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Chapter 8
Crop Sensing in Precision Agriculture

Hong Sun, Minzan Li, and Qin Zhang

Abstract Precision agriculture or precision farming is a scientific management 
strategy based on the spatial and temporal variability of soil, crops, and the environ-
ment, and crop sensing is an effective technology to understand the variability. In 
the past decades, a number of crop sensors or instruments based on spectroscopy 
have been developed and applied to satisfy the requirements and solve detecting 
problems in the field. These instruments can be used in multiple types, such as 
handheld detection, vehicle-mounted diagnosis, and remote sensing by UAV or sat-
ellites. Typical sensors and specific applications are summarized to explain the 
application fundamental and potential of crop sensing. These spectral sensors 
include hyper-spectrometers, multiband sensors for vegetation indices, and imagery 
instruments using visible or extended spectral bands. Frontier research areas in sen-
sor development are also introduced involving wireless sensor networks, integrated 
sensors for data fusion, and different methods for spectral imaging collection. In 
addition, applications of different sensors are reviewed including the recognition of 
crops and weeds, estimation of nutrients and growth status, and identification of 
disease and pests. A variable-rate fertilizer system controlled by crop sensors is also 
demonstrated to show how crop sensing technology could help precision manage-
ment in the field. Crop sensing sensors and instruments will promote reliable pre-
dictions and operations in agriculture.
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8.1  Introduction

Precision agriculture (PA) or precision farming contributes to improving agronomic 
performance, saving resources, and protecting the environment. It is established as 
a management strategy that employs detailed, site-specific information to precisely 
manage production inputs based on variability to replace average inputs in the field. 
Besides 3S technology including the Global Navigation Satellite System (GNSS), 
Geographic Information Systems (GIS), and remote sensing (RS), many other tech-
nologies such as proximal imaging, spectroscopy, and wireless sensor network 
(WSN) are applied in PA (Jawad et al. 2017). They provide more efficient ways in 
crop management including real-time detection of crop growth, targeted analysis 
and decision-making of precision operation, and manual labor liberation by opti-
mized tools.

In general, there are three main steps in precision crop management includ-
ing soil and crop sensing, decision-making, and variable-rate application. One 
of the critical issues in precision agriculture is how to measure crop growth data 
noninvasively and efficiently. In the past decades, significant progress on optical 
instruments has been made in crop monitoring (Pallottino et al. 2019). A num-
ber of crop sensors and instruments have been developed and used to meet the 
requirements of PA and solve detecting problems in the field as shown in 
Fig. 8.1. They include RGB (red, green, blue) cameras, multispectral image sen-
sors, hyper-spectrometers, unmanned aerial vehicles (UAVs), satellite remote 
sensors, thermographic imagers, and light detection and ranging (LiDAR). Most 
of them are developed based on the combination of spectroscopy, optical 
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Fig. 8.1 Crop sensing instruments in precision agriculture (Disclaimer: Commercial products are 
referred to solely for the purpose of clarification and should not be construed as being endorsed by 
the authors or the institution with which the authors are affiliated)
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principles, and photodetectors to measure the reflected electromagnetic energy. 
In a typical way, data are represented with energy intensity by line plots and 
two-dimensional (2D) and three-dimensional (3D) images and even presented 
as a data cube.

In most cases, crop information is captured by instruments through line scanning 
or digital photography. Then the data are analyzed using various specialized soft-
ware applications, such as spectroscopy analysis and digital image processing. 
Spectroscopy uses the interaction of electromagnetic waves with an object to per-
form an analysis related to crop nutrient or biomass. Digital imaging is a set of 
computational techniques for analyzing, enhancing, compressing, processing, and 
reconstructing crop images. Both methods are widely used in crop recognition and 
parameter estimation.

Researchers have developed some new instruments and extended their applica-
tions in many scenarios, including handheld detection, vehicle-mounted diagnosis, 
and remote sensing by UAVs or satellites, to build reliable prediction models of 
complex and uncertain phenomena in agriculture. In order to explain the application 
fundamental and potential of crop sensing instruments in precision agriculture, sen-
sors and the specific models from spectral and image sensing technologies are 
examined. Applications of crop sensing involve the recognition of crops and weeds, 
estimation of nutrient and growth status, identification of disease and pests, and 
detection of special crop fruits.

8.2  Spectroscopy-Based Sensing Instruments 
for Crop Monitoring

8.2.1  Foundation of Spectral Sensing and Vegetation Indices 
in Crop Sensing

According to the range of electromagnetic radiation at specific nanometer (nm) 
wavelength, crop sensing is generally referred to as ultraviolet (UV, 200–400 nm), 
visible (Vis, 400–760 nm), near-infrared and shortwave infrared (NIR and SWIR, 
760–2500  nm) (Toth and Joźkow 2016). The green plant typically displays low 
reflectance in the visible region, especially in the red band close to 650 nm due to 
strong absorbance by photosynthetic and accessory plant pigments. By contrast, the 
reflectance is usually high from the red-edge (680–760 nm) to the NIR (780–2500 nm) 
region because there is very little absorbance by subcellular particles or pigments 
and considerable scattering at mesophyll cell wall interfaces.

Since the changes in leaf pigments and biochemical components caused by nutri-
ent stress or bio-infringement can influence the spectral characteristics of leaves, the 
spectral analysis can be used to monitor growing crops (Narvaez et al. 2017). Zhang 
et  al. (2019a) reviewed that the spectral features used in plant monitoring was 
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Table 8.1 Spectral features for monitoring plant diseases and pests

Category Feature type Characteristics Reference

VIS-NIR 
features

Original 
reflectance

Capture spectral variations 
caused by disease infection or 
pest infestation. The spectral 
features are capable of describing 
either variation of band 
reflectance intensity or changes 
in shape of spectral curves.

Sankaran et al. (2010), 
Huang et al. (2012), 
Xu et al. (2007), 
Zhang et al. (2012), 
Luo et al. (2013) and 
Zhang et al. (2014)

Vegetation indices
Derivative spectral 
features
Continuous removal 
spectral features
Wavelet features

Fluorescence 
and thermal 
parameters

Parameters derived 
from laser-induced 
fluorescence 
spectra, e.g., F686/
F740

Presymptomatic indicators of 
plant diseases and pests. The 
fluorescence parameters measure 
changes in photosynthesis due to 
plant diseases and pests. The 
thermal parameters indicate 
changes in plant transpiration 
intensity.

Tartachnyk et al. 
(2006), Kuckenberg 
et al. (2009), 
Bauriegel et al. 
(2014), Stoll et al. 
(2008) and Calderón 
et al. (2013)

Parameters 
associated with the 
saturation pulse 
method, e.g., Fv/
Fm, NPQ, ΦPSII, 
and Fv′/Fm′
Absolute/relative 
temperature, e.g., 
Tleaf−Tair

Note: The table is modified from Table 8.2 (Zhang et al. 2019a)

particularly affected by disease and pests. As shown in Table 8.1, spectral features 
of infected or damaged plants are highlighted including VIS-NIR spectral reflec-
tance, fluorescence, and thermal features. Among those spectral features, band 
reflectance is the simplest form and can be transformed in different ways, such as 
spectral derivative, continuous removal transformation, and continuous wavelet 
transformation.

Spectral characteristics of vegetation can be analyzed based on sensitive reflec-
tance and the vegetation index (VI). Sensitive wavelengths related to crop parame-
ters are selected from the hyper-spectra to evaluate the vegetation vigor. A VI is a 
spectral transformation of two or more wavebands designed to enhance the contri-
bution of vegetation properties and allows reliable spatial and temporal intercom-
parisons of terrestrial photosynthetic activity and canopy structural variations. Some 
VIs measured by specific bands are listed in Table 8.2, in which Ri is the reflectance 
at i nm or i band such as green, red, red edge, or NIR.  Among these VIs, the 
Normalized Difference Vegetation Index (NDVI) is the most commonly used in 
crop monitoring. Large amounts of literature indicate that quantization parameters 
of spectra and vegetation indices are common methods in vegetation recognition, 
crop classification, and biomass estimation. Therefore, some sensors have been 
developed to measure VIs based on spectroscopy due to huge potentials of field 
applications.

H. Sun et al.



255

Table 8.2 Vegetation indices measured by spectral reflectance

Name Acronym Formula Application Reference

Difference 
vegetation index

DVI RNIR − Rred Disease (soybean 
rust)

Cui et al. (2009)

Ratio vegetation 
index

RVI RNIR/Rred Disease (soybean 
rust), LAI (apple), 
yield (wheat), 
nitrogen (wheat)

Cui et al. (2009), 
Han et al. (2016), 
Zhang et al. (2019b) 
and Cao et al. (2012)

Normalized 
difference 
vegetation index

NDVI (RNIR − Rred)/
(RNIR + Rred)

Water (corn, 
soybeans), LAI 
(apple, potato), 
nitrogen (wheat)

Dejonge et al. 
(2016), Chen et al. 
(2005), Han et al. 
(2016) and Cao et al. 
(2013)

Normalized 
difference red 
edge

NDRE (RNIR − Rred edge)/
(RNIR + Rred edge)

Nitrogen (wheat, 
rice), chlorophyll 
(sorghum)

Cao et al. (2013) and 
Potgieter et al. 
(2017)

Green 
normalized 
difference 
vegetation index

GNDVI (Rnir - Rgreen)/ 
(Rnir + Rgreen)

Powdery mildew 
(wheat), aphid 
(wheat), 
leafhopper 
(cotton), water 
(corn, apple, 
potato)

Zhang et al. (2012), 
Luo et al. (2013), 
Prabhakar et al. 
(2011), Dejonge 
et al. (2016), Han 
et al. (2016) and Ray 
et al. (2006)

Green ratio 
vegetation index

GRVI (RNIR/Rgreen) − 1 LAI (apple) Han et al. (2016)

Photochemical 
reflectance index

PRI (R531 − R570)/
(R531 + R570)

Disease (grape 
leafroll), LAI 
(potato)

Naidu et al. (2009) 
and Ray et al. (2006)

Red-edge 
vegetation stress 
index

RVSI (R714 + R752)/(2 − R733) Disease (grape 
leaf)

Naidu et al. (2009)

Soil-adjusted 
vegetation index

SAVI (RNIR − Rred)(1 + L)/
(RNIR + Rred + L)

LAI (potato) Ray et al. (2006)

Optimized 
soil-adjusted 
vegetation index

OSAVI 1.16(R800 − R670)/
(R800 + R670 + 0.16)

Water (corn) Dejonge et al. 
(2016)

Normalized 
difference water 
index

NDWI (R858 − R1640)/
(R858 + R1640)

Water (corn and 
soybeans)

Chen et al. (2005)

8.2.2  Spectral Sensing in Crop Monitoring

Spectral instruments with optical sensors are the fundamental tools to assess vegeta-
tion status. Three kinds of spectral instruments have been used including continuous 
spectrometers, vegetation index sensors, and imaging spectrometers. In general, 
spectrometers are used to measure continuous spectral reflectance of light over a 
specific portion of the electromagnetic spectrum, and vegetation index sensors mea-
sured by dual or multispectral bands. There are many commercially available 
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products of portable sensors for crop monitoring. They are generally defined as a 
passive type or an active type according to lighting strategies during the measure-
ments. For example, the Soil Plant Analysis Development (SPAD) meter is a com-
pact device with active lighting and transmittance measurement to determine the 
amount of chlorophyll in plant leaves at 650 and 940 nm. The GreenSeeker (Trimble 
Agriculture, Sunnyvale, CA, USA) gets NDVI with the active lighting module. 
Some applications of hyperspectral sensing and vegetation index sensing in crop 
monitoring are listed in Table 8.3, which include detections of chlorophyll content, 
nitrogen content, and sugar content and estimations of growth stages and yields, 
even weed identification.

Table 8.3 Spectral sensing applications in crop monitoring

Type Describe Application Reference

Hyperspectral 
sensing

Vis-NIR, 350–1075 nm or 
350–2500 nm, handheld or 
vehicle mounted

Chlorophyll 
content (maize), 
growth stages 
(potato), weeds

Liu et al. (2018a, b), Sun 
et al. (2019a, b) and 
Shirzadifar et al. (2018)

Vis-NIR,190–900 nm, lab 
used

Sugar content 
(apple)

Zhang et al. (2015)

Vis-NIR, 350–820 nm, 
portable

Chlorophyll 
(wheat)

Cheng et al. (2017)

Vegetation 
index sensing

Active light, 650 and 940 nm, 
transmittance, handheld

Chlorophyll, 
nitrogen (wheat, 
corn, coffee)

Uddling et al. (2007), 
Netto et al. (2005), Zhao 
et al. (2007) and 
Gholizadeh et al. (2017)

Active light, 660 and 780 nm, 
handheld or vehicle mounted

Nitrogen (corn, 
wheat), yield 
(wheat), growth 
stages (corn)

Cao et al. (2012, 2017), 
Zhang et al. (2019b), 
Taskos et al. (2015), 
Singh et al. (2015) and 
Tremblay et al. (2009)

Vis-NIR six bands (450, 550, 
650, 670, 730, 760 nm), and 
three of these bands can be 
used at one time, handheld or 
vehicle mounted

Nitrogen (wheat), 
chlorophyll (grape)

Cao et al. (2013, 2017) 
and Taskos et al. (2015)

550, 670, 700, 740, 780 nm, 
vehicle mounted

Nitrogen (wheat), 
growth stages 
(corn)

Singh et al. (2015), 
Tremblay et al. (2009)

Active light, 670, 730 and 
760 nm, handheld or vehicle 
mounted

Yield (grasses/
legumes)

Serrano et al. (2016)

Active light, 730 and 808 nm, 
vehicle mounted

Growth stages 
(winter wheat)

Sharabian et al. (2013)

Active light, 653 and 931 nm, 
transmittance, handheld

Nitrogen (grape) Taskos et al. (2015)
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8.2.2.1  Hyper-Spectrometers for Crop Sensing

Hyper-spectrometers are the most frequently used instruments especially during 
theoretical or mechanism analysis in crop sensing. Most of the instruments used in 
chemical detection are designed based on UV spectroscopy, which work under the 
principle of Beer Lambert’s law. Zhang et al. (2015) used a UV-2450 spectrograph 
to measure the visible and NIR spectral reflectance of apple leaf samples within the 
300–900 nm band, and such spectral information of apple tree leaves in different 
phenological phases could be used to predict fruit sugar content. According to the 
result of the two-dimensional correlation spectroscopic analysis on apple leaf reflec-
tance with fruit sugar content as perturbation, it was observed that the autocorrela-
tion peaks all appeared at the 530–570  nm and 700–720  nm wavebands in the 
synchronization spectrogram. The contribution proportion to fruit sugar content in 
different growth periods was investigated and then the support vector machine 
(SVM) model was established. The determination coefficient of the calibration 
model (Rc

2) of the SVM model reached 0.89, and the determination coefficient of 
validation (Rv

2) reached 0.88.
Compared with laboratory instruments, portable sensors are more flexible in the 

field. The devices could be selected by spectral range, resolution, usage require-
ments, and so on. For example, ASD FieldSpecHH1 is a 512-element photodiode 
array spectroradiometer with a 325–1075 nm wavelength range. It uses a fixed con-
cave holographic reflective grating that disperses the light onto a fixed photodiode 
array that has 512 individual detection points or “elements” in a line. Associated 
with each of these elements is a distinct signal whose magnitude is determined by 
the total integrated amount of light energy falling on that element. Then, each ele-
ment is assigned to a position within 512 points. In this way, the analog signal is 
converted into digital signal. The instruments could be set to view traceable wave-
length references such as emission source, reflectance standards, and the output of 
a triple monochromator. The output results are data points with known element- 
position and wavelength-channel coordinates.

Many of the current studies on crop monitoring involve portable spectrometers. 
The operation flow generally involves the control parameter setting, storage direc-
tory setting, dark noise measuring, reference calibration, sample detection, spec-
trum calculation, and display. The measured data are used to analyze and establish 
a specific model for crop monitoring purposes. Liu et al. (2018a, b) measured the 
spectral reflectance of maize canopy by using ASD FieldSpecHH to estimate the 
chlorophyll content. The data were processed following wavelet denoising and mul-
tivariate scatter correction (MSC) to reduce the noise influence. Then three spectral 
ranges were extracted by interval partial least squares (IPLS), including 525–549 nm, 
675–749  nm, and 850–874  nm. The chlorophyll content estimation model was 
developed by using support vector regression (SVR). The calibration Rc

2 of the 

1 Disclaimer: Commercial products are referred to solely for the purpose of clarification and should 
not be construed as being endorsed by the authors or the institution with which the authors are 
affiliated.
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model was 0.831, the RMSEC was 1.3852 mg/L, the validation Rv
2 was 0.809, and 

the RMSEP was 0.8664  mg/L.  Using the same spectrometer, Sun et  al. (2019a) 
explored the optimizing spectral features to identify the growth stages of potato 
plants. In general, the canopy spectral reflectance varied with the growth stages in 
the bands of 400–500 nm, 530–640 nm, 740–880 nm, and 910–960 nm. The clas-
sification accuracies of SVM models were 100% in the training set and 94.59% in 
the testing set, respectively.

8.2.2.2  Portable Sensors Used in Crop Monitoring

According to the specific features and VIs used in crop monitoring, some sensors 
are designed as portable with only several sensitive bands to reduce redundant spec-
tra. These specific sensors are generally developed based on the red and NIR bands. 
Besides red and NIR bands, a red-edge band located in the range of 700–760 nm is 
also included in the instruments to increase the variables in detecting models. An 
instrument can be designed to measure the transmitted or reflected light from leaves 
and crop canopy. The light source in the measurement can be natural light (sunlight) 
or artificial light source (lamp) defined as a passive or active lighting. The instru-
ment with active lighting is more robust in field application to improve the perfor-
mances under the limitation of weather or time windows. A few portable (handheld) 
instruments could be used to evaluate the content of chlorophyll or nitrogen, LAI, 
and yield using the calculated VIs. Farmers can use them in precision agriculture 
according to the application cases, leaf, or canopy measurement.

Portable Sensors for Leaf Measurement

Portable or handheld instruments for leaf measurement have advantages of compact 
size and lightweight. Most of them are designed based on the transmittance with the 
active light source. One of the widely used leaf chlorophyll meter is probably the 
Soil and Plant Analyzer Development (SPAD) chlorophyll meter, such as SPAD-502 
Plus (Konica Minolta Inc., Japan).

Uddling et al. (2007) reported that the readings from the SPAD-502 Plus could 
not only provide the measurement of chlorophyll content, but also provide the infor-
mation for estimating nitrogen status as well as photosynthetic pigment content. 
Schepers et al. (1992) compared the corn leaf disk N concentrations and SPAD 502 
chlorophyll meter readings from N rate studies at the silking stage for a variety of 
hybrids. Data indicated that chlorophyll meter readings correlated well with leaf N 
concentrations for a given hybrid and location. Netto et al. (2005) established a cor-
relation between the photosynthetic pigment content extracted in dimethylsulfox-
ide, the total nitrogen content, and the chlorophyll fluorescence variables with the 
SPAD-502 readings in Coffea canephora Pierre leaves. If the SPAD-502 readings 
were lower than 40, it showed impairment in the photosynthetic process. In the 
study, total N concentration increased linearly with SPAD-502 readings. Meanwhile, 
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the relationship between the values obtained by the SPAD-502 and the chlorophyll 
fluorescence variables (F0, Fm, and Fv/Fm) proved that the maximum quantum effi-
ciency of the photosystem II, indicated by the Fv/Fm ratio, started to fall at around 40.

The measured values by SPAD meters have also been used in the fertilization 
guiding. Zhao et  al. (2007) proposed a study on the relationship between SPAD 
chlorophyll meter readings and nitrogen content in leaves in order to determine the 
amount of nitrogen fertilization. Field experiments were conducted in three wheat 
growth duration stages from 2003 to 2006. Grain yields and soil NO3-N contents 
were measured in all plots. The results indicated that the fertilizer application guided 
by the meter values reduced the spatial variability of wheat yield and had benefits of 
low soil residual NO3-N content and NO3-N leaching potential.

Gholizadeh et al. (2017) focused on the relationship between SPAD chlorophyll 
meter readings and N content in leaves during different growth stages. The research 
introduced the most suitable stage for the assessment of crop N and prediction of 
rice yield. Results implied that there was a better relationship between rice leaf N 
content (R2 = 0.93) and yield (R2 = 0.81), with SPAD readings at the panicle forma-
tion stage. Therefore, the SPAD-based evaluation of N status and prediction of rice 
yield is more reliable on this stage rather than at the booting stage.

Although SPAD readings have been widely used in the measurement of chloro-
phyll content, Xiong et al. (2015) indicated the relationship between chlorophyll 
content and leaf N content per leaf area, and the relationship between SPAD read-
ings and leaf N content per leaf area varied widely among the species groups. A 
significant impact of light-dependent chloroplast movement on SPAD readings was 
observed under low leaf N supplementation in both rice and soybean but not under 
high N supplementation. Furthermore, the allocation of leaf N to chlorophyll was 
strongly influenced by short-term changes in growth light. It demonstrates that the 
relationship between SPAD readings and leaf N content per leaf area is profoundly 
affected by environmental factors and leaf features of crop species, which should be 
accounted for when using a chlorophyll meter to guide N management in agricul-
tural systems.

Portable Sensors for Canopy Measurement

Instruments for canopy monitoring are generally designed to measure the reflected 
light related to typical VIs. Portable instruments, such as GreenSeeker, Crop Circle, 
and N-Sensor, are commonly used to get the NDVI in the field. For on-the-go appli-
cations, these sensors can also be mounted to vehicles to remotely sense plants 
while driving through a field.

According to the concept of the active crop canopy monitoring, an instrument 
emits a brief burst of red and infrared light and then measures the amount of each 
type of light that is reflected back from the plant. GreenSeeker sensors (Trimble 
Navigation Limited, Sunnyvale, CA, USA) are designed based on modulated red 
(650–670 nm) and NIR (755–785 nm) LEDs (light-emitting diode). Crop Circle 
devices (Holland Scientific Inc., Lincoln, Nebraska, USA) are equipped with 
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multispectral active sensors. The Crop Circle ACS-430 incorporates three optical 
measure channels, so that the sensor simultaneously measures crop/soil reflectance 
at 670, 730, and 780 nm. Moreover, the Crop Circle ACS-470 has six bands (450, 
550, 650, 670, 730, 760 nm) and three of these bands can be used at one time to 
measure the radiative transfer and biophysical characteristics of plant canopies. 
Yara N-Sensor (Yara International ASA, Germany) is different from the active opti-
cal sensors mentioned above. It has a xenon flashlamp, which provides high- 
intensity multispectral light, so that it can measure and record the crop light 
reflectance in a waveband between 450 and 900 nm (Munoz-Huerta et al. 2013).

Several studies were conducted to detect crops based on portable sensors men-
tioned above. Cao et al. (2012) found that GreenSeeker-NDVI was exponentially 
related to N uptake in winter wheat, whereas the correlation between N uptake and 
RVI was linear. Zhang et  al. (2019b) intended to expand the applicability of 
GreenSeeker in monitoring the growth status and predicting the grain yield of win-
ter wheat (Triticum aestivum L.). Four field experiments with multiple wheat culti-
vars and N treatments were conducted during 2013–2015 to obtain NDVI and RVI 
synchronized with four agronomic parameters: LAI, leaf dry matter (LDM), leaf 
nitrogen concentration (LNC), and leaf nitrogen accumulation (LNA). Duration 
models indicated that NDVI and RVI explained 80%, 68–70%, 10–12%, and 
67–73% of the variability in LAI, LDM, LNC, and LNA, respectively. Considering 
the variation among different wheat cultivars, the newly normalized VIs rNDVI 
(NDVI vs. the NDVI for the highest N rate) and rRVI (RVI vs. the RVI for the high-
est N rate) were calculated to predict the relative grain yield (RY, the yield vs. the 
yield for the highest N rate). rNDVI and rRVI explained 77–85% of the variabil-
ity in RY.

In order to determine which VIs calculated from the Crop Circle sensor can per-
form the best estimation of rice N status, Cao et al. (2013) compared six VIs based 
on the green (550 ± 20 nm), red-edge (730 ± 10 nm), and NIR (>760 nm) bands. The 
results indicated that using the Normalized Difference Red Edge (NDRE) to predict 
plant N uptake had the highest coefficient of determination (R2, 0.76) and the lowest 
root mean square error (RMSE, 17.00 kg N/ha). The second best-performing vege-
tation index was the Red-Edge Chlorophyll Index (CIRE), which performed simi-
larly to NDRE. Crop Circle ACS-210 and ACS-430 (red at 630 nm, red edge at 
730 nm, and NIR at 780 nm) were compared and different NDVI values were ana-
lyzed in each individual waveband (Taskos et al. 2015). The results demonstrated 
that ACS-430 and red-edge-based indices were more strongly correlated with leaf 
chlorophyll of vineyards.

Regarding the Yara N-Sensor (Yara International ASA, Germany), Singh et al. 
(2015) investigated the tractor-mounted N-Sensor to predict nitrogen (N) content 
for wheat crop under different nitrogen levels. It was observed that there was a 
strong correlation among sensor attributes (sensor value and sensor NDVI) and dif-
ferent N-levels. The Yara N-Sensor/FieldScan (Yara International ASA, Germany) 
was used to assess the status of N in spring wheat and corn (Zea mays L.) at specific 
growth stages (Tremblay et al. 2009). It was found that the Yara N-Sensor/FieldScan 
should be used before growth stage V5 in corn during the season if NDVI was used 
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to derive crop N requirements. Yara N-Sensor/FieldScan can also record spectral 
information from wavebands other than red and NIR, and more VIs can be derived 
that might relate better to the nitrogen status than NDVI.

Besides the instruments introduced above, there are similar systems such as 
OptRx Crop meter (Holland Scientific, USA), CropSpec sensor (Topcon Positioning 
Systems, USA), and CCM-200 and CCM 300 (Edaphic Scientific, Australia). They 
are also widely used in nitrogen and chlorophyll measurements (Serrano et al. 2016; 
Sharabian et al. 2013). Published reports indicate that each sensor has its own sen-
sitivity characteristics, and the wavelengths around 550, 650, 766, and 850 nm are 
mostly selected according to different applications (Tremblay et al. 2009; Cao et al. 
2017; Taskos et al. 2015). Meanwhile, the algorithms should be proposed to estab-
lish estimation models, so that the modeling results could indicate the operation in 
the field management.

8.2.3  Development of Spectroscopy-Based Systems 
for Crop Detection

The current trend in crop sensing is to integrate compact sensors and detecting mod-
els. In this sense, certain studies have been conducted to develop new systems to 
provide support in field management.

8.2.3.1  Development of Hyperspectral Sensors for Crop Monitoring

In order to predict the nutrient content of winter wheat nondestructively in the field, 
an integrated system was developed based on an STS-VIS sensor (Cheng et  al. 
2017). The STS-VIS sensor from Ocean Optics Inc., USA, is a compact sensor for 
portable application. It is a grating-based device with an advanced CMOS (comple-
mentary metal-oxide-semiconductor) 1024-element detector array to measure 
wavelengths in 350–850 nm. The USB output makes secondary development pos-
sible to satisfy online detection, typically by the software integration of established 
models. As shown in Fig. 8.2, the hardware of the integrated spectrometer consists 
of three parts of the optical system, the data storage module, and the controller. The 
optical sensor with a fiber is used to measure the reflected light from the leaf or 
canopy of the field crop. The controller could be connected to the sensor through 
USB2.0 or a wireless network. The supporting software installed on the PC or 
mobile controller helps to control the signal communication and processing. The 
setting parameters include the integration time, sampling frequency, and average 
number due to the effects of the ambient light intensity and the sampling 
requirements.

A software program was also developed to collect the spectral reflectance of 
winter wheat canopy in 350–820 nm. The calibration experiment was carried out to 
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Fig. 8.2 Mechanical structure of the integrated spectrometer. (Cheng et al. 2017)

test the performance of the sensor by a gray calibration board with four different 
gray levels. The correlation coefficient between the sensor and ASD (Field Spec 
HandHeld2) showed that the average correlation coefficient was 0.94. Eight wave-
lengths, including 514, 527, 562, 572, 605, 705, 719, and 795 nm, were selected to 
detect the chlorophyll content using the random frog (RF) algorithm after spectral 
curve smoothing. The determination coefficient of the partial least squares (PLS) 
regression model was 0.69.

8.2.3.2  WSN-Based Sensors for Crop Monitoring

With the development of wireless sensor networks (WSNs), a novel system which 
contained one control unit and several optical sensor nodes for crop growth detec-
tion was developed by China Agricultural University (Zhong et al. 2014). Sensors, 
organized by ZigBee WSN, were designed to collect, amplify, and transmit the opti-
cal signals. A CS350 (Cilico Microelectronics Corp., Ltd., Xi’an, China) type of 
PDA (personal digital assistant) was selected as the coordinator of the whole wire-
less network to receive, display, and store all the data sent from different sensor 
nodes. Since wireless communication was applied, the PDA could be easily used, 
installed in the cab of the tractor, or hand-held by the operator.

Each sensor node was designed with four optical channels at the wavebands of 
550, 650, 766, and 850 nm, respectively. Since the detection system used sunlight 
as the light source, besides the reflected light from crop canopy, the sunlight inten-
sity was also measured as a reference as shown in Fig. 8.3. A full-function sensor 
node had to contain eight optical channels, the upward four for the sunlight mea-
surement and the downward four for the reflected light measurement. A silicon pho-
todiode was used to convert the light signal to current signal in each optical channel. 
A 4:1 time-sharing analog multiplex chip was applied to share the amplification unit 
and an OPA333 amplifier was chosen which had the properties of high precision, 
low quiescent current, and low power consumption. The weak signals were then 
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Fig. 8.3 Structure of the WSN-based sensor for crop monitoring. (Zhong et al. 2014)

amplified and transformed to voltage signals and subsequently read through A/D 
convertors in the microcontroller unit (MCU), which was a JN5139 wireless module 
(Jennic Co, UK). The measured data were wirelessly transmitted to the coordinator 
via an antenna.

Therefore, once started, the sensor was initialized and the data were collected 
automatically with a certain sampling frequency. By setting the address of analog 
switch, the data of each channel were repeated for ten times and then averaged. 
Sensors had different identification numbers, and the sampling frequency was 
adjustable according to different requirements.

In the field experiments, the optical sensors measured the spectral reflectance of 
the crop canopy with four channels at 550, 650, 766, and 850 nm separately. The 
transmission quality of the sensor nodes was evaluated at distances of 20, 40, 60, 80, 
and 100 m and the signals could be transmitted precisely without packet loss in all 
tests. Calibration experiments showed that the accuracy of the optical components 
was high enough for application. The results of the stationary field experiments 
showed that the detection system was capable of monitoring the spectral character-
istics of the crop canopy. The correlation between chlorophyll content and NDVI 
was at an acceptable level, with R2 of 0.681–0.718. The system provides a support 
for crop growth detection and a theoretical basis for further research on chlorophyll 
content prediction in the field.

8.2.3.3  An Integrated Sensor Based on Spectroscopy and Imagery

Furthermore, in order to monitor crop information more efficiently, a multi-fusion 
sensor was developed based on the combination of spectroscopy and imagery tech-
nology, as shown in Fig. 8.4 (Long 2020). The sensor was designed to collect the 
spectral reflectance and images of the crop canopy. It consists of three parts includ-
ing sensors, a data processing unit, and a data transmission port. The spectral 
reflectance collected by an AS7263 sensor (ams AG, Premstaetten, Austria) 
involved six bands in the red and NIR ranges (610, 680, 730, 760, 810, and 860 nm), 
each of which had 20 nm of full-width half-max detection. The RGB image was 
captured to estimate the canopy coverage to help determine the location during 
field measurement. The data could be sent to a mobile phone remotely through a 
Wi-Fi module.
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Fig. 8.4 Structure of the integrated sensor based on spectroscopy and imagery

The sensor application experiments were performed. The fusion data of spectral 
reflectance and images from the sensor were used to analyze the growth status of 
field corn with different levels of fertilizer. The adaptive boosting algorithms were 
used to model the chlorophyll content. The determination coefficient of the model 
was 0.859, which was higher than that just based on spectral data (0.829). The 
fusion of spectral reflectance and image data could improve the prediction accuracy 
of crop chlorophyll content. It provides a new tool for crop monitoring in the field.

8.3  Image Sensing for Crop Detection

8.3.1  Foundation of Crop Imaging and Feature Extraction

Optical imaging is one of the noninvasive methods for crop sensing. Similar to 
spectrometers, optical imaging uses the special properties of light and electromag-
netic waves to obtain detailed images of leaves and plants, as well as canopy and 
even ecosystems. In a typical way, the data are represented with energy intensity in 
a line plot or 2D images. Recently, image sensing has resulted in many develop-
ments in agricultural information acquisition. A variety of imaging instruments are 
available such as monochrome and color digital cameras (RGB), depth and time-of- 
flight (ToF) cameras, multispectral and hyperspectral cameras, thermography, fluo-
rescence sensors, and others (Yang et al. 2017; Li et al. 2014a, b).

New data sources and processing methods of 2D and 3D images and spectral 
data cubes significantly boom the research on crop recognition, plant positioning, 
and phenotype measurement. Lots of features can be extracted from images as 
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shown in Table 8.4, including color features, texture presentation, shape and spatial 
description, Vis-NIR spectral features, fluorescence, and thermal parameters 
(Mavridou et al. 2019; Ali et al. 2017).

In the last two decades, extensive research has been reported for image feature 
extraction and objective analysis. High-level image visuals are represented in the 
form of feature vectors that consist of numerical values. Research shows that there 
is a significant gap between image feature representation and human visual under-
standing (Latif et al. 2019). Thus, the feature selection in imaging systems is depen-
dent on the requirements of crop monitoring; meanwhile, feature representation is 
another task in research.

Table 8.4 Image features in crop monitoring

Category Feature type Characteristics Reference

Color Morphological, gray 
level

Features are capable of describing 
greenness and color changes in 
leaves, plants, or canopy. They are 
used in crop and weed recognition, 
disease and pest identification, 
biomass and yield estimation, 
nutrient and growth status 
monitoring, etc.

Knoll et al. (2018), 
Jiang et al. (2018), 
Garcia et al. (2017), 
Liu et al. (2017), 
Ferreira et al. (2019) 
and Ali et al. (2017)

RGB color space
HSV or HSI color 
space
CMY, YUV, etc.

Texture Local binary pattern 
(LBP)

Provides information in the spatial 
arrangement of colors or intensities. 
It indicates biomass, weeds, and 
structure changes

Waldchen et al. 
(2017) and Lowe 
(2004)Grey-level 

co-occurrence matrix 
(GLCM)
Wavelet texture

Shape and 
spatial

Geometry, size, area, 
length, width

Features refer to appearance and 
help to measure phenotype, 
recognize objects, identify diseases 
or pests, and discriminate weeds

Barbedo (2016), 
Oppenheim et al. 
(2017), Priyankara 
and Withanage 
(2015) and Kebapci 
et al. (2011)

Haar-like feature
Speeded up robust 
features (SURF)
Histogram of oriented 
gradients (HOG), 
scale-invariant feature 
transform (SIFT)

VIS-NIR 
spectral 
features

Original reflectance The spectral features are capable of 
describing either the variation of 
band reflectance intensity or 
changes in the shape of spectral 
curves used in nutrient estimation, 
disease detection, etc.

Liu et al. (2018a, b), 
Potgieter et al. 
(2017), Shirzadifar 
et al. (2018) and Cao 
et al. (2012, 2013, 
2017)

Vegetation indices
Derivative spectral 
features
Continuous removal 
spectral features
Wavelet features

Thermal 
parameters

Absolute/relative 
temperature, e.g., 
Tleaf−Tair

The thermal parameters indicate 
transpiration intensity

Neinavaz et al. 
(2016)

8 Crop Sensing in Precision Agriculture



266

Advances in automated and high-throughput imaging technologies have resulted 
in a deluge of high-resolution images and sensor data of plants. However, extracting 
patterns and features from this large amount of data requires the use of machine 
learning (ML) tools to enable data assimilation and feature identification for stress 
phenotyping (Waldchen and Mader 2018). ML approaches can be deployed in iden-
tification, classification, and prediction, such as SVM, neural networks (NNs), ker-
nel methods, and instance-based approaches (Singh et  al. 2016). Recently, deep 
learning (DL), a subset of ML approaches, has emerged as a versatile tool to assimi-
late large amounts of heterogeneous data and provide reliable predictions of com-
plex and uncertain phenomena (Liu et al. 2017). These tools are increasingly being 
used in extracting crop features and identifying symptoms of crop growth status 
(Singh et al. 2018).

8.3.2  Imaging Technologies Used in Crop Detection

Imaging technologies play an important role in crop sensing. The great majority of 
the sensors are designed based on either solid-state technology, such as CCD 
(charge-coupled device) and CMOS (complementary metal-oxide-semiconductor) 
chips used in optical imagers, or avalanche photodiodes, like InGaAs (indium gal-
lium arsenide) and single-photon avalanche diode (Toth and Joźkow 2016). An 
appropriate equipment should be examined in order to satisfy the needs of each 
application. In general, the most important factors that need to be considered are the 
sensor resolution, frame rate, and price (Pajares et al. 2016).

Considering the diverse cameras that are available in the market, several images 
used are listed in Table 8.5. Imaging technologies used in near-ground crop detec-
tion can be divided into four types which are digital color imaging to capture RGB 
images, 3D imaging to measure depths or spatial distribution, and spectral and ther-
mal imaging. A color image is simple and affordable, so that RGB images are exten-
sively used in crop sensing tasks of recognizing weeds, measuring plants, and 
detecting diseases and pests in the field (Garcia et al. 2017; Yang et al. 2014; Jiang 
et al. 2018; Ferreira et al. 2019; Zong et al. 2019; Knoll et al. 2019).

Although a stereovision system could measure 3D data, the imaging methods by 
ToF are popular due to the robust environmental influences, such as LiDAR and 
photonic mixer devices (PMD) (Knoll et al. 2016a). A typical LiDAR sensor emits 
pulsed light waves into the surrounding environment. These pulses bounce off sur-
rounding objects and return to the sensor and then the time for each pulse to return 
to the sensor is measured. The sensor uses the time to calculate the distance between 
the sensor and the object. Repeating this process millions of times per second cre-
ates a precise, real-time 3D map of the environment. The LiDAR sensors are used 
in phenotype measurement such as height and biomass (Tilly et al. 2015). Moreover, 
some low-cost 3D cameras are also applied in crop sensing such as Kinect 
(Microsoft, USA) and Real Sense (Intel., USA). They provide flexible tools in weed 
identification and fruit recognition (Sa et al. 2016; Kang and Chen 2020).
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Table 8.5 Several images used in near-ground crop detection

Type Describe Application Reference

Color images RGB, handheld, 1280 × 720, 
1920 × 1080, and 2048 × 1536

Pest distribution Garcia et al. (2017)

RGB, UAV, 7360 × 4912 Chlorophyll content 
(corn)

Qiao et al. (2019)

RGB, handheld, 6000 × 4000 Classify carrot crop 
and weeds

Knoll et al. (2016b)

RGB, handheld, 4608 × 3456 Weed recognition Jiang et al. (2018)
UAV, RGB, 4000 × 3000 Weed recognition Ferreira et al. 

(2019)
RGB, handheld, 2592 × 2048 Plant measurement 

(corn)
Zong et al. (2019)

RGB, handheld, 3648 × 2736 Blueberry 
identification

Li et al. (2014a, b)

3D images RGB, 1920 × 1080; depth, 
512 × 424, 0.5–4.5 m

Weeds, fruit 
detection

Knoll et al. (2016b) 
and Sa et al. (2016)

RGB, 1920 × 1080; depth, 
1280 × 720, 0.105–10 m

Fruit detection Kang and Chen 
(2020)

Depth: 204 × 204, vehicle 
mounted

Weed detection Knoll et al. (2016a),

ToF LIDAR 16 lines, 100 m Height and biomass 
(rice)

Tilly et al. (2015)

Multispectral 
images

470, 515, 550, 610, 656, 710, 760, 
800, 830, 860, 900, and 950 nm, 
12 bands, 1280 × 1024, UAV

Crop classification Wang et al. (2019)

RGB-NIR four bands,1296 × 964, 
vehicle mounted

Chlorophyll 
detection (corn), 
weed classification

Zhang et al. (2018) 
and Knoll et al. 
(2016b)

Five bands, 475, 560, 668, 717, 
and 840 nm, 1280 × 960, UAV

LAI, nitrogen, 
chlorophyll content 
(sorghum)

Potgieter et al. 
(2017)

Hyperspectral 
images

900–1700 nm, 3.5 nm Nitrogen detection 
(oilseed rape)

Zhu et al. (2019)

369–988 nm, 1.2 nm Chlorophyll and 
nitrogen detection 
(longan)

Yue et al. (2018)

369–1042 nm,10 nm Fruit recognition Okamoto and Lee 
(2009)

400–1000 nm, 4 nm, lab Disease (rice), water 
content (maize)

Huang et al. (2017) 
and Liu et al. 
(2018a, b)

Thermal 
images

750–1350 nm, 640 × 512 pixels, 
UAV

Yield estimation 
(soybean)

Maimaitijiang et al. 
(2020)

640 × 480 pixels, −40 °C to 
150 °C, ±2%

Fruit detection Gan et al. (2018)
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Imaging spectrometers collect images as well as spectra from the observed crop. 
Nowadays, a wide range of imaging spectrometers have been used on different plat-
forms including stationary or handheld near-ground platforms and unmanned aerial 
vehicle (UAV) platforms. Imaging spectral instruments have been widely used in 
crop detecting with crop classification, disease identification, nutrient estimation 
(chlorophyll, water, nitrogen content), and so on (Zhu et al. 2019; Yue et al. 2018; 
Huang et al. 2017; Liu et al. 2018a, b; Zheng et al. 2018). In addition, thermal sen-
sors are also used in drought estimation because of close relationships among the 
temperature, water stress, and environment (Maimaitijiang et al. 2020).

8.3.3  Development of Imaging Systems for Crop Detection

The results of previous research studies have provided basic principles for the 
development of optical sensing to acquire the spectral information in the field. 
Spectroscopy analysis and image processing are applied as rapid, convenient, and 
nondestructive techniques for crop growth monitoring. The Research Center for 
Precision Agriculture at China Agricultural University (CAU) has developed three 
kinds of multispectral imagery systems for crop monitoring (Wu et al. 2015; Sun 
et al. 2019b; Liu et al. 2020). In general, each system includes a multispectral cam-
era device and controlling software. The multispectral camera is designed with the 
capability to measure multispectral images of crop canopy in three visible bands 
(red [R], green [G], and blue [B]) and a NIR band. The software is developed to 
control the camera system. Furthermore, the estimating models of crop parameters 
should be embedded in the system. This way, it could provide an online device and 
method for crop sensing.

8.3.3.1  A Two-CCD-Based Imaging System for Crop Measurement

A two-CCD-based imaging system was designed for crop measurement, which 
included a multispectral image acquisition device, a communication protocol con-
verter, and a controlling platform (Wu et  al. 2015). A multispectral two-channel 
CCD camera (JAI Ltd., Denmark) was used, which included a splitter prism with 
two reflecting mirrors to split input light into visible and NIR bands. Two CCD sen-
sors could obtain four images in three visible bands (400–700 nm, R, G, and B) and 
one NIR band (760–1000 nm) at the same time. The camera link communication 
protocol standard was adapted to output RGB and NIR images with 1024(h) × 768(v) 
active pixels per channel. The communication between the camera and computer 
was conducted by a QuadMVCL2GE converter (Beijing Microview Science and 
Technology Co., Ltd., China) to convert the output image from the camera link into 
the GigE Vision standard. The highest output bandwidth was 960 Mbps. In the 
research, a panel industrial control computer (PPC-3708, Beijing Weidatong Co., 
China) was used as the system platform. The main functions included a 
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Fig. 8.5 Multispectral images of tomato canopy (Sun et al. 2013). (a) Original RGB image (b) 
Original NIR image (c) Segmented RGB image (d) Segmented NIR image

multispectral camera control module, an image acquisition module, and a multi-
spectral image processing module. When the system was connected, it could work 
following image acquisition, data conversion, and image display and storage. The 
multispectral image could be displayed and stored in RAW, BMP, and JPG format.

An image processing model was developed with three main functions: image 
enhancement, image segmentation, and parameter calculation (Sun et al. 2013). The 
developed system was applied in the chlorophyll content estimation of tomato. 
Multispectral images were collected and the SPAD values of tomato leaves were 
measured. More than 80 pairs of RGB and NIR images were acquired in the experi-
ment. They were first processed by the median filtering algorithm to eliminate the 
noise and then segmented from the background. Figure 8.5a, b shows a pair of RGB 
and NIR images, and the segmented results are shown in Fig. 8.5c, d, respectively. 
The average gray values of each image were calculated to get the VIs of tomato 
canopy. The correlation analysis results indicated that the highest correlation coef-
ficient was 0.7514 between RVI and SPAD values.

8.3.3.2  A Portable Binocular Sensor for Crop Monitoring

The NDVI calculated based on spectral reflectance is proved as one of the important 
parameters to estimate crop growth parameters quickly and nondestructively. Thus, 
the measurement of the NDVI distribution is one of important research directions 
for sensor development (Sun et  al. 2019b). Unlike the two-CCD-based imaging 
system which could acquire the RGB and NIR images synchronously, some low- 
cost binocular vision systems could also be used in the collection of RGB and NIR 
images. The biggest challenge in using these kinds of binocular vision systems is 
image matching, so that the NDVI distribution and dynamics of crops could be 
monitored with high accuracy.

In order to develop a portable multispectral imaging system for crop monitoring, 
an FM830-5  M device (Shanghai Percipio Information Technology Co., Ltd., 
China), which had an RGB camera and two NIR cameras, was used to acquire RGB 
and NIR images of corn. The RGB and one of the NIR cameras were used to develop 
a binocular sensor for crop monitoring. Images of RGB and NIR were processed 
following preprocessing, image matching, segmentation, and image reflectance cor-
rection. The flowchart is shown in Fig. 8.6.
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Fig. 8.6 Development of crop sensor using binocular stereo vision systems

The acquired images were calibrated and preprocessed. Firstly, the RGB image 
was preprocessed. The edge and texture of the RGB image were enhanced by 
Laplace transform. The light saturation removal (LSR) algorithm was used to 
improve the image quality. Secondly, the median filter was used to eliminate the salt 
and pepper noise of images.

In order to compare the performances of different image matching methods, 51 
maize plants were collected synchronously by the binocular vision system at 90°, 
54°, and 35°, respectively. Three algorithms, namely, SURF (Speeded-Up Robust 
Features), SIFT (Scale-Invariant Feature Transform), and ORB (Oriented Brief), 
were applied and discussed for RGB-NIR image matching. The optimal matching 
method was SURF, which was determined by matching time, PSNR (peak signal to 
noise ratio), MI (mutual information), and SSIM (structural similarity index).

The crops were segmented from the background by using the ExG (Extra Green) 
algorithm and maximum interclass variance algorithm (OTSU). The R, G, B, and 
NIR components of the segmented RGB images were extracted. Then, the NDVI of 
each pixel in the image was calculated, and the spatial distribution map of the crop 
VI was drawn. The SPAD values at pixel level were calculated. The regression 
model of SPAD values and NDVI showed that the determination coefficient was 
0.619. The demonstration of the sensor application and results are shown in Fig. 8.7.

8.3.3.3  A Portable Multispectral Sensor for Crop Measurement

A 25-wavelength spectral imaging sensor (mode: XIMEAI-5 × 5-CMOS, Shanghai 
Branch of IMEC Microelectronics Co., Ltd., China) was used to develop a multi-
spectral system for crop measurement, as shown in Fig. 8.8a (Liu et al. 2020). The 
filter of this sensor was processed on the wafer of a commercial application CMOS 
image capture chip that has a mosaic layout. There was a specific spectral filter on 
each pixel, and 25 wavelengths were placed on the COMSIS-CMV2000 sensor with 
two million pixels. This sensor was able to obtain spectral information of the 
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Fig. 8.7 Demonstration of the sensor application and results (Sun et al. 2019b). (a) Image match-
ing (b) NDVI mapping

Fig. 8.8 Spectral sensor and control software of the detection system (Liu et al. 2020). (a) Spectral 
sensor  (b) Control software interface

following 25 wavelengths: 666, 681, 706, 720, 732, 746, 759, 772, 784, 796, 816, 
827, 837, 849, 859, 869, 887, 888, 902, 910, 920, 926, 935, 940, and 945 nm. The 
sensor had a field of view (FOV) of 50°. The image size of each wavelength was 409 
pixels × 217 pixels, and the grayscale resolution was 10 bits.

In order to realize the real-time detection of SPAD values of potato plants in the 
field, a control software program was developed based on the Qt Creator 4.9.1 plat-
form under a Windows operating environment. The user interface shown in Fig. 8.8b 
was designed based on the Qt Widgets application. The image processing functions 
were realized by calling the OpenCV libraries. The main functions of the software 
included the following: spectral image collection, exposure time adjustment, spec-
tral image correction, SPAD value pseudo-color expression, SPAD value statistics, 
and image saving.

The spectral sensor and control software comprised the SPAD value real-time 
detection system. The reflectance of potato plants was extracted by the segmented 
mask images. The partial least squares (PLS) regression was employed to establish 
the SPAD value detection model based on sensitive variables selected using the 
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uninformative variable elimination (UVE) algorithm. So the visualization distribu-
tion map of SPAD values was drawn by pseudo-color processing technology.

8.4  Remote Sensing Platforms for Crop Monitoring

8.4.1  Remote Sensing Instruments Used in Crop Monitoring

Unlike spectral sensors introduced above, remote sensing spectrometers usually 
operate in Earth observation, capturing images as well as spectra from the observed 
materials. Images in wavebands make it possible to locate and extract plants from 
the background by image processing and derive numerous VIs. Great efforts have 
been made over the past decades to produce high-quality data in remote sensing by 
developing a wide range of imaging spectrometers placed on aerial/satellite plat-
forms (Paoletti et al. 2019). Compared with near-ground platforms such as UAVs 
and stationary or handheld near-ground devices, which focus on specific fields or 
plants in small areas (Wang et al. 2019; Han et al. 2019), aerial and satellite remote 
sensing related to Earth observation is suitable for large farmland and ecosystem 
monitoring.

Efforts have been made over the past decades to produce high-quality data. These 
instruments could be classified into multispectral or hyperspectral devices accord-
ing to the numbers of bands. A multispectral image contains from several to about a 
dozen bands, while a hyperspectral image (HSI) contains hundreds to thousands of 
contiguous wavelengths (Mishra et al. 2017). Several systems, shown in Table 8.6, 
are mostly used in aerial and satellite remote sensing. Similar to the spectral images 
mentioned before, the features extracted from remote sensing data include color 
features, texture presentation, shape and spatial description, and Vis-NIR spectral 
features.

8.4.2  Application of Multispectral Remote Sensing

Traditional satellite sensors such as SPOT and Landsat have long been used in crop 
sensing. The SPOT Vegetation sensor was carried aboard SPOT 4 and 5 which were 
launched in 1998 and 2002, respectively. It had the capability of imaging the entire 
Earth each day with IFOV (1.15  km) (https://eos.com/landsat- 5- tm/). SPOT 
Vegetation collected data in four spectral bands in 0.43–0.47 μm, 0.61–0.68 μm, 
0.78–0.89 μm, and 1.58–1.75 μm (Cayrol et al. 2000).

Landsat Thematic Mapper (TM) was a multispectral scanning radiometer that 
was carried on board Landsat 4 and 5. The TM sensors had provided nearly continu-
ous coverage from July 1982 to June 2013. A TM scene had an instantaneous field 
of view (IFOV) of 30 m × 30 m in bands of visible (0.45–0.52 μm, 0.52–0.60 μm, 
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Table 8.6 Spectral imaging used in remote sensing

Type Describe Application Reference

Multispectral 
remote sensing

SPOT 4 and 5, 0.40–
0.89 μm, VIS/NIR/SWIR 
four bands

Yield (maize), 
grassland

Zhao et al. (2015) and 
Cayrol et al. (2000)

Landsat 4 and 5, 0.45–
2.35 μm, VIS/NIR/SWIR/
thermal seven bands,

Yield (maize), Zhao et al. (2015)

Landsat 7, 0.45–2.35 μm, 
VIS/NIR/SWIR/thermal/
PAN, eight bands

Yield (maize), crop 
classification

Zhao et al. (2015) and 
Zhong et al. (2019)

Landsat 8, 0.43–2.29 μm, 
VIS/NIR/SWIR/thermal/
PAN, nine bands

Crop classification, 
disease (wheat)

Zhong et al. (2019) and 
Ma et al. (2019)

0.4–14.4 μm, 36 bands Yield (wheat),
Drought monitoring

Zhou et al. (2019) and 
Shen et al. (2019).

Hyper-spectral 
remote sensing

360–2450 nm, 224 bands, 
10 nm

Disease (soybean) Nagasubramanian et al. 
(2017)

380–2510 nm, 430 bands, 
5-nm interval

Crop classification Salas et al. (2020)

350–1050 nm, 288 bands N stress (corn) Goel et al. (2003)
450–2500 nm, 125 bands Nitrogen, disease 

(wheat)
Huang et al. (2004) and 
Mewes et al. (2011)

0.63–0.69 μm), NIR (0.76–0.90 μm), and SWIR (2.08–2.35 μm), while the band of 
10.41–12.5 μm has an IFOV of 120 m × 120 m on the ground. The Landsat Enhanced 
Thematic Mapper Plus (ETM+) was introduced with Landsat 7 (https://eos.com/
landsat- 7/) and was built by Raytheon SBRS (Santa Barbara Remote Sensing), 
Goleta, CA. Except the visible and NIR bands of TM data, ETM also scans the 
bands of SWIR (1.57–1.75 μm, 2.09–2.35 μm), thermal infrared (10.40–12.50 μm), 
and a panchromatic (PAN) (0.52–0.90 μm).

The Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are 
instruments onboard the Landsat 8 satellite (https://eos.com/landsat- 8/), in which 
OLI, built by the Ball Aerospace & Technologies Corporation, measures in the vis-
ible, NIR, and SWIR infrared portions of the spectrum. Therefore, Landsat 8 
Instruments have nine spectral bands at 30-m spatial resolution including a PAN 
band: visible (0.43–0.45 μm, 0.450–0.51 μm, 0.53–0.59 μm), red (0.64–0.67 μm), 
NIR (0.85–0.88 μm), SWIR (1.57–1.65 μm, 2.11–2.29 μm), panchromatic (PAN) 
(0.50–0.68 μm), and cirrus (1.36–1.38 μm). It also has two thermal infrared sensors 
with bands of 10.6–11.19 μm and 11.5–12.51 μm at 100-m spatial resolution.

Using satellite remote sensing to understand maize yield gaps in the North China 
Plain with Quzhou County as an example, Zhao et al. (2015) used Landsat 5 TM, 
Landsat 7 ETM+, and SPOT 4 satellite data during the summer maize growing sea-
son from 2007 to 2013 with the exceptions of 2008 and 2011 when there was a lack 
of high-quality cloud-free images. In order to solve the spatial differences between 
SPOT 4 and Landsat data, Landsat images were resampled to 20-m resolution using 
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the nearest neighbor method. Results indicate that remote sensing can provide rea-
sonably reliable estimates of maize yields in this region. In addition, the majority of 
yield gap is dominated by transient factors, and shrinking this gap may require high- 
quality forecasts to make informed optimal management decisions.

Satellite remote sensing also has been used in crop classification and disease 
monitoring. Zhong et al. (2019) used data from Landsat 7 ETM+ and Landsat 8 OLI 
at 3- m resolution to classify summer crops. Two types of deep learning models 
were designed using Landsat Enhanced Vegetation Index (EVI) time series. Three 
widely used classifiers were also tested for comparison, including a gradient boost-
ing machine called XGBoost, Random Forest, and SVM. Among non-deep- learning 
classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score 
of 0.69. The model employs EVI time series by examining shapes at various scales 
in a hierarchical manner. Ma et al. (2019) discriminated winter wheat powdery mil-
dew and aphid infestations during a co-epidemic outbreak of the disease and the 
insect pest in northeast China based on temporal Landsat 8 imagery integrated with 
crop growth and environmental parameters.

Using satellite monitoring, the system notifies its users of critical changes in 
vegetation, sends real-time weather risk alerts, and automates the prioritization pro-
cess within field work planning tasks. As a result, all of the abovementioned capa-
bilities make it possible not to miss important points in the treatment of fields and 
to respond in a timely manner to any changes. So far, researchers have implemented 
agricultural projects for monitoring fields, classifying crops, identifying growth and 
stress status, and forecasting crop yields (Zhou et al. 2019; Shen et al. 2019).

8.4.3  Application of Hyperspectral Remote Sensing

Advances in sensing and computer technologies have achieved great improvement 
in hyperspectral image data acquisition. A number of HSI data missions for Earth 
Observation have been launched and provide new tools for satellite remote sensing, 
such as the NASA Hyperspectral Infrared Imager (HyspIRI), the Environmental 
Mapping and Analysis Program (EnMAP), and the Precursore IperSpettrale della 
Missione Applicativa (PRISMA) program (Paoletti et al. 2019). Meanwhile, several 
instruments are used in capturing great volumes of HSI data based on airborne 
remote sensing. As shown in Table 8.3, some of best-known spectrometers are avail-
able for crop sensing.

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), developed by 
the Jet Propulsion Laboratory (JPL) (Pasadena, California, USA), was a hyperspec-
tral imaging sensor that delivered calibrated images of upwelling spectral radiance 
in 224 contiguous spectral bands with wavelengths from 400 to 2500 nm (http://
aviris.jpl.nasa.gov/). Moreover, the Airborne Visible Infrared Imaging Spectrometer-
Next Generation (AVIRIS-NG) sensor samples 430 contiguous bands between 
380 nm and 2510 nm at approximately 5-nm spectral resolution.
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Nagasubramanian et al. (2017) identified the disease named charcoal rot in soy-
bean crops using AVIRIS hyperspectral data. In the range of 383–1032 nm, they 
developed a 3D convolutional neural network (CNN) model for soybean charcoal 
rot disease identification. The classification accuracy was 95.73% and the infected 
class F1 score was 0.87. Salas et  al. (2020) derived a set of narrow−/broadband 
indices from the AVIRIS-NG imagery to represent spectral variations and identify 
target classes and their distribution patterns. The results showed that the maximum 
entropy (MaxEnt) and generalized linear model (GLM) had strong discriminatory 
image classification abilities with area under the curve (AUC) values ranging 
between 0.75 and 0.93 for MaxEnt and between 0.73 and 0.92 for GLM. It was also 
found that the Photochemical Reflectance Index (PRI) and Moment Distance Ratio 
Right/Left (MDRRL) were important predictors for target classes such as wheat, 
legumes, and eggplant.

The Compact Airborne Spectrographic Imager 1500 (CASI 1500), designed by 
ITRES Research Ltd. (Calgary, Alberta, Canada), is a system that acquires data in 
380–1050 nm and splits light into 288 discrete bands. It was used to obtain images 
over a field that had been set up to study the effects of various nitrogen application 
rates and weed control on corn (Goel et al. 2003). The results indicated that the 
reflectance of corn was significantly influenced (α = 0.05) at certain wavelengths by 
the presence of weeds, the nitrogen rates, and their interaction. Differences in 
response due to nitrogen stress were most evident at 498  nm and in the band 
at 671 nm.

In addition, the HyMap scanner, built by Integrated Spectronics Pty Ltd. of 
Sydney, Australia, has four spectrometers in the interval of 450–2450 nm exclud-
ing the two major atmospheric water absorption windows. The research was con-
ducted on estimating foliage nitrogen concentration from HyMap data using 
continuum- removal analysis (Huang et al. 2004). It identified the known nitrogen 
absorption features. The coefficient of determination increased from 0.65, using 
the standard derivative analysis, to 0.85 with the continuum-removal analysis. 
Mewes et al. (2011) indicted the potential to detect wheat disease induced by a 
pathogen infection. With the original spectral resolution of HyMap, the highest 
classification accuracy could be obtained by using 13 spectral bands with a Kappa 
coefficient of 0.59.

In summary, imaging spectrometers are of increasing importance for agricultural 
applications, particularly for the support of crop sensing that increases the produc-
tivity of crop stands (Zhou et al. 2019; Shen et al. 2019). However, to define an 
optimal sensor-based system or a data product designed for crop detection, it is 
necessary to know which spectral wavelengths are representative and which spectral 
resolution is needed. The methods of data processing also face the challenges from 
different instruments and requirements. Hence, research may involve data fusion 
and modelling supported by machine learning and even deep learning.
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8.5  Precision Crop Management Based 
on Sensing Instruments

Spectroscopy and imaging sensors have been widely used to support precision agri-
culture by providing information for crop management (Zhang et al. 2018). It pres-
ents an automated solution of object recognition and detection in crop production, 
combined with technologies of machine vision and machine learning algorithms as 
well as deep learning systems (Gomes and Leta 2012; Kamilaris and Prenafeta- 
Boldú 2018). More and more agricultural robots have been developed based on crop 
sensing instruments and processing methods. They have been used in specific tasks 
that are traditionally performed manually in which manual methods have the disad-
vantages of being tedious and error-prone. Some recent advancements of crop sen-
sors are applied in precision management in the field including variable sprayers for 
fertilizers and weed control and field-based crop phenotyping (Patricio and 
Rieder 2018).

8.5.1  Applications of Spectroscopy-Based Crop Sensors

8.5.1.1  Classification of Weeds and Damage Caused by Disease and Pests

Since reflectance of crops, weeds, and soil differs in the visual and NIR wave-
lengths, there is potential to distinguish them by spectral reflectance at different 
wavelengths. Vrindts et  al. (2002) measured canopy reflectance of sugar beet, 
maize, and weeds with a line spectrograph (480–820 nm). Four wavelengths were 
selected to separate the sugar beet and weed plants including 572.7, 676.1, 801.4, 
and 814.6 nm. The overall classification accuracy was over 90%, while it had not 
shown good capability to classify maize and weeds with only 15% accuracy. 
Shirzadifar et al. (2018) selected bands around 1078, 1435, 1490, and 1615 nm to 
identify weeds of kochia, water hemp, and lamb’s-quarters.

In order to design an optical weed sensor, sensitive wavelengths within the visi-
ble and NIR bands (496, 546, 614, 676, and 752 nm) were selected based on the 
spectral differences between stems and leaves of various crops and weeds (Wang 
et al. 2001). The partial least-squares (PLS) calibration model was established by 
the combination of these wavelengths and their VIs. The designed instrument with 
the embedded model could identify wheat, bare soil, and weeds with classification 
rates of 100%, 100%, and 71.6%, respectively, for the training data set when the 
weed density was above 0.02 plants/cm2. Sui et al. (2008) developed a ground-based 
weed mapping system to measure weed intensity and distribution in a cotton field. 
It was used to directly output the canopy coverage and intensity ratio by connecting 
with a WeedSeeker sensor. The changes in leaf pigments and biochemical compo-
nents caused by fungi infection or pest damage can influence the spectral character-
istics of leaves, so that the spectral differences between healthy and damaged leaves 
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can be used to identify the plant health status. Various VIs are used in monitoring 
plant disease and pests such as NDVI, GNDVI, and OSAVI (Zhang et  al. 2012, 
2019a). Based on the fluorescence spectra, some studies applied the ratio of fluores-
cence (e.g., F686/F740) amplitude at fluorescence peaks to achieve presymptomatic 
detection for some pathogens (Bürling et al. 2012). Parameters associated with the 
saturation pulse method could be used to evaluate the changes of affected pigments, 
such as the maximum quantum efficiency of photosystem II (PSII) primary photo-
chemistry (Fv/Fm), the maximum efficiency of PSII photochemistry in light- 
adapted material (Fv’/Fm′), and non-photochemical quenching (NPQ). Besides 
VIS-NIR and fluorescence spectroscopy, thermal observation provides an indicator 
to find the temperature changes of stressed symptoms from plant canopy.

The sensitive features are important for detection of diseases or pests. Naidu 
et al. (2009) discussed the spectral characteristics of grape infected by grapevine 
leafroll disease (GLD). The spectral differences between healthy and infected leaves 
are located around the green (near 550 nm), shortwave NIR (near 900 nm), and NIR 
(near 1600 and 2200 nm) bands. The classification models were built based on the 
sensitive wavelengths (531, 570, 752 nm, etc.) and VIs (NDVI, RVSI, PRI, etc.). 
Moreover, the results showed that compared with the linear regression result of 0.72 
from RVSI, the accuracy increased to 0.78 when RVSI was combined with the 
reflectance in the blue band (470–490 nm) and 526 nm. In the same study, the clas-
sification accuracy was 0.75 by the variables that combined PRI with bands of 
765–830, 970, and 684 nm.

Similarly, Annamalai and Lee (2004) investigated the spectral signatures of 
immature green citrus fruit and leaves for the purpose of developing a spectrally 
based fruit identification and early yield mapping system. Diffuse reflectance of 
fruit and leaf samples were measured in the range of 400–2500 nm, and two impor-
tant wavelengths at 815 and 1190 nm were selected. A ratio of these two wave-
lengths was used to distinguish immature green fruit from leaves. Other researchers 
studying leaf miner damage, bacterial spots, and yellow rust of crop leaves had 
examined the sensitivity of spectral responses and characteristics and established 
identification models by partial least squares (PLS) regression, stepwise multiple 
linear regression (SMLR), support SVM, and so on (Moshou et al. 2014). Recently, 
more and more statistical analysis and machine learning modeling methods are 
applied. Deep learning, a part of machine learning, has also been applied to select 
the features or to build an end-to-end architecture for discriminant analysis.

8.5.1.2  Monitoring of Nutrient Content and Biomass Status

Crop growth status is generally evaluated by the nutrient content and biomass level, 
in which the contents of chlorophyll, nitrogen, and water are related to the nutrient 
level, and the biomass is generally estimated by the leaf area index (LAI) referred 
to a unit area or volume of habitat. The estimation of crop growth parameters using 
spectroscopy helps to guide the management of fertilizer and irrigation and predict 
the yield in the field.
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The chlorophyll measurement has always been the priority of considerable 
research because chlorophyll is the organic molecule of plant leaves for photosyn-
thesis and highly relates with leaf nitrogen in the 400–700 nm spectral range (Ulissi 
et al. 2011). Using the same spectral features shown in Table 8.1, a large number of 
researchers estimate the chlorophyll content by sensitive wavelengths, VIs, red- 
edge location, and others. Ciganda et al. (2009) constructed a red-edge chlorophyll 
index with red-edge (720–730  nm) and NIR (770–800  nm) spectral reflectance. 
Chen et al. (2010) proposed a new spectral indicator named Double-peak Canopy 
Nitrogen Index (DCNI) which was used for maize nitrogen estimation. Schlemmer 
et  al. (2013) indicated that the chlorophyll content could be accurately retrieved 
using green and red-edge chlorophyll indices by the bands located in the NIR 
(780–800 nm) and either the green (540–560 nm) or red edge (730–750 nm). Rossini 
et al. (2012) estimated chlorophyll using a suite of VIs and found a high correlation 
of over 0.8 between leaf chlorophyll content and narrowband spectral indices. 
Sonobe et al. (2018) showed that shading treatment for a crop made the reflectance 
lower near the wavelengths of 550 and 740 nm. Two methods, machine learning 
algorithms and the inversion of a radiative transfer model, were evaluated using 
measurements from tea leaves. Overall, the kernel-based extreme learning machine 
had the highest performance with a root mean square error (RMSE) of 
3.04 ± 0.52 μg cm−2 and the ratios of performance to deviation (RPD) from 3.38 to 
5.92 for the test set.

The molecular absorption of hydrogen-containing groups (O-H, N-H, C-H) pro-
vides a potential to measure the moisture content nondestructively (Cheng et  al. 
2011). Although water absorption has been explored in the infrared region with 
spectral centers at 970, 1200, 1440, and 1950 nm (Palmer and Williams 1974), a 
series of researchers proposed different wavelengths due to the influences of spe-
cies, phenology, environment stress, and so on. Dejonge et al. (2016) established a 
diagnosis model of corn water content to guide the field irrigation using the NDVI, 
OSAVI, and GNDVI. Among these VIs, the NDVI showed the best performance 
with highest R2, slope almost equal to 1. So the vegetation ratios of water-stressed 
and non-stressed NDVI was set as an irrigation trigger with the threshold value 
of 0.93.

In addition, spectroscopy methods can be used to invert some biomass parame-
ters and indirectly calculate LAI. Except the NDVI, other spectral indices have also 
been presented in recent research. Ray et al. (2006) found that VIs, NDVI, and SAVI 
(Soil-Adjusted Vegetation Index), calculated in the bands of 780–680 nm, produced 
the highest correlation coefficients with LAI. Han et  al. (2016) built a model to 
predict the LAI of apple tree canopy by comparing SVM and random forest (RF) 
algorithms. Some VIs used in the RF regression model were in accordance with LAI 
in the full fruit period including GNDVI, NDIVI, RVI, and GRVI. Besides the VIS 
and NIR regions, Neinavaz et al. (2016) conducted some research in the thermal 
infrared region (TIR) and found that the canopy emissivity spectra increased with 
rising LAI.
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In particular, the value of LAI could also be measured by an optical sensor, 
named LAI-2000 Plant Canopy Analyzer (LI-COR Biosciences, USA). It works by 
digital photography to show how canopy gap fraction measurements can be overes-
timated if measurements are taken when foliage is brightly lit (Han et al. 2016).

According to the studies mentioned above, the main methods include data pre-
processing, sensitive parameter selection, and estimation modelling. The capabili-
ties and performances of spectroscopy were explored for crop sensing. However, 
the methods used in data processing and the results were different, indicating that 
the sensors and algorithms used might influence the application significantly. 
Researchers will face further challenges on sensor integration and data fusion.

8.5.2  Applications of Imaging-Based Crop Sensors

8.5.2.1  Application of Ground-Based Imaging Instruments

Classification of Crops and Weeds

Focusing on the recognition of field weeds by different imaging sensors, Knoll et al. 
(2016a), used a time-of-flight (TOF) sensor, CamCube 3, to create depth images 
with a resolution of 204 × 204 pixels. In addition, more sensors were equipped on a 
field robot named Bonirob, including a Bispectral JAI camera, a Nikon D5300 cam-
era, a Kinect II, and a laser scanner (Knoll et al. 2016b, c). The Bispectral JAI cam-
era (JAI Ltd., Denmark) uses one lens for two cameras (RGB camera and IR camera) 
with 1296 × 966 pixels. The Nikon D5300 captures RGB images with a resolution 
of 6000 × 4000 pixels. Moreover, the Kinect II records a color image with the size 
of 1920 × 1080 pixels and an infrared image of 512 × 424 pixels. Meanwhile, the 
ToF technology allows a depth image of 512 × 424 pixels. In the research, the best 
performances were provided by the JAI camera and the Nikon camera. As a result, 
two VI determination methods based on RGB images were proposed by extracting 
color features of RGB and HSV (hue, saturation, value) (Knoll et al. 2016b).

However, the disturbances of results are the influences of, for example, weather, 
the various stages of growth, the large number of different weeds, and the different 
soil conditions. In order to eliminate these influences, a self-learning convolutional 
neural network was used for weed recognition in the field. This deep-learning 
approach achieved accuracy of over 98% (Knoll et al. 2018). Similarly, a classifica-
tion model of weeds in organic carrot was proposed by using a convolutional neural 
network (CNN) to help in weed management (Knoll et al. 2019). Several proposed 
methods also indicated that deep learning could help to extract high-level features 
from images to improve the classification accuracy (Asad and Bais 2019; Peng 
et al. 2019).
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Identification of Specialty Fruits

Harvesting of specialty fruits such as apples, citrus, cherries, and pears is highly 
labor intensive and is becoming less sustainable with increasing cost and decreasing 
availability of a skilled labor force (Gongal et al. 2015).

In order to help harvesting and yield prediction of specialty fruits, a digital SLR 
camera (EOS Rebel T2i, Canon Inc., Japan) with an 18–55 mm lens was used to 
collect the RGB images of field blueberry with 3648 × 2736 pixels. Li et al. (2014a, 
b) selected three color components, red (R), blue (B), and hue (H), to separate fruits 
of four maturity stages from background through different classifiers. The perfor-
mances were discussed among the results of the K-nearest neighbor (KNN), naïve 
Bayesian classification (NBC), and supervised K-means clustering classifier 
(SK-means). In this work, the KNN classifier yielded the highest classification 
accuracy (85–98%) from the validation set.

In the immature green citrus fruit detection, Gan et al. (2018) built an imaging 
system to provide valuable information for yield estimation at earlier stages. The 
system consisted of two color cameras (USB 3.0, The Imaging Source, Charlotte, 
NC, USA) and a thermal camera (A655sc, FLIR, Wilsonville, OR, USA). Images 
from all three cameras had the same spatial resolution, 640 × 480 pixels, and very 
similar diagonal field of views of about 30°. A new Color-Thermal Combined 
Probability (CTCP) algorithm was created to effectively fuse information from the 
color and thermal images to classify potential image regions into fruit and non-fruit 
classes. The results present that the fusion of the color and thermal images effec-
tively improved the accuracy of immature green citrus fruit detection. For the same 
aim, Okamoto and Lee (2009) used a hyperspectral camera of 369–1042  nm to 
acquire hyperspectral images of green fruits of three different citrus varieties (tan-
gelo, Valencia, and Hamlin). Spatial image processing steps (noise reduction filter-
ing, labeling, and area thresholding) were applied. The results of pixel identification 
tests showed that the detection success rates were 70–85%, depending on citrus 
varieties.

Measurement of Crop Growth Status

Three-dimensional cameras have been used to obtain the depth or position informa-
tion. The Kinect camera has a normal webcam and a depth sensor which can pro-
vide RGB-D image. The depth sensor consisted of an infrared laser projector 
combined with a monochrome CMOS sensor that could detect the range of 
0.8–4.0 m. Sa et al. (2016) used a Kinect camera to capture RGB and NIR images. 
A Faster Region-based CNN (Faster R-CNN) model was established to detect sweet 
peppers, which took into account both precision and recall performances improving 
from 0.807 to 0.838. Kang and Chen (2020) used a RealSense D-435 camera to col-
lect RGB and depth images for apple detection in the orchard. From the experiment 
results, DaSNet-v2 with ResNet-101 achieved 0.868, 0.88, and 0.873 on recall and 
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precision of detection and accuracy of instance segmentation on fruits, respectively. 
In addition, it reached 0.794 on the accuracy of branch segmentation.

Although the measurement of plants is traditionally based on RGB images, the 
information of plant appearance is more accurately presented in 3D space, espe-
cially for geometry and topology. So the 3D imaging instruments are increasingly 
used in the crop phenotyping. LiDAR or laser sensors have been used to measure 
plant height and biomass because they present good adaptation to illumination and 
provide considerable data. LiDAR was adopted to measure the height and biomass 
of rice, oilseed rape, winter rye, winter wheat, and grassland (Tilly et al.,2015).

In order to estimate the nutrient content, an AD-130 GE bispectral camera (JAI 
Ltd., Denmark) was also used to capture multispectral images of RGB and 
NIR. Fifteen image parameters were extracted including the average gray values of 
images, the VIs (NDVI, NDGI, RVI, DVI), and image texture parameters (energy, 
moment of inertia, correlation, entropy, etc.). An SVM model was estimated to pro-
vide support for corn nutritional diagnosis and fertilization management decisions.

In order to evaluate the nitrogen content in oilseed rape (Brassica napus L.), Zhu 
et al. (2019) collected spectral images in 900–1700 nm wavebands using a hyper-
spectral camera, ImSpectorN17E (Spectral Imaging Ltd., Oulu, Finland). A fast 
nitrogen content grade classification method for oilseed rape canopy was estab-
lished by employing a deep learning algorithm named stacked auto-encoders 
(SAEs). In this study, the SAE algorithm was introduced for the data dimensional 
reduction and feature extraction from hyperspectral images, and then the multiple 
classification models were applied for the feature testing and validation within the 
feature data under different camera angles with different feature units. Results 
showed that the best accuracy was presented by data captured under the 25° angle.

Hyper SIS (Zolix Instruments Co., Ltd., Beijing, China) is a hyperspectral cam-
era to measure in the 369–988 nm band with a spectral resolution of 1.2 nm. It was 
used to detect the nitrogen detection of longan plants (Yue et al. 2018). The initial 
features were extracted using the principle component analysis (PCA) to identity a 
number of potential characteristic wavelengths (483, 518, 625, 631, 642, and 
675 nm). Then the texture based on the gray-level co-occurrence matrix (GLCM) 
was extracted from those images. Combined with the state-of-the-art deep learning 
technology, a distribution model of chlorophyll content for longan leaves based on 
convolution neural networks (CNNs) and deep neural networks (DNNs) was pro-
posed. As a result, the R2 of the calibration and validation set were 0.84 and 0.82, 
respectively.

In the detection of rice panicle blast disease, Huang et  al. (2017) measured 
images in the band of 400–1000 nm by using a Gaia Field-F-V10 (Spectral Imaging 
Ltd., Finland) spectrometer. A deep convolutional neural network model, Google 
Net, was used to learn the representation of hyperspectral image data. The proposed 
method achieved a classification accuracy of 92.0%. The same hyperspectral cam-
era has also been used in the nutrient monitoring of water or chlorophyll content 
(Liu et al. 2018a, b; Zheng et al. 2018).

8 Crop Sensing in Precision Agriculture



282

8.5.2.2  Application of UAV-Based Imaging Instruments

With the development of remote sensing technology, the advantages of UAVs 
acquiring farmland images are fast and convenient. Furthermore, the scope of acqui-
sition is gradually becoming an important means and research hotspot for farmland 
information acquisition (Yang et al. 2014, 2017).

Different types of spectroscopic and image sensors for UAV have been devel-
oped, such as digital color sensors and multispectral/hyperspectral imaging sensors, 
further extending UAV-based remote sensing to various applications (Lu et al. 2019).

Crop Classification

Based on digital color cameras, Yang et al. (2014) designed a multispectral imaging 
system based on two identical consumer-grade cameras for agricultural remote 
sensing. The cameras are equipped with a full-frame CMOS sensor with 5616 × 3744 
pixels. One camera captures normal color images, while the other is modified to 
obtain NIR images. Images are stored in 14-bit RAW and 8-bit JPEG files in 
CompactFlash cards. The system has been practically applied in estimating crop 
canopy cover, detecting cotton root rot, and mapping henbit and giant reed 
infestations.

In order to classify different crops, Ferreira et al. (2019) used a Phantom DJI 3 
Professional drone (DJI Technology Co. Ltd., China) to collect RGB images with 
4000 × 3000 pixels to train a model and achieved 97% accuracy in the discrimina-
tion of grass and broadleaf. Based on this goal, Wang et al. (2019) equipped a mul-
tispectral camera on a composite wing UAV to collect images of cotton, corn, and 
squash. A Micro MCA12 Snap (Tetracam, CA, USA) obtained images at 12 bands 
of 470, 515, 550, 610, 656, 710, 760, 800, 830, 860, 900, and 950  nm, with 
1280 × 1024 pixels in each band. A CNN network was designed to extract features 
and classify crops. Compared with the SVM based on radial basis kernel function 
and the backpropagation neural network, the optimized CNN had the best effect and 
the highest classification accuracy of 97.75%.

Crop Detection

Due to the requirement of nutrient estimation, Qiao et al. (2019) estimated the chlo-
rophyll content of maize. RGB images with a resolution of 7360 × 4912 pixels were 
collected by using ILCE-7R (Sony Corporation, Japan) equipped on a DJI M600 
UAV platform. The parameters related to the color and texture features in the images 
were extracted after the canopy segmentation to reduce influences from the back-
ground. The established model had a determination coefficient of 0.76. The distri-
bution map of chlorophyll content in field maize canopy was drawn based on a 
pseudo-color technique. It provided a tool to visually distinguish the field road and 
canopy area, showing the difference in chlorophyll distribution of the plot.
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Potgieter et al. (2017) conducted the assessment of seasonal leaf area dynamics 
of sorghum breeding lines by using multispectral imaging from an UAV.  A 
RedEdge™ narrowband multispectral camera (MicaSense Inc., USA) capturing 
five bands at specific nanometer (nm) wavelength peaks was fitted to the UAV plat-
form. The bands captured were blue (B: 475 nm center wavelength, 20 nm band-
width), green (G: 560 nm, 20 nm), red (R: 668 nm, 10 nm), red edge (RE: 717 nm, 
10 nm), and near-infrared (NIR: 840 nm, 40 nm). The horizontal field of view was 
47.2 degrees with a 5.5-mm focal length producing an image resolution of 
1280 × 960 pixels. It was found that the good correlations between each VI (NDVI 
and EVI) and each growth parameter, such as plant number per plot, canopy cover, 
and LAI both during the vegetative growth phase (pre-anthesis) and at maximum 
canopy cover shortly after anthesis. The NDRE, which is used to estimate leaf chlo-
rophyll content, was also the most useful in characterizing the leaf area dynamics/
senescence patterns of contrasting genotypes.

Cen et al. (2019) discussed the use of a lightweight UAV with dual image-frame 
snapshot cameras to estimate aboveground biomass (AGB) and panicle biomass 
(PB) of rice at different growth stages with different nitrogen (N) treatments. An 
RGB camera (NEX-7 camera, Sony Corporation, Japan) with a spatial resolution of 
6000 × 4000 pixels and a snapshot multispectral camera (CMV2 K CMOS, IMEC, 
Chatsworth, Leuven, Belgium) with a spatial resolution of 409 × 216 pixels coupled 
with a three-axis gimbal were mounted on the UAV. The multispectral camera con-
tains 25 wavelengths in the spectral region of 600–1000 nm (679, 693, 719, 732, 
745, 758, 771, 784, 796, 808, 827, 839, 84, 860, 871, 880, 889, 898, 915, 922, 931, 
937, 944, 951, and 956 nm). It was found that the canopy height extracted from the 
crop surface model exhibited a high correlation with the ground-measured canopy 
height, and several VIs were highly correlated with AGB.

These applications show that imaging instruments are being widely used on- 
board UAVs for collecting spectral and spatial information that allows the genera-
tion of maps to indicate the aspects of the plant state. Due to the availability of NIR 
wavelengths in multispectral images, spectral images have also become an indis-
pensable tool for evaluating the physiological- and biochemical-related parameters 
of plants, such as LAI, vegetation fraction, nitrogen (N) and chlorophyll status, net 
photosynthesis, and biomass.

8.5.3  Variable-Rate Fertilizer Management Based 
on Crop Sensors

8.5.3.1  Variable-Rate Fertilizer Mapping Based on Imaging Instruments

In order to further extend the functions of the crop growth detector, a WSN-based 
detection system was proposed to measure crop spectral characteristics on the go 
and in real time as shown in Fig. 8.9. The controller was an industrial personal com-
puter (IPC) with an attached ZigBee wireless communication module (JN5139 
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Fig. 8.9 Structure of the vehicle-mounted crop detection system

module). As the coordinator of the whole wireless network, it was used to establish 
the wireless network, waiting for sensor nodes to join in, and receiving, displaying, 
and storing all the data from different sensor nodes.

The measuring unit consisted of several optical sensors, and each optical sensor 
was used as a sensor node in this WSN. Each sensor node consisted of an optical 
part and a circuit part. The optical part contained eight optical channels at four 
wavebands. Since the detection system used sunlight as a light source, besides the 
reflected light from crop canopy, the sunlight intensity should also be measured as 
a reference. Therefore, two solutions were put forward:

 1. A full-function sensor node had to contain eight optical channels, upward four 
for the sunlight and downward four for the reflected light.

 2. As shown in Fig. 8.9, one sensor node was selected to measure the sunlight as the 
type I sensor, and other sensor nodes were used to measure the reflected light as 
the type II sensors.

As discussed above, the independence of the sensor (type I) was selected to measure 
the sunlight, and then the whole network shared the sunlight data. Under the prem-
ise of measurement precision, this type of design greatly reduced the cost of the 
system. Thus, sensors and the controller can set up a communication network in 
many ways. The networking mode between handheld and vehicle-mounted systems 
can be transformed into each other. The transmission distances can be up to hun-
dreds of meters, which realized the real-time, continuous measurements of crops in 
the field. Furthermore, it increased the flexibility of the detector installation.

The new system increased the optical channels and was realized to measure the 
crop spectral characteristics on the go and in real time after being installed on an 
on-board mechanical structure (Zhong et  al. 2014). Referring to the field test in 
Shaanxi Province, China, the distribution of the chlorophyll content of wheat 
detected by the new system is shown in Fig. 8.10a (Sun et al. 2015). In this way, it 
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Fig. 8.10 Variable-rate fertilizer mapping based on imaging instruments (a) Distribution of chlo-
rophyll content of wheat (Sun et al. 2015). (b) Fertilizer recommendation mapping

provides the automatic mapping of comprehensive growth status in the field. 
Combined with the fertilizer decision strategy such as the yield prediction method, 
the fertilizer recommendation map could also be used as an output as shown in 
Fig. 8.10b.
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8.5.3.2  Variable-Rate Fertilizer Control Based on Crop Sensing

Variable-rate fertilization technology improves the operational efficiency and utili-
zation rate of a fertilizer and accelerates the sustainable development of modern 
agriculture to promote high-yield, superior-quality production while ensuring suf-
ficient environmental protection. The crop sensors discussed in this chapter show 
the great potential to control the fertilizer rate in the field. Therefore, lots of variable- 
rate fertilizer applicators or sprayers are developed based on those sensors.

Commercial products, such as GreenSeeker products (Trimble Navigation 
Limited, Sunnyvale, CA, USA), Crop Circle devices (Holland Scientific Inc., 
Lincoln, Nebraska, USA) and Yara N-Sensors (Yara International ASA, Germany), 
promote solutions for variable-rate fertilization. However, the models of crop esti-
mation and fertilizer decision are fixed in such systems. Hence, it might limit the 
applications of specific requirements such as crop diversities or regions.

In order to provide a more flexible system for precision fertilization, the multi- 
fusion sensor which was developed based on the combination of spectroscopy and 
imagery technology was applied in a fertilizer sprayer by China Agricultural University 
(Sun et al. 2018). The sensor was designed to measure the spectral reflectance in the 
red and NIR ranges, such as 610, 680, 730, 760, 810, and 860 nm, each with 20 nm of 
full-width half-max detection. More than ten kinds of VIs could be calculated by these 
data for crop monitoring. It means that the sensor could provide more flexible and 
modifiable models for different requirements of crop estimation. The RGB image was 
captured to estimate the canopy coverage so as to help determine the location during 
field measurement. The transmission method had been modified from the Wi-Fi to the 
CAN-bus, which has the advantages of long data- transmitting distance, fast speed, 
reliable transmit, and low cost. The sensing system is shown in Fig. 8.11a. A GPS 
model helps to record the detecting location, one of the sensors is used to calibrate the 
changes of sunlight, and crop sensors transmit data to the IPC by CAN-bus.

Generally, as shown in Fig.  8.11b during the fertilization process, the NDVI 
values of the crop canopy are acquired in real time by crop sensors. These values are 
transmitted to the vehicle-mounted IPC terminal through the CAN-bus cable. A 
variable-rate fertilization expert decision system preset into the IPC is run based on 
the model to generate optimal fertilizer rate in real time.

In this chapter, sensing principles and applied sensors based on spectroscopy and 
imagery are reviewed. Some developed sensors have been introduced and demon-
strated to show the frontier research in this area. Numerous researchers in the cited 
literature have documented the practical applications of these sensors in many sce-
narios, including handheld detection, vehicle-mounted diagnosis, and remote sens-
ing by UAVs or satellites, to build reliable prediction models of complex and 
uncertain phenomena in agriculture. With the integration of variable-rate technol-
ogy, more and more precision management measures can be taken based on crop 
sensing methods. Recently, more and more new sensors and machine learning meth-
ods are applied in crop monitoring. These applications show the new trends for crop 
sensing. Smart crop sensors with artificial intelligence (AI) processors or deep 
learning models should emerge soon to improve the sensing accuracy or broaden the 
applications in the future.
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Fig. 8.11 Variable-rate fertilizer control based on crop sensing (a) Sensing system used in a fertil-
izer sprayer (b) Variable-fertilizer sprayer
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