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Chapter 3
Theories and Methods for Soil Nutrient 
Sensing

Fei Liu, Xiantao He, and Yong He

Abstract  Soil provides the essential nutrient elements for plant growth. Soil nutri-
ents include soil macronutrients such as nitrogen, phosphorus, and potassium, as 
well as soil micronutrients such as calcium, magnesium, sulfur, iron, and boron. 
Precision agriculture is a technology of applying precise and right amounts of inputs 
such as water, fertilizer, and pesticides at the right time to the crop for increasing the 
productivity and maximizing the yields. Therefore, it is necessary to obtain soil 
nutrient information quickly and accurately. Near-infrared spectroscopy (NIRS) 
with high-efficiency and nondestructive characteristics has great potential in soil 
nutrition detection. According to the NIR absorption of the hydrogen bonds, soil 
total nitrogen content and soil organic matter content can be estimated. Multiple 
linear regression, partial least square regression (PLSR), and principal component 
analysis (PCA) are commonly used to establish the estimation models of soil nutri-
ent contents based on NIRS. Moreover, the modern algorithms of wavelet algorithm 
(WA), genetic algorithm (GA), uninformative variable elimination (UVE), support 
vector machine (SVM), etc., are used to reduce the multicollinearity of the NIR 
spectra to improve estimation accuracy. Laser-induced breakdown spectroscopy 
(LIBS) is a promising spectral detection technology with high sensitivity, fast speed, 
and the ability to measure multiple elements simultaneously. It can also be used to 
detect both soil macronutrients and micronutrients. At present, scientists have 
developed various forms of soil testing instruments based on spectral technology, 
such as portable, vehicle-mounted, and remote sensing devices. Through these 
devices, it is convenient to implement comprehensive, full-range, all-weather, and 
real-time soil sensing for soil and crop precision management.
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Soil serves as a medium for nurturing plants, and its nutrients have a great influence 
on the healthy growth and yield improvement of crops. Precision agriculture is a 
technology to precisely input right amount of agricultural means of production such 
as water, fertilizer, and pesticides at the right time to the crop for increasing its pro-
ductivity and maximizing its yield. To achieve expected crop production, it is neces-
sary to obtain soil information quickly and accurately. Soil nutrients mainly include 
nitrogen, phosphorus, potassium, and organic matter content, and obtaining the 
information of those soil nutrients is beneficial to farmland management and 
decision-making, as well as prediction of crop yields.

Traditional soil sampling technology for acquiring soil information is costly, 
time-consuming, and poor in real time and is not suitable to large-scale farmland. 
Thus, it is necessary to detect the characteristic information of the soil rapidly and 
accurately in large-scale areas. In recent years, a lot of studies have been conducted 
on the method of rapid nondestructive detection of soil information, and great prog-
ress has been made.

3.1 � Laboratory Measurement of Soil Nutrients

The traditional chemical analysis method of soil nutrients is to extract a specific 
element in a soil sample through a specific extraction solution, thereby realizing 
quantitative detection of the soil nutrient content. In this traditional analysis method, 
the complex procedures of soil sampling and nutrient extracting and measuring are 
the main reasons for cost reduction and speed improvement of soil nutrient detection.

3.1.1 � Detection of Soil Nitrogen Content in Laboratory

Nitrogen is an important building block of proteins, nucleic acids, and other cellular 
constituents which are essential for all forms of life. Therefore, soil nitrogen is a key 
nutrient element for plants so that it warrants careful management. Soil nitrogen 
absorbed by plants is available nitrogen, which is easily hydrolyzed as a part of the 
soil solution or the cation exchange complex when applied to moist soils. Available 
nitrogen is mainly from most of the commonly applied inorganic sources, such as 
ammonia, ammonium nitrate, ammonium phosphate, ammonium sulfate, calcium 
nitrate, nitric phosphate, potassium nitrate, and sodium nitrate.

The commonly used method for the determination of soil available nitrogen con-
tent is the alkali-nitrogen hydrolysis method. The principle of this method is to use 
sodium hydroxide of 1 ~ 2 mol/L for hydrolyzing soil samples and to decompose 
the inorganic nitrogen and easily decomposed organic nitrogen in the soil into 
ammonia nitrogen, which is absorbed with boric acid and standard acid to titrate. 
The detailed operation process is as follows: weighing 2 g of soil sample into the 
outer chamber of the Conway diffusion dish firstly and then adding 2 mL of boric 
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acid solution to the inner chamber of the diffusion dish and 100 mL of 1 mol/L 
sodium hydroxide to the outer chamber and finally sealing it with Vaseline for 
48  hours and titrating it with standard concentration of sulfuric acid at 
0.005 mol/L. The end of the titration is when the solution turns purple. The formula 
for calculating nitrogen content is shown in Eq. 3.1:
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where N is the available nitrogen (mg/kg), c is the concentration of 0.005 mol/L (1/2 
H2SO4) standard solution (mol/L), v is the volume of the 0.005 mol/L (1/2 H2SO4) 
standard solution used for sample titration (mL), v0 is the volume of the 0.005 mol/L 
(1/2 H2SO4) standard solution used in the blank test titration (mL), 14.0 is the molar 
mass of the nitrogen atom (g/mol), m is the mass of the sample for testing (g), and 
103 is the conversion factor of mass units.

3.1.2 � Detection of Soil Phosphorus Content in Laboratory

There are many methods for determining soil available phosphorus, and the results 
are inconsistent due to different extraction reagents used. The selection of extractant 
methods is mainly based on the properties of the soil to be tested. Neutral and cal-
careous soils are extracted by sodium bicarbonate reagent, while acid paddy soils 
are extracted by hydrochloric acid, and acid dry soils are extracted by hydrochloric 
acid-sodium fluoride method.

The hydrochloric acid extraction method for acid paddy soil is specifically intro-
duced here (Fig. 3.1). First, a 2.5 g soil sample is weighed into a 250 mL Erlenmeyer 
flask, and then a teaspoon of phosphorus-free activated carbon is added for decolor-
ization, and 0.1 mol/L hydrochloric acid is added to the 250 mL scale mark for 
extracting available phosphorus in soil. After shaking the Erlenmeyer flask for about 
30 minutes and then filtering the available phosphorus from the solution, 10 mL of 
filter solution is taken in a tube, and then 5 mL of molybdate-antimony-scandium 
color agent is added to maintain constant volume. After the solution stands for 
15 min, a colorimetry at 700 nm is used to obtain the absorbance value of the test 
solution, and then the concentration of available phosphorus is determined by the 
calibration curve of phosphorus solution, and the content of available phosphorus in 
soil is calculated by Eq. 3.2:
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where P is the available phosphorus (mg/kg), ρ is the concentration of available 
phosphorus (μg/mL), V is the volume of maintaining constant volume during color 
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Fig. 3.1  Hydrochloric acid extraction method for detecting phosphorus in soil

rendering (mL), Ts is the ratio of the total volume of the extract solution to the vol-
ume of the extract solution absorbed during color rendering, m is the mass value of 
air-dried soil (g), and k is the mass coefficient of air-dried soil converting into oven-
dried soil.

The process of drawing the calibration curve is as follows: accurately take 5 μg/
mL phosphorus standard solution of 0, 1, 3, 7, and 10 ml into volumetric flasks, 
respectively, and add 5 ml molybdate-antimony-scandium color agent in each flask, 
and then slowly rotate the volumetric flask to shake well and add water to the flasks 
to obtain standard solutions with phosphorus contents of 0.0, 0.1, 0.3, 0.5, 0.7, and 
1.0 μg/mL, respectively. After standing for 30 min, perform colorimetric measure-
ment at a wavelength of 700 nm to obtain the absorbance of the standard solutions, 
and then draw the calibration curve of the standard phosphorus solution with the 
phosphorus concentration (μg/mL) as the abscissa and the absorbance (Abs) as the 
ordinate.

3.1.3 � Detection of Soil Kalium Content in Laboratory

Along with nitrogen and phosphorus, kalium is also one of the essential nutrients 
for crop growth. The kalium in soil can be classified as mineral kalium (insoluble 
kalium), non-exchangeable kalium (slow-acting kalium), exchangeable kalium, and 
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water-soluble kalium (quick-acting kalium). The kalium that can be absorbed by 
plants is water-soluble and exchangeable kalium.

The method of chemical determination for available kalium in soil is similar to 
the method shown in Fig. 3.1. It uses the acetic acid as the extracting solution to 
extract the available kalium from the soil, and then the content of kalium is deter-
mined by flame photometer according to the characteristics of kalium element. The 
detailed processes are as follows: weighing 5  g of air-dried soil sample into a 
100 mL test tube, adding 50 mL of 1 mol/L neutral ammonium acetate solution, and 
then plugging the tube with a rubber stopper and shaking for 30 minutes, filtering 
the solution and measuring the filtrate directly on a flame photometer with a 
766.5 nm filter, and then recording the galvanometer reading and obtaining the con-
centration of test solution from a calibration curve of the standard kalium solution. 
The specific formula for calculating kalium content in soil is shown in Eq. 3.3:
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where K is the available kalium (mg/kg), v is the volume of acetic acid added, C is 
the concentration of test solution (μg/mL), and md is the mass value of oven-dried 
soil (g).

3.1.4 � Detection of Soil Organic Matter Content in Laboratory

Soil organic matter, as a sign of fertility formation, is an important indicator for 
identifying soil fertility. The content and composition of organic matter will change 
regularly with the changes of the climate and biological conditions. Therefore, the 
detection of organic matter is also an important part in the detection of soil nutri-
ents. The potassium dichromate method is an important method for the determina-
tion of soil organic matter in laboratory. The testing principle is to use potassium 
dichromate-sulfuric acid solution to oxidize organic matter during heating process, 
and the remaining potassium dichromate is titrated with a standard solution of fer-
rous sulfate using o-phenanthroline as an indicator, and then the amount of potas-
sium dichromate consumed is used to calculate the carbon content.

The detailed process of detecting soil organic matter by the potassium dichro-
mate method is shown in Fig. 3.2: accurately weighing 0.5 g of soil sample into a 
250 mL flask, adding 5 mL of potassium dichromate standard solution and 5 mL of 
concentrated sulfuric acid into the flask with a pipette, and then carefully shaking 
the solution to uniform, heating a thermostatic oil bath to 185-degree Celsius, and 
then placing the flask in the constant temperature oil bath, boiling the solution in the 
flask for 5 minutes, moving the flask from the oil bath and cool the solution to room 
temperature, finally adding three drops of o-phenanthroline indicator to the flask, 
and then titrating it with a 0.1 mol/L standard ferrous sulfate solution. When the 
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Fig. 3.2  Method of chemical determination for soil organic matter content

color of the solution in the flask changes from orange yellow to green and then 
mutates to brown red, the titration will be stopped. For each batch of samples, quartz 
is used instead of soil sample for blank test. The calculation method of carbon con-
tent is shown in Eq. 3.4:
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where TC is the organic carbon content (%), c is the concentration of a standard 
solution of ferrous sulfate (mol/L), V0 is the volume of ferrous sulfate used in blank 
test (mL), V is the volume of sulfuric acid solution consumed during measurement 
(mL), 0.003 is the molar mass of 1/4 carbon atom (kg/mol), m is the sample mass 
used for testing (g), and D is the dilution ratio. There is a certain conversion rela-
tionship between the organic matter content in the soil and the organic carbon con-
tent. The content of organic matter in the soil can be obtained by multiplying the 
measured organic carbon content with a conversion factor of 1.724: organic matter 
(%) = TC(%) × 1.724.

3.2 � Spectral Technology for Soil Nutrient Sensing

Using laboratory chemical analysis to obtain farmland soil nutrient information can 
accurately obtain soil nutrient information at a single point in the field, but it is 
cumbersome, time-consuming, labor-intensive, costly, and poor in real time. 
Meanwhile, the number of samples is too little to reflect objectively the distributed 
situation of actual soil nutrients in large areas of farmland. In addition, the method 
for determining soil nutrient in laboratory will produce chemical waste and cause 
secondary pollution to the environment. The spectral analysis methods for detecting 
soil fertility can shorten analysis time, reduce detection costs, and improve testing 
efficiency. Moreover, the in situ detection for soil fertility based on spectroscopy 
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will help achieve real-time measurement of soil fertility properties, which can facil-
itate the global application of the technology of on-demand fertilizer management.

3.2.1 � Vis/NIR Spectral Sensing Technology for Soil Nutrients

Vis/NIR spectroscopy to sense soil nutrients is a mature technique for detecting soil 
moisture, organic matter, nitrogen, phosphorus, kalium, etc. Yu et al. (2002) mea-
sured total nitrogen, organic matter, and alkali-hydrolyzed nitrogen in soil by near-
infrared spectroscopy. The NIR spectra of 2 mm and 0.15 mm air-dried soil were 
obtained, and a partial least square (PLS) method was used to establish a mathemat-
ical model for predicting soil nutrition content. The results showed that NIR spectra 
had a good correlation for detecting soil organic matter, total nitrogen, and alkali-
hydrolyzed nitrogen. Zhu et  al. (2008) used near-infrared spectroscopy to detect 
organic matter in untreated soil. In the experiment, near-infrared spectra in the range 
of 4000~12,500 cm−1 was applied to detect organic matter in the soil that had not 
been pulverized and sieved, and the quantitative relationship between the spectral 
absorbance and the organic matter content was established by the methods of first-
order differential pretreatment and PLS regression analysis. The experiment has 
obtained good results. The predicted correlation coefficient of organic matter is 
0.818, the standard deviation is 0.069, and the root mean square error is 0.085.

The team from China Agricultural University has been working on the spectro-
scopic detection methods of soil nutrients since the 2000s (Sun et  al. 2006; Sun 
et al. 2007). The research objects were mainly black soil in Northeast China and 
Chao (aquic cambisols) soil in North China. The spectral data of soil samples were 
collected without pretreatment, and then the correlation between soil parameters 
and spectral characteristics was analyzed and a predictive model for soil nutrient 
was established. Meanwhile, the effects of soil moisture content and particle size on 
soil spectrum by using wavelet transform were studied (An et al. 2013). The results 
showed that the change trend of the soil spectral curve was affected by the soil mois-
ture content, and the instantaneous fluctuation of the spectral curve was mainly 
caused by the soil particle size. A filtering process was performed to a certain extent, 
which eliminated high-frequency oscillation of the spectral curve caused by uneven 
particle size of soil (Li et al. 2013).

The principle of spectral detection of soil nutrition is the multiple frequency 
absorption of near-infrared spectrum to nutrients in the soil. The mass information 
of the spectral bands for different substances overlaps heavily, so that the full-band 
spectrum contains a lot of redundant information and noise data, which affects the 
prediction accuracy of the model. This is the main reason of low stability and accu-
racy of spectral measurements for soil nutrition in earlier studies. In order to reduce 
a large amount of useless information in the full-band spectral information, it is 
necessary to extract the truly effective bands from the full band to reduce the amount 
of calculation and increase the speed of detection. The main wavelength extraction 
methods are wavelet algorithm (WA), genetic algorithm (GA), uninformative 
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Fig. 3.3  Result of spectral feature selection (Zhang 2015) (a) Frequency of selections based on 
GA (b) GA + SPA selected variables

variable elimination (UVE), principal component analysis (PCA), successive pro-
jection algorithm (SPA), etc. The application of these methods to the spectral detec-
tion of soil nutrients combined with advanced modeling methods will greatly 
improve the speed of spectral determination of nutrients in soil. The result of spec-
tral feature selection for soil organic matter based on GA is shown in Fig.  3.3a 
(Zhang 2015). There are three horizontal lines in the figure, and the numbers of the 
wavelengths corresponding to the lines from top to bottom are 64, 102, and 169, 
with the accumulative contribution rate of 79.51%, 81.99%, and 81.97%, respec-
tively. Therefore, 102 was selected as the number of the wavelengths in the next 
analysis. A SPA algorithm was used to select 18 characteristic wavelengths from the 
102 wavelengths (Fig.  3.3b), and the prediction model was established using 
PLS. The prediction set achieved a determination coefficient (R2) of 0.83 and root 
mean square error (RMSE) of 0.20, while R2 and RMSE were 0.84 and 0.20, respec-
tively, when using 102 wavelengths for prediction model. It is observed that the 
prediction accuracy was almost not reduced when the number of wavelengths 
dropped to 18, indicating that the combination of GA and SPA can greatly simplify 
the prediction model.

3.2.2 � Mid-infrared Spectral Sensing Technology 
for Soil Nutrients

The principle of sensing soil nutrients by mid-infrared (MIR) spectroscopy 
(2500 ~ 25,000 nm) is absorptions of fundamental frequency related to molecular 
structures of soil constituents. Different compounds have specific infrared absorp-
tion spectra, and the intensity, position, shape, and number of bands are related to 
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the type of compound and its state. Compared with near-infrared spectroscopy, mid-
infrared spectroscopy has more specificity in detecting soil nutrients.

Jia et al. (2017) applied diffuse reflectance spectroscopy, including visible and 
near-infrared (VNIR) and MIR radiation, to rapidly estimate soil organic carbon 
(SOC). The absorbance spectra in the VNIR and MIR regions at different depths of 
soil profile of shrub meadow are shown in Fig. 3.4. The SOC concentrations usually 
decreased with depth, and the absorbance curves reduced overall with increasing 
soil depths. A comparison of the field-moist intact and air-dried ground spectra in 
the range of 400 ~ 2450 nm indicated that the soil moisture and structural integrity 
also affected the soil absorbance spectra. The strong absorptions near 1400 and 
1900 nm in the VNIR spectra were caused by the O–H functional group of free 
water, and the absorptions near 2200 nm were caused by the organic matter. In the 
MIR region, the spectra information mainly responded to mineral properties, such 
as quartz, kaolin, and montmorillonite. Preprocessed spectra were used to predict 
the SOC in the soil cores using partial least square regression (PLSR) and support 
vector machine (SVM) algorithm. The SVM models (average values of RMSEP and 
R2 of 8.31 g·kg−1 and 0.84, respectively) performed better in predicting the SOC 
concentration under different land cover types than the PLSR models (average val-
ues of RMSEP and R2 of 12.41 g·kg−1 and 0.70, respectively). The prediction of 
forest soil had the highest prediction accuracy, followed by the total dataset and 
finally the shrub meadow subset.

Janik et al. (2007) applied MIR spectroscopy and partial least square analysis to 
predict the concentration of soil organic carbon. The PLS calibrations were derived 
from a standard set of soils that had been analyzed for total organic carbon (TOC), 
particulate organic carbon (POC), and charcoal carbon (char-C) using physical and 
chemical means. PLS calibration models from this soil standard set allowed the 
prediction of TOC, POC, and char-C fractions with a coefficient of determination 
(R2) of measured and predicted data ranging between 0.97 and 0.73. For the POC 
fraction, the coefficient of determination could be improved (R2 = 0.94) by using 
local calibration sets. The capacity to estimate soil fractions such as char-C rapidly 

Fig. 3.4  Absorbance spectra at different depths with different contents in one soil core of shrub 
meadow in the VNIR and MIR regions. (Jia et al. 2017)
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and inexpensively makes this approach highly attractive for studies where large 
numbers of analyses are required. Inclusion of a set of soils from Kenya demon-
strated the robustness of the method for total organic carbon and charcoal carbon 
prediction. Baldock et  al. (2013) combined diffuse reflection MIR spectra with 
PLSR analysis to predict soil carbon content and composition. Total organic and 
inorganic carbon contents were determined with MIR spectra acquired for 20,495 
soil samples collected from 4526 locations from soil depths to 1 m within Australia’s 
agricultural regions. It was found that the degree of soil dryness and grinding of soil 
samples had a great impact on the test results. Therefore, the grinding time was 
standardized in the study, and prediction of total carbon, organic carbon, and inor-
ganic carbon was achieved. Compared with the traditional laboratory method, the 
MIR method provided a faster and more economical method for detecting the soil 
carbon and total nitrogen content in soil.

3.2.3 � LIBS Sensing Technology for Soil Nutrients

	1.	 Working Principle of LIBS.

Laser-induced breakdown spectroscopy (LIBS) is a promising spectral detection 
technology with high sensitivity, fast speed, and the ability to measure multiple ele-
ments simultaneously. As early as 1994, scientists at the International Association 
for Remote Sensing Science announced that they had successfully detected As, Cd, 
Cr, Hg, Pb, Zn, and other metal elements in soil using LIBS technology (Alexander 
et al. 1994). In the soil nutrient detection, it can be used for the detection of metal 
nutrient elements, such as potassium, calcium, and cuprum. At present, in the pro-
cess of detecting heavy metals in the soil by LIBS, a single pulsed laser is generally 
used to excite soil samples to generate plasma, and the detection sensitivity obtained 
is generally tens of mg/kg, and some metals with high sensitivity can reach sev-
eral mg/kg.

The working principle of LIBS is to use high-energy laser pulses to directly hit 
the surface of the sample, forming a high-intensity laser spot (plasma) on the sur-
face of the analysis material and exciting the elements to be tested to a high-energy 
state. When outer electrons of the element atoms move into the ground state, their 
characteristic spectra will be emitted and then detected by a spectrometer. By com-
paring the detected spectrum to elemental spectrograms in the standard spectral 
library, the content of elements contained in the soil sample can be obtained.

In the calculation process, it is generally considered that the content of each ele-
ment in the plasma is the same as that in the sample before ablation. The intensity 
of the radiation spectrum when an atom transitions from the k-level to the i-level 
(Iki) is
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where h is the Planck constant, vki is the frequency of spectral lines, N is the number 
of excited particles, gk is the k-level statistical weight, Aki is the probability of atomic 
transition from k-level to i-level, Us(T) is the distribution function of elements at 
temperature T, Ek is the k-level potential energy, K is the Boltzmann’s constant, and 
T is the Calcination temperature. When the characteristic spectral line of the speci-
fied element is detected, the vki, gk, Aki, T, Us(T), Ek, and k have certain values, and 
the number of excited particles N is proportional to the content of the test element 
in the sample (C), so the above formula can be rewritten as

	 I aCb= 	 (3.6)

where a is proportionality coefficient and b is self-absorption coefficient, which is 
related to the content of the element to be measured. According to this formula, the 
element content in the soil sample can be calculated by the intensity of the charac-
teristic line of the element, providing a theoretical basis for the quantitative detec-
tion of the element in soil.

	2.	 Theoretical Basis of Soil Nutrient Detection with LIBS.

A typical experimental platform system for LIBS is mainly composed of a laser, 
a spectral information acquisition system (a spectrometer and a detector), digital 
pulse delay generators, and accessory devices (sample stage, energy meter, com-
puter, etc.). Figure 3.5a shows the composition of a typical LIBS system (Yu 2016; 
Yu et al. 2019). The laser is the energy source of the LIBS system and can provide 
energy to excite the sample and generate plasma. The acquisition system consisting 
of a spectrometer and a detector is used to collect the radiation spectrum of laser-
induced plasma and perform photoelectric conversion for digital analysis. The digi-
tal pulse delay generator is used to control the delay time of the spectrometer 
detector relative to the laser pulse, and the computer is applied to conduct the setup 
of working parameters and subsequent data processing of each component. Yu 
(2016) obtained that a spectral curve of soil added some heavy metals in the range 
of 270~850 nm by the experiments (Fig. 3.5b). It can be seen that the emission lines 
of most metal elements are distributed in the range of 270~450 nm. The emission 
spectrum of elements such as Fe, Mg, Si, Ca, Ti, Al, Pb, Cd, Na, Li, N, K, H, and O 
can be observed in the entire spectrum, and the wavelengths of the atomic spectrum 
and the ion spectrum correspond to specific elements, and the spectral signal inten-
sity has a certain quantitative relationship with the corresponding element content. 
Generally, the same element produces multiple emission lines with different wave-
length positions and different intensities. However, the quantitative prediction of an 
element is mainly based on data analysis in a single band in practical applications, 
that is, only the intensity data of a certain spectral line needs to be selected to predict 
the element content in the soil.

In addition, there are also O and N emission lines in the spectrum diagram, some 
of which are due to the breakdown of a large amount of O2 and N2 in the air and 
others are due to the presence of O and N in the soil. For the low content of ele-
ments, although characteristic spectral lines are detected under this test condition, 
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Fig. 3.5  Soil analysis based on LIBS analytical system (Yu 2016; Yu et al. 2019) (a) Representative 
LIBS analytical system for soil analysis (b) Spectral curve of soil added some heavy metals in 
270~850 nm

the signal is weak and unstable at low concentrations. Besides, some trace elements 
in the soil are below the detection limit of LIBS, and other elements are distributed 
outside the effective band of the spectrometer, so their stable characteristic lines 
cannot be detected under these experimental conditions.

	3.	 Applications of LIBS in Soil Sensing.

The common nutrition elements in the soil are C, N, P, K, Si, S, Ca, Mg, etc. 
These elements promote the healthy growth of plants and are also a basic guarantee 
for maintaining normal physiological activities of crops. Therefore, the content of 
these elements determines the level of soil fertility.
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	(i)	 Detection of C Content in Soil.

Carbon (C) element is one of the most basic constituent elements of the soil. Its 
content is directly related to the water-holding capacity of the soil and reflects the 
fertility and other characteristics of soil. As a fast and nondestructive method of 
spectrochemical analysis, LIBS technology has attracted the attention of many 
researchers, letting them use it to analyze and detect carbon in soil.

Cremers et al. (2001) first applied LIBS spectroscopy to measure soil organic 
carbon content. A 1064 nm laser wavelength was used to detect soil organic matter 
in some farms and woodlands in Colorado and New Mexico. The detection limit of 
LIBS is 300 mg·kg−1, and the precision is 4~5%. With further research, Martin et al. 
(2003, 2010) explored the effect of key detection parameters, including laser wave-
length and excitation energy, as well as univariate and multivariate methods on 
detection accuracy, in order to build a robust calibration model to predict soil 
organic carbon concentration. The carbon signal of LIBS at 247.8 nm measured on 
20 pellets from each homogenized soil sample was shown to be highly correlated 
(coefficient of determination, R2 = 0.962) with the organic carbon content measured 
by dry combustion using an elemental analyzer. Glumac et al. (2010) successfully 
explored a method to avoid the interference of neutral and single ionized Fe lines to 
the standard detection line of LIBS at 247.8 nm. A low-power Nd:YAG laser with a 
wavelength of 532 nm was used to optimize the high dispersion of the LIBS signal 
and time-gating strategy to minimize interference signals and maintain a high 
signal-to-noise ratio. Martin et  al. (2013) used LIBS technology combined with 
multivariate data analysis methods to distinguish total carbon (TC), inorganic car-
bon (IC), and organic carbon (OC) in 58 soil samples from 5 places. The results 
showed that the correlation coefficients of TC, IC, and OC contents predicted by 
LIBS are 0.91, 0.87, and 0.91, respectively. Izaurralde et al. (2013) used LIBS tech-
nology, diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS), and 
inelastic neutron scattering (INS) methods to determine the carbon content of field 
soil, and these three methods have achieved ideal measurement results.

	(ii)	 Detection of Kalium Content in Soil.

Kalium (K) is one of the important nutrients in the soil and plays a significant 
role in plant growth. The nutritional functions of K on plants include promoting the 
activation of various enzymes in plants; improving photosynthesis, sugar metabo-
lism, and protein synthesis; and enhancing the plant’s ability to resist drought, cold, 
and pests. Dong et al. (2013a, b) analyzed the farmland soil with K content between 
8.74 and 34.56 g·kg−1 by using the LIBS technique at 766.49 nm spectral line and 
established a quantitative model for predicting K content in soil. The correlation 
coefficient of the quantitative model is 0.935, and the predicted standard deviation 
is 9.26%. Meng et al. (2014) used a pulsed laser with a wavelength of 1046 nm as 
the excitation light source to study the spectral characteristics of potassium in soil. 
A spectral line of 769.9 nm was used as the analysis line of potassium. The optimal 
detection delay was 1 μs and the optimal gate width was 5.2 μs. The prediction 
curve of the soil K was obtained, and the relative error between the predicted value 
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and the true value was less than 5%. The results of this study provide a theoretical 
foundation for rapid and on-site quantitative detection of K element in soil.

In order to meet the urgent needs of online detection of soil K nutrients in the 
field, Zhang et al. (2014) designed a system for online detection of soil nutrients 
based on LIBS (Fig. 3.6) and carried out an experimental study of rapid determina-
tion of soil nutrients. The results showed that the characteristic absorption spectrum 
of soil potassium was at the wavelengths of 766.49 nm and 769.90 nm. The potas-
sium nutrient content was positively correlated with the intensity of the specific 
wavelength, but when the mass fraction of potassium was greater than 0.3%, there 
was a significant self-absorption, and the relationship between potassium content 
and spectral intensity became nonlinear. The determinate coefficient of the model 
was 0.9337, the root mean square error was only 0.2761, and the minimum detec-
tion limit of soil potassium nutrients was 212 μg/g, which met the requirements for 
online detection of soil potassium nutrients.

	(iii)	 Detection of Other Elements in Soil.

For other nutritional elements, such as N, P, and Ca, researchers have also 
obtained rich research findings using LIBS technology. Lu et al. (2013) used the 
calibration curve method to establish the relationship model between the intensity 
of LIBS spectrum and the contents of total nitrogen (TN) and total phosphorus (TP) 
in soil, indicating that there is a close correlation between them: the correlation 
coefficient of TN is 0.981, and the correlation coefficient of TP is 0.868. Dong et al. 
(2013a, b) studied the characteristics of N element with LIBS spectrum. The laser 
energy had an influence on the detection results, and the correlation coefficient 
between N content and the intensity of LIBS spectral lines is 0.996. Hussain et al. 
(2007) conducted a study on the distribution of nutrient elements in greenhouse 
soils using LIBS technology. Using the calibration curve method, the content of Ca, 

Fig. 3.6  Structure of soil nutrient detection system of LIBS. (Zhang et al. 2014)

F. Liu et al.



63

K, P, Mg, Fe, S, Ni, and Ba in the soil samples was measured as 12, 9, 7, 9, 7, 10, 8, 
and 12 mg·kg−1, respectively. Wang et al. (2017) used LIBS technology to quantita-
tively detect nutrients in soil. An Nd:YAG pulsed laser with an output wavelength of 
1064 nm and a pulse width of 5.82 ns was used as the light source. Based on the 
traditional LIBS system, a beam expander system and a real-time monitoring sys-
tem were added; as a result, a cage-type LIBS system was developed to optimize the 
laser focus position of the beam expander system in the cage structure, and an opti-
mal laser focus position of 0.2 cm was obtained. The contents of Cu, Mn, Mg, and 
K in the soil were quantitatively analyzed. Their detection limits were 0.42 × 10−6, 
13.2 × 10−6, 38.5 × 10−6, and 62 × 10−6, respectively, which was better than that of 
the traditional LIBS systems. The mass fractions of Cu, Mn, Mg, and K elements in 
the soil were predicted, and the average relative errors of their predicted values were 
9.2%, 9.6%, 8.5%, and 10.9%, respectively.

LIBS method has the advantages of short analysis time, acceptable detection 
limit and high accuracy, etc. However, the effects of different soil properties, such 
as texture, carbonate, total soil C, moisture, clay mineralogy, and silicon content on 
LIBS measurements, should be studied more extensively. In addition, the potential 
of field portable LIBS instruments to measure soil nutrients in situ and in complete 
soil profiles should be explored in future studies to expand the applicability of LIBS 
detection to soil nutrients.

3.2.4 � Multispectral and Hyperspectral Imaging Sensing 
Technology for Soil Nutrients

Vis/NIR spectroscopy has been rapidly popularized to detect soil properties, because 
it can not only detect the organic components of the soil but also identify the min-
eral components and the texture of the soil; meanwhile, the detection speed is much 
faster than traditional methods. However, the spectral analysis technology can only 
obtain the point spectral information of the sample, and the spectral information 
acquired is not comprehensive. Hyperspectral imaging technology has the dual 
advantages of both spectral analysis and image analysis technologies and can obtain 
the spectral information, planar information, and spatial information of the detec-
tion object simultaneously. It can accurately collect information of each pixel at a 
minimum of nanometer level, and the information obtained is more comprehensive, 
specific, and accurate.

Sorenson et al. (2018) used a SisuROCK automated hyperspectral imaging sys-
tem in laboratory to detect soil organic carbon (SOC) and total nitrogen (TN) con-
tent in discrete, intact, and unground soil and evaluated the potential of spectral 
imaging technology to replace traditional chemical analysis for predicting spatial 
distributions of soil components. After completing the spectral detection, soil sam-
ples were analyzed for SOC and TN concentrations by dry combustion. Spatial 
variation of carbon and nitrogen was determined using Moran’s I and comparisons 

3  Theories and Methods for Soil Nutrient Sensing



64

of spatial variations among soil types. The TN in turn showed more aggregation for 
all soil types and horizons compared to SOC. In this study, imaging spectroscopy 
was successfully used to measure and characterize the spatial variability of SOC 
and TN at the soil aggregate scale.

Hyperspectral remote sensing technology has been applied to soil detection due 
to its extremely high spectral resolution. Qualitative and quantitative detection on 
soil nutrient using remote sensing technology began in the 1960s. Various compo-
nents in the soil have characteristic absorptions in the range of the solar reflection 
spectrum, so the relationship between soil components and absorption spectra can 
be used to predict the material composition in soil. The development of spectral 
remote sensing makes it possible to quickly and widely obtain soil physical and 
chemical information. Zhang et  al. (2019a, b) used remote sensing methods to 
determine spatial distribution of soil total nitrogen (STN). A random forest (RF) 
model was used to estimate the spatial distribution of STN content by combining 21 
prediction factors such as the original band (O), the normal spectral index (S), the 
red edge index (R), and the environmental variable (E). The results indicated that 
the best prediction performance can be obtained by combining the RF model with 
the original band, normal spectral index, red edge index, and environmental variable 
(O + S + E + R). The RF-based remote sensing method proposed in this research can 
accurately capture the change of STN, and the performance of the prediction model 
can be improved by providing appropriate prediction factors. Lu et al. (2018) evalu-
ated the detection method of organic matter (SOC) based on remote sensing imag-
ing from land satellites, and the spatial distribution and dynamic changes of organic 
matter were analyzed using random forest (RF) and geographic weighted regression 
(GWR). The results show that the root mean square error of RF was 4.6 g/kg in 2008 
and 4.4 g/kg in 2013, which is better than the GWR prediction model.

3.3 � Instruments of Soil Nutrient Detection

Applying spectroscopic techniques to detect physical and chemical parameters of 
soil can not only reduce the time and cost of analysis but also realize the in situ and 
real-time detection of soil information, which is conducive to promote the applica-
tion of precision agriculture. At present, scientists engaged in the research of soil 
fertility management and agricultural information technology have developed vari-
ous forms of soil testing instruments based on spectral technology, such as portable, 
vehicle-mounted, and remote sensing devices. Through these devices, it is conve-
nient to implement comprehensive, full-range, all-weather, and real-time monitor-
ing of soils from three spatial dimensions of ground, air, and satellite, providing a 
prerequisite for intelligent on-demand variable operations and ensuring increased 
grain production and efficiency.
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3.3.1 � Portable Instruments of Soil Nutrient Detection

Vis/NIR spectroscopy is efficient to detect the soil temperature, humidity, organic 
matter, nitrogen, phosphorus, potassium, and other components. Based on the spec-
troscopy, various portable soil devices have been extensively researched, which can 
realize an in situ and real-time detection of soil parameters. Sudduth and Hummel 
(1993) developed a portable real-time soil sensor, which was mainly used to mea-
sure the organic matter content in the soil surface. Figure 3.7 shows the structure 
diagram of the portable instrument, which is mainly composed of three parts: light 
source, beam splitting, and measurement unit. The light source consists of a light 
bulb and a focusing lens, where the light bulb is an iodine tungsten lamp and can 
stably provide light source of Vis/NIR. The main components of the beam splitting 
are an entrance slit, a focusing lens, a filter disk, an angle sensor, and an optical fiber 
entrance port. Among them, the key component is the filter disk, which can be 
rotated by a drive motor to continuously produce rays of 1650~2600 nm, and the 

Fig. 3.7  Portable soil sensor. (Sudduth and Hummel 1993)
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spectral resolution is below 55 nm. The measurement unit mainly includes an exit 
port of optical fiber, quartz plates, a sample box, and a photosensor. The photosen-
sor provides stable photoelectric response in a wide spectral range of visible and 
near infrared, which is used to obtain the soil reflective spectrum and then achieve the 
prediction of soil organic matter content.

Li et  al. (2010) developed a portable device for organic matter measurement, 
which could detect soil organic matter up to a depth of 30  cm. This measuring 
instrument was mainly composed of an optical module and an electronic module. 
The optical module included a light source, an optical signal transmission fiber, and 
a photoelectric conversion device. The electronic module included a driving circuit 
of light source, an amplifying circuit, an A/D conversion circuit, a liquid crystal 
display, a storage circuit of U disk, etc. (Fig. 3.8). The device used 850 nm LED as 
the light source. In order to minimize the energy consumption of incident and 
reflected light, a Y-type glass fiber was designed for input and output of the light 
source. When working, the probe was inserted into the soil to form a closed space, 
and then the rays from the light source was transmitted to the top of the probe and 
illuminated the soil around. The diffuse reflection rays from the soil were transmit-
ted to the photoelectric conversion device, and the generated current was sent to the 
circuit unit for amplification, filtering, and storage. Under the condition of natural 
soil samples (about 20% moisture content), the coefficient of determination between 
the spectral absorbance and the content of soil organic matter was 0.950, and as for 
dry soil samples, the coefficient of determination was 0.982.

Based on the measurement device of soil organic matter above, An et al. (2012) 
developed a portable soil analyzer to obtain nitrogen content. The number of wave-
lengths used was increased from 1 to 7 wavelengths: 1550, 1450, 1300, 1200, 1100, 
1050, and 940 nm. Its schematic diagram is shown in Fig. 3.9. When it is working, 
the probe is inserted into the soil and the code disk rotates sequentially to get the soil 

Fig. 3.8  Structure of soil detection device for organic matter. (Li et al. 2010)
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Fig. 3.9  Schematic diagram of portable tester for soil nitrogen content. (An et al. 2012)

Table 3.1  Measurement result using ASD and portable detection equipment. (Zhang 2015)

ASD instrument Method Wave 
number

Modeling set Prediction set

SPA-LS-
SVM

5 R2 RMSEP R2 RMSEP RPD
0.80 0.0038 0.80 0.0031 2.26

Portable detection 
equipment

Method Wave 
number

Modeling set Prediction set

SPA-LS-
SVM

15 R2 RMSEP R2 RMSEP RPD
0.63 0.0079 0.62 0.0080 1.57

reflectance at 7 wavelengths, and then the total soil nitrogen content was obtained 
according to the established prediction model of soil nitrogen. The experimental 
results showed that the correlation coefficients of calibration and prediction for soil 
total nitrogen were 0.81 and 0.80, respectively.

Zhang (2015) developed a set of portable detection equipment for soil nutrient 
using hyperspectral analysis of Vis/NIR.  The hardware part of the equipment is 
composed of the chassis shell, optical fiber, voltage conversion module, light source, 
drive circuit, integrated development board, power supply, touch screen, etc. The 
software part consists of the function loading module, spectrum acquisition module, 
data preservation module, display module, and parameter setting module. The core 
hardware component of the soil detection device is a USB4000 spectrometer. The 
optical fiber used for data collection is a Y-shaped optical fiber, which can also be 
replaced by two independent optical fibers (one for collecting data and one for 
receiving data). Then, a quantitative prediction model of near-infrared spectrum for 
soil total nitrogen (STN) content was established based on characteristic wave-
lengths. The results of portable instrument and ASD instrument to detect STN were 
shown in Table  3.1. The accuracy of portable instruments is inferior to ASD 
(350~2500 nm wavelength range) instruments, which is largely due to the size of 
the core component USB4000 which is only about a quarter of the ASD spectrom-
eter, and the noise of the spectral data collected by the USB4000 spectrum is signifi-
cantly greater than the spectral data obtained by the ASD.
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3.3.2 � Airborne Equipment of Soil Nutrient Detection

The UAVs (unmanned aerial vehicles) combined with remote sensing technology 
can quickly obtain the spectral data of soil and plants and achieve a monitoring of 
soil nutrients or plant growth information in large scale. UAVs can be classified as 
multi-rotor drones, fixed-wing drones, and helicopters according to the types of the 
flying platform (Fig. 3.10a). Multi-rotor drones have the most applications in soil 
remote sensing due to their simple control, no need for special runways to take off 
and land, and capability of hovering in the air after takeoff. In the field of consumer 
drones, the companies such as DJI and Parrot already have mature flight control 
platforms of multi-rotor drones, which can be conveniently equipped with various 
airborne cameras for remote sensing of soil nutrients. In addition, the drones gather 
spectral data by push broom scanning or hovering. In the push broom scanning 
mode, the drone takes continuous images of the soil while flying. After the acquisi-
tion is completed, image stitching and correction are conducted to complete a 
remote sensing image. In this mode, the data collection efficiency is high, but the 
data processing is troublesome. Under the hovering mode, the drone hovering in the 
air obtains a whole spectral image of the soil directly and does not require complex 
splicing in subsequent research work. However, its image acquisition efficiency is 
relatively low compared to the drone of push broom scanning (Fig. 3.10b).

In the actual soil information detection, the corresponding airborne equipment 
should be selected for remote sensing tasks according to the target component of the 
soil. RGB camera can be used to detect soil texture, type, organic matter, and other 
components. Vis/NIR camera can detect soil nitrogen, phosphorus, potassium, cal-
cium, magnesium, aluminum, and other components. Thermal infrared camera can 
detect the surface temperature and humidity of soil, and Lidar can analyze the tex-
ture and terrain of the soil in three dimensions. Guo et  al. (2019) used Vis/NIR 
remote sensing technology combined with partial least square regression model to 
predict the soil organic matter composition and obtained high prediction accuracy. 

Fig. 3.10  Remote sensing based on UAVs for soil nutrient detection (a) Platforms and airborne 
equipment (b) Hovering method and airborne camera
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Quebrajo et al. (2018) applied drone thermal infrared remote sensing technology to 
detect the water content of the soil, demonstrating the technological feasibility for 
the intelligent irrigation of sugar beets.

3.3.3 � Satellite-Based Equipment for Soil Nutrient Detection

A satellite remote sensing system usually consists of satellites in the space and 
ground stations and client applications in the ground. The satellites are used to col-
lect spectral information from Earth’s surface at large scale and send the data to the 
ground stations. After that, the data are transmitted to the users by the ground station 
and then are processed and analyzed for obtaining remote sensing images. Satellite-
based equipment is a key instrument for sensing soil nutrients. There are many 
forms of equipment that can be mounted on satellites, such as visible, NIR, and MIR 
cameras, multispectral scanners, and microwave radiometers. At present, satellite-
based sensors are developing in the direction of multi-spectrum, multi-polarization, 
miniaturization, and high resolution.

Countries around the world have launched their own remote sensing satellites. 
Typical satellites that can be used for agricultural remote sensing are shown in 
Table  3.2. These satellites are equipped with Vis/NIR bands that can be used to 
detect soil nutrients or other soil properties. The spatial resolution is 10~30 m, and 
the revisit period is 4~44 days, which meets the needs for a wide range of soil moni-
toring. Zhai (2019) used GF-1 and Landsat 8 satellites to detect the organic content 
of soil. The results show that the reflectance of remote sensing images in the visible 
and NIR bands is significantly related to soil organic matter, and remote sensing 
images from Landsat 8 and GF-1 have similar prediction capabilities for organic 
matter. However, considering that GF-1 has higher spatial resolution and shorter 
revisit periods, it can replace the commonly used Landsat 8 to detect soil organic 
matter content. Zhang et al. (2019a, b) applied five satellites to observe soil mois-
ture, which not only improved the spatial coverage of daily observations but also 
improved the accuracy of predicting soil moisture: the accuracy of soil moisture 
detection increased by 57.7% in Anhui Province, China, and 9.1% in Central 
Tibet, China.

Table 3.2  Parameters of main satellites

Model
Spatial 
resolution (m)

Waveband (nm) Revisit 
period 
(day) CountryBlue Green Red NIR

GF-1 16 450 ~ 520 520 ~ 590 630 ~ 690 770 ~ 890 4 China
Landsat 8 30 450 ~ 515 525 ~ 600 630 ~ 680 845 ~ 885 16 USA
SPOT-5 10 / 495 ~ 605 617 ~ 687 780 ~ 893 26 France
JERS-1 18 / 520 ~ 660 630 ~ 690 760 ~ 860 44 Japan
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Due to the influence of atmospheric conditions, data quality, and applicability of 
inversion models, it is difficult to achieve a prediction accuracy of more than 90% 
with only one satellite for the detection of soil parameters. Integrating multiple 
satellites to detect soil nutrients is one of the methods to improve the detection accu-
racy. In addition, in the study of satellite remote sensing for soil information, more 
research should be focused on parameter optimization and calibration methods of 
inversion models in order to further improve the sensing accuracy of soil by 
satellites.

3.3.4 � Sensors in Internet of Things of Soil Nutrient Detection

Sensors, such as moisture, temperature, and nutrient sensors, are commonly used 
for monitoring soil characteristics in Internet of Things (IoT). The soil information 
monitored is transmitted to the cloud via wireless networks of Zigbee, Bluetooth, or 
WIFI, and then users can remotely retrieve soil data in cloud for obtaining the soil 
moisture and nutrient content to develop irrigation and fertilization strategies 
(Fig. 3.11).

In the detection of soil information, there is a requirement for monitoring soil 
moisture in real time and around the clock. Zhang et al. (2009) used Zigbee to con-
nect soil moisture sensors and meteorological sensors to the network and developed 
an automatic monitoring and irrigation system for soil management based on fuzzy 
control algorithm. The wireless sensor network system is shown in Fig. 3.12. The 
system obtains real-time humidity of the soil and meteorological information such 
as ambient light, temperature, and wind speed. The established mathematical model 
calculates the moisture evaporations of soil and farmland, and then the intelligent 

Fig. 3.11  Soil sensors of IoT
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Fig. 3.12  Information flowchart of wireless sensor network system. (Zhang et al. 2009)

decision-making system takes the two evaporation values as the input parameters of 
irrigation system to spray the crops on demand. Its saving effect of water is 
significant.

3.4 � Summary

The detection method of Vis/NIR spectroscopy has achieved high accuracy for pre-
dicting soil nutrients such as nitrogen, phosphorus, potassium, and organic matter 
content. Therefore, developing portable soil detectors as well as airborne- and 
satellite-based sensors based on Vis/NIR spectroscopy for rapidly detecting soil 
nutrients will play an important role in the extension of precision fertilization by 
soil testing. LIBS has a strong ability of detecting heavy metals in soil and is there-
fore a promising technique for soil nutrient detection. Revealing the absorption 
characteristics of LIBS under different soil types, structures, and components is the 
research focus that needs to be carried out.
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