
75

Chapter 4
Application of Soil Sensing in Precision 
Agriculture

Sakae Shibusawa, Masakazu Kodaira, Eiji Morimoto, and Minzan Li

Abstract  Soil mapping technologies are required to visualize spatial and temporal 
variability between fields or within field. Proximal and nondestructive soil sensing 
coupled with GPS using visible and near-infrared (Vis-NIR) spectroscopy or elec-
trical conductivity sensor (soil EC) is a promising approach. A series of tractor-
mounted soil-analyzing systems based on Vis-NIR spectroscopy were developed. 
The structure of the systems is mainly composed of a connection unit (three-point 
hitch structure), a sensing unit, and a soil penetration part. In the sensing unit, a Vis-
NIR spectrometer (NIR enhanced: 310–1100 nm, 3.1 nm/pixel interval), a halogen 
lamp, thermometers, and a personal computer are installed. The load cell provides 
cutting resistance measurement and automatic retreat function of the soil-penetrating 
part due to overloading. In the sensor probe box, a color microcamera head, a radia-
tion/light-concentrating fiber, a displacement meter, and an air blow head are 
equipped. Estimation models of 33 soil parameters, including moisture content, 
total carbon, total nitrogen, and soil organic matter, were established with the spec-
tral reflectance data obtained by the tractor-mounted soil-analyzing systems. The 
result shows the higher multiple calibration accuracy. A smart rice transplanter was 
developed, which could measure soil EC (apparent electrical conductivity) and top-
soil depth. The fertility of the soil varies due to uneven distribution of compost or 
soil conditioner, and these variations will result in crop lodging at harvest time. The 
smart rice transplanter developed solves this lodging problem with soil EC data and 
performs real-time variable fertilizer application.
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4.1 � Tractor-Mounted Soil Analysis System Based 
on Vis-NIR Spectroscopy

4.1.1 � Soil Sensing Instruments Based on Vis-NIR Spectroscopy

Precision agriculture (PA) aims to improve agricultural profitability and productiv-
ity (yield, quality, farming, etc.), as well as protecting environment. It has been 
enabled by the rapid development and spread of GNSS (Global Navigation Satellite 
System), GIS (Geographic Information System), and ICT (Information and 
Communications Technology).

To practice PA, the required technologies include field mapping technology to 
visualize spatial and temporal variability between fields or within field, variable-
rate technology to perform farming work corresponding to the variability, and deci-
sion support system to solve complex problems and requirements. Especially, field 
mapping technology is the basis of PA. The technological feature of PA is to accu-
rately record the spatial and temporal variability of soil, crop, yield, etc., to realize 
site-specific field management at low cost using field maps.

In terms of soil analysis, soil samples are collected from the field and analyzed 
by official method. The problems are the cost, analysis period, and labor for a large 
number of soil samples with location information collected for analysis of multiple 
properties to support the PA practice, and few growers are willing to adopt soil 
analysis for each cropping. The analysis period has been shortened compared to the 
official method by the development of a simple soil analysis method, which contrib-
uted to the improvement of soil analysis business. However, when crops with a short 
period from harvesting to sowing were cultivated in same field, it was difficult to 
plan and distribute fertilizer based on the soil analysis result using soil samples col-
lected after harvest. The problems of labor and cost consuming on the grower side 
have not been improved.

To overcome these problems, development of soil sensing devices has been car-
ried out using electrical, electromagnetic, acoustic, pneumatic, and optical tech-
nologies. It has been reported that spectroscopic technology using visible (Vis), 
near-infrared (NIR), and infrared (IR) soil reflectance is nondestructive, rapid, and 
cost-effective, with high accuracy compared to other soil sensing technologies 
(Adamchuk et al. 2004). The purpose to introduce spectroscopic technology in soil 
analysis is to improve price-performance ratio, which has more rapid and higher 
efficiency than the official and simple soil analytical method. In addition, the pre-
dicted values are required to be absolute quantitative values, with the accuracy at a 
level equivalent to the official method. The mainstream of soil spectroscopic analy-
sis is to measure the soil diffuse reflectance spectra using a spectrophotometer 
installed in laboratory. As a result, the problems on the analysis business side have 
been improved. But the problems on the grower side, such as labor consuming in 
soil sampling with location information and sample drying and 2 mm sieving pre-
treatment work, have not yet been considered. The new problems are that the instru-
ment is expensive, and it is necessary to analyze regression coefficient for each soil 
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type and each soil property. The number of soil properties is limited, and accuracy 
is low for nitrogen, phosphorous, and potassium which are required for fertilization 
design (Dalal and Henry 1986; Matsunaga and Uwasawa 1992a, b, 1993; Chang 
et al. 2001; Viscarra Rossel et al. 2006).

In order to measure a large amount of soil diffuse reflectance spectra with posi-
tion information using a spectrophotometer without soil sample collection, field 
measurement-type (field-type hereinafter) spectrophotometers have been developed 
which can simultaneously measure the soil diffuse reflectance and position informa-
tion in a field. When measuring raw soil sample spectra, the difference in water 
content greatly influences the spectra in the infrared region. Therefore, the field-
type spectrophotometers have been developed which equipped with spectroscopic 
sensors sensitive in Vis-NIR wavelength range that is less affected by soil moisture 
(Shibusawa et al. 2000a, b; Mouazen et al. 2007; Christy 2008). As a result, the 
problems on both grower and analysis business sides have been improved. However, 
as “new problems” to the laboratory spectrophotometer, the countermeasures for 
that the field-type spectrophotometer cannot be used in fields such as slope, orchards, 
and forest have not been considered. In field measurement, diffuse reflectance spec-
tra from other substances than soil, such as gravel and crop residues, may cause 
prediction errors. In addition, the soil diffuse reflectance spectra used to estimate the 
regression coefficient in previous studies were measured from dried and 2  mm 
sieved soil. The diffuse reflectance spectra of raw soil measured in a field have to be 
analyzed using a moisture correction coefficient (Christy 2008; Mouazen et  al. 
2014). In addition, the estimation errors of the regression coefficient and the mois-
ture correction coefficient have been the factors that reduced the prediction accuracy.

The field-type spectrophotometer is useful as the field soil mapping technology. 
But the mainstream is to use interpolation methods in commercially available soft-
ware such as GIS and Excel and the visualization method by grid-like soil mapping 
(Shibata 1999; Toriyama 2001; Umeda et  al. 2011; Kuang and Mouazen 2013). 
However, the software installation/maintenance is expensive, and data transfer, con-
version, and the setting process to display soil map are complicated. The variability 
status of multiple soil properties is difficult to confirm with growers immediately 
after the field observation, so it is lack in speed and convenience.

The soil property analyses for soil mapping are soil diagnostic properties (chem-
ical, physical, and biological) that are necessary for crop production. There are 
more than 20 chemical properties including general properties, trace elements, and 
nitrogen. In terms of physical properties, besides soil dry density which is important 
in fertilization design, soil textures (sand, silt, and clay) are indispensable for deter-
mining soil fertility. The biological properties have microorganisms and nematodes 
which are useful information. But types of them are countless, and the analytical 
method and cultivation guideline are not established. The microorganism in soil 
decompose organic component into nutrients that can be used by crops and prevent 
failures, improve physicochemical and biological properties of soil, improve crop 
productivity and quality, and purify the soil. Therefore, it is becoming an important 
farming decision information after the chemical fertilizer. In general, the purpose of 
soil analysis is to estimate the input of chemical fertilizer necessary for crop 
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production while reducing the environmental impact, and three properties, nitrogen, 
phosphorous, and potassium, are the target properties. The reason why multi-
property soil analysis is recommended is due to the fact of “Dobeneck’s barrel” 
(Hans Arnold von Dobeneck) which proposed that crop growth is governed by the 
scarcest resource. Or the “Liebig’s law of the minimum” by Justus von Liebig, 
which suggests that crop growth rate and yield are dictated not by total nutrients 
available but only affected by the scarcest nutrient that provided to the crop (limit-
ing factor). In addition, the absorption of nutrients by crops is a synergistic effect 
promoted by other nutrients (when present in an appropriate amount), or when a 
certain nutrient is excessive, it may be an antagonist that suppresses or inhibits the 
absorption of other coexistence nutrients. These effects are also necessary to be 
considered. If it becomes possible to provide high-resolution soil maps rapidly with 
multiple properties, field management using right material with right amount at 
right time and location will be possible, which will be the basis for preventing 
excessive application of agricultural materials. Also, since various types of soil 
property maps are required according to the cultivation purposes of growers, the 
nondestructive prediction technology based on soil diffusion reflection spectra, 
which can provide multiple prediction values from a single measurement, is indis-
pensable in soil sensing device.

The results of soil sensing are not only used as field mapping technology for PA 
but also contribute to soil/field management in good agricultural practice (GAP) 
which established standards and procedures for food security and provide field 
information for integration/aggregation, consolidation of fields, and reuse of aban-
doned land. The 70% use of total freshwater in agriculture is an urgent need for 
improvement, and soil maps of moisture and physical property are used as consen-
sus building information to allocate freshwater resources efficiently and effectively 
(Hedley and Yule 2009; Mouazen et  al. 2014). This is a contribution to the 
Sustainable Development Goals (SDGs: 1, 2, 12, 13, and 15) to realize a sustainable 
world (Ministry of Foreign Affairs of Japan 2018). As one of the countermeasures 
against global warming, the carbon farming (Australian Government 2011) assesses 
the ability of soil carbon sequestration. The carbon credit trading conducted by the 
Chicago Climate Exchange based on Clean Development Mechanism (CDM) is 
expected to be a source of income of growers.

4.1.2 � Tractor-Mounted Soil Analysis Systems

There are potable and tractor-/vehicle-mounted devices that can predict physio-
chemical soil properties from diffuse reflectance spectra measured in a field. It was 
USDA (US Department of Agriculture) (Sudduth and Hummel 1993) that made it 
possible to continuously measure diffuse reflectance spectra in a field by installing 
a spectrophotometer on a tractor or vehicle and after that the Tokyo University of 
Agriculture and Technology (TUAT, Japan) in 1999 (Shibusawa et al. 1999) and 
Catholic University of Leuven (CU of Leuven, Belgium) (Mouazen et al. 2005) in 
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2005. Veris Technologies (USA) in 2008 (Christy 2008), Poznan University in 2013 
(Poland) (Wojciechowski and Czechlowski 2013), Jacto (Brazil) in 2013, and 
University of Bonn (Germany) in 2015 (Rodionov et al. 2015) developed the test 
device, as shown in Table 4.1.

The measurement wavelength range of the USDA’s device was 1630–650 nm, 
the observation depth was 0.35–0.50 m, the observation speed was 0.65 m/s, and the 
method to estimate regression coefficients was partial least square regression 
(PLSR). The target soil properties were cation exchange capacity (CEC), organic 
matter (organic carbon), and soil water content. The prediction accuracy by labora-
tory measurement (using dry and moist soil) was R2 = 0.85–0.96. But the accuracy 

Table 4.1  Comparison of tractor-/vehicle-mounted spectrophotometer

Authors
Equipment 
(spectrometer)

Field measurement
Spectra data for 
calibration Multivariate 

analysis 
software

Soil depth Speed Measurement Soil
(m) (m/s) location condition

Sudduth and 
Hummel 
(1993), USDA

Prototype portable 
NIR 
spectrophotometer

0.035~0.05 0.65 Lab Dry The 
Unscrambler

Shibusawa 
et al. (1999, 
2000a, b) and 
Imade Anom 
et al. (2001), 
TUAT

RTSS-01
(MMS 1 and 
MMS)

0.15,
0.20~0.25

0.28
0.28

Field Fresh The S-Plus 
data analysis

Mouazen et al. 
(2005, 2007), 
CU of Leuven

Fiber-type NIR 
spectrophotometer
(Corona 45: MMS 
1 and MMS)

0.15 0.42 Lab Day The 
Unscrambler 
Ver.7.8

Christy (2008), 
Veris 
Technologies

On-the-go 
spectrophotometer
(NIR-128L-1.7-
USB)

0.07 1.67 Lab Dry LabVIEW

Marín 
González et al. 
(2013)

Fiber-type NIR 
spectrophotometer
(AgroSpec: MMS 
1 and MMS)

0.15 0.83 Lab Dry The 
Unscrambler 
Ver.7.8

Wojciechowski 
and 
Czechlowski 
(2013), Poznan 
University

The combined soil 
measurement 
system
(AgroSpec: MMS 
1 and MMS)

– – Lab Dry The 
Unscrambler 
X

Jacto Jacto Soil Sensor
(Corona 45: MMS 
1 and MMS)

– – Field Fresh The 
Unscrambler 
Ver.9.8

Rodionov et al. 
(2015), 
University of 
Bonn

Mobile measuring 
chamber 
(AgroSpec)

0.05 0.83 Lab Dry ParLes 3.1
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extremely decreased when measured in a field while moving. It has been reported 
that the cause was due to the variations in the height of the observation surface and 
the sensor during the measurement. The purpose of raw soil diffuse reflectance 
spectra measurement is to obtain prediction values of soil physicochemical proper-
ties to create soil maps. However, there was no mechanism equipped to link the 
location information to the measured data, which did not lead to soil mapping.

The measurement wavelength range of the TUAT’s device was 400–1700 nm, 
the observation depth was 0.30 m, and the observation speed was 0.05 m/s. The soil 
at the spot where the soil diffuse reflectance spectra were measured in the field was 
collected, and the reflectance spectra of the raw soil were measured in laboratory 
using a spectrophotometer (Shimadzu, UV3100). The equivalence of the two mea-
surements was confirmed with correlation coefficient R = 0.98. The target properties 
were electric conductivity (EC), pH, nitrate nitrogen, soil water content, and soil 
organic matter. The method to estimate regression coefficient adopted single regres-
sion, and the accuracy from the spectra measured while moving was R = 0.44−0.93. 
Toward the problems of the USDA’s device, Shibusawa et al. (1999) combined the 
tip of a subsoiler, which could reduce soil resistance and stably operate even at high 
speeds, with a chisel which was superior in penetration and crushing even in hard 
field and equipped with a sensor head. The variation in the height of the observation 
surface and the sensor was suppressed, and stable diffuse reflectance spectra acqui-
sition was successfully conducted. In addition, RTK-GPS (Real-Time Kinematic-
Global Positioning System) was installed to link “time and location” to “diffuse 
reflectance spectra.” This made it possible to link position information to the predic-
tion value calculated from the raw soil diffuse reflectance spectra. Since then, the 
developed devices have been equipped with DGPS (differential GPS) system in 
addition to the RTK-GPS system.

The measurement wavelength range of the CU of Leuven’s device was 
306.5–1710.9 nm, the observation depth was 0.15 m, the observation speed was 
0.33 m/s, and the regression coefficients were estimated by PLSR (Mouazen et al. 
2005, 2007). The target property was soil water content, with R = 0.98. For the 
regression coefficient estimation, a total of six types of soil diffuse reflection spectra 
were measured by adding water to dry soil from 0 to 0.25 kg/kg (0.05 kg/kg inter-
val). The soil diffuse reflection spectra measured from a field were not used in the 
estimation of regression coefficient.

The measurement wavelength range of the Veris Technologies’ device was 
950–1650 nm (Christy 2008), the observation depth was 0.07 m, the observation 
speed was 1.67  m/s, and the regression coefficients were estimated by principal 
component regression (PCR). The target soil properties were lime, organic carbon, 
exchangeable potassium, LBC (lime buffer capacity), soil water content, magne-
sium, manganese, available phosphorus, pH, and zinc. The soil diffuse reflectance 
spectra used in the regression coefficient estimation were based on dry soil spectra 
measured in laboratory. The highest prediction accuracy was organic carbon with 
R2 = 0.67. For the diffuse reflectance spectra measured in a field, they reduced the 
prediction error caused by moisture variation by previously analyzing a moisture 
correction model based on spectra difference between dry soil and moist soil.
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The measurement wavelength range of the Poznan University’s device was 
400–1270 nm; the observation depth was 0.05 m; the observation speeds were 0.05, 
0.07, and 0.1  m/s; and the regression coefficient was estimated by PLSR 
(Wojciechowski and Czechlowski 2013). The target property was soil water con-
tent. The accuracies were R2 = 0.87–0.89 at constant and mixing speed.

The measurement wavelength range of the Jacto’s device was 400–700 nm, the 
observation depth was 0.06 m, the observation speed was 0.56 m/s, and the regres-
sion coefficients were estimated by PLSR. The target soil properties were pH, CEC, 
exchangeable potassium, exchangeable calcium, and available phosphorous.

The measurement range of the University of Bonn’s device was 410–2300 nm, 
the observation depth was 0.05  m, the observation speed was 0.83  m/s, and the 
regression coefficients were estimated by PLSR (Rodionov et al. 2015). The target 
soil properties were soil organic carbon and soil water content. The R2 were 0.84 
and 0.96, respectively. Although the observation speed was the highest, the moving 
was temporarily stopped when measuring the diffuse reflectance spectra.

The most used field spectrometers in the devices were MMS and MMS1 
(Table 4.1). The highest observation speed at the maximum observation depth of 
0.15 m was 0.83 m/s. The diffuse reflectance spectra used to estimate the regression 
coefficient were mostly based on dry soil in laboratory. The Unscrambler was used 
as the multivariate analysis software, and PLSR was used as the analysis method. 
The target soil properties in previous studies included nitrogen, phosphorus, and 
potassium. But the ranks of the regression coefficient were low, at C and D. The 
ranks were A and B only for soil water content, soil organic matter, and organic 
carbon (Table 4.2).

The commercialization of TUAT’s device was performed by the Shibuya 
Machinery Co., Ltd. (Shibuya Seiki Co., Ltd. at present). The measurement proper-
ties were soil water content, soil organic matter, total nitrogen, and EC. The general 
regression coefficient (which does not depend on the soil type and various compo-
nent concentrations) was not provided. The device commercialized by the Veris 
Technologies can perform soil mapping for soil organic matter and soil physical 
properties.

The problem is that it is necessary to analyze moisture correction equation when 
estimating regression coefficient using the diffuse reflectance spectra of dry soil. 
Moreover, high-accuracy, multi-property regression coefficient estimation has not 
been achieved.

4.1.3 � Soil Analysis System (SAS) Series

The development of real-time subsoil optical sensor was started in 1997, and joint 
research was started in 1998 between the TUAT and Omron Corporation, Japan. 
The prototype was completed in 1999. A 01 model equipped with two spectrome-
ters of Vis-NIR range was developed in 2001, and 02 model of nine-wavelength 
spectroscopic types (552, 651, 738, 811, 926, 1003, 1303, 1457, 1650  nm) was 
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Table 4.2  Properties and prediction accuracy of tractor-/vehicle-mounted spectrophotometer

Items
Wavelength 
(nm)

Analysis 
method 
(F) N RMSE R2 RPD Rank Authors

pH 400–1700 SMLR 15 0.16 0.58 1.25 E Imade Anom et al. 
(2001)

306–1710 PLSR 
(12)

295 0.22 0.71 2.14 C Mouazen et al. 
(2007)

920–1718 PCR 106 0.44 0.62 1.64 D Christy (2008)
400–2100 PLSR 160 0.40 0.79 2.16 C Marín González 

et al. (2013)
Available 
phosphorus

920–1718 PCR 116 30.0 0.80 2.24 C Christy (2008)
306–1710 PLSR (9) 175 1.35 0.69 1.80 D Mouazen et al. 

(2007)
Exchangeable 
potassium

920–1718 PCR 106 107 0.60 1.54 D Christy (2008)

Exchangeable 
magnesium

920–1718 PCR 107 85.0 0.73 2.07 C Christy (2008)
400–2100 PLSR 160 0.38 0.69 2.44 C Marín González 

et al. (2013)
Exchangeable 
calcium

920–1718 PCR 105 750 0.82 2.32 C Christy (2008)
400–2100 PLSR 160 22.1 0.89 0.83 E Marín González 

et al. (2013)
Soluble zinc 920–1718 PCR 93 0.62 0.48 1.37 E Christy (2008)
Easily reducible 
manganese

920–1718 PCR 110 34.0 0.40 1.27 E Christy (2008)

Nitrate nitrogen 400–1700 SMLR 15 4.74 0.54 1.83 D Imade Anom et al. 
(2001)

Cation 
exchange 
capacity

1630–2650 PLSR 
(10)

30 3.91 0.85 – – Sudduth and 
Hummel (1993)

400–2100 PLSR 160 1.77 0.58 1.54 D Marín González 
et al. (2013)

Electrical 
conductivity

400–1700 SMLR 15 41.7 0.65 1.10 E Imade Anom et al. 
(2001)

Moisture 
content

1630–2650 PLSR 
(10)

30 1.69 0.96 – – Sudduth and 
Hummel (1993)

400–1700 SMLR 15 3.11 0.66 1.83 D Imade Anom et al. 
(2001)

306–1710 PLSR 348 0.02 0.89 3.00 B Mouazen et al. 
(2007)

920–1718 PCR 105 2.80 0.65 1.75 D Christy (2008)
400–2170 PLSR – 2.24 0.89 – – Wojciechowski 

and Czehlowski 
(2013)

410–2300 PLSR 120 1.99 0.96 5.03 A Rodionov et al. 
(2015)

(continued)
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Table 4.2  (continued)

Items
Wavelength 
(nm)

Analysis 
method 
(F) N RMSE R2 RPD Rank Authors

Soil organic 
matter

400–1700 SMLR 15 0.56 0.65 1.86 D Imade Anom et al. 
(2001)

920–1718 PCR 106 0.40 0.80 2.20 C Christy (2008)
Total carbon 306–1710 PLSR 173 0.27 0.73 1.92 D Mouazen et al. 

(2007)
Soil organic 
carbon

1630–2650 PLSR 
(10)

30 0.26 0.85 – – Sudduth and 
Hummel (1993)

410–2300 PLSR 120 0.73 0.84 2.53 B Rodionov et al. 
(2015)

N number of samples, PCR principal component regression, RMSE root mean square error, RPD 
residual prediction deviation (standard deviation/RMSE). Rank (Kuang et al. 2012): A (excellent), 
B (good), C (approximate quantitative prediction), D (distinguish between high and low), E 
(not usable)

developed in 2002 (Shibusawa et al. 2000a, b; Bodun et al. 2000; Imade Anom et al. 
2001; Kaho et al. 2004; Shibusawa et al. 2005; Roy et al. 2006). Patents associated 
with the device development (Japanese Patent Application No. Hei10-108862, 
No.2000-604663, No. 2001-322755, and No. 2002-169192) were transferred from 
the Omron Corporation to TUAT, and the license and technology were transferred 
to the Shibuya Machinery Corporation. In 2004, a promotion model of the tractor-
mounted soil analysis system (SAS10001) (Fig.  4.1) was developed (Shibuya 
Machinery Co. Ltd. 2004; Shibusawa et  al. 2010; Kodaira and Shibusawa 2013, 
2016). SAS is custom-made systems, which have specification for large-scale field 
(SAS2000), specification for paddy field (SAS2500) (Fig.  4.2) (Kodaira and 
Shibusawa 2018), specification for woodlot (SAS2600), and specification with self-
propelled lightweight (SAS3000) (Fig.  4.3). Since no regression coefficient was 
provided for soil property, the challenge is to secure human resources who can 
measure soil diffuse reflectance spectra and physicochemical properties and intro-
duce and operate software such as multivariate analysis and soil mapping.

	(1)	 SAS1000

SAS1000 (Fig. 4.1) is composed of a connection unit (three-point hitch struc-
ture), a sensing unit, and a soil penetration part (Fig. 4.1b), and the weight is 550 kg. 
In the sensing unit, Carl Zeiss’s Vis-NIR spectrometers (MMS1 NIR enhanced: 
310–1100  nm, 3.1  nm/pixel interval), a halogen lamp (Ushio Electric Co., Ltd., 
JCR15V150WBAL), thermometers (external air, spectrometer, control panel), and 
a personal computer (PC) are installed. The soil penetration part has vertical and 
horizontal cutting blades for soil cutting and removal and a chisel plow with a 

1 Disclaimer: Commercial products are referred to solely for the purpose of clarification and should 
not be construed as being endorsed by the authors or the institution with which the authors are 
affiliated.
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Fig. 4.1  Soil analysis system SAS1000 (a) SAS 1000 system, (b) Cross section of soil-penetrating 
part. (Shibusawa et al. 2010)

S. Shibusawa et al.



85

Fig. 4.2  Soil analysis system SAS2500 (a) System SAS2500 (b) Cross section of soil-
penetrating part
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Fig. 4.3  Soil analysis system SAS3000

sensor probe box. The load cell provides cutting resistance measurement and auto-
matic retreat function of the soil-penetrating part due to overloading. In the sensor 
probe box, a color microcamera head (Toshiba Corporation, IK-UM44H), a radia-
tion/light-concentrating fiber (Sumitomo Electric Industry Co., Ltd., GeO2, F-doped 
quartz system), a displacement meter (Omron Corporation, ZX LD 100), and an air 
blow head are equipped. Image of the observation surface, Vis-NIR diffuse reflec-
tance spectra, and distance to the observation surface can be obtained without con-
tact with the soil. The soil penetration part is driven by a hydraulic system and a 
remote controller using tractor PTO as the power source. For location information, 
it was equipped with a DGPS receiver (Trimble Navigation Limited, DSM132) with 
horizontal measurement accuracy of less than 1 m. An inverter generator dedicated 
to SAS (Honda Motor Co., Ltd.) is installed on the tractor body. The observation 
speed is 0.28–1.12 m/s, the observation depth is 0.15–0.30 m (0.05 m interval), and 
the measurement interval can be arbitrarily set at 3 s and over (Shibuya Machinery 
Co. Ltd 2004; Shibusawa et al. 2010).

	(2)	 SAS2500

SAS2500 (weight 660 kg) has been produced under the funding of a Japanese 
national grant program adopted in 2012 (Fig. 4.2). The different specifications from 
SAS1000 are that a radiation fiber with air blow head and a Y-branch light-
concentrating fiber are used. The microcamera was changed to a video camera. The 
drive of the soil-penetrating part was changed to a hydraulic system (1 system, 3/8-
inch coupler) (Fig. 4.2b), which can be operated by a switch in the tractor cab. The 
generator is mounted on the SAS body, because removability from the tractor is 
considered as important. The spectrometers were changed to C10083CAH 
(320–1100  nm, 0.3  nm/interval) and C9406GC (900–1700  nm, 1.6  nm/interval) 
produced by the Hamamatsu Photonics Co., Ltd. The halogen lamp was changed to 
JCR15V150W/AL produced by the Fuji Lamp Co., Ltd. The automatic retreat func-
tion of the soil penetration part was excluded, and it was changed to using a share 
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pin to prevent the soil penetration part from breakage. System updates and mainte-
nance can be performed remotely via a communication line.

	(3)	 SAS2600

SAS2600 (weight: 750 kg) was designed for a Japan’s research project entitled 
with Research and Development for Increased Woody Biomass Production through 
Genome Breeding and High Efficiency Forestry Operations which was adopted in 
2013 under the Development of Efficient Elemental Technologies for Biofuel 
Production funded by the New Energy and Industrial Technology Development 
Organization (NEDO). The prototype was produced with specification determined 
for Brazil’s woodlot.

The system configuration is the same as SAS2500, and improvements and 
changes were made to reinforce the frame strength to approximately 1.2 times in 
deflection amount of SAS2500 (steel thickness 4.5–6 mm) and were equipped with 
a beam knife, as a countermeasure for eucalyptus plant’s residual and hard soil. The 
DGPS receiver was changed to the model SPS351 (Nikon Trimble Co., Ltd.)

	(4)	 SAS3000

SAS3000 was produced under a research project entitled the special scheme 
project on regional developing strategy (project ID14526726 and 16781474) by the 
NARO Bio-oriented Technology Research Advancement Institution (Fig. 4.3). The 
system configuration is the same as SAS2500, and improvements and changes were 
made by permanently installing a touch panel in the tractor cab, which enables one 
operation for the SAS setting. The observation speed is 0.28–1.68  m/s, and the 
weight was reduced to 510 kg. The DGPS receiver was changed to model SPS351 
(Nikon Trimble Co., Ltd.).

4.1.4 � Analysis of Calibration Model for Multiple 
Soil Properties

	(1)	 Absorption Wavelength and Regression Coefficient Estimation

The moisture content (MC), humic acid (total carbon (TC), total nitrogen (TN)), 
soil organic matter (SOM), clay (CL, 1:1 type and 1:2 type), available silicate (SiO), 
and free iron oxide (Fe) have the absorption wavelength in the analysis wavelength 
range. Therefore, the regression coefficients can be estimated, and the negative peak 
waveform of the regression coefficient matches the absorption wavelength for each 
property (in the case of second-order differential absorbance).

Soil properties with no absorption wavelength within the analytical wavelength 
range (available phosphorus (P-a), exchangeable potassium (K), exchangeable cal-
cium (Ca), exchangeable magnesium (Mg), exchangeable sodium (Na), ammonia 
nitrogen (N-a), nitrate nitrogen (N-n), hot-water-extractable nitrogen (N-h), hot 
water soluble boron (B), soluble zinc (Zn), soluble copper (Cu), easily reducible 
manganese (Mn), exchange acidity (y1), phosphate absorption coefficient (PAC), 
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pH, EC, CEC, 2:1-type minerals CL and sand (S), silt (SL), dry density (ρd), cal-
cium/magnesia ratio (Ca/Mg), magnesium/potassium ratio (Mg/K), base saturation 
percentage (BSP), calcium saturation percentage (CSP), sodium ratio (Na-r), and 
carbon-nitrogen (C/N) ratio) correlated with the analysis values of organic, inor-
ganic substances whose absorbance wavelength has been confirmed within the ana-
lytical wavelength range (Matsunaga and Uwasawa 1992b; Clark et  al. 1987; 
Umeda et  al. 2001; Zornoza et  al. 2008). In the case of raw soil, the regression 
coefficients can be estimated due to the spectra variation caused by the hydration 
phenomenon of inorganic ion component and binding with organic molecules. The 
negative peak waveform of the regression coefficient was consistent with the absorp-
tion wavelength of the correlated properties.

The possibility of regression coefficient estimation can be evaluated from the 
correlation between soil analysis values, which is based on the evaluation and clas-
sification using correlation coefficient (R). The classification methods include 
Pearson product-moment correlation (interval and ratio scale data) and Spearman’s 
rank correlation (rank scale data). In addition, Pearson product-moment correlation 
was adopted (Table 4.3).

To confirm the correlation and reliability of regression coefficients, it was con-
firmed that the obtained regression coefficient for each property used the absorption 
wavelength or absorption wavelength band, by confirming that the negative absorp-
tion peak of each regression coefficient for each property from 1 to selected F 
(PLSR factor) value was in agreement with the absorption wavelength or exists in 
the absorption wavelength band. When the fluctuation of the spectra is large due to 
the hydration phenomenon of the inorganic ion and binding with organic molecules, 
it may not completely match due to the wave number shift.

	(2)	 Evaluation/Classification Methods of Regression Coefficient and 
Prediction Values

The evaluation indexes of regression coefficient estimation accuracy of soil are 
R2, RPD, range error ratio (RER), and evaluation index (EI). There are several 
guidelines for the evaluation and classification based on R2 and RPD. Here, guide-
lines for evaluation/classification without over-/under-evaluation are presented.

Table 4.3  Evaluation and classification of the correlation between soil analysis values using 
correlation coefficient

Evaluation Classification

Full correlation |R| = 1
Highly correlated 0.7 < |R| < 1
Correlated 0.4 < |R| ≦ 0.7
Low correlation 0.2 < |R| ≦ 0.4
Almost no correlation 0 < |R| ≦ 0.2
No correlation 0 = |R|
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The possibility of estimation of regression coefficient for properties whose 
absorption wavelength is not confirmed in the analysis wavelength region is based 
on the correlation between soil analysis values. Therefore, in the correlation coef-
ficient classification method shown in Table 4.4, the R range from 0.7 to 1.0, which 
is “highly correlated,” is divided into four threshold values “0.95, 0.9, 0.8, and 0.7.” 
Squaring each of the value, R then becomes “0.90, 0.81, 0.64, and 0.49,” and R2 
threshold values are obtained. It has been decided to classify R2 using these thresh-
old values. This classification method is consistent with ranks “B, C, and D” of 
Malley et  al. (2004). Ranks “A and D” are consistent with Kuang et  al. (2012). 
Therefore, it is an intermediate classification between the two methods. The RPD 
used middle of Kuang et al. (2012), RER used Malley et al. (2004), and EI used 
Mizuno et al. (1987).

The evaluation and classification method using the combination of R2 and RPD 
is to evaluate the availability of the estimated regression coefficients and the predic-
tion values. Further, the combinations of R2 and RER and R2 and EI are to evaluate 
whether the estimated regression coefficients are composed of an enough range. In 
each combination, if they did not belong to the same rank, lower rank was selected.

	(3)	 An Example of Regression Coefficient Estimation (Paddy Field)

	(i)	 Test Fields

The test fields were agricultural production corporation Denpata (sandy clay 
loam, S = 64.6%, SL = 14.6%, CL = 20.8%) and Yokota farm (light clay, S = 52.8%, 
SL = 17.3). The test devices were SAS2500 and SAS3000. The sampling interval 
was 3 s. The observation speed was 0.28 m/s. The observation depth was 0.10 m 
determined by the grower. As the soil characteristics, the ratio of CL in Yokota farm 
was high, and the retainability of fertilizer was high. An overview of the analysis 
database is summarized in Table 4.5. The data collection for the test field was at 5 
times in 3 years, from 48 fields. The total number of the collected data was 552, but 
406 data for pH and EC, exchangeable sodium, and sodium ratio and 364 data for 
S, SL, CL, available silicate, and free iron oxide were used to estimate regression 
coefficient.

Table 4.4  Evaluation and classification methods using R2 with RPD, RER, and EI

Evaluation R2 RPD RER EI (%) Rank

Excellent 0.90< 3.0< 20< ≦12.4 A
Good 0.81-0.90 2.5-3.0 15-20 12.5-24.9 B
Approximate quantitative prediction 0.64-0.81 2.0-2.4 10-15 25.0-37.4 C
Distinguish between high and low 0.49-0.64 1.5-1.9 8-10 37.5-49.9 D
Not usable <0.49 <1.5 <8 50.0≦ E

※Rank is classified into A–E, as “regression coefficient, prediction value”: A, excellent; B, good; 
C, approximate quantitative prediction; D, distinguish between high and low; E, not usable
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Table 4.5  Database for analysis

Implementation 
date Location Test field Equipment

Number of 
test fields

Field 
size (ha)

Number of 
data

2013.12.06 Fukushima 
Prefecture

Denpata 
Farm

SAS2500 4 1.0 188
2014.09.23~24 SAS2500 4 1.2 118
2014.11.13~15 Ibaraki 

Prefecture
Yokota 
Farm

SAS2500 5 6.4 100
2015.10.25~27 SAS3000 10 10 120
2015.12.15~17 SAS3000 25 24 26
Total 48 42 552

	(ii)	 Determination of Validation Method

The requirements to divide the dataset into calibration set and prediction set are 
pluralities of the same data that exist, with an unbiased frequency distribution, while 
a rectangular-shape distribution is expected (Akitomo and Shimamura 1998). The 
obtained distribution in this study was close to normal distribution, and the shape 
with two peaks also existed. The requirements of dividing for calibration set and 
prediction set were not satisfied. Therefore, full cross-validation was applied.

	(iii)	 Correlation Between Analysis Values

For properties whose absorption wavelength was not confirmed in the analysis 
wavelength range, correlation coefficients between soil analysis values were 
obtained, and the correlations were summarized in Table 4.6 according to the clas-
sification in Table 4.3. Positive correlations are shown in black, and negative cor-
relations are shown in red. “Correlation” (gray highlight) or “high correlation” 
(yellow highlight) with properties that have absorption wavelength in the analysis 
wavelength range are counted as direct correlation. “Correlation” and “high correla-
tion” were counted as indirect correlation between the properties whose absorption 
wavelength has not been confirmed in the analysis wavelength range. Properties 
with many direct correlations have strong collinearity between analysis values of 
properties that have absorption wavelength in the analysis range, and the possibility 
to estimate regression coefficients is also high. Indirect correlations are less collin-
ear than direct correlations, and the possibility to estimate regression coefficient is 
less than the direction correlation. But the possibility varies depending on the total 
number of correlations and the concentration distribution of the analysis values.

Twenty-two properties whose absorption wavelength has not been confirmed in 
the analysis wavelength range had correlation with eight properties that have an 
absorption wavelength (blue font in Table 4.6). The properties that have no direct 
correlation were base saturation, lime saturation, sodium ratio, and soluble zinc. 
The property that has no indirect correlation was soluble zinc. Therefore, it was 33 
properties that could explain that the regression coefficients could be estimated by 
the correlation between the analysis values. The estimation of regression coefficient 
of soluble zinc could not be explained by the correlation with the analysis values.
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Table 4.6  Correlation coefficient between analysis values

aDirect correlation:Correlation with properties whose absorption wavelength exist in the 
analysis wavelength range, and the value is more than “correlated”
bIndirect correlation:Correlation with properties whose absorption wavelength do not exist in the 
analysis wavelength range, and the value is more than “correlated”
Grey highlight; |R|>0.4 「Correlated」, Yellow highlight; |R|>0.7 「Highly correlated」
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	(iv)	 PLSR Results

According to the absorbance in the analysis database (Fig.  4.4a), the spectra 
change is large at 350–400 nm, and it has a peak of positive waveform at 1400 nm 
and baseline shift. According to second-derivative absorbance of the S-G (Savitzky-
Golay) method with smoothing point (SP) = 41 (Fig. 4.4b), which has the highest 
smoothing effect, four data were confirmed as outliers which had negative peaks at 
600–700 nm. But the absorption wavelength of humic acid is 620 nm. According to 
the frequency distribution of humic acid shown in Fig. 4.4c, since about 14% of the 
analysis values were higher than others, they were not excluded.

Table 4.7 and 4.8 summarizes the estimation results of regression coefficients 
obtained through repeatedly running PLSR algorithm by excluding data with the 
largest prediction residual (outlier) at each run. Table 4.7 shows the statistical values 
of each property, and Table 4.8 shows the accuracy, evaluation, and classification of 
each regression coefficient. The accuracy of each property satisfies the condition of 
R2>0.9 and F≦10. In addition, since the evaluation/classification of calibration was 
RankRPD = A, the reliability of regression coefficient was obtained. The RankRPD = C 
was obtained for exchangeable magnesia, S, and CL in evaluation/classification of 
validation. To improve the reliability of the prediction value to “RankRPD=B,” it is 
necessary to reanalyze by adding data.

To evaluate the range of database that constitutes the regression coefficient, the 
classification using RER and EI can be considered. Since RER is more strict evalu-
ation of the 34 properties, they were evaluated by RER.  The RER results were 
Rankcal=C for available phosphorus, exchangeable potassium, exchangeable 
sodium, free iron oxide, soluble zinc, easily reducible manganese, EC, CEC, lime/
magnesia ratio, magnesia/potassium ratio, soil organic matter, C/N, pH, exchange 
acidity, and ρd. It is necessary to add data in the range not possessed and 
re-analyze.

	(v)	 Soil Analysis and Regression Coefficient

To show the detail of the database that constitutes the regression coefficients for 
each estimated property, scatter plots of analysis values and prediction values and 
regression coefficients are summarized, and several examples are shown in Fig. 4.5. 
The reference range of soil analysis (Agricultural Product Chemical Research 
Laboratory 2001; Yamazaki 2008) was described (Table 4.9). However, the refer-
ence range differs according to location, crop, and variety (Ministry of Agriculture 
Forestry and Fisheries 2008b, 2016a). For exchangeable calcium, the analysis value 
corresponding to the lime saturation of 40–60% is within the appropriate range and 
can be calculated from Eq. (4.1):

	 Calciumsaturation percentage Ca CECme� �/ 100 	 (4.1)

	 Ca Came = / .28 04 	

The reference range for CEC and humic acid differs with soil type. The reference 
range of phosphate absorption coefficient is for dry field farming in Hokkaido, and 
the estimated phosphate utilization rate for crops is less than 700 (20–30%), 
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Fig. 4.4  An example of PLS regression coefficient estimation (a) Absorbance of the analysis 
database (b) Second-derivative absorbance of the analysis database (c) Scatter plots of humus rate
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Table 4.7  Thirty-four properties’ regression coefficient estimation accuracy and evaluation/
classification results (statistics)

Property Unit NCal|N
Range

S.D.
SDP RMSE

Min Max MinCal MaxCal Cal Val Cal Val

N-a mg/100 g 349|552 0.26 8.30 0.30 2.99 0.47 0.148 0.182 0.148 0.182
N-h mg/100 g 287|552 2.18 14.7 2.18 6.91 0.74 0.234 0.250 0.234 0.250
N-n mg/100 g 292|552 0.00 3.85 0.00 0.93 0.19 0.059 0.062 0.059 0.062
N-t % 338|552 0.07 0.58 0.07 0.26 0.03 0.009 0.010 0.009 0.010
P-a mg/100 g 538|552 1.54 34.4 1.54 34.3 9.94 3.096 3.301 3.094 3.298
SiO mg/100 g 225|364 12.5 103 14.4 73.5 9.88 3.052 4.255 3.045 4.264
K mg/100 g 462|552 1.69 52.6 5.38 28.4 5.22 1.645 1.797 1.643 1.795
Ca mg/100 g 538|552 44.3 668 44.3 614 112 35.22 40.37 35.18 40.33
Mg mg/100 g 535|552 3.52 180 3.52 148.0 29.9 9.424 12.37 9.415 12.36
Na mg/100 g 270|364 0.58 26.3 0.58 15.0 3.79 1.192 1.275 1.189 1.273
Fe mg/100 g 320|364 0.04 3.10 0.22 2.68 0.68 0.215 0.244 0.215 0.244
Cu ppm 335|552 0.81 15.0 3.24 10.9 1.33 0.420 0.489 0.419 0.488
Zn ppm 272|552 2.56 62.5 3.01 5.56 0.57 0.179 0.211 0.178 0.211
B ppm 351|552 0.41 1.70 0.41 1.37 0.14 0.045 0.054 0.045 0.054
Mn ppm 526|552 3.59 266 3.59 218 63.6 20.07 22.71 20.05 22.69
EC mS/cm 363|406 0.01 0.09 0.01 0.06 0.02 0.005 0.006 0.005 0.006
CEC me/100 g 551|552 7.18 42.3 7.18 42.3 8.96 2.833 3.056 2.831 3.053
Ca/Mg E.R 459|552 1.91 9.05 1.91 6.45 1.24 0.391 0.408 0.391 0.407
Mg/K E.R 387|552 2.95 20.5 3.62 11.8 1.85 0.578 0.657 0.577 0.656
BSP % 358|552 19.9 114 43.1 102 9.37 2.960 3.322 2.956 3.318
CSP % 315|552 17.6 84.9 32.7 68.9 5.90 1.865 2.216 1.862 2.213
ESP % 212|364 0.18 5.38 0.45 2.41 0.35 0.119 0.137 0.110 0.128
HR % 505|552 1.02 13.6 1.02 8.82 1.46 0.459 0.570 0.459 0.570
SOM % 502|552 4.61 19.0 4.74 15.3 2.43 0.766 0.838 0.765 0.837
C-t % 485|552 0.59 7.88 0.59 4.78 0.77 0.237 0.287 0.237 0.286
C/N – 551|552 6.73 16.7 9.00 16.7 1.75 0.547 0.621 0.546 0.621
pH – 288|406 5.61 6.76 5.74 6.49 0.17 0.043 0.048 0.054 0.067
y1 – 277|552 0.06 2.50 0.19 1.00 0.18 0.058 0.065 0.057 0.065
PAC – 537|552 8.00 1518 8.00 1509 297 89.37 103.7 89.29 103.6
MC – 288|552 28.3 115 30.7 53.3 4.17 1.314 1.424 1.312 1.422
DD g/cm3 389|552 0.61 1.03 0.76 1.00 0.06 0.018 0.021 0.018 0.021
S % 250|364 18.4 75.5 29.5 72.2 7.78 2.586 3.659 2.047 3.014
SL % 240|364 5.68 47.8 8.44 30.5 3.84 1.201 1.551 1.198 1.548
CL % 290|364 13.2 51.1 18.2 43.2 4.96 1.562 2.259 1.529 2.144

E.R equivalence ratio

700–1500 (15–20%), and 1500–2000 (10%–15%) and more than 2000 (6–10%). 
The reliable range of the prediction values using the regression coefficients of 34 
properties is the range of the analysis values in the scatter plots. For hot water 
extractable nitrogen, the range was 2.2–6.9 mg/100 g, including the reference range. 
But it cannot be used in soil analysis for high concentration data because it is not 
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Table 4.8  Thirty-four properties’ regression coefficient estimation accuracy and evaluation/
classification results (accuracy/evaluation/classification)

Property
R2 RPD RankRPD RER RankRER EI RankEI

SP F Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val

N-a 7 7 0.90 0.85 3.17 2.57 A B 18.2 14.7 B C 11.0 13.6 A B
N-h 17 6 0.90 0.89 3.17 2.97 A B 20.2 18.9 A B 9.9 10.6 A A
N-n 13 4 0.90 0.89 3.17 3.00 A B 15.8 14.9 B B 12.7 13.4 B B
N-t 7 6 0.90 0.87 3.18 2.76 A B 20.5 17.8 A B 9.8 11.3 A A
P-a 7 5 0.90 0.89 3.21 3.01 A B 10.6 9.93 C C 18.9 20.2 B B
SiO 7 8 0.90 0.82 3.25 2.32 A B 19.4 13.9 B C 10.3 14.4 A B
K 15 8 0.90 0.88 3.18 2.91 A B 14.0 12.8 C C 14.3 15.6 B B
Ca 17 9 0.90 0.87 3.18 2.77 A B 16.2 14.1 B C 12.4 14.2 A B
Mg 3 8 0.90 0.83 3.18 2.42 A C 15.4 11.7 B C 13.0 17.1 B B
Na 21 6 0.90 0.89 3.18 2.97 A B 12.2 11.4 C C 16.5 17.6 B B
Fe 9 5 0.90 0.87 3.18 2.81 A B 11.5 10.1 C C 17.5 19.8 B B
Cu 3 5 0.90 0.87 3.18 2.73 A B 18.2 15.7 B B 11.0 12.8 A B
Zn 15 9 0.90 0.86 3.19 2.70 A B 14.3 12.1 C C 14.1 16.6 B B
B 7 7 0.90 0.86 3.17 2.65 A B 21.4 17.9 A B 9.34 11.2 A A
Mn 7 5 0.90 0.87 3.17 2.80 A B 10.7 9.45 C C 18.7 21.2 B B
EC 7 5 0.90 0.88 3.17 2.85 A B 10.6 9.60 C D 18.8 20.9 B B
CEC 21 8 0.90 0.88 3.17 2.94 A B 12.4 11.5 C C 16.1 17.4 B B
Ca/Mg 15 6 0.90 0.89 3.17 3.04 A B 11.6 11.1 C C 17.2 18.0 B B
Mg/K 11 8 0.90 0.87 3.21 2.82 A B 14.1 12.4 C C 14.2 16.2 B B
BSP 15 9 0.90 0.88 3.17 2.83 A B 20.0 17.8 A B 10.0 11.2 A A
CSP 9 8 0.90 0.86 3.17 2.67 A B 19.5 16.4 B B 10.3 12.2 A A
ESP 15 7 0.90 0.87 3.18 2.74 A B 17.8 15.3 B B 12.1 14.0 A B
HR 7 8 0.90 0.85 3.18 2.56 A B 17.0 13.7 B C 11.8 14.6 A B
SOM 9 5 0.90 0.88 3.18 2.90 A B 13.9 12.7 C C 14.4 15.8 B B
C-t 7 7 0.91 0.86 3.25 2.69 A B 17.7 14.6 B C 11.3 13.7 A B
C/N 9 6 0.90 0.88 3.21 2.83 A B 14.1 12.4 C C 14.2 16.2 B B
pH 9 8 0.90 0.85 3.17 2.58 A B 13.9 11.3 C C 11.4 12.8 A B
y1 7 4 0.90 0.87 3.20 2.84 A B 14.1 12.5 C C 14.2 16.0 B B
PAC 15 10 0.91 0.88 3.32 2.86 A B 16.8 14.5 B C 11.9 13.8 A B
MC 9 4 0.90 0.88 3.17 2.93 A B 17.2 15.8 B B 11.7 12.6 A B
DD 7 6 0.90 0.87 3.18 2.76 A B 13.3 11.6 C C 15.0 17.3 B B
S 9 10 0.93 0.85 3.80 2.58 A B 20.9 14.2 A C 12.1 17.1 A B
SL 11 9 0.90 0.84 3.21 2.48 A B 18.4 14.2 B C 10.9 14.1 A B
CL 9 10 0.90 0.81 3.25 2.31 A C 16.3 11.7 B C 12.5 18.1 B B

included in the regression coefficient database. The available phosphorus database 
included the reference range of 10–30 mg/100 g, so it can be used in the soil analy-
sis. However, since data at 10–20 mg/100 g is missing, additional data and reanaly-
sis in this range are required. Exchangeable magnesia, exchangeable sodium, and 
C/N also need reanalysis with intermediate data added. The ideal database of 

4  Application of Soil Sensing in Precision Agriculture



96

Fig. 4.5  Scatter plots of analysis and prediction values and regression coefficient
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Table 4.9  Reference value of soil analysis

Property Unit Reference value Property Unit Reference value
pH – 5.5 ~ 6.5 PAC – – ~ –

P-a mg/100 g 10 ~ 30 CEC me/100g 20 ~ 30
K mg/100 g 15 ~ 30 HR % 2 ~
Mg mg/100 g 25 ~ 45 EC mS/cm 0.4 ~ 0.6
Mg/K E.R. 2 ~ y1 – – ~ –
Ca/Mg E.R. ~ 6 SOM % 3 ~
Ca mg/100 g 200 ~ 300 C-t % – ~ –
CSP % 40 ~ 60 C/N – 15 ~ 30
BSP % 60 ~ 80 SiO mg/100g 15 ~ 30
Cu ppm 0.5 ~ 8.0 Fe % 0.8 ~ 4.0
Zn ppm 2 ~ 40 Na mg/100g ~ 15
Mn ppm 50 ~ 500 ESP % ~ 20
B ppm 0.5 ~ 1.0 MC % – ~ –
N-h mg/100 g 5 ~ 7 DD g/cm3 – ~ –
N-t % – ~ – S % – ~ –
N-n mg/100 g – ~ – SL % – ~ –
N-a mg/100 g – ~ – CL % – ~ –

analysis and prediction values for the purpose of soil analysis were CEC, exchange-
able calcium, base saturation, lime saturation, and free iron oxide.

	(vi)	 Regression Coefficient and Absorption Wavelength

As the regression coefficient of each property has been applied with second 
derivative, the negative coefficient is almost the same with the peak waveform of the 
absorption wavelength. In soil water content whose absorption wavelength exists in 
the analysis wavelength region, the negative peak matches the water’s absorption 
wavelength (1450 nm) (Fig. 4.5). In addition, the negative peak near 550 nm coin-
cides with the green wavelength band, which is the complementary color of red, and 
it is necessary to consider the analysis wavelength region because of the effect of 
soil color. Furthermore, the regression coefficient waveform of soil water content 
has almost the same shape with the second-derivative absorbance spectra. Moreover, 
the regression coefficients in 600–1350 nm, which are not directly related to the 
absorption wavelength, seem to eliminate the baseline noise of the second-derivative 
absorbance. The negative peaks of soil organic matter, humus rate, total carbon, and 
total nitrogen were consistent with the absorption wavelength of humic acid 
(570 nm, 620 nm, 1100–1600 nm). The negative peaks of available silicate coin-
cided with the absorption wavelength (930 nm, 1000 nm), and negative peaks were 
also confirmed at 570 nm and 620 nm because of its correlation with the organic 
content. Two negative peaks were observed in free iron oxide absorption band 
(1380–1410 nm), and a large negative peak was observed at 530 nm in the Fe3+ 
absorption band (500–800  nm). Although the absorption wavelength of CL is 
1400  nm, no negative peak was observed in the regression coefficient. This is 
because when transforming to absorbance, 1400  nm was the conversion point 
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between the positive and negative peaks before and after 1400 nm, that is, zero. 
Since CL is composed of elements such as silicon and iron, multiple negative peaks 
of the regression coefficient were confirmed in the absorption wavelength of silicic 
acid and free iron oxide. The correlations between the analysis values of CL and 
free iron oxide and available silicate were “high correlation” and “correlation.” As 
examples of regression coefficient estimation based on correlation with properties 
whose absorption wavelength exists, ammonia nitrogen has no correlation with the 
analysis value of total nitrogen, but its correlation with organic content was con-
firmed. Hot water extractable nitrogen was highly correlated with total carbon, total 
nitrogen, and humus rate. Nitrate nitrogen was correlated with total nitrogen, total 
carbon, and humus rate. Negative peaks were observed in the absorption wave-
length of humic acid in each property.

The obtained regression coefficient for each property is a local regression coef-
ficient corresponding to the database that consists of the analysis value range of the 
34 properties used in the regression coefficient estimation. Moreover, it cannot sat-
isfy all soil conditions as general purpose regression coefficient.

4.2 � Application of Tractor-Mounted Soil Analysis System 
in Precision Agriculture

4.2.1 � Site-Specific Soil Mapping and Interpretation 
of Agricultural Fields

	(1)	 Soil Observation Preparation/Data Collection/Analysis/Visualization Process

The items of SAS setting before soil observation are observation speed 
(0.28–1.68 m/s), sampling period of diffuse reflectance spectra (3–10 s, 1 s inter-
val), and observation depth (0.10–0.30 m, 0.05 m interval). The data acquisition 
interval in the direction of measurement is determined by observation speed and 
sampling period. But the data acquisition interval may not match the calculated 
value according to the soil conditions. If the observation speed is not constant, the 
measurement area of diffuse reflectance spectra and the soil sampling interval will 
be different. So, it will not be changed during the operation. By adjusting the gauge 
wheel to the track of the tractor’s rare wheel, extra pitching fluctuation was avoided. 
The observation depth is the distance from the contact surface of the gauge wheel to 
the soil measurement surface leveled with a flat plate. When changing the observing 
depth, the top link was adjusted to ensure the SAS body’s frame horizontal. Setting 
the observation depth deeply increases the traction resistance, so the tractor’s drive 
condition and the model selection are important. In order to avoid the influence of 
tractor pitching, the draft control and position control of the tractor’s three-point 
link hitch were not functioned, while a free suspension system was adopted.

The observation setting items before soil observation are the determination of 
number of observation lines and the endpoints of field where the shape of the field 
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can be easily understood. The number of observation lines and the interval between 
the observation lines are determined according to the grower’s purpose of use of the 
soil map. For example, in the case of using the soil map for pest control and fertil-
ization by a boom sprayer with one wing of 12 m, the first observation line was 
determined at 12 m from the field edge, and the second and later were determined 
at 24 m intervals. A glass pole was set at the field end in the traveling direction to 
improve the visibility of straight traveling. In the case of one-plot management, the 
field was firstly divided into three parts, and the observation lines were around the 
middle of each part. If there was no request from the grower, the least common 
multiple of the working width of the working machine owned by the grower was 
used. The settings of the observation line that have been requested in the past were 
the harvesting width of yield combined, the spray width of boom sprayer and broad-
caster, and the width of planting line of rice transplanter.

After the SAS’s power was turned on, it was waited about 15 min to stabilize the 
output of the halogen lamp. Before observing the first line of each plot, SRS40 was 
installed to the calibration jig set (Fig. 4.6b) in the soil penetration part to obtain 
white reference and dark reference data.

The position of soil samples, which were the objective variables for estimating 
the regression coefficient, was firstly confirmed by the alarm from the sensor when 
collecting spectra data and then marked on the soil surface by a half-split chopstick, 
while the data number was confirmed from the touch panel monitor simultaneously 
with the spectra data collection. The area was excavated by a shovel where the chop-
stick was placed at a wider area than the spectra measured area but did not disturb 
the observation surface of SAS. The residues and gravel were then removed. After 
that, using a stainless steel scoop, the soil at a depth with several centimeters from 
the observation surface with about 0.3 m in width and the surrounding soil with the 
same depth of the observation surface were collected and packed into a sealable 
plastic bag with a zip (Asahi Kasei Home Products Co. Ltd., Ziplock® Double zip-
per). About 1 kg was placed in the plastic bag, and it was closed by confirming that 
the zip did not bite the soil particles while the air was sufficiently pushed out. On 
the plastic bag, the symbol with field name, observation line number, and diffuse 
reflectance spectra number was recorded.

Two sets of soil samples were prepared at each sampling position, one set was 
analyzed at the Tokyo University of Agriculture and Technology (TUAT) and the 
other set was analyzed at the Agricultural Product Chemical Research Laboratory 

Fig. 4.6  Reference data acquisition method
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(APCRL: Federation of Tokachi Agricultural Cooperative Association, Hokkaido, 
Japan). The soil samples were transported in refrigerators (0–10  °C) to restrain 
chemical composition change due to microbial activity. The soil samples sent to 
TUAT were stored in a refrigerator at 5 °C. Properties that could not be analyzed in 
TUAT were requested to be analyzed by APCRL. Properties that could not be ana-
lyzed in APCRL were analyzed by the Sumika Chemical Analysis Service, (SCAS) 
Ltd., using surplus dry soil samples used by APCRL. The analyzed values were not 
rounded by significant digits, but the display values of the weighing meter and mea-
suring device and the total number of digits recorded on the recording medium of 
the device were used.

Once the soil analysis values were obtained, they were linked to the diffuse 
reflectance spectra, and a database for estimating the regression coefficients was 
constructed. The database was subjected to spectra preprocessing and PLSR analy-
sis using multivariate analysis software (the Unscrambler Ver.9.8, CAMO Analytics 
AS). The prediction values were linked with position information and were visual-
ized on a soil map. The visualization methods can be provided according to the 
grower’s request, including interpolation map using the application software 
ArcMap of ArcGIS (ESRI Japan Co., Ltd.). The grid map divides a plot of field into 
grids with the mean, maximum, and minimum values shown in each grid. The dot 
map shows only the measurement point with dot of any size. When regression coef-
ficient estimation is necessary, the black arrow and green arrow processes in Fig. 4.7 
are necessary. When regression coefficient estimation is not required, blue arrow 
and green arrow processes are used to determine soil maps immediately after field 
observation.

Fig. 4.7  Processes from field observation to soil mapping
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	(2)	 Soil Map

The soil map is defined as a spatial (or stratified) information at a certain date and 
time, with a high-resolution visualization of regional area, between fields or within 
field. Focusing on the plow layer, the soil map describes the information of soil 
physicochemical properties, biological properties, soil productivity (crop produc-
tivity such as yield), and soil fertility (conditions that support the root of crop and 
the ability of soil to supply the necessary amount of water and nutrients through the 
root according to the crop growth).

The purpose of creating a soil map is the management of local production area 
with group of crop cultivation fields or regional area and the soil management of 
grower-owned fields. In the management of local or regional area, the public infra-
structure and environment necessary for crop cultivation and management are effi-
ciently used, and profits are maximized by selecting crops and varieties. Higher 
efficiency in farm management requires the consolidation and accumulation of 
fields. The soil map is used as a source of information for decision-making and 
consensus building, such as improving workability by consolidating fields with 
similar fertility and reusing abandoned fields. The visualization method of one 
value per plot of field is the lowest resolution. The soil management of field owned 
by growers is based on the use of soil maps as a source of information on improving 
yield and quality as well as reducing production cost and environmental load 
through variable-rate work and crop or variety selection according to the variability 
between or within fields. The resolution of visualization varies according to the 
purpose of growers and their methods used in the farm management work.

The soil visualization information includes the terrain classification map, surface 
geological map, soil map, and groundwater map of the National Land Information 
Division, Ministry of Land, Infrastructure, Transport and Tourism, which were 
mainly used as sources of information for disaster countermeasures and building 
construction (Ministry of Land Infrastructure, Transport and Tourism 2018). 
Specialized for farmland use are soil profile map, fertility conservation soil map, 
and farmland soil map. The soil profile data is not used to directly control crop pro-
ductivity, but the soil layer sequence that appears in the soil profile is the history of 
soil layer differentiation and shows whether the soil layer is going to maturity in the 
future. Therefore, it is an important information for reclamation of farmland and 
continuous design support on agricultural management. The problem is how to con-
duct soil survey up to 1 m soil depth and how to collect soil sample (Ministry of 
Agriculture Forestry and Fisheries 2016b). For the purpose of land use and farming 
guidance at municipal level, there are fertility conservation soil map data (Japan 
Soil Association) and farmland soil map data (Japan Soil Inventory, National 
Agriculture and Food Research Organization: NARO), which were compiled into 
database with physicochemical properties of the plow layer that cover the whole 
country. The farmland soil map is developed based on the data from the Fertilization 
Improvement Survey Project of the Ministry of Agriculture, Forestry and Fisheries, 
Fundamental Soil Survey for Fertility Conservation, Fundamental Soil-
Environmental Survey, and Soil-Functional Monitoring Survey (about one point in 
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25 ha of soil profile survey in the farmland of Japan from 1953 to 2003) and the 
fertility conservation soil data. Seventeen properties were provided including thick-
ness of plow layer (first layer), soil hardness (all soil layers hereinafter), bulk den-
sity, three phases (gas, liquid, solid), pF, water content, pH, exchange acidity, EC, 
total carbon, total nitrogen, base exchange capacity, exchangeable base, available 
phosphorus, available nitrogen, and suppliable silicic acid. The mean, median, stan-
dard deviation, and number of samples of each property were recorded for each of 
60 soil groups. The scales of the farmland soil map are 1:200,000 and 1:50,000, and 
soil classification and soil temperature can also be viewed (Takada et al. 2013). The 
Agricultural Basic Law was enacted in 1961 which defined 0.3 ha as the standard 
plot (rice cultivation) in the field renovation project and was started in 1963 (Hirota 
1999). The farmland soil map is composed of 1 data point per 83 plots (25 ha/0.3 ha). 
In addition, the cultivated area per management body is 2.87 ha (2017) (Ministry of 
Agriculture Forestry and Fisheries 2017), and ten agricultural management entities 
are displayed with same soil classification. Therefore, it is difficult to use the soil 
map in the measured resolution for regional or local management, soil management 
of grower’s field, and land use and farming guidance at municipal level. Moreover, 
some growers bring soil from other places to improve the soil. Moreover, creating 
soil maps based on soil analysis for each plot of field becomes a subject.

The most popular visualization method is GIS software interpolation. The fea-
ture is that an arbitrary virtual data point is placed in the unmeasured area between 
measured data, and an estimated value calculated by interpolation methods, such as 
Kriging, natural neighbor, spline, and inverse distance weighting (IDW), is utilized 
to the virtual point, while a map drawn with smooth contour lines can be obtained. 
In past studies, Kriging and IDW have been often used, which are effective to grasp 
the variability.

IDW assumes that there are many sample points with regular arrangement, and 
the effect of variable decreases as the distance from the sample position increases. 
Then the effect of the sample data on the interpolation data is isotropic and inversely 
proportional to the distance.

Kriging (ordinary and universal) assumes that the distance or direction between 
sample points reflects a spatial correlation that can be used to explain variation in 
the surface. The Kriging tool fits a mathematical function to a specified number of 
points, or all points within a specified radius, to determine the output value for each 
location. It includes exploratory statistical analysis of the data, variogram modeling, 
creating the surface, and (optionally) exploring a variance surface. Kriging is 
selected when there is a spatially correlated distance or directional bias in the data.

Kriging is similar to IDW in that it weights the surrounding measured values to 
derive a prediction for an unmeasured location. The general formula for both inter-
polations is formed as a weighted sum of the data (Eq. 4.2):
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where
Z(si) is the measured value at the ith location.
λi is an unknown weight for the measured value at the ith location.
S0 is the prediction location.
N is the number of measured values.

In IDW, the weight λi depends solely on the distance to the prediction location. 
However, with the Kriging method, the weights are based not only on the distance 
between the measured points and the prediction location but also on the overall 
spatial arrangement of the measured points. To use the spatial arrangement in the 
weights, the spatial autocorrelation must be quantified. The weight λi depends on a 
fitted model to the measured points, the distance to the prediction location, and the 
spatial relationships among the measured values around the prediction location 
(ESRI Japan 2016; Shoji and Koike 2007).

The requirement for soil map, which is as important as understanding of vari-
ability, is providing information in a classification method capable of instantaneous 
decision-making. Although the interpolation method is effective for grasping vari-
ability, the interpolation methods must be determined according to the spatial 
arrangement of the measurement data. Also, it is hard to determine the farm work 
range and work amount. For the paid GIS software, the costs of introduction and 
maintenance are problems, and the operation procedures from converting measured 
data to GIS readable format for display are operational issues.

Soil mapping methods include GIS software interpolation map, gird map, and 
dot map. Each visualization method has its characteristics, and it is necessary to 
select the visualization method according to the purpose of use of the soil map. 
However, the purpose of use of soil map varies with growers and field managers, 
while some may not have a purpose of use. In addition, there are no growers who 
divide one plot into multiple parts and perform soil analysis and mapping according 
to the number of divisions. Moreover, agricultural support system for guidance and 
fertilization design based on high-resolution soil map has not been established.

The first use of high-resolution soil map in such situation is to grasp the variabil-
ity and record the grower’s awareness to facilitate the grower’s decision-making. It 
is necessary to provide field mapping technology to provide soil maps immediately 
after the field observation that enables the dialogue with grower and extension 
instructors. If the soil map can be provided on-site, and if it can share awareness of 
growers, provide advice from extension instructors, and create a database of grow-
er’s decision; it will be possible to serve as a part of decision support system. 
Therefore, a simple GIS display function (dot map) has been developed which 
shows the properties requested in the visualization methods and enabled soil map-
ping on-site.

	(3)	 IDW Interpolation Map

The interpolated soil map is characterized by the fact that the status of variability 
can be drawn with clear contour line according to the classification, so the feature 
can be understood immediately. But there are problems with the introduction and 
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maintenance cost of GIS software and the operability of the mapping procedures. 
ArcCatalog in ArcGIS (V10.2.2 ESRI Inc., USA), map layout software ArcMap, 
and extension products (Spatial Analyst et  al.) were used to create interpolation 
map. The feature of spatial data measured by SAS is that there are plenty of data 
collected from one plot and there are no scattered measurement positions or extreme 
inhomogeneities. Therefore, the effect on the interpolation point between the mea-
sured data is assumed to be smaller as the distance from the measured data point 
increases, and the influence of the data acquisition location on the interpolated value 
is isotropic. Therefore, IDW (ESRI Japan Co. Ltd 2002) is appropriate to be adopted 
due to its characteristics of that the influence of the data acquisition location on the 
interpolation result is inversely proportional to the distance. In IDW, the output cell 
size, power, and search radius can be set arbitrarily, but the automatic set values by 
the software were used. In the interpolation method, the inner area of a point with 
value and location information is visualized. In order to visualize the entire field 
inside the boundary, it is essential to record the field edge with values (analyzed and 
predicted values) and location information. Since no analysis value or spectra data 
were acquired at the field edge, soil maps were created by replacing the value with 
the data point closest to the field edge based on the characteristics of IDW. In addi-
tion, to distinguish among field end points and data points, data points were indi-
cated by “・,” and the field end points were indicated by “+” (Fig. 4.8a).

	(4)	 Grid Map

The grid map can facilitate efficient soil management when the purpose and 
method of use of the soil map are determined. For example, when variable-rate 
spraying is manually performed using a working machine such as a broadcaster or 
a boom sprayer, after determination of work width of the machine, the number of 
travel lines, the travel route, the start and stop positions of fertilizer application, and 
the number of grids in the travel direction, the center of the working width is mea-
sured with SAS. The average, minimum, and maximum values are shown for each 
grid, and the average value is used for classification. By showing the minimum and 
maximum values, it is possible to grasp the variability range and check for outlier 
(Fig. 4.8b).

For variable-rate work based on the grid map, a fertilization map can be created 
with manure increasing/decreasing zones determined based on cultivation calendar 
and cultivation guidelines.

	(5)	 Simple GIS display function (Dot map)

The simple GIS display function (Fig. 4.9) is a visualization method that classi-
fies and displays measurement points with color dots. Optional features include dot 
size, field outline, dot color, and threshold values of up to five divisions. When the 
pointer cursor is placed on the memorized reference value of each soil property, 
statistical value (average, maximum, minimum, and coefficient of variation), and 
acquired data points, the absorbance, second-derivative absorbance, and prediction 
value are displayed. In this way, it can be determined whether a sample for soil 
analysis needs to be collected and whether there is an abnormal spectrum. In 
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Fig. 4.8  Soil maps (a) IDW interpolation map (b) Grid map

addition, to display one plot of field or group of fields on the map, the map can dis-
play an arbitrary range by zooming. By registering the position information of the 
field edge and the entrance of working machine, it became easy to grasp the field 
direction when displaying complicated shapes or multiple fields. The title of the 
regression coefficient is composed of identification character, property, accuracy, 
and range of database, to prevent selection miss and grasp reliability of the predic-
tion value. By registering the regression coefficient for each property, it is possible 
to display the dot map immediately after field observation and reduce the cost of 
GIS software’s introduction, which makes it possible for the growers to understand 
their field and make decisions on-site. The simple GIS display function has been 
jointly developed with the Shibuya Seiki Co., Ltd.
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Fig. 4.9  Simple GIS display function (dot map)

4.2.2 � Decision-Making for Crop Precision Farming

	(1)	 Variable-Rate Application

	(i)	 Test Fields, Device, and Methods

The test field was a rotation cropping field (4.43 ha, 303 m long side × 146 m 
short side) in Memuro-cho, Kasai-gun, Hokkaido, Japan. The test device was 
SAS1000, and the observation speed was 0.56  m/s, the observation depth was 
0.15 m, the sampling period was 4 s, and the data measurement interval was 2.24 m. 
The field observation line interval was 24 m, which was the same with the pest con-
trol line. Field observations of the same field and the same line were conducted in 
October 2007, November 2008, and November 2010, and pH soil maps (Fig. 4.10) 
were provided to growers.

	(ii)	 Make Decision by Growers

In the pH map after harvesting wheat in autumn 2007 and after harvesting sugar 
beet in 2008, a location with high pH value was confirmed on the south side 
(Fig. 4.10a, b). The grower decided to improve the soil condition before soybean 
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Fig. 4.10  Variable-rate application utilizing soil pH map

sowing in May 2009 and sprayed 360 kg/10a of sulfur powder by a broadcaster 
(Fig. 4.10c).

	(iii)	 Reasons, Background, and Results

The high pH on the south side was because of overflowing with a large amount 
of lime cake (processed residue from refined sugar beet). The grower’s rotation 
system was “wheat-sugar beet-soybean-potato-green manure,” which was five crops 
in five years. If the pH value exceeds 6.5, potato and sugar beet may suffer disease 
of common scab, so the solution has been considered. In the growing season, symp-
toms such as slow growth and withering were visually observed in the place with 
high pH, and in the surrounding area, the location can be identified until harvest 
(Fig. 4.10e). After the harvest, the trace disappeared, and no solution was taken.

When the location with high pH can be identified from location information 
recorded in SAS and the grid map for easy manual variable-rate application can also 
be created, the grid map as shown in Fig. 4.10f can be provided. The size of the grid 
was determined by checking the distance over which the grower could manually 
adjust the spray amount. As a result of sulfur powder spraying, the field observation 
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after potato harvest in November 2010 confirmed that the pH dropped to 5.5–6.0 
(Fig. 4.10d).

	(2)	 Plan for Agricultural Work

	(i)	 Test Fields, Device, and Methods

The test field was a taro rotation field (0.32 ha, 60 m long side × 54 m short side) 
in Aoyagi, Sayama City, Saitama Prefecture, Japan. The test device was SAS3000, 
and the observation speed was 0.28 m/s, the sampling period was 3 s, the observa-
tion depth was 0.15 m, and the data measurement interval was 0.84 m. For the pur-
pose of visualizing the inside of the field with high resolution, the observation line 
was set at 3 m interval, to ensure that the tractor’s wheel may not cover the observa-
tion line, because the interval between the taro planting rows was about 1 m and the 
width of the rare wheel of the tractor was 1.2 m. Field observation was conducted 
after taro harvest in February and December 2017. To estimate the regression coef-
ficient for each property, a database of 100 samples for the analysis was used, which 
were collected in February 2017 from 10 plots of fields of 3 taro farmers in the 
Sayama area. For soil mapping, the soil maps with the data range divided according 
to the reference value of soil analysis were first provided to the grower, and then 
three equal division soil maps were provided.

	(ii)	 Make Decision by Growers

The growers found that hot water extractable nitrogen and available phosphorus 
were below the reference value, and the exchangeable potassium was within the 
reference value in the divided interpolation methods (Fig.  4.11a) observed in 
February. It was considered that this was the topdressing effect of potassium fertil-
izer. From the soil map of the three equal division interpolation methods (Fig. 4.11b) 
observed in February, the grower changed the planting row direction from east-west 
to north-south.

	(iii)	 Reasons, Background, and Work Results

The grower used sulfated potassium fertilizer as additional fertilization of the 
taro cultivation. The residual amount of exchangeable potassium was higher than 
hot water extractable nitrogen and available phosphorus, which agreed with the 
work of adding additional fertilizer.

According to the growers, they remembered that red soil was added to the east 
half of the field in the past. Also, the western taro was found to be smaller overall. 
The growers changed the planting row direction from east-west to north-south in 
consideration of cultivation management from work efficiency and soil property 
distribution. As a result of field observation after changing the planting row direc-
tion and after harvesting taro in December, hot water extractable nitrogen and avail-
able phosphorus were higher in the east half, while exchangeable potassium had a 
lower content (Fig. 4.12).

	(3)	 Selection of Varieties Based on Differences Between Fields
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(a) Reference value division interpolation method observed in February 

(b) Three equal division interpolation method observed in February

Hot water extractable nitrogen Available Phosphate Exchangeable potassium

Exchangeable potassiumHot water extractable nitrogen Available Phosphate

N

N

Fig. 4.11  Soil maps with data range (a) Reference value division interpolation method observed 
in February (b) Three equal division interpolation method observed in February

Hot water extractable nitrogen Available Phosphate Exchangeable potassium N

Fig. 4.12  Three equal division interpolation methods observed in December

	(i)	 Test Fields, Device and Methods

The test fields were two plots of field (0.12 ha, 45 m long side × 30 m short side 
(trapezoid) and 0.16 ha, 55 m long side × 30 m short side (trapezoid)) in Aoyagi, 
Sayama City, Saitama Prefecture, Japan. The test device was SAS3000. The obser-
vation speed was 0.28 m/s, the sampling period was 3 s, the observation depth was 
0.15 m, and the data measurement interval is 0.84 m. The interval between observa-
tion lines was 3 m; the observation line direction coincided with the direction of 
leveling, in north-south that crosses the direction of planting. There were factories 
and buildings on the west and north sides, and the location information at the end of 
the upper left of the two plots could not be captured accurately. Field observation 
was conducted after soil leveling (December 2017). To estimate the regression 
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coefficient for each property, the database was used in which 100 samples were col-
lected in February 2017 at 10 plots from 3 taro farmers in the Sayama area. The soil 
map was confirmed with the grower after the field observation using dot maps based 
on the simple GIS display function of SAS3000 (Fig. 4.13).

	(ii)	 Make Decision by Growers

Fig. 4.13  Comparison between fields using dot map
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The growers planned to cultivate Dodare (taro variety) in No. 1 field and lotus 
leaf in No. 2 field. But they switched the two cultivation varieties after referring to 
the soil maps of hot water extractable nitrogen, available phosphorus, and exchange-
able potassium. So far, 2 tons of chicken manure compost has been put into the two 
plots of field, but it has been reduced to 1 ton.

	(iii)	 Reasons, Background and Results

According to the growers, when the Dodare variety is cultivated in soil that is 
rich in nitrogen, the plant height and leaves and the mother taro tubers grow dra-
matically, while the secondary taro tubers tend to be small. According to the hot 
water extractable nitrogen soil map (Fig. 4.13a), the residual amount of both plots 
was higher than the reference value range, and No. 1 was higher than that of No. 2. 
Therefore, No.1 was planted with lotus leaves which are less affected by nitrogen.

In addition to the hot water extractable nitrogen, the residual amount of exchange-
able potassium and available phosphorus in the two plots also exceeded the refer-
ence value range (Fig. 4.13b, c). Since the organic matter satisfied the condition of 
the standard level of 2 g per 100 g (2%) of dry soil (Ministry of Agriculture Forestry 
and Fisheries 2008a), the chicken manure compost input was reduced to half 1 ton.

4.3 � Measurement and Application of Soil EC 
in Precision Agriculture

4.3.1 � Soil EC Measurement: Theory and Method

Precision agriculture differentiates agriculture management based on the soil nutri-
ent status and crop growth conditions of different locations in the farmland and can 
increase yield with less input. Rapid and accurate access to soil parameters is one of 
the bases of precision agriculture. The most informative, simple, least expensive, 
and accurate map of soil variability across the field is made using measurements of 
soil electrical conductivity (EC). Soil is an electrical conductor and soil EC is an 
important soil parameter. It has a relationship with several soil properties such as 
soil moisture, soil salinity (the amount of salt in the soil), soil texture (the percent-
age of sand, silt, and clay), cation exchange capacity (CEC), and organic carbon 
content. The measurements of the soil EC can reflect the soil status and provide a 
basis for implementing precision agriculture.

Soil EC is the most common measure of soil salinity and many nutrients are 
salts—a source of salinity. It is helpful to farmers to use soil EC to evaluate soil 
nutrient level. On the other hand, the nutrient accumulation, poor drainage, salt 
water intrusion in coastal areas, and saline irrigation water can lead to the unwanted 
buildup of salinity in soil, which is typically not beneficial to crops, grasses, or the 
microbial community in the soil. Soil salinity also affects the soil hydrology. Plant 
diseases and pathogens, reduced crop yields, or even crop failures may occur from 
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excessive soil salinity; therefore, the proper monitoring of soil salinity will help 
ensure the health of crops. Soil EC can change dramatically with water content and 
can be affected by the quality of the irrigation water, fertilization, drainage, and 
other natural processes. Compaction, clay content, and organic matter can influence 
moisture holding trends over time, also affecting EC capacities in soil.

As we know, electrical conductivity (EC), as well as its inverse electrical resistiv-
ity, is a fundamental property of a material or an object that quantifies how strongly 
it conducts or resists electric current. Electrical resistance is often used in electrical 
engineering and has the following relationship with electrical resistivity if the shape 
of the object is regular (Eq. 4.3):
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where R is electrical resistance (Ω), L is the length of the object (m), S is the 
cross-sectional area of the object (m2), and ρ is the electrical resistivity (Ω·m).

Similarly, electrical conductance has the following relationship with electrical 
conductivity (Eq. 4.4):
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where G is electrical conductance (Siemens, S), S is the cross-sectional area of the 
object (m2), L is the length of the object (m), and σ is the electrical conductivity 
(S/m). It is obvious that G = (1/R) and σ = (1/ρ).

From Eqs. (4.3) and (4.4), it can be seen that if the cross-sectional area and 
length of the measured conductor are determined, the EC of the conductor can be 
easily obtained. However, the soil is a half-open and infinite measuring object and 
is just a complex measuring object with uncertain cross-sectional area and length 
for the measurement of the Earth conductivity. It is impossible to measure soil EC 
with Eqs. (4.3) and (4.4) directly.

Soil EC depends on the concentration of conductive ions in the soil. Therefore, it 
can be represented by measured ion concentration in soil solution, which has linear 
relationship with EC of soil solution. Pore water EC or soil water EC (ECw or σw) is 
the electrical conductivity of the water in the soil pores. In order to simply measure 
the EC of pore water in situ, the tiny sensors would have to be inserted into micro-
scopic water-filled pores. Obviously, it is impossible to measure the EC of water on 
that scale. In fact, it is feasible to extract a soil water sample and measure the EC of 
that sample.

Meanwhile, saturation extract EC (ECe or σe) is measured by taking a soil sam-
ple, making a saturated paste of soil and deionized water, extracting the water, and 
then measuring the EC of the extracted solution. However, it is not easy to measure 
soil ECw or soil ECe in a field. A soil solution method is recommended. The soil 
solution is prepared as following.
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The soil samples collected from a farmland are air-dried, smashed, and sieved 
(1 mm). Then, a certain weight of air-dried soil sample is weighed and added into a 
test tube or measuring cup, and five times of the weight of distilled water is added 
into the soil sample according to the water soil ratio of 5:1. After shaking the soil 
water solution on an oscillator for 30 min, and then standing for 30 min, the clear 
soil solution or the soil solution filtered by filter paper can be directly extracted for 
measurement of EC. The EC of the soil solution is usually measured by electrode 
method. The measured EC data of soil solution is called ECw, and the EC data mea-
sured by aforementioned method can be also called as EC1:5, which means that the 
soil solution is prepared by the water soil ratio of 5:1.

Soil EC1:5 is widely used to analyze soil salinity (He et al. 2012). Soil salinity or 
sodicity is thought a major impediment to sustainable agriculture, worldwide. The 
Songnen Plain is the second largest plain of China after and also one of the five larg-
est salt-affected soil regions in China. Therefore, soil EC1:5 was used to characterize 
the salinity and sodicity of the salt-affected soils in the Songnen Plain, China, and 
determine the relationships between salinity, sodicity, and cation concentrations of 
1:5 extracts (Chi and Wang 2010). One hundred and twenty-one soil samples were 
selected to determine chemical characteristics of soil using 1:5 extraction method. 
All samples were air-dried and passed through a 2 mm sieve, and then 4 g of soil 
was taken from each sample and put into a 100 ml bottle with 20 ml distilled water. 
After agitated and filtered, the EC1:5 value of the soil solution was determined by a 
DDS-307 conductivity meter (Shanghai Precision Scientific Instrument Co., Ltd., 
China). The cations Na+, K+, Ca2+, and Mg2+ were determined by using inductively 
coupled plasma mass spectroscopy (GBC, Scientific Equipment Pty Ltd., Australia). 
The TCC, total cation concentration (or total soluble salt concentration) (mmolc 
L−1), was calculated as

	 TCC Na K Ca Mg� � � �� � � �2 2

	 (4.5)

Another soil salinity parameter, sodium adsorption ratio (SAR) (mmolc L−1)1/2, 
was calculated as

	
SAR Na Ca Mg� �� ��/ /2 2 2

	
(4.6)

The analysis results showed that the coefficients of determination (R2) between 
EC1:5 and TCC and between EC1:5 and SAR were 0.99 and 0.87, respectively, and 
EC1:5 value had higher correlation with soil parameters, TCC and SAR, and could 
be used to well evaluate soil salinity and sodicity.

Although soil solution EC (ECw), including EC1:5 and EC1:1, can describe soil EC 
level to a certain extent, it cannot replace soil EC since soil in farmland is a porous 
medium and has three phases of solid, liquid, and gas. The EC in soil is more com-
plex than it is in soil solution. Therefore, the bulk soil electrical conductivity (ECb 
or σb) is proposed and applied, which is also called soil apparent electrical conduc-
tivity (ECa or σa). Soil ECa (afterward, soil EC is used instead of soil ECa) is the 
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electrical conductivity of the soil/water/air matrix combined and is measured by soil 
sensors from the undisturbed status.

The most popular measurement method of soil EC is four-electrode method. 
Figure 4.14 shows the typical pattern of the four-electrode method. Two electrodes 
(J and K) are connected with a constant electric current source, while the other two 
electrodes (M and N) are connected with a voltage meter. The constant electric cur-
rent is injected into soil from J and K, and then a voltage drop between M and N is 
detected. Using the voltage drop, the soil EC can be measured (Telford et al. 1976; 
Sun and Wang 2001).

Using the four-electrode method shown in Fig. 4.14, the soil EC can be calcu-
lated as the following:
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where σb is the soil EC; LJM, LJK, LKM, and LKN are the distances between J and M, J 
and K, K and M, and K and N respectively; I is the electric current between J and K; 
and ΔVMN is the voltage drop between M and N.

When LJM = LMN = LKN = a, the structure of soil EC measurement method shown 
in Fig. 4.14 is called Wenner array, and Eq. (4.8) can be simplified as
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When LJK = 2a and LMN = b, the structure of soil EC measurement method shown 
in Fig. 4.14 is called Schlumberger array, and Eq. (4.9) can be simplified as
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A portable soil EC detector was developed (Li et al. 2006; Li and Li 2011). The 
EC detector adopts a four-electrode method and consists of three parts: a probe with 
four electrodes, a control and display unit, and the data processing software. The 
probe injects a constant electrical current into soil and detects the voltage drop 

Voltmeter

Constant current source

J M N K 

Fig. 4.14  Structure of soil 
EC measurement method 
based on four-electrode 
method
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between two output electrodes. The voltage drop is then used to estimate the soil 
EC. The correlation analysis was performed between soil EC value and soil ammo-
nium content, and higher correlation result was obtained (R2 = 0.9297).

4.3.2 � On-the-Go Measurement System of Soil EC

Soil EC, as an important parameter of soil characteristics, is of great significance to 
the precision management and fertilization in farmland. Precision agriculture is a 
differential management based on the temporal and spatial variation of agricultural 
parameters on the field scale. It needs modern agricultural machineries to perform 
the site-specific crop management. Therefore, as the one of the essential informa-
tion of precision agriculture, soil EC measurement needs to be conducted rapidly, 
accurately, and real time. Thus, it is necessary to use the vehicle-mounted (on-the-
go) measurement system to achieve the requirements of efficiency and accuracy.

	(1)	 EM-38 Soil EC Mapping System Based on Electromagnetic Induction

The on-the-go measurement methods of the soil EC can be broadly classified 
into two categories, electromagnetic induction (EMI) method and aforementioned 
four-electrode method. EMI method is a noncontact type of method and the princi-
pal component is shown in Fig. 4.15. The instrument based on EMI method is com-
posed of a transmitter and a receiver, placed about 1 m apart. Inside the transmitter, 
an alternating current (A/C) is applied to a copper coil to induce an electromagnetic 
wave, known as the primary magnetic field (HT). When this magnetic field comes 
into contact with the conductive material such as soil, an eddy current in the soil 
matrix will be created. This new eddy current will generate a secondary magnetic 
field (HI). Both HT and HI are measured by the receiver as a reinforced magnetic 
field (HR). The measured response is a function of soil EC and is used to evaluate 
soil (Robinson et al. 2003).

Fig. 4.15  Principal component of the EMI method
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EM38 series of ground conductivity meter (Geonics Limited, Ontario, Canada)2 
is a typical soil EC measuring and mapping system. It can be used in handheld pat-
tern and also in on-the-go pattern (vehicle-mounted) when it is equipped with a 
vehicle or tractor. The standard EM 38 - MK 2 includes two receiver coils, separated 
by 1 m and 0.5 m from the transmitter, providing data from effective depth ranges 
of 1.5 m and 0.75 m, respectively, when positioned in the vertical dipole orientation, 
and 0.75 m and 0.375 m, respectively, when in the horizontal dipole orientation, 
while the EM38-MK2-1 model includes one receiver coil only, at 1 m from the 
transmitter. The operating frequency is 14.5  kHz and measuring range is 
0~1000  mS/m. External power sources can be connected to the instrument for 
extended field operations. When it is used in on-the-go pattern, a protective capsule, 
constructed of durable plastic materials, is available as an option.

A mobile data acquisition system for soil EC was developed using the Geonics 
EM38 sensor in order to investigate the correlation between topsoil depth and soil 
EC for precision agriculture (Sudduth et al. 2001). Topsoil depth is an important 
factor related to within-field productivity differences. The EM38 sensor was 
mounted on a wooden cart pulled behind a vehicle to form the mobile system with 
a GPS receiver and data collection computer. The test results showed that the soil 
EC provided the best estimates of topsoil depth and the relation between them fol-
lowed the power function as Eq. (4.10):

	
y

b
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1

�
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(4.10)

where y is the topsoil depth (cm), σb is the soil EC (mS/m), and α and β are the con-
stants. The experiments were conducted in several farms and the model for each 
farm got high coefficient of determination (R2), R2 = 0.84~0.95. If α is taken as 1, 
the model will become easy to be applied but the accuracy will go down a little.

	(2)	 Veris Series of Soil EC Mapping System Based on Four-Electrode Method

One widely used device to measure soil EC in the field is the Veris 3100 (3105) 
Soil EC Mapping System (manufactured by the Veris Technologies in Salina, 
Kansas), which is manufactured based on four-electrode method. The Veris 3100 
EC unit (Fig.  4.16) has six disks mounted on a toolbar to act as electrodes and 
records soil EC readings from two different depths every second. One pair of disk 
electrodes induces current into the soil. The change in voltage is measured across 
the other two pairs of disk electrodes resulting in simultaneous EC measurements 
for the top 30 cm of soil (two center disk electrodes) and the top 90 cm of soil (two 
outside disk electrodes). A Global Positioning System (GPS) receiver is mounted on 

2 Disclaimer: Commercial products are referred to solely for the purpose of clarification and should 
not be construed as being endorsed by the authors or the institution with which the authors are 
affiliated.
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Fig. 4.16  Veris 3100 soil EC mapping system. (Disclaimer: Commercial products are referred to 
solely for the purpose of clarification and should not be construed as being endorsed by the authors 
or the institution with which the authors are affiliated)

the Veris unit to record the location of each soil EC measurement point in the field. 
All soil EC data and GPS data can be used to create a soil EC map of a field.

The differences between the soil EC zones in a field are caused by differences in 
the soil parameters, such as soil salinity, soil texture, soil organic matter (SOM) 
content, soil water content, and soil structure. It is shown that in most fields, zones 
with higher EC values have higher clay and organic matter content than lower EC 
zones. Farmers want to know the soil texture so that they can apply the correct 
amount of seeds, fertilizers, and irrigation to each section of their field. After under-
standing the pattern of soil composition across the field, farmers can make their soil 
and crop management decisions to fit the soil pattern rather than assuming that the 
whole field has a uniform composition. Soil EC maps have many economic and 
agronomic advantages to be used as a guide to make better management decisions. 
Examples of the most immediate uses of soil EC measurement and mapping are 
(Farahani et al. 2011) the following:

•	 Rapid identification of farm field variability
•	 Guidance to smart soil sampling as opposed to random- or grid-based soil 

sampling
•	 Logical placement and interpretation of on-farm tests
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•	 Development of potential “management zones” for variable-rate seeding and 
chemical application

•	 Identification of coarse-textured zones within the field that are susceptible to 
leaching

•	 Identification of coarse-textured zones within the field that have low water-
holding capacity and thus susceptible to crop water stress

•	 Identification of crop productivity zones based on relative clay and organic mat-
ter contents

Precision agriculture (site-specific management) demands the identification of 
subfield regions with homogeneous characteristics (management zones). However, 
determining subfield areas is difficult because of complex correlations and the spa-
tial variability of soil properties and nutrient concentrations, responsible for varia-
tions in crop yields within the field. Soil EC is thought to be a potential estimator of 
soil properties and nutrients and a tool for the delimitation of homogeneous zones.

A Veris 3100 on-the-go soil sensing system was utilized to improve field man-
agement zone definition (Gunzenhauser et al. 2012). The Veris system with GPS is 
thought better to produce the dense mapping coverage needed to better define soil 
boundaries and improve the delineation of management zones.

Peralta and Costa (2013) also utilized a Veris 3100 on-the-go soil sensing system 
to delineate management zones with soil EC to improve nutrient management of 
crops in Argentina. The EC measurements to 0–90 cm are used because they are 
more stable over time than the EC measurements to 0–30 cm (Sudduth et al. 2003). 
The Veris 3100 sensor was pulled by a pickup truck, taking simultaneous and geo-
referenced EC data in real time with a DGPS to take a satellite position once per 
second. Average travel speeds ranged between 7 and 11 kmh−1, corresponding to 
about 2–3 m spacing between measurements in the direction of travel. Meanwhile, 
soil properties and nutrients were analyzed by means of soil sampling, including 
SOM, CEC, pH, NO3

−-N content, P, Zn+2, Ca+2, Mg+2, Mn+2, Na+, K+, Fe+2, Cu+2, and 
SO4

−2. The result of PCA and ANOVA revealed that soil EC measurements success-
fully delimited two homogeneous soil zones associated with the spatial distribution 
of soil properties and some nutrients (Na+2, Mg+2, Mn+2, Cu+2, Ca+2, Zn+2, Fe+2). 
These results suggest that field-scale soil EC maps have the potential to design sam-
pling zones to implement site-specific management strategies.

Greater understanding of soil EC can offer useful information for crop manage-
ment decisions. A research team at Clemson University has identified the role of soil 
EC in production agriculture after several years of study (Wiatrak et al. 2009). Soil 
texture relates to factors that have a major impact on productivity. For example, 
irrigation scheduling is closely related to soil type and water-holding capacity of the 
soil. Yield potential of sandy soils generally is less than clay soils. Variations of soil 
texture within a field can also have an effect on tillage decisions and pest manage-
ment. Since nematode densities were highly correlated to soil texture as measured 
by soil EC, soil EC can be effectively used for variable-rate applications of nemati-
cides in production fields.

S. Shibusawa et al.



119

It was reported that variable-depth tillage could be used to significantly reduce 
fuel requirements for tillage operations. Soil compaction management relies heavily 
on the use of annual deep tillage, usually to a uniform depth throughout the field. 
Soil EC data were good estimates of the topsoil thickness, and the predicted tillage 
depths were inversely correlated to the soil EC (Wiatrak et al. 2009).

4.3.3 � Application of Soil EC in Precision Agriculture

	(1)	 Smart Rice Transplanter Based on Soil EC

Smart rice transplanter is the first agricultural machine in the world to analyze 
soil after puddling. The smart rice transplanter could measure soil EC (apparent 
electrical conductivity) and topsoil depth as measurement parameters. It is very 
important to determine the measurement method of soil EC, soil depth, and vari-
ability map of each parameter to the smart transplant. Figure 4.17 illustrates the 
smart rice transplanter. The prototype was applied in eight-row-type rice trans-
planter (NP80, Iseki).

On-the-go measurement of soil EC is also shown in Fig. 4.17. The soil EC sensor 
could measure bulk electrical conductivity during rice transplanting (Morimoto 
et al. 2013; Morimoto and Hayashi 2017). The soil EC sensor consisted of a pair of 
wheel-type electrode stainless steel sensors.

Since the two electrodes of the soil EC sensor are mounted on the front wheels, 
the distance between the electrodes is always the same at 1.1 m. Alternative current 

GNSS

Electrode Sensor

Topsoil Depth Sensor

Variable Rate 
Fertilizer Applicator

Mapping System

Fig. 4.17  Smart rice transplanter (Morimoto et al. 2013; Morimoto and Hayashi 2017)
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of 1 kHz frequency was flowing between front wheels. Soil EC was affected by the 
soil moisture content and soil temperature. Since the moisture content of soil was 
close to 100% and solid-liquid ratio is almost 1.0 due to puddling operation, it could 
be measured without being affected by moisture content. In order to compensate 
temperature, a platinum resistance thermometer (E52, Omron) was applied. This 
thermometer was installed under the float of the rice transplanter to measure soil 
surface temperature. The interval of measurement was 1 s and the EC value was 
compensated to 25 °C by using Eq. (4.11):
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(4.11)

where t is soil surface temperature (°C), λ25 is EC value at 25 °C (mS), and λt is 
measured electrical conductivity (mS).

Topsoil depth of paddy fields seems to be uniform, but the topsoil depth varies 
due to turning by agricultural machineries such as heading area. It is also known 
that the fertility of the soil varies due to uneven distribution of compost or soil con-
ditioner, and these variations will result in crop lodging at the harvest time. The 
smart rice transplanter introduced in this section solves this lodging problem with a 
soil sensor and performs real-time variable fertilizer application. Topsoil depth was 
measured by ultrasonic distance sensor (USS, Model E4PA-LS200-MI-N, Omron). 
A couple of USS set in front of the rice transplanter at a height of 850 mm from the 
ground was shown in Fig. 4.18. Topsoil depth was calculated from a fixed height 
(i.e., 850 mm) minus the average of two sensor data as given by Eq. (4.12):
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where TD is the topsoil depth and Dleft and Dright are the distance from left and right 
sensors to soil surface (mm), respectively. USS could be measured with 5 Hz inter-
val, provided average data per five datasets.

Fig. 4.18  Schematic diagram of topsoil depth sensing
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Fig. 4.19  Variability maps of soil EC (Morimoto et al. 2013; Morimoto and Hayashi 2017)

Fig. 4.20  Autonomous measurements of the soil EC based on electromagnetic induction

Figure 4.19 shows the soil EC map collected by the smart rice transplanter. 
Sensing and variable fertilizer application can be performed at the same time while 
planting rice and can be confirmed on a map immediately after the work is done. 
Also, as mentioned earlier, the system measures the electrical conductivity between 
the front wheels, so it can scan the entire field of soil. In the case of a 100 ha-scale 
farmhouse, a database of 1,000,000 points can be built in one year, and the number 
of data will increase dramatically compared to the conventional soil sampling 
method. It is expected that it will become the standard specification of the field with 
information on rice cultivation in the near future.

	(2)	 Topsoil Mapper Based on Soil EC

A kind of precision agriculture equipment, Topsoil Mapper (Geoprospectors 
GmbH, Traiskirchen, Austria),3 has been developed and brought to market from 
2015 (http://www.geoprospectors.com/gb/). As a soil sensing product, the Topsoil 
Mapper (TSM) can conduct autonomous measurements of the soil EC based on 
electromagnetic induction as shown in Fig.  4.20. In precision agriculture, 

3 Disclaimer: Commercial products are referred to solely for the purpose of clarification and should 
not be construed as being endorsed by the authors or the institution with which the authors are 
affiliated.
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differences in soil as well as varying yield capacities within a field are taken into 
account during the cultivation process in order to use operating materials efficiently, 
conserve resources, and increase agricultural yields. Using TSM, the inhomogene-
ity in the soil for a large area and comprehensively map soil parameters, such as soil 
type, water saturation, and compaction, can be obtained from the measured soil EC 
data. These soil parameters can then be used in real time for variable machine 
control.

TSM can be installed on any towing vehicle and supply exact data about soil 
properties. It is made of robust, entirely nonconductive material. On any towing 
vehicle, the TSM can be used regardless of weather and vegetation.

TSM has two working modes, BASIC and PRO.

Basic: TSM is capable of recording the depth of compaction, relative water content, 
and soil type automatically by using a motor during agricultural operations. In 
the Basic version, the user uploads the collected data via storage medium to the 
Data Box (cloud solution). Three maps are then produced using the parameters 
listed above. The data is managed centrally on the server and is available to the 
user at any time.

Pro: With the Pro version, the measured data is sent in real time to the terminal in 
the driver’s cabin. In this way, the driver can immediately see, for example, the 
depth of compaction zones. The information is provided directly to the soil till-
ing machine in the form of a rule-based control. Working depth is set automati-
cally, such that interaction with the machine’s operator is not required. The 
advantages of this mode of operation are saving fuel and working time and 
reduce wear and tear due to optimized working depth.

TSM has three application possibilities, as shown in Fig. 4.20.

	(i)	 Contact-Free Analysis of Soil Parameters

In Basic mode, the system can be mounted on any towing vehicle to conduct 
autonomous measurements of the soil EC without contacting the soil. Maps with the 
soil parameters for compaction, type of soil, and water saturation can be determined 
from the measured data. The farmers then have the option of integrating this data 
with other data for their farm management system and generating application maps 
from the results. As a rule, farmers use these maps in combination with the site-
specific control of their agricultural equipment, as well as for planning of further 
agricultural operations.

	(ii)	 Variable Control of Agricultural Machines in Real Time

As an alternative to asynchronous usage, the soil information can be used in Pro 
mode in combination with the appropriate agricultural equipment so that the latter 
can be controlled flexibly in real time. This allows two processes (acquisition and 
application) to be combined into one work step. When using the TSM for cultiva-
tion, the soil parameters determined by the system will be integrated into the calcu-
lation of the ideal depth of cultivation in real time. The parameters will be transferred 
as control parameters to the appropriate machine, while simultaneously 
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implementing data acquisition during the soil cultivation process. Depending on the 
cultivation strategy (shallow cultivation, subsoiling, or contour tracking), corre-
sponding settings can also be modified on the terminal software so that additional 
information about the field will be taken into consideration.

	(iii)	 Sensor-Supported Seed Control in Real Time

The application of sensor-supported real-time control, which can be realized 
with the TSM, also presents a huge potential for optimization in other areas, such as 
seed drilling. With this system, it is possible to adapt sowing to varying site condi-
tions (soil type, soil moisture) in real time.

The TSM system also includes a Topsoil Visualizer (TSV), a Topsoil Data Box 
(TSDB), and a Topsoil Data Analyzer (TSDA).

The role of the TSV is to automatically process the recorded soil data and to 
calculate certain soil parameters such as compaction or water saturation. The infor-
mation can then be passed directly to the implement, which automatically sets the 
tilling depth or controls the sowing quantity, allowing two steps to be performed 
simultaneously.

By the TSDB, the web portal of Geoprospectors GmbH (http://www.geopros-
pectors.com/gb/) allows field-related visualization of the soil parameters recorded, 
with the user being able to select different map displays. Output is also available as 
a geo-referenced dataset for further processing in the company’s internal geo-
information system.

The TSDA is a desktop software, which can be used to transfer the collected data 
to the laptop immediately and then analyze them automatically. The raw data and 
the processed data are displayed as maps within a few seconds. Consequently, for 
example, soil samples can be taken immediately and directly based on the zone 
maps determined on-site.
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