency-dependent, complex material parameter. It is roughly proportional to
the saturation magnetisation Ms and describes the strength of the effect. Usually the
real part of QV is dominating with absolute values of the order of 10−2. According
to the tensor, the Kerr and Faraday effects are obviously linear in the components of
the magnetisation vector as already demonstrated in Fig. 1.

As we will see below, any Kerr and Faraday rotation requires that the projection
of the k-vector on the magnetisation vector m is non-zero. By solving the wave
equation (4) under the condition of light propagation strictly along the magnetisa-
tion vector, it turns out [1] that the eigenmodes are two circularly polarised waves
with opposite rotation sense, given by E0

y = ± iE0
x . Plane-polarised light entering

the material is resolved into these two modes. Each mode ‘feels’ its own (complex)
index of refraction n+ and n−, which depend on the Voigt parameter according to

n± = √
εiso(1 ± QV/2). (6)

The factor
√
εiso represents the mentioned isotropic dielectric constant that is related

to the magnetisation-independent, average refractive index n̄ = 1
2 (n+ + n−) =√

εiso. If QV is zero, n+ and n− would be identical, and any polarisation state
could propagate, feeling generally the isotropic refractive index. As soon as QV
appears, only the right and left circular normal modes can propagate. Since n+
and n− may differ in their real and imaginary parts, the two partial waves will
advance with different velocities and absorption, respectively. Different velocities
result in a phase shift and consequently in a rotation of the polarisation plane as
illustrated in Fig. 2c. For this reason the Kerr and Faraday rotations may be classified
as circular birefringence effects (i.e. a birefringence of circularly polarised light—
note that, in general, a material that displays two different indices of refraction is
said to be birefringent). The difference in absorption causes different amplitudes of
the two circular modes, leading to ellipticity (compare Fig. 2b) and thus circular
dichroism—again, a material that displays different absorption of partial waves
is said to be dichroic. Both rotation and ellipticity are considered by introducing
complex angles for the Faraday and Kerr effects as will be elaborated below. Note
that the Faraday and Kerr effects are primarily rotation effects with some ellipticity
superimposed.

The microscopic origin of the Faraday and Kerr effects can be traced back
to light-induced electron transitions in the valence-band energy regime, e.g. from
d-states to unoccupied p-states in case of a 3d ferromagnet (different to X-ray
magnetic dichroism where X-ray light is absorbed by the excitation of core elec-
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trons, see chapter “X-Ray Magnetic Circular Dichroism and X-Ray Microscopy”).
Prerequisite is the simultaneous presence of band exchange splitting, induced by
the spontaneous magnetisation of magnetic materials, and spin-orbit coupling that
also leads to band splitting. By considering now that incident, plane-polarised
light may actually be seen as being composed of two circularly polarised waves
of opposite helicity (compare Fig. 2c), it turns out that those two circular modes
experience different absorption spectra according to the selection rules for electric
dipole transitions. The complex dielectric constant can be related to the electronic
transitions, thus connecting the microscopic picture with the previously presented
macroscopic description. With (n′± + in′′±)2 = ε′± + iε′′± and Eq. (6), the Voigt
constant QV can then be expressed in terms of n+ and n− by QV = 2(n+ −
n−)/(n+ + n−). For details on this microscopic model, we refer to the literature
[1, 21].

Faraday Effect

Both circular birefringence and dichroism and their superposition are illustrated
in Fig. 3 for the case of perpendicular incidence on a perpendicularly magnetised
medium in transmission, which is called polar Faraday effect. Although the Faraday
rotation is reminiscent to the circular birefringence of optically active media [19],
there is an important distinction: if the light passes the material again in reversed
direction, the rotation does not cancel but is rather doubled in case of the Faraday
effect. The reason for this irreversibility is that the Faraday rotation is tied to the
direction of the magnetisation rather than to an optical axis. A reversal of the
magnetisation relative to the propagation direction leads to an exchange of the
preferred left and right circular modes along the m-axis. Oppositely magnetised
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Fig. 3 Illustration of magnetisation-induced circular birefringence (a), circular dichroism (b), and
superimposition of the two effects (c) in polar Faraday geometry with perpendicular incidence of
plane-polarised light. The trace of light polarisation in the plane perpendicular to the propagation
vector is shown. The two out-of-plane magnetised domains have different influences on the
polarisation state as indicated by arrows with the same color as the domains. In (c) the Faraday
rotation refers to the rotation of the major axis of the ellipse. Similar illustrations would apply to
the polar Kerr geometry in reflection. Adapted from ref. [1] with kind permission from Springer
Verlag
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domains will thus cause a reversal of the Faraday rotation and of the handiness of
ellipticity. Following the above arguments, the complex Faraday angle θc

F = θF+iξF
can be calculated. For a polar geometry, the Faraday rotation (θF) and ellipticity (ξF)
are given by [1]

θF = −l(π/λ0) (n
′+ − n′−) = −l(π/λ0)Re(n̄QV)

ξF = −l(π/λ0) (n
′′+ − n′′−) = −l(π/λ0) Im(n̄QV) , (7)

with l being the covered distance in the material. A Faraday effect with the same
phenomenology is also found if an in-plane magnetised material is illuminated
at oblique light incidence with the propagation vector having a component along
the magnetisation axis. The strength of this longitudinal Faraday effect is reduced
compared to the polar effect as only a component of the k-vector is responsible for
circular birefringence and dichroism. For an arbitrary orientation of magnetisation,
it might be possible that also linearly polarised eigenmodes are excited (like
for the Voigt effect, see section “Voigt Effect”), which get intermixed with the
circular modes making an intuitive understanding of the resulting phenomenology
complicated [22, 23].

A Faraday rotation of plane-polarised light does furthermore occur in isotropic
dielectric media like glass in the presence of a magnetic field, given by θF = VBzl.
The amount of rotation is proportional to the component of magnetic induction Bz
in the propagation direction, to the length l of the traversed medium, and to the
material parameter V , called the Verdet constant. In magneto-optical microscopy
and magnetometry, the field-induced Faraday effect plays a parasitic role: Optical
elements in the microscope, like the objective lens, can cause a Faraday rotation
in the presence of magnetic fields that is superimposed to any light rotation being
caused by the magnetism of the specimen. In quantitative Kerr microscopy, where
saturated sample states of well-defined directions are created by external magnetic
fields for calibration purposes, as well as in magnetometry, this disturbing Faraday
effect has to be taken into account for a proper interpretation of results (see
sections “MOKE Magnetometry” and “Quantitative Kerr Microscopy”).

Kerr Effect

The magneto-optical Kerr effects are much weaker than the Faraday effects as
the light only interacts with the magnetisation within its penetration depth. Nev-
ertheless, also the Kerr effects can be interpreted in terms of circular birefringence
and dichroism (possibly being superimposed by linear effects in case of oblique
incidence), meaning that incident plane-polarised light is reflected as rotated and
maybe elliptically polarised light. In analogy to the Faraday effect and again
assuming polar geometry, the components of the complex Kerr angle θc

K = θK+i ξK
are calculated as [1]
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θK = Im
( n̄QV

1 − n̄2

)
and ξK = −Re

( n̄QV

1 − n̄2

)
. (8)

Interestingly, the role of the real and imaginary parts of the off-diagonal elements
in the magneto-optical tensor is now opposite to the case of transmission [compare
Eq. (7)]. The Kerr rotation thus corresponds to the Faraday ellipticity and the Kerr
ellipticity to the Faraday rotation. Recalling that for non-absorbing materials the
imaginary part of n̄QV is zero, it is obvious that for a transparent medium, no
rotation can be expected on reflection—the reflected light will just be elliptically
polarised with the major axis along the plane of polarisation of the incident
light. Rotation in reflection rather requires a non-vanishing imaginary part and
thus absorption. If transparent materials are supposed to be studied in reflection
microscopes, it is therefore rational to place them on a metallic mirror, thus using
effectively the Faraday effect.

Instead of using a circular basis for the description of elliptical polarisation (like
in Fig. 2b, c), a cartesian decomposition as depicted in Fig. 2a is more suitable for
the Kerr effect. To include the case of oblique incidence, it is useful to choose
the (s, p, k) coordinate system for the reflection path. Here the direction of the
light propagation is given by the wave vector axis k, the p-axis is in the plane of
incidence (defined by the sample normal and the wave vector of obliquely incident
light), and the s-direction is perpendicular to the plane of incidence. The two
standard geometries of reflection and transmission of pure s- and p-polarised light
are summarised in Fig. 4. Here n0 is the refractive index of the environment (air
or an immersion medium), n1 = n′

1 + in′′
1 is the complex index of the magnetic

material, ϑ0 is the angle of incidence (measured from the surface normal), and ϑ1 is
the (complex) angle of the light beam in the magnetic medium that is related to ϑ0
by Snell’s law:

n0 sinϑ0 = n1 sinϑ1. (9)

Within that coordinate system, the change of the polarisation state on reflection
is described by the following Jones-type [19] matrix equation:

(
Erefl

p

Erefl
s

)
= R

(
Ein

p

Ein
s

)
with R =

(
rpp rps

rsp rss

)
. (10)

It connects the Jones vector of the incident light with that of the reflected light,
both containing the p- and s-components of the electrical field amplitudes. The
reflection matrix R includes the reflection coefficients rij that are defined by the
corresponding ratios of the incident field amplitudes and the reflected amplitudes.
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Fig. 4 Plane waves with (s)- and (p)-polarisation, represented by their incident, reflected and
transmitted field amplitudes. On the left, the E-fields are normal to the plane of incidence; on
the right they are parallel. The component of E normal to the plane of incidence undergoes a
180◦ phase shift upon reflection when the incident medium has a lower refractive index than the
magnetic medium

The first index, i, labels the reflected component; the second index, j , is for the
corresponding components of the incident light. Solving the Maxwell equations for
the Kerr tensor (5) leads to the following reflection coefficients1 [24, 25]:

rss = n0 cosϑ0 − n1 cosϑ1

n0 cosϑ0 + n1 cosϑ1
,

rpp = n1 cosϑ0 − n0 cosϑ1

n1 cosϑ0 + n0 cosϑ1
− i 2n0n1 cosϑ0 sinϑ1mxQV

(n1 cosϑ0 + n0 cosϑ1)2
,

rsp = i n0n1 cosϑ0(mz cosϑ1 + my sinϑ1)QV

(n1 cosϑ0 + n0 cosϑ1)(n0 cosϑ0 + n1 cosϑ1) cosϑ1
,

rps = i n0n1 cosϑ0(mz cosϑ1 − my sinϑ1)QV

(n1 cosϑ0 + n0 cosϑ1)(n0 cosϑ0 + n1 cosϑ1) cosϑ1
. (11)

Note that the coefficient rpp contains two components: the first fraction corresponds
to the regular Fresnel coefficient for p-polarised light [19, 20], while the second
fraction is magnetisation-dependent. Below we will call them r0

pp and r
mag
pp , respec-

tively.
As an example let us examine the geometry of Fig. 2a again. Here the incident

plane wave is s-polarised with the field amplitude E = (0, Ein
s ), which is then

reflected as a rotated elliptical wave due to the magneto-optical interaction. The

1Please be aware of misprints in ref. [1], regarding the coefficients rpp and rps in Eq. (2.92) and
the coefficient ryy in Eq. (2.85). Furthermore, in Eq. (2.97a) the minus sign in the third vector
component has to go to the second component.
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rotated ellipse may be seen as being composed of two phase-shifted, orthogonally
polarised waves of different amplitudes. The high-amplitude partial wave is s-
polarised along the same plane as the incident light, thus being described by
the coefficient rss in Eq. (11). This coefficient corresponds to the regular Fresnel
reflection coefficient [19, 20], not containing a magnetic, mi-dependent term. The
high-amplitude wave may therefore be interpreted as regular component RN of the
reflected light. The low-amplitude partial wave is p-polarised, being described by
the coefficient rps in Eq. (11). It is purely caused by the magnetisation and may
therefore be called Kerr componentRK. With Eq. (10) the reflected wave is now
explicitly given by

(
Erefl

p

Erefl
s

)
=

(
rpp rps

rsp rss

)(
0
Ein

s

)
=

(
rpsE

in
s

rssE
in
s

)
=

(
KpsE

in
s

NssE
in
s

)
=

(
RK

RN

)
. (12)

The reflection coefficients, rps and rss, are labeled as Kps and Nss to emphasise
their relevance as coefficients for the Kerr and regular amplitudes, respectively. The
Kerr amplitude may actually be taken as figure of merit for the Kerr effects (see
section “Domain Contrast”).

The complex Kerr angle for s-polarised illumination is then defined by the ratio
of the off-diagonal to the diagonal element of the reflection matrix:

θ s
K ≡ rps/rss (13)

(for p-polarised incidence it would be θ
p
K ≡ rsp/rpp). In our example we assume

a magnetisation vector along the plane of incidence and along the sample’s y-axis,
i.e. my = 1 and mx = mz = 0. In this longitudinal Kerr configuration, the Kerr
angle gets

(θ s
K)

long=(
rps

rss
)long= −i n0n1 cosϑ0 sinϑ1QV

(n1 cosϑ0+n0 cosϑ1) cosϑ1(n0 cosϑ0−n1 cosϑ1)
. (14)

By making use of the Fresnel transmission coefficients (compare Fig. 4):

t01
pp =

(
Etrans

p

Ein
p

)
= 2n0 cosϑ0

n0 cosϑ1+n1 cosϑ0
, t01

ss =
(
Etrans

s

Ein
s

)
= 2n0 cosϑ0

n0 cosϑ0+n1 cosϑ1
(15)

and Snell’s law (9), Eq. (14) can be written as

(θ s
K)

long = −iQVt
01
pp t

01
ss sinϑ0

4 cosϑ0 cosϑ1

1

r01
ss

. (16)

Recalling that the Kerr angle is the ratio between the Kerr coefficient and the
coefficient of the normally reflected amplitude (here Nss = r01

ss ), the Kerr coefficient

K
long
ps is finally given by the first fraction in Eq. (16):
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Fig. 5 Schematics of the three basic Kerr geometries. The illuminating light amplitude Ein results
in the superposition of regular RN and magneto-optical field amplitudes RK on the reflection paths.
Phase shifts, i.e. ellipticity, are ignored here for simplicity. Given are the Kerr coefficients in each
case (see text for definition). After ref. [18], with kind permission of Springer Verlag

K
long
ps = −iQVt

01
pp t

01
ss sinϑ0

4 cosϑ0 cosϑ1
. (17)

The interpretation of this coefficient is straightforward: As indicated by the lower
indices in K

long
ps , the incident light is s-polarised, resulting in a p-polarised Kerr

amplitude. A portion of the incident light, given by t01
ss [the upper index stands

for transmission from medium (0) to (1)], penetrates into the magnetic material
where it generates the Kerr amplitude by interaction with the magnetisation. Its
size depends on the material parameter QV and the angle of incidence ϑ0. The
p-polarised Kerr amplitude has to leave the material to be detected. This would
actually be described by the transmission coefficient t10

pp . In Eq. (17), this coefficient

is hidden in t01
pp , which is related to t10

pp by t10
pp/t

01
pp = n1 cosϑ1/n0 cosϑ0 according

to the Fresnel transmission formulae (15).
For other polarisation and magnetisation directions, the Kerr coefficients can be

derived in a similar way. In Fig. 5 they are explicitly listed for the three fundamental
Kerr geometries, the polar, longitudinal, and transverse Kerr effects:

• In case of the polar effect (Fig. 5a), the magnetisation is aligned perpendicular to
the sample surface. Oblique incidence will lead to the same Kerr amplitude for
s- and p-polarised light. By entering the Fresnel transmission coefficients (15)
into the formulae given in the figure, it becomes evident that Kpol

ps, sp ∼ cosϑ0.
Therefore the polar effect is strongest at perpendicular incidence. For ϑ0 = 0
a plane of incidence cannot be defined, and any polarisation direction of the
incident beam will lead to the same signal. A reversal of the perpendicular
magnetisation causes a reversal of the Kerr amplitude (and thus the Kerr rotation)
as the signs of the Fresnel coefficients rps and rsp are reversed for m±z [see
Eq. (11)].
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• The longitudinal effect (Fig. 5b) requires oblique incidence of light (sinϑ0 �= 0)
and a magnetisation that is oriented parallel to the sample surface and along
the plane of incidence. The Kerr amplitude (and rotation) has opposite signs for
s- and p-polarised light as my enters the coefficients rps and rsp with opposite
signs. And again, magnetisation reversal will cause opposite Kerr rotation due to
a reversal of the signs of the coefficients rps and rsp on reversal of my.

• For transverse orientation (Fig. 5c) the in-plane magnetisation is perpendicular
to the plane of incidence, i.e. mx = ±1 and my = mz = 0. Then the off-
diagonal reflection coefficients in Eq. (11) are zero so that a Kerr rotation cannot
be expected. For p-polarised illumination, however, the coefficient rpp becomes
active which contains a magnetisation-dependent component rmag

pp . This leads to
the generation of a Kerr amplitude Kpp that is derived by the ratio of magnetic
to non-magnetic component, i.e. by r

mag
pp /r0

pp. As shown in Fig. 5c, this Kerr
amplitude is again proportional to sinϑ0, but its polarisation direction is the same
as that of the regularly reflected beam. The transverse Kerr effect therefore causes
an amplitude variation of the light rather than a rotation. The intensity of the
reflected wave changes sign on magnetisation reversal even if one works with
unpolarised light and without an analyser on the detection side. The amplitude
variation can be used for magneto-optical magnetometry, having the advantage
that the signal is not sensitive to polar magnetisation components. To generate
a measurable rotation also in transverse geometry, which is required for Kerr
microscopy, the light has to be polarised at 45◦ to the plane of incidence. Then
its perpendicular component is not affected by the magnetisation, while the
parallel component receives the amplitude modulation [1]. Together this leads to
a detectable rotation if a compensator is used—note that incident, plane-polarised
light that is not strictly s- or p-polarised is reflected elliptically in any case [19].
In this configuration a superimposed polar sensitivity cannot be avoided, though.

The polar and in-plane Kerr effects differ in their strengths. To see this, let
us write the longitudinal Kerr coefficient (17) as K long

ps = (iQVn1t
01
ss t01

pp tanϑ1)/

(4n0 cosϑ0) by using Snell’s law (9). When comparing this coefficient with that
of the polar effect (see Fig. 5), it is obvious that |K long

sp | = |Kpol
sp | tanϑ1, i.e. the

longitudinal and polar effects differ by the factor tanϑ1. As the refractive indices of
metals are relatively large at optical frequencies, ϑ1 and with it tanϑ1 are typically
of the order of 0.1. The polar Kerr effect is consequently by an order of magnitude
stronger than the longitudinal Kerr effect, making domain studies in perpendicular
magnetised specimens much easier than on in-plane magnetised materials. For the
latter, in fact, the size of the Kerr amplitude and with it the domain contrast scales
with the angle of incidence as shown in Fig. 5. The incidence angle, on the other
hand, depends on the numerical aperture of the objective lens. This aspect will be
addressed in Sect. 4.

Along the previous discussion, we have shown that the Kerr and Faraday effects
depend on the direction of magnetisation, light incidence and polarisation and can be
rigorously deduced from the dielectric magneto-optical tensor, Maxwell’ equations



186 R. Schäfer and J. McCord

and the proper boundary conditions. The symmetry of the solutions, however,
can also be derived on the base of a classical Lorentz concept. This becomes
immediately evident by entering the tensor (5) into Eq. (2) and by rewriting the
dielectric law as:

D = ε0εKFE = ε0n
2[E + iQV(m × E)] . (18)

The E-vector of the incident light obviously interacts with the magnetisation vector
m in a cross-product fashion in the same symmetry as a Lorentz force that acts
on light-agitated electrons, thus revealing the gyroelectric nature of the Kerr and
Faraday effects. The Lorentz concept is intuitive and helps in the understanding
of the Kerr effect geometries. According to this concept, the E-vector of the light
wave excites electrons in the specimen to an oscillatory motion parallel to its
plane of polarisation. That motion acts as a source for the regularly emitted or
transmitted light, which is polarised in the same plane as the incident light. At
the same time, the Lorentz force induces a small component of vibrational motion
perpendicular to the primary motion and to the direction of magnetisation. Because
of Huygens’ principle, the secondary motion creates secondary amplitudes, the Kerr
and Faraday amplitudes, which point along the same direction as the vector (m×E).
A magnetisation-dependent contribution to the D-vector is thus only generated if
m × E is non-zero. With the Lorentz concept, one can also easily explain why a
transverse Faraday effect does not exist: in transmission the beam direction does not
change. Therefore the cross-product is either zero or points along the propagation
direction. For a detailed treatment of the Lorentz concept, we refer to refs. [1]
and [18].

The phenomenology of the magneto-optical Kerr effect (excluding the transverse
effect) can finally be summarised by a simple rule:

The polar and longitudinal Kerr effects cause a (complex) rotation of light, which
is proportional to the magnetisation component parallel to the reflected light beam
and which depends linearly on the magnetisation.

According to the rule, the Kerr rotation is inverted when the magnetisation direction
is inverted. Oppositely magnetised domains thus rotate plane-polarised light in
opposite directions as illustrated in Fig. 6a for the longitudinal Kerr effect. The three
Kerr effects can be combined in a quantitative way for general polariser and analyser
settings as defined in Fig. 6b. Here the plane of the incoming light is specified by
the polariser with setting αpol, measured from the plane of incidence. On reflection,
the light is rotated by the superposition of regular amplitudes Rp

N and Rs
N parallel

and perpendicular to the plane of incidence, respectively, and the Kerr amplitudes
R

pol
K , Rlon

K and Rtra
K for the polar, the longitudinal and the transverse cases [compare

Eq. (12)], depending on the magnetisation components mpol, mlon and mtra. Finally
the light passes through the analyser (with the setting αan measured from the axis
perpendicular to the plane of incidence), leading to the total signal amplitude [12]:
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Fig. 6 (a) Longitudinal Kerr effect for p-polarised incidence, showing opposite Kerr amplitudes
RK for antiparallel domains. (b) Definition of polariser and analyser angles in a Kerr setup. (c)
The interference of the (generalised) normally reflected component AN and the Kerr amplitude
AK results in a magnetisation-dependent light rotation by the (small) angle �K, which leads to
the domain contrast by blocking with the analyser. The analyser should actually be set at a larger
angle αan > �K for optimum domain visibility. Possible phase shifts between AN and AK (Kerr
ellipticity) are assumed to be eliminated by a compensator

Atot = AN ± AK , with

AN = Rs
N sinαpo cosαan − R

p
N cosαpo sinαan ,

AK = R
pol
K cos (αan − αpo)mpol + Rlon

K cos (αan + αpo)mlon

− Rtra
K cosαpo sinαan mtra . (19)

This equation can also be used for a general magnetisation direction different to
the conventional polar, longitudinal and transverse geometries. In section “Domain
Contrast” we will show how the effective amplitude Atot can be converted in a
domain contrast by referring to Fig. 6c.

Voigt Effect

The Faraday and Kerr effects, presented in section “Kerr and Faraday Effect”, are
effects to first order in the components mi of the magnetisation vector and in the
magneto-optical parameter QV. This becomes obvious from the dielectric tensor (5)
and the reflection coefficients (11) representing these effects. In contrast, the Voigt
effect is a second-order effect that is even in the magnetisation. Often it is considered
an independent effect with its own material coefficients B1 and B2, described by the
following tensor:

εV = εiso

⎛
⎝ B1m

2
x B2mxmy B2mxmz

B2mxmy B1m
2
y B2mymz

B2mxmz B2mymz B1m
2
z

⎞
⎠ . (20)
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This intrinsic Voigt effect, however, is not the only conceivable second-order
magneto-optical effect. As shown below, a quadratic effect with the same symmetry
can also be caused by elementary gyroelectric interaction, derived from tensor (5)
and determined by QV. In practice it is not easy to distinguish the two effects.

Independent of its origin, the prerequisite for the Voigt effect is a component
of the magnetisation vector perpendicular to the propagation vector k. In Fig. 7
this is illustrated for perpendicular incidence on an in-plane magnetised medium,
a geometry for which a Faraday or Kerr rotation would not be possible at all.
While the latter are based on circular birefringence and dichroism, it turns out that
for k ⊥ m the solution of the wave equation (4) yields two linearly polarised
eigenmodes with vibrational planes being aligned along and perpendicular to m.
Incident light, plane-polarised along one of these two directions will thus not
alter its polarisation in the magnetic medium. If the polarisation plane is at an
angle to m, however, the polarisation state will be changed with the strongest
effect occurring at an angle of 45◦. This is the geometry depicted in Fig. 7. Both
linear eigenmodes are experiencing different refractive indices n‖ and n⊥, given
by n2‖ = εiso + B1 and n2⊥ = εiso(1 − Q2

V) [1] (here both tensors, εKF and εV,
have been considered in the solution of the wave equation because both can lead to
quadratic effects as mentioned). Due to the different indices, the two modes will
proceed in the medium with different velocities and with different attenuations
(in case of a complex refractive index). The light thus experiences a magnetic
linear birefringence proportional to Re(n‖ − n⊥) and a magnetic linear dichroism
proportional to Im(n‖ − n⊥). Note that the word ‘linear’ refers to the polarisation
mode of the light and not to the order of the effect. In case of linear birefringence,
the two partial waves are retarded relative to each other so that the outgoing light
is elliptically polarised with a handedness that depends on the relative orientation
of the polarisation plane and magnetisation axis (Fig. 7a). Oppositely magnetised

a)

k

k

b)

Sample

E
m

Fig. 7 Magnetically induced linear birefringence (a) and linear dichroism (b) effects, illustrated
for perpendicular incidence on an in-plane magnetised material with 90◦ domains. The effects
are strongest if the incident light is polarised at 45◦ relative to the domain axes. While linear
birefringence leads to elliptical light of opposite rotation sense for the two domain axes, linear
dichroism causes a magnetisation-dependent rotation of the polarisation plane
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Fig. 8 Illustration of the secondary quadratic effect that has the same symmetry as the Voigt effect,
but which is derived from gyroelectric interaction like the Kerr effect. (a) Horizontally polarised
light creates an out-of-plane primary Lorentz motion in the vertically magnetised domains, which
then generates a secondary motion that is polarised antiparallel to Ex. (b) A 45◦ rotation of the
domain magnetisation relative to Ex leads to antiparallel Dy-components for domains magnetised
along different axes

domains, following the same axis, can therefore not be distinguished in their
birefringence effect. Linear dichroism results in a rotation of the emerging light
(Fig. 7b) due to the different amplitudes of the partial wave. The phenomenology
is thus opposite to that of magnetic circular birefringence and dichroism, where
birefringence causes a rotation and dichroism leads to ellipticity (compare Fig. 3).

As mentioned, a second-order effect with the same symmetry as the intrinsic
Voigt effect can as well be derived from gyroelectric interaction, i.e. by just consid-
ering the tensor εKF in Eq. (5). This effect is illustrated in Fig. 8 by using the Lorentz
concept. Let us assume that x-polarised light is propagating in the z-direction, thus
generating a zero-order displacement Dx = εisoEx in the material. In the geometry
of Fig. 8a, the magnetisation vectors are along and transverse to the polarisation axis.
According to the gyroelectric tensor εKF, the Dx-field will not cause any Lorentz
motion in the x-axis domains as here m × E is zero. In the two y-axis domains,
however, Lorentz motions along the ±z-directions are induced, leading to first-
order displacements Dz = −iεisoQVmyEx. They cause a first-order depolarising
field Ez = −Dz/εiso = iQVmyEx to keep Dz = 0. The depolarising field then
induces a second-order displacement D′

x = iεisoQVmyEz = −εiso(QVmy)
2Ex that

corresponds to a Lorentz motion along −x, opposite to the zero-order displacement.
As for the transverse Kerr effect, such amplitude modulation cannot be converted
to a domain contrast. If the sample is rotated by 45◦ (Fig. 8b), however, Lorentz
motions are excited in all four domains, leading to D′

x-components along −x in all
domains and antiparallel Dy-components in neighbouring domains. The latter are
finally responsible for antiparallel Ey-components in the reflected (or transmitted)
light, which are phase shifted by 180◦. When the phase of one of the two Ey vectors
is matched with that of Ex by means of the compensator, a black/white microscopic
contrast is created in neighbouring domains if the analyser is perpendicular to the
polariser (see also section “Domain Contrast”).

Compared to the first-order Kerr and Faraday effects, the second-order Voigt
effect differs in four aspects that can be derived from the previous discussion:
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• Except for the transverse Kerr effect, first-order effects primarily lead to a rota-
tion of the light polarisation, which may be superimposed by some ellipticity. The
magneto-optical amplitudes thus have a different polarisation plane compared
to the incident light. According to Eq. (13) this indicates an effect in the off-
diagonal elements (rsp or rps) of the reflectivity tensor. A typical quadratic effect,
on the other hand, contributes a modification of the regular reflectivity being
manifested in the diagonal elements (rss and rpp) of the tensor. It can thus
be interpreted as (magnetically induced) linear birefringence with dominating
elliptical polarisation, possibly being superimposed by some linear dichroism,
i.e. rotation.

• While the Faraday and Kerr effects are direction-sensitive, the Voigt effect is
quadratic in the magnetisation vector due to its axial sensitivity. Antiparallel
domains can therefore not be distinguished in Voigt microscopy, while orthog-
onally magnetised domains with magnetisation axes at ±45◦ relative to the
polariser axis generate maximum domain contrast. For the Kerr and Faraday
effects, the conditions are different: here maximum contrast is obtained for
antiparallel domains, and the polariser has to be parallel or orthogonal to the
domain magnetisation for the longitudinal effect or at an arbitrary angle for the
polar effect.

• The rotational symmetry is also different: Due to its quadratic magnetisation
dependence, the Voigt contrast changes sign every 90◦ when the sample or the
polariser is rotated. This is different for the Faraday and Kerr contrast: due to the
linear magnetisation dependency of these effects, the sample has to be rotated by
180◦ to achieve opposite, but equally intensive contrasts.

• The emerging light due to the Voigt effect is primarily elliptically polarised,
requiring a compensator to obtain a useful signal. The domain contrast is
inverted by rotating the compensator through its extinction position. For the
longitudinal and polar Kerr and Faraday effects, being primarily rotation effects,
the compensator may help to improve the domain contrast, but basically it is
achieved by opening of the analyser. Here rotation of the analyser through the
extinction position leads to contrast inversion (see section “Domain Contrast”
for details).

As mentioned in Sect. 1, the Voigt effect plays some role for domain analysis in
transparent media, while for reflection microscopy it may be seen as a niche effect
compared to the Kerr effect. Nevertheless, there are three important facts that should
be considered:

• Due to its axial sensitivity, domains in antiferromagnetic materials can be seen
in the Voigt effect [26], opening new paths for Voigt microscopy in an emerging
field of research. It should be noted, though, that domains in antiferromagnets
may also cause magnetostrictive strain along the domain axes [27]. In an optical
polarisation microscope, this can lead to a birefringence contrast with the same
symmetry as the Voigt effect, making it difficult to separate Voigt- and strain-
induced contrast.
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• The Voigt effect offers the possibility to detect in-plane domains at perpendicular
incidence (if they are magnetised along different axes), thus allowing to use
objective lenses with low resolution that have small numerical apertures and
insufficient angles of incidence to obtain reasonable Kerr signals (see Sect. 4).

• As the domain contrast due to the Voigt effect is usually weaker than that caused
by the Kerr effect, pure Voigt microscopy can only be realised if contributions
from the Kerr effect are avoided. This is possible by imaging in-plane domains at
perpendicular incidence (compare the domain images in Fig. 1). In the general
case of arbitrary angles between k-vector and magnetisation, there will be
a superposition of linear and quadratic magneto-optical effects. Especially in
MOKE magnetometry (section “MOKE Magnetometry”) and quantitative Kerr
microscopy (section “Quantitative Kerr Microscopy”), the distorting influence
of the quadratic effect needs to be considered. We will see in section “Domain
Contrast” that the Voigt effect is adjusted at crossed polariser and analyser with
some opening of the compensator, while the Kerr and Faraday effects require
uncrossing of polariser and analyser. If, in practice, a significant quadratic effect
is superimposed in a Kerr experiment, the relative contribution can therefore be
reduced or suppressed by choosing large analyser angles.

Gradient Effect

The gradient effect is a birefringence effect, which depends linearly on gradients
(changes) in the magnetisation. It therefore stresses fine magnetisation modulations
rather than large-scale domain features (see section “Voigt and Gradient Effect
Microscopy” for examples). Magnetisation gradients are strongest across domain
walls. Therefore the domain walls show up in a contrast if imaged in the gradient
effect, which, however, is different from the wall contrast seen by Kerr microscopy.
From the example in Fig. 1, it is evident that in the Kerr effect, which senses the
magnetisation directly, the 180◦ walls appear in a colour that depends on the (in-
plane) rotation sense of the wall magnetisation. Imaged in the gradient effect, the
same walls appear homogeneously black or white, independent of the rotation sense.
This ‘boundary’ contrast is primarily determined by the magnetisation jump from
one to the other domain, i.e. by the magnetisation gradient across the wall and
not by the wall itself. It consequently alternates for neighbouring walls when the
surrounding domain magnetisation is inverted. The boundary contrast furthermore
changes sign when the walls are rotated by 90◦ as schematically shown in Fig. 9,
thus revealing the same rotational symmetry as the Voigt contrast which is detected
at the same experimental conditions as the gradient effect.

The physical origin of the gradient effect can be ascribed to the same gyroelectric
interaction (D ∝ m × E) that is also responsible for the Kerr or Faraday effect
and which can be used to derive quadratic effects (see Fig. 8) [28–31]. This is
illustrated in Fig. 9 for the case of a 180◦ domain wall at four orientations. For
light polarisation along the x-axis at perpendicular incidence, the cross product



192 R. Schäfer and J. McCord

Dy , Ey < 0

b)

Dy = 0Dy = 0

a) c) d)

Polariser
A

na
ly

se
r

x

y

z

Ex Ex Dy , Ey > 0

Fig. 9 Symmetry of the gradient contrast for a 180◦ wall that is rotated by 135◦ from (a) to
(d). Like in Fig. 8, the oscillating Lorentz motion across the wall, excited by the gyroelectric
interaction, is indicated. It causes a dielectric displacement vector with positive or negative Dy
components.

m × E, leading to an oscillating gyroelectric polarisation normal to the sample
surface, varies between zero (if m is along the x-axis) and 1 (if m is along the y-
axis). In neighbouring domains the oscillations are out-of-phase by 180◦ since the
my-component, which causes the gyroelectric interaction, changes sign (i.e. has a
gradient across the boundary). The pairs of out-of-phase oscillating electric dipoles
produce a quadrupolar dielectric displacement with a component perpendicular to
the domain boundary, which can be expressed by:

Dy = Pgr (−∂my/∂y)Ex , (21)

with Pgr being a material constant that scales with that of the Kerr effect. The com-
ponent Dy results in a component Ey in the emerging light. In the experiment, the
component of this transverse field parallel to the analyser axis can be transformed
to a contrast by phase matching like for the Voigt effect. Equation (21) contains just
one component of a tensor that can be written as [15, 32]

εG = εisoPgr

(
− ∂mx

∂y
− ∂my

∂x
∂mx
∂x

− ∂my
∂y

∂mx
∂x

− ∂my
∂y

∂mx
∂y

+ ∂my
∂x

)
(22)

under the condition of perpendicular incidence (Ez = 0). This tensor applies to
both, strictly in-plane magnetised materials as well as samples with subsurface,
perpendicular magnetisation gradients within the information depth, for which the
condition div m ≈ 0 needs to be fulfilled as reviewed in ref. [1].

Experimentally, contrasts due to the gradient effect can be seen under the same
conditions as for the Voigt effect, i.e. by rotating the compensator while keeping the
analyser and polariser crossed in a ‘Kerr’ microscope. At the end of section “Voigt
Effect”, it was noted that in a general magneto-optical microscopy experiment, there
might be a superposition of linear and quadratic effects under given circumstances.
The same is true for the gradient effect that may cause parasitic contrasts in Kerr
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b)a) c)
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Fig. 10 Disturbing effect of the gradient effect in Kerr microscopy, demonstrated for V-line walls
in an iron-silicon sheet with (100) surface orientation: (a) superposition of longitudinal Kerr and
gradient contrast, (b) pure Kerr contrast after carefully aligning the compensator and (c) pure
gradient contrast at perpendicular incidence of light. Images (b) and (c) show an identical wall
pattern, while a similar structure is shown in (a). Adapted from ref. [15]

microscopy. An example, demonstrating this effect, is presented in Fig. 10a. Here a
V-line pattern [18] was imaged in the longitudinal Kerr effect without worrying
about the alignment of analyser and compensator. Rather than seeing an equal-
amplitude black and white contrast of the wall segments, caused by opposite rotation
senses of the wall magnetisation, the segments show up with different intensity
due to the superposition of the gradient effect. In image (b) the gradient effect was
eliminated by carefully aligning analyser and compensator, leading to the expected
segment contrast of a similar pattern, while in image (c) the pure gradient contrast
is shown. To isolate the gradient contrast from the Kerr contrast, perpendicular
incidence of light is required in case of such in-plane magnetised materials. A
Kerr contrast is not possible then, neither for the domains nor the walls. However,
these are the same experimental conditions as for the Voigt effect. A separation
of gradient and Voigt contrast is therefore not possible on in-plane materials.
Furthermore, contrast for both effects is obtained by rotating the compensator while
keeping analyser and polariser crossed, and both effects follow the same rotational
symmetry (i.e. the contrast can be inverted by either rotating the sample by 90◦, the
polariser by 45◦, or by rotating the compensator through its extinction position—
see section “Voigt Effect”). This indicates a phase shift of the magneto-optical
amplitude of the gradient contrast of roughly 90◦ relative to the phase of the Kerr
amplitude, similar to that of the Voigt effect.

3 Physical Aspects of Magneto-Optical Microscopy

After having summarised the basics of the conventional magneto-optical effects in
Sect. 2, let us now address some physical aspects that have an impact on wide-field
magneto-optical microscopy before we move on with instrumentation in Sect. 4.
These aspects include contrast formation, depth sensitivity, and lateral resolution.
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Domain Contrast

Most important in magneto-optical microscopy is the visibility of magnetic domains,
which depends on the achievable contrast and on the signal-to-noise ratio of the
electronic detection system. In this section we will take a closer look at these
parameters. The discussion concerns the Kerr contrast, but it equally well applies to
the Voigt contrast by simply replacing the generalised Kerr amplitude AK [defined
in Eq. (19)] by a corresponding Voigt amplitude AV.

By the example of the longitudinal Kerr effect, we have demonstrated in Fig. 6a
that oppositely magnetised domains cause opposite Kerr amplitude vectors RK,
which lead to opposite (complex) Kerr rotations by superposition with the regularly
reflected amplitude RN. A domain contrast in the Kerr microscope is obtained if
the reflected light from different domains is blocked differently with a rotatable
polarising filter in the reflection path, called analyser. Different Kerr rotations are
thus transferred to a detectable difference in intensities. The strongest contrast is
expected between domains that create an opposite change of the polarisation state.
In case of the Kerr effect, these are domains with antiparallel magnetisation (for
the Voigt effect, orthogonally magnetised domains lead to the strongest contrast). If
extinction is not possible due to elliptical contributions, a phase-shifting retardation
plate (compensator) is required. For the moment, however, let us ignore this
complication by assuming no phase shifts between RN and RK—ellipticity and the
compensator will be addressed below.

The starting point of the discussion is the generalised reflected amplitude Atot =
AN + AK defined in Eq. (19). The Kerr rotation is then given by the (small) angle
θK = AK/AN. According to Fig. 6c, it seems intuitive to block exactly the light
that emerges from one of the two domains by choosing an analyser setting αan =
|θK|. This domain would then appear dark, whereas the opposite domain (together
with all other domains magnetised at different angles) would appear more or less
bright. In practice, however, it is common to open the analyser by a few degrees (see
Fig. 6c) rather than by the intrinsic Kerr angle that is typically significantly less than
a degree.

This counterintuitive fact can be explained by calculating the Kerr contrast. For
an analyser opening angle αan, the intensities of the two domains in Fig. 6 are given
by the squares of their reflected amplitudes [18]:

I1 = A2
N sin2(αan − θK) + I0 and I2 = A2

N sin2(αan + θK) + I0 . (23)

Here I0 is a background intensity that may be caused by imperfect polarisation
degrees of polariser and analyser, the use of a finite illumination aperture and by
depolarising effects in the lenses and at the sample. The relative Kerr signal, which
is the difference between the two domain intensities, is then approximately given by

SK = I2 − I1 ≈ 2 sin(2αan)ANAK , (24)
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considering θK = AK/AN � 1. Accordingly, a maximum Kerr signal can be
expected at an analyser angle of 45◦, causing a very high brightness at the same
time. A high Kerr signal, however, does not automatically mean high contrast for
visual observation. The contrast is given by C = (I2 − I1)/(I1 + I2). Optimisation
with respect to the analyser angle αan yields a maximum contrast of

Copt = AKAN√
(A2

K + I0)

√
(A2

N + I0)

≈ AK√
(A2

K + I0)

, (25)

which is achieved already at an analyser angle αCopt = arctan
√
(A2

K + I0)/(A
2
N + I0)

smaller than 45◦. As A2
N is much larger than I0, the optimum contrast can be

approximated by the second term in (25). It obviously depends on the background
intensity and on the Kerr amplitude only—not on the regular amplitude or the Kerr
rotation!

In contemporary Kerr microscopy, however, the ‘visible’ contrast according
to Eq. (25) is not the crucial criterion for the visibility of domains. Today, Kerr
microscopes are usually equipped with image processing (see Sect. 4) so that the
contrast can be easily enhanced electronically. In fact, it turns out that in digitally
enhanced microscopy, an analyser setting of αan = αCopt would lead to an insufficient
image intensity. Rather than the contrast, the signal-to-noise ratio (SNR) now
becomes decisive for good domain visibility. As the intensity increases with α2

an,
analyser opening angles that are larger than those necessary for optimum (visible)
contrast are required to increase the signal according to Eq. (24). The best analyser
setting actually depends on the relative proportion of various noise contributions:

• The detection electronics adds a temperature-dependent noise that is usually
independent of the image intensity. It depends on the quantum efficiency of
the detection sensor (CCD or CMOS chip, see Sect. 4), the number of ‘binned’
camera pixels and the integration time [17]. If this ‘dark’ noise would be the sole
noise mechanism, the optimum angle αSN

opt would in fact be 45◦, i.e. the angle for
maximum signal according to Eq. (24).

• Fluctuations of the light create noise that is proportional to the image intensity.
• The quantised nature of light leads to shot noise, which varies with the square

root of the photon number in the image. This unavoidable noise is of statistical
nature and can therefore be reduced by averaging over a large number of photons.

Let us now discuss the case of pure (unavoidable) shot noise, i.e. we assume
‘ideal’ image processing and a stable light source, neglecting short integration and
exposure times. The shot noise depends on the incident photon flux, Finc, according
to Nshot = √

0.5Finc(I1 + I2). With the absolute signal Smo = Finc(I1 − I2), the
SNR is written as rSN = Smo/Nshot = √

Finc(I1 − I2)/
√

0.5(I1 + I2). Inserting the
intensities (23) and minimising with respect to the analyser angle, we obtain for the
maximum SNR [18]:
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Fig. 11 Relative signal-to-noise ratio (SNR) as a function of the analyser angle for two extinction
ratios of the polarisers (κ = 0 would be perfect polarisers with full extinction). The angles of best
SNR are indicated by dots. Adapted from ref. [17] with kind permission from J. Phys. D

r
opt
SN = 4AKAN

√
Finc√

A2
N + I0 +

√
A2

K + I0

≈ 4AK

√
Finc , (26)

which is achieved at an analyser opening of αSN
opt = arctan 4

√
(A2

K + I0)/(A
2
N + I0),

again being beyond the setting of optimum visible contrast as expected. The
maximum SNR is obviously determined by the Kerr amplitude and the photon flux,
but again not by the Kerr rotation. Note that in practice the illumination intensity
cannot be arbitrarily enhanced to avoid overheating of the specimen. If electronic
noise or light fluctuations are added, the SNR will be reduced, and the optimum
analyser angle will be shifted within the boundaries αCopt < αSN

opt < 45◦. The
proportionality between rSN and the magneto-optical amplitude AK is preserved,
however. Figure 11 shows the simulated signal-to-noise ratio as a function of the
analyser opening angle for two different extinction ratios of polariser and analyser
(i.e. different background intensities I0), proving that analyser angles of several
degrees (orders of magnitude higher than the the Kerr rotation) are indeed typical
for optimisation.

So far we have assumed that AK is in-phase with AN, leading to rotated, plane-
polarised light. In case of a phase shift, the Kerr angle gets complex, and the
emerging light is elliptically polarised (see Fig. 2a for visualisation). Ellipticity may
be intrinsically caused if the Voigt parameter QV has a non-vanishing imaginary
part (see section “Kerr Effect”). Metallic reflection at oblique incidence always
generates elliptical light if the polarisation plane of the incident light is not parallel
or perpendicular to the plane of incidence. In magneto-optical microscopy, however,
only linearly polarised light can be converted into a contrast by means of the
analyser. So, phase shifts need to be tuned by the compensator, which may be
placed before the analyser along the reflection path or after the polariser along
the illumination path (see Fig. 16) in a magneto-optical experiment. In wide-
field microscopy, Brace-Köhler-type compensators are preferred as they cause a
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homogeneous phase retardation across the whole field of view (compared to Babinet
compensators with line-characteristics—see ref. [1] for details).

A Brace-Köhler compensator is a transparent, birefringent plate of suitable
thickness and material (like mica, calcite, or some stretched plastic sheet). It has two
distinguished, orthogonal in-plane axes, called fast and slow axis (Fig. 12a), along
which plane-polarised light propagates with different velocities due to different
refractive indices. The two rays are consequently retarded relative to each other
with a phase difference of �ϕ = 2πN . The variable N is the retardation number,
expressed in fractions of the wavelength. For a quarter wave (or λ0/4) plate, e.g.
N = 1

4 so that a phase difference of π/2 is introduced between the fast and slow
beams. When the compensator is rotated around the k-axis, the value of retardation
R is given by R = �ϕ sin (2

∣∣αpol − αcomp
∣∣). Here αcomp is the rotation angle of

the compensator’s fast axis, measured from the same axis as the polariser angle
αpol (see Fig. 12a). Apparently, the compensator will have no effect if the incident
light is polarised parallel to either of the two principal axis (the fast axis, i.e.
αcomp = αpol, or the slow axis, i.e. αcomp = αpol + 90◦). A retardation always
requires two components. As an example let us consider the regularly used quarter-
wave plate: Here both field components along the two principal axes will have
equal amplitudes if the entering light is plane-polarised at 45◦ to the axes. With
αpol = 0◦ and αcomp = 45◦, the phase shift will be 90◦, and the plane wave will
be converted into circular light. Any other orientation of the quarter-wave plate will
lead to elliptical light (Fig. 2) with an ellipticity that depends upon the degree of
relative phase retardation R. Vice versa, any elliptically polarised wave, emerging
from a magnetic sample, can be converted into plane-polarised light by a properly
rotated compensator.

Now let us assume a Kerr experiment in which two oppositely magnetised
domains emit elliptical light with opposite rotation and handedness as illustrated
(strongly exaggerated, though) in Fig. 12b. The upper ellipse can be linearised by
rotating the compensator by 90◦ + θ . The linear wave is then rotated by ξ + θ .
Rotating the analyser by αap = 90◦ + ξ + θ will block the light from the
corresponding domain. At the same setting, however, the light from the opposite
domain will increase its ellipticity, thus leaving the analyser with some intensity,
which finally leads to a domain contrast. For the practice of magneto-optical
microscopy, three conclusions can be drawn:

• With a rotatable compensator, it is only possible to linearise the reflected light
from one domain phase. Usually it is sufficient to compensate the ellipticity
of the darkest domains. Then the above formulae for the contrast and signal
remain valid if AK is replaced by |AK| [12]. In practice, the compensator and the
analyser are rotated simultaneously, leaving the polariser fixed, until an image of
satisfactory contrast and brightness is obtained.

• Alternatively, the compensator can even be omitted. The intrinsic Kerr ellipticity
in a certain domain phase can rather be compensated by illuminating the sample
with elliptical light of opposite handedness and rotation. In microscopy, this
can be achieved by carefully turning the polariser away from an exact p- or s-
direction.
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Fig. 12 (a) A Brace-Köhler compensator contains a phase-retardation plate with an optical axis
parallel to the plate plane. For adjustment, the plate is rotated around the propagation (k)-axis
of the light. The azimuth angles of polariser, compensator and analyser are defined relative to
the vertical axis. Note that here the function of the ‘polariser’ is just to create polarised light
for the compensator. In a Kerr experiment, there would be a sample placed between polariser
and compensator. (b) Transformation examples of a quarter-wave compensator in combination
with an analyser, demonstrating the geometry of a Kerr experiment with superimposed elliptical
polarisation

• In case of magnetic linear birefringence (Voigt effect), two equally oriented
ellipses with opposite handedness are created (Fig. 7a). If the analyser is at
90◦ to the polariser, both ellipses would pass with equal intensity. Adding a
compensator with its fast axis turned away from the polariser axis will cause
elliptical light of different ellipticity for the two domains, which passes the
crossed analyser with different intensity thus creating a Voigt contrast [1]. The
contrast can be inverted by rotating the compensator through its zero position,
thus interchanging the degrees of ellipticity for the two domain axes. The
experimental conditions are different for the Kerr contrast: as Kerr ellipticity is
usually small, a Kerr contrast is mainly generated and inverted by rotating the
analyser—the compensator just helps to optimise the contrast by linearising the
light that emerges from one domain type.

Besides electronic enhancement, there is a ‘natural’ way to increase the Kerr
contrast: The strongest Kerr signal can be expected if all light is absorbed in the
sample, creating magneto-optical interaction, and if the generated Kerr amplitude
can freely exit in turn [33]. Any light that is uselessly reflected from the surface
cannot contribute to the Kerr amplitude. A dielectric antireflection coating [12, 34]
creates that condition as demonstrated in Fig. 13c. This effect can be explained with
the sketch in Fig. 13a: For a correct coating thickness, the phases of amplitudes
R
(2)
N and R

(1)
N are shifted by 180◦. Between R

(3)
N and R

(2)
N , the phase difference is

360◦ (consider the 180◦ shift at internal reflection). The total (regular) reflection
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Fig. 13 Enhancement of domain contrast by interference coating: (a) schematic view of the effect
of a dielectric interference layer on the regular and Kerr amplitudes (see text). (b) If the effective
regular amplitude decreases while the Kerr amplitude is enhanced, the effective Kerr rotation
increases. (c) Domain image of an amorphous ribbon for which the upper half was coated by
ZnS while the lower half is without interference coating. The contrast enhancement is obvious.
The sketch in (a) is taken from ref. [18] with kind permission from Springer Verlag

will be zero by destructive interference if R(1)
N is equal to the combined amplitude

(R(2)
N + R

(3)
N + . . .). At the same time, the created Kerr amplitudes R(i)

K add up by
constructive interference, leading to an increased effective Kerr rotation (compare
Fig. 13b). For a quantitative description, we refer to the review on antireflection
coatings in Chapt. 2 of ref. [18].

In practice it is sufficient to minimise the reflectivity at normal incidence as large
angles are hardly used. For metals a suitable dielectric is ZnS; for magnetic oxides
MgF2 or SiO2 is favourable. The films are evaporated while optically controlling the
reflectivity in the deposition chamber by using the same wavelength of light that will
later be used for imaging. For a correct layer thickness, a metallic specimen displays
a dark blue colour. Before the introduction of digital image processing, antireflection
coatings were mandatory to obtain a reasonable Kerr contrast. Nowadays they can
be abandoned. However, if an evaporation chamber is available in a laboratory, there
is no reason not to apply coatings—one can only gain, especially if domains are to
be imaged on materials with intrinsically small Kerr amplitudes.

Depth Sensitivity

Magneto-optical microscopy is not a surface-sensitive method, different, e.g.,
to scanning electron microscopy with polarisation analysis (SEMPA) or X-ray
photo emission electron microscopy (XPEEM), which relies on the generation
of secondary and photo-electrons, respectively, that mainly emerge from surfaces
[18]. This is trivial for transparent materials like garnets, but also for metals an
information depth of the order of 20 nm can be expected and in oxides it can even be
higher. So, the Kerr effect is not a ‘surface’ effect—the term ‘SMOKE’ for surface-
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Fig. 14 Depth dependence of the longitudinal Kerr amplitude for bulk iron, normalised to the Kerr
amplitude at the surface (with ϑ0 = 30◦, λ0 = 633 nm, homogeneous in-plane magnetisation along
the plane of incidence). Between the real and imaginary part graphs, curves with three different
compensator settings are added. The inset indicates the partial beams that are contributing to the
Kerr amplitude. The plot is adapted from ref. [1] with kind permission from Springer Verlag

magneto-optical Kerr effect, which was coined for Kerr magnetometry on films [35],
has to be taken carefully.

For a quantification of the depth sensitivity, the phase of the magneto-optical
amplitude has to be taken into account. In case of the Kerr effect, it turns out that the
total effective Kerr amplitude, which interferes with the effective regular amplitude
(section “Kerr Effect”), can actually be seen as a superposition of Kerr amplitudes
that are generated within the penetration depth of light (see inset in Fig. 14). These
amplitude contributions are exponentially damped with increasing depth, and they
differ in phase according to a complex amplitude penetration function [33]:

ϕ(z) = exp(−2k0 i cosϑ1 n1z) . (27)

Like in section “Kerr and Faraday Effect”, n1 is the refractive index of the
specimen, ϑ1 is the angle of incidence within the sample, and k0 = 2π/λ0 is the
wave propagation number with λ0 being the vacuum wavelength of the (assumed)
monochromatic, illuminating light. The light wave has to travel in and out again,
hence the factor of 2. In Fig. 14 the depth dependency of the real and imaginary parts
of the Kerr amplitude, which follow this function, is plotted for the example of the
longitudinal Kerr effect on bulk iron, both being normalised to the Kerr amplitude
at the surface.
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As introduced in section “Domain Contrast”, a Kerr contrast is obtained by con-
verting the Kerr amplitude into a detectable signal, with the required light rotation
being generated by interference of the regularly reflected light amplitude and the
Kerr amplitude. A detectable rotation is only obtained, if the two components are
in phase so that they can interfere to a plane-polarised wave. In case of a phase
shift, a compensator needs to be added to shift the phases properly. With a rotatable
compensator, however, the phase difference can be selected freely. For the plot in
Fig. 14, for instance, the relative phase was chosen in such a way that the surface
magnetisation is detected optimally, meaning that the Kerr amplitude generated right
at the surface is allowed to interfere with the (effective) regular amplitude. The real
part curve of the normalised amplitude in the figure applies to this case, whereby
the total Kerr amplitude can be derived by integrating this curve over the depth.
Interestingly, the magnetisation at a certain depth, where this curve passes zero, will
be invisible, and magnetisation contributions from deeper in the material may even
reduce the overall signal. The zero crossing of the real part curve may therefore
be seen as ‘information depth’ parameter [33]. According to Eq. (27), it is found at
z0 = λ0/8n′

1 where n′
1 is the real part of the refractive index. For iron (n′

1 = 2.89)
the information depth z0 is around 20 nm for visible light. The 1/e-decay length of
the absolute value of the signal can be calculated as zd = λ0/4πn′′

1 with n′′
1 being

the imaginary part of the refractive index.
As mentioned, the relative phase angle between Kerr and regular amplitude can

be arbitrarily adjusted by rotating the compensator. With regard to Fig. 14, this
means that any linear combination between the real and the imaginary part of the
Kerr amplitude can be realised. If, for instance, the phase sensitivity is adjusted
at 90◦ to the phase of the surface amplitude, the imaginary curve in the figure
will become the real part curve. Then there will be no surface sensitivity, and one
will rather ‘focus’ on some subsurface magnetisation. So, in principle any Kerr
amplitude can be selected to interfere with the regular amplitude, allowing to focus
on certain depth magnetisations or to intentionally blind out the magnetisation in a
certain depth by adjusting the Kerr amplitude out of phase with respect to the regular
light—all, of course, within the absorption limit. In Fig. 14 examples for three
different compensator settings are added. In section “Depth-Selective Imaging” we
will see that this concept can be applied for layer-selective imaging of multilayer
systems.

To summarise, for bulk material the Kerr contributions from different depths
differ in phase, thus reducing the overall efficiency of the Kerr effect. In materials
with large information depth like magnetic oxides, the decay length zd is much
larger than the position of the first zero z0. Many oscillations in the depth-
dependent Kerr signal can then occur, leading to a reduction of the (stronger) surface
contributions so that the integral Kerr effect of oxides is usually quite weak. For
details on this depth sensitivity concept, we refer to the review in [1] and to a series
of articles in which it was developed [31, 33, 36–39].
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Resolution

When the dimensions of the objects to be imaged in an optical microscope are
reaching the order of the wavelength of visible light, the spatial resolution is limited
by diffraction and can be expressed by the resolving power R, which corresponds
to the smallest distance between two closely spaced objects so that they can still be
distinguished [40]:

R = f
λ

NA
with NA = n0 sinα . (28)

Here λ is the wavelength of the light and NA the (dimensionless) numerical aperture
of the objective lens. The angle α is half the angular aperture of the objective lens
(i.e. half the angle of the cone of light from the object that is accepted by the lens),
and n0 is the refractive index of the medium between objective and sample (n0 = 1
for air; n0 ≈ 1.5 for immersion oil). The higher α and n0, the more orders of
diffracted light are collected by the objective and the higher the resolution. The
factor f is somewhat arbitrary as it depends on numerous parameters like the form
of the magnetic object and the light intensity that emerges from it, the aperture,
angle and shape of the incidence light bundle and the sensitivity of the detector
(in digitally enhanced imaging, also the sampling interval of the camera sensor has
an influence on the effective resolution). Typical values for f are 0.61 (Rayleigh
criterion), 0.47 (Sparrow criterion) or 0.5 (Abbe criterion) [40]. Let us take the Abbe
criterion as reference. It takes into account that on the observation side, the full
aperture of the objective lens is effective in the collection of diffracted beams, even
though the effective illumination is typically restricted to about 20% of the aperture
for contrast reasons (see section “High-Resolution Microscopy”). Other influences
on the resolution are not considered in the Abbe criterion.

In the table of Fig. 15a, the spatial resolution of a number of objective lenses, as
they are commonly used in Kerr microscopy, is collected for blue and red light. Note
that the magnification of the objective lenses is irrelevant as the resolution is only
determined by NA and the wavelength. According to the table, a resolution of almost
150 nm can be expected by using blue light and an oil-immersion objective with
highest numerical aperture. In fact, on perpendicular recording media, domains as
narrow as 160 nm could be clearly resolved by using the blue spectral lines (404 nm
and 435 nm) of a mercury arc high-pressure lamp and a 100× immersion lens with
NA = 1.25 [41]. The use of deep ultraviolet (UV) light would further improve the
resolution, but it requires the use of special lens material (like quartz glass) as the
transmission of conventional optical glass drops rapidly below 400 nm and becomes
zero below 320 nm. The gain in resolution, achievable in a UV Kerr microscope,
does not justify the considerable expense.
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Magnification NA R460 nm R640 nm

1769 nm 2462 nm0.135 
920 nm 1280 nm0.2510 
460 nm 640 nm0.5020 
288 nm 400 nm0.8050 
256 nm 356 nm0.90100 
159 nm 221 nm1.45100  oil

b)a) c) d)
2 m

50 nm
2 

100x/1.3 oil

10x/0.25

m

2 m

Fig. 15 (a) Spatial resolution according to the Abbe criterion for typical objective lenses used in
wide-field Kerr microscopy. (b) Vortex domain wall on amorphous Fe24Co18Ni40Si2B16 ribbon
(20 μm thick), imaged in the longitudinal Kerr effect at highest resolution (upper image, 100×/1.3
oil objective) and at low resolution (lower image, 10×/0.25 lens). (c) Bubble domains on a
[Pt/Co/Ir]Pt multilayer, imaged with a 100×/1.3 oil objective. (d) Remanent states of metallic film
with perpendicular anisotropy, patterned to a 50 nm wide nanowire in the middle and again imaged
with a 100×/1.3 oil objective. The images in (b) and (c) are adapted from ref. [42] with kind
permission from APL. The sample for images (d) was provided by M. Moneck, CMU, Pittsburgh,
USA

The resolving power or resolution limit should not be confused with the visibility
of isolated magnetic objects. Virtually there is no limit for the visibility as long
as the reflected intensity of the object is strong enough to make it stand out from
any surrounding background. Here, perpendicularly magnetised structures, imaged
in the (stronger) polar Kerr effect, have a clear advantage compared to in-plane
structures that need the longitudinal Kerr effect. Although it is not ‘resolved’, the
object can nevertheless be seen with a contrast profile that is reduced in intensity and
broadened by diffraction compared to the profile of a larger object. In Fig. 15 this is
demonstrated for three examples: In (a) a vortex domain wall [18] of an amorphous
ribbon was imaged in the longitudinal Kerr effect with the sensitivity transverse
to the wall. The in-plane surface rotation of the wall shows up with a black/white
contrast that depends on the rotation sense of the wall magnetisation. With a width
of 310 nm, the wall is well resolved in the upper image, which was obtained at a
nominal resolution of about 160 nm, while in the lower image, the wall is still well
visible although its width is just 1/3 of the resolution of 920 nm. In Fig. 15c isolated
bubble domains with diameters ranging between 50 and 450 nm were imaged in
the polar Kerr effect. Depending on their width, they show up with more or less
intensity, but still visible. By measuring the integral contrast of the objects in (b)
and (c) and normalising it to the maximum achievable contrast under the given
conditions, the width of the objects can even be quantised although being well
below resolution [42]. In fact it turns out that the image of a sub-resolution magnetic
object becomes reduced in amplitude but becomes wider so that the integral contrast
stays constant. This property of magneto-optical images is due to the fact that
the magnetic contrast is to first order a linear function of the magnetisation, not
a quadratic one as with other scattering objects. In Fig. 15d, finally, perpendicularly
magnetised nanowires of 50 nm width are showing up in black and white contrast at
positive and negative remanence. In ref. [43] it was shown that in a wide-field Kerr
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microscope, a magnetic signal can even be obtained from nanowires with a width of
just 30 nm.

4 Technical Aspects of Magneto-Optical Microscopy

For magneto-optical domain imaging, either scanning optical microscopes or
conventional wide-field microscopes can be used. In scanning microscopy [44],
only a single spot is illuminated by a focused laser beam and recorded at a time,
and an image is then formed by scanning the beam across the surface. In wide-
field microscopy, the sample is illuminated by parallel light, and the whole field
of view is seen immediately. The former offers some advantages for time-resolved
imaging [45], but far more wide-field microscopes are in use for domain imaging.
We therefore restrict this article to the latter; reviews on scanning Kerr microscopy
can be found in refs. [1, 18]. Three types of wide-field polarisation microscopes are
used for magneto-optical domain observation:

• Most frequently applied for Kerr, reflection Voigt and reflection gradient
microscopy are reflected light microscopes, often referred to as incident light,
epi-illumination or metallurgical microscopes. Here a single objective lens is
applied for illumination and observation at the same time, and the microscope
is operated in the bright-field mode. This arrangement is ready for domain
observation up to highest spatial resolution and with high magnification.

• Bright-field microscopes with separate illumination and observation paths, allow-
ing to obtain Kerr images on larger sample areas in the millimetre and centimetre
regime at a strongly reduced resolution, though.

• Transmission microscopes are used for Faraday, transmission Voigt and transmis-
sion gradient microscopy. This is the microscope type that the layman usually has
in mind when referring to an ‘optical microscope’. Transmission microscopy is
thoroughly covered in numerous textbooks on optics. We therefore refrain from
elaborating on the technical aspects here. To make a transmission microscope a
magneto-optical microscope, it needs to be equipped with electromagnets and
image processing in the same way as reflection microscopes. Note that the
transmission effects can also be used in reflection if the transparent specimen
is placed on a metallic mirror in a reflection microscope. Also indicator films
make use of that (see section “Indicator Films”).

In the following the above-mentioned two fundamentally different configurations
of wide-field magneto-optical imaging in reflection are discussed. Yet, the laid
out technical microscope aspects can directly be related to domain imaging in
transmission or Faraday effect imaging using indicator films. An additional section
on shared aspects of observation, primarily the camera system of choice, is included.
The principle aspects of time-resolved imaging modes are further discussed. Kerr
microscopes also offer the possibility for magnetometry with high spatial resolution.



Magneto-Optical Microscopy 205

Microscopy

High-Resolution Microscopy

Achieving best results in reflected light magneto-optical microscopy requires a
detailed understanding of the illumination path to adjust the desired modes of Kerr
sensitivity. For instance, a comprehensive knowledge of the principles of the so-
called Köhler illumination and the significance of the conjugate optical planes for
the resulting Kerr images is needed to obtain the optimum results in terms of
spatially even magneto-optical contrast across the entire field of view. To achieve
optimal magneto-optical contrast, several aspects like the correct adjustment of
illumination and the proper setting of the polarisation elements have to be taken into
account. Historically, arc discharge lamps being directly attached to the microscope
were used for their high radiance output levels. By transmitting the illumination
with a fibre optic light guide into the microscope, a physical detachment of the
light source and the microscope is achieved, by which a reduced input of heat into
the microscope and thus an improvement in thermal stability of the microscope
are obtained. The usage of alternative light sources, such as light emitting diodes
(LEDs) and lasers, offers significant advantages over the traditionally used arc
lamps. Both, LEDs and lasers, produce a greater and steadier intensity than arc
lamps. For laser systems, as a result of laser speckles, image artefacts are introduced
in the low-contrast magnetic domain images, which are amplified using difference
imaging techniques. By applying different technical modulation methods, the effects
are suppressed to a level, which makes laser illuminations suitable for magneto-
optical imaging [14, 46, 47]. Yet, laser-based illuminations are currently mostly
applied for wide-field time-resolved imaging setups, which will be described in
section “Quantitative Imaging of Magnetisation Dynamics”. For easy magneto-
optical contrast adjustment, the laser-based systems make use of fibre illumination
[46].

In recent years, fibre-coupled LEDs have become the standard for illumination
in magneto-optical microscopy [17, 48, 49]. The spectral irradiance is similar or
superior to high pressure arc lamps, as several watts of collimated output power
are achievable with current LED illuminators. Most importantly, LEDs possess
low noise. They also offer pulsed operation modes that permit an easy adaption
of imaging schemes for advanced component-selective quasi-static (section “Sepa-
ration of Effects”) and time-resolved microscopy (section “Quantitative Imaging of
Magnetisation Dynamics”). Unlike for lasers, speckle patterns are no issue for LED-
based illuminations. With high efficiency coupling into optical fibres, high-power
LEDs are now the illumination of choice for most magneto-optical microscope
experiments.

Essential for obtaining correctly adjusted magneto-optical effects is the exact
setting of the Köhler illumination, where the illuminating light source, e.g. the fibre-
optic output, is fully defocused onto the magnetic sample, thus obtaining an even
illumination of the specimen. The principle illuminating path in a Kerr microscope
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is displayed in Fig. 16a. The light source and the back focal plane of the objective
lens lie in conjugate aperture planes (AP). Additionally, several conjugate image
planes (IP) exist, most importantly the field diaphragm and the magnetic sample.
For obtaining the best magnetic imaging results, the proper alignment of the fibre
position in all three axes is most important. The possibly varying position of the back
focal plane for different objective lenses is compensated by varying the optical fibre
output along the imaging axis or by the application of an adjustable condenser lens
in the illumination pathway. Due to the diameter of the illuminating fibre output,
the specimen is illuminated in a narrow angular spread of incidence as indicated in
Fig. 16b, thus leading to well-defined conditions for the magneto-optical sensitivity
(see sect. 2). Practically, the setting of the desired mode of sensitivity is achieved by
positioning the fibre output at different off-axis positions in the aperture plane.

It should be noted that for high numerical aperture and high magnification
objective lenses, depolarisation effects occur that lead to an increase of the
background intensity. This slightly decreases the signal-to-noise ratio and has
consequences for the optimal analyser settings to achieve best magneto-optical
contrast (see section “Domain Contrast”). Moreover, the contrast of the resulting
magneto-optical images strongly depends on the optical transmission properties of
the objectives, which determine the effective overall accessible intensity, thus being
as important as the quantum efficiency of the camera system (see section “Camera
Systems”). The scattering of light properties and the polarisation quality of the
objective lenses affect the overall contrast (section “Domain Contrast”), in particular
the SNR in magneto-optical imaging. Unwanted Faraday rotation in the objective
lenses occurs with the application of high magnetic fields (see section “Faraday
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Fig. 16 (a) Ray diagram of a high-resolution Kerr microscope with the optical path of illumination
and a simplified path of observation restricted to the primary image plane. Köhler illumination is
assumed for the illumination path on the basis of a fibre-coupled light source. Indicated are the rays
corresponding to the conjugate set of aperture planes (AP) for oblique incidence, the equivalent
conjugate sets of field or image planes (IP) and exemplary locations of rotatable polariser, retarder
plate and analyser. (b) Corresponding image of the back-focal plane of the objective lens and
its conjugated focal planes for a single illumination source for the case of oblique incidence of
light together with the resulting image rays illuminating the magnetic sample for imaging in the
longitudinal magneto-optical mode. Different planes and directions of incidence can be realized
by activating other LEDs in the indicated cross of the fibre outputs
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Effect”), not only leading to an additional intensity change but also to a reduction
of the SNR. Such contributions can be compensated and reduced, respectively,
by readjusting the analyser [50] or by using advanced imaging schemes (see
section “Separation of Effects”). Also, the use of special low permeability objective
lenses is advantageous in magneto-optical imaging applications to avoid side effects
from magnetic forces acting on the lens during (high) magnetic field applications,
which can lead to unwanted artefacts and reduced quality of the images. This effect
and also mechanical drift can be compensated by adjusting the sample position with
nanometer resolution using piezoelectric positioning systems.

Overview Microscopy

Kerr microscopy of large samples at low magnification can be easily achieved for
polar contrast configuration in the single-objective-lens, high-resolution microscope
discussed above. Yet, due to the limited numerical aperture of low magnification
objectives, which limits the achievable in-plane longitudinal contrast due to low
angles of incidence [17], the imaging of in-plane magnetisation distributions in
large-scale samples, where a viewing field of up to several millimetres or centime-
tres may be desirable, is not easily achievable. This limitation can be overcome
by using an inclined microscope setup with completely separated, symmetrically
arranged illumination and reflection paths [18]. With such an arrangement, sig-
nificant longitudinal domain contrast with nearly optimal Kerr amplitude can be
attained. A further advantage of such systems is that the optical polarising elements
can be arranged between the lenses and the magnetic sample. This eliminates
depolarizing effects, occurring at the lenses’ surfaces, and the mentioned Faraday
effect with the application of magnetic fields. Using zoom lenses, a variable field of
view is achievable.

The advantages of strong domain contrast together with a large field of view
in an overview microscope are achieved at a cost. Due to the inclination of the
objective lens, only a narrow strip of the sample is in focus, the region of which
being defined by the depth of field of the optical system. The under- and overfocus
of the magnetic specimen may be surmounted by tilting the objective lens away
from the illumination axis in such a way that a focused image at the camera sensor
is obtained. Consequently, the resulting sample image is then distorted due to the
essentially varying magnification factor across the field of view of the microscope.
This issue can be eliminated by correcting for the distorted image perspective by
real-time imaging processing. Constant magnification with constant focus across
the full field of view is achieved with the use of telecentric lenses together with
a Scheimpflug camera mount [17]. A principle sketch of an optimized telecentric
Kerr microscopy system is shown in Fig. 17a. Even for a strongly inclined axis of
observation, zero distortion magnetic images are acquired. The resulting domain
image is still compressed perpendicular to the plane of incidences of light, and a
linear operation to obtain an equalized image map is needed. Exemplary overview
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Fig. 17 (a) Optical path of a bi-telecentric overview Kerr microscope. Parallel illumination of
the magnetic sample is achieved by a collimated high-power LED light source. The positions of
rotatable polariser, compensator and analyser are indicated. The aperture stop is positioned at the
focal plane of the front optical lens group. The conjugate image planes are tilted relative to the
optical axis. Tilting the camera detector provides in-focus imaging of the sample by bringing the
image plane in line with the camera sensor. (b) Magnetic domain formation in a magnetoelectric
sensor element with varying magnetic field after saturation along the long axis of the sensor. The
schematics of (a) are adapted from ref. [17]

Kerr microscopy images from the magnetisation reversal of a magneto-electric
composite cantilever sensor are shown in Fig. 17b.

Camera Systems

Independent of using high-resolution or overview microscopes, the camera system
is an essential part that determines the performance of every magneto-optical
microscope as it significantly contributes to the overall SNR. Relevant are the max-
imum quantum efficiency and the noise characteristics of the camera. The quantum
efficiency is wavelength-dependent, and the corresponding spectral response of the
camera system needs to be considered in the selection of the illumination source. For
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long camera exposure times under low light conditions, cooling of the sensor chip
becomes essential. Due to recent developments, highly sensitive, complementary
metal oxide semiconductor (CMOS) sensors with a good SNR, a high dynamic
range and high frame rates are favourable for most Kerr microscope applications.
The high frame rates further enable advanced imaging modes by combining domain
images of different sensitivities close in time (see section “Separation of Effects”).
The achievable temporal resolution is determined by the minimum exposure time of
the camera system (see also section “Time-Resolved Kerr Microscopy”). CMOS-
based camera sensors offer both a so-called rolling shutter mode, where individual
lines of the sensor array are exposed at different times, and a global shutter mode,
where every pixel in the sensor is exposed simultaneously. The rolling mode has
advantages in terms of lower read-out noise characteristics, while the global mode
secures an exact time resolution. Image amplifiers, with and without gating, allow
imaging at very low light levels and enable high temporal resolutions [51].

Time-Resolved Kerr Microscopy

The principles of high-resolution and overview microscopy discussed above can
be adapted to the observation of dynamic magnetisation processes, which may
include femtosecond processes for ultrafast spin-dynamics, resonant magnetisation
dynamics on the sub- or nanosecond timescale and eddy-current dominated mag-
netisation dynamics in the micro- to millisecond range for thick samples [17]. The
whole range of timescales is accessible using time-resolved Kerr microscopy, and
the rather broad range can be addressed by implementing fast illumination and/or
fast detection schemes in magneto-optical microscope setups. In the following,
the emphasis will be on the features of the microscopes themselves for achieving
high temporal resolution based on either using fast camera schemes, fast LEDs or
laser-based illumination schemes. The aspects of fast magnetic field generation or
alternating schemes of initiating magnetisation dynamics based on electrical current
or optics will not be discussed.

Different imaging modes for time-resolved imaging do exist, which can be
separated into real-time, single-shot and stroboscopic imaging methods. The appli-
cability of the individual modes is limited by the frame rate of the camera system as
well as by the time resolution of the illumination light source. Due to the technical
limitations of both in relation to the needed or aimed-for temporal resolution and
the actual scientific problem of interest, not all approaches are practically suitable
for the imaging of dynamic magnetic domain processes. The three available main
modes of imaging are specified as:

• Direct real-time imaging with continuous alternation of the magnetic domain
states relies on the steady observation of the magnetisation processes as sketched
in Fig. 18a. The domain evolution in a changing magnetic field is visualized
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directly in ‘real time’ with a temporal resolution determined by the frame rate
of the camera system.

• Single-shot imaging of individual single magnetic events is possible through
pulsed high-intensity illumination sources like pulsed arc flash lamps, LEDs and
lasers. In pulsed light, imaging of single magnetic events with high temporal res-
olutions, determined by the illumination source, is possible. The principle of the
method is sketched in Fig. 18b. The main difference to real-time observation is
due to the existing restraints in the frame rate of the camera system, allowing for
recording only a singular magnetic event within one fast magnetisation process.
Further limitations of single-shot imaging result from the achievable SNR ratio,
which is mostly limited by the illumination intensity and the sensitivity of the
used camera system.

• Stroboscopic imaging is also based on the use of pulsed illumination sources. The
method relies on phase matching of the magnetic excitation with the illumination
pulse as sketched in Fig. 18c. Alternatively, camera systems with gated image
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Fig. 18 (a) Real-time observation with a varying magnetic field H(t), the magnetisation response
M(t) and a continuous illumination I(t). Domain processes are probed with an exposure time
∂t . The time interval �t is determined by the frame rate of the camera. (b) Single-shot Kerr
microscopy with a single Kerr image taken in a time window ∂t defined by an illumination
pulse with the duration ∂t at a delay time t . (c) Stroboscopic domain imaging with the composite
magneto-optical micrographs obtained by summing up repeatable magnetic events with a temporal
resolution ∂t defined by an illumination pulse train at a delay time t relative to the exciting
magnetic field H(t). A harmonic magnetic field excitation H(t)) is assumed for the examples
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intensifiers can be used. Both enable the imaging of repeatable magnetic events
up to very fast timescales. The overall image formation takes place by integration
over the magnetic events by the camera system. The limiting temporal factor is
the pulse width of the illumination source, respectively the gating time of the
image intensifier.

A different view on the aspects of time-resolved magneto-optical microscopy arises
looking at the different imaging options in relation to the needed temporal resolution
to resolve magnetisation processes at different frequencies. The relevant points are:

• Low-frequency dynamics in the regime of an excitation frequency of a few to
several Hertz can be visualized in real time with regular Kerr microscopy setups
as the use of camera systems with exposure times of the order of 10 ms is
standard. On the other hand, using pulsed LED illumination sources, a similar
time resolution is achievable. The latter avoids problems with rolling shutters in
the camera systems. The limiting factor for real-time imaging is the frame rate
of the camera, rather than the exposure time. Giving sufficient light intensities,
single-shot imaging down to 10 μs is possible with standard imaging systems
as demonstrated for overview microscopy in ref. [17] (Fig. 19a). For lower
light levels, stroboscopic imaging can easily be achieved relying on pulsed
LED illuminations. Using high-speed cameras together with high magneto-
optical contrast, continuous-detection imaging up to 500 Hz is possible [52] (see
Fig. 21e).

• Kilohertz magnetisation dynamics can be imaged best by means of stroboscopic
techniques using gated image intensifiers [53] or pulsed LED illuminations [54,
55] (Fig. 19b). Both offer variable repetition rates and continuously adjustable
time resolutions. Yet, current LED sources are limited to temporal resolutions of
about a few microseconds. As pointed out above, at least partial repeatability of
the magnetisation processes is required for stroboscopic imaging. Yet, single-shot
imaging is possible within this timescale using triggerable pulsed laser sources.

• High-frequency magnetisation dynamics in the megahertz regime can be imaged
by means of stroboscopic techniques using gated image intensifiers [51] or pulsed
laser systems. The image intensifier systems provide variable repetition rates
and continuously flexible temporal resolutions into the sub-nanosecond regime.
Selecting proper solid-state lasers, a similar flexibility is also available for laser-
based systems, but providing advantages in terms of SNR compared to intensified
cameras. Single-shot imaging is possible within the timescale down to 20 ns by
using pulsed laser sources with the corresponding pulse widths (Fig. 19c).

• Resonant frequency dynamics in the gigahertz regime and beyond can be
imaged stroboscopically only by using pulsed laser systems [56]. The temporal
resolution is defined by the laser pulses, being in the picosecond or femtosecond
regime. For achieving highest time resolution, special care must be taken to
minimize timing jitter of the microscope system. The best flexibility is achieved
with systems where the magnetic excitation and the laser pulses are running
from the same clock signal and thus being locked in phase. Practically, jitter-
free time-resolved Kerr microscopy with picosecond time resolution for direct
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Fig. 19 (a) Single-shot Kerr image from an FeSi electrical steel sample with a camera exposure
time of 10 μs at the operational frequency of 50 Hz. (b) Stroboscopic image from a magnetic field
modulated magneto-electric sensor device with a LED pulse width of 10 μs at 876 Hz and (c)
from an electrical field modulated magneto-electric sensor with a laser pulse width of 20 ns at
0.516 MHz. (d) Stroboscopic Kerr microscopy of standing magneto-static spin-wave modes in a
CoFeB/Ru/CoFeB anti-dot array with a laser pulse width of 7 ps at 2 GHz magnetic field excitation

imaging under a continuous microwave field excitation is possible with such a
microscope setup [17, 57] (Fig. 19d). A further advanced system, allowing for
component-selective and quantitative time-resolved imaging, will be discussed
in section “Quantitative Imaging of Magnetisation Dynamics”.

Overall, Kerr microscopy methods provide the almost sole possibility for the
analysis of fast magnetisation dynamics in the laboratory. Stroboscopic wide-
field Kerr microscopy [56, 57] for the investigation of dynamic magnetic domain
processes is compatible with all the Kerr microscopy imaging modes. Often, time-
resolved Kerr microscopy is performed in the difference imaging mode, varying the
phase between the rf-field excitation and the imaging laser pulse. Difference images
are calculated from the difference of two magnetisation states at different time
delays, by which only alterations of magnetisation become visible in the domain
response images. Imaging sensitivities down to variations of m = 0.01 have been
achieved in this way. A review on the realisation of stroboscopic dynamic imaging
by Kerr microscopy is given in ref. [17].

Temperature-Dependent Microscopy

Adapting Kerr microscopy for temperature-dependent imaging requires the integra-
tion of cryostats for low temperatures and heating stages for elevated temperatures
into the microscope systems. The magnetic sample is usually mounted on a cold or
heating finger, respectively. The technology for low-temperature imaging was partly
driven by the imaging of flux penetration into type-II superconductors, where the
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Fig. 20 (a) Detail of an imaging setup with the viewing window between the objective lens and
the sample. (b) Setup with the window on top of the objective lens, where the objective lens is
integrated into the cryostat or heating chamber. Exemplary Kerr microscopy images obtained (c)
from the chirality reversal in an exchange spring soft/hard magnetic bi-layer film at 77 K [60] and
(d) from a noncrystalline ferromagnet at 623 K [62].

observation is based on Faraday microscopy using detection films (see section “Indi-
cator Films”), but it is as well-suited for regular Kerr microscopy. Applications
of high-temperature Kerr observations are, for instance, the investigation of high-
temperature domains in soft magnetic nanocrystalline materials [58]. Examples
for low-temperature Kerr imaging include exchange bias phenomena in coupled
ferromagnetic thin film systems [59, 60] and ferromagnetic semiconductors [61].

Two basically different approaches are used for temperature-dependent
microscopy. In both approaches the sample is typically under vacuum, and thus
special care needs to be taken for the integration of the objective lens. The
elementary difference lies in the positioning of the objective lens outside or inside
the vacuum chamber (Fig. 20). In one case, imaging is performed through an optical
window between the magnetic object and the objective lens. Using this approach
(Fig. 20a), long-distance objective lenses with an optical correction for the window
thickness are required. This restricts the achievable spatial resolution. For the other
method (Fig. 20b), the objective lens must be integrated into the cryostat or heater
[63]. By this, regular high numerical aperture objective lenses with short working
distances and higher resolving power can be used, and the highest resolution
magneto-optical imaging becomes achievable. On the other hand, objective lenses
with longer working distances are favoured due to the strong temperature gradient
between sample and objective lens, and the microscope objective lenses must
be vacuum-compatible. Both methods require a stress-free viewing window to
minimize influences on the polarisation state of the light. To avoid imaging
artefacts, especially relevant for the mostly applied difference imaging technique,
the imaging system must be vibrational-decoupled from the supporting vacuum
systems. Thermal drift with varying temperature can be compensated for by an
active drift correction of the sample position.
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Indicator Films

The indirect imaging of magnetic domains by probing the magnetic stray fields that
are generated by magnetic microstructures at the sample surface can be achieved
by placing a magneto-optically active detection layer on top of a specimen. For
this method mainly rare earth doped ferrite garnet magneto-optical indicator films
(MOIFs) are applied, which are micrometres in thickness. The films are nearly
transparent and have a high Faraday rotation. Imaging is then performed in reflection
in a high-resolution or overview microscope with a mirror layer on the bottom of
the indicator film. As the magnetic stray field of the sample, which is eventually
responsible for a modulation of the indicator film magnetisation and thus a Faraday
domain contrast in the MOIF, emerges from magnetic poles in the specimen, MOIF
microscopy may be seen as ‘magnetic pole’ microscopy. The method is especially
applicable for magnetic materials with no or very weak magneto-optical contrast
and for specimens with optically non-transparent cover layers. For a review on the
many aspects of magnetic imaging with MOIFs, we refer to ref. [64].

The principal scheme of MOIF imaging of the magnetic domains in a magnetic
material with out-of-plane components of magnetisation is sketched in Fig. 21a. The
possible schemes for an in-plane magnetised sample with charged domain walls are
shown in Fig. 21b and c. Magnetic domains with an out-of-plane magnetic (field)
contribution and charged domain walls become detectable. The contrast formation
is due to an alternation of magnetisation in the MOIF in connection with the
stray fields generated by the magnetic domains or domain walls of the sample
under investigation. Examples for typical MOIF domain images are presented in
Fig. 21d–f. The achievable spatial resolution is usually about a micrometre for in-
plane magnetised MOIFs (Fig. 21d). It is mainly limited by the thickness of the
MOIF in connection with the distance to the sample surface. While in-plane MOIFs
rely on rotational magnetisation processes in the indicator film, wall motion occurs
in the case of perpendicular MOIFs—the latter are thus more sensitive due to a
higher permeability. Yet, for out-of-plane magnetised MOIFs, the spatial resolution
is influenced by the actual magnetic domain size in the detection layer. Therefore,
perpendicular MOIFs are especially advantageous for use at low spatial resolution
in the 10 micrometre range, as for overview microscopy (section “Overview
Microscopy”), so that the perpendicular eigen-domains of the indicator film are not
resolved (Fig. 21e, f). The underlying domain pattern of the sample then shows up as
a modulated dark-bright contrast [66]. As the domain contrast essentially arises from
the (strong) polar Faraday effect, even single-shot dynamic imaging of electrical
steel at 50 Hz power frequency in the presence of insulation coating becomes
possible by MOIF microscopy [52] (see Fig. 21f and section “Time-Resolved Kerr
Microscopy”).
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Fig. 21 Imaging magnetic domains by MOIF microscopy with an indicator film with (a, b)
magnetic out-of-plane (OOP) anisotropy and (c) with in-plane (IP) anisotropy. The overall MOIF
structure contains the magneto-optically active iron garnet film grown on a transparent substrate
(not shown) and an aluminum mirror. Magnetic domain observation in reflection is achieved by
placing the MOIF on top of the magnetic specimen. The magnetic response of the MOIF to the stray
field, emerging from the sample, is imaged using the polar Faraday effect. (d) Exemplary MOIF
image displaying magnetic domain contrast from a twinned magnetic shape memory crystal with
slightly tilted magnetic anisotropy relative to the surface [65] (IP magnetised MOIF). (e) Overview
images of the static magnetic domain distribution in a laser-scribed electrical steel sample (OOP
magnetised MOIF) and (f) dynamic magnetic domain formation in an electrical steel sample (OOP
magnetised MOIF) at an excitation frequency of 50 Hz obtained by time-resolved magneto-optical
microscopy [52]

MOKE Magnetometry

The optical measurement of magnetisation curves by MOKE magnetometry is
usually based on a laser beam that is focused on the sample with a spot size in
the micrometre range and on the measurement of the reflected Kerr signal with
an optical detector [1]. Space-resolved measurements require scanning over the
sample in such magnetometres. MOKE magnetometry on the basis of wide-field
Kerr microscopy is an elegant alternative. Plotting the intensity of a selected spot
or area in the Kerr image as a function of magnetic field leads immediately to a
magnetisation curve. The local character enables the analysis of different material
properties in magnetically inhomogeneous magnetic materials. An example of a
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Fig. 22 (a) Longitudinal MOKE loops from different regions of an FeCoSiB(4 μm) film dis-
playing easy axis (EA, blue) and hard axis (HA, black) magnetisation loop behavior [55, 67].
(b) Directly measured (blue) polar MOKE loop from an FePd (10 nm)/FePt(25 nm)/FePd(10 nm)
film sample, including parasitic Faraday effects, and magnetisation loops with an active in situ
correction (black) [50]. Exemplary domain images are shown in the insets

magnetostrictive film with local stress anisotropy, leading to a local variation of
magnetic anisotropy alignment, is displayed in Fig. 22a. Compared to any other
kind of magnetometry, the wide-field approach offers the advantage that the relevant
domain images along the loop can be readily recorded, which is extremely helpful
for the interpretation of hysteresis loops. Some critical points need to be considered,
though:

• As the microscope’s objective lens is exposed to the magnetic field, the loops
may be strongly distorted by non-linear Faraday rotations that occur in the
objective lens and that are superimposed on the Kerr signal. This is especially
true if the magnetic field is aligned along the objective axis. Such (polar) Faraday
contributions can be subtracted in the computer after measuring them separately
by recording the Kerr intensity on a non-magnetic spot in the image. In ref. [50]
an in situ compensation method was suggested based on a motorised analyser
(Fig. 22b). For magnetometry in in-plane fields, there may as well be polar
Faraday contributions in the objective that can arise by field inhomogeneities
and by stray fields emerging from the edges of magnetised bulk samples. They
can be compensated by recording the loops in the pure in-plane sensitivity mode
[68] (see section “Separation of Effects”).

• The magnetisation can only be measured qualitatively, not quantitatively as in
vibrating sample or SQUID magnetometry. If the Kerr intensity, corresponding to
the saturation magnetisation Ms, can be precisely measured by compensating any
Faraday contribution, the magnetisation can be plotted in reduced units M/Ms.

• Any MOKE curve is caused by domain contributions that are recorded within
the information depth of Kerr microscopy. For bulk specimens only the surface
domains will therefore contribute. Surface domains, however, differ in general
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drastically from interior domains so that MOKE magnetometry has to be applied
with care in case of non-transparent materials. For thin films this is not a problem.

• In any case it needs to be considered that local hysteresis loops are recorded
by MOKE magnetometry, which may be very different from curves at other
locations and from an integral loop measured on the complete sample.

5 Advanced Methodology

Magneto-optical Kerr microscopy is a well-established technique for the obser-
vation of magnetic domains. Despite being around for so many years, recent
developments have further improved the quality of domain imaging with major
advances in the application and the separation of the intertwined magneto-optical
effects. Advanced methodologies now allow for magnetisation component selectiv-
ity and quantitative domain imaging on different timescales.

The recent progress in Kerr microscopy is in particular due to advanced
light sources. These allow complete control over the illumination conditions for
obtaining different Kerr sensitivities and for having the concurrent possibility to
reversibly switch between the various incidence-of-light conditions. These advances
are reviewed in this section, starting from the separation of Kerr effects to real-
time quantitative microscopy and time-resolved quantitative domain imaging of
precessional magnetisation dynamics. Further advanced non-standard techniques
like depth-selective Kerr microscopy and imaging modes involving the magneto-
optical Voigt and gradient effect are discussed. These techniques offer additional
possibilities, which are in particular of relevance for magnetic thin film investiga-
tions and the imaging of antiferromagnetic materials.

The presented advanced imaging modes are so far not necessarily used routinely
for domain imaging. They open up opportunities for additional fields of investiga-
tions beyond standard Kerr microscopy.

Separation of Effects

At the end of section “Kerr Effect”, we have summarised the phenomenology of
the magneto-optical Kerr effect (except the transverse effect) by a simple rule.
Formulated in terms of contrast, that rule reads: The polar and longitudinal Kerr
contrast is proportional to the magnetisation component parallel to the reflected
light beam. In Fig. 23 this is visualized for antiparallel in-plane and perpendicular
domains. At oblique incidence (Fig. 23a, b), both domain types have vector com-
ponents along the reflected beam, thus showing a contrast. The contrasts, however,
have different dependencies on the direction of incidence: While the (polar) contrast
of the perpendicular domains does not depend on the incidence direction, the
longitudinal contrast of the in-plane domains changes sign when the direction
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of incidence is inverted as the vector components of the left and right domains
along the reflected beam change sign. So, at oblique incidence there is always a
superposition of longitudinal and polar contrast. At perpendicular incidence (c) the
in-plane domains do not show up because there is no magnetisation component
along the reflected beam. This is the condition for pure polar contrast.

The described dependencies are the basis for contrast separation [17, 47, 49, 69].
Technically this can be realised by running proper fibre outputs (see section “High-
-Resolution Microscopy”) arranged in a crossed configuration (Figs. 24 and 16b)
either in a static or pulsed mode. For the latter [49], the light pulses with a typical
switching time in the microseconds range need to be synchronised with the camera
exposure. If the frame rate of the camera is beyond ten frames per second, the
human eye cannot follow the pulsating images, and the domain picture on the screen
appears static. An alternative implementation for the component-selective imaging
of magnetisation dynamics using pulsed laser sources [69] will be discussed in
section “Quantitative Imaging of Magnetisation Dynamics”. The following contrast
modes can be achieved:

• Biaxial in-plane sensitivity. Oblique incidence along two orthogonal planes with
s- and p-polarised light corresponds to longitudinal Kerr sensitivities along the
two planes (with polar sensitivity superimposed). There are two technical ways
to realise this biaxial mode of imaging:

1. Choosing different colours for the LEDs that define the two planes of
incidence and using some optical device that separates the two corresponding
images [48]. It is convenient to place an image splitter between the microscope
and camera, which splits the two partial images on the same camera chip,
thus leading to the simultaneous display of the two orthogonal magnetisation
components. In Fig. 24a an example of this dichromatic mode of biaxial
imaging is presented. For further possibilities see ref. [17].
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Fig. 24 (a) Biaxial imaging in the dichromatic mode with blue and red LED light. The hori-
zontal and vertical magnetisation components of a 50 nm thick epitaxial iron film are imaged
simultaneously in the same frame. (b) Biaxial imaging of cross-tie domain walls in a 40 nm
thick permalloy film in the monochromatic mode using white light. Again the two magnetisation
components are displayed, but now in separate images and quasi-simultaneously by alternately
pulsing the indicated LEDs. (c) Pure-in-plane mode achievement by sequentially pulsing opposite
LEDs. (d) Separation of perpendicular and in-plane magnetisation components in a nanocrystalline
NdFeB material with a grain size of round 300 nm and an in-plane effective easy axis. In the polar
image, the grains show up due to their up and down out-of-plane magnetisation components, while
magnetostatic interaction domains [18, 49] are revealed in the image with pure in-plane sensitivity.
The in-plane sensitivity axis is indicated by double arrows. Images (b) and (c) are adapted from
ref. [49] with kind permission from AIP, and the in-plane image of (d) is adapted from ref. [70]
with kind permission from Springer Verlag

2. Using monochromatic light and alternately activating the LEDs that define the
two orthogonal planes of incidence in the pulsed mode [49]. After synchro-
nisation with the camera exposure, the two partial images can be displayed
quasi-simultaneously. Figure 24b shows an example of this monochromatic
mode of biaxial imaging.

• Pure in-plane sensitivity. Subtracting two images, which are obtained with
oblique incidence from opposite directions, leads to a cancellation of the polar
contrast, thus leaving pure in-plane sensitivity (Fig. 23d). In Fig. 24a this is
demonstrated for Permalloy film elements (note that ‘pure in-plane sensitivity’
is meaningless here as permalloy is magnetised strictly in-plane anyway).
Interestingly, in this pure in-plane mode, it turns out that also the polar Faraday
effect in the objective lens of the microscope is suppressed [68], which is
very favourable for MOKE magnetometry (section “MOKE Magnetometry”)
and quantitative Kerr microscopy (section “Quantitative Kerr Microscopy”). To
achieve the pure in-plane mode technically, opposite LEDs in the LED cross have
to be run in the pulsed mode as indicated in Fig. 24c.
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• Pure polar sensitivity. Adding two images, obtained with oblique incidence
from opposite directions, results in a cancellation of in-plane contrast leaving
pure polar sensitivity (Fig. 23e). Technically this can be achieved by running
opposite LEDs in the static mode. If more light intensity is needed, also the
transverse LEDs can be activated. As long as the LEDs are run symmetrically,
any in-plane contrast will cancel, and the illumination is effectively perpendicular
(alternatively also a centred LED could be used). In Fig. 24b an example is shown
in which an identical domain pattern has been imaged in the pure polar and pure
in-plane modes—the wide interaction domains, showing up in the pure in-plane
mode, could not be guessed from the polar image.

The experimental conditions to separate the Voigt and gradient effects have
already been discussed at the ends of sections “Voigt Effect” and “Gradient Effect”,
respectively.

Quantitative Kerr Microscopy

Quantitative magneto-optical Kerr microscopy is an advanced technique that is so
far rarely applied for magnetic materials investigations [18, 71]. The technique is
based on the merging of two images of the domain structure of interest, obtained
with preferably nearly orthogonal Kerr sensitivities. It involves a calibration pro-
cedure with multiple calibration images, by which the angular magneto-optical
sensitivity function in the Kerr microscope must be determined. By fitting two
sinusoidal calibration functions (Fig. 25a) with complimentary in-plane sensitivities
that are ideally phase-shifted close to 180◦, two linear equations for the two mag-
netisation components mx and my are computed. By matching the magneto-optical
contrast of two complementary domain images with the computed sensitivity curves
obtained under the same contrast conditions, quantitative vectorial magnetisation
images are obtained. Conventionally, the two sensitivity functions are recorded at
the beginning and at the end of the experiment, respectively, before and after the
domain pattern of interest is recorded. Only one pair of complementary domain
images and thus one single magnetic vector field can be obtained under the same
contrast conditions as the calibration curves, limiting the method to the analysis of
static magnetic domain patterns.

Advanced approaches that allow for real-time quantitative magnetic domain
observations, respectively, the quantitative imaging of continuous magnetisation
processes, have evolved, overcoming the drawback of a restriction to static domain
analysis and allowing for the quantitative analysis of a sequence of domain states
during the magnetisation reversal. These quantitative methods rely on the methods
of contrast separation described in section “Separation of Effects”. One approach is
based on the dichromatic imaging mode, using two LEDs of different wavelengths,
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which are positioned orthogonally in the back focal plane of the microscope [17, 48].
By that, simultaneous Kerr sensitivities along the vertical and horizontal axes
are attained with a single exposure, ensuring simultaneous imaging of both in-
plane magnetisation components. The images of complementary sensitivity can
then be recorded independently. In this way, the two (still needed) phase-shifted
calibration curves can be applied simultaneously to a sequence of image pairs and
not only to a single pair of static images as in the aforementioned approaches
for quantitative imaging. The precise spatial alignment of the domain images of
different sensitivity is however problematic. Furthermore, the method does not
permit for easy elimination of possible polar magneto-optical contrast contributions.
This can be achieved by using a refined method [72], which is based on utilizing
the pulsed LED scheme introduced in section “Separation of Effects”. A result
obtained with this method is displayed in Fig. 25b. By properly switching the LEDs
in synchronisation with different camera exposures, domain images with orthogonal
sensitivity can be acquired. Moreover, images with pure in-plane sensitivity can be
obtained, by which also parasitic, magnetic field-dependent Faraday rotations in the
microscope optics are eliminated [68] during calibration as well as in the evaluated
domain images. This leads to a substantially improved accuracy in the quantitative
imaging results, which is a significant step forward in quantitative magnetic domain
imaging.

A related methodology based on a single illumination source is applied for time-
resolved magneto-optical imaging. It should be noted that the temporal resolution of
the dichroitic method is limited by the image exposure time, whereas for the pulsed
LED scheme, it is further determined by the frame rate of the camera system.
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Quantitative Imaging of Magnetisation Dynamics

The methods of quantitative imaging (section “Quantitative Kerr Microscopy”) and,
especially, magneto-optical contrast selectivity (section “Separation of Effects”)
are of utmost importance for dynamic Kerr microscopy. If precessional mag-
netisation processes are dynamically excited, timely varying in- and out-of-plane
magnetisation components will occur even in a soft magnetic film, leading to
entangled magneto-optical contrast contributions that involve the superposition of
time-varying in-plane and out-plane Kerr signals. As the superimposing magneto-
optical signals might also occur with a different time dependency, the separation of
in-plane and out-of-plane magnetisation components, including vectorial dynamic
wide-field imaging, is essential for the proper analysis of precessional magnetisation
processes.

A dynamic wide-field vector imaging approach for the separation of dynamic
in-plane and out-of-plane magnetisation response information and for achieving
dynamic quantitative response imaging capabilities was demonstrated in ref. [69].
A principle imaging scheme, which is also relevant for regular fast time-resolved
wide-field Kerr imaging setups, is shown in Fig. 26. The microscope observation
path is not included in the schematics. The three main components of the setup
are a high-stability Kerr microscope, a variable pulsed laser illumination and a
high-frequency magnetic field excitation source. The rf signal generator, the pulsed
laser light source and the sampling oscilloscope are synchronized to the same
clock as a prerequisite for making component-selective imaging up to the GHz
regime possible. Minimisation of laser speckles is achieved by the integration of
a rotating ground glass diffusor and a vibrational diffusor. In contrast to the system
described in section “Separation of Effects”, here a lens with computer-controlled
position adjustment is applied to reproducibly separate the Kerr effects (Fig. 26b).
To untangle the polar and longitudinal Kerr contributions, the diametric counterparts
of the two longitudinal sensitivities are measured in the same dynamic measurement
cycle. Using a calibration procedure similar to the one described in section “Quan-
titative Kerr Microscopy” together with a procedure similar to the one presented
in section “Separation of Effects”, vectorial- and component-selective data can be
obtained. Especially, the extraction of the dynamic out-of-plane information enables
the analysis of the dynamic in-plane magnetisation response, and subtraction of
the diametric vertically and horizontally measured modes yields the pure in-plane
magnetisation response. An example of the quantitative component selection for
the precessional response of a magnetic domain structure in a soft magnetic strip,
including simultaneous in-plane and out-of-plane response, is shown in Fig. 27.
Dominant in-plane magnetisation precession in the central domains and a spin-wave
like response [73] become evident in the magnetic vector response images.



Magneto-Optical Microscopy 223

Objective
lensRotating

plate
diffuser

Vibrational
diffuser

Polariser

Sample

Coplanar wave-guide

Signal generator

Optical 
fibre

y

Ref
out

Ref
in

AP

Movable
lens

fiber output

a)

b)

rf-signal

Timing  stabiliser

Nd:VO  pulse laser4

rf-signalx-y lens positioning

x

y

AP

APMovable
lens

Fibre
output

y

x
-y

y

xx

y

Polar sensitivity In-plane & polar sensitivity

Fig. 26 (a) Principle sketch of the illumination of a quantitative time-resolved Kerr microscopy
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pulse is adjusted for time-slicing. (b) Relative position of the optical fibre output and the resulting
incident of light for perpendicular illumination and oblique illuminations. (Details of the system
are described in ref. [69])

Voigt and Gradient Effect Microscopy

Along the presented methods of magneto-optical effect separation, Voigt effect
microscopy offers additional complimentary input for the investigation of magnetic
domains. Yet, the magneto-optical Voigt effect (section “Voigt Effect”) is rarely
used for the imaging of magnetic domain structures, as the obtained signal is
weak compared to that of the magneto-optical Kerr effects. Furthermore, in Voigt
microscopy the contrast is selected in polar incidence geometry for in-plane
magnetised materials, where the longitudinal Kerr contrast ideally vanishes (note
that in practice the elimination of residual Kerr contrasts is not easily attained). As
the Voigt effect is even in magnetisation, it provides also access to antiferromagnetic
domains not accessible by the linear magneto-optical effects. First experiments
demonstrating the imaging of antiferromagnetic states in NiO(001) films at room
temperature have been published [26].



224 R. Schäfer and J. McCord

+ +

+

++

−−

+ −−

20 µm

Δm , Δmy x

Δmy

-0.3 0.3

Δmx
Δmx,y

-0.4

0.4
-0.2 0.2

a)

c) d)

b)

0 30 60 90 120 150 180 0 30 60 90 120 150 180
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

H (t)x H (t)x

M
O

K
E 

si
gn

al
 (a

.u
.)

Δm
,Δ

m
, c

∙Δ
m

y
x

z

Δmy

Δmx

c∙Δmz

e)

Phase (°) Phase (°)

f)

+

@1.9 GHz

0° 90° 0° 90° 0° 90°

0° 90° 0° 90° 0° 90°

Fig. 27 (a) Oblique incidence and (b) polar dynamic Kerr images from a FeCoB thin film strip
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distinct phase angle of magnetic field excitation. The phase angles for all shown images correspond
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magnetisation response. (Data from ref. [69])

The Voigt contrast is possibly supplemented by the magneto-optical gradient
contrast (section “Gradient Effect”), which is most visible at domain walls as
an alternating domain boundary contrast. In Fig. 28 the connection between Kerr,
Voigt and gradient effect is visualised for a soft magnetic thin film element [54].
A uniform and alternating gradient contrast is seen for all the magnetic domain
boundaries. Neither of the domain wall transitions of any type is visible in the
Voigt and gradient microscopy images, as the gradient contrast is independent from
the internal structure of the domain walls. In practice, for the adjustment of Voigt
and gradient contrast, starting with maximum extinction at crossed polariser and
analyser settings and perpendicular plane of incidence, only the compensator is
rotated until sufficient contrast conditions are obtained.
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Fig. 28 Complementary (a) Kerr and (b) Voigt microscopy image of a magnetic domain state
with asymmetric Bloch walls (ABWs) after demagnetising along the easy axis of magnetisation in
a single layer Co40Fe40B20 film with a thickness of 160 nm. (c) Kerr and (d) Voigt effect image
of a magnetic domain state with a mixture of asymmetric Bloch and Néel (ANWs) walls at a bias
field Hext = 100 A/m. The regions with Bloch and Néel walls, the magnetic field direction and
exemplary magnetic field directions are indicated

Depth-Selective Imaging

In section “Depth Sensitivity” it was shown that the total Kerr signal is due to a
superposition of Kerr amplitudes that are generated within the penetration depth of
light and that differ in amplitude and phase according to the complex amplitude
penetration function of Eq. (27). The phase difference can be applied to obtain
depth-selective information on the magnetisation, most favourably for magnetic
sandwich systems in which magnetic films are interspaced by non-magnetic layers
as shown schematically in Fig. 29a. By turning the compensator, the phase of the
Kerr amplitude can be tuned relative to the regularly reflected amplitude so that
the zero crossing of the information depth curve appears somewhere within one
of the two layers. Properly adjusted, the integral Kerr contribution from this layer
vanishes, and only the magnetisation from the other layer remains visible. By proper
phase selections, the magnetisation of both layers can thus be imaged separately.
This depth selection method was first applied in refs. [74, 75], where the two iron
films of an Fe/Cr/Fe sandwich sample have been imaged separately. Figure 29b
shows another example (which at the same time demonstrates the sensitivity of Kerr
microscopy to ultra-thin magnetic films).

In practice, the compensator and analyser are rotated ‘simultaneously’ until
the desired selectivity is obtained. To find the proper settings, it is helpful if the
individual layers of the stack have characteristic properties that help to distinguish
them. Different coercivities, for instance, will result in selective domain activities in
an applied AC magnetic field of different amplitude. Making the domain activity in
one of the layers invisible will then define the settings to block out the magnetisation
of that layer. This procedure, however, will be difficult if more than two magnetic
films are involved as only one film at a time can be made invisible. Besides the
phase, also tuning the wavelength or the angle of incidence [77] can in principle be
used for depth-selective imaging as both parameters enter the penetration function.
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While the latter can hardly be employed due to a weak dependence of the Kerr signal
on the incidence angle in the case of metallic films, applying a tunable light source
might be feasible. For Kerr microscopy, however, this has not been demonstrated
yet.

X-ray spectro-microscopy [1] can also be used for depth-selective microscopy by
tuning the photon energy to elemental absorption lines. In the case of multilayers,
the chemical composition of the individual layers has to be different to image
them separately. The Kerr approach, relying on interference effects rather than
on the electronic properties of the material, can also be applied for layers of the
same composition as demonstrated in Fig. 29b. For a thorough review on magnetic
microscopy of layered structures, we refer to ref. [1].

6 Summary and Outlook

Recent developments in advanced magneto-optical microscopy techniques and the
availability of commercial microscope systems have led to a revival of the method.
Kerr microscopy especially is still one of the most versatile in-lab techniques for
the investigation of magnetic domains and magnetic domain wall behaviour.

Together with its magnetometric capabilities and the possibilities of easy sample
manipulation during observation, Kerr microscopy has become the ‘workhorse’ in
many magnetism research laboratories. It enables magnetic microscopy of magnetic
domain features on length scales from centimetres to even below the boundaries of
spatial resolution. It facilitates magnetic imaging down to picosecond timescales and
allows for imaging from cryogenic to elevated temperatures. Using and separating
the various magneto-optical effects by advanced illumination schemes have led to
significant progress in Kerr microscopy. Direct imaging modes and indicator film
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techniques are available for the investigation of the magnetisation behaviour of all
kinds of magnetic materials and functional magnetic devices.

With all the recent and continuing developments, magneto-optical microscopy
will continue to be one of the most important techniques for magnetic domain
analysis. Thus, it will continue to make considerable contributions to the research on
magnetic materials and the investigation of magnetic devices. Continuing progress
in the field is taking place to meet the imminent scientific challenges. The limits of
Kerr microscopy have not been reached yet by a long way. The development and
use of applied magneto-optics are nowhere near its end.
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X-Ray Magnetic Circular Dichroism
and X-Ray Microscopy

Joachim Gräfe

Abstract X-ray magnetic circular dichroism (XMCD) and X-ray microscopy are
ubiquitous techniques at modern synchrotron facilities, showing their importance
for modern magnetism research. Indeed, XMCD and X-ray microscopy yield unique
insights into the microscopic magnetic structure of materials that cannot be achieved
with other techniques. Here, a beginner’s introduction to the fundamental X-ray
absorption effects is given, and important spectral properties of magnetic materials
are discussed. Subsequently, various X-ray microscopies and their advantages
and disadvantages are discussed, and the possibilities of such measurements are
reviewed.

Keywords X-rays · Spectroscopy · Microscopy

1 Introduction

Magnetic measurements using soft X-rays generated by synchrotrons became a
vital part of magnetism research with the advent of X-ray magnetic circular
dichroism and X-ray magnetic linear dichroism [1, 2]. The discovery of these effects
allowed X-rays to be used in a way that was previously only known for neutrons
[3]. These X-ray techniques allow an unprecedented insight into the microscopic
magnetic structure that no other measurement can achieve. In the following, a
brief introduction to the capabilities is given that is only meant to give a taste
of the almost endless possibilities of magnetic X-ray measurements. First, X-ray
absorption spectroscopies will be discussed to introduce the fundamental effects and
the information that can be gained from the spectral properties of materials. Second,
an overview of different X-ray microscopies is given to showcase the ultimate
capabilities of these techniques to unravel microscopic magnetic structures.
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2 X-Ray Absorption Spectroscopy

The main idea of using X-ray absorption experiments for materials characterization
is to achieve some sort of absorption difference or contrast for X-rays depending
on material parameters of interest. Commonly, the absorption is quantified by the
energy-dependent X-ray absorption coefficient μ that can be determined from a
transmission measurement according to Beer-Lambert law:

I = I0 · e−μd.

with the initial intensity I0 and the attenuated intensity I after transmission through
a material layer of thickness d. Compared to visible light, the advantages of soft X-
rays are strongly element-specific as well as chemically and magnetically sensitive
absorption contrasts that are not accessible otherwise. However, this advantage
comes at the cost of a more complicated experiment that relies on monochromatic
soft X-rays that are only available from synchrotron radiation sources. In the
following, the discussion is limited to a phenomenological description, and the
reader is referred elsewhere [4–6] for a fundamental theory of X-ray absorption.

Elemental and Chemical Contrast

When an X-ray photon is absorbed, a core electron is excited into a state in an outer
shell as illustrated in Fig. 1a. Thereby, the energy splitting between the different

Fig. 1 (a) Schematic of the X-ray photon absorption process. (b) X-ray absorption energies of the
K, L3, and M5 edges depending on the element number. Data taken from [7]



X-Ray Magnetic Circular Dichroism and X-Ray Microscopy 233

Fig. 2 (a) Schematic of the
x-ray absorption process
when the electron excitation
involves final states that are
split by the chemical
environment of the atom. (b)
illustration of the resulting
absorption edge with multiple
peaks corresponding to the
split final state as indicated by
the gray arrows

electron shells is effectively probed. The transition probability for the electron
depends on the number of electrons in the initial state and the number of available
final states, i.e., a core electron is used to probe unoccupied density of states. Hence,
the X-ray absorption coefficient μ will be large if the photon energy matches the
energy difference between the initial and final state and latter has a large unoccupied
density of states. Therefore, X-ray absorption is very element-specific, and, thus,
the energy dependence of μ can be used to determine the elemental composition of
a sample by X-ray absorption spectroscopy (XAS). Because the X-ray absorption
drastically increases when the photon energy becomes large enough to excite a core
electron, these transitions are also called absorption edges. The energy of the K, L3,
and M5 edges depending on the element number is shown in Fig. 1b [7], showing
that the elemental composition can easily be identified by the characteristic position
of these absorption edges. The nomenclature of the absorption edges goes back
traditionally to the shell or principal quantum number of the excited core electron,
e.g., K corresponds to the excitation of a 1 s electron, while the subscripted number
indicates the orbital quantum number, e.g., L2 and L3 correspond to the excitation of
a 2p electron. Most magnetic elements exhibit an absorption edge in the soft X-ray
range up to a few keV [8].

The energy of the transition from core state to final state not only depends
on the element but is also sensitive to the oxidation state and the chemical
surrounding of the atom. This leads to small, but noticeable, changes to the photon
absorption energies and the resulting X-ray absorption spectrum as illustrated in
Fig. 2. Thus, the fine structure of the absorption edge, the so-called near-edge X-
ray absorption fine structure (NEXAFS), yields extensive information about the
sample’s microscopic structure, e.g., the oxidation state, valence distribution, and
coordination sphere of the atoms [4, 9].

In the context of magnetic materials, the NEXAFS signature is widely used
to investigate magnetic oxides [10–13], but is not limited to these. Probably, the
most prominent example is FexOy, as shown as an example in Fig. 3 [10]. The
characteristic splitting of approximately 2 eV at the Fe L3 edge between Fe2+ and
Fe3+ species, indicated by gray arrows in Fig. 3, and the relative intensities of the
peaks can be used to distinguish various iron oxides, ranging from FeO over Fe3O4
and γ-Fe2O3 to α-Fe2O3.



234 J. Gräfe

Fig. 3 Fe L3 and L2 edges of
an FexOy compound
measured at different
temperatures. Gray arrows
indicated the X-ray
absorption energies for the
Fe2+ and Fe3+ species in the
compound at the L3 and L2
edges. Adapted from [10]

Magnetic Contrast

While NEXAFS spectroscopy already yields a wealth of information, X-ray absorp-
tion spectroscopy is the most powerful for magnetic materials characterization
when employing magnetic contrast effects. Both X-ray magnetic circular dichroism
(XMCD) and X-ray linear circular dichroism (XMLD) rely on polarized X-ray
photons to achieve a difference in the X-ray absorption coefficient μ depending
on the microscopic magnetic moment. The XMCD effect uses circular polarized
X-ray photons and is linearly proportional to the magnetization, i.e., sensitive
to uncompensated magnetic moments [3, 5, 14]. On the other hand, the XMLD
effect uses linear polarized X-ray photons and is quadratically proportional to
the magnetization, i.e., sensitive to compensated magnetic moments [15]. While
XMLD measurements are an excellent tool to investigate anti-ferromagnets, XMCD
measurements are more widespread as the effect is larger and the spectra are easier
to interpret [3, 5, 14, 15].

XMCD was first theoretically predicted by Erskine and Stern [16] and experi-
mentally demonstrated by Schütz et al. [2] in 1987. First experiments were based on
hard X-rays, because of experimental limitations at the time, but since have moved
to the soft X-ray regime. As discussed before, X-ray absorption transitions probe the
unoccupied density of states. Thus, 2p ➔ 3d and 3d ➔ 4f transitions, i.e., L2,3 and
M4,5 edges, are most interesting as the electronic occupation of the 3d and 4f states
determines the magnetism of the transition and rare-earth elements, respectively.
More precisely, the spin-dependent occupation of the 3d and 4f states determines
their magnetism. Therefore, XMCD needs to provide X-ray photon absorption that
results in spin-dependent 2p ➔ 3d and 3d ➔ 4f transitions, which is schematically
illustrated in Fig. 4a.

To this end, circular polarized X-ray photons are used as they can transfer their
angular momentum to preferentially excite spin-up or spin-down core electrons,
depending on their helicity (indicated in green in Fig. 4a). The photon’s angular
momentum does not directly couple to the electron’s spin but is mediated by spin
orbit coupling [4, 14]. The electron’s spin is conserved during the transition from
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Fig. 4 Simplified schematic of the (a) spin- and polarization-dependent X-ray absorption transi-
tion and the (b) resulting X-ray absorption spectrum at the L2,3 edge. (c) XMCD spectrum that
results as a difference between the two XA spectra for positive and negative helicity. Gray arrows
indicate the position of the L2 and L3 edge

initial to final state as a spin flip is forbidden [4]. Thus, the transition probability,
i.e., the absorption coefficient μ, depends on the number of unoccupied states with
appropriate spin (indicated in red/blue in Fig. 4a). Therefore, the peak intensity in
the XAS will be different for the two photon helicities due to the different number
of unoccupied spin-up and spin-down states, in turn, that allows deduction of the
spin-dependent number of electrons [17], as illustrated in Fig. 4b. The difference in
absorption �μXMCD is proportional to the scalar product of the photon polarization
P and the magnetization M:

�μXMCD ∝ −→
P · −→M

where the effect can amount to up to 50% [1]. The resulting difference spectrum is
called XMCD spectrum and is illustrated in Fig. 4c.

An XMCD spectrum yields a lot of additional insight into the microscopic
structure of a magnetic material as illustrated in Fig. 5 [10]. While the XAS (cf.
Fig. 3) only exhibited two features at the L3 edge, the XMCD spectrum shows
three. As the XMCD is not only sensitive to the element and chemical surrounding
of the atom but also to the orientation of its magnetic moment, it distinguishes
between magnetic ions on different sublattices with different spin orientation. In
the example shown in Figs. 3 and 5, these are the typical sublattices of magnetic
materials featuring a spinel structure [10, 18]. Thus, the XMCD spectrum allows
to distinguish not only Fe2+ and Fe3+ species but also whether these are located
on a lattice site with parallel or antiparallel magnetic coupling to its neighboring
magnetic atoms.

It is noteworthy that the peaks in the XMCD spectrum sketched in Fig. 4c exhibit
opposing sign at the L3 and L2 edge. This is due to the spin splitting of the 2p3/2
and 2p1/2 states that gives rise to the energy splitting between the L3 and L2 edge
and that, in turn, results in a different sign of the spin orbit coupling for the two
states. Thus, the photon helicity that leads to a preferential excitation of spin-up
core electrons at the L3 edge will lead to a preferential excitation of spin-down
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Fig. 5 XMCD spectrum at
the Fe L3 and L2 edges of the
FexOy compound shown in
Fig. 3 measured at different
temperatures. Gray arrows
indicated the position of the
different Fe species,
depending on their oxidation
state and the parallel (down)
or antiparallel (up) alignment
with the magnetic majority
moment. (Adapted from [1,
10])

core electrons at the L2 edge while still probing the same density of 3d states [14].
Therefore, the XMCD effect is not limited to determining the spin moment, but
it is also uniquely capable of determining the orbital moment. To achieve this,
it is necessary to also probe the orbital moment of the unoccupied final states,
i.e., to allow deduction of the orbital moment of the occupied states. Due to the
dipole selection rules, only certain transitions are allowed. Consequently, the orbital
moment can be calculated by comparing the photon absorption at the L3 and L2
edge.

Sum Rule Analysis

As hinted before, XMCD measurements not only result in a qualitative insight
into the presence and orientation of magnetic components in a sample but can
also be used for quantitative evaluation of the magnetic moment. First theoretically
derived by Thole et al. [19], extended by Carra et al. [17, 20], and experimentally
demonstrated by Chen et al. [21], the so-called sum rules allow the calculation of
magnetic spin and orbital moment. While the theoretical derivation is complicated
and was long disputed in literature, the principle analysis is quite simple and
depends on integrating the area under the XAS and XMCD spectra [3].

The necessary integrals for the sum rule analysis of transition metals are
illustrated in Fig. 6. First, the non-magnetic XAS needs to be analyzed. This can be
measured independently either using linear polarized X-ray photons or by averaging
the spectra for both helicities. The integral area underneath the absorption spectrum
(cf. Fig. 6a) is used for the so-called charge rule C:

C = I

N
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Fig. 6 Schematic illustration of the XMCD sum rule analysis. The areas in (a) show the integral
I for the determination of the charge and (b) shows the areas A and B for the determination of the
orbital and spin magnetic moments

with the absorption intensity I and the number of holes N, i.e., unoccupied states,
that is usually taken from theory. Simplified, C corresponds to the total number of
core electrons that can be excited. The so-called NEXAFS step function below the
resonant absorption signal is subtracted before the area I is calculated. This step
results from core electrons that are directly emitted as photo electrons and do not
exhibit a resonant transition into a bound final state. Hence, they do not probe the
unoccupied density of states. The step function is usually approximated with an
error function:

Istep(E) = H ·
[

1

2
+ 1

2
· erf

(
E − P

W

)]

where Istep is the step intensity; H is the step height; E is the photon energy; P is
the photo emission energy, i.e., the position of the step; and W is a parameter for the
line width [14]. When only the integral for the sum rules is of interest, the choice of
the parameter W is not relevant.

Subsequently, the orbital and spin magnetic moments can be calculated from the
integral area underneath the XMCD spectrum (cf. Fig. 6b). The spin rule for the
spin moment ms reads:

ms

μB

= −A − 2·B
C

with the Bohr magneton μB, and the orbital rule for the orbital moment mo reads:

mo

μB

= −2

3

A + B

C
.
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Overall, the sum rule analysis routinely achieves measurement uncertainties
below 10%. However, several issues, like self-absorption, unequal polarization, and
improper background determination, can lead to inaccuracies. The reader is referred
to more thorough discussions of sum rule analysis elsewhere [3, 5, 13, 14, 22, 23].

3 X-Ray Microscopy

In the previous part, integral measurements of X-ray contrast and microscopic
information derived from spectral properties were discussed. However, all X-
ray absorption effects can also be used for X-ray microscopy, i.e., imaging with
element, chemical, and magnetic contrast. In addition to these unique contrasts,
X-ray microscope also achieves superior resolution in comparison to conventional
microscopy, due to the much shorter wavelength in the range of a few nm. In the
following, a few major techniques for imaging with X-rays are discussed.

Photoemission Electron Microscopy

Photoemission electron microscopy (PEEM) was one of the first X-ray micro-
scopies, pioneered in the 1930s and refined in the 1960s and 1970s by Engel
and others [24]. PEEM benefited from the developments of electron optics for
transmission electron microscopy (TEM) and is the only X-ray microscopy that does
not rely on X-ray optics but purely on electron optics. This is a major advantage as
the development of powerful X-ray optics has long been a challenge, due to the
small change in refractive index that can be achieved with conventional lenses [6,
24–26].

A sketch of the working principle of PEEM is shown in Fig. 7. The unfocused X-
ray beam is directed onto the sample where X-ray absorption processes result in the
emission of photoelectrons. The emitted photoelectrons are focused onto a screen
or 2D image detector using electron optics where they result in a microscopic image
of the sample. The magnification is solely achieved by the electron optics. The
main advantages of PEEM are the relatively simple setup, the lack of X-ray optics,
and the direct imaging. A disadvantage is that the X-ray beam always illuminates
a large area of the sample; thus, only a small fraction of the photons contributes
to the image at high magnifications. An additional disadvantage for investigating
magnetic materials with PEEM is that electrons, influenced by both the applied and
the sample’s magnetic stray field, are used for imaging, leading to image distortions.
Furthermore, the use of electrons for imaging limits the magnetic fields that can be
applied to the sample without interfering with the electron optics. Due to the PEEM
relying on the emission of photoelectrons, it is in intrinsically surface-sensitive
technique.
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Fig. 7 Schematic of a photo electron emission microscope (PEEM). The unfocused X-ray beam
is directed onto the sample where X-ray absorption processes result in the emission of photo
electrons. The emitted photo electrons are focused onto a 2D image detector using electron optics
where they result in a microscopic image of the sample. The magnification is solely achieved by
the electron optics

Transmission X-Ray Microscopy

With the advent of micro- and nanostructuring techniques, X-ray optics became
possible by moving to Fresnel zone plates (FZP), i.e., lenses that rely on diffraction
instead of refraction. Unfortunately, the resolution r of such zone plates depends on
the width of the outermost zone w with:

r = 1.22

w
.

Thus, fabricating high-quality and high-resolution X-ray lenses is still a major
endeavor [25–28]. Regardless, Schmahl et al. [27] demonstrated a full-field trans-
mission X-ray microscopy (TXM) using FZP-type X-ray lenses in 1974. The
working principle of a TXM is similar to a conventional microscope and is sketched
in Fig. 8. A condenser lens is used to illuminate the sample with the incoming
X-ray beam, and an objective FZP lens projects the photons onto a screen or 2D
image detector. While the resolution of the objective FZP determines the image
resolution, the requirements for the condenser FZP are less stringent, and a capillary
condenser can be used instead [6, 9]. Apart from the focusing FZP, the experimental
setup of TXM is simple, and it directly generates an image. Unlike a PEEM,
TXM is a photon-in, photon-out technique and is insensitive to magnetic fields
generated by the sample or the sample environment. Similar to PEEM, the photon
efficiency of TXM is reduced at higher magnifications. Hence, TXM is best suited
for investigations requiring a larger field of view at moderate magnifications, like
imaging of the evolution of domain patterns at the mesoscale. In contrast to PEEM,
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Fig. 8 Schematic of a transmission X-ray microscope (TXM). Analogous to a conventional
microscope, the sample is illuminated with a condenser lens, and subsequently the beam is
projected onto a screen using an objective lens. Due to the small refractive index of X-rays,
diffractive Fresnel zone plates (FZP) need to be used as objective lenses

Fig. 9 Schematic of a scanning X-ray microscope (SXM). A Fresnel zone plate (FZP) is used to
focus the X-ray beam to the resolution limiting illumination spot size. An order separating aperture
(OSA, not shown) is used to eliminate higher diffraction orders of the FZP. The sample is scanned
through the X-ray spot and arbitrary detectors can be used to measure the X-ray absorption contrast.
The image is subsequently generated in a computer

the TXM is not surface-sensitive; however, it requires samples that are X-ray-
transparent, i.e., thinner than 1 μm due to the small attenuation length of soft X-rays.

Scanning X-Ray Microscopy

Another FZP lens-based technique is scanning X-ray microscopy (SXM), whose
working principle is sketched in Fig. 9. It was pioneered by Horrowitz and Howell
in 1972 [29]. Similar to the TXM, an FZP is used to focus the X-ray beam to the
smallest possible spot. An order separating aperture (OSA) is used to eliminate
higher diffraction orders of the FZP. For an SXM, the resulting illumination spot
determines the imaging resolution. Like in other scanning microscopy techniques,
the sample is scanned through the X-ray spot using piezo-controlled nanopositioners
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Fig. 10 SXM images with simultaneous use of (a) a transmission and (b) a total electron yield
(TEY) detector of agglomerated FexOy nanoparticles. (Reproduced from [30])

[6, 9]. As the image is generated by scanning the sample, an SXM does not
rely on spatially resolving detectors, and, indeed, multiple detectors can be used
simultaneously, e.g., an avalanche photodiode (APD) to detect transmitted photons
and a sensitive ammeter to determine the drain current of electrons ejected from
the surface, i.e., the total electron yield (TEY) [30]. As the pixels of the image
are measured individually, the two-dimensional image of the sample needs to be
generated by a computer.

At large magnifications, SXM has an advantage over the previously discussed
methods, because all photons are used in the smallest focal spot. However, for
the same reasons, SXMs have a disadvantage when scanning a large field of view
at low magnification as the need to make up the image from individual pixels of
the focal spot size makes the measurements slow. Like TXM, SXM benefits from
being a photon-in, photon-out technique that is insensitive to magnetic fields. In
combination with the freedom of using arbitrary detectors, this makes SXM the most
versatile platform for complicated sample environments, e.g., to apply RF fields
or currents [31–34] or even gasses and liquids to the sample during measurement
[35, 36]. However, this makes SXM an experimentally more complex technique.
Depending on the detector that is used, SXM can either be surface- or bulk-sensitive,
or both at the same time.

An example of such a measurement, making use of two detectors simultaneously,
is shown in Fig. 10 [30]. Agglomerated FexOy particles are imaged using both
the transmission and TEY mode of a SXM. While the former yields only little
contrast as the agglomerated particles are optically dense, the surface-sensitive TEY
image results in an almost three-dimensional representation that resembles scanning
electron micrographs.
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Fig. 11 Schematic of a scanning X-ray microscope (SXM) with 2D image detector for ptychog-
raphy. The X-ray beam is focused onto the sample with a Fresnel zone plate (FZP) and the sample
is scanned across the beam. For each position, the full diffraction pattern behind the sample is
recorded, and the real space image is recovered by a computer algorithm after the measurement

Ptychography

Due to the limitations in FZP fabrication, the resolution achieved by an SXM is not
wavelength-limited and is in the range of 20 nm [37]. One way to overcome this
limitation is through coherent diffractive imaging (CDI) techniques that not only
use the photon absorption but also evaluate the photon scattering in the sample [38,
39]. Using CDI resolution enhancement techniques, resolutions below 10 nm have
been achieved [9, 37, 38, 40]. Ptychography is such a CDI technique that extends an
SXM by a 2D detector behind the sample to record the photon scattering patterns
as illustrated in Fig. 11. For ptychography, the diffraction pattern behind the sample
is captured. Each subsequent illumination has an overlap with the previous, so that
some of the diffraction patterns stay the same and some change. In combination
with the known displacement of the sample during the measurement, the amplitude
and phase of the sample’s transmission and the illumination probe function can be
recovered using an advanced computer algorithm [37–43]. In this image scheme,
the resolution is not limited by the resolution of the FZP but by the maximum
diffraction angle that is captured with the 2D detector behind the sample. Therefore,
the requirements regarding the resolution of the FZP are not as stringent as for an
SXM. Indeed, a larger illumination spot allows for faster imaging, because a smaller
number of individual diffraction patterns need to be captured for a larger field of
view. However, the lesser requirements for the FZP lens come at the cost of complex
algorithmic data processing that needs a lot of computing power. Furthermore, all
CDI techniques are photon hungry, i.e., a lot of coherent photons is necessary to get
a sufficient signal-to-noise ratio of the diffraction patterns.
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4 Summary

Soft X-ray absorption techniques are a very powerful tool for investigating magnetic
materials. Although these techniques rely on synchrotron radiation, they provide a
unique insight into the microscopic properties of the materials. X-ray absorption
not only is element-specific but also depends on the oxidation, coordination, and
magnetization state of the probed atoms. This can be leveraged for spectroscopic
measurements that yield information about the collective properties and their
distribution, but it can also be used as contrast for X-ray microscopic imaging.

X-ray imaging can be achieved with various approaches categorized as photon-
in/electron-out or photon-in/photon-out techniques. While the former are experi-
mentally easier, the latter are insensitive to magnetic fields and more suited for
imaging of magnetic samples. Especially, scanning X-ray microscopy provides a
very versatile platform for advanced experiments with challenging sample environ-
ments. Finally, the resolution of X-ray microscopies can be improved with coherent
diffractive imaging techniques, like ptychography, which enhance the image by
using diffraction as well as absorption information.

In conclusion, X-rays provide a unique access to nanoscopic sample properties
and provide crucial information for pushing magnetic material science and engi-
neering forward.
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Transmission, Scanning Transmission,
and Scanning Electron Microscopy

Akira Sugawara

Abstract The properties of magnetic materials are closely related to their
microstructure and micromagnetic structures like magnetic domains and spin
textures. Electron microscopy is a powerful technique to characterize such features
at nanometer resolution. This chapter describes structural characterization and
magnetic imaging techniques using (scanning) transmission electron microscopy,
scanning electron microscopy, and related techniques.

Keywords Microstructures · Structural analysis · Electron diffraction ·
Transmission electron microscopy · Scanning electron microscopy · Scanning
transmission electron microscopy · Lorentz microscopy · Electron holography ·
Differential phase contrast imaging · Magnetic domain imaging · Magnetic
domain wall · Micromagnetics · Magnetization reversal · Electron phase
microscopy

1 Introduction

Overview

Electron microscopes are tools to observe objects at high resolution by using elec-
trons as the primary beam. Electron microscopes magnify images of specimens by
converging and diverging electron beams with electron lenses that consist of beam-
bending electromagnets. Electrons have wave-particle duality. The wavelength of
an electron wave depends on the accelerating voltage. For example, the wavelength
is 2.51 pm when the voltage is 200 kV. Such short wavelengths enable us to observe
the structure of matter at the atomic scale. This chapter describes three types of
electron microscopes and associated observation methods using them: transmission
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electron microscopy (TEM), scanning transmission electron microscopy (STEM),
and scanning electron microscopy (SEM).

The main use of such electron microscopy is structural analysis. To improve
the performance of magnetic materials, it is necessary to control microstructure
characteristics such as the phase, interface structure, shape, size, and crystallo-
graphic orientation. The structural information obtained by electron microscopy is
feedback for further development. Another important use is magnetic microscopy.
Magnetic domain structures and magnetic textures can be determined by analyzing
the interaction between the electron beam and magnetic induction, or spin states
within a material.

Electron-Solid Interaction

Elastic Scattering

Electron propagation in an electromagnetic field is described by the following
Schrodinger equation, where A is the vector potential and ∅ is the electric potential:

H = 1

2m
(p − eA)2 + e∅.

For transmission electron diffraction and microscopy, elastic forward scattering
of fast electrons in the electric potential within a solid plays a central role. Elastic
scattering of an electron by a single atom results from the attractive Coulomb
interaction between the atomic nucleus and the electron. The scattering amplitude
f (k) is a function of the scattering vector k, which is called the atomic scattering
factor. The electron propagation within a crystalline specimen is a superposition of
such scattering waves due to individual atoms arranged periodically. The resultant
wave is represented by the structure factorFg, written in the following form:

Fg =
∑

fi exp (−2π i g · ri) ,

where g is a reciprocal lattice vector, and fi and ri are the atomic scattering factor
and coordinate vector, respectively, of the ith atom in a unit cell. Bragg diffraction
occurs when the scattering vector coincides with g, causing |Fg| to become nonzero.
The structure factor is used in the same form in X-ray and neutron crystallography to
determine crystal structure precisely on the basis of kinematical diffraction theory.
Electron diffraction is not suitable, however, for that purpose, because the intensity
of electron diffraction deviates from |Fg|2, which varies in a complex manner
depending on the specimen thickness and the angular deviation of the incident beam
from the exact zone (high-symmetry) axis due to multiple scattering [1].
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For magnetic analysis, electron phase shift is the central problem. Electrons
subject to magnetic induction B are deflected by the Lorentz force, which results
in a tilted wavefront, even though the amplitude does not change. If the gradient of
the electron phase φ is determined by electron holography or transport-of-intensity
equation (TIE) analysis, the magnetization state can be determined by [2, 3]:

∂φ

∂r
= e

h̄

∫
B (r, z) dz.

Phase shift also occurs because of the electrostatic potential in a solid. As long
as the measurement is not performed at atomic resolution, the mean inner potential
V0 (the zero-order Fourier component of the crystal potential) determines the phase
shift:

φ = 2π

λE

E + E0

E + 2 E0

∫
V0 (r, z) dz,

where λ is the electron wavelength, and E and E0 are the kinetic and rest mass
energies, respectively [3]. The magnetic and electrostatic contributions can be
separated experimentally in an appropriate manner, as described later. Note that
electron phase microscopy is capable of determining the magnetic induction (B-
field) but not the magnetization (M-field). The influence of a demagnetization field
should thus be considered.

Inelastic Scattering

Inelastic scattering is an event in which an electron loses part of its kinetic energy
by, for example, inner-shell excitation, secondary electron emission, intraband
transitions, or plasmon and phonon excitation. Inelastic scattering disrupts coherent
image formation, but it provides useful information to analyze the material structure.

Thermal diffuse scattering by phonons causes high-angle scattering. Such elec-
trons are used for high-angle annular dark-field (HAADF) imaging by STEM.
Inelastic electron scattering associated with excitation of inner-shell electrons in
a specimen is used to determine the chemical species and composition. Char-
acteristic X-ray radiation occurs when an outer-shell electron fills a vacancy
generated by inner-shell excitation of atoms by high-energy electrons. The energy
(wavelength) of the photon is the difference between the electron energy levels
that is specific for elements. The composition of the local area irradiated by
electrons is determined by measuring the intensity profile as a function of the X-ray
energy (wavelength). Electron energy-dispersive X-ray spectroscopy (EDS or EDX)
using a compact solid-state detector is combined with TEM, STEM, and SEM.
Wavelength-dispersive X-ray spectroscopy (WDS or WDX) using analyzer crystals
is generally combined with SEM because of their large size of the spectrometer.
Finally, electron energy-loss spectroscopy (EELS) uses a spectrometer capable of
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measuring the energy distribution of transmitted electrons. Edge energies in the
range of 100–2500 eV are used to identify atoms. Furthermore, the energy-loss
near-edge structure provides valuable information about the electronic states and
local configurations of atoms.

Secondary and Auger Electron Emission

Electron emission from a solid surface occurs when it is irradiated by primary
electrons. Secondary electrons are then emitted from the valence states of the
specimen’s constituent elements. Secondary electron microscopy is used as a
surface-sensitive imaging method because of the short escape depth of secondary
electrons. Auger electron emission is related to hole generation by excitation and
relaxation of a core electron by an intra-atom transition of two outer-shell electrons.
Auger electron spectroscopy is used for surface composition analysis because of the
element-specific kinetic energy.

Diffraction and Imaging through Multiple Electron Lenses

An electron lens is a beam-bending electromagnet composed of a coil and a pair
of pole pieces with a hole. Microscope images can thus be enlarged (or shrunk)
by diverging (or converging) the electron beam. The focal length varies with lens
current. For STEM and SEM, the lens is also used to form a small spot on the
specimen surface by focusing the beam.

Fig. 1 Ray diagrams for an electron beam passing through an electron lens: (a) diffraction and
image formation through a single lens, (b) transfer of image through a two-lens system, and (c)
transfer of electron diffraction pattern through a two-lens system
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The objective lens forms a diffraction pattern at the back focal plane and an
image at the image plane, as shown in Fig. 1(a). Because of the electron diffraction
in a crystalline specimen, the electron wave exiting from the specimen splits into
several beams traveling in different directions. When the electron wave passes
through a perfect objective lens (with no aberration), beams that travel in the same
direction but exit from different positions on the specimen converge at a point on the
diffraction plane, which is the focal length away from the lens. On the other hand,
beams exiting from the same point on the specimen but propagating in different
directions converge at a point on the image plane. The following lens formula
determines the relationship among the object distance a, the image distance b, and
the lens’s focal length f :

1

a
+ 1

b
= 1

f
.

The lens’s magnification M is then defined as:

M = b/a.

By stacking such electromagnetic lenses and tuning the individual currents, we
can obtain a broad range of magnification (e.g., 200–1,500,000 ×). We can also
conveniently switch between the TEM imaging mode and electron diffraction modes
through a two-lens system, as shown in Fig. 1(b, c), respectively. The distance
between the objective plane, on which the specimen is located, and the objective
lens is a1. The distance between the objective lens and the projection lens is L.
The diffraction pattern and the image are formed at the back focal plane and first
image plane, respectively. The focal length of the objective lens, f1, is varied by
tuning objective lens current. Accordingly, the distance between the objective lens
and the first image plane, b1, is varied so as to satisfy 1

a1
+ 1

b1
= 1

f1
. The transfer

through the projection lens is described in similar manner. It is convenient to fix
the distance between projection lens and the second image plane, b2, when the
downstream lenses are set to transfer the image on the first image plane to the
detector. The objective plane of the projection lens can be controlled by changing
the focal length of the projection lens f2 according to the relation 1

a2
+ 1

b2
= 1

f2
,

where a2 is the distance between the objective lens and its objective plane. In
order to form a specimen image on the second image plane, the image on the
first image plane needs to be transferred. That is the distance between the first
image plane and the projection lens a2 = L − b1 (Fig. 1(b)). On the other hand,
a diffraction pattern is transferred from the back focal plane to the second image
plane when the projection lens’s focal length f2 to satisfy a2 = L − f1 (Fig. 1(c)).
Such combinations of lens currents are preset by manufacturers so that users can
switch modes conveniently. Such modes cannot be used, however, for magnetic
microscopy, because the specimen magnetization may saturate in such a large
magnetic field as that of an objective lens excited with a large current. It is thus
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important to understand the multistage lens system to implement magnetic imaging
modes on individual apparatuses.

Real electron lenses have aberrations that cause image and spot blurring. The
electron wave traveling through the lens’s outer zone converges at a point closer to
the lens because of spherical aberration. Another important aberration is chromatic
aberration, which causes waves with different wavelengths to converge at different
points. Aberration also causes electron phase shifts as a function of the electron
wave number. As a result, the electron image obtained as a superposition of scattered
waves experiencing different phase shifts is different from that of the electron wave
exiting a specimen [1].

Reduction of such aberrations improves the resolution and image distortion of
electron microscopes. In light optics, spherical aberration can be suppressed to
nearly zero by combining convergent and divergent lenses. An electromagnetic lens
with rotational symmetry, however, acts only as a converging lens, and improvement
of the aberration coefficient was a long-standing issue. The technical breakthrough
was the development of a spherical aberration (Cs) corrector composed of multipole
lenses [4, 5]. A Cs corrector produces a negative aberration coefficient and
consequently acts as a divergent lens. As a result, the overall Cs coefficient of the
combination of an objective lens and an aberration corrector can be reduced nearly
to zero.

2 Transmission Electron Microscopy and Scanning
Transmission Electron Microscopy

Instrumentation

Figure 2 shows a schematic diagram of a transmission electron microscope (TEM).
Scanning transmission electron microscopy (STEM) can also be functionalized on
a TEM by combining appropriate attachments, although dedicated STEM machines
are also available. The electron path is evacuated to ensure a long travel distance
for the electrons. A high-energy beam is generated in an electron gun consisting
of an electron source and an accelerating tube. The illumination condition of the
electron beam is tuned through an illumination system on the upstream side of the
specimen. Electron scattering occurs when the beam passes through the specimen.
The scattered wave is then transferred through objective and projection lenses to the
detector.

An electron source with high brightness, a small probe size, and a small energy
spread is suitable to perform high-resolution imaging, electron phase imaging, and
elemental analysis in the nanometer region. A field emission (FE) electron source
satisfies this requirement. In this source electrons are extracted by the tunneling
effect when a high electric field is applied to the source’s tip. A cold field emission
(CFE) source produces electrons from a sharp W needle at room temperature.
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Fig. 2 Schematic diagram of
a transmission electron
microscope (TEM): (1)
electron source, (2)
accelerating tube, (3)
condenser lenses, (4)
condenser aperture, (5)
objective lens, (6) specimen
holder, (7) goniometer, (8)
objective aperture, (9)
selected-area aperture, (10)
intermediate and projection
lenses, (11) image detector

A Schottky-type source (also called a thermal FE source) produces electrons by
heating emitter materials such as ZnO in a high electric field. Thermionic emitters
like a hot W filament and LaB6 are also used as inexpensive, stable sources. The
electrons emitted from the source gain kinetic energy in the accelerating tube. An
illumination system, including condenser lenses, the upper half of an objective lens,
beam deflectors, and an aperture, controls the area, size, and incident and spread
angles of the electron beam with respect to the specimen. A specimen is illuminated
by a parallel broad beam in TEM, whereas it is illuminated by a focused fine beam
spot in STEM, combined with a beam scan deflector unit and an optional probe-
forming Cs corrector.

The specimen is usually located in the middle of the objective lens’s pole-
piece gap to obtain high spatial resolution and large magnification. For magnetic
observation, however, the specimen has to be at a field-free position as described
later. An imaging and projection system consists of the objective lens (lower half),
intermediate and projection lenses, objective and selected-area apertures, and an
optional image-forming Cs corrector. In the case of TEM, a real image of the
specimen is formed at the first image plane and transferred to an image detector
through multiple lenses, as described in the previous section. A typical image
detector is a digital slow-scan charge-coupled device (CCD) or complementary
metal-oxide-semiconductor (CMOS) camera specialized for TEM image acquisi-
tion, which replaces photographic plates. In the case of STEM, the beam focused
on the specimen diverges on the downstream side and forms a disc-shaped intensity
distribution at the STEM detector. The STEM signal source is mainly the electron
current arriving at the annular detector electrodes as a function of the beam position.
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Images are displayed by mapping the electron intensity accordingly. The electron
energy loss and X-ray intensity are also used as sources for elemental mapping.

Specimen

The specimen has to be thin enough to transmit electrons for TEM and STEM. Such
specimens are prepared by mechanical polishing followed by electrochemical and
ion-beam etching. Focused ion beam (FIB) etching is used when a specific region
of a sample needs to be thinned, such as a nanopatterned device on a Si wafer or
the boundaries between grains of interest in a permanent magnet. After setting the
specimen on a specimen holder, the holder is inserted into the microscope column.
The specimen can be moved and tilted with respect to the beam using a goniometer.

The domain structure and magnetization reversal may be modified in thin
specimens. One reason for this is the change in shape. For example, a cross-section
specimen prepared from a thin film takes a wire shape. This changes the magnetiza-
tion configuration significantly as a result of changes in the demagnetization factor.
Another reason is defects induced during the thinning process and in an oxidation
layer. For example, thinning may degrade the magnetocrystalline anisotropy of hard
magnetic specimens.

Structural Analysis

Electron Diffraction

The transmission electron diffraction (TED) pattern formed at the back focal plane
corresponds to the Fourier transform of the specimen’s exit wave field. When the
incident beam is tuned parallel to a zone axis of the specimen, a net electron
diffraction pattern (in which the spots are arranged two-dimensionally) is obtained.
The material phase is identified by comparing the diffraction spot arrangement and
reciprocal lattice of the candidate materials. The most remarkable feature of TED
is crystal structure determination in a local area. This is performed by placing a
selective-area aperture at the image plane or illuminating the local area with a
focused beam. A typical example is phase identification of a specific grain in a
polycrystalline specimen. On the other hand, a ring diffraction pattern is obtained
from a randomly oriented polycrystalline specimen, such as one prepared by vapor
growth, while a halo pattern is obtained from an amorphous specimen.

Note that Bragg diffraction also occurs for inelastically scattered electrons, which
are regarded as a spherical wave propagating from a point emitter (atom). A net
intensity distribution, called a Kikuchi pattern [6], results from the diffraction. This
phenomenon is observed in both TED and electron backscattering in SEM, and it is
used to analyze the crystallographic orientations of specimens.
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TEM Imaging

TEM imaging is performed in several modes. A bright-field image is obtained
when an objective aperture is placed at the back focal plane to pass the direct
beam only. This mode is conveniently used to observe microstructures in low and
medium magnification, in which diffraction contrast results from the grain structure,
thickness variation, local crystal bending, and absorption contrast associated with
inelastic scattering. A dark-field image is obtained when the aperture is placed to
pass a specific diffraction spot(s). Areas generating the diffraction spot(s) show
bright contrast in the image. This mode is used to determine the crystallographic
features of structural defects such as dislocations and planar defects. The resolution
of bright- and dark-field images is suppressed to be low, because the small aperture
in each case filters off high-spatial frequency information.

High-resolution TEM imaging is used to observe the local atomic structure at, for
example, interfaces and defects. Such atomic images result from the interference
of multiple diffraction beams excited by aligning the zone axis parallel to the
incident beam. Interpretation of the image contrast is not easy because of the
dynamical diffraction (multiple scattering) effect, as described earlier. Because of
the dynamical effect, the exit wave may not represent the specimen’s projected
potential. Another problem is transfer through an objective lens with spherical
aberration. The image blurring due to such spherical aberration determines the
image resolution. On the other hand, the image formed by a perfect lens under
an in-focus condition exhibits no contrast. The spherical aberration and defocus,
which give extra electron phase shift as a function of the scattering vector, are
therefore essential for contrast formation. The optimum defocus derived by Scherzer
is �fs = −1.15

√
Csλ [7]. Image simulation based on the multi-slice method is

commonly used to examine the influence of the specimen thickness, defocus, and
illumination condition [8].

In the case of a Cs-corrected TEM, an alternative measure to “resolution”
is the information limit, which is determined by the wave coherency, chromatic
aberration, illumination angle and stability of the lens current, and acceleration
voltage. Therefore, only TEMs equipped with FE sources can benefit from Cs
correctors [4].

Bright-Field/HAADF STEM Imaging

STEM imaging is classified into several methods according to the electron scattering
angle. When the beam is focused on the specimen, it diverges on the downstream
side and forms a disc-shaped intensity distribution at the detector plane. Bright-field
imaging is performed by collecting small-angle scattered electrons near the direct
beam. Dark-field imaging is performed in a similar manner when the incident beam
is tilted at twice the Bragg angle. These imaging modes relate to the similar TEM
imaging modes by reciprocal theory.
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Fig. 3 Crystal structure of Nd2Fe14B viewed along the [100] direction: (a) a structure model, (b)
a TED pattern, and (c) a high-resolution HAADF-STEM image (courtesy of T. Kanemura and M.
Shirai at Hitachi High-Tech)

Annular dark-field imaging is performed by using annular detectors to col-
lect electrons scattered in a specific angle range. High-angle annular dark-field
(HAADF) imaging uses electrons whose scattering angle is typically in the range
of 50–200 mrad. Because the intensity is dominated by thermal diffuse scattering,
which is enhanced as the atomic number (Z) increases, this is also called Z-contrast
imaging. Interpretation of the image contrast is much simpler than in the case of
TEM, because it is insensitive to the diffraction conditions, including the effect of
multiple scattering. On the other hand, annular bright-field (ABF) images formed by
the outer ring of the direct beam disc are used for high-resolution imaging of low-Z
elements. HAADF-STEM has become a major method for sub-angstrom structural
imaging since Cs-corrected STEM became widespread in the 2010s. Figure 3
shows a structure model, a TED pattern, and an atomic-resolution HAADF-STEM
structural image obtained by a Cs-corrected TEM-STEM for Nd2Fe14B, which is
the main phase in Nd-Fe-B magnets.

Compositional Mapping Using EDX/EELS

The magnetic properties of alloys and compounds can be modified by substituting
elements without changing the crystal symmetry. In such cases, it is helpful to
examine the local constituent elements and composition by energy-dispersive X-
ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS). Elemental
mapping is effectively performed with STEM. Atomic-column X-ray imaging is
achieved with a small- and large-current scanning probe formed using Cs corrector.
Energy-filtered imaging is also possible in TEM with in-column or post-column
energy filters.
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Magnetic (Scanning) Transmission Electron Microscopy

Basics

The magnetic induction (B-field) within and around a magnetized specimen causes
an electron phase gradient, as described previously, although it does not change
the wave amplitude. No magnetic contrast is observed at the in-focus image plane.
To observe magnetic structure, we have to measure the electron phase directly or
convert such phase information into a visible intensity distribution. This section
focuses on three representative methods: (1) Fresnel-mode and Foucault-mode
Lorentz imaging, (2) differential phase contrast (DPC) Lorentz imaging, and (3)
electron holography.

High-magnification structural imaging and diffraction are usually performed
when a specimen is placed in a high magnetic field (~ 2 T) in the objective lens’s
pole-piece gap and excited with a large current. Because the magnetic domain
structure is not usually preserved in such a high magnetic field, the specimen has to
be located in a (nearly) field-free position. There are several approaches to satisfy
such a condition:

1. Placing the specimen in the pole-piece gap, while setting the lens current to zero.
Another lens on the downstream side (like an intermediate lens or Lorentz mini-
lens) is used as an image-forming lens. The magnification and resolution are
generally poor, because the additional lens’s focal length is much larger than that
of the high-resolution objective lens.

2. Placing the specimen at a field-free position between the objective lens and con-
denser lenses by installing an extra specimen stage. The conventional objective
lens is then used as an image-forming lens with a long focal length. A spatial
resolution of 0.23 nm has been achieved by combining a 1.2-MV CFE source
and a Cs corrector [9].

3. Using a custom pole-piece design to shield or cancel out the magnetic field at
the specimen position [10]. By combining a custom pole-piece canceling the
field to zero at the specimen position and a Cs-corrected STEM, a 92-pm spatial
resolution has been achieved [11].

The resolution of phase microscopy is measured by determining a small phase
gradient between two positions. It is not determined simply by the spatial resolution
of image transfer through the lens but by the precision of phase determination
[12]. Because the phase difference is proportional to the specimen thickness,
thick specimens are frequently used to improve the phase sensitivity. The phase
microscopy, however, determines only the projected phase gradient over the beam
path in the specimen. The uniformity of the magnetization distribution along the
beam path should also be considered.

It is also possible to examine the changes in magnetization states, such as domain
wall (DW) motion or magnetization rotation, in response to a varying external field
and temperature. In situ magnetization observation is performed with a magnetizing
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Fig. 4 Electron-beam ray diagrams for Fresnel-mode Lorentz imaging in the (a) under-focus, (b)
in-focus, and (c) over-focus conditions and for (d) Foucault-mode Lorentz imaging

device. Some of the experimental examples described in this chapter were obtained
by such in situ experiments.

Lorentz Microscopy

Lorentz microscopy is a method to observe a magnetic configuration by converting
phase information to a visible intensity distribution. The Fresnel-mode Lorentz
method is performed under a defocus condition, whereas the Foucault mode is
based on dark-field imaging. Figure 4 shows ray diagrams of these methods on the
basis of a two-lens system, as in the previous section. For simplicity, stripe domains
separated by 180◦ DWs are assumed. Domains with opposite magnetization deflect
the beam in opposite directions. As in the case of Bragg diffraction, beams deflected
by the Lorentz force to the same direction converge to a spot at the back focal
plane. On further propagation, the deflected beams reach the first image plane of the
objective lens with a tilted wave front.

Figures 4(a–c) show the ray diagrams for the under-focus, in-focus, and over-
focus conditions, respectively. The focal length of the objective lens (f1) is varied,
while that of the projection lens (f2) is fixed to transfer the image formed at
z = a1 + b1 to the detector. When the first image plane is shifted downstream
(upstream) of z = a1 + b1 by the increase (decrease) in f1, the under-focus (over-
focus) image at z = a1 + b1 is transferred to the detector. In Fig. 4(a), the left DW
shows bright contrast due to beam convergence, while the right DW shows dark
contrast due to beam divergence. The in-focus image in Fig. 4(b) shows flat contrast.
In Fig. 4(c), the left DW shows dark contrast, while the right DW shows bright
contrast due to beam divergence. The converging and diverging contrast reverses
when the sign of the defocus reverses. This makes it easy to distinguish whether
contrast formation has a magnetic or diffractive origin by reversing the defocus
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sign. The width of a DW image is nearly proportional to the defocus, so it should
not be regarded as the DW width. Fresnel-mode imaging is thus suitable for DW
imaging. The imaging-mode can be performed on most commercial TEM’s under-
defocus condition in “low-magnification mode,” of which objective lens current
is nearly zero. Focusing is done by tuning the first projective (intermediate) lens.
Its magnification and resolution thus may not be sufficient enough because the
objective lens is deactivated. On the other hand, a Foucault-mode Lorentz image is
obtained from the waves propagating in a specific direction as a result of the Lorentz
deflection in domains. The direction is selected by using an aperture at the back
focal plane, as shown in Fig. 4(d). Because only beams passing through the aperture
contribute to the image intensity, Foucault-mode imaging is suitable for domain
imaging. This imaging mode usually requires customized lens configuration: a
special imaging lens (frequently called as “Lorentz lens” or “mini-lens”) is placed
in between a specimen and a selective-area aperture, or another aperture is placed
on the downstream side of the first projective (intermediate) lens.

Figures 5(a–c) show under-focus, in-focus, and over-focus Fresnel-mode Lorentz
images, respectively, of a nanopatterned permalloy rectangle. The DW contrast seen
in the bright and dark lines reverses when the defocus sign reverses, whereas no
contrast is observed in the in-focus image. Raw Fresnel-mode images are easily
interpreted when the DW contrast is clearly involved. Fresnel-mode imaging is
based on beam convergence/divergence due to propagation of a tilted wave front.
The phase can be retrieved by numerically solving a differential equation describing
the wave propagation, called the transfer of intensity equation(TIE):

2π

λ

∂I (r, z)

∂z
= − ∂

∂r

(
I (r, z)

∂

∂r
φ (r, z)

)
.

The problem is reduced to image calculation using only three images: the
over-focus, in-focus, and under-focus images [13]. Figure 5(d) shows a phase
map calculated from Figs. 5(a–c) by applying TIE analysis. The phase’s gradient
represents the magnetic induction. The local induction direction and magnitude
are expressed using a hue-saturation-value (brightness) color wheel, as shown in
Fig. 5(e). Figure 5(f) shows the flux distribution around a vortex center where 90◦
walls cross. Phase retrieval by TIE analysis does not require a microscope equipped
with an FE source. It is also suitable to obtain a large field of view. TIE analysis
is especially useful to observe the intuitive magnetization variation, as when the
magnetization direction changes gradually, in cases like a helical spin order [14]
and a skyrmion in FeGe [15].

Uniaxial (or nearly so) magnetic materials are suitable for Foucault-mode
Lorentz imaging because of the small angular distribution of the Lorentz deflection.
An anisotropic Nd-Fe-B magnet is one of the most popular permanent magnets
because of its large magnetization and coercivity. The dominant DW is of a 180◦
Bloch-wall-type, and the deviation of the easy axis is typically 15◦. Figure 6 shows
a series of Foucault-mode Lorentz images with a varying in-plane field for a sintered
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Fig. 5 Fresnel-mode Lorentz imaging and phase retrieval by TIE analysis for a nanopatterned
permalloy rectangle: (a) under-focus, (b) in-focus, and (c) over-focus Fresnel images; (d) an
electron phase image calculated by TIE analysis; (e) a B-field distribution color map; and (f) the
magnified configuration around a vortex (lower) and an antivortex (upper) [13]. [Reprinted figure
with permission from V.V. Volkov, Y. Zhu, and M. De Graef, Micron 33, 411 (2002). Copyright
2002 by Elsevier.]

Fig. 6 In situ observation of the magnetization reversal within a polycrystalline anisotropic Nd-
Fe-B magnet while varying the applied field [16]. The external field is (a) 0 T, (b) 0.18 T, (c) −0.12
T, (d) −0.18 T (e) −0.16 T, (f) −0.21 T, (g) −0.22 T and (h) −0.35 T. [Reprinted figure with
permission from A. Sugawara, T. Shimakura, H. Nishihara, T. Akashi, Y. Takahashi, N. Moriya,
M. Sugaya, Ultramicroscopy, 197, 105–111 (2019). Copyright 2019 by Elsevier.]
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anisotropic Nd-Fe-B magnet. A specially designed magnetizing holder was used to
apply an in-plane field up to μ0H = −0.5 T [16]. The as-prepared specimen took a
thermally demagnetized state. Stripe domains with 180◦ Bloch DWs are observed
parallel to the easy direction within individual grains. The DWs moved continuously
within the grains when the field was increased. Eventually, a saturation state was
established as the DWs were swept out of the specimens. The DW nucleation
followed by motion from the saturation phase occurred more discontinuously. The
first reversed domain formation occurred at μ0 H = −0.12 T, but it was localized
in a single grain. Significant propagation of reversal across several grains occurred
at μ0 H = −0.18 and −0.23 T. Most of the domain boundaries coincide with grain
boundaries. Few DWs are observed within the grains, except for head-on domains
aligned on the c-plane grain boundaries marked by the dotted ovals. The DWs
were therefore pinned at grain boundaries. Although coercivity of the bulk material
is typically greater than 1 T, that of the thin, electron-transparent specimen was
degraded by surface effects, including ion damage during specimen preparation.

Differential Phase Contrast Lorentz Imaging

Differential phase contrast (DPC) Lorentz imaging is performed using a STEM
apparatus. It uses a circular detector (or annular detectors) divided typically into four
circumferential segments. A magnetized specimen produces an asymmetric current
distribution flowing into the individual segments as a function of the magnitude and
direction of magnetic induction within the individual domains, as shown in Fig. 7
[17].

Figure 8 show a series of DPC Lorentz images of a permalloy ring with a
2.5-/3-μm inner/outer diameter as a function of the in-plane magnetic field. The
magnetic field (170 kA/m) was applied parallel to the electron beam by using the
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Fig. 7 Principle of DPC Lorentz imaging using a four-quadrant annular detector [17]. Electron
current distribution is (a) symmetric when the electron beam travels through vacuum and non-
magnetic specimens (where B=0), while it is (b) asymmetric when the beam travels through
ferromagnetic specimens (where B �=0). [Reprinted figure with permission from T. Uhlig and J.
Zweck, Phys. Rev. Lett. 93, 047203 (2004). Copyright 2004 by the American Physical Society.]
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Fig. 8 Variation of the magnetic induction distribution within a permalloy ring as a function of the
in-plane external field [17]. The external field is (a) −23.9 kA/m, (b) −7.9 kA/m, (c) −3.2kA/m,
(d) 0 kA/m (e) 0.8 kA/m, (f) 10.3 kA/m. [Reprinted figure with permission from T. Uhlig and J.
Zweck, Phys. Rev. Lett. 93, 047203 (2004). Copyright 2004 by the American Physical Society.]

objective lens, and the in-plane field component was controlled through specimen
tilt. An “onion” state composed of a pair of half-ring domains with opposite
circulation directions occurred when a sufficiently large field was applied to the
specimen. Head-to-head and tail-to-tail DWs were formed accordingly. The pair
of DWs moved on the ring as a function of the applied field, so that the net
magnetization parallel to the applied field varied. It was also found that the domain
configuration switched abruptly through an intermediate state with a vortex (flux
closure) structure.

Electron Holography

Holography is a two-stage imaging method to obtain amplitude and phase infor-
mation separately. The principle of holography was first proposed by Gabor [18],
whose original motivation was aberration correction of electron microscopes. The
first step is recording the interference fringes, forming a hologram, between a
reference wave and an object wave. The second step is phase reconstruction from
the hologram. A highly coherent electron wave produced by FE sources is required.
The apparatus uses a Moellenstedt-type [19] electron biprism composed of a thin
conductive wire in the center and electrode plates on the right and left sides. The
biprism splits the electron wavefront and tilts the two split beams in opposite
directions in the electrostatic field. By placing the biprism upstream of the first
image plane, superposition of the object and reference waves occurs at that plane.
The biprism is usually placed at the position of the selective-aperture. As in the
case of the Foucault-mode Lorentz imaging, a customized lens configuration is
frequently required for high-magnification and resolution observation to optimize



Transmission, Scanning Transmission, and Scanning Electron Microscopy 263

Fig. 9 Electron beam ray diagram for electron holography: (a) a reference hologram and (b) an
object hologram

the geometry among a specimen, a biprism, and imaging and projection lenses.
The interference pattern is then transferred to the detector through the projection
lens. Figure 9(a) shows the ray diagram for the case in which both beams travel in
vacuum. Although widely spaced fringes associated with the defocused image of the
prism wire edge are superimposed, the intensity distribution is basically sinusoidal.
Such a hologram is used as a reference hologram to subtract the background phase
map.

When the beam on the left passes through a magnetic specimen with a uniform
thickness, beam deflection due to the Lorentz force occurs as depicted in Fig. 9(b).
The fringe spacing in zone I is the same as that in the reference hologram, because
the interference fringe between unperturbed waves occurs there. The fringe spacing
in zone II (III) is narrower (wider) than that in zone I, because the relative angle
between the object and reference waves is larger (smaller) there. On the other hand,
the electrostatic phase shifts the peak positions of the fringes without changing the
spacing. Information about the phase gradient due to the magnetic nature and the
phase shift due to the electrostatic potential is thus embedded in the hologram.

The phase reconstruction is performed through numerical computation. A digital
image recording system with high linearity and a wide dynamic range, like a slow-
scan CCD or CMOS camera, serves as the basis for numerical phase reconstruction.
The Fourier transform of the reference hologram simply returns a zero-order peak
and two first-order peaks centered at the spatial frequency of the hologram fringes.
In contrast, the Fourier transform of the object hologram returns a scattering profile
around the spatial frequency center, because the fringe spacing and direction are
modified by the magnetic phase gradient and electrostatic phase shift. A zone
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centered at the wave number of the carrier fringe is called a “sideband.” After
recentering one of the following sidebands by applying a mask, typically with
a radius of 1/3 of the spatial frequency, the inverse Fourier transform is applied
to the sideband in complex form. The amplitude and phase are then separated
from the resultant complex image. The formulation and experimental procedure of
reconstruction using a fast Fourier transform (FFT) are described in a handbook
article [20].

To determine the B-field distribution, the electrostatic contribution to the phase
has to be excluded. Procedures for this include subtraction of the phase map
obtained by flipping the specimen, subtraction of the phase map obtained for ferro-
magnetic and paramagnetic states by varying the temperature [21], and subtraction
of saturation in the opposite direction by applying a strong in-plane pulse field
[12]. Once the magnetic phase distribution is determined, the B-field is mapped
by calculating the local phase gradient. A color wheel is frequently used as in
Figs. 5(e–f). In addition, the equiphase lines obtained by applying a sine or cosine
function to the magnetic phase map represent the magnetic flux. The direction and
spacing of the equiphase lines indicate the respective direction and magnitude of the
B-field. Before numerical phase reconstruction using computers became popular
in the 1990s, reconstruction was performed by laser interferometry from holo-
grams recorded on photographic plates. Such early results included experimental
verification of the Aharonov-Bohm effect [22]. Interferograms corresponding to
the equiphase line distribution were frequently used for data representation at the
time [2].

(Ga,Mn)As is a ferromagnetic semiconductor obtained by substituting Mn into
Ga sites in GaAs. Its magnetic anisotropy is controlled from in-plane to out-
of-plane anisotropy. The temperature dependence of the in-plane anisotropy is
also interesting. The anisotropy axes rotate in the film plane with temperature:
bidirectional anisotropy ([100] and [010]) is dominant at low temperature, whereas
unidirectional anisotropy ([110]) is dominant near the Curie temperature. The
magnetization direction can be measured by electron phase measurement as a
function of temperature even in the absence of an external field. Such measurement
was performed for Ga0.96Mn0.04As, which had a saturation magnetization of only
0.02 T and Curie temperature of approximately 60 K, using a liquid-He specimen-
cooling holder [21]. Figure 10 shows Fresnel-mode Lorentz images and flux
distribution images obtained by electron holography. Only a near-180◦ DW parallel
to

[
110

]
was visible at (a) 30.5 K. As the temperature was lowered to (b) 25.8 K, a

small-angle DW became visible along [110] according to the B-field rotation toward
the [100] and [010] directions. Near-90◦ DWs were found to cross at (c) 9.8 K, and
the B-fields were nearly parallel to [100] and [010]. The results also confirm that the
magnetization increases as the temperature decreases, as evidenced by an increase
in the equiphase line density.

Computed tomography (CT) is widely used to obtain cross-sectional images of
a three-dimensional object by acquiring many images from different directions.
Tomographic reconstruction of scalar quantities such as density has been well
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Fig. 10 Variation of the magnetization state of (Ga,Mn) as a function of temperature, shown
via (left) Fresnel-mode Lorentz images and (right) magnetic flux distribution images obtained by
electron holography, at (a) 30.5, (b) 25.4, and (c) 9.8 K. The white arrows in the flux images show
the DWs, and the black arrows indicate the local magnetic flux direction [21]. [Reprinted figure
with permission from A. Sugawara, H. Kasai, A. Tonomura, P.D. Brown, R.P. Campion, K.W.
Edmonds, B.L. Gallagher, J. Zemen, T. Jungwirth, Phys. Rev. Lett. 100, 047202 (2008). Copyright
2008 by the American Physical Society.]

established. On the other hand, vector field tomography to determine, for example,
a three-dimensional magnetization distribution is still under development [23].

The 3D magnetization configuration within a pillar containing a stack of Fe
(30 nm)/Cr (10 nm)/Fe (20 nm) discs of 180-nm diameter was examined by
electron holography and tomography [24]. The specimen was prepared from a
multilayer specimen by using a focused ion beam. Tomographic data was acquired
by using a special holder that could rotate the specimen pillar by 360◦ around
two independent rotation axes in a 1-MV CFE-TEM. Circulating flux structures
(vortices) were formed in both Fe discs. Although the circulation directions were
parallel, the vertical magnetizations in the vortex cores were antiparallel, as shown
in Fig. 11. Interestingly, the vortex centers were slightly misaligned with each
other, probably to reduce the magnetostatic energy penalty due to the tail-to-tail
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Fig. 11 3D view of the
tail-to-tail vortex cores in a
stack of Fe (30 nm)/Cr
(10 nm)/Fe (20 nm) discs
with a diameter of 180 nm
[24]. [Reprinted figure with
permission from T. Tanigaki,
Y. Takahashi, T. Shimakura,
T. Akashi, R. Tsuneta, A.
Sugawara, D. Shindo,
“Three-dimensional
observation of magnetic
vortex cores in stacked
ferromagnetic discs”, Nano
Lett. 15 (2015) 1309–1314.
Copyright 2015 American
Chemical Society.)]

magnetization configuration. This tendency was also confirmed by Landau-Lifshitz-
Gilbert micromagnetic simulation.

3 Scanning Electron Microscopy

Instrumentation

A scanning electron microscope (SEM) maps various types of position-dependent
signals, such as secondary electrons, backscattered electrons, Kikuchi diffraction
patterns, and emitted X-rays, which are excited by scanning a focused electron beam
on the specimen surface [25]. To increase or activate such scattering events in the
subsurface region, a relatively low electron acceleration voltage is favored (typically
from a few hundred volts to tens of kilovolts). SEM is used more frequently than
TEM, because much larger specimens can be observed without time-consuming
specimen preparation in many cases. It is possible to observe, for example, a large
bulk specimen or large-area thin-film specimen as deposited or as nanofabricated
on a substrate. Although the resolution is better for the in-lens configuration (i.e.,
when the specimen is located in the pole-piece gap), as in the case of TEM, the
out-lens configuration is still suitable for observing large magnetic specimens. The
latter configuration also allows us to give various measurement attachments access
to the specimen, because of the large free space around it.
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Structural Analysis

Secondary Electron (SE) and Backscattered Electron (BSE) Imaging

The main use of SEM is surface observation by secondary electron (SE) imaging.
An SE image is obtained by mapping the SE intensity emitted from the surface. The
kinetic energy of most SEs is smaller than 20 eV, so their escape depth is on the order
of nanometers. SE images mainly provide information about surface morphology
and composition.

A backscattered electron (BSE) image is obtained by mapping the intensity
of electrons scattered elastically at angles of nearly 180◦. Because the scattering
amplitude increases with the atomic number Z, BSE images are sensitive to the
composition distribution.

The resolution of SE imaging is nearly the same as the size of the primary
electron beam. For example, the resolution of a commercial SEM equipped with
a CFE source at 30 kV reaches down to 0.4 nm for the in-lens configuration. On
the other hand, the resolution of BSE imaging is not as high as that of SE imaging,
because the scattering events occur deeper below the surface.

Electron Backscattering Diffraction (EBSD)

The electron backscattering diffraction (EBSD) method determines a two-
dimensional mapping of crystal structure and orientation. For example, it is
used to analyze the phase and orientation distributions of anisotropic permanent
magnets [26] and rolled electromagnetic steels [27]. As described in the previous
section, Kikuchi patterns due to the diffraction of inelastically scattered electrons
are observed in the backscattering configuration in SEM. The crystal phase
and orientation at the beam position are determined through pattern matching
between the observed and simulated Kikuchi patterns of candidate materials.
Another important feature of this method is its high sensitivity (down to ~10−4) to
strain. Two-dimensional phase, orientation, and strain mapping of polycrystalline,
multiphase materials can be obtained by repeating acquisition with the scanned
beam.

WDX Imaging (EPMA)

SEMs are frequently equipped with apparatuses for EDX and wavelength-dispersive
X-ray spectroscopy (WDX). WDX is capable of separating elements with excitation
energies close to each other by applying Bragg diffraction using analyzer crystals.
It is usually combined with SEM because of large size of the spectrometer. An
apparatus specialized for the WDX function is also called an electron probe
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microanalyzer (EPMA). This method is useful for analyzing compounds including
multiple rare-earth elements. Examples include sintered Nd-Fe-B hard magnets with
low concentrations of heavy rare-earth elements such as Dy and Tb substituted to
enhance the coercivity.

Magnetic Microscopy

Type-I and Type-II Contrast

Magnetic domain contrast occurs frequently in SEM observation of ferromagnetic
materials. Such contrast formation is due to deflection of secondary or backscattered
electrons in the stray field near the specimen surface. Type-I contrast is observed
for secondary electrons [28], while type-II contrast is observed for backscattered
electrons [29].

Scanning Electron Microscopy with Polarization Analysis (SEMPA)

Low-energy secondary electrons escaping from the subsurface region carry informa-
tion about the electron state of the conduction band slightly below the Fermi level.
These secondary electrons are also spin-polarized in the case of magnetic materials
containing 3D transition metals. Spin-up and spin-down secondary electrons are
measured separately by using a spin analyzer. The magnetic domain is imaged by
mapping the spin polarization, which is the difference between the spin-up and
spin-down electrons [30]. A Mott detector is a spin analyzer applying asymmetric
backscattering of the secondary electrons impinging on a heavy-metal target such
as Au. Another type of high-efficiency analyzer using a single-crystalline oxygen-
passivated Fe film recently became available. A technical difficulty of SEMPA is
that measurement has to be performed in ultrahigh vacuum so as not to degrade the
spin polarization of secondary electrons by surface contamination.

An important feature of SEMPA is its high sensitivity to surface magnetization
(i.e., the M-field). For example, it is difficult to measure perpendicularly magnetized
thin films by electron phase microscopy using TEM, because the B-field is almost
canceled when the demagnetization factor is nearly one. Figure 12 shows the in-
plane magnetization distribution of a perpendicularly magnetized Co/Ir bilayer
[31]. The spin configuration within the DW was found to be Neel-type whirling,
suggesting that the round domain is a Neel-type skyrmion, which is also difficult to
measure by TEM-based electron phase microscopy because of the demagnetization
field.
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Fig. 12 SEMPA images
obtained for Co/Ir (111): (a) a
vertical magnetization
component, (b) a horizontal
magnetization component,
and (c) a composite image
[31]. [Reprinted figure with
permission F.
Kloodt-Twesten, S. Kuhrau,
H.P. Oepen, R. Frömter, Phys.
Rev. B 100, 100402(R)
(2019). Copyright 2019 by
the American Physical
Society.]

4 Summary

This chapter has described structural and magnetic characterization of magnetic
materials by using TEM, STEM, and SEM. The performance of structural analyses
at the atomic scale has been improved significantly in recent years by applying the
benefits of Cs correctors. Magnetic characterization with sub-nanometer resolution
is also becoming possible. A barrier to use the magnetic imaging described in this
chapter is the customized configuration of the microscopes. Some research institutes
accept proposals to use such microscopes as shared facilities to enhance research
opportunities [e.g., [32]].

The technical difficulties arising in recent years are due to a lack of phase
sensitivity. Small B-field components, like perpendicularly magnetized layers of
small-magnetization materials, have come to be used in novel, compact, efficient
spintronics devices (the ultimate form is anti-ferromagnetic spintronics). One novel
technique capable of accessing the spin state (M-field) at the atomic scale is
electron magnetic circular dichroism (EMCD) [33], although it has not yet reached
a practical stage. Another challenging issue is improving temporal resolution to
observe fast magnetic switching. Electron phase microscopy using an ultrafast TEM
is expected to lead to new fields [34].
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Magnetic Field Sensing Techniques

Philip Keller

Abstract We provide an overview of some of the most widely used magnetic
field sensing techniques: Hall sensors, fluxmeters, fluxgates, anisotropic magnetore-
sistive (AMR) and giant magnetoresistive (GMR) sensors, and nuclear magnetic
resonance (NMR) magnetometers. For each technology, we summarize the history,
principle of operation, benefits and limitations, typical applications, key specifica-
tions, and recent developments. We conclude with an overview of magnetometer
calibration, from the definition of magnetic field units to practical considerations.

Keywords Magnetometer overview · Hall sensor · Fluxmeter · Voltage
integrator · Fluxgate · AMR sensor · GMR sensor · NMR magnetometer ·
Magnetometer calibration · Magnetic units

1 Magnetic Field Sensors: Overview

This chapter is complementary to the others, focusing on the measurement of
magnetic fields rather than the characterization of magnetic materials. Some of the
instruments described here underlie material characterization methods and are also
used to monitor the magnetic environment to which material samples are subjected.

There are well over a dozen different techniques to measure magnetic fields,
as summarized in Fig. 1. We can learn much from this diagram; notably, we
see that the biotope of magnetic field measurement techniques is indeed rich
and diverse, ranging from classical to very high-tech. Also note the impressive
measurement range: the horizontal axis spans 14 orders of magnitude! Under the
right circumstances, the accuracy is also astounding, easily in the parts per million;
however, such high accuracy is only achievable at relatively high field strengths.

New techniques are still being developed; an example are sensors based on the
planar Hall effect [2]. However, this chapter will limit itself to the most developed
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Fig. 1 Classification of
important field sensing
techniques, by measurement
range and accuracy [1]

 

and widely used technologies: Hall sensors, fluxmeters, fluxgates, magnetoresistive
sensors (AMR and GMR), and NMR magnetometers.

For each of these techniques, we will briefly describe its history and interest, an
intuitive description of its principle of operation, benefits and limitations, typical
applications, key specifications, and recent developments.

The chapter will conclude with a section discussing the calibration of magnetic
field sensors—a critical topic for any of these techniques.

2 Hall Sensors

The Hall effect is named after the man who discovered it in 1879, Edwin Hall. Mass
production of Hall sensors became viable with the advent of solid-state electronics;
since then, their use has proliferated in industry as well as science. As can be seen
in Fig. 1, they cover a wide measurement range with good accuracy and are the
magnetic field sensor of choice in many situations.

Hall Sensors: Principles

The principle of operation of a traditional Hall sensor is illustrated in Fig. 2a.
To a first approximation, the Hall voltage VH is proportional to the bias cur-
rent I as well as the normal component of the magnetic flux density, B⊥:

VH = RH

t
IB⊥ (1)

where RH is the so-called Hall coefficient and t is the thickness of the plate [[3], p.
69].
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Fig. 2 Principle of operation of a Hall sensor: (a) In a traditional planar Hall sensor, the bias
current I is deflected by a normal magnetic field, B, generating a voltage VH across the voltage
terminals. (b) In a vertical Hall sensor, the bias current I is injected in the middle terminal and
is split into two channels flowing in opposite directions. Since these are deflected in opposite
directions by a magnetic field B parallel to the plate, a differential voltage VH between the two
voltage terminals is created. (c) Combining a traditional planar Hall sensor with two vertical Hall
sensors creates an integrated three-axis Hall sensor

The cross is a common, but not the only, shape for Hall sensors [[3] pp. 193–
197]. In recent years, the so-called vertical Hall sensor (see Fig. 2b) has become
important, because it measures an in-plane component of B, rather than the normal
component B⊥. As illustrated in Fig. 2c, the combination of two vertical Hall
sensors and a traditional planar Hall sensor makes an integrated three-axis sensor
that measures all three components of the magnetic field.

Such integrated Hall sensors can be readily implemented using complementary
metal-oxide-semiconductor (CMOS) technology in silicon (Si). But silicon is not
the only material used for Hall sensors; in fact, it is far from being the best.
Important criteria in the choice of a material are the bandgap and the mobility of the
charge carriers. The former affects the carrier density and temperature dependence
and the latter the sensitivity [[3], pp. 250–252]. n-doped materials are used, since
the mobility of electrons is higher than that of holes. Indium antimonide (InSb) and
indium arsenide (InAs) feature very high mobility, but also small bandgaps. Gallium
arsenide (GaAs) is another good material, with a much lower mobility than InSb and
InAs, but still roughly 5.5x that of Si, and with a much higher bandgap than InSb
and InAs.

There are also different approaches for the circuit supplying the bias current.
Physically, it is the current that is important, but as a practical matter, it is often
easier to supply a constant voltage than a constant current. Since the input resistance
of a Hall sensor does not vary much, this may be an acceptable simplification.
Another option is to use an AC bias current, allowing a significant noise reduction
through synchronous detection; this explains the distinction between “AC Hall” and
“DC Hall” in Fig. 1.

Finally, the low-field sensitivity can be improved by up to 10x by using a
magnetic flux concentrator—a pair of soft-iron rods placed above and below the
Hall sensor. An alternative geometry, compatible with integrated circuit technology,
involves a flux concentrator with a gap placed over a differential pair of Hall sensors;
these in fact detect the flux leakage in the gap [[3], pp. 292–305]. Disadvantages
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of a flux concentrator are that it disturbs the field being measured and introduces
additional offset and hysteresis errors.

Hall Sensors: Benefits and Limitations

One of the primary benefits of Hall sensors is that they are relatively simple
solid-state electronic devices, easily integrated into larger electronic systems and
benefitting from the constant evolution of semiconductor manufacturing techniques.
The range of sensitivities is wide and can be easily adjusted by changing the bias
current. They can be used over a wide temperature range, including cryogenic
temperatures. They are also fast, with bandwidths that can reach into the hundreds
of kHz. Last but not least, they can measure all three components of B.

Hall sensors also have significant limitations. One of the most important is the
offset voltage at zero field, caused, for example, by misalignment of the voltage
terminals. The gain and offset are both temperature dependent, primarily because
of the variation in number of charge carriers. Hall sensors also exhibit nonlinearity,
caused by a multitude of effects specific to the geometry and material used. All
these factors drift with time, due to aging of the semiconductor material. Like any
resistor, Hall sensors have a noise spectrum with 1/f and white-noise components,
limiting the measurement resolution, especially for DC measurements. Depending
on the material, the planar Hall effect, at its maximum when B is in-plane and at
45◦ to the current flow, can introduce significant systematic errors, especially in
three-axis sensors. The voltage leads are highly susceptible to induced noise from
the environment. And finally, the quantum Hall effect limits the resolution at low
temperatures and high fields.

Hall Sensors: Applications and Specifications

In describing the typical applications of Hall sensors, a sharp distinction must be
drawn between commercial and scientific applications. Hall sensors, produced by
the millions by mainstream IC manufacturers, have now crept into every conceivable
consumer item, from flip-phones to automobiles. Typical functions are the detection
of proximity, shaft rotation speed, user controls, and current. Similar sensors are
widely used in industry, for example, in robotic systems.

In contrast, Hall sensors for scientific and metrological applications represent a
much smaller market, with relatively few suppliers and typical annual production
quantities in the thousands, rather than millions. Hall magnetometers are, however,
general-purpose instruments, flexible, and easy to use. They are suitable for almost
any type of task—measurement, mapping, or monitoring—as long as the precision
is sufficient. Traditionally, Hall systems measured only a single component of B,
but three-axis instruments are becoming the norm, using either an integrated sensor,
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as described above, or an assembly of three single-axis sensors. They can readily
be organized into arrays, for rapid mapping or monitoring of a volume. Specialized
instruments cover very wide temperature ranges, including cryogenic applications.
The probes can also be made to be very compact, allowing them to fit into small
gaps. Instruments may be packaged as traditional benchtop units, handheld units, or
industrial-control modules.

Specifications of a Hall sensor include its sensitivity, offset voltage, input and
output resistance, typical and maximum values of bias current/voltage, temperature
coefficients of both the gain and offset, and linearity. A Hall magnetometer is
generally judged by its measurement range, accuracy, resolution, bandwidth, probe
size, and operational temperature range.

Hall Sensors: Recent Developments

One of the most important developments in recent years is the widespread appli-
cation of the spinning-current technique, illustrated in Fig. 3 and described in
greater detail in [[3] pp. 284–286]. Another important recent development is the
proliferation of integrated devices, with built-in signal processing and analog-to-
digital conversion, or multiple sensors to form gradiometers and magnetic-moment
sensors, or even large arrays of Hall sensors on a single chip to form a “magnetic
camera.”

A third and final recent development is the use of “two-dimensional electron
gas” (2DEG) Hall sensors, referring to stacks of semiconductors that confine the
conduction electrons to a ~10-nm-thick quantum well. As we can easily see from Eq.
1, this reduction of the thickness of the Hall plate (by several orders of magnitude!)
will have a direct effect on the sensitivity. Such structures, already described in [[3]
pp. 257–259], are now in commercial use. A competing development, with the same
goal, is the use of graphene to confine the conduction electrons to a single atomic
layer [4].

Fig. 3 The spinning-current technique involves switching the voltage and current leads of a Hall
element. The benefit of this technique is threefold: suppression of the zero-field offset, for example,
caused by misalignment of the voltage leads; suppression of the planar Hall effect; and chopping
the signal, which suppresses low-frequency (1/f ) noise
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These exciting developments demonstrate that derivatives of this nineteenth-
century discovery are still bubbling with innovation and that Hall sensors promise
to remain a mainstay magnetic field sensing technique for decades to come.

3 Fluxmeters

Fluxmeters are another nineteenth-century invention, even older than Hall sensors:
see the fascinating online “Historical Scientific Instrument Gallery” [5]. They
are still in common use today, valued for their precision and flexibility—but the
functionality and the styling have fortunately evolved.

Fluxmeters: Principles

A fluxmeter consists of two parts: a coil adapted to the application and a general-
purpose voltage integrator. Flux changes in the coil induce voltage changes; these
are integrated by the voltage integrator to yield the total flux change.

This is a straightforward application of Faraday’s law of induction:

V = −d�

dt
, (2)

where V is the induced voltage and− d�
dt

is the time rate of change of magnetic flux.
Integrating from t1 to t2:

�� = −
∫ t2

t1

V dt. (3)

Expressed in terms of the flux density, B, the flux enclosed by the coil is given
by the surface integral over the surface area of the coil:

� =
∫

S

B · da. (4)

If the effective area of the coil is a constant, A, and the angle between the coil
axis and B is θ, we can combine these last two equations and compute the change in
flux density:

�B = ��

A cosθ
= − 1

A cosθ

∫ t2

t1

V dt. (5)
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Fig. 4 Different types of voltage integrators. From left to right: analog integrator; voltage-to-
frequency converter (VFC) and counter; fully digital integrator

From this last equation, we see the need of a voltage integrator. Figure 4 illus-
trates three different approaches for its implementation, each with its limitations:

– Analog integrator: the low end of the bandwidth is limited by the size of the
capacitor, and there are numerous sources of error, such as leakage currents and
temperature dependence. In addition, the output generally needs to be digitized
anyway. A clever variant on this design is the “digitally compensated analog
integrator”: the analog integrator is used as a null detector, thus continually
discharging the capacitor and avoiding many of its limitations [6].

– Voltage-to-frequency converter (VFC) and counter: the chief limitation is the
VFC frequency range, which limits the resolution. The technique is, of course,
also completely dependent on the VFC linearity. The beauty of this approach
lies in the elegant combination of analog and digital, avoiding all quantification
noise.

– Analog-to-digital converter (ADC) with digital adder: this method has to limit
the high end of the bandwidth to satisfy the Nyquist criterion. It also depends
critically upon the linearity of the ADC and can suffer from quantification noise.
However, ADCs are continually improving in speed and resolution, so the long
term favors this solution.

As for the coil, there is an astounding variety of designs, catering to different
types of measurements. Here is a sampling:

– A surrounding coil is a coil that encloses all the flux in a magnetic system, for
example, when wrapped around a magnet pole.

– A field coil is a coil of a known area that only samples the flux in a given volume.
In a time-varying field, a field coil will measure voltage changes, even without
moving.

– A moving coil is a field coil that is moved, generally from the region of
high magnetic flux density to a field-free region. The measured flux change is
�� = AB⊥, where A is the area of the coil and B⊥ is the component of B
perpendicular to the coil area.

– By taking partial integrals along the way, a moving coil actually maps the field
along its path. The path can be adapted to the geometry of the system: linear,
circular, etc. Sometimes—for example, with a rotor—it is easier to move the
magnetic system than the coil; the result is of course the same.

– In very small gaps, a moving wire can be used instead of a moving coil. In this
case, the “coil” is actually the entire loop of wire, running from the integrator
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through the magnet back to the integrator. As the wire sweeps through the
magnet, partial integrals can be recorded to produce a map.

– A flip coil is a field coil with a mechanical arrangement to flip it 180◦. The
measured flux change is �� = 2AB⊥, where A is the area of the coil and B⊥ is
the component of B perpendicular to the coil area.

– A rotating coil, or harmonic coil, is like a flip coil, except that it rotates a
full 360◦ and the mechanical arrangement allows measuring partial integrals at
intermediate angles. The resulting measurements constitute a circular field map,
which can be decomposed into circular harmonics, providing an “n-pole” model
of the field, i.e., a superposition of dipole, quadrupole, octupole, . . . n-pole
components [7].

– Usually, harmonic coils are designed with additional coils—so-called bucking
coils—to improve the sensitivity for higher-order harmonics. For example, when
measuring a dipole magnet, a figure-eight shaped coil can be used to “buck out”
the dipole component: flux changes in the top loop of the “8” cancel out those in
the bottom loop, thus suppressing the dipole component.

– A Helmholtz coil is commonly used to measure one component of the magnetic
moment of a permanent magnet. To measure all three components, a three-axis
Helmholtz coil can be used [6].

– A potential coil is a long rigid rod with a coil wound along its entire length,
designed to measure differences in magnetic potential. By analogy to the electric
potential, the magnetic scalar potential ψ is defined as H = − ∇ ψ (valid only
in regions with no free current!), where H is the magnetizing field. In free space,
this reduces to B = μ0H = − μ0 ∇ ψ . The tip of the probe is placed on the
point where ψ is to be measured; the coil must be long enough that the other end
is in a field-free region. The long coil integrates B⊥ from the measurement point
to the field-free region and therefore measures ψ. The tip can then be moved to
another point, and the difference is�ψ . Dividing�ψ by the distance between
the two points (and μ0) provides an estimate of �B [6].

Fluxmeters: Benefits and Limitations

As can be seen from the list in the previous section, the geometry of the coil can be
readily adapted to an amazing variety of measurement problems. The sensitivity can
also be easily adjusted, by changing the number of windings in the coil. A static field
coil is insensitive to a DC field, allowing it to measure minute fluctuations in a strong
field—for example, the effect of eddy currents. Since a coil is a passive device,
fluxmeter measurements can be used in cryogenic environments as well as at very
high temperatures. And finally, sometimes fluxmeter measurements are much more
efficient and accurate than other techniques; an example is measuring the integrated
field along a particle trajectory.

Some of the limitations of fluxmeters are just the flip side of their benefits: the
need to adapt the coil to each measurement task, for example, or the insensitivity to
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DC fields. Another significant disadvantage is that even the simplest measurements
require proficiency in mathematics and physics, as well as very careful experimental
technique to avoid problems related, for example, to drift or integrator input
impedance.

Fluxmeters: Applications and Specifications

Many systems include fluxmeters without calling them that, for example, to measure
AC currents. In this section, we will only consider metrological applications. We
already hinted at these while enumerating the different coil types; however, the use
of fluxmeters is very different in industrial and scientific applications.

In industry, fluxmeters with standardized coils are used for a wide variety
of measurements, for example, measuring the strength and magnetic moment of
permanent magnets, measuring the flux in a gap, measuring the potential loss in a
yoke, or determining the working point of a magnet [6].

In science, the use of fluxmeters is almost exclusively restricted to the charac-
terization of accelerator magnets. The equipment is very different than that used
for industrial applications: coils are often custom-built for a specific magnet, and
the integrator needs to be able to rapidly produce partial integrals, for example,
synchronized by a rotational encoder. The resolution requirements are generally
much higher than in industrial applications, on the order of at least 0.01%.

The key specifications of the coil generally involve its area and geometry. For
bucking coils, the key parameter is harmonic rejection. Parameters for the integrator
include flux resolution, gain, drift, linearity, bandwidth, and input impedance. For
scientific applications, time resolution is also important. Key parameters for the
fluxmeter system as a whole are the resolution and accuracy; the latter depends
heavily on the accurate calibration of the coil area.

Fluxmeters: Recent Developments

Scientific applications continue to drive the evolution of fluxmeter systems. Two
recent developments are the increased use of printed circuit board (PCB)-based
coils and the more extensive use of wire-based techniques for very small gaps. For
example, harmonic measurements are now also performed using a single stretched
wire [8].

Like Hall sensors, the fluxmeter is a nineteenth-century discovery that is still
very much alive. Especially the techniques in the scientific realm are abstruse and
difficult to master, but there continue to be many problems for which a fluxmeter
is simply the best tool. Users in search of a field measurement solution owe it to
themselves to seriously evaluate this option, despite the hurdles.
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4 Fluxgate Magnetometers

Fluxgate magnetometers are low-field devices, primarily used to measure perturba-
tions in the earth’s field. Invented in 1936 and first applied during the Second World
War for submarine detection, they are slightly more recent than Hall sensors and
fluxmeters. After the war, surplus units were recycled for geomagnetism research.
They continue to be the standard against which all other low-field techniques are
measured.

Fluxgates: Principles

The principle of operation of a fluxgate magnetometer is summarized in Fig. 5.
The magnetic permeability of the core—the slope of the B vs. H curve — is
modulated as it goes into and out of saturation: unsaturated, the core has the high
permeability of soft iron; saturated, it suddenly drops to the low permeability of free
space. This means that the flux density B in the core due to an external field H is also
modulated; one can consider that the flux due to the external field is switched off as
the core saturates and back on as the core desaturates—hence the name “fluxgate.”
Clever demodulation schemes allow the magnitude of this gated field to be measured
by the sense coil.

The actual performance depends on many factors:

– Core material: To maximize the signal, the core material should be as magneti-
cally “soft” as possible, with a very narrow hysteresis loop and a sharp saturation
point. Ideally, to avoid Barkhausen noise during the switch, the core should
consist of a single magnetic domain. Other characteristics of the core material,
such as temperature coefficient, isotropy, and long-term stability, determine other
key sensor characteristics.

Fig. 5 Principle of operation of a fluxgate magnetometer, consisting of a soft-iron core, a
drive coil, and a sense coil. The drive coil drives the core through the entire hysteresis cycle:
unsaturated—positive saturation—unsaturated—negative saturation. In the unsaturated state, the
core concentrates external flux; however, when saturated, that flux is expelled. The sense coil
measures these flux changes
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– Core geometry: Clever core geometries dramatically improve sensitivity by
cancelling the direct transmission of drive to sense signal. The Vacquier design
uses two parallel cores, with the drive coil wound in opposite directions and the
sense coil wound around the pair, so that the flux generated by the two drive
coils cancels out. The Förster design also uses two parallel cores, but here the
drive coils are wound in the same direction, and the sense coil is wound in one
direction on one core and the opposite direction on the other core [9].

– Another core geometry is a ring, with the drive coil wound toroidally and the
sense coil around the entire ring—a straightforward extension of the Vacquier
design, with the additional advantage that the core is a single piece, thus
minimizing problems with offset errors.

– Multi-axis: the direction of the sense coil determines the sensitive direction of
the sensor; two orthogonal sense coils on the same ring make an XY sensor; and
with two rings, one can make an XYZ sensor. Note that in this design, the axes
are centered on a single point.

– Synchronous detection: A single cycle of the drive voltage causes two satura-
tion/desaturation signals from the sense coil: once in the forward and once in the
reverse direction. Synchronous second harmonic detection can therefore be used
to improve the signal-to-noise ratio.

– Feedback: Dynamic range and linearity can be greatly improved by using the
fluxgate signal as a null detector. It controls a current that is fed back into either
the sense coil or a separate feedback coil, cancelling the external field.

– Frequency response: A higher drive frequency allows a higher sensor bandwidth,
but needs to be traded off against the sensitivity.

– Demodulation electronics: The demodulator must be carefully designed to
optimize noise, offset, bandwidth, and the temperature coefficient.

– Calibration: To achieve good accuracy, good calibration technique is paramount.
Given the great sensitivity of fluxgate sensors, it is especially difficult to create a
good zero reference field.

Fluxgates: Benefits and Limitations

The key benefit of the fluxgate is its low noise—in the pT/
√

Hz—allowing
sub-nanotesla precision with excellent linearity. Unlike fluxmeters, fluxgates can
measure DC fields, and three-axis devices are commonplace. Their relatively low
cost and low power consumption make them suited for field work.

For many applications, the key limitation of a traditional fluxgate is its size:
smaller than a shoebox, but definitely bigger than a matchbox! The measurement
volume is correspondingly large—typically 10,000× that of an integrated three-axis
Hall sensor—which makes it unsuitable for high gradients. Relative gain and offset
errors are higher than with other techniques. For applications involving magnets, the
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measurement range—usually not much above the earth’s field—is also a significant
limitation. The frequency response is generally limited to 1 kHz and might be
limited to a few Hz to achieve high precision. The drive signal causes a high-
frequency perturbation of the field being measured. Finally, the orthogonality error
of multi-axis units is non-negligible.

Fluxgates: Applications and Specifications

Fluxgates are used in diverse fields such as geology, archeology, space exploration,
defense, oil exploration, security, science, and medicine—always to detect low-level
magnetic perturbations. Concretely, this might mean searching for iron and mineral
deposits, searching for archeological artifacts, mapping the magnetic field of a
planet, detecting weapons or moving vehicles, surveying the magnetic environment
before installing an MRI scanner, or checking the magnetic shielding for a physics
experiment.

As with any sensor, the key specifications of fluxgates include gain, offset,
linearity, and bandwidth, including all related errors. Manufacturers usually specify
the noise density and how much of the drive signal feeds through to the output.
Power consumption and size are also significant parameters.

Fluxgates: Recent Developments

There is a clear trend toward miniaturization of fluxgates; there is now even a
commercially available fluxgate-on-a-chip, destined for accurate electric current
measurement [10].

However, the magnetic noise power is inversely proportional to the magnetic core
volume, so, to preserve the unique benefits of fluxgates, dramatic improvements are
required. [11] provides a good summary of possible approaches to noise reduction:
new magnetic materials with more uniform Barkhausen jumps; optimized core
geometry and excitation mode; and operating the core close to the Curie point.

Looking back at Fig. 1, we are reminded of how important fluxgates are.
Magnetoresistive techniques continue to gain in popularity, but they have neither
the accuracy nor the sensitivity. SQUIDs have better sensitivity, but, as a super-
conducting device, cannot compete in terms of cost and usability. We are forced
to conclude that, despite their considerable limitations, fluxgates are the method of
choice for many applications.
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5 Magnetoresistive Sensors

As the name implies, magnetoresistive sensors rely on a change in resistance to
detect a magnetic field. This section will discuss the most common of these, the
anisotropic magnetoresistive (AMR) and giant magnetoresistive (GMR) sensors.

AMR Sensors: Principles

The magnetoresistive effect was discovered by Lord Kelvin in 1857, when he
noticed a slight change in the resistance of iron when placed in a magnetic field.
However, it took until 1971 for Robert P. Hunt of Ampex to propose the first
magnetoresistive sensor, for reading magnetic tapes [12]. This proposal was picked
up by IBM, first for magnetic-stripe readers, then in tape drives, and finally, starting
1990, in read heads for hard disks.

The magnetoresistive effect in ferromagnetic materials is caused by the scattering
of the conduction electrons, from the 4s subshell, by the electrons in the 3d subshell.
The shape of the 3d orbit causes it to orient itself in a magnetic field, thus modulating
the scattering cross-section [13].

The principle of a modern AMR sensor is illustrated in Fig. 6. The ferromagnetic
material is a thin film of permalloy (Ni80Fe20) deposited on a silicon substrate. Its
resistance varies as:

R = R0

(
1 + δH cos2α

)
, (6)

Fig. 6 Typical configuration of an AMR sensor. The permalloy bars are longitudinally magne-
tized, and a perpendicular external field rotates the magnetization vector toward the transverse
direction. The resistance to current flowing through the bar is at a maximum when the magne-
tization is parallel to the current flow and at a minimum when perpendicular. The Wheatstone
bridge arrangement renders the output insensitive to the absolute resistance, thus minimizing the
temperature dependence while providing good sensitivity to resistance changes. The “barber pole”
shunts redirect the current locally to ±45◦, in order to exploit the linear region of the response
curve
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where α is the angle between the magnetization and the current, R0 is the resistance
with no field, and δH is the fractional variation in resistance in an applied
field H [13]. Note that the sensitivity dR

dα
is zero at α = 0◦ and ± 90◦; the “barber

pole” shunts shown in Fig. 6 redirect the current by ±45◦ in order to utilize
the most sensitive and linear portions of the response curve. Also note that δH

for the anisotropic magnetoresistance of permalloy is no more than 1.5–3%; the
Wheatstone bridge arrangement shown in Fig. 6 maximizes the sensitivity to these
small changes while minimizing sensitivity to overall changes, for example, due to
temperature variations.

Further refinements [14] include mechanisms to:

– Re-magnetize the permalloy after exposure to a strong external field. This is
accomplished by a strong “set” pulse in a coil, or an on-chip strap, surrounding
the entire sensor. A “reset” pulse, of opposite polarity, can be used to magnetize
the permalloy in the opposite direction, thus dynamically reversing the sensor’s
output polarity.

– Cancel the zero offset of the Wheatstone bridge. The offset can be determined by
comparing a given field measurement after a “set” pulse with one after a “reset”
pulse. The offset can then be compensated in a number of ways: a trim resistor;
averaging the two measurements; subtracting the offset from the output signal;
or a current in an offset coil/strap.

– Compensate the effects of nearby iron, with an additional offset current in the
offset coil/strap.

– Auto-calibrate the sensor, by driving a known calibration current in the offset
coil/strap.

– Improve the linearity, by measuring the current in the offset coil/strap that is
required to cancel the external field and using the sensor as a null detector.

GMR Sensors: Principles

The ever-increasing areal density of hard disks created the need for even smaller
sensors. It was natural that attention should turn to the 1988 discovery of giant
magnetoresistance (GMR) by Albert Fert and, independently, Peter Grünberg, work
which earned them the 2007 Nobel Prize in Physics.

As shown in Fig. 7, GMR is observed in thin sandwich structures of ferromag-
netic and non-ferromagnetic conductors. Several different layer structures are used
in sensors [15]:

– Unpinned sandwich: a simple sandwich with a relatively thick copper inner layer
(3–5 nm) that weakens the magnetic coupling between the ferromagnetic outer
layers. The sandwich material is patterned into narrow stripes, with a small in-
plane current running the length of the stripe. With no external field, the field
caused by the current makes the ferromagnetic layers counter-align. An external
field will override this alignment, causing it to transition to an aligned or low-
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Fig. 7 Basic principle of GMR. A very thin (<10 nm) non-magnetic conductor, such as copper,
is sandwiched between two very thin ferromagnetic layers. Depending on the thickness of the
middle layer, the magnetization of the ferromagnetic layers will spontaneously counter-align. The
counter-alignment can, however, be overcome by an external field, causing the layers to become
aligned. It was found that the resistance of the aligned configuration is significantly lower than the
counter-aligned one—curiously enough, regardless of whether the current is in the plane (CIP) or
perpendicular to the plane (CPP—as shown here). The observed change in resistance is at least
an order of magnitude greater than the “natural” anisotropic magnetoresistance—hence the name,
giant magnetoresistance

resistance configuration. Typical δH values are 4–9%, and the saturation field is
3–6 mT.

– Antiferromagnetic multilayers: stacks of alternating magnetic and non-magnetic
layers. The non-magnetic layers are very thin (1.5–2 nm), causing the surround-
ing magnetic layers to spontaneously counter-align, due to antiferromagnetic
coupling. Again, an external field will override this alignment, causing the entire
stack to switch to the low-resistance configuration. The use of multiple layers
amplifies the GMR effect and provides better linearity and lower hysteresis than
the unpinned sandwich. Typical δH values are 12–16%, and the saturation field
is around 25 mT.

– Spin valve: similar to the unpinned sandwich, with the addition of an antifer-
romagnetic layer. This layer pins the magnetization direction of the adjacent
ferromagnetic layer through exchange bias; the direction of the magnetization
is fixed by cooling the material in a strong magnetic field. The magnetization
in the unpinned layer changes by rotation rather than domain wall motion, thus
minimizing hysteresis. Typical δH values are 4–20%, and the saturation field is
1–8 mT.

GMR sense elements usually consist of long serpentine patterns, thus increasing
the resistance and minimizing power consumption. As with AMR, four GMR
elements are arranged in a Wheatstone bridge structure. However, unlike “barber
pole”-biased AMR elements, GMR elements do not distinguish between positive
and negative fields, and it is therefore impossible to make a bridge with four
active elements. Instead, two elements are covered by a magnetic shield, serving as
reference resistors, with the same temperature coefficient as the active elements. The
magnetic shield also serves as a flux concentrator, whose geometry can be adapted
to provide different sensitivity and saturation characteristics with the same basic
sensor [15].
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Magnetoresistive Sensors: Benefits and Limitations

The key benefits of magnetoresistive sensors are their sensitivity, small size, and
low cost. In addition, they provide DC response and large bandwidth; this was
especially important for the original application of tape read heads, since the tape
speed became much less critical.

These sensors are, however, limited to relatively low fields [14]. AMR sensors
cover a range similar to fluxgates, with an upper limit of under 1 mT. GMR sensors
can have higher saturation fields, up to roughly 10 mT. The noise density, at best
100 pT/

√
Hz, is clearly worse than a traditional fluxgate [16].

The magnetization of AMR sensors is destroyed by a strong external field and
needs to be restored by a powerful “set” pulse that temporarily perturbs the field
being measured. It is also important to repeat that GMR, unlike a “barber pole”-
biased AMR element, does not distinguish between positive and negative fields.

Magnetoresistive Sensors: Applications and Specifications

The field of applications for magnetoresistive sensors is vast and diverse. As
described previously, their initial development was driven by tape and disk read
heads. Other applications include compassing, navigation, position and attitude
sensing, detection of vehicles or other iron objects, current sensing, fault detection in
pipes or plates, subsurface geophysical exploration, reading magnetic ink, detecting
nerve impulses, and detecting magnetic nanoparticles used as biological markers.

The typical specifications of a magnetoresistive sensor are the field range,
sensitivity, resolution, linearity, hysteresis, number of axes, axis orthogonality,
and axis cross-talk. In addition, one has all the specifications associated with any
electronic component, such as size, packaging, supply voltage, power, and operating
temperature range.

Magnetoresistive Sensors: Recent Developments

The commercial success of AMR and GMR has inspired much research into
other magnetoresistive technologies. Sensors based on tunnel magnetoresistance
(TMR) are already commercially available, especially for low-power magnetic
switches and angle sensors, hard-disk read heads, and magnetoresistive random-
access memory (MRAM) [15]. In this variation of GMR, the conductor is replaced
by an insulator, enabling only a tunnel current to flow. Because of high intrinsic
resistance, power-efficient and very small elements—several μm square—can be
produced. In addition, these devices regularly achieve values of δH as high as 30%.
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Colossal magnetoresistance (CMR) is a form of magnetoresistance of certain
materials, associated with a ferromagnetic-to-paramagnetic phase transition [17].
Some of the materials were known as far back as 1950, and interest was revived in
the 1990s. At this time, these discoveries have not yet found commercial application.

Extraordinary magnetoresistance (EMR) describes the magnetoresistance
of certain semiconductor-metal structures; the δH is truly extraordinary —
as much as 750,000% [18]. This is achieved not by magnetoresistive material
properties, but by the Hall effect and a cleverly designed device geometry,
which deflects the charge carriers away from a metallic shunt. As such, these
structures do not rival AMR and GMR for low fields : the δH cited above was
achieved at 4 T!

Given their commercial importance, and consequently the R&D being lavished
on the technology, one can assume that magnetoresistive sensors will continue to
gain in popularity, also for metrological applications. They already offer tremendous
advantages in terms of size, power, cost, and bandwidth. As the noise performance
improves, they are becoming serious rivals for fluxgates in many applications.

6 NMR Magnetometers

Nuclear magnetic resonance (NMR) was experimentally demonstrated in 1945. It
was only in the late 1970s, however, that the first NMR magnetometers arrived
on the market, first used by accelerator physicists and soon by the then-nascent
manufacturers of magnetic resonance imaging (MRI).

The importance of NMR has always been its precision and accuracy: NMR and
the related technique EPR (electron paramagnetic resonance) have the undisputed
top spot in Fig. 1.

NMR Magnetometers: Principles

If a nucleus has spin, it tends to align itself to an external magnetic field. However,
by giving it exactly the right additional amount of energy, the nucleus can be
induced to flip into the opposite spin state. The resonance occurs when a radio-
frequency (RF) field applied to a sample is just the right frequency—called the
Larmor frequency—to induce this spin-flip. EPR is a similar effect, with an electron
rather than a nucleus.

The energy difference between the aligned and counter-aligned nuclear states
depends linearly on the field strength, B, with a proportionality constant called the
gyromagnetic ratio. It is approximately 42.5 MHz/T for protons (hydrogen nuclei),
6.5 MHz/T for deuterium, and 40 MHz/T for fluorine. EPR has a much higher
gyromagnetic ratio, approximately 28 GHz/T.



292 P. Keller

Fig. 8 Schematic diagram of an NMR magnetometer with pulsed-wave detection: (a) NMR
sample; (b) excitation/sense coil; (c) RF generator; (d) transmit/receive switch; (e) detector. No
modulator is required for pulsed-wave detection

As illustrated in Fig. 8, an NMR magnetometer has five main elements [19]:

– NMR sample: The sample material must have a nuclear spin; many common
isotopes, such as 12C or 16O, have zero spin and are transparent to NMR. The
material must also exhibit a sharp resonance; in a molecule, the NMR resonance
is broadened by interactions with the other nuclei and electrons. Finally, the
nuclei must “relax” to their initial spin-aligned state in a “reasonable” amount
of time: too short prevents the detection of the resonance; too long slows the
measurement rate. The most readily available sample material is water: NMR
resonance of 1H, or a proton.

– Excitation/sense coil: The coil that supplies the RF field to induce the spin-flip
must be more or less perpendicular to the field being measured. Unlike Hall
sensors, imperfect alignment does not change the measurement result; it simply
causes some loss of sensitivity.

– RF generator: The key parameters are bandwidth (≈1 MHz to 1 GHz for 1H),
stability (≈ parts per billion/day), and suppression of spurious frequencies (<≈
80 dB). Producing such a generator economically is one of the major challenges
in designing an NMR magnetometer.

– Detector: There are several basic approaches for detecting the NMR resonance:

– Continuous wave (CW): at resonance, the NMR sample absorbs energy,
increasing the apparent resistance of the excitation coil. One can either directly
detect the slight voltage dip across the excitation coil, or one can incorporate
the excitation coil in a marginally stable oscillator whose amplitude dips at
resonance.

– An alternate CW technique is the inductive bridge, where a pick-up coil
perpendicular to the excitation coil detects when, at resonance, spins are
rotated by 90◦.

– Pulsed-wave (PW): the sample is excited with a short, wide-band pulse whose
frequency corresponds approximately to the Larmor frequency. In a second
step, the excitation coil is used to detect the precession frequency of the spins
during the relaxation time.

– Modulator: The CW techniques require some sort of modulation, to detect a
change when crossing the resonance. The most obvious solution is to modulate
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the frequency, but it is often more practical to add a small coil to modulate
the field being measured, taking care to synchronize the measurement with the
modulation zero-crossing. The fact that the PW technique does not require any
modulation whatsoever is a major advantage.

NMR Magnetometers: Benefits and Limitations

The key benefit of NMR is its very high resolution: one can typically resolve a
1 Hz change in the resonant frequency; in a 1 T = 42.5 MHz field, that results in
roughly 0.02 ppm resolution. The accuracy, however, is generally limited to roughly
5 ppm, by various effects including sample shape and susceptibility of surrounding
material. In addition, NMR is not subject to temperature drift, aging, or angular
error.

The most constraining limitation of NMR is that the technique does not tolerate
strong field gradients: destructive interference between the slightly different reso-
nant frequencies across the sample kills the signal. The NMR signal also disappears
at low fields (~10 mT), because the energy gap between the spin-flipped and non-
flipped states becomes so small that it is swamped by thermal transitions. Finally,
the measurement rate is limited by the finite relaxation time, to typically well under
100 Hz.

NMR Magnetometers: Applications and Specifications

The most widespread use of NMR magnetometers is the mapping of highly uniform
fields, such as those produced by MRI magnets. This application is commercially so
important because the required field uniformity cannot be achieved by construction;
instead, every such magnet must be mapped and corrected using magnetic shims.

The accuracy and stability of NMR magnetometers also make them a perfect
secondary standard for calibrating other magnetometers. Hall magnetometers as
well as fluxmeters are generally calibrated against NMR (see Sect. 7).

Finally, NMR is used to monitor and/or regulate magnetic fields that must be
extremely reproducible. Examples include accelerator and spectrometry magnets.

The key specifications of an NMR magnetometer are its precision, accuracy,
measurement range, and measurement rate.

NMR Magnetometers: Recent Developments

The most recent generation of NMR magnetometers has extended the range of
proton-sample probes from 2.1 to 24 T, with RF generators that go to over 1 GHz.
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The resolution has also improved, by better than a factor of 10, due to PW detection
and digital signal processing (DSP). DSP, by improving the signal-to-noise ratio,
has also significantly improved the tolerance to field gradients.

Recent years have also seen incremental improvements in low-field performance.
As seen in Fig. 1, EPR should provide a dramatic improvement. In the past, some
manufacturers have indeed offered EPR probes; unfortunately, there is no known
stable EPR sample material with sufficient spin density and narrow resonance width.

The efforts to push back the limitations of NMR magnetometers continue, and the
range of applications that can benefit from this technique is becoming ever broader.
However, the use of NMR magnetometers is ultimately limited by the number of
applications that specifically require ppm-level resolution; the vast majority is better
served by simpler techniques, such as Hall sensors.

7 Calibration

Regardless of a magnetometer’s sensor technology, it must be calibrated. This sec-
tion summarizes the most important notions concerning magnetometer calibration.

Calibration: Magnetic Field Units

Calibration relates a magnetometer’s output to the unit of magnetic flux density, as
defined by international and national standards bodies. Therefore, we start our story
with the definition of this measurement unit.

The unit for magnetic flux density in the International System of Units (“SI”), the
tesla (T), is a derived unit. Its definition in terms of the SI base units can be deduced
from the Lorentz force law; in the absence of an electric field:

F = qv × B (7)

where F is the force exerted on the charge q travelling at velocity v through a mag-
netic field B. The dimensional analysis of this equation yields:

[kg] [m]

[s]2 = [C]
[m]

[s]
[T ] (8)

or:

[T ] = [kg]
[C]
[s] [s]2

= [kg]

[A] [s]2 (9)
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This is the expression in SI base units. It is equivalent, by Faraday’s law of
induction (c.f. Eq. 5), to:

[T ] = [V ] [s]

[m]2 ≡ [Wb]

[m]2 (10)

where the weber (Wb) is the SI unit of flux.
One also still sees magnetic flux density expressed in gauss (G), using the old

centimeter-gram-second (CGS) system of electromagnetic units. This was accepted
in polite SI society, because the conversion to the official SI units was exactly:

[T ] = 104 [G] . (11)

However, since the 2019 redefinition of the SI base units [20], this is no
longer the case, and the gauss should be finally allowed to enjoy its well-earned
retirement [21].

Magnetometers measure the magnetic flux density B. However, when discussing
bulk material properties such as hysteresis, this observed quantity is conceptually
split into the external magnetizing field H and the internal material magnetiza-
tion M:

B = μ0 (H + M) , (12)

where

μ0 ∼= 4π × 10−7 V · s
A · m is the permeability of free space. (Note that since the

2019 redefinition of the SI units, the value of μ0 is no longer exact, but a measured

value.) The units of H are A/m, as can be deduced from Ampere’s law :

∇ × H = Jf , (13)

where Jf is the free current density. Dimensional analysis yields:

1

[m]
H = [A]

[m]2
, or H = [A]

[m]
. (14)

To interpret historical literature, we also need to understand the equivalent
formulation in CGS units. In this system of units, the permeability of free space
was unity:

B = H + 4πM (15)
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Nonetheless, H had its own unit, the oersted (Oe). The conversion from Oe to
A/m is easy to deduce from the flux density generated by 1 Oe in free space:

H [Oe] = 1 Oe ∼ 1 G = 10−4 T ∼ μ0H [A/m] (16)

Consequently,

[Oe] = 10−4

4π × 10−7 [A/m] ∼= 79.577 [A/m] (17)

Note that, since the 2019 redefinition of the SI units, this conversion is doubly
inexact: neither the conversion from G to T nor the value of μ0 is the exact value
anymore. Like his colleague the gauss, the oersted is now definitively retired.

Calibration: NMR as a Secondary Standard

Calibrating a magnetometer involves placing the probe in a region with a precisely
known magnetic flux density. In principle, this requires a dimensionally accurate
magnet—perhaps a Helmholtz geometry—and an equally accurate current source.
To eliminate perturbations—especially from the earth’s field—the system needs
to be placed in a magnetically shielded room, with absolutely no ferromagnetic
material, perhaps in combination with a compensation coil or a compensated coil
design [22].

In practice, only national standards laboratories can manage such a demanding
setup; most practitioners use a conventional, high-quality laboratory electromagnet
and power supply, with an NMR magnetometer (see Sect. 6) as a secondary
standard. Besides resolution that far exceeds that of the sensor being calibrated,
the NMR measurements have the advantage of being easily traceable to interna-
tional standards, only requiring an accurate clock and precise knowledge of the
gyromagnetic ratio. Measurements of the gyromagnetic ratio of water are regularly
consolidated by the Committee on Data for Science and Technology [23] and
published by, for example, the USA’s National Institute of Science and Technology
[24]. If the actual sample material is not water, the (generally small) deviation of the
gyromagnetic ratio can readily be determined via NMR spectroscopy [25].

NMR can be used as a direct calibration reference down to ~10 mT (see Sect.
6). The upper field strength that can be calibrated in this way is in practice
not limited by the NMR magnetometer, but by the availability of magnets with
sufficient uniformity, stability, and gap size; above roughly 2 T, these need to be
superconducting magnets. Since ramping the field in these magnets is very slow,
one generally has data for only a limited number of field strengths, and especially
the sensor nonlinearity becomes difficult to quantify.
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Calibration: Low-Field Sensors

To calibrate sensors at low fields, when a direct NMR reference is no longer
feasible, one often uses a sinusoidal excitation current, with a fluxmeter as reference
measurement (see Sect. 3). To avoid hysteresis effects, this requires an air-core
magnet, such as a Helmholtz coil or solenoid. The fluxmeter is, in turn, calibrated
with an NMR reference, thus introducing an additional link in the traceability chain
and increasing the error budget correspondingly.

Because of the sensitivity of low-field sensors, the determination of the zero-field
point of the sensor is particularly critical. The problem is compounded by the fact
that the fluxmeter reference provides no zero reference. The answer usually comes
in the form of an elaborate “Zero Gauss Chamber” (pardon the antiquated term!),
built out of multiple layers of mu-metal.

Calibration: Three-Axis Sensors

Since almost all sensors—except NMR!—have a field-sensitive direction, good
calibration technique requires a special jig to reproducibly hold the sensor with the
field properly aligned. The jig must obviously be non-ferromagnetic and, for low-
field sensors with AC excitation, non-conducting to avoid distortions due to eddy
currents.

The mechanical design becomes especially difficult with three-axis sensors,
where each of the three axes must be in turn aligned with the field. The orthogonality
of the jig is critical, to be able to detect and correct the non-orthogonality of the
sensor itself. Another complication, this one very practical, is that the length of a
probe may not fit crosswise into the gap of a dipole or solenoid; only Helmholtz
geometries are basically immune to this issue, but they are limited in field strength.

Some have argued that calibrating only the sensor’s primary axes cannot produce
accuracy of better than roughly 0.1%, since the errors will cumulate in the regions
between the axes [26]. Instead, they propose that the sensor be rotated in all
directions and that its output be modeled with a spherical-harmonic fit. This method,
although theoretically well-founded, has not caught on in practice, partly because
of the mechanical and analytical complexity and partly because it requires a magnet
with a very large gap.

In this section, we have attempted to outline only some of the most common
issues encountered when calibrating magnetic field sensors. Each type of sensor
comes with its own set of additional complications. We hope that it has become
clear that a major part of the value added by commercial instrument manufacturers
is the professional calibration of their products.
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8 Magnetic Field Sensors: Conclusion

Over 150 years’ worth of brilliant physicists and engineers have lavished their
talents on the problem of magnetic field sensing. We have attempted an intuitive
explanation of what we consider the most popular techniques. Neither the list nor the
explanations are exhaustive: even for these “top five,” this chapter only scratches the
surface; the literature for each is vast and sophisticated. We encourage enlightened
users with the appetite for more to delve into this all-you-can-eat buffet.
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Introduction to Neutron Scattering
as a Tool for Characterizing Magnetic
Materials

Cindi L. Dennis

Abstract This chapter will introduce the concepts of neutron scattering, includ-
ing the benefits and limitations, especially in comparison to other experimental
scattering techniques. It will also describe recent expansion of neutron scattering
capabilities, including polarization analysis and time resolution, and their potential.
Example applications demonstrating the power of neutron scattering as a character-
ization tool will be discussed.

Keywords Neutron scattering · Small angle neutron scattering · Neutron
reflectivity · Neutron diffraction · Polarization analysis · Time resolution ·
Characterization · Magnetic materials

1 Introduction

Fundamentally, there are different ways to probe materials, including wavelength-
specific electromagnetic radiation (e.g., visible light, infrared, x-rays, etc.) or
particles (e.g., electrons and neutrons) or forces (e.g., electrostatic, electromagnetic,
etc.), to name three common ones. These probes can then be used in diverse
ways to determine different properties of a material, such as optical or force
microscopy to image the surface of a material, electron or x-ray diffraction to learn
about composition and atomic-level crystal structure, magnetometry to understand
magnetic changes in a material, and light/x-ray/neutron scattering to learn about
micro- and meso-scale structure as well as atomic structure. These measurements
can be made as a function of applied magnetic field, temperature, stress or strain,
etc., to better understand the behavior of a material, either fundamentally or for
its specific application. Choosing the right technique to answer a specific question
about a material is critical; understanding the potential and the limitations of a
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given technique is crucial to making an informed choice. Many different techniques
have been discussed in other chapters of this book. Here, the focus is on neutron
scattering, specifically the elastic coherent techniques of neutron diffraction (ND),
neutron reflectivity (NR), and small angle neutron scattering (SANS).

This chapter is not an exhaustive treatise on neutron scattering. The interested
reader is referred to the following chapter and to a number of excellent references,
either generally [1] and [2] and [3] or for specific techniques like polarization
analysis [4, 5] or time resolution [6, 7]. Instead, this chapter will introduce the basic
physics concepts, using a few limited equations for understanding experimental
data. Then, specific instrumentation and measurement methods, including what to
look for in the data, will be discussed with examples.

2 Neutron Sources

Unlike with electromagnetic radiation (e.g., visible light or x-rays) or electrons
or forces, there are no easy lab-scale sources of neutrons. Instead, neutrons are
generated though one of two sources: a steady neutron flux that is a by-product of
controlled fission in a nuclear reactor, such as the split core reactor at the National
Institute of Standards and Technology’s (NIST) Center for Neutron Research [8],
or pulses of neutrons from a spallation source, such as those generated from the
impact of protons accelerated at a steel target filled with mercury as at the Spallation
Neutron Source at Oak Ridge National Laboratories [9].

Neutron fluxes are typically higher at spallation sources than from reactors
because all the neutrons in a pulse can be used. (The time of flight yields the
velocity of the individual neutrons, which is necessary for the scattering wave vector
Q to be determined, as explained below.) In contrast, neutrons from a reactor are
a steady stream with a range of energies/velocities and therefore typically must
be monochromated so that the velocity of the neutrons is known with reasonable
uncertainty. This throws away a significant amount of intensity. In either case, the
total flux is still significantly lower than an equivalent x-ray source.

The neutrons generated come in two “temperatures”: thermal neutrons which
have a very short wavelength (e.g., 2 Å, but it depends on the temperature of
the moderator and/or monochromator that the neutrons pass through) and “cold”
neutrons with longer wavelength (e.g., 7 Å, which result from passing thermal
neutrons through a cold source composed of, for example, liquid hydrogen or solid
deuterium oxide (“heavy water”) to slow the neutrons down further). The difference
in wavelength allows the neutrons to probe different length scales in materials.
Reactors produce a larger flux of cold neutrons; spallation sources produce more
thermal neutrons.

Although the Fukushima nuclear disaster in 2011 has reduced the ranks of power
generation nuclear reactors globally, there are still a number of research reactors
and spallation sources available around the world. A non-exhaustive list includes
the NIST Center for Neutron Research (NCNR) and the Spallation Neutron Source
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(SNS) and High Flux Isotope Reactor (HFIR) in the USA, the Open-Pool Australian
Lightwater reactor (OPAL) in Australia, the Japan Proton Accelerator Research
Complex (J-PARC) in Japan, ISIS Neutron and Muon Source in the UK, the
Institut Laue-Langevin (ILL) in France, Forschungs-Neutronenquelle Heinz Maier-
Leibnitz (FRM II) in Germany, and the (under construction as of 2020) European
Spallation Source (ESS) in Sweden. All of these facilities have teams of instrument
scientists who operate specific instruments (beamlines) at each location and host
user scientists from around the world for specific experiments, awarded through
beamtime proposals. More information about procedures for applying for beamtime
can be found on each facility’s website.

3 Physics of Neutron Scattering

The idea of scattering is straightforward. You direct a beam of something, electro-
magnetic radiation or particles, at the material of interest. The beam then interacts
with the material that it passes through, causing the beam to deviate from a
straight line. The physics can be simple or complicated, depending on the specific
process causing the scattering and whether or not it is elastic or inelastic. To aid
in understanding, we compare three specific types of beams and their interactions:
x-rays, electrons, and neutrons (see Fig. 1).

X-rays scatter off the electrons surrounding the nucleus of an atom through
an electromagnetic interaction. The more electrons there are, the more efficiently
the x-ray is scattered (see Fig. 2). Therefore, if you have a material composed of
heavy atoms (like yttrium and copper) and light atoms (oxygen and barium), the
heavy atoms dominate the signal. As a result, if you are looking for the position of
an oxygen atom in a high-temperature superconductor filled with heavy atoms of
yttrium and copper, it will be challenging to see it.

Charged particles like electrons also interact with the electrons surrounding the
nucleus, but through an electrostatic interaction. They are either attracted or repelled
depending on the sign of the charge on the particle. As a result, electron transparent
materials must be very thin (<100 nm) to avoid significant attenuation of the signal
(see Fig. 2).

Neutrons, in contrast, interact with a material differently, for three reasons.
First, the neutron has no charge. The neutrons interact with the material primarily
through the nuclear force, which is very short range (as compared to the electro-
static/electromagnetic forces). As a result, most neutrons pass unattenuated through
materials. This enables complex sample environments, since the neutrons will go
through the container holding the sample readily. Unfortunately, the end result is
that significantly more material is required and much longer counting times (as the
flux of neutrons is not very high to begin with) in order to get good statistics for
neutron scattering, as compared to the same x-ray/electron scattering technique.
Second, neutrons have a magnetic moment. Therefore, neutrons can also interact
with the material through dipole-dipole interactions if there are unpaired electrons in
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Fig. 1 Beams of neutrons, x-rays, and electrons interact with a material through different
mechanisms. (Used with permission from [3]. Modified colors for better visibility)

the material. The end result is that neutrons can probe not only the nuclear structure
of a material but also the magnetic structure.

Third, neutrons have a unique scattering cross section [10] which depends heav-
ily upon isotope, as compared to x-ray and electrons, which have a more straightfor-
ward dependence of scattering on the atomic number. For example, hydrogen (H)
has a small neutron scattering cross section of 1.7583 barns (1.7583 × 10−24 cm2),
but deuterium (D) is much larger at 5.592 barns. The end result is that neutrons
are uniquely placed to study hydrogen-containing compounds, like polymers,
something that x-rays and electrons do not see as well. In addition, the non-
monotonic behavior of the penetration depth (see Fig. 2) of neutrons allows
the use of “contrast matching” to pick and choose what is studied. This means
that an isotopic substitution of elements, such as deuterium for hydrogen, can
significantly change what is seen (see Fig. 3). A good example of this is in iron oxide
magnetic nanoparticles dispersed in water. The nuclear scattering length density of
magnetite is closely matched at 6.975 × 10−6/Å2 to that of “heavy water” D2O
at 6.335x10−6/Å2, but is significantly different from that of “light water” or H2O
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Fig. 2 Penetration depth of neutrons, electrons, and x-rays by element (Used with permission
from [3])

Fig. 3 (Left) Schematic of contrast matching for an iron oxide nanoparticle dispersed in water.
(Right) SANS data showing nuclear and magnetic scattering of the iron oxide nanoparticles in
light (H2O) and heavy (D2O) water

at −0.561 × 10−6/Å2. As a result, changing the isotope of hydrogen in the water
enables the user to make visible or invisible the nuclear scattering from the iron
oxide. Therefore, the magnetic scattering can be determined, even though it is only
4% of the signal intensity (see Fig. 3).



306 C. L. Dennis

Fig. 4 Scattering schematic
for SANS. (Courtesy of
NCNR)

From quantum mechanics, we know that neutrons have wave-particle duality.
This means we can associate a neutron wavelength λ with the velocity v of the
neutron, through:

h
⇀

k

2π
= m

⇀
v (1)

where h is Planck’s constant, k is the neutron wave vector (k = 2π/λ), and m is
the mass of the neutron. Since the wavelength of the neutron is much larger than
the range of the nuclear force, the nucleus acts as a point scatterer and scatters the
neutrons isotropically. (This is not the case for x-rays, nor is it the case for dipole-
dipole “magnetic” neutron scattering.) In all neutron scattering experiments, the
result is the intensity I of neutrons scattered per incident neutron as a function of the
momentum transfer (hQ/2π) and energy transfer (ε):

I (Q, ε) = NF (Q, ε) S (Q, ε) (2)

where N is the number of scatters per unit volume, Q = ki – kf and ki is the incident
wave vector and kf is the scattered wave vector (see Fig. 4), and F(Q, ε) is the form
factor and S(Q, ε) is the structure factor. (These “factors” will be briefly discussed
later.) Interestingly, the anisotropy inherent in magnetic scattering manifests itself
as a simple rule: magnetic scattering can only be seen when the scattering vector Q
is perpendicular to the magnetic field of an unpaired electron or, more generally, the
sample magnetization. With this equation, there are three types of scattering:

1. Elastic coherent scattering (ε = 0).
2. Inelastic coherent scattering (ε �= 0).1

1A triple-axis spectrometer (at a reactor) and a chopper spectrometer (at a spallation source) are
examples of techniques which provide information about the collective motions of atoms (e.g.,
phonons or magnons) as not only k and k’ must be determined to get Q but also ε.
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3. Incoherent scattering.

Only elastic coherent scattering will be discussed here, of which ND, NR, and
SANS are example techniques. They provide information about the equilibrium
structure.

One final comment: there exist multiple neutron scattering instruments which
make similar measurements, as they are tailored specifically to the science they
are designed to study because there is always a trade-off between intensity and
resolution. For example, SANS (see Fig. 4) has a small diffraction angle for studying
large objects, but also a reduction in monochromatization—only enough to match
the angular resolution to maximize neutron flux. In contrast, back scattering has very
good energy resolution, but uses large analyzer crystals so it has poor Q resolution.

4 Neutron Diffraction

Neutron diffraction (see Fig. 5) is analogous to x-ray diffraction and follows Bragg’s
law:

nλ = 2dsin (θ) (3)

where 2θ is the scattering angle, d is the lattice constant, and n is an integer. λ, the
wavelength of the probe, is typically chosen to be on the order of the lattice spacing.
Therefore, I(Q) is typically dominated by S(Q) where S(Q) is the structure factor
and is primarily dependent upon the placement of the specific atoms. Diffraction
provides information about the dimensions of the crystal lattice and the positions of
atoms within it, the symmetry of the crystal, and the extent of thermal vibrations in
various directions. It is a very useful tool for studying stress and strain as well as
texture in materials. However, unlike x-ray diffraction, the magnetic moment of the
neutron means that it is possible to see magnetic lattices as well as atomic lattices.
The atomic and magnetic scattering can be separated, for example, by changing
the orientation of a saturating magnetic field from parallel to perpendicular to Q.
When H and Q are parallel, only nuclear scattering is seen. When H and Q are
perpendicular, the magnetic scattering is added to the nuclear scattering, changing
the peak intensities. For example, when measuring a ferromagnet such as MnPtGa
(see Fig. 6), the atomic lattice spacing between the Mn atoms and the magnetic
lattice spacing between the Mn atoms is the same, since the Mn moment is parallel to
its neighbor. When decreasing the temperature so that MnPtGa changes to a canted
anti-ferromagnet, the atomic lattice spacing between the Mn atoms is double that of
the magnetic lattice spacing, since the Mn atoms are coupled anti-ferromagnetically
(see Fig. 6). (Recall: doubling the lattice spacing gives rise to a peak at the half
order position.) The latter is an alternative approach to changing the magnetic
field orientation. Therefore, neutron diffraction also enables a direct probe of the
magnetic structure and has been particularly useful for anti-ferromagnetic and spin-
canted materials.



308 C. L. Dennis

Incident Beam Slits

BT-8 Residual Stress Diffractometer

Retractable Beam Tube
Monochromator Drum

xyz-Table

Beam Stop

Sample Stage

20 (sample)

Detector System

1 meter

Table Rotation

Diffracted Beam Slits 20 (monochromator)

Fig. 5 Schematic of a neutron diffractometer. (Courtesy of NCNR)

5 Neutron Reflectivity

Neutron reflectivity is analogous to x-ray reflectivity (see Fig. 7), where x-
rays/neutrons are reflected off a smooth surface at very small angles to study
the surface structure. For light, this works only for very smooth surfaces at the
top and follows Fresnel’s law. For neutrons, the “surface” will actually be all
interfaces within a few thousand nanometers of the topmost layer. This makes
neutron reflectivity a very powerful method for probing interfaces, especially buried
interfaces. As most modern devices have shrunk in size and have at least one
interface, if only from a protective coating, there are many avenues for research
here. For example, a recent review summarized the studies on the self-assembly
process of magnetic nanoparticles on a surface and the impact of the surfactant,
surface preparation, and applied magnetic field (see Fig. 8).
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Fig. 6 Experimental ND data demonstrating the transition of MnPtGa from a ferromagnet, to a
canted anti-ferromagnet, to the eventual formation of a spin-density-wave state at low temperatures.
(Used with permission from [11])

Fig. 7 Schematic of a
neutron reflectometer
(Courtesy of NCNR)

When examining NR data, the spacing of the oscillations and/or peaks and the
height and shape of these features are indicative of the layer thickness and the
interface quality. Generally, the less dampening of the oscillations there is, the
cleaner the interface is; the closer the oscillations are in Q, the thinner the layers
are in practice.
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Fig. 8 (Top) (a) NR data on iron oxide nanoparticles coated with oleic acid and their self-assembly
onto a Si/SiO2 surface as a function of applied magnetic field. The nuclear scattering length density
profiles as a function of distance z from the Si surface at applied magnetic fields of (b) 0 mT and
(c) 11 mT, obtained from the model fits of the NR data in (a). (Bottom) Model showing hexagonal
close packed structure in the initial layer followed by increasing disorder in the layers above. The
magnetic field increases the disorder and elongation in the field direction. (Used with permission
from [12])

6 Small Angle Neutron Scattering

Small angle neutron scattering also obeys Bragg’s law (Eq. 3), but now the size d is
that of larger objects, such as pores in rock or nanoparticles in solution or blocks in a
co-polymer. Therefore, longer wavelengths are needed and/or smaller angles. Then,
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I(Q) is typically dominated by F(Q) where F(Q) is the form factor and is dependent
mainly upon the shape of the object. Whereas ND provides information about the
atomic structure, SANS provides information about the shape and size of nanoscale
to microscale structure.

Within SANS, there are specific instruments that cover specific dimensions (see
Fig. 9 for examples from NCNR). 30 m SANS covers dimensions approximately
1–700 nm, ultra-SANS (USANS) covers approximately 100–20,000 nm, and very-
SANS (VSANS) covers approximately 1–2000 nm.

Data reduction [13] and data modeling programs [14] are readily available and
account for differences in data formatting between instruments at different facilities.
Data reduction takes into account the total flux of neutrons incident on the sample
(by removing the sample, so that the beam is “open”), what the background is for
the instrument configuration (by a blocked beam), and what the transmission of the
sample is (by measuring the central beam intensity at the detector). The scattering
measurement blocks the main transmitted beam so that the scattered intensity can
be measured. While data are collected on a 2D detector, they are rarely analyzed
that way. Instead, the data are averaged (see Fig. 10). This could be a circular
average where only the radius from the center matters. It could be a sector average,
if there is anisotropy in the data such as shown in Fig. 10, for example, due to an
applied magnetic field or structural anisotropy such as chaining. Finally, it could be
an annular average, where the data at a specific radius are plotted as a function of
angle.

Interpretation of SANS data requires specific models, and the details of the model
matter greatly. Therefore, secondary information is always necessary in order to
make good guesses about what model and parameters to use. For example, the
same dataset (see Fig. 11) can be modeled with a polydisperse sphere or with a
parallelepiped. The shapes are quite different, and to most experimentalists, the fits
are equally good. However, the exact detail of the transition to background is quite
different between the two models and is significant to the interpretation.

However, in looking at SANS data, you are looking for the location in Q of peaks
or turn-overs or asymmetry in the data. For example, the turn-overs in Fig. 12 of
modeled polydisperse spheres are located at different Q values (where Q ≈ 2π/d),
which are indicative of the differing size of the objects; in this case, the size is a
diameter. The difference in intensity is less important, as the total intensity is spread
out over the whole Q range, including low Q values not accessible for the specific
instrument. In addition, when looking at SANS data, recall that the selection rules
dictate that the magnetic scattering only appears when the sample magnetization is
perpendicular to Q. Therefore, magnetic scattering has a characteristic sinusoidal-
like pattern, as seen in Fig. 10.
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Fig. 9 (Top) SANS instrument schematic. (Middle) USANS instrument schematic. (Bottom)
VSANS instrument schematic. (Courtesy of NCNR)
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Fig. 10 Image of 2D detector data collected on iron oxide nanoparticles in water with (top)
circular averaged I(Q), (middle) sector averaged I(Q), and (bottom) annular averaged I(Q)

7 Polarization Analysis

Normally, the neutron source is unpolarized, so the neutron moments point in all
directions. However, very interesting physics can be done if the neutron moments
have a large degree of alignment or polarization. (Polarization analysis can occur
using any of the scattering techniques, but it is only discussed here for SANS
and NR, see Fig. 13, due to space constraints. The basic principles apply for all
methods.) While this polarization can originate from a large magnetic field applied
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Fig. 11 Iron oxide nanoparticles in water, fit with a (left) spherical model and (right) paral-
lelepiped model. Note the difference in the shape of the transition to background of the two models

Fig. 12 Model SANS data of
spheres of different radii

to the neutron beam, in practice, a polarizing device is used.2 For example, a
supermirror (e.g., alternating layers of Fe and Si which reflect away the undesired
spin state), or a helium-3 spin filter (which adsorbs the undesired spin state), or a
Heusler crystal (which has a scattering length of zero for the undesired spin state)
is placed in the beam (see Fig. 9). This polarization is then maintained via a small
guide magnetic field (on the order of 1 mT).

Experimentally, once you have a polarized beam, the neutrons are labeled as spin
up (parallel to the guide field) or spin down (antiparallel to the guide field). When
the polarized neutrons interact with a material, their spin direction can change.

2At NCNR, the incident polarization on the two SANS instruments is done with a V-shaped
supermirror cavity.
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Fig. 13 (Top) Schematic of SANS including polarization of the neutron beam. (Bottom)
Schematic of NR including polarization of the neutron beam (Courtesy of NCNR)

For magnetic materials, the non-spin flip scattering (spin-up to spin-up scattering
and spin-down to spin-down scattering) represents nuclear scattering; the spin flip
scattering (spin-up to spin-down scattering and spin-down to spin-up scattering) rep-
resents magnetic scattering only. The components of the magnetization parallel and
perpendicular to the applied magnetic field can be separated when the polarization
is perpendicular to the scattering wave vector, and the vector magnetization within
the material can be unambiguously determined.

The next step is to be able to flip the neutron polarization at will, to create
spin-up and spin-down configurations. A flipper is used to change the direction
of the moment of the neutron relative to the guide field. This is typically done
by having a coil of wire to cancel the guide field and a second coil to create a
field perpendicular to reverse the moment of the neutron. (While this is actually
a quantum mechanical effect, like many things in magnetism, a simple classical
analogue works: the perpendicular field causes a torque to act on the neutron and
rotate it.) After the polarized beam passes through the material, the polarization of
the neutron beam must be determined. This is often done in SANS with polarized
helium-3 cells, in which neutrons of one spin state are absorbed, while neutrons
with the opposite orientation travel through relatively unimpeded [15].

Data reduction of polarized neutrons is more complicated than the unpolarized
data [15]. Additional corrections include the efficiency of the polarizers (supermir-
ror and/or He-3 cell) and, if appropriate, the decay of the He-3 cell polarization
as a function of time. Polarization analysis permits the unique determination of
the magnetization vector within a sample. This has already demonstrated enor-
mous utility for determining the vector magnetization when studying magnetic
nanoparticles and thin films. At low fields, it has shown the internal magnetic
domain structure (see Fig. 14), enabling correlation of the magnetic domains with
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Fig. 14 Internal magnetic domain in iron oxide nanoparticles as determined with polarization
analysis in SANS. (a), (b), and (c) show the parallel and perpendicular magnetic scattering and
their fits for three different iron oxide nanoparticles while (d), (e), and (f) are schematics of the
domain structure from (a), (b), and (c) respectively. (Used with permission from [16])

the AC field response and therefore the heat generation for the cancer treatment
hyperthermia [16]. It has also been used to demonstrate surface spin canting in
compositionally and structurally uniform magnetic nanoparticles under a nominally
saturating magnetic field (see Fig. 15) and how the surface spins change as a
function of applied magnetic field and temperature [17].
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Fig. 15 Surface spin canting on iron oxide nanoparticles as determined with polarization analysis
in SANS. (a) is the structure factor and (b) is the form factor for the nuclear and magnetic (parallel
and perpendicular) scattering. (c) is a schematic of the magnetic structure within the iron oxide
nanoparticle based on (a) and (b). (Used with permission from [17])

Early studies (see Fig. 16) of bilayers of Fe/Gd thin films demonstrated the
power of polarized NR, as they were able to identify the antiferromagnetic coupling
between the layers and demonstrate the diverse range of magnetic orientations that
resulted as a function of layer thickness and temperature.

8 Time Resolution

This is naturally done at a spallation source, where all the neutrons are time stamped
in order to determine their energies. It is also possible to time stamp neutrons
from a reactor. This leads to two forms of time resolution: time-of-flight (TOF)
and time-resolved (TR). TOF is limited by the spread of the neutron beam as it
travels, resulting in overlap of different time signals, thereby determining the size
of the bins. Time-resolved puts a chopper in the beam (see Fig. 17), breaking
up the neutron flux into small packets. These can then be time synchronized to
something else, like an oscillating electric or magnetic field or sinusoidal stress. The
neutrons can then be binned according to when they interacted with the sample with
respect to the AC stimulation, permitting tracking of the time-dependent response.
TR is limited by the spread of the beam packet (due to having a polychromatic
beam even after monochromating) during flight from the sample to the detector
as well as detector electronics. Another limitation is that the chopper throws away
neutrons, further reducing your signal. Early work has confirmed expected behavior
in magnetic nanoparticles (see Fig. 18).

9 Summary

In summary, neutrons are a unique and powerful tool with which to characterize
materials. Advantages included in situ measurements and the ability to highlight
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Fig. 16 Experimental
polarized NR data on Fe/Gd,
demonstrating the formation
of spin canted states in the
Gd. (Used with permission
from [18])
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Fig. 17 Time-resolved SANS instrument schematic (Used with permission from [7])

different aspects of the sample with contrast matching. Furthermore, neutrons also
have exquisite sensitivity to the vector magnetization on the nanoscale. However,
although access is readily available via user proposal system, neutrons do require
specialized facilities. Therefore, if it is possible to measure the same property with
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Fig. 18 TOF data on magnetic nanoparticles showing reversal behavior at low frequencies, and
then blocked behavior at low fields and high frequencies, before reversal behavior reappears at
high fields and high frequencies. (Used with permission from [19])

a lab-scale technique, that is preferable (especially as neutron experiments often
require more material and longer counting times than other scattering methods).
However, there are a number of cases where neutrons are the best method available,
such as vector magnetization of an ensemble of nanoparticles or magnetization
reversal mechanisms in magnetic thin films, to name just two. This then opens up
new avenues of research and new insights into materials.
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Neutron Scattering in Magnetism:
Fundamentals and Examples

Javier Campo and Víctor Laliena

Abstract In this chapter, an up-to-date survey of theoretical concepts and experi-
mental results in the field of the neutron scattering techniques applied to magnetism,
and their relevance to experiments in real materials, is presented. Main emphasis
of the chapter is to enlarge the use of these techniques among the researchers
(physicist, chemists, engineers, etc.) in the area of magnetism and magnetic
materials. For that reason we do not enter deeply in topics as neutron production,
neutron optics, detectors, instrumentation, etc., but we focused the chapter on the
neutron scattering applications in such a field.

Along this chapter, together with some basic concept on quantum mechanics,
solid-state physics, magnetism, and symmetry, we introduce the main theoretical
concepts, peculiarities, and language, of the neutron scattering techniques, and we
particularize it to the crystalline matter. In a second part, we briefly introduce the
most commonly employed techniques (powder diffraction, single crystal diffraction,
polarization analysis, inelastic, SANS, reflectivity, etc.) and how these techniques
are applied to understand different magnetic phenomena and magnetic materials,
trying to cover a large variety of topics with interest in magnetism. Every time, the
examples showed here show how neutrons can enlighten problems that are quasi-
impossible to be solved with other techniques.
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1 Introduction

Since the 1950s, when the first experiments using neutron beams were reported,
the neutron scattering techniques are of paramount importance in the study of
any type of magnetism and magnetic materials. It is due to the fact that the
neutron carries a spin, and therefore a magnetic moment, that can interact, via
the dipolar magnetic interaction, with the different sources of magnetism in the
matter (unpaired electrons, magnetic nuclei, etc.). In this chapter, it is not intended
to deduce from the scattering theory all the equations governing the scattering,
magnetic or nuclear, of neutrons by matter, but only the mathematical expressions,
and their approximations, necessary to understand the experiments are described.

Different sets of canonical experiments, related to different neutron scattering
techniques, will be explained bearing in mind that the goal of the chapter is to
motivate the readers by showing how the neutron techniques can help in their
scientific problems in the area of magnetism.

The chapter is organized as follows. In Sect. 2 the fundamentals of thermal
neutron scattering theory will be explained, giving only the minimal information to
understand the meaning of the formulae and the approximations employed to obtain
them. In Sect. 3 the scattering theory will be particularized for crystalline matter,
and in Sect. 4 a brief deduction of the scattering of polarized neutrons is given.

In Sect. 5 the concepts of magnetic space groups and the formalism of the
propagation vector to describe magnetic structures are introduced. Then the powder
diffraction techniques, explaining a little bit the Rietveld method, are presented in
Sect. 6. Applications of single-crystal neutron diffraction with unpolarized neutrons
are explained in Sect. 7. In Sects. 8 and 9, the use of polarized neutrons in single
crystals, by exploring the potentiality of Blume-Maleev equations, is highlighted.
The small-angle neutron scattering (SANS) techniques are also often employed
to solve important problems in magnetism: physics of magnetic nanoparticles,
magnetic clusters, skyrmions, etc. In Sect. 10 examples of the use of these tech-
niques in cubic helimagnets to characterize skyrmionic phases will be shown.
Some ideas of magnetic inelastic scattering are described in Sect. 11, and finally
other neutron scattering techniques (neutron spin echo, neutron reflectivity, and
quasielastic neutron scattering) initially developed to study soft matter and that now
are more and more employed in magnetism will be explained in Sect. 12.

An introduction to the application of neutron techniques to magnetic materials,
with a focus on the physics behind the instrumentation and general data analysis for
SANS, reflectivity, and diffraction, has been described in the previous chapter.

The chosen examples in this chapter comprise several materials showing different
magnetic behaviors: spin glasses, cubic helimagnets, skyrmions, random fields, soli-
tons, single-molecule magnets, organic magnets, multiferroics, battery electrodes,
molecular rotors, etc.

Before starting, let us describe briefly the conventions used in this chapter.
Although in general it is uncommon in physical literature, we found it convenient
to adhere to the crystallographic and spectroscopy conventions and define the wave
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number as the inverse of the wavelength and the frequency as the inverse of time
period, without the 2π factors that are present in the more common convention.
As a drawback, the 2π factors appear in the exponential factors of the Fourier
transforms, but they disappear from many expressions, as, for instance, from the
normalization factors of the Fourier transform. The symbol h denotes the Planck
constant,1 h ≈ 6.626 × 10−34 Js, and, as usual, h̄ = h/2π . Energy and momentum
are related to frequency and wave number by E = hν and p = hk, respectively.

2 Fundamentals of Neutron Scattering

Properties of Neutrons

The neutron is a baryon, an elementary particle formed by three quarks bound by
the strong interaction. Its mass, m=1.67×10−27 kg=939.6 MeV/c2, is almost equal
to the proton mass, and it has an intrinsic angular momentum, or spin, of magnitude
h̄/2. The neutrons are thus fermions and obey the Fermi-Dirac statistics. Neutrons
are stable within the nuclei, but free neutrons are unstable, decaying via the weak
interaction into a proton, an electron, and an antineutrino, with a mean life of ∼881
s. Although it is a neutral particle, its constituent quarks are charged, and thus the
neutron interacts electromagnetically. Its dipolar electric moment does vanish, or, if
it does not, it is extremely small: at the time of writing, the latest experimental result
is quoted as (0.0±1.1stat ±0.2sys)×10−26 |e| ·cm, where the subscripts stat and sys
stand for the statistical and systematic contributions to the uncertainty and e < 0 is
the electron charge [1]. Therefore, the electromagnetic interactions of neutrons are
dominated by its dipolar magnetic moment, described by the quantum operator

�μn = −γμN
1

2
�σ , (1)

where μN ≈ 5.05 × 10−27 J/T is the nuclear magneton, γ = 3.826 is the neutron
g-factor, and �σ are the Pauli matrices acting on the neutron spin space.

Neutrons are produced in nuclear reactions and as a product of the fission of
heavy nucleus, such 252Cf, 235U, etc. It is difficult to have intense neutron sources.
At present, such intense sources are of two types: nuclear reactors, in which the
neutrons are a by-product of the fission of the nuclear fuel, and spallation sources,
in which neutrons are produced when a beam of high energy protons, accelerated
by linear accelerators (LINAC), impacts on a heavy metal target.

According to their energy, in meV, neutrons are customarily classified into cold
(0.1–10), thermal (10–100), hot (100–500), and epithermal (>500). The rest energy

1Occasionally, the symbol h will be used to denote one of the Miller indices, but the context will
resolve any ambiguity.
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of the neutron is many orders of magnitude higher than the kinetic energy of these
kinds of neutrons, which are thus non-relativistic particles, with energy given by
E = h2k2/2m, where k = 1/λ is the wave number and λ the wavelength. This has
a very interesting consequence for the study of condensed matter systems, since the
wavelength of neutrons with energy of the order of meV, which corresponds to the
excitation energies of many systems, is in the range of the Å, which corresponds to
the inter-particle distances in the systems. In comparison, the energy of the X-rays
with such wavelengths is in the range of the keV, orders of magnitude higher than
the excitation energies of condensed matter systems.

Being a spin 1/2 particle, the quantum state of a free neutron is completely
characterized by the three components of its wave vector, �k, which form a
continuous set, and a two-component spinor which characterizes the spin state, or
polarization state of the neutron, denoted by |σ 〉. Each spinor is the eigenstate of the
projection of the spin operator �σ onto the direction determined by the expectation
value of the spin operator in this polarization state, 〈σ | �σ |σ 〉, which is a unit vector.
The polarization state of the neutron is completely characterized by this unit vector
which is called the polarization vector of the neutron. In a beam, different neutrons
may be in different polarization states. The polarization vector of the beam, �P ,
is defined as the average of the polarization vectors of all neutrons. Oviously,
its modulus satisfies P ≤ 1. The polarization states of the beam are statistically
described by a 2 × 2 density matrix operator,

 = 1

N

∑
n

|σn〉 〈σn| , (2)

where n labels the neutrons in the beam, N is the number of neutrons, and |σn〉
stands for the normalized spin-wave function (spinor) of the n-th neutron. The
density matrix is Hermitian and satisfies Tr  = 1 and Tr( �σ) = �P . The only
2 × 2 Hermitian matrix that satisfies the two conditions is

 = 1

2

(
I2 + �P · �σ

)
, (3)

where I2 is the two-dimensional unit matrix. The probability of finding a neutron of
the beam in some arbitrary polarization state, |σ 〉, is given by the expectation value
of the density matrix in this state, 〈σ |  |σ 〉, as can be readily checked. Notice that
the expectation values on all possible states, |σ 〉, fully determine the density matrix.
The eigenvectors of  are those of �P · �σ , and its two eigenvalues are given by
(1 ±P)/2. A beam with �P = 0 is called an unpolarized beam. In it, all polarization
states have the same probability.

Notice finally that an orthonormal basis on the neutron spin space is always
associated to a given direction, defined by some unit vector û. Therefore, if the first
vector of the basis is the eigenvector of û · �σ with positive eigenvalue, the second
vector is the eigenvector with negative eigenvalue. Hence, choosing an orthonormal
basis in spin space is tantamount to choosing a quantization axis, and the vectors
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of the basis are the eigenstates of the projection of the spin operator onto the
quantization axis. If we choose the quantization axis along the beam polarization
direction, the vectors of the basis are the eigenstates of the density matrix.

The Scattering Problem

In a scattering experiment, a probe, in our case a neutron beam, impinges a target,
and the resulting scattered beam is detected at a large distance from the target. The
spatial and energy distributions of the scattered neutrons provide a considerable
amount of physical information about the target. The incoming neutron is described
by a plane wave with wave vector �ki and a spin state |σi〉, which is one of the
eigenstates of the incident beam density matrix,  i . If the beam is unpolarized,
any orthonormal basis in spin space can be taken. If the state of target before the
interaction is |ϕi〉, the initial state of the composite neutron-target system is written
as |�kiσi;ϕi〉. A long time after the scattering took place, there will be a certain
probability that the composite system is found in the state |�kf σf ;ϕf 〉. The spin state
of the scattered neutron can be referred to a quantization axis different from that of
the incoming beam, that is, the orthonormal basis {|σf 〉}, need not be the same as the
orthonormal basis {|σi〉}.

In the scattering experiment, the initial neutron beam is prepared according to
some convenient specification, and the scattered neutrons are detected by detectors
conveniently distributed around the target. The differential scattering cross section
is defined as the number of neutrons scattered in the direction k̂f per unit time;
solid angle, d�

k̂f
; and energy, dEf , normalized by the neutron flux, which is the

number of incident neutrons per unit of time and beam cross section area [2]. If Hint
is the interaction Hamiltonian operator for the neutron and the target system, the
differential scattering cross section in the lowest order pertubation theory is given by

(
d2σ

d�
k̂f
dEf

)

σf

= kf

ki

(
2πm

h2

)2

| 〈�kf σf ;ϕf |Hint |�kiσi;ϕi〉 |2δ(Eϕi − Eϕf + hν),

(4)

where Eϕi and Eϕf are the energies of the target before and after the interaction
and hν = Ei − Ef is the difference between the energies of the incident and
scattered neutron. Although the above formula cannot be rigorously derived in a
few lines, since it requires the application of scattering theory [2], the origins of
each ingredient entering (4) can be easily understood. The Dirac delta function,
δ, enforces the conservation of energy in the whole neutron-target system a long
time after the interaction took place, when the interaction energy is negligible. The
matrix element of Hint is the lowest-order perturbation theory approximation to the
probability amplitude that the composite neutron-target system is found in the state
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|�kf σf ;ϕf 〉 after the interaction took place. Its modulus squared divided by h gives
the probability per unit time of finding this final state (compare, for instance, with
the Fermi Golden rule [3]). The density of final neutron states (per unit energy and
per unit solid angle) is mkf /h2, what accounts for the kf factor and one m/h2 factor.
And the incident neutron flux is proportional to the neutron velocity, hki/m, what
introduces the ki in the denominator and another m/h factor.

The initial target pure state, |ϕi〉, is unknown. It is assumed that the target is
in equilibrium, so that its quantum state is actually mixed, given by the density
matrix corresponding to the Boltzmann distribution. This means that we have to
average the right-hand side of expression (4) over the initial target states, |ϕi〉, with
the Boltzmann weight Pϕi = exp(−Eϕi /kBT )/Z , where T is the temperature, kB
the Boltzmann constant, and Z the canonical partition function that ensures the
normalization

∑
ϕi
Pϕi = 1. The final state of the target, |ϕf 〉, is not observed,

so that we have to sum over all of them. Analogously, we have to average over
the polarization state of the incident neutron, |σi〉, which has a probability pσi =
〈σi |  i |σi〉, and, if the polarization state of the scattered neutron is not observed, we
have to sum over |σf 〉. To be general, we assume here that it is observed. Finally,
there are properties of the target that influence the scattering result that are usually
not under control. An example is the isotopic distribution of the nuclei. These
properties have to be treated as a disorder, and we have to average over them with
the proper disorder distribution. We denote this average by a horizontal bar over the
quantities that are averaged. Taking all this into account, (4) becomes

(
d2σ

d�
k̂f
dEf

)

σf

= kf

ki

(
2πm

h2

)2

×
∑
σiϕiϕf

pσiPϕi | 〈�kf σf ;ϕf |Hint |�kiσi;ϕi〉 |2δ(Eϕi − Eϕf + hν).

(5)

Neutron interactions at low energy do not depend on neutron momentum. Hence,
the interaction Hamiltonian contains no derivative with respect to the neutron
coordinates. Since the neutron wave functions are plane waves, the matrix elements
entering the cross section can be partially evaluated as

〈�kf σf ;ϕf |Hint |�kiσi;ϕi〉 =
∫

d3r ei2π �q·�r 〈σf | 〈ϕf |Hint(�r; . . .) |ϕi〉 |σi〉 , (6)

where �r is the neutron position and the ellipsis stands for the target degrees of
freedom on which the interaction hamiltonian depends: the position and momentum
operators of the i-th target particle, �ri and �pi , respectively, and any other operators,
like the spin of the i-the particle, Ii . We have introduced the scattering vector,
�q = �ki − �kf , which is proportional to the momentum transfer vector.



Neutron Scattering Techniques in Magnetism 327

It is convenient to define the amplitude operator

A�q = 2πm

h2

∫
d3r ei2π �q·�r Hint(�r; �r1 �p1I1; . . . , �rNP �pNPINP), (7)

which is a matrix in the neutron spin degrees of freedom and an operator in the
Hilbert space of the target. It has the dimensions of a length. In terms of A�q , the
cross section reads:
(

d2σ

d�
k̂f
dEf

)

σf

= kf

ki

∑
σiϕiϕf

pσiPϕi

×〈ϕi | 〈σi |A†
�q |σf 〉 |ϕf 〉 〈ϕf | 〈σf |A�q |σi〉 |ϕi〉 δ(Eϕi − Eϕf + hν) . (8)

We can write an interesting expression for the cross section by inserting in (8)
the Fourier representation of the Dirac delta function

δ(Eϕi − Eϕf + hν) = 1

h

∫ ∞

−∞
dt e−i2π(Eϕi

−Eϕf
+hν)t/h

, (9)

and using the relations e−iEϕi
t/h̄ |ϕi〉 = U(t) |ϕi〉, 〈ϕf | eiEϕf

t/h̄ = 〈ϕf |U†(t), and

U†(t)A�q U(t) = A�q (t), (10)

where U(t) is the time evolution operator of the target in the Schrödinger picture
and A�q (t) is the Heisenberg operator that coincides with A�q at t = 0. Using the
notation 〈O〉 for the thermal quantum average of any operator O,

〈O〉 =
∑
ϕ

Pϕ 〈ϕ|O |ϕ〉 , (11)

we get

(
d2σ

d�
k̂f
dEf

)

σf

= kf

ki

∫ ∞

−∞
dt

h
e−i2πνt

∑
σi

pσi

〈
〈σi |A†

�q(0) |σf 〉 〈σf |A�q(t) |σi〉
〉
.

(12)
The sum over σi gives the density matrix of the incident beam,  i , so that the above
equation can be written as

(
d2σ

d�
k̂f
dEf

)

σf

= kf

ki

∫ ∞

−∞
dt

h
e−i2πνt Tr

〈
A†

�q(0)Pσf A�q(t)  i
〉
, (13)

where Pσf = |σf 〉 〈σf | is the projector onto the neutron final spin state and Tr stands
for the trace in neutron spin space.
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We see that the cross section contains a big amount of information about the
target. The interaction Hamiltonian and A�q depends on the degrees of freedom
(coordinates, spin, etc.) of the target particles. Equation (13) shows that the
scattering cross section is related to the Fourier transform of the time correlation
function of the target degrees of freedom involved in the interaction with the
neutron.

We find it convenient to use the following notation for the Fourier transform of
the time correlation function of two operators A and B acting on the target Hilbert
space:

〈AB〉ν =
∫ ∞

−∞
dt

h
e−i2πνt 〈A(0)B(t)〉 , (14)

so that we have the compact expression:

(
d2σ

d�
k̂f
dEf

)

σf

= kf

ki
Tr

〈
A†

�q Pσf A�q  i
〉
ν
. (15)

The sum over a complete set of orthonormal final polarization states gives the
intensity of the scattered beam, relative to that of the incoming beam, propagating
along k̂f with energy between Ef and Ef + dEf . Taking into account that∑

σf
Pσf = I2, this intensity is given by

I�q ν = kf

ki
Tr

〈
A†

�q A�q  i
〉
ν
. (16)

The density matrix of the scattered beam,  f , can be obtained from Eq. (12) and
from it the polarization vector of the scattered beam, which is given by

�Pf = 1

I�q ν
Tr

〈
A†

�q �σ A�q  i
〉
ν
. (17)

For t → ∞ the correlation between two operators disappears, and we have

lim
t→∞ 〈A(0)B(t)〉 = lim

t→∞ 〈A(0)〉 〈B(t)〉 = 〈A〉 〈B〉 , (18)

where we used the invariance of the system under time translation and the fact
the Heisenberg operators coincide with the Schrödinger operators at t = 0. If the
product 〈A〉〈B〉 does not vanish, then 〈AB〉ν is singular, since the integrand of the
right-hand side of (14) does not vanish for t → ∞. We may isolate the singularity
by substracting 〈A〉〈B〉 from the integrand, what makes the integral convergent (non-
singular), and adding the remaining part, which is

∫ ∞

−∞
dt

h
e−i2πνt 〈A〉 〈B〉 = δ(hν) 〈A〉 〈B〉 , (19)
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so that we have

〈AB〉ν =
∫ ∞

−∞
dt

h
e−i2πνt [〈A(0)B(t)〉 − 〈A〉 〈B〉] + δ(hν) 〈A〉 〈B〉 . (20)

Applying Eq. (20) to (15), we separate the scattering into elastic and inelastic:

(
d2σ

d�
k̂f
dEf

)

σf

=
(

d2σ (e)

d�
k̂f
dEf

)

σf

+
(

d2σ (i)

d�
k̂f
dEf

)

σf

(21)

where
(

d2σ (e)

d�
k̂f
dEf

)

σf

= δ(Ei − Ef ) 〈σf | 〈A�q〉  i 〈A†
�q〉 |σf 〉 . (22)

is the elastic scattering cross section and

(
d2σ (i)

d�
k̂f
dEf

)

σf

= kf

ki
Tr

〈
(A†

�q − 〈A†
�q〉)Pσf (A�q − 〈A�q〉)  i

〉
ν
. (23)

is the inelastic scattering cross section. We used the properties of the trace operation
to write the elastic cross section in the form of Eq. (22).

It is customary to present the integrated elastic cross section by integrating (22)
over dEf :

(
dσ (e)

d�
k̂f

)

σf

= 〈σf | 〈A�q〉  i 〈A†
�q〉 |σf 〉 . (24)

One has to bear in mind that kf = ki in the above equation.
The probability of finding a neutron in the scattered beam with polarization state

σf is given by 〈σf |  f |σf 〉, where  f is the spin density matrix of the scattered beam.
From Eq. (24) we see that for the elastic scattered beam  f is given by

 f = 1

I�q
〈
A�q

〉
 i

〈
A†

�q
〉
, (25)

where

I�q =
∑
σf

〈σf | 〈A�q〉  i 〈A†
�q〉 |σf 〉 (26)

is proportional to the intensity of the elastically scattered beam in the k̂f direction.
Therefore, the polarization vector of the elastically scattered beam is given by
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�Pf = 1

I�q
Tr

(〈
A�q

〉
 i

〈
A†

�q
〉 �σ

)
. (27)

Let us stress that  f and �Pf depend on the direction at which the scattered beam is
observed, given by k̂f . The above equations will be used later in the introduction to
polarization analysis.

Neutron Interactions at Low Energy

Let us study the interaction Hamiltonian of low-energy neutrons with matter.
A free neutron interacts with an atom through two kinds of processes: the nuclear
interaction with the nucleus and the electromagnetic interaction of the neutron
magnetic moment with the charge of the nucleus and the electrons.

The nuclear force is very complex and strong, so that it cannot be treated
perturbatively in general. However, it is also extremely short ranged, its range being
orders of magnitude shorter than the wavelength of slow neutrons (with energies
smaller than a few eV). Therefore, slow neutrons are effectively scattered off a
point like nucleus, and in this case the scattering is essentially isotropic: only the s-
wave gives a substantial contribution to the amplitude of the scattered wave, which
therefore is given by

ψS(�r ) = −b

r
ei2πkr , (28)

where k is the neutron wave number, �r is the vector position of the neutron relative
to the nucleus, and b is the so-called scattering length, which in general is a complex
number. The minus sign is conventionally chosen so that the real part of b is positive
for a repulsive force. The imaginary part of b is only significant in the vicinity of
capture resonances, that is, for nuclei that strongly absorb slow neutrons. All the
complexity of the nuclear force is embodied in the scattering length, which can be
obtained from measurements. This allows us to construct an effective potential, the
Fermi pseudopotential [4], which gives the exact result for scattering in the lowest
order of perturbation theory (the first Born approximation):

VF(�r ) = h2

2πm
b δ(�r ), (29)

where m is the neutron mass and δ(�r ) the Dirac delta function. Indeed, an
elementary application of perturbation theory gives (28) and σ ∼ |b|2 from the
potential (29).

It is worthwhile to stress that (29) is not the complicated true nuclear interaction
Hamiltonian, which is strong and non-central. The Fermi pseudo-potential is a
simple way to describe effectively the scattering of slow neutrons with a single
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parameter, b. The scattering lengths may be in principle computed from the nuclear
interaction Hamiltonian, but this is a formidable problem. Fortunately, they are
available from measurements.

The facts that the size of the atom is ∼1 Å = 10−10 m, the size of the nuclei is
∼10−14 m, and the short range of the neutron-nuclei interaction, have as immediate
consequence the high penetration power of neutrons in matter, except if there are
absorbing isotopes. We can say that from the point of view of neutrons, the matter
is empty, because they only see the nuclei which are ∼104 times smaller than the
atoms. This consequence facilitates the experiments with neutron beams using very
complex sample environments, which are easily traversed by the neutrons. We will
explain later that neutrons are also able to see the unpaired electrons at the atoms.

The nuclear interactions depend strongly on the spin of the nucleus and the
neutron, and the above discussion holds for given total spin states of the neutron-
nucleus system. That is, b in the above equations depends on the total spin of the
neutron-nucleus system, which can take two values: J± = I ± 1/2, where I is
the total spin of the nucleus.2 Therefore, we have actually two scattering lengths,
b+ and b−, corresponding to the two composite states with total spin J+ and
J−, respectively. This dependence on the total spin can be taken into account
by introducing a scattering amplitude operator, B, which, due to the rotational
symmetry, can be written as [5]

B = A + B
1

2
�σ · �I, (30)

where the components of matrix vector �σ are the Pauli matrices that act on the
neutron spin degrees of freedom, �I is the nucleus spin operator, and

A = 1

2I + 1
[(I + 1)b+ + Ib−], B = 2

2I + 1
(b+ − b−). (31)

Thus, we have to substitute the complex number b in (29) by the operator in spin
space B. If the target contains N nucleus, labelled by the index n and located at �Rn,
the nuclear interaction Hamiltonian is

H(n)
int = h2

2πm

N∑
n=1

Bnδ(�r − �Rn), (32)

with Bn given by (30).
The electromagnetic interactions are long ranged but very weak, and thus can

be treated perturbatively in the Born approximation. In the scales involved in the
problem, the neutron can be considered electromagnetically as a neutral point
particle with a magnetic moment. Any other residual electromagnetic interaction

2Note that since we are dealing with s-wave scattering, the total spin of the system is conserved.
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originating from the internal structure of the neutron (higher-order multipoles) is
much smaller than the magnetic dipolar interaction. Since the nuclear magneton
is two orders of magnitude smaller than the Bohr magneton, the interaction of
the neutron magnetic moment with the nucleus is about two orders of magnitude
weaker than the interactions with the electrons. The neutron-atom electromagnetic
interaction is thus dominated by the interaction of the neutron magnetic moment
with the electrons [6–8]. Generically, the electromagnetic interaction is introduced
by substituting the momentum operator of the particle, �p, by �p−q �A(�r ), where q is
the electric charge of the particle and �A(�r ) is the electromagnetic vector potential at
the position of the particle. To this we have to add the dipole-dipole interaction
between the intrinsic magnetic moments of the electron and the neutron, which
is of relativistic origin and is derived from the Dirac equation [8]. The dipole-
dipole interaction potential can be written alternatively as the energy of the electron
intrinsic magnetic moment in the magnetic field created by the intrinsic magnetic
moment of the neutron or as the energy of the neutron magnetic moment in the
magnetic field created by the intrinsic magnetic moment of the electron. We will
use the former form.

The vector potential at a point �rj by the magnetic moment of the neutron �μn,
located at point �r , is

�An(�rj − �r ) = μ0

4π
∇j × �μn

|�rj − �r | . (33)

It originates a magnetic field

�Bn(�rj − �r ) = μ0

4π
∇j ×

(
∇j × �μn

|�rj − �r |
)

= μ0

4π
∇ ×

(
∇ × �μn

|�rj − �r |
)
, (34)

where ∇ and ∇j stand for the gradient with respect to �r and �rj , respectively, and
μ0 = 4π × 10−7H/m is the vacuum permeability.

Let us write the Hamiltonian, H, of the system composed of a free neutron of
momentum �k and position �r and a system of Ne electrons and Nn nuclei. Let us
denote by �pj and �rj the j -th electron momentum and position, respectively, and by
�Rn, �Pn, and Mn the n-th nucleus momentum, position, and mass, respectively. We

have

H =
Nn∑
n=1

1

2Mn

P 2
n +

Ne∑
j=1

1

2me

[
�pj − e �A(�rj )

]2 + Us(�rj , �Rn)

+ 1

2m
k2 + H(n)

int −
Ne∑
j=1

�μj · �Bn(�rj − �r ),
(35)
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where US contains the interaction of the electron-nuclei system, �μj is the magnetic
moment operator of the j -th electron, and �A(�rj ) is the total vector potential at the
position of the j -th electron and is a superposition of the internal vector potential
of the electron-nuclei system, �AS, any applied external field, �Aext, and the vector
potential due to the neutron, �An:

�A(�rj ) = �AS(�rj ) + �Aext(�rj ) + �An(�rj − �r ). (36)

Notice that the vector potential is absent from the neutron kinetic energy term since
it is a neutral particle, and, as discussed before, it is neglected in the nuclei terms.
The last term in (35) is the dipole-dipole interaction between the electrons and
the neutron. One has to bear in mind, when dealing with (35), that momentum
and position of the same particle do not commute: they are operators that satisfy
canonical commutation relations.

Let us write H in the form

H = HS + 1

2m
k2 + H(n)

int + H(m)
int (37)

where HS is the Hamiltonian of the electron-nuclei system in absence of any
neutron, and

H(m)
int = μ0μB

2π
�μn ·

Ne∑
j=1

[
− 1

h̄

�rj − �r
|�rj − �r |3 × �pj + ∇ ×

(
∇ × �sj

|�rj − �r |
)]

(38)

is the magnetic interaction Hamiltonian, neglecting the terms quadratic in �A, which
are quadratic in e and thus two orders of magnitude smaller than the linear terms.
In deriving H(m)

int we have used �pj = −ih̄∇j and ∇j · �An = 0. As usual, μB =
−eh̄/2me ≈ 9.27 × 10−24J/T is the Bohr magneton, and we set �μj = −2μB�sj ,
where �sj is the spin operator of the j -th electron in units of h̄, whose eigenvalues are
±1/2. We will see that the first and second terms within the square brackets of (38)
give the magnetic scattering due to orbital and spin magnetic moments, respectively.

Nuclear Scattering

For nuclear scattering (32), the A�q operator (7) takes the simple form

A(n)
�q =

Nn∑
n=1

(
An + 1

2
Bn

�In · �σ
)

ei2π �q· �Rn. (39)
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We will consider here the case of real An and Bn (no absorption). We have to
compute the time correlation function entering the right-hand side of (13)

Tr 〈A(n) †
�q (0)Pσf A

(n)
�q (t)  i〉, (40)

The result is obtained straightforwardly after introducing the physically reasonable
assumptions enumerated in the following list.

1. The nuclear spin dynamics are very weakly correlated to the nuclear motion, so
that the correlation

〈
Iαn (0)I

β

n′(t)e−i2π �q· �Rn′ (0)ei2π �q· �Rn(t)
〉

(41)

factorizes as

〈
Iαn (0)I

β

n′(t)
〉〈

e−i2π �q· �Rn′ (0)ei2π �q· �Rn(t)
〉
. (42)

2. The nuclei are not polarized, so that 〈�I〉 = 0.
3. The spins of different nuclei are also weakly coupled and therefore essentially

uncorrelated, so that 〈Iαn (t)Iβn′(0)〉 = 〈Iαn (t)Iβn (0)〉 δnn′ .
4. The dynamics of the nuclear spins are much slower than the orbital dynamics,

since the interactions of the nuclear spins are in general very weak. We then
neglect the time dependence of 〈Iαn (t)Iβn (0)〉.

5. The nuclear spin motion is nearly random, and therefore

〈Iαn Iβn 〉 = 1

3
〈�I2〉δαβ = 1

3
In(In + 1)δαβ. (43)

6. The isotopic probability distributions of nuclei n and n′ are independent, which
means

AnAn′ = An An′ (1 − δnn′) + A2
n δnn′ = An An′ + (A2

n − A
2
n)δnn′ . (44)

From these assumptions we have

∑
α,β

1

4
BnBn′ 〈Iα

n
(t)Iβ

n′(0)〉 Tr(σαPσf σβ i) = 1

4
B2
nIn(In + 1) δnn′ 〈σf |  i |σf 〉 ,

(45)
where we used

∑
αβ δαβσα iσβ = 3 i .

It is convenient to define the coherent and incoherent scattering length as,
respectively, bcoh,n = bn = An and

binc,n =
[
(A2

n − A
2
n) + (1/4)B2

nIn(In + 1)
]1/2

. (46)
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The average is over isotope abundance in the target.
Taking into account the above considerations, it is straightforward to obtain

Tr 〈A(n) †
�q (0)PσfA

(n)
�q (t) i〉 =

∑
nn′

(bnbn′ + b2
inc,nδnn′)〈e−i2π �q· �Rn′ (0)ei2π �q· �Rn(t)〉 〈σf |  i |σf 〉 . (47)

By definition, the density matrix of a beam is the matrix whose expectation value
in a spin state gives the probability of such state in the beam. Equation (47) shows
that, in the case of nuclear scattering by unpolarized nuclei, the density matrix of the
scattered beam is the same as the density matrix of the incident beam, so that there
is no change in polarization. Since polarization is uninteresting at this point, in the
remaining of this section, we will sum over the polarization states of the scattered
neutrons.

Equation (47) allows us to separate the nuclear scattering cross section into
coherent and incoherent components

d2σ (n)

d�
k̂f
dEf

= d2σ
(n)
coh

d�
k̂f
dEf

+ d2σ
(n)
inc

d�
k̂f
dEf

, (48)

where

d2σ
(n)
coh

d�
k̂f
dEf

= kf

ki

∑
nn′

bnbn′ 〈e−i2π �q· �Rn(0)ei2π �q· �Rn′ (t)〉ν (49)

is the coherent nuclear scattering cross section and

d2σ
(n)
inc

d�
k̂f
dEf

= kf

ki

∑
n

b2
inc,n〈e−i2π �q· �Rn(0)ei2π �q· �Rn(t)〉ν (50)

is the incoherent nuclear scattering cross section. Remember that 〈AB〉ν is defined
in Eq. (14). Notice that, in spite of the appearance due to the condensed notation,
the two operators within brackets in Eq. (50) are not inverse, since they are taken at
different times.

Notice the big difference between coherent and incoherent scattering. The former
gives the Fourier transform of the time correlation function between pairs of nucleus
[9]. Indeed, in the case of a monoatomic target, it is usual to write the scattering cross
section as

d2σ

d�
k̂f
dEf

= σcoh

4π

kf

ki
Nn Scoh(�q, ν) + σinc

4π

kf

ki
Nn Sinc(�q, ν) (51)
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where σcoh = 4πb2
coh, σinc = 4πb2

inc, and Scoh and Sinc are called the coherent and
incoherent scattering functions,3 given, respectively, by

Scoh(�q, ν) = 1

Nn

∑
nn′

〈e−i2π �q· �Rn(0)ei2π �q· �Rn′ (t)〉ν (52)

and

Sinc(�q, ν) = 1

Nn

∑
n

〈e−i2π �q· �Rn(0)ei2π �q· �Rn(t)〉ν . (53)

The coherent scattering function is the Fourier transform of the time-dependent
pair correlation function G(�r, t) [9],

Scoh(�q, ν) =
∫

dt

h
e−i2πνt

∫
d3r ei2π �q·�r G(�r, t), (54)

which is defined by4

G(�r, t) = 1

Nn

∑
nn′

∫
d3r ′〈δ[�r − �r ′ − �Rn(0)]δ[�r ′ − �Rn′(t)]〉. (55)

Analogously, the incoherent scattering function is the Fourier transform of the
time-dependent self-correlation function Gs(�r, t) [9]

Sinc(�q, ν) =
∫

dt

h
e−i2πνt

∫
d3r ei2π �q·�r Gs(�r, t), (56)

where

Gs(�r, t) = 1

Nn

∑
n

∫
d3r ′〈δ[�r − �r ′ − �Rn(0)]δ[�r ′ − �Rn(t)]〉. (57)

It is also convenient to define the intermediate functions as

Icoh(�q, t) =
∫

d3r ei2π �q·�r G(�r, t) (58)

3The scattering function is also called response function, dynamic scattering function, dynamic
structure factor, or scattering law.
4These expressions have to be manipulated carefully, since the Heisenberg operators �Rn(0) and
�Rn′ (t) do not commute for t �= 0. For instance,

exp{−i2π �q · �Rn(0)} exp{i2π �q · �Rn′ (t)} �= exp{i2π �q · [ �Rn′ (t) − �Rn(0)]}.
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Iinc(�q, t) =
∫

d3r ei2π �q·�r Gs(�r, t) (59)

These ideas are not specific to monoatomic targets, not even to nuclear scattering.
It is a general feature that coherent scattering provides information about the time-
dependent correlations between pairs of degrees of freedom in the target, while
incoherent scattering provides information about the time self-correlation function
of single degrees of freedom in the target.

Elastic Nuclear Scattering

After summing over the neutron final spin states, an expression for the elastic
nuclear scattering is obtained from [c.f. Eq. (22)].5

Tr
[〈A(n) †

�q 〉〈A(n)
�q 〉 i

] =
∑
nn′

(bnbn′ + b2
inc,nδnn′)〈e−i2π �q· �Rn〉〈ei2π �q· �Rn′ 〉. (60)

In fluids, the particle motion is translational, or diffusive, and takes place in a region
of macroscopic dimensions, much larger than 1/q, and thus the expectation value
〈exp{i2π �q · �Rn}〉 vanishes unless �q = 0. But ν = 0 and �q = 0 mean that there is no
scattering at all, so that in liquids all scattering is inelastic. In solids, however, the
particle motion takes place around an equilibrium position and is limited to a region
comparable to 1/q, and therefore 〈exp{i2π �q · �Rn}〉 �= 0. Hence, elastic scattering in
solids is very important and often dominant.

Expression (60) allows us to obtain the coherent and incoherent nuclear elastic
cross sections, which are given by

dσ
(n, e)
coh

d�
k̂f

=
∣∣∣∑

n

bn〈ei2π �q· �Rn〉
∣∣∣2
, (61)

and

dσ
(n, e)
inc

d�
k̂f

=
∑
n

b2
inc,n

∣∣∣〈ei2π �q· �Rn〉
∣∣∣2
, (62)

respectively. Notice again the big difference between coherent and incoherent elastic
scatterings. The coherent scattering is characterized by the strong interference
between the scattered waves, which produces peaks in the scattered intensity along
specific directions, determined by the sample atomic structure, that frequently are
very sharp. This interference is completely absent in the incoherent scattering that is

5Equivalently the elastic nuclear scattering can be obtained from the t → ∞ limit of Eq. (47).
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entirely due to the presence of disorder, which cancels the interference terms. Thus,
the contribution of the incoherent scattering is often merely a smooth background.

Inelastic Nuclear Scattering

The inelastic scattering cross section is obtained by subtracting the elastic scattering
from the whole cross section. The explicit expressions are

d2σ
(n,i)
coh

d�
k̂f
dEf

= kf

ki

∫
dt

h
e−i2πνt

∑
nn′

bnbn′

×
[〈

e−i2π �q· �Rn(0)ei2π �q· �Rn′ (t)
〉 − 〈

e−i2π �q· �Rn
〉〈

ei2π �q· �Rn′
〉]

(63)

for the coherent nuclear inelastic cross section and

d2σ
(n,i)
inc

d�
k̂f
dEf

= kf

ki

∫
dt

h
e−i2πνt

∑
n

b2
inc,n

×
[〈

e−i2π �q· �Rn(0)ei2π �q· �Rn(t)
〉 − 〈

e−i2π �q· �Rn
〉〈

ei2π �q· �Rn
〉] (64)

for the incoherent nuclear inelastic component.
In fluids, the elastic scattering is absent, and the time-dependent pair correlations

and self-correlations are related to mean inter-particle distances, velocity correla-
tions, and other properties of the fluid motion [10].

In solids, the nuclei perform oscillations about some equilibrium position. Let
�Rn = �R e

n + �un, where �R e
n = 〈 �Rn〉 denotes the equilibrium position and �un is the

quantum operator that describes the displacements from the equilibrium position.
Then (63) can be written as

d2σ
(n,i)
coh

d�
k̂f
dEf

= kf

ki

∫
dt

h
e−i2πνt

∑
nn′

bnbn′ei2π �q·( �R e
n′− �R e

n )Tn(−�q )Tn′(�q )

×
[〈

e−i2π �q·�un(0)ei2π �q·�un′ (t)〉
Tn(−�q )Tn′(�q ) − 1

]
,

(65)

where

Tn(�q ) = 〈
ei2π �q·�un 〉 (66)

is the so called Debye–Waller factor.
If we assume that the displacements from the equilibrium position are small, the

dynamics of �un is approximately described by a set of coupled harmonic oscillators.
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Then, �un(t) can be expanded in terms of normal modes, the phonons, which describe
the collective excitations of the system, as

�un(t) =
∑
r

√
h

2Mnνr
�ξr,n

(
e−i2πνr t ar + ei2πνr t a†

r

)
, (67)

where Mn is the mass of the n-th nucleus, r = 1, . . . , Np labels the phonon

branches, Np is the number of different phonon branches, and νr , �ξr,n, ar and a†
r are

the frequency, the polarization vector, and the annihilation and creation operators
of the corresponding phonon, respectively. The polarization vectors are real and
dimensionless and satisfy the normalization and closure conditions

∑
n

�ξr,n · �ξr ′,n = δrr ′ ,
∑
r

ξαr,nξ
β

r,n′ = δαβδnn′ . (68)

The numerical factor in the right-hand side of (67) arises from the canonical
commutation relations. Notice that expression (67) is valid for crystalline as well
as for amorphous solids.

The term within brackets in (65) is an even function of �q. We expand it in powers
of �q, and we get only even powers of the components of �q. The term of order 2p is
called the p-phonon term and is interpreted as a sum of scattering events in which p
phonons are involved, some absorbed and some emitted. It is not difficult to get the
1-phonon term, which is the most important since it provides the phonon spectrum.
To second order in �q, we have

〈
e−i2π �q·�un(0)ei2π �q·�un′ (t)〉

Tn(−�q )Tn′(�q ) − 1 = 4π2 〈[�q · �un(0)][�q · �un(t)
]〉 + O(q4). (69)

From Eqs. (69) and (67), we see that we have to compute 〈arar ′ 〉, 〈ara†
r ′ 〉, 〈a†

r ar ′ 〉,
and 〈a†

r a
†
r ′ 〉. The phonons form an ideal Bose gas of non-conserved particles; thus it

has zero chemical potential, and, at temperature T , the thermal quantum average of
an operator O is given by

〈O〉 = 1

Z

∞∑
n1=1

· · ·
∞∑

nNp=1

〈n1, . . . , nNp |O |n1, . . . , nNp〉 exp
(

−
Np∑
r=1

nrhνr/kBT
)
,

(70)
where Z is the partition function and |n1, . . . , nNp〉 is the state that contains nr

phonons of type r . Clearly we have 〈arar ′ 〉 = 〈a†
r a

†
r ′ 〉 = 0 and

〈ara†
r ′ 〉 = 〈nr 〉 δrr ′ , 〈a†

r ar ′ 〉 = [1 + 〈nr 〉] δrr ′ , (71)

where in the last equation we used the commutation relation [ar , ar ′ ] = δrr ′ and 〈nr 〉
is the avearge value of the number of type r phonons, given by the Bose-Einstein
statistics:
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〈nr 〉 = 1

exp(hνr/kBT ) + 1
. (72)

Then we have

〈[�q · �un(0)][�q · �un′(t)
]〉 =

∑
r

[
(�q · �ξr,n)(�q · �ξr,n′)∗(1 + 〈nr 〉)ei2πνr t

+(�q · �ξr,n)∗(�q · �ξr,n′)〈nr 〉e−i2πνr t
]
.

(73)

Inserting Eqs. (69) and (73) into (65), we obtain, to 1-phonon level

d2σ
(n,i)
coh,1ph

d�
k̂f
dEf

=kf

ki
(2π)2q2

∑
r

|q̂ · �υr(�q )|2 1

2νr
[(1+〈nr 〉)δ(ν − νr)+〈nr 〉δ(ν + νr)] ,

(74)
where

�υr(�q ) =
∑
n

ei2π �q· �R e
n

bn√
Mn

Tn(�q ) �ξr,n. (75)

The first term in Eq. (74) corresponds to a neutron loosing an amount of energy hνr
by creating one r-type phonon, and the second term to a neutron gaining an amount
of energy hνr by absorbing one r-type phonon. In the case of an amorphous solid,
one has to average over the disorder in equilibrium positions and harmonic forces
between nuclei, and the phonon spectrum is a continuum whose structure is difficult
to disentangle. In this case, the more interesting quantity is the density of states.
For a crystal, however, the phonon spectrum is separated into phonon branches, and
the coherent 1-phonon neutron scattering allows to obtain the dispersion relation of
each branch, as we will see.

An analogous phonon expansion can be developed for the incoherent inelastic
cross section. For a monoatomic system, it can be expressed solely in terms of the
density of states. The 1-phonon contribution to the incoherent scattering has the
relatively simple expression

d2σ
(n,i)
inc,1ph

d�
k̂f
dEf

= Nn
kf

ki

b2
inc

2M
(2π)2q2 |T (�q )|2 Z(ν)

ν

1

2

[
coth

(
hν

2kBT

)
+ 1

]
, (76)

where Z(ν) = ∑
r δ(ν − νr) for ν > 0 is the density of states, and we have defined

Z(−ν) = Z(ν).
Expressions (74) and (76) are valid in the harmonic approximation. Anharmonic

corrections are usually important only at high temperature, but some phenomena
like thermal expansion and thermal conductivity in solids cannot be explained
without anharmonicity [11]. In the harmonic approximation, the Debye–Waller
factor takes the simple form
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Tn(�q ) = e−�q·β̃n �q, (77)

where β̃n is a 3 × 3 matrix that depends on the temperature and on the frequencies
and polarization vectors of phonons.

Magnetic Scattering

Expressions for the magnetic scattering cross section can be obtained by applying
the same ideas as in nuclear scattering. The derivations and the expressions are much
more difficult since the magnetic interaction Hamiltonian is much more complex
than its nuclear counterpart. Furthermore, the atomic wave functions of the electrons
enter the final results, due to the long-range nature of the magnetic interactions.

Let us denote by A(m)

�q the amplitude operator corresponding to magnetic
scattering, defined by Eq. (7). Since the interaction Hamiltonian is given by Eq. (38),
we need the two integrals:

∫
d3r ei2π �q·�r �rj − �r

|�rj − �r|3 = −i4πei2π �q·�rj q̂
q
, (78)

∫
d3r ei2π �q·�r ∇ ×

(
∇ × �sj

|�rj − �r|
)

= 4πei2π �q·�rj q̂ × (�sj × q̂). (79)

Then we can write A(m)

�q = p �M⊥�q · �σ , where the operator

�M⊥�q = −2μB

∑
j

ei2π �q·�rj
[
q̂ × (�sj × q̂) + i

h̄q
( �pj × q̂)

]
, (80)

is called the magnetic interaction vector operator and acts only on the electron
degrees of freedom. The factor −2μB in �M⊥�q is introduced by convenience, so
that, as we will show later, �M⊥�q is the component perpendicular to the scattering
vector of the Fourier transform of the magnetization density operator. With these
definitions, we have p = (m/mp)γ re/2μB, where re = e2/(4πε0mec

2), with
ε0 and c being the vacuum permittivity and the velocity of light, respectively. It
is customary to substitute by one the ratio between the neutron and proton mass,
which is approximately 1.0014. The quantity re is the so-called classical radius of
the electron and has the value re ≈ 2.818 × 10−15m. This is of the same order
of magnitude as the nuclear scattering lengths, which means that the magnetic
scattering of thermal neutrons is of the same order of magnitude as the nuclear
scattering. The constant p = 0.2695 provides the conversion of magnetic moments,
given in Bohr magnetons μB, to scattering lengths in units of 10−14 m.
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Clearly, �M⊥�q is orthogonal to �q and can be written as

�M⊥�q = q̂ × ( �M�q × q̂) = �M�q −
(
q̂ · �M�q

)
q̂, (81)

or, in components

Mα
⊥�q =

∑
β

(
δαβ − qαqβ

q2

)
Mβ

�q , (82)

where

�M�q = −2μB

∑
j

ei2π �q·�rj
[
�sj + i

h̄q
( �pj × q̂)

]
(83)

is called the magnetic structure factor operator. Notice that any operator pro-
portional to �q can be added to �M�q without changing �M⊥�q . This fact can be
used to simplify some expressions of the matrix elements of �M⊥�q . We want to
stress the following important fact: only the component of �M�q perpendicular to

�q contributes to the magnetic neutron scattering. We anticipate here that �M�q is
the Fourier transform of the magnetic moment density, or magnetization density,
operator. Thus, not surprisingly, the magnetic scattering of neutrons is closely linked
to the magnetization density.

Using the general formula (15), we obtain the following expression for the
magnetic scattering cross section in the case that the scattered neutron polarization
state, σf , is observed:

(
d2σ (m)

d��kf dEf

)

σf

= p2 kf

ki

∑
αβ

ρiαβ(σf )
〈
Mβ †

⊥�q (0)M
α
⊥�q (t)

〉
ν
, (84)

where Mα
⊥�q is the α-th component of the �M⊥�q operator, and

ρiαβ(σf ) = 〈σf | σα iσβ |σf 〉 . (85)

After integrating over dEf , the elastic contribution to the magnetic scattering
cross section is

(
dσ (m, e)

d�
k̂f

)

σf

= p2
∑
αβ

ρiαβ(σf )〈Mβ

⊥�q〉∗ 〈Mα
⊥�q〉, (86)

and the inelastic contribution is
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(
d2σ (m, i)

d�
k̂f
dEf

)

σf

= p2 kf

ki

∑
αβ

ρiαβ(σf )

×
∫

dt

h
e−i2πνt

[〈
Mβ †

⊥�q (0)M
α
⊥�q (t)

〉 − 〈
Mβ

⊥�q
〉∗〈Mα

⊥�q
〉]

(87)

If the polarization states of the scattered neutrons are not resolved, we have to
sum over σf in the above expressions. Since

∑
σf

ρiαβ(σf ) = δαβ −
∑
γ

εαβγ P
γ

i , (88)

where εαβγ is the tridimensional totally antisymmetric tensor and �Pi is the
polarization vector of the incident beam, we obtain

dσ (m, e)

d�
k̂f

= p2
[〈 �M⊥�q

〉∗ · 〈 �M⊥�q
〉 − (〈 �M⊥�q

〉∗ × 〈 �M⊥�q
〉) · �Pi

]
(89)

for the magnetic elastic contribution and

d2σ (m, i)

d�
k̂f
dEf

= p2 kf

ki

∫
dt

h
e−i2πνt

{〈 �M†
⊥�q (0) · �M⊥�q (t)

〉−〈 �M⊥�q
〉∗ · 〈 �M⊥�q

〉

+
[〈 �M†

⊥�q (0) × �M⊥�q (t)
〉 − 〈 �M⊥�q

〉∗ × 〈 �M⊥�q
〉] · �Pi

}
(90)

for the magnetic inelastic contribution.

Physical Meaning of the Operator �M⊥�q

We show in the following that �M⊥�q is the component of the Fourier transform of
the magnetization density operator perpendicular to the scattering vector, �q [12]. Let
us write �M⊥�q = �MS⊥�q + �ML⊥�q , where �MS⊥�q and �ML⊥�q are the spin and orbital
contributions to �M⊥�q :

�MS⊥�q = −2μB

∑
j

ei2π �q·�rj q̂ × (�sj × q̂), (91)

�ML⊥�q = −2μB

∑
j

ei2π �q·�rj i

h̄q
( �pj × q̂). (92)
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It is clear that

�MS⊥�q = q̂ × ( �MS�q × q̂), (93)

where �MS�q is the Fourier transform of

�MS(�r ) =
∑
j

−2μB �sj δ(�r − �rj ), (94)

which is the spin magnetic moment density operator, i.e., the magnetization density
operator due to spin.

Let us turm to the orbital part. Since �q · �rj commutes with �pj × q̂, because the
former operator is proportional to the component of �rj parallel to �q and the latter is
the component of �pj perpendicular to �q, we have

�ML⊥�q = −i
μB

h̄q

∑
j

[
ei2π �q·�rj ( �pj × q̂) + ( �pj × q̂)ei2π �q·�rj

]
. (95)

The above equation is equivalent to

�ML⊥�q = i

q

∫
d3rei2π �q·�r �D(�r ) × q̂, (96)

where, bearing in mind that μB = eh̄/2me,

�D(�r ) = − e

2me

∑
j

[
δ(�r − �rj ) �pj + �pjδ(�r − �rj )

]
. (97)

The operator �D(�r ) is −e times the electron probability density current, and therefore
it is the electric current density operator. The solenoidal part of �D is, by definition,
the rotational of the orbital magnetic moment density, �ML(�r ), and the irrotational
part, written as ∇�, is the conduction current:

�D(�r ) = ∇ × �ML(�r ) + ∇�. (98)

The Fourier transform of �D(�r ) is related to the Fourier transforms of �ML(�r ) and
� by

∫
d3rei2π �q·�r �D(�r ) = −i �q×

∫
d3rei2π �q·�r �ML(�r )−i �q

∫
d3rei2π �q·�r�(�r ). (99)

Inserting the above equation into (96), and noticing that the term with �(�r ) does
not contribute to it, since it is proportional to �q, we obtain �ML⊥�q = q̂×( �ML�q × q̂),
where
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�ML�q =
∫

d3rei2π �q·�r �ML(�r ) (100)

is the Fourier transform of the orbital magnetic moment density operator.
Collecting the spin and orbital contributions to �M⊥�q , we obtain

�M⊥�q = q̂ × ( �M�q × q̂), (101)

where the magnetic structure factor operator, �M�q = �ML�q + �MS�q , is the Fourier
transform of the total magnetization density operator, �M(�r ), which is the sum of the
orbital, �ML(�r ), and spin, �MS(�r ), magnetization density operators. Therefore, �M⊥�q
is the perpendicular component of the Fourier transform of the total magnetization
density operator to the direction of the scattering vector.

Let us stress again the important fact that only the component of the magnetic
structure factor operator perpendicular to the scattering vector contributes to the
magnetic neutron scattering.

Matrix Elements of �M⊥�q

The computations of these matrix elements are complex, and we will give here only
some hints to understand the origin of the main ingredients that enter the matrix
elements.

The matrix elements of �M⊥�q between the states |ϕi〉 and |ϕf 〉 cannot be com-
puted generically without making assumptions about the system. For definiteness,
let us consider a system in which the magnetic moments are due to the unpaired
electrons localized at ions. This is the case of magnetic moments originated by
unpaired p electrons belonging to molecular orbitals in organic radicals, and of
transition metals and rare earths, in which the unpaired electrons that contribute to
the magnetic moment belong to a d and to an f sub-shell, respectively.

Let N be the number of ions, labelled by the index n, and let Nn be the number
of electrons of ion n-th. The position of the ion nucleus is denoted by �Rn, and the
position of its j -th electron with respect to the ion center by �rnj , so that the position
of the nj -th electron is �Rn + �rnj . The spin operator of the nj -th electron is �snj ,
and the spin quantum number corresponding to the spin z component is denoted by
ms,nj . Let enj = {�rnj ,ms,nj } denote the complete set of electron degrees of freedom.
The �M⊥�q operator is given by

�M⊥�q =
N∑
n=1

ei2π �q· �Rn �M(n)

⊥�q, (102)

where �M(n)

⊥�q = ∑Nn

j=1
�M(nj)

⊥�q , with
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�M(nj)

⊥�q = −2μBei2π �q·�rnj
[
q̂ × (�snj × q̂) + i

h̄q
( �pnj × q̂)

]
. (103)

The state of the system can be written as

|ϕ〉 =
∑
μ1

· · ·
∑
μN

φμ1,...,μN
|ψμ1,1〉 · · · |ψμN,N 〉 , (104)

where φμ1,...,μN
depends only on the nuclei coordinates �R1 . . . �RN and the electronic

wave function ψμn,n depends on e1, . . . , eNn and is localized around the n-th ion
position, �Rn. It is antisymmetric under electron exchange, and there is negligible
overlapping between ψμn,n and ψμ′

n,n
′ if n �= n′. Since the electronic states do not

overlap, there is no need to antisymmetrize the wave function with respect to the
exchange of electrons at different ions, in the sense that antisymmetrization does
not change the result obtained with the above wave function. The index μn labels
all the possible electronic states of the n-th ion, so that two different states differ by
the functions φ.

The matrix element of �M⊥�q between states |ϕi〉 and |ϕf 〉 is

〈ϕf | �M⊥�q |ϕi〉 =
∑
n

∑
{μ1,...,μN }n

∑
μn,μ′

n

∫
d3R1 · · · d3RN

× φ
(f ) ∗
μ1,...,μ

′
n,...,μN

ei2π �q· �Rn 〈ψμ′
n,n

| �M(n)

⊥�q |ψμn,n〉φ(i)μ1,...,μN
,

(105)

where {μ1, . . . , μN }n stands for the set of N − 1 indices μ1, . . . , μN excluding
μn. In the above equation, we used the orthonormality of the ionic wave functions,
〈ψμ,n|ψμ′,n〉 = δμμ′ . It is apparent that we only need the matrix element of �M(n)

⊥�q
between the electronic states localized at ion n-th.

We consider the electronic structure of the ion described by a Hartree-Fock
scheme in the central field approximation [13]. The multi-electronic state, |ψμ,n〉,
is a suitable antisymmetric superposition of products of single electron states,
which are computed from a self-consistent central potential common to all the
electrons. Therefore, the single-electron states are labelled by four numbers: the
principal quantum number, np; the orbital angular momentum $; the z component
of the orbital angular momentum, m; and the spin z component, ms. Recall that
−$ ≤ m ≤ $ and ms take only the two values ±1/2. The single electron state is
written as |np$mms〉, and its wave function is given by

〈�r |np$mms〉 = fnp$(r)Y
m
$ (r̂)χms , (106)

where fnp$(r) is the radial wave function, Ym
$ (r̂) is the $m spherical harmonic

evaluated on the polar angles θ and ϕ determined by the unit vector r̂ , and χms is the
ms component of the two-component spinor that describes the electron spin state.
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Due to the rotational symmetry of the single-electron Hamiltonian, the energy is
independent of m and ms. An np$ state is called a sub-shell. At this zero-th order of
approximation, the electrons fill the np$ sub-shells with lowest energy. The sub-shell
np$ can be occupied at most by 2(2$ + 1) states. A state of ne electrons occupying
the np$ sub-shell is specified by the 2ne numbers m1ms1, . . . , mnems ne and is given
by the antisymmetric combination

1√
ne!

∑
P

(−1)P |np$mP1msP1〉1 · · · |np$mPnemsPne〉ne
, (107)

where P is a permutation of 1, . . . , ne, (−1)P is the sign of P , and |·〉i describes
the state of the i-th electron. Notice that the single-electron states in sub-shell np$

all have the same radial wave function.
The difference between the true interaction Hamiltonian and the self-consistent

field, which contains the electrostatic interaction between the electrons, the spin-
orbit coupling, and the crystal field energy, is treated as a perturbation. It lifts the
degeneracy of the np$ sub-shell. The way in which the np$ sub-shell is split into
energy eigenstates depends on which term of the perturbations dominates. Usually,
the electrostatic energy is much higher than the spin-orbit coupling and than the
crystal field energy. In this case the perturbation Hamiltonian at first order does
not depend on the spin and, given that it is rotationally symmetric, commutes with
the total orbital angular momentum (and with the total spin, obviously). Hence, the
splitting of sub-shell np$ can be characterized by the four quantum numbers L,
ML, S, and MS , corresponding to total orbital angular momentum, z component of
total orbital angular momentum, total spin, and total spin z component,6 in addition
to np$. This is called the Russell-Saunders, or LS, spin-orbit coupling scheme,
which we assume in the following.

The completely filled sub-shells have no net orbital angular momentum and no
net spin and thus do not contribute to the magnetic moment. Analogously, paired
electrons, which combine their orbital angular momentum and their spin in such
a way that both cancel, do not contribute to the magnetic moment. Consider then
an ion with nu unpaired electrons occupying a partially filled sub-shell np$. These
electrons are described by an LS state, |np$LSMLMS〉, which is an anitsymmetric
linear combination of states of the form

|np$m1ms1〉1 · · · |np$mnums nu〉nu
(108)

6Notice that the electrostatic energy operator commutes with the spin of each electron separately
(but not with the single electron orbital angular momentum). At first sight, it seems that the multi-
electron states can be characterized by the single-electron spins, not just by the total spin. However,
the individual spins are not observables since the electrons are indistinguishable, and the single-
electron spin states are not good quantum numbers. Indeed, the single-electron spin states are
mixed in the antisymmetrization process, as can be seen in Eq. (107).
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From now on we drop the quantum number np from the expressions, and we will
write the radial wave function as f (r). Let us stress that in general there are many
ways of combining nu orbital angular momentum and spin into $LS multiplets.
This means there are many LS multiplets in n$ sub-shell that can be occupied by nu
electrons. Which one is occupied is decided by the minimization of the electrostatic
repulsion between the electrons.

At this level of approximation, an LS state is (2L + 1)(2S + 1) fold degenerate.
This degeneracy is lifted by the remaining interactions. If the spin-orbit coupling
dominates over the crystal field energy, rotational symmetry is preserved, and then
the states are split into multiplets characterized by the magnitude and z component
of the total angular momentum operator, J and M , respectively. Thus the states are
written as |$LSJM〉, and it remains a 2J + 1 degeneracy, due to the rotational
symmetry of the isolated ion, which is removed by the crystal field interaction.
These states are of course given by appropriate linear combinations of states of
the form (108), If, on the contrary, the crystal field dominates over the spin-orbit
coupling, the (2L + 1)(2S + 1) degeneracy may be completely lifted, and in this
case the expectation value of the three components of the orbital angular momentum
vanishes, so that they do not contribute to the expectation value of the magnetic
moment, which is entirely due to spin. In this case, it is said that the orbital angular
momentum is quenched.

Usually, the energy differences between different LS multiplets are of the order
of 1 eV or higher, and thus neutrons with energies in the thermal range cannot
induce transitions between them. This is an important point, since in these cases
the neutron interaction can only change the values of ML and MS , that is, the ion
spatial orientation. Hence, we have to consider only the matrix elements of �M(n)

⊥�q
between the states of the same LS multiplet, with constant L and S (and of course
constant np and $). Evidently, the matrix element of �M(nj)

⊥�q is a linear combination
of single particle matrix elements,

〈$m′m′
s| �M(nj)

⊥�q |$mms〉. (109)

The contribution of filled shells or paired electrons cancels, and we have to consider
only the contribution of unpaired electrons. Since the electrons are indistinguish-
able, the single-electron matrix element (109) does not depend on j . To avoid heavy
notation, from now on we drop the indices nj from the expressions, and we denote
by �r the electron coordinate with respect to the center of the ion.

Let us consider first the contribution to (109) of the orbital part of �M(nj)

⊥�q . Since
it does not depend on spin, we get an overall factor δmsm′

s
. It remains

〈$m′| ei2π �q·�r (q̂×∇)|$m〉=
∫
d3rf (r)Ym′∗

$ (r̂)ei2π �q·�r (q̂×∇)f (r)Ym
$ (r̂). (110)

Let us give only a few hints about how to compute this, in order to recognize the
origin of some factors entering the magnetic cross section, mainly the magnetic
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form factor. A thorough analysis with many detailed calculations can be found in
the book of Lovesey [14]. First, notice that by integrating by parts and using the
fact that (q̂ × ∇) exp(i2π �q · �r ) = 0, we can remove the derivative from the radial
function f (r). We get

〈$m′| ei2π �q·�r (q̂×∇)|$m〉 = 1

2

∫
d3rf 2(r)ei2π �q·�r [

Ym′∗
$ (r̂)(q̂×∇)Ym

$ (r̂)

− Ym
$ (r̂)(q̂×∇)Ym′∗

$ (r̂)
]
.

(111)

The derivative acts now only on the angular part of the wave function. We can extract
a factor 1/r by defining ∇̂ so that ∇ = (1/r)∇̂.

The spherical symmetry of the single electron wave functions makes it conve-
nient to exploit the algebra of spherical tensors, working in terms of the spherical
components of q̂ × ∇̂, which is a vector operator.7 We also expand the plane wave
state exp(i2π �q · �r ) in the basis of spherical waves as

ei2π �q·�r = 4π
∞∑
L=0

L∑
M=−L

iLjL(2πqr)Y
M
L (r̂)YM∗

L (q̂), (112)

where jL(x) is the spherical Bessel function of order L. Inserting this expansion
into (111), in which we take the M ′-th spherical component, we get

〈$m′| ei2π �q·�r (q̂ × ∇)M ′ |$m〉 =

2π
∞∑
L=0

L∑
M=−L

iLYM∗
L (q̂)

∫
drr2 1

r
f 2(r)jL(2πqr)I

$mm′
M ′LM(q̂), (113)

where

I $mm
′

M ′LM(q̂) =
∫

d2r̂ YM
L

[
Ym′ ∗
$ (q̂ × ∇̂)M ′Ym

$ − Ym
$ (q̂ × ∇̂)M ′Ym′ ∗

$

]
(114)

is an angular integral, with d2r̂ = sin θdθdϕ. The 1/r factor in the radial integral
comes from the definition of ∇̂ given above.

The angular integral can be evaluated straightforwardly using properties of
spherical tensor operators. It gives rather complicated, and not very illuminating,
linear combination of the spherical harmonics of YM

L (q̂), with coefficients that are
linear combinations of products of Clebsch-Gordan coefficients. Its product with the
spherical harmonics entering (113) can be again reduced to a linear combination of
simple spherical harmonics.

7Let us recall that the spherical components of a vector operator �V are denoted by VM , with
M = −1, 0, 1, and defined as V±1 = ∓(Vx ± iVy)/

√
2 and V0 = Vz.
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For the radial part, we use the relation

jL(x) = x

2L + 1
[jL−1(x) + jL+1(x)] , (115)

and the definition

J̄L(q) =
∫

drr2f 2(r)jL(2πqr), (116)

and we can write the expression

〈$m′|ei2π �q·�r (q̂ × ∇)M|$m〉 = 4π2q

∞∑
L=1

iL

2L + 1
(J̄L−1 + J̄L+1)CL(q̂), (117)

where CL(q̂) is a linear combination of spherical harmonics. For the spin part, the
computation is similar. One difference is that there is no gradient term; hence the
1/r factor is absent in the radial integral, and only a single J̄L comes from the radial
part.

Therefore, the matrix element of the M-th spherical component of �M(n)

L⊥�q
between LSJ states has the form

〈$LSJM ′
J |M(n)M

L⊥�q |$LSJMJ 〉 =
∞∑

L′=1

(J̄L′−1 + J̄L′+1)AL′(q̂) (118)

〈$LSJM ′
J |M(n)M

S⊥�q |$LSJMJ 〉 =
∞∑

L′=0

J̄L′BL′(q̂) (119)

where the coefficients AL′ and BL′ obviously also depend on $, L, S, J , MJ , M ′
J ,

and M , and, we stress it again, are linear combinations of spherical harmonics.
The symmetries of the Clebsch-Gordan coefficients imply that they vanish for
sufficiently large L′, so that the sums are in practice finite and suitable for numerical
computations. It is however interesting to simplify AL′ and BL′ by making some
approximation that provides more physical insight than expressions (118) and (119).
This is the aim of the dipole approximation.

Dipole Approximation

The dipole approximation is obtained by truncating of the sums in (118) and (119) to
L′ ≤ 1 and keeping in AL′ and BL′ only the spherical harmonics YM ′′

L′′ with L′′ ≤ 2

[15]. It can be shown that, in the dipole approximation, the matrix elements of �M(n)

�q
between LSJMJ states are equal to the matrix elements of the operator



Neutron Scattering Techniques in Magnetism 351

�M(n,D)
�q = −μB

{[
J̄0n(q) + J̄2n(q)

] �Ln + 2J̄0n(q) �Sn
}
, (120)

where �Ln and �Sn are the total orbital angular momentum operator and the total spin
operator, respectively, for the n-th ion. According to the Wigner-Eckart theorem, all
vector operators are proportional to each other and, therefore, to the total angular
momentum operator �J, on a given |LSJMJ 〉 subspace. Consequently, if the total
angular momentum is approximately conserved, so that J and M are good quantum
numbers, as it happens in the case of rare earth ions, we have

�M(n,D)
�q = −μBgnFn(q)�Jn, (121)

where gn is the Landé factor of the n-th ion,

gn = 1 + Jn(Jn + 1) − Ln(Ln + 1) + Sn(Sn + 1)

2Jn(Jn + 1)
, (122)

and the magnetic form factor for the n-th ion is given by

Fn(q) = J̄0n(q) + Jn(Jn + 1) + Ln(Ln + 1) − Sn(Sn + 1)

3Jn(Jn + 1) + Ln(Ln + 1) − Sn(Sn + 1)
J̄2n(q). (123)

In the case of transition metal ions, the crystal field removes the degeneracy
in the total orbital angular momentum, mixing states with different ML quantum
numbers, although it preserves the degeneracy in the spin quantum number MS ,
since the crystal field Hamiltonian is independent of the spin. Hence, S and MS

remain good quantum numbers. If the degeneracy in the ML quantum numbers is
completely lifted, it can be easily shown that the expectation value of the total orbital
angular momentum operator, �L, does vanish in these states. As we said before, this
phenomenon is called the quenching of the orbital angular momentum. And, since
the neutron does not have enough energy to overcome the crystal field splitting
energy, the only matrix element of �L that contributes to the magnetic neutron
scattering vanishes. Hence, the scattering is only due to spin, and the magnetization
operator is given by

�M(n,D)
�q = −μB2J̄0n(q) �Sn. (124)

Actually, the spin-orbit interaction couples the states split by the crystal field, and
the quenching of the orbital angular momentum is not complete. In that case, �L is
proportional to �S in the ground-state subspace, so that �L = (g − 2)�S, with g close
to 2, and we have

�M(n,D)
�q = −μBgnFn(q) �Sn, (125)
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with

Fn(q) = 1

gn

[
gnJ̄0n(q) + (gn − 2)J̄2n(q)

]
. (126)

The dipole approximation is valid at low q. The spherical Bessel function jL(x)

vanishes as x → 0 as xL, and therefore for q → 0 we have J̄L(q) ∼ (qrmax)
L,

where rmax is the maximum of the radial function, f (r), which is proportional to the
Bohr radius. Then, the dipole approximation is justified if q is small in comparison
to 1/rmax.

Magnetic Scattering Cross Section in the Dipole Approximation

The explicit form of the matrix elements of �M⊥�q can be obtained from (102) with

the dipole approximation for �M(n)

�q , using Eq. (121) or (125), depending on the case.
To be generic, we write

�M(n,D)
�q = Fn(q) �Mn, (127)

where �Mn denotes the n-th ion magnetic moment density operator, which is given by
−μBgn times either the total angular momentum operator or the total spin operator,
depending on the case. Fn(q) and gn are the corresponding magnetic form factor
and Landé factor, respectively, of the n-th ion.

From the general equation (84) and the definition (102), we immediately get

(
d2σ (m)

d��kf dEf

)

σf

= p2 kf

ki

∑
αβ

ρiαβ(σf )×

∑
nn′

F ∗
n (q)Fn′(q)

〈
e−i2π �q· �Rn(0)ei2π �q· �Rn′ (t)Mβ †

n⊥�q (0)M
α
n′⊥�q (t)

〉
ν
.

(128)

The magnetic moment dynamics and the nuclear dynamics are weakly coupled,
so that to a good approximation the time-dependent correlation function in (128)
factorizes into nuclear and magnetic moment factors, and we can write

(
d2σ (m)

d��kf dEf

)

σf

= p2 kf

ki

∑
αβ

ρiαβ(σf )
∑
nn′

F ∗
n (q)Fn′(q)

×
∫

dt

h
e−i2πνt 〈e−i2π �q· �Rn(0)ei2π �q· �Rn′ (t)

〉〈
M

β †
n⊥�q (0)M

α
n′⊥�q (t)

〉
.

(129)
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3 Neutron Scattering by a Crystal

Let us consider now the specific case of diffraction by a crystalline material. Let
us define a crystal by its unit cell (�a, �b, �c) and the atoms contained in it, labelled
by d = 1, . . . , Nuc. The reciprocal lattice is generated by the basis (�a ∗, �b ∗, �c ∗),
defined as usually in crystallography as

�a ∗ = (�b × �c)
V

, �b ∗ = (�c × �a)
V

, �c ∗ = (�a × �b)
V

, (130)

where V = (�a × �b) · �c is the volume of the direct lattice unit cell. We denote by �H
a node of the reciprocal lattice with �H = h �a ∗ + k �b ∗ + l �c ∗, where h, k, andl are
integer numbers (the Miller indices).

Nuclear Scattering

The coherent scattering cross section can be obtained by applying the general
results for solids obtained in section “Nuclear Scattering”, taking into account that
the equilibrium position of an atom can be written as �R e

ld = �Rl + �rd , where
�Rl = la �a + lb �b + lc�c, with la , lb, and lc integers, represents the position of the

origin of the l-th cell and �rd is the position of d-th atom relative to the origin of
coordinates of the unit cell. Then, we have to substitute the summation in n entering
the equations of section “Nuclear Scattering” by summations in l and d.

For the coherent elastic scattering, given by Eq. (61), we have to compute

∣∣∣∑
n

bn〈ei2π �q· �Rn〉
∣∣∣2 =

∑
l, l′

ei2π �q( �Rl′− �Rl)|N�q |2 (131)

where

N�q =
Nuc∑
d

bd Td(�q ) ei2π �q·�rd (132)

is the so-called nuclear structure factor of the unit cell and Nuc is the number of
atoms inside it. Using the Poisson summation formula

∑
l, l′

ei2π �q·( �Rl′− �Rl) = Nc

V

∑
�H
δ(�q − �H), (133)

where Nc is the number of crystal unit cells in the system, we obtain

dσ
(n, e)
coh

d�
k̂f

= Nc

V

∑
�H
δ(�q − �H)|N�q |2. (134)
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The above expression tells us that the scattered neutrons will follow directions such
a way that �q = �H , i.e., the Bragg reflection will occur only when the scattering vec-
tors correspond to the nodes of the reciprocal lattice. These nodes are related to the
characteristic distances between crystal planes (dhkl) at the direct space. The amount
of neutrons scattered for each of these directions is proportional to the modulus
square of the complex number N �H , the nuclear structure factor evaluated at �q = �H .

Sometimes it is convenient to define the atoms of the crystal unit cell through the
number of atoms in its asymmetric unit cell (Nau), each one indexed with d, with
coherent scattering length bd , and located at �rd . Let g̃p = {Rp|�tp} be the elements
of the space group of the crystal (g̃p ∈ G), with rotational and translational parts,
respectively, Rp, and �tp. The d-orbit in the unit cell is defined by the atoms at the
p-site related to the d-site by �rp = g̃p�rd . The number of atoms on a given orbit is
less or equal than the order of the group G, and all of them have the same scattering
length bd . The position of the same atom d at another unit cell, l, is �Rld = �Rl + �rd .
The nuclear structure factor in (132) is rewritten as

N�q =
Nau∑
d

bd

d−orbit∑
p

Tpd(�q )ei2π �q·g̃p�rd , (135)

where �q labels the nuclear Bragg reflexion (�q = �H ) and p runs over the symmetry
operators of the space group of the crystal that generates the atoms of the d-orbit.
The factor Tpd(�q ) is the Debye–Waller factor of the d-th atom at its equivalent
position p. In the harmonic approximation, it is given by

Tpd(�q ) = e−�q·Rpβ̃dR†
p �q . (136)

The elastic incoherent cross section by a crystal is immediately obtained from
Eq. (62) by summing on all the atoms at the unit cell or by summing first on the
asymmetric unit and then on each d-orbit (p)

dσ
(n, e)
inc

d�
k̂f

= Nc

Nuc∑
d

b2
inc,d |Td(�q )|2 = Nc

Nau∑
d

b2
inc,d

d−orbit∑
p

|Tpd(�q )|2. (137)

Scattering by Phonons

The coherent inelastic 1-phonon scattering by a crystal can be readily obtained from
the general equation (74), setting �R e

ld = �Rl + �rd and taking into account that, due to
the lattice translational symmetry, the phonons r are characterized by a wave vector,
�p, which belongs to the first Brillouin zone in reciprocal space and a branch index,
s. The number of branches is equal to the number of atoms in the unit cell. The
polarization vector is given by Fultz [16]

�ξs,ld ( �p ) = 1√
Nc

ei2π �p· �Rl �es,d ( �p ), (138)
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and thus �υr(�q ), defined by Eq. (75), reads

�υs �p (�q ) = 1√
Nc

∑
ld

ei2π �q· �Rl ei2π �q·�rd bd√
Md

Td(�q ) �es,d ( �p ). (139)

Inserting this into Eq. (74) and using (133), we obtain

d2σ
(n,i)
coh,1ph

d�
k̂f
dEf

= kf

ki
q2 (2π)

2

2V

∑
s, �p

∣∣∣∑
d

bd√
Md

Td(�q )ei2π �q·�rd q̂ · �es,d (�q )
∣∣∣2

× 1

νs �p

∑
�H

[
δ(�q − �p − �H)δ(hν − hνs �p)

(
1 + 〈ns �p〉)

+ δ(�q + �p − �H)δ(hν + hνs �p)〈ns �p〉
]
. (140)

This equation provides a method to measure the phonon dispersion relation, that
is, the phonon frequency as a function of its wave vector, for each branch. The
technique is as follows. A monochromatic beam, with fixed wave vector �ki , is
scattered by a single crystal, and the intensity of the scattered beam is measured
at a fixed direction, k̂f , as a function of the neutron energy Ef (or as a function
of wave number, kf ). The Dirac delta functions of (140) impose severe constraints
to the scattering: for given kf , there will be a discrete set of phonon wave vectors
that will satisfy the constraint imposed by the wave vector Dirac delta function,
namely, those that differ from the scattering vector by a reciprocal lattice vector:
�p = �ki − �kf + �H . But then, in general, none of the frequencies νs �p will satisfy
the constraint imposed by the frequency Dirac delta functions: νs �p �= |Ei − Ef |/h,
since the index s is discrete. It is only for specific values of kf that both constraints
will be satisfied: sharp intensity peaks will appear only if �p = �ki − �kf + �H and
νs �p = |Ei − Ef |/h. These peaks provide the phonon dispersion relations. The
polarization vectors can be obtained from the intensities of the peaks. Neutron
instruments suitable to measure the phonon dispersion relations are the triple axis
and time-of-flight spectrometers.

The expression for the inelastic scattering is not sensitive to the atom arrange-
ments, and thus it is given by (74).

Magnetic Scattering

If some of the ions in the unit cell have localized unpaired electrons, the neutrons
suffer magnetic scattering. Let dm label the magnetic ions within a cell. The position
of the ldm ion is given by �Rl + �rdm + �uldm, where �uldm is the quantum operator
that describes the displacements from the equilibrium position. The magnetic form
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factors depend only on dm, and not on the cell to which the ion belongs. We have to
substitute the sums in n and n′ in Eq. (129) by sums in ldm and l′d ′

m. We obtain

(
d2σ (m)

d�
k̂f
dEf

)

σf

=p2 kf

ki

∑
αβ

ρiαβ(σf )
∑

ldml′d ′
m

ei2π �q·( �Rl′− �Rl)ei2π �q·(�rd′
m

−�rdm )
F ∗
dm
(q)Fd ′

m
(q)

∫
dt

h
e−i2πνt

〈
e−i2π �q·�uldm (0)ei2π �q·�ul′d′

m
(t)

〉〈
M

β †
ldm⊥�q (0)M

α
l′d ′

m⊥�q (t)
〉
. (141)

The elastic scattering component is extracted from the factorization of the time
correlations in the t → ∞ limit. Defining the vector �Mldm = 〈 �Mldm〉, which is real,
and denoting by �Mldm⊥�q its component perpendicular to �q, we have

(
dσ (m, e)

d�
k̂f

)

σf

= p2
∑
αβ

ρiαβ(σf )
∑

ldml′d ′
m

ei2π �q·( �Rl′− �Rl)

× e−i2π �q·�rdmT ∗
dm
(�q )F ∗

dm
(�q )ei2π �q·�rd′

mTd ′
m
(�q )Fd ′

m
(�q )Mβ ∗

ldm⊥�q M
α
ldm⊥�q .

(142)

Notice that, in the most general case, �Mldm needs not be commensurate with the
nuclear lattice, but it can always be expanded in Fourier series as

�Mldm =
∑
{ �K}

�S �Kdm
e−i2π �K· �Rl , (143)

where the complex vectors �S �Kdm
are the Fourier coefficients and { �K} are the set of

propagation vectors. The propagation vectors relate the magnetic moment at the l-th
unit cell with respect to the zero-th unit cell. In the case of �K = 0, which means that
the nuclear and magnetic periodicities are the same, then the Fourier coefficients
�S �Kdm

are equal to the magnetic moment, �Mdm, at site dm, and do not depend on the
lattice index l.

Moreover, because the magnetic moment �Mldm must be a real vector, it imposes
the condition that summation extends to pairs of propagation vectors �K and − �K
and the relation �S− �Kdm

= �S∗
�Kdm

between the Fourier coefficients.

Inserting expansion (143) into (142) and using Eq. (133) for the sum in l l′, we
get

dσ
(m, e)
coh

d�
k̂f

= Nc

V

∑
�H �K

δ(�q − �H − �K) | �M⊥�q |2, (144)

where we have defined the magnetic interaction vector, �M⊥�q , and the magnetic
structure factor, �M�q �K , for the crystal unit cell8 as:

8Other authors define the magnetic structure factor for the crystal by keeping the sum on the unit
cells, l and l′, in Eq. (142) in its definition.
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�M⊥�q = q̂ × ( �M�q �K × q̂), (145)

�M�q �K = p

Nuc∑
dm

Fdm(�q )Tdm(�q ) ei2π �q·�rdm �S �Kdm
. (146)

To have elastic magnetic scattered neutrons (magnetic Bragg peaks) the Dirac delta
in (144) imposes that the scattering vector must fulfill the condition �q = �H ± �K ( �H
is a node of the nuclear reciprocal lattice and �K is the magnetic propagation vector).

The intensity of magnetic peaks is very sensitive to temperature, since the
expectation value of the magnetic moment �Mldm is. By increasing temperature
�M�q �K decreases until it vanishes above the magnetic ordering temperature, in which

case only the nuclear peaks survive. The behavior with temperature is one way of
distinguishing magnetic and nuclear scattering.

Magnetic Inelastic Scattering

To discuss magnetic inelastic scattering, it is convenient to introduce more notation.
Let us define

NE = 〈
e−i2π �q·�uldm

〉〈
ei2π �q·�ul′d′

m
〉
, M

αβ
E = 〈

M
α †
ldm⊥�q

〉〈
M

β

l′d ′
m⊥�q

〉
, (147)

and

NI = 〈
e−i2π �q·�uldm (0)ei2π �q·�ul′d′

m
(t)〉 − 〈

e−i2π �q·�uldm
〉〈

ei2π �q·�uldm
〉
, (148)

M
αβ
I = 〈

M
α †
ldm⊥�q (0)M

β

l′d ′
m⊥�q (t)

〉 − 〈
M

α †
ldm⊥�q

〉〈
M

β

l′d ′
m⊥�q

〉
. (149)

The integrand of the time integral in Eq. (141) is split into four terms

s
〈
e−i2π �q·�uldm (0)ei2π �q·�ul′d′

m
(t)〉〈

M
α †
ldm⊥�q (0)M

β

l′d ′
m⊥�q (t)

〉

= NIM
αβ
I + NEM

αβ
I + NIM

αβ
E + NEM

αβ
E .

(150)

Correspondingly, the magnetic scattering cross section is split into four terms, one
for each of the above terms. The NEM

αβ
E term gives the elastic scattering discussed

before. The NIM
αβ
E term gives the so-called magnetovibrational scattering, which

is elastic in the magnetic sector and inelastic in the nuclear part, with emission
or absorption of phonons. This is essentially identical to the pure inelastic nuclear
scattering, with the form factor modified by the magnetic factors. The NEM

αβ
I term

gives scattering elastic in the nuclear sector and inelastic in the magnetic sector, with
energy transfer between the neutron and the magnetic degrees of freedom. Finally,
the NIM

αβ
I term gives inelastic scattering both in the nuclear and magnetic sectors,

with energy exchange between the neutron and the magnetic and nuclear degrees of
freedom.
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Scattering by Spin-Waves

Let us consider the inelastic magnetic scattering by an ordered magnetic material
with no transfer of energy with phonons (i.e., the term NEM

αβ
I ). In this case, the

neutrons exchange energy only with the elementary magnetic excitations around
the ordered magnetic state, which are called magnons [17]. They are described as
follows. Let �Jldm denote the spin or total angular momentum operator, whatever
matters, of the ldm-th magnetic ion. Let us choose �Mldm as the local quantization
axis for the ldm-th ion, and let Jzldm

the projection of �Jldm along �Mldm and J
x
ldm

and J
y
ldm

the projections onto two mutually perpendicular directions in the plane

orthogonal to �Mldm. Let J±
ldm

be the corresponding ladder operators. The magnetic
ground state of the ion is given by |JMJ 〉 with MJ = J . At low temperature, MJ

cannot depart much from its maximum value J . Evidently, this cannot be the case
if J = 1/2; hence we assume J > 1/2. Let us introduce the departure number,
n = J − MJ , to characterize the magnetic states |n〉 = |J J − n〉. We perform
a Holstein-Primakoff transformation [18], introducing the operators aldm and a

†
ldm

which satisfy the bosonic commutation relations

[aldm , al′d ′
m
] = 0, [a†

ldm
, a

†
l′d ′

m
] = 0, [aldm , a

†
l′d ′

m
] = δll′ δdmd ′

m
. (151)

At each ion, they act on the magnetic states as the creation and annihilation operators
of an harmonic oscillator:

aldm |n〉 = n1/2 |n − 1〉, a
†
ldm

|n〉 = (n + 1)1/2 |n + 1〉. (152)

By introducing this bosonic operators, the space of states has been artificially
enlarged to the space of states with any n > 0, but only the states with n ≤ 2J have
physical meaning, and states with n > 2J do not influence the physical results.
Indeed, the angular momentum operators are expressed in terms of the bosonic
operators as

J
+
ldm

= (
2J − a

†
ldm

aldm − 1
)1/2

aldm ,

J
−
ldm

= (
2J − a

†
ldm

aldm

)1/2
a

†
ldm

,

J
z
ldm

= J − a
†
ldm

aldm .

(153)

The system Hamiltonian, expressed in terms of the bosonic operators, is expanded
in powers of aldm and a

†
ldm

. It is easy to see from the above equations that this
expansion is actually an expansion in powers of 1/2J . The lowest order is provided
by the quadratic terms. In the linear, or harmonic, approximation, only the quadratic
terms are taken into account, and the magnetic dynamics is described by a system
of coupled harmonic oscillators. In this case we have
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J
+
ldm

= √
2J aldm , J

−
ldm

= √
2J a

†
ldm

, J
z
ldm

= J − a
†
ldm

aldm . (154)

This approximation is good for large J , and in this case the neglected terms can be
systematically taken into account by perturbation theory.

In the linear approximation, the eigenstates of the system, which are called
magnons, form a Bose-Einstein gas of non-conserved particles, with zero chemical
potential. Moreover the correlation NEMI of Eq. (150) can be readily computed in
a way completely analogous to that of phonons. Let us consider for simplicity a
crystal with only one magnetic ion per unit cell, so that the magnetic ions form
a Bravais lattice (and we can remove the dm index), and assume that the system
is ferromagnetically ordered. Thus, the only non-vanishing Fourier mode of the
magnetic moment is that with �K = 0, which is denoted in the following by S.
To linear order, the solution to the equations of motion is given by

al(t)= 1√
Nc

∑
�p

ei2π( �p· �Rl−ν �p t) b �p , a
†
l (t)=

1√
Nc

∑
�p

e−i2π( �p· �Rl−ν �p t) b†
�p ,

(155)
where �p belongs to the first Brillouin zone of the magnetic ion lattice, the operators
b �p and b†

�p satisfy the commutation relation [b �p, b†
�p ′ ] = δ �p �p ′ , and ν �p are the magnon

frequencies.
Using the fact that �Ml = gμB�Jl , Eqs. (154) and (155), and defining M = gμBJ ,

we easily obtain 〈Mx
l 〉 = 〈My

l 〉 = 0, and

〈Mz
l 〉 = M

[
1 − (1/JNc)

∑
�p

〈n �p〉 ]
, (156)

where 〈n �p〉 is the average value of the number of magnons with wave vector �p,
given by the Bose-Einstein distribution (72). For the time correlation functions, we
have 〈Mz

l (0)M
α
l′(t)〉 = 〈Mα

l (0)M
z
l′(t)〉 = 0, with α = x, y, and

〈Mz
l (0)M

z
l′(t)〉 = M2

(
1 − 2

JNc

∑
�p

〈n �p〉
)

= 〈Mz
l 〉〈Mz

l′ 〉 + O(1/J 2), (157)

so that this correlation, called the longitudinal correlation, does not contribute to
inelastic scattering.9 For the remaining components, called the transverse correla-
tions, we have

〈Mx
l (0)M

x
l′(t)〉 = 〈My

l (0)M
y

l′(t)〉, 〈Mx
l (0)M

y

l′(t)〉 = −〈My
l (0)M

y

l′(t)〉, (158)

9Notice that this correlation is independent of time. The 1/J 2 terms have to be neglected in the
linear approximation for consistency. Higher-order corrections guarantee that the second equality
in (157) holds to all orders in the 1/J expansion.
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with

〈Mx
l (0)M

x
l′(t)〉 = M2

2JNc

∑
�p

[
e−i2πφll′ ( �p ) (〈n �p〉 + 1

) + ei2πφll′ ( �p ) 〈n �p〉
]
, (159)

〈Mx
l (0)M

y

l′(t)〉 = iM2

2JNc

∑
�p

[
e−i2πφll′ ( �p ) (〈n �p〉 + 1

) − ei2πφll′ ( �p ) 〈n �p〉
]
, (160)

where φll′( �p ) = �p · ( �Rl′ − �Rl) − ν �p t .
Consider the scattering of an unpolarized beam. We do not observe the polar-

ization state of the scattered neutrons, so that
∑

σf
ρiαβ(σf ) = δαβ . Then, the cross

section depends only on the projection of the time correlation function onto the
component perpendicular to �q, which is

∑
αβ

(
δαβ− qαqβ

q2

)[
〈Mβ

l (0)M
α
l′(t)〉−〈Mβ

l 〉〈Mα
l′ 〉

]
=

(
1+ q2

z

q2

)〈
M

x
l (0)M

x
l′(t)

〉
,

(161)
where we used 1 − q2

x/q
2 + 1 − q2

y/q
2 = 1 + q2

z /q
2.

Now, to obtain the inelastic magnetic scattering cross section by a ferromagnet to
1/J order (1-magnon scattering), we can insert (161) into (149) and this into (129).
The sums in l and l′ are obtained using (133), and we get

d2σ (m)

d�
k̂f
dEf

= p2 kf

ki

1

V

M2

2J

(
1 + q2

z

q2

)
F 2(q) T 2(�q )

×
∑
�p �H

[
δ(�q − �p − �H) δ(hν − hν �p)

(〈n �p〉 + 1
)

+ δ(�q + �p − �H) δ(hν + hν �p) 〈n �p〉
]
.

(162)

This expression is similar to expression (140) for the scattering by phonons, and
the magnon dispersion relations, which provide the dependence of the frequency ν �p
with the wave vector �p, can be obtained by applying the same ideas. One difference
between magnon and phonon scattering is the factor 1 + q2

z /q
2, which takes values

between 1 and 2. If the scattering vector is parallel to ẑ, the factor is 2, and if
it is perpendicular to ẑ, it is 1. This corresponds to the fact that the deviation of
the magnetic moment with respect to its equilibrium value is perpendicular to ẑ.
Therefore, it has two components perpendicular to q̂ if this vector is parallel to ẑ

and only one component perpendicular to q̂ if it is perpendicular to ẑ.
The magnon dispersion relation allows us to investigate the nature of the

magnetic interactions. For instance, in a ferromagnetic system described by a
Heisenberg model, we have hν �p = 2J [K(0) − K( �p )], where K( �p ) is the Fourier
transform of the exchange interaction coupling.
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4 Polarization Analysis

The scattering of a polarized beam of neutrons together with the analysis of the
polarization of the scattered beam is a powerful tool that allows us to extract
much more information about the target than the simpler scattering of unpolarized
neutrons. Since, as we are going to see, polarization analysis introduces correlations
between nuclear and magnetic scattering amplitudes which are absent in the case
of unpolarized beams, we have to consider both nuclear and magnetic scattering at
once. To this end, let us write the scattering amplitude operator as a matrix in spin
space:

A�q = �V�q · �σ + W�q I2, (163)

where �σ and I2 are, respectively, the Pauli matrices and the 2 × 2 identity matrix
acting on the neutron spin degrees of freedom, and

�V�q = p �M⊥�q + 1

2

∑
n

ei2π �q· �RnBn
�In, W�q =

∑
n

ei2π �q· �RnAn. (164)

In the above expressions, �Rn, �In, An, and Bn denote, respectively, the position, the
spin, and the two scattering lengths of the n-th nucleus [c.f. Eq. (30)].

Let us consider elastic scattering. The density matrix and the polarization vector
of the scattered beam are obtained by substituting (163) into Eqs. (25) and (27),
respectively. The sum over σf defining I�q and the trace entering Eq. (27) can
be easily computed applying several times the well-known identity for the Pauli
matrices

σασβ = I2 δαβ + i
∑
γ

εαβγ σγ , (165)

and using Tr σα = 0 and Tr σασβ = 2δαβ . In the above equation, εαβγ is the totally
antisymmetric tensor in three dimensions. Then, the average over the disorder can
be computed as in section “Nuclear Scattering”. The assumptions are as follows: (1)
there is no correlation between the probability distributions of isotopes in different
nuclei; (2) the nuclear spins are uniformly randomly oriented in space; (3) the spin
orientations of different nuclei are uncorrelated; and (4) the disorder in magnetic
properties is independent from the disorder in nuclear properties.

Let us introduce the following quantities, appropriate for a generic scattering
target

W�q = 〈
W�q

〉 =
∑
n

bn
〈
ei2π �q· �Rn

〉
, (166)

�V�q = 〈 �V�q
〉 = p

〈 �M⊥�q
〉
, (167)
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where bn = Ān is the coherent scattering length of the n-th nucleus. Notice that
by definition �V�q is perpendicular to �q. Sometimes W�q and �V�q are referred to,
respectively, as generic nuclear structure factor and magnetic interaction vector for
the whole system. Retaining only the coherent component from Eq. (27), we get

I�q = W�q W ∗
�q + �V�q · �V ∗

�q + (
W�q �V ∗

�q + �V�q W ∗
�q
) · �Pi − i

( �V�q × �V ∗
�q
) · �Pi (168)

and

I�q �Pf = (
W�q W ∗

�q − �V�q · �V ∗
�q
) �Pi + �V�q

( �Pi · �V ∗
�q
) + ( �Pi · �V�q

) �V ∗
�q

+ i
( �V�q W ∗

�q − W�q �V ∗
�q
) × �Pi + W�q �V ∗

�q + W ∗
�q �V�q + i

( �V�q × �V ∗
�q
)
,

(169)

where �Pf and �Pi are, respectively, the final and initial beam polarizations.
The theoretical foundations of the scattering of polarized neutrons were devel-

oped in [12, 19–26] and can be summarized in the Blume-Maleev Eqs. (168)
and (169) [24, 27] which open new possibilities to design experiments with
polarized neutron beams.

Two consequences of Eq. (169) are immediately apparent: (1) if there is no
magnetic scattering, the scattered beam has the same polarization vector as the
incident beam; and (2) the magnetic scattering can polarize an unpolarized beam,
since the last three terms are independent of �Pi .

Let us consider the elastic scattering by a crystal. As before, the ion position is
written as �Rl + �rd + �uld , and Eqs. (166) and (167) become

W�q = N�q
∑
l

ei2π �q· �Rl , �V�q =
∑

�K
�M⊥�q

∑
l

ei2π(�q+ �K)· �Rl . (170)

where N�q and �M⊥�q are given by Eqs. (132) and (145). Then each term of (168)
and (169) contains sums in l and l′ of terms of the form (133). Thus, each term of
these equations is a sum of terms that contain a Dirac delta function δ(�q − �H ± �K).
This is Bragg scattering, and the delta functions define the Bragg peaks at �q =
�H ± �K . We get the first Blume-Maleev equation for the scattered intensity in a

crystal as

I�q =|N�q |2+| �M⊥�q |2+
(
N�q �M∗

⊥�q + N∗
�q �M⊥�q

)
· �Pi+i

( �M∗
⊥�q× �M⊥�q

)
· �Pi (171)

where the vectors N�q �M∗
⊥�q + N∗

�q �M⊥�q and i �M∗
⊥�q × �M⊥�q are called, respectively,

nuclear-magnetic interference vector and chiral vector. The second Blume-Maleev
equation for the scattered polarization in a crystal is

I�q �Pf =
(
|N�q |2 − | �M⊥�q |2

) �Pi +
( �Pi · �M∗

⊥�q
) �M⊥�q +

( �Pi · �M⊥�q
) �M∗

⊥�q
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−i
(
N�q �M∗

⊥�q − N∗
�q �M⊥�q

)
× �Pi + N�q �M∗

⊥�q + N∗
�q �M⊥�q

−i
( �M∗

⊥�q × �M⊥�q
)
. (172)

Notice that, by definition, N�q vanishes if �K is not a vector of the nuclear reciprocal
lattice, and the nuclear scattering does not contribute to the magnetic satellites.

5 Magnetic Crystallography

Let us consider that the nuclear unit cell, as defined in section “Nuclear Scattering”,
contains some magnetic atom located at site dm of the asymmetric unit cell with
magnetic moment �Mdm. The magnetic moment is an axial vector, and therefore its
transformation rule includes the determinant of the operator (det). Moreover, the
symmetry group that we need to consider is not the space group of the crystal but
its magnetic space group where the time reversal operation (I ′) can play a role (this
operation reverses the components of the magnetic moment and does not change the
atomic coordinates).

The magnetic space groups (M) are obtained as the outer direct product of
the crystallographic group G and the group K formed by the identity, I, and the
time reversal, I ′, operations M ⊂ G

⊗
K where K = {I, I ′}. So a magnetic

group has primed operations, in which the time reversal acts after an operation of
the crystallographic group, and unprimed operations. Starting from the 230 space
groups G, also known as Fedorov groups, it is possible to build the 1651 magnetic
space groups, or Shubnikov groups, M, as follows: Type (I) 230 colorless groups
without primed operations (M = G). Type (II) 230 grey or paramagnetic groups
composed with the same operations primed and unprimed (M = G + GI ′). The
other 1191 called Black-White groups are built as M = H + (G − H)I ′ where H
are the index 2 subgroups of G as constituting the unprimed elements and the rest of
operators (G −H) multiplied by the time reversal I ′. These Black-White groups can
be split into type (III) 674 groups in which H has the same translation group T as
G and type (IV) 517 groups in which the translation group T contains translations
associated with the time reversal (primed translations). Shubnikov groups can be
generalized to magnetic superspace groups in order to describe the symmetry of the
incommensurate magnetic structures.

A paramagnetic crystal is described with a grey group, but when it orders
magnetically, the time reversal symmetry is broken. Therefore, in the ordered phase,
its Shubnikov group will not include the I ′ operation alone, but it can appear
combined with any other transformation.

Let g̃p = {δp|Rp|�tp} be a symmetry operation of the magnetic space group M. A
magnetic atom of the dm-orbit located at site p, related to the site dm by �rp = g̃p�rdm,
will have a magnetic moment �Mp = δp det(Rp)Rp

�Mdm where δp is −1 or +1 for
primed or unprimed g̃p operations, respectively.
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Therefore the magnetic structure factor defined in (146) considering Nau as the
number of magnetic atoms at the asymmetric unit cell, indexed with dm and located
at �rdm, and its p-th equivalents by symmetry (dm-orbit), reads:

�M�q �K = p

Nau∑
dm

Fdm(q)

dm−orbit∑
p

Tpdm(�q )δp det (Rp)Rp
�S �Kdm

ei2π �q·g̃p�rdm (173)

where the dm-index runs over the magnetic atoms associated to the propagation
vector �K (notice that the Fourier coefficient with index �K contributes only to the
K-satellite). The sum over p concerns the symmetry operators of the crystal that
belong to the propagation vector group, and Fdm(q) is the magnetic form factor for
the dm-th atom. The constant p in front of the right-hand side of (173) was defined
in section “Magnetic Scattering”. In the case of a propagation vector different from
zero, Eq. (144) tells us that two magnetic satellites will be observed around each
Bragg nuclear reflection.

Describing Magnetic Structures

It is possible to describe magnetic structures using the magnetic content of the
nuclear unit cell (magnetic moments or Fourier coefficients) and a propagation vec-
tor which describe the relation between the orientations of the magnetic moments
located in equivalent magnetic atoms but in different nuclear unit cells. The
propagation vector appears naturally in the Landau theory of the second-order
phase transitions as the modulation that minimizes the magnetic energy in the
ordered state. The Irreducible Representations (irrep) of the symmetry group of the
propagation vector G �K ∈ G, knowing that it transforms as a polar vector, are also
employed to classify a magnetic structure. Usually, only one propagation vector
pair ({ �K,− �K}) survives as ground state describing the majority of the magnetic
structures. However also multi- �K structures and structures with one �K and its
harmonics are possible.

Based on the translation properties of a magnetic structure, it is possible to define
commensurate and incommensurate structures when, respectively, the components
of the �K = (p q r) in the nuclear reciprocal lattice basis are rational numbers
({p, q, r} ∈ Q) or not. In the first case, it is possible to find a magnetic unit cell
that is a multiple of the nuclear one.

Let us now consider initially the simplest case in Eq. (143), that is, �K = (0 0 0).
In this case the Fourier coefficient �S �Kdm

is a real vector equal to the magnetic

moment at site dm, �Mldm. This �K means that the magnetic and the crystallographic
unit cells are the same. All the ferromagnetic (FM) structures, and a large part of
the antiferromagnetic (AF) ones, occur with this propagation vector. Notice that AF
with �K = 0 is possible if there are more than one similar atom at the unit cell.
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For a propagation vector, �K , on the Brillouin zone border, i.e., �K = 1
2

�H , the
Fourier coefficient �S �Kdm

is real and the magnetic moment, along different unit cells,
change its sign, but not its modulus, according to:

�Mldm = (−1)
�Rl · �K �S �Kdm

, (174)

where �Rl was defined in section “Nuclear Scattering” and �K has the form ( 1
2

1
2

1
2 ),

( 1
2 0 1

2 ), etc.
Let us consider now that ({ �K,− �K}) are at the interior of the Brillouin zone. If

the Fourier coefficients �S �K,dm
are real or its imaginary and real parts are parallel,

then they can describe an amplitude modulated or sinusoidal structure:

�Mldm = �S �Kdm
cos{2π( �K · �Rl + φ �Kdm

)}. (175)

Also with ({ �K,− �K}) at the interior of the Brillouin zone, in the general case where
the Fourier coefficients �S �Kdm

are complex vectors, an helicoidal or a cycloidal

structure can be described if both the real and imaginary parts of �S �Kdm
are

orthogonal. In the first case, the propagation vector is also orthogonal to both
components, but in the second case, the propagation vector is contained in the
plane formed by both components. Let us see how evolves the magnetization along
different unit lattices l:

�Mldm = 2Re
[�S �Kdm

]
cos{2π( �K · �Rl + φ �Kdm

)}

− 2Im
[�S �Kdm

]
sin{2π( �K · �Rl + φ �Kdm

)}
(176)

If the real and imaginary part vectors have the same modulus, then the helicoid, or
the cycloid has a circular envelope; if not the envelope is elliptical.

The experimental finding of the propagation vector is the first step to determine a
magnetic structure. Usually this is done with powder neutron diffraction techniques,
which allow a quick inspection of the 3D reciprocal space projected in 1D. The
indexation of the magnetic peaks will produce the magnetic lattice and therefore
the propagation vector. Once this is done, it is very convenient to use symmetry
arguments to reduce the number of possible magnetic structures. Finally, for each
possible model, it is necessary to try and fit the magnetic intensities measured with
neutrons.10 A complete monograph on these procedures can be found in [28].

At this point it is very important to remember that the experiments produce
the scattered intensities, I�q , which are real positive numbers, because they are
proportional to the modulus square of the nuclear structure factor, or the magnetic
interaction vector, which in absence of spatial inversion symmetry are complex

10The FullProf Suite has the necessary software to accomplish these tasks.
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quantities. It means that the experiment does not give a complete information on the
nuclear or magnetic structure, because different structures differing in a global phase
factor will produce the same intensities pattern. One example of this is explained
latter.

6 Neutron Powder Diffraction

The first commercial X-ray powder diffractometer was introduced by Philips
company in 1947. In the 1950s and 1960s, the use of these apparatuses increased,
mainly due to mineralogists and metallurgists, as a tool to perform primary
structural studies (phase identification, defects, vacancies, etc.). In 1969 Rietveld
[29] developed a method for the whole pattern analysis of the powder neutron
diffraction data. Later, Cox, Young, Thomas, and others [30–32] firstly applied
the method to analyze synchrotron and conventional X-ray data. It is important
to mention here that the Rietveld method is a refinement process that requires an
approximation to the correct structure in advance. Nowadays powder diffraction is
a very popular technique that can be found in many laboratories to characterize any
kind of crystalline matter and plays a central role in structural physics, chemistry,
or materials science. It has produced important advances in the knowledge and
understanding of high-Tc superconductors, zeolites, fullerenes, permanent magnets,
etc. Extensive monographs on powder diffraction can be found in [33, 34]. Here,
we will explain some particularities or advantages of the neutron powder diffraction
that justify their use.

For a nuclear structure, which includes the determination of the positions of
any light element (H, Li, C, N, O, S, etc.), or light elements in the presence of
any heavy element (U, Pb, Bi, Ta, etc.), the use of neutron diffraction is the most
suitable. For example, in [35] by using powder neutron diffraction in the multiferroic
(NH4)2FeCl5·H2O, the anomaly observed in the specific heat at 79 K was assigned
to an order-disorder phase transformation due to the hydrogen atoms in the NH4***
cation, which produces a change of the symmetry from the space group Pnma at
room temperature to P21/c for T < 79 K. As an example of the second case, high-
resolution in situ powder neutron diffraction was employed to determine the changes
in the UO2 structure during oxidation allowing the determination and refinement of
the structure of β-U3O7 [36] at 483 K. Also, if some next-neighbor elements are
present (Mn, Fe, Co, Ni, etc.) simultaneously in the structure (e.g., FenNim alloys),
they can be easily distinguishable by using neutron diffraction.

In situ or in operando experiments, employing complex sample environments
(very low and high temperatures mK to 3000 K, high pressure up to 30 GPa, high
magnetic field up to 20 T), are easy and commonly performed. Due to the large
penetration depth of neutron beams and their non-destructiveness, the determination
of residual stress or textures measurements in bulk materials is another typical
engineering application of neutron powder diffraction [37].
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As was explained before, neutrons interact with matter via the strong nuclear
force with the nuclei but also via the magnetic dipolar interaction with the unpaired
electrons, both interactions with a comparable intensity. That is the reason why neu-
tron powder diffraction is the primary technique to determine magnetic structures,
as will be explained in detail in this section. In certain cases, it is necessary to go
further using single-crystal techniques, with polarized or unpolarized neutrons, as it
will be explained later in Sects. 8 and 9.

A powder is a polycrystalline sample formed by a huge number of microscopic
single crystals randomly oriented. Under these conditions, there are thousands of
crystallites11 in diffraction conditions when the powder is illuminated with an
appropriate wave. The three-dimensional reciprocal space of the powder formed
by these crystallites is a set of concentric spherical shells, with radiuses equal to
the modulus of each node at the reciprocal lattice (indexed with the vector �H ).
The intersection of these shells with the Ewald Sphere gives rise to the powder
diffraction as a set of Debye-Scherrer Cones, and the intersections of these with a
2D detector give rise to the typical Debye-Scherrer Rings. The integration around
these rings reduces the 2D data to a 1D diffraction pattern where the abscissae
axis is the 2θ angle (nλ = 2d sin θ ) and the ordinates axis corresponds to the
diffracted intensity. Therefore, the 3D reciprocal lattice is condensed into a 1D in
powder diffraction pattern. This leads to both accidental and exact peak overlap and
sometimes complicates the determination of individual peak intensities. Also, if the
powder is not randomly oriented and therefore it has any preferred orientation, or
textures, then the powder leads to biased peak intensities.

In reactor-based neutron sources, where the diffractometers operate usually at
constant wavelength, the scattering variable is the 2θ angle. However in spallation
neutron sources, due to their pulsed nature, the diffractometers are based on time of
flight (ToF) techniques being the scattering variable the incident neutron wavelength
λi of a polychromatic beam.

The principle of ToF is based on the fact that neutrons have a mass (m) and
therefore the de Broglie equation relates the wavelength of the neutron, λi , to its
velocity, vi according to λi = h/mvi , where h is Planck’s constant. Therefore, it is
possible to determine the wavelength of the neutron by measuring the time ti that a
neutron employs to travel a fixed distance L. Combining these ideas with the Bragg
equation yields:

λi = hti

mL
= 2di sin θ0, ti = 505.55685(40) L di sin θ0. (177)

Therefore the d-spacing is proportional to the time of flight (ti), and the diffraction
patters are collected at fixed θ0. To measure the ti , all we need is to measure the
arrival time of the neutron at the detector, knowing that the starting time of the

11Notice that 1 cm3 contains ∼109 crystallites with size ∼10 μm or ∼1012 crystallites with size
∼1 μm.
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neutron is fixed by the use of chopper, in reactor sources, or by using the pulses
structure, in spallation sources. In Eq. (177) the units are μs, m, and Å for ti , L, and
di , respectively.

Some Ideas About the Rietveld Method

A powder diffraction pattern is a histogram of counts measured at the detector (yi ,
at the ordinates axis) for each value of the scattering variable (xi at the abscissae
axis), which can be scattering angles (2θi), time of flight (ti), or energies Ei . The
Rietveld method consists in minimizing the weighted squared difference between
the observations yi and the calculated yical against a set of different parameters (�ξ )
related mainly with the atomic structure and microstructure of the sample and the
optics of the instrument (monochromators, collimators, slits, pulse structure, etc.):

χ2 =
n∑

i=1

wi

{
yi − yical(�ξ)

}2
, (178)

where wi is the inverse of the variance (σ 2
i ) of the observation yi and yical represents

the calculated counts as follows:

yical =
∑
φ

Sφ
∑

�q
Iφ,�q �(xi − xφ,�q) + ybi . (179)

The index φ runs over all the different phases, nuclear or magnetic, present at the
powder with scale Sφ ; the vector �q labels a nuclear or magnetic Bragg reflection
(�q = �H or �q = �H ± �K where �H is a node of the reciprocal lattice and �K is a
magnetic propagation vector); �(xi − xφ,�q) is the peak-shape normalized function
centered at the Bragg position �q of phase φ, which includes the instrumental and
sample microstructural effects; and Iφ,�q is the intensity of that Bragg reflection,
which includes the modulus squared either of the nuclear structure factor |N�q |2
(Eq. 135) or the magnetic interaction vector | �M⊥�q |2 (Eq. 145), among other different
corrections (asymmetry, transmission, preferred orientation, efficiencies, etc.). The
background is represented by ybi .

The Rietveld method needs an initial, nuclear and/or magnetic, structural model
as input. Essentially, it enters at the calculations of the nuclear structure factor
(atomic coordinates, occupancies, Debye–Waller factors, etc.) or at the magnetic
interaction vector (vectorial magnetic atomic moments). Also the Bragg positions
xφ,�q are a function of the unit cell (a, b, c, α, β, γ ).
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Selected Examples

Magnetic Structure of MnO

Up to year 1949, the only method to detect antiferromagnetism in a compound
was via indirect experiments, i.e., by observing some anomalies in the specific
heat and susceptibility. However, based on the pioneering paper of Halpern and
Johnson [12], Shull and Smart, at the Oak Ridge National Laboratory, initiated
a research program to investigate at room temperature the magnetic properties of
powders of MnF2, MnSO4, MnO, and α-Fe2O3 with neutron scattering. They found
no magnetic Bragg signals in MnF2 and MnSO4 but a short-range order in MnO and
coherent magnetic scattering in α-Fe2O3, being the ordering temperatures 122 K and
950 K, respectively [38]. In the case of MnO, they also collected neutron scattering
data at 80 K and observed the same Bragg nuclear peaks observed at 300 K and,
additionally, also new strong peaks not indexed with the chemical unit cell but with
a doubled cell in each crystallographic direction, in agreement with an AF longe-
range order (LRO) with a propagation vector �K = ( 1

2
1
2

1
2 ). This was one of the first

magnetic structures determined with neutron scattering.

Antiferromagnetic Structures with �K = 0 in A2FeX5·H2O (A=K, Rb,
X=Cl, Br)

The family of low anisotropy antiferromagnets A2FeX5·H2O, where (A=K, Rb,
X=Cl, Br) was well known in the 1980s [39] due to the dimensionality crossover
observed in its magnetic behavior [40] and also because its experimental accessibil-
ity to the spin flop phase transition at relatively low magnetic fields [41] (see Sect. 7).
Moreover, the diamagnetically site diluted compounds A2Fe1−xInxX5·H2O were a
good physical realization of the theoretical ramdom field Ising model [42] by its
equivalence with the diluted antiferromagnet in presence of a field model, as proved
by Fishman and Aharony [43]. Moreover, this AF family showed a significant
remanent magnetization, with singular scaling properties, when cooled in presence
of very low fields. All these facts increased the interest in these compounds [44–48].

However, the magnetic structure of these compounds was unknown till Palacio
et al. collected neutron powder diffraction at the D1B and D2B instruments at the
ILL with several main objectives: (1) to determine the magnetic super-exchange
pathways by refining the O and H atomic positions with high precision at low
temperature, (2) to determine and classify the magnetic structure, and (3) to measure
the temperature evolution of the magnetic moment for each sub-lattice in order
to compare it with the observed remanent magnetization to see if both were
proportional [49].

The analysis of the data accomplished all these goals. The system crystallizes
at the Pnma space group. The unit cell of A2FeX5·D2O contains four discrete
[FeX5 ·H2O]2− octahedra connected by hydrogen bonds. In each octahedron three
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halogen atoms, the oxygen atom, and the iron atom are in special positions 4c,
and the other atoms are in general positions. The octahedra are arranged in planes
perpendicular to the �b-axis. The hydrogen bonds connect octahedra related by the
inversion operator to form chains along the �b-axis. The structure is schematized
in Fig. 6.

The propagation vector found was �K = (0 0 0) giving ac-ferromagnetic planes,
antiferromagnetically coupled along the �b-axis with all the magnetic moments
parallel to the �a-axis (easy axis), being the super-exchange pathway along the �b-
axis (J1) the most intense. The symmetry analysis helped to classify the magnetic
structure as the irrep %1u(Ax 0Cz) of Pnma which is compatible with an Ax , AF,
mode along �a-axis and an Cz mode, also AF, along the �c-axis, even if accidentally
the refinement did not produce any appreciable magnetic moment along the �c-
axis. The magnetic structure had the symmetry of the Pn′m′a′ Shubnikov group.
As we will see later, the mode Cz will play an important role in the magnetic
structure of the ammonium derivative (see section “Modulated Magnetic Structures
in Multiferroics”). Unexpectedly the magnetic moment found at low temperature
was 3.9(1) μB and 4.06(5) μB for, respectively, K and Rb derivatives, which is
around 20% lower than that expected for Fe3+. This question will be analyzed later
in Sect. 8. The temperature evolution of the sub-lattice magnetic moment was found
to be not proportional to the observed remanent magnetization, excluding therefore
the possibility of a bulk effect as the origin of that remanence.

The Problem of the Global Phase in Ca3Co2−xFexO6

The spin-chain compounds Ca3Co2−xFexO6 (x = 0.2 and 0.4) crystallize in the
rhombohedral space group R3̄c where Co3+ ions are located at Wyckoff position
6a (0 0 1

4 ), with S = 2, and 6b (0 0 0), with S = 0, separated by Ca2+. The Co3+
ions in the adjacent spin chains are shifted by 1/6 or 1/3 along the �c-axis. The com-
pound with x = 0 was reported to exhibit a partially disordered antiferromagnetic
(PDA) state, where 2/3 ferromagnetic Ising spin-chain orders with AF interchain
interaction while the remaining 1/3 are disordered with zero net magnetization.
After the Rietveld refinement of neutron powder diffraction, it was possible to
locate the Fe3+ at the trigonal prims sites 6a. At low temperatures additional
magnetic Bragg peaks were indexed in the nuclear lattice with a propagation vector
�K = (0 0 1) which indicates that the centering translation �t = (0 0 1

2 ) was lost in the

magnetic structure. The %2 irrep of G �K , common in both sites, labels the magnetic
structure and corresponds with ferromagnetic ac-planes, with the magnetic moment
parallel to �c-axis, coupled AF along the �b-axis.

In [50] it is demonstrated that two different magnetic structures, (1) amplitude
modulated structure with a propagation vector �K = (0 0 1) in R3̄c and (2) a PDA
structure, with a propagation vector �K = (0 0 0) in P 1̄, are able to fit the same
neutron diffraction pattern because the Fourier coefficients for each model only
differ in a global phase factor that cannot be determined by the experiment (see
section “Magnetic Scattering”). Both models assure that the total magnetic moment
in the unit cell is zero and their Fourier coefficient is:
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�S �K,pdm
= mz (0 0 c)e−i2πψ �K,pdm

ψ(0 0 1), pdm − ψ(0 0 0), pdm = π
6 (180)

where mz is the refined magnetic moment and c = 1 or c = 2
√

3 for, respectively,
�K = (0 0 1) or �K = (0 0 0) and the phase factor ψ �K,pdm

for each model differs in
π
6 for all the atoms in the orbit of both sites 6a and 6b. Both models correspond to a
magnetic moment parallel to the �c-axis, which changes its modulus along the z coor-

dinate of the unit cell following the sequences . . .
√

3
2 , 0, −

√
3

2 ,
√

3
2 , 0, −

√
3

2 . . .

for �K = (0 0 0) and . . . 1, − 1
2 , − 1

2 , 1, − 1
2 , − 1

2 . . . . for �K = (0 0 1).

Incommensurate Spiral Magnetic Structure in LiFeAs2O7

Iron diarsenate was intensively studied because of its redox properties as cathode
material in Li-ion batteries. However it was also interesting to understand how the
Fe ions interacted, through magnetic exchange pathways involving two oxygens,
originating a LRO at temperatures ∼35 K. For that reason, and to refine the
crystallographic structure regarding the light elements, Rousse et al. [51] performed
high-resolution powder neutron diffraction experiments at the instrument D1A at
several temperatures and thermo-diffraction from 2 K to 50 K at the high flux D1B
instrument, which is optimized for magnetic measurements with its good resolution
at low angles.

The refined nuclear structure confirmed the space group as C2 and allowed to
locate with high accuracy the Li atoms, which are in the free channels along the
(0 0 1) direction formed by each FeO6 octahedron surrounded by six diarsenate
As2O7. Unlike the phosphate analogue, the patterns collected in LiFeAs2O7 below
35 K showed new extra Bragg peaks indexed with a propagation vector �K =
(0.709 0 0.155), which is not a high symmetry point of the Brillouin zone,
representing a incommensurate structure.

With these conditions, the symmetry analysis does not provide any constraint
on the Fourier coefficients. The authors excluded the possibility of any spiral
structure with axis parallel to neither any crystallographic axis nor the propagation
vector. However, by using simulating annealing techniques, the authors found
two possible orientations for the spiral axis, related by the twofold rotation axis,
indistinguishable by the diffraction pattern, and a magnetic moment for Fe ion
4.28(3) μB. This magnetic structure is intermediate between a pure helical and pure
cycloidal structure.

The magnetic spiral structure can be explained by considering a triangular
topology of AF interactions between the Fe ions (J1, J2, and J3), which produces
some frustration responsible from the non collinearity of the spins, which fulfil the
conditions J2 ≈ 0.522J1 and J3 ≈ 6.932J1.
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Long Period Helical Structures

TM3S6 (T=Transition metal, M = Nb and Ta), an intercalated systems of 2H-MS2,
are described by the chiral space group P6322, and they apparently showed a
variety of magnetic behaviours: paramagnetism for TiNb3S6, VNb3S6, TiTa3S6,
and VTa3S6; AF for FeNb3S6, CoNb3S6, NiNb3S6, CoTa3S6, and NiTa3S6; and
ferromagnetism for CrNb3S6, MnNb3S6, CrTa3S6, MnTa3S6, and FeTa3S6 [52–54].

The monoaxial helimagnet CrNb3S6 has received attention recently due to
the observation of magnetic chiral soliton lattice directly probed by Lorentz
transmission electron microscopy (LTEM) [55] and by the theoretical predictions
about its magnetic phase diagrams [56–59]. However thermal neutron diffraction
studies firstly reported that CrNb3S6 was a ferromagnet because the magnetic peaks
were observed at the same diffraction angle as the nuclear ones [60].

The pitch angle of a chiral helimagnetic structure, mainly determined by the
ratio of the exchange interaction (J ) and the Dzyaloshinskii-Moriya interaction (D),
is usually very small, and therefore the period can be hundreds of angstroms12.
In some cases, the angular resolution of conventional neutron diffractometers is
not high enough to separate nuclear Bragg from magnetic satellite peaks. As a
consequence, some compounds with helical ordering may be easily misinterpreted
as ferromagnets.

In this example, it is highlighted that ultra high-resolution neutron powder
diffraction experiments made it possible to detect incommensurate satellite peaks
related to very small propagation vectors in the compounds CrNb3S6 and CrTa3S6,
previously reported as ferromagnets [61].

For that purpose, the experiments were performed at the SuperHRPD diffrac-
tometer, in the Materials and Life Science Facility (MLF), at 10 K and paramagnetic
phase at 160 K and 180 K for, respectively, CrNb3S6 and CrTa3S6. Figure 1 shows
the results around the nuclear (0 0 4) and (1 0 3) reflections for CrNb3S6 and
CrTa3S6 obtained by the backward detector bank. The magnetic satellites for both
compounds (Fig.1) were successfully separated and indexed by �K = (0 0 δ), with
δ = 0.0206(2) for CrNb3S6, giving a helimagnetic period of 510 Å, slightly longer
than that reported with LTEM. This discrepancy was assigned to the sample quality
because a fewer defects in Cr sites may change the helical periodicity governed
by D/J . The new observed peaks for CrTa3S6 were indexed with δ = 0.0538(1),
which produced a period of 225 Å.

7 Single Crystal Neutron Diffraction

As it was explained before, the NPD techniques provide unique information about
the magnetic periodicities, or magnetic correlations, in magnetically long-range
ordered (LRO) materials. However the information given by the powder diffraction

12In helical structures, driven by magnetic frustration, the period is usually shorter.
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Fig. 1 Neutron powder diffractograms around the nuclear (0 0 4) and (1 0 3) reflections in (a)
CrNb3S6 and (b) CrTa3S6. The vertical arrows indicate observed magnetic satellite peaks

techniques is sometimes incomplete because, basically, we have only access to
a projection of the 3D reciprocal space onto one dimension (1D), i.e., only the
modulus of the reciprocal lattice �H node vector is measurable, and therefore
different reflections I �H associated to �H vectors with the same modulus will overlap
at the same point in the powder diffractogram. However the diffraction in single
crystals will permit the full exploration of the 3D reciprocal space and the individual
measurement of each reflexion I �H . Moreover, diffraction in single crystals will
specially be suitable when an external axis needs to be defined (e.g., a magnetic
field). In the next examples, these ideas will be illustrated.

Modulated Magnetic Structures in Multiferroics

The magneto-electric effect, i.e., the cross control of magnetization with electric
fields and the electric polarization by magnetic fields, was predicted a long time ago
by Pierre Curie [62]. Later on, in the 1960s and 1970s, materials with this effect
attracted great interest. However, it was after the discovery of magneto-electric
multiferroicity in the perovskite TbMnO3 by Kimura et al. [63] when these materials
became interesting from the point of view of its spintronic applications, because of
its enhanced coupling. In their seminal paper, several magnetic models to explain
the observed magneto electricity properties in TbMnO3 were suggested, and, as a
consequence, it was imperative to revisit the previous knowledge about its published
magnetic structures.

Magnetic Structures of TbMnO3 At room temperature the crystal structure of
TbMnO3 can be described with the space group Pbnm. The heat capacity shows
three anomalies at TMn ≈ 41 K, TL ≈ 27 K, and TT b ≈ 7 K. Previous neutron
scattering experiments seemed to indicate that the Mn sublattice ordered with a
sinusoid modulated AF structure between TMn and TL, with the magnetic moments
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parallel to the �b axis, and an incommensurate propagation vector �K = (0 0.295 0),
which slightly decreased its value to �K = (0 0.27 0). In this region, X-ray
diffraction revealed that the modulated magnetic order was accompanied with a
lattice modulation. In the region between TL and TT b, the magnetic propagation
vector locked at constant value �K = (0 0.27 0), and below TT b the Tb ions ordered
magnetically with a different propagation vector. It is below TL when TbMnO3
develops ferroelectric behavior with an electrical polarization parallel to the �c axis.
It is clear that the knowledge of the magnetic structure is not complete, and for that
reason new neutron diffraction experiments in single crystals were needed. Initially
Kajimoto and co-workers [64, 65], from experiments in single crystals, suggested
the existence of a complex non-collinear magnetic order below TL together with the
incommensurate lattice modulation.

Moreover, the experiments done by Kenzelmann and co-workers [66] contributed
to clarify the magnetic models at every region of the T − B phase diagram. Their
works agreed with the order observed previously for the region between TMn

and TL. They classified the magnetic structure under the %3 irrep of G �K without
observing high-order Fourier components. However, in the region from TL to TT b,
they described the magnetic structure by using %2 and %3 irreps forming a elliptical
spiral perpendicular to the �b axis and with a significant magnetization along the �a
axis in the Tb sub-lattice. The simultaneous presence of both irreps indicates the
breaking of inversion symmetry and therefore the presence of electrical polarization
below TL. Below TT b a new propagation vector, �KTb = (0 0.425 0), associated with
Tb ions appeared together with several strong odd high-order harmonics, indicating
strong distortions at the sinusoidal modulated Tb magnetic structure.

Multiferroicity in the Molecular Compound (NH 4)2FeCl5 · H2O The magnetic
structures of the low anisotropy AF series A2FeX5·H2O at zero magnetic field were
discussed in section “Antiferromagnetic Structures with �K = 0 in A2FeX5·H2O
(A=K, Rb, X=Cl, Br)”. However, the ammonium derivative (NH4)2FeCl5·H2O,
which has been described as the first molecular multiferroic [67], develops a
slightly different one [68, 69]. In fact, this compound shows two anomalies in
the heat capacity curves at TFE = 6.9 K and TN = 7.2 K associated with
different magnetic phases. Single-crystal neutron diffraction at zero magnetic field
allowed to determine an incommensurate propagation vector �K = (0 0 0.2288)
at 2K. Moreover, none of the models described by an unique irrep of the G �K ,
with G = P21/c, did reproduce the collected magnetic reflections. However the
simultaneous use of 2 irrep, with a phase difference between the Fourier coefficients
of the respective irrep of π/2, fitted it. It was a hint of a symmetry reduction
from 2/m → m, also needed to explain the observed ferroelectricity in this
compound. Within this model, the Fe magnetic moments develop two pairs of AF
coupled cycloids contained in the a, c-plane and propagating along the �c-axis with
a phase shift of 41.5 ◦. The same super-exchange pathway along the �b-axis (J1)
that produces the AF coupling in the cycloids and the reduced magnetic moment of
3.8μB measured for the Fe+3 ions were also observed in the K and Rb derivatives.
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Spin-Flop Transition and Magnetic Structures in the Hybrid Multiferroic
(NH4)2FeCl5·H2O

In the preceding paragraphs, the magnetic structures of the series of easy axis
Heisenberg AF A2FeX5·H2O, at zero magnetic field, determined from NPD exper-
iments, have been shown. However, due to the low anisotropy of the ion Fe3+ in
these compounds, its Spin–Flop transitions occur at relatively low fields ( �B ≤ 5T))
[39]. It facilitated the determination of the magnetic structures inside the Spin–
Flop region, by using single-crystal neutron diffraction techniques with an applied
magnetic field. In fact, the magnetic moment flopped from the �a axis at zero field
to the �c axis for fields �B ≤ 3T keeping the same irreps %1u of the space group
Pnma [70].

In crystals of the ammonium derivative (NH4)2FeCl5·H2O, which shows a
multiferroic behaviour, the evolution of its cycloidal magnetic structure was also
studied, by applying a magnetic field parallel to its �a easy axis at low temperatures
(T = 2K), with the help of neutron diffraction [71]. These experiments showed
the change of the propagation vector from �K0 = (0 0 0.23) to �K3.5 = (0 0 1

4 )

and �K5.5 = (0 0 0) for fields B = 0, 2.5 ≤ B ≤ 5, and 5 < B T. The
electrical polarization vectors related to the magnetic structures determined in these
experiments are in agreement with the macroscopic measurements done in Ref.
[67]. The knowledge of the magnetic structures, incommensurate and distorted
commensurate cycloidal in the ac-plane and collinear in the �c axis (corresponding to
the spin–flop transition), leads to the conclusion that the mechanism responsible for
multiferroicity in (NH4)2FeCl5·H2O is changing from the so-called spin-current
mechanism to the spin-dependent p-d hybridization mechanism. The magnetic
structures in the three different magnetic field regimes are displayed in Fig. 2.

Magnetic Ordering by Dipolar Interactions in Single-Molecule Magnet
Mn12-Acetate

In the 1990s the molecular magnetic clusters like Mn12 or Fe8 or Mn4 and others
were intensively studied because they show a single-molecule magnet (SMM)
behaviour including quantum tunnelling of the magnetization vector [72–77]. All of
them behave as super-paramagnetic entities with a large magnetic moment, blocking
temperatures below 10 K and a large magnetic anisotropy. Here we will focus on the
Mn12-acetate cluster.

Mn12-acetate is a cluster containing 12 Mn atoms arranged in such a way that
four ions with Mn4+ with S=3/2 are in a core surrounded by 8 Mn3+ with S=2
coupled AF [78, 79] with those of the core giving a total spin equal to 10 and
therefore a magnetic moment of 20 μB . It crystallizes in the tetragonal space group
I 4̄ with four molecules in the unit cell with a quasi-null intermolecular exchange
due to weak van der Waals forces.
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Fig. 2 Magnetic structures of (NH4)2FeCl5·H2O for the three regimes of the magnetic field
applied parallel to the �a axis at T = 2 K. The propagation vector �K is changing from �K0 =
(0 0 0.23) to �K3.5 = (0 0 1

4 ) and �K5.5 = (0 0 0) for fields 0, 2.5 ≤ B ≤ 5, and 5 < B T. The green
arrow represents the direction of the electrical polarization vector

Mn12-acetate was theoretically predicted at low temperatures (∼0.5 K) to be a
ferromagnetic LRO due to strong dipolar magnetic interactions between the high-
spin molecules [80]. Therefore the verification of this prediction was a very nice
experiment to be done with the use of neutron diffraction in a deuterated single
crystal (0.5 × 0.5 × 1 mm3) of Mn12-acetate.

However, the spin reversal via quantum tunnelling in Mn12-acetate becomes
extremely slow at low temperatures (∼2 months at T = 2 K), and, for the time scales
102–104 seconds of a typical neutron diffraction experiment, the spins are unable to
attain thermal equilibrium below a blocking temperature TB ∼ 3 K, higher than
the ordering temperature TC ∼ 0.5 K. This problem could be circumvented by the
application of an orthogonal magnetic field to the anisotropy axis �c of Mn12-acetate
( �B⊥) that promotes quantum tunnelling of the molecular spins [81].

The experiment was performed at the instrument D10 of ILL, as proposed in
the last paragraph, by using a cryomagnet to apply vertical magnetic fields up to
6 T and with a dilution fridge to go down to ∼30 mK. The examination of several
appropriate magnetic reflections of a deuterated crystal of Mn12-acetate, aligned
with it �c axis in the horizontal plane and its (1̄ 1 0) axis parallel to �B⊥, as a function
of T and �B⊥ was enough to determine its magnetic phase diagram, which shows
a ferromagnetic phase transition line at ∼0.9 K at zero field in agreement with the
predictions (Fig. 3). These results verified that for large enough �B⊥, the molecule
of Mn12-acetate becomes diamagnetic because its ground state is something like
|φ〉 = |10,+10〉 − |10,−10〉 giving ST = 0
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B  II (110)

Fig. 3 Evolution of the reflection (2 2 0) for different magnetic fields �B⊥ and temperatures (left)
and the experimental magnetic phase diagram of Mn12-acetate (right). From ref. [81]

Trapping the Different Magnetic Phases in the Chiral Molecular Magnet
[Cr(CN)6][Mn(S)-pnH(H2O)]·(H2O)

The magnetic-field-induced effects can be anticipated to be very large if the struc-
turally chiral compound orders magnetically (e.g., ferrimagnetism, ferromagnetism,
weak ferromagnetism, conical, helical, etc.) below a certain temperature. Despite
this interest, very few molecular candidates likely to exhibit magnetic and nuclear
chirality have been synthesized until now.

Inoue and co-workers have recently developed a synthetic approach based
on cyano-bridged bimetallic complexes by networking magnetic “bricks” that
have more than three connections. In these compounds, cyanometallate magnetic
anions [M(CN)n]m− and a second magnetic metal ion M’ coordinated to a chiral
ligand alternate as building blocks to develop a chiral lattice [82, 83]. Here we
analyze the magnetic structures of the chiral magnetic molecular compound of for-
mula [Cr(CN)6][Mn(S)-pnH(H2O)]·(H2O) where (S)-pn=(S)-1,2-diaminopropane
was prepared following Inoue’s strategy.

This compound presents three nuclear phases; each one is magnetic at low
temperature with critical temperatures of TC = 38 K, 39 K, and 73 K for phases I, II,
and III, respectively, all remarkably high temperatures for a metal-organic molecular
magnet. The three phases can be transformed into one another, differing mainly in
the position of the chiral carbon and in the water content, by heating and cooling
and applying vacuum conditions. Remarkably enough, all three nuclear phases (and
therefore also the magnetic ones) are reversible and can be reached in the same
experiment by using neutron LAUE diffraction [84].

For the three phases, the space group is P212121. In phase I the Mn2+ ions are
linked to four Cr3+ ions by four of the six cyanide groups in the [Cr(CN)6]3− ion,
thus forming a bimetallic patchwork that is arranged almost perpendicularly to the
�c axis to form a two-dimensional chiral network. The Mn2+ ions are also linked to
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one water molecule and to the amino acid ligand, which induces the chirality and
completes the octahedron [85].

As particularities of the neutron LAUE diffraction method, we can mention that
(1) it gives access, in a very fast way, to a large portion of the reciprocal space and
therefore it allows some “dynamic” crystallographic studies and (2) LAUE methods
use a quasi “white” neutron beam, which means that the number of neutrons arriving
to the sample increases, and therefore it can be employed in very small crystals.

In a small crystal of [Cr(CN)6][Mn(S)-pnH(H2O)]·(H2O) this technique deter-
mined that the propagation vector is �K = (0 0 0) for the three magnetic phases,
so the nuclear and the magnetic unit cells are the same. All three phases show two
interpenetrating magnetic sublattices, one of Cr and another one of Mn AF coupled.
Magnetic phases I and II can be described by the irrep %4 of P212121, which leaves
the �a axis ferromagnetic, while phase III is described by a %3, leaving the �b axis
ferromagnetic. The magnitudes of the moments are slightly less than the spin-only
moments for Cr3+ and Mn2+ but are in good agreement with similarly coordinated
ions in the other Cr and Mn compounds.

8 Polarized Neutron Diffraction

The experiments described till now were performed with non-polarized neutron
beams, so that the intensity diffracted was I�q = N�qN∗

�q + �M⊥�q · �M∗
⊥�q (�q = �H ± �K

where �H is a node of the reciprocal lattice and �K is the magnetic propagation vector
that plays only in the magnetic part). In such expression, the nuclear structure factor,
N�q , and the magnetic interaction vector, �M⊥�q , appear not coupled.

However, if we polarize the neutron beam, by using, for example, 3He spin filters
or Heusler-Alloy monochromators, the first Blume-Maleev equation (Eq. 171) states
that, on top of the modulus square of N�q and �M⊥�q , the scattered intensity, I�q ,
incorporates the initial polarization vector of the neutron beam, �Pi , multiplying the
nuclear-magnetic interference vector (N�q �M∗

⊥�q + N∗
�q �M⊥�q) and the chiral vector

i( �M∗
⊥�q × �M⊥�q), which is non-null for non-collinear magnets.

In the following examples, the initial polarization �Pi of the neutron beam can be
changed between two states, up (↑) and down (↓), or parallel and antiparallel, and
the detector counts for all the scattered neutrons for each initial polarization state up,
I

↑
�q , or down, I↓

�q . These scattered intensities include both non spin-flip and spin-flip

processes (e.g., I↑
�q = I

↑↑
�q + I

↑↓
�q and I

↓
�q = I

↓↓
�q + I

↓↑
�q ). These are the ideas of the

linear neutron polarimetry initially developed experimentally by Moon, Riste, and
Koheler [86].

The Fourier transform of the magnetic structure factors, �M�q , which can be
experimentally determined by using polarized neutron diffraction (PND) is directly
related to the magnetization density in the unit cell. In these experiments a key
point is the maximization of the induced magnetization in the sample along the
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magnetic field axis, which is parallel to the initial beam polarization. For that
reason, in most cases, high magnetic fields and low temperatures will be used for
paramagnetic samples. Also, in these experiments, the previous knowledge of the
crystalline structure (i.e., the nuclear structure factors N�q ) obtained from a non-
polarized neutron experiment is needed.

While the nuclear contribution to the diffraction intensities is independent of the
polarization of the neutron beam, the magnetic contribution varies depending on
whether the incident beam is polarized parallel (↑) or anti-parallel (↓) to the applied
field. In a PND experiment, the measured quantity is the flipping ratio, R�q = I

↑
�q /I

↓
�q ,

where I↑
�q and I↓

�q were defined before and they adopt the following expression when
the polarization of the neutron beam is parallel to a magnetic field applied along the
�z axis:

I
↑(↓)
�q =|N�q |2±(N�q �Mz∗

⊥�q+N∗
�q �Mz

⊥�q)+| �M⊥�q |2± i( �Mx∗
⊥�q �My

⊥�q ∓ �Mx
⊥�q �My ∗

⊥�q). (181)

where the upper or down sign in ± or ∓ is taken for up (↑) or down (↓) initial
polarization, respectively. Assuming that the magnetization is parallel (or quasi-
parallel) to the polarization of the beam �Pi or the interaction vector is real ( �M⊥�q =
�M∗

⊥�q ), the flipping ratio R�q is given by

R�q =
I

↑
�q
I

↓
�q

=
|N�q |2 + (N�q �Mz∗

⊥�q + N∗
�q �Mz

⊥�q) + | �M⊥�q |2
|N�q |2 − (N�q �Mz∗

⊥�q + N∗
�q �Mz

⊥�q) + | �M⊥�q |2
, (182)

where �q is the scattering vector of the Bragg reflection13 and N�q and �M⊥�q are
the nuclear structure factor and magnetic interaction vector, respectively. When the
crystal structure is non-centrosymmetric, both N�q and �M⊥�q are complex, and the
magnetic structure factors �M�q cannot be directly extracted from Eq. 182 by using
direct methods (Fourier transform, maximum entropy). Instead, the spin density can
be modeled to provide a best fit to the flipping ratios by using indirect methods. Two
approaches have been utilized to model the spin-density distribution: (a) magnetic
wave function approach [87] and (b) multipolar-expansion approach [88].

Magnetic Wave Function Approach In this approach the magnetization density
m(�r ) = ∣∣〈 �M(�r )〉∣∣ coming from each ion can be described in terms of an orbital
|ψi〉 centered in that ion

m(�r ) =
∑

i∈atoms
Si | 〈�r |ψi〉 |2and|ψi〉 =

∑
j

αij |ϕj 〉. (183)

13If these experiments are done in a magnetically ordered crystal, then the nuclear and magnetic
lattices need to be the same.
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The Si is the atomic spin populations, and the |ψi〉 are the atomic magnetic
wave functions, which are linear combinations of standard atomic orbitals, and the
coefficients αij fulfill the condition

∑
j |αij |2 = 1. The atomic spin populations,

Si , the coefficients αij , and the radial exponents of the Slater atomic orbitals are the
parameters of the model.

Multipolar Expansion Approach In this approach the spin density is partitioned
into separate atomic contributions which are expanded in the basis of real spherical
harmonics Ym

l , which are also referred to as multipoles [88]

m(�r ) =
∑

i∈atoms

∑
l

Rl
i (|�r − �ri |)

m=l∑
m=−l

plmi Ym
l (θi, ϕi), (184)

where plmi is the population coefficients of the real spherical harmonics Ym
l (θi, ϕi)

and Rl
i is the Slater radial functions defined as:

Rl
i (r) = ζ

nl+3
l

(nl + 2)! r
nl e−ζlr . (185)

The ideas described here were applied to understand the magnetic interaction
mechanisms in the purely organic magnet family p-X-C6F4CNSSN and in the low
anisotropy AF family A2FeX5·H2O.

Spin Density Experiments in p-O2N-C6F4CNSSN
and A2FeX5·H2O (A=K, Rb, X=Cl, Br)

Magnetic Interaction Mechanism in p−X−C6F4CNSSN (X = O2N, CN, Br, I )

To enhance the magnetic interaction, and therefore the temperature for magnetic
LRO, sulfur-based organic magnets were proposed [89] due to the larger radially
extension of the sulfur atomic orbitals compared with those of the oxygen in p-
NPNN (TC = 0.65 K) [90]. This strategy proved to be very successful, and it is
today the phase β of p-NC-C6F4CNSSN, which undergoes a phase transition to
a canted AF state below 36 K, being the metal-free compound with the highest
reported magnetic LRO temperature [91].

The spin density studies in a crystal of p-O2N-C6F4CNSSN, obtained with polar-
ized neutron diffraction and supported by ab initio density functional theory (DFT)
calculations, were crucial to provide a fundamental understanding of the magnetic
behavior of the dithiadiazolyl radical family and the magnetism of p-orbitals, which
can be employed to design new metal-free sulfur-based magnets [92].

The polarized neutron diffraction studies revealed that the spin density is almost
entirely located on the sulfur and nitrogen atoms of the dithiadiazolyl ring in a
pz orbital-type distribution with the ẑ axis perpendicular to the ring and a small
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Fig. 4 Relative space localization of two molecules of p-O2N-C6F4CNSSN. The magnetic
interaction between these two molecules is supposed to be ferromagnetic due to the small magnetic
orbital overlapping

negative spin density on the C atom arising out of spin polarization. These studies
also show that the spin density is displaced away from both atoms and bonds within
the dithiadiazolyl ring, in agreement with the anti-bonding nature of the SOMO
determined by ab initio DFT calculations. Both the experimental and theoretical
studies also indicate small negative spin densities in the plane of the heterocyclic
ring.

This exhaustive and complete study of the spin density in the prototype system p-
O2N-C6F4CNSSN helped to better understand the magnetic interaction mechanism,
and therefore the magnetic behavior, in all the members of the series p-X-
C6F4CNSSN (X=O2N, CN, Br, I), for which the packing is controlled by the
substituent in the para position. This is due to the fact that the relative positions
in the space of the interacting magnetic molecular orbitals, which have been
determined to be located in the ring of the ·CNSSN, control the nature and strength
of the magnetic interactions.

Figure 4 shows the relative positions of the magnetic orbitals of the rings of
·CNSSN from two different molecules of p-O2N-C6F4CNSSN. Because of the
quasi-null overlapping of the magnetic orbitals, the magnetic interactions between
those molecules must be ferromagnetic.

Enhancement of the Magnetic Interaction Constant by Spin Delocalization in the
Family A2FeX5 ·H2O (A = K, Rb, X = Cl, Br) As mentioned in the preceding
sections, these series of low anisotropy AF showed magnetic LRO at relatively high
temperatures (TC ≥ 10 K) [39] compared with other hydrated salts of transition
metal ions Cs2FeCl5·4H2O (TC = 0.185 K [93]) or Cs2MnCl4·2H2O (TC = 1.8 K
[94]) with similar coordination and with similar, or even shorter, magnetic super-
exchange pathways. In A2FeX5·H2O there are five different possible magnetic
interactions which are propagated through two super-exchange pathways, which
consist of double bridges of the sort Fe−X···X−FeorFe−O−H ···X−Fe. These
super-exchange pathways, which will be explained in detail later in this chapter,
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are surprisingly effective in transmitting the magnetic interaction that results in
relatively high transition temperatures.

The knowledge of the spin density distribution in the A2FeX5·H2O series allows
the determination of whether the relatively high magnetic transition temperatures
are due to an important spin delocalization from the iron ion toward the ligand
atoms. The existence of such a spin delocalization, which would strengthen the
interaction between magnetic orbitals localized in different octahedra, is also
supported by a reduced magnetic moment observed with neutron powder diffrac-
tion experiments at the Fe3+ site (3.9(1) μB and 4.06(5)μB for K2FeCl5·H2O
and Rb2FeCl5·H2O, respectively), far below the 5μB expected for the saturated
magnetic moment of the Fe3+ [95].

Polarized neutron diffraction experiments, done at the D23 instrument from
the ILL, on K2FeCl5·H2O and Rb2FeBr5·H2O were performed to corroborate the
hypothesis [96]. In this case, the flipping ratios were analyzed with the maximum
entropy method [97] and with a multipolar expansion of the spin magnetization,
and it was demonstrated that the entity [FeX5·H2O] is much more effective at
delocalizing the spin, ∼20%, than other 3d transition metal complexes aqua or
halide coordinated [98–107]. As for iron compounds, in a Fe2+ compound, FeF2,
there is a 10% spin delocalization from the iron ion [108], and in a [FeCl4]−
complex, the spin population of the chlorine atoms is around 0.15 μB [109]. Also
Campo and co-workers [96] showed that the spin delocalization is larger for Br
than for Cl atoms, which explains why the transition temperatures in the bromide
compounds are higher than in their chloride analogs. It was found also that, inside
the distorted octahedra [FeX5·H2O], the shorter the distance between the halide (X)
and the Fe ion, the higher the spin delocalization at the halide, except in the case of
the halide forming part of the pathway Fe − O − H · · · X − Fe, which define the
most intense magnetic interaction constant, J1, in these compounds.

This spin delocalization reflects the fact that the magnetic molecular orbitals are
spread over the ligand atoms, thus enhancing the magnetic interactions through a
super-exchange magnetic interaction mechanism. This enhancement of the magnetic
interactions is the cause of the surprisingly high transition temperatures in this series
of compounds.

Determination of Atomic Site Susceptibility Tensors

In the last section, it was assumed that the magnetic field-induced magnetization of
the sample ( �M) and the applied magnetic field ( �B) were parallel, i.e., the magnetic
anisotropy was negligible and therefore �M = χ �B. However this condition is not
every time satisfied. In these cases it is necessary to take into account the anisotropic
susceptibility for each magnetic crystallographic site, the bulk magnetization being
the sum vector of all of these. The formalism for calculating the magnetic scattering
in these cases was developed by Gukasov and Brown in Ref. [110]. For example,
for one magnetic ion located on site dm, the local induced magnetization will be
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�Mdm = χ̃dm �B, where χ̃dm is the symmetric local susceptibility tensor for site dm
with the number of independent components given by the local symmetry of the
site dm. An equivalent magnetic atom located at site p related to the site dm by
�rp = g̃p�rdm, where the magnetic group symmetry operator is g̃p = {δp|Rp|�tp}, would
have magnetization �Mp = χ̃p �B = Rpχ̃

dmR−1
p

�B. Therefore, the magnetization
distribution at the unit cell, considering only one magnetic atom at �rdm and its
equivalents by symmetry (dm-orbit), reads

�M(�r ) =
dm−orbit∑

p

mdm(�r − g̃p�rdm)Rpχ̃
dmR−1

p
�B, (186)

where mdm(�r ) is the magnetization distribution (assumed spherical) around the
atom dm and p runs over the symmetry operators of the space group of the crystal
that generates the atoms of the dm-orbit. The expression (186) can be easily
generalized for several magnetic sites in the asymmetric unit cell. Therefore the
magnetic structure factor becomes

�M�q =
Nau∑
dm

Fdm(q)

dm−orbit∑
p

Rpχ̃
dmR−1

p
�B ei2π �q·g̃p�rdm , (187)

where the dm index runs over the magnetic atoms and the Fdm(q) is the magnetic
form factor for the dm-th atom. At most, six free parameters define the local
susceptibility tensors χ̃dm. For some cases, when the magnetic atom occupies an
special Wyckoff position, it is possible to add symmetry constraints, reducing the
number of parameters, by imposing Rpχ̃

dmR−1
p ≡ χ̃dm for those operations of the

space group g̃p for which g̃p�rdm = �rdm. The relationship between the bulk and site
susceptibilities tensor is χ̃bulk = ∑

dm

∑
p Rpχ̃

pdm. The bulk susceptibility tensor
transforms with the full symmetry of the crystallographic class.

The magnetic structure factor expressed in Eq. 187, parametrized with the
components of the site susceptibility tensors, can be used to model the flipping ratios
(Eq.182) which can be measured with polarized neutron diffraction experiments.
These ideas were used to reinvestigate the magnetic structures of Nd3−xS4 and
U3Al2Si3 [110, 111].

The compound Nd3−xS4 crystallizes in the cubic space group I 4̄3d in which the
twelve Nd atoms occupy the Wyckoff position 12a with a local tetragonal symmetry
4̄ (3 sets of 4 Nd atoms with tetragonal axis parallel to each of the 3 main axis).
Unpolarized neutron diffraction experiments with magnetic field parallel to one of
the main axis demonstrated that there is a large difference between the magnetic
moments found for the Nd located in the set with its tetragonal axis parallel to
the field and the other two sets of 12a. However, for an arbitrary orientation of
the crystal with the magnetic field, no symmetry constraints on each Nd magnetic
moment could be applied. The approach of the site susceptibility tensor, for this
particular space group and Wyckoff position, implies that only two parameters are
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needed regardless of the field direction χ̃12a
11 = χ̃12a

22 �= χ̃12a
33 and χ̃12a

12 = χ̃12a
23 =

χ̃12a
13 = 0. By measuring flipping ratios, it was possible to determine these two

parameters: χ̃12a
11 = 1.45(5)μB and χ̃12a

33 = 0.55(5)μB. These parameters represent
an oblate susceptibility tensor for each one of the three sets of Nd in 12a, each
having its short axis parallel to the main axis on which it lies. The non-collinear
distribution of Nd magnetic moments is not incompatible, however, with the bulk
cubic symmetry of the crystal, since the vector sum of all magnetic moments
remains parallel to the field and invariant with respect to the field orientation.

U3Al2Si3 crystallizes in the tetragonal body-centered space group I 4̄, and the
U atoms are sited in three different Wyckoff positions: U1 and U2 in 2a, with
tetragonal local symmetry, and U3 in 8c, with triclinic symmetry. The system orders
magnetically below TC = 36 K, with propagation vector �K = 0, and previous
neutron powder diffraction experiments seem to indicate, with good agreement
factors, a collinear AF order for U1 and U2 sub-lattices and ferromagnetic order
for the U3 one. However, this model, in which U1 and U2 are in similar Wyckoff
positions, produces very different magnetic moment, for each of these uranium
atoms. Nevertheless, the local susceptibility approach shows clearly that, in the
paramagnetic region, there is a strong elongation of the magnetic susceptibility
tensors of U3 (prolate) along one of the (110)-type axes, which increases as the
temperature decreases. In the ordered phase, a non-collinear structure emerges
with magnetic moments pointing along the same (110)-type axes, giving a net
ferromagnetic moment in the ab-plane. On the contrary, the U1 and U2 atoms
show a rather low local susceptibility, suggesting that these atoms have small
moments, characterized by nearly spherical magnetic ellipsoids, indicating low
local anisotropy. The absence of ordering in the U1 and U2 sub-lattices at low
temperatures must be attributed partly to the low moment and partly to the fact
that the first magnetic neighbor of either U1 or U2 atoms is far away.

9 Spherical Neutron Polarimetry

In the previous section, the polarization of the incoming and scattered neutron
beam, respectively, �Pi and �Pf , was fixed to be parallel or antiparallel to a given
direction (ẑ) following the experimental method developed by Moon et al. [86].
However, this method cannot distinguish a rotation of the neutron polarization
vector from a change in its modulus. This is the reason why the method of three-
dimensional analysis of polarization (or spherical neutron polarimetry, SNP) was
developed. Basically, the idea is to implement experimentally the second Blume-
Maleev equation (172) [112–114].

However, it was in 1989 when Tasset and his colleagues developed at the ILL
the instrument called CRYOPAD, which allowed the three-dimensional analysis of
the polarization at large scattering angles [115, 116]. In CRYOPAD the neutron
beam can be initially polarized, �Pi , in the three orthogonal directions x̂, ŷ, and ẑ,
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(righ-hand coordinate system). The scatterer (sample) is placed in zero magnetic
field, and the three components of the polarization vector of the scattered neutrons,
�Pf , are measured for each initial �Pi and for a given scattering vector �q. This

conforms the polarization tensor P̃f i , where the indices f and i refer to the final and
initial polarizations. For example, it is possible to measure the diagonal components
P̃ xx
f i , P̃ yy

f i , and P̃ zz
f i , the same determined in the linear polarization analysis, and

the non-diagonal components (P̃ yx
f i , etc.), related to a polarization rotation in the

scattering event. The SNP, sometimes also called zero-field polarimetry, allows the
determination of complex magnetic structures. Domain structures and the effect
of external influences can also be studied [117–121]. Another advantage of SNP
(also valid for linear neutron polarimetry) is that the measured data, to a good
approximation, are not affected by extinction effects. In the next subsections, several
applications of this technique will be highlighted.

Proving the Magneto-Electric Coupling in the Molecular
Multiferroic (NH4)2FeCl5·H2O

As explained in the previous sections, the compound (NH4)2FeCl5·H2O has been
described as a molecular improper multiferroic [35, 67, 69, 71, 122]. However,
from the macroscopic characterization and the unpolarized neutron diffraction
experiments, it was not possible to elucidate the nature of the magnetic phase
observed between TFE = 6.9 K and TN = 7.2 K. In fact, it was supposed, by
analogy with the archetypical compound TbMnO3 where two order parameters
condense successively at TFE and TN [66], that it should correspond with a
sinusoidal modulated magnetic phase, either parallel to the �a or to the �c axes,
respectively, labelled with the irreps %1 or %2 of the little group of the propagation
vector �K0 = (0 0 0.23) in P21/c. This would correspond to a transition on warming
from a cycloidal (T < TFE) to a collinear sinusoidal AF structure (TFE < T < TN ),
the latter being compatible with the absence of electric polarization. Furthermore,
the symmetry at the multiferroic phase below TFE was unclear.

Rodríguez-Velamazán [123] did SNP experiments in (NH4)2FeCl5·H2O under
an applied electric field ( �E), to explore the possibility of controlling the hand
of the cycloidal magnetic domains and, therefore, the electric polarities. These
experiments allowed the determination of the absolute magnetic configuration and
domain population of this system, under different applied external fields �E. In fact,
for this compound, the term P̃

yx
f i gave the information about the domain population.

The experiment showed that the system is completely switchable, which represents
a direct evidence of its magneto-electric coupling. Moreover, SNP data were used
to refine the previously proposed magnetic structure of the ground state (T < TFE),
obtaining a more accurate magnetic structure model. In fact the group P11′(αβγ )0s
is the only compatible symmetry with the measured polarization tensor P̃f i . Finally,
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the existence of a collinear sinusoidal magnetic phase with moments parallel to the
�a axis in the temperature region TFE < T < TN was confirmed by the sign of the
term P̃

yy
f i , which is negative.

Elucidating the Magnetic Order in GdB4

The family of compounds RB4 attracted a huge interest in the past for their
interesting physical properties (LRO, mixed valence, heavy fermion behavior, etc.).
For example, the presence of magneto-electric coupling in GdB4 was proposed,
assuming that the inversion center was combined with the time reversal operation
and a zero propagation vector �K = 0 with AF behavior [124, 125]. Also,
in resonant X-ray scattering experiments at the Gd-L3 edge, some interference
between magnetic and anisotropic charge contributions was observed, which was
compatible with several magnetic models for GdB4 [126]. Blanco et al., in an
elegant and easy way, shed light on these questions by using SNP [127]. In the
next paragraphs, this instructive example will be summarized.

This compound crystallizes in the tetragonal space group P4/mbm, in which
4 Gd ions occupy the Wyckoff position 4g with point symmetry m2m, whereas
the 16 B atoms are in 4e, 8j , and 4h. From macroscopic measurements (heat
capacity, magnetic susceptibility, etc.), it was well known that the system ordered
AF below TN < 42 K and that all the magnetic moments resided on the ab-plane.
The resonant X-ray experiments did not discern between collinear and non-collinear
arrangements of the magnetic moments [128], but electrical resistance experiments
seemed to indicate some non-collinear model [129]. Despite all these experimental
findings, the magnetic structure was not determined with neutron scattering because
of the strong absorption of both B and Gd natural especies. However, Blanco et
al. grew a 11B-enriched single crystal to undertake SNP experiments, at very short
wavelength in order to minimize the absorption effects and to find out the magnetic
structure unambiguously [127]. At low temperature, they found a propagation vector
�K = 0 and measured the polarization tensors P̃ for different set of reflections (h0l

and hk0), finding that the off-diagonal terms were null within the experimental error.
Another significant feature was the non-observation of scattering for the lines hh0
and hh̄0 (i.e., P̃ xx

f i ∼ P̃
yy
f i ∼ P̃ zz

f i ∼ 1.0), which was only compatible with a non-

collinear model of AF pairs parallel to the [110] and [11̄0] directions. The complete
analysis of all the polarization tensors, using the magnetic symmetry models derived
from the space group P4/mbm with �K = 0, gave unequivocally the Shubnikov
group P4/m′b′m′, with a Gd magnetic moment equal to 7.14(17) μB, as model for
the magnetic order in GdB4.



Neutron Scattering Techniques in Magnetism 387

10 Small-Angle Neutron Scattering in Magnetism

Small-angle neutron scattering (SANS) is a widely employed technique for
microstructure determinations in several disciplines, such as materials science,
physics, chemistry, biology, etc. The reason is that SANS is one of the few
experimental methods available to probe mesoscopic length-scales in the real
space (from 1 to 300 nm) and in bulk materials. In addition, the spin of the neutron
confers to the SANS the possibility to study magnetic phenomena and materials
in the nano- and mesoscopic scales with high sensitivity. SANS is often utilized
complementarily to other magnetic image and surface techniques like Lorentz
transmission electron microscopy, magnetic or atomic force microscopy, Kerr effect
magnetization, scanning tunneling microscopy with spin polarization, etc.

Magnetic SANS techniques are employed to study different magnetic materials:
magnetic nanoparticles, magnetic steels, hard and soft magnets, magnetic oxides,
ferrofluids, metallic alloys, magnetic skyrmions, chiral solitons and helical order
in non centro-symmetric magnets, vortex in type II superconductors, etc. In a
recent review [130], detailed information on the applications of magnetic SANS
in magnetic materials can be found. In this section only several examples, related
to magnetic textures, will be explained in more detail. Additionally, in the previous
chapter, other examples related to the use of SANS to study magnetic materials have
been described.

The expressions governing the SANS cross sections for unpolarized or polarized
neutrons are basically the Blume-Malayev equations (168) and (169) introduced in
the previous sections and adapted to the common SANS configurations ( �B ‖ �ki or
�B ⊥ �ki). In Fig. 5 these configurations are schematized for typical experiments on
skyrmion lattice studies.

In addition, the discrete nature of the matter has no relevance for the length-
scales accessible with SANS, and therefore the magnetization on each atom �Mdm is
replaced by a continuous vector field �M(�r ). The magnetic SANS signal will reflect
the variation of the magnetization, in modulus and orientation, at the nano-scale
length. Then the magnetic structure factor vector ( �M(�q )) employed in SANS is the
Fourier transform of the field �M(�r ). In a similar way, the scalar nuclear structure
factor (N(�q )) is defined by using a scattering length density b(�r ) instead of the
atomic bn. Therefore we get:

�M(�q ) =
∫

d3r �M(�r ) e−i2π �q·�r , (188)

N(�q ) =
∫

d3r b(�r ) e−i2π �q·�r . (189)

The sample scattering volume appears at SANS cross sections via a constant
K = V −1p2, where p was defined in section “Magnetic Scattering”.

In the next subsection, an example related to vortex matter will be presented in
order to illustrate the power of the magnetic SANS.
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Fig. 5 Scheme showing the typical SANS configurations to observe the skyrmion lattice (a) and
the conical phase (b) in cubic chiral helimagnets. Blue (a) and red (b) spots are observed at the
neutron detector related, respectively, with the hexagonal packing of the SKL and the conical phase
with propagation vector parallel to the field ( �B ‖ �K)

Stroboscopic SANS Experiments on Skyrmionic Lattices (SKL)

Skyrmion textures, which are topologically protected nanometric vortex-like mag-
netic objects that have been discovered in cubic magnets without inversion sym-
metry (MnSi [131], Fe1−xCoxSi [132], FeGe [133], Cu2OSeO3 [134, 135]), were
theoretically predicted a long time ago by the Bogdanov seminal studies [136, 137].
However, the stability of the skyrmion lattices (SKL) has been studied only in a
limited way, mostly concerning with radial or elliptic stability [136, 138]. Hence,
solitonic configurations that are considered stable or metastable may actually be
unstable due to some mode that is non-homogeneous along the magnetic field
direction. Closely related to the stability analysis is the idea that some metastable
state may become the equilibrium state by virtue of the thermal fluctuations. These
two related problems, the stability of stationary points and the effect of thermal
fluctuations at relatively low temperatures, are addressed in Ref. [139], and, as a
result, it is shown that the low T phase diagram B − T contains an unexpected new
SKL phase.

Nakajima et al. [140, 141] by using stroboscopic SANS measurements in single
crystals of MnSi at the time-of-flight instrument TAIKAN located at the Spallation
Neutron Source (MLF) in Japan explored the low-temperature region of the phase
diagram. By appropriately synchronizing the neutron and electrical current pulses
(which are employed to create temperature ramps in the sample) with the neutron
2D-detector, it is possible to study the time evolution of SANS patterns with
a resolution of 30 ms. The employed setup allowed to cool down the sample
temperature with a rate of 100 K s−1.

The skyrmion lattices are usually visible in SANS experiments under the
configuration for which the magnetic field is parallel to the incoming neutron beam
( �B ‖ �ki). This is schematized in Fig. 5a and shows the six-fold typical pattern of
a hexagonal lattice. However, the two spots defining the conical state are observed
when the propagation vector of the helix, which is often parallel to the magnetic
field, is perpendicular to the beam ( �B ‖ �K ⊥ �ki). See Fig. 5b. When the SKL
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is observed in �B ‖ �ki , no signal appears in �B ⊥ �ki and reciprocally for the conical
state. The crystal studied by Nakajima et al. was aligned with its (0 0 1) axis parallel
to the horizontal magnetic field and the (1 1 0) in the vertical.

Nakajima et al. explored the phase diagram by doing measurements in equilib-
rium and also by doing fast quenching from the paramagnetic state, passing through
the A-phase, to the low T region. At some values in the T − B plane, SANS data
were also collected. Metastable SKL states were captured at low T , in agreement
with [139], and also a magnetic phase transition from triangular to square SKL was
identified with decreasing magnetic field at low temperatures.

11 Magnetic Inelastic Scattering

The previous sections have been dedicated to describing different applications
of neutron scattering based on the measurement of the nuclear or the magnetic
elastic coherent part of the double differential cross sections, i.e., the incoming
neutron exchanges momentum with the sample, but it does not exchange its energy.
However, there are also nuclear and magnetic inelastic coherent parts, which
are very small but which wear very important information about the collective
excitations of atomic or magnetic origin (e.g., phonons, spin-waves, etc.).

In magnetically ordered systems, each magnetic moment deviates from its
equilibrium position along a particular direction. However, these deviations cannot
be arbitrary because the magnetic moments are coupled. Basically it produces
collective coherent deviations, also called spin-waves (see section “Scattering by
Spin-Waves”). As illustrated in section “Scattering by Spin-Waves”, by using the
second quantization picture, it is possible to obtain the single quantum (the magnon),
and its energy E(�q ) (dispersion relations), where �q is a vector of the Brillouin zone
that labels each magnon. By using linear approximations, valid when the deviations
with respect to the magnetic moment are small (low temperatures and/or large
enough magnetic moment), it is easy to demonstrate that E(�q ) is related to the
Fourier transform of the magnetic exchange interaction constants Jl,dm between the
different magnetic atoms dm at different lattices l. The number of branches, acoustic
or optic, depends on the number of independent magnetic atoms in the unit cell, and
their degeneracy is related to the multiplicity of each magnetic orbit.

It has been found that this formalism is also appropriate to reasonably describe
the spin-waves in 3d transition-metal magnets. In AF materials it is found that
the dispersion relations are linear in q for small q, and, depending on the ion
anisotropies, several gaps are opened at �q = 0.

On the other hand, the spin-wave dispersion relations are considered as the finger-
print to understand the superconductivity. For example, in related materials like the
pnictides and chalcogenides, it seems that there exists some recognizable pattern in
the next nearest neighbor magnetic interactions even if the first neighbor interactions
are completely different.
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Moreover, when the crystal field produced by electrostatic interactions with
surrounding atoms is predominant, the energy levels of a magnetic atom are
minimally dispersive. In these cases, it is possible to use inelastic neutron scattering
to determine those energy levels assuming that they are accessible by magnetic
dipolar transitions.14

An intermediate case, between isolated magnetic centers and extended magnets,
happens for magnetic clusters formed by several atoms magnetically coupled inside
of a molecule (e.g., SMM, metallo-proteines, phthalocianines, etc. . .). These objects
can be prepared in a highly controlled manner, via chemical routes, and often they
allow the study of new magnetic quantum phenomena.

The next two examples will illustrate how to determine the hierarchy between
different magnetic interaction constants in the family A2FeX5·H2O (A=K, Rb,
X=Cl, Br) and how to determine the parameters in the spin Hamiltonian in SMM
(e.g., Mn12-acetate and Fe8). Both systems have been described in the preceding
sections.

Understanding Magnetic Interactions in K2FeCl5·D2O

The aim of this example is to go a step further in the understanding of the
magnetic interaction mechanisms in this series of compounds by determining the
magnetic coupling constants [142]. The analysis of the five magnetic coupling
constants, particularly the comparison between magnetic interactions including
and not including oxygen atoms in the super-exchange pathways, contributes to
the understanding of the relative importance of two influential factors on the
strength of the magnetic interaction: (1) the spin population on the ligand atoms
(see the example in section “Spin Density Experiments in p-O2N-C6F4CNSSN
and A2FeX5·H2O (A=K, Rb, X=Cl, Br)”) and (2) the distances between the two
ligand atoms in the magnetic super-exchange pathways transmitting the magnetic
interaction.

Therefore, in this example, after determining all the possible magnetic inter-
actions from an analysis of the nuclear structure, previously determined by using
single-crystal neutron diffraction experiments, which allowed us to locate accurately
the position of the oxygen and the hydrogen atoms, the study of the magnetic
coupling constants determined by inelastic triple axis neutron spectroscopy (TAS)
is reported.

The unit cell of K2FeX5·D2O has been described in section “Antiferromagnetic
Structures with �K = 0 in A2FeX5·H2O (A=K, Rb, X=Cl, Br)”. In this structure
there are five possible magnetic interactions between an iron ion and its first shell
of neighbour Fe ions. Figure 6 A represents the unit cell of K2FeCl5·D2O, whereas

14�MS = ±1.
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Fig. 6 (a) Structure of K2FeCl5·D2O. The potassium atoms have been omitted for clarity. The
halogen labels are represented in all the octahedra together with the label for the four iron ions:
Fe1(x, y, z), Fe2( 1

2 + x, 1
4 ,

1
2 − z), Fe3( 1

2 − x, 3
4 ,

1
2 + z), and Fe4(−x, 3

4 ,−z). (b) Scheme of the
five magnetic interactions projected on the ac-plane. Thick lines represent interactions connecting
a Fe ion with two other Fe ions, one with y + 1

2 and the other with y − 1
2 . The magnetic structure

is also shown. Orange circles correspond to Fe ions with y = 1
4 , whereas pink circles y = 3

4 .
(c) High symmetry points of the first BZ together with the different directions that have been
measured (thick lines). (d) Experimental points measured for each direction of high symmetry at
the BZ. The red line is the fit of the points to a linear spin-wave model including uniaxial and
rhombic anisotropies

Fig. 6b shows a scheme of the five magnetic interactions projected on the ac-plane
together with the magnetic structure.

The inelastic neutron scattering experiment was performed on the three-axis
spectrometer IN12 at the ILL. In order to determine the magnon dispersion curves,
constant-q scans along the (0 1 ζ ), (0 1 + ζ 0), (0 3

2 ζ ), (0 1 + ζ ζ ), (0 0 1 + ζ ),
and (ζ 0 1) directions were performed at 1.6 K, temperature much lower than
the Néel temperature of 14.06 K. The measured directions in the reciprocal space
were selected in order to have a correct description of the first Brillouin zone (BZ).
See Fig. 6c.

A gap in the energy is observed in the low-energy magnon branch at the center
of the zone (%). Moreover, an additional feature in the dispersion curves is that this
energy gap appears to be split in the different Brillouin zones, around 0.38 meV and
0.58 meV in the (0 1 0) and the (0 0 1) zones, respectively. This different gap can be
observed in Fig. 6d indicated with green arrows. Therefore, a model with a rhombic
magnetic anisotropy term is needed in order to correctly fit the different gaps. The
Hamiltonian which includes this rhombic magnetic anisotropy is:
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H = −
∑

l,l′,dm,d ′
m

Jldm,l′d ′
m

�Mldm · �Ml′d ′
m

−
∑
ldm

σdmAdmM
z
ldm

−
∑
ldm

Edm

[ (
M

x
ldm

)2 −
(
M

y
ldm

)2 ]
.

(190)

The magnetic exchange coupling constants obtained, after fitting all the experi-
mental dispersion curves to the relation E(�q ) derived from Hamiltonian expressed
in Eq. (190), are J1 = −0.113(3), J2 = −0.037(1), J3 = −0.032(3), J4 =
−0.023(2), and J5 = −0.025(2)meV. The values of the variable Adm and Edm

were 0.073 meV and 0.0072 meV, respectively, which gives an axial anisotropy
D = 0.0146 meV. The experimental and fitted dispersion curves are depicted in
Fig. 6d.

The results of this study can be related to other studies of several magnetic
phenomena of this AF series: (1) The energy gap at the % point in the magnon
dispersion curves is in good agreement with the energy gap calculated from an
analysis of the boundaries of the magnetic phase diagram [41]. (2) The physical
interpretation of the two different energy gaps at the % point implies that the hardest
magnetic axis is the �b-axis. The same conclusion is deduced from the magnetic
structure in the spin-flop phase in which the magnetic moments are collinear to
the �c-axis [47]. (3) The magnetic structures determined from the values of the
magnetic coupling constants correspond to the experimental magnetic structure. (4)
Estimation of the Neel temperatures using a mean field approach results in values
close to the experimental ones. (5) The values of the magnetic interactions also
explain the magnetic dimensionality crossover observed in the heat capacity and
magnetic measurements [40].

Neutron Spectroscopy in Magnetic Molecular Clusters

The interest of SMM, like Mn12-acetate, has already been introduced in
section “Magnetic Ordering by Dipolar Interactions in Single-Molecule Magnet
Mn12-Acetate”. In these materials, the knowledge of the magnetic anisotropy of the
clusters, which is assumed to be much smaller than the exchange energy, is central
to understanding how the quantum tunneling of the magnetization (QTM) can occur.
With uniaxial anisotropy, the energy levels of a cluster depend on the orientation
of the spin S relative to its anisotropy axis. However, for QTM to be allowed, the
rotational symmetry about the z axis must be broken by small high-order spin terms.
The general Hamiltonian in expression (191), where quadratic and quartic terms in
S̃ are included, describes appropriately the energy levels in Mn12-acetate and Fe8
SMM:

H = D
[
S

2
z − 1

3
S(S + 1)

] + E
[
S

2
x − S

2
y

] + B0
4O

0
4 + B2

4O
2
4 + B4

4O
4
4 (191)
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where the operators O0
4, O2

4, and O
4
4 are defined as:

O
0
4 = 35 S

4
z − [30S(S + 1) − 25] S2

z − 6S(S + 1) + 3S2(S + 1)2

O
2
4 = 1

4

{[
7S2
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](
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2
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Thus, to validate the different theories of QTM, the knowledge of the transversal
anisotropy parameters (B0

4 , B2
4 , B4

4 ) in the spin Hamiltonian is very important,
whose precise determination requires a suitable experimental technique. The advan-
tage of inelastic neutron scattering over other techniques, like high field electron
paramagnetic resonance (EPR), is that it is not necessary to perturb the system by
applying a magnetic field and it can give a detailed picture of the scheme levels from
a straightforward analysis.

The cluster [Fe8O2(OH)12(tacn)6]8+ (in short Fe8) is a molecule formed by eight
Fe3+ ions in a planar butterfly geometry giving a S = 10 due to the AF coupling
between the Fe ions. Cacciuffo et al. employed INS techniques in non-deuterated
powder of Fe8 at low temperatures (1 ≤ T ≤ 10 K) at the time of flight spectrometer
IN5 of ILL working with a resolution of 19 μeV with the aim to determine the
different parameters defining the spin-Hamiltonian of this cluster [143].

The ground level, |S = 10;M = ±10〉, is the only one populated at the lowest
temperature. As the temperature increases, other levels start to be populated,
being the next one the |S = 10;M = ±9〉. The uniaxial and rhombic anisotropy
parameters (D, E) mainly control the energy distance between the lowest levels,
whereas the other parameters (B0

4 , B2
4 , B4

4 ) are involved in some mixing of the upper
energy levels (|S;M〉 with |M| ≤ 6) less distant among them. Usually these levels
are populated at the highest temperatures. In fact, the position of the peaks at the
energy transfer axis gives directly the eigenvalues of the Hamiltonian (191) (which
depends on the parameters), whereas the intensity of the peaks is related to the
wave function of the eigenvectors. Therefore, in principle, it is possible to obtain
the values of the parameters by fitting the peak positions.

Cacciuffo et al. found D = −25.2(2)μeV and E = −4.02(3)μeV, and to fit
correctly all the measured peaks, it was needed to include the quartic terms of the
Hamiltonian giving the values B0

4 = 0.87(6)10−4μeV, B2
4 = 0.1(1)10−4μeV,

and B4
4 = 7.4(6)10−4μeV. These values produced an energy barrier A/kB =

32.8(1)K slightly higher than the one reported from ac susceptibility experiments
and demonstrated the importance of the O

4
4 operator, which is related to the

transverse anisotropy, in the tunneling processes.
In Mn12-acetate, Mirebeau et al. also measured the energy levels by using the INS

techniques [144]. Their main result was the precise determination of the coefficient
B4

4 in the non-diagonal transverse term (in Mn12 the tetragonal symmetry does
not allow the presence of the term O

2
4 in the Hamiltonian). The presence of the
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O
4
4 term was searched for by many experimentalists, since only components that

do not commute with Sz could induce tunneling with �M = ±4, as observed
experimentally in the magnetization experiments.

In the 2000s the extrinsic interactions, arising from disorder, were proposed as
the dominant sources of QTM in Mn12 nanomagnets [145]. However, Carbonera
et al. presented a detailed study of the effects that crystalline disorder has on the
QTM of Mn12-benzoate SMM. The authors were able to isolate the influence of
long-range crystalline disorder thanks to the absence of interstitial molecules in
the crystal structure of this molecular compound. For this, they compared inelastic
neutron scattering results obtained at IN5 under two extreme situations: a crystalline
sample and a nearly amorphous material. Results showed that crystalline disorder
weakly affects the anisotropy and other parameters in the spin Hamiltonian and
therefore has a little effect on the quantum tunnelling of these materials. It follows
that disorder is not a necessary ingredient for the existence of QTM [146].

12 Other Neutron Scattering Techniques

This section is intended to briefly explain other neutron scattering techniques that
are increasingly being employed to solve problems in magnetism. They give access
to the very small energy transfers and therefore allows the study of slow dynamics.
An example on the use of neutron reflectometry technique to characterize magnetic
surfaces will be also illustrated.

Quasielastic Neutron Scattering

In the previous sections, it has been explained that the scattering law can be split
in coherent and incoherent parts. The first one is related to the correlations in time
and in space of pair of scatterers, whereas the second is about self-correlations of
scatterers. It means that the coherent part is related to the structure (elastic) and
the collective movements or excitations (inelastic). However, the incoherent part
gives information about the individual dynamics of nuclei (vibrations, rotations, or
translations) and magnetic moments.

Due to the large incoherent cross section of hydrogen, compared with other
isotopes, the scattering cross sections measured in hydrogenated samples are
dominated by the incoherent part, and therefore neutron scattering techniques are
ideal to characterize the individual movements of hydrogen in these samples. When
the movement can be decoupled in vibrations, rotations, and translations, then it is
possible gain access to the quasi-elastic scattering function whose width is related to
the characteristic times of the movements in the range 10−10–10−12 s. The intensity
of the elastic part of this incoherent signal gives information about the geometry of
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the movements. More detailed information on quasi-elastic neutron scattering can
be found in [147]. Here a simple example on the use of these techniques, involving
magnetic molecules, will be commented.

Rodríguez-Velamazán et. al [148] applied quasi-elastic neutron scattering tech-
niques, together with solid state 2H-NMR, to characterize, as a function of
temperature, the rotational movement of the pyrazine rings in the spin crossover
molecular compound {Fe(pyrazine)[Pt(CN)4]}. In this compound, the Fe ion can
switch between high and low spin states at temperatures ∼285 K and ∼309 K for
decreasing or increasing the temperature, respectively. The structural studies at
low temperatures, in the low spin state, showed some anomalous elongation at the
Debye–Wallers factors at the hydrogen atoms of the pyrazine rings. This fact could
be an indication of some structural or dynamical disorder present in the materials.
In this sense, quasi-elastic neutron scattering techniques can help to elucidate the
origen of the disorder.

They demonstrate experimentally that the bistability between rotation and
blocking of the pyrazine rings connecting the Fe ions arranged in different planes
is accompanied with the change between high and low spin states. The rotation in
the high spin state is described as a 4-fold jump motion about the nitrogen axis
coordinated with the Fe ion. In the low spin state, the rotation is suppressed. They
also observed that when benzene molecules are incorporated in the system, the
pyrazine movements are restricted.

Neutron Spin Echo Techniques

In 1972 F. Mezei published his pioneering work establishing the grounds for the
neutron spin echo techniques [149]. The very basic idea behind these techniques is
the Larmor precession of the polarization of the neutron beam when neutrons travel
along a distance L with an uniform magnetic field perpendicular to the polarization.
If the neutron travels again through a second region with the same length L but
with opposite magnetic field, then the dephasing precession angle turned in the
first region is deturned in the second one, giving a zero total dephasing precession
angle. However, if a sample is put in between both opposite magnetic field regions,
some neutrons will exchange energy with the sample and therefore will change
their velocities before entering the second region producing a different dephasing
precession angle. As a result, the sample could produce an easily measurable non-
zero dephasing angle for all neutrons.

It can be easily demonstrated that these techniques allow to measure directly
the intermediate scattering function I (�q, t), defined in Eq. (58), which measures
the time correlations of the sample. Typically, the accessible time ranges go from
picoseconds to microseconds, which correspond to hundredths of μeV to several
neV energy exchanges within the sample. Moreover, the energy transfer can be
determined with very high precision (10−5) without using severe conditions at
the monochromator. Detailed descriptions of these techniques can be found in
[150, 151].
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In the previous paragraphs, we assumed that the neutron spin does not change
in the scattering process, which is true for non-magnetic nuclear interaction. When
applying these ideas to magnetic materials, where the magnetic interactions can
change the polarization state, we need to consider the magnetic field that the
neutrons will feel when traveling through the sample, which is basically the
magnetic interaction vector �M⊥�q . It is also necessary to bear in mind how to control
the effects of beam depolarization by the different magnetic domain distributions.

The next example will illustrate one of the most employed applications of NSE
in magnetism, which is the measurement of relaxation times in spin glasses. In fact,
the time correlations of the magnetization close to the glassy transition (Tg) have
been the object of discussions and controversy over the last few decades. This has
often been characterized by a stretched exponential function ∼ exp{−(t/τ )β}, but
when self-similarity (i.e., fractal behaviour) occurs, this function does not describe
adequately the structural or magnetic relaxation. Then a modified function, which
phenomenologically describes the Monte Carlo calculations by incorporating a
power law, q(t) = 〈Si(0)Si(t)〉 ∝ t−x exp{−(t/τ )β}, is employed. The implications
of such a non-exponential function open the necessity of to think about global
models that may lead to hierarchical relaxation. In this context Weron [152]
proposed a generalized function, ϕ(t) = {1 + k(t/τ )β}−1/k , where k is a parameter
accounting for effective interactions and β is related to the self-similarity concept
that can be adapted easily to spin glass dynamics and, in the limit k → 0, reduces
to the exponential function.

The validity of the model based in the generalized relaxation function was
investigated in the archetypal metallic spin glasses Cu1−xMnx (x = 0.1, 0.16, 0.35)
and Au1−xFex (x = 0.14) with neutron spin echo experiments in [153] accessing
to time scales from 0.002 to 1 ns. The authors measured the intermediate function
(I (�q, t)) at several temperatures and q values. All the spectra were independent of
q and well described with the Weron function with consistent physically meaning
parameters, for both samples. In turn, the k parameters obtained from the fits to the
Weron function are related to the sub-extensivity parameter q̃ of models with non-
extensive entropy for complex and multifractal systems giving a q̃ ∼ 5/3 parameter
at the spin glass transition temperature Tg . It seems that the spin glass system
evolves from an extensive Boltzmann-Gibbs thermodynamics at high temperatures
to a sub-extensive dynamics at Tg .

Neutron Reflectivity

Since the pioneering work of Felcher et al. in the early 1980s [154] about the
neutron reflectivity grounds, these techniques have reached a mature state, and
nowadays neutron reflectometers are fundamental instruments in all types of neutron
sources, pulsed and steady-state sources. Due to their great power, these techniques
are applied to the study and characterization of a wide range of phenomena
and materials, mainly in soft matter and nanomagnetism areas. In fact, there
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are scientific topics in nanomagnetism that can only be addressed with neutron
reflectivity, e.g., magnetization depth profiling, magnetic structures in multilayers
and heterostructures, interdiffusion, magnetic domains, magnetic nanoparticles,
study of patterned nanostructures, etc. In this section we will focus only on some
applications of these techniques in thin films. For a more extended review, we refer
to the nice chapter of Toperverg and Zabel in [155].

X-ray reflection by matter can be understood by means of the refractive index
of the matter for X-ray photons. In electromagnetism theory the refractive index
is related directly to the electron density of the material, which is at the origin of
the interaction potential of the X-ray scattering, and the wavelength of the X-ray
photons. The fact that this refractive index is less than unity implies that there exists
a critical incidence angle below which there is total reflectivity. For larger angles,
the X-rays partially penetrate the surface.

For neutron reflectivity the idea is similar. A refractive index for neutrons, related
to the scattering length density, which is involved in the neutron-nuclei interaction,
and with the magnetic moment distribution in the sample, also involved in the
magnetic interaction with the neutron spin, can be built. However, the magnetic
part of the refraction index can change its sign depending on the relative orientation
of the magnetic moments of the material with the neutron beam polarization.

After the discovery of giant magnetoresistance effect, the neutron reflectivity
techniques have been widely employed to study interlayer AF exchange coupling
in magnetic superlattices, which are the base of different spintronic devices.
Usually these multilayers are characterized from magnetic hysteresis measurements
done with MOKE, SQUID, or VSM magnetometry experiments. However, these
macroscopic characterization techniques do not unveil the angle between adjacent
ferromagnetic layers nor the magnetic correlation in the perpendicular direction or
the domain size distributions. These parameters are at the origin of poor transport
properties in these systems and can be understood after polarized neutron reflectivity
(PNR) experiments [156].

As a pioneer work, V. Lauter et al. [157] studied with PNR techniques the
archetypical Fe/Cr multilayers, which have a strong AF interlayer exchange cou-
pling and in-plane uniaxial anisotropy, to shed light on the role of the different
ingredients, such as spin configurations in the flopped phase, role of the anisotropy,
border effects, etc.

These authors determined unambiguously the magnetic structure of each ferro-
magnetic layer n (with 1 ≤ n ≤ 12) in [57Fe(67 Å)/Cr(9 Å)]12, at the spin-flop
phase by applying a magnetic field along the the easy axis. The magnetic structure
broke down into lateral domains, with a mean size of 2800 Å, deviated each one
an angle ±φn with respect to the magnetic field direction. The sequence of angle
deviations along each layer n fulfils ±φn = ∓φ13−n, and the angle at the end layers
±φ1 = ∓φ12 = ±40◦ is smaller than in the interior layers ±φ6 = ∓φ7 = ±63◦,
which is related to the fact that in the end layers, there is one missing neighbor. The
canting angle in the interior reaches the value of the canting angle in the bulk sample
for the same magnetic field. The resulting configuration has no net perpendicular
component to the magnetic field, and, therefore, it is stable. The splitting into lateral
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domains at each layer is interpreted as a minimization of the dipolar energy via
demagnetization at each individual layer.

13 Conclusions

In this chapter, we showed the fundamentals of neutron scattering and discussed
some contributions of neutron scattering to solve a huge variety of problems in
the field of magnetism. After more than 70 years from the first neutron scattering
experiment, these techniques are widely employed to characterize magnetic materi-
als together with other complementary techniques. Moreover, after this long history,
with new neutron sources, and in particular pulsed sources, one can expect that
these techniques will experience a substantial improvement with the availability
of higher neutron fluxes and lower backgrounds. The use of new optical systems,
faster detectors, and new techniques exploiting new physical phenomena will allow
all together the use of smaller samples, to design new experiments or to do faster in
operando experiments, etc.

In the majority of the neutron sources, the experiments related to magnetism are
the most demanded by the scientist, and often the diffraction techniques (powder,
single crystal, and small angle) are the most requested with the goal to determine
the evolution of some magnetic structure as a function of one or several parameters
(temperature, magnetic field, pressure, concentration, etc.).
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Part V
High Frequency Magnetization Dynamics



Radio-Frequency (RF) Permeameter

Shingo Tamaru

Abstract Although radio-frequency (RF) permeability measurements have been
commonly used for a long time, it is still one of the fast-evolving fields of magnetic
characterization, whose development is driven by various electronic systems that
require high-performance RF magnetic components. There are several different
types of RF permeameters designed to measure the permeability (equivalently
the magnetic susceptibility) of magnetic materials having different sample shapes
and sizes over a wide range of bandwidths and measurement conditions. Thus, it
is important for researchers and engineers to understand the operating principle
and measurement capabilities of each RF permeameter to fully utilize available
measurement systems. This chapter initially explains the differences between fer-
romagnetic resonance and RF permeability measurements, as well as requirements
imposed on RF permeameters. Next, certain RF permeameters that are commonly
used for the characterization of bulk or sheet magnetic samples for RF applications
are introduced. Then, a detailed description about one particular type of RF
permeameter, which was recently developed by the author of this chapter, is
presented. This system, called transformer coupled permeameter (TC-Perm), has
achieved significant enhancements in terms of bandwidth and sensitivity when
compared to the conventional RF permeameters; consequently, it can measure the
permeability of a single particle in a magnetic powder. Descriptions of various RF
permeameters, as well as strategies for improving the bandwidth and sensitivity
taken in the development of TC-Perm, are expected to serve as a guide for readers
to solve problems encountered in the RF permeability measurement of magnetic
materials.
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Microwave · Inductor · Transformer · Noise suppressor · Soft magnetic
material · Powder metallurgy

1 Introduction

Modern electronic systems use various radio-frequency (RF) magnetic components
such as inductors, transformers, filters, isolators, attenuators, and noise suppressors.
These components often play an important role in the RF circuitry and sometimes
limit the overall system performance, because the characteristics of RF magnetic
components are generally further from the ideal than any other passive components.
Let us consider an inductor as an example. The relation between the voltage v and
current i of an inductor is given as v = Ldi/dt, where L is the inductance. It is ideal for
L to be a real constant value over the entire operating frequency range. However, this
holds only at sufficiently low frequencies; the value of L shows complicated (in most
cases deteriorating) behavior as the frequency increases, primarily due to various
physical phenomena occurring in the magnetic core. The deviation of L from ideality
usually starts from a much lower frequency than in other passive components such
as resistors or capacitors. Therefore, it is crucial to study high-frequency dynamics
of magnetic materials to improve the characteristics of the RF magnetic components
and eventually the overall performance of the electronic systems that use them.

Ferromagnetic resonance (FMR) and RF permeability are the measurements that
have been commonly used for the study of magnetization dynamics over the past
several decades [1–5]. The systems for measuring FMR and RF permeability are
called FMR spectrometer and RF permeameter, respectively. Both these systems
measure the magnetic susceptibility χ = μr − 1, where μr is the relative
permeability, of the material under test (MUT) based on a common principle;
however, two major differences exist between them. One is that RF permeameters
need to cover a much wider bandwidth than FMR spectrometers, especially on the
low-frequency side. The other is that RF permeameters require accurate calibration
to obtain the absolute quantity of χ , whereas FMR spectrometers do not.

To illustrate these differences, let us discuss the behavior of a soft magnetic thin
film when an in-plane DC bias field HB and in-plane RF magnetic field HRF orthog-
onal to HB are applied as shown in Fig. 1 as the simplest example. HB saturates the
magnetic film, while HRF excites the motion of magnetization. In this film, the total
magnetization behaves as a single magnetic moment, whose dynamical motion is
described by the Landau-Lifshitz-Gilbert (LLG) equation[6, 7]:

d
−→
M

dt
= −γ

−→
M × −→

H + α

MS

−→
M × d

−→
M

dt
(1)

where
−→
M is the magnetization, MS is the saturation magnetization of the film,

−→
H

is the magnetic field, α is the Gilbert damping parameter, γ is the gyromagnetic
ratio given as γ = gqeμ0/2me, g is the Landé g-factor, qe is the elementary charge
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Fig. 1 Magnetic susceptibility χ of a soft magnetic thin film under the applications of an in-plane
DC bias field HB and in-plane RF magnetic field HRF orthogonal to HB as a function of frequency
calculated using Eq. (2) with the magnetic parameters given in the figure. Also shown are the
measurement bandwidths and quantities of interest for FMR and RF permeability measurements

(magnitude of the electron charge), μ0 is the permeability of vacuum, and me is
the electron mass. In Eq. (1), the first and second terms represent the precessional
motion and energy damping, respectively. This equation can be analytically solved

by decomposing both
−→
M and

−→
H into the static and dynamic terms and assuming

that the dynamic terms are much smaller than their static counterparts. For the thin
film as shown in Fig. 1, χ is expressed as follows [8, 9]:

χ = ωM(ω0−iαω+ωM)

(ω0−iαω)(ω0−iαω+ωM)−ω2 , (2)

where ω = 2π f, ω0 = γHB, and ωM = γMS. Figure 1 plots χ calculated using
Eq. (2) with the magnetic parameters given in the figure, which exhibits certain
important features. First, χ shows an FMR response at around 10 GHz, i.e., χ

′
(real

part of χ ) crosses zero, while χ“ (imaginary part of χ ) becomes maximum. The
FMR frequency fp is given by the Kittel equation for thin films [10]:

2πfp = γ
√
HB (HB + MS). (3)

In real magnetic films, the total magnetic field consists of not only HB but also the
anisotropy field Hk and exchange field Hex; thus, HB in Eq. (3) should in general be
replaced with Htot = Hk + Hex + HB. In the frequency range above fp, χ converges
to zero as the frequency increases because the magnetization cannot respond to HRF.
In the frequency range below fp, the magnetization can follow HRF with a smaller
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phase delay as the frequency decreases, and in the low-frequency limit, χ converges
to a real constant given as [11]:

lim
f→0

χ = MS

HB
. (4)

The major differences between the FMR spectrometer and RF permeameter can
be clearly illustrated by this plot. Let us first consider the FMR spectrometer. The
primary objective of the FMR measurement is to gain insight into the magnetic prop-
erties and internal magnetic state from the FMR peak. The line width �f of the χ”

peak is proportional to α, which sensitively reflects the energy dissipation processes
[7, 12]. The frequency and bias field dependence of fp provides information about
the value of g and the internal magnetic state, because it permits the estimation of
Htot, which contains Hk and Hex. A clear FMR peak can be detected at relatively
high frequencies (usually above 1 GHz), because most magnetic materials become
significantly inhomogeneous when Htot is very weak, which smears out the FMR
response at low frequencies. For these reasons, FMR spectrometers are designed to
apply a finite HB to saturate the MUT and measure uncalibrated χ just around the
FMR peak in the gigahertz frequency range, from which only fp and�f are extracted
as quantities of interest. In other words, FMR is a relatively narrow band (in certain
systems fixed frequency) measurement, and the χ profile outside the FMR peak and
the absolute magnitude of χ are ignored in most FMR measurements.

Conversely, the RF permeability measurement is meant to obtain the absolute
quantity of χ over the entire frequency range relevant to the usage of the MUT.
This is because the value of χ itself is an important physical quantity in many
technological or engineering problems. More specifically, the real and imaginary
parts of χ have different physical meanings, i.e., χ

′
and χ“ represent the energy

stored in the form of magnetic fields and the energy dissipation rate, respectively.
Inductor and transformer applications require a large χ

′
and small χ” for a higher-

quality factor, whereas attenuator and noise suppressor applications require the
opposite for efficient energy absorption. These contrary requirements for χ lead to
a different operating frequency range for each RF magnetic component. Inductors
and transformers are mostly used in the kilohertz or megahertz frequency range,
which is much lower than fp, to take advantage of a real constant value of χ

given by Eq. (4) [13]. One good example is the switching mode power supply
(SMPS). Typical switching frequencies of commercial SMPS lie in low-frequency
(LF) and medium-frequency (MF) bands (30 kHz–3 MHz), which is partly limited
by the inductors and transformers [14]. Demand for a more compact and energy-
efficient SMPS is rapidly growing with the advent of renewable energy, electric
vehicles, ubiquitous computing and network infrastructures, and so on, which has
promoted the development of various components used in the SMPS, including
inductors and transformers, to increase the switching frequency. In real electronic
systems, usually no HB is applied to the magnetic components, and the shape of the
magnetic material is not a thin film. In such situations, the magnetic material may
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take inhomogeneous and complicated magnetization distributions such as multi-
domain structure and magnetic vortices. The speeds of domain wall motion and
vortex gyration are inherently much slower than the precessional motion of the
magnetization; thus, χ in the relatively low-frequency range (below gigahertz)
is dominated by these slow physical processes. This necessitates careful material
engineering in the development of inductors and transformers used in SMPS to
suppress such undesirable magnetic distributions and attain a desired χ in the
target frequency range. In addition, RF magnetic components are also used as a
decoupling inductor or noise filter to filter out noise in the power line generated
by the SMPS. Because such noise is harmonics of the switching frequency of
the SMPS, the noise power is distributed from the switching frequency up to
high-frequency (HF), very-high-frequency (VHF), and even ultra-high-frequency
(UHF) bands (3 MHz–3 GHz). These considerations imply that a very broadband
RF permeability measurement covering from LF to UHF bands (30 kHz–3 GHz)
is required for the research and development of magnetic materials for inductors
and transformers [13–15]. Another example is the noise suppressor that guards the
analog circuits in the RF frontend and intermediate frequency domains in wireless
communication devices by absorbing electromagnetic noise generated by pulse
currents in the digital domain and SMPS, which are distributed in VHF, UHF,
and even super-high-frequency (SHF) bands. A strong demand for higher data
bandwidth in wireless communications inevitably increases the carrier frequencies.
Currently, the 5G wireless network service is ramping up, which initially uses the
lower SHF band (3 GHz–6 GHz), but will eventually migrate to the higher SHF
band (24 GHz–30 GHz) or even higher frequencies. Noise suppressors need to work
even at such high frequencies in accordance with the advancements in wireless
technology. RF permeameters need to cover these bands to evaluate magnetic
materials for the noise suppressor application too [14, 16, 17].

2 Overview of RF Permeameters

As explained in the previous section, broadband coverage spanning from very low
frequencies up to microwave frequencies and accurate calibration to obtain the
absolute quantity of χ are indispensable prerequisites for the RF permeameter. In
addition, there are other measurement requirements imposed on the RF permeame-
ter. One is high sensitivity, which is a universal requirement for any measurement.
Another is the capability to apply HB during measurement, because valuable
information about magnetic properties of the MUT can be obtained by measuring χ
as a function of HB. No single RF permeameter can satisfy all these measurement
requirements; thus, the use of multiple RF permeameters is often in order. It is
important to understand the measurement principle, strengths, and weaknesses of
each RF permeameter to decide which systems to use and to appropriately interpret
the measurement results.
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RF Permeameters Based on Transmission and Reflection
of Propagating Electromagnetic Waves

Broadly speaking, RF permeameters are classified into two groups. One group
of RF permeameters are based on the transmission and reflection of propagating
electromagnetic waves, which are introduced in this subsection. Figure 2 shows
three variations of RF permeameter jigs belonging to this group [18]. Figures 2a–c
illustrate the coaxial transmission line [19, 20], rectangular waveguide [21, 22], and
free space type [23, 24] jigs, which are referred to as types 1–1, 1–2, and 1–3 in
this chapter, respectively. These jigs are connected to a vector network analyzer
(VNA) to measure the scattering parameters (S-parameters) of the jig with the
MUT inserted. Although these RF permeameters have different electromagnetic
wave propagation paths, all of them follow the same measurement theory that was
originally developed by Nicolson and Ross and later refined by Weir, which is
henceforth referred to as NRW method [25–27]. The basic idea of the NRW method
is explained using a schematic of the type 1–1 jig shown in Fig. 2d. The MUT
having a relative permittivity εr and relative permeability μr is inserted into the
coaxial transmission line. The characteristic impedance Zm and phase velocity ν of
the MUT section are changed to Zm = Z0

√
μr/εr and ν = c/

√
εrμr , respectively,

where Z0 is the native characteristic impedance of the coaxial transmission line
without the insertion of the MUT (nominally 50 �) and c is the speed of light.
The reflection coefficient % at the incident surface of the MUT and the phase

Fig. 2 Measurement jigs used for the NRW method. (a) Coaxial transmission line type jig (type
1–1), (b) rectangular waveguide type jig (type 1–2), and (c) free space type jig (type 1–3). These
photos are courtesy of EM Labs, Inc. [18]. (d) Model for the derivation of the NRW method based
on the type 1–1 jig
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rotation φ of the electromagnetic wave propagating through the MUT are formulated
as % = (Zm − Z0)/(Zm + Z0) and φ = 2π fd/ν, respectively, where d is the
thickness of the MUT. % and φ can be obtained from the reflection and transmission
coefficients, i.e., S11 and S21, respectively, from which both εr and μr can eventually
be calculated. Readers interested in the rigorous mathematical expressions as well
as the derivation of the NRW method taking into account the multiple reflections
between both right and left surfaces of the MUT can refer to the original papers
[25–27].

The strengths of the NRW method are as follows [28]. First, this method provides
both εr and μr. Second, RF permeameters based on this method can be used up to
very high frequencies. In fact, the NRW method with either the type 1–2 or 1–3
jig is the only commercially available solution for measuring μr above 40 GHz at
this time. The three different types of the jigs shown in Figs. 2a–c are designed for
different bandwidths. The type 1–1 jig is compatible with the Amphenol Precision
Connector-7 mm (APC-7) standard, which is used on equipment operating from DC
up to 18 GHz. The type 1–2 jigs conform to the Electronic Industries Alliance (EIA)
standard waveguide dimensions and can be used to frequencies ranging from 0.96
to 110 GHz, although the entire frequency range is divided into 12 subbands and a
different size of jig is required for each subband. The type 1–3 jigs that cover 2.6–
26.5, 26.5–110, and 18–110 GHz are commercially available; however, the sizes of
these jigs, especially the one for the lowest band, are very large (over 2 m in height
for the lowest frequency band), because the diameter of the dielectric lenses must
be at least several times larger than the wavelength to have a sufficiently collimated
microwave beam.

Although the NRW method-based systems are very powerful techniques for
measuring the electromagnetic properties of the MUT, they also have certain
limitations as mentioned below. Obviously, the type 1–1 jig requires the MUT
to be accurately shaped into a toroid to fit into the jig, because a clearance acts
as a series capacitance to the MUT, which significantly alters the electric field
distribution, especially when εr is large, which results in measurement errors. These
measurements rely not on the difference taken under two different conditions but on
the absolute values of S-parameters measured by a VNA; consequently, they are
prone to be affected by drifts and calibration errors of the VNA, uncertainties in the
MUT shape and position, and variations in connector mating and cable routing.
All these types require the sample size to be sufficiently large to fill the entire
wave propagation path, which implies that a high sensitivity measurement on a tiny
sample is impossible in principle. Although the type 1–1 jig can technically work
from very low frequencies, the measurement accuracy deteriorates as the frequency
decreases, because φ is proportional to the frequency and thus becomes very small
at low frequencies. None of these types of measurement systems can apply HB to
the MUT during measurement because of the following reasons. For the type 1–1
jig, the application of HB breaks the coaxial symmetry. For the type 1–2 and 1–3
jigs, the jig and sample size are too large to fit into a typical electromagnet.
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Fig. 3 SEM micrograph of the cross section of three different NSS samples and its permeability
measured by the NRW method using the type 1–1 jig over 10 MHz–9 GHz. The compositions
of (a) NSS-A, (b) NSS-E, and (c) NSS-F are Fe-9.8% Si-6.4%Al, Fe-14%Al, and Fe-50%Co,
respectively [29]

To compensate for the low sensitivity of the NRW method using the type 1–1 jig
at low frequencies, a measurement system dedicated for low frequencies (<1 GHz)
is also commercially available [28, 30, 31]. In this system, a toroidal-shaped sample
is inserted into a short-terminated end of a coaxial jig that forms a half-turn coil. The
impedances of the jig with and without the sample are measured using an impedance
analyzer, and the change of the impedance is converted into μr. This system can be
used for frequencies as low as 1 kHz depending on the impedance analyzer used
and the MUT thickness. However, this system cannot apply HB either for the same
reason as for the type 1–1 jig, i.e., the loss of coaxial symmetry.

Figure 3 shows an example of the permeability measurement by the NRW
method [29]. In this work, noise suppression sheets (NSS) were prepared by
dispersing magnetic powder of different particle sizes (ranging from a few tens
to a few hundreds of micrometers) and materials (either FeSiAl or CoFe) into the
polymer binder and solidifying it into a sheet with a thickness of 0.1 mm. They
were cut into a toroidal shape with an outer diameter of 7.0 mm and inner diameter
of 3.04 mm and inserted into an APC-7 coaxial transmission line jig (type 1–1),
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Fig. 4 (a) Real part of μr , (b) imaginary part of μr , (c) real part of εr , and (d) imaginary part of
εr of ε-GaxFe2-xO3 with x = 0.51 (solid line), 0.56 (dotted line), and 0.61 (broken line) [17]

and its S-parameters were measured using a VNA (Keysight ENA5080A) over
10 MHz–9 GHz. The results clearly show two dispersion peaks in μ“, which are
labeled as DII and DIII. They are speculated to originate from FMR responses
due to an internal effective field and magnetoelastic effects at the particle surface,
respectively; however, their mechanisms are not fully understood yet.

Figure 4 shows another example of the permeability measurement by the NRW
method [17]. In this work, a series of ε-GaxFe2-xO3 (x = 0.51, 0.56, 0.61)
nanoparticle samples were prepared by a combination method of reverse-micelle
and sol-gel techniques. Their εr and μr were measured by the NRW method using
the free space type jig (type 1–3) over 50–75 GHz. The μr plots clearly show the
FMR response at different frequencies for different compositions due to a high
crystalline anisotropy field Hk, while εr plots exhibit no particular feature.

RF Permeameters Based on Inductive Response

The other group of RF permeameters is based on the inductive response of the MUT.
The fundamental difference between this group and the other group introduced in
the previous subsection is that this group eliminates the effect of electric fields and
extracts only the magnetic response of the MUT. Figures 5a–c show three types
of commercially available RF permeameters belonging to this group, which are
referred to as types 2–1, 2–2, and 2–3 in this chapter, respectively. In the type 2–1
permeameter, the MUT is placed on top of a through transmission line, which is
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Fig. 5 Three types of RF permeameter jigs based on the inductive response of the MUT. (a)
Through MSL jig (type 2–1) [32], (b) short-terminated MSL jig (type 2–2) [33], and (c) TEM
cell and shielded loop coil jig (type 2–3) [34]

either a coplanar waveguide (CPW) or microstrip line (MSL), and a VNA measures
S21 [32, 35–37]. This is basically the standard “through mode FMR” jig structure.
In the type 2–2 permeameter, the MUT is inserted into the short-terminated end of
an MSL where the magnetic field is maximum, while the electric field is minimum,
and a VNA measures S11. This is basically the standard “reflection mode FMR”
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jig structure [33, 38–44]. In the type 2–3 permeameter, the MUT is inserted into
a transverse electromagnetic (TEM) cell, and a shielded loop coil wound around
the MUT picks up magnetic fluxes while rejecting electric fluxes. A VNA sends a
stimulus signal into the TEM cell and detects the signal induced in the pickup coil
in the form of S21 [34, 45–47]. All these types of RF permeameters are designed
to apply HB and measure S-parameters under two magnetic fields, of which one
is the field of interest (the measurement field denoted as Hm

B ) and the other is a
field that is sufficient to saturate the magnetic sample (the saturation field denoted
as Hs

B ). The difference in S11 or S21 between these two fields is converted into χ

by applying a calibration algorithm appropriate for each measurement configuration
while eliminating the effect of the electric fields.

Although these types of RF permeameters can theoretically work from very low
frequencies up to microwave frequencies, because none of these types of jigs have
a cutoff frequency, each of them has a practical bandwidth limit determined by
various technical reasons. Regarding the high-frequency limit, the type 2–1 jig can
theoretically work at very high frequencies, up to 100 GHz and beyond, if a properly
designed transmission line is formed on top of a low loss substrate. Currently,
broadband RF permeameters that can be used up to 40 GHz are commercially
available [32, 36, 37]. The high-frequency limit of the type 2–2 jig is somewhat
lower (10–30 GHz) because of the limitation in the jig structure that it must
accommodate the MUT between the signal line and the ground plane of the MSL
[33, 44]. The high-frequency limit of the type 2–3 jig is set by the self-resonant
frequency of the pickup coil, which is 9 GHz at present [34]. The low-frequency
limit is set by the fluctuation of the receiver sensitivity of the VNA, defined as the
trace noise, in the type 2–1 and 2–2 jigs. This is because the signal of interest is a
counter-electromotive force (CEMF) induced by the motion of the magnetization
in the MUT; therefore, its amplitude is proportional to the frequency, while the
stimulus signal that excites the motion of magnetization is constant over the entire
measurement bandwidth. In the type 2–1 and 2–2 jigs, both the signal of interest
and stimulus signal acting as a background are sent to the receiver of the VNA.
This necessitates the VNA to extract a very small signal of interest from a much
larger background signal that generates trace noises in proportion to it at low
frequencies. Because of this problem, the signal-to-noise ratio (SNR) in the type 2–1
and 2–2 jigs rapidly deteriorates as the frequency decreases, resulting in a practical
low-frequency limit of 10–100 MHz depending on the sample volume. The low-
frequency limit of the type 2–3 jig is somewhat lower than that of the type 2–1 or
2–2 jigs because the stimulus signal sent to the TEM cell is inductively coupled
to the pickup coil, resulting in the leakage of the stimulus signal from the TEM
cell to the pickup coil proportional to the frequency. Therefore, both the signal of
interest and the background signal reaching the receiver of the VNA become smaller
at the same rate as the frequency decreases in the type 2–3 jig, allowing the VNA to
extract the signal of interest from a small background signal, leading to significant
improvement in the SNR at low frequencies. The low-frequency limit of the type
2–3 jig is ultimately set by the noise figure of the receiver of the VNA.
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Fig. 6 Permeability profile
of a 0.2-μm-thick
Co85Nb12Zr3 amorphous
film, measured by the TEM
cell and shielded loop coil jig
(type 2–3) [34]
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These types of RF permeameters are basically designed to measure film or sheet-
shaped samples. The sensitivity of these inductive response-based techniques is
inversely proportional to the square of the signal line width. In the type 2–1 jig, it
is possible to make the signal line width of the CPW narrow, resulting in significant
enhancement in the sensitivity, although the sensitivity at low frequencies is not
very high owing to the aforementioned problem. In the type 2–2 and 2–3 jigs, the
typical signal line widths range from a few millimeters up to a few centimeters,
and it is practically impossible to make it narrower because the jigs of these types
must accommodate the MUT inside, which limits the sensitivity of these types of
RF permeameters.

Figure 6 shows an example of the permeability measurement result obtained by
using the TEM cell and shielded loop coil jig (type 2–3) over 1 MHz–9 GHz [34].
The sample was a 0.2-μm-thick Co85Nb12Zr3 amorphous film with a lateral size
of 4 mm × 4 mm. This figure shows an FMR response at approximately 850 MHz
and a low-frequency permeability of 1200. The SNR of the measurement result is
reasonably good down to 1 MHz, owing to the type 2–3 jig structure in which both
the signal of interest and the leakage of the stimulus signal from the TEM cell to the
pickup coil become smaller at the same rate as the frequency decreases.

3 Transformer Coupled Permeameter

According to the discussion in the previous section, it may appear that an appropri-
ate combination of multiple RF permeameters can satisfy most of the measurement
requirements. In reality, each RF permeameter generally requires a different sample
shape and size. Furthermore, the details of the signal detection mechanism and
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the calibration algorithm vary for each type of RF permeameter. Thus, it is often
the case that measurement results obtained by using different RF permeameters
do not accurately overlap each other around the transition frequency, causing
serious difficulty in interpreting the results. The toughest requirement is a high
sensitivity over the entire measurement bandwidth, which cannot be achieved by
any combination of the conventional RF permeameters, despite a strong need in the
development of RF magnetic components as outlined below.

Figure 7 shows a typical manufacturing flow of RF magnetic components. Most
of the RF magnetic components are made of magnetic powder. Their manufacturing
flow begins from an ingot of the raw magnetic material. It is either grounded
or atomized into powder, which undergoes various processes such as annealing,
mixing, and attrition. It is then solidified into the final component form by
either dispersing into a polymer binder or sintering. The characterization, i.e., RF
permeability measurement, is performed at the final stage of the manufacturing
flow. Thus, the effect of each process performed when the magnetic material is
in the powder form on the high-frequency characteristics can only be inferred
from the measurement result obtained in the final component form. It is clearly
advantageous to perform the characterization of the magnetic material in the earlier
stages, preferably on a single particle in the magnetic powder, to clarify the effect
of each process. However, as mentioned above, no RF permeameter commercially
available at this time has a sufficiently high sensitivity to measure the permeability
of a single magnetic particle. Because of these problems, a broadband and high
sensitivity RF permeameter has been strongly sought for.

The author has developed an RF permeameter to overcome the problems
associated with the commercially available conventional RF permeameters; con-
sequently, significant enhancement in the measurement bandwidth and sensitivity
when compared to the abovementioned conventional RF permeameters has been
realized [48]. This RF permeameter is referred to as transformer coupled per-
meameter (TC-Perm). This chapter presents the details of TC-Perm, including
its operation principle, system configuration, calibration algorithm, and sensitivity
demonstration. Although this system is still under development and therefore has
not been commercialized yet, it is hoped that the description about TC-Perm
will help readers solve various problems encountered during the high-frequency
characterization of magnetic materials.

System Overview of TC-Perm

Figure 8(a) is a schematic of the jig structure of TC-Perm. Two short-terminated
CPWs (CPW1, CPW2) sandwich the MUT. These two CPWs are insulated by a
35-μm-thick Kapton tape, thereby forming a loosely coupled transformer. HB is
applied parallel to the CPWs. Figure 8(b) shows a block diagram of the system
configuration and cross section of the jig. CPW1 is connected to port 1 (P1), while
CPW2 is connected to receiver 2 (R2) of a VNA through a 10 dB attenuator. The
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Fig. 7 Typical manufacturing flow of RF magnetic components. Photos and illustrations are
courtesy of Tokin Corp. (NSS), Sumitomo Electric (compacted magnetic cores), and KEYCOM
Corp. (permeameter)

reason for this connection is as follows. The VNA model used in this system
(Keysight N5222A) has a directional coupler at ports 1 and 2 to separate the
incoming reflected signal from the outgoing stimulus signal, and the reflected
signal is sent to the receiver. The coupling strength of the directional coupler is
proportional to the frequency, which weakens the signal reaching the receiver as the
frequency decreases. Therefore, the signal from CPW2 should bypass the directional
coupler and be directly fed to the receiver. The input impedance of the receiver was
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Fig. 8 (a) Schematic of the jig structure of TC-Perm. Two short-terminated CPWs (CPW1,
CPW2) sandwich the MUT. These CPWs are insulated by Kapton tape and thus form a loosely
coupled transformer. HB is applied parallel to the CPWs. (b) Block diagram of the system
configuration and cross section of the jig. A VNA sends a stimulus signal to CPW1, which
generates HRF and excites the motion of magnetization in the MUT. Magnetic fluxes, one from the
MUT (shown as blue broken lines) and the other directly from CPW1 (shown as red solid lines),
both thread CPW2 and induce electrical signals, which are detected by the VNA. (c) Magnitude of
the transmission coefficient �S21� of the entire signal propagation path including the two cables and
jig as a function of frequency [48]

measured to be approximately 65 � in the particular VNA used in this work; thus
a 10 dB attenuator is inserted to suppress reflections from R2. The VNA sends a
stimulus signal from P1 to CPW1, which generates HRF and excites the motion
of magnetization in the MUT. Magnetic fluxes, one from the MUT and the other
directly from CPW1, both thread CPW2 and induce electrical signals, which are
sent to R2 through the 10 dB attenuator and measured by the VNA in the form
of S21.

This jig structure provides the following benefits for achieving high sensitivity.
First, it is easy to make the signal line of the two CPWs narrow. Because the
signal amplitude is inversely proportional to the square of the signal line width as
explained previously, this leads to a dramatic enhancement of the sensitivity. In
the jig of TC-Perm developed in this work, the signal line width is approximately
200 μm, which is one to two orders of magnitude narrower than the typical signal
line widths of the conventional permeameters using an MSL (type 2–2) or TEM
cell (type 2–3). Second, the two CPWs are positioned very close to the MUT,
thus maintaining tight couplings. Third, the stimulus signal leaking from CPW1 to
CPW2 becomes smaller as the frequency decreases below approximately 10 GHz,
as shown in Fig. 8(c), because these two CPWs are inductively coupled. This implies
that TC-Perm does not have to extract the signal of interest from the much larger
stimulus signal, similar to the RF permeameters using a TEM cell (type 2–3), which
significantly enhances the sensitivity at low frequencies when compared to the
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conventional RF permeameters using a through (type 2–1) or short-terminated (type
2–2) transmission line, in which a very large stimulus signal reaches the receiver
of the VNA along with the signal of interest. In the present TC-Perm system, the
low-frequency limit is set by the VNA; thus, it may be extended to an even lower
frequency by changing the VNA. On the other hand, the high-frequency limit is
currently set by the jig, which shows a notch at approximately 22 GHz in S21.
Therefore, the measurement bandwidth is fixed between 10 MHz and 20 GHz in
this section unless specified otherwise. The cause of the notch is speculated to
be unwanted reflections somewhere in the jig structure; however, the actual cause
has not been identified yet. Further extension of the measurement bandwidth by
improving the jig structure and system configuration remains one of the important
future tasks in the development of TC-Perm.

As in the case of the conventional RF permeameters based on the inductive
response of the MUT, the VNA measures S21 of the entire signal propagation path
from P1 all the way through R2 under two bias magnetic fields, Hm

B and Hs
B ,

in TC-Perm as well, which are denoted as Sm21 and Ss21, respectively. Throughout
this section, the saturation field is fixed at μ0H

s
B = 1.5 T. The following two

conditions are assumed. The first is that the reflection from R2 is negligibly small,
which is guaranteed by the insertion of the 10 dB attenuator. The second is that
the change in S21 between the two bias fields is much smaller than the average,
i.e.,

∣∣Sm21 − Ss21

∣∣ � ∣∣(Sm21 + Ss21

)
/2

∣∣. If both these conditions are satisfied, it can be
shown that the normalized S21 change defined as:

�S21 = Sm21−Ss21
S21

, (5)

where Sm21, Ss21, and S21 are the averages of the corresponding S-parameter, is inde-
pendent of the transmission characteristics of the cables connecting the jig and VNA
and the calibration errors of the VNA. In general, the transmission characteristics of
the cables can fluctuate for each measurement due to various factors such as different
cable bending or routing, torque when tightening connectors, and a change in the
ambient temperature. The introduction of �S21 ensures that the measurement results
obtained by TC-Perm are robust against these fluctuation factors and eliminates
the need for VNA calibration. �S21 is basically proportional to the difference in
χ between Hm

B and Hs
B ; however, it is still influenced by other parameters such

as the frequency dependence of the jig’s sensitivity, residual signal of the jig, and
difference in the signal strength for each sample. The calibration algorithm for
removing these influences is presented in the following subsection.

Calibration Algorithm of TC-Perm

Our approach for the calibration uses a reference sample as shown in Fig. 9(a): a
100-nm-thick permalloy (Py) coupon directly sputter deposited on Kapton tape. It
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Fig. 9 (a) Schematic of the reference sample. (b) 2D mapped amplitude of the FMR spectra
measured on the reference sample as a function of frequency and HB. (c) HB of the FMR peak
as a function of frequency. The open circle and solid line are the experimentally observed peak
and the fit of Eq. (3) to the experimental result, respectively. (d) α as a function of frequency. The
open circle and solid line are the experimentally observed damping determined by the algorithm
given in Ref. [49] and the fit of Eq. (6) to the experimental result for frequencies above 12 GHz,
respectively [48]

has a lateral dimension of approximately 300 × 600 μm by masking the outside
of the deposition area during sputtering. The saturation induction BS = μ0MS was
estimated as 1.06 T using a vibrating sample magnetometer (VSM) measurement on
a blanket film. This film showed a very soft magnetic property with the coercivity
of less than 1 mT in the VSM measurement; thus, the anisotropy is ignored in the
following discussion. This reference sample is attached on top of the signal line of
CPW1 with its long axis along the CPW direction.

First, the FMR is measured for this reference sample using the technique
described in Ref. [49]. Fig. 9(b) shows the 2D mapped amplitude of the FMR spectra
as a function of frequency and HB, which exhibits a clean Kittel mode, i.e., coherent
precession as a single magnetic moment. This indicates that its magnetization
dynamics are described by the LLG equation and its derivatives, i.e., Eqs. (1)–
(3). By fitting Eq. (3) to the measured peak shown in Fig. 9(c), g is determined
to be 2.055 for the reference sample. α at each frequency is determined by the
algorithm described in Ref. [49], which is plotted in Fig. 9(d). The result shows
an unusual dependence of α on frequency, i.e., a peak appearing at approximately
10 GHz, which corresponds to μ0HB ≈ 100 mT. The physical origin of this peak is
not understood at this time. One possible explanation is that the Kapton tape may
have some surface roughness with a specific length scale, which causes two magnon
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scattering at 10 GHz. Because the purpose of the FMR measurement in this work
is to determine the value of α for HB under which the permeability of the reference
sample is measured for the theoretical calculation of χ , the behavior of α around
and below this peak is ignored in the following discussion. An empirical equation
for the dependence of α on HB is given as:

α = A
μ0HB

+ B, (6)

where A and B are constants that represent the extrinsic and intrinsic damping
terms, respectively. The frequencies are converted to HB by Eq. (3), and then Eq.
(6) is fitted to the measured α shown in Fig. 9(d) above 12 GHz (corresponding to
μ0HB = 150 mT), from which A = 8.5 × 10−4 and B = 1.07 × 10−2 are obtained.
Next, TC-Perm is calibrated using the magnetic parameters obtained from the VSM
and FMR measurements at μ0H

m
B = 400 mT. The theoretical expression of χ is

given in Eq. (2). Because TC-Perm measures S21 under Hm
B and Hs

B and calculates
�S21 using Eq. (5), �S21 should reflect the difference of χ between these two bias
fields, i.e.,

χd(f ) = χ
(
Hm
B , f

) − χ
(
Hs
B, f

)
. (7)

The calibration algorithm is based on the following equation:

�S21 = χd(f )
CmS(f )

+ R(f ), (8)

where Cm is the ratio of the signal magnitude relative to that of the reference
sample, which depends on the product of the total magnetization of the MUT and
the coupling strengths between the MUT and the CPWs, S(f ) is the inverse of the
dependence of the sensitivity of the jig on frequency, and R(f ) is the residual signal
that the jig exhibits in response to the change in HB even without a magnetic sample.

For the calibration, �S21 is measured with and without inserting the reference
sample into the jig under μ0H

m
B = 400 mT, the results of which are shown in

Figs. 10(a, b), respectively. Fig. 10(c) shows the theoretically calculated χd using
Eqs. (2) and (7) with μ0H

m
B = 400 mT and μ0H

s
B = 1.5 T. Cm = 1 when the

reference sample is measured by definition. By plugging all these values into Eq.
(8), S(f ) can be determined as shown in Fig. 10(d). For the actual calibration, S(f )
is smoothed out by taking a moving average to reduce the random noise contained
in the calibration measurements, shown as green lines overlapping on top of each of
Re[S(f )] and Im[S(f )] in Fig. 10(d).

To validate this calibration algorithm, the reference sample was measured under
different values of μ0H

m
B . Fig. 11 shows the comparison of χd obtained exper-

imentally and calibrated by the above algorithm with the theoretical calculation
using Eqs. (2) and (7). For μ0H

m
B = 600 mT, the experimentally obtained χd

shows a small deviation from the theoretical calculation at higher frequencies, as
shown in Fig. 11(a). One possible reason for this deviation is the contributions
of the perpendicular components of HRF and magnetization precession. The width
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Fig. 10 (a)�S21 measured with the reference sample inserted into the jig underμ0H
m
B = 400 mT.

(b) Residual signal of the jig R(f ) measured with no sample inserted into the jig under μ0H
m
B =

400 mT. (c) χd(f ) calculated using Eqs. (2) and (7). (d) Inverse of the frequency dependence of the
sensitivity of the jig S(f ) obtained by plugging the results shown in (a), (b), and (c) and Cm = 1
into Eq. (8). The green lines overlapping on top of both Re[S] and Im[S] are the moving average
of S(f ) [48]

of the reference sample of 300 μm is somewhat larger than the signal line width
of 200 μm, and thus the edges of the reference sample should be exposed to
perpendicular components of HRF with an anti-symmetric profile. Furthermore, the
precession trajectory of magnetization becomes closer to circular as HB increases,
which should give rise to a finite coupling between these perpendicular and spatially
nonuniform components of HRF and the magnetization. On the other hand, the
theoretical calculation based on Eq. (2) assumes that HRF is completely in-plane
and uniform over the entire sample width. This oversimplification may result in the
deviation seen in the figure. Further studies to clarify and eliminate the source of the
deviation are planned to extend the range of HB over which TC-Perm can be used.

For μ0H
m
B = 400 and 200 mT, the experimentally obtained and theoretically

calculated χd show good quantitative agreement over the entire frequency range.
Under μ0H

m
B = 200 mT, not only the overall χd profile but also the shape of

the FMR response appearing at approximately 14.4 GHz agrees quite well. These
results confirm that the calibration algorithm developed in this work provides a
quantitatively accurate χd over the entire frequency range under μ0H

m
B that is at

least equal to or weaker than 400 mT.
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Fig. 11 (a, b, c) χd measured for the reference sample under μ0H
m
B = 600, 400, and 200 mT,

respectively. (d) Magnified plot of (c) between 10 GHz and 20 GHz to highlight the FMR peak. In
these plots, the blue and red lines are the real and imaginary parts of χd measured by TC-Perm after
calibration. The orange and green broken lines are the real and imaginary parts of the theoretical
χd calculated using Eqs. (2) and (7) under the condition corresponding to each plot [48]

Sensitivity Demonstration of TC-Perm

A single Py flake particle comprising a noise suppression sheet was measured using
TC-Perm to demonstrate its sensitivity. A bulk Py was ground and attrited into
flake powder, from which one particle was picked. Figure 12(a) shows an optical
micrograph of the particle. It has lateral dimensions of approximately 100 × 180 μm
and a thickness of approximately 0.7 μm. BS is assumed to be the same as that of
the bulk (1 T). This particle was attached on top of CPW1 with its short axis along
the CPW.

First, χd between 10 and 100 MHz was measured under μ0H
m
B = 200, 400, 600,

and 800 mT. The real parts of χd calibrated by plugging the measured �S21(f ),
Cm = 1, S(f ) obtained in the previous subsection, and R(f ) = 0 (because R(f ) is
confirmed to be negligibly small at low frequencies) into Eq. (8) are plotted in Fig.
12(b). Under a Hm

B sufficiently strong to saturate the magnetization, χd in the low-
frequency limit can be calculated by using Eq. (4) as:

lim
f→0

χd(f ) = Ms

(
1
Hm
B

− 1
Hs
B

)
. (9)
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Fig. 12 (a) Optical micrograph of the Py flake particle measured using TC-Perm. (b) Real part of
χd over 10 MHz–100 MHz under μ0H

m
B = 200, 400, 600, and 800 mT, calibrated with Cm = 1. (c)

Comparison of χd in the low-frequency limit between the experimental and theoretical values. The
black solid line is the theoretical values calculated using Eq. (9). The colored and black open circles
show the average of the experimental values of χd calibrated with Cm = 1 and 1.39, respectively.
(d, e) Real and imaginary parts of χd under μ0H

m
B varied from 0 mT to 100 mT measured using

TC-Perm. These results are calibrated with Cm = 1.39 [48]

The average of χd experimentally measured under each μ0H
m
B and the theoret-

ical value of χd calculated using Eq. (9) are shown as colored circles and a black
solid line, respectively, in Fig. 12(c). The experimentally obtained χd is smaller
than the theoretical values, because the MUT in this measurement gives a somewhat
smaller signal than the reference sample. By adjusting the value of Cm to 1.39, the
experimentally obtained χd moves to the black circles and agrees very well with the
theoretical values.

This Py particle that was measured under μ0H
m
B varied from 0 to 100 mT with

a step of 10 mT and was calibrated by the algorithm described in the previous
subsection with Cm = 1.39. Figs. 12(d, e) show the real and imaginary parts of χd,
respectively. The SNR in this measurement is very high over the entire frequency
range and all values of μ0H

m
B . These figures clearly indicate that the particle is not

saturated; therefore, its magnetization dynamics are dominated by either domain
wall motion or vortex gyration, giving rise to large values of χd at low frequencies
when μ0H

m
B is weaker than 20 mT. When μ0H

m
B is equal to or stronger than

approximately 20 mT, the particle is almost saturated, giving rise to a fairly clean
FMR spectrum, whose resonant frequency shifts higher as a stronger μ0H

m
B is

applied to the particle.
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4 Summary

This chapter initially presented the measurement requirements that must be satisfied
by the RF permeameter, which include the broadband coverage spanning from
very low frequencies up to microwave frequencies, calibrated measurement to
provide the absolute quantity of χ , high sensitivity, and capability to apply HB

during measurement. Next, various RF permeameters were introduced, which
belong to either of the two groups, of which one is based on the transmission
and reflection of propagating electromagnetic waves (NRW method) and the other
is based on the inductive response of the MUT. Each of these RF permeameters
has its own strengths and weaknesses; thus, the use of multiple RF permeameters
is often in order. Measurement capabilities and sample requirements for each
system were explained to help readers choose the appropriate RF permeameters for
their measurement needs. Then, a detailed description about TC-Perm, which was
recently developed by the author of this chapter, was presented. It was shown that
TC-Perm achieved a significant enhancement in the sensitivity and bandwidth, thus
making it possible to measure a single particle in magnetic powder, which should
be a powerful tool for tracking down the effects of various processes performed on
the magnetic powder on the high-frequency characteristics.
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Ferromagnetic Resonance

Tim Mewes and Claudia K. A. Mewes

Abstract Ferromagnetic resonance spectroscopy (FMR) is a versatile characteri-
zation technique that probes the magnetization dynamics in the frequency domain.
Despite its long history, there continues to be significant improvement regarding the
sensitivity and frequency range achievable in ferromagnetic resonance experiments.
In this chapter we will briefly introduce the basic principles of ferromagnetic
resonance spectroscopy and the long history of this technique. We will discuss the
equation of motion for the magnetization that leads to the ferromagnetic resonance
condition in the form of the Kittel equation and the Smit-Beljers equation, followed
by a discussion of the resonance lineshape. We will cover four different experimen-
tal methods that are used to detect ferromagnetic resonance: cavity-based, shorted
waveguide, transmission line, and electrically detected ferromagnetic resonance. We
will give three examples that highlight some of the unique capabilities of broadband
ferromagnetic resonance spectroscopy.

Keywords Ferromagnetic resonance · FMR · Resonance condition ·
Magnetization dynamics · Landau–Lifshitz–Gilbert equation of motion ·
Anisotropy · Damping · Gyromagnetic ratio

1 Introduction

Ferromagnetic resonance spectroscopy or, in short, ferromagnetic resonance (FMR)
is an experimental technique to study the dynamic response of ferromagnetic
materials. When the magnetization of a material is perturbed from its equilibrium,
the magnetization precesses around the direction of the internal magnetic field
and within a short period of time will relax and realign itself again along the
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direction of the internal field. In ferromagnetic resonance experiments, a small,
rapidly oscillating external electromagnetic field is applied to the sample to sustain
the precession. If the frequency of this electromagnetic field coincides with the
precession frequency of the ferromagnet, the material undergoes resonance. As will
be discussed in detail in Sect. 2, the resonance frequency can be tuned using a static
external magnetic field. Typical precession frequencies for magnetic materials are in
the range from 1 GHz to 300 GHz, i.e., in the microwave part of the electromagnetic
spectrum. Ferromagnetic resonance thus probes the magnetization dynamics at ns
and sub-ns timescales, while the corresponding photon energies range from 1 meV
down to 1μeV.

As S.V. Vonsovskii pointed out [1], V.K. Arkad’yev first observed ferromagnetic
resonance in 1911 [2]. In 1923 J. Dorfmann provided important new insights
regarding the theoretical understanding of these observations and suggested experi-
mentally testing the influence of strong external magnetic fields on ferromagnetic
resonances [3]. In 1946 significant experimental progress was made by James
Griffiths [4], who is often credited for the experimental discovery of ferromagnetic
resonance [5]. Shortly thereafter, Charles Kittel explained Griffiths’ observations
[6, 7], laying the groundwork for the interpretation of countless ferromagnetic
resonance experiments since then.

2 Ferromagnetic Resonance Condition

The magnetization dynamics of the magnetization M of ferromagnetic materials
can be described by the Landau–Lifshitz–Gilbert (LLG) equation of motion

dM

dt
= −γ0 M × H eff + 1

Ms

M × α
dM

dt
(1)

here γ0 = |γ |μ0 is the gyromagnetic ratio γ rescaled by the vacuum permeabil-
ity μ0. For a free electron, the gyromagnetic ratio is γ = −g

μB

h̄
. With an electron

g-factor of g ≈ 2, one has |γ |
2π = 28 GHz/T, which sets the frequency scale for

ferromagnetic resonance phenomena.
The effective field H eff is the sum of all fields acting on the magnetic moments.

This effective field can be expressed as the variational derivative of the free energy
density with respect to the magnetization M [8]. The second term on the right-hand
side of Eq. (1) was first introduced in this form in 1955 by Thomas L. Gilbert [9, 10]
as a phenomenological term to account for damping. However, since then this form
of the damping term has been linked to a number of different physical mechanisms
and has been derived from first principles [11, 12]. This dissipative term causes
any precession of the magnetization around the effective field direction to diminish
quickly, thereby causing the magnetization to align with the effective field direction.
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Kittel Equation

In ferromagnetic resonance experiments, a small time varying field h(t) is applied
perpendicular to the quasi-static field that saturates the sample. Thus, in ferromag-
netic resonance experiments, the total externally applied field H is

H = H ẑ + h · eiωt x̂, (2)

if one assumes the quasi-static field is applied along the z-axis and that the time-
varying field h(t) = h · eiωt x̂ is sinusoidal and applied along the x-axis. The
dynamic magnetic susceptibility tensor χ characterizes the linear response of the
magnetization and depends on the angular frequency ω = 2π f and can be written
as follows [13]:

χ(ω) = χ ′(ω) − i χ ′′(ω) (3)

Here χ ′ is the real part and χ ′′ the imaginary part of the complex dynamic
susceptibility. By assuming that the amplitude of the time-varying field is small
compared to the amplitude of the static field, i.e., h � H one can show the time-
averaged power 〈P 〉 absorbed by the sample is [14–16]

〈P 〉 = 1

2
μ0 ω h2 · χ ′′(ω); (4)

it is proportional to the imaginary part of the complex susceptibility χ ′′(ω,H). The
last notation indicates the complex susceptibility depends not only on the microwave
frequency but also on the magnetic field. As will be discussed in more detail in
Sect. 3, all experimental implementations of FMR spectroscopy take advantage of
this increased absorption of ferromagnetic samples at their resonance frequency.

In order to determine the natural frequency of the dynamical system described by
the Landau–Lifshitz–Gilbert equation of motion without damping, it is instructive
to include the effect of the demagnetizing field H demag. using an ellipsoidal
demagnetizing tensor:

N =
⎛
⎝Nxx 0 0

0 Nyy 0
0 0 Nzz

⎞
⎠ (5)

with Nxx + Nyy + Nzz = 1. By solving Eq. (1) in the small angle limit, one arrives
at the following natural resonance frequency fres of the system [6, 7]:

fres = γ0

2π

√
H1 · H2

= γ ′
0

√(
H + (Nyy − Nzz)Mz

) · (H + (Nxx − Nzz)Mz), (6)
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where γ ′
0 = γ0

2π is the reduced gyromagnetic ratio. H1 and H2 can be interpreted
as effective stiffness fields characterizing the torque exerted on the magnetization
[17, 18]. Equation (6) describes the resonance condition and is colloquially also
known as the Kittel equation.

Smit-Beljers Equation

A more general equation including all contributions to the free energy density e and
therefore to the effective field was developed by Smit and Beljers [19]:

(
fres

γ ′
0

)2

= 1

M2
s sin2 θ

[
∂2e

∂θ2

∂2e

∂φ2 −
(

∂2e

∂θ∂φ

)2]
. (7)

For this equation we have also dropped our earlier assumptions about the direction
of the external magnetic field and allowed for an arbitrary orientation as shown
in Fig. 1. Smit-Beljers’ expression for the resonance condition has to be evaluated
at the equilibrium points of the magnetization, that is, at the polar angle θ0 and

azimuthal angle φ0 of the magnetization for which ∂e
∂θ

∣∣∣
θ0

= ∂e
∂φ

∣∣∣
φ0

= 0. It is

noteworthy that an alternate form of Eq. (7) has been developed that avoids the
singularity for θ = 0. See reference [20] for more details regarding this approach.

The resonance condition in the Smit-Beljers’ form highlights the tremendous
potential of magnetic resonance techniques for characterizing different free energy
contributions in ferromagnetic materials. By determining the resonance condition
as a function of the microwave frequency f and the sample orientation with respect

Fig. 1 Geometry used in
Eq. (7) to describe the
ferromagnetic resonance
condition. The quasi-static
magnetic field H (blue) and
the microwave field hmw

(green) are perpendicular to
each other. The equilibrium
angles of the magnetization
M (red) are denoted with θ0
and φ0

00
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to the quasi-static field, one can map the energy landscape of the sample. On
the other hand, with adequate prior knowledge regarding the symmetry of the
contributions to the free energy of the system, a few measurements along high-
symmetry orientations are often sufficient to determine anisotropy constants with
excellent accuracy [21–23]. Furthermore, the resonance condition also indicates the
possibility to determine the gyromagnetic ratio, and hence the g-factor, using FMR
measurements. However, results published in the literature should be evaluated
carefully in particular in view of more recent developments regarding the use of
broadband frequency-dependent FMR measurements for the precise determination
of the g-factor [24, 25]. When fitting experimental data, the different parameters
entering the resonance condition turn out to be correlated. This can make their
accurate determination difficult, in particular when data is only collected over a
narrow frequency range.

Ferromagnetic Resonance Lineshape

Besides the wealth of information that can be obtained from the resonance condi-
tion, additional information can be gleaned from the fact that the power absorbed
by the sample is proportional to the imaginary part of the complex susceptibility
χ ′′(ω,H). To get further insight, one can solve Eq. (1) for high-symmetry cases in
the limit of small precession amplitudes to obtain an expression for the imaginary
part of the magnetic susceptibility [13, 26, 27]:

χ ′′(f ) = γ ′
0Msαf

(fres − f )2 + f 2α2
. (8)

The observation that the imaginary part of the dynamic susceptibility has a
Lorentzian lineshape L(f ) ∝ �f/2

(fres−f )2+(�f/2)2
also holds for more complicated

cases. Besides the resonance frequency fres, the lineshape is characterized by one
additional parameter, its frequency full width at half maximum:

�fFWHM = 2αf. (9)

The linewidth increases linearly with the driving frequency f , and the propor-
tionality factor is twice the Gilbert damping parameter α. An example for the
expected imaginary part of the susceptibility for NiFe driven at a frequency of
f = 10 GHz is shown in Fig. 2. Therefore, a careful study of the resonance
linewidth can provide valuable insights regarding the damping term of the Landau–
Lifshitz–Gilbert equation of motion.

However, as will be discussed in more detail in Sect. 3, it is customary
for ferromagnetic resonance experiments to use the field-swept peak-to-peak
linewidth �HPP. This means not only to sweep the field instead of the frequency but
also to use the peak-to-peak width instead of the full width at half maximum. The
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Fig. 2 This graph shows the
frequency dependence of the
imaginary part χ ′′ of the
dynamic magnetic
susceptibility given by Eq. (8)
for NiFe with a saturation
magnetization
Ms = 800 kA/m, a driving
frequency f = 10 GHz, and a
Gilbert damping parameter
α = 0.007. The frequency
linewidth (full width at half
maximum) �fFWHM is
indicated in red

peak-to-peak linewidth is defined as the field separation between the two extrema
of the derivative of the power absorbed by the sample with respect to field, i.e., the
separation between the inflection points of χ ′′. For a Lorentzian lineshape, the two
linewidths are connected as follows:

�HPP = �HFWHM√
3

. (10)

For the field-swept peak-to-peak linewidth due to Gilbert damping one has, using
Suhl’s approach [28]:

�H GILBERT

PP = 1√
3

α

|∂f/∂H |
γ ′

0

Ms

(
∂2e

∂θ2 + 1

sin2 θ

∂2e

∂φ2

)
. (11)

Using this approach one can obtain an approximate expression for the field-swept
linewidth [12, 29, 30]

�H GILBERT

PP ≈ 2√
3

α

γ ′
0

f

cosβ
, (12)

where the angle β between the magnetization and the external magnetic field takes
into account the field dragging effect [31]. When the external magnetic field is
sufficiently large and aligned with an easy or hard axis of the ferromagnet, the
magnetization will align with the field, and the expression further simplifies to

�H GILBERT

PP = 2√
3

α

γ ′
0
f (13)

The same expression can be obtained using the frequency linewidth given by Eq. (9)
and �f = �H

∂f
∂H

[32, 33].
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3 Experimental Methods

The power absorbed by a sample driven by a small microwave field according to
Eq. (4) is proportional to the imaginary part of the dynamic magnetic susceptibility.
The dynamic magnetic susceptibility has a peak at the resonance frequency of
the sample, as shown by Eq. (8). Therefore any experimental method capable of
detecting the microwave power absorbed by the sample can, in principle, be used to
perform ferromagnetic resonance spectroscopy.

Resonant Microwave Cavity-Based FMR

Originally, samples were placed in resonant microwave cavities to perform
ferromagnetic resonance spectroscopy. The resonant cavity determines the
microwave frequency at which the precession of the magnetization can be driven.
The microwave power in these systems was typically provided using a Klystron
[34] or Gunn diode [35, 36]. By using a circulator [37] or directional coupler [38],
the power reflected from the sample-loaded cavity is monitored, while the external
magnetic field is swept through the resonance condition.

Because the change in reflected power at resonance is small, a small modulation
field with a modulation frequency of a few hundred Hz is typically added to the
quasi-static field. By using a lock-in amplifier, the signal-to-noise ratio can be
drastically improved. The use of a lock-in detection results in the measurement of
the first derivative ∂χ ′′/∂H of the imaginary part of the susceptibility with respect
to the field H . This also explains the custom to use the peak-to-peak linewidth
�HPP to characterize the linewidth (see Eq. (10)). This linewidth can be determined
using two easily identifiable points on the measured FMR response; see Fig. 3.
For small modulation field amplitudes �Hmod � �HPP, the measured signal is
proportional to the modulation amplitude. Therefore, increasing the modulation
amplitude generally increases the signal and consequently the signal-to-noise ratio.
However, as for any modulation-based technique, care must be taken to avoid signal
distortion due to overmodulation [39, 40]. For more details regarding cavity-based
FMR instrumentation, see references [16, 41] and references therein.

Shorted Waveguide FMR

One of the challenges of cavity-based FMR is the need to use different cavities
to perform measurements at different microwave frequencies. Therefore numerous
approaches have been used to enable measurements over a broad frequency range.
While not widely reported, shorted waveguides have been used for this at least since
the early 1980s [42–44].
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Fig. 3 Expected field-swept FMR signal ∂χ ′′/∂H (blue line) for NiFe with a saturation mag-
netization Ms = 800 kA/m, a driving frequency f = 10 GHz, and a Gilbert damping parameter
α = 0.007. The field-swept peak-to-peak linewidth �HPP for an infinitesimally small modulation
field is indicated in red. As a dash-dotted magenta line, the expected FMR signal for the same
sample is shown for an overmodulation of μ0�Hmod = 0.03 T

Shorted waveguide FMR takes advantage of the standing wave pattern that forms
in a waveguide with a shorted end [45], as shown schematically in Fig. 4a. By
placing the shorted end of the waveguide at the center of an electromagnet, the
sample can be exposed to a quasi-static field and microwave field simultaneously.
By placing the sample either on the short itself or on the (narrow) sidewalls of
waveguide, different field geometries can be achieved for thin film samples. By
using field modulation and lock-in detection, good signal-to-noise ratios can be
achieved over the entire frequency band of the waveguide.

Other Transmission Line-Based FMR

Over the years various other transmission lines have been utilized to excite the fer-
romagnetic resonance of the sample. These include slotted lines [46–48], microstrip
lines [49–52], and coplanar waveguides [26, 53–57]. Compared to microstrip lines,
coplanar waveguides (CPWs) offer the advantage of several design parameters that
can be used to tune the characteristic impedance to match the output impedance of
the microwave source [58, 59]; see Fig. 5. By reducing the width s of the central
conductor, higher current densities and hence larger microwave field amplitudes
can be achieved. However, there is a trade-off between the increased excitation of
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Fig. 4 (a) Schematic
diagram of the magnetic
component h of the standing
wave field in a waveguide that
is shorted with a conducting
plate on the right-hand side
(gray area). The sample can
be placed on the short itself or
on the sidewall depending on
the desired field geometry.
(b) X-band (8–12 GHz)
waveguide and a copper
shorting plate with the sample
in the center of it

ww s h

sample

d

Fig. 5 Schematic diagram of a coplanar waveguide with an additional ground plane on the back
of the substrate. The substrate is characterized by its relative permittivity εr and thickness h. The
coplanar waveguide signal trace has a width s and is separated from the ground planes by a gap w.
The sample is placed at a height d above the coplanar waveguide

the sample, the inhomogeneity of the microwave field [60, 61], and radiative losses
[62]. With the proper design, a very broad frequency range can be covered using
a single coplanar waveguide, with operation frequencies extending up to 65 GHz
being recently reported [63–65]. A schematic diagram of a typical broadband FMR
setup is shown in Fig. 6. All instruments are usually computer controlled to enable
full automation. The choice of microwave source depends on the desired and/or
achievable frequency range for a particular setup. Maintaining the characteristic
impedance of the source throughout the microwave assembly is vital for maximizing
the power delivered to the sample and transmitted to the detector. Similarly, the
choice of detector depends on the overall bandwidth of the setup. Zero-biased
Schottky detectors can generally achieve good results.
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Detector Microwave 
source

Lock-kk in
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Function
generator

Amplifier

Power
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-rotation
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Modulation coils

Electromagnet

Coplanar waveguide

Sample

Fig. 6 Schematic diagram of a field-swept broadband coplanar waveguide based FMR setup. The
absorption at resonance is detected in the transmitted power using lock-in detection based on field
modulation or microwave frequency modulation (not shown). Motors enable in-plane angle φH
and polar angle θH dependent measurements at arbitrary frequencies

Similar to cavity-based FMR, a lock-in amplifier is typically used to improve
the signal-to-noise ratio compared to a DC detection of the transmitted power.
Due to the broadband nature of the coplanar waveguide, frequency modulation of
the microwave signal is also possible [40, 66] and results in the same lineshape
as field modulation. The potential benefit of frequency modulation is signifi-
cantly higher modulation frequencies achievable with this approach compared
to modulation coils, where the coil inductance restricts the usable modulation
frequencies. However, due to the limited frequency deviation that can be achieved
with typical microwave sources, this is currently not a widely used approach. While
most microwave sources also offer amplitude modulation, which enables lock-in
detection with a lineshape that reflects χ ′′ instead of its first derivative, this approach
typically suffers from a large signal offset away from the resonance.

The planar structure of the coplanar waveguide enables easy sample exchange as
well as automated rotation of the sample to vary the in-plane angle of the applied
field φH . This allows precise measurements of magnetic anisotropies [21, 23, 65]
similar to cavity-based studies [67–69]. Furthermore, as indicated in Fig. 6, the
coplanar waveguide structure can be rotated around its axis, changing the polar
angle θH of the field relative to the surface normal. This allows detailed investigation
of higher-order perpendicular anisotropies [70].

Temperature control is another common extension of ferromagnetic resonance
systems [71–73] and can be implemented for broadband FMR systems in almost
the same way as in cavity-based system, for example, using a closed-cycle helium
cryostat and a heater [64, 74, 75].



Ferromagnetic Resonance 441

Fig. 7 Schematic diagram
for vector network analyzer
FMR setup. A full two-port
measurement of the scattering
parameters as a function of
frequency and field enables
determination of both the
imaginary and real parts of
the complex susceptibility of
the sample

Power
supply

Electromagnet

Coplanar waveguide

VNA
Port 1 Port 2

Sample

S11, S12 S21, S22

Vector Network Analyzer FMR

While vector network analyzer (VNA) FMR uses the same transmission lines as the
aforementioned techniques, it differs by measuring the phase and amplitude of the
transmitted and reflected signals in the form of scattering parameters (S-parameters)
instead of measuring only the transmitted power [26, 33, 49, 76–81]. Only few
components are needed for a typical setup, as shown in Fig. 7. Contrary to field-
swept FMR, VNA FMR is usually done at a fixed field while sweeping the
frequency. This is the typical mode of operation for a VNA. However, field-swept
VNA FMR measurements have also been reported [82, 83]. One advantage of VNA
FMR compared to other methods is that it enables the determination of both the real
and imaginary parts of the complex susceptibility [26, 79, 84]. However, to achieve
this a careful full two-port calibration of the VNA FMR system is required. The goal
of this calibration is to move the reference planes of the VNA as close as possible
to the sample to eliminate all contributions to the measured scattering parameters
that do not originate from the sample itself. The most reliable measurements appear
to be possible when measuring all four scattering parameters S11, S21, S12, and S22
[26, 55].

Electrically Detected FMR

Over the last two decades, electrical detection of ferromagnetic resonance has been
observed in a number of different magnetic structures [85–91]. The unifying aspect
of these various electrical detection techniques is the generation of a DC voltage
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at the ferromagnetic resonance [90]. There are numerous physical mechanisms
that have been utilized for this, including spin-transfer torque [89], spin-pumping
[92, 93], spin rectification [94, 95], spin Hall [96], and inverse spin Hall effects
[97–99]. The generated DC voltages often can be readily detected with a voltmeter.
However, just like for the other FMR techniques, lock-in detection can often signif-
icantly improve the signal-to-noise ratio [89, 91, 100, 101]. The high sensitivity of
electrically detected FMR not only offers many potential technological applications
but also provides researchers with the ability to investigate ferromagnetic resonance
phenomena of very small sample volumes down to individual nanomagnets [87, 89].
However, the multitude of potential mechanisms that can cause the observed DC
voltages can make the interpretation of the results challenging. Additional valuable
insights can often be gained by complementary characterization using the FMR
techniques discussed in the preceding sections.

4 Examples

In this section we want to give a few examples that highlight some of the capabilities
of broadband ferromagnetic resonance spectroscopy.

Kittel’s resonance condition (6) in its simplest form suggests one advantage of
FMR compared to many other magnetic characterization methods regarding the
determination of the saturation magnetization Ms . Because the resonance condition
only involves the microwave frequency f , the reduced gyromagnetic ratio γ ′

0,
and the externally applied field, one should be able to determine the saturation
magnetization with high accuracy. In field-swept FMR experiments, the microwave
frequency is fixed and known to very high accuracy; thus the only limiting factor is
the accuracy with which one can measure the applied field.

Saturation Magnetization and Perpendicular Anisotropy

The reason this is possible is the sensitivity of the ferromagnetic resonance condition
to the internal field acting on the magnetization, which includes the demagnetizing
field. For thin films the situation simplifies even further. For example, if one
saturates the sample along the film normal (assumed to be along ẑ), one has
Nxx = Nyy = 0 and Nzz = 1, and hence the resonance condition reads:

fres = γ ′
0 (H − Ms) . (14)

However, there is one caveat to this: any internal field with the same functional
form as the demagnetizing field will be indistinguishable from it. For the thin film
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Fig. 8 Effective
magnetization as a function
of the inverse film thickness
for SiO2/Ni0.8Fe0.2/SiO2
(blue symbols),
SiO2/Ni0.8Fe0.2/Ru (red
symbols), and
Ru/Ni0.8Fe0.2/Ru (green
symbols). The lines are a
linear fit to each data set. For
details, see ref. [22].
Reprinted from Mohammadi
et al. [22], with the
permission of AIP Publishing

geometry, this is the case for a second-order uniaxial perpendicular anisotropy K2
with a contribution to the free energy of the system of the form eu,2 = −K2 cos2 θ

that may be present in the sample. This is the reason for the introduction of the
effective magnetization Meff in ferromagnetic resonance spectroscopy

Meff = Ms − 2K2

μ0Ms

, (15)

that enters the resonance condition (14) instead of Ms . It is worth noting that
for samples with a fourth-order perpendicular anisotropy K4 of the form eu,4 =
−K4

2 cos4 θ , the effective magnetization entering the resonance condition will be
different when measuring the in-plane and out-of-plane configuration (for details
see [102, 103]).

Figure 8 shows an example from reference [22] demonstrating the use of
broadband FMR to obtain a very precise value for the bulk saturation magnetization
of Ni0.8Fe0.2 and the interfacial contribution to the second-order perpendicular
anisotropy K2,i . Due to the interfacial nature of the perpendicular anisotropy of
the films in this study, one expects the effective magnetization measured by FMR to
scale with the inverse of the film thickness tNiFe. From the slopes in Fig. 8, one can
therefore determine the interfacial contribution to the anisotropy from the different
interfaces, which is strongest for the SiO2 interface. On the other hand, for this
material system, one does not expect any perpendicular anisotropy in the bulk.
Therefore, by extrapolating the effective magnetization to infinite thick films or
1/tNiFe = 0, the saturation magnetization of Ni0.8Fe0.2 can be determined to be
Ms = 786 ± 2 kA/m (or in cgs units, Ms = 786 ± 2 emu/cm3).
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In-plane Anisotropies

Depending on the symmetry of the sample under investigation, additional anisotropy
contributions can readily be included in the resonance condition (7). While obtain-
ing analytical expressions for the resonance field is limited to high-symmetry
orientations, a numerical evaluation is straightforward. As an example, in Fig. 9
the dependence of the resonance field on the external applied field is shown
for an exchange bias system IrMn/CoFe studied in reference [23]. Broadband
measurements were performed along the in-plane direction parallel and antiparallel
to the exchange bias direction. The exchange bias field Heb can be easily estimated
as half the field separation of these two curves. However, in exchange bias systems,
a uniaxial anisotropy is often observed in addition to the unidirectional anisotropy
responsible for the exchange bias effect [21, 104, 105]. In order to precisely
determine this anisotropy contribution, in-plane angle-dependent measurements can
be used, as shown in Fig. 10. As described in detail in reference [23], the figure
shows two approaches to analyze the data. The first one, shown as the green curve
in part (a) and (b) of this figure, uses an analytical model that can be derived by
assuming the magnetization is aligned with the external magnetic field [106, 107].
The second approach, shown in red, numerically minimizes the free energy to obtain
the equilibrium angles required for the evaluation of the Smit-Beljers relation (7).
While the two fits of the experimental data are indistinguishable in part (a) of

Fig. 9 Microwave frequency f versus resonance field Hres (Kittel plot) for a 6 nm thick CoFe
exchange-biased layer. Black (red) symbols show broadband FMR data with the external magnetic
field applied parallel (antiparallel) to the exchange bias direction. The corresponding solid lines are
the result of a simultaneous fit to the Kittel equation of the system for both orientations. For more
details see ref. [23]. Reprinted figure with permission from Mohammadi et al. [23]. Copyright
(2017) by the American Physical Society
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Fig. 10 Dependence on the in-plane angle of the applied field φH of (a) the resonance field Hres
of a 6 nm CoFe exchange-biased layer, where the figure includes the experimental data (blue
symbols), a fit using the analytic model (green line), and a fit using the full model (red line),
(b) the residuals of the fit using the analytical model (green line and symbols) and the full model
(red line and symbols), and (c) the misalignment of the in-plane angle of the magnetization φ0
from the direction of the applied field φH calculated using the full model. For more details see
ref. [23]. Reprinted figure with permission from Mohammadi et al. [23]. Copyright (2017) by the
American Physical Society
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the figure, close inspection of the residuals reveals systematic deviations of the
analytical model that may erroneously be interpreted as a threefold anisotropy.
However, as part (c) of the figure shows, the deviations are caused by the violation
of the assumption of the analytical model that the magnetization is aligned with the
applied field. While the deviations are particularly large in this system, one should
expect such misalignment in other systems whenever the external field is not applied
along an easy or hard axis.

Furthermore, measurements as a function of the in-plane angle of the applied
field can provide insights regarding potentially anisotropic damping. For exchange
bias systems, this topic is discussed in more detail in references [21, 23, 108].

Conductivity-Like Damping in Epitaxial Iron Films

The Gilbert damping parameter that enters the Landau–Lifshitz–Gilbert equation of
motion is of paramount importance for many spintronic applications. It determines
the critical current for switching in spin-transfer torque magnetic random access
memory [109–111] and for auto-oscillations in spin-torque oscillators [112–114].
It also determines the mobility of domain walls [115–117] and the propagation of
spinwaves [118, 119]. This has led to a renewed interest in theoretical predictions
and experimental determination of the damping parameter in a wide variety of
magnetic materials. While it may seem straightforward to determine the Gilbert
damping parameter from field-swept FMR measurements based on Eq. (13), care
has to be taken when trying to extract the intrinsic damping parameter of the
material. There are a number of mechanisms that can lead to a Gilbert-like term
in the LLG equation of motion, including spin-pumping and eddy current damping
[120]. Furthermore, two-magnon scattering can contribute significantly to the
measured FMR linewidth [56, 108, 121], in particular in thin films measured with
the quasi-static field applied in the plane of the film.

For transition metals, relaxation caused by the spin-orbit coupling is expected to
be the dominant contribution to the intrinsic damping [11, 16, 122]. This contribu-
tion to the damping can be quantified using the Kamberský torque correlation model
[123–125], and its predicted conductivity-like increase of the damping parameter at
low temperatures has been experimentally observed for cobalt and nickel already
in 1974 [126]. However, in the same work, no significant increase was found
for iron. Using state-of-the-art broadband ferromagnetic resonance spectroscopy,
Khodadadi and coworkers have recently been able to confirm that Kamberský’s
torque correlation model accurately predicts the damping in high-quality epitaxial
iron films [64]. They used broadband in-plane and out-of-plane measurements to
confirm that two-magnon scattering does not contribute significantly to the in-plane
linewidth measured in these films (see Fig. 11a). They investigated two sets of iron
films grown on different substrates. Due to the smaller lattice mismatch, the films
grown on (001)-oriented MgAl2O4 show a significantly better crystalline quality
than the simultaneously deposited films on MgO. However, at room temperature
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Fig. 11 (a) Frequency dependence of FMR linewidth �HPP for MgAl2O4/Fe and MgO/Fe
at room temperature. Linewidths measured under in-plane field are shown as open symbols,
whereas those measured under out-of-plane (OP) field are shown as filled symbols. (b) Frequency
dependence of FMR linewidth for MgAl2O4/Fe and MgO/Fe at T = 10 K. Temperature
dependence of the spin-orbit-induced Gilbert damping parameter αso, fit phenomenologically
with the experimentally measured resistivity for (c) MgAl2O4/Fe and (d) MgO/Fe. The dashed
and dotted curves in (c) and (d) indicate the conductivity-like and resistivity-like contributions,
respectively; the solid curve represents the fit curve for the total spin-orbit-induced Gilbert damping
parameter. For more details, see ref. [64]. Reprinted figure with permission from Khodadadi et al.
[64]. Copyright (2020) by the American Physical Society

both films have the same damping parameter (see Fig. 11a). This changes drastically
at low temperatures where the iron films grown on MgAl2O4 showed a significantly
larger damping (see Fig. 11b). As shown in parts (c) and (d) of the same figure,
this is caused by the increased conductivity-like contribution to the damping, as
predicted by Kamberský’s torque correlation model. These results show some of
the new insights recent developments in the area of ferromagnetic resonance have
enabled.

5 Summary

More than 100 years after its discovery, ferromagnetic resonance spectroscopy
still remains a constantly evolving characterization method that can probe the
magnetization dynamics over a very broad frequency range. In this chapter we
have described the fundamental principles governing the ferromagnetic resonance
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condition and how they relate to the different experimental methods for its detection.
The three recent examples illustrate how broadband ferromagnetic resonance can
contribute to further our understanding of the underlying physical mechanisms
influencing the magnetization dynamics. The ongoing development of new electrical
detection schemes for ferromagnetic resonance is not only promising for obtaining
a better and more unified understanding of the physical mechanisms that cause the
rectification of microwave signals in magnetic materials but also in view of their
potential application to measurements of nanomagnets and new spintronic devices.
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Magnetic Characterization of Geologic
Materials with First-Order Reversal
Curves

Ramon Egli

Abstract Since their introduction in Earth sciences in 1990, first-order reversal
curve (FORC) measurements have become an important tool for characterizing
geologic materials. The visualization of irreversible magnetic processes, such as
transitions between magnetic states in individual crystals, in a two-dimensional
map provides a unique tool for discriminating complex mixtures of magnetic
particle assemblages according to their composition and size, thereby reducing
the intrinsic non-uniqueness of simpler magnetic characterization tools. The use of
FORC measurements in Earth sciences has rapidly evolved, both technically (e.g.,
measurement resolution, data processing) and theoretically. For instance, numerical
unmixing techniques have been recently implemented on FORC measurements
(FORC-PCA), and micromagnetic calculations are now used to model the FORC
signature of specific magnetic particle assemblages. The scope of this work is
to provide, for the first time, a didactic and comprehensive review of FORC
diagrams and their application in Earth sciences which includes (1) the theoretical
foundations; (2) the connection with Preisach theory and with other magnetic
characterization tools; (3) detailed instructions for optimal planning, execution, and
processing of FORC measurements; and (4) an in-depth analysis of the fundamental
FORC signatures commonly occurring in rocks and sediments.
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1 Introduction

Since their introduction to the geoscience community in 1990, first-order reversal
curve (FORC) measurements have become a standard tool for the characterization of
magnetic minerals in geological material. Knowledge of these minerals is important
for a variety of geoscience applications, spanning from the reconstruction of past
variations of the Earth magnetic field (paleomagnetism), of geologic processes
(tectonics, transport in the atmosphere and the oceans), and of the environment in
which sedimentary deposits have been formed. Unlike most applications in material
sciences, magnetic measurements of rocks and sediments present unique technical
and interpretation challenges. On the technical side, the concentration of magnetic
minerals can be extremely low, sometimes in the sub-ppm range, and the mixture
of widely heterogeneous magnetic contributions requires a very precise control of
the experimental conditions (e.g., timing, applied field). These requirements often
reach the limits of currently available instrumentation. At the interpretation level,
the intrinsic non-uniqueness of magnetic inversion problems is exacerbated when
it comes to the reconstruction of the wide range of compositional and physical
properties of natural magnetic particles—often far from the ideal or well-defined
cases treated in material science—for which little or no additional information is
available. For instance, concentrations are often too low for mineralogic charac-
terizations, such as X-ray fluorescence, and direct observation, e.g., by electron
microscopy, might be biased by magnetic extraction procedures, by the tendency of
nanometric iron oxides to stick on much larger, electron-opaque minerals, and by the
lack of sufficient statistics. In this context, the two-dimensional “mapping” of irre-
versible hysteresis processes obtained from FORC measurements has proved itself
to be an unparallel tool for the identification of fingerprint signatures for certain
groups of magnetic particles: for instance, ultrafine magnetite particles produced by
magnetotactic bacteria or precipitated authigenically in soils and sediments bear a
unique FORC signature that is clearly distinguishable from that of larger magnetite
grains of lithogenic origin coexisting in the same materials. The identification of this
signature requires high-resolution high-precision measurements that were initially
not available, demonstrating how technical aspects of FORC measurements go in
hand with processing and interpretation techniques. The special requirements of
geologic material characterization with FORC measurements created its own line of
research from the same underlying principles of material science applications: the
Preisach theory.

This chapter deals with all main aspects of FORC measurements of geologic
materials—from theoretical foundations to specific applications. A particular effort
is dedicated to providing a consistent and self-contained theoretical background
and to establish connections between this relatively new measurement technique
and other much older but also much faster types of measurements. This link has
been seldomly exploited until now—FORC measurements tend to be presented as
a completely separated set of data—yet it offers the opportunity to combine the
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strengths of fast-but-ambiguous measurements that can be performed on a large
number of samples with an in-depth-but-slow technique to be applied on selected
samples for calibration and interpretation purposes.

The chapter is divided into three main sections in addition to this introduction.
Section 2 deals with the theoretical foundations of FORC measurements, within
the framework of the Preisach theory, and establishes the relations existing with
other measurement protocols commonly used for the characterization of magnetic
minerals in geologic materials. Section 3 describes the FORC measurement protocol
and discusses important technical aspects and challenges of such measurements, as
well as various data processing techniques used for optimal signal extraction and
representation. Section 4 provides an in-depth description of the fundamental FORC
signatures encountered in geological materials, classified according to the domain
state of the magnetic carriers, and their relationship with other magnetic signatures.
Each section is self-contained and can be read independently from the others, even if
certain aspects of the FORC signatures described in Sect. 4 require specific technical
(Sect. 3) and theoretical (Sect. 2) knowledge. A rigorous mathematical treatment is
provided when necessary and is accompanied by a qualitative description that can be
appreciated by application-oriented readers. All FORC diagrams have been obtained
from measurements with the PMC MicroMag 2900/3900 series VSM/AGM or the
new Lake Shore 8600 series VSM and processed with the VARIFORC software [1]
(https://www.conrad-observatory.at/index.php/downloads-en/category/3-variforc).

A consistent terminology and mathematical notation are used throughout all
sections, as far as permitted by common practice. For instance, the magnetic field
(common mathematical notation, H; SI unit, A/m) is usually expressed by the
equivalent magnetic flux density B = μ0 H (SI unit: T), where μ0 is the magnetic
permeability of vacuum. Therefore, B is used instead of H whenever the SI unit is
involved (e.g., axes labels in figures). Furthermore, the Preisach fields HA and HB
(or BA and BB) are replaced by Hr and H, respectively, when used in the context of
FORC measurements, since they better recall their role in the measurement protocol
as the so-called reversal and measurement fields, respectively. FORC coordinates,
on the other hand, are consistently expressed as Hc and Hu (or Bc and Bu), whereby
a universal convention does not exist for Hu, which is often called a bias field (Hb)
or an interaction field (Hi). However, the Hu notation is preferred since it does
not suggest incorrect interpretations of the FORC coordinates. All mathematical
symbols are listed in the table at the end of this chapter.

2 The Preisach Model of Hysteresis

The Preisach model of hysteresis originates from a landmark paper [2] by F.
Preisach published in 1935, which had the purpose of explaining the behavior of
pinned domain walls in iron cores. A similar model was independently developed
by D. H. Everett and W. I. Whitton [3] to explain the hysteresis of gas adsorption.

https://www.conrad-observatory.at/index.php/downloads-en/category/3-variforc
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The appearance of the Preisach model in different contexts clearly indicated that it
represents a general description of hysteretic processes, not necessarily bonded to a
physical meaning. As a result, the Preisach model was separated from its physical
connotations through a mathematical formalism developed by M. Krasnoselskii and
others [4]. The basic idea behind the mathematical model is that all hysteretic
phenomena can be described by the superposition of elemental hysteresis loops,
called hysterons, in analogy with other spectral decomposition methods. Hysteresis-
related material properties are then represented by a distribution of the two
hysteron parameters, called Preisach function. The practical value of the Preisach
formalism is that the Preisach function of a magnetic system, which is obtained
from specific measurement protocols, can be used to predict the evolution of the
system magnetization for any sequence of applied fields: in rock magnetism, these
would be the various types of magnetization and demagnetization protocols used
to characterize the magnetic minerals contained in geologic materials. An extensive
review of Preisach models has been given by I. Mayergoyz [5].

The first application of the Preisach model to multiparticle systems of relevance
in rock magnetism was discussed by L. Néel [6], who identified the Preisach
hysterons with individual magnetic particles. Néel’s intuition is based on the classic
Stoner-Wohlfarth model of single-domain particles [7], whose hysteresis loops
resemble hysterons. The Preisach-Néel model of hysteresis is the only one where
hysterons have a direct physical interpretation and has been therefore extensively
used to study the stability of magnetic recording media, after devising a method for
reconstructing the Preisach function from remanent hysteresis measurements [8–
10]. Because of the similar interest of the paleomagnetic community in the remanent
magnetization of fine magnetic particles, D. Dunlop tested the Preisach-Néel model
on magnetite particle assemblages of different sizes, concluding that domain states
played a more important role than magnetostatic interactions for larger grains [11,
12]. In the former Soviet Union, the Preisach theory have been applied to rock
magnetism by Lolij Sholpo and coworkers [13].

A renewed interest in Preisach theory in Earth sciences was triggered by P. Hejda
and T. Zelinka [14], who devised a fully automatized in-field measurement protocol,
based on first-order reversal curves (FORC), for the reconstruction of the Preisach
function. Despite not being true Preisach functions, FORC functions reconstructed
from such measurements were soon used as an equivalent tool for modeling the
magnetic hysteresis of geologic materials [15–17]. Preisach functions continue to
represent a fundamental tool for understanding FORC measurements. Furthermore,
estimates of the Preisach function based on remanent measurements might be more
appropriated than FORC functions for the selective investigation of remanence-
carrying minerals [18]. This chapter reviews the main features of the Preisach model
and its relevance for understanding commonly used magnetic parameters for the
characterization of rock and sediments.
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The Classical Preisach Model

As illustrated in Fig. 1, the irreversibility of hysteresis is manifested at the most
elemental level by the difference between the ascending and descending branches
of minor loops running between two almost identical fields HA and HB. The minor
loop opening can be imagined to originate from an elemental loop, called hysteron,
with rectangular shape, unit magnetization, and switching fields HA and HB defined
by the fields at which the two branches merge. In analogy with major hysteresis
loops, the hysteron opening is expressed by the coercive field (or coercivity)
Hc = (HA − HB)/2, defined as half the difference between the two zero-crossing
points. While major hysteresis loops are symmetric about H = 0, hysterons can
be offset horizontally by a so-called bias field Hu = (HA + HB)/2. Hysterons are
thus entirely determined by coordinates (HA, HB) in the so-called Preisach space,
or (Hc, Hu) in a coordinate system rotated by 45◦ with respect to (HA, HB) , called
the FORC space, which is often used to represent the FORC function. Hysterons
possess only two magnetic states: positive, or +1, and negative, or −1. These states,
as long as existing, do not depend on the applied field. Single-domain (SD) particles
with uniaxial anisotropy [7] behave like hysterons if their easy axis is aligned with
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Fig. 1 Representation of reversible and irreversible magnetization changes with hysterons. M+
and M− are the descending and ascending branches of the major hysteresis loop. Every field
sweep reversal produces a magnetization curve of higher order, from order 0 (M±) to order 1
(first-order reversal curves) and higher. Magnetic irreversibility is shown for a minor hysteresis
loop running between points 1, 2, and 3, where �Mirr and �Mrev are the irreversible and reversible
magnetization changes occurring when sweeping the field from 1 to 2. Mathematically, �Mirr can
be represented by a rectangular hysteresis loop, called hysteron, with two switching fields HA and
HB: during the positive field sweep from 1 to 2, the negatively saturated hysteron is switched to
positive saturation. This state is maintained during the final sweep to 3, if HB is sufficiently small.
Similarly, �Mrev is represented by a closed hysteron with HB = HA, for which the magnetization
in 1 is recovered upon cycling the field to 2 and back
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Fig. 2 The Preisach model. Hysterons with switching fields HA and HB (top left) are represented
in the Preisach space HA ≥ HB (bottom right). Shading represents an example of Preisach function
p(HA, HB), whose amplitude is proportional to the relative number of hysterons with switching
fields (HA, HB) required to reproduce the magnetic properties of a given magnetic material. The
rotated coordinate system (Hc, Hu) represents the same hysterons through their coercive field Hc
and bias field Hu. Hysterons along the Hc = 0 line are closed and represent reversible magnetization
processes. In the absence of external fields, the Preisach space is divided into three regions: the
memory rectangle R, where hysterons can have two states, and two transient triangles T, where
hysterons are positively and negatively saturated, respectively

the direction of the applied field and if the magnetic moment component parallel
to this direction is measured. In this case, Hu represents the stray field of nearby
particles, as discussed later. In the framework of Preisach theory, hysterons must be
understood as a mathematical object that provides the most compact description of
hysteresis in terms of only two parameters.

A magnetic sample is fully characterized by the so-called Preisach function
p(HA, HB), defined as the probability density function of a large collection of
hysterons (Fig. 2). This function is defined everywhere over the Preisach space
defined by HA ≥ HB. The HA = HB diagonal, which corresponds to Hc = 0,
represents completely closed hysterons. Superparamagnetic (SP) particles would
be described by such hysterons. The other diagonal, given by HA = −HB (or
Hu = 0), is the place where hysterons are symmetric with respect to H = 0.
Finally, the quadrant limited by HA > 0 and HB < 0, called the memory region,
is occupied by hysterons that can have two so-called remanent states in H = 0
and thus a magnetic memory, while all hysterons outside this area, which occupy
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the transient region, are always positively (HA < 0) or negatively (HB > 0)
magnetized if no external fields are applied. Measurement protocols based on
remanence measurements support reconstructions of the Preisach function only
inside the memory region because the remanent magnetic state of hysterons outside
this region is fixed. The memory region is particularly relevant for paleomagnetic
applications, since it is the only domain of the Preisach function that represents
magnetic processes capable of recording the Earth’s magnetic field. For practical
reasons, it is sometimes more convenient to express the Preisach function in the
transformed (Hc, Hu) coordinates used to represent FORC diagrams. In this case,
the definition of the Preisach function as a probability density function with unit
integral imposes p*(Hc, Hu) = 2p(HA, HB) for the newly defined function p*.

The Preisach function is usually assumed to be symmetric about the Hu = 0 axis,
because this ensures that the associated major hysteresis loop possesses the expected
inversion symmetry M−(−H) = −M+(H). However, the major loop symmetry does
not force the Preisach function to be symmetric [19]. On the other hand, if hysterons
of the Preisach function represent transitions between magnetic states, a symmetry
about Hu = 0 follows from the fact that each state possesses an equivalent “anti-
state,” obtained by reversing the magnetization vector. In this case, each transition
between states, and therefore each hysteron, is associated with a symmetric copy
with opposed bias field.

Macroscopic samples with continuous hysteresis loops must, by definition, con-
tain an infinite number of hysterons. It is therefore reasonable to assume that there
are many hysterons, representing, for instance, similar processes occurring at several
places in the sample, which share the same switching fields, thus contributing to the
same point in Preisach space. The number of such identical hysterons is proportional
to p(HA, HB). Each hysteron can be in a positive or negative state, depending on the
magnetic history of the sample and on the applied field, so that the total contribution
of (HA, HB) hysterons to the sample’s magnetization is proportional to their mean
magnetic state γ (HA, HB), with γ being comprised between −1 (all in a negative
state), and +1 (all in a positive state), and γ = 0 denoting equal amounts of
positive and negative states. As seen later, the magnetic randomization associated
with |γ | < 1 can be obtained only with the help of thermal activations, for instance,
by cooling a magnetic mineral from above its Curie temperature. It is important to
recall that γ represents the mean state of hysterons with the same switching fields,
not that of individual hysterons, which, by definition, is ±1. Furthermore, hysterons
can exist in both states only in fields HB < H < HA.

The bulk magnetization of the sample is the sum of all mean hysteron states,
weighted by the Preisach function, and is mathematically represented by the integral

M = Ms

∫∫
HA>HB

p(HA,HB) γ (HA,HB) dHAdHB (1)

over the Preisach space, with Ms being the saturation magnetization, that is, the
maximum magnetization obtained with γ = 1 for all hysterons. Starting from an
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Fig. 3 The Preisach model of magnetization changes induced by external fields. The Preisach
function is proportional to the darkness of the shaded area, while colors indicate the mean magnetic
state γ of hysterons (gray, undefined; red, +1; blue, −1). (a) In a null external field, the transient
regions are positively (+) and negatively (−) saturated, respectively, while the state of hysterons
in the memory region depends on the past magnetic history. (b) A positive field sweep (arrow)
sets all hysterons with “right-sided” switching fields HA smaller than the actual field value Ha to
positive saturation, regardless of their previous state (wiping property). (c) A negative field sweep
(arrow) sets all hysterons with “left-sided” switching fields HB larger than the actual field value Hb
to negative saturation, regardless of their previous state (wiping property)

initial state fully specified by γ (HA, HB) in a given initial field H0, it is possible
to calculate how the bulk magnetization evolves in a changing field. The field
sweep direction is important, since magnetization changes are determined by the
ascending hysteron branches if the field is increased and by the descending hysteron
branches if the field is decreased. Increasing the field to Ha > H0 brings all hysterons
with HA < Ha to a positive state, resetting them to γ = 1. The cancellation of
previous states is called wiping out property. In Preisach space, the positive field
sweep is graphically represented by a vertical line at HA = Ha moving to the
right, which leaves all hysterons to the left in a positive state (Fig. 3b). Positive
saturation is eventually reached upon moving Ha beyond the maximum range of the
Preisach function, in which case γ = 1 is obtained over the whole space. Similarly,
decreasing the applied field to Hb < H0 brings all hysterons with HB > Hb to a
negative state, resetting them to γ = −1. In Preisach space, the negative field sweep
is graphically represented by a horizontal line at HB = Hb moving to the bottom,
which leaves all hysterons above in a negative state (Fig. 3c). Negative saturation
is eventually reached upon moving Hb beyond the maximum range of the Preisach
function, in which case γ = −1 over the whole space.

All magnetic experiments performed in a constant environment (temperature,
pressure, etc.) consist of a series of field sweeps as described above, which can be
represented in Preisach space. The starting point is usually a fully demagnetized
sample in a null field (the Earth’s magnetic field is negligibly small in most cases),
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Fig. 4 The Preisach model of AF demagnetization (same color convention as in Fig. 3). Each
transition from a local field minimum to a local field maximum and vice versa corresponds to a
positive and a negative field sweep, respectively. The AF demagnetization is thus a sequence of
field sweep to alternating positive and negative fields H0, H1, H2, . . . of monotonically decreasing
amplitude. (a) First two steps: positive sweep to H0 and negative sweep to H1. (b) Sequence of
seven steps until the field has fully decayed. (c) Final AF-demagnetized state for the limit case of
an infinite number of steps

with γ = 0 in the memory region and γ = ±1 in the remaining Preisach space.
In geologic materials, this state is obtained when individual magnetic particles are
magnetized randomly. Experiments starting with this state cannot be replicated,
unless the sample is thermally demagnetized, because the application of external
fields will always set some regions of the memory quadrant to γ �= 0, even if the
bulk remanent magnetization is zeroed. A well-known example is the alternating
field (AF) demagnetization, obtained by exposing the sample to a series of field
sweeps with decreasing amplitude, starting from a positive initial field H0. The
0 → H0 field sweep sets γ = +1 for all hysterons with HA < H0 (Fig. 4a). This
is followed by a negative field sweep to H1 = −H0 + �H, which sets all hysterons
with HB > H1 to γ = −1 (Fig. 4b). The sequence of horizontal and vertical sweeps
of the Preisach space creates a stepped line along Hu = 0, which separates two
regions with γ = −1 and γ = +1, respectively (Fig. 4b). In the limit of�H → 0, the
stepped line collapses onto the Hu = 0 axis (Fig. 4c) and defines a fully deterministic
AF-demagnetized state. As seen later, the results of certain experiments, such as the
acquisition of an isothermal remanent magnetization, depend on whether the initial
state is truly random or AF demagnetized.

Modifications of the Classical Preisach Model

The classical Preisach model has some important limitations that prevent a correct
representation of certain hysteresis processes. Countless modifications of the origi-
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nal model have been proposed to overcome this limitation, at the cost of a significant
increase in complexity. Here, only the simplest modifications are discussed in
general terms.

Regular Preisach functions fail at reproducing the reversible component of
hysteresis, because the magnetization obtained from Eq. (1) remains constant once
all hysterons have been switched to negative or positive saturation. In contrast,
real hysteresis loops approach saturation asymptotically, and the magnetization
continues to increase even after the two branches have completely merged. Two
solutions have been proposed to overcome this problem. One of them has been
originally proposed in the context of FORC analyses and consists in adding a so-
called reversible ridge of the form frev(Hu) δ(Hu) along the Hu axis, where δ is
the Dirac impulse and frev the first derivative of the reversible component of the
hysteresis loop [20]. The second solution is formally equivalent to the introduction
of a reversible ridge but avoids the difficulties of dealing with the Dirac impulse.
It is based on the partition of the integration region in Eq. (1) into the memory
rectangle HA > H and HB < H, where H is the applied field, and the remaining
triangular regions of the Preisach space. Since γ = ±1 is a fixed value over the
triangular regions, the corresponding integrals are functions f±(H) representing the
reversible component of hysteresis [5]. Because the memory rectangle moves with
H, the modified Eq. (1) is called the moving Preisach model.

Even with these modifications in place, reversible magnetization changes can
only be partially accounted, assuming a fixed contribution of hysterons with Hc = 0.
The minimal example of a Stoner-Wohlfarth particle illustrates this limitation: two
distinct functions are required to represent the curvature of the ascending and
descending branches, so that the actual reversible magnetization changes occurring
in assemblages of such particles depend on which of the two SD states is occupied
for every combination of Hc and Hu values. In practice, frev becomes a function
of the magnetic states in the memory region. A similar effect, this time over
the entire Preisach space, needs to be taken into consideration when describing
systems affected by a so-called mean internal field Hi = DM proportional to
the bulk magnetization M, where D is a proportionality constant. In this case,
the total field H + DM(H) transforms a hysteron with intrinsic switching fields
hA,B into one with apparent switching fields HA,B = hA,B − DM. The resulting
Preisach function depends on the magnetic states γ of the hysterons and is no
longer a fixed distribution [21]. A similar problem arises with the local interaction
field in assemblages of densely packed particles, which also depends on the bulk
magnetization [22, 23]. Specific examples will be discussed in relation to the FORC
function in section “Mean-Field Interactions”.

Another important modification of the original Preisach model deals with thermal
relaxation, in order to explain the time dependence of hysteresis measurements of
so-called viscous magnetic systems. Thermal relaxation reduces the field required
for a magnetic transition by overcoming the energy barrier separating two magnetic
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states before this barrier naturally disappears during a field sweep. The effective
switching fields of hysterons are then given by HA = hA − Hf and HB = hB + Hf,
where Hf is the reduction of hysteron coercivity due to thermal relaxation, also
known as fluctuation field [24]. Hysterons become completely closed, or super-
paramagnetic, when Hf = (hA − hB)/2, in which case they contribute only to the
reversible component of hysteresis. In the other cases,

Hf

Hc
≈

[
kBT

�E0
ln

Hf

τ0α

]1/q

, (2)

is a function of the field sweep rate α = | dH/dt | [25], the absolute temperature T,
and intrinsic parameters such as the energy barrier �E0 for switching in a null field,
the so-called attempt time τ 0 ≈ 0.1 −1 ns [26], and the exponent q of the power
law governing the field dependence of the energy barrier, with q = 1.5 for randomly
oriented Stoner-Wohlfarth particles [27]. The fluctuation field causes a shrinking
of the memory region, whose new boundaries are given by HA > H + Hf and
HB < H − Hf. These boundaries are no longer straight [28–30], because �E0 is itself
a function of Hc, with �E0 ∝ μ0 mHc for Stoner-Wohlfarth particles with magnetic
moment m.

Preisach Models of Selected Measurement Protocols

Measurement protocols and magnetic parameters of increasing complexity have
been introduced over the years to characterize magnetic minerals in geologic
materials [31–33], with FORC diagrams representing one of the last achievements.
Magnetic characterization tools can be divided into three main categories according
to their dimensionality:

• 0D: bulk parameters, associated binary or ternary diagrams (e.g., after Day et al.
[34] and King et al. [35]), and principal component analyses [36]

• 1D: magnetization curves [37], associated shape comparisons [38], coer-
civity distributions [39], and numerical unmixing of curves/distributions
[40–43]

• 2D: Preisach/FORC measurements [16, 18], associated isolation of specific
signatures [1], numerical unmixing [44], and modified FORC protocols [45].

Even the most sophisticated characterization techniques, such as FORC, do not
always overcome the intrinsic non-uniqueness of magnetic measurements, so that a
combination of different techniques is sometimes required. In these cases, Preisach
models provide a useful comparison tool, since reconstructed Preisach/FORC func-
tions can be used to predict the results of lower-dimensional measurements, such as
bulk parameters and magnetization curves [30], and compare them with measured
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ones. In the following, Preisach models of measurement protocols commonly used
for the characterization of geologic materials are discussed.

Low-Field Susceptibility

The low-field susceptibility χ lf is defined as the derivative dM/dH of the magnetiza-
tion change induced by a small external field with respect to an initial remanent state.
In geologic materials, χ lf is the sum of contributions associated with dia-, para-,
and antiferromagnetic minerals, as well as the initial susceptibility χ i of fer-
rimagnetic minerals. Measurements are typically performed in a low amplitude
alternating field H0 cosωt, with H0 being of the order of 400 to 750 A/m, or
0.5–1 mT [46]. The resulting Rayleigh hysteresis loop is characterized by a small
nonlinearity and opening that increase with increasing field amplitude (Fig. 5). The
AF susceptibility is defined by the first Fourier coefficients of M(H0 cosωt)/H0,
which, for a Rayleigh loop with �M = M(H0) and 2δM = M+(0) − M−(0),
are given by χ ′ = �M/H0 (in-phase or real component) and χ ′′ = 4δM/3πH0
(quadrature or imaginary component), respectively. The well-known Rayleigh law
for the initial magnetization, �M = χ i H + αR H2, where αR is the Rayleigh
constant [47], yields the field-dependent in-phase susceptibility χ ′ = χ i + αR H0
and the corresponding quadrature term χ ′′ = 4αR H0/3π [48].

This result can be understood using the classical Preisach model by considering
that δM is the integral of the Preisach function over the memory region limited
by HA < H0 and HB > −H0. Because of the limited extension of the memory
region near the origin, the Preisach function can be approximated by the Taylor
series p(HA, HB) = p0 + p1 HA + p2 HB + . . . . The first term of the integral yields

Fig. 5 Preisach model for Rayleigh hysteresis and low-field susceptibility measurements. (a)
Simulated Preisach function of MD particles. The dashed lines represent the left limit of the
memory region. (b) Rayleigh hysteresis loops generated with the Preisach function in (a).
(c) Susceptibility measurement in an alternating field with period T and 1 mT amplitude,
corresponding to the ±1 mT loop in (b). Notice the time lag of the magnetization with respect
to the applied field for all points between minima and maxima
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δM ≈ Msp0H
2
0 , and therefore αR = Ms p0, which means that the Rayleigh constant

is determined mainly by the amplitude of the Preisach function near the origin.
Stable SD particles have a finite coercivity and do not contribute to the Preisach
function at the origin, so that αR = 0, in agreement with experiments. The Preisach
function of multidomain (MD) particles, on the other hand, is concentrated near
Hc = 0, yielding positive values of αR and therefore a field-dependent χ lf. The
field dependence of χ lf is commonly observed in titanomagnetite-bearing basaltic
rocks [48] and in MD pyrrhotite crystals [49], albeit with deviations from the ideal
Rayleigh law at higher fields. These deviations are expected to occur when the
Preisach function is no longer approximated by a constant over the memory range
defined by H0.

IRM Acquisition Curves

The so-called isothermal remanent magnetization (IRM) is the remanent magne-
tization acquired by previously demagnetized material upon applying and then
removing a so-called acquisition field. The expression “isothermal” originates from
the fact that the IRM is acquired without changing the temperature. The IRM
protocol results from the combination of two magnetization curves: the so-called
initial curve Mi(H), which is the in-field magnetization acquired while sweeping
the applied field from zero to a given final value Ha, followed by a first-order curve
departing from Mi(Ha), while the applied field is swept back to zero (Fig. 6b).
The resulting remanent magnetization Mirm is a function comprised between 0 for
Ha = 0 and the so-called saturation remanence Mrs for Ha sufficiently large to sat-
urate the sample. The sequence of IRM values acquired in increasingly large fields
is called IRM acquisition curve (Fig. 6c). IRM acquisition curves are commonly
used to characterize the coercivity of remanence-carrying minerals, e.g., through the
median acquisition field [50], which is the Ha value for which Mirm = Mrs/2. The
first derivative of Mirm(Ha) defines the IRM coercivity distribution firm(Ha), which
is just one of the possible means of estimating a coercivity distribution (section
“Coercivity Distributions”). IRM acquisition curves are widely used for coercivity
analysis and detection of magnetic components [40].

In classical Preisach theory, IRM is represented by the switching of hysteron
states in a vertical stripe of the memory region given by 0 < HA < Ha from their
original value dictated by the demagnetized state to γ = +1 (Fig. 6a). The shape
of the IRM acquisition curve is sensitive to the initial state [30]: in the case of AF
demagnetization, all hysterons below the Hc axis are already in a γ = +1 state, so
that the acquired remanence depends only on the hysterons above this axis. If, on the
other hand, the initial state is fully randomized, as with thermal demagnetization, all
hysterons with HA < Ha contribute to IRM acquisition, which means that Mirm from
a fully random initial state is always larger than Mirm acquired from the AF state
(Fig. 6c). This difference is most pronounced for Preisach functions with a wide
dispersion along Hu and is therefore particularly evident in samples containing MD
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Fig. 6 Preisach model for the IRM acquisition and DC demagnetization protocols. (a) Represen-
tation of IRM acquisition Preisach space. The initial state is given by randomized hysteron states
in the remanence region (gray). A positive field Ha switches all hysterons with HA ≤ Ha to positive
saturation. (b) Stepwise IRM acquisition protocol (black, initial curve; gray curves, field removal;
gray dots, corresponding IRM steps). (c) IRM acquisition curve (solid line) with the IRM steps
of (b) (dots). The dashed line is the IRM acquisition curve from an AF-demagnetized state for the
same system. (d) Same as (a) for DC demagnetization. The initial state is a positive saturation IRM
(all hysterons with HB < 0 positively saturated). A negative field Hr switches all hysterons with
HB ≥ Hr to negative saturation. (e) Stepwise DCD protocol (black, descending branch of major
hysteresis; gray curves, field removal; gray dots, corresponding DCD steps). (f) DCD curve (solid
line) with the DCD steps of (e) (dots)
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magnetite particles [51]. The only case where Mirm is independent of the initial
state is when the Preisach function is concentrated along the Hc axis, forming
a sharp ridge known as the central ridge, as it is the case for non-interacting
uniaxial SD particles (section “Uniaxial SD Particles: Stoner-Wohlfarth Model”).
The dependence of IRM acquisition curves on the initial state is particularly
important when these curves are used for coercivity analysis, because coercivity
components, especially the one covering the low-coercivity range, will be affected.

DC Demagnetization Curves

Direct-current demagnetization (DCD) of an IRM is obtained by applying and
subsequently removing a so-called demagnetizing or reversal field Hr in the opposite
direction. The resulting remanent magnetization, Mdcd, will be smaller than the
original IRM and becomes negative if the reversal field amplitude is sufficiently
large. DCD curves are measured starting from an IRM that is as close as possible
to Mrs by applying a positive saturating field. Next, a negative reversal field Hr is
applied. If the initial IRM was saturated, the field sweep to Hr occurs along the
descending branch of the major hysteresis loop (Fig. 6e). During the subsequent
removal of Hr, the magnetization follows a first-order reversal curve (FORC)
departing from the hysteresis loop and ending with the remanent magnetization
Mdcd at H = 0. The DCD curve is obtained by applying negative reversal fields of
increasing amplitude, until negative saturation is reached (Fig. 6f). Mdcd thus begins
with a positive value close to Mrs and ends with a negative value close to −Mrs. The
reversal field Hr = −Hcr for which M(Hr) = 0 is obtained defines the coercivity
of remanence Hcr and is one of the parameters required to calculate the coercivity
ratio Hcr/Hc used in the Day diagram [34]. The full DCD protocol described above is
often shortened by imparting the initial IRM only once, followed by the sequence of
reversal fields and remanence measurements. The shortened protocol is not exactly
equivalent in the case of measurements affected by thermal relaxation, because the
repeated application of negative fields to the same initial IRM causes a larger viscous
decay than the case where a fresh IRM is acquired at every step.

The Preisach representation of the DCD demagnetization process is similar
to that of an IRM, except for the fact that changes in the memory range occur
in a horizontal band above HB = Hr and that the initial magnetization is rep-
resented by positive hysteron states γ = +1 (Fig. 6d). It is easy to show that,
in the framework of classical Preisach models, the so-called Wohlfarth relation
Mirm(H) = Mrs − Mdcd(−H) holds between the DCD curve starting from Mrs and
the IRM acquisition curve obtained from a fully randomized initial state [52]. This
is because hysterons in symmetric positions about the Hc axis, which contribute
equally to the Preisach function, undergo a γ = 0 → 1 transition in the case of
IRM acquisition and a two times larger transition γ = +1 → −1 in the case
of DCD demagnetization. In practice, significant deviations from the Wohlfarth
relation are commonly observed in MD and interacting SD particles, which are best
represented with a so-called Henkel plot [53] of Mirm vs. Mdcd. A concave curve
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is obtained in these cases, instead of the straight line of the Wohlfarth relation. In
addition to the use of IRM acquisition curves obtained from the AF demagnetization
state instead of a fully random state [54], other causes for curved Henkel plots are
related to magnetization processes that cannot be correctly described by the classical
Preisach theory. One arises from thermal relaxation: the viscous decay of the initial
Mrs while the reversal field is applied, or, in the case of the shortened protocol,
during the entire measurement sequence, adds to the intrinsic initial magnetization
decrease. This does not occur with IRM acquisition because a freshly acquired
remanent magnetization is measured at each step. The other reason for curved
Henkel plots is that correct modeling of strongly interacting SD particles [55,
56], MD particles, and other systems producing mean internal fields of significant
magnitude require the use of moving Preisach models [57] (section “Modifications
of the Classical Preisach Model”). In this case, the Preisach function is affected by
the bulk magnetization, whose initial value is zero for IRM acquisition and equal
to the saturation remanence in the case of DCD curves. Internal fields Hi = DM
characterized by D < 0 have a demagnetizing effect that help remove the initial
IRM, yielding concave curves in Henkel plots, while the opposite occurs with
D > 0. In MD particles, the demagnetizing factor D changes with the nucleation and
annihilation of domain walls [58], being thus itself a function of the magnetization.

AF Demagnetization of IRM

AF demagnetization curves play an important role in paleo- and rock magnetism,
owing to the fact that these are the only magnetization curves that can be
obtained from the natural remanent magnetization (NRM) and from other weak-
field remanent magnetizations. Stepwise AF demagnetization of an initial remanent
magnetization is performed like the full AF demagnetization (section “The Classical
Preisach Model”), except for the choice of the peak amplitude Haf of the AF field,
which is stepwise increased after each remanence measurement until the sample
becomes fully demagnetized. The AF peak field required to eliminate 50% of
the initial remanent magnetization is called the median demagnetizing field. The
original reason for measuring AF demagnetization curves of IRM was to compare
them with the AF demagnetization of the NRM, in what is known as the Lowrie-
Fuller test [59, 60], in order to gain some insights on the type of remanence carriers
responsible for the Earth magnetic field recording.

In classical Preisach theory, AF demagnetization of an IRM proceeds similar
to the DC demagnetization, except for the fact that only hysterons of the memory
region characterized by HB > −Haf and Hu > 0 are switched to γ = −1, instead
of all those with HB > Hr (Fig. 7a). This difference with the DCD curve is minor
for small Haf values, so that, in a similar way, AF demagnetization proceeds faster
than IRM acquisition. IRM acquisition and AF demagnetization are equivalent only
if the Preisach function forms a narrow ridge along the Hc axis, as with non-
interacting uniaxial SD particles (section “Uniaxial SD Particles: Stoner-Wohlfarth
Model”). The shape of IRM acquisition and AF demagnetization curves can be
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Fig. 7 The Preisach model for the AF demagnetization of IRM and ARM. (a) Representation of
the AF demagnetization of IRM in Preisach space. The initial state is a positive saturation IRM
(hysterons with HB < 0 are positively saturated). An AF field with negative peak amplitude Haf
sets hysterons with Hu > 0 to negative saturation. (b) ARM acquisition through the application of
a biased alternating field with decreasing amplitude. The end point at H = 0 is the final ARM. (c)
Same as (a) for the AF demagnetization of an ARM. The initial state is an ARM acquired in a DC
bias field Hdc (hysterons with Hu > Hdc are negatively saturated; those with Hu < Hdc are positively
saturated). In this case, AF demagnetization changes the state of hysterons with 0 < Hu < Hdc to
negative saturation. (d) AF demagnetization curves of ARM and IRM for the SD-like hysteresis
loop shown in (b)

compared either by transforming one into the other assuming that they represent
identical coercivity distributions, in which case Maf(H) = Mirm(0) − Mirm(H),
or by plotting the normalized curves on a common field axis in what is known
as a Cisowski plot [38]. In the latter case, differences between the two curves
are tracked by deviations of the crossing point of the normalized curves from
the ideal value R = 0.5 [61–66]. Additional differences between IRM acquisition
and AF demagnetization curves arise, as with DC demagnetization, from thermal
relaxations (the same magnetization is exposed repeatedly to the demagnetizing
fields) and from magnetization-dependent changes of the Preisach function, due
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to mean internal field or to magnetic systems possessing more than one pair of
magnetic states (section “The Pseudo-Single-Domain Magnetic Behavior”), such as
so-called pseudo-single-domain particles [37].

ARM Acquisition and Demagnetization

The anhysteretic remanent magnetization(ARM) is the magnetization acquired in a
slowly decaying alternating field possessing a small DC bias Hdc (Fig. 7b). The
remanent magnetization Ma acquired after the AC field has fully decayed and
the DC field is removed is a sigmoidal function of Hdc, with Ma = χa Hdc for
Hdc → 0, where χa is the so-called ARM susceptibility, and Ma = Mrs for Hdc → ∞.
ARM shares important similarities with the thermoremanent magnetization (TRM)
acquired by cooling rocks in the Earth’s magnetic field [67, 68] and is therefore used
as a TRM substitute in absolute paleointensity determination protocols where sam-
ple heating must be avoided [69, 70] and as a normalizer in relative paleointensity
reconstructions [71]. TRM and ARM are both very sensitive to the energy barriers of
irreversible magnetization processes [72, 73], the domain state of particles [74–77],
and magnetostatic interactions [78, 79].

The classical Preisach model of ARM acquisition is similar to that of AF
demagnetization, with the only difference that the partition line between γ = +1
and γ = −1 states is moved away from the Hc axis by Hdc (Fig. 7c). The slight
asymmetry resulting from this offset produces a net magnetization corresponding to
half of the integral of the Preisach function comprised between the diagonals given
by Hu = 0 and Hu = Hdc, respectively. For small bias fields, this integral is equal
to the product between Hdc and the integral of p(Hc, Hu = 0) with respect to Hc,
explaining the initial proportionality between Ma and Hdc. Preisach functions that
are more concentrated along the Hc axis produce larger ARMs, due to the higher
amplitudes of p(Hc, Hu = 0). This effect is quantified by normalizing χa with Ms,
so that χa/Ms is a measure of the Hu width of the Preisach function. Because of large
reversible contributions from para- and superparamagnetic minerals in geologic
materials, an IRM acquired in a field with the same amplitude as the AF peak field
of ARM is chosen as normalizer instead of Ms, yielding the parameter χa/Mirm
known as ARM ratio. Preisach models predict that the ARM ratio of SD particles
is entirely controlled by magnetostatic interactions, which are solely responsible for
the spread of p(Hc, Hu) in the Hu direction. This model diverges for the limit case
of non-interacting SD particles [80, 81], yielding an infinite value of χa.

The finite ARM susceptibility of non-interacting SD particles is explained by
thermal relaxation effects near the minima and maxima of the AF field [82].
The slowly decaying series of minima and maxima make a SD particle switch
instantaneously at every half-cycle, until the field amplitude has decayed below
the critical field at which the particle possesses only one stable magnetic state.
From this point on, switching continues through thermal activations by overcoming
an energy barrier, which grows as the field amplitude decays further. Because of
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the growing energy barrier, the switching probability decreases, until the particle’s
moment becomes definitively frozen in its end state. In the case of an unbiased
AF field, the end state is positive or negative with equal probability, and the net
magnetization of many SD particles is zero. A small positive DC bias increases the
probability of a positive final state to an extent that depends on how quickly the
energy barrier grows during the AF decay, which in turn depends on how large the
energy barrier is in a zero field. The resulting ARM ratio is a function of particle
size, with typical values ranging between 1 and 5 mm/A for SD magnetite [73].
This result is easily integrated within the Preisach model after replacing the sharp
partition at Hu = Hdc between hysterons with positive and negative states with a
gradual transition given by the sigmoidal shape of Ma(Hdc)/Mrs [83]. In this case,
any Preisach function, also one representing non-interacting SD particles, yields a
finite χa.

A modification of the Lowrie-Fuller test, based on the comparison between
normalized AF demagnetization curves of IRM and ARM, has been often used as
a domain state indicator; however, its usefulness is hampered by the dependence of
the ARM acquisition process in MD particles on the density of domain wall pinning
sites [77]. Nowadays, the main interest in AF demagnetization curves resides in their
use as a normalizer of relative paleointensity [71] and for magnetofossil detection
[84]. The Preisach model provides a straightforward explanation of differences
between the shape of such curves and the corresponding median destructive fields
through the abovementioned dependence of the ARM susceptibility on the Hu width
of the Preisach function. Separable Preisach functions of the form p = f (Hc)g(Hu),
which are characterized by identical normalized profiles of palong Hu, yield AF
demagnetization curves with shape differences that are determined only by the
intrinsic coercivity dependence of χa/Mrs, for instance, that of non-interacting SD
particles. This is because the Hu width of the Preisach function, and therefore the
associated reducing effect on χa, is the same for all Hc values. Non-separable
Preisach functions, on the other hand, modify the intrinsic coercivity dependence
of χa/Mrs because the shape of Hu profiles depends on Hc. For instance, interacting
SD particle assemblages (section “Weak Magnetostatic Interactions Between SD
Particles”) are characterized by a Preisach function whose Hu width is a decreasing
function of Hc [85]: this makes low-coercivity hysterons less efficient in acquiring
an ARM than high-coercivity ones. As a result, high-coercivity particles contribute
proportionally more to the ARM than to the IRM, giving the AF demagnetization
curve of ARM a higher resistance to AF demagnetization (Fig. 7d).

Coercivity Distributions

Magnetization curves are widely used in magnetic analyses of geologic materials
for the identification of magnetic components with specific coercivity distributions.
The identification of such coercivity components is performed either by fitting
the magnetization curves, or their first derivatives, with a linear combination of
functions believed to represent such components [40, 41] or by other methods
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based on principal component analysis [42, 86]. In both cases, the strong overlap
between the coercivity ranges of individual magnetic components makes the
numerical unmixing of magnetization curves very sensitive to the actual or assumed
shape of the coercivity distributions of individual components [30, 41, 87]. The
situation is further complicated by the fact that the shape of magnetization curves
depends on the measurement protocol, as seen in the examples of the previous
sections. Preisach models and the associated FORC diagrams provide a valuable
tool for comparing magnetization curves and understanding the nature of magnetic
components. Moreover, certain types of magnetization curves, such as the DC
demagnetization (section “DC Demagnetization Curves”), coincide with a subset of
the FORC measurement protocol and can be used to bridge the detailed information
provided by FORC measurements with more conventional magnetic parameters.

All magnetization curves, if measured over a sufficiently wide field range,
represent the progressive transition of a certain type of magnetization from an
initial state Mini(Hini) to a final state Mfin(Hfin), with Hini = 0 in most cases. For
comparison purposes, these curves can be rescaled to share the same initial and
final states, conventionally assumed to be 0 and 1, using

M∗(H) = M(H) − Mini

Mfin − Mini
. (3)

For instance, the Henkel plot, which is a tool for comparing IRM acquisition
and DCD curves (section “DC Demagnetization Curves”), is obtained by rescaling
Mirm and Mdcd with Eq. (3). The empirical coercivity distribution associated with
each magnetization curve is defined by the first derivative of Eq. (3) with respect
to H. These distributions are generally not identical, complicating the comparison
of coercivity analysis results obtained from different measurement protocols.
Coercivity distribution differences can be explained by four main factors: (1)
coercivity-dependent intrinsic magnetic properties; (2) thermal relaxation effects;
(3) magnetic memory, that is, the dependence of the measured magnetization on
the sequence of previously applied fields; and (4) effects of the bulk magnetization
on individual particles (e.g., interaction fields). Mechanism (3) is accounted by
the classic Preisach model and can be investigated with FORC diagrams, while
mechanism (4) requires a moving Preisach model, which, in limited cases, can also
be deduced from FORC measurements.

The effects of mechanism (3) on coercivity distributions obtained from the mag-
netization curves described in sections “IRM Acquisition Curves,” “DC Demagneti-
zation Curves,” “AF Demagnetization of IRM,” “ARM Acquisition and Demagne-
tization” are exemplified with four different types of Preisach functions (Fig. 8). The
first example is representative for non-interacting SD particle assemblages (section
“Uniaxial SD Particles: Stoner-Wohlfarth Model”): in this case, all coercivity
distributions coincide with the intrinsic distribution of hysteron coercivities (Fig.
8a). The second example is based on a separable Preisach function p = f (Hc)g(Hu)
commonly used in Preisach-Néel models of interacting particles [15, 86]. In this
case, IRM acquisition from a thermally demagnetized state and AF demagneti-
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Fig. 8 Preisach functions and corresponding coercivity distributions for representative models
of geologic materials. First row: Preisach functions plotted in (Bc, Bu) coordinates. Second row:
corresponding hysteresis loop (blue) and FORCs (red), with no reversible component added. Third
row: magnetization curves corresponding to commonly used measurement protocols, rescaled
to be increasing functions comprised between 0 and 1. The protocols include IRM acquisition
from the thermally demagnetized state and the AF-demagnetized state, DCD curves, and AF
demagnetization curves of IRM and ARM. The last row shows the coercivity distributions
corresponding to the first derivative of the normalized magnetization curves shown above. The
marginal distribution of the Preisach function with respect to Bc, which represents the intrinsic
coercivity distribution, is shown for comparison. (a) Non-interacting SD particles (central ridge
along Bu = 0, typical example: magnetofossils). (b) Strongly interacting SD particles (oval
contours, typical example: authigenic greigite). (c) Idealized PSD particles (triangular contours).
(d) Idealized MD particles (vertical ridge along Bc = 0)

zation of ARM yield coercivity distributions with similar shape, while the AF
demagnetization of IRM and the IRM acquisition from the AF-demagnetized state
produce coercivity distributions that are shifted toward lower and higher fields,
respectively (Fig. 8b). The Preisach function of the third example is characterized by
triangular contour lines typical of so-called pseudo-single-domain (PSD) magnetite
particles (this term is used in paleomagnetism to denote particles with coexisting
SD and MD characteristics; see section “Multistate Systems: The PSD FORC
Signature”). In this case, the AF demagnetization curves of ARM and IRM, on
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the one hand, and the IRM acquisition curve from the AF-demagnetized state, on
the other, produce coercivity distributions with lowest and largest median fields,
respectively, while IRM acquisition from a thermally demagnetized state yields
intermediate results (Fig. 8c). The last example is based on a Preisach function
featuring a vertical ridge along Hc = 0, which is typical of MD magnetite particles
(section “Multistate Systems: The PSD FORC Signature”). The differences between
coercivity distributions are qualitatively similar to those of the PSD example, but
more pronounced (Fig. 8d).

In all four examples of Fig. 8, which are representative for the variety of Preisach
functions encountered in geologic materials, the intrinsic coercivity distribution
f (Hc), defined as the integral of p(Hc, Hu) over Hu, is best approximated by the
coercivity distribution obtained from the AF demagnetization of ARM. Therefore,
this type of magnetization curve is the most insensitive toward the Hu dependence of
the Preisach function. This explains, at least in part, why coercivity analysis results
obtained from the AF demagnetization of ARM are more consistent than those based
on IRM curves [84].

3 The FORC Protocol

The FORC measurement protocol is one of the possible protocols that can be used
to reconstruct the Preisach function. Its success in comparison to earlier protocols
based on magnetic remanence measurements [11] is due to the rapidity of in-field
measurements obtained with automated vibrating sample magnetometers (VSM).
Preisach maps based on remanence measurements maintain certain advantages
over FORC diagrams when stable remanence carriers need to be characterized
in geologic materials that contain large amounts of other magnetization sources
[18]. Standard FORC measurements in the geoscience community are based on the
protocol introduced by Pike et al. [15]. Modifications of this protocol have been
recently proposed to reduce the total measurement time [89] and to discriminate,
at least partially, reversible and irreversible magnetization processes that contribute
to the FORC function derived from the standard protocol [45]. These modifications
can be easily understood using the knowledge that underlies the definition of the
standard protocol, which is the main subject of the following discussion.

Despite the high degree of standardization of the FORC protocol, planning,
execution, and processing of FORC measurements are far from being a trivial
task, given the extreme magnetic variety of geologic materials and their low
magnetization intensity. The resolution of minute magnetization changes over small
field steps and the field control accuracy required by FORC measurements are
extremely demanding even for most modern VSMs designed with this applications
in mind, such as the 8600 VSM series from Lake Shore Cryotronics. Special data
processing algorithms designed to provide optimal tradeoff between the opposed
needs of field resolution and noise suppression [1, 90] add more complexity. All
these factors need to be carefully considered, in order to avoid artifacts or results that
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lack the required field coverage, resolution, and signal-to-noise ratio. Knowledge
of the FORC theory, the expected sample properties, instrumental limitations, and
processing principles is therefore essential for a successful implementation of this
powerful magnetic characterization technique. The state of the art of this knowledge
is discussed in the following sections.

Definitions

As discussed in section “The Classical Preisach Model”, hysteresis processes can
be represented by elemental hysteresis elements, called hysterons, with a two-
dimensional distribution of switching fields along the ascending and descending
branches, called Preisach function. The Preisach function describes mathematically
all irreversible magnetization changes occurring during sequences of zero- and first-
order field sweeps— and thus various types of magnetizations and magnetization
curves used for the characterization of magnetic minerals at constant temperature.
The inverse task consists in reconstructing the Preisach function from a set of
ascending and descending magnetization curves measured at constant temperature.
These measurements must produce irreversible magnetization changes at any point
over the domain of the Preisach function or over a selected region, such as
the memory rectangle. Everett [91] demonstrated that such measurements can be
represented as a sum of elemental sequences, consisting of a descending sweep to a
given field Hb, followed by an ascending sweep to a field Ha ≥ Hb. The elemental
sequence sets all hysterons comprised within the triangular region given by Ha ≤ HA
and Hb ≥ HB to positive saturation (dashed triangle in Fig. 9a), regardless of
previous states. The total contribution of these hysterons to the Preisach function
p is the Everett function

ξ(Ha,Hb) =
∫ Ha

Hb

∫ Ha

Hb

p(HA,HB) dHAdHB, (4)

defined as the integral of p over the above defined triangle. Changing one of the
boundaries of the Everett function by a slight increase of Ha or Hb will affect the
magnetic state of hysterons with HA = Ha or HB = Hb, respectively, so that the
derivative of ξ with respect to the changed limit is proportional to the contribution
of hysterons with the corresponding switching field. The two switching fields of a
hysteron are thus simultaneously defined by a small change of Ha and of Hb (hatched
square in Fig. 9b). Accordingly, the Preisach function is obtained from the mixed
derivative

p(HA,HB) = ∂2ξ

∂Ha∂Hb

∣∣∣∣
Ha=HA,Hb=HB

(5)

of the Everett function with respect to its boundaries.
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Fig. 9 The Preisach model of the Everett and the FORC functions. (a) Representation of the
hysteron states obtained by sweeping the applied field to the reversal field Hb and then to
Ha > Hb, which yield the magnetization M(Hb, Ha) of the curve starting at Hb. Positive and
negative saturation regions are labeled with “+” and “−,” respectively; in parenthesis is the positive
saturation of the initial state of FORC measurements. The Everett function ξ is the magnetization
corresponding to the integral of the Preisach function over the area enclosed by the dashed triangle.
The derivative of M(Hb, Ha) with respect to Hb is equivalent to the difference between the curves
starting at Hb and Hb − δH, respectively. This difference is produced by the change of hysteron
states from positive to negative saturation over the hatched area. (b) The mixed derivative of
M(Hb, Ha) is determined by the decrease of the hatched area in (a) as Ha is increased to Ha + δH.
This change corresponds to the magnetization of hysterons with Preisach coordinates located
within the hatched square and is proportional the mixed derivative of ξ

The rather abstract pathway to the reconstruction of the Preisach function through
the Everett function is best understood by turning to a practical implementation
based on the FORC protocol first introduced by Hejda and Zelinka in 1990 [14].
In its most elemental form, the FORC protocol for generating a single value of the
Everett function consists of three steps:

(1) Bring the specimen to positive saturation by applying a positive saturating field
Hs.

(2) Perform a negative field sweep from Hs to a so-called reversal field Hr (which
corresponds to Hb in the Everett formalism).

(3) Perform a positive field sweep from Hr to a field H ≥ Hr (which corresponds to
Ha in the Everett formalism) in which the specimen magnetization is measured.

The initial saturation step is required to set all hysterons, and thus the whole spec-
imen, into a well-defined, reproducible initial state, in this case positive saturation.
Other resetting options are possible, such as AF demagnetization; however, they are
more time-consuming. The measured magnetization, M(Hr, H), is proportional to
the Everett function. Negatively saturated hysterons with switching fields HA = H
and HB = Hr are switched to positive saturation if the boundaries of the Everett
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function are changed by increasing H = Ha and decreasing Hr = Hb, respectively.
Therefore, the reconstructed Preisach function

ρ (Hr,H) = −1

2

∂2M

∂Hr ∂H
(6)

is proportional the negative mixed derivative of M, with the factor ½ accounting for
the fact that the magnetic state changes by 2 (from γ = −1 to γ = +1), instead
of 1. Equation (6) is the definition of the FORC function [19]. The meaning of
this definition can be simply understood by considering the FORC measurement
of a specimen containing a single hysteron with switching fields HA and HB. All
measurements obtained with a reversal field larger than HB will yield the same
positive saturation value and do not contribute to ρ, since the mixed derivative
of a constant is zero. All measurements obtained with a reversal field smaller
than HB coincide with the lower branch of the hysteron, which is a step function
changing from negative to positive saturation at HA. The mixed derivative is still
zero, because there is no dependency of M on Hr. The only two curves yielding a
non-zero contribution to ρ are those starting immediately before and after Hr = HB,
respectively. The difference between these two curves, and thus the derivative of
M with respect to Hr, is a step function, and differentiation of this function with
respect to H yields a Dirac impulse centered on HA. The resulting FORC function,
ρ = δ(HA, HB), is zero everywhere, except for the Preisach coordinates associated
with the single hysteron being measured.

The FORC function is usually plotted in the transformed coordinate system given
by Hc = (H − Hr)/2 and Hu = (H + Hr)/2, which represent the coercivity and bias
field of individual hysterons, respectively (section “The Classical Preisach Model”).
Despite being formally identical to the Preisach function, reconstructions obtained
with the FORC protocol, or any other sequence of real measurements, are affected
by the limitation of the scalar Preisach model discussed in section “The Classical
Preisach Model”, namely, that magnetization-dependent changes of the Preisach
function cannot be taken into account. Examples of this limitation include the
dependence of reversible magnetic moment rotation on the state of Stoner-Wohlfarth
particles [7] and the effects of interaction fields in dense particle aggregates [23, 24].
Therefore, both the Everett and the FORC function might depend on the measured
magnetization and its past history, instead of being invariant functions of Hr and
H. This lack of invariance allows the asymmetry of the FORC protocol [14] to be
transmitted to ρ, so that ρ(Hc, Hu) �= ρ(Hc, −Hu). Practical consequences depend on
the type of magnetic materials being investigated, with most evident asymmetries
being associated with systems affected by strong negative interactions, such as in
perpendicular recording media [92]. FORC functions of natural magnetic mineral
assemblages are far more symmetric, due to the random cancellation of opposite
effects in highly disordered magnetic systems: in this case, most evident residual
asymmetries are observed with SD particles [16, 93, 94].

Stoleriu and Stancu [95] proposed an improved reconstruction of the Preisach
function based on FORC measurements performed with the above-described proto-
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col in conjunction with the complementary protocol based on descending FORCs
(i.e., first-order curves starting from the ascending branch of the major loop). The
sum of the corresponding FORC functions would yield a symmetric distribution
that provides a better description of magnetic hysteresis. In the context of geologic
material characterization, the FORC function is used as a diagnostic tool, for
instance, to determine the domain state of magnetic particles, rather than for
hysteresis reconstruction. Features associated with the FORC asymmetry, such as
the negative amplitudes caused by reversible magnetic moment rotation in SD
particles [93, 94], would be partially or totally removed by the symmetrization
process, thus eliminating important diagnostic features.

Selected Properties of the FORC Function

Some useful relations exist between the FORC function and bulk magnetic param-
eters or magnetization curves, which facilitate the comparison of FORC measure-
ments with simpler, rapidly measured, and widely used magnetic parameters. The
theoretical background of these relations is derived in this section, with specific
examples discussed in Sect. 4.

The first relation involves the irreversible component of the major hysteresis
loop. For the descending branch, Mirr is defined by the initial part of the measured
curves through

dMirr(Hr) = M(Hr,Hr) − M(Hr − dH,Hr) , (7)

where dMirr is the irreversible magnetization change corresponding to the infinitesi-
mal loop obtained through the Hr → Hr − dH → Hr field sweep (Fig. 10a). It can be
easily demonstrated that Eq. (7) is equivalent to the integration, in Preisach space,
of the FORC function over a horizontal stripe with Preisach coordinates HA > Hr
and Hr −dH < HB < Hr, so that

dMirr

dHr
= 2

∫ ∞

Hr

ρ(HA,Hr)dHA (8)

is the derivative of the irreversible component of the descending branch of the major
hysteresis loop. In analogy with the definition of coercivity distributions from other
magnetization curves, firr(H) = ½ dMirr/dH is the coercivity distribution associated
with irreversible magnetization processes occurring during the measurement of the
major hysteresis loop (Fig. 10b). Unlike the commonly used coercivity distributions
discussed in section “Coercivity Distributions”, firr is defined for positive and
negative fields, as is the hysteresis loop. A single hysteron with no bias field
contributes to firr with a Dirac impulse at H = −Hc. Because Hc > 0 and since
other coercivity distributions are defined for positive fields, a better definition is
given by firr(H) = −½ dMirr(−H)/dH, which is formally equivalent to the coercivity
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Fig. 10 Relevant FORC elements. (a) Measurement space with major hysteresis loop. Mrs—
saturation remanence. Msi—saturation initial curve (the FORC starting at Hr = 0). E�

ts —energy
dissipated by transient irreversible processes in positive fields. �Mirr—irreversible magnetization
change along the descending branch of the major hysteresis loop, defined by two FORCs starting
at Hr and Hr −�H, respectively. �Mrev—reversible magnetization change associated with �Mirr.
�Mdcd—irreversible change of the remanent magnetization associated with �Mirr. �Mcr—
contribution to the central ridge magnetization from processes with switching field −Hr, associated
with a sudden change of the curve slope. (b) FORC space with associated coercivity distributions.
Diagonal gray lines: traces of measured curves. Dashed black lines: boundary between the memory
region (right) and the transient regions (above and below). Red line: central ridge along Hu = 0.
The curve plotted on the left side of the FORC space is the coercivity distribution firr of irreversible
hysteresis (Mirr), obtained by integrating the FORC function along the diagonal traces (gray) of the
FORC space. The curves plotted above the FORC space (solid lines) are the coercivity distribution
fdcd of the DC demagnetization curve (Mdcd), obtained by integrating the FORC function along
the diagonal traces within the memory region, and the central ridge coercivity distribution fcr
corresponding to FORC contributions along the central ridge. firr(−Hr) (dashed line) is shown
for comparison

distribution derived from the ascending branch of the major hysteresis loop [96]
(Fig. 10b).

The integral of firr coincides, by definition, with the integral Mforc of the FORC
function over the whole FORC space and with the half sum of all irreversible
magnetization changes occurring along the major hysteresis loop. In the absence of
reversible magnetization processes, Mforc is identical to the saturation magnetization
Ms. Reversible magnetization processes reduce Mforc to a value between zero,
when the hysteresis loop is fully closed, and Ms, when Mrs = Ms, where Mrs is
the saturation remanent magnetization. FORC functions that are either symmetric
about the Hc axis or fully contained within the memory region are characterized
by Mforc = Mrs. Differences between Mforc and Mrs thus depend on asymmetric
contributions of the FORC function outside the memory region. For instance,
assemblages of Stoner-Wohlfarth particles are characterized Mforc < Mrs, because
of the negative amplitude of the FORC function below the Hu = −Hc diagonal [93].
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The reconstruction of Mirr via Eq. (8) enables the determination of the reversible
component Mrev = M+ − Mirr of the descending branch of the major hysteresis
loop. This component can be added to the FORC function in the form of a ridge
along Hr = H in Preisach space or Hc = 0 in FORC space, so that Mforc = Ms in all
cases [20]. In practice, this operation is rarely performed, because it causes severe
numerical processing problems.

Another interesting relation exists between the FORC function and DC demag-
netization (DCD) curves. A DCD curve (section “DC Demagnetization Curves”) is
based on irreversible changes of the remanent magnetization obtained by applying
increasingly large negative fields. The DCD measurement protocol is thus a subset
of the FORC protocol based on the remanence measurement M(Hr, 0) contained in
each curve. By analogy with Mirr, the DCD curve is defined through

dMdcd(Hr) = M(Hr, 0) − M(Hr − dH, 0) , (9)

for Hr ≤ 0, where dMdcd is the counterpart of dMirr for the remanent
magnetization (Fig. 10). The associated coercivity distribution is defined by
fdcd(H) = −½ dMdcd(−H)/dH. In terms of classical Preisach theory, fdcd(Hr)
coincides with the integral of ρ(Hr, HA) over HA ≥ 0. Only the memory region
of the Preisach space is sampled by fdcd (Fig. 10b), and the integral of fdcd coincides
with the integral of the FORC function over the memory region, which is in turn
equal to Mrs. Finally, it should be noted that Eqs. (8) and (9) are identical at Hr = 0,
which means that firr(0) = fdcd(0).

The transient irreversible magnetization Mts = Mforc − Mrs coincides, by
definition, with the integral of the Preisach function over the transient regions of
Preisach space, that is, the two triangular regions surrounding the memory region
[97] (Fig. 10b). A simple estimate of Mts that does not require the measurement
of a whole set of FORCs is obtained by measuring the so-called saturation initial
curve Msi [97], which is the FORC starting at Hr = 0 (Fig. 10a). If the Preisach
function is symmetric with respect to Hu = 0, the total energy dissipated by transient
irreversible processes [98]

E�
ts = 2μ0

∫ ∞

0

(
M+−Msi

)
dH (10)

is a proxy of Mts/Mforc, after normalizing E�
ts by the energy dissipated by the

whole hysteresis loop (i.e., the integral of M+ − M−). Certain systems, such as
non-interacting or weakly interacting SD particles, and slightly larger particles
hosting a single magnetic vortex, are characterized by Ets = Mts = 0, which
means that M+ and M− are completely reversible in positive and negative fields,
respectively. MD particles, on the other hand, carry little remanence, since most
of the irreversible magnetization processes (e.g., domain wall pinning/unpinning)
occur in the transient region of the Preisach space, close to Hc = 0 [98].

Systems characterized by Mts = 0 might possess an additional property captured
by FORC measurements, which is the magnetic memory of field reversals. In
this case, irreversible magnetization changes that have been triggered at Hr after
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sweeping from positive saturation are reverted when the opposite field H = −Hr
is reached during a FORC measurement. This is the typical case of uniaxial SD
particles [7]: all particles with switching field Hsw < −Hr, which have been switched
to negative saturation before starting a FORC at Hr, are switched back to positive
saturation while measuring in H ≤ −Hr, but not beyond this limit. This produces a
sudden decrease of the slope of M(Hr, H) at H = −Hr (Fig. 10a), which contributes
to the FORC function in the form of a sharp ridge along Hu = 0 called the central
ridge [93, 94].

FORC Measurements

The FORC Protocol

The practical implementation of the FORC protocol described in section “Selected
Properties of the FORC Function” is built on the minimal set of field sweeps
required to measure a FORC, with additional steps dealing with calibration and
measurement timing issues. All protocols currently used for the characterization
of geologic samples are derived from Pike et al. [15] and are designed to cover a
predefined rectangular region of the FORC space given by Hmin

c ≤ Hc ≤ Hmax
c

and Hmin
u ≤ Hu ≤ Hmax

u , whereby Hmin
c = 0 is always used in practice and

assumed in the following. In Preisach space, each FORC is represented by a
horizontal line beginning at HA = Hr and ending at HA = Hmax, where Hmax =
min

(
2Hmax

u − Hr, 2Hmax
c + Hr

)
is chosen so, that Hc ≤ Hmax

c and Hu ≤ Hmax
u .

Reversal fields range from Hmin
u − Hmax

c to Hmax
u in regular steps of δH, and

measurements of each FORC are performed with the same regular steps, so that the
Preisach space is sampled by a square grid of points with resolution δH. For this to
occur, it is necessary that the FORC space limits are expressed as multiples of δH. In
FORC space, each curve is represented by a diagonal line, due to the rotation of the
coordinate system (Fig. 11b). With this definition of the FORC space, measurements
are performed with the following sequence:

(1) Apply a saturation field Hsat during a time tsat.
(2) Sweep the applied field from Hsat to a calibration field Hcal, wait for a time tcal,

and perform a calibration measurement Mcal = M(Hcal).
(3) Sweep the applied field from Hcal to the first reversal field Hr, 1 and wait for a

time tr.
(4) Measure the magnetization at regular steps δH while the field is slowly

increased from Hr to the maximum field Hmax(Hr, 1), with each measurement
taking a time tm.

(5) Repeat steps (1–4) for the second reversal field value Hr, 2 = Hr, 1 − δH and so
on, until Hmin

r is reached.

Non-measuring field sweeps are usually performed at the maximum rate
α0 = dH/dt enabled by the magnetometer, to save time. Measuring field sweeps
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Fig. 11 Relation between hysteresis (a) and FORC space (b). Each curve in (a) contains
measurement points that plot along an ascending diagonal in (b), and all curves together define
a trapezoidal measurement space. The maximum extension of the FORC function is a triangular
region determined by the field Hs at which the major loop becomes completely closed (red triangle
in (b)). Hsat is the saturation field used in the FORC protocol. Conventional FORC protocols ensure
that the rectangular area defined by 0 ≤ Hc ≤ Hmax

c and Hmin
u ≤ Hu ≤ Hmax

u (shaded rectangle)
is covered by measurements. Modern FORC processing tools enable to plot the FORC function
over the whole measurement range (upright rectangle). In this case, the choice of the FORC range
parameters Hmax

c , Hmin
u , and Hmax

u depends essentially on Hs and the dominant domain state of
the ferrimagnetic minerals being measured

are determined by the field step and by the averaging time tm of measurements in
two different modes. In the continuous mode, measurements are taken one after
the other, at intervals of δH, while the field is continuously swept at a constant
rate αm = δH. In the discrete or point-by-point mode, the applied field is set to
the nominal value established by the FORC protocol and allowed to stabilize for a
time th, before a measurement is taken. The effective field sweeping rate is in this
case given by αm = δH/(t0 + th + tm), where t0 is the time required to increase the
applied field by δH. The point-by-point measuring mode is more accurate and less
noisy because the field is stable, but more time-consuming.

Measurements taken at the calibration field are not directly necessary for the
calculation of the FORC function; they are used to correct for a drift that might
accumulate during the long time required to measure a typical set of FORCs (several
hours to >1 day). The calibration field can be any value between the maximum
field Hmax

u + Hmax
c applied during FORC measurements and Hsat. In practice, it is

chosen to lie just above Hmax
u +Hmax

c . Of all pauses defined by the FORC protocol,
the only relevant one for cases where the hysteresis is time-dependent is tr, the
time spent at the reversal field. Its effect on the FORC function is discussed later
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in section “Thermally Activated SD Particles”. The pause at the calibration field is
used to enable full-field stabilization before a calibration measurement is taken and
depends essentially on the magnitude of Hsat; 0.5–1 s are usually sufficient for this
purpose. The pause at saturation should be kept small, since excessive time spent
in a large field might activate high-coercivity viscous magnetizations, whose decay
during measurements will have a negative impact on the calculation of the FORC
function.

Choosing the FORC Protocol Parameters

The choice of adequate FORC space limits and measurement resolution is essen-
tial for obtaining useful results. This choice should be guided by preliminary
measurements, which, at a minimum, include a hysteresis loop, possibly a major
one, and by considerations about the type of magnetic particles that should be
investigated. Ideally, the FORC space should encompass the field range of all
irreversible processes, with measurements completely filling the area enclosed by
the major loop. In this case, the field Hs at which the major loop becomes completely
closed (not to be confused with the saturation field Hsat of the FORC protocol) sets
Hmax

c and Hmax
u , depending on the expected shape of the FORC function. FORC

functions of natural magnetic particles can be considered symmetric about the Hc
axis in a first approximation; in this case, full coverage of a symmetric rectangular
domain is obtained with Hmin

u = −Hmax
u − Hmax

c . This choice does not take the
trapezoidal form of the actual measurement space into account and the fact that
the vertical extension of the FORC function decreases when moving to the upper
limit of the Hc range, which means that the lower-right corner of the FORC space
does not contain significant contributions. A more efficient choice of Hmin

u takes
advantage of these features, seeking full coverage of the vertical range only at
Hc = 0. This coverage is obtained by setting Hmin

u = Hmax
c − Hmax

u . Furthermore,
coverage of the FORC function along the Hc axis near Hmax

c imposes Hmin
u < 0.

Taking a safe margin of ∼0.1Hmax
u around the Hc axis, these conditions are satisfied

by setting Hmin
u = − max(Hmax

u ,Hmax
c + 0.1 Hmax

u ). FORC processing software
such as VARIFORC [1] can deal with partially filled FORC spaces by setting the
unmeasured domains to zero. Correct choices of Hmin

u with the abovementioned
criteria can save up to 50% measurement time by cutting the number of unnecessary
identical FORCs that start in the negative saturation range of the major hysteresis
loop (Fig. 11).

With these considerations in mind, the number of independent FORC space
parameters reduces to two: Hmax

c and Hmax
u . The choice of Hmax

c and Hmax
u is

dictated by the shape of the FORC function. In practice, there are three main shape
categories to consider (Fig. 8), which are dictated by the dominant domain state of
magnetic particles:

(1) Non-interacting and weakly interacting SD: the FORC function is spread
horizontally, with oval- or teardrop-shaped contours (Fig. 8a, b). Typical
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examples include sediments, soils, and rapidly cooled rocks [99–101]. In this
case, Hmax

c ≈ Hs and Hmax
u ≈ 0.5Hmax

c provide an adequate coverage.
(2) Strongly interacting SD and PSD: the FORC function is characterized either

by oval contours [17] for the strongly interacting SD endmember, by triangular
contours of the type shown in Fig. 8c for the idealized PSD endmember [16,
102–104], or by a blending of the two endmembers [16, 105, 106]. Typical
examples include sediments dominated by detrital or aeolian inputs and a wide
range of rocks. In these cases, full coverage of the FORC function is obtained
with Hmax

c ≈ Hmax
b ≈ Hs.

(3) MD: the FORC function is characterized by a dominant vertical spread along
Hc ≈ 0 [18, 107, 108] (Fig. 8d). Typical examples include titanomagnetite-
bearing slowly cooled rocks. Full coverage of this signature is obtained with
Hmax

b ≈ Hs and Hmax
c ≈ 2Hc, where Hc is the coercive field of the major loop.

In all cases, Hs is an essential parameter for determining the correct choice of
the FORC space. Practically all geologic samples contain high-coercivity minerals,
essentially hematite (α-Fe2O3) with various degrees of Ti substitution, goethite (α-
FeOOH), pyrrhotite (Fe1 − xS), or epsilon-maghemite (ε-Fe2O3), whose hysteresis
loop does not close within the typical field range covered by electromagnets (1.5–
3 T). Goethite, pyrrhotite, and fine-grained hematite do not saturate even in large
fields generated by superconducting magnets [109, 110]. Therefore, the choice of
Hs is based on practical considerations, rather than on its original definition. The
small field step size required for a correct resolution of the FORC function in the
low-coercivity range, which is mostly of the order 0.5–2 mT [1, 94], limits the Hc
range of measurements obtainable in a reasonable amount of time to 0.1–0.2 T,
unless a much coarser resolution is used to investigate only high-coercivity minerals
at large fields. Few studies focusing on the pure mineral endmembers suggest that
fine-grained hematite and goethite tend to have a non-interacting SD signature
characterized by a central ridge and few, if any, contributions in a narrow region
around it [111–113], sometimes accompanied by a vertical ridge along Hc = 0,
which is a typical thermal relaxation feature of particle sizes close to the lower
SD stability limit [114]. Large hematite-ilmenite crystals are characterized by a
narrower coercivity distribution peaking around 0.2–0.3 T [115], which exceeds
the typical Hc range of low-coercivity minerals such as magnetite or greigite.
Due to their weak spontaneous magnetization, high-coercivity minerals are often
overshadowed by low-coercivity ones. Furthermore, FORC measurements tend to
be noisier at higher fields. In these situations, more effective methods based on the
reconstruction of the Preisach function with remanent magnetization measurements
should be used instead [18].

Once the FORC range has been chosen, the saturation field Hsat can be fixed
to any value larger than the maximum applied field Hmax

c + Hmax
u and does not

need to coincide with the maximum available field. The best choice of Hsat is
one that exceeds Hmax

c + Hmax
u by the estimated magnitude of thermal fluctuation

fields (section “Thermally Activated SD Particles”), so that the repeated exposure
to positive fields close to Hmax

c +Hmax
u during FORC measurements does not mag-
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netize viscous particles beyond the initial state set by Hsat. Excessively large Hsat
values lead to the progressive magnetization of high-coercivity viscous components,
whose decay contaminates FORC measurements. In most cases, a value of Hsat that
exceeds Hmax

c +Hmax
u by 50% is a safe choice that guarantees that all FORCs start

from the same initial state while avoiding high-coercivity viscous contributions.
Some of the pauses defined by the FORC protocol are useful for controlling

measurement timing, especially in cases where the hysteresis is time-dependent,
while the choice of other pauses is dictated only by technical aspects. The pauses
at saturation (tsat) and before calibration (tcal) do not affect the FORC function.
However, pauses, especially in the case of tsat, must be avoided since they tend
to magnetize viscous components and make measurements unnecessarily long.
Therefore, tsat and tcal are best chosen to coincide with the time required to stabilize
the field after a fast ramp. The same reasoning applies to the pause at reversal
field (tr); however, in this case, longer pauses can be chosen to enhance time-
dependent hysteresis phenomena [114, 116, 117]. Values of tr below the minimum
time required for the full stabilization of the applied field have a detrimental effect
on the quality of FORC measurements (see section “Field Control, Measurement
Sensitivity, and Resolution”). The field stabilization time depends on the amplitude
of the preceding field sweep and the sought precision; it can be checked on the real-
time field readout of the controlling software, if available. About 1–2 s are required
for FORC measurements up to 0.2 T with the MPC MicroMag 2900/3900 series
VSM/AGM or the Lake Shore 8600 series VSM.

Field Control, Measurement Sensitivity, and Resolution

FORC measurements of geological materials are extremely demanding in terms
of field control, measurement sensitivity, and resolution. Maximum deviations of
the applied field from nominal values should not exceed the small field step size
required to resolve critical FORC features, which is of the order of 0.5–1 mT.
Resistive and superconducting magnets display drastically different performances
in this respect. The field generated by the superconducting magnet of the Quantum
Design MPMS3 SQUID magnetometer is controlled indirectly through the net
current, and differences of up to 6 mT between nominal and effective field can be
produced by flux trapping. These differences are instrument-specific and history-
dependent, so that a posteriori corrections are possible only in the case of hysteresis
loop measurements [118]. This limits the use of superconducting magnets to FORC
measurements of high-coercivity materials that do not need small field steps. The
resistive magnet of a VSM, on the other hand, is controlled by a Hall probe feedback
and can attain, in principle, the same precision of Hall probe measurements. Hall
probes possess a small, temperature-dependent DC offset δHhall, which vertically
offsets the FORC diagram. The Hall probe offset of the new Lake Shore 8600
VSM does not exceed 10 μT over the duration of longest FORC measurements
(~66 h) after initial zeroing and when room temperature variations are limited to
±2 ◦C. Furthermore, the magnetic field in electromagnet-based magnetometers can
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Fig. 12 Field control characteristics of the Lake Shore model 8600 VSM in proximity of the
reversal field. (a) Target field and actual field measured by the built-in Hall sensor during the
measurement of a single FORC with nominal reversal field Br = 68.4 mT. A logarithmic scale is
used to highlight small differences between actual and target fields at Br. Measurement preparation
include a saturation step at Bsat; a calibration measurement at Bcal; a fast, quasi-exponential field
ramp to a field slightly larger than Br; a final approach to Br during the pause time set by the user
(2 s in this example); and measurements while the field is increased in small steps (first four steps
with δB = 0.5 mT in this example). Notice the Br overshoot at ~6.4 s. (b) Detail of (a) showing the
~0.15 mT overshoot during the final approach to Br. (c) Same as (a) for a modified protocol used by
Wagner et al. [119] for an overshoot-free approach to Br. The modification consists in adding two
intermediate steps with target fields Br + 2δB and Br + δB, respectively. (d) Detail of (c) showing
the final approach to Br

be swept at rates of up to 1 T/s, while the field sweep rate of superconducting
magnet-based magnetometers (e.g., SQUID) is usually limited to ~20 mT/s, so that
FORC measurements take much longer in the latter case.

The large inductivity of electromagnets introduces dynamic field control effects
that tend to produce an overshoot whenever the field sweep direction is reversed.
This can be a problem for field reversals at the beginning of each FORC, since
the effective reversal field is lowered by the peak overshoot. Field overshooting
with the Lake Shore 8600 VSM is largely suppressed by the built-in “RampOpti-
mization.Overshoot” field control option: in this case, the field is rapidly ramped
until a certain fraction of the target field is reached and then stabilized (Fig. 12a,
b). The residual overshoot, as recorded by the built-in Hall probe at 100 Hz rate,
is ≤0.2 mT for the typical ±100 mT field range of regular FORC measurements.
Special applications of high-resolution FORC diagrams, such as the determination
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Fig. 13 High-resolution FORC measurements of a ferromanganese crust from the Pacific Ocean,
which is representative for materials with low ferrimagnetic content and a large paramagnetic
background. (a) Drift-corrected measurements obtained with a PMC 3900 VSM (stack of 16
measurement series, δB = 0.5 mT). (b) Same as (a), after subtracting the paramagnetic contri-
bution. Notice the anomalous measurements at the beginning of each curve. Every eighth curve
is shown for clarity. (c) Same as (b), after subtracting the lower branch of the hysteresis envelope
reconstructed from measurements. Notice that the full scale of this plot is one order of magnitude
smaller than that of the original measurements in (a). Anomalous first point measurements,
especially at large negative fields, and measurement noise are clearly visible. (d, e) Same as (b, c),
after replacing the first measurement of each curve with the extrapolated value from second-order
polynomial regression of the next 6 points

of thermal relaxation effects from the Hu offset of the central ridge [119], require
a modified protocol to eliminate any residual overshoot, e.g., by adding 1–2 target
fields Hr + k δH, where k is a positive integer and δH the field step size of FORC
measurements, before the nominal reversal field Hr is reached (Fig. 12c, d).

Field control problems near Hr produce a vertical ridge along Hc = 0 in the
reconstructed FORC function, which might be confused with a magnetic viscosity
signature. The two effects can be distinguished by the fact that the Hu range of the
viscous ridge is limited by the saturation field Hs beyond which the major hysteresis
is completely closed [116], while artifacts persist outside this range (Fig. 13b, c). In
the case of evident artifacts, the first measurement of each FORC is best removed
or replaced with an extrapolated value obtained from a second-order polynomial
fit of the next points (Fig. 13d, e). This option is available with the VARIFORC
processing software [1].
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Another common problem often encountered with geologic samples is the low
concentration of ferrimagnetic minerals in absolute terms, as well as relative to
the induced magnetization of other minerals. The problem is best analyzed by
considering a specimen with saturation magnetic moment ms, saturation remanent
moment mrs, and a magnetic moment mp = χhf H induced by dia-, para-, and
antiferromagnetic minerals, where χhf is the high-field susceptibility in magnetic
moment units. The measurement range required by FORC measurements with
maximum field amplitude Hmax is determined by the maximum magnetic moment
mmax = ms + χhf Hmax. On the other hand, the typical magnetic moment difference
δm that needs to be resolved is smaller than the difference between two consecutive
curves starting at reversal fields close to −Hc, where Hc is the coercive field. In
the example of Fig. 13, which is representative for materials with low ferrimagnetic
content and a strongly paramagnetic matrix, mmax = 5 µAm2, ms = 0.5 µAm2,
δH = 0.5 mT, and δm = 5 nAm2, which is only 0.1% of mmax. For comparison, the
empirical noise floor for this set of measurements is 1.6 nAm2. Since only a small
fraction of δmcontributes to the FORC function, the signal-to-noise ratio (SNR) of
the unsmoothed FORC diagram is generally <1.

Large values of χhf have detrimental effects on the quality of FORC measure-
ments, because small changes of the associated magnetic moment, due, for instance,
to the temperature dependence of χhf or of the instrument response, might reach a
significant fraction of the total moment of ferrimagnetic minerals. For instance, in
the above example, a room temperature variation of only 0.2 ◦C during the time
required to measure a single curve produces a 0.03% change of mmax, that is, 3.3
nAm2, which is of the same order of magnitude of δm. Similarly, a small lateral
displacement of the sample holder from the centered position, due, for instance,
to air flow, produces a change of the output signal, which, in the above example,
is dominated by mmax. Using the quadratic output signal response of a similar
magnetometer [120] and assuming that the specimen is perfectly centered, the
expected maximum magnetic moment change produced by a lateral displacement
of 0.1 mm is of the order 0.04% or 2 nAm2 for the above example.

Drift and Stacking

Long-term stability is essential for obtaining high-quality FORC measurements.
The main factors affecting the measurement stability are of a mechanical and
thermal nature. In the case of VSM measurements, mechanical aspects include
specimen resistance to vibrations and the stability of the measurement position.
Powdered specimens are prone to become loose when vibrated for a long time,
especially if they lack a fine matrix, and should be firmly pressed or glued.
The magnetometer response near the centered measurement position is usually
described by three parabolic functions of the horizontal and vertical specimen
coordinates, respectively [120]. Accurate centering ensures that the effects of small
displacements from the center position, e.g., by air flow or an unstable ground,
are of second order; nevertheless, mechanical disturbances should be minimized.
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Temperature variations affect the magnetic properties of the specimen, especially if
most of the induced magnetization is carried by paramagnetic minerals, and should
be avoided. Direct sun exposure and equilibration of the specimen temperature in
the colder environment of water-cooled resistive magnets can be a major source
of rapid initial drifts, noticeable even during the measurement of a hysteresis loop
[121]. Preliminary measurements, such as hysteresis and DC demagnetization,
which are anyways required to choose suitable FORC protocol parameters (section
“Choosing the FORC Protocol Parameters”), provide enough buffer time for
specimen temperature equilibration.

Calibration measurements performed before each FORC are used for sta-
bility monitoring and for correcting slow drifts. The calibration measurements
mc, i = mc(ti) form a time series with increasing time intervals ti +1 − ti proportional
to the number of measured points in the i-th FORC. A suitable interpolation m̃c(t) of
this sequence (e.g., piecewise linear) is used by FORC processing tools to produce
a drift-corrected version

m̃i,j = m̃c
(
ti,j

)
m̃c(0)

mi,j (11)

of the j-th measurement in the i-th FORC, performed at the time ti, j. The time
stamps of calibration measurements are either stored in the measurement file or
calculated from the FORC protocol. Calibration measurements possess their own
noise, which is added to that of measurements by the drift correction procedure,
unless the calibration measurement averaging time is chosen to be much larger than
that of FORC measurements (section “Choosing the FORC Protocol Parameters”).
Alternatively, a smoothed interpolation of calibration measurements can be used
to suppress measurement noise. An essential prerequisite for the drift correction
to be effective is that temporal changes of mc must be slow and continuous, so
that interpolated values are representative for the real state of the system at any
time. Furthermore, if the origin of drift is thermal, the correction factor in Eq.
(11) should always be very close to 1, because large temperature changes affect
material properties that cannot be corrected for, such as coercivity. Typical long-
term stabilities of the order of 0.2% over one day can be obtained if ambient
temperature variations do not exceed ±2 ◦C (Fig. 14a, b).

Transient disturbances with time constants equal or shorter than the time required
to measure individual curves cannot be corrected (Fig. 14c, d). The correlated error
of the affected curves adds a characteristic diagonal striping to the reconstructed
FORC diagram. Episodic curves affected by this problem can be identified and
eliminated during FORC processing, e.g., with VARIFORC, without quality losses,
as long as the measurement resolution provides a sufficient degree of redundancy
among consecutive curves. Larger measurement averaging times will increase the
time required to measure individual curves, and thus the time interval between
consecutive calibration measurements, reducing the resolution of calibration mea-
surements and the possibility of removing transient disturbances. The resulting
measurement errors are strongly correlated (Fig. 14a), with detrimental effects on
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Fig. 14 FORC measurement errors and drift. (a) Typical error pattern for the PMC 2900 AGM
magnetometer (magnetic moment range: 2 µAm2), estimated using the VARIFORC software. Each
pixel row in the plot represents a single curve, with color-coded errors comprised between ±3
standard deviations. Larger errors are treated as outliers and marked with black pixels. Horizontal
striping denotes time-correlated errors caused by small fluctuations of the mechanical resonance
controlling the response function. Also notice the mean error increase at large field amplitudes. (b)
Calibration measurements for the same set of data. Abrupt variations of calibration measurements,
e.g., around curves 240 and 320, cause larger correlated errors that cannot be completely removed.
(c) Same as (a) for a Lake Shore 8600 VSM magnetometer (magnetic moment range: 3 µAm2, step-
by-step measurements). Contrary to the AGM example, VSM measurement errors are uncorrelated
in time, as long as environmental conditions are stable, e.g., for curves 1–280. The mean error
increases with increasing amplitude of the applied field, even if the field is stabilized before each
measurement. (d) Calibration measurements for the same set of data. The regular trend of curves 1–
280 is due to a magnetization decrease associated with a progressive ambient temperature increase,
until air conditioning was turned on. From that point on, the sawtooth temperature variations
produced by the on-off air conditioning cycle caused abrupt magnetization changes that cannot
be completely compensated by drift correction, introducing detrimental correlated noise
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the quality of FORC results. In these cases, it is better to stack repeated FORC
measurements obtained with a shorter averaging time. Individual measurement files
produced with the same measurement protocol can be merged with VARIFORC to
produce a single FORC set available for further processing [1].

FORC Processing

FORC processing consists in estimating the FORC function defined by Eq. (6) from
discrete measurements using suitable numerical methods. Because of the mixed
derivative definition, measurement errors are strongly enhanced, which, for most
geological materials, means that direct finite difference implementations of Eq. (6)
yield FORC functions that are completely dominated by noise. Useful processing
algorithms must include some methods to reduce noise, which result in smooth-
ing. More noise suppression requires stronger smoothing, which might introduce
significant processing artifacts while removing important details of the FORC
function. Therefore, a balance must be found between the opposite requirements
of noise suppression and detail preservation. To make things more complicated, the
optimal balance between these requirements depends on local features of the FORC
function. Several processing tools with increasing complexity have been developed
since the first implementation by Pike et al. [15], and processing techniques are
still evolving. However, even the most refined solutions cannot compensate for
bad experimental design, such as insufficient measurement resolution and poor
measurement stability. Careful measurement planning, as explained in section
“FORC Measurements”, is thus an essential prerequisite for obtaining reliable
results.

In the following, the main processing techniques and their implementation in
existing software are described.

Preprocessing

Preprocessing steps include checks of the measurement protocol and data integrity,
unit conversion or normalization, drift correction (section “Drift and Stacking”),
identification of bad measurements (outliers, unstable curves, first and last points
of each curve in the case of field control issues) and their removal or substitution
with extrapolated values, and stacking of repeated measurement sequences into a
single dataset. VARIFORC [1] offers advanced preprocessing options, including
diagnostic tools for the identification of specific measurement problems (e.g., field
control issues), measurement error visualization (Fig. 14), and representation of
the preprocessed data after paramagnetic correction (Fig. 13). The inspection of
preprocessed data is essential for eliminating measurement artifacts right away or to
recognize their effects in the finally produced FORC diagram and, where possible,
to improve the measurement protocol.
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Theoretical Principles of FORC Function Estimation

A main distinction can be made between non-local and local estimates of the FORC
function. As suggested by the name, local estimates are based on a local regression
of measurements with a given analytical function, which is then used to calculate the
mixed derivative. The function used for this purpose is a second-order polynomial
[15].

P2(Hr,H) = a1 + a2H + a3Hr + a4H
2 + a5H

2
r + a6HrH (12)

whose mixed derivative is simply given by a6. The FORC function estimate at a
point (Hr, H) = (Hu − Hc, Hu + Hc) of the measurement space is thus given by

ρ̂ (Hr,H) = −a6

2
, (13)

where a6 is the coefficient of Eq. (12) obtained from least-squares regression of a
non-empty region U around (Hr, H), which must contain at least six measurement
points. Besides practical reasons related to computational efficiency, the choice of a
second-order polynomial is motivated by the fact that it coincides with a truncated
Taylor series of the continuous magnetization function ξ (Hr, H) sampled by the
FORC measurements M (section “Definitions”). This means that P2 converges
to ξ for U → 0, yielding an unbiased estimate of the FORC function, only
if ξ is continuously differentiable. There are few exceptions to the continuous
differentiability of ξ that will be discussed later. These exceptions are limited to
one-dimensional subspaces of the measurement domain, so that the convergence of
P2 is almost granted over the entire FORC space. A simple strategy for achieving the
maximum noise suppression with Eqs. (12) and (13) consists in choosing the largest
U for which regression residuals r = P2 − M remain randomly distributed around
zero. The maximum size of Udepends on the local properties of ξ , whereby a strong
dependence on Hr or H, for instance, over the steep flanks of the hysteresis loop,
limits U along the corresponding direction. Other model functions can in principle
be used instead of P2; however, they all require more stringent prerequisites for
obtaining unbiased estimates. For instance, a third-order polynomial regression
requires ξ to have continuous second derivatives, a condition that is violated by
simple models for hysteresis, such as the Stoner-Wohlfarth model [7] for identical,
randomly oriented SD particles.

The simplest implementation of the polynomial regression method takes advan-
tage of the regular measurement grid created by the conventional protocol [15]
and identifies U with a (2S + 1) × (2S + 1) array of points around the chosen
measurement point (Fig. 15), where the positive integer S is the smoothing factor.
The calculation of a6 is efficiently performed with a matrix inversion method.
Because the measurement grid is rotated by 45◦ with respect to the FORC
coordinates, edges of the FORC space require a different handling, because of the
incompleteness of the rectangular region. Early solutions limited the calculation
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Fig. 15 Typical problems encountered with polynomial regression over different regions in FORC
space. (a) High-resolution (δB ≈ 0.29 mT) FORC measurements of equidimensional magneto-
somes dispersed in kaolin. Three measurement regions with different processing requirements
are highlighted, with expanded plots showing a regression example for each region, based on
a smoothing factor of 5 (only three curves are highlighted for clarity). In region 1, curves are
almost identical, up to a constant offset, and the concave or convex shape is well reproduced
by a second-order polynomial. Residuals (plotted above) coincide with measurement errors. The
mixed derivative of these curves, and therefore the FORC function amplitude, is small, due to their
similarity. In region 2, curves are highly dissimilar and not continuously derivable. Therefore, they
cannot be exactly reproduced by a second-order polynomial, so that residuals contain an additional
misfit contribution. The mixed derivative in this region is large. In region 3, curves are almost
identical, up to a constant offset, as for region 1, but they are characterized by a sigmoidal shape
that cannot be reproduced by a second-order polynomial. Residuals are dominated by the misfit,
but the contribution of this region to the FORC function is small, due to the similar shape of
all curves. (b) FORC diagram obtained from the measurements in (a), with points marking the
three selected regions. Regions 1, 2, and 3 correspond to a low-amplitude background, the central
ridge, and the Bc = −Bu diagonal, respectively. Even if the FORC diagram does not appear to be
dominated by measurement noise or by processing artifacts, essential details of the FORC functions
are concealed. (c) Estimated standard error of the FORC function: the three regions highlighted in
(a) are clearly recognizable. Striping along ascending diagonals is due to correlated measurement
errors (each stripe corresponds to a single curve)

of ρ̂ to points where U is completely filled by measurements or added fictive
measurements in place of the missing points, effectively extrapolating the FORC
function [17, 18, 94, 122].

The field resolution of the estimated FORC function, defined as the size of
the smallest resolvable detail, is given by δH* = δH(S + 0.5), where δH is
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the size of field steps. The use of large smoothing factors for noise suppression
decreases resolution, and this must be compensated by a corresponding decrease of
δH, which, however, is limited by the quadratic measurement time increase. Early
measurements used ~100 curves [15, 16], which cover the range of typical FORC
measurements of geologic materials in steps of ~3 mT. The typical smoothing factor
required for processing weak sedimentary samples is 5, so that this combination
of measuring and processing parameters yields δH* = 16.5 mT. For comparison,
the field resolution required to capture essential sedimentary signatures should not
exceed ~5 mT, so that the minimum number of FORCs needs to be increased to
~330. The corresponding measurement time increases from a couple of hours to
one day.

Non-local methods for estimating the FORC function are based on Fourier theory
[123]. In Fourier space, the FORC function is obtained from the well-known identity
for the Fourier transform of the derivatives, that is

ρ∗(kr, k) = (2πi)2krk ξ
∗(kr, k) (14)

where kr and k are the wavenumbers associated with Hr and H, respectively, i =√−1, and

f ∗(kx, ky) =
∫∫

�

f (x, y) e−2πi(kxx+kyy)dxdy (15)

is the Fourier transform of a two-dimensional function defined over �. If the
measurements are distributed on a squared grid, ξ∗ is replaced by the fast Fourier
transform (FFT) of the measurement values, and the resulting estimate ρ̂∗ of the
FORC function in Fourier space is transformed back to the measurement space via
inverse Fourier transform, so that

ρ̂(Hr,H) =
∫ +∞

−∞

∫ +∞

−∞
krkM

∗(kr, k)e
−2πi(krHr+kH)dkr dk. (16)

This method is affected by the same noise enhancement problem as the local
regression algorithm. The Fourier transform of noisy measurements contains high-
frequency contributions that are amplified by the multiplication of M* with krk.
Therefore, M* is multiplied by a low-pass filter W* with W*(0, 0) = 1 and
W*(kr, k) → 0 as kr, k → ∞. In the time domain, this operation is equivalent to
the convolution ρ̂ = ρ ∗ W of ρ with the weight function W corresponding to the
inverse Fourier transform of the filter. A simple implementation is obtained with the
Gaussian filter W ∗ = exp[− 1

2 π2S2(k2
r + k2)], which defines the weight function

W(Hr,H) = 1

π S
exp

[
−2

H 2
r + H 2

S2

]
(17)



Magnetic Characterization of Geologic Materials with First-Order Reversal Curves 497

in measurement space. The filter parameter S roughly corresponds to the smoothing
factor used for polynomial regression [123] and can take any positive value.
The Fourier method is extremely fast because convolution is a simple product in
Fourier space. Its main limitation is the generation of numerical artifacts, known
as Gibbs phenomenon, at the boundary of the measurement space, especially
along Hc = 0. The Gibbs phenomenon is caused by the truncation of the Everett
function at Hr = H, which requires infinitely large wavenumbers to be correctly
reproduced. The suppression of large wavenumbers by low-pass filtering transforms
the sharp boundary of the FORC space along Hc = 0 into an oscillating function.
Nevertheless, the rapidity of the Fourier method can be exploited for test purposes
when a rapid evaluation of FORC measurements is needed.

A formal equivalency between Fourier and polynomial regression methods
is provided by the so-called Savitzky-Golay filter [124], which describes the
regression of a grid of regularly spaced data in terms of convolution. In the case of
a (2S + 1) × (2S + 1) grid to be fitted with P2, the vector of regression coefficients
is given by a = B · M, where M is the vector of measurements, obtained by joining
all rows of the grid, and B = (XT X)−1 XT, with X being a matrix where each
row vector of the form (1,Hr,H

2
r ,H,H 2,HrH) is constructed using the (Hr, H)

coordinates of the corresponding measurement in M. In the case of regularly spaced
measurements, the matrix B is the same for all measurement points and needs to
be calculated only once, obtaining a significant reduction of the total computation
time [125]. This approach is very sensitive to violations of the assumption that
measurements are placed exactly on a regular grid, which is practically always
the case, so that regridding with a suitable interpolation method is required before
calculating the FORC function.

Improved Regression Methods

As discussed in section “Theoretical Principles of FORC Function Estimation”, the
assumption of a regular measurement grid requires some form of extrapolation to
obtain the FORC function near Hc = 0 (Fig. 16a). This region of the FORC space,
which corresponds to the initial part of the measured curves, plays an important
role in the characterization of geologic materials while being, at the same time,
affected by the largest deviations from an ideal grid. This is particularly true for
the first point in each curve, due to technical challenges of a precise control of the
reversal field. Another problem with rectangular arrays of points used for regression
is that they do not provide a continuous representation of the FORC function,
because the regression results change abruptly when moving from one center point
to the next. These disadvantages are overcome by weighting schemes that provide
a continuous transition between selected measurements with respect to any point of
the measurement space.

A universal weighting scheme for the solution of general problems in one and
more dimensions, called Locally Weighted Regression and Smoothing Scatterplots
(LOESS), was developed by Cleveland and Devlin [126, 127] and is implemented
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Fig. 16 Principles of FORC processing. The (Hc, Hu) FORC space is indicated in red and the
(Hr, H) measurement space in blue. Measurements performed with a constant field step δH are
indicated by dots. (a) Standard processing (e.g., FORCIT) is based on polynomial regression of a
(2S + 1) × (2S + 1) array of measurement points (blue squares, corresponding to S = 1). Missing
points at the left edge of the FORC space are replaced by fictive measurements. LOESS regression
(e.g., FORCinel) is based on a fixed number of measurements closest to a reference point, weighted
by a radial function of the distance to this point (circles, with shading proportional to the weight
factors). The number of measurements for a given smoothing factor s loosely corresponds to
the (2S + 1)2 measurements considered by standard processing. The LOESS algorithm can
deal with incomplete arrays (left), missing data, and irregularly spaced measurements for any
point of the FORC space. Both methods produce the same smoothing over all directions. (b)
VARIFORC processing is based on the weighted regression of measurements contained in a
(2sc + 1) × (2su + 1) rectangle centered on a reference point (upper example with sc = 2 and
sb = 1, with shading proportional to the weight factors). Like the LOESS algorithm, it can deal
with incomplete arrays, missing data, and irregularly spaced measurements for any point of the
FORC space. Additional limitations of the regression region along the measurement coordinates
are obtained by intersecting the regression rectangle (red) with a (2sr + 1) × (2s + 1) rectangle
with sides parallel to the Hr and H axes (blue). In this manner, VARIFORC can produce anisotropic
smoothing along the four principal directions given by the measurement and the FORC coordinates

in the FORCinel software [128]. The LOESS algorithm requires the definition of a
weight function W(r) of normalized distance r ≥ 0, which is positive, nonincreasing,
and zero if r ≥ 1, and a fixed number n of measurements that is considered for
regression. The tricube function W = (1 − r3)3 is often used for this purpose.
Regression of any set of regularly or irregularly spaced measurements yi = y(xi)
with respect to a reference point x0 begins with the selection of the nmeasurement
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points that are closest to x0, with rmax being the maximum distance of these
points to x0 (Fig. 16a). Contrary to the rectangular selection scheme discussed in
section “Theoretical Principles of FORC Function Estimation”, rmax depends on
the distribution of points around x0, enabling the algorithm to overcome gaps and
handle boundary regions.

Regression of the n selected measurements yi, 0 = y(xi, 0) with respect to x0,
using a model function f (x, p) controlled by the parameter vector p, is performed by
minimizing the sum of squared residuals

R =
n∑

i=1

W

( |xi,0 − x0|
rmax

) [
yi,0 − f

(
xi,0,p

)]2
. (18)

In order to make the smoothing effectivity of the LOESS algorithm comparable
with that of a squared array of (2S + 1) × (2S + 1) points, the number of selected
measurements can be set to (2S + 1)2. The FORCinel algorithm uses a slightly
different choice given by [128].

n = 1 + rnd

[
ntot

nobs
(2s + 1)2

]
, (19)

where rnd(x) is the rounding of x to the closest integer; ntot is the total number of grid
points within rmax from the selected point, including non-existing ones (e.g., those
with H < Hr); and nobs is the total number of observables, i.e., the measurements
lying within rmax from the selected point that are effectively used for regression,
which, for instance, might not include outliers.

The VARIFORC software [1] implements the LOESS algorithm differently,
maintaining a predefined geometry for the data selection region U. This region is
limited by four smoothing factors sr, s, sc, and su along four principal directions
defined by the measurement coordinates Hr and H and by the FORC coordinates
Hc and Hu, respectively. The default choice sr = s = ∞ produces a homogeneous
smoothing using measurements comprised within an upright rectangle of size
2(sc + 1) δH × 2(su + 1) δH, centered on the regression point. Additional limits
along the measurement coordinates are introduced with the other two smoothing
factors, sr and s, by intersecting, in FORC space, the original upright rectangle with
another rectangle of size

√
8 (sr + 1)δH ×√

8 (s + 1)δH , counterclockwise rotated
by 45◦ and centered on the regression point (Fig. 16b). These additional limits are
designed to deal with critical regions of the measurement space where the measured
magnetization is a strong function of Hr or H (e.g., case 3 in Fig. 15). Next, a one-
dimensional weight function is defined as

w (x, d) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, |x| ≤ d − 2

1 − 1
2 (|x| − d + 2)2, d − 2 < |x| ≤ d − 1

1
2 (|x| − d)2, d − 1 < |x|d
0, else

(20)
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with d being the half-size of the limiting rectangle in one of the four directions
defined above, normalized by δH. This function produces a continuous transition
from 1 to 0 within 2δH from the rectangle limit, using piecewise second-order
polynomials. The total weight function is then obtained from the product of the
one-dimensional weight functions of Eq. (20) along the four principal directions.
This implementation of the LOESS algorithm ensures the best possible utilization
of all measurements within a predefined region U, under the condition of delivering
a continuous derivable FORC function estimate.

Overfitting, Underfitting, and Error Estimates

One of the main problems of FORC processing is the choice of a smooth-
ing factor that guarantees the maximum level of noise suppression while not
introducing smoothing artifacts. As seen in section “Theoretical Principles of
FORC Function Estimation”, second-order polynomial regression is guaranteed to
converge to a continuous derivable FORC function for sufficiently small values of
δH* = δH(S + 0.5). In this case, a small smoothing factor ensures that, for any
point estimate of the FORC function with measurements from the selection area
U(S), regression residuals are completely random, that is, their amplitude and sign
do not show any spatial trend within U. Regression residuals remain random upon
increasing the smoothing factor from S = 1 to a critical value Sopt, but the mean
residual amplitude will generally increase, as regressions of fewer points tend to fit
random patterns produced by measurement errors, until a plateau is reached when
the number of measurements included in U becomes statistically meaningful (Fig.
17). Only over this plateau, residuals coincide with the measurement errors.

If S is increased beyond Sopt, the Taylor approximation of M(Hr, H) begins to fail,
as it is no longer able to reproduce magnetization variations over the whole area
of U. Accordingly, the amplitude of residuals begins to exceed the plateau given
by measurement errors, because of an additional contribution related to the model
misfit �M. The model misfit is spatially correlated, so that residuals reproduce
the spatial pattern of �M, instead of being random. The model misfit tends to
increase quadratically with S, so that a plot of the mean residual amplitude R vs.
Sdefines a sigmoidal line with an inflection point at Sopt (top example in Fig. 17).
FORC function estimates obtained with S < Sopt are said to be overfitted because
measurement errors are partially reproduced by the fit. On the other hand, estimates
obtained with S > Sopt are underfitted, because measurements are not completely
reproduced by the fit. Underfitting introduces a systematic bias of the fitted values,
which might lead to smoothing artifacts (signal removal). Between these two
extremes, an optimal fit is obtained with S ≈ Sopt. If the FORC function contains
features that cannot be resolved with the given field step size of measurements,
underfitting errors begin to grow with increasing S before measurement errors are
significantly suppressed. In this case, R(S) will not possess an inflection point, and
a definition of Sopt for the whole FORC domain is not possible (bottom example in
Fig. 17), as discussed in section “Variable Smoothing Protocols”.



Magnetic Characterization of Geologic Materials with First-Order Reversal Curves 501

0 10 20
s

R
_

0 20 40 60

0

+20

+40

−20

−40

0 20 40 60

0

+20

+40

−20

−40

0 20 40 60

0

+20

+40

−20

−40

0

+50

−50

0 50 100

0

+50

−50

0 50 100

0

+50

−50

0 50 100

Bc (mT) Bc (mT) Bc (mT)

Bc (mT) Bc (mT) Bc (mT)

B
u
 (m

T)
B

u
 (m

T)
0 50 100

0

−50

0 50 100

0

−50

0 50 100

0

−50

0 20 40 60 0 20 40 60 0 20 40 60

0

−20

−40

0

−20

−40

0

−20

−40

(a)

(b)

(c)

S=1 S=6 S=15

S=1 S=2 S=4

Fig. 17 Global smoothing factor optimization for a smooth FORC function (volcanic ash, top,
data from Ludwig et al. [103]) and for a FORC function containing localized features (small
magnetosome clusters, bottom, data from Katzmann et al. [129]). (a) Average regression residuals
R for the two examples, as a function of the smoothing factor S. The inflection point of R(S)
defines a global optimum at S = 6 for the volcanic ash example; no inflection point and no global
optimum exist for the other example. (b) FORC diagrams (background) and corresponding maps of
the standard deviation of regression residuals (foreground, white corresponds to R, blue to lower
values, and red to higher values) for the volcanic ash example. Large residuals along ascending
diagonals correspond to measurement errors, which tend to increase with the applied field, while
large residuals parallel to the descending diagonal correspond to regression errors at large values
of S. Regression errors begin to appear at S = 6, but they are still much smaller than measurement
errors. (c) Same as (b) for the magnetosome clusters. Regression errors are already dominant at
S = 2
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Analysis of the residuals obtained from a systematic variation of the smoothing
factor provides an objective means to establish the best possible smoothing factor
with the available measurements [128]. The existence of an inflection point in R(S)
requires the magnetization function ξ (Hr, H) to be sampled in a redundant manner,
that is, in steps that are much smaller than required for sampling all features for ξ ,
especially if measurement errors are large. If this condition is not met, because ξ is
not continuously differentiable or because δH is too large, overfitting artifacts are
already introduced with the smallest possible smoothing factor, S = 1.

Optimally fitted FORC estimates ρ̂ can be treated with standard statistical tools
for calculating the standard error δρ̂ and the corresponding confidence interval,
which is very useful for evaluating which regions of the FORC diagram contain
information that can be considered significant [130]. The coefficients of a weighted
second-order polynomial regressions of n measurements are given in vector form by

â =
(

XTW X
)−1

XTW y (21)

where the elements of â correspond to Eq. (12); X is a matrix constructed with
the x = (Hr, H) measurement coordinates, with one row vector of the form
(1,Hr,H

2
r ,H,H 2,HrH) for each measurement; W = diag [W(x1), . . . , W(xn)] is

the diagonal matrix of regression weights; and y is the vector of measurements. The
mean squared error of the regression is

ε2 = yT [W − WB] y
n − 6

(22)

with B = X(XT W X)−1 XT W, while the mean squared error of the regression
parameters is given by the diagonal elements of the covariance matrix

�̂ =
(

XTW X
)−1

ε2. (23)

A better estimate of the parameter errors proposed by Heslop and Roberts [130],
which is robust against heteroscedastic noise (i.e., measurement errors that do not
have a constant variance), is given by the so-called HC3 estimator [131].

�̂HC3 =
(

XTW X
)−1

XTW diag

[
[y − By]i
1 − Bii

W (xi )
]

X
(

XTW X
)−1

. (24)

The HC3 estimator performs well with t-tests used to assess regression coefficients
[132]. Therefore, significant regions of the FORC diagrams can be tested against
the null hypothesis that ρ̂ = â6 = 0 at a significance level 1 − α (e.g., 95%, which
means α = 0.05) by checking that the associated probability
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Table 1 SNR threshold of the estimated FORC function for passing the significance test ρ̂ �= 0 at
selected confidence levels 1 − α, for different smoothing factors s

s n
90%
(α = 0.2)

95%
(α = 0.05)

98%
(α = 0.02)

99%
(α = 0.01)

1
2
3
4
5
7
10

9
25
49
81
121
225
441

2.35
1.73
1.68
1.67
1.66
1.65
1.65

3.18
2.09
2.02
2.00
1.98
1.97
1.97

4.54
2.54
2.42
2.38
2.36
2.34
2.33

5.84
2.86
2.70
2.64
2.62
2.60
2.59

p = 2
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is <α, where tα, ν is the Student’s t-distribution with ν degrees of freedom at the
confidence level α. The argument of the t-distribution in Eq. (25) is the signal-
to-noise ratio (SNR) of â6 and thus of the FORC function estimate, so that the
level of significance depends essentially on this parameter and on the number of
measurements used for regression. The SNR threshold for passing the significance
test at a 95–98% confidence level converges to ~2 for smoothing factors >2 (Table
1): therefore, a SNR plot can be used to spot significant regions of the FORC
diagram even without performing the significance test. Significant regions tend to be
contained within SNR = 2 contour lines, which in turn follow the trend of regular
contour lines of the FORC diagram. In practice, the significance contour follows
the lowest-level contour line that maintains a certain continuity, without being split
into separated “islands”. A good practice for the representation of FORC diagrams
consists in drawing the significance contour explicitly [130] or drawing regular
contour lines only above the significance threshold. Significant regions of FORC
functions that contain negative amplitudes will be split along the ρ̂ = 0 contours,
since the associated SNR value near ρ̂ = 0 is arbitrarily small and does not pass the
significance test.

Variable Smoothing Protocols

As discussed in section “Overfitting, Underfitting, and Error Estimates”, there is an
objective criterion for choosing the smoothing factor that provides the best compro-
mise between the opposed needs of noise suppression and signal preservation. The
application of this criterion, however, is not simple since the smoothing threshold
above which artifacts start to emerge depends strongly on the local characteristics
of the magnetization function ξ (Hr, H). These characteristics can be extremely
heterogeneous, with regions along Hc = 0, Hu = 0, and H = 0 lines requiring
an almost infinite resolution, while strong smoothing can be applied over the high-
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Fig. 18 Principles of local smoothing factor optimization. (a) FORC diagram of a magnetofossil-
bearing pelagic carbonate (data from Ludwig et al. [103]). (b) Standard deviation of regression
residuals (dots) as a function of the smoothing factor for a region of the FORC diagram where
the FORC function is regular (i.e., continuously derivable). The gray and red lines represent the
contributions of measurement noise and signal removal, respectively, to the total residuals. The
optimal smoothing factor in this case corresponds to the plateau where maximum noise removal
has been attained without altering the original signal. (c) Same as (b) for the central ridge, a quasi-
one-dimensional region where the FORC function is not continuously derivable. In this case, signal
removal occurs for any smoothing factor >1. Therefore, the optimal smoothing factor, if existing,
is much smaller than over regular regions

coercivity range. As a result, the optimal smoothing factor can change locally by
more than one order of magnitude in FORC diagrams of some geologic materials,
such as magnetofossil-bearing sediments (Fig. 18). This example shows that optimal
FORC processing of noisy measurements should be based on a local optimization
of the smoothing factor, rather than a global one. Furthermore, strongly anisotropic
smoothing is required to process quasi-unidimensional features such as the vertical
ridge along Hc = 0 and the central ridge along Hu ≈ 0, which are produced by
viscous and non-interacting SD particle assemblages, respectively [1]. Anisotropic
smoothing is obtained by replacing the squared region with dimensions defined by
the classical smoothing factor with an upright or 45◦-rotated rectangular region with
dimensions defined by two smoothing factor values that can be interpreted as the
principal values of a smoothing tensor.

The local optimization of anisotropic smoothing is a computationally demanding
procedure that cannot be fully implemented in practice [90]. It is therefore replaced
by a simplified but still widely applicable algorithm called VARIFORC [1]. This
procedure is best understood by first considering the construction of a universal
algorithm. Because the properties of the FORC function are not known a priori,
the smoothing factor optimization must proceed iteratively from the first step,
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which consists in obtaining an estimate ρ̂0 of the FORC function based on a
single isotropic smoothing factor that provides a statistically significant number
of regression residuals for each point in the FORC diagram (e.g., s = 7 for
>200 residuals). Depending on the characteristics of ξ , there will be two types of
regression results: those that are clearly underfitted and those that are overfitted or
correctly fitted (see section “Overfitting, Underfitting, and Error Estimates”). The
two types of results are distinguishable by the statistical properties of their residuals.
Overfitted or correctly fitted cases are characterized by uncorrelated residuals with
no identifiable patterns, while residuals of underfitted cases display a significant
correlation. The two cases can be discriminated by statistical tests for detecting non-
randomness, such as the Wald-Wolfowitz run test [133]. In the next step, smoothing
factors are updated according to the two cases: if residuals do not pass the non-
randomness test, the regression region U is increased isotropically, e.g., by doubling
the smoothing factor. If residuals do pass the non-randomness test, the size of U is
decreased along one of the principal directions parallel to the Hc, Hu, Hr, and H axes
for which the largest non-randomness is detected. This procedure is repeated until
changes of U are no longer required. The practical implementation of this algorithm
is limited by the random outcomes of the non-randomness test over regions of the
FORC space where the size of U must be limited to few measurements along at least
one direction. Therefore, individual point optimization must be replaced by regional
optimization.

Egli [1] identified five universal features of the FORC function that guide local
optimization of the smoothing factor. The first feature is related to the logarithmic
dependence of magnetization curves in large fields, where relative field differences,
rather than absolute ones, produce similar magnetization changes. Accordingly, the
optimal horizontal and vertical sizes of regression regions should be proportional
to Hc and | Hu |, respectively. Considering that a minimum degree of smoothing
is required at the origin of the FORC space, the horizontal and vertical sizes of
regression rectangles are defined by horizontal and vertical smoothing factors of the
form

sc = s0
c + λc

Hc

δH
, su = s0

u + λu
|Hu|
δH

, (26)

where s0
c and s0

u are the minimum smoothing factors at the origin of the FORC
diagram and λc, λu are the rates of smoothing factor increase along the correspond-
ing directions, which must be comprised between 0 and 1. In practice, s0

c = s0
u

and λc = λu are used, reducing the number of parameters to be chosen, but this
limitation is not mandatory in VARIFORC. The special case s0

c = s0
u = S and

λc = λu = 0 corresponds to the classical processing with a constant smoothing
factor and provides a good starting point for fixing S. The starting smoothing factor
should provide a good SNR ratio and no evident underfit signs over a triangular
region of the FORC diagram limited by the coercivity of remanence Hcr of the
specimen (Fig. 19a). In practice, contour lines should be slightly wiggly, but not
to the point of losing continuity, and the estimated error should not display evident
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Fig. 19 VARIFORC smoothing factor optimization for a magnetofossil-bearing pelagic carbonate
(data from Ludwig et al. [103]). (a) Standard processing with a uniform smoothing factor
sc = su = 5. From top to bottom: regression rectangles, FORC diagram, estimated error standard
deviation, and estimated SNR (white corresponds to SNR = 3; blue regions do not pass the
significance test). The central ridge is highly significant, due to its large amplitude, while the
remaining features are barely significant and affected by large errors, as seen by the irregular
contour lines. (b) Same as (a) with sc = 5 + 0.1Bc/δB increasing linearly with Bc. The SNR
has improved with respect to (a), but low-amplitude regions are still noisy. (c) Same as (b) with
su = 5 + 0.1 | Bu | /δB increasing linearly with | Bu |. The FORC function is sufficiently denoised
over its whole domain. Notice the large regression errors over the central ridge in all three cases,
because the FORC function is not continuously derivable along Bu = 0

patterns, except for those produced by correlated measurement errors (i.e., diagonal
striping) and by localized features of the magnetization function requiring special
handling later on.

At this stage, the outer regions of FORC space might be completely dominated
by noise. This problem is corrected by increasing λc = λu = λ until the estimated
FORC function becomes significant over its whole domain (Fig. 19b, c). Typical
values of λ are comprised between ~0.07 and ~0.2, whereby the upper limit, above
which smoothing artifacts are introduced, depends on the measurement resolution.
For instance, λ = 0.14 increases the smoothing factor by ~14 at the edges of typical
FORC spaces (δH ≈ 1 mT and Hc, max ≈ Hu, max ≈ 100 mT). Localized smoothing
artifacts associated with diagonal bands where the error of the estimated FORC
function raises well above the average are removed in the final processing stages
and should not affect the choice of λ.
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The use of variable smoothing factors defined by Eq. (26) depends, in the
simplest case where the same criteria are applied along Hc and Hu, on two
parameters: the initial smoothing factor S that is used near the origin and the rate
λ of increase. A proper choice of these parameters should give a SNR of at least 2
over the triangular region with vertices (0, ±Hs) and (Hs, 0), where Hs is the field
amplitude at which the major hysteresis loop becomes (almost) closed. This goal
might be impossible to achieve if measurements are excessively noisy or if field
steps are not small enough. Furthermore, the magnetization function ξ might not
be continuously derivable, or it might require unrealistically small field steps for
the derivatives to be correctly sampled over specific regions of the FORC space,
leading to undersampling artifacts. These artifacts might be removed or properly
handled using local limitations of the smoothing factor, as explained in the following
sections. If this is not possible, measurements should be repeated with higher
resolution.

The Central Ridge

Points located along the Hu ≈ 0 line in a FORC diagram have a special meaning
for certain magnetic systems, which will be explained in section “Uniaxial SD
Particles: Stoner-Wohlfarth Model”. In Preisach theory, these points represent
unbiased hysterons with switching fields HB = −HA. In the case of regular Preisach
functions (i.e., continuously derivable), the contribution of these hysterons, as
that of any 1D selection of the Preisach space, is infinitesimal. Certain magnetic
systems, such as assemblages of non-interacting SD particles, are totally or in part
represented by unbiased hysterons with finite contributions to the Preisach (and
FORC) function that are entirely localized along Hu ≈ 0. These contributions are
correctly represented by an infinitely thin ridge called the central ridge [94]. The
central ridge is mathematically defined with the help of the Dirac impulse δ as

ρcr(Hc,Hu) = Mcrfcr(Hc) δ(Hu) , (27)

where fcr is the central ridge coercivity distribution and Mcr the total magnetization
associated with the ridge, obtained by integrating ρcr over Hc and Hu. When looking
at individual FORCs, the presence of the central ridge is signaled by a corner point,
or discontinuity in the first derivative, at H = −Hr (Fig. 10). The magnetization
function ξ is therefore not continuously derivable at H = −Hr, where the Taylor
series is undefined. This causes polynomial regression to fail for any finite field
step size and any smoothing factor. Real central ridges have a finite width caused
by thermal relaxation, so that δ is replaced by a function gcr of finite width [85],
which might be slightly offset with respect to Hu = 0 [117]. The typical width of
gcr is of the order of 0.2 mT or less for most sediments featuring a central ridge,
requiring field steps as low as 30 μT to be correctly characterized with a smoothing
factor of 3. Therefore, central ridges produced by non-interacting SD particles
can be considered infinitely thin for all practical purposes. Because the central
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Fig. 20 VARIFORC smoothing factor limitation over the central ridge. (a) Vertical smoothing
factor su along vertical profiles of the central ridge for two different limiting values scr

u (solid lines)
and resulting central ridge profiles (thick dashed lines with shading), in the case of an ideal central
ridge centered at H cr

u = 0 with no intrinsic thickness (i.e., δH cr
u = 0). The smoothing factor is

constant over the region occupied by the processed central ridge and increases linearly outside this
region until reaching the regular value. The linear increase rate is the largest possible for regression
rectangles (circles with horizontal bars) that do not cross the intrinsic ridge, in this case at Hu = 0.
(b) Same as (a) for scr

u = 3 and two selected values of the intrinsic thickness δH cr
u . The linear

increase rate of the smoothing factor is reduced with respect to (a) to maintain su = scr
u over the

full thickness of the processed ridge

ridge conveys important information about the origin of these SD particles, proper
handling of the underfitting problem is required [94], along with the possibility for
separating this feature from regular FORC contributions.

In practice, optimal processing of the central ridge requires the lowest possible
degree of smoothing along Hu and regular smoothing along Hc. This is achieved by
introducing a limitation of the smoothing factor at Hu ≈ 0. VARIFORC implements
this limitation using continuous vertical profiles of su given by

s∗u = min

[
su, s

cr
u max

[
1,

|Hu − H cr
u |(

scr
u + 1

)
δH + δH cr

u

]]
, (28)

where su is the unlimited smoothing factor (Eq. 26); scr
u is the smoothing factor

over the central ridge; H cr
u is the assumed vertical offset of the central ridge, due,

for instance, to thermal relaxation effects; and δH cr
u is the assumed intrinsic half-

thickness, due to thermal relaxation effects or small magnetostatic interactions. The
intrinsic half-thickness should not be confused with the apparent thickness resulting
from processing. In practice, Eq. (28) is designed to provide a constant smoothing
factor s∗u = scr

u over the Hu range occupied by the processed central ridge. Outside
of this range, s∗u increases linearly until the unlimited value is reached (Fig. 20).
The rate of increase is as large as permitted by the condition that measurements
belonging to the intrinsic range of the central ridge are not used for the regression
of regular regions of the FORC space.
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Fig. 21 Vertical profiles of
the ideal central ridge
processed with the smoothing
factors indicated by numbers
(dots) and corresponding best
fits with Eq. (29) (lines)
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The estimated central ridge is described by the empirical approximation

ρ̂cr
(
Hc,Hu

)≈Mcrfcr
(
Hc

) 1(
3 + 2.8scr

u

)
δH

B
(

1

2
+ Hu(

3 + 2.8scr
u

)
δH

)
∗gcr

(
Hu

)
,

(29)

where B is the Beta distribution with shape parameters α = β = 9.7 and the asterisk
denotes the convolution with the intrinsic vertical profile gcr of the central ridge. In
the case of an ideal central ridge, gcr = δ and vertical profiles of ρ̂cr coincide with
B, with a full width to half-maximum (FWHM) of

(
0.84 + 0.77scr

u

)
δH (Fig. 21).

The amplitude of ρ̂cr is inversely proportional to the FWHM, so that low-resolution
measurements and large smoothing factors tend to broaden ρ̂cr and decrease its
amplitude, to the point that it is no longer distinguishable from regular contributions
to the FORC function. For example, the central ridge amplitude obtained from high-
resolution measurements (δH = 0.5 mT) processed with scr

u = 2 is ~10 times larger
than that of earlier measurements (δH = 5 mT) processed with a typical smoothing
factor of 5.

The central ridge conveys specific information about the magnetic minerals asso-
ciated with this FORC signature, for instance, through the coercivity distribution fcr
that can be extracted from the FORC diagram. The extraction of fcr exploits the
quasi-unidimensional nature of the central ridge, which, in the case of sufficient
resolution, can be separated from regular FORC contributions [94]. For this purpose,
vertical profiles of the FORC function are fitted with two empirical model functions
ĝcr (Hu) and γ̂cr (Hu), representing the central ridge and the regular contributions,
respectively. As seen with Eq. (29), the shape of ĝcr depends on the intrinsic width
of the central ridge and the smoothing factor scr

u used to process the FORC data
near Hu = 0. A combination of one or two generic bell-shaped functions, such as
the sech function used in VARIFORC [1], is sufficient to reproduce generic central
ridge profiles, including skewed ones. In the limit case of infinite resolution, the
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Fig. 22 Central ridge modeling. (a) Vertical profile of the central region of the FORC diagram
of a magnetofossil-rich lake sediment. The original measurements in steps of δB = 0.5 mT have
been regridded on a regular 0.25 mT mesh (dots) using the VARIFORC smoothing parameters
s0

u = 5, λu = 0.15, scr
u = 2, Bcr

u = +0.4 mT, and δBcr
u = 0.4 mT. The profile was fitted with

the linear combination of two model functions representing the central ridge and regular FORC
contributions, respectively, using Eqs. (30) and (31). Notice the central ridge offset of +0.4 mT,
which was the reason for choosing Bcr

u = +0.4 mT. (b) Same as (a), after subtracting the regular
FORC contributions to obtain the central ridge profile. The dashed line represents the result that
would be obtained for a central ridge with zero intrinsic width. The shaded area is the integral of
the profile used to calculate the central ridge distribution

dependence of the regular part of the FORC function on Hu is negligible over the
infinitesimal interval occupied by the central ridge. Uniaxial, non-interacting SD
particles, on the other hand, contribute to the lower quadrant with a function that
is proportional to the derivative of the difference M+(H) − M−(H) between the
descending and ascending branches of the hysteresis loop of individual particles,
which, in the absence of thermal relaxation effects, diverges as | Hu|−1/2 near Hu = 0
[93]. This divergence is associated with the reversible rotation of SD magnetic
moments near the switching field (section “Uniaxial SD Particles: Stoner-Wohlfarth
Model”). Thermal relaxation and smoothing transform the background under the
central ridge into a piecewise linear function constructed using the beta distribution
in Eq. (29) as smoothing kernel (Fig. 22).

The model functions implemented in VARIFORC are given by

ĝcr(x) = qA sech ((x − x1) /B1) + (1 − q)A sech ((x − x2) /B2) (30)

and

γ̂cr(x) = (a2 − a1)

[
qsechI

x − x1

C1
+ (1 − q)sechI

x − x2

C2

]
+ a1 + c1x−

(c1 + c2)

[
qsechII

x − x1

C1
+ (1 − q)sechII

x − x2

C2

]
−

(c1 + c2)

[
qx1sechI

x − x1

C1
+ (1 − q)x2sechI

x − x2

C2

]
, (31)



Magnetic Characterization of Geologic Materials with First-Order Reversal Curves 511

CR coercivity
distribution

0

20

40

0 +5–5
0

5

10

Am
2 / (

kg
T2

)

m
Am

2 / (
kg

T)

0 +5–5
0

5

10

background

central ridge

vertical profile

vertical profile with model

(a)

(b)

central ridge profile(c)

(d)

(e)

0

–50

0 50 100

B
u
 (m

T)

Bc (mT)

Bc (mT)

0 50 100

0 50 100

–5

+5

0

B
u
 (m

T)

3×

Fig. 23 Principles of central ridge post-processing. (a) FORC diagram of a magnetofossil-rich
sediment from the Equatorial Pacific Ocean (data from Ludwig et al. [103]), with a sequence of
vertical profiles across the central ridge. (b) Vertical profiles are modeled as the sum of central ridge
and regular FORC contributions, as in Fig. 22. (c) Subtraction of the regular FORC contribution
from each profile yields the isolated central ridge profiles. (d) The profiles in (c) can be used to
reconstruct the FORC function of the isolated central ridge. The vertical scale has been exaggerated
by a factor 3 for clarity. (e) Profile integrals in (c) (shaded) are used to reconstruct the central ridge
coercivity distributions fcr

where x1, 2, A > 0, C1, 2, a1, 2, c1, 2, and 0 ≤ q < 1 are model parameters and sechI
and sechII are the first and second primitives of sech function, respectively, defined
by integration from −∞ to x. Other choices are possible, e.g., by replacing the
sech function with similar bell-shaped functions. Vertical profiles of the estimated
FORC function ρ̂ are then fitted with ĝcr + γ̂cr over a range of Hu values centered
on the vertical position of the central ridge. This range includes a small portion of
the regular part of the FORC function on each side (Fig. 22a). The estimated central
ridge contribution, ρ̂cr, is then obtained from the subtraction of γ̂cr from each profile
(Fig. 22b). In the case of FORC measurements with proper resolution, the regular
part of the FORC function is well approximated by the linear trends of γ̂cr outside
the range occupied by the central ridge, so that ρ̂cr is relatively insensitive to the
type of model functions used to fit vertical profiles.
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Finally, the integral of ρ̂cr over Hu yields an estimate of the central ridge
coercivity distribution fcr that is independent of the processing parameters (Fig.
23). Horizontal profiles of the central ridge are often used as a substitute of fcr,
due to simpler processing [113, 134, 135]; however, these profiles have a higher
noise content [99], depend on the smoothing factor and on variations of the vertical
offset, and do not possess the correct unit to represent a coercivity distribution,
thus preventing quantitative comparisons with other magnetic parameters. The
importance of a proper central ridge processing is illustrated with a recent example
based on the study of sediments containing a mixture of conventional and so-
called giant magnetofossils, a characteristic signature of a global warming event
that occurred during the Paleocene-Eocene transition [119] (Fig. 24). In this
example, the small vertical offset of the central ridge is a function of Hc that
depends on different types of SD particles contributing to specific coercivity ranges,
i.e., conventional magnetofossils with a minimum offset Bcr

u ≈ 0.4 mT around
Bc = 50 mT and needle-shaped giant magnetofossils with a maximum offset of
~0.7 mT at Bc = 180 mT. Because of these offset variations, there is not a single
horizontal profile of the central ridge that correctly reproduces the shape of fcr.

The Vertical Ridge

Thermal relaxation processes produce a time-dependent decrease of the magne-
tization in applied fields close to the reversal field Hr, which overlaps with the
magnetization increase produced by the positive field sweep [114, 116, 117]. This
viscous magnetization decay adds a positive contribution to the FORC function,
which takes its maximum value along Hc = 0, and decreases in a pseudo-exponential
manner at larger values of Hc. The horizontal extension of this feature corresponds
to the mean fluctuation field of viscous magnetic particles (see section “Viscous SD
Particles and the Vertical Ridge”). Fine particle systems with stable magnetizations
are characterized by small fluctuation fields, so that thermal relaxation effects take
the form of a narrow vertical ridge along Hc = 0. This ridge should not be confused
with the effect of measurement artifacts occurring over the same range (e.g., Fig.
13). In the case of viscous non-interacting SD particles, the vertical ridge takes the
form

ρvr(Hc,Hu < 0) = fv(−Hu)
e−tr/τ

H 2
f

exp

(
−2

Hc

Hf

)
, (32)

where fv is the coercivity distribution of viscous particles, tr is the pause at reversal
(section “The FORC Protocol”), τ is a characteristic decay time, and Hf is an
effective fluctuation field (section “Viscous SD Particles and the Vertical Ridge”).
For sufficiently small values of Hf, the exponential function in Eq. (32) decreases
to zero within the first one or two field steps, so that ρvr can be treated effectively
as a ridge that requires a smoothing factor limitation along Hc = 0. In analogy with
the central ridge, this limitation is implemented in VARIFORC [1] using horizontal
profiles of the smoothing factor which are given by



Magnetic Characterization of Geologic Materials with First-Order Reversal Curves 513

0 0.1 0.2

0

−0.1

0 0.1 0.2

0

+3

−3

0

50

100

0

50

100

0 0.1 0.2
0.0

0.2

0.4

Bc (T)

B
u 

(m
T)

B
u 

(T
)

ƒ c
r (

μA
m

2 /
T)

μAm2

T2

(a)

(b)

(c)
ƒcr

Bu = +0.4 mT

Bu = +0.9 mT

Bu = −0.1 mT

Fig. 24 Example of central ridge analysis with VARIFORC. (a) High-resolution (δB = 0.4 mT)
FORC diagram of a sediment sample from Wilson Lake, New Jersey, deposited during the
Paleocene-Eocene Thermal Maximum (data from Wagner et al. [119]). Quantile contours (section
“FORC Data Rendering”) correspond to 10% increments of the total FORC magnetization, from
10% to 90%. (b) Isolated central ridge (15× vertical exaggeration, quantile contours at 7, 12, 20,
30, 40, 50, 60, 70, 80, and 90% of the total magnetization). The dashed line represents the Bc-
dependent vertical offset of the central ridge crest. The offset peak at ~0.18 T (arrow) is associated
with needle-shaped giant magnetofossils. (c) Central ridge coercivity distribution fcr (thick gray
line), and three horizontal profiles of the central ridge close to the crest, rescaled to match the high-
coercivity end of fcr. Notice the differences around ~0.17 T, caused by variations of the vertical
offset over the coercivity range of needle-shaped giant magnetofossils
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s∗c = min

[
sc, s

vr
c max

[
1,

Hc(
svr

c + 1
)
δH + δH 0

c

]]
, (33)

where sc is the unlimited smoothing factor (Eq. 26), svr
c is the smoothing factor over

the vertical ridge, and δH 0
c is the assumed intrinsic thickness of the vertical ridge.

Processing FORC Data Associated with Thin Hysteresis Loops

The remanence ratio, or squareness Mrs/Ms, is a measure for the vertical open-
ing of ferrimagnetic hysteresis loops. Thin hysteresis loops are characterized by
Mrs/Ms << 0.5, which means that most magnetization changes measured with
FORC are reversible and do not contribute to the FORC function. Yet, polynomial
regression must reproduce the large reversible component very accurately to
avoid processing artifacts. This can be a problem if the reversible component
Mrev = (M+ + M−)/2 of the hysteresis loop contain steep gradients or, more
generally, magnetization changes that are not well reproduced by a second-order
polynomial. A typical example of interest for geologic materials is that of large
contributions from superparamagnetic (SP) particles with sizes just below the stable
SD stability range (Fig. 25a).

The reversible magnetization of SP particles with energy barrier �E = β0 kB T,
where β0 is the Boltzmann factor (see below), is given by [24].

Mrev(H) = MsL
(

3
χspH

Ms

)
, (34)

where Ms is their saturation magnetization, L(x) = cothx − x−1 the Langevin
function, and χ sp = μ0 Ms m/3kB T the superparamagnetic susceptibility of
particles with magnetic moment m at the absolute temperature T. The susceptibility
increases with m, reaching a maximum just before particles become blocked, that
is, when β0 = μ0mHK/2kBT ≈ ln(tm/τ 0), with tm being the measurement time
and HK the so-called microcoercivity of the particles [31]. In this case, Eq. (34)
becomes Mrev = MsL(2β0H/HK) with β0 ≈ 20 for tm ≈ 1 s. Natural magnetite SP
particles with irregular shape, such as those forming in soils, are characterized by
HK ≈ 40 mT [84], and Mrev starts to saturate in fields as low as 5 mT. This is also
the typical resolution of processed FORC data (e.g., δH = 1 mT and S = 5), so that
significant misfits of the polynomial regression occur in proximity of H = 0 (Fig.
25b). Such misfits can produce smoothing artifacts along the Hu = −Hc diagonal in
FORC space (Fig. 26a) or leave a noisy trace.

Mixtures of almost blocked SP particles with other ferrimagnetic components
yield hysteresis loops that are constricted, or “wasp waisted” around H = 0, due to
the large slope of the reversible magnetization [136]. Other magnetic systems can
also produce constricted loops, for instance, particles hosting a single vortex as the
only stable magnetic configuration in a null field [137]. FORC processing problems
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Fig. 25 FORC processing example for thin hysteresis with a large reversible gradient near B = 0.
(a) High-resolution (δB ≈ 0.29 mT) FORC measurements of equidimensional magnetosomes dis-
persed in kaolin. (b) Estimated standard error of the FORC function obtained with a homogeneous
smoothing factor S = 5. Large underfitting errors occur along Bu = 0 (central ridge), Bc = 0
(vertical ridge associated with thermal relaxation), and the Bc = −Bu diagonal (large reversible
gradient near B = 0 due to superparamagnetic particles). (c) Same as (a), after subtracting the
lower branch of the hysteresis loop reconstructed from FORC measurements. The resulting curves
are almost completely flat, until SD particles are switched at B = −Br, contributing to the central
ridge. The highly expanded view of the area enclosed by the hysteresis loop highlights the small
viscous magnetization decay between the first and the second point of each curve. (d) Same as
(b), for the curves in (c). The error along Bc = −Bu has been drastically reduced and reflects
now the small but sharp magnetization changes occurring near B = 0, which are due to a positive
magnetostatic coupling between superparamagnetic and stable SD particles within magnetosome
chain fragments

with materials characterized by thin (constricted) loops of this type, or any other
reversible magnetization with strong gradients, can be avoided by exploiting the
natural insensitivity of the FORC function toward reversible magnetizations that do
not depend on the reversal field. This means that any arbitrary magnetization curve
can be subtracted from FORC measurements without altering the intrinsic properties
of the FORC function, provided that the same curve is used for all measurements.
If the purpose of this operation is to remove regression artifacts caused by Mrev, an
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Fig. 26 FORC diagrams of equidimensional magnetosomes dispersed in kaolin obtained from
the measurements shown in Fig. 25. (a) Original measurements processed with VARIFORC
parameters s0

c = s0
u = 15, λc = λu = 0.1, and svr

c = scr
u = 4. Instead of highlighting low-

amplitude features of the FORC function outside the area occupied by the central ridge and the
vertical ridge, large smoothing factors produce artifacts along the Bc = −Bu diagonal, due to the
impossibility to fit the sigmoidal contribution of superparamagnetic particles near B = 0. Quantile
contours (section “FORC Data Rendering”) are drawn at 5, 10, 20, 30, 40, 50, 60, 70, 80, and
90% of the total magnetization. (b) Same as (a) but using lower-branch-subtracted measurements.
Subtraction of the lower hysteresis branch removes the superparamagnetic contribution and the
related artifacts along the Bc = −Bu diagonal. The very-low-amplitude negative features in the
lower quadrant are significant and do not represent processing artifacts

estimate M̂rev of Mrev can be used, e.g., from an independent measurement of the
hysteresis loop or using an analytical approximation. Such accessory measurements
are not always available, so that M̂rev is conveniently constructed using the FORC
measurements.

The VARIFORC software identifies M̂rev with a reconstruction of the lower
branch M̂− of the hysteresis loop [1]. Subtraction of M̂− transforms FORC
measurements into a set of curves with positive magnetization. This method is
known as lower branch subtraction. For the common case where FORCs are
fully contained by the hysteresis loop, the upper envelope of the lower-branch-
subtracted curves coincides with the doubled even component (M+ − M−)/2 of
the hysteresis loop (Fig. 25c). Extra smoothing can be applied to M̂− in order
to reduce the noise added to the original measurements by this operation, as
long as the reversible magnetization features to be removed are preserved. This
operation effectively removes the polynomial misfits caused by strong gradients of
the reversible magnetization (Fig. 26b) with two beneficial effects: the suppression
of processing artifacts and the avoidance of biased error estimates. A positive side
effect of the lower branch subtraction is the better separation of individual curves,
due to the highly expanded view of the area enclosed by the loop.
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Smoothing Factor Limitations Along the Measurement Coordinates

As discussed in section “Processing FORC Data Associated with Thin Hysteresis
Loops”, strong reversible magnetization gradients introduce smoothing artifacts
that can be removed by subtracting a curve containing such gradients, such as the
lower branch of the hysteresis loop, from all measurements. However, processing
problems can persist if such gradients are associated with equally sharp irreversible
processes. For instance, magnetostatic interactions might couple the magnetizations
of SP and SD particles inside clusters. A similar effect is produced by the
exchange coupling between high- and very-low-coercivity components. In these
cases, Mrev depends also on the magnetic state of the ferrimagnetic component,
so that subtraction of a single estimate of Mrev from all measurements will leave
traces of the original magnetization gradient around H = 0, which contribute to the
FORC function along the Hu = −Hc diagonal. A paradigmatic example is given by
chondrules in some chondritic meteorites, where tetrataenite, a magnetically hard
FeNi alloy, interacts with a much softer component, creating a positive-negative
ridge doublet around the Hu = −Hc diagonal [138] (Fig. 27). In such cases, it is
desirable to limit the size of the regression rectangles across the diagonal, that is,
along the measurement field H. This limitation is implemented in VARIFORC in a
similar manner as for horizontal and vertical ridges [1], using the smoothing factor

s = s0 max

[
1,

|H − H 0|(
s0 + 1

)
δH + δH 0

]
(35)

where s0 is the limiting smoothing factor over the diagonal region, H0 the center
coordinate of this region (e.g., H0 = 0 for the Hu = −Hc diagonal or H0 = 50 mT in
Fig. 27b), and δH0 its width. This definition yields s = s0 over the region of interest,
with a linear increase to the regular smoothing factor outside of it. The default value
s0 = ∞ is used if no limitation of the smoothing factor along H is needed.

A similar limitation of the regression rectangles can be constructed along the
other measurement coordinate, upon defining the smoothing factor sr along Hr with
Eq. (35), and after replacing the equation parameters with corresponding parameters
s0

r , H 0
r , and δH 0

r for the limiting smoothing factor, the center coordinate, and the
width of the critical Hr range, respectively. The two limiting smoothing factors s0

and s0
r are used to construct a rectangle rotated by 45◦ with sides of length 2

√
2s δH

and 2
√

2sr δH , respectively, which is intersected with the upright rectangle that
defines the regression region (Fig. 16b). The choice of the side lengths is such that
the upper-right and lower-left corners of a 2S δH × 2S δH regression square are cut
only if s < S and the other two corners only if sr < S. In the case of sufficiently small
s = sr values, the regression region becomes a 45◦-rotated square, as in the original
protocol of Pike et al. [15].

The combination of sc, su, s, and sr smoothing factors can be used to produce any
type of regression region with limitations along the FORC and the measurement
coordinates. For instance, in the case of the chondrule measurements by Acton et al.
[138], variable smoothing factors sc = s0

c + λHc/δH and su = s0
u + λ|Hu|/δH
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Fig. 27 FORC diagrams of a chondrule from the Bjurbole meteorite (data from Acton et al. [138])
obtained with two different sets of processing parameters. Quantile contours (section “FORC Data
Rendering”) from 10 to 90% of the total magnetization, in 10% steps. (a) Constant smoothing
factor S = 3. The localized negative peak at Bc = 0, just below the central maximum, is a smoothing
artifact caused by the steep magnetization gradient near B = 0. (b) VARIFORC smoothing with
s0

c = s0
u = 3, λc = λu = 0.05, and limitation of the smoothing factor along the descending diagonal

using B0 = 50 mT, δB0 = 70 mT, and s0 = 2

are used to process a FORC function with amplitudes that decay progressively from
a central maximum near the origin. No limitations are required along Hc and Hu,
because of the lack of horizontal and vertical ridges, but the interaction features
along the Hu = −Hc diagonal require a limitation of the smoothing factor along H
(Fig. 27b).

Processing FORC Data Associated with Highly Squared Hysteresis Loops

Highly squared hysteresis loops are characterized by strong magnetization gradients
in proximity of the positive and negative coercive fields, which are caused by a
narrow coercivity distribution concentrated around the mean switching field H sw ≈
Hc. Squared hysteresis is a desirable property of permanent magnets, because the
application of external fields of amplitude smaller than H sw will produce only
minimal magnetization changes [139]. In geological materials, squared hysteresis
is produced by SD particles with a narrow coercivity distribution, the limiting case
being that of identical randomly oriented Stoner-Wohlfarth particles (Fig. 28a).
Magnetotactic bacteria represent an important natural realization of such uniaxial
SD particles (Fig. 28b).

The FORC function of materials with highly squared loops is concentrated within
a small region around (Hc, Hu) = (Hsw, 0), which is best sampled by limiting FORC
measurements to −Hr ≈ H ≈ Hsw. This requires a modification of the standard
measurement protocol; however, the main reason for not doing so is the presence of
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Fig. 29 FORC processing example for the magnetotactic bacterium measurements shown in Fig.
28 (data from Wang et al. [140]). The field step is δB ≈ 0.6 mT. (a) VARIFORC smoothing with
s0

c = s0
u = 9,λc = λu = 0.1, and scr

c = 3. Regression rectangles (not to scale) are superimposed
for reference. Quantile contours (section “FORC Data Rendering”) are drawn at 5 and 10–90%
of the total magnetization in steps of 10%. Notice the smoothing artifacts along the diagonals
departing from the central maximum in the lower quadrant, caused by the steep magnetization
gradients near the coercive field. (b) Same as (a), with additional limitations s0

r = s0 = 9
of the smoothing factor along the diagonals departing from the central maximum. The diagonal
location and width of the limiting regions were determined automatically by VARIFORC using the
maximum and the FWHM of the first derivative of the envelope hysteresis loop. The smoothing
artifacts of (a) are suppressed

other magnetic signatures of the same particles (e.g., the negative region near Hc = 0
caused by reversible magnetic moment rotation) or magnetic components with
normal hysteresis properties. In case of highly squared hysteresis, a limitation of the
size of regression rectangles is required over two regions with high magnetization
gradients, which, in FORC space, are given by Hr ≈ −H sw and H ≤ H sw
(because ∂M/∂Hr is large before all curves merge above +H sw) and by H ≈ H sw
and Hr < −H sw (because ∂M/∂H is large for curves starting below −H sw). The
two regions are represented by two diagonals extending over the lower half of the
FORC space, which merge at the central maximum of the FORC function, located
at (Hc,Hu) = (H sw, 0) (Fig. 29a). If lower branch subtraction is used to process the
measurements, the limiting region is formed by the same two diagonals, extending
to the left of the merging point instead of below.

The location of the critical diagonal regions in FORC space requires two
parameters: the mean position H sw and the typical width δH sw of the high-gradient
segments of the hysteresis loop. The VARIFORC processing software [1] identifies
H sw with the field amplitude for which the first derivative of the envelope hysteresis
obtained from FORC measurements is largest in the absolute value and δH sw with
the decrement of H sw required to reduce the derivative to the half of its maximum
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amplitude. Appropriated smoothing factor limits s0
r = s0 (section “Smoothing

Factor Limitations Along the Measurement Coordinates”) are entered by the user.
Subtle smoothing artifacts extending over low-amplitude regions of the FORC
function, such as those of Fig. 29, can be effectively identified by comparing FORC
diagrams processed with and without smoothing factor limitations: only features
that maintain their signature in both cases are real.

Demagnetizing Fields and FORC Deshearing

Specimens made of strongly magnetic materials possess an internal, so-called
demagnetizing field, given by

Hi = −D · M, (36)

where M is the bulk specimen magnetization vector and D the so-called demagne-
tizing tensor, which depends on the specimen shape. The demagnetizing tensor is
unitless in the SI unit system, since field and magnetization share the same unit,
A/m. In this case, the sum of the eigenvalues of D is equal to 1. The internal
field, and thus D, is calculated from the distribution of surface magnetic charges
σm = M · n produced at places where M is not parallel to the local surface element,
represented by the normal vector n. In general, Hi depends on the position inside the
specimen, so that different parts experience different internal fields (Fig. 30). The
only exception is represented by ellipsoidal shapes, for which D is homogeneous,
with principal axes coinciding with those of the ellipsoid [141]. In the case of a
sphere, the three eigenvalues of D are exactly 1/3. The demagnetizing tensor of more
practical shapes, such as disks, cylinders, and cuboids, is usually approximated by
an average value that is representative for a large fraction of the specimen volume
[142, 143].

The dependence of the internal field on the specimen magnetization creates an
undesirable coupling between the two quantities, such that the magnetic properties
appear to change while measurements are performed. This situation is described by
so-called moving Preisach models (section “Modifications of the Classical Preisach
Model”), which also require using vectors instead of scalars in all cases where
the external field is not applied along one of the principal axes. Complications
caused by the demagnetizing field can be removed by cutting specimens in shapes
that ease the calculation of the demagnetizing tensor and measuring them along
a principal axis. In this case, Eq. (36) is written in scalar form as Hi = −DM,
where the demagnetizing factor D coincides with one of the eigenvalues of D.
The intrinsic FORC properties of the material are then retrieved by substituting
the external fields Hr and H applied during measurements with the total internal
fields H ′

r = Hr − DM(Hr,Hr) and H′ = H + DM(Hr, H), respectively. This
operation, called deshearing, greatly simplifies the interpretation of FORC diagrams
of strongly magnetic specimens by removing fictive contributions [139]. Deshearing
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Fig. 30 Homogeneously
magnetized disk with
magnetization M (shaded) in
an external field H and stray
field produced by the
magnetization (field lines).
The total field experienced by
the material inside the disk is
the sum of H and the internal
part of the stray field

H

M

requires either resampling the corrected FORC measurements on a regular field grid
and processing them like standard data or using regression methods that deal with
irregularly spaced measurement points, such as FORCinel [128] and VARIFORC
[1]. The latter implements deshearing by default.

An example of FORC deshearing is shown in Fig. 31 for a polycrystalline
iron thin film where the internal field arises from a positive mean interaction field
between crystals [144], rather than the negligible in-plane demagnetizing factor of a
thin film. In this case, deshearing almost completely removes a complex FORC
signature composed of two pairs of parallel diagonal ridges with positive and
negative amplitudes, leaving a central maximum that represents a SD-like switching
of the individual crystalline domains. Natural rocks are rarely magnetic enough for
the demagnetizing factor to play a significant role, except for certain meteoritic
materials and, on Earth, for basalts, whose saturation magnetizations can reach
20 kA/m [145]. In this case, the associated demagnetizing fields of the order of few
mT are comparable with the coercive field and can significantly distort the intrinsic
hysteresis properties of individual magnetic carriers. Large internal fields, however,
exist inside ferrimagnetic particles. In most cases, these fields control the intrinsic
magnetic properties of the particles through the associated magnetostatic energy
term, so that deshearing these internal fields is meaningless. A notable exception
is represented by large magnetite crystals, where the magnetic interaction between
sub-volumes possessing “hard” and “soft” magnetic properties is described by an
internal field of the form given by Eq. (36). In this case, FORC deshearing can be
used to disentangle the mixed magnetic signature determined by the two interacting
phases (section “Multistate Systems: The PSD FORC Signature”).
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Fig. 31 Example of FORC deshearing for a polycrystalline iron thin film on a silicon substrate
(data for sample B6 in Cao et al. [144]). (a) Original in-plane FORC measurements. Notice the
extremely steep flanks of the hysteresis envelope near the coercive field. (b) Corresponding FORC
diagram, processed with VARIFORC using the smoothing factor limitations for squared loops.
The negative-positive pair of diagonal ridges departing from the central maximum is a typical
feature of positive (magnetizing) mean-field interactions. (c) Desheared FORC measurements
obtained assuming an internal field Bi = αM/Ms where Ms is the saturation magnetization and
α = +12.8 mT. (d) FORC diagram corresponding to the desheared measurements in (c) with
superimposed grid of desheared measurement points (every second point). Deshearing enlarges
the size of field steps along the diagonals affected by mean-field interactions, thereby reducing the
amplitude of the FORC ridges. The value of α has been chosen to minimize the amplitude of the
diagonal ridges. Failure to remove them completely is probably due to the fact that a distribution
of α-values is needed to describe the interactions between single crystalline domains in different
parts of the thin film. Nevertheless, the desheared FORC function has a much simpler structure and
the central maximum has migrated toward Bu = 0

FORC Data Rendering

The correct representation of FORC data, especially those obtained from geologic
materials, can be a challenging task, due to the extremely heterogeneous local
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properties of the FORC function, which typically include large low-amplitude
regions and quasi one-dimensional high-amplitude ridges. Important details can
be missed if plots are realized with unspecific color scales (Fig. 32a). For this
reason, special nonlinear color scales have been implemented by some FORC
processing tools, such as VARIFORC [1]. These scales are anchored to zero and
represent negative/positive amplitudes of the FORC function with two different
color gradients, usually blue-white and white-yellow-red or white-green-yellow-
red. These gradients are used to discriminate negative low-amplitude regions, which
are important diagnostic features of SD particles and mean-field interactions, from
positive ones. Nonlinear color scales can be tuned to visualize the whole range
of the FORC function (Fig. 32b), yet the perception of the relative contribution
of different features remain difficult. For instance, the amplitude of the quasi-
one-dimensional central ridge is entirely controlled by the measurement resolution
and by the smoothing parameters (section “The Central Ridge”). Because high-
resolution measurements are required to identify such features, their amplitude
tends to be much larger than the rest of the FORC function, conveying the wrong
impression that other signatures are unimportant. For instance, the amplitude of the
central ridge in Fig. 32 is ~5 times larger than the remaining parts of the FORC
function, yet its relative contribution to the total irreversible magnetization of this
sample is only ~40%.

An objective representation of different parts of the FORC function can be
obtained with contour lines. Equally spaced contour levels tend to concentrate
around high-amplitude features (Fig. 32b); however, contour levels can be chosen
to represent the relative contribution of all regions with lower amplitude to the
total irreversible magnetization Mforc associated with the FORC function. A so-
called quantile contour [146] with probability level 0 < p < 1 is defined as the
FORC function amplitude ρ̂p for which the integral over all regions characterized by
ρ̂ ≥ ρ̂p is equal to (1−ρ̂p)Mforc. Quantile contours drawn at equally spaced p-levels
divide the FORC space into regions with identical interquantile ranges and therefore
identical contributions in terms of magnetization (Fig. 32c). Quantile contour levels
are naturally more closely spaced at low p-values, capturing low-amplitude parts of
the FORC function that contribute significantly to the total magnetization, because
of their extension. Since quantiles are bounded to probability density functions,
which are, by definition, positive, VARIFORC calculates quantile contour levels
by considering only positive values of the FORC function; contours over negative
regions are then drawn using ρ̂−p = −ρ̂p. Quantile contours are very effective at
rendering any type of FORC function and are used throughout this work to represent
FORC diagrams obtained from geologic materials.

4 FORC Diagrams of Natural Particle Assemblages

The number of publications dealing with the magnetic characterization of geologic
materials with FORC diagrams has grown exponentially in recent years, along
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Fig. 32 High-resolution FORC diagrams of a magnetofossil-rich sediment from Lake Baldeg-
gersee (Switzerland). (a) Representation with a color scale based on spectral colors (e.g.,
MATLAB “Jet” or Mathematica “Rainbow”). Only the central ridge is identifiable in this plot.
(b) Representation with a color scale anchored to zero amplitudes (VARIFORC “Iridescent”) and
9 equally spaced contours at 10, 20, 30, 40, 50, 60, 70, 80, and 90% of the full amplitude. The color
scale is based on homogeneous transition between six reference colors. Notice the faint traces of
negative amplitudes in the lower quadrant, near Bc = 0. Contours are concentrated on the central
ridge, with the region enclosed by the lowest contour level contributing to ~40% of the total FORC
magnetization. The remaining ~60% is only faintly rendered by the color scale and not represented
by contours. (c) Same as (b), with the color scale automatically adapted to the distribution of FORC
amplitudes, and equally spaced quantile contours with levels at −30, −20, −10, 10, 20, 30, 40,
50, 60, 70, 80, and 90% of the total magnetization. FORC regions between consecutive contours
contribute equally in terms of magnetization. Unlike (b), all relevant features of the FORC function
are captured

with the number of different FORC signatures attributed to specific types of
magnetic particles. One of the main factors controlling these signatures is the
domain state of the particles, with the usual distinction between single-domain
(SD), multidomain (MD), and the vaguely defined intermediate pseudo-single-
domain (PSD) regimes. A significant modeling effort has been undertaken to
understand the fundamental characteristics of these regimes and, most recently,
of the role played by vortex magnetic states in determining the FORC signature
of PSD particles. The combination of forward modeling techniques, such as
micromagnetic simulations, and inversion techniques, such as numerical unmixing
of large collections of samples, led to the isolation of well-defined FORC signatures
produced by particle assemblages with specific characteristics, mainly those made
by one of the most widespread magnetic minerals in nature, magnetite. This section
describes a collection of relevant FORC signatures from the forward modeling
perspective (e.g., domain states, magnetostatic interactions, thermal relaxation) and
from the inverse modeling perspective (different types of particle assemblages with
similar properties). Special attention is dedicated to the correspondence between
FORC measurements and other magnetic characterization tools, such as coercivity
analysis, since a combination of different techniques is often required to overcome
interpretation ambiguities.
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Single-Domain Particles

The ideal magnetization pattern of SD particles consists in a single, homogeneously
magnetized domain. The particle magnetization is thus entirely described by the
magnetic moment vector m = Vμs u, where V is the particle’s volume, μs
its spontaneous magnetization, and u a unit vector parallel to the magnetization
direction. The equilibrium moment of the particle in a quasi-static field H is a local
minimum of the free magnetic energy

E = VK(u) − μ0VμsH · u (37)

where K is the magnetic anisotropy energy per unit of volume, and the second term
is the Zeeman energy, the energy density of a magnetized volume in a magnetic
field. The magnetic anisotropy energy is minimal along preferential magnetization
directions, which depend on the orientation of crystal axes and on the particle shape.

Uniaxial SD Particles: Stoner-Wohlfarth Model

The simplest case of magnetic anisotropy energy is that of uniaxial anisotropy. In
this case, particles possess a single, so-called easy axis, along which K is minimal
(Fig. 33). The simplest representation of uniaxial anisotropy is given by

K = 1

2
μ0μsHKsin2θ, (38)

where HK is the so-called microscopic coercivity, or microcoercivity [31], and θ the
angle between u and the easy axis. In this case, K = 0 when the magnetization is
parallel to the easy axis (θ = 0 or θ = 180

◦
) and K > 0 for all other orientations. SD

particles with this type of anisotropy were modeled for the first time by Stoner and
Wohlfarth in 1948 [7] and are called Stoner-Wohlfarth (S-W) particles. In the case
of magnetite, uniaxial anisotropy originates from particle elongation, with the easy
axis being parallel to the longest particle axis. If the particle shape is described by a
prolate rotation ellipsoid,

HK = μs (D1 − D3) = μs

2
(1 − 3D3) , (39)

where D1 and D3 are the demagnetizing factors along the short and long ellipsoid
axes, respectively.

S-W particles possess only one or two stable magnetization states, depending on
whether the amplitude of the external field is smaller or larger than a critical field

Hn(ϕ) = HK

√
1 − tan2/3ϕ + tan4/3ϕ

1 + tan2/3ϕ
, (40)
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Fig. 33 The Stoner-Wohlfarth model of SD particles with uniaxial anisotropy. (a) Spherical plot
of the free magnetic energy E of a particle, as a function of the polar and azimuthal angles θ and ψ
of the magnetic moment vector m with respect to the easy axis a (orange surface, the distance from
the origin is proportional to E(θ ,ψ)). In the absence of external fields, m at equilibrium is parallel
or antiparallel to a. An external field parallel to the unit vector h deviates m in the plane defined by
a and h (gray). If the external field amplitude is smaller than a critical value Hn, E(θ ,ψ) has two
local minima defining the equilibrium magnetic moments m+ and m−, which correspond to the
descending and ascending branches of the hysteresis loop. (b) Hysteresis loop of the particle shown
in (a), obtained from the component of m± parallel to the field direction h. E(θ , 0) (insets) has two
local minima if |H| < Hn. One of the two minima becomes a saddle point at |H| = Hn, causing
a sudden transition to the only remaining minimum through a magnetization jump (dashed). This
transition can occur earlier, in a switching field | Hsw| < Hn, if the energy barrier separating the two
minima is overcome by thermal fluctuations

which depends on the angle ϕ between easy axis and applied field [7]. These
magnetization states correspond to magnetic moment vectors m± lying in the plane
defined by the easy axis a and the external field H, which minimize the total
magnetic free energy E of the particle (Fig. 33a). At H = Hn, one of the two minima
of E converts to a saddle point, leaving only one minimum in larger fields. In the
absence of thermal relaxation effects, the hysteresis loop m(H) = m0 u(H) · H
of individual S-W particles with magnetic moment m0 = Vμ0 is characterized
by two curved branches that merge at the switching fields Hsw = ±Hn through
a magnetization jump (Fig. 33b). These loops are similar to symmetric Preisach
hysterons (section “The Classical Preisach Model”), except for the curvature of the
two branches, which is due to the reversible rotation of the magnetic moment vector
toward the external field direction (Fig. 34). The loops become increasingly closed
when ϕ goes from 0 to 90◦, because m(H = 0) = m0cosϕ. The magnetization jumps
±�m(ϕ) at Hsw = ±Hn follow a similar trend, with �m(0) = 2m0 and �m = 0
at ϕ ≈ 77

◦
. At larger angles, the jumps reverse sign, reaching �m ≈ −0.1m0 at
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Fig. 34 Hysteresis loops of individual S-W particles with microcoercivity HK at selected angles
ϕ between easy axis and applied field. (a) ϕ = 2, 20, and 45◦, (b) ϕ = 60 and 77◦ (in the latter case
the magnetization jump is zero), (c) ϕ = 85
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(negative magnetization jump) and ϕ = 90
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Fig. 35 Remanent magnetization m(0), magnetization jump �m at switching, and switching field
Hn for S-W particles with angle ϕ between easy axis and applied field, in the absence of thermal
fluctuations

ϕ ≈ 85
◦
, and disappear at ϕ = 90

◦
. The switching field is smallest for ϕ = 45

◦
and

largest for ϕ = 0 or 90◦, with Hn(90
◦ − ϕ) = Hn(ϕ) (Fig. 35).

At a macroscopic level, an assemblage of identical, aligned S-W particles that
do not interact with each other behave exactly as the sum of individual particles,
yielding the hysteresis loops shown in Fig. 34. All magnetic states that can be
accessed by a sequence of applied fields coincide with one of the two branches m±
of hysteresis. In the case of FORC measurements, all curves starting at reversal
fields Hr >−Hn coincide with the upper branch m+, and all FORCs starting at
reversal fields Hr ≤−Hn coincide with the lower branch. Therefore, non-zero
contributions to the FORC function are localized along the trace in FORC space
of the curve beginning at Hr = −Hn: this is the ascending diagonal with start point
(Hc, Hu) = (0, −Hn) and end point (Hc, Hu) = (Hn, 0) (Fig. 36a) and the only place
where the derivative of measurements with respect to Hr is not zero. The FORC
function is thus given by

ρ(Hr,H)=−δ(Hr+Hn)
∂

∂H

m+(H) − m−(H)

2
+ δ(Hr + Hn)δ(H − Hn)

�m

2
,

(41)
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Fig. 36 FORC signature of non-interacting S-W particles with increasing heterogeneity. First row,
descending hysteresis branch and selected FORCs; second row, coercivity distributions derived
from FORC measurements (DC demagnetization, irreversible component of ascending branch, and
central ridge); third row, FORC diagrams (quantile contours at 1, 2.5, 5, 10, and 50% of the total
magnetization). (a) Identical, aligned S-W particles with BK=100 mT and ϕ = 45

◦
. All FORCs

coincide with one of the two major hysteresis branches, depending on whether the reversal field
is smaller or larger than −Bsw = −50 mT. (b) Identical, randomly oriented S-W particles with
BK = 100 mT. (c) Randomly oriented S-W particles with lognormal microcoercivity distribution
(logarithmic mean, 54 mT; logarithmic standard deviation, 0.35)

where δ is the Dirac impulse. The first term on the right-hand side of Eq. (41) is a
diagonal ridge whose amplitude is proportional to the derivative of the difference
between the two hysteresis branches, which is an odd function of H that diverges
in proximity of ±Hn (Fig. 36a). This function depends on the curvature of the
hysteresis loop and reflects the reversible magnetic moment rotation toward the
applied field direction. The second term on the right-hand side of Eq. (41) produces
a peak at (Hc, Hu) = (Hn, 0), whose amplitude is proportional to the magnetization
jump �m through which m− merges with m+ at the positive switching field +Hn.
The FORC function is zero over the whole upper quadrant, because all FORCs
coincide with m+ in applied fields larger than +Hn. The peak at Hu = 0 is the
most elemental contribution to the central ridge by SD particles. The coercivity
distribution associated with this type of FORC signature is a Dirac impulse centered
at the switching field Hn with amplitude proportional to �m in the case of firr and fcr
and to m0 in the case of fdcd (see section “Selected Properties of the FORC function”
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for a definition of these coercivity distributions). The relative contributions of the
hysteresis curvature and the magnetization jumps to the FORC signature depend
on the angle ϕ between easy axis and applied field: if ϕ = 0, the hysteresis is
rectangular, like Preisach hysterons, yielding an isolated peak at Hc = Hn. At
larger angles, the peak amplitude decreases, while the diagonal ridge caused by
the hysteresis curvature increases. Finally, both contributions tend to zero as the
hysteresis becomes completely closed at ϕ = 90

◦
.

The FORC signature of aligned S-W particles is highly unrealistic, being
everywhere singular, but it represents the fundamental unit upon which natural SD
signatures are built. A first step toward realistic SD FORC models considers random
particle orientations inside a non-magnetic matrix. The corresponding magnetic
properties are obtained from the weighted integration of the magnetization of
aligned particles, with weights proportional to the probability sinϕ dϕ of finding
a particle whose easy axis forms an angle between ϕ and ϕ + dϕ with the field
direction. Because each angle defines a different switching field Hn(ϕ) comprised
between HK/2 and HK, the resulting FORC diagram is given by the superposition
of diagonal contributions similar to those of aligned particles (Fig. 36b). These
contributions are concentrated near the diagonal line corresponding to Hn = HK/2,
due to the fact that most particles have switching fields close to this value, which
is the local minimum of Hn(ϕ) at ϕ = 45

◦
. The peaks at Hu = 0 generated by

individual angles overlap and form a central ridge that starts at Hc = HK/2 and
extends with declining amplitudes to Hc = HK. Small negative amplitudes near
Hc = HK are produced by the negative magnetization jump in the hysteresis of
particles whose easy axis form an angle of >77◦ with the applied field (Fig. 34c).
The field range of all coercivity distributions is comprised between HK/2 and HK,
and all distributions diverge at HK/2. Slight differences between the shape of firr
and fcr, which originate from in-field measurements, and that of fdcd, which is based
on remanence measurements, are due to the distinct angular dependences of �m
(in-field) and m(0) (remanence), respectively (Fig. 35). Despite the singularity at
HK/2, the integral of these distributions is finite and corresponds to the saturation
remanence Mrs = Ms/2 in the case of fdcd, and the irreversible fraction

Mirr

Ms
= 1

2m0

∫ π/2

0
�m(ϕ) sinϕ dϕ ≈ 0.274 (42)

of all magnetization changes occurring along a hysteresis branch, in the case
of firr and fcr. Given the similar shape of all coercivity distributions, Eq. (42)
yields firr = fcr ≈ S fdcd with S ≈ 0.544 [94]. The FORC function of identical,
randomly oriented S-W particles is singular along the ascending diagonal starting at
(Hc, Hu) = (HK/2, 0) and along Hu = 0, which is the location of the so-called central
ridge.

The final step toward realistic models of SD particle assemblages consists in
considering randomly oriented S-W particles with a distribution of shapes and thus
of microcoercivities. Their magnetic properties are obtained by weighted integration
of the magnetization of identical particles (e.g., Fig. 36b), with weights proportional
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to the microcoercivity distribution fK(HK). Figure 36c shows the result obtained
with a lognormal distribution corresponding to a typical coercivity distribution of
natural magnetite particles [39]. Because fK is usually a much wider distribution
than the coercivity distribution of identical S-W particles, the resulting coercivity
distributions are proportional to a rescaled version of fK with median Hsw ≈ 0.53HK
close to the switching field of particles with ϕ ≈ 45

◦
[94]. The central ridge is now

distributed along the range of coercivities determined by fK, and it is surrounded,
in the lower quadrant, by positive contributions associated with the reversible
rotation of magnetic moments toward the applied field direction. Corresponding
negative contributions peaking along Hc = 0 make the non-central ridge signature
antisymmetric about the Hu = −Hc diagonal. The pair of negative and positive
contributions in the lower quadrant represents, together with the central ridge, the
characteristic signature of uniaxial, non-interacting SD particles, as typically seen
in magnetofossil-bearing sediments [94, 103].

Thermally Activated SD Particles

The S-W model of uniaxial SD particles assumes that switching between positive
and negative states occurs exactly at ±Hn, when one of the two local energy minima
of Eq. (37) becomes a saddle point, enabling the sudden transition to the magnetic
state corresponding to the other energy minimum. Random perturbations of the
magnetization caused by the thermal energy kB T, where kB is the Boltzmann
constant and T the absolute temperature, can trigger the transition between two
magnetic states before the occupied local energy minimum disappears, by over-
coming an energy barrier Eb. This barrier is defined as the smallest energy increase
along all possible paths connecting two local energy minima. In the case of S-W
particles, such paths lie in the plane defined by the easy axis and the applied field
(Fig. 33), so that Eb is simply the difference between a local maximum and a local
minimum of the free energy E(θ ,ψ = 0). Thermally activated switching through the
energy barrier Eb is a Poisson process with rate ν = τ−1

0 exp (−Eb/kBT ), where
τ 0≈0.1–1 ns is the correlation time of thermal perturbations [26, 147, 148]. The
energy barrier is a function of the applied field, with Eb → 0 when | H | approaches
Hn from below (Fig. 37a). In proximity of Hn, the energy barrier is a power function
of the so-called fluctuation field Hf = Hn − | H |, taking the form

β = Eb

2kBT
=

⎧⎪⎨
⎪⎩

β0
8
√

2
9

√
1 − (Hn/HK)

2
(
Hf
Hn

)3/2
, 0 < ϕ < π/2

β0

(
Hf
Hn

)2
, ϕ = 0, π/2

, (43)

where β is the so-called Boltzmann factor and β0 = μ0 mHK/2kB Tthe Boltzmann
factor in zero field [27, 73]. The commonly assumed quadratic dependence on Hf is
valid only for particles with ϕ = 0 and 90◦, which, however, represent a negligible
contribution to the remanent magnetization of randomly oriented S-W particles.
Magnetically stable SD particles are characterized by a relaxation time, defined by
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Fig. 37 Hysteresis of thermally activated uniaxial SD particles. (a) Energy barrier for switching
from a positive to a negative state in an external field Hat an angle ϕ = 60

◦
to the easy axis (solid

line). The H → − Hn limit is well approximated by a power law with exponent 3/2 (dashed line).
(b) Thermally activated hysteresis loops for a large number of aligned S-W particles with ϕ = 60

◦

and Boltzmann factors β0 = 20, 30, 60, 200, and ∞ (from inside outward). Other model parameters
are τ 0 = 0.1 ns and a field sweep rate of 2.5HK/second

the inverse Poisson rate τ = τ0e
β0 , which is much larger than the measurement

time, e.g., β0 = ln(τ /τ 0) ≈ 30 for τ=3 h.
The hysteresis loop of many identical, aligned SD particles with uniaxial

anisotropy depends on the occupation probabilities p+ and p− = 1 −p+ of the
m+ and m− states described in section “Uniaxial SD Particles: Stoner-Wohlfarth
Model”, which are governed by the kinetic equation

dp+

dt
= −ν+p+ + ν− (

1 − p+)
, (44)

with ν± being the field-dependent Poisson rates for the m+ → m− and m− → m+
transitions, respectively [116, 149, 150]. The resulting hysteresis loop is then given
by

M± = p+m+ + (
1 − p+)

m− (45)

(Fig. 37b). Thermal activations transform the discrete magnetization jump at Hn into
a continuous transition between positive and negative states. This regularization of
the hysteresis loop is particularly evident for values of β0 close to the lower stability
range of SD particles. On the other hand, in the case of stable SD particles with
β0 >> ln(τ /τ 0), where τ is the typical time required to measure a hysteresis loop,
p± increases abruptly before Hn is reached. The width of the transition from p± = 0
to 1 for stable SD particles made of magnetite (e.g., a 34 × 34 × 48 nm prism:
HK = 80 mT and β0 = 500) is comparable or smaller than the typical resolution of
hysteresis or FORC measurements (Fig. 38), so that the S-W hysteresis model with
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Fig. 38 Switching
probability p for a uniaxial
SD particle with ϕ = 45

◦
,

BK= 80 mT, and selected
values of β0, as a function of
Bn − | B |. Solid and dashed
lines are calculation based on
field sweep rates of 5 and 0.5
mT/s, respectively

101
0.0

0.5

1.0

Bn− |B| (mT)

p

β0 = 1500 500 200 100 50

two discrete magnetization jumps is still a good approximation of real SD particles
if Hn is replaced by Hsw = Hn − Hf, where Hf is the effective fluctuation field. In
analogy with the thermal blocking process of SD particles in a cooling rock [151,
152], Hf is found by equating the particle relaxation time with a characteristic time
of the field change. If the energy barrier is described by Eq. (43), Hf is the solution of

β(Hf) = − ln

[
3

2
β(Hf)

τ0α

Hf

]
, (46)

where α is the field sweep rate.
FORC measurements of thermally activated S-W particles can be modeled in

a similar manner as the hysteresis loop by solving the kinetic Eq. (44) under
consideration of the FORC protocol timing [116]. This includes different field
sweep rates from positive saturation to the reversal field, and during measurements,
as well as a pause at the reversal field (section “The FORC Protocol”). The FORC
signature or thermally activated, stable SD particles is similar to that of the S-W
model. The central ridge possesses a small intrinsic width [85], as well as a small
vertical offset due to the timing asymmetry of the FORC protocol [117], with more
time being spent at negative reversal fields than in positive fields (Fig. 39). This
means that Hf is larger for m+ → m− transitions occurring at Hr < 0 than for
the m− → m+ transitions occurring during FORC measurements in positive fields.
Accordingly, the central ridge occurs at H = −Hr + H+

f − H−
f , where H−

f is the
effective fluctuation field during measurements and H+

f the effective fluctuation
field for the negative field sweep to H. Figure 38 is a representative example for the
fluctuation field differences occurring for stable SD magnetite particles subjected to
field sweep rates that differ by one order of magnitude. The central ridge offset
H cr

u = H+
f − H−

f of stable SD magnetite particles is of the order of 0.01HK,
or ~0.5 mT, for typical magnetofossil-bearing sediments. The dependence of H cr

u
on Hc can reveal important details on the nature of different SD components. For
example, the presence of SD magnetite needles in magnetofossil-bearing sediments
from the Paleocene-Eocene Thermal Maximum is revealed by a distinctive peak
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Fig. 39 Central ridges produced by four groups of identical uniaxial SD particles with β0 = 30,
50, 100, and 300, respectively, whose easy axes form an angle of 60◦ with the applied field. Other
model parameters are 2 HK/second for the field sweep rate from positive saturation to reversal field,
with 0.2 s pause at the reversal field, 0.1 HK/second for the field sweep rate during measurements,
and τ 0 = 0.1 ns. The contribution of each group has been normalized by its peak value for
comparison purposes (contours at 1, 3, 10, 30, 60, and 90% of the peak value). Corresponding
marginal distributions along Hc, obtained by integrating the central ridge over Hu, are plotted
above the FORC diagram. The marginal distribution along Hu, obtained by integrating the central
ridge over Hc, is plotted on the left for β0 = 30. Notice the slight offset of toward positive Hu
values

of H cr
u at Hc ≈ 170 mT (Fig. 24), well beyond the typical vertical offset related

to conventional fossil magnetosome chains [119], due to the smaller mean needle
volume.

Thermally activated switching at | Hsw| < Hn increases the amplitude of the
magnetization jumps responsible for the central ridge and eliminates the singularity
of reversible contributions to the FORC function along Hc = 0 and Hu = 0,
since the slope of the hysteresis loop branches just before switching is no longer
infinite. In most cases, the intrinsic thickness of the central ridge remains equal
to or smaller than the measurement resolution, so that this signature is preserved
(Fig. 40). On the other hand, the regularization of reversible contributions eliminates
the vertical ridge along Hc = 0, yielding positive and negative contributions in the
lower quadrant, which are similar to those observed in sediments and rocks whose
magnetic signature is dominated by SD particles [94, 103] (Fig. 41).

The regularization of reversible contributions to the FORC function facilitates
the numerical isolation of the central ridge with the method described in section
“The Central Ridge”, because the small region of FORC space immediately above
and below the central ridge can be approximated by a broken linear function (Fig.
22). The total central ridge magnetization Mcr and the irreversible component Mirr
of the hysteresis of thermally activated SD particles with uniaxial anisotropy are
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Fig. 40 Effect of thermal fluctuations on the FORC signature of non-interacting uniaxial SD
particles. In this example, the particles have a lognormal microcoercivity distribution (logarithmic
mean, 54 mT; logarithmic standard deviation, 0.35). First row, descending hysteresis branch and
selected FORCs; second row, coercivity distributions derived from FORC measurements (DC
demagnetization, irreversible component of descending branch, and central ridge); third row,
FORC diagrams (quantile contours at 1, 2.5, 5, 10, and 50% of the total magnetization). (a) No
thermal fluctuations (same as Fig. 36c). (b) With thermal fluctuations causing a decrease of the
switching field by Bf = 5 mT for all particles. Notice the reduction of reversible contributions to
the FORC diagram and the elimination of the negative vertical ridge

comprised between 0.274Ms for the β0 → ∞ limit (Eq. 42) and 0.5Ms for the quasi-
rectangular hysteresis loops obtained when | Hsw| >> Hn. Natural materials often
contain additional contributions from interacting SD or non-SD particles, which are
distributed over the FORC space and overlap with the reversible contributions of SD
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Fig. 41 Reconstruction of the FORC signature of reversible magnetic moment rotation in uniaxial
SD particles. (a) High-resolution (δB = 0.4 mT) FORC diagram of a sediment sample from Wilson
Lake, New Jersey, deposited during the Paleocene-Eocene Thermal Maximum (see Fig. 24) after
subtraction of the central ridge (b) with VARIFORC (quantile contours every 10%). Notice the
asymmetry between positive contributions in the upper and lower quadrant, respectively. Because
the FORC function of uniaxial SD particles is zero in the upper quadrant, positive contributions
above Bu = 0 must be attributed to other magnetic carriers. (b) Isolated central ridge that has been
subtracted from the bulk FORC function to obtain the diagram in (a). (c) Reconstruction of the
FORC function produced by non-SD magnetic carriers, assuming it to be symmetric with respect
to Bu = 0. Dashed contours represent the extrapolated part obtained by reflection of the upper
quadrant about Bu = 0. (d) FORC signature of reversible magnetic moment rotation in uniaxial SD
particles obtained by subtracting the non-SD contribution in (c) from the FORC function in (a).
The result is almost perfectly symmetric about the Bc = −Bu diagonal, as expected for uniaxial
SD particles

particles. In this case, the central ridge is the only signature that can be rigorously
separated from remaining contributions without using additional assumptions about
the nature of the magnetic particles contributing to the observed signal.

Viscous SD Particles and the Vertical Ridge

Another FORC signature of thermally activated SD particle assemblages, in the
form of a vertical ridge along Hc = 0, is produced by relaxation effects near the
reversal field [114]. During field sweeping from positive saturation to a negative
reversal field Hr at a rate αr, particles with increasingly large switching fields are set



Magnetic Characterization of Geologic Materials with First-Order Reversal Curves 537

−0.2 0
0.0

0.5

1.0

H/HK

p
(H

K
,H

)

+0.2 −0.2 0

H/HK

+0.2

0

+1

−1

M
/M

s

(a) (b)

Fig. 42 Simulated FORC measurements for identical, thermally activated, uniaxial SD particles
with normalized zero-field energy barrier β0 = 25 and an angle ϕ = 60

◦
between easy axis and

applied field. The assumed field sweep rates to the reversal field and during FORC measurements
are αr = 2HK/sec ond and αm = 0.1HK/sec, respectively, with τ 0 = 0.1 ns. (a) Occupation
probability for the descending hysteresis branch (gray line) and FORCs (red lines) starting between
Hr/HK = −0.13 and −0.05 in steps of 0.01 (circles). The gap between the descending branch and
the FORCs is due to the viscous magnetization decay during the pause tr = 0.2 s at the reversal
field (dashed arrow). (b) Simulated FORC measurements obtained from (a). The hysteresis loop
obtained with a constant field sweep rate equal to αm is shown for comparison (dashed line).
Notice the small gap between the descending branch of the hysteresis loop and the FORCs, due to
the faster field sweep rate used to reach Hr in typical measurement protocols

to negative saturation. Once the reversal field has been reached, particles continue
to switch during the pause time tr, as well as during the first FORC measurement
steps, when the applied field is still very close to Hr, due to thermal activations (Fig.
42a). The result of this time-dependent process, also known as magnetic viscosity,
is a continuous decrease of the magnetization below the initial value obtained when
Hr has been just reached. The initial decrease occurring during the measurements of
the first few points produces concave curves (Fig. 42b) whose exact shape depends
on the distribution of energy barriers and the timing of the FORC protocol [114,
116, 117].

A rough approximation that helps in understanding the origin of the vertical ridge
and its dependence on the FORC protocol is given by

M(Hr,H) ≈ M0(Hr,H) + MV exp

(
− tr

τ
− H − Hr

Hf

)
, (47)

where M0 is the non-viscous magnetization, MV a viscous magnetization that decays
over time, τ the time constant of viscous decay, Hf(β0,αm) an effective fluctuation
field that depends on the energy barrier of the particles and the field sweep rate αm
during measurements, and tr the pause time at reversal. The mixed derivative of the
viscous term in Eq. (47) is an exponential function of the same form, so that, using
H − Hr = 2Hc, the corresponding viscous contribution to the FORC function is
given by
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Fig. 43 Simulated FORC measurements of randomly oriented, thermally activated, uniaxial SD
particles with lognormal-distributed microcoercivities (logarithmic mean, 125 mT; logarithmic
standard deviation, 0.2) and normalized zero-field energy barriers β0 = 72.5 (a), 36.2 (b), and
21.7 (c). First row, descending hysteresis branch and selected FORCs; second row, coercivity
distributions derived from FORC measurements (DC demagnetization, irreversible component of
descending branch, and central ridge); third row, FORC diagrams (quantile contours at 0.5, 1, 2, 5,
15, 40, 60, and 80% of the total magnetization). Data from Lanci and Kent [116]

ρvr(Hc,Hu) = MV
e−tr/τ

H 2
f

exp

(
−2

Hc

Hf

)
. (48)

The viscous magnetization MV is proportional to the number of particles that
are switched by the reversal field Hr, which is in turn proportional to the switching
field distribution at Hsw = −Hr. Using the central ridge distribution fcr(−Hr), Eq.
(32) is obtained. The most important aspects of these results are that the maximum
amplitude of the vertical ridge occurs at Hc = 0 and that the ridge amplitude is
reduced by the pause time tr, because of the viscous decay occurring before each
curve is measured.

Numerical simulations of particles with increasingly small energy barriers show
how the amplitude of the vertical ridge increases, while reversible contributions
decrease, due to the increasing squareness of thermally activated loops (Fig.
43). Furthermore, the central ridge moves to lower coercivities (Fig. 43b), until
significant contributions from particles that decay spontaneously in a null field start



Magnetic Characterization of Geologic Materials with First-Order Reversal Curves 539

to appear at Hc = 0 (Fig. 43c). At this point, thermal activations are sufficiently large
to switch some particles even before the field is reversed, so that the vertical ridge
extends to positive fields. As the energy barrier is further decreased, more particles
become SP, no longer contributing to the FORC diagram, and the few that still have
an open hysteresis loop are characterized by (Hc, Hu) → 0. This effect is clearly
demonstrated by measurements on growing magnetotactic bacteria [153, 154].

Weak Magnetostatic Interactions Between SD Particles

In discussing the FORC signature of uniaxial SD particles, it has been so far
assumed that they are completely isolated from each other. The lack of magnetic
interactions ensures that the local field acting on each particle coincides with the
external field applied during measurements. A good approximation of this condition
is obtained with particles that are well dispersed in a non-magnetic matrix, with
nearest-neighbor distances that are sufficiently large to make the external dipole
field associated with each particle negligibly small in comparison to the switching
field. If this condition is not met, each particle is subjected to an additional internal
field given by the sum of the dipole fields produced by all other particles, also
known as interaction field. Because of the random nature of particle positions
and orientations in geologic materials, the interaction field can be treated as a
stochastic variable Hi = H i + Hint with a mean and a random component [155].
The mean component H i often coincides with the demagnetizing field, in which
case it is proportional to the specimen magnetization, through a proportionality
constant depending on the specimen shape (section “Demagnetizing Fields and
FORC Deshearing”). The random component Hint is controlled mainly by the
position and magnetic moment orientation of nearest-neighbor particles. In the case
of randomly distributed SD particles with random magnetic moment orientations,
the random component parallel to any given measurement direction is described by
the symmetric, bell-shaped probability density function [85]

W(Hint; η,μs) = eα/β

πβ

√
1+H 2

int/α
2
K1

(
α
β

√
1 + H 2

int/α
2

)

α = πημs(1+ε)

12

[
ln

(
2+√

3
)

2
√

3
+ 1

]
, β = ημ2

s
54α(1+δ)

ε = 0.359arctan0.892 (12.15η) , δ = 3.2145
√
η e−7.07η,

(49)

where K1 is the modified Bessel function of the second kind; 0 ≤ η < 1 the packing
fraction, defined as the total volume occupied by the particles, divided by the total
volume of the specimen; and μs the spontaneous magnetization of the particles. The
width of Wincreases with the packing fraction, and the shape is comprised between
the limits of a Lorentz function for η << 0.05 and a Gauss function for η >> 0.05
(Fig. 44a). For η ≤ 0.1, the half-width-to-half-maximum (HWHM) of W, which is
a measure of the typical magnitude of Hint, is ∼0.363 η μs (Fig. 44b).
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Fig. 44 Random component of the interaction field produced by randomly distributed SD
particles. (a) Interaction field distributions for selected values of the packing fraction η. The upper
scale is the interaction field normalized by the spontaneous magnetization μs of the particles;
the lower scale is the unnormalized interaction field for magnetite particles (μs = 480 kA/m).
(b) Half-width-to-half-maximum (HWHM) of the interaction field distribution as a function of
the packing fraction for particles with randomly oriented moments, moments aligned with the
field direction, and random moments perpendicular to the field direction. The limits for η → 0
are 0.363 η(random), 0.455 η (aligned), and 0.319 η(perpendicular). Notice the onset of a weaker
dependence on η above η ≈ 0.1, especially in the case of aligned moments. Data from Egli [85]

In the Preisach-Néel model of interacting SD particles [6], Hint is assumed to
be independent from the bulk magnetization, so that the ensemble of interaction
fields acting on all particles, and thus the distribution of bias fields given by the
Preisach function, does not change during FORC measurements. The resulting
FORC function would contain a broadened central ridge of the form

ρcr(Hc,Hu) = fcr(Hc) W(Hu) , (50)

with vertical profiles proportional to the interaction field distribution W (e.g., Fig.
8b). In reality, the interaction field distribution depends on the magnetic moment
orientations and thus on the bulk magnetization [23]. In extreme cases, the magnetic
coupling between particles is sufficiently strong to promote a collective behavior,
as in chains of closely spaced SD particles [156] or in small clusters of densely
packed particles [129, 157]. The corresponding FORC signatures depend strongly
on the type of relation between bulk magnetization and Hint, which is in turn
controlled by the spatial arrangement of particles. Distribution anisotropy, which
is the directional dependence of interparticle spacing, plays a fundamental role:
for instance, linear arrangements, such as magnetosome chains, yield a collective
behavior that is equivalent to that of an isolated SD particle with uniaxial anisotropy
[94, 156], which is very different from that of SD particles confined in a plane [92].
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Therefore, a general description of interacting SD particles is possible only in the
case of weak magnetostatic interactions.

Weak magnetostatic interactions are defined by the preservation of individual
particle switching events: the change of Hint caused by the switching of one particle
will not induce other switching events. This condition is fulfilled if the typical
maximum amplitude of Hint, given, for instance, by the 90% quantile of W, does
not exceed the typical minimum switching field Hmin

sw of the SD particles, given, for
instance, by the 10% quantile of the coercivity distribution. The maximum packing
fraction of weakly interacting SD particles corresponding to the above definition is
η ≈ 0.4Hmin

sw /μs. In the case of magnetite particles with Hmin
sw = 20 mT, this limit

would be ~1.3%, which corresponds to typical interparticle distances equal to ~3
diameters. In the weakly interacting regime, W depends only marginally on the bulk
magnetization, with limit cases given by aligned magnetic moments (when a strong
field is applied) and magnetic moments perpendicular to the field direction (when
most particles are about to be switched) (Fig. 44b). Therefore, W is still described
by Eq. (49) with slightly different parameters [85].

The statistical independence of the interaction field from the bulk magnetization
does not mean that Hint does not change locally during FORC measurements;
however, it enables a general description of the evolution of Hint. Two limit cases
explain this situation when considering a random set of weakly interacting SD
particles with a distribution f (Hc) of switching fields. The first case describes the
behavior of a low-coercivity particle with Hc close to the lower end of f (Hc). During
the course of FORC measurements, there will be a reversal field Hr that is just
sufficient to switch this particle to negative saturation, when Hr = −Hint − Hc. The
same particle will be switched back to positive saturation during the measurement
of the curve starting at Hr, when the applied field H reaches −Hint + Hc. Because
Hc is small, most particles retain the same magnetic polarity during the field sweep
from Hr to H, so that changes of Hint are caused only by small reversible magnetic
moment rotations (Fig. 45a, b). Therefore, the irreversible magnetic behavior of this
particle is effectively described by a hysteron with constant bias field Hu = Hint
and contributes to the central ridge at a point with FORC coordinate (Hc, Hint). A
large number of similar low-coercivity particles record different realizations of the
random variable Hint, reproducing the interaction field distribution along Hu.

Consider now the opposite case of a high-coercivity particle with Hc close to
the upper end of f (Hc). Because of its large Hc, this particle will be switched
to positive or negative saturation only after most of the other particles have been
already switched. During the course of FORC measurements, the high-coercivity
particle is switched to negative saturation when the reversal field Hr = −H−

int − Hc

has been reached, where H−
int is the interaction field produced when all particles are

in a negative state. The same high-coercivity particle is switched back to positive
saturation during the measurement of the curve starting at Hr, when the applied
field H reaches −H+

int + Hc, where H+
int is the interaction field produced when all

particles are in a positive state. Because the magnetic moment of most particles is
rotated by 180◦ when the field is swept from Hr to H, H−

int ≈ −H+
int (Fig. 45c, d)

and the irreversible magnetic behavior of the high-coercivity particle is effectively
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Fig. 45 Schematic representation of the local interaction field Hint (blue arrows) when the selected
particle (red circle) is switched to negative (left plots) and positive (right plots) saturation. Red
arrows are the magnetic moments of neighbor particles and Hext is the external field. (a, b) Only
a small change of Hext is required to cycle a low-coercivity particle between positive and negative
saturation: in the limit case of a vanishingly small coercivity, the magnetic moments of most
particles and therefore Hint remain unchanged. (c, d) A high-coercivity particle is switched after
the other particles, so that negative and positive switching occur in antiparallel interaction fields
with similar amplitudes

described by a hysteron with switching fieldsHB = H+
int−Hc andHA = −H+

int+Hc.
This hysteron contributes to the central ridge at a point with FORC coordinates(
Hc − H+

int, 0
)
. Because positive and negative values of H+

int are equally likely, high-
coercivity particles with intrinsic coercivity close to Hc will contribute to the central
ridge at (Hc, 0), as if the interaction field would not exist.

With the above examples in mind, particles with intermediate coercivities are
exposed to an interaction field that can be divided into a fixed component generated
by particles with higher coercivity and a switching component generated by particles
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with lower coercivity. Vertical profiles of the central ridge are affected only by
the fixed interaction field component produced by the fraction F(Hc) of non-
switching particles given by the integral of the switching field distribution f (Hsw)
over Hsw > Hc and are thus proportional to W(Hu; ηF,μs) with W given by Eq.
(49). Because the shape of W is fixed at the low packing fractions required for weak
interactions, the central ridge is finally given by [85]

ρcr(Hc,Hu) = MrsS
f (Hc)

F (Hc)
W

(
Hu

F (Hc)
; η,μs

)
, (51)

where Mrs is the saturation remanence and S is the mean amplitude of normalized
magnetization jumps in single-particle hysteresis loops (section “Uniaxial SD
Particles: Stoner-Wohlfarth Model”). Because of the limits F(0) = 1 and F(∞) = 0,
vertical profiles of the FORC function possess the full width of the interaction field
distribution at Hc → 0 and null width at the high-coercivity end. This dependence
of the vertical spread of ρcr on Hc gives the FORC function typical teardrop-shaped
contour lines (Fig. 46), as seen in diluted SD particle assemblages [15]. Unlike in
the Preisach-Néel model, the coercivity and interaction field distributions cannot
be identified with horizontal and vertical profiles of the FORC function running
through the central maximum. A correct estimate of the coercivity distribution is
obtained from the marginal distribution corresponding to the integral of ρ(Hc, Hu)
with respect to Hu [122], while the interaction field distribution is represented by
vertical profiles of ρ at Hc values close to the left limit of the coercivity range (Fig.
46a–c). Vertical profiles are best evaluated by plotting a normalized version of the
FORC function, where each column of values is divided by the function value at
Hu = 0 (Fig. 46d). In this plot, contour lines give a direct measure of the narrowing
of vertical profiles as a function of Hc, with the left limit approaching the full width
of the interaction field distribution.

Real assemblages of interacting SD particles often display intermediate proper-
ties between those of the model illustrated above and the Preisach-Néel model, as
in the example shown in Fig. 47, which shows FORC measurements of extracted
magnetosomes dispersed in a non-magnetic matrix. In the upper quadrant of the
FORC diagram, which is unaffected by reversible contributions associated with in-

�
Fig. 46 FORC signature of a fully random assemblage of weakly interacting S-W particles. (a)
FORC function for a lognormal distribution of microcoercivities with a median of 0.2μs (~120
mT in the case of magnetite) and a logarithmic standard deviation of 0.4. Notice the different
normalizations for Hc and Hu, with μs being the spontaneous magnetization of the particles and
η the packing fraction. The corresponding full Hu range in the case of a 1% magnetite dispersion
is ±9 mT. (b) Vertical profiles (dashed lines) of the FORC function at Hc = 0.075μs and 0.115μs
(vertical dashed lines in (a)) and the interaction field distribution W. Profile 1 almost coincides with
W, while profile 2, which runs through the central maximum of the FORC function, is narrower. (c)
Horizontal profile of the FORC function at Hu = 0 (dashed line) and switching field distribution
f (Hc). (d)FORC function, normalized by its value at Hu = 0: contour lines show the decreasing
width of vertical profiles as a function of Hc. Data from Egli [85]
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Fig. 47 FORC signature of magnetostatic interactions for a sample containing prismatic magne-
tosomes extracted from cultured magnetotactic bacteria, strain MV-1 (data from Wang et al. [140]).
(a) FORC diagram with quantile contours at 5, 10, 20, 30, 40, 50, 60, 70, 80, and 90% of the total
magnetization. Notice the teardrop shape of the contours, which is typical for random assemblages
of interacting particles, and the negative region produced by the reversible rotation of magnetic
moments in the applied field. (b) Same as (a), after normalizing each column of values with the
maximum FORC amplitude (at Hu ≈ 0) in the same column. Contours at 5, 10, 20, 40, 60, and
80% of the maximum amplitude. These contours show the narrowing of vertical profiles of the
FORC function at higher coercivities

field magnetic moment rotation, the width of vertical profiles decreases towards
the high coercivity end, but not to the same extent predicted by Eq. (47). Instead,
there is a rapid decrease from a HWHM value of ~15 mT at Hc = 0 to ~8 mT at
Hc = 10 mT, followed by a much slower decrease at higher fields. The 0–10 mT
coercivity range is likely associated with clusters of strongly interacting immature
magnetosomes, while the remaining range is covered by weakly interacting mature
crystals or chain fragments. The weaker dependence on Hc can be explained by
assuming a certain degree of heterogeneity in the sample: if similar structures, such
as chain fragments with higher coercivities, form separated clusters, interactions
within individual clusters with different coercivities will produce a superposition of
magnetostatic interaction signatures, which tend to homogenize the Hc-dependent
vertical spread of the central ridge.

Mean-Field Interactions

As seen in section “Weak Magnetostatic Interactions Between SD Particles”, mag-
netostatic interaction fields can be represented by the sum of a random component
with zero expectation and a deterministic component, called mean interaction
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field. The mean interaction field has two sources: the demagnetizing field (section
“Demagnetizing Fields and FORC Deshearing”) and distribution anisotropy [83,
155, 158–160]. Distribution anisotropy arises when the mean distance between
particles is direction dependent. In both cases, the mean interaction field H i =
αM is proportional to the bulk magnetization through a positive or negative
proportionality coefficient α.

So-called magnetizing interactions are characterized by α > 0 and tend to
stabilize the existing magnetization. Magnetizing interactions decrease the coercive
field and make the hysteresis loop more squared, because the internal field amplifies
external field variations. The central ridge is offset toward the lower quadrant
(Fig. 48a). This offset, which is most pronounced at the lower coercivity end and
disappears at the higher coercivity end, is explainable by the fact that low-coercivity
particles are switched back to positive saturation in a positive mean field caused
by the positive bulk magnetization. The central ridge offset declines at higher
coercivities in the same manner as the vertical spread caused by random interactions,
because high-coercivity particles are switched to negative saturation and back to
positive saturation in internal fields of similar amplitude but opposite sign (section
“Weak Magnetostatic Interactions Between SD Particles”). A boomerang-shaped
pair of positive and negative lobes appears below the central ridge, extending along
45◦ diagonals that departs from the central maximum (Fig. 48a; see also Fig. 31b
for another example). If a random interaction component is also present, vertical
smearing of the central ridge and the boomerang-shaped lobes yields a positive
central maximum and a minor, negative minimum located just below, respectively
[161].

Demagnetizing interactions are characterized by α < 0 and tend to destabilize
or destroy the existing magnetization. The effects of demagnetizing interactions
on hysteresis and on the central ridge are opposed to those of demagnetizing
interactions. The hysteresis loop is stretched along the field axis, and the apparent
coercivity increases, because the internal field acts as a partial shield against the
external field. The central ridge possesses a positive vertical offset at the low-
coercivity end (Fig. 48b). This offset is explainable by the fact that low-coercivity
particles are switched back to positive saturation when bulk mean magnetization is
positive, so that a negative internal field needs to be overcome. The remaining parts
of the FORC diagram are not simply complementary to the magnetizing interactions
case: instead, positive contributions to the FORC function appear below the low-
coercivity end of the central ridge along a sort of wishbone structure [92], along
with a small negative peak below the high-coercivity end of the central ridge.

In both cases, FORC contributions below the central ridge originate from the
differential compression or expansion of reversible magnetization changes before
the curves merge with the upper branch of the major hysteresis loop. Curves starting
at different reversal fields are affected by different internal fields, proportionally to
the difference in bulk magnetization, and these internal field differences produce
different biases of single-particle hysteresis loops.

Strong mean-field interactions are often encountered in patterned structures
[155], such as thin films [144] and particle arrays [92] used in magnetic memory
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Fig. 48 Effect of mean-field interactions on the magnetic properties of the uniaxial SD particles
shown in Fig. 40. The mean internal field is given by μ0H i = αM/Ms with (a) α = +0.015 for
magnetizing interactions and (b) α = −0.05 for demagnetizing interactions. Top: major hysteresis
loop and simulated FORC measurements for selected reversal fields. Bottom: corresponding FORC
diagrams with quantile contours at 5, 10, 20, 30, 40, 50, 60, 70, 80, and 90% of the total
magnetization

devices, because of their distribution anisotropy. The dispersion of SD particles in
natural materials, on the other hand, is much more random and lacks the long-
range distribution anisotropy of engineered materials. Magnetic grains embedded
in a host mineral that imparts a long-range order represent an exception. Examples
include exsolution of magnetic phases during rock cooling [162, 163] and magnetic
particle growth by iron diffusion along dislocations and cracks [164]. The random
arrangement of host crystals containing such inclusions causes the superposition
of signatures associated with different degrees of magnetizing and demagnetizing
interactions, whose effect is not identical to that of random interactions. While
positive and negative vertical offsets of the central ridge produce the Hc-dependent
vertical spread of random interactions (section “Weak Magnetostatic Interactions
Between SD Particles”), the mean-field FORC signatures shown in Fig. 48 combine
into complex patterns that break the symmetry between upper and lower quadrants.
Strong mean-field interactions produce collective particle behaviors with different
characteristics, to the point that the resulting magnetic properties are no longer
identifiable with those of interacting SD particles. Notable examples include
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magnetosome chains, which are distinguishable from isolated, uniaxial SD particles
only on the basis of their coercivity distribution [94, 165], and small dense clusters,
which share the same signature of larger particles hosting a single magnetic vortex
[129]. These examples can be considered as extreme cases of the moving Preisach
model [22], where small magnetization changes triggers avalanche processes that
tend to reinforce (regenerative effects) or cancel (degenerative effects) the original
magnetization change [9].

SD Particles with Multiaxial Anisotropy

SD particles with uniaxial anisotropy possess a maximum of two stable magnetiza-
tion states determined by a single axis of preferred magnetization, called the easy
axis. In the absence of external fields, the magnetic moment is parallel or antiparallel
to this axis. Uniaxial anisotropy might be intrinsic to the crystal structure, as
in cobalt, or it might be produced by particle elongation. Multiaxial anisotropy,
on the other hand, is characterized by the presence of more than one preferred
magnetization axis related to the crystal structure, to complex particle shapes [166],
or both.

Above the Verwey transition temperature (125 K), magnetite possesses a cubic
magnetocrystalline anisotropy with easy axes parallel to the four 〈111〉 crystal axes
(Fig. 49). The associated anisotropy energy per unit of volume is given by

E = K1

(
α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1

)
+ K2α

2
1α

2
2α

2
3 (52)

where αk = ck · u is the angle between the magnetization direction u and the
k-th 〈100〉 axis ck of the crystal and K1, K2 are the cubic anisotropy constants
(K1 = −13.5 kJ/m3 and K2 = −2.8 kJ/m3 at room temperature [167, 168]).
Magnetostriction, which is the magnetocrystalline anisotropy change caused by
magnetization-induced crystal deformation, is negligible for the size range of SD
magnetite particles [169], so that the magnetic properties are entirely determined
by the particle shape and by the crystal axes orientations relative to shape. Partial
cancelling effects of the two anisotropy sources in nearly equidimensional, often
irregularly shaped SD magnetite particles [170, 171] produce complex configura-
tions with several easy axes or planes. This situation is best illustrated by treating
the two anisotropy sources separately at first.

Irregular particle shapes can be approximated, to first order, by triaxial ellipsoids
with axes a ≥ b ≥ c, for which it is possible to calculate a triaxial demagnetizing
tensor D [141] with corresponding shape anisotropy energy

E = μ0

2
M · D · M (53)

per unit of volume, where M is the magnetization vector. The uniaxial shape
anisotropy of S-W particles is a particular case corresponding to shapes that can
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Fig. 49 Spherical plot of the
cubic magnetocrystalline
anisotropy energy of
magnetite. The energy is
minimal along the four 〈111〉
axes and maximal along the
three 〈100〉 axes

be modeled by a prolate rotation ellipsoid (a > b = c). In this case, the easy axis is
parallel to the longest axis of the ellipsoid. Oblate ellipsoids with rotation symmetry
(a = b > c) yield an easy plane, instead of an easy axis, in which the magnetic
moment is unconstrained. Such particles do not possess a stable magnetization
since infinitesimal fields can rotate the magnetic moment within the easy plane. The
corresponding hysteresis loop is completely closed and discontinuous at H = 0.
Triaxial ellipsoids possess an easy axis parallel to a, but the lack of rotation
symmetry creates a preferred plane through the intermediate axis, in which the
magnetic moment is rotated. Particles with pronounced uniaxiality, produced by
preferential growth along one crystallographic direction, are well approximated by
the prolate rotation ellipsoid of the Stoner-Wohlfarth model (section “Uniaxial SD
Particles: Stoner-Wohlfarth Model”) because dimensional differences between the
minor axes and the contribution of magnetocrystalline anisotropy are negligible for
elongations in excess of ~1.2.

On the other hand, the anisotropy of particles formed by a uniform growing
mechanism is dictated by random differences between the principal axes. As a result,
these particles are representable by a quasi-spherical ellipsoid whose principal
axes lengths are random realizations of a single random variate representing the
particle size. A large collection of such particles contains cases with arbitrarily
small anisotropy, whose abundance is inversely related to the width of the size
distribution. Accordingly, more equidimensional particles are obtained in case
of well-constrained axes lengths. Because of the lack of a minimum uniaxial
anisotropy threshold, particles can have a vanishing coercivity even without thermal
relaxation. The corresponding FORC diagram shares the same properties of S-W
particles—a central ridge and positive-negative contributions in the lower quadrant,
antisymmetric about the Hu = −Hc diagonal—but they are characterized by
an exponential-like coercivity distribution peaking at Hc = 0 (Fig. 50a). As a
consequence of the lack of a minimum coercivity, the hysteresis loop and the
FORC measurements have discontinuous first derivatives at H = 0. The simulation
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Fig. 50 Simulated magnetic properties of non-S-W SD particles with no thermal relaxation. Top:
major hysteresis loop and simulated FORC measurements for selected reversal fields. Middle:
three coercivity distributions obtained from FORC data subsets. Bottom: FORC diagrams with
quantile contours at 2.5, 5, 10, 20, 30, 40, 50, 60, and 80% of the total magnetization. (a) One
million randomly oriented, quasi-equidimensional magnetite-like particles (μs = 480 kA/m) with
no magnetocrystalline anisotropy and shape anisotropy corresponding to triaxial ellipsoid shapes
with principal axes of length ai = a0(1 + δa), where a0 is an arbitrary diameter and δa the random
realization of a Gaussian random variate with zero expectation and a standard deviation of 0.08.
(b) Randomly oriented, perfectly equidimensional magnetite particles (μs = 480 kA/m) with cubic
magnetocrystalline anisotropy (K1 = −13.5kJ/m3, K2 = −2.8kJ/m3)

results of Fig. 50a are remarkably similar to the FORC diagram of dispersed
equidimensional magnetosomes (Fig. 26); however, isolated magnetosomes are
affected by thermal relaxation, as seen from the absence of the signature of
reversible magnetic moment rotation in the lower quadrant.

Consider now magnetite particles with cubic magnetocrystalline anisotropy
only. In this case, particles have up to four pairs of stable magnetization states,
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depending on the applied field, instead of one pair as with triaxial shape anisotropy.
In a null external field, these states correspond to the magnetic moment being
parallel or antiparallel to one of the four 〈111〉 crystal axes. If the crystals are
randomly oriented, the maximum angle θ of the closest 〈111〉 axis to any given
direction is comprised in a spherical triangle with sides limited by θ < π /4 and
θ < arctan(sechθ ), instead of θ < π /2, as for uniaxial anisotropy [172]. This
means that the saturation remanence is built by magnetic moments with a lesser
angular scatter relative to the direction of the applied field, resulting in a remanence
ratio Mrs/Ms ≈ 0.832 instead of 0.5. The corresponding hysteresis loop is more
squared than that of S-W particles (Fig. 50b). The maximum switching field is
Bmax

c = 4|K1|/3Ms ≈ 37.5 mT [173], which corresponds to a coercivity of ~11
mT in the case of randomly oriented crystals. The additional easy axes introduce
intermediary transitions between positive and negative saturation, which are marked
by magnetization jumps occurring within a narrow field range around +6.5 mT (Fig.
50b). The difference in jump amplitude and position between consecutive curves
produces a positive-negative doublet of diagonal ridges in the lower quadrant of
the FORC diagram, which merge with the central ridge at (Bc, Bu) ≈ (7, 0) mT.
After jumping to an intermediate easy axis, the magnetic moment vector rotates
further until the final jump to the easy axis closest to the positive field direction
occurs, contributing to the central ridge. The spaces between the ridges merging at
(Bc, Bu) ≈ (7, 0) mT, and left of the diagonal ridge contain positive and negative
contributions from reversible magnetic moment rotation.

A slightly less complex signature is obtained in the case of particles with a
distribution of cubic anisotropy constants, due, for instance, to cation substitution
[174]. In this case, the central ridges of particles with different anisotropy constants
add constructively, while replicas of the diagonal ridge doublet departing at different
values of Hc tend to be smoothed out, leaving a negative contribution below the
low-coercivity end of the central ridge. Even so, the FORC signature of cubic
anisotropy is easily overshadowed by shape anisotropy. Numerical simulations
of nearly equidimensional magnetite particles with mixed anisotropy and random
reciprocal orientations of shape and crystalline axes, which are representative of
irregular shapes with no preferential growth directions, display a characteristic
FORC signature that is not a simple superposition of the two cases discussed above
(Fig. 51). This distinct signature is caused by complex energy landscapes created by
the sum of the energy contributions in Eqs. (52) and (53).

The central ridge fcr does not feature a minimum coercivity threshold, as it might
be expected from magnetocrystalline anisotropy, nor does it peak at Hc = 0 as
it would be expected from the lack of a minimum uniaxial anisotropy. Instead, a
Gaussian-like coercivity distribution is obtained, which extends between Hc = 0,
where fcr(0) = 0, and a maximum coercivity value determined by the maximum
ratio a/cbetween the longest and the shortest ellipsoid axes. The lack of zero-
field switching events imposed by fcr(0) = 0 eliminates the slope discontinuity of
magnetization curves at H = 0, which characterizes SD particles with the same
shape but no magnetocrystalline anisotropy. The characteristics of the other two
coercivity distributions are affected by irreversible transitions between magnetic
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Fig. 51 Simulated magnetic
properties of nearly
equidimensional magnetite
particles with no thermal
relaxation and coexisting
shape and magnetocrystalline
anisotropies with same
characteristics as in Fig. 50.
Top: major hysteresis loop
and simulated FORC
measurements for selected
reversal fields. Middle: three
coercivity distributions
obtained from FORC data
subsets. Bottom: FORC
diagrams with quantile
contours at 2.5, 5, 10, 20, 30,
40, 50, 60, and 80% of the
total magnetization. The
dashed lines represent the left
limit of the memory region
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states occurring already before the field direction is reversed, as seen by the fact
that firr, the coercivity distribution associated with the irreversible component of the
ascending hysteresis branch (section “Selected Properties of the FORC function”),
extends to negative fields. Interestingly, such transitions require the presence of
both magnetocrystalline and shape anisotropy since they are not observed from
the separated simulations of Fig. 50. These transitions can be explained by the
existence of magnetic states with no zero-field stability, caused by the complex
energy landscape resulting from the superposition of two anisotropy sources with
different symmetry. As far as the saturation remanence is concerned, part of it is
unstable and can be switched in arbitrarily small fields, as seen from the fact that
fdcd > 0.
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Magnetic states without stable remanence are associated with positive amplitudes
of the FORC function outside of the memory region, especially in the upper
quadrant (Fig. 51). These states represent the extension of a continuous contribution
located around the low-coercivity end of the central ridge. In the upper quadrant,
the FORC function is sharply terminated at Hc ≈ 18 mT, while a wider distribution
of Hc values is covered in the lower quadrant, up to ~40 mT. The extension of
the central ridge beyond this limit is caused by few particles whose uniaxial shape
anisotropy is large enough to suppress other magnetic states.

Thermal activations are expected to eliminate magnetic states with smallest
energy barriers, such as those associated with the flat energy landscape resulting
from certain superpositions of shape and magnetocrystalline anisotropy in non-
elongated, irregularly shaped SD particles. The resulting FORC diagram should
contain less non-central ridge contributions; however, their preferential occurrence
around the low-coercivity tail of the central ridge should not change. Indeed,
remarkably similar FORC signatures have been found in ferromanganese nodules
from the Western Pacific Ocean containing equidimensional (e.g., octahedral-like)
magnetite crystals with a median size of ~60 nm [175]. The central ridge peak
of these nodules at <20 mT suggests that these SD crystals are not arranged in
linear chains, as expected for preserved magnetofossil structures. Non-central ridge
contributions qualitatively similar to those of Fig. 51 might also be confused with
those of magnetic particles hosting a single vortex (section “Two-State Magnetic
Systems”), so that attention must be paid to details, such as the peak position of
the central ridge, the shape of vertical profiles across the central ridge, and the field
ranges covered by other FORC features.

Selected Natural Examples

Sediments and rapidly cooled rocks might contain abundant SD particles; however,
grain sizes are rarely so well constrained to be entirely within the relatively narrow
SD stability range [176–179], so that SD FORC signatures get unavoidably mixed
with the contribution of particles with other domain states. The selection of cases
with dominant SD contributions is therefore pivotal for understanding the signature
of natural SD particle assemblages with different origins. Physical [180–182] and
chemical [103, 183] separation techniques can be used to obtain SD endmembers
that can serve as reference for numerical unmixing techniques, such as coercivity
analysis and FORC-PCA.

Lithogenic SD magnetite is rarely so well dispersed to display the theoretical
features of S-W particles discussed in previous sections. A notable exception is
represented by some rapidly cooled glasses, such as the Tiva Canyon Tuff on
Yucca Mountain (Nevada), which contains Ti-substituted magnetite needles with
average lengths increasing from 15 nm (mostly SP) at the base of the sequence
to >50 nm at the top (stable SD) [184]. The corresponding FORC diagrams [117]
feature a central ridge and, depending on the degree of magnetic viscosity, the
thermal relaxation features discussed in section “Viscous SD Particles and the
Vertical Ridge”. In most cases, the central ridge represents a minor or negligible
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contribution to the total magnetization, even when contributions from larger PSD
particles are practically absent, like for the silicate-hosted magnetic minerals [180]
shown in Fig. 52a. In this case, contour lines are slightly teardrop-shaped, as
expected for a heterogeneous assemblage of weakly interacting SD particles (section
“Weak Magnetostatic Interactions Between SD Particles”), where individual silicate
grains might host ferrimagnetic inclusions with different mean coercivities and
concentrations. Even fine-grained lithogenic inputs, such as those isolated from a
pelagic carbonate through selective dissolution of magnetofossils [103], contain
a distribution of grain sizes that is sufficiently wide to include non-SD particles
(Fig. 52b), as seen from traces of a typical PSD signature (section “Multistate
Systems: The PSD FORC Signature”) outlined by low-amplitude contour lines. In
this example, contour lines over the upper quadrant show a continuous transition
from a teardrop shape for large amplitudes near the central ridge, which might
be attributed to magnetostatic interactions, to divergent, triangular-shaped low-
amplitude contours which are typical of PSD particles. Because of the lack of
a precise control of the aspect ratio, lithogenic SD magnetite particles display a
wide range of coercivities, from Hc = 0 to >100 mT. Corresponding coercivity
components are therefore characterized by dispersion parameters of 0.35–0.5, well
above the 0.1–0.3 range of coercivity components associated with biogenic or
authigenic SD magnetite [84].

Natural high-coercivity minerals, such as pyrrhotite (Fe7S8, μs ≈ 80 kA/m),
hematite (α-Fe2O3, μs ≈ 2.5 kA/m), goethite (α-FeOOH, μs ≈ 2 kA/m), and
epsilon-maghemite (ε-Fe3O4, μs ≈ 80 kA/m), possess a much smaller spontaneous
magnetization than magnetite, so that magnetostatic interactions are proportionally
reduced. FORC measurements of SD pyrrhotite, hematite, and goethite are generally
dominated by a central ridge that might extend to fields >0.5 T [111, 113], well
above the theoretical upper limit of 0.3 T for magnetite, if not excessively lowered
by thermal relaxations. Sediments often contain variable amounts of secondary
hematite or goethite particles, which contribute to a low-amplitude central ridge that
begins to emerge near the high-field limit of regular FORC measurements (usually
0.12–0.15 T) and continues to much higher fields (Fig. 52c). These high-coercivity
SD contributions are not easily detectable with FORC measurements for three main
reasons: (1) the ~200 times smaller spontaneous magnetization of the associated
minerals and their wider coercivity distributions result in much lower amplitudes
of the FORC function, (2) high-field FORC measurements need to be performed
at a lower resolution to keep the total measurement time within reasonable limits,
and (3) measurement noise tends to increase at large fields. Therefore, high-
coercivity minerals remain mostly undetected in conventional FORC diagrams.
Other experimental protocols are better suited to the characterization of these
minerals: one of them is based on logarithmically spaced remanence measurements
of the Preisach function and has been used to resolve the central ridge of exsolved
hematite-ilmenite systems [18].

Secondary magnetite particles formed in sedimentary environments are gaining
increasing attention because of their importance as paleoenvironmental indicators
[32] and as magnetic carriers in continuous records of past variations of the Earth
magnetic field [186, 187]. Secondary magnetite might precipitate inorganically
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Fig. 52 FORC diagram examples of lithogenic fractions containing mainly SD particles. Each
panel shows three coercivity distributions obtained from FORC measurement subsets (top) and
the FORC diagram (bottom). (a) Silicate-hosted magnetic minerals separated from bulk sediment
from the Northern Pacific Ocean, ~100 km offshore from central Japan, using a Frantz isodynamic
magnetic separator (data from Chang et al. [180]). Contours are drawn at 5% and 10–90% quantiles
in steps of 10%. (b) Pelagic carbonate sediment from the Equatorial Pacific, from which free-
standing iron oxide crystals <1 μm in size (mainly magnetofossils) have been selectively dissolved
with a citrate-bicarbonate-dithionite treatment (data from Ludwig et al. [103]). Magnetic particles
surviving the chemical treatment are larger than the upper SD size limit and/or embedded into
silicate minerals. Contours are drawn at 10–90% quantiles in steps of 10%. (c) Fluvial sediment
containing a large fraction of high-coercivity minerals, probably a mixture of hematite and goethite
(data from Scheidt et al. [185]). Contours are drawn at 20–80% quantiles in steps of 20%
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[188, 189], often through redox reactions promoted by dissimilatory metal-reducing
bacteria [190], or it is produced intracellularly by magnetotactic bacteria [191].
The tendency of SD magnetite synthesized in aqueous solution to form clumps
[170], the occurrence of magnetite particle clusters around dissimilatory metal-
reducing bacteria [190] and on the surface of primary minerals being reduced [192],
and the once-believed widespread reductive dissolution of magnetosomes produced
by magnetotactic bacteria [193, 194] led originally to the common belief that
secondary magnetite would display the classical Preisach signature of magnetostatic
interactions. Early FORC measurements, which were based on relatively large
field steps of the order of 2–5 mT, apparently supported the interacting nature
of sedimentary SD signatures [16], because processing-related smoothing effects
(see section “The Central Ridge”) were masking the presence of a central ridge.
Only after the introduction of high-resolution FORC measurements [94] and a re-
evaluation of existing data [106] did it become evident that many sediments contain
a central ridge with a negligibly small intrinsic width. This ridge is produced only by
SD particles that are well dispersed in the sediment matrix, either in isolated form
or as magnetosome chains representing the fossil remains of magnetotactic bacteria.
The minimum distance between isolated particles or magnetosome chains imposed
by the sharpness of the central ridge is of the order ~9 times their length [103].

FORC measurements of the bulk material cannot discriminate between primary
and secondary SD magnetite crystals; however, measurements of the same material
before and after selective dissolution of ultrafine iron oxides reveal that the central
ridge is mostly associated with particles directly dispersed in the sediment matrix,
rather than lithogenic magnetite inside insoluble silicate minerals [103]. While the
bacterial origin of SD magnetite contributing to central ridge in many freshwater
and marine sediments has been widely confirmed by the direct observation of
abundant magnetofossils in magnetic extracts [106, 195], the contribution of other
formation pathways, in particular dissimilatory iron reduction [196], is still uncer-
tain. Soils provide a useful comparison term, because the concentration of viable
magnetotactic bacteria in pedogenic horizons is too low to explain the observed
SD magnetite concentrations [197]. Early FORC measurements of fossilized soils
(paleosols) from North America [101] hinted to the presence of a central ridge with
properties similar to models of non-interacting viscous particles [87, 116]. Modern
high-resolution measurements (Fig. 53a) confirm these findings: the central ridge
coercivity distribution fcr peaks at Hc < 20 mT, as expected for the irregularly
shaped, nearly equidimensional magnetite particles extracted from soils [199], and
is compatible with the pedogenic coercivity component “P” of fossil and modern
soils obtained with numerical unmixing methods [84, 198]. The FORC signature
remaining after subtraction of the central ridge is typical of larger lithogenic
magnetite particles and coincides with that of the parent material on which the soil
is formed [101].

The central ridge of typical magnetofossil-rich sediments (Fig. 53b) peaks at 30–
40 mT, and its coercivity distribution contains two narrow coercivity components
[94, 103], originally called “biogenic soft” (BS) and “biogenic hard” (BH), which
can be associated to chains of equidimensional and elongated magnetosomes,
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Fig. 53 FORC examples of sediments containing significant amounts of secondary SD magnetite
particles. (a) Well-developed Paleosol S1 from the Chinese Loess Plateau (Spassov et al. [198])
(specimen courtesy of S. Spassov). (b) Magnetofossil-rich sediment from Lake Baldeggersee
[84]. Top row: three coercivity distributions obtained from high-resolution FORC measurement
subsets. Arrows point to the coercivity distribution peaks of the magnetic components “pedogenic
magnetite P” [84, 198], “biogenic soft BS,” and “biogenic hard BH” [84] contributing to the central
ridge. Middle row: FORC diagrams. Bottom row: FORC diagram after removing the central ridge.
Same contour levels (at 10–90% quantiles of the total magnetization in steps of 10%), same color
scale, and same field scales have been used for ease of comparison

respectively [84, 200–202]. Intact magnetosome chains are expected to possess a
minimum level of uniaxial anisotropy, owing to the chain geometry [135, 202],
which, together with the strict magnetosome size control within the stable SD size
range [177, 178], excludes contributions at or close to Hc = 0. In this case, the
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0–10 mT coercivity range must be controlled by isolated, nearly equidimensional
magnetite particles similar to those found in soils. Unlike the case of soils, the non-
central ridge signature of magnetofossil-rich sediments is not exclusively associated
with lithogenic particles, as it contains contributions from partially collapsed
and multi-stranded magnetosome chains [135, 202] (section “Two-State Magnetic
Systems”). The two examples shown in Fig. 53 illustrate the importance of high-
resolution FORC measurements and proper processing for a clear identification of
the central ridge and its quantitative analysis.

The Pseudo-Single-Domain Magnetic Behavior

The magnetic properties of ferrimagnetic particles are strongly affected by their
size, with well-defined limits represented by single-domain (SD) and multidomain
(MD) crystals. Certain minerals, such as magnetite, possess a size range with
intermediate properties, which has been called pseudo-single domain (PSD). This
term has been originally introduced by Stacey [203, 204] to describe ~0.2–3 μm
magnetite particles that are too large to be SD, yet they hold a relatively intense
and very stable thermoremanent magnetization, in contrast to MD particles [31].
Because of the limited grain size range of stable SD magnetite (~30–100 nm), PSD
particles represent the most common recorders of the Earth magnetic field in rocks.

When applied to magnetic properties, the term “PSD” empirically describes a
continuous transition between SD and MD endmembers. This transition is captured,
for instance, by the hysteresis shape parameters Mrs/Ms and Hcr/Hc used in the
so-called Day diagram [34, 205] (Fig. 54). Rectangular hysteresis loops typical of
SD particles have elevated remanence ratios (Mrs/Ms ≈ 0.5 in the case of uniaxial
anisotropy and random orientations) and coercivity ratios (Hcr/Hc) close to 1. MD
particles, on the other hand, are characterized by almost closed hysteresis loops
with Mrs/Ms << 0.5 and Hcr/Hc >> 1. Bulk samples containing PSD particles
in the ~0.2–3 μm size range feature intermediate properties, usually limited by
0.02 < Mrs/Ms < 0.5 and 2 < Hcr/Hc < 5. These limits form the so-called PSD range
of the Day diagram (Fig. 54). The PSD range can also be populated by strongly
interacting SD particles [211], as well as binary or ternary mixtures of SP, SD, and
MD particles [212, 213]. It is therefore not surprising that most geologic materials
plot within the PSD range, with lower and upper Mrs/Ms limits given by theoretical
SD-MD and SD-SP mixing trends, respectively [205]. A similar ambiguity exists
with any other domain state indicator based on bulk magnetic parameters [33, 35],
so that the term “PSD behavior” instead of “PSD particles” is more appropriate for
describing bulk magnetic measurements that do not unambiguously indicate a SD
or a MD signature.

Despite the indefiniteness of PSD-like magnetic properties, there is a well-
defined third magnetic state for magnetite particles with intermediate size ranges,
which explains the PSD behavior originally described by Stacey. From the micro-
magnetic point of view, ferrimagnetic materials can be classified with the help of
two fundamental parameters: the magnetic hardness
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lines represent mixing or grain size trends after Dunlop [205]. A pseudo-logarithmic scale has
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represent measurements of bulk samples containing (1) SD particles with increasing degrees
of magnetostatic interactions (data from Moskowitz et al. [206] and Li et al. [207]) and (2)
magnetite particles with a PSD or MD FORC signature (data from sample V1 in Ludwig et al.
[103]; core R41 in Lascu et al. [208]; sample Har7 426.5 in Church et al. [18]). Small diamonds
represent micromagnetic simulations of individual silicate-hosted magnetite crystals whose exact
shape has been determined using focused ion beam nanotomography (data from Nikolaisen et al.
[209]). The domain states of these particles (SD or PSD) have been determined according to the
presence or the lack of magnetic vortices in simulated hysteresis loops. Large symbols represent
the bulk properties of particle assemblages with well-defined properties, which include, in the
case of SD particles, micromagnetic simulations of magnetosome chains [201], measurements
of closed loops of equidimensional magnetosomes produced by the �mamJ�limJ�islet mutant
of M. magneticum [201], and measurements of small clusters of equidimensional magnetosomes
produced by the �mamJmutant of M. gryphiswaldense [129] and, in the case of single-vortex
particles, measurements of metallic iron nanodots [210]

κ =
√

|K|
μ0μ2

s
(54)

defined as the dimensionless ratio of magnetocrystalline anisotropy (K) to dipole
(μ0μ

2
s ) energy and the exchange length
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lex =
√

A

μ0μ2
s
, (55)

which is based on the ratio of exchange constant A to the dipole energy [214,
215]. Magnetically soft materials, such as magnetite (κ = 0.2), are characterized
by κ < 1. Relevant dimensions of magnetic structures can be expressed by these two
quantities. Of particular importance here are the Bloch wall width δw = π lex/κ ,
which is the typical width of a domain wall, and the maximum size Rsd ≈ 36 κ lex
of a SD particle. If Rsd > δw, increasing the size of a particle produces a direct
transition from a homogeneously magnetized SD state to a MD configuration as
soon as there is enough volume to accommodate a domain wall. If, on the contrary,
Rsd < δw, particles whose sizes are comprised between Rsd and δw are too large to be
homogeneously magnetized, but too small to accommodate a domain wall. Instead,
they will host a so-called magnetic vortex [216], in which the magnetization vectors
form a circular pattern around a so-called vortex tube with axial magnetization
(Fig. 55). The vortex configuration reduces the stray field energy of the particle
by minimizing the area over which magnetization vectors are not parallel to the
surface, compatibly with an increase of the exchange energy in the vortex tube,
where the magnetization is strongly inhomogeneous. The formation of magnetic
vortices is hindered by magnetocrystalline anisotropy, which tend to keep the
magnetization direction parallel to one of the easy axes. Because the reduction
in stray field energy is proportional to μs and the increase in magnetocrystalline
anisotropy energy is proportional to | K |, the existence of vortices depends on
κ , the ratio between these two quantities, with the Rsd > δw condition yielding
κ <

√
π/36 ≈ 0.3. Magnetite particles (κ = 0.2) feature magnetic vortices over

a range of sizes above Rsd. Sometimes, a few magnetic vortices coexist in particles
with irregular shapes, especially elongated ones [209]. As the particle size increases,
the volume outside vortex tubes tends to split into regions where the magnetization
direction is sub-parallel to one magnetocrystalline easy axis. These regions can be
effectively regarded as magnetic proto-domains separated by transition planes or
proto-domain walls, where the magnetization vectors rotate from one easy axis to
the other. These proto-domain structures progressively evolve into classic domains
and domain walls, respectively, as the crystal size is further increased [216].

In analogy with SD particles, the orientation of the vortex tube is stabilized
by magnetocrystalline anisotropy and by the particle shape. Therefore, the vortex
tube, which is the only part contributing significantly to the total magnetic moment,
behaves essentially like a SD particle, granting the magnetization stability sought
in paleomagnetism [217]. On the other hand, the application of external fields
favors the transition to a SD state, which might or might not continue to exist
metastably once the field is removed. Depending on the stability of the SD state in
zero field, particles can exhibit an elevated remanent magnetization typical of truly
SD particles, expressed by Mrs/Ms values close to 0.5, or a much lower remanent
magnetization arising from the vortex tubes, with Mrs/Ms values close to those
of MD particles. Micromagnetic models of magnetite particles with real shapes
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Fig. 55 Vortex magnetization in a 100 nm magnetite cuboctahedron. (a) Vectors are color-coded
according to the angle formed with the crystallographic axes (red, parallel to the nearest 〈100〉 hard
axis for the highest magnetocrystalline anisotropy energy density; blue, parallel to the nearest 〈111〉
easy axis for the lowest magnetocrystalline anisotropy energy density). The vortex core intersects
the [111] plane highlighted by the yellow triangle. Notice how the vectors form small angles to
the particle’s faces, minimizing the stray field energy, except in proximity of the vortex core. (b)
Helicity isosurface of the vortex core. The helicity h = M · (∇ × M) is defined as the curl of the
magnetization, projected onto itself. Far from the vortex core, vectors lie in planes perpendicular
to the direction ∇ × M of the vortex core, so that h = 0. The out-of-plane vector components near
the vortex core give a non-zero helicity. Figure reproduced from Nagy et al. [216]

obtained from ion beam nanotomography reveal that individual crystals hosting
one or two magnetic vortices are characterized by hysteresis loops that span all
three domain states defined by the Day diagram (Fig. 54). Particles with metastable
SD-like remanent magnetizations are characterized by Hcr/Hc values not exceeding
~3: above this threshold, most individual particles form a trend line defined by the
inverse relationship Mrs/Ms ≈ 0.45 (Hcr/Hc)−1 between remanence and coercivity
ratios. This trend is parallel to that of MD particles, which are characterized by ~8
times smaller remanence ratios.

Micromagnetic models show that ensembles of vortex particles can display SD
or PSD bulk magnetic properties depending on their size and shape distribution
and on the type of magnetization being considered. On the other hand, vortex
particles possess a characteristic FORC signature, which will be discussed in section
“Two-State Magnetic Systems”, which is fundamentally distinct from that of SD
and MD particles. These observations led to the recent proposal to replace the “PSD
behavior” term with “vortex state”, which would have the advantage of maintaining
the same universality while referring to a physical description of the magnetization
[104]. This proposal has its own caveats, because, as shown in section “Two-State
Magnetic Systems”, the magnetic signature of true vortex state particles can be
indistinguishable from that of specific magnetic structures made of interacting SD
particles. In these cases, the common feature captured by FORC diagrams is the
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existence of magnetic systems characterized by two or more pairs of states with
different magnetic moments and stabilities in small and large fields, respectively.

Two-State Magnetic Systems

Uniaxial SD particles possess a single pair of stable magnetic states with nearly
homogeneous magnetization: parallel and antiparallel to the easy axis (section
“Uniaxial SD Particles: Stoner-Wohlfarth Model”). The corresponding FORC
signature is relatively simple and dominated by the central ridge, which marks the
abrupt transitions between these two states as the field is increased. Additional
pairs of magnetic states are introduced by multiaxial anisotropy (section “SD
Particles with Multiaxial Anisotropy”). In symmetric cases, such as that of cubic
magnetocrystalline anisotropy, all states possess the same magnetic moment and
the same intrinsic stability in external fields. SD particles with symmetric multiaxial
anisotropy can therefore be considered one-state systems, if magnetic configurations
with identical geometry are considered expressions of the same state. The overlap of
anisotropy sources with different symmetries, such as cubic magnetocrystalline and
triaxial shape, creates the next level of complexity, resulting in the FORC signature
of Fig. 51, which bears some similarities with that of PSD particles. PSD signatures
thus appear to be generated by magnetic systems featuring unequal magnetic states.

The simplest example of unequal states is given by two-state systems possessing
two types of states with different magnetic moments and field stabilities. Single-
vortex (SV) particles such as the one shown in Fig. 55 are typical examples of a
two-state system, featuring one or more pairs of high-moment states with a nearly
homogeneous magnetization and one or more pairs of low-moment states with
a vortex configuration. The high-moment, SD-like states tend to be more stable
in large external fields, because they lower the Zeeman energy, while the low-
moment states are more stable in a null field, because they minimize the stray field
energy. Magnetic states occur always in pairs characterized by exactly antiparallel
magnetization vectors.

If a two-state system is subjected to a varying external field, transitions will occur
between states according to their field stability. Figure 56 shows three examples of
two-state systems with a very similar FORC signature, consisting of a central ridge
with one or two small negative lobes immediately above and below it and two large
positive lobes placed symmetrically above and below its lower-coercivity end. The
color scale rendering of the positive lobes depends on the maximum amplitude of
the central ridge, which, as discussed in section “The Central Ridge”, is controlled
by the measurement resolution and by the smoothing factor used for processing.
Quantile contour lines, which express the relative amount of magnetization carried
by larger FORC amplitudes (section “FORC Data Rendering”), are similar in all
three examples and thus describe the same type of signature.

The first example is a micromagnetic simulation of randomly oriented, double-
stranded chains of equidimensional SD particles [201] (Fig. 56a). Double-stranded
chains represent one of the possible structures of fossil remains of magnetotactic
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Fig. 56 Magnetic properties of three magnetic systems possessing two pairs of stable magnetic
states with high and low magnetic moment, respectively. The top row shows the coercivity
distributions derived from FORC data subsets; the bottom row shows the FORC diagrams, with
dashed lines indicating the limits of the memory region. (a) Numerical model of randomly oriented,
double-stranded chains of equidimensional magnetosomes formed from the fold collapse of single-
stranded chains (an example is shown in the inset, data from Amor et al. [201]). Contour levels
correspond to 5, 10, 20, 35, 50, 70, and 80% quantiles of the total magnetization. (b) Sample of a
�mamJ mutant of M. gryphiswaldense forming magnetosome clusters (an example is shown in the
inset) instead of linear chains (data from Katzmann et al. [129]). Contour levels correspond to 5,
10, 20, 35, 60, and 80% quantiles of the total magnetization. (c) Metallic iron nanodots with 67 nm
diameter, deposited on a planar substrate (inset, data from Dumas et al. [210]) and measured in the
plane. Contour levels correspond to 5, 10, 20, 40, 60, and 80% quantiles of the total magnetization.
In (a-b) individual particles are SD, and the existence of low- and high-moment states depends on
the magnetic moment arrangement. In (c) individual particles possess SD-like and vortex states

bacteria in sediments. In null or weak fields, the strong uniaxial anisotropy of these
double-stranded chains forces the magnetic moments of all particles to be parallel
or antiparallel to the chain axis with two possible combinations: in the more stable
low-moment state, the magnetic moment of one strand is antiparallel to that of the
other strand, and the magnetic flux lines form a closed loop [201]. The net magnetic
moment is proportional to the difference between the number of particles in the
two strands, with equal strands yielding a null moment. The high-moment state is
obtained when the magnetic moments of the two strands are parallel or sub-parallel
to each other, a condition that is always satisfied in a sufficiently large external
field. The stability of the high-moment state in zero field depends on the exact
chain geometry. In the example of Fig. 56a, the high-moment state is stable in zero
field, yielding SD-like hysteresis characteristics (corresponding to the rightmost
cross of the “simulated magnetosome chain” series in Fig. 54). SD-like hysteresis
characteristics can also be deduced from the fact that all irreversible components
of the FORC function—in this example everything except the negative amplitudes
near Hc = 0 in the lower quadrant—are comprised within the memory region (right
of the dashed lines in Fig. 56a). In particular, the lack of large FORC contributions
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outside the memory region means that the ascending branch of the hysteresis loop
remains reversible until the field becomes positive, so that the associated coercivity
distribution firr is nearly zero for negative arguments.

The example of Fig. 56b is based again on a system of interacting SD particles.
This time the SD particles, which are produced by a magnetotactic bacterium mutant
whose genes responsible for a linear chain arrangement of the magnetosomes
have been inactivated, are arranged into small, mostly elongated clusters of 10–
30 particles [129]. The magnetic configurations of these structures have not been
modeled; however, the measured FORC signature is similar to that of the previous
example, except for the two positive lobes above and below the central ridge
extending across the memory region (dashed lines) instead of being fully contained
in it. This means that most high-moment states decay into a low-moment state
before the field is zeroed, lowering Mrs/Ms to values typical for the PSD range
(“magnetosome clusters” in Fig. 54). In this example, low-moment states must be
associated with the magnetic moments of individual particles forming some flux
closure patterns similar to those observed in other interacting SD particle systems
[218]. Finally, the example of Fig. 56c shows the signature of SV iron nanoparticles.
The particles are closely spaced, like in the other examples; however, the low-
moment state is associated with magnetic vortices within individual crystals, like in
Fig. 55, rather than flux closure patterns. Similar preparations with slightly smaller
crystals feature the classic FORC signature of SD particles [210], thus excluding that
the FORC signature of Fig. 56c is caused by flux-closure pattern like in the previous
two examples. The positive lobes above and below the central ridge extend across
the memory region, lowering Mrs/Ms in a similar manner as for the magnetosome
clusters. Unlike the other two examples of Fig. 56, there is a clear asymmetry
between the two positive lobes, which is caused by reversible vortex movements
[137].

Other types of two-state magnetic systems have been described in the literature,
including 0.75–1.5 μm magnetite crystals with monoclinic twinning below the
Verwey transition temperature [219] and toroidal iron oxide nanoparticles [220].
In the former case, the strong uniaxial magnetocrystalline anisotropy of mono-
clinic magnetite at low temperature prevents the formation of true vortex states
(κ ≈ 0.94), and the observed FORC signatures, similar to the examples in Fig. 56,
are attributable to the interaction between twin domains in the same particle.
The only common characteristic of all examples discussed so far, which include
interacting SD particles, true single vortex particles, and peculiar crystal shapes,
is the existence of two types of magnetic states with small and large magnetic
moments, respectively, rather than a specific magnetization geometry. Because of
the inherent multiplicity of magnetic configurations leading to two-state or multiple-
state systems, identification of the corresponding magnetic signatures with “vortex
particles” or “vortex behavior” requires additional information, e.g., from electron
microscopy.

The FORC signature of two-state magnetic systems is pivotal for understanding
the magnetic properties of a wider class of magnetic systems (e.g., single particles
or particle aggregates) possessing two or more than two types of magnetic states,
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which collectively contribute to the observed PSD signatures. Because the above
mentioned two-state systems share similar FORC signatures, the numerical simu-
lation of two-stranded magnetosome chains (Fig. 56a) will be used as a reference
example for further discussion, because it gives access to individual magnetic states
contributing to the bulk magnetization. Hysteresis loops are constricted (or “wasp-
waisted”) near M = 0 (Fig. 57a), a feature that is shared by all systems with bimodal
coercivity distributions [136, 221] such as those shown in Fig. 56. The constricted
loop shape is determined by the clustering of individual magnetic moment values
close to positive/negative saturation (high-moment states, HMS) and near M = 0
(low-moment states, LMS). Accordingly, the first steep section of a major hysteresis
branch corresponds to HMS-to-LMS transitions, followed by a less steep section
associated with reversible LMS magnetization changes and a second steep section
due to LMS-to-HMS transitions.

These transitions are best viewed using the simulated FORC measurements of
a single two-stranded chain example taken randomly from the original set of 105

chains used to calculate the bulk properties (Fig. 57b). All FORCs in this chain
example can be divided into three groups of overlapping curves (labeled as A, B,
and C), depending on their starting (reversal) field. Group A includes all curves
MA beginning with the positive HMS and coincides with the descending branch
of the major hysteresis loop. Because the FORC function definition is based on
the first derivative of these curves with respect to the reversal field Hr, and thus
on differences between consecutive curves, the identical curves of group A do not
produce any contribution in the FORC diagram. As Hr is decreased in successive
steps, a critical point in the descending branch is reached, where the positive HMS
state is no longer stable, so that a sudden transition occurs to the positive LMS state.
Curves starting with this state form group B and share identical magnetizations MB.
As the applied field is increased during the measurement of MB, the positive LMS
state evolves reversibly, until a critical positive field is reached, above which it is no
longer stable. At this point, a sudden transition to the HMS state occurs, producing
a magnetization jump labeled with 1 in Fig. 57b.

The difference MA − MB between the last curve of group A and the first curve
of group B contributes to the FORC diagram along the diagonal trajectory starting
at the reversal field that caused the HMS-to-LMS transition (A-B in Fig. 57c). This
contribution is given by the first derivative of MA − MB with respect to the applied
field. It contains small contributions from reversible magnetization changes of the
two states, as well as a sharp peak in correspondence with the magnetization jump
1 of MB caused by the denucleation of the LMS state. The FORC coordinates of
this peak, which contributes to the upper positive lobe, depend on the reversal field
in which the positive LMS nucleates and the measurement field in which the same
LMS denucleates. The two fields have different amplitudes, owing to the different
stabilities of the two states, resulting in a peak with positive Hu coordinate in the
FORC diagram. In practice, MA and MB can be considered as the two branches
of a minor hysteresis loop with a positive field offset coinciding with Hu. All the
successive curves of group B do not contribute to the FORC diagram, since the
corresponding magnetizations are identical.
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Fig. 57 FORC signature of two-state systems, exemplified by a numerical model of 105 randomly
oriented, double-stranded chains of equidimensional magnetosomes (data from Amor et al. [201]).
(a) Hysteresis loop (dashed line) and probability of individual double-stranded chains to possess
the combination of applied field and magnetic moment given by the plot coordinates (blue shading).
Darker regions highlight the pair of high-moment states (close to ±1) and the pair of low-moment
states (close to the flanks of the hysteresis loop). Arrows point to the constriction of the hysteresis
loop resulting from these two pairs of states. (b) Simulated FORC measurements for a single
double-stranded chain example taken from the collection of 105 simulations (lines). The chain axis
forms an angle of ~38.5◦ with the applied field direction. All curves collapse onto three groups
with identical magnetic moments, labeled as A, B, and C. The blue shading represents the magnetic
state probability as in (a), this time only for chain axes at angles comprised between 28.5 and 48.5◦.
Dotted lines indicate the transitions between low- and high-moment states along the descending
branch of the hysteresis loop. Dashed lines indicate transitions along FORCs, with circled numbers
referring to their contribution to the FORC diagram in (c). (c) FORC diagram obtained from the
numerical simulations. The sketched diagonal lines show the trajectories of the last curve in group
A and the last curve in group B of the example chain shown in (b). Magnetization jumps at the
locations indicated by circled numbers represent pointwise contributions of the example chain in
(b) to the FORC function

As Hr is further decreased, a critical point in the descending branch is reached,
where the positive LMS state is no longer stable, so that a sudden transition occurs
to the negative HMS state. Curves starting after this point belong to group C and
coincide with the lower branch of the major hysteresis loop. Two transitions occur
during the measurement of MC: when the negative LMS is nucleated (magnetization
jump 2 in Fig. 57c) and when this state becomes unstable and is replaced by
the positive HMS (magnetization jump 3). The difference MB − MC between the
last curve of group B and the first curve of group C gives the second family of
contributions to the FORC diagram along the diagonal trajectory starting at the
reversal field that caused the LMS-to-HMS transition (B-C in Fig. 57c). Besides
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minor contributions from reversible magnetization changes along the two curves,
the derivative of MB − MC with respect to the applied field features two sharp
positive peaks, corresponding to the magnetization jumps 2 and 3 of MC, and a sharp
negative peak corresponding to magnetization jump 1 of MB (jump 4 in Fig. 57c).
Magnetization jump 2 contributes to the lower positive lobe of the FORC diagram,
owing to its negative Hu coordinate. Both lobes reflect the different field amplitudes
required to nucleate and denucleate a LMS and thus represent the unique signature
of this state.

Magnetization jump 3 is characterized by Hu = 0 and therefore contributes to
the central ridge. The reason for Hu being exactly zero originates from inversion
symmetry: a positive state of an isolated magnetic system can be transformed into
a negative state with same properties by changing the sign of the magnetization
vectors and of the applied field. In this case, the same physical process produces
jump 3 and the transition from which group C originates namely, the denucleation
of a LMS state. The corresponding fields are thus equal in amplitude but opposite
in sign, since the positive LMS state is involved in one case and the symmetrically
negative LMS state in the other. Finally, the magnetization jump 1 of MB contributes
with a peak on the B–C trajectory at the same applied field of its contribution to the
A–B trajectory (dashed line in Fig. 57c). The contributions of jump 1 to the two
trajectories have opposite signs, due to the fact that MB appears with opposite signs
in the corresponding magnetization differences.

Jumps 1 and 3 correspond to the denucleation of opposite LMS states, which are
characterized by similar low magnetic moment components along the applied field.
Therefore, the stabilities of these states in a positive field are similar, which means
that the two jumps occur in similar fields. Whether the field required for jump 1 is
larger than that of jump 2 or vice versa depends on micromagnetic details, so that,
in most cases, the negative peak labeled as 4 in Fig. 57c is located indifferently
above or below the central ridge, but close to it, generating two nearly symmetric
negative lobes. Contrary to the central ridge, whose position at Hu = 0 is forced by
the inversion symmetry, the positive and negative lobes are diffused features, due
to the contribution of individual peaks 1, 2, and 4 at FORC coordinates determined
by the LMS nucleation/denucleation fields of many different configurations. The
remaining FORC diagram features, such as the negative contributions in the lower
quadrant, close to Hc = 0, reminiscent of SD particles, are caused by reversible
changes of the LMS and HMS states as the field is swept during measurements
[104]. It is important to remark that all FORC features of Fig. 57c are explained
by the mere existence of a LMS and a HMS state, without the need of a detailed
micromagnetic knowledge.

Rock and Paleomagnetic Significance of Two-State Systems

The bimodal coercivity distribution and associated FORC signature of two-state
systems are rarely observed in geologic materials, because of the overlap with
other signatures, yet it is essential for understanding the characteristics of coercivity
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distributions obtained from different types of magnetization processes and their
implications for numerical unmixing techniques such as coercivity analysis [40, 41,
86], hysteresis-PCA [43] and FORC-PCA [44].

The bimodal characteristics of the coercivity distributions firr and fdcd of two-state
systems (Fig. 56) are explainable with the contribution of the two positive lobes and
the central ridge to a low- and the high-coercivity component, respectively. The peak
position of the low-coercivity contribution depends essentially on the reversal field
of the A–B trajectory, which is the nucleation field Hn of a LMS state. If the HMS
state is particularly stable, as in Fig. 56a, the mean Hn is negative, and the positive
lobes of the FORC diagram are located within the memory rectangle (dashed lines
in Fig. 56). This yields a low-coercivity contribution to firr and fdcd that peaks at the
positive field −Hn. In the case of less stable HMS states (Fig. 56c), LMS nucleate,
on average, in positive Hn values, which locate the positive lobes of the FORC
diagram located outside the memory rectangle. The low-coercivity contribution to
firr peaks at the negative field −Hn, and fdcd contains only the positive tail of this
contribution. In practice, fdcd is similar to a truncated version of firr with largest
values near Hc = 0. This means that a significant fraction of the saturation remanent
magnetization can be remagnetized in arbitrarily small fields, especially in the case
of systems with less stable HMS, such as in vortex particles. This instability is due
to the fact that large ensembles will always contain cases where the LMS nucleation
field is very close to zero.

The poor Mrs stability of some two-state systems, which is not necessarily
caused by thermal relaxation as in the case of viscous SD particles, is apparently
at odds with the commonly observed paleomagnetic stability of rocks containing
PSD particles [204], if one does not consider that the nature of the thermoremanent
(TRM) magnetization acquired by those rocks upon cooling in the Earth magnetic
field is completely different from a saturation remanence. TRM and its room
temperature analogue, the anhysteretic remanent magnetization (ARM), favor LMS
states over HMS ones because they tend to possess lower magnetic energies [217,
222] in zero field (and in the small Earth magnetic field). As seen with the central
ridge of two-state systems, larger magnetic fields are required to denucleate LMS
states, which also means that larger alternating field (AF) peak values are required
to demagnetize a TRM or and ARM than an IRM. This enhanced resistance against
AF demagnetization is exploited by the so-called Lowrie-Fuller test [59], in which
the shape of AF demagnetization curves is compared to assess the stability of a
natural remanent magnetization. The selectivity of the central ridge toward the
denucleation of SD states in SD particles and LMS states in larger particles, which
are those preferentially contributing to the TRM, is at the basis of a FORC method
for estimating the ancient magnetic field recorded by heat-sensitive rocks (especially
extraterrestrial ones), designed to avoid the laboratory heating steps of conventional
absolute paleointensity methods [29].

With the above considerations in mind, a main distinction can be made between
(1) magnetization curves and/or coercivity distributions that capture all magnetic
configurations of two-state systems and (2) those that are selective only to LMS
states. The first group includes IRM acquisition curves, backfield or DCD demag-
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Fig. 58 Coercivity components obtained from the analysis of detailed AF demagnetization curves
of ARM (a) and IRM (b) for different types of sedimentary samples (data from Egli [84]). LC—
low-coercivity component (lake and marine sediments, Chinese loess, and paleosols) attributable
to various sources, including lithogenic PSD particles, pedogenic magnetite, and other authigenic
magnetite particles. BS—component attributed to chains of equidimensional magnetofossils
(“biogenic soft,” lake and marine sediments). BH—component attributed to chains of elongated
magnetofossils (“biogenic hard,” lake and marine sediments). All distributions are normalized to
yield a unit magnetization, so that the peak value is a measure of their width. Notice how the
components obtained from IRM curves are slightly wider (especially LC and BH) and less well
constrained, despite the superior measurement quality associated with larger IRM moments

netization curves (fdcd), irreversible magnetization changes along the hysteresis
loop (firr), and the AF demagnetization of IRM. The second group includes the
central ridge of FORC diagrams (fcr) and AF demagnetization curves of weak-
field magnetizations (ARM and TRM). The first group is preferentially used for
coercivity analysis, because measurements are generally faster, but is also more
problematic with respect to solution stability and interpretation, since it contains
more coercivity components than the second group. A systematic comparison
between AF demagnetization curves of ARM and IRM for magnetofossil-rich
sediments shows that the coercivity components derived from IRM curves are wider,
and therefore more overlapped, and centered on lower fields [84]. Most importantly,
the properties of magnetofossil coercivity components derived from IRM curves are
less consistent than their ARM counterparts (Fig. 58), as expected from the fact that
magnetofossil magnetic states selected by the ARM magnetization process (SD in
the case of single-stranded chains and LMS in the case of double- or multistranded
chains) have similar mean denucleation fields [201].

Finally, two-state systems can introduce significant differences between coerciv-
ity analysis results obtained with parametric methods on the one hand, which are
based on model curves, and PCA analyses on the other hand. These differences
are either intrinsic, or they arise from problems [223] related to the solution
stability of parametric methods and to incorrect processing (e.g., type and number
of model functions, number of endmembers). Intrinsic differences are caused by
specific assumptions underlying the two methods. Parametric methods assume that
the coercivity distribution of a magnetic component, defined as an assemblage of
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particles with a certain distribution of physical and chemical properties derived from
a common production process, is representable by a unimodal, quasi-lognormal
function [41, 87]. In the case of PCA analyses, any combination of coercivity
components that co-vary in a similar manner within a group of samples (e.g.,
from a sediment core) can define a PCA endmember, so that features produced
by a single magnetic component can get distributed among endmembers if this
component does not possess strictly invariant properties. This “coercivity leakage”
problem is particularly pronounced in the case of magnetic components with two-
state properties, because they tend to possess bimodal coercivity distributions with
low- and high-coercivity proportions that are very sensitive to physical parameters
such as grain size in the case of vortex particles [224] or particle arrangement
in the case of SD particle systems [158, 160, 201] (Fig. 56). Small variations of
these parameters cause a decoupling of low- and high-coercivity contributions in
PCA analysis and possible grouping of these contributions with those of other
magnetic components. In this case, coercivity components and endmembers no
longer represent discrete groups of magnetic particles.

A paradigmatic example is given by FORC-PCA analyses of magnetofossil-
bearing sediments [208, 225, 226]. Variable proportions of one-state single-stranded
chains and two-state multistranded or collapsed chains can split the magnetofossil
signature into two endmembers that do not correspond to specific chain geometries:
for instance, the central ridge of both types of chains can contribute to one end-
member, and the FORC lobes of two-state chains to another endmember, possibly
together with the PSD signature of lithogenic particles, if these co-vary with the
magnetofossil content, as it is the case for certain pelagic environments [227]. This
might explain why some FORC endmembers interpreted as magnetofossil contain
the signature of two-state chains (e.g., EM2 in Figs. 8 and 10 of Lascu et al. [208]),
while others do not (e.g., EM2 in Fig. 11 of [225] or EM3 in Fig. 4 of [226]). In the
latter case, two-state chains are either absent, or their non-central ridge contribution
is contained in a different endmember.

The abovementioned ambiguities of numerical unmixing methods, which are
inherent to the non-uniqueness of all magnetic characterization methods, need
particular attention in the case of magnetic systems possessing few magnetic states,
in particular two-state ones, because of the discreteness of these states and their
sensitivity to physical parameters that are easily affected by the environment.

Multistate Systems: The PSD FORC Signature

FORC signatures of increasing complexity are obtained for systems with more than
two stable magnetization states. Such systems can be very different at a microscopic
level; common examples occurring in geologic materials include isolated particles
hosting one or more magnetic vortices that interact with surface irregularities and
crystal defects [209], particles containing few magnetic domains with strong shape-
induced imbalance [228], skeletal titanomagnetites [221], and small clusters of
interacting SD particles [129, 157]. Multistate systems exhibit a PSD behavior if
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Fig. 59 Micromagnetic FORC simulation of a system featuring three pairs of stable magnetic
states (in this case a linear chain of 7 slightly elongated SD magnetite particles with long axes
perpendicular to the chain axis, which forms an angle of 75◦ with the applied field, data from
Egli and Winkelhofer [96]). (a) Simulated measurements. M0 to M3 are the magnetizations of
four groups of fully overlapped curves starting at reversal fields ≥Br1, ≥Br2, ≥Br3, and <Br3,
respectively. (b) FORC diagram corresponding to the curves in (a). Non-zero contributions are
localized along diagonals starting at fields Br1 to Br3 and are given by the first derivative of the
difference between consecutive curve groups. Number pairs k-ialong the diagonal indicate positive
(violet) and negative (blue) contributions by the i-th magnetization jump of Mk, with curve and
jump numbering as in (a). Color shading along the diagonals indicate the amplitude of the FORC
function (zero in white, positive in yellow and red, negative in blue)

consecutive state transitions during a field sweep involve a major reorganization of
the magnetization, as opposed to MD particles, where such transitions coincide with
microscopic domain wall movements (Barkhausen jumps). The universality of the
PSD behavior enables us to discuss all relevant aspects of the corresponding FORC
signature using a single example, which is taken from a micromagnetic simulation
of a collapsed chain of magnetosomes previously used for a similar purpose [96]
(Fig. 59).

The major hysteresis loop of a typical PSD system consists of reversible sections
separated by a certain number N of irreversible transitions between stable states
(dashed lines with N = 3 in Fig. 59a). These transitions divide the FORCs
departing from the descending branch of the hysteresis loop into N + 1 groups
of fully overlapped curves, whose magnetizations are denoted by M0, M1, . . . ,
MN , respectively. The first group, M0, includes all curves starting before the first
transition on the descending branch, that is, in fields ≥Br1. The second group, M1,
includes curves starting at reversal fields comprised between Br1 and the field Br2
of the second transition on the descending branch, and so on, until the last group
MN is reached, which includes all curves starting after the last transition on the
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descending branch. This last group coincides with the ascending branch of the major
hysteresis loop. Overlapping curves belonging to the same group are characterized
by ∂M/∂Br = 0, since M is independent of Br, and do therefore not contribute to the
FORC function. The only non-zero contributions to the FORC function originate
from the difference between curves starting immediately before and immediately
after an irreversible transition on the descending branch. In this case, the k-th
transition yields ∂M/∂Br = (Mk−1 − Mk) δ(Br − Br,k), where δ is the Dirac impulse,
and the FORC function can be written as

ρ(Br, B) = 1

2
δ
(
Br − Br,k

) ∂(Mk − Mk−1)

∂B
. (56)

In practice, non-zero FORC contributions are localized along diagonals starting
at Bc = 0 and Bu = Br, k on the left edge of the FORC space (Fig. 59b). These
diagonals contain two types of contributions: reversible ones, which are given by the
different slopes of Mk−1 and Mk, and irreversible ones, which are concentrated at
places where Mk−1 or Mk undergo a transition between states. Transitions between
states are almost always associated with magnetization jumps: these jumps are
labeled with number pairs in Fig. 59, so that k-idenotes the i-th jump on Mk,
with counting starting from the jump occurring at the largest field. Every jump
contributes with a sharp peak to the FORC diagram (Fig. 59b), and these peaks are
preceded by tails caused by reversible magnetization changes that usually anticipate
a state transition. Peaks produced by magnetization jumps occurring on all Mk

except the first and the last one appear twice in the FORC diagram: one time along
the diagonal starting at Bu = Br, k, with positive sign for a positive jump (such as
those of Fig. 59), and one time along the diagonal starting at Bu = Br, k+1, this time
with the opposite sign. M0 is fully reversible by definition, so it does not contribute,
while each magnetization jump along MN produces only one peak with the same
sign. The first magnetization jump of MN (i.e., the one occurring at the largest field)
has a special importance, because the corresponding peak N-1, which is always
located at Bu = 0 in the FORC diagram, contributes to the central ridge. This
property is called local reversal symmetry [229], and is explained by the inversion
symmetry of the major hysteresis loop: MN−1 starts at Br, N , which is the field in
which the last irreversible transition occurs on the descending branch, while MN ,
which coincides with the ascending branch, has its last transition in the opposite
field −Br, N . The Preisach coordinates of the peak produced by this transition are
Br = Br, N and B = −Br, N , which converts to the FORC coordinates Bc = −Br, N

and Bu = 0.
As seen in Fig. 59b, peaks and reversible contributions are contained in a

triangular domain with lower limit given by the last diagonal trace starting at
Bu = Br, N and upper limit given by the final transition fields at which each curve
merges with the major hysteresis loop. These final transition fields are nearly
equal in amplitude to Br, N , the last transition field of the descending branch,
so that the triangular domain of the FORC function is inferiorly limited by the
Br ≥ Br, N diagonal and superiorly limited by the B � −Br,N diagonal. The two
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limits merge at the FORC coordinate (Bc, Bu) = (−Br, N , 0) on the central ridge.
FORC contributions inside this triangular domain occur at places dictated by the
transition fields between intermediate states, which can be distributed anywhere
between ±Br, N . Some of these states are nucleated within FORCs but not along
the major hysteresis loop, as, for instance, the state associated with the portion of
M2 in Fig. 59a which is comprised between jumps 2-2 and 2-1. Furthermore, and
contrary to what is generally observed with bulk measurements [230], FORCs are
not necessarily enclosed by the major hysteresis loop, as seen by the sections of M1
and M2 lying below M3 in Fig. 59a.

The next step for generating a bulk PSD signature consists in adding the
contributions of many systems like the one of Fig. 59. An example is shown in Fig.
60 with the superposition of micromagnetic FORC simulations of five magnetite
particles, replicated for different orientations with respect to the field direction,
whose shape has been taken from focused ion beam-scanning electron microscopy
(FIB-SEM) of an obsidian fragment [231]. The remanent state of these particles
includes SD, SV, and multi-vortex configurations. Each micromagnetic simulation
features a series of negative and positive peaks that is limited in FORC space by
a triangular domain whose size is determined by the field amplitude Bs = Br, N at
which the two branches of the major hysteresis loop merge. Because the saturation
range is entered at this point, Bs is effectively the saturation field. As seen in Fig.
60, individual peaks tend to cluster over regions where the measured bulk FORC
function has larger amplitudes. The location of these regions depends on the type of
magnetic systems being analyzed, but, as a general trend, they tend to expand and fill
the whole triangular domain spanned by Bs as the system heterogeneity increases.
For instance, multi-vortex magnetite grains contribute mostly to the memory region
of the FORC diagram, averaging out to create a broad central peak that fills the
gap between the positive lobes of SV particles [231]. A simple maximum entropy
model of the PSD FORC signature assumes that the contribution of peaks generated
by systems with the same saturation field Bs is statistically the same everywhere
inside the triangular domain spanned by Bs, except for the central ridge peaks,
which are forced to occur at (Bc, Bu) = (Bs, 0) if not biased by internal fields. The
corresponding FORC function consists of the superposition of the central ridge to
a triangular domain with constant amplitude given by (Mirr − Mcr)/B

2
s , where Mirr

is the bulk irreversible magnetization of all systems with saturation field Bs and Mcr
their central ridge magnetization. The integral Mirr – Mcr of this region, added to
the central ridge contribution Mcr, yields Mirr, as expected from the definition of
irreversible magnetization.

The relative contribution Mcr/Mirr of the central ridge to the total irreversible
magnetization is proportional to the mean amplitude of the corresponding magneti-
zation jumps (e.g., 3-1 in Fig. 59a). Assuming that magnetization jumps along the
major hysteresis loop have the same amplitude on average, Mcr = Mirr/N is obtained,
where N is the mean number of jumps in individual systems (N = 1 for SD particles,
N = 2 for two-state systems, N = 3 in Fig. 59, etc.). In real PSD systems, the central
ridge is usually visible only at higher coercivities (e.g., Fig. 60a), and it is typically
characterized by a relatively large vertical spread, as well as a small offset toward
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Fig. 60 Continuous limit of PSD FORC signatures. (a) FORC diagram of a bulk obsidian
fragment containing irregularly shaped magnetite crystals with volume cubic root sizes comprised
between ~40 and ~400 nm (data from Lascu et al. [231], quantile contours at 2, 5, and 10–90% of
the total magnetization in steps of 10%). Notice the negative region in the lower quadrant and the
upward offset of the central maximum. (b) Contour lines of the FORC diagram in (a) overlaid with
micromagnetic simulations of five representative crystals, replicated for different orientations with
respect to the field direction, with exact crystal shapes obtained from focused ion beam-scanning
electron microscopy (FIB-SEM) of the obsidian fragment. The dashed line represents the triangular
domain containing the peaks produced by most simulations

the lower quadrant. Contrary to the case of interacting SD particles (section “Weak
Magnetostatic Interactions Between SD Particles”), vertical profiles of the central
ridge tend to expand at larger values of Bc. The origin of the internal fields causing
these apparent interaction signatures is discussed later.

The continuum limit of the processes described above yields a FORC function of
the type:

ρ(Hc − Hu) =
(

1 − N−1
) Mirr

F 2
s (0)

Fs(Hc) Fs(|Hu|) + mirr

2N
fs(Hc) g(Hu) (57)

where fs is the distribution of saturation fields Hs in individual systems,

Fs(H) =
∫ ∞

H

fs(x)
dx

x2 (58)

the contribution of all systems with Hs ≥ H to the triangular domain delimited by a
given field H, and g a function representing the vertical profile of the central ridge.
The two terms on the right-hand side of Eq. (57) represent FORC contributions
within the triangular domain limited by Hs and of the central ridge, respectively.
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Fig. 61 Synthetic example of PSD FORC signature obtained with Eqs. (57) and (58). (a)
Distribution of saturation fields assumed for the calculations. (b) FORC function according to Eqs.
(57) and 58) with N = 9, the saturation field distribution in (a), and vertical central ridge profiles
given by a Gaussian function with standard deviation σ = 1 +0.06Bc. Contours are drawn at 0.1,
1, 5, 15, 30, 50, 70, and 90% quantiles of the total magnetization. (c) FORC function for a material
with the intrinsic FORC properties shown in (b), after accounting for the effects of a mean internal
field Bi = −αM/Ms with α = 100 mT. In the case of magnetite composition (Ms = 480 kA/m),
Bi is equivalent to Hi = −αM with α = 0.167. Internal field calculations include a reversible
magnetization proportional to L(B/B0), where L is the Langevin function and B0 = 30 mT, with
the amplitude required to obtain Mrs/Ms = 0.11. Same contour lines as in (b). Notice the expansion
of the FORC function domain with respect to (b), due to the partial screening of the external field
by Bi, the appearance of a negative region below the central ridge, and the upward shift of the
function maximum

These contributions are clearly recognizable in the example shown in Fig. 61b,
obtained with Eqs. (57) and (58) and N = 9, in the form of triangular contour lines
with the central ridge protruding over the high-coercivity range. The FORC function
of this example, as any other generated with Eqs. (57) and (58), is symmetric
about Hu = 0, unlike real PSD signatures, which feature a wide region with very
small negative amplitudes below the central ridge, comprised between the diagonal
Hu = −Hc and Hu = 0 (e.g., Fig. 60a). The overlap between this region and
positive, low-coercivity amplitudes in the lower quadrant creates a characteristic
indentation of the contour lines, which is seen in the FORC signature of most
PSD systems made of non-SD particles, but also with strongly interacting SD
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Fig. 62 PSD signatures of sediment material obtained from a piston core collected on the western
margin of the North Atlantic (core R41, data from Lascu et al. [208]). The three examples
correspond to siliciclastic fractions of increasing sizes obtained with gravity settling: (a) < 4 μm
(Mrs/Ms = 0.249, Hcr/Hc = 2.346), (b) 10–20 μm (Mrs/Ms = 0.0734, Hcr/Hc = 3.945), and (c)
40–63 μm (Mrs/Ms = 0.0250, Hcr/Hc = 9.727). The top row shows the coercivity distributions
obtained from FORC data representing the irreversible component of the hysteresis loop (firr) and
the DCD demagnetization curve (fdcd). The bottom row shows the FORC diagrams, with contour
levels corresponding to magnetization quantiles of 2, 5, and 10–90% in steps of 10%. The color
scales of (b) and (c) are identical, in order to highlight the larger negative amplitudes in (c)

particles (e.g., Fig. 3 in Carvallo et al. [17]). In both cases, this feature, which
also includes an upward shift of the central maximum of the FORC function, can
be phenomenologically explained by the presence of demagnetizing interactions
(section “Mean-Field Interactions”). Shearing the FORC model of Fig. 61b by a
mean internal field Bi = −αM/Ms, with α ≈ 0.1 (Fig. 61c) introduces a signature
that is remarkably similar to that of natural samples, especially those containing
coarse magnetite fractions. The grain size dependence of this signature is clearly
visible in siliciclastic fractions obtained from sediment cores dominated by coarse
lithogenic minerals [208] (Fig. 62).

Despite the common occurrence of signatures typical of demagnetizing interac-
tions in FORC diagrams of PSD and strongly interacting SD particles, the origin of
the associated internal fields is fundamentally different, as suggested by a compar-
ison with Preisach maps based on remanent magnetization measurements. Preisach
maps are nearly symmetric about Hu = 0 in the case of interacting SD particles [17],
while they maintain, at least in part, the same asymmetry of FORC diagram in the
case of non-SD particles [18]. The bulk saturation remanent magnetization of most
samples with PSD signature is too small to produce a significant demagnetizing
field, unless the magnetic particles are assumed to be tightly clustered, and local
magnetic interactions are drastically reduced by the non-dipole nature of the stray
field produced by PSD particles in their remanent state [232]. On the other hand, the
identification of Bi = −αM/Ms with the demagnetizing field of individual particles,
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instead of the bulk sample implies that α = μ0Dμs, yielding the correct range of α
values required to generate the observed FORC signatures: for instance, α ≈ 0.2 for
equidimensional magnetite (D = 1/3, μs = 480 kA/m). Therefore, demagnetizing
interaction signatures in FORC diagrams of PSD and MD particles can be attributed
to the partial screening effect [233] of reversible magnetization changes on sites
where a new magnetic state is nucleated. This screening effect also explains the
increase of the vertical range of the FORC function, since the internal field values
at Hr and H add constructively near Hc ≈ 0, while they tend to cancel out along
Hu ≈ 0.

In conclusion, PSD FORC signatures contains variable proportions of three
fundamental features: (1) a central ridge with pronounced vertical spread and slight
vertical offset, which includes a central maximum located at Hc ≥ 0 and Hu ≥ 0, (2)
a low-amplitude negative region located below the high-coercivity end of the central
ridge, and (3) positive contributions above and below the central ridge that smoothly
merge with the low-coercivity range of the central ridge, yielding triangular contour
lines, especially in the upper quadrant. The central ridge’s vertical spread and offset,
the positive vertical offset of the central maximum, and the negative regions are
compatible with magnetic screening effects inside individual particles.

The typical grain size trend of PSD signatures generated by non-SD particles is
shown in Fig. 62. The signature of small PSD particles (Fig. 62a) is similar to that
of two-state systems discussed in section “Rock and Paleomagnetic Significance of
Two-State Systems”: it is dominated by a central ridge whose low-coercivity end
is surrounded by two positive lobes in the upper and lower quadrants, respectively.
Unlike the selected two-state examples of Fig. 56, which are generated by very
homogenous systems, the lobes of natural PSD signatures tend to merge with the
central ridge. The wide grain size distribution of natural assemblages of small PSD
particles likely includes a minor contribution from truly SD particles, as inferred
from the negative amplitudes in the lower quadrant near Hc = 0. The bulk hysteresis
parameters are similar to those of two-state vortex particles, within the classic PSD
range of the Day plot, but above the SD + MD mixing line (Fig. 54). The signature
of demagnetizing interactions is very subdued, being recognizable only from the
asymmetry of low-amplitude contour lines. At larger particle sizes (Fig. 62b), the
sharp central ridge along Hu ≈ 0 becomes blurred and identifiable only at higher
coercivities. The central peak of the FORC function moves toward Hc = 0, while
the lobes are transformed into a region with triangular contour lines and a wide
extension along Hu. Any trace of SD signatures disappears, while the signature
of demagnetizing interactions becomes evident. The bulk hysteresis parameters are
still within the classic PSD range of the Day diagram (Fig. 54), but they mark the
beginning of a trend determined by the inverse proportionality between remanence
and coercivity ratios, which is typical of MD particles [205] and caused by the
screening effect of the internal demagnetizing field. As particle size increases further
(Fig. 62c), the demagnetizing interaction signature becomes more evident, while
the central peak of the FORC function has reached Hc = 0. The bulk hysteresis
parameters have a mixed character, with the remanence ratio being still in the PSD
range, while the coercivity ratio is already MD (Fig. 54). This trend continues at
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even larger sizes with typical MD hysteresis properties and a FORC function that
contines to contain residual PSD signatures [18] (section “Multidomain Particles”).

Reverting to the original problem of the PSD signature ambiguity, two transitions
appear to affect the hysteresis and FORC properties of soft ferrimagnetic minerals
such as magnetite. The first transition is sharp and occurs between systems
featuring only one type of magnetic states (SD) and system with two or more
types of magnetic states (SD-like and single-particle vortices or supervortices). The
corresponding FORC signatures are sufficiently well defined to discriminate, at least
qualitatively, between one- and multistate systems (Fig. 62a). Individual multistate
systems, and also very homogeneous bulk samples containing such systems, have
very scattered hysteresis properties limited only by the SD-MD and SD-SP mixing
lines, respectively. Caution should therefore be used when interpreting hysteresis
parameters as the result of mixing SD, MD, and SP endmembers. The scatter of
bulk hysteresis parameters is caused by the fact that the stability of HMS and LMS
is very sensitive to physical parameters such as particle size and shape. The second
transition occurs when a given Hcr/Hc threshold, which appears to be comprised
between 2.5 and 3, is exceeded (Fig. 54). Above this threshold, bulk hysteresis
parameters are controlled by the inverse proportionality between Mrs/Ms and Hcr/Hc
typical of MD crystals, while the further evolution of FORC properties appears
to be controlled by an increasingly effective screening of the external field (Figs.
61 and 62b, c). This screening effect is caused by the internal demagnetizing
field Hi = −Deff M, where Deff is an effective demagnetizing factor that depends
on particle shape and magnetization configuration. A distribution of Deff values
explains the vertical broadening of the central ridge, to the point that it is no longer
distinguishable from other low-coercivity contributions, while the negative sign of
Hi is responsible for the demagnetizing mean-field signatures visible in the FORC
diagram.

The simultaneous onset of the MD trend for the bulk hysteresis parameters and
the appearance of negative mean-field signatures in the FORC diagram (i.e., the
region of negative FORC amplitudes below the high-coercivity range of the central
ridge) can be identified with the upper limit for particles or systems with true
PSD behavior. As far as the FORC diagram is concerned, a proper identification
of negative mean-field signatures relies on negative, low-amplitude regions of
the FORC function located between Hu = −Hc and Hu = 0. Optimized FORC
protocols with sufficiently wide measurement ranges, sufficient quality for resolving
low-amplitude details of the FORC function, and proper processing that avoids
smoothing artifacts while providing sufficient noise suppression (section “FORC
Processing”), are required for a proper identification of the mean-field signature.

In micromagnetic terms, the grain size trend characterized by the sudden
transition from SD to two-state signatures and the subsequent progressive transition
toward MD properties can be understood by the appearance of the vortex state and
the subsequent progressive division on the volume that surrounds the vortex tube
into domains where the magnetization vector is parallel to one of the magnetocrys-
talline easy axes, separated by transition regions that can be effectively regarded
as domain wall precursors [216]. The MD transition appears to be more gradual
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for micromagnetic simulations of cuboctahedral crystals than spherical ones [216],
which means that complex surfaces, such as those of many natural PSD particles
[231], might extend this transition over a wide range of grain sizes. However, as
discussed in section “Multidomain Particles”, the coexistence of PSD and MD
signatures over a wide grain size range appears to be related to the existence of high-
stress regions with PSD behavior, partially screened by the reversible magnetization
of the remaining particle volume.

It is finally worth discussing the PSD-MD trend in the case of coercivity distri-
butions. A sharp central ridge exists only before the onset of negative mean-field
signatures, and in this case its contribution to the total irreversible magnetization is
marginal, except for specimens containing only two-state systems such as those of
Fig. 56. Because magnetic state transitions along the major hysteresis loop occur in
positive and negative fields, firr is a broad distribution, and fdcd(0) > 0 (Fig. 62a).
The two distributions are very similar in the positive field range, and this property
is shared with most two-state systems (Fig. 56), so that fdcd can be regarded as
a truncated version of firr that reflects FORC contributions comprised within the
memory region. As negative mean-field signatures start to appear at the PSD-MD
transition (Fig. 62b, c), the maximum of firr begins to move toward H = 0, while fdcd
approaches a one-sided exponential-like function as it loses contributions at higher
coercivities. This loss of contributions inside the memory region, which reflects the
decrease of Mrs/Ms, is due to the increasing vertical spread of the FORC function.
The large vertical spread of the FORC function near Hc = 0 contributes to firr, but
not to fdcd. This trend continues until firr becomes symmetric about H = 0 and fdcd
decays to zero in a very narrow range of fields close to H = 0, approaching the ideal
signature of MD particles (see section “Multidomain Particles”).

Multidomain Particles

The last FORC signature that needs to be discussed for a complete description of
geologic materials is that of multidomain crystals. As suggested by the name, a
multidomain crystal is divided into discrete magnetic domains with homogeneous
magnetization separated by domain walls, which are thin planar regions where
the magnetization vector rotates between the directions of adjacent domains. The
typical thickness of these regions is given by the so-called Bloch wall width
δw = π lex/κ , where lex is the exchange length (Eq. 55) and κ the magnetic
hardness (Eq. 54); this width is of the order of 100 nm for magnetite [234–
236]. The number and size of magnetic domains and the orientation of their
magnetization are controlled by energy minimization principles. Relevant terms
include the domain wall energy, the magnetostatic energy, the Zeeman energy,
and the magnetocrystalline energy [237]. The domain wall energy per unit of
wall surface, Ew ≈ π sin (θw/2)

√
2AK , where θw is the angle between the

magnetization vector of the adjacent domains, accounts for the energy required to
overcome the exchange coupling, expressed by the exchange energy constant A,



580 R. Egli

and to rotate the magnetization away from the preferred axes of magnetocrystalline
anisotropy, expressed by the anisotropy constant K. The magnetostatic energy
accounts for the energy of domain magnetizations in the stray field produced by the
intersection of the magnetization vector with the crystal surface. In analogy with SD
particles, the magnetostatic energy per unit of volume is given by Ed = −μ0μ

2
s Deff,

where μs is the spontaneous magnetization and Deff an effective demagnetizing
factor (see section “Demagnetizing Fields and FORC Deshearing”), which depends
on the shape of the crystal and the number of domains. A simple expression for
Deff valid for a large number n of domains is Deff ≈ DSD/n, where DSD is the
demagnetizing factor of the same crystal when it contains only one magnetic domain
[58]. In practice, the decrease of Deff with the number of domains can be understood
by the fact that the stray field produced at the surface of the crystal becomes
more localized as the number of domains increases. Finally, the expressions for the
Zeeman and magnetocrystalline energies are the same as for SD particles (section
“Uniaxial SD Particles: Stoner-Wohlfarth Model”).

In the absence of external fields, the number of domains is given by a balance
between the total domain wall energy, which is proportional to the number nof
domain walls, and the magnetostatic energy, which is inversely proportional to n.
Minimization of these two energies gives the optimal number of domains, which
turns out to be proportional to the square root of the particle size [31]. The
application of an external field has three main effects on the domain structure:
at small fields, domain walls move so that favorably magnetized domains (i.e.,
when the magnetization vector forms a < 90◦ angle to the external field) grow at
the expense of unfavorably magnetized ones, decreasing the Zeeman energy (Fig.
63a). If the field is applied at an angle to the magnetocrystalline easy axes, the
domain magnetization rotates away from the original easy axis direction, but so
to maintain the domain wall angles θw. For magnetite crystals, this rotation is
completed when the external field reaches ~20 mT. Finally, unfavorably magnetized
domains begin to denucleate (disappear) in larger external fields, until the entire
crystal contains a single magnetic domain, thus entering the saturation range. The
interplay between these three processes, which requires complex micromagnetic
models to be analyzed in a realistic manner, determines the sigmoidal shape of MD
hysteresis loops. The essential magnetic signatures of MD particles, on the other
hand, are captured by much simpler conceptual models, in which rotation of the
magnetization vectors and domain (de)nucleation are neglected.

The minimalistic model used to understand the FORC signature of MD particles
considers a cuboidal crystal that contains only two domains separated by a single
Bloch wall (Fig. 63b). Furthermore, it is assumed that the external field is parallel to
one of the magnetocrystalline easy axes, so that the magnetization vectors of the two
domains are parallel and antiparallel to the field, respectively. The relevant energy
terms in this case are Ed, the Zeeman energy, and Ew. The sum of these terms yields
the total energy as a function of the external field H and the domain wall position
0 ≤ x ≤ L, where L is the size of the crystal:
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Fig. 63 1D model of a MD cuboid. (a) Magnetic domains with alternate magnetization directions
(arrows) separated by Bloch walls, in an external field H. Surface magnetic charges indicated
with “+” and “−” produce the stray field caused by the intersection of the magnetization vectors
with the surface, in the absence of closure domains. (b) Magnetic configuration equivalent to (a),
consisting of a single Bloch wall with position xcomprised between 0 and the cuboid length L. Also
shown are two defects, represented by spherical voids, and their stray field, when fully contained
in a magnetic domain (left) or crossed by a domain wall (right)

Etot(x,H) = 1

2
μ0μ

2
s ADeff(1 − 2x/L)2 + μ0μsA(L − 2x/L)H + AEw(x),

(59)

with A being the domain wall area [107, 108]. The first term on the right-hand
side of Eq. (59), the magnetostatic energy, is a quadratic function of the domain
wall position, which takes a minimum at x = L/2, that is, when the domain wall is
placed exactly in the middle. In this case, the equal and opposed magnetic moments
of the two domains cancel out, yielding a zero net magnetic moment. The second
term in Eq. (59) is a linear function of the domain wall position, with coefficient
proportional to the external field H. This term moves the local minimum, and so
the domain wall position x, so that the favorably magnetized domain (in this case
the left one) grows at the expense of the other domain, until saturation is reached at
x = 0. Finally, A and Ew do not depend on the wall position in a defect-free cuboidal
crystal, so that the last term on the right-hand side of Eq. (59) is a constant. In this
case, Eq. (59) has a single local minimum, which is also the global minimum, at
1 −2x/L = −H/(μs Deff) for any given external field. The total magnetic moment of
the crystal is then simply given by μs A(2x − L) for 0 ≤ x ≤ L. This result yields a
closed hysteresis loop with the form of a saturating linear function:

M(H) =
{
χH, |H | < χ−1μs

μs else
, (60)
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where χ = D−1
eff is the magnetic susceptibility of the crystal. This type of hysteresis

is indeed measured on large single crystals when the easy axis is aligned with the
external field direction [31]. Full loop closure means that the saturation remanence
is exactly zero and the FORC function is zero everywhere. Ideal MD particles are
therefore invisible to remanence and FORC measurements.

Real MD crystals do hold a small remanent magnetization by virtue of unsym-
metrical shapes and because of the interaction between domain walls and crystal
defects. The first case is only relevant for relatively small particles with an odd
number of domains, whereby the resulting magnetization has a PSD character
[228]. The second case, known as domain wall pinning, is the one relevant for
understanding the MD FORC signature. One of the simplest pinning models is
the inclusion theory developed by Kersten [238], and later refined by Néel [239],
which considers a crystal containing non-magnetic inclusions with minimum sizes
comparable to the domain wall thickness [240]. These inclusions, which can be
effectively identified with voids, create an internal stray field due to the virtual
surface charges forming where the magnetization vectors intersect the inclusion
surface. In the case of a spherical inclusion fully contained within a magnetic
domain, this stray field is equivalent to that produced by a magnetic dipole with
dipole moment μs V, where V is the volume of the inclusion. This field generates
a magnetostatic energy Einc = μ0Vμ

2
sDinc, where Dinc is the shape-dependent

demagnetizing factor of the inclusion (e.g., Dinc = 1/3 for a sphere). If a domain
wall intersects the inclusion, the non-homogeneous wall magnetization produces a
more complex surface charge distribution that decreases the equivalent magnetic
moment of the stray field and therefore also Einc. Similar effects also occur with
other types of defects, such as dislocation, through the magnetostriction energy.
If domain walls move in a crystal containing many sparse defects, the additional
energy terms Einc, which depend on the wall position, can be assimilated to the total
wall energy Ew. Because defects lower Ew, domain walls tend to be immobilized
by them, until the additional energy created by wall bending and by the non-ideal
position becomes sufficiently large to suddenly detach the wall from its pinning
site(s). This sudden detachment creates a microscopic step in the magnetization
curve known as Barkhausen jump. In practice, domain wall pinning is modeled
by adding a random function of the wall position to Eq. (59). Néel [239] used
a sawtooth function of random amplitude. In later refinements, the domain wall
displacement has been treated in the framework of random walk theories [241, 242].

For the purpose of understanding the fundamental characteristics of MD hys-
teresis, random fluctuations of the domain wall energy can be represented by a
sinusoidal function of the form Aεsin(πx/d), where ε is fluctuation energy amplitude
per unit of domain wall area and d a fluctuation dimension of the order of the
size of inclusions. Both parameters might vary with the amplitude of the applied
field, especially when saturation is approached. The total energy landscape obtained
by adding a fluctuation term to Eq. (59) now contains a series of local minima in
addition to the global one, depending on the amplitude of the external field (Fig.
64a). These local minima cause the domain wall to lag the global minimum by an
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Fig. 64 Conceptual model of MD hysteresis. (a) Total magnetic energy (gray curves) as a function
of wall position for the two-domain particle of Fig. 63b, when immersed in external fields B1 to
B5. Curve undulation represents fluctuations of the domain wall pinning energy, modeled with a
sinusoidal function. During a field sweep from positive saturation, the wall position is determined
by the first local minimum of the energy function from the left (e.g., blue dot on the B1 curve).
As the field is decreased to the point that the occupied minimum disappears, the wall jumps to the
next local minimum (next blue dot on the B2 curve), and so on. The sequence of magnetization
values corresponding to the wall positions indicated by the blue dots builds the descending branch
of the hysteresis loop (arrows). The field sweep is stopped at B5 and reversed, so that B5 = Br
is the reversal field of a FORC measurement. The field is now increased back to B1. The local
minimum occupied in Br remains stable until a critical value is reached (in this example B3). From
this point on, the magnetization increases again through a series of jumps to the rightmost stable
minimum (orange dots), building a FORC curve (arrows) that, from B3 onward, coincides with the
ascending branch of the major hysteresis loop. (b) Magnetic hysteresis (blue) and selected FORCs
(orange) corresponding to the energy model shown in (a). Dots indicate remanent magnetizations
contributing to the DC demagnetization curve Mdcd. Only FORCs contributing to intermediate
remanent magnetization and the FORC starting just after the last magnetization jump on the
descending branch are shown for clarity. (c) FORC function corresponding to (b). Non-zero
contributions, in the form of isolated positive and negative peaks indicated by orange and blue
dots, respectively, occur along the diagonal traces (gray lines) of FORCs starting immediately
after a magnetization jump on the descending branch of the major hysteresis loop. The dashed line
indicates the average horizontal position of the peaks

amount that depends on ε and d as the field is swept during a hysteresis or FORC
measurement. This lag is quantified by the field Hc = πε/μ0 μs dthat needs to be
added to the Zeeman energy term in Eq. (59) to eliminate the local minima caused
by the fluctuation term. This field is, by definition, equal to the coercive field. The
saturation remanence Mrs = χHc that arises from domain wall lags is obtained
from Eq. (60) using the slope χ of the hysteresis loop, which remains unchanged
[31]. This MD hysteresis model can now be used to calculate FORCs. During the
preparatory field sweep from positive saturation, the domain wall in Fig. 63b moves
from right to left occupying always the rightmost local minimum. A Barkhausen
jump occurs every time an occupied energy minimum disappears, and the domain
wall position jumps to the next local minimum (Fig. 64a). When the field sweep
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direction is changed at the reversal field Hr, the occupied minimum remains stable
until the field has increased by 2Hc. During this time, the domain wall does not
move irreversibly, and the magnetization remains nearly constant. Once the field
has increased by 2Hc, the ascending branch of the major hysteresis loop is reached,
and a series of Barkhausen jumps brings the particle to positive saturation along this
branch. In practice, given the stochastic nature of the pinning process, few jumps
can occur before the ascending branch of the hysteresis loop is reached, as in the
example of Fig. 64b. Nonetheless, the general trend for all FORC curves is to merge
with the ascending branch at H ≈ Hr + 2Hc [107].

The FORC measurements of a single MD crystal with coercivity Hc0 can
therefore be modeled by a series of ramp functions:

M (Hr,H) = χR (H − Hr − 2Hc0) (61)

with R(x) = θ (x)x, where θ is the Heaviside unit step function. The corresponding
FORC function, obtained from the mixed derivative of Eq. (61) using R′(x) = θ (x)
and θ ′(x) = δ(x), where δ is the Dirac impulse, and using the FORC coordinates
Hc = (H − Hr)/2 and Hu = (H + Hr)/2, is

ρ(Hc,Hu) = 1

4
χδ(Hc − Hc0)'(Hu/2Hs) , (62)

with Hs = χ−1 μs being the saturation field and '(x) = 1 for |x| ≤ 1/2 and
'(x) = 0 otherwise being the unit rectangle function. In practice, Eq. (62) describes
a vertical ridge placed at Hc = Hc0 and extending vertically between Hu = ±Hs.
Using Hs ≈ μs Deff with Deff ≈ 0.33 for equidimensional particles, one can see that
the vertical extension of the FORC function is of the order 200 mT for magnetite,
which is much larger than that of SD and PSD particles. The integration of the FORC
function in Eq. (62) over the FORC space yields a total irreversible magnetization
Mirr = μs, as expected from the fact that reversible magnetization changes, for
instance, by rotation of the magnetization when the field direction does not coincide
with an easy axis, have not been considered.

The vertical ridge of Eq. (62) is in reality composed of a large number of
discrete positive and negative peaks corresponding to individual Barkhausen jumps
occurring in each FORC before merging with the ascending branch of the major
hysteresis loop (Fig. 64c). These jumps are similar to those of the PSD FORC
model discussed in section “Multistate Systems: The PSD FORC Signature”, but
have a markedly different distribution in FORC space, due to the fact that only a
small initial portion of each curve is distinct from the other curves. The final step
toward a general model for the MD FORC signature consists in considering a large
assemblage of MD particles possessing a distribution f (Hc0) of coercivities and a
distribution g(Hs) of saturation fields due to a range of shape-dependent Deff values.
Integration of Eq. (62) over these distributions yields

ρ(Hc,Hu) = μs

4
f (Hc)G(Hu) (63)
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with

G(Hu) =
∫ ∞

Hu

1

Hs
g(Hs) dHs (64)

In the case of nearly equidimensional particles, the range of variation of g(Hs) is
relatively limited, and G(Hu) is a nearly flat function for |Hu| values smaller than the
lower limit of the Hs range, which then decays to zero for larger arguments. If f (Hc0)
is a function peaking at Hc0 = 0, Eq. (63) represents a vertical ridge extending along
the left limit of the FORC space. This is the signature commonly observed for large
MD particles, whereby the vertical extension is often truncated by the limited Hu
range chosen with the FORC protocol [107]. Examples covering the whole vertical
range, such as those of Fig. 65, are rare and mostly affected by artifacts related to the
first measurement of each curve at large fields (section “Field Control, Measurement
Sensitivity, and Resolution”, Fig. 13).

The simple MD model illustrated above ignores possible variations of the pinning
energy function (e.g., ε) and of the demagnetizing factor Deff as saturation is
approached. A general increase of Deff close to saturation is expected because of the
elimination of closure domains [58]. This decreases the slope of the hysteresis loop,
determining the more gradual saturation approach observed in real MD particle
assemblages. Because Hs controls the extension of the vertical ridge in the FORC
function of individual MD particles, the ridge amplitude distribution G in Eq.
(63) shows a more gradual decay at large values of |Hu| [108]. As far as the
pinning energy is concerned, the field required to unpin a Bloch domain wall is
an increasing function of the angle between the domain magnetization direction and
the field direction. This dependence is irrelevant for magnetite at room temperature,
because the small cubic magnetocrystalline anisotropy is easily overcome, and a full
alignment of the magnetization is obtained in field amplitudes of ~20 mT or less. On
the other hand, materials with strong uniaxial magnetocrystalline anisotropy, such
as magnetite below the Verwey transition temperature, will maintain the domain
magnetization parallel to the easy axis until the saturation range is reached [243]. In
the case of polycrystalline grains, domain walls will move more easily inside regions
with easy axes sub-parallel to the external field, so that magnetization changes close
to the saturation region will be controlled by domain wall displacements in regions
with easy axes nearly perpendicular to the field. These regions are characterized
by larger Hc0 values, so that the horizontal FORC coordinate of the vertical ridge
becomes a function of |H| = |Hc + Hu| ≈ |Hu| [108]. An example is shown in Fig.
65c for titanomagnetite at 50 K: in this case, the increase of Hc0 with |Hu| gives the
central ridge a characteristic crescent shape.

FORC diagrams of MD particle assemblages often contain traces of the PSD
signatures discussed in section “Multistate Systems: The PSD FORC Signature”,
right of the vertical ridge. These PSD signatures include of a vertically scattered and
slightly offset central ridge overlying a negative region, and can be observed also in
samples that do not contain PSD-sized particles (Fig. 65a, b). The PSD signature
of MD crystals is eliminated by thermal annealing [107]. Thermal annealing is
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Fig. 65 FORC diagrams at selected temperatures (a-c) and coercivity distributions at 150 K (d)
of a polycrystalline titanomagnetite specimen (Fe3 − xTixO4 with x = 0.4). Data from Church et al.
[108], after correction of first point measurement artifacts with VARIFORC. Contours are drawn
at 2, 5, and 10–90% quantiles of the total magnetization in steps of 10%. The dashed lines in (b)
highlight the limits of the memory region, which controls fdcd in (d)

expected to redistribute pinning sites homogeneously throughout the grain volume
in a manner that is consistent with the stochastic pinning model that yields the
MD FORC function discussed above. Concentrated stress in the unannealed state,
on the other hand, might block domain walls over a large portion of the grain
volume, which then behaves as a sort of vortex particle that is partially screened
from the external field by the reversible magnetization of the stress-free regions.
Growth of the relative amplitude of PSD signatures in MD magnetite-bearing
ore after manual powdering [244] supports this interpretation. The coexistence
of low- and high-stress regions in unannealed grains has a significant effect on
the shape of MD coercivity distributions: firr, which is sensitive to all irreversible
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magnetization changes (e.g., Barkhausen jumps) along the major hysteresis loop,
between negative and positive saturation, tends to be perfectly symmetric about
H = 0 in the ideal case of homogeneously distributed pinning sites. The generally
stronger contributions in positive fields are ascribable to the presence of high-
stress regions. On the other hand, the DC demagnetization curve and the associated
coercivity distribution fdcd depend only on FORC contributions located within the
memory region. Only a small fraction of ideal MD signature consisting in a vertical
ridge located near Hc = 0 intersects the memory region, while the opposite is true
for the PSD signature (Fig. 65b). Therefore, fdcd is mainly controlled by the PSD-
like magnetization of high-stress regions, especially at higher coercivities. Even if
fdcd might extend to relatively large fields (e.g., 200 mT in Fig. 62c), the PSD-
like remanent magnetization is not an ideal paleomagnetic carrier, because of its
coupling with the magnetically unstable low-stress regions.

5 Conclusions and Outlook

As illustrated in this review, FORC measurements provide a powerful magnetic
characterization tool for geologic materials. The affinity of FORC measurements
with Preisach theory has two main advantages. First, many “ordinary” magnetic
parameters used for the characterization of rocks and sediments can be understood
as 0D (bulk magnetizations) or 1D (coercivity distributions) projections of the
FORC function, which means that a quantitative link can be established between
time-consuming FORC measurements, which are typically limited to few examples,
and faster measurements more suited to the systematic investigation of a large
number of samples. Second, specific magnetization processes produce easily distin-
guishable FORC features. Some features, such as vertical and horizontal ridges, are
highly localized in one dimension and can be separated, sometimes quantitatively,
from other diffuse contributions. One of the most typical examples is the central
ridge, which enables the identification of non-interacting SD particles even if the
magnetization is dominated by other magnetic carriers. More diffuse features of
the FORC function can be identified through specific combinations of positive and
negative contributions, such as the lobes associated with transitions from high- to
low-moment states in two-state systems or the signatures of mean-field interactions.
These features define the FORC fingerprints of specific natural magnetic particle
assemblages.

Unlike most engineered materials, natural magnetic particle assemblages are
characterized by broad and highly overlapped distributions of magnetic properties.
The high degree of non-uniqueness in the interpretation of magnetic measurements
obtained from geologic materials has been traditionally overcome—at least in
part—by multiparameter approaches and numerical unmixing techniques. FORC
diagrams do not solve the non-uniqueness problem either, but they possess a much
higher discrimination power. For instance, a binary mixture of SD and MD particles,
which might be totally undistinguishable from particles with intermediary sizes
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based on bulk parameters (e.g., Hcr/Hc vs. Mrs/Ms in the Day diagram), would be
clearly identifiable in a FORC diagram. Moreover, identical coercivity distributions
can be split into the contribution of different magnetic components according to the
domain states identifiable with FORC measurements (e.g., coarse lithogenic vs. fine
authigenic magnetite particles in sediments).

FORC diagrams, however, have their own limits: for instance, it is not possible
to discriminate among different types of particles with the same magnetic behavior,
such as the SD and non-SD examples of two-state magnetic systems discussed
in section “Two-State Magnetic Systems”, unless the exact shape of the FORC
function of specific magnetic components is known a priori. This knowledge might
be gained from forward (e.g., micromagnetic) models or from numerical unmixing
techniques (e.g., FORC-PCA). Both techniques have their own caveats: forward
models require a detailed knowledge of physical parameter distributions (grain size,
geometry, arrangement in space), which is often not available, and numerical unmix-
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A Exchange constant Section “The Pseudo-Single-Domain Magnetic
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D Demagnetizing factor (or
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Section “Multidomain Particles”

Ew Domain wall energy Section “Multidomain Particles”
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fdcd Coercivity distribution defined
by the DCD
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Function”
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by Mirr
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Function”

fK Microcoercivity distribution Section “Uniaxial SD Particles:
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Signature”
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fv Coercivity distribution of
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Section “The Classical Preisach Model”
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smoothing factor limitation
along H

Section “Smoothing Factor Limitations Along
the Measurement Coordinates”
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Ha Acquisition field Section “IRM Acquisition Curves”
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Hc
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protocol)
Section “The FORC Protocol”
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protocol)

Section “The FORC Protocol”
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Section “ARM Acquisition and
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Hf Fluctuation field Sections “The Vertical Ridge,” “Thermally
Activated SD Particles”

Hi Random interaction field Section “Demagnetizing Fields and FORC
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H i Mean interaction field Sections “Weak Magnetostatic Interactions
Between SD Particles” “Mean-Field
Interactions”

Hint Random interaction field Section “Weak Magnetostatic Interactions
Between SD Particles”

HK Microcoercivity Sections “Processing FORC Data Associated
with Thin Hysteresis Loops,” “Uniaxial SD
Particles: Stoner-Wohlfarth Model”

Hn Critical (nucleation) field Section “Uniaxial SD Particles:
Stoner-Wohlfarth Model”

Hr Reversal field Section “DC Demagnetization Curves”
Hs Saturation field Section “Definitions”
Hsat Saturation field (FORC

protocol)
Section “The FORC Protocol”

Hsw Switching field Section “Uniaxial SD Particles:
Stoner-Wohlfarth Model”

Hu Bias field and FORC
coordinate

Section “The Classical Preisach Model”

H cr
u Vertical position of the central

ridge
Sections “The Central Ridge,” “Thermally
Activated SD Particles”

Hmin
u , Hmax

u Lower and upper limit of Hu
(FORC protocol)

Section “The FORC Protocol”
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δH Field step (FORC protocol) Section “The FORC Protocol”
δH0 Width of the smoothing factor

limitation along H
Section “Smoothing Factor Limitations Along
the Measurement Coordinates”

δH* Field resolution of the FORC
diagram

Section “Theoretical Principles of FORC
Function Estimation”

δH vr
c Intrinsic thickness of the

vertical ridge
Section “The Vertical Ridge”

δH cr
u Intrinsic thickness of the

central ridge
Section “The Central Ridge”

HMS High-moment state Section “Two-State Magnetic Systems”
HWHM Half-width to half-maximum —
IRM Isothermal remanent

magnetization
Section “IRM Acquisition Curves”

K Anisotropy energy constant Section “Single-Domain Particles”
K1,K2 Cubic anisotropy energy

constants
Section “SD Particles with Multiaxial
Anisotropy”

kB Boltzmann constant —
L Langevin function Section “Processing FORC Data Associated with

Thin Hysteresis Loops”
lex Exchange length Section “The Pseudo-Single-Domain Magnetic

Behavior”
LMS Low-moment state Section “Two-State Magnetic Systems”
m Magnetic moment —
M Bulk magnetization Section “The Classical Preisach Model”
M+,m+ Descending branch of the

major hysteresis loop
Sections “The Classical Preisach Model,”
“Uniaxial SD Particles: Stoner-Wohlfarth
Model”

M−,m− Ascending branch of the major
hysteresis loop

Sections “The Classical Preisach Model,”
“Uniaxial SD Particles: Stoner-Wohlfarth
Model”

M* Rescaled magnetization curve Section “Coercivity Distributions”
Ma Anhysteretic remanent

magnetization
Section “ARM Acquisition and
Demagnetization”

Maf AF demagnetization curve Section “AF Demagnetization of IRM”
Mcal Calibration measurement

(FORC protocol)
Section “The FORC Protocol”

Mcr Central ridge magnetization Section “Thermally Activated SD Particles”
Mi Initial magnetization curve Section “IRM Acquisition Curves”
Mdcd DC demagnetization curve Section “DC Demagnetization Curves”
Mforc Total integral of the FORC

function
Section “Selected Properties of the FORC
Function”

Mirm IRM acquisition curve Section “IRM Acquisition Curves”
Mirr Irreversible component of the

major hysteresis branch
Section “Selected Properties of the FORC
Function”

Mrev Reversible component of the
major hysteresis branch

Section “Selected Properties of the FORC
Function”
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Symbol Meaning Reference

Mrs Saturation remanence Section “IRM Acquisition Curves”
Ms Saturation magnetization Section “The Classical Preisach Model”
Msi Saturation initial curve Section “Selected Properties of the FORC

Function”
Mts Transient irreversible

magnetization
Section “Selected Properties of the FORC
Function”

MD Multidomain (domain state) —
p Preisach function Section “The Classical Preisach Model”, Fig. 2
p± Occupation probability of

magnetic states
Section “Thermally Activated SD Particles”

PSD Pseudo-single domain (domain
state)

—

q Power law exponent Section “Modifications of the Classical
Preisach Model”

Rsd Maximum SD grain size Section “The Pseudo-Single-Domain Magnetic
Behavior”

S Smoothing factor (isotropic) Section “Theoretical Principles of FORC
Function Estimation”

S Mean normalized
magnetization jump amplitude

Section “Weak Magnetostatic Interactions
Between SD Particles”

sc,su,sr,s Smoothing factors
(VARIFORC)

Section “Improved Regression Methods”

s0
c , s

0
u Smoothing factors at the origin

(VARIFORC)
Section “Variable Smoothing Protocols”

svr
c Limiting smoothing factor for

the vertical ridge
Section “The Vertical Ridge”

scr
u Limiting smoothing factor for

the central ridge
Section “The Central Ridge”

s0 Limiting smoothing factor
along H

Section “Smoothing Factor Limitations Along
the Measurement Coordinates”

SD Single domain (domain state) —
SV Single vortex (domain state) —
S-W Stoner-Wohlfarth particles Section “Uniaxial SD Particles:

Stoner-Wohlfarth Model”
t Time —
tcal Waiting time before calibration

(FORC protocol)
Section “The FORC Protocol”

tm Measurement time (FORC
protocol)

Section “The FORC Protocol”

tr Waiting time at reversal field
(FORC protocol)

Section “The FORC Protocol”

tsat Duration of Hsat (FORC
protocol)

Section “The FORC Protocol”

T Absolute temperature or period —
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Symbol Meaning Reference

V Particle volume Section “Single-Domain Particles”
W Distribution of interaction

fields
Section “Weak Magnetostatic Interactions
Between SD Particles”

α Field sweep rate Section “Modifications of the Classical
Preisach Model”

αm Field sweep rate of measuring
sweeps (FORC)

Section “The FORC Protocol”

αR Rayleigh constant Section “Low-Field Susceptibility”
α0 Field sweep rate of

non-measuring sweeps (FORC)
Section “The FORC Protocol”

α1,α2,α3 Angles to 〈100〉 axes Section “SD Particles with Multiaxial
Anisotropy”

β Boltzmann factor Section “Thermally Activated SD Particles”
β0 Boltzmann factor in zero field Sections “Processing FORC Data Associated

with Thin Hysteresis Loops,” “Thermally
Activated SD Particles”

γ̂cr Background function under the
central ridge

Section “The Central Ridge”

γ Mean magnetic state of
hysterons

Section “The Classical Preisach Model”

δ Dirac impulse —
δw Bloch wall width Section “The Pseudo-Single-Domain Magnetic

Behavior”
η Packing fraction of particles Section “Weak Magnetostatic Interactions

Between SD Particles”
κ Magnetic hardness Section “The Pseudo-Single-Domain Magnetic

Behavior”
λc, λu Smoothing factor increasing

rates (VARIFORC)
Section “Variable Smoothing Protocols”

μs Spontaneous magnetization Section “Single-Domain Particles”
μ0 Vacuum permeability —
v± Transition rates Section “Thermally Activated SD Particles”
ξ Everett function, FORC

magnetization function
Sections “Definitions,” “Theoretical Principles
of FORC Function Estimation”

ρ FORC function Section “Definitions”
ρ̂ Estimated FORC function Section “Theoretical Principles of FORC

Function Estimation”
ρcr, ρ̂cr Central ridge and its estimate Section “The Central Ridge”
ρvr Vertical ridge Section “The Vertical Ridge”
τ Viscous decay time Section “Thermally Activated SD Particles”
τ 0 Characteristic time of thermal

fluctuations
Section “Modifications of the Classical
Preisach Model”

χa ARM susceptibility Section “ARM Acquisition and
Demagnetization”

(continued)
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Symbol Meaning Reference

χ i Initial susceptibility
(ferrimagnetic materials)

Section “Low-Field Susceptibility”

χ lf Low-field susceptibility Section “Low-Field Susceptibility”
χhf High-field susceptibility Section “Field Control, Measurement

Sensitivity, and Resolution”
χ sp Superparamagnetic

susceptibility
Section “Processing FORC Data Associated
with Thin Hysteresis Loops”

ing does not necessarily lead to the isolation of physically meaningful endmembers.
Therefore, further advances in the magnetic characterization of geologic materials
must be based on a mixed approach that combines fast magnetic characterization
techniques with FORC diagrams, forward modeling, and numerical unmixing.
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Characterization of Magnetic
Nanostructures with the First-Order
Reversal Curves (FORC) Diagram
Technique

Alexandru Stancu

Abstract The first-order reversal curves (FORC) diagram method has become the
state-of-the-art tool in magnetic characterization of materials with hysteresis. This
book chapter is intended as a guide in the understanding the FORC diagrams
features observed in a variety of magnetic materials. Our goal is to explain the
typical FORC features and give the proper tools for a quantitative approach to
the FORC diagram users. We discuss very simple magnetic systems made from
wires with rectangular hysteresis loops (hysterons). In noninteracting systems of
wires with a distribution of coercivities, the major hysteresis loop is sufficient
to find this distribution. FORC tool is dedicated essentially to find information
about the interactions. This is why we have focused the discussion on this topic.
We show several simple examples of nanostructures in which we can observe the
fundamental relation between the interactions and the shape of the FORC diagram.
These examples give insight on the main typical FORC features detected in many
magnetic systems: T-shaped, wishbone, and boomerang FORC diagrams. These
results are certainly important as the systems producing these diagrams are really
simple and this fact facilitates the evidence of the causal links.

Keywords FORC diagram · Preisach model · Hysteresis · Magnetic
nanostructures · Nanomagnetism · Magnetic wires · Bit patterned media

1 Introduction

The magnetic characterization of materials based on the first-order reversal curves
(FORC) and on the diagram that can be derived from these experimental data is
becoming the preferred tool to perform complex analyses of materials showing
hysteretic behavior. As we shall present in details in this chapter, FORC diagram

A. Stancu (�)
Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
e-mail: alstancu@uaic.ro

© Springer Nature Switzerland AG 2021
V. Franco, B. Dodrill (eds.), Magnetic Measurement Techniques for Materials
Characterization, https://doi.org/10.1007/978-3-030-70443-8_18

605

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70443-8_18&domain=pdf
mailto:alstancu@uaic.ro
https://doi.org/10.1007/978-3-030-70443-8_18


606 A. Stancu

provides a unique opportunity to find valuable physical information on complex
magnetic structures. We have also to mention that the area covered by the FORC
technique is not restricted only to ferromagnetic hysteresis. A variety of other
physical hysteretic processes and materials have benefitted from this analysis: ferro-
electric materials, spin transition temperature, light-induced and pressure hysteresis,
magneto-caloric phenomena, etc. [1–5]. Partially, the discussion presented here
could be extended in these cases, as well. The classical measurement of the major
hysteresis loop (MHL) has a limited value especially when one analyses a system of
magnetic elements in interaction as it doesn’t provide an evaluation of the intensity
of the interactions between these elements. It can be shown that a system with
narrow distribution of coercivities but with strong interparticle interactions could
have virtually the same major hysteresis loop with a system with weak interactions
but with a wider distribution of coercive fields. The solution for this problem was
the design of more intricate experiments that could qualitatively reveal the type
of interactions between the magnetic components of the studied sample (Henkel
plot [6], deltaM plot [6–8], etc.). The FORC diagram method, although initially
was also seen as a qualitative tool for magnetic characterization, has a tremendous
potential as a quantitative method as well. This actually became in recent years
the point of maximum interest in the magnetics scientific community. We have to
mention that various numerical algorithms used to produce the FORC distribution
and its contour plot, named FORC diagram, are not discussed in this chapter. There
are a number of excellent articles discussing this problem in detail [9–13], and a
few numerical tools are available to obtain the FORC diagrams from experimental
data. The essential problem we have, as soon as we have obtained an appropriate
FORC diagram for a magnetic system, is to interpret it correctly and to extract
as much physical information from it as possible. In order to explain the ability
of the FORC diagram technique to provide useful information about a hysteretic
system, we should undoubtedly start with the concept of hysteron—as an elementary
brick of hysteresis. The idea of a rectangular hysteresis loop as a building block for
measured hysteresis loops originated in the study of ferromagnetic systems. Weiss
and de Freudenreich [14], more than 100 years ago, were the first to discuss this
notion and to introduce concepts that many are associating now with the better
known classical Preisach model (CPM) presented by Preisach in 1935 [15]. The real
original contribution of Preisach in his famous paper was to introduce a geometrical
representation for the rectangular hysterons. As each hysteron is characterized by
two switching fields (up-down and down-up), the straightforward idea is to use them
as coordinates of a plane (known now as the Preisach plane—see Fig. 1). In a 3D
image of this representation, one should add the third axis—perpendicular to the
Preisach plane—representing the magnetic moment of the hysteron. In this way,
one can imagine a real sample represented as a collection of hysterons. This is the
central idea of the Preisach model and of the FORC-type technique.

One question one can ask is how realistic this representation is, at least in
ferromagnetism. If one applies field along the easy axis of a uniaxial single-domain
ferromagnetic particle, the system has only two stable equilibrium states possible
(along or against the field direction). In this case, one obtains a rectangular hysteresis
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Fig. 1 Preisach plane and
rectangular hysteron

loop, as previously described as a hysteron, the building block of the Preisach
model. One should mention that the switching fields up-down and down-up have
the same absolute value (with the notations in Fig. 1 Hα = − Hβ, which represents
points on the second bisector of the Preisach plane) for one isolated (noninteracting)
element. The idea of asymmetry of the hysteresis loop due to the interaction field
created by the neighboring magnetic elements within the sample is specific to the
Preisach model. In the CPM, asymmetrical hysterons are allowed, and the degree of
asymmetry is a measure of the interaction field. Different elements of the magnetic
system could show different interaction fields, and, as a result, the hysterons are
distributed not only on the second bisector of the Preisach plane but on the entire
plane. Actually, there are some constraints: (i) the switching fields have limit values
on both up-down and down-up cases; and (ii) one allows only the physically correct
loops with the down-up switching field bigger than the up-down switching field.
These constraints allow to restrict our analysis on the Preisach plane only to a
triangular area, shown as a hashed area in Fig. 1. Outside that area, we should not
have any hysteron associated to the Preisach plane.

One should also clarify the different representations of the Preisach plane. The
representation used in Fig. 1 is based on the use of the switching fields as coordinates
for the hysterons (the (Ha, Hb) Preisach plane). We can also introduce the rotated set
of axes, (hc, hs), where the (O, hc) axis is along the hysterons’ coercivities and the
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perpendicular axis, (O, hs), measures the asymmetry of the hysterons along the field
axis (the shift of the hysterons along this axis). As we have mentioned, this shift
can be related to the interaction field. Summarizing, the moment of one hysteron
associated to the point (Hα, Hβ) has the coordinates

{
hc = (

Hα − Hβ

) √
2

2 = (Hα−Hβ)
2

√
2 = Hc

√
2

hs = (
Hα + Hβ

) √
2

2 = (Hα+Hβ)
2

√
2 = Hs

√
2

(1)

where Hc is the coercive field of the hysteron and Hs = − Hi is the value of
the shift field (see Fig. 1). The interaction field, Hi, is in the opposite direction
to the shift field. When the hysteron is shifted due to the interactions along the
positive direction of the applied field, H, it means that one needs a stronger field
to switch the hysteron from down to up than from up to down. This is compatible
with a negative interaction field. The Preisach plane could be also represented in
the (Hc, Hs) coordinate system with the advantage of showing directly the coercive
and interaction fields. The (hc, hs) representation has only a theoretical value and it
shows the correct link with the Preisach (Hα, Hβ) plane.

2 Classical Preisach Model

The idea that any ferromagnetic system can be represented as a superposition
of a certain distribution of rectangular hysterons is fundamental in the CPM.
In order to become a practical tool for describing the hysteretic behavior of a
given ferromagnetic sample, one has to develop methods to find the distribution
of hysterons associated to the sample, named the Preisach distribution [16]. If a
unique distribution is found, then one should develop algorithms to calculate the
magnetic response of the sample under various sequences of applied fields. In this
way, one can show the power of prediction of CPM, when the field sequence is
different from the one used in the process of finding the Preisach distribution of
the sample. The quality of the predictions could be then tested experimentally. This
short description of the model reveals that one can discuss separately two problems:
(i) the process of evaluation of the Preisach distribution, called identification, and
(ii) the method used to evaluate the magnetic moment of the sample with a known
Preisach distribution after a sequence of applied fields. In order to understand the
identification techniques, including the one based on the FORC measurement, we
should first comprehend how the CPM works when the distribution is known.

We can start this analysis by asking the question: is it possible to calculate the
total magnetic moment of the sample when we know the Preisach distribution and
the applied field? We know that the distribution of hysterons will contain hysterons
with various coercivities and interaction fields. If the applied field is known, the
important thing is to compare this field with the characteristic switching fields of
each component hysteron. If the applied field is bigger than the down-up switching
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Fig. 2 (a) The status of the
hysterons in the Preisach
plane when a field H is
applied to the sample. (b)
Preisach plane in positive
saturation state (Hs is a field
sufficient to saturate the
sample). (c) Preisach plane
when, after positive
saturation, the field decreased
to a value H < Hs

field, Hα, then the hysteron will certainly be in the “up” position. If the applied field
is smaller than the up-down switching field, Hβ, the hysteron will be in the “down”
position. However, when the applied field is between the two switching fields we
don’t know, a priori, the status of the hysteron. It depends on the previous position
of the moment (up or down), and that position will not be changed by the applied
field. All the hysterons with this property will be responsible for the memory of the
system. It is rather easy to identify the memory region in the Preisach plane for a
given applied field (see Fig. 2(a)—region “Memory”). This region depends on the
applied field. When the field is larger than the highest down-up switching field of the
magnetic entities in the sample, then all the particles will be saturated in the positive
(up) direction. This is an example of memory deletion with a saturation field. Of
course, the discussion is valid also for the negative saturation.

If the applied field is changed, one observes that the (up, down, memory) regions
also change. If the field is increasing, the triangular “up” region increases its surface
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Fig. 3 The triangular region
in the Preisach plane
corresponding to the Everett
integral calculated with (2)

at the expense of the other two regions. If the field is decreasing, the triangular
“down” region increases its surface. This observation is of paramount importance
in order to understand how the magnetic moment can actually be calculated. First,
we know that the “memory” region moment cannot be calculated unless we know
the previous state of the hysterons before the field was applied. Consequently, the
Preisach model will give results only if one starts from a state in which we know the
status of all the hysterons. The positive and negative saturations are such states. If
initially one saturates the sample in the “up” position (positive saturation), then all
the hysterons will be in the “up” position. From this state we are able to evaluate the
value of the magnetic moment for a lower value of the applied field. The difference
between the positive sample saturation and this state is due to the triangular region
that switched from “up” to “down” position (see Fig. 2b, c). From this example
one can observe that the magnetic moment variation between two states can be
calculated using the contribution of triangular regions in the Preisach plane.

The moment of such a triangular zone is given by the Everett integral [17]:

E
(
Hα,Hβ

) =
Hα∫

Hβ

⎡
⎢⎣
Ha∫

Hβ

P (Ha,Hb) dHb

⎤
⎥⎦ dHa (2)

where P(Ha, Hb) is the Preisach distribution value in the point of (Ha, Hb) in the
Preisach plane and E(Hα, Hβ) is the total moment of the hashed triangular region
(see Fig. 3). For example, the saturation magnetic moment of the sample is given by
ms = E(Hs, −Hs) where Hs is the applied field sufficient to saturate the sample. The
magnetic moment on the descending branch of the major hysteresis loop (MHL) is
given by the difference between the saturation moment and twice the value of the
Everett integral E(Hs, H) (because the triangular zone switched from +1 (up) to −1
(down)):

mMHL = ms − 2E (Hs,H) . (3)
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Fig. 4 (a) FORC with the
starting point on the
descendant branch of the
MHL. (b) Preisach plane
diagram in the state A. (c)
Preisach plane diagram in the
state B

For theFORCsstartingon the descending branch of MHL, one should first saturate
the sample in the positive direction and then decrease the field along the MHL. At
a certain field, named the reversal field Hr (point A in Fig. 4a), the field variation is
stopped for a short time, and, after that, the field is increased in order to obtain again
the positive saturation. The FORC is the curve measured between point A and the
positive saturation. At a point B (see Fig. 4a), the applied field is H, but the measured
value of the moment is a function of two variables: (H, Hr). The explanation of this
fact in CPM is given by the two diagrams of the Preisach plane in the A and B states
(see Fig. 4b, c). The moment of the sample at point A can be calculated as

mA = ms − 2E (Hs,Hr) (4)
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The moment on the FORC at point B differs from the moment mA with the
contribution of a triangular zone that can be calculated with an Everett integral,
and is given by:

mB = mA + 2E (H,Hr) . (5)

Using the definition of the Everett integral (2) the moment at point B is given by:

mB ≡ mFORC (H,Hr) = ms − 2

Hs∫

Hr

⎡
⎢⎣
Ha∫

Hr

P (Ha,Hb) dHb

⎤
⎥⎦ dHa

+2

H∫

Hr

⎡
⎢⎣
Ha∫

Hr

P (Ha,Hb) dHb

⎤
⎥⎦ dHa. (6)

The identification technique of the Preisach distribution based on the FORC data
was proposed by Mayergoyz in 1985 [18] and was based on the observation that the
second order mixed derivative of the moment on the FORC, mFORC, expressed as in
(6), is given by:

∂2mFORC (H,Hr)

∂H∂Hr
= −2P (H,Hr) (7)

From this relation one obtains the well-known expression for the Preisach (and
for the FORC) distributions:

P (H,Hr) = −1

2

∂2mFORC (H,Hr)

∂H∂Hr
. (8)

Mayergoyz proposed this technique only in magnetic systems correctly described
by CPM. He also enunciated the necessary and sufficient conditions for a system
to be represented by a CPM. This fundamental theoretical result is known as the
Identification Theorem and states that a CPM system should have two properties:
wiping-out and congruency. The first property essentially affirms that a CPM
system, after a complete minor loop, should return to the same magnetic state.
The second one states that the minor loops within any given field limits should
be congruent. Unfortunately, there is virtually no ferromagnetic system obeying
with sufficient accuracy these conditions. This explains why many years after
Mayergoyz’s article there were no reports of use of the FORC technique. A real
breakthrough was produced by Pike et al. from University of California, Davis. In
the Ref. [19], the authors show the main problems with the FORC identification
technique for CPM systems and link these problems with a number of physical
causes. The main result of this analysis was the decision to use the FORC technique
for any ferromagnetic system without requiring any condition (like the ones from
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the Identification Theorem). In this way, one can produce, for any ferromagnetic
sample, an experimental FORC distribution, which is not the Preisach distribution.
The expectation is that this FORC distribution have features specific to each
magnetic phase from the sample. This point of view is at the origin of the qualitative
use of the FORC distributions, which was coined as magnetic fingerprinting [20].
The FORC distributions and especially their contour plot representations, known as
FORC diagrams (looking similar to fingerprints, etc.), became an instant success,
and an increased number of laboratories became interested in implementing this
experimental technique.

The qualitative FORC studies are specific to a number of domains, especially
those related to geology [21–24] but also to other research fields. Systematic studies
have shown that typical features that are observed in many FORC distributions
can’t be actually linked to some magnetic phases in the composition of materials.
It was understood from the initial studies that these are in fact evidence of
specific aspects concerning the geometry of the samples. A relevant moment in
the evolution of understanding the significance of the FORC diagrams, opening
the way from qualitative to quantitative interpretation of the experimental results,
was the reanalysis of the relation between the Preisach model and the FORC
distribution [25]. It was pointed out that indeed the very restrictive conditions
of CPM can’t be fulfilled by the ferromagnetic systems. However, a number of
modified Preisach-type models were developed in order to relax these conditions.
Moving Preisach model [26], Variable Variance Preisach Model [27] and Preisach
Model for Patterned Media [28] could be mentioned in this context. All these
Preisach-type models are able to simulate FORC data, and, when the mixed second
order derivative is calculated with Mayergoyz’s algorithm, one can produce most
of the features observed in experimental results for real magnetic samples. This,
in principle, opens the opportunity to find, from the FORC data, the Preisach
distribution and a number of supplementary parameters specific to each modified
Preisach model. In this way, a quantitative approach for the interpretation of the
FORC diagrams becomes achievable.

3 Magnetic Ensembles of Real Magnetic Hysterons

One enduring effort in the Preisach community was to find real magnetic systems
containing magnetic entities in interaction, each isolated element having a rectangu-
lar hysteresis loop and with interaction fields along the applied field direction. Such
magnetic systems were named at a meeting at the 2000 INTERMAG Conference—
standard samples. Also, at the same meeting, the idea of using data generated by
micromagnetic models was assessed as standard problems for the Preisach-type
models to evaluate the correlation between the Preisach models parameters and the
physical micromagnetic data [29].

A similar approach is advisable for the quantitative FORC analysis. The first
condition is to use magnetic bricks with rectangular hysteresis loop. As we already
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mentioned, a uniaxial single-domain ferromagnetic particle has a rectangular loop
when the external field is applied along the easy axis of the particle. The other
condition which the systems should obey is that the interaction fields should be
also acting along the same direction. These two concurrent conditions restrict
drastically our choice for a magnetic structure. If one also adds a condition to
be able to calculate easily the interactions, we can imagine a system of quasi-
identical single-domain particles in a 2D network with the easy axes perpendicular
to a plane. It is interesting to observe that similar magnetic systems are intensely
studied due to their potential application in various fields from recording media
to tuned absorbents of electromagnetic waves: arrays of magnetic wires produced
by electrochemical deposition in specially designed matrices, which controls the
geometrical characteristics of the arrays (for details on magnetic wire systems we
recommend [30]). So, instead of a single-domain particle, which will have a very
small magnetic moment, in this case we consider a long magnetic wire with a
significant magnetic moment. The possible problem would be the fact that the wire
is not a single-domain element. However, the system has two clear stable states
of the magnetic moments in the wire, along the axis of the cylinder. The reversal
process is evidently not a coherent rotation of the moment of the wire. In this case
one has a process of nucleation of a domain wall at the end of the wire followed
by a rapid propagation of the wall toward the other end of the wire. The process is
really rapid (near 1 ns) compared to the typical duration of measurements made
in Vibrating Sample Magnetometers (VSMs) [31]. This means that actually the
isolated wire will have a rectangular hysteresis loop. It is a near ideal physical
hysteron as the moment is big enough to be easily measured in a classical VSM.

The next logical question is about the interaction field in such an array of
magnetic wires. Without losing the generality of the problem, one can assume a
rectangular structure of identical cylindrical wires. The axes of symmetry of the
wires are all parallel among them and all perpendicular to a plane. We shall call that
configuration a 2D-perpendicular array of magnetic wires [32–34]. If one discusses
the interactions in magnetic wire structures, a legitimate question is how one can
calculate this field taking into account that the field created by the other wires is
different at different points of each wire. For wires much longer than the diameter
of the circular base, it can be shown that the interaction field can only be accurately
calculated if a really large number of wires are taken into account [35]. Moreover,
it is appropriate to use the interaction field in the center of the wire. In this way
a second physical condition desirable from the Preisach model point of view is
fulfilled, that is, the interaction field is also along the easy axis of the magnetic
particles.

To evaluate the behavior of a 2D-perpendicular array, as the one described before,
in any sequence of applied field, one uses a very simple model in which each wire
is represented as a rectangular hysteron. The most complicated problem in this
case is to calculate with sufficient accuracy the interaction field in each wire. If
the cylindrical wire is saturated, the uncompensated magnetic charges are present
only on the circular bases of the cylinder. Each wire will create a magnetostatic field
which can be calculated as the superposition of the fields created by two discs: one
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charged positively and one negatively. It was also shown that the approximation
of the disc uniformly charged with a monopolar magnetic charge has sufficient
accuracy in the calculation of the interaction field.

To discuss the typical results obtained with simple Ising-Preisach model (at zero
Kelvin) as described in [32–34] and with similar physical data, we shall analyze
an array (of 104 wires) with the following characteristics: L = 6 μm, r = 40 nm,
Ms = 485.0 emu

cm3 = 4.85 × 105 A
m . Each wire is represented in the model by

a hysteron with an intrinsic coercivity. In these simulations we have randomly
associated coercivities with a Gaussian distribution with a mean value of 100Oe
and with a dispersion σ = (50/3)Oe. Consequently, we have wires with intrinsic
coercivities between 50Oe and 150Oe in our array. The switching condition could
be simply triggered by the switching fields of each wire. Another modeling solution
for the evaluation of the switching could be the use of a model for the energy barrier
between the two stable states of the wire (up/down) and to use a Metropolis Monte
Carlo (MMC) technique [36] to calculate the switching. At zero Kelvin, there should
be no difference between the two algorithms. The MMC method, however, offers the
prospect for the model to evaluate the magnetic behavior at different temperatures.

4 Results of Simulations

The following results have been obtained with an Ising-Preisach model for a
rectangular array of magnetic wires with the characteristics mentioned in the
previous section. The FORC diagrams and the data for other figures were produced
by doFORC package [13]. One can observe that the interactions between the wires
give a “T-shaped” FORC diagram. First, we should present a few quantitative
aspects of the diagram. In Fig. 5(b) we have marked on the diagram two lines: (i)
one at +337 Oe and (ii) one at −537 Oe. These values were calculated starting from
the value of −387 Oe, which is the demagnetizing field at the positive saturation in
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the middle of the sample. We have assumed that the least coercive wire is the first
to switch at (387 − 50) Oe = + 337 Oe and the last to switch is the most coercive.
When this most coercive wire will switch, all the other wires have been already
switched, so the field created by these wires will act on the positive direction and to
be able to switch this last wire one needs −(387 + 150) Oe = − 537 Oe.

When we discuss the effect of interactions for the 2D-perpendicular array of
magnetic wires we have to put emphasis on at least two elements:

1. The effect of magnetostatic interactions between the wires in the array is
considerably different from the one described in the classical Preisach model.
This is unexpected, as we have seen that each wire can be realistically assimilated
with a Preisach rectangular hysteron.

2. The interaction field has different effects on the wires depending on their
coercivity.

To make that clearer, we remember that in the classical Preisach model, the
interactions have the effect of shifting the rectangular loop of each hysteron with
a constant (interaction) field independent of the magnetic state of the system. The
interaction field induces the asymmetry of the rectangular hysterons. The positive
and negative switching fields may have different absolute values. The interaction
fields of the entire ensemble have a characteristic distribution. Scientists have
analyzed this hypothesis many years ago and they realized that this distribution
cannot, realistically, be independent of the magnetic state. The concept of statis-
tically stable Preisach distribution was used to solve this problem, as discussed in
[37–38]. However, some magnetization processes, like the remanent anhysteretic
magnetization, as shown by Wohlfarth in [38], is really hard to understand even in
this context. The most significant contribution to this problem was to introduce a
phenomenological dependence of the interaction field distribution on the magnetic
state. Della Torre has developed the moving Preisach model, based on the hypothesis
that there is a linear dependence of the interaction field on the magnetic moment
of the sample [26]. Many of the problems observed in the classical version of the
Preisach model were solved in the moving Preisach model (e.g., the problem of
the remanent anhysteretic susceptibility [39]). Essentially, in the moving Preisach
model we can understand the interaction field as a stable distribution (as seen in
the classical Preisach model) moving with a value dependent on the total magnetic
moment of the sample. A new parameter, α, the moving constant—which is
controlling how much the stable distribution is moving—is in this way introduced in
the Preisach model. However, most of the researchers using the Preisach model have
conserved the image of interactions producing a shift of the rectangular hysteresis
loop which is symmetrical if measured for the isolated wire (or other magnetic
fundamental brick of the studied system). In this way, interactions cannot change
the intrinsic coercivity of the wire. Nonetheless, we have seen in our simulation
that starting with wires with intrinsic coercivities between 50 Oe and 150 Oe, we
have detected in the FORC distribution symmetric hysterons with a coercivity of
537 Oe, much larger than the most coercive wire in the system (more than three
times higher!). This is not a trivial fact, and a clear explanation is needed. As we
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have shown in [32], this increase of the apparent coercivity is also the effect of the
interaction of the intrinsically most coercive wire with its neighbors. The switch
of the wire with the smallest coercivity (the first to switch) will be favored by the
interactions. The switch will happen near positive saturation (at positive applied
fields) and the switch back up is obtained on the FORCs also near the positive
saturation. As the neighboring moments will be up at both switches, the interaction
field will be virtually constant, and the effect will be the shift of the rectangular
hysteresis loop of this hysteron of low coercivity along the field axis toward positive
fields. The coercivity of the hysterons with small coercivity will be conserved by the
interactions. They will behave almost like ideal hysterons in the CPM. The case of
the higher coercivity hysterons is different. The interaction field created by all the
neighboring wires, which have been switched already down, is actually stabilizing
the highest coercivity wire up state. A high value of the negative external field will
be necessary to switch this wire (in absolute value the sum of the coercive and
interaction fields—see Fig. 5(b)). To switch it back on the FORCs, it is easy to
imagine that this wire will again be the last to be switched back up. But before
that, all the neighbors will have been already in the up position because they have
smaller coercivities. Again, the interaction field will stabilize the down position of
the most coercive wire. Actually, it will be again necessary to apply a field equal to
the absolute value of the one required to switch down the same wire on the major
hysteresis loop. This explains two facts: (i) the absolute values of both switching
fields are higher than the intrinsic coercive field of the most coercive wire; and (ii)
the absolute values of these switching fields will be virtually equal. This process is
at the origin of the presence of a high coercivity hysteron in point C on the FORC
diagram from Fig. 5(b). One can make this analysis more profound by observing
that point C is the unique representation on the FORC diagram of the wire with the
highest coercivity. The question is whether all the other wires will have a unique
representation in the FORC diagram/distribution.

To understand the conditions for such biunivocal relation between the wires
and points in the Preisach plane, we have to reexamine the essence of the FORC
technique. We know that, at some reversal field, one wire will be switched from
up to down on the descending branch of the major hysteresis loop. Let’s analyze
what happens with this switched wire on the FORC. We know that in the process of
restoring the positive saturation on this FORC, this wire will certainly switch back
to the up position at a certain value of the applied field. We also know that the FORC
distribution is found from a second order mixed derivative of the magnetic moment
measured on the FORC. The derivative with respect to the applied field is also
known as magnetic susceptibility, noted with χ (H, Hr). So, the FORC distribution
will be related to the derivative of the magnetic susceptibility with respect to the
reversal field:

χ (H,Hr) = ∂mFORC (H,Hr)

∂H

ρ (H,Hr) = −1

2

∂2mFORC (H,Hr)

∂H∂Hr
= −1

2

∂χ (H,Hr)

∂Hr
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One may understand the FORC technique as follows:

1. One hysteron in the sample, initially saturated in the up position, will switch
down at some reversal field. Taking into account the fact that we use a finite field
step, we can trace the switching up-down with a resolution related to this field
step.

2. At one value of the reversal field, the hysteron didn’t switch down and on the
next FORC it was switched.

3. On the first FORC, the wire will stay up during the entire time we measure this
curve. However, on the next FORC, as the wire will start in the down position,
it will switch back up at a certain value of the applied field, a fact that will
be observed in the magnetic susceptibility of the sample for that applied field.
The derivative of the magnetic susceptibility on the two successive FORCs as a
function of the reversal field will evidence a difference in susceptibility due to
the switch down-up observed only on the second FORC and not present in the
first one.

In this way we track both switching fields and can locate the moment contribution
of the wire in a point in the Preisach plane. This discussion could give the impression
that the corresponding wire—image on the FORC diagram—is unique. There is
however another condition to be fulfilled by the switching process of the mentioned
wire on the next FORCs, characterized by more negative values of the reversal field.
The switch down-up of this wire should ideally happen at the same value of the
applied field as it was observed on the first FORC started by the wire in the down
position. To check this property, we have made a simulation in which we calculated
the switching fields on each FORC for the wire with the smallest coercivity. In Fig.
6 we show the result of the simulation for two cases: (a) the noninteracting array
and (b) the interacting array. We see that in the noninteracting array, the switching
behaves as we think it should: the wire switches on all the FORCs at the same value
of the field. This assures that the only image of this wire in the FORC diagram
will be recorded at the first FORC started with the wire in the down position. All
the following FORCs will not produce images as any such two successive FORCs
will see the same increased value of the susceptibility due to the wire switch up at
the same value of the field, regardless of the reversal field. The derivative of the
susceptibility with regard to the reversal field will not give a contribution due to this
wire. Actually, the FORCs will track gradually all the wires in the order of their
switch up-down field.

However, when interactions are important, we see in Fig. 6(b) that the switch
down-up is produced at a different value of the applied field on different FORCs with
the exception of very low values (negative) of the reversal field that have already
saturated the entire sample in the negative direction.

This behavior is at the origin of multiple images of the wire switch (down-up)
in different positions for different values of the reversal field. In [33] we have
called this fact—multiplicity of the images for one magnetic entity. What makes
this unpleasant fact even more disagreeable is that the multiplicity is dependent on
the intrinsic coercive field of the wire. The most susceptible wires to produce more
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images are the lower coercive wires. The most coercive wire has only one image.
This is true for the magnetic systems dominated by demagnetizing-type interactions.

As we need a system with either magnetizing or demagnetizing effects, we
consider a 1D chain of magnetic wires. We shall study the FORCs of two such
magnetic chains: the 1D-perpendicular chain (where the wires are all perpendicular
on one straight line, Fig. 7a) and the 1D-longitudinal chain where all the wires
are along one straight line (Fig. 7b). We have simulated two systems of 1601
wires with the same diameter and material as in the 2D-perpendicular system
discussed previously. For the 1D-perpendicular system, we took wires with 3 μm
length and 350 nm distance between the wires. For the 1D-longitudinal system, we
considered wires of 0.6 μm and with a distance between the centers of the wires
of 0.8 μm. We have simulated the FORCs measured with the field applied along
the length of the wires in both cases. We mention that the 1D-perpendicular is a
system with demagnetizing interactions, as the (interaction) field created by the
saturated wires in one direction is in the opposite direction. The maximum value
of the demagnetizing field in the central wire of the sample is evaluated as 16.5
Oe. On the FORC diagram obtained for this system, we also have represented the
region (50, 150) Oe for the intrinsic coercivities of the isolated wires. The effect
of the interaction field is similar to the one discussed for the 2D-perpendicular
sample. Near the positive saturation, the interaction field will assist the switching
of the wires, and we have represented the up-down switching field for the wire
with the lowest coercivity (50 Oe). The line for this first expected switch is traced
at (16.5 − 50) Oe = − 33.5 Oe. The last expected switch is near the negative
saturation for the wire with the highest coercivity at −(150 + 16.5) Oe = − 166.5
Oe. The first observation is that the FORC diagram is bigger than the region of
intrinsic coercivities and its shape is typical for many magnetic samples. Many
researchers in the field are calling this a wishbone shape FORC diagram, and usually
this shape is signaling demagnetizing-type interactions between the magnetic
elements within the sample. A simple technique is recommended for this type of
diagrams. One can recalculate the set of FORC data by eliminating the mean field
(demag field) and recalculate the FORC diagram [40]. Various parameters can be
used to find the optimum value for the mean field correction, as shown in [41, 42].
This technique could offer a very good approximation of the intrinsic coercivities of
the magnetic elements in a sample (e.g., the pillars in a Bit Patterned Medium [43])
and is of interest for many applications. As an example of this technique, please see
the corrected experimental FORC diagrams presented in the Fig. 6 in Ref. [40].

The case of 1D-longitudinal chain of magnetic wires shows a quite different
FORC diagram shape. It is often named boomerang shape FORC diagram and
usually indicates the presence of magnetization-type interactions between the con-
stituting elements. In the chain of wires, we have indeed magnetizing interactions.
For example, near positive saturation each wire experiences an interaction field
created by the neighbor wires in the direction of the magnetic moment, stabilizing
this position. The switch of the wires is produced by higher fields (in absolute value).
We show, in a similar manner, the expected values for the switch up-down on the
major hysteresis loop of the wires with the lowest and the highest coercivities. The
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maximum value of the interaction field in the central wire at the positive saturation is
17.9 Oe, and, consequently, the lowest coercivity wire will be switched at an applied
field of (−50 − 17.9) Oe = 67.9 Oe, and the most coercive will be switched at
(−150 + 17.9) Oe = − 132.1 Oe. We see that the last wire to be switched down
will experience an interaction field created by the neighbor wires which have been
already switched. In this case the interaction field is assisting the switch of the last
wire. We see that the entire FORC diagram for this sample is smaller than the
rectangular area where the intrinsic switching fields reside. We also observe that
the center of the FORC distribution is shifted on the opposite side of the second
bisector of the Preisach plane (plotted with a white line in the FORC diagrams
representations) compared with 1D-perpendicular case.

Increasing magnetizing interactions, the two limit lines within which all the
switching occur become closer and closer. So, they tend to a situation in which
all the wires inside the chain are switching in a very narrow field range. Gradually,
with increased interactions, the FORC diagram collapses toward one point on the
second bisector of the Preisach plane. As the field range of the switching is smaller,
it is more difficult to measure/simulate FORCs inside the major hysteresis loop. This
is a general problem when we try to use the FORC technique for systems showing
really abrupt switching. Nonuniform field steps were suggested [40] to solve this
problem. Essentially, it was suggested to use smaller field steps for the reversal
field in the region of the switching on the major hysteresis loop. However, even
if this technique proved useful in certain cases, its efficiency is certainly limited.
This can be easily understood if we focus our attention on the region of the Preisach
plane corresponding to the narrow switching field range. This region remains narrow
in the Preisach plane regardless of the number of subintervals in which we are
partitioning it. So, by increasing the number of FORCs measured in this region,
the result will be an increase of details just within this small region on the Preisach
plane and, actually, does not increase too much the quality of the full diagram. If
we take this analysis further, we could increase more the coupling between the
wires (including exchange interaction) and, by simulating these cases, we shall
observe that the FORC diagram of the chain collapses toward a point in the second
bisector of the Preisach plane. The chain is acting like a single hysteron. A detailed
analysis shows that the switching process of the chain in this case is triggered
by the lowest coercivity wire in the system and is followed by the switching of
the other wires in an avalanche-type process. The general observation is that the
demagnetizing-type interactions expand the region covered by the FORC diagram
compared to the one for noninteracting wires, while magnetizing-type interactions
produce a diagram in a smaller region compared to the noninteracting wires. If these
magnetizing interactions are sufficiently strong, the entire diagram could collapse,
and finally the whole magnetic system is represented by one hysteron only. In terms
of multiplicity of images in the FORC distribution for one magnetic element (wire),
we can say that demagnetizing interactions are related to multiplicities higher than
one, and the systems with magnetizing interactions are expected to have subunitary
multiplicity, meaning that more than one wire will be represented at the same
point in the Preisach plane. The limit case is when the entire system is represented
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with the total magnetic moment of the sample at only one point. In this case we
obviously lose the ability to find information concerning the individual wires. This
shows the limitation of the FORC diagram in the classical form (which assumes
that the measurement is made quasi-statically). Essentially, the conclusion of this
analysis is that in case of intense interactions—in this case of ferromagnetic type—
more than one magnetic internal brick, which could be identified separately with
other types of measurements (like microscopy), can have a strongly correlated
magnetic behavior in external magnetic fields and consequently seen in magnetic
measurements as hysterons. In this case these hysterons could be the representatives
of these strongly interacting entities. At the limit, if the entire sample has only one
representative hysteron, we lose by quasi-static magnetic measurements the ability
to see the magnetic representation of the internal components by the FORC diagram
technique. For the moment we have shown this in magnetizing type interactions.
These could include exchange ferromagnetic interactions, as well, but we have seen
that in some cases magnetostatic interactions could be sufficient to produce the same
result. The increase of field rate in the FORC measurement was proved to be one
way to transform a collapsed diagram into one which offers information concerning
the magnetic structure of the sample. We have named this approach as dynamic
FORCs [44]. We are not providing here details of this technique which seems to
give an interesting solution of this problem.

In order to observe the effect of stronger interactions in 1D-perpendicular
magnetic chains, we have to take into account wires with smaller length and with
smaller distance between them compared with the previous examples.

At the limit one can consider each magnetic element (pillar) as a punctiform
dipole. To evidence more clearly the effect of interaction fields separately from
their coercive fields, we have taken dipoles of an identical coercivity of 100 Oe
for all the magnetic elements and a distance between the dipoles and their magnetic
moments in such a way that the interaction field created by one dipole in the closest
neighbor to be about 195.3 Oe. The interaction field in the next neighbor is in this
case 195.3/8 = 24.4 Oe (due to the dependence of the field created by a punctiform
dipole with distance). The first observation is that if we only take into account the
closest eight neighbors and we consider all in an up position, we get an interaction
field of 2 * 195.3 * (1 + 1/8 + 1/27 + 1/64) = 460.0 Oe, and if we take all the
dipoles into the calculation of the interaction field, we obtain 469.6 Oe. This is
drastically different from the case of long magnetic wires in which we discussed
that, to accurately obtain the true interaction field, we have to take into account a
large number of wires. Here, only a few neighbors are producing almost the entire
interaction field. In Table 1 we have presented a number of configurations of the
closest neighbors of one dipole in order to evaluate the main steps in the interaction
field created by the switch of a certain neighboring dipole. When we look at the
hysteresis loop and FORCs (Fig. 8(a)), we see that the major hysteresis loop has
three distinct regions which are also visible in the FORC diagram. On the major
loop plot, we have evidenced two lines at ± exp (−2) which can be theoretically
proven as remanence values for this type of strongly interacting chain of dipoles
(a detailed discussion of this problem in a system of strongly interacting identical
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Table 1 (Analytic evaluation of the interaction field in a given chain of dipoles in 1D-perpendicular
configuration)

No. Dipoles configuration Magnetic field in the central dipole Comments

1. 390.6 Oe Maximum interaction field
created by the nearest two
neighbors

2. 439.4 Oe Maximum interaction field
created by the nearest four
neighbors

3. 453.9 Oe Maximum interaction field
created by the nearest six
neighbors

4. 460.0Oe Maximum interaction field
created by the nearest eight
neighbors (Line 1 in Fig.
8(b))

5. 453.9 Oe From eight neighbors
seven are up and one is
down

6. 445.5 Oe From eight neighbors
seven are up and one is
down

7. 411.2Oe From eight neighbors
seven are up and one is
down (Line 2 in Fig. 8(b))

8. 396.7 Oe From eight neighbors six
are up and two are down

9. 390.6 Oe From eight neighbors five
are up and three are down

10. 370.0Oe From eight neighbors two
are up and six are down
(Line 3 in Fig. 8(b))

11. 321.2Oe From eight neighbors two
are up and six are down
(Line 4 in Fig. 8(b))

12. 69.4Oe From eight neighbors
seven are up and one is
down (Line 5 in Fig. 8(b))

13. 20.6Oe From eight neighbors six
are up and two are down
(Line 6 in Fig. 8(b))

14. 6.10 Oe From eight neighbors five
are up and three are down
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dipoles can be found in [45]). In Fig. 8(b) we have noted a central peak (C) and
several peaks, like (A-A′, B-B′). The central peak shows small interactions and is
centered at 100 Oe. To understand the structure of the A-A′ peaks and the extension
of the central peak, we have plotted a number of lines corresponding to possible
changes in the structure of the eight nearest neighbor dipoles, as detailed in the
table. We can easily see that the FORC diagram accurately records the continuous
change in the status of the neighboring dipoles. At the initial stages of the switch
on the major hysteresis loop, one can expect that the switching dipoles will be in
the field created by most of the other dipoles in an up position (line 0 in Fig. 8(b)).
Then, gradually, the most probable vicinity for the switching dipoles will contain
one neighboring dipole down, then two, and so on. The central peak corresponds to
the loop between the positive and negative remanence, dominated by long chains of
dipoles with alternating up-down orientations of their magnetic moments.

A short conclusion of the discussion concerning the FORC diagrams of several
magnetic systems is that in order to make quantitative analysis on these diagrams,
one always needs two elements: (i) a proper Preisach image of the system based on
the hypothesis of rectangular hysterons and (ii) a second physical model sufficiently
sophisticated to be able to describe the typical features observed in the FORC
experiment.

5 Summary

I think that most of the readers of this chapter are certainly interested in the use of
the FORC diagram as a quantitative tool for complex hysteretic systems. We have
shown that this technique unquestionably can be used in this capacity. However, we
have to avoid the error made by some researchers to use the FORC diagram directly
as a Preisach distribution. The “quantitative” part of the FORC analysis should
be based on a physical model able to simulate the main features observed in the
experimental diagrams. Our discussion made around a few magnetic systems like
the 1D chains (longitudinal and perpendicular) and 2D-perpendicular of magnetic
wires show that the essence of the magnetic interactions in the magnetic systems
can be incorporated in such simple structures. In fact, the value of a physical model
used in a quantitative FORC diagram study is greater when the systems used in
simulations are simpler. However, it is not a bad idea to use more complex physical
simulation tools like the micromagnetic simulations. In some cases, this solution
is not computationally feasible due to the time and memory constraints in large
magnetic structures simulations.
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FORC Diagrams in Magnetic Thin Films

Dustin Gilbert

Abstract The first-order reversal curve (FORC) technique allows the use of bulk
measurements to extract nanoscale features from hysteretic systems and separate
intrinsic and interaction effects. Magnetic thin films in particular possess an
extremely diverse and anisotropic energy landscape, which is complicated by
interactions that exist on several length scales and the effects of nonmagnetic
features such as pinning defects and nucleation sites. The diversity of these energies
makes magnetic thin films, heterostructures, and patterned nanostructures highly
tunable and relevant to applications but also exceedingly challenging to evaluate
and design. The FORC technique is a unique tool for performing these evaluations;
however, the technique is often considered challenging due to a lack of accessible
material on the origins of the FORC features. In response to this, this chapter
presents some common FORC diagrams found in thin films and evaluates their
origins using mechanistic approaches. That is, by considering specific magnetic
switching events within the reversal of a magnetic system and how the magnetism
evolves during the FORC measurement, key features in the FORC distribution will
be developed. Establishing an understanding of the FORC distribution using this
mechanistic approach expands the ability to effectively utilize the FORC technique
to evaluate these complex systems.

Keywords Hysteresis · Thin films · Heterostructures · Domain growth ·
Granular films

The first-order reversal curve (FORC) technique has been developed as an approach
to extract microscopic details of a hysteretic system through macroscopic measure-
ments [1–5]. While this approach can be used to investigate virtually any hysteretic
system, magnetism is the by far the most common. In magnetic thin films and
thin film heterostructures, the reversal behavior is exceedingly complex due to the
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mixing of the many magnetic energy terms [3]. These energies come together to
define the magnetic behavior (reversal and field response), and in doing so, the
underlying physics can be obscured. In one clear example, we consider the impact of
defects in thin films of high-anisotropy material. In these systems, small defects—
including potentially a single displaced atom—cause low-anisotropy regions, which
then reverse prematurely. From this defect site, a magnetic domain wall, typically
with a width of ≈5 nm, can rapidly propagate across macroscopic length scales,
reversing the whole sample at a much lower magnetic field than theoretical values
[6]. Alternatively, for the case of strong magnetostatic interactions, a film may only
reverse until it is demagnetized [7].

The FORC technique is well suited to evaluate the magnetic reversal behavior
within all magnetic systems, including thin film and thin film heterostructures.
These measurements can typically extract qualitative details, such as the reversal
process, and generate an understanding of the magnitude of the interactions [8] and
distribution of intrinsic coercivities or defect densities. For some unique cases, the
FORC technique can quantitatively determine these details [9].

This chapter focuses on FORC measurements performed on thin films and
thin film heterostructures. This class of materials represents some of the most
exciting and technologically high-impact systems, including hard drives [10],
magnetic random access memory (MRAM), logic and spintronic technologies [11],
topological insulator heterostructures, and most magnetic sensors. Thin films can
possess extremely strong, albeit short-range, interactions in the exchange energy,
which generates a new reversal mechanism—namely, through domain growth—that
is not accessible in small patterned elements [12] or nanoparticles [13]. The domain
growth reversal mechanism presents a unique challenge to the FORC technique,
in that the reversal process cannot be generally treated as a mean-field process.
This emphasizes another challenge in thin films, namely, the crucial role of defects.
Defects in thin films can act as low-anisotropy or high-anisotropy sites, responsible
for nucleating or pinning magnetic domains [14].

This chapter will present a perspective on FORC starting with thin films
comprised of isolated grains, then to grains with dipolar coupling, then to contin-
uous, single-phase films with in-plane and out-of-plane anisotropy, and finally to
multilayer films. This progression builds on each subsequent section to generate a
comprehensive picture of the FORC diagram with respect to thin film magnetism.

1 The FORC Measurement Sequence

A simplistic, overarching narrative of the FORC measurements can be presented
such as the following: a hysteretic system is initially prepared in a well-known
(typically saturated, single-phase) state; the system is then transformed into a mixed
phase state; the evolution of the system from this mixed phase state is measured
and will clearly depend both on the intrinsic qualities and the interactions within the



FORC Diagrams in Magnetic Thin Films 631

system; and by measuring this evolution in a systematic series of mixed states and
comparing the differences, these factors (the intrinsic and interaction properties) can
be separated.

In a more technical explanation, the FORC technique measures a series of
minor hysteresis loops. For magnetism, FORC measurements start in the (typically
positive) saturated state. From positive saturation, the magnetic field is decreased
to a reversal field, HR. From HR, the applied magnetic field, H, is increased and
the magnetization measured as the system is brought back to positive saturation,
measuring a single FORC branch. This sequence is repeated for HR values between
the initial reversal or nucleation field and negative saturation; measurements beyond
this range nominally capture no signal but will improve the boundaries of the
dataset. As the FORC measurement proceeds, HR becomes more negative, and
as it does the magnetization decreases. If the system is treated as a collection
of hysteretic elements, the magnetization decreasing corresponds to some of the
elements switching from positive saturation to negative, undergoing a “down-
switching” event. Proceeding to the next HR (at a more negative magnetic field),
the magnetization is even lower, indicating new down-switching events. Thus,
the HR parameter probes the down-switching events. Then, from each HR, H is
increased back toward positive saturation, measuring a unique FORC branch, with
a magnetization M(H, HR). As H becomes more positive, the magnetization will
increase, indicating the complementary up-switching events; the H-axis thus probes
up-switching events.

From a mechanistic perspective, at each HR the system is prepared in a new
state that is evolved out of the state at the previous HR. This configuration will
be determined by the value of HR, the intrinsic qualities of the magnetic material,
and the interactions in the system; the intrinsic qualities do not change with
HR, while the interactions do. Along each FORC branch the evolution of the
magnetization will be different depending on these same qualities. By analyzing
the differences between the FORC branches by applying a derivative, the changes
in the evolution are mapped out. Thus, the progression is changes in HR lead
to changes in the magnetic configuration, which in turn changes how the state
evolves along the FORC branch. With this in mind, the FORC distribution is
determined by calculating the derivative dM/dH, where M is the magnetization, to
capture the up-switching events on each branch and then a second derivative with
respect to HR to capture the changes in these up-switching events between adjacent
FORC branches: ρ = −d2M/(dHdHR). For convention, the FORC distribution is
sometimes presented with a normalizing pre-factor of 1/(2MS), where MS is the
saturation magnetization.

A critical detail which must be kept in mind throughout all the sections of this
chapter is that the FORC technique has no ability to associate a specific reversal
event to a specific region of the sample. This means that a feature in the FORC
distribution likely is the result of the “down-switching” of one region and the “up-
switching” of a different region. For this reason, the term “hysteron” is established
as a fundamental unit of hysteresis, being comprised of up-and down-switching
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events without any regard for the physical origins of the reversal. The FORC
distribution is a map of the hysteron density and does not map the coercivity
or interactions of distinct elements within the sample except in special cases—
typically at the boundaries of the FORC distribution. With this in mind, the text will
refer to the “lowest (highest) coercivity” element, meaning the magnetically softest
(hardest) regions, which would reverse first (last) in a system with no interactions.

Data will also be presented in an alternative coordinate space, termed the
bias and coercivity axes (HB, HC), respectively. As noted above, the hysteron is
defined by the down-switching and up-switching field, represented by its HR and
H coordinates, respectively. As with any hysteresis loop, the coercivity is defined
as the half difference between the up- and down-switching fields, and the bias is
their average, HB = (H + HR)/2, HC = (H − HR)/2. While bias in magnetism is
frequently associated with “exchange bias,” which arises due to coupling between
a ferromagnet and an antiferromagnet [15], since we are measuring minor loops,
the bias here can be caused by many things, including interactions between
ferromagnetic regions or the cross-correlation of the up- and down-switching events
of two separate regions in the definition of the hysteron. Therefore, the bias axis can
identify interactions, as in the former case but may also only represent the intrinsic
qualities of two different regions of the sample and therefore would not represent
any interactions.

With the hysteron model muddling the magnetic signals, it initially seems that
deconvoluting the FORC distribution may be impossible. However, the FORC
distribution is well-known to encode the qualitative “fingerprints” of the reversal
mechanisms. Furthermore, by following physical reasoning, some details of the
FORC features can still be extracted quantitatively [9, 16]. The goal of the next
sections is to lay the foundations of this understanding and identify key points to aid
in the interpretation of the FORC diagram.

2 FORC Measurements of Isolated Granular Films

The first section focuses on a system of isolated grains on a thin film [17]. This
might be experimentally realized as a film comprised of islands, magnetic defects,
or dilute particles or nanostructures on a surface [16, 17]. At positive saturation,
all of the magnetic elements are co-aligned in the positive direction. Following the
FORC measurement procedure, the field is reduced to HR. The first down-switching
event can be attributed to the region with the lowest intrinsic anisotropy, since there
are no interactions. Without interactions, the down-switching will occur when the
reversal field equals the negative coercivity, HR = −HC

1. Along the subsequent
FORC branch, e.g., HR < −HC

1, this region is already down-switched and will
always up-switch at H = +HC

1, since there are no interactions, as shown in Fig. 1.
There are no up-switching events on the FORC branch starting at HR > −HC

1 (thus
dM/dH = 0 everywhere), and now at HR = −HC

1 there is an up-switching event
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Fig. 1 (a) Illustrative diagram showing the reversal of three different regions of a sample of
isolated regions and how those individual loops evolve throughout the major hysteresis loop. (b)
Locations of the switching events identified in panel a, shown in the FORC distribution

at H = +HC
1. Assuming the up-switching occurs as a step reversal, dM/dH = 0

everywhere else except at the up-switching field of this region, at which point
dM/dH = �m/�H where m is the magnetization of the reversed region and �H is
the field step in H. Calculating the FORC distribution, it is zero everywhere except
at HR = −HC

1, and H = +HC
1, where ρ = −((�m/�H) − 0)/(�H�HR). Since

convention has HR measured from positive saturation to negative, �HR < 0 and
ρ = �m/(�H|�HR|). Integrating this feature clearly recovers the magnetization
of the reversed element. Calculating this feature in (HC, HB) coordinate space, the
feature appears at (HC = HC

1, HB = 0).
Proceeding with the FORC measurement, subsequent FORC branches will

reverse new regions. However, these reversals will not change the up-switching field
of the first element; the up-switching field of this first region is still at H = +HC

1,
independent of HR. Thus, on every FORC branch with HR < −HC

1, at H = +HC
1

there will be a feature with magnitude �m. The derivative dM/dH at H = +HC
1

will always be the same, so the HR derivative will always be zero. Due to this
ever-unchanging up-switching field, each region appears only once in the FORC
distribution. The reversals of the other elements will occur at their respective HR
and H values and, following the same calculations as above, will appear at an HC
coordinate associated with their intrinsic coercivity and HB = 0. Therefore, in the
special case of noninteracting elements, the (HC, HB) coordinate space indeed maps
out the intrinsic material properties. The key signature of this type of reversal is a
feature, extended in HC, with a small, symmetric distribution in HB.
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3 FORC Measurements of Interacting Granular Films

This section introduces long-range interactions to the isolated granular film [18].
The original FORC distribution from the noninteracting case is shown in greyscale
along the HC axis. These interactions will be treated as mean-field-like, such that
HInteraction = α(M/MS); non-nearest neighbor interactions manifest by segregating
the FORC distribution [9, 19, 20]. Considering the lowest-coercivity region again
and demagnetizing interactions (e.g., α < 0), then from positive saturation, the
interaction field experienced by every region of the sample is simply −|α|, making
the effective field experienced by the sample H − |α|(M(H, HR)/MS). Since
every region experiences the same interaction field, the reversal order will be
the same as the isolated case; the lowest-coercivity region will down-switch at
HR − |α| = −HC

1 or from the measurement perspective HR = −HC
1 + |α|.

Beginning a FORC branch at HR = −HC
1 + |α|, and disallowing any self-

contribution to the mean-field term, the interactions experienced by this region
didn’t change before versus after the down-switching event, so the subsequent up-
switching event is also be biased by −|α|, occurring at H − |α| = +HC

1, e.g.,
H = +HC

1 + |α|. Transforming this FORC feature into (HC, HB) coordinates, the
feature now appears at (HC = HC

1, HB = |α|). Thus, both the coercivity of the
lowest-coercivity region and the mean-field interactions can be determined by this
one point in the FORC distribution.

Since the proposed interactions are mean-field-like, the reversal order is
only determined by the intrinsic coercivity. Accordingly, the up-switching
field for the lowest-coercivity particle will constantly shift, occurring at
H = HC

1 + |α|(M(HR)/MS). It is easy to visualize that at the system’s coercive
field, M = 0; thus the up-switching event should occur at H = HC

1 but will
be associated with the down-switching event, HR = HC

n/2. As shown in Fig. 2,
this first up-switching event on each branch will never have a matching event on
the previous HR branch and thus will always appear in the FORC distribution,
in contrast to the noninteracting case. This emphasizes the mixed quality of the
hysteron: new regions down-switching are responsible for the changes at HR, but
the same low-coercivity region is responsible for the up-switching on every branch.
Approaching negative saturation, the HR values are probing the down-switching
field of the highest coercivity regions. The down-switching field of these regions
is also biased by the interaction field, occurring at HR − |α|(−MS/MS) = −HC

N,
e.g., HR = −HC

N − |α|. Progressing along the FORC branch from this HR value,
the FORC feature from the first switching event, arising from the lowest-coercivity
region, will occur at H = HC

1 − |α|. Calculating the coercivity and bias field
coordinates: (HC = ((HC

1 + HC
N)/2), HB = ((HC

1 − HC
N)/2) − |α|). Based on

the endpoints of the leading FORC feature, occurring at (HC = HC
1, HB = |α|) and

(HC = ((HC
1 + HC

N)/2), HB = ((HC
1 − HC

N)/2) − |α|), the asymmetry in the HB
axis quantitatively maps the span of the intrinsic coercivity distribution, while the
HC coordinate identifies the average of the coercivity maxima.
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Fig. 2 (a) Illustrative diagram showing the reversal of three different regions of a sample with net
demagnetizing interactions and how those individual loops evolve throughout the major hysteresis
loop. (b) Locations of the switching events identified in panel a, shown in the FORC distribution.
|α| indicates the length of the black arrow along the HC axis, highlighting the displacement of
feature 9

A third point that can be quantitatively identified is the up-switching field of
the highest coercivity region. The previous paragraph identified the down-switching
event of this region at HR = −HC

N − |α|. Along the FORC branch, this highest
coercivity element will also be the last to up-switch before positive saturation,
occurring at H = HC

N + |α|. Calculating the bias and coercivity axis coordinates,
this feature will appear at (HC = HC

N + |α|, HB = 0), e.g., on the HC axis.
Based on these three points, a pair of lines can be constructed between

the extremum points: (HC = HC
1, HB = |α|), (HC = ((HC

1 + HC
N)/2),

HB = ((HC
1 − HC

N)/2) − |α|), and (HC = HC
N + |α|, HB = 0), e.g., points

2, 8, and 9. The generalized shape of the FORC distribution illustrated in Fig. 2a is
called a “wishbone structure” and can be developed from these three points. First,
the angle from the HB axis of the line between points (2) and (8) can be calculated
to be Arctan[−(HC

1 − HC
N)/(4|a|−(HC

1 − HC
N))], which goes to zero for large

|α| relative to (HC
1 − HC

N), and 45◦ as |α| becomes small. This means that the
leading feature becomes parallel to the HB axis as the interaction strength becomes
large compared to the coercivity distribution.

Calculating the angle between points 8-2-9 yield an equation:

Arctan

[ (
2 |α| − (

H 1
C − HN

C

))2

(
2 |α| − (

H 1
C − HN

C

))2 + 2 |α| (H 1
C − HN

C

)
]
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While this equation has many variable dependencies, both the numerator and
denominator are always positive. This means that the angle between points 8-2-9
will always be acute! Exploring the extremum values, for large |α| or small �HC,
the angle tends toward 45◦, and for small |α|, the angle also tends toward 45◦.
Interestingly, this equation has a zero at |α| = �HC/2, which corresponds to the
case that the leading edge and the backbone meet, e.g., points 8 and 9 coincide, and
so below this value, the FORC distribution will only be tilted away from the HC
axis.

While we identified three crucial points at the end of each of the arms of
the wishbone, the whole wishbone can be described based on the magnetization
at HR and the intrinsic distribution. Specifically, the last up-switching event on
each FORC branch can be tabulated as occurring at H = HC

k + |α|, where HC
k

is the intrinsic coercivity of the last region which down-switched at HR; since
this is a mean-field system, the reversal order is determined only by the intrinsic
distribution; the last up-switching event on every branch has the largest coercivity
and is the last to down-switch at HR. The down-switching field for this region is also
calculated as HR = −HC

k + |α|(M(HR)/MS). Using the calculated switching fields
and the known reversal sequence, the backbone of the feature can be calculated
as HC = HC

k + (|α|/2)(1 − (M(HR)/MS)) and HB = (|α|/2)(1 + (M(HR)/MS)).
Furthermore, the first up-switching event along each branch can be calculated
to occur at H = HC

1 + |α|(M(HR)/MS), since it is always the same lowest-
coercivity region that is up-switching. Transforming these coordinates into (HC,
HB) coordinates reveals that the leading feature occurs at HC = (HC

1 + HC
k)/2

and HB = (HC
1 − HC

k)/2 + |α|(M(HR)/MS). These calculations agree with the
previously reported endpoints but also show that the backbone feature always occurs
at positive values of HB that are dependent only on the magnetization at the reversal
field and the mean-field coefficient.

The coordinates can more generally be calculated for every point in the FORC
distribution, using the mean-field term; however, most switching events are matched
on adjacent branches and so do not appear in the distribution. Nevertheless,
these calculated points illustrate that the switching fields are shifted in the FORC
parameter spaces only through a simple additive term which is only depen-
dent on the magnetization and the mean-field coefficient. As a result, for a
system with mean-field interactions, the interactions and the intrinsic properties
can be decoupled by transforming the independent variables, H and HR, using
the dependent variable M, in an approach called “de-sheering” [17, 19, 21].
Specifically, the magnetic field experienced by any region at any point in the
FORC measurement is H = HApplied + |α|(M(H,HR)/MS); applying the transform
H → H − |α|(M(HR)/MS), and HR → HR − |α|(M(HR)/MS), the mean-field
interactions are removed. For the wishbone feature, this results in the FORC
distribution losing its leading edge and collapsing to the HC axis, recovering the
noninteracting case, e.g., the greyscale feature. The resultant distribution should be
nearly symmetric in ±HB, indicating no residual interactions. The challenges of
applying this technique include that (1) it corrects for only mean-field interactions,
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Fig. 3 (a) Illustrative diagram showing the reversal of three different regions of a sample with net
magnetizing interactions and how those individual loops evolve throughout the major hysteresis
loop. Feature 3 and 5 identifies the up-switching events 2 and 4, which is absent on the subsequent
FORC branches. (b) Locations of the switching events identified in panel a, shown in the FORC
distribution. |α| indicates the length of the black arrow along the HC axis, highlighting the
displacement of feature 10

(2) the transformation only applies to the demagnetizing case, and (3) the trans-
formed data may have significant variation in field step size, which can present
challenges in calculating the derivative.

Applying the same mechanistic considerations to a system with magnetizing
interactions works reasonably well while the interactions are weak compared to
the intrinsic coercivity distribution. Specifically, for mean-field magnetizing inter-
actions, the field experienced by the sample will now be HR + |α|(M(H,HR)/MS)
and a more negative magnetic field is required to cause the first down-switching
event, at HR = −HC

1 − |α|. Along the subsequent FORC branch, the up-switching
event will be biased by the same interaction field, occurring at H = HC

1 − |α|.
Transforming these coordinates into (HC, HB) representation, the FORC feature
appears at (HC = HC

1, HB = −|α|), as shown in Fig. 3, thus the symmetry with the
demagnetizing case is apparent. Proceeding to the next, more negative HR, the next
smallest coercivity particle will reverse, and along the subsequent FORC branch, the
first up-switching event will occur at H = HC

1 − |α|(M(HR)/MS), which is more
positive than HC

1 − |α|. Accordingly, at H = HC
1 − |α| there is an up-switching

event on the HR = −HC
1 − |α| branch, but not on either of the neighboring

branches. In Fig. 3 this is seen in feature 4, for example. Calculating the FORC
feature indicates that there will be a positive/negative feature pair at this coordinate;
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since these features are from the same magnetic region, they will have equal
and opposite magnitude. As M(HR) continues to decrease with HR, the first up-
switching event continues to move to more positive values of H, generating a series
of positive/negative feature pairs. Finally, the region with the largest coercivity
reverses at HR = −HC

N + |α|. Along the subsequent FORC branch, the lowest-
coercivity particle up-switches at H = HC

1 + |α|, generating a FORC feature at
(HC = (HC

1 + HC
N)/2, HB = ((HC

1 − HC
N)/2) + |α|). Also along this FORC

branch, the highest coercivity region will be the last to up-switch, occurring at
H = HC

N − |α|, generating a FORC feature at (HC = HC
N − |α|, HB = 0).

Again, the magnetizing case has a leading edge—although now it is a positive
negative feature pair—which encodes the interaction strength, and an endpoint
on the HC-axis. The backbone of the feature resulting from the last up-switching
event can again be calculated as occurring at (HR = − HC

k − |α|(M(HR)/MS),
H = HC

k − |α|) or HC = HC
k − (|α|/2)(1 − (M(HR)/MS)) and HB = −(|α|/2)

(1 + (M(HR)/MS)). The magnetizing case appears to be the mirror symmetry of the
demagnetizing case, with the backbone always at HB, e.g., below the HC coordinate
axis.

This description presents a simplified version of the magnetizing case, and the
breakdown of that simplification provides a convenient segue to the continuous film
case by considering the magnetizing case with interactions which are comparable
to the intrinsic coercivity distribution. Returning to the lowest-coercivity element,
which down-switches at HR = −HC

1 − |α|, the interaction field experienced by the
rest of the sample decreases by |α|(M1/MS) after the switching event, where M1 is
the magnetization of this first region. For sufficiently large M1 or |α| or HC

2 ≈ HC
1,

where HC
2 is the intrinsic switching field of the next lowest-coercivity region,

the reduced field can switch the next lowest-coercivity region, starting a cascade
event. Physically, this implies that the reversal of the first element reduces the
overall system stability, which then precipitates the reversal of the second element;
this in turn could precipitate further reversals. The same arguments can be made
along the subsequent FORC branch. Thus the FORC diagram will capture one
reversal event for this collection of reversals, effectively concealing their intrinsic
coercivity distribution. This becomes exceedingly problematic for large |α| since it
can hide many reversal events under the feature of a single triggering event. This
becomes particularly prevalent for the case of non-mean-field interactions, which
can be much stronger. For such a case, the reversal of one region can nucleate an
avalanche event that will grow from that initial location. This is more commonly
known as domain nucleation and propagation or growth. In many continuous thin
films, the exchange interaction dominates the local energy environment and is much
larger than the other terms that contribute to the intrinsic anisotropy distribution.
As a result, continuous films frequently reverse by domain propagation, in direct
analogy to the magnetizing case presented above. An avalanche reversal or a
domain nucleation/propagation can grow until negative saturation is reached without
something to stop it, such as a pinning site, or a counterbalancing interaction.
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4 FORC Measurements of Continuous Films with In-Plane
Anisotropy

The reversal behavior of continuous films with in-plane anisotropy nominally occurs
similar to the magnetizing case discussed above. Coming from positive saturation,
the lowest-coercivity region overcomes its intrinsic coercivity and interactions with
neighboring elements and down-switches. For the case of a continuous film, the
interactions are different in that the exchange energy is typically much larger than
the magnetic field, making |α| exceedingly large and suggesting a large, negative
HR is required to achieve switching. Two details undermine this consideration: (1)
continuous films suffer from defect sites which can reverse prematurely, and (2) in
the absence of a strong anisotropy, large areas of magnetic moments, e.g., domains,
can reverse together reducing the interaction cost to only the domain perimeter.
Since the Zeeman energy grows with the area of a domain, while the exchange
cost only grows with the domain perimeter, this latter effect would suggest domains
would grow continuously. However, there are typically magnetic forces, including
pinning defects, and magnetostatic energy (not for planar systems with in-plane
anisotropy) that stop the domain propagation. As a consequence of these effects, the
reversal of continuous thin films does not typically capture a quantitative intrinsic
coercivity or interaction.

The FORC diagram of continuous thin films with in-plane anisotropy, shown
in Fig. 4, tends to be dominated by the defect density and the distribution of the
magnetocrystalline anisotropy for both nucleation and domain growth, or if these
are both very low, the film can undergo coherent rotation. Specifically, measuring
the FORC distribution of a continuous film with very few defects, the magnetic
reversal can be initiated at one of the rare defect sites, or a sample edge, in-which the
magnetic moment is canted away from the positively saturated magnetic field; the
canting could be caused by magnetostatic energies from a canted facet, or a region
with magnetocrystalline misalignment, or an interstitial or vacancy defect. Coming
from positive saturation, these regions will reverse at a magnetic field, HNuc, that
will depend on the details of the nucleating defect. In a film with in-plane anisotropy
the reversal typically begins at HR < 0, since there are few interactions which are
acting to demagnetize the sample; reversing at H > 0 requires a magnetic energy to
counter the Zeeman energy. Once nucleated, the reversed domain has a beneficial
Zeeman energy which scales with the volume of the domain and an exchange-driven
domain wall energy cost which scales with the perimeter area. For films, the volume
scales as the area of the domain times the film thickness, while the perimeter area
is the perimeter length times the film thickness. The one-dimensional advantage of
the Zeeman relative to the domain wall energy means that the energy of the system
is continuously decreased as the domain grows. Thus, in a system with few defects,
the domains will rapidly propagate until the domain wall encounters a feature which
pins the expansion. This feature may be another defect or a high-anisotropy region or
even a nonmagnetic inclusion. Using the nucleation/propagation field as the first HR
which shows a change in magnetism, the subsequent FORC branch is measured as
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Fig. 4 (a) Illustrative diagram showing the reversal events within the system, with 1 identifying
the initial domain nucleation and propagation and then 2, 3 indicating the domain contraction
returning to saturation. Approaching negative saturation, the system foregoes the domain con-
traction, 5, and must re-nucleate domains, identified at features 6 and 7. The domain growth and
contraction are shown in (b) and the resultant FORC diagram in (c)

the field is increased toward positive saturation. While H < 0 the magnetic domain’s
configuration typically changes very little due to the same arguments as above—
a contraction of a negatively aligned domain would incur a Zeeman energy cost
which scales with the domain volume. Approaching H = 0, the domain wall energy
becomes comparable then larger than the Zeeman energy, and it becomes beneficial
for the domain to contract. The contraction will begin in regions in which the
domain is not pinned, manifesting a feature in the FORC diagram with an HR value
corresponding to the nucleating defect, and an H coordinate corresponding to the
contraction. The contraction field for an in-plane film can be calculated by setting
the Zeeman energy equal to the domain wall energy: −H MS π r2 t = 2 π r t (dE/dl)
or H = −2 (dE/dl)/(MS r) describing a circular domain with radius r, and a domain
wall energy per unit length of (dE/dl); this equation does not take into account
the pinning sites and hence only identifies the field at which the domain begins
to contract. As the field continues to become more positive, the domain continues
to contract, maintaining a balance between the decreasing Zeeman energy and the
domain wall energy and the pinning sites. In the FORC diagram, the feature will
spread along the H coordinate at this fixed value of HR. During the contraction, the
domain wall can de-pin from the defect sites which may cause local propagations of
the domain, similar to Barkhausen jumps [22]. Once H > 0 the Zeeman energy and
the domain wall energy both benefit from the collapse of the domain, and as such the
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contraction accelerates with respect to the field change. Together, the initial domain
nucleation/propagation and then subsequent contraction cause a feature located at
a single HR coordinate, HNuc, with a spread along the H-axis. If the field along
the FORC branch achieves H = −HNuc, then the initial nucleation site will again
become active, nucleating a positively oriented domain, which expands to complete
the reversal. As a result, the up-switching field is always less than or equal to the
negative of the initial nucleation field H ≤ −HNuc = HR, and thus this initial feature
is located at HB ≤ 0.

Continuing to more negative values of HR, the domain wall expands, crossing
more pinning sites. One could consider these defects as “stronger” due to the fact
that a larger magnetic field is required to overcome the preceding pinning sites.
One could also consider that the domain wall is now trapped between pinning
sites, with some resisting further growth and others resisting contraction. The
pinning sites that resist contraction will increase the magnetic field necessary to
achieve up-switching along FORC branches measured from these HR, resulting
in a reduced dM/dH initially along each FORC branch which causes a negative
feature in the FORC distribution. Similar to the magnetizing case discussed above,
these suppressed switching events must occur along the FORC branch—since the
sample does eventually achieve positive saturation—and so must therefore form a
positive/negative feature pair. However, the constraint continues to exist that once
H = −HNuc, a new positive domain will be formed and propagate outward. Since
−HNuc ≤ −HR, the FORC feature is once more constrained to HB < 0. Furthermore,
for the case of few pinning sites, re-nucleation will become the dominant reversal
mechanism and so will generate a FORC feature at H = −HNuc.

Putting these features together, for the case of strong pinning in which re-
nucleation plays a dominant role in the switching, the FORC feature forms two
arms, located at HR = −HNuc and H = −HNuc, both located at HB < 0, with a
negative feature located between the arms, as shown in Fig. 4. While this feature
has been reported, in practice, it is much more common to have a bowed shape,
rather than arms at a strict 90◦, or even a feature simply located along the HC axis.
The distinction arises from the ability to propagate domains, with more pinning sites
behaving more as a system of isolated regions.

5 FORC Measurements of Continuous Films
with Out-of-Plane Anisotropy

Continuous films with out-of-plane anisotropy possesses the same energy terms
as the in-plane case, that is, the Zeeman energy balanced against the domain
wall energy and pinning sites, but also has a demagnetizing magnetostatic energy
discussed above. This new energy term causes a distinctly different reversal by
constantly motivating the system toward a demagnetized state. Following the same
considerations as the continuous in-plane film, the magnetic field is reduced from



642 D. Gilbert

positive saturation and nucleates from a defect site. The nucleation site is influenced
by both the magnetic field and the magnetostatic interaction, which is 4 π MS for
a saturated thin film. Once an HR is achieved which facilitates a nucleation event,
the domain will rapidly propagate, reducing the magnetostatic energy, in exchange
for increasing the domain wall energy. Unlike the in-plane case, the magnetic field
from the magnetostatic interaction can easily be larger than the applied field, and
so the Zeeman energy can play a role by helping the domain growth (if reversal
occurs at HR < 0) or opposes the expansion (if reversal occurs at HR > 0). Similar to
the in-plane case, the magnetostatic energy scales with the magnetization, which
in turn scales with the domain volume, while the domain wall energy scales
with the perimeter length, and as such the domains are able to rapidly propagate
up to the system’s coercive field; the magnetostatic energy increases beyond the
coercive field, opposing further domain growth. Measuring a FORC branch from the
nucleation field HR = HNuc, as H is increased the domain, may remain initially static
due to the combined influences of pinning, the magnetostatic energy (which opposes
returning to saturation), and the Zeeman energy (assuming HR < 0). Once H > 0, the
Zeeman energy works against the magnetostatic energy to move the system back to
positive saturation. Recalling that both the Zeeman and magnetostatic energies scale
with volume, an increase in H (corresponding to the Zeeman energy) increases the
domain size, which increases the magnetostatic interactions, resulting in a balancing
act. In effect, the Zeeman energy, which prefers the saturated state, is balanced
against the magnetostatic energy, which prefers the demagnetized state. This is in
contrast to the in-plane case, during which the Zeeman and domain wall energies
both favor the saturated state along the FORC branch, with the pinning sites only
acting to stop saturation. As a result of the balancing act in films with an out-of-plane
anisotropy, the progression from HR to saturation tends to be much longer in H than
the in-plane case, which has no such balancing mechanism, as shown in Fig. 5.
Saturation is achieved once the Zeeman energy overcomes the total magnetostatic
field 4πMS. However, some works have shown the presence of residual bubbles
which exist beyond the apparent saturation point [7]. These features are the result
of the extreme energies required to collapse small domains with continuous domain
walls, an effective topological protection [23, 24]. Other features, such as pinning
defects, will stagger the field progression. The resulting FORC feature therefore will
span in H potentially from the initial nucleation field to at least H = 4π MS, all at a
single value of HR = HNuc.

The initial nucleation event does not typically reach HC since the magnetostatic
energy becomes smaller as M approaches zero and eventually becomes small
compared to the pinning strength of defects. Along subsequent FORCs, as HR
becomes more negative, the negatively oriented domains grow following a similar
balancing mechanism as the positive domains under increasing H, that is, as HR is
decreased, reducing the magnetization, the magnetostatic energy increases, resisting
the change. Increasing H along the subsequent FORC branch, between HR < H < 0,
the Zeeman energy decreases, allowing the domains to tend toward a demagnetized
state, and for H > 0 the positively oriented domains grow as the system approaches
saturation. In both cases, and for each field step, the balance between the Zeeman
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Fig. 5 (a) Illustrative diagram showing the reversal events within the system, with 1 identifying
the initial domain nucleation and propagation and then 2–5 indicating the domain contraction
returning to saturation. Approaching negative saturation, the system foregoes the domain con-
traction and must re-nucleate domains, identified at features 6 and 7. The domain growth and
contraction are shown in (b) and the resultant FORC diagram in (c)

and magnetostatic energies is maintained, encouraging the domains to resize only
slightly between field steps. Since the rebalancing occurs at each field step and is
independent of HR, the resultant feature will be very subtle and appear at H = HR,
e.g., HC = 0.

Approaching negative saturation, the positively oriented domains, which present
both a Zeeman energy and domain wall energy cost, annihilate to form larger,
negatively oriented domains. Along the subsequent FORC branch, the positive
domain which had previously grown under increasing H, but is now annihilated, will
not initially contribute to the magnetization. This manifests in the FORC branch as a
decrease in dM/dH, which in turn causes a negative feature in the FORC distribution.
Thus, the annihilation of domains can be identified in this system by the presence
of negative features in the FORC diagram, with HR indicating the annihilation
field and H identifying the former growth. Continuing along the FORC branch,
the larger, negatively oriented domain can re-nucleate a positive domain, rather
than undergoing the much longer contraction process. The re-nucleation field is
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determined by the intrinsic qualities of the defect sites, as before, and the interaction
fields from the local environment. Since the magnetostatic energy continues to
increase as HR becomes more negative, the nucleation field should become offset to
−H to compensate. However, experiments show that the feature tends to be nearly
vertical, at H = −HNuc, indicating that the nucleation field may be more determined
by the local interactions, which will be independent of HR.

Work by Davies et al. [7] showed in this system that, even past the appar-
ent saturation field, the FORC distribution continues to change. Using X-ray
microscopy, the changes were associated with residual bubble domains in the film.
Approaching the nucleation/propagation field, these bubbles would act as nucleation
sites, with rapid propagation occurring before the nucleation field. As the small
bubble domains are saturated at large HR, the nucleation field becomes defined only
by the defects. As a result, the vertical feature may become “sharper” on the +H
side. The −HR end of the vertical FORC feature occurs when the last bubble domain
is saturated out, at an HR which overcomes the crush field of the small bubble
domains; this field is much larger than the “apparent” saturation from the major
hysteresis loop, demonstrating the ability of FORC to uncover nanoscale magnetic
phenomena using macroscopic probes.

Both the domain growth mechanisms present a FORC diagram with an initial
feature along the H-axis and later features along the HR-axis. Previous works have
shown that the alignment of these features is related to the interactions being
demagnetizing (as is the case for samples with out-of-plane anisotropy) versus
magnetizing (for the in-plane film) [25]. This work used the Henkel (�M) method
as a secondary approach to identify the nature of the interaction [26].

In the above section, the origins of four FORC diagrams were discussed in the
context of thin films, highlighting the roles of interactions and intrinsic behavior
in defining the shape of the FORC features but also the role of defects and
domain growth. For films which cannot sustain domain growth, the local reversal
mechanisms manifest features oriented along the (HC, HB) axes, with tilting and
stretching that encodes the distributions in the interactions and intrinsic coercivities.
By comparison, continuous films with out-of-plane anisotropy generate FORC
features with symmetries along the (H, HR) axes, in which the alignment of
the features encodes the interactions. The domain growth samples can be further
complicated by the presence of significant pinning defects, which prevent domain
growth and return the film to the more granular case.

6 FORC Measurements of Heterostructured Films

Heterostructured films are particularly relevant to thin films since they typically
rely on interfacial exchange coupling. Since the direct exchange, and more exotic
Ruderman-Kittel-Kasuya-Yosida (RKKY) or Dzyaloshinskii-Moriya interaction
(DMI) exchange, all disappear by ≈20 nm length scales, it is appropriate to discuss
them in the context of thin films.
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Exchange Springs

Exchange springs are bilayer films in which there are magnetically hard (large-
coercivity) and soft (low-coercivity) layers, which are directly exchange coupled
at their interface [27, 28]. This is typically performed for two reasons: (1) the
magnetically hard layer anchors the system to large magnetic fields, while the soft
layer provides a large saturation magnetization – resulting in a large energy product
for the system, or (2) the soft layer reduces the reversal field of a magnetically hard
layer – to improve writability in, e.g., hard drive materials [29]. The mechanics
behind exchange springs are that the exchange interaction, which tends to be >10 T
over a few unit cells, couples the hard and soft layers at the interface, preventing the
latter from reversing. Away from the interface (e.g., beyond the exchange length),
the soft layer undergoes reversible rotation in response to the magnetic field. At
a large negative magnetic fields, the effective domain wall in the soft layer can be
injected into the hard layer, inducing domain reversal prematurely from the hard/soft
interface [30].

The FORC measurement for an exchange spring system is prepared with a
film consisting of two or more layers, with the requirement of one having a large
intrinsic anisotropy and one a lower anisotropy, identified as magnetically hard and
soft, respectively [27, 31], as shown in Fig. 6. The system is positively saturated
such that both layers possess a parallel alignment along a magnetic easy axis.

Fig. 6 (a) Illustrative
diagram showing the reversal
of three different regions of a
sample of isolated regions
and how those individual
loops evolve throughout the
major hysteresis loop, with 1
and 2 identifying the
reversible “winding,” 3
indicating the reversal of the
hard layer. The reversal of the
hard layer removes the
reversal events which are
identified at 4 and 5 and now
instead occur at 6 and 7. Thus
1, 4, and 6 are all from the
same region of the sample.
The reversal events are shown
illustratively in panel (b) and
the resultant FORC diagram
in (c)
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Following the FORC measurement procedure, at HR > 0 the sample tends to remain
positively saturated due to the hard layer. At HR < 0 the soft layer begins to
rotate in response to the applied field magnetic field, typically called “winding.”
This action incurs a significant exchange energy cost with the interfacial moments
oriented parallel to the hard layer, while moments away from the interface rotate to
follow the field. Increasing H from a wound state, the exchange energy is directly
traded with the Zeeman energy, unwinding the soft layer; in many ways this is
similar to the continuous film with out-of-plane anisotropy in that there is a balance
that is continuously maintained between the Zeeman energy, and in this case the
exchange. The winding and unwinding of the soft layer are typically considered to
be reversible. In order for the FORC distribution to capture reversible features, the
data must be processed with a so-called data extension [16, 32, 33]. Specifically,
reversible features appear in the first step of the FORC branch, between HR and
HR + �H, where �H is the field step in H. For this value of H, there is no data
on the antecedent FORC branch; thus the change in the derivative can only be
calculated in the forward direction. By only calculating the derivative in the forward
direction, changes in the magnetization in this first step are lost or will become
negative features in subsequent FORCs. By defining the magnetization as a constant
M(H < HR) ≡ M(HR), the data in this immeasurable region can be calculated.
Recognizing that this definition is a constant value of M, its first-order derivative
(dM/dH) is zero everywhere; thus the derivative in HR is also zero everywhere
except at the boundary, e.g., H = HR or HC = 0. This feature at H = HR is the
reversible feature we seek to capture.

Processing the FORC diagram for an exchange biased system initially generates
a reversible feature, located at HC = 0, representing the winding of the soft magnetic
layer. Progressing to more negative values of HR further winds the soft layer,
resulting in continued growth of the reversible feature. At some value of HR, the
magnetically hard layer will begin to reverse; this field will be called HR

hard. As the
hard layer reverses, the coupling causes the preferred orientation of the soft layer
to switch also. As a result, the unwinding of the soft region no longer occurs at
the same values of H that it had in the preceding FORC branches. In effect, the
dM/dH of the FORC branch decreases in the unwinding region, at HR ≤ HR

hard.
Even though the reversible winding occurs only at the boundary of the dataset
(H = −HR) and appears only if the dataset is extended, the decrease in dM/dH
manifests a feature in the FORC diagram, away from the boundary. Similar to
the case of the domain reversal FORC, this feature will manifest at a single value
of HR = HR

hard and span in H across the entire region in which the unwinding
had previously occurred. Furthermore, since this feature is caused by a decrease in
dM/dH, it will appear as a negative feature in the FORC diagram.

Proceeding along the FORC diagram starting at HR = HR
hard, the winding of the

soft layer will now occur at positive fields (since the hard layer is anchoring the soft
layer in the negative direction). This feature will also appear at HR = HR

hard and by
symmetry will span the same range in H as the initial, reversible winding feature.
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Necessarily, since the integral of the FORC feature captures the total magnetization,
the positive and negative feature pairs from the winding will be equal and opposite
in magnitude. Interestingly, this means, without extending the dataset, the reversible
feature appears in the FORC diagram twice, but is not captured by the integral of the
FORC diagram, consistent with the common understanding that reversible features
are not captured in the FORC diagram by standard calculation techniques.

7 Dynamic FORC Measurements

Dynamic FORC measurements are a recent consideration [34], leveraging what had
previously been an issue in the FORC measurement procedure. Specifically, the
FORC measurement sequence proceeds by saturating the sample, then proceeding
to an HR, and then measuring M while increasing H. If the measurement is not
paused at HR, then thermally activated reversal can occur during the first several
steps of the FORC diagram [35]. In this region, the magnetization is decreasing
despite increasing H, causing a negative feature in the FORC diagram. This feature
is typically considered an artifact that the sample was measured too fast, but it
does encodes temperature-dependent behavior which is dependent on both the
interactions and intrinsic qualities. Recent works [34] have proposed that interesting
dynamic data can be extracted by performing high-speed FORC measurements.
Measuring the FORC distribution versus the sweep rate as well will encode
details such as the domain propagation rate, pinning potential, and the effects of
thermally activated propagation. While the details of this technique are still being
experimentally established, it is a promising new direction in FORC measurements.

8 FORC Measurements Beyond Magnetometry

While FORC measurements are traditionally performed using magnetometry, the
FORC technique can be performed on virtually any hysteretic system which has a
well-defined saturated state and intermediate states that are stable on the timeframe
of the measurement. Some works have performed FORC measurements with probes
other than magnetization [36–40]. The most notable of these approaches has been
the use of electrical transport, e.g., resistance measurements. These measurements
can be susceptible to magnetization through the anomalous Hall effect or magne-
toresistance but can also be used to probe metal-insulator transitions. Using basic
analysis of the electrical pathways, resistance-based FORC measurements are able
to locally probe regions within the sample and thus are becoming more common in
thin films.
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Magnetoresistance

FORC measurements performed using magnetoresistance effects [36] present a
more complex, but also more detailed, understanding of the magnetization. One
cause of the increased complexity is that the magnetoresistance measurements are
not sensitive to the bulk magnetization but rather the local magnetic environment
along the pathway that the current proceeds. This means that, in a heterogeneous
film, the magnetoresistance probe will be scaled against the parallel circuit current
division within the system, and so some regions can be invisible. This is immediately
apparent if one considers a thin film heterostructure with a magnetic insulating layer,
for example, Fe/Y3Fe5O12 (YIG).

Despite its challenges, the magnetoresistance provides a highly localized probe
of the system which cannot be captured by the bulk measurement. In a clear
example of this, we can consider the magnetoresistance measurement of a giant
magnetoresistance (GMR) heterostructure, [Co/Cu]N or [Fe/Cr]N. The magnetom-
etry measurement will, at best, capture a series of stepped reversals as each of the
magnetic layers switches between parallel and antiparallel configurations and less
than that if the layers reverse by a domain growth mechanism. However, probing the
reversal with the FORC technique gives a localized understanding of the ordering.
Specifically, the GMR is large and positive when the alignment of the magnetization
in adjacent layers is antiparallel. As a result, the GMR FORC encodes the degree
of magnetic correlation across the nonmagnetic spacer layer. Using this technique
previously, it was demonstrated that the field cycling performed during the FORC
measurement can generate a ground state with maximal disorder, which is not
accessible along the major loop [36]. This detail is invisible to the magnetometry
FORC measurement which captures only the overall magnetization and is blind to
local magnetic correlation.

Anomalous Hall FORCs [41] are also dependent on the path of the electrons
through the system and so again are preferentially sensitive to the low-resistance
regions. This can be useful in probing specific regions within the sample.

Metal-Insulator Transitions

Some works have been performed which seek to probe nonmagnetic transitions
using the FORC technique. One such effort has been the investigation of metal-
insulator transitions (MIT) [37]. Here, the temperature is used as the independent
variable (e.g., a saturating temperature, reversal temperature, and applied tempera-
ture), while the resistance is measured. Similar to the magnetoresistance and Hall
measurements discussed above, the signal will be augmented by the electrical
transport pathways. In an MIT system, the large changes in the resistance will
tend to be masked by percolative pathways within the system. In other words,
the resistance will change very little initially since the electrons can follow a
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resistance path that circumvents the high-resistance regions. For this reason, the
FORC distribution of an MIT will be very different than if it was measured by an
area-averaging optical technique, for example. Thus, considering what the FORC
distribution would describe in an MIT FORC, the data would encode the tendency
to form or break the percolative networks which shunt the probing current. Thus,
the MIT FORCs illustrate that choosing different probes presents opportunities to
investigate different details of a system, depending on the metrics of interest.

9 Final Thoughts

The FORC technique is an incredibly useful tool for evaluating hysteretic systems.
Few techniques can perform a bulk measurement and capture the minute intrinsic
qualities and interactions within a system. With the FORC technique becoming
more accessible, including new processing software [42, 43] and being included as
an easy-to-use sequence within major commercial equipment, a strong foundation
in the FORC technique becomes increasingly crucial. This chapter was written
to provide a mechanistic understanding of the FORC technique, focusing on
measurements common in magnetic thin films. The hope is that, by understanding
the physical origin of the FORC features, and how these come together to form
the specific structures within the FORC diagram, such a foundation is provided.
Furthermore, understanding the origin of the FORC features allows new insights,
including quantitative evaluation, and allows the FORC technique to be generalized
and used in new and novel ways including the evaluation of a wider variety of
systems using generalized “interaction” and “coercivity” metrics.
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20. C.-I. Dobrotă, A. Stancu, Phys. B Condens. Matter 457, 280 (2015)
21. P. Sergelius, J.G. Fernandez, S. Martens, M. Zocher, T. Böhnert, V.V. Martinez, V.M. de la

Prida, D. Görlitz, K. Nielsch, J. Phys. D. Appl. Phys. 49, 145005 (2016)
22. S. Zapperi, P. Cizeau, G. Durin, H.E. Stanley, Phys. Rev. B 58, 6353 (1998)
23. W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y.

Tserkovnyak, K.L. Wang, O. Heinonen, et al., Science 349, 283 (2015)
24. N. Nagaosa, Y. Tokura, Nat. Nanotechnol. 8, 899 (2013)
25. D.A. Gilbert, J.-W. Liao, B.J. Kirby, M. Winklhofer, C.-H. Lai, K. Liu, Sci. Rep. 6, 32842

(2016)
26. P.E. Kelly, K.O. Grady, P.I. Mayo, R.W. Chantrell, IEEE Trans. Magn. 25, 3881 (1989)
27. E.F. Kneller, R. Hawig, IEEE Trans. Magn. 27, 3588 (1991)
28. E.E. Fullerton, J.S. Jiang, M. Grimsditch, C.H. Sowers, S.D. Bader, Phys. Rev. B 58, 12193

(1998)
29. D. Suess, T. Schrefl, S. Fähler, M. Kirschner, G. Hrkac, F. Dorfbauer, J. Fidler, Appl. Phys.

Lett. 87, 012504 (2005)
30. D. Suess, J. Lee, J. Fidler, T. Schrefl, J. Magn. Magn. Mater. 321, 545 (2009)
31. J.E. Davies, O. Hellwig, E.E. Fullerton, J.S. Jiang, S.D. Bader, G.T. Zimányi, K. Liu, Appl.

Phys. Lett. 86, 262503 (2005)
32. C.R. Pike, Phys. Rev. B 68, 104424 (2003)
33. M. Winklhofer, R.K. Dumas, K. Liu, J. Appl. Phys. 103, 07C518 (2008)
34. D. Cimpoesu, I. Dumitru, A. Stancu, J. Appl. Phys. 120, 173902 (2016)
35. C.R. Pike, A.P. Roberts, K.L. Verosub, Geophys. J. Int. 145, 721 (2001)
36. R.K. Dumas, P.K. Greene, D.A. Gilbert, L. Ye, C. Zha, J. Åkerman, K. Liu, Phys. Rev. B 90,

104410 (2014)
37. J.G. Ramírez, A. Sharoni, Y. Dubi, M.E. Gómez, I.K. Schuller, Phys. Rev. B 79, 235110 (2009)
38. D.A. Gilbert, E.C. Burks, S.V. Ushakov, P. Abellan, I. Arslan, T.E. Felter, A. Navrotsky, K.

Liu, Chem. Mater. 29, 9814 (2017)
39. A. Stancu, D. Ricinschi, L. Mitoseriu, P. Postolache, M. Okuyama, Appl. Phys. Lett. 83, 3767

(2003)
40. M.K. Frampton, J. Crocker, D.A. Gilbert, N. Curro, K. Liu, J.A. Schneeloch, G.D. Gu, R.J.

Zieve, Phys. Rev. B 95, 214402 (2017)
41. J. W. Lau, D. A. Gilbert, V. Provenzano, K. B. Stritch, J. Liao, C.-H. Lai, K. Liu (eds), 59th

Annual Conference on Magnetism and Magnetic Materials, Honolulu, HI, USA, (2014)
42. R.J. Harrison, J.M. Feinberg, Geochem. Geophys. Geosyst. 9 (2008)
43. R. Egli, Glob. Planet. Change 110, 302 (2013)



First-Order Reversal Curve (FORC)
Measurements for Decoding Mixtures
of Magnetic Nanowires

Mohammad Reza Zamani Kouhpanji and Bethanie J. H. Stadler

Abstract The progression of nanotechnology has resulted in the exploitation
of very complex magnetic nanostructures with anomalous magnetic responses,
which cannot be fully understood using hysteresis loop measurements. First-order
reversal curve (FORC) measurements are among the most powerful tools for
characterization of complex bulk, micro-, and nano-systems that are broadly used in
the field of magnetism. The main advantage of FORC is that it scans the whole area
of hysteresis loops in a two-dimensional fashion, leading to detailed information
regarding the intrinsic magnetic nanostructures and the magnetic interactions. In
this review, we specifically focus on the current state of FORC measurements and
their use in decoding magnetic nanoparticles assemblies.

Keywords FORC measurement · Magnetic nanowires · Quantitative signatures ·
Fast decoding

1 Introduction

Mayergoyz [1–3] proposed the original FORC measurement as an identification
technique for the classical Preisach model [4], which describes magnetic hysteresis
loops as a superposition of a large number of independent relays, called hysterons.
Hysterons represent the switching of a single magnetic element with rectangular
hysteresis loops, such as those of isolated magnetic nanoparticles acting like Stoner-
Wohlfarth particles. Traditionally, FORC measurements start by applying a large
magnetic field to ensure the positive saturation of a sample. Next, the applied
field (H) is reduced to a predefined field, known as a reversal field (Hr), and the
magnetization is then measured, while H is retuned to positive saturation; see Fig. 1.
This process is repeated with decreasing Hr until negative saturation, leading to a
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Fig. 1 Traditional first-order reversal curves (FORC). (a) Traditional FORC data showing mea-
surement points, (b) a single hysteron, and (c) traditional FORC parameter heat-map and its
projection on different field axes. The figure is adopted from [5, 6]

set of magnetization curves, M (H, Hr). The FORC distribution (ρ) is defined as the
second derivative of the magnetization with respect to these fields:

ρ = −1

2

∂2M (H,Hr)

∂H∂Hr
(1)

In FORC analysis, ρ is plotted as a contour (also sometimes as heat-map) onto
two-dimensional axes representing the coercive field (x-axis, Hc = ½(H − Hr)), the
interaction field (y-axis, Hu = ½(H + Hr)). Once the heat-maps are created, one can
project out the entire heat-map on the aforementioned axes, by taking an integral
over the orthogonal axis, to quantify the coercivity or interaction field distributions.
Figure 1 schematically illustrates the collection and analysis of FORC data.

This traditional data collection and analysis of FORC has been broadly used
to determine coercivity and interaction distributions of magnetic elements in
samples from geology [7, 8] and engineered nanostructures, including spherical
nanoparticles [9], elongated nanoparticles [10–15], thin films [16, 17], patterned
dots [18], magnetic tunnel junctions [19], and patterned recording media [20, 21].
This measurement also has been used to demonstrate the magnetic response of
single components, multiphases such as intermetallic alloys, and multicomponents
such as magnetic/nonmagnetic segmented nanowires. Alongside the experimental
studies, several theoretical studies, based on mean-field models, also have been
carried out to simulate and/or interpret the information in experimental FORC
data [18, 22–25]. Despite this wide range of interesting studies, FORC has three
main drawbacks when it comes to decoding magnetic nanoparticle mixtures. These
drawbacks are (1) low reliability for quantitative decoding, (2) extremely slow
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measurements, and (3) slow data analysis that could induce artifacts by taking
derivatives, integrals, and over-smoothing. In the following section, we discuss each
drawback individually and we review solutions to overcome them.

2 Quantitative Decoding

According to Eq. (1), the Preisach distribution predicts the probability of finding a
hysteron that switches in the interval between [H, Hr] and [H + �H, Hr + �Hr].
Traditional FORC thus indicates the presence of different magnetic components,
but it does not precisely quantify the amount of these components [22]. Note that
here quantification is defined as determining the amount of each component or
phase present in a sample, not the quantification of the intrinsic properties of those
components or phases.

Traditional FORC uses projections of the FORC parameter onto the Hc and Hu
axes to determine the distribution of coercivity and interactions within a sample.
Intuitively, the coercivity and interaction distributions are not appropriate for quanti-
fying the amount of each magnetic subcomponent present in a sample. For example,
unlike thin films, collections of nanoparticles with distinct coercivities do not lead
to distinct features in hysteresis curves. This fact is frustrated by artifacts that often
appear in nanoparticle FORC heat-maps, such as the horizontal “T” formed by the
vertical and horizontal dashed lines in Fig. 1. This feature leads to an anomalous
spike in the Hu projection and also erroneously emphasizes the low coercivity
features, according to Dobrotă and Stancu [20]. Also, some magnetic nanostructures
contain both interacting and noninteracting magnetic subcomponents, so a measured
interaction field distribution would only capture the interacting subcomponents
regardless of the amount of the noninteracting subcomponents present.

It has been recently shown that two features in the FORC protocol can be
used to overcome this limitation, namely, the irreversible switching field (ISF)
and the backfield remanence magnetization (BRM) [5, 26, 27]. ISF determines the
required field to induce irreversible switching of moments. Therefore, the ISF can
be understood by the moment remaining after a sample is subjected to a reversal
field (Hr) and then a reduced field equal to the previously applied Hr (see the blue
line in Fig. 2a). Interestingly, these measurements only require the first few points
of each reversal curve, which are substantially lower than the number of points
used in FORC and similar to those in a standard (fast) hysteresis loop, as compared
in Fig. 2b, c. BRM is the moment remaining after the applying each Hr and then
reducing the field to zero, which involves even fewer points as shown in Fig. 2d.
The reduced number of points will be discussed more in the speed and analysis
sections below.

Figure 3 gives an example of the accuracy of determining the volume fraction
of two types of Co nanowires using the ISF distribution, BRM distribution, and
the backfield remanence coercivity (BRC) which is the derivative of the BRM.
When the ratio of volumes for two types of nanowires in a combination is less
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Fig. 2 A schematic showing fast measurements that provide quantitative analysis of magnetic
components or phases in a complex magnetic sample: (a) data needed for the projection method
(first few points of each FORC, (b) traditional FORC data collection, (c) hysteresis loop
measurement, and (d) magnetization at zero field. Note: ISF stands for the irreversible switching
field and RSF stands for the reversible switching field [6, 26]. In all subfigures, the green arrows
indicate the measurement direction

Fig. 3 Using the distributions in ISF, BRM, and BRC, mixtures of two types of nanowires could
be quantitatively decoded where α is the volume ratio between the two nanowire types. The
measured mixtures contain (a) 200 nm and 30 nm diameter Ni nanowires, (b) 200 nm and 50 nm Ni
nanowires, (c) 200 nm and 100 nm Ni nanowires. BRM showed the best match where the minimum
in error is the calculated volume ratio compared to the real χ (vertical line). Although (a) is not
as good a match, there is 32× less volume of 30 nm which is a very small number that was still
detectable [25]

than 1–10, then that ratio can be accurately determined using these fast techniques.
The main shortcoming of this approach is that the magnetic response of each
component/phase must be known initially to calibrate each magnetic response
within the whole sample. This shortcoming limits this method’s application to the
discovery of the unknown magnetic nanostructures, unless accompanied by other
measurements. However, this approach is a great asset in expanding the application
of magnetic nanoparticles for multiplexing/demultiplexing magnetic biolabels or
encoding/decoding the magnetic nanobarcodes, where initial knowledge regarding
the magnetic properties of the nanoparticles is readily available [27, 28]. Next we’ll
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look at other methods that have been proposed to hasten FORC measurements and
give the rationale for our fast approach.

3 Measurement Speed

One of the main disadvantages of the traditional FORC measurement is that it
requires many data points and is therefore an extremely slow data acquisition
method. Long measurement times are not efficient for either laboratory development
or industry quality control. Practically, increasing the number of reversal curves
increases the accuracy of capturing complex details, which can push single sample
measurement times to several hours or even days. For example, if a sample consists
of two components, one with a very narrow and one with a broad coercivity
distribution, the number of FORCs must be drastically increased to capture the
narrow coercivity distribution. Unfortunately, long measurements are associated
with field drift that can change the magnetization curves.

To overcome the slow measurement drawback, it was proposed to scan only half
of the hysteresis loop area [29]. This would be beneficial for single-phase magnetic
nanostructures, such as an array of identical magnetic nanowires, where the
interaction fields are negligible, that is, Stoner-Wohlfarth type samples. However, in
bistable systems where coercivity and interaction fields are correlated, this method
cannot be used due to incomplete data. Figure 4 shows the data collection for this
method and compares it with the traditional FORC measurement [29]. Briefly, this

Fig. 4 A schematic of a shortened FORC measurement, (a) traditional FORC measurement,
(b) new method measuring the ascending branches, (c) new method measuring the descending
branches, (d) combined ascending and descending branches, (e) and (f) are the measurement
procedure [29]
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Fig. 5 Schematic of the magneto-optic Kerr effect (MOKE) setup combined with the traditional
FORC setup to speed up the data collection, (a) demonstrates the setup for measuring the out of
plane MOKE-FORC signal, (b) demonstrates the setup for measuring the in-plane MOKE-FORC
signal [30]

method starts by sweeping the magnetic field from negative saturation (Hmin) to
positive saturation (Hmax = −Hmin). Next, the field is reverted to Hmin + �H
recording the magnetization of the descending branch. The ascending branch is
swept to Hmax − �H, and the magnetization is also recorded. This is different
from the usual FORC method in which each ascending branch reaches Hmax. The
magnetic field is inverted again to Hmin + 2�H. The new ascending branch is
measured up to Hmax − 2�H. The procedure is repeated until the magnitude of
the magnetic field diminishes to zero. Note that this modification is a creative way
to half the required data points of FORC measurements.

Another solution was proposed by Grafe et al., where they suggested combining
magneto-optic Kerr effect measurements (MOKE) with traditional FORC data
collection to speed up the measurements [30]. This method applies the same
magnetic field sequence as traditional FORC measurements, but it collects the
MOKE signal instead of the magnetization. This approach does not have limitations
on the number of phases as the previous approach; however, it can be done only on
samples where the optical signal can readily access all of the magnetic components
(e.g., thin films). Furthermore, because of the limited field of view (restricted
by the laser spot), this method is useful only for very homogeneous magnetic
nanostructures. For inhomogeneous thin films, this method does not result in fast
measurements, as it will require several measurements at different spots and the
data analysis will be an open question. In short, MOKE-FORC provides a good way
to accelerate magnetization acquisition (at a small point) without reducing the data
points of FORC. Figure 5 shows the proposed MOKE-FORC setups.

Irreversible switching field was introduced in the previous section, and it is
schematically shown in Fig. 2. We often call measurements of ISF distributions the
projection method, because it is mathematically equivalent to the projection of the
FORC heat-map onto the Hr axis [6, 26, 27, 31, 32]. In traditional FORC analysis,
many points per curve would be measured in order to plot the FORC parameter as
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Fig. 6 FeCo nanowires with different diameters were decoded using projections onto three of
the primary axes shown in Fig. 1 and using backfield remanent magnetization (BRM) and its
derivative (BRC). Note that the projection onto the Hr axis is the mathematically equivalent to
the irreversible switching field (ISF) distribution and can therefore be measured with very few
points. (a) Combinations including two different types of MNWs. (b) One mixture of all four
types of MNWs. It is interesting to see that most of these methods matched the known volume
ratios (dashed line) with volume ratios from 0 to 80% of one barcode vs another. Please see [5] for
more information

a heat-map. Projections are then the integration over all orthogonal points onto an
axis. So, the projection on Hr is

∫ ∞

Hr

ρ (H,Hr) dH = −1

2

∂M (H,Hr)

∂Hr

∣∣∣∣
H=∞

+ 1

2

∂M (H,Hr)

∂Hr

∣∣∣∣
H=Hr

= 0 + 1

2

∂M (H,Hr)

∂Hr

∣∣∣∣
H=Hr

(2)

Note that the first term is zero because the magnetization does not change
with Hr at large values of applied field (H) due to saturation. As a result, the
authors proposed to measure only a few data points on each reversal curve; see
Fig. 2a to determine ISF distribution, which is also the projection of a FORC heat-
map onto the reversal field (Hr) axis. Not only does this approach significantly
accelerate the measurement, but it also accelerates the data analysis because it
only requires one derivative (rather than two derivatives followed by integrals) over
limited data points to fully and reliably determine the ISF, which can be used to
approximate distributions in coercivities and interaction fields. The processing of
this data into a projection on the reversal field axis will be discussed in the next
section. Interestingly the ISF distribution was better for decoding FeCo nanowires,
Fig. 6, than it was for Ni nanowires, Fig. 3. It should be mentioned that the BRM
measurement can also be used for fast measurement because it requires the same
number of data points similar to hysteresis loops, and it provides excellent decoding
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for mixtures of Ni nanoparticles as shown in Fig. 3. Together, these two fast methods
make a fast, powerful decoding tool. Note the BRC is the derivative of the BRM.

4 Data Processing

The traditional FORC data processing requires two field derivatives followed
by integrals for data analysis. Taking two derivatives amplifies noise and also
eliminates features that depend on either the initial magnetization state or the
spontaneous magnetization. For example, taking the derivative with respect to
the applied field (H) omits the magnetization features that are only a function
of the reversal field (Hr). Even though during the projection onto the Hc (or
Hu) axis, one takes the integral over all Hu (or Hc), the features that have been
erased by the derivatives are not recovered. In addition, smoothing is required
for data processing which can induce spurious features [33–36] while concealing
real features. In this context, plenty of software has been proposed to process
the data while suppressing noise. For example, the FORCinel software program
uses locally weighted regression smoothing (LOESS) [36]. FORCinel is able to
implement non-integer values for the smoothing factor, enabling finer control over
the degree of smoothing. It also is able to apply a variable smoothing factor, which
was first demonstrated by Egli [37], for preserving central ridge in FORC heat-maps
induced by single-domain noninteracting nanowires. As a result, it can extrapolate
across the data and eliminate the overlaying data caused by the instrumentation
instability. Another example, Cimpoesu et al. introduced the DoFORC software for
processing the noise scattered data [38]. DoFORC is able to perform smoothing on
the measured FORCs prior to data processing and also during the data processing
of the partial derivatives. Consequently, it provides flexibility to compute residuals
induced by different smoothing to characterize the difference between the predicted
and observed values, leading to a better approximation of the smoothing factor. This
generalizes the cross-validation to measure the predictive performance, providing
three degrees of freedom to understand the amounts of smoothing being performed
by different smoothing methods once the same value of the smoothing factor is
applied. Figure 7 renders the fitting quality of the DoFORC for processing the data
with four different noise levels.

Later on, in the same year, Grob et al. reported on processing the data in Fourier
space [39]. In short, they took benefit from the diversity of Fourier space to not only
accelerate the computations but also move away from the conventional smoothing
factor toward real field resolution [39]. By comparing the baseline resolution of
the processed data in Fourier space and the resolution of the processed data in the
field space, the authors provided an empirical equation that converts the smoothing
factor from one space to the other to have a quantitative comparison between
the procedures. Figure 8 shows a comparative analysis of the proposed algorithm
and the traditional algorithm, known as the FORCinel algorithm. As can be seen
from Fig. 8c, d, both methods produce identical FORC heat-maps. However, as
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Fig. 7 Analyzing the fitting quality of DoFORC software in terms of the noise variance to the
range of the testing function (σ /Rf) that employs four smoothing algorithms, (1) locally weighted
regression smoothing (LOESS), (2) modified quadratic polynomial Shepard method (qshep), (3)
cubic polynomial Shepard method (cshep), and cosine series Shepard method (tshep). As the noise
increases (larger σ /Rf), all four methods overlap [38]

Fig. 8 Comparison of FORC processing with different smoothing factors and algorithms, (a) a
scheme of the samples, (b) the FORC data, (c) processed data using the Fourier space, and (d)
processed data using the traditional algorithm in the field space [39]

the smoothing factor increases, the methods do not yield similar heat-maps. This
indicates that the fitting kernel is much larger than the peak’s width, which the
authors claimed is not real.

More recently, Berndt et al. proposed to utilize fast Fourier transform (FFT)
rather than implementing the traditional derivatives [40]. This approach, named
FORCOT, also predicts the optimal smoothing factor directly from the noise
spectrum in Fourier space. It does not require recalculation for different smooth-
ing factors before reaching the minimum mean square root as employed in the
FORCinel software. The authors treated the FORC smoothing as a pure image
processing problem rather than considering a collection of partial hysteresis curves,
viewing the mixed second derivative as pixels of a very noisy image. They then
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Fig. 9 The results of the traditional FORC algorithm (FORCinel), (a) and the FORCOT, (b) for
two different smoothing factors [36]

aimed to filter the noise from this image to a degree that is visually optimal in the
sense that real-signal features should visually appear more prominent than the noise.
Figure 9 shows an example comparing the results of the traditional FORC analysis
using the FORCinel software and the FORCOT software. Since the FORCOT
software employs the Fourier space for processing rather than the field space, the
edge artifacts, which are due to the elimination of the first point at the reversal
point, do not impact the FORC heat-maps. These edge artifacts are also known as
zero-field coercivity artifacts that had been addressed and resolved in the FORC+
software [34]. Note that FORC+ is a software tool that does not use any smoothing
factor for analyzing the data, and it is capable of decomposing the irreversible and
reversible magnetization.

As mentioned, the purpose of using smoothing is to suppress the measurement
noise so it is not amplified during the data processing of the traditional FORC
measurements. The projection method (aka the irreversible switching field distri-
bution as mentioned in the previous section) does not require the two derivatives,
so it does not need any smoothing. Figure 10 depicts the projection method’s data
processing, where one can simply measure the crosses (two for each FORC) to
calculate the irreversible switching field (ISF, the blue arrow in Fig. 10). For very
noisy measurements, magnetically unstable samples or poor acquisition systems,
one can either increase the time averaging or increase the number of data points
(circles in Fig. 10) for a better signal to noise ratio. It has been shown that two or four
data points provide similar results [26]. Note that one may fit lines (red and green
lines in Fig. 9) to the data points prior for calculating the projection for achieving
a cleaner signal. Once the ISF is determined, its features, the location of its peak,
broadening, and tails where they go to zero are sufficient to calculate the coercivity
and to some extent interaction field [31, 32]. In fact, ISF was shown in the previous
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Fig. 10 Schematically
illustrating the calculation of
ISF from the projection
method data. The upper (red)
FORC begins at Hr

i and has
four measured points (black
dots). A straight red line is
least-squares fit to these
points. The lower FORC
begins at Hr

i + 1 and its points
are similarly fit to the green
line [26]

Fig. 11 The projection
method uses ISF, also known
as the projection on the
reversal field axis to
determine the quantitative
volume ratios of Ni nanowires
compared to the volume of
Co nanowires in a mixture [6]

section to be sufficient in decoding FeCo nanowires with different diameters because
their coercivities were quite different. Figure 11 shows that ISF can also be useful
in decoding mixtures of Co and Ni nanowires for the same reason. In short, since
the projection method requires only a limited number of data points and it directly
determines the FORC heat-map projection on the Hr axis using one derivative, its
processing is substantially faster and simpler than the traditional FORC analysis.

5 Summary and Future Outlooks

A brief description of the current state of FORC measurements and data processing
has been presented. For the specific application of decoding magnetic nanowire
barcodes, traditional FORC has three main drawbacks: qualitative (not quantita-
tive) analysis, slow measurement speeds, and processing. To date, the literature
has focused on resolving these drawbacks individually instead of addressing all
drawbacks together. However, the projection method seems promising to overcome
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all these challenges when the application goal is the quantification of magnetic
components or phases while increasing measurement speed by reducing the number
of data points. The projection method requires a significantly smaller number of data
points, and it bypasses the need for two derivatives and an integral in calculating
the projection onto the reversal field axis, leading to a substantially faster data
processing. In addition, the projection method does not require any smoothing, so
it is free of the artifacts that are often found in projections on Hu and Hc axes. The
projection method could be combined with other techniques, such as MOKE, to
open a route for even faster FORC protocols.
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Soft Magnetic Materials

Michael E. McHenry, Paul R. Ohodnicki, Seung-Ryul Moon,
and Yuval Krimer

Abstract This chapter provides a review of soft magnetic materials (SMM’s)
beginning with a cursory discussion of fundamental and technical magnetic proper-
ties followed by a summary of technically important soft magnetic materials classes.
This is followed by a review of measurement techniques which are important for
materials characterization in emerging SMM’s.

Keywords Soft magnetic materials (SMMs) · Alloys · FeCo alloys · Silicon
steels · Permalloys · Ferrites · Amorphous magnetic ribbons (AMRs) · Metal
amorphous nanocomposites (MANCs) · Magnetic anisotropy · Magnetostriction ·
AC power losses · B-H loops · First-order reversal curves · Eddy current losses ·
Magnetic domains

1 Introduction

Useful engineering magnetic materials have collective magnetism [1], resulting in
magnetization (net atomic dipole moment per unit volume), M, in the absence of
an applied magnetic field, H, over macroscopic volumes called magnetic domains.
Collective magnetization in H = 0 is called the spontaneous magnetization. Atomic
dipole moments arise chiefly from the spin (and orbital) angular momentum of d-
or f- electrons in unfilled shells.

Among collective magnetism, direct exchange coupling leads to parallel aligned
dipole moments in ferromagnetism. In ferromagnets the spontaneous magnetization
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has a maximum value, Ms, the saturation magnetization, at T = 0 K, disap-
pearing through a 2nd-order phase transition at the Curie temperature, Tc. The
saturation magnetization, gives rise to a saturation induction, Bs = Ms (SI units);
Bs = 4πMs (cgs units) [2]. Indirect exchange (superexchange) mediated by overlap
of magnetic orbitals with p-orbitals results in ferrimagnetism. Dipole moments of
different magnitude couple antiferromagnetically (antiparallel) yielding a partially
compensated magnetization that disappears at a temperature, TN, called the Neel
temperature. Due to partial cancellation of atomic moments, ferrites typically have
smaller inductions.

Ferromagnetic (ferrimagnetic) materials are classified as soft or hard magnets.
In a hard magnet, magnetic hysteresis is useful to store a large metastable remanent
magnetization, in the absence of a field. Soft magnetic materials (SMMs) can be
switched from one bistable magnetic state to another in small applied magnetic
fields. This chapter illustrates synthesis ➔ structure ➔ properties ➔ performance
relationships in SMM’s focusing on bulk materials for power applications and
reviews techniques for measuring pertinent magnetic properties of SMMs.

Early SMM choices were motivated by attractive intrinsic properties, such
as Bs and Tc. Alloy developments for applications involved optimizing extrinsic
properties, such as remanent induction and coercivity by processing to achieve
suitable microstructures. For SMMs, small power losses per cycle are desirable,
and the prominent mechanism for these losses differs at increasing frequencies.
Important applications of SMMs include (a) inductors and inductive components;
(b) low- and high-frequency transformers; (c) Alternating current machines, motors
and generators; (d) Magnetic lenses for charged particle beams and magnetic
amplifiers.

Magnetostatics and magnetodynamics were developed in the 1800s. Michael
Faraday observed that an applied voltage to a copper coil resulted in a voltage across
a secondary coil wound on the same iron core. Faraday’s law of induction (1831),
V = N dΦ/dt, defines an induced voltage in terms of the number of turns, N, in a
primary exciting coil and the rate of change in the magnetic flux, Φ caused by an
AC current. Faraday’s law is one of Maxwell’s equations [3] presented in the 1860s
prior to a more compact expression using vector calculus [4]. Realization in devices
fueled technologies including power transformers [5]. The 1884 demonstrations of
open and closed core transformers were followed by their use to supply power to
>1000 Edison lamps at the 1885 Budapest exhibition [6].

Desired technical properties for SMMs include:

(1) High Magnetic Permeability: Permeability, μ = ∼dB/dH ∼ B/H = (1 + χ ), is
a material property, the slope of flux density, B, vs. the applied field, H, which
reduces to B/H in linear response theory. High μ materials can produce large
flux changes for small fields.

(2) Low Hysteresis Loss: Hysteresis loss is the energy consumed in cycling a
material between +H and − H. The power loss of an AC device includes a
term equal to the frequency multiplied by the hysteretic loss per cycle. At high
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frequencies AC eddy current losses depend on another material’s property, the
resistivity, ρ.

(3) Large Saturation and Remnant Magnetizations: A large saturation induction,
Bs, is desirable because it represents the ultimate response of soft magnetic
materials.

(4) High Tc: The ability to use SMMs at elevated temperatures depends on a
material’s Tc.

2 Soft Magnetic Materials Classes

Figure 1 shows DC permeability and saturation induction and figures of merit
for SMMs used in power electronic applications. Lower induction permalloys are
notable for their large magnetic permeabilities. Fe, Co, and Ni are the only elemental
room temperature ferromagnets. In their cubic allotropic forms, all are good SMMs,
because their high symmetry provides low values of cubic magnetocrystalline
anisotropy and low magnetostriction coefficients.

FeCo Alloys: are SMMs important for applications needing high saturation
inductions and high-temperature operation. The largest RT saturation induction
(Bs ∼ 2.5 T) occurs with minor substitutions to Fe65Co35 binary alloys. Dipole
moments are understood by energy band theory and the Slater Pauling curve [8].
In Fe1 − xCox alloys, a chemical phase transformation from an ordered CsCl-type
structure to a disordered BCC phase causes embrittling which poses challenges to
rolling thin sheet. Consideration of both alloy resistivity (important for determining
eddy current losses) and alloy additions which influence mechanical properties is

Fig. 1 Figures of merit,
saturation induction, and
permeability, for selected
SMMs. Adapted from Ref.
[7]
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used to design alloys for rotor applications in electric motors. Magnetostriction
considerations are also important in design of FeCo SMMs for applications. Notable
commercial alloys include Permendur (Fe1 − xCox x ∼ 0.5), Supermendur, and
Hiperco-50, a similar (Fe1 − xCox x ∼ 0.5) alloy with a 2% V addition to increase
strength and electrical resistivity. Small Nb additions to Hiperco-50 result in grain
refinement in Hiperco-50 HS that improves mechanical properties and reduces
degradation in long term aging at elevated T’s [9].

Silicon Steels: Si and Al provide the largest increase in electrical resistivity
when added to Fe. Studies of Fe–Si date back to 1885 [10]. Alloys with 2–
4.5 wt.% Si were the most important SMM by volume and market value by 1934
[11]. Non-oriented (NO) steels and grain-oriented (GO) Si steels are electrical
steels. NO Si steels are a commodity in rotating machinery, GO silicon steels
in transformers. GO Si steels are further subdivided into regular grain-oriented
(RGO) high-permeability grain-oriented (HGO) materials [12] After 1951 Fe–
Si transformer sheet was produced by cold rolling followed by recrystallization
[13]. Polycrystalline NO materials were followed by GO materials with (110)/[001]
(Goss texture). Although Si steels have Bs as high as 2.1 T, practically only 0.7Bs
(∼1.4 T) is achievable in low fields in Goss textured materials.

Reducing losses in transformer grade Si steels focuses on improving Goss texture
in GO steel and reducing eddy current losses by decreasing thickness and surface
treatment. SMM’s core loss is partitioned between (a) magnetic hysteresis, (b)
eddy currents, and (c) anomalous losses. Magnetic softness is rooted in (1) low
magnetocrystalline anisotropy, (2) low magnetostriction coefficients, and (3) high-
domain wall mobility. Low eddy current and domain wall losses are achieved with
large electrical resistivities and thin laminates. Resistivity increases with Si accom-
panied by embrittlement approaching an Fe3Si intermetallic composition. This
poses challenges for thermomechanical processing and limits laminate thickness.
Surface modification of Si steel sheet decreases domain size and reduce anomalous
eddy current losses.

Processing developments for GO Si steel include promoting polycrystalline Goss
recrystallization texture, controlling grain growth, and development of insulating
layers to electrically isolate laminates and develop interfacial stress states to reduce
magnetostrictive losses. Anomalous eddy current losses are reduced by forcing
rotational magnetization processes through pinning magnetic domain walls by
scratching or laser scribing. Powder products include Sendust Fe1 − x − ySixAly
with an optimum composition near the zero anisotropy zero magnetostrictive
composition (x = 0.1 and y = 0.05). Sendust’s attractive soft magnetic properties
are challenged by its brittleness and therefore it is chiefly used in powder form.

Permalloys: Fe–Ni alloys are important crystalline high-permeability SMMs.
Ni-rich alloys are called permalloys. Important permalloys are (1) 78% Ni permal-
loy, which has a zero magnetostriction coefficient, is sold under the names supermal-
loy, Mu-metal and Hi-mu 80; (2) 65% Ni permalloy with near zero magnetocrys-
talline anisotropy and exhibiting a strong response to field annealing and (3) 50%
Ni permalloy having high Bs and a strong response to field annealing to produce
square loop materials. Magnetic properties and response to field annealing to induce
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anisotropy in permalloys depend on whether the material has a disordered fcc or
ordered L12 (Ni3Fe) intermetallic structure. Permalloy crystallographic texture is
developed by thermomechanical processing taking advantage of strong properties
variation with direction. These fcc-derivative alloys have [111] easy magnetization
directions and strong anisotropy in magnetostriction. Rolling to reduce alloy strip
thicknesses can benefit high-frequency magnetic properties limited by eddy current
losses.

An important set of alloys in the NixFe1 − x family are the Invar alloys with
∼36 at.% Ni alloys. The Invar effect (Invar anomaly) occurs because of the
magnetoelastic effects near Tc. Magnetoelastic effects (magnetostriction) give rise
to spontaneous changes in the lattice parameters as a function of temperature.
Like the magnetocaloric effect, these are largest where the T-dependence of the
magnetization is largest, i.e., near Tc. In Invar alloys the magnetostrictive volume
change can be tuned to precisely cancel the thermal expansion coefficient near room
temperature, making the material dimensions T-independent [14].

Ferrites: are double oxides of Fe3+ and a divalent metal, M2+. If M2+is Fe2+ the
ferrite is magnetite, Fe3O4, the first magnetic mineral known to man. It was called
lodestone and used in early compass needles. Cubic ferrites (except CoFe2O4) are
preeminent SMMs adopting a spinel structure. Hexagonal ferrites are hard magnets
with hexagonal, trigonal, or rhombohedral structures. Studies of ferrite properties
date back to work of Snoek [15] and Verwey [16] of Phillips Research Labs who
from 1933–1948 studied electron hopping conductivity mechanisms in ferrites from
ferric, Fe2+ to ferrous, Fe3+ cations. The theory of ferrimagnetism was developed
by Louis Neel in 1948 who explained the T-dependent magnetic response of these
SMMs [17].

Application of ferrites involves considerations of induction, Neel temperature,
magnetic anisotropy, magnetostriction coefficients, and electrical resistivity. Two
technically important ferrite SMM classes are Mn–Zn- and Ni–Zn-ferrites [18].
Mn–Zn-ferrites have resistivities of 100–1000 � cm useful for frequencies up to
∼1 MHz. Ni–Zn ferrites have resistivities of 106 � cm useful for frequencies up
to ∼1 GHz. The resistivity (conductivity) in ferrites is thermally activated, strongly
depending on charged defect concentrations and cation disorder [19]. Spinel ferrite
applications include inductor and transformer cores, switch mode power supplies,
converters, microwave devices, filters, and electromagnetic interference (EMI)
absorbers. Of technical interest for applications are high magnetic permeabilities
and large resistivities (to limit eddy current losses). The magnetic permeability
in ferrites is strongly influenced by microstructure, e.g., permeability is known to
increase with grain size in Mn–Zn ferrites.

Amorphous Metal Ribbons (AMRs): have a frozen liquid or glassy structure
[20]. In AMRs a supercooled liquid metal transforms into a metallic glass at lower
temperatures, at cooling rates too fast to allow crystallization of thermodynamically
stable crystalline phase(s). Typical AMR alloys are two or more components, the
primary component largely responsible for engineering properties and additional
components serving as glass formers. Alloys that most easily cast as AMRs are near
a eutectic composition in a binary or multicomponent phase diagram as these are
compositions for which the liquid phase remains stable to the lowest temperature.
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The choice of the primary component in AMRs produced for power magnetic
applications is from among Fe, Co, and Ni (or combinations). Fe-based alloys
are most common due to attractive magnetic properties and alloy economics.
Common choices for glass formers, are metalloids, such as B and Si that yield
deep eutectics [7, 21]. The first splat quenched ferromagnetic amorphous alloy
[21] and the first Fe80P13C7 AMR were both produced in the Caltech lab of
Pol Duwez [22]. Hasegawa reviews early developments of commercial AMRs
(Metglas) [23]. Chen and Polk’s [24] studies of effects of Si and Al on glass
forming ability in Fe led to commercial metallic glasses for magnetic applications
[25]. The first commercial AMR, Metglas 2826, an Fe40Ni40P14B6 alloy was
produced by Allied Signal in 1973. The Fe–B system was developed for AMR
[26] and soon followed by Fe–B–Si [27, 28] and Fe–B–Si–C [29, 30]. These alloys
exhibited significantly lower losses than Si steels and improved efficiencies fueled
further AMR development. These include AMR materials produced commercially
by Metglas, Vacuumschmelze, Hitachi Metals, and others. Commercially produced
Co-based and NiFe-based AMRs are commodities [31].

Metal Amorphous Nanocomposites (MANCs) [32]: are produced by con-
trolled crystallization of a multicomponent AMR precursor to yield a nanocrys-
talline phase embedded in an amorphous matrix. Thin AMR and MANCs are prefer-
able in a variety of magnetic applications where eddy current losses limit high-
frequency, high power density magnetic applications. The kinetics of nanocrystal-
lization is controlled by solid-state nucleation and growth (N&G) kinetics. Progress
of an isothermal phase transformation is described by plotting volume fraction (i.e.,
of primary crystallites) transformed, X (t,T), as a function of temperature, T, and
time, t, in a TTT curve [33].

These materials have been termed nanocrystalline materials as commercial
products, such as FINEMET@™. However, their superior properties derive from
both the distinct properties of the amorphous and nanocrystalline phases, and
therefore the term nanocomposite is more accurate. Chemical partitioning [34] of
species in primary nanocrystallization and, in particular, large resistivities of the
composites, due to the amorphous phase surrounding nanocrystals, is important to
suppress eddy currents at higher frequencies. MANC resistivities are predicted in
multiphase models that consider volume fractions and chemistries of the crystalline
and amorphous phases, respectively [35]. The influence of chemical composition on
resistivity in crystalline and amorphous phases is further understood in terms rigid
band ideas [36].

MANC alloy development is analogous to crystalline and AMR alloys. The
first MANCs were Fe–Si- and Fe-based FINEMET [37] and NANOPERM [38],
mimicking Fe–Si crystalline alloys (electrical steels). There are now Co-based
[39] and FeNi-based [40] MANCs. Co-based MANCs have magnetic anisotropies
tunable over five orders of magnitude and a method for inducing anisotropy by strain
annealing [41]. Materials with large transverse strain-annealed/strain-induced
anisotropy allow tunable permeabilities and spatially varying the same in cores for
transformers and inductors.
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3 Measurement Techniques for Materials Characterization
in Emerging SMMs

The physics of amorphous magnets [36] fuels magnetic applications of AMRs and
MANCs enabled by low switching losses. Power losses are reported at particular
levels of magnetic induction and frequency fit to Steinmetz relationships [42]
originally used to parameterize losses in Si steels. It is typical today to fit power
loss to a modified three-term Steinmetz equation:

PL = khysfB
β + keddyf

2B2 + kexcf
1.5B1.5 (1)

where khys, keddy, and kexc are used to partition power loss density for (i) hysteresis,
(ii) classical eddy current, and (iii) excess loss components. f is the AC frequency
(kHz), B is the peak flux density (T), and β is a power constant near 1. It is common
to lump the last two terms as total eddy current losses with a power law exponent
1.5 < a < 2. Static hysteresis loss dominates at low-f and eddy currents dominate at
high-f.

The partitioning constant keddy is proportional to the square thickness of the
material and inversely proportional to resistivity. Thus, high resistivity is desired
for magnetic components operating at and typically are 2–4× larger in AMRs
significantly reducing eddy current losses. Hysteretic losses are diminished in AMR,
MANCs, and bulk amorphous materials as a result of random magnetic anisotropy
[43]. Magnetic induction is sacrificed for glass forming ability (and resistivity)
in AMRs as compared with crystalline materials (e.g., Si steels). MANCs offer a
middle ground between the highest inductions achievable in crystalline materials
and the high resistivity of amorphous materials. The ability to cast AMRs in thin
cross sections significantly impacts eddy current losses to lower high-frequency
losses that is also achieved in MANCs.

The anomalous eddy current (AEC) losses, 3rd term in the Steinmetz equation
is associated with dynamic domain wall motion in a SMM. AEC contributions
originate at a mesoscale due to local heterogeneities in magnetic domain structure
[44]. Just as laser scribing is used in pinning magnetic domain walls in Si steels to
limit dissipation at high-fs, inducing anisotropy in AMR and MANCs lowers losses
at high-f [45]. In AMRs anisotropy is induced by transverse (to AMR length) field
annealing, rolling [46], and recently strain annealing [47].

Measurements of B-H loops and associated losses in SMMs at application
relevant excitation frequencies can be challenging. High-performing SMMs have
extremely low coercivities and losses such that accurate characterization of B-H
characteristics under quasi-static excitation conditions is difficult for conventional
magnetometry techniques. Demagnetizing fields can also result in significant
distortions in the measurements of magnetic anisotropies and associated B-H loops
in cases where sample geometries are not toroidal. AC permeametry techniques
are thus used to characterize the B-H characteristics of SMMs which are typically
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Fig. 3 Square waveform core loss test system (CLTS) (a) conceptual setup (b) actual

constructed in a toroidal configuration to minimize demagnetizing fields (Figs. 2
and 3).

For AC permeametry measurements, a time-varying excitation waveform is
applied to a toroidal magnetic core using a primary winding, and the induced
voltage measured on a secondary winding is used to estimate the B-H loop and
the associated core losses as a function of frequency. Excitation waveforms are
often sinusoidal, although arbitrary and square waveform excitation can also be
utilized to characterize SMMs. Non-sinusoidal excitation is particularly valuable
for application relevant waveforms with examples of an experimental setup for
arbitrary and square-wave excitations shown in Figs. 2 and 3, respectively. Figure
4 illustrates three different excitation voltage waveforms and corresponding flux
density waveforms.

In the arbitrary waveform core loss testing system (CLTS) illustrated, a function
generator can produce any arbitrary small signal, and the small signal is amplified
and applied to a core under test (CUT) using a linear amplifier. The arbitrary
waveform CLTS is advantageous in that any waveforms can be easily applied to
characterize a CUT; however, the linear amplifier has limited electrical capabilities,
such as ±75 V & ±6A peak ratings as well as a 400 V/μs slew rate in the case of
the experimental setup illustrated. Therefore, a full core characterization may not
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Fig. 4 Excitation voltage waveforms and corresponding flux density waveforms (a) sinusoidal
excitation with sinusoidal flux, (b) asymmetrical excitation with sawtooth flux, and (c) symmetrical
excitation with trapezoidal flux

be possible in some cases where true application relevant excitation conditions are
desired, such as in low permeability cores, high frequency, and/or large sized cores.
In cases where higher power and voltage excitation are required, a dedicated square
waveform CLTS can be utilized to perform various square waveform measurements
with different duty cycles, as shown in Fig. 4(b) and (c). To achieve such excitation
waveforms, an H-bridge-based excitation circuit can be utilized with wide-bandgap-
based switching devices such as commercially available 1200 V SiC MOSFET
devices enabling the extension of core characterization to conditions which are
relevant for larger scale components in end-use applications such as solid-state
transformers.

To perform the measurements of dynamic B-H loops, two windings are placed
around the core under test. The amplifier or square-wave CLTS excites the primary
winding with an applied voltage (v), and the current (i) of the primary winding
is measured, in which the current information is converted to the magnetic field
strengths H as

H(t) = Np · i(t)
lm

, (2)

where Np is the number of turns in the primary winding. A DC-biasing capacitor is
typically inserted in series with the primary winding to provide zero average voltage
applied to the primary winding which avoids undesired DC-bias in the B-H loop and
associated core loss measurements. During measurements, the secondary winding
is open, and the voltage across the secondary winding (vs) is measured, in which the
voltage information is integrated to derive the flux density B as

B(t) = 1

Ns·Ae

∫ T

0
vs (τ ) dτ, (3)

where Ns is the number of turns in the secondary winding and T the excitation
waveform period.

In Fig. 4(a), the excitation voltage is sinusoidal, and its flux waveform is also a
sinusoidal shape. In Fig. 4(b), the excitation voltage is a two-level square waveform
with asymmetrical duty cycle between high-level and low-level voltages, and its
flux waveform is a sawtooth shape referred as an asymmetrical waveform. Its duty
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Fig. 5 (a) B-H loops of an Fe-based MANC core with increasing excitation frequency from
2.5 kHz to 40 kHz. (b) Losses as a function of peak induction and frequency with fits to the
Steinmetz Equation

cycle is defined as the ratio between the applied high voltage time and the period,
and the duty cycle can range from 0% to 100%. Furthermore, the average excitation
voltage is adjusted to be zero via the DC-biasing capacitor, and, thus, the average
flux is also zero. In Fig. 4(c), the excitation voltage is a three-level square voltage
with symmetrical duty cycle between high-level and low-level voltages, and its flux
waveform is a trapezoidal shape referred as symmetrical waveforms. Its duty cycle
is defined as the ratio between the applied high-level voltage time and the period,
and the duty cycle can range from 0% to 50%. At 50% duty cycles, the asymmetrical
and symmetrical waveforms are identical.

Examples of measured B-H loops and losses as a function of frequency for a
sinusoidal excitation of an Fe-based MANC core are illustrated in Fig. 5(a). Fits to
the traditional Steinmetz expressions are presented in Fig. 5(b) showing an increase
in B-H loop area and core loss with increasing frequency, as expected for increased
classical and anomalous eddy current losses. Losses will also vary as a function of
excitation waveform, which can be captured through two approaches: (1) empirical
loss maps such as effective Steinmetz coefficient fitting to empirical data and (2)
by correcting the losses predicted from sinusoidal Steinmetz coefficients through
advanced loss modeling such as modified Steinmetz equations (MSE), generalized
Steinmetz equations (GSE), and many others [48, 49].

For magnetic component design, nonlinear B-H characteristics are critical,
but it is often enough to have detailed information on core saturation behavior
without explicitly including core losses (though losses can be included in efficiency
estimates with traditional loss modeling techniques). In such cases, the anhysteretic
approximation can be employed for which the B-H loop is effectively replaced
by the average of the positive and negative branch to produce a curve that does
not contain any hysteresis but does include information about core saturation
characteristics. An estimation of the anhysteretic response is illustrated in Fig.
6(a) along with a corresponding plot of permeability parameterized as a function
of applied magnetizing field intensity H in Fig. 6(b). It can be noted that all
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a b

Fig. 6 (a) B-H loops of an Fe-based MANC core at 2.5 kHz along with an anhysteretic fit to the
B-H loop. (b) Measured and extrapolated permeability as a function of magnetizing field intensity
for the corresponding anhysteretic magnetizing curve

of the information presented can be estimated and parameterized based upon
the measured B-H loop using the techniques described above. In some cases,
parameterization of the permeability as a function of induction, B, may be preferred
for the purpose of magnetic component designs [50, 51]. Estimation of anhysteretic
characteristic is performed using a genetic optimization program, which can be
found at the website: (https://engineering.purdue.edu/ECE/Research/Areas/PEDS/
go_system_engineering_toolbox).

To provide magnetic component designers with the necessary tools for optimized
designs, accurate core characterization is required for a range of materials and
excitation conditions. In addition, parameterization of important parameters such
as B-H loops, absolute permeability, differential permeability, and core losses using
pragmatic methods such as loss modeling approaches can allow for faster and more
widespread adoption by magnetics designers. In order to address this need, detailed
data sheets have been recently developed for a number of commercial and custom
magnetic cores by the National Energy Technology Laboratory and published in the
form of technical reports. Examples of the latest published data sheets can be found
in Refs. [52–57] (Fig. 7).

In MANCs, magnetic anisotropy controls magnetic domain structure and
methods to tune properties [58, 59]. Important length scales include those for
mesoscale eddy currents coupling to domain wall motion to cause AEC losses.
These require evolution in magnetic measurements for characterization. Efforts
to spatially and temporally image magnetic domains as a function of frequency
and T can be facilitated by magneto-optic Kerr effect (MOKE) tools [60, 61]
and magnetic first-order reversal curves (FORC) [62]. Magnetic measurements
can be coupled to observations of nanoheterogeneity by high-resolution TEM or
atom probe field ion microscopy (APFIM). Figure 8(ii) shows APFIM of an Fe–
Si–B MANC: (a) Fe, Si and B distributions, (b) interfaces, and (c) partitioning
between Fe2B and α-Fe phases [63]. Figure 8(iii) shows FORC distributions for

https://engineering.purdue.edu/ECE/Research/Areas/PEDS/go_system_engineering_toolbox
https://engineering.purdue.edu/ECE/Research/Areas/PEDS/go_system_engineering_toolbox
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Fig. 7 Example data sheet prepared for Metglas 2605-SA1 AMR at NETL

Fig. 8 MANC structural evolution and magnetic coupling (i) (a) X(t,T) and (b) T-dependent XRD
for crystallization of a (Fe65Co35)81 + xB12Nb4-xSi2Cu1 MANC [36]; (ii) APFIM of an Fe–Si–B
MANC showing (a) Fe, Si, and B distributions, (b) interfaces, and (c) partitioning between Fe2B
and α-Fe phases [63]; (iii) FORC for (Fe65Co35)81 + xB12Nb4-xSi2Cu1 (a) x = 2, 370 ◦C (b) x = 2,
430 ◦C (c) x = 4, 370 ◦C (d) x = 4, 430 ◦C [64]

(Fe65Co35)81 + xB12Nb4-xSi2Cu1 at different temperatures: (a) x = 2, 370 ◦C; (b)
x = 2, 430 ◦C; (c) x = 4, 370 ◦C; and (d) x = 4, 430 ◦C [64].

MANCs present options to induce anisotropies since anisotropy can be intro-
duced by applying one or more force variables in nanocrystallizing an AMR
precursor. Annealing in an external magnetic field or self-field annealing [65]
creates a preferred easy axis typically ascribed to atomic pair ordering. In strain-
annealed Fe-rich MANCs, with BCC nanocrystals, anisotropy results from lattice
parameter distortions in nanocrystals from residual stress in the amorphous matrix
[66]. Stacking faults improve mechanical properties and strain annealing response
in Co-rich MANCs with close packed nanocrystals [67].
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Fig. 9 (a) Co-based MANC alloy HRTEM after strain annealing showing stacking faults [54]; (b)
model illustrating growth-induced stacking faults in Co nanocrystals; and (c) cartoon of a Co-based
MANC material analog where structure allows further tuning of MANC properties

Both Co-based [67] and FeNi-based [40] MANCs exhibit strain-induced
anisotropies, transverse in the 1st and longitudinal in the 2nd. Co-based MANC
structures are shown in Fig. 9(a) in HRTEM image, proposed growth faulting
occurring in strain annealing (Fig. 9(b)) and a cartoon for a MANC nanostructure
where nanocrystal faulting in contributes to permeability tuning. This strain-
induced anisotropy is attractive in power electronic systems exploiting high-f
wide band gap semiconductors [68]. FeNi-based MANCs have recently been
evaluated for applications in solid-state power transformers [69] and high-speed
motor applications [70].

Dynamic magnetization processes in soft magnetic materials are strongly depen-
dent on domain structure. At frequencies below approximately 10 MHz, eddy
currents induced by wall motion are a significant source of core losses. Above
10 MHz, wall motion becomes damped but rotational processes differ depending
on the orientation of the domain to the local driving field. The response to fields, in
performance-related metrics (magnetic losses, plastic deformation), is nonlinear and
complicated to describe in AMRs and MANCs. Magnetic properties are observable
by measuring global magnetization and local magnetic domain structure. Studies
of magnetic domain structure by magneto-optic Kerr effect (MOKE) microscopy
[71] and monitoring intergranular coupling strength, (by first-order reversal curves
(FORC)) offer new insights for understanding micromagnetics of MANCs.

Figure 10 shows magnetic domains imaged by MOKE in a field-annealed Co-
based MANC. The image shows the domain structure of the upper portion of a
3 mm disc punched from a ribbon, where the red arrow indicates the long axis of the
ribbon. Contrast in MOKE images can be enhanced by subtracting image intensity
at the desired state from the same sample in a reference condition. The reference
condition can be the sample at the remnant field, in saturation, or under a sinusoidal
excitation that is faster than the image capturing period. In Fig. 10a, the reference
condition was the latter, where the excitation frequency (10 Hz, background average
over 3 s) was significantly faster than the image capture time. In this way, features
of the sample not related to the domain structure, such as surface defects, can be
minimized and the domain contrast maximized. The blue arrow shows the sensitive
direction of the Kerr polarization, and the domain structure is a series of transverse
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Fig. 10 (a) Magnetic domains imaged by MOKE in a 3 mm diameter field-annealed Co-based
MANC disc and (b) a bulk crystalline non-oriented 3 wt% Si Steel sample

bar domains. The spacing of the domains is proportional to the induced anisotropy,
where larger induced anisotropies lead to higher wall energies and consequently
wider domain patterns. Near disc edges, the effects of.

Shape demagnetization are evident in the distortion of the bar domains. Figure
10b shows the surface structure of a non-oriented 3 wt% Si steel sample produced
in a similar manner as Fig. 10a. Grain size in this material is ∼100 μm, many
times larger than the MANC grain size. The complex domain structure of a given
grain can continue through or abruptly change at grain boundaries depending on the
orientation of the grains and the local field. Grain-oriented Si steels produce domain
structures similar to the bar domains of Fig. 10a.

MOKE images provide information regarding the surface grain structure that
can differ from the bulk. Care must be taken to avoid effects such as stress
concentrations from improper polishing techniques that alter the domain structure
in unintended ways. Aside from qualitative information regarding the domain
structure, quantitative information can be obtained from measurements of the
angles between magnetization in domains across a wall or in hysteresis loops
produced from Kerr images during cyclic excitation. Additionally, MOKE data can
be useful to set boundary conditions for micromagnetic calculations of bulk domain
structures.

First-order reversal curves (FORCs) give information not possible to obtain
from a hysteresis loop alone. These curves include the distribution of switching
and interaction fields, and identification of multiple phases in composite or hybrid
materials containing more than one phase. A FORC curve (Fig. 8 (iii)) is measured
by saturating a sample in a field Hsat, decreasing the field to a reversal field Ha
and then measuring moment versus field Hb as the field is swept back to Hsat. This
process is repeated for many values of Ha, yielding a series of FORCs. The measured
magnetization at each step as a function of Ha and Hb gives M(Ha, Hb), which is
plotted as a function of Ha and Hb in field space. The FORC distribution ρ(Ha, Hb) is
the mixed second derivative, i.e., ρ(Ha, Hb) = −(1/2)∂ [2] M(Ha, Hb)/∂Ha∂Hb. The
FORC diagram is a 2D or 3D contour plot of ρ(Ha, Hb). It is common to change
the coordinates from (Ha, Hb) to Hc = (Hb − Ha)/2 and Hu = (Hb + Ha)/2. Hu
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represents the distribution of interaction or reversal fields, and Hc represents the
distribution of switching or coercive fields.

An emerging trend involves exploiting advanced magnetometry techniques to
reveal a deeper understanding of the magnetization reversal mechanisms within a
given magnetic material using first-order reversal curve (FORC) analysis. FORC
techniques require a large number of B-H measurements. While FORC tech-
niques are ideally suited for permanent magnet materials where static magnetic
properties can be readily sampled as in vibrating sample magnetometry (VSM)
and alternating gradient magnetometry (AGM) techniques, the application to soft
magnetic materials is challenging due to the low DC and AC coercivities which
typically require permeametry. Recent literature has begun to apply the technique
of AC FORC to soft magnetic materials through custom measurement methods and
experimental facilities. In most cases, quasi-static measurements are performed with
a goal of minimizing the effects of eddy currents due to dynamic magnetization
processes on the measured B-H characteristics [72]. However, there exists an
opportunity to exploit such techniques for the purpose of new insights into dynamic
magnetization processes moving into the future. Significant additional complexity
of the magnetization process is expected, however, as the detailed AC FORC
measurements will depend upon the shape of selected excitation waveforms as well
as the excitation frequency.

4 Conclusion

This chapter has reviewed some of the current state of the art in soft magnetic
materials (SMMs) discussing fundamental and technical magnetic properties and
technically important soft magnetic materials classes. The significant proliferation
of new soft magnetic materials has led to development of sophisticated new
measurement techniques which allow for new understanding of both traditional and
emerging SMMs.
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Permanent Magnet Materials

Satoshi Okamoto

Abstract The characterization of permanent magnets is important for industries
and academics. Moreover, the magnetic properties of permanent magnets have many
aspects from macroscopic and microscopic views. For these different standpoints,
we must select proper magnetic measurements and analyses. In this chapter, various
magnetic measurements and analyses are concisely explained to help the readers
who have different backgrounds.

Keywords Permanent magnet · Nd–Fe–B · Magnetization curve · FORC ·
Magnetic viscosity · Magnetization reversal process · XMCD

1 Introduction

Permanent magnets have been important materials for motors and generators that
convert electricity to power and vice versa. Their importance has increased because
of the recent drastic shift of vehicle powertrain from fossil fuel to electricity.
Therefore, the demand for high-performance permanent magnets has increased
significantly [1–3]. To respond to this demand, how can we characterize permanent
magnets? Which measurement method and analysis should be used? From the
industrial standpoint, the most important parameter of permanent magnets is the
energy product (BH)max, which is defined as the maximum product of magnetic
flux density B and magnetic field H. Thus, for this purpose, accurate measurement
of the intrinsic magnetization curve of a permanent magnet is critical. On the other
hand, the physical origin of coercivity and the magnetization reversal process of
permanent magnets are the major concerns for academic researchers. These issues
are not only of academic interests but also important to improve the properties of
permanent magnets. For these research purposes, time- and temperature-dependent
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magnetization curve measurements and/or high-spatial-resolution magnetic imaging
techniques are required.

In this chapter, general notes for the magnetization curve measurements of per-
manent magnets are explained in Sect. 2. Then, after brief explanations on coercivity
and magnetization reversal analyses for permanent magnets, some examples for
these analyses are presented in Sects. 3 and 4.

2 General Notes for Magnetization Curve Measurements
of Permanent Magnets

Magnetization curves of permanent magnets are measured by various methods, such
as dc B-H tracer, pulse B-H tracer, and vibrating sample magnetometer (VSM) [4].
In a dc B-H tracer, a magnet sample is sandwiched by electromagnet poles, making
a closed magnetic circuit. Consequently, the intrinsic magnetization curve of the
magnet sample can be measured without any demagnetization correction treatments,
because the demagnetization field does not exist inside the magnet sample placed
in the closed magnetic circuit. This advantage of the dc B-H tracer that is attributed
to the use of electromagnets becomes a disadvantage for the measurement of very
high coercivity magnet samples because of the limitation of the magnetic field of
3 T or less. Moreover, the saturation of the magnetic pole at the high-field region
causes a nonlinear signal change because of the mirror effect. On the other hand,
a pulse B-H tracer can apply a much larger magnetic field; however, this method
uses an open magnetic circuit. Therefore, the magnetization curve measured by this
method is deformed from its intrinsic curve shape because of the shape-dependent
demagnetization field. In addition to the demagnetization field, the application of
a large pulse field may further deform the magnetization curve because of the
eddy current effect when the magnet sample is metallic. A VSM has a very high
sensitivity and is widely used for academic research. However, because a VSM
has an open magnetic circuit like a pulse B-H tracer, the magnetization curve also
deforms due to the demagnetization field.

Usually, a cuboid sample is used for the magnetization curve measurements
because of easy sample shaping and easy sample mounting on the sample holder
of the measurement apparatus. However, the demagnetization factor inside the
cuboid sample is not uniform, making the demagnetization field correction difficult.
Some textbooks state that a spheroid sample is effective for the demagnetization
field correction because of the uniform demagnetization field inside the body.
This, however, is valid only when the sample is uniformly magnetized, that is,
in the fully saturated state. When permanent magnets are demagnetized, this
assumption is not valid. During the demagnetization process of permanent magnets,
large magnetic domains are observed in Nd–Fe–B sintered magnets [5]. Thus,
the demagnetization field becomes nonuniform during the demagnetization process
even for the spheroid samples. For anisotropic permanent magnets, a pillar-shaped
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Fig. 1 Magnetization curves of pillar-shaped (a) Nd–Fe–B sintered, (b) Nd–Fe–B hot-deformed,
and Sm2Co17 magnets. (a) and (b) are measured at RT, and (c) is measured at 200 ◦C

sample that has the long axis along the magnetic easy axis can minimize this
difficulty of demagnetization correction [6].

Finally, the surface-damaged layer of permanent magnets should be mentioned.
Figure 1 shows the magnetization curves of pillar-shaped Nd–Fe–B sintered, Nd–
Fe–B hot-deformed, and Sm2Co17 magnets measured by VSM. The nonlinear
decrease in magnetization in the high-field region is attributed to the mirror effect.
For the Nd–Fe–B sintered magnet shown in Fig. 1(a), a kink on the magnetization
curve at around zero magnetic field is obviously found, indicating the presence of
the magnetic soft phase of the surface-damaged layer [7]. This surface-damaged
layer is due to the mechanical polishing process of sample shaping. The thickness
of the surface-damaged layer of Nd–Fe–B sintered magnets is estimated to be
several tens of micrometers [4], corresponding to a thickness of approximately
several grains. This surface-damaged layer thickness strongly depends on the
permanent magnet material and its microstructure. In fact, Nd–Fe–B hot-deformed
and Sm2Co17 magnets, shown in Fig. 1(b, c), do not exhibit the kink at around zero
magnetic field on their magnetization curves, indicating that the surface-damaged
layer is negligibly thin in these magnets.

3 Coercivity Analysis of Permanent Magnets

Generally, the coercivity of permanent magnets is small compared with the
anisotropy field, which is the theoretical upper limit of coercivity [8, 9]. This
is called as “Brown’s paradox” [10]. Because the coercivity is a very important
parameter of permanent magnets, the coercivity mechanism has long been studied to
solve Brown’s paradox. The magnetization reversal process of permanent magnets
is roughly categorized into two types, the nucleation and wall pinning types, as
illustrated in Fig. 2(a, b), respectively. The former proceeds via avalanche-like
domain wall propagation initiated by a nucleation of a small reversed domain. The
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Fig. 2 Illustrations of magnetization reversal processes of (a) nucleation and (b) domain wall
pinning

latter is also initiated by a nucleation of a small reversed domain. However, the
domain does not expand until a certain critical field due to the domain wall pinning.

Two different approaches for these issues have been studied so far. One is the
static analysis developed by Kromüller [8, 9]. The other is the thermal activation
analysis by Givord [11–13]. In the following subsections, these models and
examples of analyzed results are briefly explained.

Static Analysis

Kromüller assumed a one-dimensional model of a very thin soft magnetic layer
sandwiched by a hard magnetic phase that mimics a defect layer or a grain boundary.
He calculated the coercivity Hc for nucleation and/or pinning cases based on
the one-dimensional micromagnetics theory [8, 9]. Consequently, he deduced the
following simple equation:

Hc = αH k − NeffMs, (1)

where Hk is the anisotropy field, Ms is the saturation magnetization, α is the
reduction coefficient related to the soft-region magnetic anisotropy and/or easy axis
orientation, and Neff is the effective local demagnetization coefficient. Kromüller
elaborately studied the form of α for various cases of nucleation/pinning, and as a
result, he derived that α is given as a function of r0/δB, where r0 is the thickness of
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the soft magnetic phase and δB is the domain wall thickness of the hard magnetic
phase. This equation has been widely accepted for many experimental researchers to
analyze the coercivity empirically, and the values of α and Neff have been evaluated
from the plot of temperature-dependent Hc/Ms vs. Hk/Ms. Usually, the value of Hk
in this analysis is treated as the literature data. Thus, the obtained α and Neff are
regarded as temperature-independent empirical parameters. However, as mentioned
above, α is a temperature-dependent parameter, because α is the function of r0/δB.
Therefore, the naive empirical adoption of Eq. (1) may lead to values of α and Neff
that are quite different from the ones originally considered by Kromüller.

Thermal Activation Analysis

Kromüller’s theory does not consider the thermal activation effect on the magneti-
zation reversal. One might say that the thermal activation effect does not need to be
considered for permanent magnets, because permanent magnets are bulk materials.
However, the actual magnetization reversal is triggered by the nucleation of a very
small reversed domain with nanometer scale. In this size range, thermal activation
becomes crucial. In fact, when a permanent magnet is kept in a constant reverse
magnetic field, the magnetization logarithmically decreases with time because of
the thermal activation effect. This behavior is known as magnetic viscosity [14].
The time-dependent magnetization M(t) in the magnetic viscosity is expressed as.

M(t) = M(0) − S ln t, (2)

where S is the magnetic viscosity coefficient. Wohlfarth [15] and Gaunt [16]
developed the theory of the magnetic viscosity and derived the following relation:

S = −kBT χirr/

(
dE

dH

)
, (3)

where χ irr is the irreversible magnetic susceptibility, kBT is the thermal energy,
H is the applied field, and E is the energy barrier for the magnetization reversal.
Generally, E is a function of H given as.

E(H) = E0(1 − H/H0)
n, (4)

where E0 is the barrier height at H = 0, H0 is the critical field for the magnetization
reversal without thermal activation effect, and n is a constant depending on the
magnetization reversal process, i.e., n = 2 for coherent rotation [17] and n = 1
for a weak pinning case [16]. Thus, by substituting Eq. (4) into Eq. (3), we get the
relation of
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S/χirr (≡ Hf) = kBT/

[
n
E0

H0

(
1 − H

H0

)n−1
]

(5)

Thus, the defined Hf is called as the fluctuation field, and is obtained from the
separately measured values of S and χ irr. Hf can be also obtained only from the
magnetic viscosity measurements as [18]

Hf(H) = �H

� ln (S/t)
. (6)

Givord et al. found that the values of S and χ irr of Nd–Fe–B sintered magnets
exhibited the same trends against H [11], indicating that Hf is a constant irrespective
of H. This fact leads to n = 1 in Eqs. (4) and (5). Considering the normal
measurement condition of coercivity using VSM, that is, several seconds of data
acquisition time for each data point, E corresponds to 25kBT. Moreover, assuming
the effective magnetization reversal field H = Hc + NeffMs, Eq. (4) with n = 1 is
transformed into.

Hc = E0

Msvact
− NeffMs − 25Hf, (7)

where vact = kBT/MsHf is the activation volume. Consequently, the follow equation
is given by assuming E0 = αγwvact

2/3 [12]:

Hc = α
γw

Msvact
1/3 − NeffMs − 25Hf, (8)

where γw is the domain wall energy. Obviously, Eq. (8) derived from the thermal
activation model has the similar form of Eq. (1) proposed by Kromüller.

Note that Eqs. (7) and (8) are only valid for n = 1 in Eq. (4). Very recently,
Okamoto et al. proposed a more general thermal activation analysis for permanent
magnets based on the magnetic viscosity measurements [19]. Magnetic viscosity
measurements starting from various magnetic fields just above Hc also give the time-
dependent coercivity Hc(t), with an example shown in Fig. 3. Hc(t) for the magnet
with the energy barrier of Eq. (4) was formulated by Sharrock [20] as.

Hc(t) = H0

[
1 −

{
kBT

E0
ln

(
fot

ln 2

)}1/n
]
, (9)

where f0 is the attempt frequency with the order of 109–1011 Hz. Here, there
are three unknown parameters (H0, E0, and n), and these cannot be determined
simultaneously only from the experimentally values of Hc(t). However, these three
parameters are determined from the analysis by combining Hc(t) and Hf [19].
Figure 4 shows examples of the thus obtained values of H0, E0, and n of Nd–Fe–
B hot-deformed magnets. HD and GBD denote the differently processed magnets
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Fig. 3 Example of magnetic
viscosity curves of a
hot-deformed Nd–Fe–B
magnet measured at 200 ◦C.
The intersection with the line
of m = 0 give the
time-dependent coercivity
Hc(t)

with quite different μ0Hc of 1.1 and 2.2 T, respectively, at ambient temperature.
Moreover, these values of μ0Hc decrease significantly with temperature. The values
of μ0H0 are well consistent with these very different values of μ0Hc of HD and
GBD magnets and their large temperature dependences. On the other hand, the
values of n are almost 1 irrespective of magnets and temperature. The values of
E0 is also less dependent on magnets and temperature. These experimental results
reflect the feature of the magnetization reversal process of Nd–Fe–B hot-deformed
magnets, as discussed in the next section.

4 Magnetization Reversal Process of Permanent Magnets

Magnetic Imaging

Direct observation techniques of the magnetization reversal process of permanent
magnets are magnetic imaging, such as magneto-optical Kerr (MOKE) and X-ray
magnetic circular dichroism (XMCD) microscopies.

MOKE microscopy utilizes the change of optical polarization of the reflected
light from the magnet surface. Therefore, the polished mirror surface is indis-
pensable. This means that the MOKE signal reflects the magnetization state of
the polished surface of the magnets. In fact, the coercivity obtained from the
MOKE measurement is much smaller than that of the magnet measured by VSM
[21], indicating that the polished surface layer loses the hard magnetic property
due to the mechanical damage. Nevertheless, it is conceivable that the magnetic
domain image by the MOKE microscopy reflects, to some extent, the magnetization
state underneath the surface-damaged layer because of the strong magneto-static
interaction. Figure 5 shows examples of MOKE images of a Nd–Fe–B sintered
magnet. The domain wall displacements inside the grains are clearly observed.
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Fig. 4 Energy barrier parameters obtained of a hot-deformed Nd–Fe–B magnets from of thermal
activation analysis. (a) H0, (b) n, (c) E0 are the parameters of Eq. (4). GBD and HD denote the
differently processed magnets with different coercivities

XMCD microscopy is available at synchrotron radiation facilities. Unlike MOKE
microscopy, XMCD microscopy does not need the mirror polished surface, because
the XMCD signal is obtained from the difference in the X-ray absorption for
different helicities. Very recently, Nakamura et al. established the sample fracturing
technique inside the XMCD microscopy chamber, which is in ultrahigh vacuum
atmosphere [22]. Because Nd–Fe–B sintered magnets favor to fracture at the thin
Nd-rich grain boundary phase rather than the Nd2Fe14B main phase grains, this
technique makes it possible to observe the very fresh and non-damaged Nd–Fe–
B magnet surface covered with the thin Nd-rich grain boundary phase. Using this
technique, they successfully demonstrated that the magnetization curve of a Nd–
Fe–B sintered magnet obtained by XMCD agrees very well with that by VSM,
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Fig. 5 Example of a MOKE
image of a Nd–Fe–B sintered
magnet

Fig. 6 Examples of multiple images of a Nd–Fe–B sintered magnet using a MOKE microscopy.
(a) X-ray absorption, (b) chemical contrast of Fe and Nd, (c) magnetic contrast images. Experiment
was performed at BL25SU of SPring-8

indicating that the magnetization state of the fractured surface is almost identical
to that of the bulk inside. Moreover, XMCD microscopy makes it possible to obtain
multiple images of topographic, chemical, and magnetic contrast, as in the examples
shown in Fig. 6. Since Nd–Fe–B sintered magnets consist of various phases other
than the Nd2Fe14B main phase, such as the metallic Nd-rich phase and oxidized
Nd as triple junction and grain boundary phases, this multiple imaging of XMCD
microscopy is very powerful to reveal the relation of the magnetization reversal
process with the microstructure [23].

FORC Analysis

As explained in the preceding section, magnetic imaging is the direct method to
visualize the magnetization reversal process of permanent magnets; however, the
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information is limited to the surfaces of the magnets. In contrast, first-order reversal
curve (FORC) analysis is regarded as a method to visualize the magnetization
reversal process of bulk magnets, even though it is not in a direct way. In this
sense, magnetic imaging and FORC analysis are complementary. Originally, FORC
analysis was established to evaluate the coercivity and interaction field dispersions
based on the Preisach model [24] (please see Sect. 3.1). The Preisach model assumes
a magnet consisting of a large number of hysteresis units known as hysterons. This
assumption, however, is inappropriate for many permanent magnets, especially for
Nd–Fe–B magnets. As seen in Figs. 5 and 6, because many multi-domain grains are
observed in the Nd–Fe–B sintered magnets, the magnetization reversal in Nd–Fe–B
sintered magnets cannot be described by the simple assembly of hysterons. In the
FORC measurement, many reversal magnetization curves that start from Hr on the
demagnetization curve are recorded with H, and then, the magnetization m on each
reversal curve is given as a function of Hr and H. The FORC distribution ρ is defined
as a second-order derivative of m with respect to H and Hr:

ρ (H,Hr) = − ∂

∂Hr

(
∂m

∂H

)
. (10)

This equation represents the variation of magnetic susceptibility (∂m/∂H) on
Hr, corresponding to the irreversible change in the magnetic susceptibility. Thus,
the FORC diagram of permanent magnets can be regarded as the contour map
of the irreversible magnetization reversal on the (H, Hr) plane rather than the
understanding based on the Preisach model.

Figure 7 shows the FORC diagrams of pillar-shaped Nd–Fe–B sintered [25],
Nd–Fe–B hot-deformed [26], and Sm2Co17 magnets [27]. These magnet samples
are the same as shown in Fig. 1. The magnetization curves of these magnets shown
in Fig. 1 are similar rectangles; however, their FORC diagram patterns are quite
different. The FORC diagram pattern of the Nd–Fe–B sintered magnet exhibits two
spots at around the low-field and high-field regions, indicating that there are two
regions of irreversible magnetization reversals. The high-field spot is easily assigned
to the magnetization reversal at around the coercivity. On the other hand, the low-
field spot evidences that the nontrivial amount of magnetization reversal occurs at
very low-field region in the Nd–Fe–B sintered magnet. This low-field spot has been
widely observed in various Nd–Fe–B sintered magnets [28]. According to the recent
study on the XMCD microscopy observation under the field sequence for the low-
field spot of the FORC diagram, the magnetization reversal for the low-field spot
is assigned to the domain wall displacement inside the multi-domain grains [25].
In contrast, the FORC diagrams of the Nd–Fe–B hot-deformed and the Sm2Co17
magnets exhibit the high-field spot only, which corresponds to the magnetization
reversal at around the coercivity. These different FORC diagrams clearly reflect the
different magnetization reversal process of these magnets. Whereas there are multi-
domain grains in Nd–Fe–B sintered magnets in which the domain wall smoothly
moves, the domain walls in Nd–Fe–B hot-deformed and the Sm2Co17 magnets
cannot move smoothly in the low-field region because of the very high density
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Fig. 7 FORC diagrams of pillar-shaped (a) Nd–Fe–B sintered, (b) Nd-Fe-B hot-deformed, and
(c) Sm2Co17 magnets. Samples are the same shown in Fig. 1. (a) and (b) are measured at RT, and
(c) is measured at 200 ◦C

of pinning sites in these magnets. Consequently, the low-field spot in the FORC
diagram of these two magnets disappears. Moreover, the positions of these high- and
low-field spots and their width give more detailed information on the magnetization
reversal process of permanent magnets [29].

5 Summary

Although the study on permanent magnets has very long history, there are still many
issues to be studied. Recently, multilateral analyses become very important. The
magnetic measurements and analyses explained in this chapter are one approach of
them. Moreover, recent advancements of electron microscopy, computer science,
synchrotron radiation, and so on are very dramatic. By combining with these
cutting-edge technologies, it is highly expected that the magnetic measurements
and analyses for permanent magnets will move into new stages. As explained in
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Sect. 4.2, FORC analysis combined with XMCD microscopy is one example. This
kind of evolution will not only deepen our understandings but also open new fields
of studies on permanent magnets.
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Magnetocaloric Characterization
of Materials

Victorino Franco

Abstract Magnetocaloric characterization is most typically considered for mate-
rials that will be applied in thermomagnetic energy conversion devices, but it can
also be of relevance for any material that exhibits a thermomagnetic phase transition.
This chapter overviews the most usual methods for magnetocaloric characterization,
including direct and indirect methods, and shows the appropriate choice of measure-
ment protocols depending on the type of magnetocaloric material under study. In
addition, it gives an overview on how magnetocaloric characterization can be used
to study phase transitions, including the determination of critical exponents in cases
that the conventional methods are not applicable, the quantitative determination of
the order (first or second) of thermomagnetic phase transitions, and the emerging
use of TFORC techniques for the study of these transitions.

Keywords Magnetocaloric effect · Magnetic refrigeration · Thermomagnetic
phase transitions · Critical phenomena · Critical exponents · Universal scaling ·
Temperature first order reversal curves (TFORC)

1 Introduction

Climate at different points on Earth is rather different, ranging from extremely
hot to extremely cold. However, we humans want to carry out our lifestyle with
minimum variations regardless of where we are located. This implies the necessity
of temperature control systems that allow us to live comfortably in challenging
environments and refrigeration systems to keep our food in proper conditions,
just to mention a few examples. By the time this book was being written, the
general public became aware of how critical is the cold transportation and storage of
medical products, as the first viable vaccine against a coronavirus that was severely
altering our way of life required transportation at temperatures well below room
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temperature. This constituted a major challenge in order to be able to reach most
of the population and is an example of how important the search for reliable and
efficient refrigeration systems is for our society.

Among the different final uses of energy in residential and commercial sectors,
refrigeration and air conditioning account for a relevant fraction of electricity use,
with numbers varying from country to country due to their different climate. Recent
data from EIA [1] estimate that 87% of US households are furnished with air
conditioners and ~114 million units account for an annual energy demand of 186
billion kWh of electricity. There is no doubt that our way of life relies on our
capability of cooling food and controlling the temperature of our living and working
environments. If developing countries adopt similar trends in cooling habits, there
could be a 50 times increase in the demand of air conditioners [2]. In the European
Union, heating and cooling in buildings and industry account for half of the EU’s
energy consumption and in order to fulfil the EU’s climate and energy goals, the
heating and cooling sector must drastically reduce their energy consumption and
decrease their use of fossil fuels [3].

In fact, magnetic refrigeration has increased in popularity in recent years [4].
This has been due to the discovery of magnetic materials that exhibit a giant change
in their temperature when the applied magnetic field is changed adiabatically close
to room temperature [5]. This has been accompanied by a noticeable increase in the
development of magnetic refrigerator prototypes [4, 6]. A magnetocaloric material
can be used in an analogous way as the gas that is compressed and expanded
in a conventional refrigerator just by performing cycles of magnetization and
demagnetization (Fig. 1). The environmental friendliness of magnetic refrigeration,
which is energetically more efficient than the conventional refrigerator devices and
does not require the use of ozone depleting or greenhouse effect related gases, is a
strong driving force to advance in this research area and can help us find solutions
to the current and future challenges that we face in making our life sustainable.

Since the discovery of the giant magnetocaloric effect in Gd5(Si,Ge)4 in 1997
[5], magnetic refrigeration is considered a “promising alternative” for temperature
control. There have been numerous publications in scientific journals and major
research agencies have funded projects on this topic. Industry has also been
actively involved in this research, with several relevant prototypes that serve some
niche applications. However, despite the broad variety of materials reported in the
literature, this “promising alternative” has not materialized in the consumer market
yet. The reason for this delay in reaching the market has different aspects, but
probably the key limitations are related to the performance of the magnetocaloric
materials. The aim of this chapter is to present what we consider the most relevant
aspects for a correct characterization of magnetocaloric materials so that results
can be appropriately compared when data are provided by different labs and
measured different experimental conditions. In addition to this technological aspect
of magnetocaloric materials, we will show some examples of applications of the
magnetocaloric effect beyond refrigeration and temperature control: the study of
phase transitions and critical phenomena, which can be performed quite efficiently
via the properly characterized magnetocaloric response of the materials.
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Fig. 1 The four stages of a magnetic refrigeration cycle: (a) adiabatic magnetization, (b) removal
of heat, (c) adiabatic demagnetization, and (d) cool refrigerator contents. Reprinted from [7] with
permission from Annual Reviews

2 Types of Magnetocaloric Materials

The first approach to classify magnetocaloric materials is according to their
composition. Different families of alloys and compounds are formed, and properties
are studied depending on doping of the starting material. However, the different
families can have similar properties, making the classification more confusing [4,
7]. Alternatively, magnetocaloric materials can be classified according to the order
of the phase transition that they undergo, either first- (FOPT) or second-order
(SOPT) type phase transitions. Both types of transitions have their advantages
and disadvantages, with the former having large magnetocaloric response, but
usually at the expense of thermal hysteresis, rate-dependent behavior, and a modest
cyclic performance. SOPT materials, on the other hand, have a more modest
magnetocaloric response, but they do not suffer from thermal hysteresis. Therefore,
one of the current goals of magnetocaloric materials research is to combine the best
of both types of materials: large response without hysteresis and a trade-off between
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static and cyclic performance. A recent example of that trade-off is the study of high
entropy alloys (HEA) for magnetocaloric applications. While conventional rare-
earth-free HEA have a modest performance, a thoughtful design of the composition
to incorporate a magneto-structural phase transition allows an increase of one order
of magnitude in the magnetocaloric response [8].

There have been several attempts to develop series of alloys and compounds
that bring us to this intermediate point where the transition changes from FOPT
to SOPT, known as tricritical point or critical point of the second-order phase
transition. La(Fe,Si)13 [9, 10] and MnFePSi [11] alloy series are examples of a
gradual change from FOPT to SOPT. For these types of studies, it is important to
have a quantitative procedure to determine the order of the phase transition based
on magnetic measurements [12], as some of the previously used methods are either
non-general [13, 14] or qualitative [15–18].

3 Relevant Magnitudes for the Characterization
of Magnetocaloric Materials

As indicated above, the magnetocaloric effect is connected to the temperature
change of the sample due to a change in its entropy. Therefore, the characterization
of a magnetocaloric material can be made by determining either the magnitude of
the adiabatic temperature change, �Tad, or the isothermal entropy change, �ST.
However, if the magnitudes of both �Tad and �ST are known and combined in some
new related metrics, then a better estimate about the applicability of the material for
magnetic refrigeration can be determined.

Isothermal Entropy Change

Arguably, the most used magnitude for the characterization of magnetocaloric
materials is the isothermal entropy change induced by the application of a magnetic
field. The reason for its extensive appearance in the literature is that it can be
obtained by numerically processing properly measured magnetization curves as
a function of temperature and magnetic field. By using Maxwell’s relation, the
temperature and field dependence of �ST can be obtained as:

�ST (T ,Hmax) = μ0

Hmax∫

0

(
∂M

∂T

)
H

dH, (1)

where Hmax is the maximum field used for the calculations, and it is assumed
that the magnetization process starts form 0 field. From this expression it is
evident that, in order to exhibit a large isothermal entropy change, the material
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should have an abrupt change of magnetization as a function of temperature.
Since the susceptibility of paramagnetic salts diverges when approaching 0 K,
they are suitable as magnetocaloric materials in the cryogenic regime. In contrast,
room temperature applications require a phase transition that causes this strong
temperature dependence of magnetization near the desired working temperature
of the device. These phase transitions can be purely magnetic, like the Curie
temperature of Gd, magnetoelastic like for La(Fe,Si)13, or magneto-structural like
the case of Gd5(Si,Ge)4. In this latter case, a low temperature orthorhombic phase
transforms into a monoclinic phase at temperatures close to room temperature,
providing the required magnetization change.

Adiabatic Temperature Change

The adiabatic temperature change can be measured directly by applying a magnetic
field to the sample in adiabatic conditions. It can also be related to other magnitudes,
like the temperature and field dependence of the specific heat of the sample, cH, and
the temperature and field dependence of magnetization:

�Tad = μ0

Hmax∫

0

T

cH

(
∂M

∂T

)
H

dH. (2)

In many publications, however, it is considered that cH is field-independent,
leading to an approximation that relates the adiabatic temperature change and the
isothermal entropy change via the zero field specific heat:

�Tad ≈ μ0
T

cp

Hmax∫

0

(
∂M

∂T

)
H

dH = T�ST

cp
. (3)

This means that although a large �ST is necessary to achieve a large �Tad, it
is not a sufficient condition to realize an excellent magnetocaloric material because
heat capacity also plays a very relevant role.

Refrigerant Capacity and Its Variants

In a refrigeration device, the main goal is to transfer heat between the hot and cold
reservoirs. This can be quantified by the refrigerant capacity, RC:

RC (�H) =
∫ Thot

Tcold

�ST (T ,�H) dT , (4)
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Fig. 2 Isothermal entropy change of a typical transition metal based amorphous alloy for which
the three commonly accepted definitions of RC are applied, where RC corresponds to the area
enclosed by the blue line. The difference among them is due to the approximations performed for
the calculation of the integral in Eq. (4). In the case of TEC (10 K), dashed lines correspond to
Tmid ± 5 K

where �H corresponds to the change of magnetic field during the process, typically
between 0 and Hmax, and Tcold and Thot are the temperatures of the two reservoirs.
However, the characterization of magnetocaloric materials is generally not done
in a refrigerator device in contact with two reservoirs. In order to extract the
characteristics of the material, it has been broadly assumed that the temperatures
of the reservoirs correspond to the full width at half maximum of the magnetic
entropy change peak, δTFWHM. While this is a rather useful simplification, it can
lead to the overestimation of the suitability of magnetocaloric materials with a very
low magnetic entropy change peak that is extended over a rather broad temperature
interval. This broad peak would produce artificially large RC values that would not
be suitable for applications. It is currently accepted that the usable temperature range
of the material is restricted to the region where its �Tad is above 1 K.

In the literature, different authors use different ways of calculating the integral
in Eq. (4). An illustration of the most extended variants found in the literature is
presented in Fig. 2. RCFWHM corresponds to taking the full width at half maximum
of the peak for the integration limits and approximating the integral as the peak
value times that width (RCFWHM = �S

pk

T δTFWHM). This magnitude is also known
as relative cooling power (RCP) [19]. RCArea corresponds to properly calculating
the area under the peak within that δTFWHM temperature range. The third definition,
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proposed by Wood and Potter [20], RCWP, corresponds to the area of the largest
rectangle which can be inscribed into the �ST(T) curve. In all cases, when hysteretic
losses are relevant for the studied material, the subtraction of these losses from the
calculated RC would be necessary [21].

To overcome the limitations of RC, alternative figures of merit have been recently
proposed. The coefficient of refrigerant performance, CRP compares the net work
in a reversible cycle with the positive work on the refrigerant [22]:

CRP (Hmax) = �ST�Trev

μ0
∫ Hmax

0 M dH
, (5)

This expression is a ratio of the reversible refrigerant capacity divided by the
magnetic work performed on the magnetic refrigerant, and, therefore, the field
dependence of the magnetization curve at the transition temperature is needed.
As only the reversible response is considered, hysteresis is eliminated from this
definition.

The most recent addition to these figures of merit is the temperature averaged
entropy change (TEC) [23]:

TEC (�Tlift) = 1

�Tlift
max
Tmid

{∫ Tmid+�Tlift
2

Tmid−�Tlift
2

�ST(T ) dT

}
, (6)

where �Tlift corresponds to either the temperature span of a single layer in a
multi-material refrigerator bed (typically around 3 K), or to the largest adiabatic
temperature change obtained for a magnetocaloric material by applying the field
using permanent magnets (typically around 10 K). Tmid is the center of that
temperature span that maximizes TEC; depending on the shape of the magnetic
entropy change curve of the material, Tmid might not be symmetrically positioned
around the peak of entropy change. The advantage of TEC vs. CRP is that it only
requires the measurement of isothermal entropy change curves, simplifying the
initial screening of the potential performance of the materials.

Most papers in the literature do not indicate the value of TEC, making it difficult
to calculate its value from the published curves, as it would require access to the data
or digitizing the �ST(T) curves from the publication. A simplification that allows
estimating a value for TEC can be made, assuming that the midpoint of the TEC
definition (Eq. 6) lies at the temperature of the peak:

TEC (�T lift) ≈
�ST

(
Tpk − �T lift

2

)
+ �ST

(
Tpk

) + �ST

(
Tpk + �T lift

2

)

3
(7)

While this is just an approximation, it facilitates the calculation of this magnitude
for previously published data using a limited number of points.

All these figures of merit will have their own limitations, and the evaluation of the
potential applicability of any material should be put in the context of the operating
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conditions in which it would be used. There are additional requisites for a magne-
tocaloric material beyond its magnetocaloric response to be practically useful, like
mechanical integrity, appropriate thermal conductivity, large electrical resistivity,
machinability/formability to prepare it in the desired shape for a refrigerator bed,
etc. Most of them are not considered in the search for new materials, at least not
at the first stages. The ultimate check would be to implement the material into a
real magnetic refrigerator and assess its eventual performance. However, this is not
within reach for many laboratories working on magnetic materials.

4 Indirect Characterization Methods

The most extensively used way of characterizing magnetocaloric materials is by
calculating �ST or �Tad from other experimentally measured magnitudes, either
magnetization or heat capacity. The popularity of these indirect methods is due
to the broad availability of commercial instruments that allow performing the
measurements. This allows us to classify indirect characterization methods in those
that either use magnetometry or calorimetry.

Magnetometry

A simple inspection into the literature of magnetocaloric materials leads us to
realize that most papers use magnetometry to determine the isothermal entropy
change. By measuring the temperature and field dependence of magnetization and
applying Maxwell’s relation (Eq. 1), it is relatively straightforward to determine
�ST as a function of temperature (Fig. 3). If the integration is performed up to
different maximum fields within the experimental range, the field dependence of
the isothermal entropy change can also be obtained.
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Fig. 3 Field and temperature dependence of magnetization of a Gd50Zn50 alloy and |�ST|
calculated from these data using Maxwell’s relation (Eq. 1). Further details of the alloy can be
found in [24]
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We must consider, however, that in the case of FOPT materials, there exists a
discontinuity of magnetization at the transition temperature, causing a divergency
in the derivative of magnetization vs. temperature. In this case, the Clausius
Clapeyron equation can be used instead. For some years, this led to the belief
that the notable artifacts in the �ST(T) curves that occurred near the FOPT were
due to the inapplicability of Maxwell’s relation. However, the ultimate reason for
these spurious spikes that overestimate �ST for FOPT is the coexistence of phases
during the measurement [25, 26] and artifacts can be avoided if the measurement
protocol incorporates a procedure to “erase the memory” of the material in between
isothermal measurements. By following these discontinuous procedures, Maxwell’s
relation can still be used to determine the entropy change. If the memory of the
material is not erased between magnetization curves, the spurious spikes would
occur in the temperature region where the material exhibits thermal hysteresis.

In the case of measurement of M(T) curves for different applied fields, the only
precaution that has to be taken is that the initial state for each curve has to be
reached always in the same way. For isothermal M(H) measurements, the correct
measurement protocol implies the following steps [27]:

1. Change temperature to reach the fully transformed condition of the sample (either
in zero field or with the maximum applied field).

2. Keeping the same applied field (zero or maximum), reach the temperature at
which the magnetization curve is going to be measured, Tmeas.

3. Measure the isothermal magnetization curve with increasing (if steps 1 and 2
were performed in zero field) or decreasing field (in the case that those steps
were performed with maximum field).

4. Repeat steps 1–3 for as many different Tmeas as desired in the �ST(T) curve.

Once the set of M(T,H) data are collected, numerically processing the data using
Eq. 1 requires some interpolation of the curves, to distribute the experimental points
on a grid of suitable T and H values that allow correct calculation of the numerically
approximated integrals and derivatives. Nowadays there are software packages that
automatically make this data processing [28].

Magnetometry measurements are suitable for a large variety of samples and
current devices are able to measure not only bulk materials but also powders,
thin films, liquids, etc. This contributes to the versatility of this characterization
procedure.

As numerical derivatives as a function of temperature are involved, it is important
to find a trade-off between the resolution required for the �ST(T) curves, which
implies small temperature increments, and the level of noise in the curves emerging
from the derivatives, which can be minimized with larger temperature increments.

An additional precaution that has to be taken during magnetometric measure-
ments concerns the ramp rate of the applied field (for isothermal measurements) or
of the temperature (for isofield measurements). In the case of isofield magnetization
curves, ramping the temperature too fast would induce an apparent lag in the
measurements that could be misinterpreted as hysteresis in the sample when heating
and cooling it, leading to potentially erroneous conclusions about the order of the
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phase transition. The case of isothermal magnetization measurements is more subtle.
Researchers usually tend to ramp field at a fast rate in order to save experimental
time. However, we need to recall that the magnetocaloric effect consists in the
temperature change of the sample when it is submitted to an adiabatic field change.
Therefore, if the field is ramped too quickly, the temperature of the sample will not
remain in isothermal conditions, distorting the measured results. The consideration
of how fast is too fast depends on the characteristics of the sample and its coupling
to the sample holder, especially in the temperature range close to the phase transition
[29, 30].

This ramp rate limitation poses a difficulty for the dynamic characterization of
the magnetocaloric response. As the isothermal entropy change is determined from
quasistatic magnetic measurements, the rate-dependent response of the material
when used in a refrigerator cannot be experimentally measured in this way. The
cyclic response can be, nevertheless, predicted by calculating the overlap of the
heating and cooling entropy change curves [27].

Demagnetizing Field

The influence of the demagnetizing field deserves a separate mention, as it will
affect all experiments involving the application of an external field. Actually, all
the equations above refer to the internal field experienced by the sample, which
will only coincide with the applied magnetic field in the case of toroidal samples
magnetized along the circumferential direction. In any other case, the internal field
experienced by the sample is related to the applied field Ha via the demagnetizing
field Hd:

H = Ha − Hd, (8)

which in turn depends on the magnetization of the sample through the demagnetiz-
ing factor N:

Hd = N ·M. (9)

For weakly magnetic samples, like paramagnets, the value of the demagnetizing
field is irrelevant due to the small value of magnetization. However, the internal and
applied fields are rather different in ferromagnets, producing a relevant modification
of the M(H) curves when compared to the M(Ha) ones. Curves will not be affected
for cases where M = 0, i.e., at the coercive field, or when the sample is fully
saturated, provided that the internal field also produces saturation.

As a consequence, for samples measured up to large enough magnetic fields, the
peak isothermal entropy change is not significantly affected, producing only minor
changes in the peak entropy change [31]. However, the field dependence of the
magnetocaloric response is notably affected, especially in the low-field regime, as
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evidenced both experimentally [32] and by numerical simulations [31]. In the case
of field-driven FOPT materials, an additional constraint has to be taken into account:
the internal magnetic field has to be large enough to drive the transition, which can
significantly increase the requisite of applied field for not optimally designed sample
shapes.

In order to minimize the influence of the demagnetizing field, samples should be
prepared as thin plates magnetized in plane or as long wires magnetized along the
wire axis. Numerical correction of the demagnetizing field effect would be possible
in single-phase, single-piece materials [33, 34], although it is rather complicated in
the case of composites and coexisting phases as N will no longer depend exclusively
on the external shape of the sample but will be a combination of external shape and
shape of the different phases [35, 36].

Calorimetry

The measurement of heat capacity as a function of temperature and magnetic
field is an alternative procedure that leads to the indirect determination of the
magnetocaloric response of materials. There are several relevant differences with
respect to the magnetometric methods, as summarized in Table 1.

Although calorimeters are broadly available in laboratories dealing with Mate-
rials Science, most of these devices are limited to measuring the temperature
dependence of heat capacity in the absence of a magnetic field. With these, the
magnetocaloric response of a material cannot be calculated, although they can be
helpful, in combination with magnetometric measurements, to estimate �Tad(T)
via Eq. (3).

Table 1 Comparison between direct and indirect characterization techniques

Indirect
Magnetometry Calorimetry Direct

Magnitude �ST(T) �ST(T) and �Tad(T) �Tad(T)
Availability In most magnetic labs Less usual with

magnetic field
Traditionally rare;
increasing in recent
years

Commercial
devices

Many Some but with specific
measurement
limitations

Very few

Sample size Very small samples Relatively small
samples

Relatively large
(depending on sensing
technique)

Cyclic
response

Via mathematical
processing

Via mathematical
processing

Experimentally

Dynamic
response

Not possible Not possible Experimentally
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Fig. 4 Magnetocaloric effect
as the adiabatic temperature
rise, �Tad(TI)�H , and the
magnetic entropy change,
�SM(TI)�H shown for a
single initial temperature TI
and a given magnetic field
change �H = HF − HI in a
ferromagnetic material. The
inset displays MCE typical
for a ferromagnet as a
function of temperature.
Reprinted from [43] with the
permission of AIP Publishing
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Among those calorimeters that allow the application of a magnetic field [37–
41], measurements can be made either using a heat pulse technique or by slowly
scanning temperature. While for materials with SOPT, there is no relevant difference
in the results, the abrupt transformations of FOPT materials are better measured
in scanning mode. Additional precautions have to be taken when using relaxation
calorimeters for FOPT as the usual time constant fitting approach is not applicable
[42]. At the same time, the application of the heat pulse will partially transform the
material, while the measured relaxation curve does not necessarily correspond to
the reversal process. This should also be taken into account in the analysis of the
raw calorimetric data.

The principle of calculating the magnetocaloric response relies on the determi-
nation of the total entropy of the material as a function of temperature for different
magnetic fields [43]:

SH(T ) =
∫ T

0

cH

T
dT + S0,H (10)

where S0, H is the zero-temperature entropy term for that given value of magnetic
field H. Once these curves are calculated, the isothermal entropy change caused by
an increment of field from 0 to Hmax is calculated by (Fig. 4):

�ST(T ) = [
SHmax(T ) − S0(T )

]
T
, (11)

where we can consider that the applied field does not affect the zero-temperature
entropy.

To calculate the adiabatic temperature change, it is necessary to numerically
invert the experimental SH(T) curves to obtain TH(S) curves. Following an analo-
gous procedure to Eq. (11), �Tad is calculated as (Fig. 4):

�Tad(T ) = [
THmax(S) − T0(S)

]
S. (12)
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This apparently simple procedure has a relevant limitation: the integration in
Eq. (10) has to be made from 0 K up to the desired temperature. For materials
with phase transitions in the cryogenic range, the initial temperature can reasonably
approach 0 K without a large increase in the experimental time and associated
cost. However, when the transition occurs close to room temperature, making
calorimetric measurements down to very low temperatures is an experimental
burden. It has become usual to make a linear extrapolation of the integrand down to
0 K, simplifying Eq. (10) into

SH(T ) ≈ 1

2
cH (Tini) +

∫ T

Tini

cH

T
dT , (13)

where the zero entropy term has been disregarded and Tini corresponds to the
lowest experimental temperature used for the integration. While this seemed to be a
reasonable approximation that would not produce large errors if Tini is low enough,
it has been recently shown [44] that it significantly affects the results, both at the
peak of the magnetocaloric response and even at the high temperature tails (Figs.
5 and 6). In the case of �ST, the error introduced by this linear extrapolation is
a temperature independent offset. However, for �Tad the extrapolation implies an
error that increases with temperature.

Despite this apparently serious limitation of the calculation of �ST and �Tad
from calorimetric measurements, it has also been proven that it is not necessary to
reach very low temperatures to avoid this extrapolation error: there is an optimal
initial temperature to perform the integration that provides the same result as the
integration from 0 K. This optimal temperature can be identified experimentally and
is the same for the �ST and �Tad curves. The procedure is equally valid for FOPT
and SOPT [44, 45] and constitutes a way for reducing both experimental time and
cost of measurements.

In the case of rather small samples, microelectromechanical systems (MEMS)
nanocalorimeters can be used [46]. In them, a heater and a temperature sensor
are deposited onto a SiN membrane, reducing the thermal mass of the sensor.
This also allows ultrahigh heating rates and AC characterization. Although these
nanocalorimeters are very useful to determine transition temperatures, quantitative
measurements are challenging in the case of very small samples due to the difficulty
of separating the contribution of the sample from the addenda used to attach the
sample to the sensor.

5 Direct Characterization Methods

Following the definition of the magnetocaloric effect, direct measurement methods
consist of recording the temperature change of the sample upon application/removal
of a magnetic field in adiabatic conditions. The main advantage of this kind of
procedure is that it can mimic the operating conditions of magnetocaloric devices,
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Fig. 5 Approximated magnetic entropy change, �sap
M , (upper panel) and adiabatic temperature

change, �T ap
ad , (lower panel) vs. temperature curves at 7.5 T for different initial temperatures (Tini)

for pure Gd. The insets show the temperature dependence of the difference of each approximated
curve with respect to the curve integrated from 4 K (δ). Reprinted from [45] with permission from
Elsevier

being able to experimentally characterize dynamic and cyclic responses (in contrast
with the restriction to a calculated cyclic response of the indirect methods [27]).

Despite its apparent simplicity, experimental implementation of these types of
methods is not free from difficulties. The most important ones are the thermal mass
of the temperature sensor, the adiabaticity of the experimental conditions and the
characteristic thermal response time of the temperature sensor. In the case of small
samples, the thermal mass of the sensor should be much less than the thermal mass
of the sample. This is challenging in the case of ribbon samples and requires piling
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Fig. 6 Approximated magnetic entropy change, �sap
M , (upper panel) and adiabatic temperature

change, �T ap
ad , (lower panel) vs. temperature curves at 7.5 T for different initial temperatures

(Tini) for Gd5Si2Ge2. The insets show the temperature dependence of the difference of each
approximated curve with respect to the curve integrated from 4 K (δ). Reprinted from [45] with
permission from Elsevier

up several samples to ensure that the thermal mass of the sensor is comparatively
small and has to be accompanied by recalibration [47].

There are different ways to apply the changing magnetic field. It can be
either by actually changing the value of the applied magnetic field (with an
electromagnet, superconducting magnet, pulse magnetizer or with a Halbach array)
or by reciprocating the sample in and out of the magnetic field region. The
temperature change of the sample can be made either with contact sensors (e.g.,
thermocouples, CERNOX™ resistance thermometers, etc.) or noncontact sensors
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(e.g., the thermoacoustic method, infrared thermometry, etc.). The reader is referred
to [48] for an overview of the most traditional methods.

The few commercial measurement systems that exist nowadays usually consist
of a Halbach permanent magnet field source (typically applying fields between 1.5
and 2 T), a �T measuring system that consists of a differential thermocouple, with
one of the junctions in contact with the sample and the other at the sample holder,
and a temperature control system that sets the base temperature of the sample and
sample holder before the application of the field. Varying the ramp rate of the field, it
is possible to determine the frequency dependence of the magnetocaloric response.
Recording the temperature variation of the sample as the field is applied allows
accurate determination of the field dependence of �Tad, which does not have to
necessarily correspond to a mean field behavior [49].

It is important to note that there is an intrinsic lag in the measurement system
due to the thermal mass and time response of the sensor. Therefore, it is necessary
to take this into account in order to compare the differences in AC performance of
different materials [50, 51]. For cases in which the response might be small (due to
the characteristics of the sample or because of the application of a small magnetic
field), a lock-in technique can be implemented to enhance the signal-to-noise ratio
[52].

Magnetocaloric measurements in pulsed magnetic fields imply additional chal-
lenges for the reliable determination of the sample temperature change because a
50 T magnetic field can be reached in typically 250 ms. One possible solution
is to develop calorimeters by depositing a ~ 10 nm thick heater on one side of
the sample and using bare-chip resistive thermometers [53]. The use of a highly
effective impedance system to generate a constant AC current during the pulse and
a four contact AC method with a digital lock-in system for the characterization of
resistance of the thermometer allows for the determination of �Tad of Sr3Cr2O8
samples. In the case of metallic samples, their large conductivity makes the
deposited film heater less appropriate. It is also possible to fabricate a resistive film
thermometer (typically a 100 nm thick patterned AuxGe1 − x alloy film) directly on
the surface of the sample to measure its �Tad. This minimizes the heat capacity of
the sensor and maximizes the thermal conductance between it and the sample [54].
The electrical isolation between sample and sensor can be achieved by depositing
an isolation layer (e.g., 150 nm thick CaF2 film).

A possible approach to diminish the thermal mass of the addenda and decrease,
therefore, the time constant of the measurement device, is to use noncontact
temperature measurement techniques like infrared detectors [56, 57]. An original
alternative approach relied on the use of the mirage effect, which is an optical
beam deflection technique used in photothermal spectroscopy to measure thermal
diffusivity and the thermo-optical absorption spectrum of materials [55]. The
temperature change of the sample when submitted to the applied magnetic field
produces a gradient of the refractive index in the surrounding medium, detected by
the deflection of a laser beam passing through the layer of that medium beside the
sample (Fig. 7).
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Fig. 7 Sketch of the setup for direct �Tad measurements with pulsed magnetic fields. On the top:
details of the sample holder inserted onto the coil and mounted above a micro positioning device.
The magnetic pulsed field generates a temperature variation of the sample that deflects the laser
beam, aligned close to its surface, of an angle �. Reprinted from [55] with permission from AIP
Publishing

The broader availability of infrared cameras has also facilitated the use of
infrared thermography for the determination of the magnetocaloric effect. This has
the advantage of being able to determine the temperature change of several samples
placed in the magnetic field, implementing a high-throughput measurement system
[58, 59]. In the case of small signals, the use of lock-in thermography enables the
determination of temperature changes as low as a few millikelvin and provides
information about the magnitude and the phase of the response (Fig. 8) [58].

The protocol for measuring the magnetocaloric material, as indicated in the
previous section, is rather important in order to avoid spurious results emerging
from the coexistence of phases along a FOPT. In the case of �ST, failing to erase
the memory of the material produces a spike in the response that often causes
researchers overestimate the characteristics of the material. On the other hand, ill-
designed protocols for the measurement of �Tad produce lower values than those
intrinsic to the material [60]. It is therefore crucial to apply similar discontinuous
protocols for the characterization of both magnitudes, although it is not usual to do
it when determining �Tad.
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Fig. 8 dTmod and ϕ images
for the Gd1 − xYx and Co
samples under the conditions
of (a) Hbias = 275 mT,
dHmod = 24 mT, and
f = 0.5 Hz, (b)
Hbias = 1127 mT,
dHmod = 10 mT, and
f = 5.0 Hz, and (c)
Hbias = 51 mT,
dHmod = 2 mT, and
f = 25.0 Hz. Reprinted from
[58] with permission from
AIP Publishing

Although in this section we have restricted ourselves to direct measurement
of �Tad, it is worth mentioning that properly designed, usually custom made,
calorimeters also allow for the direct determination of �ST [41, 61–64].

In recent years, driven by the rich phenomenology of magnetocaloric materials
with a FOPT, there is a trend to simultaneously characterize the different magnitudes
that are modified during the phase transformation. A paradigmatic example is the
in situ measurement of magnetization and volume magnetostriction in materials
with magneto-volume effect like La(Fe,Si)13 [65]. This kind of experimental device
will certainly help the study of phase transitions, provide a better understanding
of the different driving forces that cause the transformation, and will facilitate the
optimization of magnetocaloric materials for technological applications.
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6 Magnetocaloric Effect to Study Phase Transitions

While most of magnetocaloric effect characterization nowadays focuses on the
properties of new (and not so new) materials for their potential use in magnetic
refrigeration devices, there was a time when room temperature magnetic refrigera-
tion was not yet considered. By then, magnetocaloric characterization was a useful
tool to enhance the knowledge that we had about phase transitions [66, 67]. More
recently, this fundamental aspect of magnetocaloric research has been revisited and
new methods for determining critical exponents or to quantitatively determine the
order of phase transitions have been proposed. We will briefly review some of these.

Critical Scaling in Second-Order Phase Transition Materials

It is well-known that second-order phase transitions follow scaling laws close
to the critical region [68]. For SOPT magnetocaloric materials, like Gd, this
implies that the magnetocaloric magnitudes follow power laws of the field of the
type magnitude ∝ Hexponent. Each different magnitude will scale with a different
exponent, which is related to the critical exponents of the material [69–71] (Table 2).
As a consequence, by studying the field dependence of MCE, we should be able to
determine the critical exponents of the material. This determination was traditionally
done using the conventional Kouvel-Fisher method [72]. Results obtained for simple
cases, like a purely SOPT material formed by a single magnetic phase, using the
traditional method and those obtained from the field dependence of MCE are in
good agreement [70]. The main advantage of the MCE-based procedure is that it
does not require an iterative approach, being more straightforward to use. However,
there are cases for which the conventional methods are not applicable, like materials
formed by different ferromagnetic phases or if several phase transitions coexist. It
has been demonstrated that the scaling of MCE is capable of providing accurate
values of the critical exponents even for these more complicated situations [73].

Table 2 Exponents
controlling the field
dependence of different
magnitudes related to MCE
(magnitude ∝ Hexponent)

Magnitude Exponent

Tpk − TC (not mean field) 1/�
Tpk − TC (mean field) 0
�ST(T = Tc) 1 + 1/δ(1 − 1/β) = (1 − α)/�
�S

pk

T 1 + 1/δ(1 − 1/β) = (1 − α)/�
RCArea or RCFWHM 1 + 1/δ

The critical exponents �, δ, β, and α fulfil � = βδ and
1 − α = β + � − 1, with β and δ characterizing the
magnetization behavior along the coexistence curve (H = 0,
T < Tc) and the critical isotherm (T = Tc), respectively
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Fig. 9 Universal scaling (central panel) can be used to predict the field and temperature depen-
dence of MCE (left panel) or the behavior of different alloys in a series of compositions (right
panel)

These scaling laws are the basis that justifies the phenomenological construction
of a universal curve for the isothermal entropy change, although that universal
curve was initially proposed without requiring any prior knowledge of the critical
exponents of the materials [15]. This phenomenological approach has practical
applications (Fig. 9) like the extrapolation of experimental data to fields and
temperatures less commonly accessible in laboratories [74], the prediction of MCE
responses of different alloys from a series of materials with similar values of critical
exponents [74], or even noise reduction of the experimental data and enhancement of
data resolution recorded for low applied magnetic fields [69]. The scaling procedure
can be performed in four simple steps:

1. Determining the temperature-dependent isothermal entropy change of the mate-
rial for each magnetic field value.

2. Normalizing each isothermal entropy change curve with respect to its own peak.
3. Identifying the reference temperature (Tr) of each curve that corresponds to a

specific value of the normalized curve (which is typically chosen between 0.5
and 0.7 for temperatures above the transition).

4. Rescaling the temperature axes of these curves as θ = (T − TC)/(Tr − TC).

This description of the procedure is based on the assumption that there is a single
phase in the material and that the influence of the demagnetizing factor is negligible.
Otherwise, instead of using a single reference temperature above the transition, two
reference temperatures (one below and one above Tc) would be needed and the
rescaling temperature would be:

θ =
{− (T − TC) / (Tr1 − TC) ; T ≤ TC

(T − TC) / (Tr2 − TC) ; T > TC
(14)

Once put in the proper context of scaling relations [75], this phenomenological
universal curve was further extended to the adiabatic temperature change of magne-
tocaloric materials [49]. The reader should be aware, however, that universal scaling
is restricted to the critical region of the material, i.e., temperatures relatively close
to the transition temperature and fields that are not too large [76] (the notions of
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“close” and “large” are material-dependent). The applicability limits for scaling in
magnetocaloric materials [77] fit inside the usual experimental conditions of fields
up to 10 T. This has been experimentally confirmed by numerous publications [78–
89]. It is also worth mentioning that the demagnetizing field, the presence of various
coexisting phases in the same sample, or the distribution of Curie temperature
of the phases due to sample inhomogeneity might alter the field dependence of
magnetocaloric magnitudes [31, 32, 90–92]. In the case of composites formed by
magnetic phases with relatively close transition temperatures [24, 93], deviations
from the universal curve can be used to deconvolute the magnetocaloric response
of the individual phases and to quantify the relative fraction of phases present in
the composite [93], providing results in good agreement with the determination of
phase fractions performed by X-ray diffraction.

Another alternative application of the deviations from universal scaling is related
to the study of skyrmions [94]. MnSi exhibits helimagnetic order and an additional
skyrmion phase for a range of magnetic fields and temperatures. By studying the
deviations from universal scaling of the magnetocaloric response, it was possible to
determine that the maximum concentration of skyrmion vortices happens at 28.5 K
and a magnetic field of 0.16 T.

Quantitative Determination of the Order of the Phase Transition

The most extended method to determine the order of a magnetic phase transition
is the Banerjee criterion [13]. However, it is based on a mean field equation of
state, and not all materials can be classified as mean field materials. Consequently,
there were cases for which this criterion predicted a SOPT behavior, while
calorimetric measurements showed a FOPT [95]. Universal scaling was proposed as
an alternative to solve this discrepancy by using purely thermomagnetic data [14].
The success of the scaling approach is based on the fact that it is not restricted to
any specific equation of state but only assumes that SOPT scale. Recent theoretical
studies indicate that the scaling of MCE in the proximity of the critical region is
valid for both SOPT materials and for those at the tricritical point [96].

Despite solving a controversy on the apparent discrepancies between calorimetry
and thermomagnetic data for the determination of the order of the phase transition,
the method based on scaling is qualitative, and, as such, different researchers might
appreciate in a different way to which extent a set of curves collapse. It was
necessary to be able to find a quantitative alternative.

The field dependence of the isothermal entropy change can be expressed as a
power law of the field

�ST ∝ Hn, (15)

where the exponent n, which is field- and temperature-dependent, can be locally
calculated as a logarithmic derivative:
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Fig. 10 Field and temperature dependence of the exponent n for La1Fe13 − xSix alloys. The values
of n > 2 for Si 1.2, 1.4, and 1.6 clearly indicate their FOPT behavior, while Si 1.8 is a SOPT.
Reprinted from [12] under CC BY 4.0 license

n = d ln |�ST|
d lnH

. (16)

In the case of second-order phase transition materials undergoing a ferro-
paramagnetic phase transition, n = 1 for temperatures in the fully ferromagnetic
range (well below the Curie temperature), n = 2 for temperatures well above
Tc, and has a minimum at temperatures close to Tc. [69] However, for FOPT,
it was recently discovered that the exponent n exhibits an overshoot above 2 in
the temperature range of the phase transition, which can be used as a quantitative
method for the determination of the order of the phase transition (Fig. 10) [12]. The
applicability of this method has been demonstrated by using not only simulated data
but also experimental results of La(Fe,Si)13, Heusler alloys, cobaltites [97], Tb3Ni
single crystals with peculiar magnetic behavior [98], and even new high entropy
alloys with a magnetostructural phase transition and unusually large magnetocaloric
response [8].

The field dependence of the isothermal entropy change can also be used to
determine the critical composition that makes the phase transition change from first
to second order, as the critical exponents of that so-called tricritical point correspond
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to n = 2/5 [99]. For the series of LaFe13 − xSix, the tricritical point corresponds to a
silicon concentration of x ≈ 1.65, in agreement with the results shown in Fig. 10.

Study of Thermomagnetic Hysteresis in Magnetocaloric
Materials by Using TFORC

FORC, which stands for first-order reversal curves, is a well-known methodology
for the study of hysteresis in magnetic materials [100], with several chapters in
this book showing its full potential in the case of M(H) hysteresis loops. However,
good magnetocaloric materials have small field hysteresis, making the study of
conventional FORC complicated and difficult to interpret [101]: while the FORC
technique will give information of interaction fields in the magnetic field region for
which the material is hysteretic, the magnetocaloric response is more sensitive to
large fields. Therefore, absolute values of interaction fields obtained by these two
techniques were (and should be) completely different.

Nevertheless, magnetocaloric materials with a FOPT also exhibit thermal hys-
teresis. This can be studied by replacing the H driving force in conventional FORC
by temperature, becoming a TFORC technique [102]. While it is relatively easy
to sweep the magnetic field in a reasonable time to obtain the required number
of minor loops for FORC experiments, temperature variations are much slower,
thus this long measuring time being one of the major limitations to broadly adopt
this technique. However, the thermomagnetic phase transitions of magnetocaloric
materials can be driven both by field and by temperature, which made us propose an
effective temperature T* that combines the thermal and magnetic energy provided
to the material during the transformation. This allowed us to transform the technique
into T*FORC, with a notable reduction of experimental time [103].

Another limitation that prevented a broad application of TFORC was the limited
theoretical basis for the interpretation of the observed distributions. While FORC
analysis has been carried out for decades and there is a clear understanding of
the physical motivation of the observed “wishbones” and “boomerangs” in the
distributions, TFORC in magnetocaloric materials started a short time ago, and
there was a lack of theoretical developments to set the basis for the interpretation.
Recently, the use of thermomagnetic models has allowed us to interpret some of the
most usual figures that are observed in TFORC distributions (Fig. 11) [104]. It is
expected that this particular technique will extend its use in the near future. While,
due to the scope of this book, these TFORC and T*FORC techniques have been
shown here for thermomagnetic hysteresis, they can be readily translated to other
caloric materials like elastocaloric or electrocaloric by replacing the driving force
of the measurement and analysis by the suitable one.
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Fig. 11 Different TFORC distributions extracted from minor M(T) loops showing how detailed
features of a thermomagnetic phase transition, not easily distinguishable in the magnetization
curves, correspond to different characteristic figures in the TFORC plane. (a) to (d) show the
reversal magnetization curves, while (a’) to (d’) are the corresponding TFORC distributions. For
details about the different parameters on the graphs, the reader is referred to [104]. Reprinted from
[104] under CC BY 4.0 license

7 Conclusions

The characterization of magnetocaloric materials has two main applications: the
search for new materials with optimized properties for thermomagnetic energy
conversion, like magnetic refrigeration, and the study of phase transitions in
materials that are either applicable in other areas, like spintronics and skyrmions, or
they are simply important for fundamental science. One of the aims of this chapter is
to convince the reader that it is not necessary to have a good magnetocaloric material
in order to have relevant results from its magnetocaloric characterization.

Magnetocaloric characterization implies at least two driving forces: magnetic
field and temperature, which complicates the measurement protocols. In addition,
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FOPT involve the coexistence of phases, which can produce artifacts in the
magnetocaloric measurements. To avoid these difficulties, measurement protocols
must ensure that the sample is fully saturated, i.e., erasing the previous history of
the material, using both driving forces. This is relevant for both indirect and direct
magnetocaloric characterization.

In the recent years, direct magnetocaloric measurement techniques are evolving
more into optical methods in order to facilitate high-throughput characterization
of materials. AC techniques are also becoming more relevant, as the dynamic
response of magnetocaloric materials is a key in the eventual implementation in
a magnetic refrigerator. At the same time, detailed studies of thermomagnetic
hysteresis are being performed with emerging techniques like TFORC and its
variants like T*FORC.

Acknowledgments Work supported by AEI/FEDER-UE (grant MAT-2016-77265-R and
PID2019-105720RB-I00), US/JUNTA/FEDER-UE (grant US-1260179), Consejería de Economía,
Conocimiento, Empresas y Universidad de la Junta de Andalucía (grant P18-RT-746) and Army
Research Laboratory under Cooperative Agreement Number W911NF-19-2-0212.

References

1. U.S. Energy Information Administration, http://www.eia.gov/outlooks/ieo
2. M. Sivak, Will AC put a chill on the global energy supply? Am. Sci. 100, 330 (2013)
3. EUROPEAN COMMISSION https://ec.europa.eu/energy/sites/ener/files/documents/

1_EN_ACT_part1_v14.pdf, 2016
4. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, A. Conde, Magne-

tocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112
(2018)

5. V.K. Pecharsky, K.A. Gschneidner, Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev.
Lett. 78, 4494 (1997)

6. B.F. Yu, M. Liu, P.W. Egolf, A. Kitanovski, A review of magnetic refrigerator and heat pump
prototypes built before the year 2010. Int. J. Refrig.-Rev. Int. Du Froid 33, 1029 (2010)

7. V. Franco, J.S. Blázquez, B. Ingale, A. Conde, The magnetocaloric effect and magnetic
refrigeration near room temperature: materials and models. Ann. Rev. Mater. Res. 42, 305
(2012)

8. J.Y. Law, L.M. Moreno-Ramírez, Á. Díaz-García, A. Martín-Cid, S. Kobayashi, S.
Kawaguchi, T. Nakamura, V. Franco, MnFeNiGeSi high-entropy alloy with large magne-
tocaloric effect. J. Alloys Compd. 855, 157424 (2021)

9. O. Gutfleisch, A. Yan, K.H. Muller, Large magnetocaloric effect in melt-spun LaFe13-xSix. J.
Appl. Phys. 97, 10M305 (2005)

10. J. Liu, J.D. Moore, K.P. Skokov, M. Krautz, K. Lowe, A. Barcza, M. Katter, O. Gutfleisch,
Exploring La(Fe,Si)(13)-based magnetic refrigerants towards application. Scripta Mater. 67,
584 (2012)

11. M.F.J. Boeije, M. Maschek, X.F. Miao, N.V. Thang, N.H. van Dijk, E. Bruck, Mixed
magnetism in magnetocaloric materials with first-order and second-order magnetoelastic
transitions. J. Phys. D. Appl. Phys. 50, 174002 (2017)

12. J.Y. Law, V. Franco, L.M. Moreno-Ramirez, A. Conde, D.Y. Karpenkov, I. Radulov, K.P.
Skokov, O. Gutfleisch, A quantitative criterion for determining the order of magnetic phase
transitions using the magnetocaloric effect. Nat. Commun. 9, 2680 (2018)

http://www.eia.gov/outlooks/ieo
https://ec.europa.eu/energy/sites/ener/files/documents/1_EN_ACT_part1_v14.pdf


722 V. Franco

13. B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys.
Lett. 12, 16 (1964)

14. C.M. Bonilla, J. Herrero-Albillos, F. Bartolome, L.M. Garcia, M. Parra-Borderias, V. Franco,
Universal behavior for magnetic entropy change in magnetocaloric materials: an analysis on
the nature of phase transitions. Phys. Rev. B 81, 224424 (2010)

15. V. Franco, J.S. Blazquez, A. Conde, Field dependence of the magnetocaloric effect in
materials with a second order phase transition: a master curve for the magnetic entropy
change. Appl.Phys. Lett. 89, 222512 (2006)

16. G.F. Wang, Z.R. Zhao, X.F. Zhang, L. Song, O. Tegus, Analysis of the first-order phase
transition of (Mn,Fe)2(P,Si,Ge) using entropy change scaling. J. Phys. D. Appl. Phys. 46,
295001 (2013)

17. E.M. Clements, R. Das, L. Li, P.J. Lampen-Kelley, M.H. Phan, V. Keppens, D. Mandrus,
H. Srikanth, Critical behavior and macroscopic phase diagram of the monoaxial chiral
helimagnet Cr1/3NbS2. Sci. Rep. 7, 12 (2017)

18. B. Uthaman, P. Manju, S. Thomas, D.J. Nagar, K.G. Suresh, M.R. Varma, Observation of short
range ferromagnetic interactions and magnetocaloric effect in cobalt substituted Gd5Si2Ge2.
Phys. Chem. Chem. Phys. 19, 12282 (2017)

19. K.A. Gschneidner, V.K. Pecharsky, Magnetocaloric materials. Ann. Rev. Mater. Sci. 30, 387
(2000)

20. M.E. Wood, W.H. Potter, General-analysis of magnetic refrigeration and its optimization
using a new concept—maximization of refrigerant capacity. Cryogenics 25, 667 (1985)

21. V. Provenzano, A.J. Shapiro, R.D. Shull, Reduction of hysteresis losses in the magnetic
refrigerant Gd5Ge2Si2 by the addition of iron. Nature 429, 853 (2004)

22. E. Bruck, H. Yibole, L. Zhang, A universal metric for ferroic energy materials. Philos. Trans.
Royal Soc. A: Math. Phys. Eng. Sci. 374, 20150303 (2016)

23. L.D. Griffith, Y. Mudryk, J. Slaughter, V.K. Pecharsky, Material-based figure of merit for
caloric materials. J. Appl. Phys. 123, 034902 (2018)

24. J.Y. Law, L.M. Moreno-Ramírez, J.S. Blázquez, V. Franco, A. Conde, Gd+GdZn biphasic
magnetic composites synthesized in a single preparation step: increasing refrigerant capacity
without decreasing magnetic entropy change. J. Alloys Compd. 675, 244 (2016)

25. L. Tocado, E. Palacios, R. Burriel, Entropy determinations and magnetocaloric parameters in
systems with first-order transitions: study of MnAs. J. Appl. Phys. 105, 093918 (2009)

26. A.M.G. Carvalho, A.A. Coelho, P.J. von Ranke, C.S. Alves, The isothermal variation of the
entropy (�ST) may be miscalculated from magnetization isotherms in some cases: MnAs and
Gd5Ge2Si2 compounds as examples. J. Alloys Compd. 509, 3452 (2011)

27. B. Kaeswurm, V. Franco, K.P. Skokov, O. Gutfleisch, Assessment of the magnetocaloric effect
in La,Pr(Fe,Si) under cycling. J. Magn. Magn. Mater. 406, 259 (2016)

28. V. Franco, (Lake Shore Cryotronics, https://www.lakeshore.com/products/product-detail/
8600-series-vsm/mce-analysis-software, 2014)

29. J.D. Moore, K. Morrison, K.G. Sandeman, M. Katter, L.F. Cohen, Reducing extrinsic
hysteresis in first-order La(Fe,Co,Si)(13) magnetocaloric systems. Appl. Phys. Lett. 95,
252504 (2009)

30. B.R. Hansen, C.R.H. Bahl, L.T. Kuhn, A. Smith, K.A. Gschneidner, V.K. Pecharsky,
Consequences of the magnetocaloric effect on magnetometry measurements. J. Appl. Phys.
108, 043923 (2010)

31. C. Romero-Muniz, J.J. Ipus, J.S. Blazquez, V. Franco, A. Conde, Influence of the demagne-
tizing factor on the magnetocaloric effect: Critical scaling and numerical simulations. Appl.
Phys. Lett. 104, 252405 (2014)

32. R. Caballero-Flores, V. Franco, A. Conde, L.F. Kiss, Influence of the demagnetizing field on
the determination of the magnetocaloric effect from magnetization curves. J. Appl. Phys. 105,
07A919 (2009)

33. D.X. Chen, E. Pardo, A. Sanchez, Demagnetizing factors for rectangular prisms. IEEE Trans.
Magn. 41, 2077 (2005)

https://www.lakeshore.com/products/product-detail/8600-series-vsm/mce-analysis-software


Magnetocaloric Characterization of Materials 723

34. D.X. Chen, J.A. Brug, R.B. Goldfarb, Demagnetizing factors for cylinders. IEEE Trans.
Magn. 27, 3601 (1991)

35. M. Le Floc’h, J.L. Mattei, P. Laurent, O. Minot, A.M. Konn, A physical model for
heterogeneous magnetic materials. J. Magn. Magn. Mater. 2191, 140–144 (1995)

36. R. Bjørk, Z. Zhou, The demagnetization factor for randomly packed spheroidal particles. J.
Magn. Magn. Mater. 476, 417 (2019)

37. V.K. Pecharsky, K.A. Gschneidner, Heat capacity near first order phase transitions and the
magnetocaloric effect: An analysis of the errors, and a case study of Gd5(Si2Ge2) and Dy. J.
Appl. Phys. 86, 6315 (1999)

38. V.K. Pecharsky, J.O. Moorman, K.A. Gschneidner, A 3–350 K fast automatic small sample
calorimeter. Rev. Sci. Instrum. 68, 4196 (1997)

39. T. Plackowski, Y.X. Wang, A. Junod, Specific heat and magnetocaloric effect measurements
using commercial heat-flow sensors. Rev. Sci. Instrum. 73, 2755 (2002)

40. S. Jeppesen, S. Linderoth, N. Pryds, L.T. Kuhn, J.B. Jensen, Indirect measurement of the
magnetocaloric effect using a novel differential scanning calorimeter with magnetic field.
Rev. Sci. Instrum. 79, 083901 (2008)

41. J. Marcos, F. Casanova, X. Batlle, A. Labarta, A. Planes, L. Manosa, A high-sensitivity
differential scanning calorimeter with magnetic field for magnetostructural transitions. Rev.
Sci. Instrum. 74, 4768 (2003)

42. J.C. Lashley, M.F. Hundley, A. Migliori, J.L. Sarrao, P.G. Pagliuso, T.W. Darling, M.
Jaime, J.C. Cooley, W.L. Hults, L. Morales, D.J. Thoma, J.L. Smith, J. Boerio-Goates, B.F.
Woodfield, G.R. Stewart, R.A. Fisher, N.E. Phillips, Critical examination of heat capacity
measurements made on a quantum design physical property measurement system. Cryogenics
43, 369 (2003)

43. V.K. Pecharsky, K.A. Gschneidner, Magnetocaloric effect from indirect measurements:
magnetization and heat capacity. J. Appl. Phys. 86, 565 (1999)

44. L.M. Moreno-Ramírez, J.S. Blázquez, J.Y. Law, V. Franco, A. Conde, Optimal temperature
range for determining magnetocaloric magnitudes from heat capacity. J. Phys. D. Appl. Phys.
49, 495001 (2016)

45. L.M. Moreno-Ramírez, V. Franco, A. Conde, H. Neves Bez, Y. Mudryk, V.K. Pecharsky,
Influence of the starting temperature of calorimetric measurements on the accuracy of
determined magnetocaloric effect. J. Magn. Magn. Mater. 457, 64 (2018)

46. Y. Miyoshi, K. Morrison, J.D. Moore, A.D. Caplin, L.F. Cohen, Heat capacity and latent heat
measurements of CoMnSi using a microcalorimeter. Rev. Sci. Instrum. 79, 074901 (2008)

47. J.Y. Law, V. Franco, R.V. Ramanujan, Direct magnetocaloric measurements of Fe-B-Cr-X (X
= La, Ce) amorphous ribbons. J. Appl. Physi. 110, 023907 (2011)

48. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and its Applications (Institute of
Physics Publishing, Bristol, 2003)

49. V. Franco, A. Conde, J.M. Romero-Enrique, Y.I. Spichkin, V.I. Zverev, A.M. Tishin, Field
dependence of the adiabatic temperature change in second order phase transition materials:
application to Gd. J. Appl. Phys. 106, 103911 (2009)

50. C. Romero-Torralva, C. Mayer, V. Franco, A. Conde, Dynamic effects in the characterization
of the magnetocaloric effect of LaFeSi-type alloys. In: 2015 IEEE Magnetics Conference
(INTERMAG) (2015), p. 1

51. T. Gottschall, K.P. Skokov, F. Scheibel, M. Acet, M.G. Zavareh, Y. Skourski, J. Wosnitza, M.
Farle, O. Gutfleisch, Dynamical effects of the martensitic transition in magnetocaloric heusler
alloys from direct delta T-ad measurements under different magnetic-field-sweep rates. Phys.
Rev. Appl. 5, 024013 (2016)

52. A.M. Aliev, A.B. Batdalov, V.S. Kalitka, Magnetocaloric properties of manganites in
alternating magnetic fields. JETP Lett. 90, 663 (2010)

53. Y. Kohama, C. Marcenat, T. Klein, M. Jaime, AC measurement of heat capacity and
magnetocaloric effect for pulsed magnetic fields. Rev. Sci. Instrum. 81, 104902 (2010)



724 V. Franco

54. T. Kihara, Y. Kohama, Y. Hashimoto, S. Katsumoto, M. Tokunaga, Adiabatic measurements
of magneto-caloric effects in pulsed high magnetic fields up to 55 T. Rev. Sci. Instrum. 84,
074901 (2013)

55. F. Cugini, G. Porcari, C. Viappiani, L. Caron, A.O. dos Santos, L.P. Cardoso, E.C. Passamani,
J.R.C. Proveti, S. Gama, E. Bruck, M. Solzi, Millisecond direct measurement of the
magnetocaloric effect of a Fe2P-based compound by the mirage effect. Appl. Phys. Lett. 108,
012407 (2016)

56. F. Cugini, G. Porcari, M. Solzi, Non-contact direct measurement of the magnetocaloric effect
in thin samples. Rev. Sci. Instrum. 85, 074902 (2014)

57. J. Döntgen, J. Rudolph, T. Gottschall, O. Gutfleisch, S. Salomon, A. Ludwig, D. Hägele,
Temperature dependent low-field measurements of the magnetocaloric �T with sub-mK
resolution in small volume and thin film samples. Appl. Phys. Lett. 106, 032408 (2015)

58. Y. Hirayama, R. Iguchi, X.-F. Miao, K. Hono, K.-I. Uchida, High-throughput direct measure-
ment of magnetocaloric effect based on lock-in thermography technique. Appl. Phys. Lett.
111, 163901 (2017)

59. K. Wang, Y. Ouyang, Y. Shen, Y. Zhang, M. Zhang, J. Liu, High-throughput characterization
of the adiabatic temperature change for magnetocaloric materials. J. Mater. Sci. 56, 2332
(2020)

60. L.M. Moreno-Ramírez, A. Delgado-Matarín, J.Y. Law, V. Franco, A. Conde, A.K. Giri, Influ-
ence of thermal and magnetic history on direct �Tad measurements of Ni49+xMn36−xIn15
Heusler alloys. Metals 9, 1144 (2019)

61. F. Casanova, A. Labarta, X. Batlle, F.J. Perez-Reche, E. Vives, L. Manosa, A. Planes,
Direct observation of the magnetic-field-induced entropy change in Gd5(SixGe1-x)4 giant
magnetocaloric alloys. Appl. Phys. Lett. 86, 262504 (2005)

62. V. Basso, M. Kupferling, C.P. Sasso, L. Giudici, A Peltier cell calorimeter for the direct
measurement of the isothermal entropy change in magnetic materials. Rev. Sci. Instrum. 79,
063907 (2008)

63. K.K. Nielsen, H.N. Bez, L. von Moos, R. Bjork, D. Eriksen, C.R.H. Bahl, Direct measure-
ments of the magnetic entropy change. Rev. Sci. Instrum. 86, 103903 (2015)

64. V. Basso, C.P. Sasso, M. Kupferling, A Peltier cells differential calorimeter with kinetic
correction for the measurement cp(H, T) and �s(H, T) s(H, T) of magnetocaloric materials.
Rev. Sci. Instrum. 81, 113904 (2010)

65. D.Y. Karpenkov, A.Y. Karpenkov, K.P. Skokov, I.A. Radulov, M. Zheleznyi, T. Faske,
O. Gutfleisch, Pressure dependence of magnetic properties in La(Fe,Si)13: multistimulus
responsiveness of caloric effects by modeling and experiment. Phys. Rev. Appl. 13, 034014
(2020)

66. K.P. Belov, L. Cherniko, S.A. Nikitin, V.V. Tikhonov, E. Talalaev, T. Kudryavt, V. Ivanovsk,
Determination of exchange interaction of sublattices in gadolinium iron-Garnet on basis of
magnetocaloric effect. Sov. Phys. JETP-USSR 34, 588 (1972)

67. K.P. Belov, E.V. Talalayeva, L.A. Chernikova, T.I. Ivanova, V.I. Ivanovsky, G.V. Kazakov,
Observation of spin reorientation based on measurements of magnetocaloric effect. Zhurnal
Eksperimentalnoi I Teoreticheskoi Fiziki 72, 586 (1977)

68. H.E. Stanley, Scaling, universality, and renormalization: three pillars of modern critical
phenomena. Rev. Mod. Phys. 71, S358 (1999)

69. V. Franco, A. Conde, Scaling laws for the magnetocaloric effect in second order phase
transitions: from physics to applications for the characterization of materials. Int. J. Refrig.-
Rev. Int. Du Froid 33, 465 (2010)

70. V. Franco, A. Conde, V. Provenzano, R.D. Shull, Scaling analysis of the magnetocaloric effect
in Gd5Si2Ge1.9X0.1 (X=Al, Cu, Ga, Mn, Fe, Co). J. Magn. Magn. Mater. 322, 218 (2010)

71. V. Franco, A. Conde, V.K. Pecharsky, K.A. Gschneidner, Field dependence of the magne-
tocaloric effect in Gd and (Er1−xDyx)Al2 : Does a universal curve exist? Europhy. Lett. (EPL)
79, 47009 (2007)

72. J.S. Kouvel, M.E. Fisher, Detailed magnetic behavior of nickel near its curie point. Phys. Rev.
A: Gen. Phys. 136, 1626 (1964)



Magnetocaloric Characterization of Materials 725

73. M. Sanchez-Perez, L.M. Moreno-Ramirez, V. Franco, A. Conde, M. Marsilius, G. Herzer,
Influence of nanocrystallization on the magnetocaloric properties of Ni-based amorphous
alloys: determination of critical exponents in multiphase systems. J. Alloys Compd. 686, 717
(2016)

74. V. Franco, C.F. Conde, J.S. Blazquez, A. Conde, P. Svec, D. Janickovic, L.F. Kiss, A constant
magnetocaloric response in FeMoCuB amorphous alloys with different Fe/B ratios. J. Appl.
Phys. 101, 093903 (2007)

75. V. Franco, A. Conde, J.M. Romero-Enrique, J.S. Blazquez, A universal curve for the
magnetocaloric effect: an analysis based on scaling relations. J. Phys.-Condens. Matter 20,
285207 (2008)

76. A. Smith, K.K. Nielsen, C.R.H. Bahl, Scaling and universality in magnetocaloric materials.
Phys. Rev. B 90, 104422 (2014)

77. C. Romero-Muñiz, R. Tamura, S. Tanaka, V. Franco, Applicability of scaling behavior and
power laws in the analysis of the magnetocaloric effect in second-order phase transition
materials. Phys. Rev. B 94, 134401 (2016)

78. P. Alvarez, P. Gorria, J.L.S. Llamazares, M.J. Perez, V. Franco, M. Reiffers, J. Kovac,
I. Puente-Orench, J.A. Blanco, Magneto-caloric effect in the pseudo-binary intermetallic
YPrFe17 compound. Mater. Chem. and Phys. 131, 18 (2011)

79. J.Y. Fan, L. Pi, L. Zhang, W. Tong, L.S. Ling, B. Hong, Y.G. Shi, W.C. Zhang, D. Lu, Y.H.
Zhang, Investigation of critical behavior in Pr0.55Sr0.45MnO3 by using the field dependence
of magnetic entropy change. Appl. Phys. Lett. 98, 072508 (2011)

80. R.W. Li, C.J. Zhang, Y.H. Zhang, Study of magnetic entropy and ESR in ferromagnet
CuCr2Te4. J. Magn. Magn. Mater. 324, 3133 (2012)

81. X.C. Zhong, J.X. Min, Z.G. Zheng, Z.W. Liu, D.C. Zeng, Critical behavior and magne-
tocaloric effect of Gd65Mn35-xGex (x=0, 5, and 10) melt-spun ribbons. J. Appl. Phys. 112,
033903 (2012)

82. J.C. Debnath, P. Shamba, A.M. Strydom, J.L. Wang, S.X. Dou, Investigation of the critical
behavior in Mn0.94Nb0.06CoGe alloy by using the field dependence of magnetic entropy
change. J. Appl. Phys. 113, 093902 (2013)

83. R. Pelka, P. Konieczny, M. Fitta, M. Czapla, P.M. Zielinski, M. Balanda, T. Wasiutynski, Y.
Miyazaki, A. Inaba, D. Pinkowicz, B. Sieklucka, Magnetic systems at criticality: different
signatures of scaling. Acta Phys. Polonica A 124, 977 (2013)

84. S.K. Giri, P. Dasgupta, A. Poddar, T.K. Nath, Large magnetocaloric effect and critical
behavior in Sm0.09Ca0.91MnO3 electron-doped nanomanganite. Epl 105, 47007 (2014)

85. D.D. Belyea, M.S. Lucas, E. Michel, J. Horwath, C.W. Miller, Tunable magnetocaloric effect
in transition metal alloys. Sci. Rep. 5, 15755 (2015)

86. S. Mahjoub, M. Baazaoui, R. M’Nassri, N.C. Boudjada, M. Oumezzine, Critical behavior and
the universal curve for magnetocaloric effect in Pr0.6Ca0.1Sr0.3Mn1-xFexO3 (x=0, 0.05 and
0.075) manganites. J. Alloys Compd. 633, 207 (2015)

87. R.W. Li, P. Kumar, R. Mahendiran, Critical behavior in polycrystalline La0.7Sr0.3CoO3 from
bulk magnetization study. J. Alloys Compd. 659, 203 (2016)

88. B. Sattibabu, A.K. Bhatnagar, K. Vinod, S. Rayaprol, A. Mani, V. Siruguri, D. Das, Studies
on the magnetoelastic and magnetocaloric properties of Yb1-xMgxMnO3 using neutron
diffraction and magnetization measurements. RSC Adv. 6, 48636 (2016)

89. H. Han, L. Zhang, X.D. Zhu, H.F. Du, M. Ge, L.S. Ling, L. Pi, C.J. Zhang, Y.H. Zhang,
Critical phenomenon in the itinerant ferromagnet Cr11Ge19 studied by scaling of the magnetic
entropy change. J. Alloys Compd. 693, 389 (2017)

90. V. Franco, R. Caballero-Flores, A. Conde, Q.Y. Dong, H.W. Zhang, The influence of a
minority magnetic phase on the field dependence of the magnetocaloric effect. J. Magn. Magn.
Mater. 321, 1115 (2009)

91. J.Y. Law, V. Franco, R.V. Ramanujan, The magnetocaloric effect of partially crystalline Fe–
B–Cr–Gd alloys. J. Appl. Phys. 111, 113919 (2012)



726 V. Franco

92. L.M. Moreno-Ramirez, J.J. Ipus, V. Franco, J.S. Blazquez, A. Conde, Analysis of magne-
tocaloric effect of ball milled amorphous alloys: demagnetizing factor and Curie temperature
distribution. J. Alloys Compd. 622, 606 (2015)
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Magnetostrictive Materials

Alfredo García-Arribas

Abstract Ferromagnetic materials present an intrinsic coupling between their
magnetic and elastic properties. Magnetostriction is the direct manifestation of this
effect by which a material deforms upon magnetization. The inverse phenomenon,
i.e., magnetoelasticity, produces a change in the magnetic state when the material
is deformed. The inherent fundamental interest of this coupling and the obvious
opportunity for applications has motivated an intense research activity on the
subject that has not decayed over nearly 180 years. In this chapter, the basic
concepts regarding magnetostriction and magnetoelastic phenomena are first briefly
introduced, together with a description of the most performing materials. After
that, the main part of the chapter is devoted to review the experimental methods
usually employed to characterize the magnetostriction of materials, with a section
dedicated to the particular case of materials in the form of thin films. To finalize, a
concise overview of applications is presented, in which the principles and strategies
that configure sensor and actuator devices are briefly discussed, including a short
accounting of opportunities in energy harvesting.
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1 Introduction

Basic Concepts and Definitions

Magnetostriction

When a magnetic material is magnetized by the effect of an applied field, its
dimensions change, a phenomenon that is known as magnetostriction. The effect
was discovered by J. P. Joule in 1842 who observed a slight increase in the length
of an iron rod when it was magnetized along its length [1]. The magnetostriction
is quantified as a strain, that is, a dimensionless relative change of length, and it is
usually denoted by λ:

λ = �l

l
. (1)

The largest value of the strain is reached when the specimen is magnetically
saturated. This value λs is called saturation magnetostriction coefficient, being a
characteristic parameter of the nature of the material. Magnetostriction is usually
small, producing strains of some parts per million (ppm). To get an approximate
idea, it can be compared to thermal expansion. In a typical material, the strain caused
by magnetostriction is comparable with the deformation produced by one-degree
temperature change. Despite its small magnitude, the magnetostrictive effect has
important consequences, in the form of applications, as the generation of acoustic
waves (first sonar devices developed during World War I were made from nickel),
or in the form of undesired effects, as the vibrations that produce the rumbling noise
of electrical transformers.

Magnetostriction can be positive or negative, that is, a magnetic field applied in a
given direction can produce either an increase or a decrease in length, respectively.
This is a reflection of its microscopic physical origin, which relies in the spin-
orbit coupling and makes that the overall macroscopic strain depends on the
crystal symmetry. At this point, we must recall that the field-induced phenomenon
described so far, occurring upon magnetization, is strictly known as linear mag-
netostriction. The complete phenomenology includes the volume magnetostriction
caused spontaneously by the magnetic order (below Curie temperature) and the
forced magnetostriction, evidenced at large fields beyond the magnetic saturation
(in the so-called paraprocess). The latter two are of limited interest for applications
(except for the case of invar alloys which show compensation between thermal
expansion and spontaneous magnetostriction that maintains their volume unchanged
with temperature). We will limit ourselves to the most basic phenomena related to
linear magnetostriction (which we will call in the following only magnetostriction).

The magnetostriction occurring during magnetization is mostly caused by the
rotation of the magnetization, since magnetization reversal within domains doesn’t
produce magnetostrictive deformation. The value of the saturation magnetostriction
in single crystals depends on the direction in which the field is applied with respect
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to the crystal axes. In polycrystalline samples, provided that the grain orientation is
random, the saturation magnetostriction coefficient can be determined by averaging.
In these cases, and in isotropic materials, the magnetostrictive strain is completely
determined by the saturation magnetostriction coefficient λs. The deformation of the
specimen in a given direction can be quantified as

λ = 3

2
λs

(
cos2θ − 1

3

)
. (2)

where θ is the angle that forms the magnetization with the direction in which the
strain is measured.

Magnetoelastic Effects

The magnetostriction reveals the existence of a coupling between the elastic and
magnetic properties of magnetic materials. The coupling is two-way and causes
that, if a mechanical stress is applied to a magnetostrictive material, the magnetic
configuration is concomitantly altered. For instance, in a material with a positive
magnetostriction, that is, which elongates when magnetized, an applied tensile stress
will increase the magnetization, and a compressive stress will decrease it, even if no
magnetic field is applied. This magnetoelastic phenomenon is also known as inverse
magnetostriction or Villari effect. There are other effects related to magnetostriction
that couple torsion with magnetism. The Wiedemann effect describes the torsion
generated by a helicoidal magnetic field: a magnetic wire gets twisted under
the combination of a longitudinal magnetic field and the circular magnetic field
generated by a current flowing through it. The inverse effect, known as Matteucci
effect, accounts for the change in magnetization produced by an applied mechanical
torque. All the above effects are often reunited in what are called magnetoelastic
effects.

�E Effect

The magnetostriction and, in general, the magnetoelastic coupling have a relevant
consequence in the way that magnetic materials respond to an applied stress: in
a non-magnetostrictive material, the relation between the applied stress σ and the
produced strain ε is given by the Young modulus E = σ /ε. In a magnetostrictive
material, an applied stress causes a rotation of the magnetization that produces
an additional strain. If, for instance, σ > 0 (tensile stress), this additional strain is
always positive independently of the sign of the magnetostriction coefficient since,
if λs is positive, the magnetization will rotate toward the direction of the stress,
and the sample gets longer, and, if λs is negative, the magnetization will rotate
away for the direction of stress, and the sample gets longer as well. Therefore, in
a magnetrostrictive material, depending on the magnetic state of the material, i.e.,
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on the values of the applied stress and magnetic field, the Young modulus can be
significantly reduced. This is known as the ΔE effect.

Magnetoelastic Waves and Resonance

A strain perturbation can propagate as a sound wave through a material. If the
material is magnetostrictive, the strain wave is intimately coupled to a magnetization
one. These traveling magnetoelastic waves can be excited (and detected) either by
mechanical or magnetic means. In the latter case, the waves can be generated in
one end of the material by a coil fed with an alternating current, while the detection
can be performed at the other end by the voltage induced in a search coil. If the
wavelength of the magnetoelastic waves is congruent with the dimensions of the
sample, stationary waves are developed that produces the magnetoelastic resonance.
For instance, in a magnetostrictive sample of length L, with density ρ and Young’s
modulus E, allowed to oscillate freely (unclamped at both ends), the resonance
frequency, corresponding to the first mode of oscillation, is given by

fr = 1

2L

√
E

ρ
. (3)

Interestingly, because of the ΔE effect described in the previous paragraph, the
resonance frequency for a given sample can be tuned by modifying its magnetic
state, that is, by applying a suitable bias field.

This extremely concise account of the phenomenology related to magnetostric-
tion and magnetoelastic coupling summarizes the knowledge on the subject, which
is quite old and well established at the moment. Much more detailed information
can be found, for instance, in the early review of Lee [2]. The excellent books on
general Magnetism as Cullity [3], Chikazumi [4], and Coey [5] contain more or less
extensive content on magnetostriction. A very detailed treatise on all aspects of the
subject is the book by Tremolet de Laicheserie [6].

Magnetostrictive Materials

All magnetically ordered materials experience magnetostriction. The materials
relevant for applications are those in which the effect is either very large or nearly
vanishing, together with those materials that combine a significant magnetostrictive
effect with other interesting features as good mechanical properties.

Pure 3d metals in polycrystalline form present saturation magnetostriction
coefficients of: λs = −7 × 10−6 (Fe), −62 × 10−6 (Co), and −34 × 10−6

(Ni) [7]. Their alloys display quite different values depending on composition [8].
For instance, in Fe50Ni50, λs = 28 × 10−6 [9], whereas Fe19Ni81 presents null
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magnetostriction which contributes to their exceptionally soft magnetic behavior.
Electrical Fe–Si steel (~3% at. Si) has a magnetostriction of about 20 ppm [10]
(responsible of transformer’s humming). Iron-rich cobalt-aluminum alloys (Alcofer)
present magnetostriction coefficients above 40 ppm [11].

Especially important for magnetoelastic applications are the amorphous alloys,
also known as metallic glasses. Typically, they are composed of about 70–80 at.%
transition metals with up to 30% metalloids (Si, B, P, etc.) and fabricated in the
form of ribbons by rapid quenching from the melt, which preserves the topological
and chemical disorder of the liquid in the solid state [12]. The lack of crystallinity
confers them excellent magnetic and mechanical properties that can even be
upgraded by suitable thermal treatments under an applied magnetic field and/or
stress [13]. Commercial brands are Metglas (a company of Hitachi Metals America)
and Vitrovac (from Vacuumschmelze, Germany). Just to give an example of the
variety of existing materials, Metglas 2615 (Fe80P16C3B1) presents a quite large
magnetostriction of λs = 29 × 10−6 and Vitrovac 6025 [Co66Fe4(MoSiB)30] a very
low one: λs = 5 × 10−7.

Piezomagnetic ferrites constitute another family of magnetic materials with
good magnetoelastic properties. Ferroxcube and Kearfoot present saturation mag-
netostriction coefficients in the range of −26 to −30 ppm [14].

Rare Earth elements such as Td and Dy present extraordinarily large magne-
tostriction values at low temperatures and high magnetic fields [15]. Alloyed with
Fe constitute terfenol-D, with composition TbxDy1−xFe2 (x ~ 0.3), which can attain
strains up to 2 × 103 ppm in relatively small fields (few kOe) [16, 17]. This material
commands the so-called giant magnetostriction materials that includes galfenol
Fe1−xGax that reach values of 265 ppm for x = 0.19 [18] and alfenol (FexAl1−x), up
to 184 ppm for x = 0.185 [19]. The search for good magnetostrictive materials has
extended to other compositions [19] and remains active nowadays [20].

2 Magnetostriction Measurement Techniques

There are two main different strategies for determining the magnetostriction of
materials. The first one consists in a direct measurement of the magnetostrictive
strain. The second implies an indirect determination of the magnetostriction coeffi-
cient from the influence of the magnetoelastic coupling on the magnetic behavior
of the material. Devices and procedures based on both types of approaches are
briefly described below, but it is worth pointing out that only direct evaluation
methods are capable of measuring the absolute value of the strain produced
by the magnetostriction, which is certainly necessary for the assessment of the
actual actuation capabilities of the materials. Thin film materials present unique
measurement hurdles due to the influence of the substrate, and a brief subsection is
dedicated to them at the end of this section.
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Direct Measurements

Strain Gauges

The determination of stresses using strain gauges is a well-developed technique
widely used in mechanical analysis of materials and structures. A strain gauge is
a resistive sensor commonly composed by a metallic thin film meander deposited
onto a plastic substrate (Fig. 1a), which is glued on the surface of the object whose
deformation is to be measured. The deformation of the gauge conductor produces a
change in its resistance R that is proportional to the strain ε: �R/R = Kε, being K the
gauge factor. The gauge factor, that is, the sensitivity of the gauge, is determined by
both the change in dimensions of the conductor and the resistivity change caused by
the deformation [21]. Typically, metallic strain gauges are made of constantan (Cu–
Ni), Karman (Cu–Ni–Al–Fe) or isoelastic (Fe–Ni–Cr) alloys, displaying a gauge
factor of about K = 2. Therefore, for typical deformations, the relative resistance
variation of the gauge is very small. Semiconductor gauges present a larger but
nonlinear sensitivity (K ~ 200) and a lower measuring range.

This method was early used to determine magnetostriction on single crystals
[22, 23]. The main limitation of using gauges is that the sample must be large
enough (mostly thick enough, provided that its lateral dimensions are larger than
the gauge) so the presence of the gauge doesn’t hinder the magnetostrictive
strain. Additionally, a serious source of error of this method is the sensitivity
of the resistance of the gauge to temperature variations and, most important in
magnetostriction measurements, the contribution of the intrinsic magnetoresistance
of the material composing the gauges [24]. The two abovementioned shortcomings,
i.e., the small magnitude of the gauge resistance variation due to the deformation
and the undesired contributions of temperature and magnetoresistance, are largely
mitigated by the use of a Wheatstone bridge (Fig. 1b). It consists in two confronted
voltage dividers conceived to suppress the contribution of the common value of
the resistance and produce an output proportional to resistance differences. Let’s
denote x = Kε the contribution of magnetostriction and y the relative resistance

!

Fig. 1 (a) Photograph of a strain gauge. (b) Wheatstone bridge connection of the active and
dummy gauges in consecutive branches. Common resistors R complete the bridge. The output
Vo ∝ x, is compensated from undesired effects. (c) Representation of an active strain gauge glued to
a magnetostrictive specimen and a dummy gauge on a non-magnetostrictive sample, experiencing
the same environment, for compensation



Magnetostrictive Materials 733

Fig. 2 Schematic representation of (a) capacitive dilatometer to measure magnetostriction
(adapted from Refs. [27, 30]; (b) tunneling tip dilatometer (adapted form Ref. [31]

variation produced by the undesired effects. The gauge glued to the specimen under
test would produce a resistance variation �R/R = x + y. An additional “dummy”
gage can be used, which is submitted to the same temperature and magnetic
field than the “active” gauge but glued onto a non-magnetostrictive material, so
�R/R = y (Fig. 1c). It is easy to confirm that, when the gauges are connected in
consecutive branches of the Wheatstone bridge, the voltage output is proportional
to the difference of the resistance variations between the two gauges (Vo ∝ x), thus
compensating the undesired effects.

The strain gauge method is routinely used to measure magnetostriction in mate-
rials and can be integrated in compact systems for high field and low temperature
measurements [25].

Capacitive Bridges

Capacitive dilatometers are customarily used to measure thermal expansion [26].
Basically, the strain to be measured displaces one of the capacitor plates, producing
a variation in capacitance that is detected through the variations in the resonance
frequency in a LC circuit. The construction of the capacitance cell normally
follows a three terminal configuration in which the grounded third terminal assures
electrostatic shielding and provides thermal stability (Fig. 2a). Different, improved
versions of capacitance bridges have been used to measure magnetostriction in a
wide range of temperatures and materials [27–29]. Using a cantilever configuration,
the method can be extended to measure magnetostriction in thin films [30].

Tunneling and Atomic Force Tip Measurements

The magnetostriction of a conductive material can be quite precisely determined by
the tunneling current from a proximity tip, as described by Brizzolara [31]. Figure
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Fig. 3 (a) Simplified scheme of the optical lever used in Ref. [34]. (b) Fiber-optic method
described in Ref. [35]. (c) Principle used in Ref. [36]

2b schematizes the procedure, where a feedback mechanism maintains constant
the distance between the tip and the magnetostrictively strained sample, using a
piezoelectric actuator. Strains of 10−9 can be discriminated.

In a much smaller scale, an atomic force microscope (AFM) has been used to
observe the magnetostriction of individual galfenol-based nanowires 150 nm in
diameter [32]. The sophisticated procedure involves welding both ends of the wire
by electron beam deposition to an AFM reference grid. The magnetic field applied
along the wire produces a magnetostrictive elongation, causing a bending that is
measurable through the AFM and can be used to estimate the magnetostriction,
with a value of 40 ppm in that particular case.

Although the above methods measure macroscopic magnetostriction, scanning
probes are well suited for local measurements. For instance, AFM tips in contact
mode have been used to determine the local magnetostriction response of Cobalt
thin films [33].

Optical and Interferometric Methods

Different optical methods for a direct measurement of the magnetostrictive strain
have been developed, with increasing degree of sophistication as the technology
advanced, providing a considerable resolution in all cases. Early systems used
optical levers, in which the deformation of the specimen produced a change in the
reflection angle of an optical beam. For instance, McKeehan and Cioffi [34], using
a clever setup combining a mechanical lever, an optical lever and a system of slits
(Fig. 3a), were capable of determining strains of 2 × 10−9 in permalloy wires.
The advent of fiber-optic dilatometers allowed for simplified measuring systems,
benefiting from the inexistence of physical contact between the sample and the
probe. Squire and Gibbs [35] proposed a system adapted for samples in the form
of ribbons in which the sample acts as a shutter for the light transmitted through
a small gap between the fibers (Fig. 3b). This is a very convenient method since it
minimizes the load on the measured sample, which is attached by one end but free
to move on the other, with no additional element attached to it. The method was
probed capable of determining magnetostriction coefficients of 10−8. Samata and
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co-workers [36] optimized a fiber-optic dilatometer working in reflection mode in
which the magnetrostriction is determined by the ratio of the incident and reflected
light (Fig. 3c), a configuration that was later improved using a single fiber and an
annular photodiode for detection [37].

Interferometric measurement methods were introduced by Kwaaitaal [38] and
later by Kakuno and Gondó [39], who adapted a Michelson-type interferometer,
devised for vibration measurements, to the determination of magnetostrictive
displacements with a resolution of 1 nm. Many other configurations have been
proposed since then: Doppler interferometry [40], Mach-Zehnder [41], and even
the more exotic Speckle interferometry [42].

It is to be noted that magnetostrictive-mediated fiber-optic strain sensing has
become a very sensitive procedure to measure small magnetic fields. The principle
was demonstrated in 1983 [43] and improved using fiber Bragg grating (FBG)
strained by terfenol-D [44]. These techniques are reviewed in Ref. [45].

Indirect Measurements

The methods described here make use of the Villari effect, also called inverse
magnetostriction, which account for the influence of stress on the magnetic behavior
of materials. To best describe the principle of the methods, let’s consider the simple
situation of a magnetic sample with a uniaxial anisotropy K as represented in
Fig. 4a. If a magnetic field H is applied perpendicularly to the easy axis, the
equilibrium angle θ of the magnetization will be the one that minimizes the sum
of the magnetostatic energy Em = − μ0HMs cos θ and the anisotropy energy
Ea = Kcos2θ , where Ms is the saturation magnetization. The net magnetization
measured in the direction of the field will be M = Ms cos θ , giving.

M = 1

2

μ0M
2
s

K
H (σ = 0) . (4)

Fig. 4 (a) Magnetostrictive sample subjected to a tensile stress σ and a magnetic field H. The
sample presents a uniaxial transverse anisotropy K. The equilibrium magnetization makes an
angle θ . (b) Change in the magnetization curve with increasing tensile stresses for positive
magnetostriction. (c) Same for negative magnetostriction
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In this case, the magnetization curve is linear (see Fig. 4), presenting a constant
susceptibility χ = M/H until the saturation is reached at H = Hk, with the anisotropy
field defined as

Hk = 2K

μ0Ms
. (5)

If a stress σ is applied, a new magnetoelastic energy term must be considered
Eme = − 3

2λsσcos2θ , which can be readily evaluated as the work done by the stress
σ along the deformation given by Eq. (1) when the magnetization is rotated to the
angle θ . The energy minimization process yields

M = 1

2

μ0M
2
s(

K − 3
/

2 λsσ
)H (σ �= 0) . (6)

Comparing to Eq. (4), we see that the stress in a magnetostrictive material creates
a uniaxial magnetoelastic anisotropy

Kσ = 3

2
λsσ (7)

that modifies the permeability of the material. If the magnetostriction of the material
is positive (λs > 0), a tensile stress (σ > 0) produces an easy axis in the direction of
the applied stress. The magnetoelastic anisotropy is then perpendicular to the axis of
the original anisotropy K, so the effective anisotropy in the sample is Keff = K − Kσ .
An increase of the applied tensile stress produces an increase of the permeability, as
schematized in Fig. 4b. If the magnetostriction is negative, a (λs < 0), a tensile
stress, (σ > 0), produces an easy axis perpendicular to the applied stress. The
magnetoelastic anisotropy Kσ adds up to the original K, and the applied tensile
stress produces a decrease of the permeability as depicted in Fig. 4c. If the applied
stress in compressive (σ < 0), the situation reverses, according to the resulting sign
of the product λsσ as expressed in Eq. (6).

The indirect methods for measuring the magnetostriction use the effects of the
magnetoelastic anisotropy created when the sample is stressed to determine the
saturation magnetostriction coefficient λs. Some strategies are briefly described in
the following.

Dependence of Permeability on Stress

The actual shape of the hysteresis loop in a magnetostrictive sample is greatly
modified by the applied stress. Figure 5 clearly illustrates this fact in two amorphous
ribbons with opposite sign of magnetostriction. In a more general way than the one
outlined in the previous paragraph, the effect of stress on ferromagnetic hysteresis
was modeled by Jiles and co-workers [46]. As a tool for measuring magnetostric-



Magnetostrictive Materials 737

Fig. 5 Influence of the applied tensile stress on the hysteresis loop of magnetostrictive amorphous
ribbons 20 μm thick and 2 mm wide. (a) Negative magnetostriction sample. The stress is applied
by hanging a load of 200 g. (b) Sample with positive magnetostriction. The load for applying the
stress is 600 g

tion, hysteresis loops are recorded for different values of the applied stress. λs is
determined from the dependency on the applied stress σ of either the anisotropy
field, the permeability at low field, or the area A enclosed by the magnetization
curve and vertical axis (A = 1/2 μ0MsHk = Keff). To simplify the analysis, the
hysteresis of the magnetization curve can be eliminated by averaging the ascending
and descending branches. These methods were early used to determine the magne-
tostriction of Nickel wires [47] and amorphous ribbons [48]. Since then, the method
has been intense and routinely used, for example, to investigate the origin of the
stress dependence of magnetostriction in amorphous ribbons [49], and it is still
presently in active use [50]. The analysis of the dependence of the anisotropy field
with the applied stress is particularly interesting in amorphous ribbons, where a
distribution of anisotropy and magnetostriction values can exists [51].

Small Angle Magnetization Rotation

This technique, developed by Narita and co-workers [52] in 1980, determines the
saturation magnetostriction through the effect of the magnetoelastic anisotropy on
the amplitude of the oscillation of the magnetization produced by an alternating
magnetic field. The schematic procedure is represented in Fig. 6. A longitudinal dc
magnetic field H0 is applied to magnetically saturate the sample. A small transverse
ac magnetic field h = h0 sin ωt makes the magnetization Ms oscillate about the
equilibrium position. In the presence of an applied stress σ , the total energy is given
by the sum of the magnetostatic energy Em = − μ0H0Ms cos θ − μ0hMs sin θ

and the magnetoelastic energy Eme = − 3
2λsσcos2θ (Narita also considered the

demagnetizing field contribution, which we ignore here). The equilibrium angle is
given by
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Fig. 6 Schematic setup for the small angle magnetization rotation method of measuring the
saturation magnetostriction. A pickup coil receives the voltage induced by the oscillation of the
magnetization produced by a transversal ac magnetic field, while the sample is subjected to a
longitudinal dc magnetic field and an applied stress

sin θ = − h

H0 + 3 λsσ
μ0Ms

. (8)

The longitudinal magnetization is M = Ms cos θ and the voltage induced in a
coil with N turns of section S

V = −NS
dM

dt
= NSMs

(
h0

H0 + 3 λsσ
μ0Ms

)2

ω sin (2ωt) (9)

where cosθ = 1 has been considered since the angle is small.
Therefore, the amplitude of the second harmonic depends on the magnetostric-

tion coefficient. The usual mode of operation consists in adjusting the magnitude
of the longitudinal field in order to maintain the amplitude of the induced voltage
constant under changes of the applied stress. In this case, the magnetostriction
coefficient is obtained from

λs = μ0Ms

3σ
�H0. (10)

The procedure is well adapted to magnetostriction measurements in samples in
the form of strips. It has also been used in wide amorphous ribbons [53] and wires
[54], where this measurement method can benefit from the modification introduced
by Hernando and co-workers [55], consisting in producing the oscillation of the
magnetization by the circumferential field produced by an alternating current flow-
ing through the sample. Another variation of the method was proposed by Kraus,
in which the dc field is applied transversally, instead of longitudinally, effectively
measuring the transverse susceptibility, from which the saturation magnetostriction
was derived [56].
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Ferromagnetic Resonance Methods

Ferromagnetic resonance (FMR) is very sensitive to changes in the effective internal
field and can therefore be used to determine the magnetostriction coefficient through
the shift in the resonance spectra caused by the magnetoelastic anisotropy field

Hk
me = 3

λsσ

μ0Ms
(11)

as derived from Eqs. (5) and (7). A direct measurement of the magnetostriction
coefficient using this method was first proposed by Smith and Jones [57], in a
traditional resonance cavity in which the stress on the sample was produced by
means of a quartz plunger. Alternatively, transmission lines can be used to measure
the changes of FMR, where the stress is applied by bending the sample, which is
particularly useful in thin films [58]. A variation of the method, which has been
named strain-modulated FMR, consists in applying an alternating strain to the
sample by means of a piezoelectric driver and evaluating the frequency shift of
FMR in a resonance cavity with phase sensitive detection [59]. Related with FMR
methods, novel techniques are being proposed in which the study of the dynamics
of the magnetization in time-resolved experiments would allow to determine the
influence of the magnetoelastic effects, for example, after the application of a step-
like stress to the sample [60].

Thin Film Methods

Magnetostrictive materials in the form of thin films are especially interesting
for integration in miniaturized sensors and actuators or, in general, in micro
electromechanical systems or MEMS. As with bulk materials, both direct and
indirect methods have been developed to determine the magnetoelastic coefficients
of thin films. Some of the examples and references described in the previous
paragraphs already dealt with thin film systems. Here, we want to emphasize how
the presence of the substrate onto which the films are deposited conditions the
magnetostriction measurements.

In the direct approach, a cantilever-style system is employed, in which the sample
is usually clamped by one end. When the film strains magnetostrictively, a bending
is produced, as shown in Fig. 7a. If the film is strained λ, the deflection d of the
cantilever and the slope angle φ at a distance l from the clamping point are given by
[61]:

d = 3tfl2

t2s

Ef (1 − νs)

Es (1 − νf)
λ; φ = 2d

l
= 6tfl

t2s

Ef (1 − νs)

Es (1 − νf)
λ (12)
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Fig. 7 Configuration for magnetostriction measurements in thin films. (a) Direct measurements
of the magnetostrictive strain by the deflection of a cantilever. (b) Indirect determination of the
magnetostriction coefficient through the magnetoelastic anisotropy induced by the bending

where tf, ts are the thickness of the film and the substrate, and Ef, Es and νf, νs are
Young’s modulus and Poison’s ratio of the film and substrate, respectively. Equation
(12) evidences that long samples and thin substrates are preferred to maximize the
deflection, but in any case, to determine the magnetostrictive strain of the film, the
elastic constants must be known.

The deflection can be measured by several sensitive methods, either capacitive
[30, 62, 63] or different optical [61, 64, 65] and interferometric [40, 66] strategies.
The deflection of the cantilever has also been measured directly using a nanoin-
dentation apparatus [67] or an atomic force microscope [68]. Nevertheless, it is
also possible to measure directly the magnetostrictive strain without clamping the
sample. For instance, Varghese and co-workers use laser Doppler vibrometry to
determine the deflections of a free sample under an alternating magnetic field [69].

Indirect methods in thin films determine the anisotropy induced magnetoelas-
tically when deforming the substrate film system. The changes in the anisotropy
field Hk

me can be observed in the hysteresis loop of the bent film. In the three-point
bending configuration of Fig. 7b, the stress produced by bending is given by

σ = 3

2

F l

bd2 (13)

being F the applied force, l the distance between the outer supports, and b and d the
width and the thickness of the substrate, respectively. The produced strain ε is.

ε = 1 − vs

Es
σ (14)

where Es and νs are the Young’s modulus and Poison’s ratio of the substrate. Since
the strain is the same in the film and the substrate, Eq. (11) allows calculating the
magnetostriction coefficient from the relation:

λs = μ0Ms

3σ

Es (1 − νf)

Ef (1 − νs)
Hk

me (15)

There are many examples of the application of this method in the literature [70,
71]. It has even been described as a metrology tool for MEMS using whole-wafer
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measurements [72]. Jiles and co-workers provide a comparison of direct and indirect
methods in thin films [73].

To finalize this section, we must remark that the different techniques and
procedures to determine the magnetostriction have been reviewed extensively along
the time. Some of these compilations are the ones of Squire [74], O’Handley [7],
Ekreem [75], and Grossinger [76].

3 Applications

The magnetostrictive effect produces a conversion of electric energy (used to
magnetize the material) to mechanical energy, and in this respect magnetostrictive
materials, especially the giant magnetostriction ones, have been intensively inves-
tigated for developing useful actuators. Conversely, the Villari or magnetoelastic
effect produces an electrical output (derived from magnetization changes) when
a magnetostrictive material is strained under the action of a stress. Thus, suitable
materials, with a predominance of metallic glasses, have been used to develop
sensing devices that take advantage of this effect. Magnetostrictive materials occupy
a distinguished position in the collection of active materials for modern transducer
(sensor and actuator) technologies [77]. Additionally, the electrical output produced
by vibrations transmitted to magnetostrictive materials has motivated the proposal
of magnetostrictive energy harvesters, an area that has gained traction recently
with the develop of magnetoelectric composites constituted by piezoelectric and
magnetostrictive laminates. These three are the main areas of application of the
magnetostrictive effect and will be briefly surveyed in the following.

Magnetostrictive Actuators

Magnetostrictive and piezoelectric actuators share the same ground for applica-
tions. The former promises a higher energy density, increased robustness, and a
potentially interesting noncontact activation. Terfenol-D is the material with the
largest magnetostriction at room temperature (up to 2000 ppm), which makes it the
ideal candidate for actuation. However, its poor workability and brittleness limit
the size and shape of the active elements. Galfenol displays a reduced value of
magnetostriction (~300 ppm) but with improved mechanical properties that makes it
suitable for more flexible designs. Other materials as CoFe-based (Permedur) have
also been used in actuators.

The simplest device configuration is the linear actuator that can be used to
design micropositioners. These can achieve nanometric resolution [78], although
the repeatability and accuracy are greatly compromised by the large hysteresis of
the active materials. This base configuration is also employed for active vibration
control [79]. This application can benefit from self-sensing actuation, which
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exemplifies the bidirectionality of the transducer, since the same magnetostrictive
element can be used to sense the structural vibrations and provide the actuation to
attenuate them [80]. The stroke of magnetostrictive actuators is intrinsically small,
and different strategies are used to produce an amplified actuation from the linear
configuration. This can be achieved mechanically by means of levers and flexible
hinges [81] or hydraulically using pistons of different areas [82].

Another field of actuation for magnetostrictive materials consists on motors
based on the inchworm principle [83], in which, basically, the magnetostrictive
elongation and contraction is used to produce motion by fixing alternatively each
extreme of the material. The clamping can be achieved by piezoelectric actuation
[84], illustrating the possibilities of hybrid systems. A discussion of various
configurations and actuation modes can be found in Ref. [85].

A significant number of diverse applications have been proposed for magne-
tostrictive actuators, including injectors [86], pumps [87], valves [88], alignment of
segmented mirrors for telescopes [89], nondestructive testing [90], and loudspeakers
[91] to cite some.

The mentioned hysteresis and nonlinearity of the response of magnetostric-
tive materials makes that useful applications require a control strategy usually
implemented over a model of the material behavior. The review of Apicella and
co-workers compiles such procedures, together with a very complete introduction
about magnetostrictive actuators [92]. Some commercial devices (although listed as
prototypes at the time of this work) can be found from Cedrat Technologies [93].

Magnetoelastic Sensors

The magnetoelastic phenomena have given rise to the development of a great
number of sensing procedures. Magnetoelastic sensors are often classified as static
or dynamic according to the principle of operation, the latter being related with
the use of magnetoelastic waves and resonance. There are many exhaustive reviews
covering the subject [94–96], so a broad summary will be provided here.

Static sensors make direct use of the changes in permeability produced by the
Villari effect and are therefore conceived to measure strain, stress, or any other
magnitude that can be related to them. From Eq. (6), we can derive the sensitivity
of the permeability (μ = 1 + χ = 1 + M/H) to applied stresses:

dμ

dσ
= 3μ0Ms

(2K − 3λsσ)
2 λs, (16)

that for small stresses becomes

(
dμ

dσ

)
σ→0

= 3χ2
0

μ0M2
s
λs (17)
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with χ0 = μ0M2
s /2K being the susceptibility of the unstressed material (Eq. 4).

Therefore, ideal sensing materials should display large magnetostriction (λs) and
low anisotropy (K).

In this range of applications, magnetoelastic sensors compete with resistive
strain gauges (that were briefly introduced in Sect. 2.1.1), featuring two main
advantages. First, they present greater sensitivity: the gauge factor K = (�R/R)/ε is
about 2 for metallic gauges and few hundreds for semiconductor ones, whereas the
relative change in permeability in a magnetoelastic gauge made of an amorphous
FeSiB alloy can produce a gauge factor G = (�μ/μ)/ε ∼ 4 × 105 [97]. Second,
magnetoelastic detection is inherently contactless, since the permeability changes
can be detected using a pickup coil. This second advantage becomes of paramount
importance in measuring the deformation of rotating shafts, which makes torque
sensors a niche application for magnetoelastic sensors. ABB commercializes dif-
ferent devices based on this technology [98]. The detailed principle of operation
is explained in Ref. [95], but, basically, the torsion created by the torque to be
measured produced magnetoelastic strains in the surface of the shaft that changes
the permeability, either of the shaft material, if it is magnetic as happens in ship
propulsion, or on specialized materials attached to the surface. The permeability
changes are detected differentially by a system of coils, because torsion creates both
compressive and tensile stress in the surface (at 45◦ with the axis of the shaft).

Similar procedures are used in magnetoelastic sensors to measure force and
pressure, which are reviewed in Ref. [99]. Particularly, amorphous ferromagnetic
materials have been used to develop a great number of applications [100, 101].

Dynamic magnetoelastic sensors make use of the propagation of magnetoelastic
waves. A sudden change of the magnetic state at a given point of a magnetostrictive
material generates a stress that propagates as a sound wave through the material.
Conversely, the deformation at each point produced by the wave magnetoelastically
changes the magnetic state, which can be measured inductively by a pickup coil.
The most obvious application of this principle is distance or position sensing, and
sensors under the name of magnetostrictive delay line (MDL) were developed
according to this principle [102]. The compilation of Hristoforou reviews the
fundamentals and applications of MDLs [103]. Position and level sensors based
in this principle are commercialized by MTS [104].

As introduced Magnetoelastic Waves and Resonance, if the frequency of the
excitation is suitably tuned, a magnetoelastic resonance occurs. There are two main
ways of using the magnetoelastic resonance for sensing purposes. One successful
application is in the field of antishoplifting labels [105]. The tag attached to the good
that is to be protected contains a magnetostrictive amorphous strip whose resonance
frequency can be conveniently changed due to the ΔE effect (Eq. 3). This permits an
easy deactivation of the tag and to build a very robust system that avoids false alarms
by detecting the ring-down oscillations of the label after a short pulse activation.
The other type of promising applications based on the magnetoelastic resonance
analyzes the changes in the resonance parameters (frequency and amplitude) in
response to physical parameters that affect the magnetostrictive element, such as
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temperature, pressure or viscosity of the medium, mass of substance deposited onto
it, etc. Grimes and co-workers have performed an extensive work in this regard
[106]. If the surface of the magnetoelastic resonator is conveniently functionalized,
the principle of operation can be extended to the detection of chemical and
biological substances [107].

Energy Harvesting

Small-scale energy harvesting is acquiring increasing importance to power
autonomous systems, such as sensors or IoT (internet of things) devices.
Magnetostrictive materials can harvest energy from mechanical vibrations, being
itself an active research field [108]. Additionally, in association with piezoelectrics,
they provide the possibility of energy harvesting from magnetic fields: the magnetic
field causes a deformation in the magnetostrictive material that is transmitted to
the piezoelectric and transformed to electrical energy. These kinds of systems have
become known as magneto-mechano-electric (MME) generators. The materials
that present both magnetostrictive and piezoelectric response are quite few in
single phase (multiferroics) [109], so much of the research in energy harvesting
is performed on magnetoelectric composites, in the form of sandwiched laminates
of piezoelectric (such as PZT or PVDF [110]) and magnetostrictive materials
(amorphous or giant magnetostrictive ones). The parameter that characterizes the
performance is the magnetoelectric coefficient:

αME = 1

t

(
dV

dH

)
(18)

where dV is the measured voltage induced when applying a magnetic field of
amplitude dH and t is the thickness of the piezoelectric material. The conversion
is greatly enhanced if the composite is driven at resonance, with values of αME
that can reach 7000 V cm−1 Oe−1 [111]. A review of the use and performance of
magnetoelectrics for energy harvesting can be found in Ref. [112].

4 Summary

Magnetostriction and its related phenomenology and effects have been being studied
for nearly two centuries now. During this time, many useful applications in the form
of sensors and actuators have been proposed, some of them becoming successful
commercial devices. Despite this long history, magnetostriction and magnetostric-
tive materials are still actively investigated and new applications discovered. In
this chapter we have first reviewed the basic principles of magnetostriction and
the magnetoelastic coupling, both as a static or stationary effect and as a dynamic



Magnetostrictive Materials 745

one, where the coupling is propagated as magnetoelastic waves. Secondly, we have
briefly described the main types of magnetostrictive materials, highlighting among
them amorphous and giant magnetostriction alloys for their superior properties. The
central part of the chapter is dedicated to the description of the techniques most
commonly used for the characterization of the magnetostrictive properties. These
techniques are classified in direct and indirect methods. The first ones measure
directly the magnetostrictive strain, using resistive (strain gauges), capacitive,
or optical sensors. The second ones make use of the inverse magnetostrictive
effects, determining the magnetostriction coefficients from the change in the
magnetic properties. A section is specially dedicated to describe the measurements
in materials in the form of thin films, a very active field due to their use in
microelectromechanical systems (MEMS). The chapter concludes with a short
revision of the application of magnetostrictive materials in sensors and actuators,
together with a final part on energy harvesting systems, where magnetostrictive
materials are used in combination with piezoelectric ones.
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Magnetic Properties of Granular L10
FePt Films for Heat-Assisted Magnetic
Recording (HAMR) Applications

Cristian Papusoi, Mrugesh Desai, Sergiu Ruta, and Roy W. Chantrell

Abstract The merit of heat-assisted magnetic recording (HAMR) that enables
to increase the recording density beyond the classical perpendicular magnetic
recording (PMR) is a contribution to the writing field gradient additional to that
generated by the magnetic writer. This contribution is of thermal origin, and it is
proportional to |dHK/dT |T=TW

, where HK is the anisotropy field and TW is the
writing temperature of the recording medium. In order to improve the sharpness
of the recorded transitions, |dHK/dT |T=TW

should be increased and the intensity of
grain interactions should be decreased. The former requires a judicious choice of the
material used for the grain core alloy and also a tight control of the granular medium
intrinsic distributions, namely, the grain Curie temperature TC, the HK, and the
grain size distributions. In addition to these factors, the grain magnetization reversal
mechanism at TW plays an important role on the transition noise. This chapter
describes a set of experimental methods used in the characterization of HAMR
media, from setup description to experimental data analysis. The temperature
dependence of the AC susceptibility measured along the film easy axis is used
to evaluate the TC distribution (of average <TC> and standard deviation σTC).
Thermal erasure of the remanent magnetization using ns duration laser pulses
is used to evaluate σTC. The dependence of the AC susceptibility on the DC
field applied along a hard-axis direction is used to evaluate the HK distribution
(of average <HK> and standard deviation σHK) as a function of temperature.
A method to evaluate the intensity of intergranular exchange coupling based on
high-field polar-Kerr magnetometry is described. The grain magnetization reversal
mechanism is investigated based on measurements of thermal stability and of
remanence coercivity as a function of temperature. These measurements enable the
validation of theoretical concepts regarding the origin and the law governing the
temperature dependence of HK in chemically ordered alloys used as HAMR media.
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The described experimental methodologies are exemplified on a series of samples
having the structure glass/seed/heat-sink/MgO/MAG/C, where the MAG layer is an
L10 FePt-based granular alloy of 3.8–10.5 nm thickness.

Keywords Heat-assisted magnetic recording · L10 FePt · Coherent and
incoherent magnetization reversal · Curie temperature · AC susceptibility ·
Pump-probe measurements

The principle of heat-assisted magnetic recording (HAMR) consists of heating a
region of a thin film recording medium, including several magnetic grains, for a
very short time (~1 ns) at a high enough temperature for the medium coercive field
to become lower than the magnetic field applied by a writing head. Subsequent
to the heat pulse, the heated region rapidly cools down in the presence of the
applied field, leading to a “quenching” of the magnetization along the applied field
direction. The quenching or “blocking” temperature, defined as the temperature
required for a system of identical grains to reach thermal equilibrium during the
application of the heating pulse, is just below the grain Curie temperature TC. This is
a consequence of both the short (ns) heat pulse duration and the abrupt temperature
variation of the anisotropy field, defined as HK = 2 K/MS where K is the uniaxial
anisotropy constant and MS the saturation magnetization, in the vicinity of the
Curie temperature. HAMR responds to the following two requirements for magnetic
recording extendibility. On the one hand, it enables to decrease the grain size while
preserving a high thermal stability at ambient temperature TRT = 300 K. This is
accomplished using high anisotropy alloys, such as the chemically ordered L10 FePt
featuring a uniaxial magneto-crystalline anisotropy as high as K ~ 7 × 107 erg/cm3

at TRT [1]. On the other hand, HAMR enables a higher value of effective magnetic
field gradient with respect to the applied magnetic field gradient dH/dx used
in classical perpendicular magnetic recording (PMR), by involving an additional
thermal contribution |dHK/dT |T=TC

(dT/dx) [2]. The tetragonal L10 FePt phase is
the favorite candidate for the grain core alloy due to its high uniaxial magneto-
crystalline anisotropy, moderate Curie temperature of TC ~ 750 K in bulk, low
susceptibility to corrosion, and high |dHK/dT |T=TC

of ~200 Oe/K. Since the film
lateral temperature gradient dT/dx can be enhanced up to values of ~10 K/nm by
optimizing the optical and thermal properties of the heat-sink and thermally resistive
layers located below the recording layer in the HAMR film stack [3], the thermal
field gradient can be substantially enhanced (>10 times) with respect to the head
field gradient (~150 Oe/nm), giving HAMR a leap to achieve higher recording
densities than classical PMR.

Recording transition noise (jitter) is directly related to the thermal field gradient,
which can be expressed as |dHCR/dT |T=TW

(dT/dx), where TW is the writing tem-
perature and HCR(T) is the remanence coercivity on the recording time scale, i.e., the
field that can reverse the remanent saturation magnetization during the application of
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Fig. 1 (a) STEM plan-view
image of a 7.6 nm thick MAG
layer. (b) Grain size
distribution, <D> (•) and
σD/<D> (◦), and grain pitch
(center-to-center)
distribution, <DCC> (�) and
σCC/<DCC> (�), as a
function of MAG thickness.
Reproduced from Ref. [4]
with permission from Elsevier
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a temperature pulse of amplitude T and ~1 ns duration. Various distributions specific
to a granular film, such as the HK distribution (of average <HK> and standard
deviation σHK), TC distribution (<TC>, σTC), and the grain size distribution (<D>,
σD) decrease |dHCR/dT |T=TW

, leading to higher noise and preventing narrow
transition widths. In addition to these factors, grain interactions and the mechanism
of spin reversal in exchange isolated grains or grain clusters have also an important
influence on |dHCR/dT |T=TW

.
The following paragraphs describe various experimental methodologies to eval-

uate the TC and HK distributions as well as |dHCR/dT |T=TW
. These methodolo-

gies are exemplified on a series of samples having the structure glass/seed/heat-
sink/MgO/MAG/C deposited using an industrial sputtering system. The MAG layer
is an FePt–X alloy, where X = C, SiO2 fulfills the role of segregant. The MAG layer
thickness is varied in a range of 3.8–10.5 nm. The thicknesses of seed, heat-sink and
MgO layers are 120 nm, 110 nm, and 5 nm, respectively. A scanning transmission
electron microscopy (STEM) plan-view image of a 7.6 nm MAG is presented in
Fig. 1(a), and the dependence of the grain size and pitch distributions of the MAG
thickness are presented in Fig. 1(b).
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1 Grain Interactions

Since the introduction of granular-type recording media, considerable effort has
been dedicated to establishing methods to characterize the magnitude of grain
interactions [5–11]. The motivation is twofold. On the one hand, it enables the
extraction of the intrinsic (unbiased by the effect of grain interactions) distribution
of grain reversal fields, usually called switching field distribution (SFD). The latter
is directly related to the recording track width as well as to the media writability.
On the other hand, the characterization of grain interactions enables the evaluation
of its intensity and, in particular, of the intergranular exchange coupling per unit
grain surface JEX. The latter impacts the recording transition noise and defines
the smallest achievable recorded bit size. In the following, the dependence of
intergranular interaction magnitude on the MAG thickness is investigated at TRT
using the method described in Refs. [4, 8, 12] which involves the following two
magnetization curves: the major easy axis (EA) hysteresis loop and the minor EA
hysteresis loop measured in the field range of (–HC, HSAT) where HC is the coercive
field and HSAT is the positive saturation field of the EA loop.

The granular film is theorized as a collection of grains, each of them having a
rectangular hysteresis loop of intrinsic coercive field HSW distributed according to
F(HSW) (

∫ ∞
0 F (HSW) dHSW = 1), interacting via a mean field HINT = − 4πNM

where M is the grain system magnetization and N is a mean field parameter.
Grain system parameters F(HSW) and N can be estimated using the following
magnetization states: (H1, +MS/2) and (H2, –MS/2) on the ascending branch of the
major hysteresis loop and (H3, +MS/2) on the minor loop (Fig. 2(a)). The intrinsic
switching field distribution SFDI, defined as the HSW range corresponding to 25–
75% variation of the cumulative distribution function of F(HSW), is given by:

SFDI = H1 − H3. (1)

The extrinsic switching field distribution SFDE is given by:

SFDE = H3 − H2 = 4πNMS (2)

This denomination is justified by the observation that SFDE represents the
contribution of grain interactions to the switching field distribution, or SFD, which
is a widely used technical parameter of an M(H) loop, defined as:

SFD = H1 − H2. (3)

In this sense, SFDE is complementary to the intrinsic, grain interaction-free SFDI
in the expression of the SFD:

SFD = SFDE + SFDI. (4)
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Fig. 2 (a) Principle of the method used to evaluate the grain interactions. Mean interaction field
parameter N (•), cluster size DCL (◦), and the average grain pitch <DCC> (�) (b), intergranular
exchange coupling constant JEX, (c) and intrinsic switching field distribution SFDI normalized to
the coercive field HC(d) as a function of MAG thickness. Figures (b–d) reproduced from Ref. [4]
with permission from Elsevier

Equation (2) is used to extract N using the experimental values of H2, H3 and
MS. Knowledge of the mean field parameter N enables the evaluation of the average
intergranular exchange coupling energy per grain unit surface JEX according to [13]:

JEX = πM2
S < DCC >

(
t√

< DCC >2 + t2
− N

)
. (5)

where t is the MAG thickness and <DCC> is the average grain pitch (center-to-center
distance). The grain cluster size DCL is evaluated based on the following relationship
[14]:

DCL = t

√
1 − N2

N
(6)

where t is the film thickness. The meaning of DCL is the in-plane diameter of a
cylindrical film region of height equal to the film thickness t that experiences a
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magnetostatic field from the rest of the medium equal to −4πNM where N is the
experimental value of the mean field parameter and M is the sample magnetization.
The dependencies of N, DCL, JEX, and SFDI/HC on the MAG thickness are
presented in Fig. 2(b–d). As one can notice in Fig. 2(b), DCL is close to <DCC>
(average grain pitch) for MAG thicknesses lower than ~7 nm and noticeably
increases with respect to <DCC> above this thickness. This behavior is interpreted to
be a consequence of lateral grain growth in the MAG layer, leading to narrower grain
boundaries with increasing MAG thickness [4]. As shown in Fig. 2(d), SFDI/HC
experiences a significant decrease with increasing MAG thickness in the range of
3.8–7.5 nm. Three effects contribute to this behavior: σHK decreases, σD decreases,
and thermal stability increases with increasing MAG thickness.

2 Thermal Stability

In order to evaluate the film thermal stability at TRT, we use the procedure illustrated
in Fig. 3(a–c). The EA major hysteresis loop (MHL) is measured using a 7 T
polar-Kerr magnetometer. As measured, the MHL exhibits a nonlinear background
caused by the fact that for applied fields H higher than the saturation field of the
material constituting the magnetometer pole pieces HPS ~ 18 kOe, the linearly
polarized laser beam (λ = 405 nm) is exposed to a considerably higher magnetic
field orientated parallel to the beam trajectory inside the superconducting magnet.
As a consequence, the laser beam polarization experiences a rotation proportional
to the applied field via the Faraday effect. This results in a field linear background
for H> HPS and H < −HPS, as illustrated in Fig. 3(a). The following approach
is used to remove the Faraday background and extract the polar-Kerr loop of the
magnetic film. The region on the MHL descending branch Mdesc(H) extending from
HMAX = 70 kOe down to a predefined valued HLIM (typically 10 kOe) lower than
HPS but higher than the nucleation field of the sample HN (corresponding to the
shoulder of the MHL descending branch) is extracted. In the range of applied fields
HLIM < H < HMAX, the film magnetization is saturated. Therefore, the shape of
the extracted curve M(H> HLIM) is a consequence of both the Faraday and the
pole piece saturation effects. Consequently, the background for the range of applied
fields (HLIM, HMAX) can be obtained as Mback(HLIM < H < HMAX) = Mdesc(H) –
M(HLIM). Similarly, the background in the range of applied fields (−HMAX, −HLIM)
is obtained as Mback(−HMAX < H < −HLIM) = Masc(H) + M(HLIM), where Masc(H)
is the ascending branch of the measured MHL. In the applied field range (−HLIM,
HLIM), the magnet pole pieces act as a magnetic shield for the laser beam; therefore
the Faraday effect is expected to be negligible. Consequently, the background
magnetization Mback(−HLIM < H < HLIM) = 0. The background curve for the
entire range of applied field Mback(H) can be constructed by merging the three
curves Mback(H) = Mback(−HMAX < H < −HLIM) U Mback(−HLIM < H < HLIM) U
Mback(HLIM < H < HMAX). Since Mback(H) is reversible with respect to the applied
field, it is interpolated and then subtracted from the measured signal. Subsequent to
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Fig. 3 (a) MHL as measured
using polar-Kerr (A),
extracted Faraday background
using HLIM = 10 kOe (B) and
MHL corrected for the
Faraday background (C). (b)
Time decay of magnetization
for several applied fields H:
−26,475 Oe (◦), −27,518 Oe
(�), −28,626 Oe (�),
−29,674 Oe (∇), −30,701 Oe
(� ), and −31,712 Oe (�). (c)
Dependence of the applied
field H on the time τC
required for the film
magnetization to relax to zero
(symbols) and fit using Eq.
(7) (solid line)
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the background correction, the MHL loop is normalized to saturation as shown in
Fig. 3(a).

In order to evaluate the thermal stability factor KV/(kBT), the time decay
of magnetization in a constant applied field H is measured according to the
following procedure. Initially, the MHL loop is measured and the background
Mback(H) is extracted. The resultant MHL loop is normalized to saturation. The film
magnetization is saturated via the application of HMAX = +7 T using the highest
field sweep rate available (700 Oe/s). Then the field is ramped with the same sweep
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rate down to a predefined value H> −HC and subsequently kept constant. The time
dependence of magnetization M(τ , H = const) is measured during a time frame
of 6 min. The measured M(τ , H) curve is background corrected by subtracting
Mback(H) and then normalized to saturation using the same normalization constant
as that used for MHL. As evidenced in Fig. 3(b), the magnetization decay curves are
linear on a logarithmic time scale. The time τC(H) corresponding to the intersection
of the linearly interpolated M(ln(τ )) with the M = 0 axis is the time required for the
applied field H to become the coercive field −HC (Fig. 3(c)).

According to the Stoner-Wohlfarth (SW) model [15] that assumes that mag-
netization reversal occurs by coherent rotation of spins in isolated grains, the
relationship between HC and τC is given by the Sharrock law [16]:

HC (τC) = H0

(
1 −

√
1

β
ln
f0τc

ln 2

)
(7)

where β = KCVSW/(kBT) is the thermal stability factor, KC is the grain core
anisotropy constant, H0 is the grain coercivity in the absence of thermal relaxation,
and f0 ∼= 1011 s−1 [17, 18] is the transition attempt frequency of thermal fluctuations.
The switching volume VSW represents the grain volume that nucleates the reversal
by coherent rotations of spins. In the frame of the SW model, VSW is close to

the rms value of the grain volume distribution
√〈
V 2

〉
[19]. Thus, the assumption

of a coherent rotation reversal mechanism can be validated by comparing the
experimental value of β evaluated from the fit of HC(τ ) using Eq. (7) with that

theoretically predicted by the SW model β = KC
√〈
V 2

〉
/ (kBT ). This comparison

is presented in Fig. 4(a). One notices that for a MAG thicknesses below the threshold
value tC ~ 8 nm, the SW prediction matches the experimental value of β, indicative
of a coherent spin reversal in isolated grains. For MAG thicknesses larger than tC,

VSW <
√〈
V 2

〉
suggesting that only a fraction of a grain switches coherently at HC.

This is consistent with a domain-wall (DW) nucleation/displacement (incoherent)
reversal mechanism occurring above tC. Figure 4(b) presents the dependence of
H0/HK on the MAG thickness. One notices that H0/HK is reasonably close to the
SW predicted value of ~0.82 corresponding to an EA dispersion of �θ50 = 5◦
evaluated using X-ray diffraction, if the MAG thickness is lower than tC and it
decreases with respect to the SW prediction above tC. This behavior is consistent
with the non-monotonic dependence of EA loop coercivity on the MAG thickness
(Fig. 4(c)) displaying a maximum at tC.

In order to understand the significance of tC, let us recall that the high anisotropy
of the L10 Fe50Pt50 phase results in a DW width δ = π

√
A/KC = 6.82 nm

(A ∼= 1.53 × 10−6 erg/cm, KC∼= 3.25 × 107 erg/cm3). If the grain size
becomes larger than δ an incoherent magnetization reversal mediated by DW
nucleation/displacement becomes more energetically favorable than coherent
rotations of spins inside individual grains, leading to a lower HC and a lower β
than in the case of coherent reversal. However, the MAG thickness threshold for
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Fig. 4 (a) Thermal stability
factor β = KCVSW/(kBTRT),
evaluated by fitting the time
dependence of coercivity
HC(τ ) using the Sharrock
law, as a function of MAG
thickness; the values of β
calculated based on the SW
model (VSW =

√〈
V 2

〉
) are

represented by line+empty
symbols. (b) Short-time
coercivity H0, extracted using
the Sharrock law fit,
normalized to HK , as a
function of MAG thickness.
(c) Coercive field of EA loop
as a function of MAG
thickness (•). Reproduced
from Ref. [4] with permission
from Elsevier
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the onset of intergranular exchange interactions is also close to tC. Therefore, the
resulting increase of grain cluster size illustrated in Fig. 2(b) can be a contributing
factor in addition to the reduced DW width to the incoherent switching above tC.

3 HK and TC Distributions

Measurements of AC susceptibility χAC are used to evaluate the HK and the TC
distributions as a function of MAG thickness. AC susceptibility is measured by
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applying an AC field, of frequency in the kHz range and amplitude in the 50 Oe
range, along the MAG film EA, and probing the induced AC magnetization along
the same direction. Depending on the measurement conditions, the AC susceptibility
can be sensitive to different properties of the MAG layer. The HK distribution
is extracted using the imaginary component of the AC susceptibility χ i

AC (HDC)

measured as a function of a DC field HDC applied along a hard-axis (HA) direction
of the MAG layer (perpendicular to the AC field), at constant temperature. This
type of experiment, which is essentially a HA magnetization process, is usually
denominated “AC transverse susceptibility” (ACTS) [20–22]. The HK distribution
is extracted by fitting χ i

AC (HDC) using the Monte Carlo (MC) model developed
in Ref. [23]. The MC model takes into account the grain size, EA orientation and
TC distributions, and also the grain interaction (magnetostatic and exchange). The
latter is evaluated using a Voronoi tessellation of the granular film structure and the
experimental value for the grain core saturation magnetization MC

S
∼= 800 emu/cm3

and intergranular exchange coupling JEX.
The TC distribution is extracted using the real component of the AC susceptibility

measured as a function of temperature T, in the absence of a transverse field
(HDC = 0), χ r

AC(T ). This type of measurement, which is essentially an EA
magnetization process, is usually denominated “AC susceptibility” (ACS) [3, 4, 12].
The TC distribution is evaluated by fitting χ r

AC(T ) using the same MC model as
that used for extracting the HK distribution from ACTS. Since ACS is a variable
temperature process, the laws describing MC

S (T) and HK (T) are directly involved
in the interpretation of χ r

AC(T ), and they must be known before attempting to
extract the TC distribution from the fit of χ r

AC(T ). For this reason, these laws are
evaluated in the following. In the case of ACS, the input parameters of the MC
model are the grain size, EA orientation and HK distributions, and the intensity of
grain interactions.

The schematic of the AC susceptibility setup is presented in Fig. 5. The sample
(S) (thin film) is exposed to the simultaneous action of two fields: (a) a DC field
HDC having an orientation parallel to the film plane and a value in the range of
±80 kOe, generated by a superconducting coil (SC), and (b) an AC field hAC of
amplitude ~50 Oe and frequency variable in the range 100 Hz–30 kHz, having an
orientation perpendicular to the film plane, generated by a coil (HAC) connected to
an AC power supply (AC). In this work, the AC field frequency is fixed at 1 kHz
during the ACTS measurements and 500 Hz during the ACS measurements.

The DC field is measured using a Gaussmeter (GM). The AC field hAC acting
along the film EA induces an AC magnetization along the same direction which is
probed via polar-Kerr effect using a stabilized HeNe laser (LAS) (λ = 632 nm), a
polarizer (P), a plano-convex lens (L), a half-wave plate (HWP), a Wollaston prism
(WP), and a dual detector (DD). The output signal of the detector is measured using
a dual-phase lock-in amplifier (LIA) triggered by the AC coil power supply. The
lock-in amplifier measures both components of the output signal: real (in-phase with
the AC field) which is proportional to χ r

AC and imaginary (90◦ phase shifted with
respect to the AC field) which is proportional to χ i

AC. The sample holder contains
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Fig. 5 Schematics of the AC susceptibility setup, containing: HeNe laser (LAS), polarizer (P),
plano-convex lens (L), mirrors (M), sample (S), half-wave plate (HWP), Wollaston prism (WP),
dual detector (DD), superconducting coil (SC) and its power supply (DC), Gaussmeter (GM), AC
coil (HAC) and its power supply (AC), temperature controller (TC), heater (H) and heater power
supply (HPS), lock-in amplifier (LIA) and data acquisition card (DAQ). Reproduced from Ref. [4]
with permission from Elsevier

a filament that is used to heat the sample in the temperature range of 300–800 K.
A thermocouple, embedded in the sample holder, is connected to a temperature
controller (TC) that reads the sample temperature. The temperature controller is
also used in a feedback loop with the heater power supply (HPS) to control the
sample temperature by adjusting the voltage applied to the heater. Measurements
are performed in a vacuum of 10 mTorr which is low enough to prevent sample
oxidation/degradation during heating.

The SFD is intrinsically related to the HK distribution. The latter is thought to
originate in the finite grain size effect [24]. The poorer atomic coordination of
the Fe and Pt atoms at the grain surface with respect to the grain core leads to a
lower anisotropy of the Fe spins at the grain boundary than inside the grain. As
a result, KC and HK decrease with decreasing grain size. The decrease is more
substantial the lower the grain size due to the increasing grain surface/volume
ratio. As a result, the grain size and the HK distributions are related. Furthermore,
the spin disorder at the grain surface, originating in the finite size effect, leads
to a profile of the chemical ordering parameter S across the grain and thereby
to a grain size dependence of the average chemical ordering [25, 26]. Since the
uniaxial anisotropy of L10 FePt K ~ S2 [27, 28], the dependence of S on the grain
size leads to a relationship between HK and the grain size. The HK distribution
is evaluated from the MC fit of χ i

AC (HDC). Figure 6(a) presents the χ i
AC (HDC)

curves measured at TRT and their MC fit for the 3.8, 5.2, 6.4, and 9.6 nm MAG.
The resulting values of <HK>, σHK /<HK> are presented as a function of MAG
thickness in Fig. 6(b). ACTS is not a standard technique for evaluating <HK>,
being more suitable for systems of weekly interacting single-domain grains, such as
recording media. Therefore, in order to validate the obtained values of <HK>, two
other methods are used to evaluate HK at TRT, such as the 45o torque [29] and the
singular point detection (SPD) [30] techniques, the results being presented in Fig.
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Fig. 6 (a) Ambient temperature measurements of χ i
AC as a function of the transverse field HDC

for a 3.8 nm (◦), 5.2 nm (�), 6.4 nm (�), and 9.6 nm (∇) MAG. (b) <HK> (solid symbols)
and σHK /<HK> (empty symbols) evaluated using ACTS (circles), SPD (rectangles), 45o torque
(triangles), and average over the three methods (solid line) as a function of MAG thickness.
(c)χ i

AC (HDC) for a 7.1 nm MAG measured at: 300 K (◦), 323 K (�), 373 K (�), 398 K (∇),
423 K (♦), 448 K (�), 473 K (	), 498 K (�), 523 K (*), and 548 K (�); solid lines represent the
MC fit used to evaluate <HK> (T) and σHK /<HK> (T). (d) < HK> (T)/<HK> (TRT) as a function of
[MS(T)/MS(T)]γ for a 3.8 nm (◦), 7.1 nm (�), and 9.6 nm (�) MAG. Reproduced from Ref. [4]
with permission from Elsevier

6(b). One notices that the <HK> extracted using the three methods are in reasonable
agreement. According to Fig. 6(b), <HK> increases in the range of 83–85 kOe, and
the normalized standard deviation σHK /<HK> decreases in the range of 8–14% with
increasing MAG thickness in the range of 3.8–10.5 nm. The increase of <HK> and
decrease of σHK /<HK> with increasing MAG thickness correlate with the increase
of the chemical ordering parameter S, as shown in Ref. [4].

The evaluation of the HK distribution based on χ i
AC (HDC) can be performed

at various temperatures up to a certain threshold where the peak of χ i
AC (HDC)

vanishes. This enables the correlation between the temperature dependences of HK

and MS. The dependence MS(T) is extracted using Vibrating Sample Magnetometry,
and then it is used in the MC fit of χ i

AC (HDC) curves to evaluate HK(T). The
experimental χ i

AC (HDC) curves for three samples of 3.8, 7.1, and 9.6 nm MAG
thickness are measured at various temperatures in the range of 300–573 K and
fitted using the MC model to evaluate <HK> and σHK at each temperature T. The
experimental curves measured for the 7.1 nm MAG are presented in Fig. 6(c).
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Fig. 7 (a)χ r
AC(T ) (solid

symbols), χ i
AC(T ) (empty

symbols), and MC fit (solid
line) for a 3.8 nm (circles),
4.6 nm (squares), 5.9 nm
(up-triangles), and 9 nm
(down-triangles) MAG.
(b) <TC> (•) evaluated from
the inflection χ r

AC(T ) of and
σTC/<TC> (◦) evaluated from
the MC fit of χ r

AC(T ) as a
function of MAG thickness.
Reproduced from Ref. [4]
with permission from Elsevier
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Details about the fitting procedure are presented in Ref. [4]. Based on previous
experimental and theoretical results [31, 40], it is assumed that <HK> has a similar
temperature dependence as (MS)γ , i.e., <HK> is proportional to (MS)γ in the
temperature range of 0 K–TC. By using the values of <HK> and MS extracted from
the MC fitting of the ACTS curves measured at various temperatures T (Fig. 6(c)),
a least-squares fit is used to evaluate the exponent γ for each of the three samples,
as shown in Fig. 6(d). One obtains γ = 1.13 for the 3.8 nm MAG, γ = 1.19 for the
7.1 nm MAG, and γ = 1.16 for the 9.6 nm MAG. This range of γ values is close
to the value of γ = 1.1 previously evaluated experimentally [27] and theoretically
[31] for bulk L10 FePt films and explained to be a consequence of the anisotropic
exchange coupling between Fe spin moments intermediated by the itinerant Pt
induced moments (two-ion anisotropy).

The TC distribution originates in the grain size distribution via the finite size
effect, and it is an important parameter for HAMR, being the major contributor
to the recorded transition jitter. The TC distribution for the investigated samples
is evaluated using the temperature dependence of ACS. The real χ r

AC(T ) and
imaginary χ i

AC(T ) components of ACS are normalized to the peak amplitude of
χ i

AC(T ), as illustrated in Fig. 7(a). χ r
AC(T ) is fitted using the MC model. The fitting

parameters are <TC> and σTC. The calculated χAC(T) curves are represented by
solid lines in Fig. 7(a). The σTC/<TC> extracted from the fit are presented as a
function of MAG thickness in Fig. 7(b). One notices that σ TC/<TC> decreases
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in the range of 2.9–6% with increasing MAG thickness in the range of 3.8–
10.5 nm. For increasing accuracy, the average Curie temperature of the MAG layer
<TC> is evaluated directly from experimental data as the temperature corresponding
to the inflection point of χ r

AC(T ) in the superparamagnetic regime, the results
being presented in Fig. 7(b). One notices that <TC> increases with increasing film
thickness in the range of 615–665 K. The most important advantage of ACS over
other methods to evaluate <TC> is the low amplitude of the AC field that minimizes
the influence of the applied field on the value of MS close to criticality, enabling an
accurate evaluation of <TC>.

|dHCR/dT ‖T=TW.

In HAMR, the thermal field gradient is proportional to |dHCR/dT |T=TW
. The

latter is influenced by the TC distribution as well as by the magnetization reversal
mechanism. A wider TC distribution causes a wider HK distribution close to
criticality. If the magnetization reversal occurs by coherent rotations of spins
in isolated grains [15], the remanence coercivity HRC is expected to approach
HK (due to the poor effect of thermal relaxation during the writing process)
and |dHCR/dT |T=TW

∼= |dHK/dT |T=TW
. In these circumstances, a wider TC

distribution causes a lower value of |dHCR/dT |T=TW
which is detrimental to the

recording performance. Thermally assisted writing may also occur via an incoherent
magnetization reversal if the DW width at TW is smaller than the grain size.
According to the atomistic simulations results of Refs. [32, 33], DW width in L10
FePt films has a TRT value in the range of 4–5 nm and exhibits a poor increase with
temperature from TRT up to TC where it diverges sharply. Consequently, HRC is
expected to be close to HK for TW close to TC, where the larger DW size with respect
to the grain size favors a coherent magnetization reversal mechanism and to rapidly
decrease with respect to HK for TW < TC where the DW size becomes smaller
than the grain size favoring an incoherent magnetization reversal. Accordingly,
|dHCR/dT |T=TW

is expected to decrease with respect to |dHK/dT |T=TW
the more

substantially the larger is the film average grain size with respect to the DW size at
TRT. In order to corroborate this statement, the dependence of |dHCR/dT |T=TW

on
the film thickness is evaluated below.

In order to extract the intrinsic properties of the MAG layer close to criticality,
which are relevant for the thermally assisted recording process, the effect of thermal
relaxation must be minimized by decreasing the duration of the film exposure to
heat. The method proposed in Ref. [34] involves the measurement of remanent
magnetization subsequent to the application of an ultrafast heat pulse via a ns
pulsed laser. The schematic of a pump-probe setup developed for this purpose is
presented in Fig. 8. The pump laser (LAS 1) is a Q-switched Nd:YVO4 pulsed laser
of λ = 1064 nm that delivers laser pulses of energy in the range of 0–20 μJ, of
25 ns FWHM and 50 kHz frequency, used for heating the sample. The probe laser
(LAS 2) is a HeNe stabilized laser, having λ = 632 nm and P = 1.1 mW that is
used to detect the remanent magnetization along the perpendicular to the film plane
by polar-Kerr effect. An acousto-optic modulator (AOM) enables the application
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Fig. 8 Schematics of the
pump-probe setup,
containing: Nd:YVO4 pulsed
laser (LAS1), HeNe laser
(LAS2), acousto-optic
modulator (AOM), wedged
prism (PSM), plano-convex
lens (L), mirrors (M),
dichroic mirror (DM),
polarizing beam splitter
(PBS), photoelastic
modulator (PEM), polarizer
(P), detector (D), sample (S),
magnet (MG), lock-in
amplifier (LIA) and data
acquisition card (DAQ).
Reproduced from Ref. [4]
with permission from Elsevier
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of a single pump pulse to the sample. The time delay between two consecutive
measurements is of a few seconds, long enough to prevent heat accumulation in
the sample. A permanent magnet (MG) is used to apply a magnetic field in the
range of ±7 kOe that is uniform over the heated region of the sample. The probe
beam passes through a leaky polarizing beam splitter (PBS), and it is reflected by
a dichroic mirror (DM) that combines the pump and probe beams before reaching
the sample. The two beams are aligned, such that the probe beam hits the sample at
the center of the pump beam and thereby probes the region exhibiting the highest
temperature. The diameter of the pump beam is ~70 μm, and that of the probe
beam is ~8 μm. The large ratio between the two beam diameters ensures the probed
region is uniformly heated by the pump beam. After reflection from the sample,
the probe beam passes through the PBS, through a photoelastic modulator (PEM)
operated at 50 kHz and having the optical axis oriented at 0o with respect to the
incident probe beam polarization, through an analyzer (P) oriented at 45o with
respect to the incident probe beam polarization and reaches the photodetector (D).
The polarization rotation of the probe beam due to the polar-Kerr effect is evaluated
using the second harmonic of the detected signal, measured by a lock-in amplifier
(LIA) triggered by the PEM oscillator. A wedged prism (PSM) is used to split both
the incident and the reflected pump beams in order to measure their energies per
pulse EI and ER respectively. This enables evaluation of the fraction of pump pulse
energy absorbed by the sample (100% converted into heat) EA = (1 − R)EI where
R = ER/EI is the sample reflectivity. The latter is measured during the application
of the pump pulse by monitoring the signals of two fast detectors measuring the
incident and reflected beams split by PSM using an oscilloscope. The relationship
between the absorbed pulse energy EA and the corresponding film temperature is
given by:

EA = ε (T − TRT) (8)
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Fig. 9 (a) Experimental 1 – mThE as a function of pump pulse energy EA for a 3.8 nm (◦),
5.2 nm (� ), and 10.5 nm (�) MAG and their fit using the CDF of a Gaussian distribution
of average <E> and standard deviation σE (solid line). (b) Dependence of <TC> on the MAG
thickness evaluated using ACS (•) and that evaluated based on Eq. (6) where ε = 0.00433 μJ/K
(◦). (c) Dependence of σTC/<TC> on the MAG thickness evaluated using ACS (•) and ThEr (◦). (d)
|dHCR/dT |T=TW

as a function of MAG thickness (•). Reproduced from Ref. [4] with permission
from Elsevier

where ε is a calibration constant [34]. The latter is evaluated using measurements
of thermal erasure (ThEr) of remanent magnetization as a function of the absorbed
pump pulse energy EA, MThEr(EA, H = 0). In this experiment, the sample remanent
magnetization is initially saturated in the positive direction along the sample EA.
The applied field H is set to zero. A laser pulse of energy EA is applied, and the
remanent magnetization MThEr is measured at TRT following the suppression of the
laser pulse. These steps are repeated for progressively increasing pulse energies EA
to obtain MThEr(EA, H = 0). Figure 9(a) presents the dependence of 1 – mThEr,
where mThEr = MThEr/MRS, on the pump pulse energy EA for a 3.8, 5.2, and
10.5 nm MAG. Equation (8) establishes the relationship between TC distribution
and the erasure pulse energy distribution. By assuming a Gaussian shape for the TC
distribution, of parameters <TC> and σTC, the corresponding distribution of erasure
pulse energies is also Gaussian, of average <E> and standard deviation σE. The
experimental 1 – mThEr(EA) curves are fitted with the CDF of a Gaussian distribution

CDF (EA) = 0.5
{

1 + erf
[
(EA − 〈E〉) /

(
σE

√
2
)]}

in order to evaluate <E> and

σE as a function of MAG thickness.
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An example of ThEr curves and their fit is represented by a solid line in Fig.
9(a). The value of <TC> was already evaluated using the temperature dependence
of ACS (Fig. 7(b)). Thus, ε can be evaluated using Eq. (8) where EA ≡ <E> and
T ≡ <TC>. As shown in Ref. [4], ε is essentially independent of the MAG thickness.
Accordingly, ε is evaluated by matching the experimental values of <TC>, evaluated
using the AC susceptibility, with those evaluated using Eq. (8) and the experimental
values of <E> for all MAG thicknesses using a least-squares approach, as illustrated
in Fig. 9(b). One obtains ε = 43.3 × 10−4 μJ/K. The standard deviation of the TC
distribution σTC can be obtained for both series based on the relationship:

σE = εσTC (9)

where σE is evaluated from the fit of the ThEr curves. The dependence of
σTC/<TC> on the MAG thickness evaluated using Eq. (9) is presented in Fig. 9(c)
alongside with that evaluated using the AC susceptibility. As one can notice in
Fig. 9(c), σTC/<TC> evaluated using the two techniques are in agreement in the
entire investigated MAG thickness range.

In order to evaluate HCR(T) and |dHCR/dT |T=TW
,a family of remanent magne-

tization curves MR(H, EA = const) is measured for progressively increasing values
of EA. The field H = 0–7 kOe is applied along the sample EA, and the remanence
is saturated in the opposite direction to that of the applied field H previous to
each measurement of MR using the highest value of EA of ~3 μJ. The MAG
temperature corresponding to this energy of the pump pulse is well above the MAG
TC distribution for all the samples investigated in this study. The value of ε evaluated
above is used to convert HCR(EA) into HCR(T) based on Eq. (8). |dHCR/dT |T=TW

is evaluated as the slope of HCR(T) in the temperature range where HCR decreases
from the maximum applied field of HMAX = 7 kOe down to 0. This temperature
range is presumably bracketing the HAMR writing temperature TW due to the ns
duration of the heating pulse and the range of applied fields which reproduce the
recording conditions. The dependence of |dHCR/dT |T=TW

on the MAG thickness
is represented in Fig. 9(d). One notices that |dHCR/dT |T=TW

exhibits a maximum
close to the MAG thickness threshold tC ~ 8 nm. Below tC, |dHCR/dT |T=TW

increases with increasing MAG thickness. This behavior is attributed to the decrease
of σTC/<TC>, as illustrated in Fig. 9(c). Above tC, |dHCR/dT |T=TW

decreases
with increasing MAG thicknesses. This behavior is attributed to the incoherent
magnetization reversal occurring in the MAG layer, which corroborates the previous
conclusions based on measurements of thermal stability at TRT.

4 Summary

Several parameters of chief importance for HAMR performance, such as the Curie
temperature TC and the anisotropy field HK distributions and the temperature
slope of the remanence coercivity HCR at the HAMR writing temperature TW,
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|dHCR/dT |T=TW
, are investigated for a series of L10 FePt films of thickness in

the range of 3.8–10.5 nm. The TC distribution, including the average <TC> and
the standard deviation σTC/<TC>, are evaluated using the temperature dependence
of the AC susceptibility (ACS). <TC> increases in the range of 615–665 K,
and σTC/<TC> decreases in the range of 2.9–6% with decreasing film thickness.
The HK distributions, both average <HK> and standard deviation σHK /<HK>, are
evaluated using the dependence of the imaginary component of the AC transverse
susceptibility (ACTS) measured along the film easy axis on the DC field applied
along the film hard axis. It is shown that <HK> increases in the range of 83–
85 kOe and σHK /<HK> decreases in the range of 8–14% with increasing film
thickness. The temperature dependence of <HK> is evaluated using ACTS, and it is
shown to correlate with the temperature dependence of the saturation magnetization
MS(T) according to the law <HK> (T) ~ [MS(T)]γ with γ ∼= 1.1. This observation
supports previous experimental and theoretical results interpreting this behavior as
a consequence of the two-ion anisotropy of Fe spins in a chemically ordered FePt
lattice.

The remanence coercivity HCR(T) is defined as the positive field that has to be
applied along the film easy axis to reduce the remanent magnetization, previously
saturated in the negative direction at ambient temperature TRT = 300 K, to zero
subsequent to the application of a ns duration heating pulse of amplitude T. The
dependence HCR(T) is evaluated for a range of heating temperatures T close to
criticality that corresponds to an HCR range of 0–7 kOe. In this temperature range,
HCR(T) is almost linear, which enables the extraction of |dHCR/dT |T=TW

as the
slope of HCR(T). A pump-probe method to evaluate HCR is described that uses ns
duration laser pulses to heat the film. The calibration of the relationship between
the laser-pulse energy and the sample temperature is enabled via the proportionality
between the laser pulse energy <E> required to reduce the remanent magnetization
to 50% of its saturation value in the absence of an applied field (thermal erasure
or ThEr) and (<TC> −TRT) where <TC> is evaluated using ACS. The pump-probe
method enables the evaluation of σTC/<TC> using the temperature dependence of
remanent magnetization MThEr(T, H = 0) and of HCR(T) using measurements of
remanent magnetization as a function of the applied field performed at constant
temperature MR(H, T = const). This enables the extraction of HCR(T) and of
|dHCR/dT |T=TW

. The latter features a non-monotonic dependence on the film thick-
ness, reaching a maximum at tC ~ 7.5 nm. The dependence of the TC distribution
on the film thickness is consistent with a monotonic increase of |dHK/dT |T=TW

with increasing film thickness, suggesting that |dHCR/dT |T=TW
<|dHK/dT |T=TW

above tC. This behavior is attributed to a domain-wall (DW) mechanism of
magnetization reversal in the MAG layer above tC, and it has a negative impact
on the recording performance since it decreases the thermal field gradient. As a
consequence, increasing the MAG thickness above tC leads to a tradeoff between
writing resolution and readback signal which is an obstacle in the development
of HAMR media. However, this difficulty can be overcame in the framework
of the Superparamagnetic Writing (SPW) model [35, 36]. The SPW involves a
writing-assist layer (CAP), of higher <TC> than that of the recording layer (MAG),
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deposited on top of the MAG layer. If the CAP is ferromagnetic at the MAG writing
temperature (TW) and it preserves a perpendicular anisotropy at TW, it is easily
switched by the head magnetic field at TW and assists the orientation/writing of
the MAG layer during the refreezing process from TW to TRT via the MAG/CAP
positive exchange coupling. The writing occurs with a negligible influence of the
CAP TC distribution which is well above TW. As demonstrated in Refs. [35, 36],
SWP enables the recording of sharp transitions in the MAG layer and narrows the
TW distribution of a MAG/CAP bilayer with respect to that of an isolated MAG.
This suggests that the thickness of MAG does not need to be larger than tC in order
to enhance the readback signal. The later task can be fulfilled by the CAP layer. As
a result, the SPW scheme complies with both requirements of large stack thickness
and large |dHCR/dT |T=TW

or large thermal field gradient. Also, since SPW can
mitigate the negative impact of the MAG σTC/<TC> on the recording performance,
it could potentially enable to decrease <TC> of MAG, e.g., by doping the MAG alloy
with Ni [37], and thereby decrease TW and enhance the reliability of the HAMR
head-media system.
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Biological and Medical Applications
of Magnetic Nanoparticles

María Salvador, José C. Martínez-García, M. Paz Fernández-García,
M. Carmen Blanco-López, and Montserrat Rivas

Abstract This chapter aims to give insight into the successes, challenges, and
opportunities of magnetic nanoparticles for bio-applications. It reviews their gen-
eral requirements and how they can be met by different synthesis methods and
characterization techniques. It then focuses on examples of applications such as
magnetic cell separation, magnetic detection (including imaging), and magnetic
particle-based therapies, such as hyperthermia, magneto-mechanical destruction
of tumors, localized drug delivery, and tissue engineering. We hope to guide the
reader interested in applied research of magnetic nanoparticles through an exciting
collection of investigations on their application in the life sciences.

Keywords Magnetic nanoparticles · Bio-application · Biomedicine ·
Biosensor · Bio-detection · Magnetic resonance imaging · Magnetic particle
imaging · Magnetic immuno-separation · Magnetic hyperthermia · Drug
delivery · Tissue regeneration · Magnetic detoxification

1 Introduction

Today, more than ever, research is called upon to solve social problems, often those
that affect public health and safety. The coronavirus that paralyzed the world in 2020
has an average size of 120 nm. The nanoscale is the dimension at which biological
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events occur at the cellular and molecular level. Nanoparticles have the ideal size to
interact with biological entities, such as proteins, genes, cells, viruses, and bacteria.
They can be stabilized in colloidal suspensions to mix them with biological fluids or
to inject them, and they can flow through blood vessels and cross some physiological
barriers. Their large surface to volume ratio and, more importantly, the fundamental
properties specific to their nanosize have the potential to significantly contribute to
solving major problems in biomedicine.

Additionally, magnetism adds capabilities such as remote manipulation, heat
generation, and inductive detection. In the fields of life sciences (biomedicine,
environment, and food safety), magnetic nanoparticles (MNPs) offer new tools to
develop innovative methods for diagnosis and therapy in clinical practice, toxin
detection in agrifood control, and environmental remediation.

Advances in the production of MNPs—control of their size, morphology, and
crystalline quality—have stimulated their practical application. The design of new
nanoarchitectures enables hybrid applications that take advantage of the combina-
tion of magnetism and optical or catalytic properties. For biological applications, the
superficial coatings of the particles are crucial. They determine important properties
of the chemical interaction of the MNPs with biological molecules or environments,
such as biocompatibility, bioconjugation, and circulation time (Fig. 1).

2 Requirements of Magnetic Nanoparticles
for Bio-Applications

An essential feature of MNPs is their tunability. It allows them to be engineered
for each application. Therefore, their crystal structure, size, shape, composition,
agglomeration, superficial, and magnetic properties must be optimized. Biomedical
applications can be classified into two main categories: in vitro and in vivo. The
latter is the most challenging as it includes biocompatibility as a requirement.

Most of the advantages of MNPs come from their size, which confers them with
properties entirely different from those of their bulk counterparts. Additionally, their
size is particularly interesting for biomedical applications because it is comparable
to that of most biological entities of interest. The particles’ size plays a vital
role in their magnetic behavior, which may be superparamagnetic below a critical
volume [1]. Superparamagnetism is preferable to other magnetic states because it
reduces the magnetic attraction helping to stabilize colloidal suspensions required
for biomedical applications [2]. For in vivo applications, the particles’ size, shape,
and superficial properties strongly influence their circulation time, targeting, and
final biodistribution or elimination [3–7].

For in vivo use, toxicity restricts the permissible composition. Iron oxide
nanoparticles are approved by the US Food and Drug Administration and the
European Commission for clinical use because they can be metabolized [8]. On
the contrary, Zn, Co, Ni, and Cu may be toxic [9–11]. Coating or encapsulation is
an option to overcome this handicap [12, 13].
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Fig. 1 Examples of applications of magnetic nanoparticles in biomedicine include magnetic cell
isolation, magnetic imaging, biosensing, hyperthermia, tissue regeneration, and drug delivery

Biomedical applications require colloidal stability, but nanoparticles tend to
aggregate and precipitate in aqueous suspensions. Proper surface preparation can
avoid this by electrostatic forces and/or steric effects. Interestingly, aggregation
can be either detrimental or advantageous, depending on the application. For in
vivo processes, it increases the effective size, which may influence the circulation
lifetime or heating efficiency [14, 15]. On the other hand, for in vitro purposes,
as in reporter labeling of immunoassays, an increase in the number of MNPs per
biomolecule enhances the detected signal [16, 17].

Surface properties are also crucial for functionalization. The adsorption of
additional polymeric moieties onto the surface of the MNPs, known as electrosteric
stabilization, is the most used approach to avoid agglomeration and prepare the
particles for bioconjugation [18]. These coatings are usually polymers such as
dextran, polyacrylic acid, polyethyleneimine, polyvinyl amine, and polyethylene
glycol or small molecules such as dimercaptosuccinic acid, silica, metals, or carbon
[19–21].

Due to their small size, the MNPs’ magnetic behavior is strongly dominated by
their surface layer spins. The broken crystalline symmetry at a particle’s surface
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may lead to undercoordination, relaxed magnetic exchange bonds, and spin canting;
all of this translates into modifications of the magnetic behavior compared to that
of the bulk material. The surface magnetic anisotropy increases, and the saturation
magnetization decreases, which is usually undesired for bio-applications. The action
of the surfactant or polyelectrolyte can play a substantial role in improving this.
Although capping organic molecules are not magnetic, they can restore the magnetic
ordering of the core to the surface [22]. To explain this unexpected effect of
nonmagnetic capping, Salafranca et al. [23] studied the magnetic order at the surface
of Fe3O4 MNPs coated by oleic acid. They reported that some surface Fe ions bond
to the organic acid’s oxygen, so that the number of O nearest neighbors and their
average distance closely resemble that of the bulk magnetite resulting in improved
magnetic properties.

The specific magnetic requirements for various applications in the life sciences
are treated in the following sections.

3 Synthesis Methods

Many different synthesis routes have been proposed to obtain MNPs that accomplish
the characteristics detailed above (Fig. 2). The methods are commonly divided
into “bottom-up” or “top-down” approaches. The latter, also known as physical

Fig. 2 TEM images of Fe3O4 MNPs synthesized (a) by coprecipitation and uncapped; (b) by
coprecipitation and coated with polyacrylic acid; (c) by thermal decomposition with oleic acid
coating (image courtesy of M. Puerto Morales, ICMM-CSIC); (d) by coprecipitation and coated
by a silica shell
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methods (such as milling or grinding), consist of dividing a larger material into
smaller units. These methods are not usually suitable for biomedical applications
because they produce particles with high polydispersity. Bottom-up processes, or
chemical methods, provide more precise control over the resulting characteristics.
Starting from small units of the materials, further self-assembly processes lead to
the formation of the nanostructures.

Coprecipitation, developed by Massart in 1981, is one of the most popular
techniques due to its simplicity and high yield [24]. The oxides are precipitated
from a solution with the metal precursors as the pH is tuned to a basic range. The
addition of coating polymers allows obtaining a stable colloidal suspension and to
introduce reactive chemical groups necessary for subsequent functionalization.

Thermal decomposition involves breaking down metal precursors, such as
acetylacetonates, carbonyls, or oleates, in organic solvents, as octyl ether, benzyl
ether, or octadecene, at their boiling temperatures and in the presence of dispersants
and/or hydrophobic ligands. The high control over the particle size, shape, and
polydispersity is obtained by separating the nucleation and growth stages, as stated
by LaMer’s theory [25]. However, the hydrophobic reaction media (which is usually
toxic and cannot be used for functionalization of biomolecules) must be replaced or
modified for biological applications. Different approaches such as ligand exchange
or extra coating layers can be used for this purpose [26, 27].

Microwave synthesis is a variation of thermal decomposition methods in which
heating is achieved by microwave induction. It is attracting attention because it
improves the nanoparticle quality, reaction yield, and reproducibility and reduces
the synthesis duration [28]. The heating homogeneity in the reactor ensures a narrow
size distribution and controlled physicochemical properties of the MNPs obtained
directly in the hydrophilic medium. Although the reactors are small, their scale-up
has already been proposed [29].

In microemulsion methods, micro- or nano-drops called micelles are formed
thanks to the combination of the precursors, surfactants, and dispersing medium.
The nucleation and growth of the particles occur inside them. This produces a
narrow size distribution because the micelles, acting as nanoreactors, constrain the
MNP growth [30].

Solvothermal synthesis is performed at high pressures above the solvent’s boil-
ing temperature (it is called hydrothermal if the solvent is water). The sophisticated
equipment and operation conditions render high-quality monodisperse particles but
may complicate the scale-up of this method.

The sol-gel method is a multistep process based on the metal precursors’
hydrolysis and polycondensation near room temperature. The first step forms the
sol, transformed into the gel by successive condensation, vaporization, and solidifi-
cation. Further heat treatments are needed to produce crystallization. However, it is
still difficult to control particle morphology and reproducibility due to the complex
mechanisms involved during the steps of the reaction.

Polyol methods use polyethylene glycols of different hydrocarbon chain length
that act both as reducing and stabilizing agents during the particles’ formation. Their
amphiphilic character allows the direct obtention of hydrophilic suspensions for bio-
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applications. The high temperatures enable control over the size and crystallinity
while reducing the starting materials’ cost and toxicity.

Further information about traditional synthesis methods and new approaches like
microfluidic systems and dendrimer templates may be found in Refs. [31–33].

4 Characterization Methods

Because the performance of colloidal MNPs essentially depends on their physic-
ochemical properties, their thorough characterization is critical for finding the
best routes to optimize their biomedical applications and to obtain a meaningful
interpretation of the outcome. Additionally, standardization of the analysis protocols
is crucial for interlaboratory comparison and translation to the clinics and industry
[34].

In this section, we review the physical characterization methods most frequently
used for MNPs. Size, morphology, agglomeration, structure, and superficial and
magnetic properties significantly influence the particles’ biodistribution, safety, and
efficacy. They are evaluated by techniques commonly used for other materials but
which have peculiarities when applied to MNPs for bio-applications. In this section,
we list some of the most popular characterization techniques, with a special focus on
one of the most specific problems: sample preparation. We provide starting points
and references for interested readers to follow.

Sample Preparation

Depending on the characterization technique and the specific application, particles
are either dried, suspended in a liquid medium, or immobilized in a solid phase.
Many characterization devices cannot handle liquids, so colloidal nanoparticles
need to be dried. Although spontaneous evaporation of the solvent is an option,
it often produces undesired oxidation of the particles’ surface that would alter
the characterization results. Oven drying at moderate temperatures in a protective
atmosphere is a better choice. Freeze-drying (lyophilization) is an alternative that
is especially recommended if the particles are conjugated to biological material. It
consists of cooling the sample below the triple point of the solvent, reducing the
pressure, heating it to produce sublimation (vacuum speeds it up), and heating again
to produce desorption of the remaining water molecules [35, 36].

For some techniques or applications, the powder samples need to be suspended
or resuspended. The nature of the particle surface needs to be considered to find a
suitable solvent (organic for hydrophobic particles; water, or other polar solvents
for hydrophilic coatings.) The protocols involve mixing, sonicating, and syringe
filtering.
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Mainly for magnetometry, the colloidal particles may need to be immobilized
because some instruments cannot handle liquids or to prevent Brownian motion or
physical rotation of the particles. They can be immobilized in a compatible solid
matrix. For hydrophobic particles (coated with hydrophobic polymers or suspended
in organic phases), paraffin wax, docosane, or hydrocarbons of high molecular
weight are adequate. Hydrophilic particles (coated with hydrophilic polymers,
peptides, amino acids with amino or carboxylic residual groups) can be immobilized
in silica, dimethacrylate triethylene glycol, or agar. The protocols involve mixing a
known mass of nanoparticles with the initiator solution, sonication to disperse them,
and placing them in an oil bath at 70 ◦C for some hours. The initiator polymerizes,
forming a solid matrix.

Morphology, Size, and Structural Characterization

The microstructure, size, and morphology of the MNPs are typically determined
combining diffraction techniques, electron and atomic force microscopies, and
Mössbauer spectroscopy.

The most direct way to obtain the particles’ metal (or metal oxide) core size
and shape is transmission electron microscopy (TEM). It uses a beam of acceler-
ated electrons, benefiting from their short wavelength to resolve distances in the
nanoscale. TEM uses a static beam transmitted through a thin sample (the thickness
must be below 100 nm) to get the structural information and provide magnified
bidimensional images. The sample preparation starts with a diluted suspension. A
droplet is deposited on a carbon membrane and placed on a copper grid (carbon-
coated copper grids are commercialized). The sample must be then dried either by
natural evaporation or in flowing nitrogen. Careful sample preparation is essential
to avoid problems like aggregation while drying [37] or the formation of crystalline
salts or films. Specimen preparation is more difficult when it contains biological
material, such as cancer cells. In this case, the material must be embedded in a
pure resin mixture, dried, and cured. Then, an ultramicrotome is used to cut thin
sections [38]. TEM can achieve lateral spatial resolution and magnifications up to
factors of 107. The MNPs’ shape and size distribution can be inferred from the TEM
images; its drawback is that a significant sampling requires the analysis of many
micrographs. Transmitted beams also provide insights into the morphology and
sample’s structure and reveal atomic defects or dislocations. In TEM, the diffracted
electrons can be used to obtain a selected area electron diffraction pattern (SAED),
which provides information about the crystal structure, and the energy-dispersive X-
ray spectroscopy, to get qualitative information about the chemical composition of
individual particles. High-resolution TEM uses hardware to improve the resolution
to 0.05 nm, enabling imaging of the atomic structure.

In scanning electron microscopy (SEM), the electron beam scans the specimen
line by line. The electrons interacting with matter are scattered and can be collected
in a variety of forms. The secondary electrons (from the sample’s atoms) and the
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backscattered electrons (from elastic collisions) provide topological images and
composition maps. Although monodisperse MNPs can be too small to be seen by
SEM, this technique can help analyze beads containing embedded or encapsulated
particles. For SEM experiments, the sample must be in powder, fixed on an adhesive
tape on which a thin layer (15–20 nm) of a conductive metal is sputtered. This
is an optimum thickness for obtaining good-quality images and, at the same time,
a compositional analysis of the sample by energy-dispersive X-ray spectroscopy,
which is frequently included in SEM. Field-emission SEM uses an electromagnetic
electron generation, which notably improves the spatial resolution and avoids
conducting coatings on insulating materials. Scanning TEM is a variation of TEM
in which the focus electron beam is scanned across the specimen.

Atomic force microscopy (AFM) gives information in the three spatial dimen-
sions. It scans the specimen with a probe that mechanically interacts with the
specimen and measures the force as a function of their mutual separation. It creates
three-dimensional images of nanoparticles with sizes between 0.5 and 50 nm. The
MNPs can be deposited on a cleaned silicon substrate after sonication, left to dry for
5–10 min, and blown by a nitrogen stream to eliminate the residual solution [39].
AFM does not require conductive coating of the sample and can work in liquid
medium. Magnetic force microscopy (MFM) is a variation of AFM that uses a
magnetic tip to interact with the sample and visualize magnetic domains [40]. MFM
has been used to distinguish between blocked and superparamagnetic magnetite
particles in aggregates [41].

For many aspects of the bio-applications, the hydrodynamic size plays a vital
role. This size includes not only the inorganic core of the particle but also the
coating and solvation molecules. It can be obtained by dynamic light scattering
(DLS). In this technique, a laser beam irradiates the sample, and the scattered light
is collected. The intensity fluctuates depending on the particles’ Brownian motion,
which in turn is related to their size. One can also use DLS to assess the aggregation
of the particles [42, 43] and to check the success of the biofunctionalization. When
a bio-receptor is attached to the particles’ surface, the hydrodynamic size increases.
Specimen preparation for DLS usually requires dilution to avoid multiple scattering.
The hydrodynamic size depends on the diluent salinity. Nanoparticle tracking
analysis (NTA) is an increasingly popular technique that combines light scattering
with a microscope to analyze the individual particles’ Brownian motion. It then
provides particle size distributions ranging from approximately 10–20 nm to 1000–
2000 nm [44]. Because this technique individually tracks and sizes each particle, a
low initial concentration to avoid crowded observation fields is required to achieve
accurate results (usually 106–1010 particles/mL). This dilution process and its time-
consuming handling make DLS measurements more widespread for a routine size
characterization. On the other hand, NTA offers a more accurate distinction between
the smaller and larger particles and information about nanoparticle concentration in
the liquid sample.

A comparison of experimental methods to measure metal nanoparticle dimen-
sions is found in Ref. [45]. One can learn more about nanoparticle and biological
sample preparation for electron microscopy in [46] and references therein.
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X-ray diffraction (XRD) and neutron diffraction (ND) allow investigating the
long-range crystal and magnetic structure, respectively, of the samples [47]. In
both cases, the beam interacts with the material, and the raw data consist of the
diffracted intensity as a function of the diffraction angle. The main difference is that
X-rays interact with the atom’s electron cloud, whereas neutrons interact with the
nuclei (nuclear scattering) and with the unpaired electrons (magnetic scattering). In
XRD, the diffracted intensity is related to the atomic number of the atom, revealing
the symmetry and lattice parameters of the crystallographic unit cell based on the
diffraction peaks’ angular position. Additionally, the peaks’ widths relate to the
material’s intrinsic properties, such as crystallinity, strain, or grain size. XRD is
more commonly used for structural studies because it is versatile and accessible to
most researchers. ND, on the other hand, requires a large facility’s neutron source
but provides the magnetic structure. In materials combining light elements, XRD
may not be adequate, but ND can be an alternative because it is not directly related
to the atomic number. Additionally, the atoms that are neighbors in the table of
elements are not easy to distinguish in an XRD pattern, but they can be with ND.

A full-profile fit based on Rietveld refinement can yield quantitative information
from XRD and ND experiments. It is remarkable that even though Cu Kα1 radiation
(λ = 0.15418 nm) is the most common wavelength for XRD experiments when the
MNPs contain elements such as Cr, Mn, or Ni but especially Fe and Co, XRD with a
source with a Mo anode (λ = 0.07107 nm) is more suitable because these elements
fluoresce with X-rays from a Cu anode.

Both liquid and powder samples can be examined, although the latter is preferred
in long experiments to prevent the change in the sample volume and particle position
due to the solvent’s evaporation [36]. The powder for XRD experiments is placed in
quartz sample holders of small depth. The preparation of the powdered specimen for
characterization is critical because its surface must be extremely homogeneous. In
the case of ND, double-walled vanadium cylinder sample holders are traditionally
used to reduce neutron absorption.

X-ray absorption spectroscopy (XAS) is used to study the local environment
around the metallic atoms. Even though XRD requires long-range order of atoms
(>10 nm), XAS is not so limited. The principle of this technique is based on the
absorption of X-rays by the atoms. Depending on the absorption spectrum’s energy
range, XAS is split into X-ray absorption near-edge spectroscopy (XANES) and
extended X-ray absorption fine structure (EXAFS) [48, 49]. The first is sensitive to
the oxidation state and coordination chemistry of the absorbing atoms, whereas the
second is used to determine distances and coordination numbers of the neighboring
shells around the central atom. Additionally, if the MNPs contain mixtures of phases
with different valence states of a given element (e.g., Fe in α-Fe, γ-Fe, Fe3O4,
γ-Fe2O3), XANES analysis can also be used to estimate phase ratios [48]. The
preparation of samples for XAS experiments is crucial because the thickness of the
sample affects the absorption coefficient and, thus, the intensity of the oscillations.
Two different procedures are commonly used. The first involves hydraulically
compacted pellets that are a mixture of boron nitride and the powdered sample.
In the second, a small amount of powder is spread over an adhesive Kapton tape. In
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both cases, one must optimize the samples’ thickness and homogeneity to attain the
best signal-to-noise ratio.

MNPs for bio-applications are often colloidal suspensions of mixed magnetite
and maghemite. Both are spinel ferrites with almost identical lattice parameters, so
their identification by XRD is not a trivial matter. However, Mössbauer spectroscopy
(MS) has proved to be extremely helpful in distinguishing their composition and
stoichiometry. The task is challenging in nanoparticle specimens because magnetic
interparticle interactions cause broadening of the spectral lines, which hampers a
profile-based distinction. A useful guide for Fe57 MS discrimination of maghemite
and magnetite nanoparticles is in Ref. [50]. The basis of MS is recoilless γ-ray
resonance absorption, and the recoil energy can be obtained only when both source
and absorber are embodied in a solid lattice. The sample preparation varies with
the configuration. For measurement at room temperature, several grams of powder
sample must be spread on adhesive Kapton tape, whereas for low-temperature
spectra, small Teflon boxes may encompass the powder. The samples’ thickness and
homogeneity are crucial, and the thin-powdered layer must be optimized to contain
around 5 mg of Fe per square centimeter.

Surface Properties

Routine characterization of the surface condition of the nanoparticles for bio-
applications involves ζ-potential and functional groups. The ζ-potential is the
electrostatic potential difference between the dispersion medium and the stationary
layer of fluid attached to the particle (Stern layer). It can be obtained by elec-
trophoretic light scattering (included in some DLS analyzers). It determines the
stability of the particles’ suspension (absolute values of ζ-potential above 30 mV
usually result in repulsive electrostatic forces strong enough to attain colloidal
stability). Samples may require dilution, avoiding the addition of any electrolytes
[51].

Fourier transform infrared spectroscopy (FTIR) enables investigation of the
molecules attached to the particles’ surface [52]. The spectrum gives information
about the strength and nature of the bonds and the functional groups. The measure-
ments are preferably on powder samples, usually grounded with potassium bromide
(KBr). FTIR is one of the basic techniques to prove that a ligand exchange process
has been successful [53].

Raman spectroscopy (RS) provides chemical and structural information. For
quantification, some precautions regarding the laser-induced oxidation must be
taken [54]. RS is suitable for all kinds of samples, even biological. It distinguishes
the composition of the different phases in the core and shell [55, 56]. A thorough
characterization of the surface can be done by X-ray photoelectron spectroscopy
(XPS) [57]. This technique gives the elemental composition of the outer layers of
the material and the chemical and electronic state of the elements at the surface. It is
especially useful to get information about the oxidation state in iron oxide particles
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[58], core-shell structures [59], and ligands bound to the surface [60]. Samples
for XPS must be dried powder because the measurements are made in ultrahigh
vacuum.

Concentration

The concentration of the inorganic magnetic cores of the particles in a solution
is a parameter required for most studies and applications. One can give the total
mass per unit volume, iron mass per unit volume, and number of particles per unit
volume. It can be obtained by thermogravimetrical analysis (TGA), taking great care
to measure the deposited volume. Additionally, TGA provides information about the
organic layers, the extent of coverage, and layer-mass to core-mass ratio [61]. Some
instruments include differential scanning calorimetry, which shows the endothermic
or exothermic nature of the processes. TGA requires a large sample volume and is
a destructive test. Micro-TGA eliminates this drawback [62].

Inductively coupled plasma mass spectrometry (ICP-MS) and optical emission
spectroscopy (ICP-OES) are used to determine the concentration of elements, pro-
viding high precision, accuracy, and sensitivity even with trace amounts of material.
They are compatible with any kind of samples, although digestion processes are
usually required [63, 64].

NTA devices, discussed above, can also estimate the concentration as the number
of particles per volume [65].

Magnetic Characterization

Classical and advanced magnetic characterization techniques are described in other
chapters of this book. This section aims to focus on the most used techniques and
sample preparation for MNPs that are typically used in the field of life sciences.

The most used magnetometers for MNPs are vibrating sample magnetometers
VSM [66], alternating gradient force magnetometers AGFM [67], and magne-
tometers based on superconducting quantum interference devices SQUIDs, often
including AC susceptometry based on mutual induction [68]. Fluxgate magnetome-
ters are often used to measure magnetorelaxometry.

The magnetic properties of MNPs that more substantially affect their biomedical
applications are their DC and AC hysteresis, remanent magnetization MR, saturation
magnetization MS, magnetic effective anisotropy Keff and magnetic interactions,
blocking temperature TB, DC and AC permeability, and relaxation. The methods
to obtain them are with DC magnetization curves as a function of applied field
or temperature (zero-field cooling and field cooling ZFC-FC; isothermal remanent
magnetization IRM; demagnetization remanence curves DCD; and first-order rever-
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sal curves (FORC); and field, temperature, or frequency dependence of AC magnetic
susceptibility).

ZFC curves are obtained by cooling the sample in zero applied field from room
temperature to, usually, liquid-helium temperature (4.2 K) and then applying a DC
field and measuring the magnetization (MZFC) while the sample is warmed. FC
curves are obtained in the same way but with the field applied during cooling (MFC)
[69]. The blocking temperature determines the transition between the blocked and
the superparamagnetic state. Some authors identify the temperature at which the
MZFC has a maximum (Tmax) with the blocking temperature [70, 71], which is
adequate for monodisperse populations. In other cases, the TB is obtained from
the TB-distribution curve (calculated as the temperature derivative of the difference
MFC − MZFC). For monodisperse populations, the FC and ZFC curves would
coincide for temperatures above TB; their separation, quantified by the difference
of Tmax and Tirr (temperature at which the two curves merge), is an indication of
the degree of polydispersity [69]. We can calculate Keff = 25kBTB/V for average
particle volume V and Boltzmann constant kB . ZFC–FC curves are also effective to
study the MNP interactions, which cause spin glass or superferromagnetic behavior
[72, 73].

The remanent magnetization technique can provide a thorough insight into the
MNP interaction. It consists of two curves: IRM and DCD. Both are obtained
applying a field H and measuring MR after its removal. For IRM, the sample
starts demagnetized while for DCD it starts from negative saturation (The IRM
is measured after the application and removal of a field with the sample initially
demagnetized. The DCD is measured from the saturated state by application of
increasing demagnetizing fields). In an ideal non-interacting system of monodomain
particles, Wohlfarth’s relation [74] holds

∂M = mDCD
r (H) −

(
1 − 2mIRM

r (H)
)

= 0 (1)

where mDCD
r (H) and mIRM

r (H) stand for the remanent magnetization in DCD and
IRM, respectively, normalized by the saturation magnetization value at H → ∞.
A nonzero value of ∂M is an indication of the magnetic interactions. This is
traditionally represented in a Henkel plot or ∂M plot [70, 75]. Given that these
techniques are related to the remanent state, the curves need to be obtained below
the particles’ blocking temperature.

First-order reversal curve (FORC) analysis can provide distributions of the local
interaction and switching fields [76]. To obtain a FORC, an initial saturating field
(HS) is applied and reduced to the return field (HR); H is then increased up to HS
while measuring the magnetization M(HR, H); the procedure is repeated for equi-
spaced values of HR. For a non-interacting system of monodomain particles, the
differential susceptibility

χm (H,HR) = ∂M

∂H

∣∣∣∣
HR

(2)
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is the same for all the values of HR in the common range of H, but this equality is
broken due to interactions. These interactions are then shown in the FORC diagram
[77], that is, the bidimensional plot of the FORC distribution

ρ (H,HR) = −1

2

∂2M

∂H∂HR
(3)

on the H–HR plane [78].
Dynamic magnetic susceptibility (DMS) (also called AC magnetic susceptibility)

frequency spectra are essential to evaluate the MNPs’ potential in many biomedical
applications. For example, the DMS (103–108 Hz) of blocked nanoparticles can
be used to determine their interaction with proteins in their protein corona [79].
DMS and AC magnetization curves and susceptibility are also crucial to assess the
heating capacity of nanoparticles for magnetic hyperthermia or their use as nanotags
in inductive biosensing.

Magnetorelaxometry consists of magnetizing the MNPs by applying a static
magnetic field, removing it, and measuring the sample’s decaying magnetization as
a function of time. For this purpose, one or several sensitive magnetometers monitor
the magnetization evolution. For strictly monodisperse particles, one expects an
exponential decay with a size-dependent time constant. A MNPs suspension has
a nontrivial, non-exponential decay that depends on the hydrodynamic size, size
distribution, and aggregation.

Most magnetometers and susceptometers can measure either liquid or solid
samples. Liquid samples are preferred, for example, when there is an interest
in distinguishing effects associated with Brownian relaxation or changes in the
magnetization dynamics produced by bioconjugation, chaining, or agglomeration
of particles. Nevertheless, solid samples are usually easier to handle and the only
possibility for measurements with a varying temperature that goes through the
melting point of the solvent. One rough option is to dry the samples, encapsulate
the powder in a gelatin capsule, and press it with cotton (to avoid movement during
measurement). However, this may increase the interaction among the particles,
which can affect the effective anisotropy constant, the distribution of blocking tem-
peratures, or the characteristic relaxation times. In general, the particles’ dispersion
with a concentration smaller than 1 wt.% in a solid matrix can assure that the
measured magnetic properties are intrinsic [80]. Ref. [81] has a detailed discussion
of precautions needed for sample preparation for measurements of samples with low
magnetic moments.

Preclinical Characterization

For biomedical applications, especially in vivo, nanomedicines must be safe for the
patient. A thorough study of the transport and fate of MNPs in the human body is
vital before any diagnostic or therapeutic concept is transferred to the clinical field.
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Preclinical characterization involves assays for toxicity, sterility, and interactions
with living biological matter, including MNP uptake by cells or macrophages, and
thrombogenic or hemolytic effects. Ref. [82] and references therein contains a
detailed description of these techniques for both in vitro and in vivo models.

When the nanoparticles enter a biological system, some effects can crucially
affect their behavior: size growth due to protein corona, agglomeration due to
interactions among proteins, the variation of their magnetic properties caused by
biodegradation, or the change of Brownian relaxation due to viscosity. It is then
essential to characterize the nanomaterials in biological matrices that mimic the
application environment [83].

5 Magnetic Bio-Separation

Many areas of biosciences and biotechnology require the separation of specific
biomolecules from a complex medium. The two main processes that involve bio-
separation are (i) the isolation or purification of a target biomolecule for its study or
further use (e.g., antibodies, viruses, or genes) and (ii) the enrichment or concentra-
tion of a molecule in the sample, for example, to ease its detection or quantification.
Additionally, magnetic separation can be employed for environmental applications
in water and soil remediation, either to remove iron-containing particles or to
eliminate other contaminants adsorbed at the surface of a MNP [84, 85].

The basic principle of the magnetic bio-separation is simple: MNPs bearing a
specific surface functionalization to capture the target molecule are mixed with
the complex sample and incubated for a few minutes to allow the molecule-
particle binding, after which the particles are trapped by a magnetic field gradient,
carrying the desired molecules. The supernatant can be removed and the specific
biomolecules resuspended in a fresh medium.

This kind of magnetic “fishing” relies on the affinity constant of the ligand (which
determines the specificity and recovery), the magnetic moment of the particles, and
the magnetic separator, as Fig. 3 exemplifies.

The surface of magnetite or other ferrite nanoparticles can be modified for sepa-
ration purposes. Although superparamagnetic particles can be stable in suspension
and easily resuspended, their magnetic moment is small and corresponds to their
size. In this case, high magnetic gradients are needed to separate them. Small
superparamagnetic particles can be encapsulated in biopolymers, porous glass, or
magneto-liposomes, forming micrometer-sized beads to attain the large magnetic
moments that favor efficient separation in low magnetic gradients.

Magnetism has some advantages versus alternative techniques such as column
chromatography, precipitation, ultracentrifugation, or filtering. One of them is that
all steps can be produced in only a tube, avoiding the sample losses associated with
transfer. Magnetic separation does not involve costly reagents or equipment, and
it can easily handle large-scale operations and automated processes. The magnetic
technique can deal with samples containing particulate material, and, contrary to
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Fig. 3 (a) Schematic representation of the affinity ligands that can be attached to a MNP. (b)
TEM image of MNP Escherichia coli recognition via anti-E. coli antibody attached to fluidMAG-
Streptavidin (Chemicell GmbH, Germany). (c) MNP internalized by a HeLa cell. (d) Detail of the
internalized MNP by a HeLa cell [86]

chromatography or filtering, it does not lead to very diluted molecule solutions. In
fact, magnetic separation is useful for a preliminary concentration of bio-analytes
for their detection, which can be done by the same particles used in the role of
detection labels. Another excellent feature of magnetic separation compared to, for
example, centrifugation, is that it involves only small shearing forces, which ensures
the integrity of the molecules during the procedure.

To attract a particle of magnetic moment −→
m and separate it from the matrix, a

magnetic gradient is required to produce a force
−→
F = ∇

(−→
m · −→B

)
. The simplest

setup to create a magnetic gradient is a permanent magnet, especially if it has a pole
with a sharp or pointed shape.

In the literature and market, one can find various designs with different geome-
tries and coatings depending on the specific needs, such as laboratory tubes, sample
volume, biocompatibility, or disinfection. Flow-through magnetic separators obtain
a high gradient useful to capture small volume or weak magnetization particles [87].
They consist of column filters made of densely packed ferromagnetic spheres or
fibers magnetized by a permanent magnet or superconducting solenoid. The sample
containing MNPs flows through the magnetized column and is trapped by it. After
removal of the applied field, the nanoparticles and their cargo are released from
the filter by pushing water or another solvent through it. The column filters are
disposable.
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6 Magnetic Nanoparticles for Biosensing

Today, more than ever, biomedicine, food industry, and environmental safety
demand procedures for biomolecule detection that are as fast, specific, and sensitive
as possible. Depending on the precise application, other specifications may be
crucial, such as low cost, ease of use, and portability.

Various research groups are responding to these demands with solutions that
rely on MNPs as signal reporters. Most biosensing platforms adapt magnetic
field sensors to excite the nanoparticles and detect their magnetization. Small
devices are based mainly on Hall effect, magnetoresistive, or inductive sensors and
microfluidics or surface biofunctionalization to bring particles into the sensing area
[88–90]. Some bio-analytical systems with extremely high accuracy involve SQUID
or atomic magnetometers or nuclear magnetic resonance [91, 92].

Other chapters of this book treat in detail the basics of magnetic field sensing.
We focus in this section on how to adapt them for biological specimens tagged with
MNPs.

Spintronic Sensors

Spintronic sensors based on either giant magnetoresistance GMR, tunnel mag-
netoresistance TMR, or planar Hall effect PHE can be used for ultrasensitive
detection of MNPs and, consequently, for biosensing [89, 93]. Among them, GMR
devices, specifically spin valves SPV, have been the most widely used for biosensing
applications. As in the case of the bio-separation, for bio-detection the MNPs will
tag the target analyte by affinity ligands attached to their surface. Once this step
accomplished, the next steps consist of (i) removing the non-bound nanoparticles
and (ii) detecting and quantifying the nanotags. The sensor arrays are coated with a
corrosion-resistant passivation layer, and then a small area is biologically activated
by immobilizing the bio-recognition molecules that selectively capture the target
analyte. The latter is tagged with MNPs before or after this capture. In this way,
the MNPs are very close to the sensing layer, which is essential to detect the
magnetic fringing fields. The geometry and size of the biologically activated area
and the particles’ spatial distribution are essential variables to consider for precise
quantification.

The transformation of a spintronic sensor into a biosensor involves challenging
tasks, such as integration with microfluidic channels to bring the fluid sample into
the sensing area, passivation of the sensor surface and electronics, chemical surface
modification to bind the target molecule, and washing out of the unbound particles
and molecules. Ref. [94] has further details on sensors’ surface modification.

Uncontrolled agglomeration of MNPs should be avoided, as it could cause
obstructions in microfluidic channels. Also, uneven agglomeration can produce
calibration failures, as different-sized agglomerates can attach to the biomolecule.
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Fig. 4 Scheme of a GMR sensor (top left), a TMR sensor (top right), and the resistance response
in a biosensing application (bottom)

Finally, magnetic dipolar interactions can modify the magnetic response of the parti-
cles and consequently, their quantification. For all these reasons, superparamagnetic
particles are preferred for this application.

The magnetic nanotags must be excited by either a DC or an AC magnetic field
to produce a detectable fringing field (Fig. 4) In addition, another biasing field may
also be applied to define a proper working point for the sensing multilayer.

Using SPV sensors, some authors report the detection of only 20 Fe3O4 MNPs
of 16 nm, equivalent to a total magnetic moment of 15 × 10−18 A m2. After
the adequate surface biofunctionalization, they can detect proteins and DNA with
limits of detection below 10 pM (0.4 ng/mL) and procedure durations below 2 h
[93]. Cubic nanoparticles of Fe70Co30 with saturation magnetization as large as
226 A m2/kg of FeCo have been used for GMR detection of proteins achiev-
ing sensitivities 13 times larger than that of standard ELISA techniques [95].
Nanometric trapezoidal multilayers consisting of two ferromagnetic nanolayers
magnetostatically coupled through a ruthenium spacer have been used for GMR
quantification of proteins combined with magnetic tweezers. Their high saturation
magnetization of 150 A m2/kg of CoFe allowed limits of detection of 10 pM
[96]. Configurations to detect influenza viruses, proteins, DNA strands, Escherichia
coli, the liver cancer biomarker α-fetoprotein, and sentinel lymph nodes [97] are
other examples of direct contact GMR and TMR biosensors. Biosensing platforms
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based on micro-Hall sensors have been reported for the detection of DNA [98] and
circulating tumor cells in unprocessed biological samples [99].

SQUID and Atomic Magnetometers Applied to Biosensing

Magnetometers based on superconducting quantum interference devices (SQUIDs)
are among the most sensitive magnetometers, capable of measuring magnetization
relaxation, remanence, and susceptibility. For biosensing, the molecule to detect is
tagged with MNPs in suspension. Magnetic relaxation immunoassays are based on
modifying the magnetization relaxation time of the MNPs when they are bound to
the molecule. The free MNPs relax fast by Brownian motion (involving physical
rotation of the particles), but when they are bound, their relaxation takes place
mainly by Néel relaxation (the magnetic moment of the particle rotates to align
with the magnetic field), which is significantly slower. The measurements are
usually done in liquid samples containing both the bound and free particles, thus
avoiding the time-consuming washing steps or the microfluidic devices to separate
them. For this reason, this method is usually called wash-free or liquid-phase
immunoassay. They can also be done by immobilization on a surface or latex
beads much larger than the MNP. In general, various measurements are necessary
to interpret the relaxation rates and allow quantification, which is mainly done by
comparing to reference curves for the relaxation of bound and unbound MNPs. For
this application, iron oxides and spinel ferrites are the most used. The MNP solution
must be very homogeneous in size and magnetic properties. Its colloidal stability
and exhaustive control of their agglomeration must be assured to avoid false-positive
detections.

SQUID magnetometers can also be used for detection based on AC susceptibility
or remanence measurements and their change upon immuno-attachment of the MNP
to the target analyte.

Atomic magnetometers are made of gases of rubidium or cesium. Their working
principle is detection of the interaction between the atomic gas moments and the
external magnetic field. They are highly sensitive, and unlike SQUIDs, they do not
require cryogenics. For bio-detection, the magnetic response of the MNP before and
after binding to the target molecule is studied.

Ref. [89] has an exhaustive description of these magnetometry bio-detection
techniques and an extensive collection of applications on biomarkers, tumor cells,
and DNA detection.

Faraday Induction Coil Biosensors

Faraday coil magnetometers and susceptometers can also be adapted for bio-
detection mediated by MNPs. A variety of approaches differ both in the transducer
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coil and the electronics. In most inductive biosensors, an excitation coil produces
a time-varying field that affects the MNPs, which, in turn, produces a changing
magnetic flux that is picked up by a second coil. The pickup coil’s response can be
measured as a change of its self-inductance by an impedance analyzer, a variation
of its resonance frequency, or by monitoring the induced voltage. The system can be
reduced to a single coil with a dual role: excitation and detection if high frequencies
are used to achieve a significant coil quality factor. In this case, superparamagnetic
particles are advantageous because their initial magnetic permeability drops only at
very high frequencies, above those corresponding to their Néel relaxation times.

Depending on the coil geometry, inductive magnetometers can encompass a vial
with the liquid sample or an immune-active substrate on which the magnetically
tagged analyte is captured [89, 100].

Magnetic Lateral Flow Immunoassays

Bringing a liquid sample close to the transducer usually involves coating the
sensing surface and electronics with a corrosion-resistive passivation layer, inte-
grating microfluidics, and washing out the remaining liquid after immobilization
of the target molecule. Additionally, the regeneration of binding sensor surfaces is
necessary to make them reusable and keep the cost down. Removing the biological
material without damaging the sensor is complex and a research matter itself [101].

Paper-based microfluidics consists of a porous cellulose membrane that guides
the liquid by capillary action and therefore without pumps. It may include filtering
stages and has a high surface to volume ratio, which enables a large number of bio-
recognition events. Additionally, the membranes are disposable and biodegradable.

Among the paper-based microfluidic analytical devices, probably the best known
is the lateral flow immunoassay (LFIA) [102]. A popular example of LFIA is the
home pregnancy test. Its main element is a strip of nitrocellulose membrane along
which the liquid sample can run (Fig. 5). In the first stage, the target molecule
(e.g., the human chorionic gonadotropin hCG) is selectively labeled by a signal
particle (which is attached to a specific anti-hCG antibody). Two lines of selective
recognition molecules have been dispensed across the membrane strip: the test line,
at which the target analyte is captured together with its signal tags, and the control
line that traps unbound particles and is used to assess the completion of the assay.
This type of test is called a sandwich or direct assay. If it is not possible to attach
two antibodies to the target molecule, an indirect or competitive assay is used.

A binary presence/absence response may be adequate for pregnancy tests, but
many other biomedical, food safety, or environmental targets require quantification.
In such cases, the LFIA must be combined with a sensor that does not compromise
the advantages of low cost, portability, and easy use. MNPs used as tags can provide
a quantifiable signal along with other benefits, such as magnetic immuno-separation
or concentration of the analyte, long-lasting signal, and lack of interference and
background signal from the biological matrix or the paper.
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Fig. 5 Schematic representation of a LFIA in sandwich format

Besides the conditions common to other magnetic immunoassays and biosensing
applications, like the homogeneity of the magnetic properties and size, LFIA
requires that the MNPs are dispersed in a water solution. The particles’ hydrody-
namic size must be kept below a threshold that depends on the membrane pore
size (typically in the order of 0.1 to 1 μm), which determines the flow rate and
the sensitivity. Other specifications are related to the sensing technology, mainly
GMR or Faraday inductive sensors [103, 104]. Ref. [105] has more information on
magnetic LFIA.

Magnetic Nanoparticles in Nonmagnetic Detection

Nonmagnetic sensors can also use MNPs for pre-concentration, separation, and
location of the target molecules.

In some nonmagnetic affinity sensors (e.g., electrochemical, piezo-immunoassays,
or impedance sensors), the MNPs are used as an interesting alternative to
immobilize the antibody instead of a direct attachment. Disposal and renewal of the
antibody layer is easy, allowing regeneration of the sensing surface. Additionally,
in some enzymatic sensors (with conductimetric, amperometric, or potentiometric
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transducers), MNPs simplify the enzymes’ storage and handling [106, 107]. In
some Bio-Bar-Code sensors [108, 109] for high sensitivity detection of protein and
DNA, MNPs are used for immuno-separation.

7 Magnetic Nanoparticles for Bio-Imaging

Magnetic resonance imaging (MRI) is one of the most used techniques for nonin-
vasive biomedical diagnosis due to its innocuousness, good spatial resolution, and
penetration depth. It is based on the detection of water protons’ magnetic relaxation;
the contrast in soft tissues comes from the different proton density in different
tissues, intra- or extracellular spaces, or lipidic environments, or different relaxation
times.

MRI devices consist of a superconducting magnet, gradient magnetic fields, RF
coils, and signal processing equipment. An intense magnetic field is applied to align
the protons’ magnetic moment in the field’s direction. A magnetic gradient is super-
imposed on it to encode the signal spatially (because it causes the field strength to
vary linearly in space). A radiofrequency field then reorients the protons’ magnetic
moment to align either at 90◦ or 180◦ with the applied magnetic field. When this
pulse is turned off, the relaxation can be measured in longitudinal (T1, spin-lattice
relaxation) and transverse (T2, spin-spin relaxation) modes. Protons that relax fast
produce a large signal (the time variation of the magnetic moment is picked up
by inductive coils), whereas those that relax slowly produce a smaller one. The
different signals lead to the contrast between tissues. MNPs enormously contribute
to the enhancement of this contrast. In addition, MNPs can be functionalized to
attach specifically to tumor cells, facilitating early cancer diagnosis.

Paramagnetic particles containing chelated gadolinium are widely used to
shorten T1 by coordinating with the water molecules, which increases the positive
contrast. But their potential toxicity has led to the expansion of research on
superparamagnetic iron oxide nanoparticles as contrast agents thanks to the dipolar
coupling of their large magnetic moments to the water protons’ moments. (MNPs
have magnetizations that are 108 times larger and relaxations 104 times faster
than those of water protons.) T1 relaxation comes from the fluctuating electron
spin moment of the contrast agents coupling with neighboring water protons’
moments, which quickly relax back to their equilibrium magnetization, resulting
in an increased 1/T1 rate MRI signal (positive contrast) and reduce the acquisition
times [110, 111]. On the other hand, T2 relaxation comes from long-range magnetic
dipolar fields, which locally shift the proton resonance frequency and dephase the
proton spin precession. This leads to a faster T2 relaxation and a reduced MRI signal
(negative contrast) so that the affected regions appear darker [112]. The effect of
particles’ size and microstructure on the magnetic relaxivity are crucial [113]. The
relaxation rate 1/T2 increases quadratically with the particle’s size (the outer-sphere
spins dominate it), until it reaches a limit value. On the other hand, ultrasmall
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superparamagnetic iron oxide particles have higher longitudinal relaxivity, leading
to improved T1-weighted images.

While toxicity concerns hamper the in vivo application of many nanoparticle-
based compounds, iron oxide MNPs of several formulations have been approved by
the US Food and Drug Administration and the European Medicines Agency as MRI
contrast agents. The particle coating and thickness are crucial as they have a strong
influence on MRI performance, pharmacokinetics, and biodistribution [114–116].

The emerging magnetic particle imaging (MPI) technique entirely relies on the
MNPs used as tracers for image formation. The magnetic tracers are detected by
Faraday induction with a pickup coil. The exciting field is its most peculiar feature.
It consists of a time-varying magnetic field gradient (selection field) carefully
designed to have a field-free point (FFP). The selection field is strong enough to
align the MNPs except around the FFP. The FFP is rapidly moved in the image
volume so that particles are misaligned around it, while the magnetization changes
are picked up by the detecting coil. The signal is proportional to the number
of particles and related to the location of the FFP, yielding a map of the tracer
accumulation. This map is frequently superimposed on anatomical images such
as those obtained by MRI, which provides accurate information about the tracer’s
distribution in the patient’s body. In MPI there is no background noise coming
from biological tissues, which enables high contrast. Its high spatial resolution
(about 1 mm) combines with low acquisition times (on the order of or below 1 s)
to allow real-time in vivo imaging [117, 118]. These characteristics make it an
exciting tool for different clinical applications such as cardiovascular, pulmonary
or gastrointestinal imaging, cancer diagnosis, brain injury detection, and in vivo
tracking of stem cells [119, 120].

As in other in vivo applications, iron oxide nanoparticles stand out for MPI
tracers. Sensitivity depends on the magnetic moment, which can be increased by
increasing the particle size (staying below the superparamagnetic limit) and by
agglomerating or encapsulating small particles. A large initial magnetic permeabil-
ity makes differences in magnetic field amplitude translate into large variations of
the magnetic moment in the measurement direction, resulting in a better spatial
resolution. Therefore, the optimal size depends on the operating frequency [121].
Gleich and Weizenecker did the first experiments on MPI in 2005 [117]. They
recommended a magnetic core size of 30 nm to work at 25 kHz with field amplitudes
of 10–20 mT. Since then, the commercial contrast agent Resovist

®
(Schering AG,

Berlin) [122] is considered the gold standard for MPI tracers. Although most
MNPs in Resovist

®
are very small, they form aggregates with average sizes of

24 nm that behave like monodomains. A variety of aggregation strategies are being
investigated to increase the number of magnetic nuclei at a spot of interest while
providing biocompatibility and functionality: micelles, liposomes, and bacterial
magnetosomes (Ref. [121] and references therein.)
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8 Magnetic Hyperthermia, Magneto-mechanical Disruption,
Drug Delivery, and Tissue Regeneration

MNPs can enable new tools for biomedical therapy, standing alone or in combi-
nation with plasmonic particles. Moreover, they are used for theranostics, a term
derived from the contraction of “therapy” and “diagnostics.”

Localized therapy that avoids collateral damage is possible thanks to the small
size of the MNPs and the possibility of remotely guiding them and targeting
a specific location of interest. Whether thermal, mechanical, or chemical, the
therapy can be focused, thereby reducing the required dosage. The most significant
innovations are in magnetic hyperthermia, magneto-mechanical tumor destruction,
and drug transport and delivery.

Heating cancer cells to 40–46 ◦C can destroy them or, at least, make them more
susceptible to chemo- and radiotherapy. For localized tumors, local heating can be
more efficient and safer than heating extensive body areas. This is the motivation
for magnetic hyperthermia (MH) development, firstly proposed by Gilchrist et al. in
1957 [123]. This technique uses the MNPs as mediators that transform the energy
provided by an alternating magnetic field into heat delivered to the tumor cell. This
transformation mechanism is the magnetization rotation, which can take place by
Brownian or Néel relaxation. Inside the biological tissue, the MNP are practically
immobilized, so Néel relaxation is the dominant mechanism. The delivered energy
per cycle for a volume of particles VMNP can be calculated as the hysteresis
loop area: E = μ0VMNP

∮
MdH, where μo is the permeability of free space. Of

course, E depends on the frequency and amplitude of the driving field H. Even
for particles with minimal hysteresis in DC mode, the magnetization loop area
increases significantly for frequencies in the order of several kilohertz because of
the time lag between the induced magnetization and the applied field. This makes
magnetic heating possible even for moderate frequencies. At higher frequencies,
the particles behave as blocked and therefore do not respond to the magnetic field
or have hysteresis. This is relevant because high frequencies and amplitudes are
not safe for healthy organs (they can affect nerve synapses which produce undesired
muscle stimulation and heart malfunctioning). Some studies suggest that the product
of frequency and amplitude should not exceed 4.85 × 108 A m−1 s−1 [124].

The MNPs’ heating capacity is characterized by the specific absorption rate
(SAR, also known as specific loss power), defined as their heating power per unit
mass:

SAR = P

m
= C

m

dT

dt
(4)

where C is the specific heat capacity of the colloidal suspension, m is the mass
of the magnetic core, and dT /dt is the rate of temperature change. Obtaining
the SAR from magnetometry, instead of calorimetry, makes it easier to maintain
adiabatic conditions and obtain its dependence on temperature [125]. In this case,
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Fig. 6 (a) Computable mouse virtual phantom used for in silico testing. (b) Temperature maps of
a melanoma corresponding to different times after starting thermal relaxation. (c) Time evolution
of temperature extracted from the analysis of the thermal maps in (b) for an advanced-stage tumor
and a healthy tissue. Copyright 2018 Wiley; used with permission from H. D. A. Santos et al. [130]

SAR can be calculated from the hysteresis loop area, the frequency f, and the particle
concentration c as:

SAR = f

c
μ0

∮
MdH (5)

In general, the maximum SAR is achieved when the frequency of the applied
field equals the inverse of the relaxation time of the MNPs, but it also depends on
the field amplitude H0 (in the linear response regime, the area of the magnetization
curve is directly proportional to H 2

0 ). To facilitate comparison of the results of
different laboratories, the heating capacity is identified by the intrinsic loss power
ILP, defined as ILP = SAR/

(
fH 2

0

)
, with the advantage of it being independent of f

and H0 for moderate values.
For details on MH instrumentation, one can refer to Ref. [126].
The MNPs’ heating power depends on extrinsic parameters, such as the exposure

time, frequency, and amplitude of the applied field, and on intrinsic ones, such as
their size, saturation magnetization, and anisotropy constant, which are interrelated
[127]. If we compare, for example, magnetite and cobalt ferrite nanoparticles, we
see that the latter have larger magnetic anisotropy and, consequently, wider hystere-
sis loops but at the same time, will require larger field amplitudes. Additionally, the
biological environment in which the MNPs are located, their agglomeration, and
distribution have an enormous influence on their mobility and, hence, on the type
of magnetization relaxation permitted [128]. Magforce

®
developed a human-sized

MH device working at 100 kHz and 0–18 kA/m, which obtained European Union
regulatory permission to treat patients with brain tumors [129].

In silico testing is an emerging research line in the field of MH (Fig. 6) to
predict heating efficiency. Modeling and simulating the temperature distribution,
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mass concentration, and heat transfer can significantly reduce the number of in vivo
trials on animals and humans. Numerical computations must include the relevant
parameters of the MNPs and the intracellular environment (i.e., the tumor cell).
This technique’s long-term goal is to guide clinicians in adjusting dosage and other
variables to the tumor’s evolution.

Magneto-mechanical actuation has appeared recently as a new application of
alternating magnetic fields in cancer cell destruction (some studies use rotating or
precessing magnetic fields). In this case, the alternating magnetic field’s desired
action is the physical rotation or oscillation of the particles, which induces the cancer
cells’ death. The cell damage is provoked mainly by cell membrane disruption and
the trigger of programed cell death (apoptosis).

Magneto-mechanical action is mediated by anisometric particles that rotate or
vibrate under rotating or alternating magnetic fields of moderate amplitudes and
frequencies on the order of millitesla and tens of hertz. Magnetic microdisks
that possess a spin-vortex configuration ground state are good candidates for
this application, as they do not have remanent magnetization, which avoids their
undesired agglomeration. When a field is applied, the magnetization vortex shifts,
making the particle oscillate [131, 132]. The advantages of this technique over
hyperthermia are that it avoids collateral thermal damage, and the power source
requirements are much lower. On the other hand, their current microsize can be a
problem for in vivo applications as they can be cleared by the immune system or
do not cross biological barriers. Smaller anisometric particles [133, 134] such as
nanodisks, nanorectangles, or nanorods can produce significant mechanical action
if stimulated with stronger magnetic fields, easily achievable because the frequency
required is low. However, one of the challenges is upscaling their fabrication.

Drug delivery is another biomedical challenge that can profit from MNPs. It is
well recognized that large systemic drug doses may have adverse effects on healthy
organs. Magnetic nanocarriers can significantly reduce them by local delivery of
therapeutic doses of the drug, which can be sustained in time and have deeper
penetration (e.g., inside of tumors).

In 1908 Paul Ehrlich received the Nobel Prize in Medicine for his advances
in immunology. He popularized the concept of “magic bullet” to refer to an ideal
therapeutic agent that would act locally and specifically against a pathogen without
relevant undesired side effects. This is the goal pursued by investigations on MNPs
as drug or gene carriers. It involves three aspects: the cargo, the transport, and
the release. The drug’s linkage can be obtained by covalent bonding, entrapment,
adsorption, or microencapsulation in biocompatible polymers or vesicles [135]. The
latter may facilitate the drug administration, favoring dosage control, and patients’
compliance.

Once attached, the MNP-drug complex is injected in or close to the target and
can be guided by magnetic field gradients. Targeting of the diseased site can be
active or passive. Active targeting points to specific receptors that only tumors
express or overexpress on their surface. The nanocarrier must then be accordingly
functionalized against such a receptor. On the other hand, the passive targeting
strategy relies on the selective accumulation of the MNPs at the tumor, which has



796 M. Salvador et al.

Fig. 7 TEM image of a MTB
with magnetosomes aligned
along its body (image
courtesy of M. Luisa
Fernández-Gubieda,
University of Basque
Country, Spain)

limited lymphatic drainage and is particularly permeable compared to healthy cells.
Once at the target, the MNPs can act at the tissue or be internalized by the cell,
either by endocytosis or phagocytosis. The drug released may be triggered upon
environmental changes or external stimuli, such as the temperature rise produced
by magnetic hyperthermia (with a thermosensitive porous coating on the magnetic
nanocarriers).

One of the most challenging drug delivery goals is crossing the blood-brain
barrier (BBB) to reach the central nervous system. Besides an adequate coating or
encapsulation in liposomes, MNPs can be forced across the BBB by a magnetic
force. Some studies propose the help of magnetic drilling enabled by helical
dynamic gradients and multilayered Au-Fe nanorods [136].

Some researches study magnetotactic bacteria MTB (see Fig. 7) as “smart”
drug or gene carriers [137]. MTB are frequently found in freshwater reservoirs.
They contain magnetosomes, which are highly crystalline magnetite nanoparticles
(with sizes of 30–120 nm) surrounded by a phospholipid layer. MTB usually have
around 15–20 magnetosomes aligned along their body, which act as a natural
compass. They are natural swimmers that follow the magnetic field lines propelled
by their flagella. Besides the targeting enabled by a magnetic gradient, MTB can use
other natural properties. For example, aerotactic MTB have an affinity for oxygen-
depleted hypoxic regions, which are the most active in tumors [138]. MTB can
bear a high cargo loading, such as nanoliposomes attached to the bacteria or gold
nanoparticles that favor endocytosis [139]. To release the therapeutic agent, MTB
are subjected to an alternating magnetic field to produce hyperthermia [140], which
eventually dissociates the bacteria.

Tissue regeneration refers to procedures that combine scaffolds, cells, and
therapeutic agents to replace or regenerate tissues to undertake normal functions.
Success at regeneration requires the precise delivery of transplanted cells and growth
factors and their retention and controlled release. Some keys for using MNPs in
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tissue regeneration have been already reviewed in this chapter: biocompatibility,
magnetic targeting, surface modification with targeting moieties, magnetic heating,
and ability to load therapeutic compounds.

MNPs can target cells, drugs, and nucleic acid and control their retention in
diseased tissue until differentiation occurs. They are sometimes combined with mag-
netic scaffolds fabricated by dip-coating a conventional synthetic bone or vascular
scaffold in a MNP solution. Such a scaffold can be magnetized by a magnetic field
external to the body to attract the MNPs loaded with drugs. Alternatively, a porous
magnetic scaffold can be loaded with MNPs. After transplantation, the particles’
biological load is triggered and controlled by magnetic hyperthermia [141].

Magnetic stents can open vascular conduits and create magnetic gradients to
capture MNPs. This procedure can avoid re-obstructions and reduce the drug dose
[142]. Additionally, an external field can change the stent’s shape and volume to
deliver therapeutic agents on demand.

Some types of regeneration involve introducing genes into cells, which is known
as transfection. “Magnetofection” has been developed to enhance its efficiency. It
consists of magnetically guided and forced delivery of nucleic acids by MNPs.

MNPs can promote cell proliferation thanks to their coatings’ biochemical
properties. (For example, calcium phosphate coating significantly improves bone
tissue osteoblast density [143].)

Vascularization is an essential requirement for the success of implants. Remote
magneto-mechanical action based on MNPs can significantly enhance the formation
of new vascularization, as this process is extremely sensitive to mechanical stimu-
lation. More details and references on MNP applied to tissue regeneration can be
found in Ref. [144].

9 Conclusion and Prospects

The growing evidence of the usefulness of MNPs for biomedical applications
stimulates researchers to persist in their investigations. The worldwide 2020 coro-
navirus outbreak exemplifies the need for solutions to emerging biomedical and
biosafety problems, like affordable rapid diagnostic tests. In this context, magnetism
and, specifically, MNPs have unique properties that make them very interesting
alone or combined with other materials and procedures (e.g., optical, chemical, or
immunological) whose development and progress are also growing fast.

Thanks to the scientific community’s intense activity in multidisciplinary
research involving MNPs, one can envisage new effective and safe diagnostics
and treatment procedures. Novel routes of fabrication give rise to particles with
improved quality and varied morphologies, such as hollow MNPs, nanorods, or
molecular imprinted MNPs. Hybrid nanostructures, combining different materials,
hold promise for multiple functionalities such as simultaneous therapy and
imaging. In this exciting scenario, much interest focuses on the standardization
of terminology, synthesis routes (to ensure the batch-to-batch reproducibility), and
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characterization and metrology techniques (to enable reliable quality control) [173–
175]. In 2019, ISO/TS 19807–1:2019 established the first standard on magnetic
nanomaterials, specifying the magnetic nanosuspensions’ characteristics to be
measured and listing measurement methods for them [145].

After two decades of creative ideas on how MNP can improve health, food,
and environment, there is still plenty of room for interdisciplinary laboratories to
mimic the in vivo conditions for MNP applications. There are also opportunities
for mathematical modeling and simulation to explain and even predict magnetic
nanostructures’ behavior in biological media and their effects on them.

A few technologies enabled by MNP already have been translated to the health
care industry (MRI contrast agents), and some of them are currently undergoing
human clinical trials (drug delivery and magnetic hyperthermia). Nevertheless, there
is still some work to do for many promising inventions to be attractive enough
to be adopted. One of the biggest challenges is the technology transfer to the
medical industry and clinical medicine. Issues related to safety, protein corona
(the layer of proteins that rapidly forms around MNPs and largely influence their
performance), the noneffectiveness of magnetic gradients in deep body regions, and
matters related to manufacturing and commercialization (large-scale fabrication,
sustainability, packaging and storage, and standardization) are stimuli for future
research and innovation on the bio-application of magnetic nanoparticles.
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A
Absorption spectroscopy

elemental and chemical contrast, 232–234
magnetic contrast, 234–236
sum rule analysis, 236–238

AC magnetic susceptibility, 780
AC power losses, 666
AC susceptometry

design, 71–74
factors, 63–64
research applications, 64
research examples

differential probe of magnetism, 76–77
skin depth, 77–79
spin relaxation in magnetic materials,

79–87
technique, 63
theory, 65–71
working, 74–76

AC transverse susceptibility (ACTS), 768
AGFM, see Alternating gradient force

magnetometer (AGFM)
AGM, see Alternating gradient magnetometry

(AGM)
Alloys

AMRs, 669–671
developments, 666
FeCo, 667
hard FeNi alloy, 517
MANCs, 670
permalloys, 668–669

Alternating gradient force magnetometer
(AGFM), 139, 781

Alternating gradient magnetometry (AGM)
AGM probe, 146

Faraday balance, 139
FORC techniques, 679
hundred-fold reduction, 142
hysteresis loop, 143
limitations, 146–148
non-uniform magnetic field, 139
piezoelectric bimorph, 140
principle, 140
sample and force sensor, 140, 141
schematic representation, 141
sensitivity, 142–146
and VSM, 143

Amorphous Magnetic Ribbons (AMRs),
669–671, 676, 677

Amorphous magnets, 671
Anisotropic magnetoresistive (AMR) sensor

and GMR, 290
magnetization, 290
and MANCs, 670
Metglas 2605-SA1, 676
principles, 287–288

Anisotropy, 27–29
Anisotropy energy, 76, 120, 130, 526, 548,

549, 560, 561, 735
Anomalous eddy current (AEC) losses, 671,

675
Atomic dipole moment, 665
Atomic force microscopy (AFM), 734, 778

B
Backfield remanence coercivity (BRC), 653,

658
Backfield remanence magnetization (BRM),

653, 658
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Backscattered electron (BSE) imaging, 267
B-H loops, 671, 673–675
Biomedical applications, 772
Bit Patterned Media, 620
Blood-brain barrier (BBB), 796
Brown’s paradox, 685
BSE imaging, see Backscattered electron

(BSE) imaging

C
Calibration

low-field sensors, 297
magnetic field units, 294–296
NMR as a secondary standard, 296
three-axis sensors, 297

Cavity optomechanics, 153
Centimeter-gram-second (CGS) system, 3
Classical Preisach model (CPM), 606

Everett integral, 610–612
FORCs, 611, 612
Identification Theorem, 612
magnetic fingerprinting, 613
Preisach distribution, 608, 613
Preisach plane, 607, 609
qualitative FORC studies, 613
triangular “up” and “down”region, 609–611

Clausius Clapeyron equation, 705
Coercivity, 666

comparison, 474
and detection, 467
IRM acquisition curves, 469
numerical unmixing techniques, 568
permanent magnets

static analysis, 686–687
thermal activation, 687–689

Compositional mapping, 256
Conductivity-like damping, 446–447
Conversion table

EMU, 7
magnetism, 7
MKSA system, 7

Critical exponents, 715, 716, 718
Critical phenomena, 698
Cryogen-free system, 16
Cryogenics, 788

D
DC hysteresigraphs

alternative measurement sensors, 102–104
limitations

H field accuracy, 108
homogeneous materials, 108

integrator drift, 115–116
low-coercivity materials, 108
specimen shape, 115
thin films, 107
time-consuming, 115

measurement
equipment/block diagram, 98–100
initial curves, 102, 113
magnetizing field control, 112
sample magnetization, 102

soft magnetic materials, 108–109
temperature measurements, 104–107,

114–115
testing circuits, 109–111, 113–114
theory, 96–98, 109–111

Demagnetizing fields, 471, 521–523, 671, 782
Depth-selective imaging, 201, 225–226
Depth sensitivity, 193, 199–201, 225
Deshearing, 521–523
Differential phase contrast (DPC), 257, 261
Direct exchange coupling, 665
Domain contrast, 173–175, 183, 185–191,

194–199, 214, 268, 677
Domain state, 31, 174, 220, 225, 458, 472,

473, 480, 485, 525, 553, 558, 591
Down-switching, 631–638
DPC, see Differential phase contrast (DPC)
Drift

and calibration errors, 413
environmental, 84
fluxmeter, 112
integrator, 115–116
microprocessor-aided integrator, 99
SQUID, 49
and stacking, 490–493
and voltage, 21

Dynamic light scattering (DLS), 778, 780
Dynamic magnetic susceptibility (DMS), 783
Dynamic magnetization processes, 66, 165,

677, 679
Dzyaloshinskii-Moriya interaction (DMI)

exchange, 644

E
Eddy current losses, 666–671, 674, 675
EdH torques, see Einstein-de Haas (EdH)

torques
EDS/EDX, see Electron energy-dispersive

X-ray spectroscopy (EDS/EDX)
EELS, see Electron energy-loss spectroscopy

(EELS)
Einstein-de Haas (EdH) torques, 162, 166
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Elastic scattering, 248–249, 337, 353, 356,
357, 361

Electromagnetic units, 4, 5, 295
Electron diffraction, 248, 250, 251, 254
Electron energy-dispersive X-ray spectroscopy

(EDS/EDX), 249, 256, 267
Electron energy-loss spectroscopy (EELS),

249, 256
Electron holography, 249, 257, 262–266
Electron microscopes

diffraction, 250–252
electron-solid interaction, 248–250
high resolution, 247
imaging, 250–252
multiple electron lenses, 250–252
structural analysis, 248

Electron phase microscopy, 249, 268, 269
Electron-solid interaction

elastic scattering, 248–249
inelastic scattering, 249–250
secondary and Auger electron emission,

250
Environmental magnetism, 698
Epitaxial iron films, 219, 446–447
Exchange-spring magnets, 95, 213, 645–647
Extended X-ray absorption fine structure

(EXAFS), 779

F
Faraday effect

imaging, 204
and Kerr, 180–187
polar geometry, 174
rotation, 190
transparent materials, 172

Fast decoding, 653, 654, 656, 657
FeCo

alloys, 667
nanowires, 657

Ferrites
application, 669
cubic ferrites, 669
dipolar interactions, 128–129
FORC, 30, 31
hard ferrites, 104, 107
hexagonal, 669
magnetic permeability, 669
magnetite, 669
piezomagnetic, 731
resistivity, 669
spinel, 669

Ferroelectric materials, 606, 666
Ferromagnetic resonance (FMR), 739

cavity-based, 437
experimental methods

electrically detected, 441–442
examples, 442–447
other transmission line-based, 438–441
resonant microwave cavity-based, 437
shorted waveguide, 437–438
VNA, 441

experimental technique, 431
Kittel equation, 433–434
lineshape, 435–436
reference sample, 423
and RF permeability, 408
shorted waveguide, 437, 438
Smit-Beljers equation, 434–435
spectroscopy, 433

Ferromagnetism, 372, 377, 606, 665, 669
Field-free point (FFP), 792
First-order reversal curve (FORC), see FORC
Fluxgate magnetometers

applications, 286
benefits, 285–286
limitations, 285–286
principles, 284–285
recent developments, 286
specifications, 286

Flux-locked loop, 46–47
Fluxmeters

AC voltmeter, 114
applications, 283
benefits, 282–283
electronic, 96, 99
limitations, 282–283
principles, 280–282
recent developments, 283
specifications, 283

FMR, see Ferromagnetic resonance (FMR)
FORC, 605, 782

BaFe12O19 nanoparticles, 32, 33
BRM, 653, 657
concentrations, 456
CoPt nanomagnets, 34, 35
decoding mixtures of magnetic nanowires

drawbacks, 652
quantitative decoding, 653–655
traditional measurement speed,

655–658
distribution, 30
DoFORC software, 658
dynamic FORC measurements, 647
FORC+, 660
FORCinel software program, 32, 498, 499,

522, 658–660
FORCOT software, 660



808 Index

FORC (cont.)
Fourier space, 658
ISF, 653, 656, 657, 661
LOESS, 658
magnetic reversal behavior, 630
in magnetic thin films (see FORC

measurements on thin films)
magnetization, 658
measurements, 456, 457

classical Preisach model, 651
drift and stacking, 490–493
field control, 487–490
Fourier space, 658
magnetocaloric materials, 719
measurement speed, 655–658
parameters, 485–487
protocol, 483–485
and resolution, 487–490
sensitivity, 487–490
traditional FORC data, 652

natural particle assemblages, 524–587
nickel nanowires, 33, 34
open-source analysis software, 32
permanent ferrite magnet, 31
permanent magnets, 691–693
Preisach model of hysteresis, 457–476
processing

central ridge, 507–512
data rendering, 523–524
demagnetizing fields, 521–523
deshearing, 521–523
error estimates, 500–503
highly squared hysteresis loops,

518–521
measurement coordinates, 517–518
overfitting, 500–503
preprocessing, 493
regression methods, improved, 497–500
smoothing factor limitations, 517–518
theoretical principles, 494–497
thin hysteresis loops, 514–516
underfitting, 500–503
variable smoothing protocols, 503–507
vertical ridge, 512–514

protocol
definitions, 477–480
selected properties, 480–483

resultant, 32
signature, 457
single-domain, 29
smoothing factors and algorithms, 653
temperature first order reversal curves

(TFORC), 719–720
traditional data collection and analysis, 652

traditional FORC
data processing, 658–661
measurement speed, 655–658
quantitative decoding, 653–655

2D/3D contour, 30
FORC diagram

boomerang shape, 620
concept of hysteron, 606
FORC distribution, 651
magnetic characterization, 605
magnetic susceptibility, 618
MMC technique, 615
1D-perpendicular and-longitudinal system,

620, 621, 624–625
quantitative FORC analysis, 613, 626
simulation, 615–626
simulation of 2D-perpendicular array, 615
statistically stable Preisach distribution,

616
switching process of wires, 616–623
“T-shaped”, 615
wishbone shape, 620

Force magnetometer, 139, 781
FORC measurements on thin films

continuous films
with in-plane anisotropy, 639–641
with out-of-plane anisotropy, 641–644

domain growth, 630, 639, 642–644, 648
dynamic FORC measurements, 647
heterostructured films

exchange springs, 645–647
RKKY/DMI exchange, 645

hysteretic system, 630
interacting granular films, 634–638
isolated granular films, 632–633
sequence, 630–632
using magnetometry

magnetoresistance, 648
MIT system, 648
resistance-based measurements, 647

Fourier transform infrared spectroscopy
(FTIR), 780

Fresnel zone plates (FZP), 239–242

G
Giant magnetoresistive (GMR) sensors,

287–290, 648, 786, 787, 790
Giorgi system, 5
Gradiometer, 40, 41

H
HAADF STEM imaging, 255, 256
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Hall sensors, 276–280
Heat-assisted magnetic recording (HAMR)

anisotropy alloys, 752
Curie temperature, 752
grain interactions

cylindrical film region, 755
granular film, 754
principle, 755
switching field distribution (SFD), 754

HCR(T ), 768
HK and TC distributions

acousto-optic modulator (AOM), 764
AC susceptibility, 760, 761, 767
ambient temperature measurements,

762
anisotropic exchange coupling, 763
calibration constant, 766
dichroic mirror (DM), 765
evaluation, 762
Gaussmeter (GM), 760
granular film structure, 760
heater power supply (HPS), 761
intrinsic properties, 764
laser pulse, 764
lock-in amplifier (LIA), 760, 765
magnetization reversal mechanism, 764
MAG thickness, 763, 766–767
measurement conditions, 760
Monte Carlo (MC) model, 760, 763
PEM oscillator, 765
photoelastic modulator (PEM), 765
polarizing beam splitter (PBS), 765
pump-probe setup, 765
SFD, 761
singular point detection (SPD), 761
temperature controller (TC), 761
temperature dependence, 763
thermal field gradient, 764
Vibrating Sample Magnetometry, 762

industrial sputtering system, 753
MAG layer, 769
magnetic grains, 752
optical and thermal properties, 752
parameters, 767
PMR, 752
pump-probe method, 768
quenching/blocking temperature, 752
STEM, 753
thermal equilibrium, 752
thermal stability, 752

Faraday effect, 756
film magnetization, 756, 757
intergranular exchange

interactions, 759

magnetic shield, 756
major hysteresis loop (MHL), 756
Stoner-Wohlfarth (SW) model, 758
superconducting magnet, 756
thermal stability factor, 757
X-ray diffraction, 758

transition noise, 752
Heater power supply (HPS), 756, 761
Henkel plots, 470, 474, 782
High entropy alloys (HEA), 700
High sensitivity

and accuracy, 25
detection, 791
lock-in amplifiers (LIA), 64
measurement system, 154
nulling techniques, 64
SEMPA, 268

High-temperature superconductors (HTS),
85–88, 303

Hydrophilic particles, 777
Hysteresigraphs

limitations
H field accuracy, 108
homogeneous materials, 108
integrator drift, 115–116
low-coercivity materials, 108
specimen shape, 115
thin films, 107
time-consuming, 115

magnetic materials, 92–93, 95
measurement

alternative sensors, 102–104
equipment/block diagram, 98–100
initial curves, 102, 113
magnetizing field control, 112
sample magnetization, 102

soft magnetic materials, 108–109
temperature measurements, 104–107,

114–115
test circuit and theory, 109–111
testing circuits, 113–114
theory, 96–98

Hysteresis, 54, 58
FORC measurements, 518–521, 630
hysteretic system, 630
known susceptibility, 59
magnetic, 158
magnetocaloric materials, 719–720
measurements, 59

speed, 16
Preisach model, 457–466
rectangular, 606
sheared and corrected, 95
VSM and AGM, 143



810 Index

Hysteresis loop
AC cycle, 66
AGM and VSM, 143
Barkhausen effect, 158
CoPt nanomagnet array, 21
ferromagnetic

samples, 59
systems, 606

FORCs, 16, 29, 514–516, 518–521, 630
Helmholtz coils, 93
macroscopic samples, 461
magnetic

state transitions, 579
vortices, 559

measurement, 111
speed, 16

PSD system, 571
SAR, 793

I
Inductively coupled plasma mass spectrometry

(ICP-MS), 781
Inductively coupled plasma optical emission

spectroscopy (ICP-OES), 781
Inelastic scattering, 249–250
In-plane anisotropies, 444–446
Integrator drift, 99, 101, 111, 115–116
Interferometric method, 734–735
International System of Units, 5, 294
Inverse magnetostriction, 729
Iron oxide nanoparticles, 772
Irreversible switching field (ISF), 653, 656,

657, 661
Ising-Preisach model, 615

J
Josephson junction, 42, 44–47

K
Kerr effects, 180–187

domain phases, 174
first-order effects, 190
longitudinal, 193
magneto-optical, 151
transverse, 172
Voigt microscopy, 190

L
Light-induced and pressure hysteresis, 606
Linear magnetostriction, 728

Locally weighted regression and smoothing
scatterplots (LOESS), 497–500, 658

Lock-in amplifier (LIA), 18–19
Lorentz microscopy, 258–261

M
Magnetic anisotropy, 669, 671, 675, 685

alignment, 216
dipolar interactions, 128
in exchange-biased nanostructures, 130
in ferromagnetic epitaxial thin films,

130–133
ferromagnetic polarization, 76
magnetic domain structure, 671
reversible parallel susceptibility, 122
uniaxial anisotropy, 526

Magnetic components
coercivity ranges, 474
high resistivity, 671
presence and orientation, 236
quantitative analysis, 654
RF, 408, 410

Magnetic crystallography
description, 363–364
magnetic space groups, 363
paramagnetic crystal, 363
structure factor, 364

Magnetic domains, 665
dynamic processes, 209
heterogeneities, 671
homogeneous magnetization, 579
imaging, 174
iron oxide nanoparticles, 310
low-contrast, 205
macroscopic volumes, 665
magnetic anisotropy controls, 675
MOIF

imaging, 214
microscopy, 214

Nd-Fe-B sintered magnets, 684
SEM observation, 268
soft magnetic strip, 222
Voigt microscopy, 225
wall, 226, 630, 668, 671

Magnetic energy levels, 158, 526, 568, 583,
630, 719

Magnetic excitations, 210, 211, 358
Magnetic field sensing techniques

calibration, 294–296
fluxgate magnetometers, 284–286
fluxmeters, 280–283
hall sensors, 276–280
magnetoresistive sensors, 287–291
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NMR, 291–294
sensors, 275–276

Magnetic force microscopy (MFM), 778
Magnetic hysteresis, 66, 81, 158, 458, 583,

651, 666
Magnetic hysteresis loops, 651
Magnetic imaging, 206, 214, 252, 684,

689–691, 773
Magnetic inelastic scattering

magnetic interactions, 389–392
magnetic molecular clusters, 392–394
neutron spectroscopy, 392–394

Magnetic lateral flow immunoassays, 789–790
Magnetic linear birefringence, 198
Magnetic linear dichroism, 188, 231
Magnetic materials

characterization, 269, 419
DC hysteresigraphs, 92–95, 100
eddy current generation, 19
energy loss, 65
hysteresis loops, 147
inelastic magnetic scattering, 358
magnetic hardness, 558
paramagnetic salt relaxation, 79–80
PEEM, 238
permeability, 8
rare-earth permanent magnets, 16
spin glasses, 82–84
spin relaxation, 79–87
superconductivity, 84–87
superparamagnetism, 80–82
torque sensors, 157
Voigt effect, 190

Magnetic measurements
AC, 68
DC, 84
intrinsic non-uniqueness, 465
magnetic dimensionality, 392
nanoheterogeneity, 675

Magnetic microscopy
SEMPA, 268–269
type-I and type-II contrast, 268

Magnetic nanoparticles
applications, 773
bio-applications, 772–774
biocompatible polymers/vesicles, 795
bio-imaging, 791–792
biological entities, 772
biological tissue, 792
biomedical therapy, 793
biosensing

atomic magnetometers, 788
biomolecule detection, 786

Faraday induction coil biosensors,
788–791

magnetic lateral flow immunoassays,
789–790

nonmagnetic detection, 790–791
small devices, 786
spintronic sensors, 786–788
SQUID, 788

bio-separation, 784–785
blood vessels, 772
cancer cells, 793
capabilities, 772
characterization methods

AFM, 778
bio-applications, 776
DLS, 778
metal nanoparticle dimensions, 778
MFM, 778
microstructure, 777
ND, 779
NTA, 778
physicochemical properties, 775
SAED, 777
SEM, 777
size and morphology, 777
TEM, 774
XAS, 779
XRD, 779–780

concentration, 781
coronavirus, 771
design, 772
drug delivery, 795
drug/gene carriers, 795
heat capacity, 793
magnetic characterization, 781–783
magnetic hyperthermia (MH), 793, 797
magnetite and cobalt ferrite nanoparticles,

786
magneto-mechanical actuation, 794
MNPs’ heating capacity, 793
nanocarriers, 795
physiological barriers, 772
preclinical characterization, 783–784
silico testing, 794
surface properties, 780–781
synthesis methods

bottom-up processes, 775
coprecipitation, 774
microemulsion methods, 775
microwave synthesis, 767
polyol methods, 775
sol-gel method, 775
solvothermal synthesis, 775
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Magnetic nanoparticles (cont.)
thermal decomposition, 775

tumor cell, 791
Magnetic properties, 558, 666, 668

AC, 79
coercivity-dependent intrinsic, 474
mean-field interactions, 547
measurement, 16
and parameters

EdH torques, 162
hysteresis, 158–159
mechanical torque detection, 159–160
multi-axis torque magnetometry,

160–162
spin resonance, 159–160

simulated, 550, 552
units, 7
vector, 374

Magnetic quantities
CGS system, 4–5
conversion of units, 8
EMU, 8
International System, 5–7
magnetization, 9
MKS system, 5

Magnetic random access memory (MRAM),
290, 630

Magnetic relaxation, 67–69, 78–81, 84, 87,
396, 788

immunoassays, 789–790
Magnetic resonance imaging (MRI), 286, 291,

293, 791, 792
Magnetic scattering

cross section, dipole approximation, 352
dipole approximation, 350–352
inelastic, 357
matrix elements, 345–350
physical meaning, 343–345
spin-waves, 358–360

Magnetic softness, 668
Magnetic structures

description, 364–366
facility’s neutron source, 779
factor operator, 342
hybrid multiferroic, 375
incommensurate spiral, 371
in-focus image plane, 257
MnO, 369
multiferroics, 373–374
net moment, 165
neutron scattering, 386
rietveld method, 368

Magnetic systems
dipolar interactions, 128–129

electron systems, 134
exchange-biased nanostructures, 130
magnetic anisotropy, 130

in ferromagnetic epitaxial thin films,
130–133

magnetocrystalline anisotropy-driven phase
transition, 134

soft ferrite particles, 128–129
Magnetic thin films

defects, 630
FORC measurements (see FORC

measurements on thin films)
reversal mechanism, 630
small defects, 630
and thin film heterostructures, 629

Magnetic torque
mechanical

drive, 159
resonator, 164
rotation axis, 160

nanofabrication of sensors, 161
observations, 152
orthogonality, 159

Magnetic units, 7, 66, 364, 378
Magnetic viscosity, 489, 553, 687–689
Magnetic wires

coercivity, 615–617
Ising-Preisach model, 615
noninteracting wires, 622
1D-longitudinal chain, 620, 621
switching process, 615–620
“T-shaped” FORC diagram, 615
2D-perpendicular array, 614, 615

Magnetite (Fe3O4)

aqueous solution, 82
crystals, 519
FORC simulations, 573
magnetotactic bacteria, 456
MD, 467, 469
quasi-equidimensional, 550
SD, 467, 526, 541, 546, 548–553
superparamagnetic, 772

Magnetization
curve, 65
equilibrium, 165
high-temperature, 26
internal magnetic field, 431
perpendicular anisotropy, 442–443
quadrant curve, 93
remanent, 369
samples, 21, 102
saturation, 16
time-dependent, 74

Magnetization curve
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AF curves, 466–468, 476, 478
coercivity components, 473
DCD curves, 468, 576, 588
FORC function, 476
NiFe alloy sample, 26
1D protocol, 465
permanent magnets (see Permanent

magnets)
second quadrant, 92, 93, 99–101, 104, 116
ZFC/FC, 23, 25, 129

Magnetization dynamics, 165, 409, 431, 433,
435, 488

Magnetization reversal, 679, 683
in magnetic nanowires, 661
magnetometry techniques, 671
permanent magnets, 679, 689–693
rotational processes, 120
in situ observation, 260

Magnetizing field control, 112
Magnetocaloric characterization

adiabatic temperature change, 700
applications, 714
direct characterization methods

infrared cameras, 713
magnetic field, 707, 708
measurement systems, 712, 713
optical beam deflection technique, 712
phase transformation, 714
protocol, 713
pulsed magnetic fields, 712, 713
temperature change, 713
temperature sensor, 710
temperature variation, 712
thermal mass, 705, 709

driving forces, 720
electricity, 698
giant magnetocaloric effect, 698
indirect characterization methods

calorimetry, 707–709
magnetometry, 704–706

industry, 698
isothermal entropy change, 700
magnetic refrigeration cycle, 698
measurement protocols, 720, 721
medical products, 697
phase transitions

magnetic refrigeration devices, 715
quantitative determination, 717–719
second-order, 715–717
thermomagnetic hysteresis, 719–720

refrigerant capacity and
variants, 701–704

types, 699–700
Magnetocaloric effect, 698, 700, 706

Magneto-caloric phenomena, 606
Magnetodynamics, 666
Magnetoelastic effects, 729
Magneto-mechano-electric (MME) generators,

744
Magnetometer, 781

accuracy, 25
biosensing, 788
Fluxgate (see Fluxgate)
Hall, 278
liquid helium, 16
magnet-base, 34
NMR (see Nuclear magnetic resonance

(NMR))
sensitivity, 16, 25
SQUID-based, 40–47
and susceptometers, 783

Magnetometer calibration
low-field sensors, 297
magnetic field units, 294–296
NMR as a secondary standard, 296
three-axis sensors, 297

Magnetometry, 67, 84, 704–706
calibration, 164–165
magnetic properties, 158–162
mechanical methods, 151
micromagnetic simulation, 162–163
nanomechanical torque, 165–166
parameters, 158–162
sensitivity, 164–165
sensor design and fabrication

and experimental apparatus, 153–158
optical detection schemes, 153–154
torque sensor design, 156
torque sensor fabrication, 156–158

torque sensing, 152–153
Magneto-optical effects

conventional effects, 172, 174
electromagnetic basics, 172–175
Faraday effect, 176–177
gradient effect, 191–193, 224
Kerr effect, 178–185
phenomenological difference, 171
Voigt effect, 180–187
Voigt microscopy, 173

Magneto-optical indicator films (MOIFs), 214,
215

Magneto-optical Kerr (MOKE) effect, 74, 151,
180, 186, 200, 217, 220, 223, 656,
675, 677, 689

magnetometry, 215–217
microscopy, 215, 217
permanent magnets, 683, 684

Magneto-optical magnetometry, 185
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Magneto-optical microscopy
advanced methodology

depth-selective imaging, 225–226
quantitative imaging of magnetisation

dynamics, 222–223
quantitative Kerr microscopy, 220–221
separation of effects, 217–220
Voigt and gradient effect microscopy,

223–225
domain observation on non-transparent

samples, 172
Faraday effect, 172
physical aspects

depth sensitivity, 199–201
domain contrast, 194–199
resolution, 202–204

technical aspects
indicator films, 214–215
microscopy, 205–208
MOKE magnetometry, 215–217
temperature-dependent microscopy,

212–213
time-resolved Kerr microscopy,

209–212
transmission, 172
X-ray spectro-microscopy, 172

Magneto-optical Voigt effect, 223
Magnetorelaxometry, 781
Magnetoresistance, 130, 151, 288–290, 397,

647, 648, 786
Magnetoresistive sensors

AMR sensors, 287–288
applications, 290
benefits, 285–286
GMR sensors, 288–289
limitations, 285–286
recent developments, 286
specifications, 286

Magnetostatics, 666
Magnetostriction, 667–669
Magnetostrictive delay line (MDL), 743
Magnetostrictive materials

acoustic waves, 728
applications

actuators, 734
energy harvesting, 744
magnetostrictive effect, 741
sensors, 739, 741

deformation, 728
direct measurements

capacitive bridges, 733
interferometric method, 734–735
optical methods, 734–735
strain gauges, 732–733

tunneling and atomic force tip, 733–734
�E effect, 729–730
forced magnetostriction, 728
indirect measurements

FMR, 739
inverse magnetostriction, 729
magnetization curve, 735
magnetoelastic anisotropy, 736
magnetoelastic energy, 736
principle, 735
small angle magnetization rotation,

737–738
stress, 735, 736
tensile stress, 735
Villari effect, 735

linear magnetostriction, 728
magnetic field, 728
magnetoelastic effects, 729
magnetostriction, 728
materials, 730–731
measurement techniques

coefficient, 728
direct measurements (see Direct

measurements)
indirect measurements (see Indirect

measurements)
strategies, 731
thin film materials, 731

one-degree temperature change, 728
polycrystalline, 729
resonance, 730
saturation magnetostriction coefficient, 728
thin film methods, 739–741
volume magnetostriction, 728
waves, 730

Major hysteresis loop (MHL), 606
Matteucci effect, 729
Maxwell’s cartesian equations, 4
Maxwell’s relation, 700, 704
Mechanical torque

detection, 159–160
sensing, 152, 153, 155, 159

Metal Amorphous Nanocomposites (MANCs),
670, 671, 674–678

Metal-insulator transitions (MIT), 647–649
Meter-kilogram-second (MKS) system, 4–5
Metropolis Monte Carlo (MMC) technique,

615
Microelectromechanical systems (MEMS),

709, 739, 740, 745
Micromagnetics

calculations, 678
FORC simulation, 571
grain size, 578
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shapes, 158
simulation, 162–163
torque sensor, 160
vortex particles, 559

Micromagnetic simulation, 162–163, 266, 525,
559, 562, 571, 573, 579, 626

Microscopy
camera systems, 208–209
high-resolution, 205–207
Kerr effect, 191
magneto-optical (see Magneto-optical

microscopy)
overview, 207–208
quantitative Kerr, 220–221
temperature-dependent, 212–213
time-resolved, 209–212
Voigt and gradient effect, 223–225
X-rays

PEEM, 238
ptychography, 242
SXM, 240–242
transmission, 239–240

Microstructures, 158, 162, 214, 248, 368, 387,
666, 669, 685, 691, 791

MOIFs, see Magneto-optical indicator films
(MOIFs)

MOKE, see Magneto-optical Kerr (MOKE)
effect

Molecular magnet, 78–81, 83, 375, 377–378
Mössbauer spectroscopy (MS), 777
Moving Preisach model, 613
Multi-axis torque magnetometry, 160–162
Multiferroics

chiral molecular magnet, 377–378
dipolar interactions, 375–377
hybrid multiferroic, 375
magnetic

ordering, 375–377
phases trapping, 377–378
structures, 373–374

molecular compound, 374
single-molecule magnet, 375–377
spin-flop transition, 375

N
Nanofabrication, 152, 156, 161
Nanomagnetism, 396, 397
Nanoparticle tracking analysis (NTA), 778
Natural particle assemblages

multidomain particles, 579–587
PSD magnetic behavior, 558–579
SD particles, 526–558

ND, see Neutron diffraction (ND)

Nd-Fe-B magnets
anisotropic magnet, 259
demagnetization process, permanent

magnets, 684
FORC diagrams, 692
HAADF-STEM imaging, 255
hot-deformed magnets, 688–692
magnetization curves, 685
MANC alloy development, 670
MOKE, 691
polycrystalline anisotropic, 260
sintered magnets, 684, 685, 688, 692

Neel temperature, 391, 392, 666, 669
Neutron diffraction (ND), 151, 302, 307–308,

778–779
modulated magnetic structures in

multiferroics, 373–378
polarized

atomic site susceptibility tensors,
382–384

diffraction intensities, 379
magnetic wave function approach,

379–380
monochromators, 378
multipolar expansion approach, 380
spin density experiments, 380–382

Neutron powder diffraction
magnetic dipolar interaction, 367
nuclear structure, 366
polycrystalline sample, 367
rietveld method, 368–372
selected examples

antiferromagnetic structures, 369–370
global phase problem, 370–371
incommensurate spiral magnetic

structure, 371
long period helical structures, 372
magnetic structure of MnO, 369

ToF principle, 367
X-ray powder diffractometer, 366

Neutron reflectivity (NR), 302, 308, 322,
396–398

Neutron scattering
canonical experiments, 322
by crystal

magnetic scattering, 355–360
phonons scattering, 354–355

diffraction, 307–308
fundamentals

assumptions, 334
coherent and incoherent scattering, 335
coherent scattering function, 336
correlation function, 334
definition, 335
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Neutron scattering (cont.)
elastic, 337
inelastic, 337–341
magnetic scattering, 341–352
monoatomic targets, 337
neutron interactions at low energy,

330–333
properties of neutrons, 323–325
scattering problem, 325–330

magnetic space groups, 322
neutron spin echo techniques, 395–396
physics, 303–307
polarization analysis, 302, 313–317
probe materials, 301
quasielastics, 394–395
reflectivity, 308–310, 396–398
SANS, 322
small angle, 308–313
sources, 302
TR, 317

NR, see Neutron reflectivity (NR)
Nuclear magnetic resonance (NMR)

applications and specifications, 290
benefits and limitations, 293–284
principles, 291–293
recent developments, 293

O
Optical methods, 734–735

P
Paramagnetic particles, 791
PEEM, see Photoemission electron microscopy

(PEEM)
Permalloys, 668–669
Permanent magnets

coercivity analysis
Brown’s paradox, 685
magnetic viscosity, 687–689
magnetization reversal process, 685,

686
static analysis, 686
thermal activation analysis, 687–689

energy product (BH )max, 683
high-performance, 683
magnetization curve measurements

cuboid sample, 684
dc B-H tracer, 684
Nd–Fe–B sintered magnet, 684–685
pulse B-H tracer, 684
surface-damaged layer, 685
VSM, 684, 688–691

magnetization reversal process
FORC analysis, 691–693
magnetic imaging, 689–693

properties
bulk test samples, 96
electromagnets, 155
ferrite, 30
magnetic measurements, 93
nanostructured, 30
winding, 113

Permeability of vacuum, 5, 7
Permeameters, 411–418

inductive response, 415–418
propagating electromagnetic waves,

412–415
reflection, 412–415
transformer coupled

calibration algorithm, 422–426
sensitivity demonstration, 426–427
TC-perm, 419–422

transmission, 412–415
Perpendicular anisotropy, 442–443
Perpendicular magnetic recording (PMR), 752
Persistent switch, 52, 53
Photoemission electron microscopy (PEEM),

238, 239
Polarization analysis, 313–317, 330, 361–363,

385
Polarized neutrons, 314, 322, 362, 378–384,

397
Power transformers, 666, 677
Preisach Model for Patterned Media, 613
Preisach plane, 606–611
Preisach theory, hysteresis

classical Preisach model, 459–463
measurement protocols, 465–476
modifications, 463–465

Pseudo-single-domain (PSD) magnetic
behavior

ferrimagnetic particles, 558
hysteresis loops, 558, 559
magnetic structures, 560
micromagnetic models, 560
multistate systems, 570–579
rock and paleomagnetic significance,

567–570
SD-SP mixing, 558
two-state magnetic systems, 562–567
vortex tube, 560

Ptychography, 242

Q
Quantitative decoding, 199, 653–655, 717–719
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R
Radio-frequency (RF)

DC bias, 408
FMR, 408

spectrometer, 410
harmonics, 411
Kittel equation, 409
magnetic

components, 408
susceptibility, 409

permeability measurement, 409
permeameters, 415–418

inductive response, 415–418
propagating electromagnetic waves,

412–415
transmission and reflection, 412–415

switching frequencies, 410
Raman spectroscopy (RS), 780
Rectangular hysteresis loop, 606
Relative cooling power (RCP), 702
Remanent induction, 666
Remanent magnetization

ARM, 472
bulk saturation, 576
DC and AC hysteresis, 781
isothermal, 463
MD particles, 558
measurements, 486
NRM, 470
observed, 369
singular scaling properties, 369

Resonance condition
Kittel equation, 426–427
lineshape, 433–434
Smit-Beljers equation, 434–435

Reversible susceptibility (RS), 119–122, 780
Ring testing, 109, 114–115
Rock magnetism, 458, 470
Ruderman-Kittel-Kasuya-Yosida (RKKY)

exchange, 644

S
Sample environment

magnetic field control, 52–54
SQUID, 51
temperature control, 51

Sample mounting technique, 51
SANS, see Small angle neutron scattering

(SANS)
Saturation magnetization, 16, 120, 133, 264,

436, 442–443, 461, 481, 514, 631,
645, 666, 686, 735, 752, 760, 768,
781

Saturation magnetostriction coefficient, 728
Scanning electron microscope (SEM), 777

instrumentation, 266
magnetic microscopy, 268–269
structural analysis

EBSD, 267
SE and BSE, 267
WDX imaging, 267–268

Scanning electron microscopy with polarisation
analysis (SEMPA), 199, 268–269

Scanning transmission electron microscopy
(STEM), 753

instrumentation, 252–253
magnetic (scanning) TEM

basics, 257–258
DPC, 261
electron holography, 262–266
Lorentz microscopy, 258–261

specimen, 254
structural analysis

bright-field/HAADF STEM imaging,
255, 256

compositional mapping, 256
EDX/EELS, 256
electron diffraction, 254
imaging, 255

Scanning X-ray microscopy (SXM), 240–242
Screening, 70–71

AC susceptibility, 77, 87
current, 44, 45
demagnetizing field, 576
flux change, 42
magnetic phase transitions, 73
PSD and MD particles, 577
SQUID, 46

SD particles, see Single-domain (SD) particles
Secondary electron (SE), 267
Second quadrant demagnetization curve, 92,

99–101, 105, 116
Selected area electron diffraction pattern

(SAED), 777
Selected measurement protocols

AF demagnetization, 470–472
ARM acquisition, 472–473
coercivity distributions, 473–476
DCD, 469–470
demagnetization, 472–473
IRM acquisition curves, 467–469
low-field susceptibility, 466–467

SEM, see Scanning electron microscope
(SEM)

Semiconductor gauges, 732
SEMPA, see Scanning electron microscopy

with polarisation analysis (SEMPA)
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Sensor design
apparatus, 154–155
optical detection schemes, 153–154
torque sensor

design, 156
fabrication, 156–158

Silicon steels, 668
Single-domain (SD) particles

mean-field interactions, 545–548
multiaxial anisotropy, 548–553
selected natural examples, 553–558
Stoner-Wohlfarth model, 526–531
thermally activated, 531–536
vertical ridge, 536–539
viscous, 536–539
weak magnetostatic interactions, 539–545

Skyrmionic lattices (SKL), 388–389
Small angle neutron scattering (SANS),

310–313
magnetization rotation, 737–738
SKL, 388–389

Soft magnetic materials (SMMs)
alloy developments, 666
AMRs, 669–672, 676–677
applications, 666
DC permeability and saturation induction,

667
FeCo alloys, 667
ferrites, 669
hysteresis loss, 666
intrinsic properties, 666
measurement techniques

AC permeametry measurements,
672–664

AEC losses, 671
B-H loops and associated losses, 671,

674
B-H loops, Fe-based MANC core, 675
CLTS, 672–674
Co-based and FeNi-based MANCs, 677
DC-biasing capacitor, 673
FORCs, 678–679
hysteretic losses, 671
magnetic domain structure, 675
magnetic field strengths, 673
mesoscale eddy currents, 675
MOKE and FORC, 675
shape demagnetization, 678
Steinmetz equation, 671, 674

permalloys, 668–669
permeability, 666
power losses, 671
silicon steels, 668
technical properties, 666

Soft magnetic properties, 423, 522, 668
Spectroscopy

crystallographic, 322
EELS, 249–250
elemental and chemical contrast, 232–234
ferromagnetic resonance, 437, 446
magnetic contrast, 234–236
in magnetic molecular clusters, 392–394
sum rule analysis, 236–238

Spherical neutron polarimetry
GdB4, 386
magnetic order, 386
magneto-electric coupling, 385–386
molecular multiferroic, 385–386

Spin glass, 82–84, 322, 396, 782
Spin relaxation

paramagnetic salt relaxation, 79–80
spin glasses, 82–84
superconductivity, 84–87
superparamagnetism, 80–82

Spin resonance, 151, 152, 159–160, 166
Spin transition temperature, 606
Spontaneous magnetization, 486, 526, 539,

540, 544, 554, 580, 658, 665
SQUID, see Superconducting quantum

interference device (SQUID)
Static sensors, 742
Steinmetz equation, 671, 674
STEM, see Scanning transmission electron

microscopy (STEM)
Structural analysis

SEM
EBSD, 267
SE and BSE, 267
WDX imaging, 267

STEM
bright-field/HAADF STEM imaging,

255, 256
compositional mapping, 256
EDX/EELS, 256
electron diffraction, 254
imaging, 255

Superconducting magnet, 53, 54, 59
Superconducting quantum interference device

(SQUID), 788
based magnetometry, 56
capabilities, 60–61
commercial, 55
DC scan measurement mode, 56
detection modes, 47

SQUID-VSM detection mode, 49–50
strengths and weaknesses, 51
traditional DC scan, 48–49

direct-current (DC), 43, 45
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functionality, 44–46
gradiometer designs, 41, 42
induction-based magnetometer, 40
magnetic dipole moment, 39
magnetometer, 39
sample holder, 55
sample transport, 40
second-order gradiometer, 40
SQUID-VSM, 57
traditional DC scan, 56–57

Superconductor
diamagnetic materials, 67
flux penetration, 212
high-temperature, 25
penetration depth, 120
phase transition, 84
vortex pinning, 87

Superparamagnetism, 772
magnetic attraction, 772
in molecular magnets, 79–81
nanoparticles, 81–82

Surface magnetic anisotropy, 774
Surface properties, 773
Susceptometers, 783
SXM, see Scanning X-ray microscopy (SXM)

T
TDO, see Tunnel diode oscillator (TDO)
TEM, see Transmission electron microscopy

(TEM)
Temperature averaged entropy change (TEC),

703
Theory of AC susceptibility

coefficients, 65
conventions, 66
demagnetizing factors, 66–67
magnetic relaxation, 67–69
quantities, 66
screening, 70–71
units, 66

Thermogravimetrical analysis (TGA), 781
Thermomechanical processing, 668
Thin films

closed circuit, 107–108
FeCoB, 224
magnetic

anisotropy, 130
media, 19

Time resolution (TR), 209, 211, 283, 302, 317
Torque sensor

clamping points, 155
design, 156
fabrication, 156–158

geometry, 161
mechanical, 154
optical modulation, 153

TR, see Time resolution (TR)
Transmission electron microscopy (TEM), 777

instrumentation, 252–254
magnetic (scanning)

basics, 257–258
DPC, 261
electron holography, 262–266
Lorentz microscopy, 258–261

specimen, 254
structural analysis

bright-field/HAADF STEM imaging,
255, 256

compositional mapping, 256
EDX/EELS, 256
electron diffraction, 254
imaging, 255

Transmission X-ray microscopy (TXM),
239–240

Transverse susceptibility (TS)
circuit components, 126–128
future, 134–136
magnetic systems, 128–134
measurement technique, 122–126
paramagnetic susceptibility, 119
theoretical background, 120–122

TS, see Transverse susceptibility (TS)
Tunnel diode oscillator (TDO), 123–128, 134,

135
2D-perpendicular array, 614, 616
TXM, see Transmission X-ray microscopy

(TXM)

U
Units of measurment, 6, 7
Universal scaling, 716, 717
Up-switching, 631–633
US Food and Drug Administration, 772

V
Variable variance Preisach model, 607
VARIFORC software program, 457, 489,

491–493
applicable algorithm, 504
FORCinel, 32
FORC processing software, 485
horizontal profiles, 512
quantile contour levels, 524
smoothing factor limitation, 508
software, 516
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VARIFORC software program (cont.)
weighted regression, 497

Vector VSM (VVSM), 23
Vertical ridge, 475, 476, 486, 489, 504,

512–514, 517, 518, 534–539, 584,
585, 587

Vibrating sample magnetometer (VSM), 17,
614, 684, 688–690

components and extensions, 19–29
electromechanical, 22
electronics, 22
sensing coils, 20–21
temperature measurements, 22–23
vibrating head, 21–22

electromagnet-based, 17
electronics, 23
Foner magnetometers, 17
LIA reference, 18
magnetometer, 487
magnetometry techniques, 16
measurement methodology, 26
out-of-plane (OOP) anisotropy, 26
schematic representation, 17
sensitivity, 18, 19
and SQUID, 16
temperature measurement, 23
VVSM, 24

Villari effect, 729
Voigt microscopy, 172, 173, 190,

191, 225
Voltage integrator, 280, 281
VSM, see Vibrating sample magnetometer

(VSM)

W
Wavelength-dispersive X-ray spectroscopy

(WDS/WDX), 249, 267
Wiedemann effect, 729

X
X-ray absorption near-edge spectroscopy

(XANES), 779
X-ray absorption spectroscopy (XAS), 779

elemental and chemical contrast, 232–234
magnetic contrast, 234–236
sum rule analysis, 236–238

X-ray diffraction (XRD), 779–780
X-ray magnetic circular dichroism (XMCD)

permanent magnets, 689, 690, 692, 693
X-ray microscopy

PEEM, 238
ptychography, 242
SXM, 241–242
transmission, 239–240

X-ray photoelectron spectroscopy (XPS), 780
X-rays

absorption spectroscopy, 232–238
measurements, 231
microscopy (see Microscopy)
ptychography, 242
scanning, 240–242
transmission, 239–240

Z
Zeeman energy, 120, 130, 526, 579, 580, 583,

639–643, 646
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