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Foreword

Agriculture is a very large-scale social and economic engine. The “engine” needs to 
be sustainable and profitable for many obvious reasons. Agriculture involves human 
activities in producing food, feed, fiber, fuel, and furnishing by utilizing natural 
resources. It has evolved with the advances in science, engineering, and technolo-
gies in its own right and with other economic sectors. Agricultural modernization 
has been, and will continue to be, a very important subject for agricultural research-
ers and practitioners. In today’s modernized agriculture, human-like machine capa-
bilities (aka. automation), including perception, reasoning, learning, communication, 
task planning/execution, and systems integration, have been key enablers. Machine 
perception, reasoning, and communication are the starting points for the other capa-
bilities to be meaningful.

One of the ultimate purposes for agricultural automation is to assist, extend, and 
expand human’s ability in managing agricultural production to achieve planned 
objectives. Precision crop production has been viewed as a promising form of mod-
ern agriculture, where input resources and cultural tasks are precisely managed and 
executed. Perception is the understanding of situations and happenings that are fun-
damentally useful in planning, designing, implementing, managing, and operating 
devices, tasks, or the entire system. A commonly used term to describe the action of 
perception is sensing. To make sensing functional, it frequently includes the capa-
bilities of reasoning and communication. Soil is one of the most impactful factors 
that influence the performance of a crop’s growth and development. Sensing of soil 
and crop, as well as their interactions, is key to successful precision crop production.

Minzan Li, Chenghai Yang, and Qin Zhang, the editors of this book on “soil and 
crop sensing for precision crop production,” are well-known researchers and educa-
tors in providing engineering solutions to agricultural production. They have invited 
active and knowledgeable authors, specializing in the state-of-the-art methodolo-
gies for monitoring soil and crop, to write the nine chapters. The chapters address 
essential topics that are systematically covered and logically organized in this book. 
The information on science and practical use of soil and crop sensing as applied to 
the management of precision crop production has been assembled in one integrated 
volume. The opportunities and challenges of developing smart agriculture based on 
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the current and future successes in sensing technologies are also presented. This 
book provides a comprehensive and timely information source for readers who are 
interested in learning about the important subject area of sensing and management 
of agricultural crops.

 
K. C. TingProfessor and Head Emeritus,  

Department of Agricultural and Biological Engineering
University of Illinois at Urbana-Champaign
Champaign IL USA

Professor and Vice Dean,  
International Campus Zhejiang University
Hangzhou China
August 2020
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Chapter 1
Soil and Crop Sensing for Precision Crop 
Production: An Introduction

Han Li, Minzan Li, Nikolaos Sygrimis, and Qin Zhang

Abstract The development of agriculture has experienced the transformation from 
Agriculture 1.0 to Agriculture 4.0, or from traditional agriculture to smart agricul-
ture. Agriculture 1.0 is the traditional agriculture using human and animal labor as 
its main resource. With the development of industrial revolution, agricultural 
machines were emerging, which directly resulted in Agriculture 2.0, featured by 
agricultural mechanization. With the increasing application of computers, electron-
ics, communication technology, and automation equipment in agriculture, agricul-
ture has stepped into the 3.0 era, characterized by digital agriculture or precision 
agriculture. Agriculture 4.0, also called smart agriculture or precision agriculture 
V2.0, is characterized by the application of IoT (Internet of Things), big data, cloud 
computing, and robots in agriculture. Precision agriculture or smart agriculture 
relies on the acquisition of field information including the environment, crops, and 
soil, and the accuracy of sensing data is the cornerstone of smart agriculture applica-
tions. Soil and crop sensing technology involves the exploration of sensing mecha-
nism, spectroscopy, biology, microelectronics, remote sensing, sensors, and 
information processing methods. The platforms of soil and crop sensing are also 
constantly upgrading and improving. Multidimensional perception fusion is real-
ized by using platforms of different scales, such as satellites, unmanned aerial vehi-
cles (UAVs), and ground vehicles integrated with multiple sensors. Intelligent, 
convenient, accurate, and energy-saving information acquisition technology will 
continue to be the research hotspots in the field of smart agriculture.
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Keywords Precision agriculture · Smart agriculture · Crop sensing · Soil 
sensing · ICT

1.1  History of Agriculture, from Agriculture 1.0 
to Agriculture 4.0

Agriculture is an industry that uses the growth and development law of plants and 
animals to obtain products through artificial cultivation. The objects of agricultural 
production are plants and animals. Due to the different geographical distributions of 
animals and plants, as well as the regional differences in natural and socioeconomic 
conditions, there are many types of agricultural regions in the world, such as tropi-
cal rainforest migration agriculture, commodity grain agriculture, dairy industry, 
and animal husbandry. Agriculture is the primary industry to support the construc-
tion and development of a national economy.

Agriculture has experienced the transition eras from Agriculture 1.0 to Agriculture 
4.0. The development of the human society is a process of constantly creating new 
labor tools, understanding nature, adapting to nature, and transforming nature. In 
different historical periods, the human society has expanded and enhanced human’s 
own functions by using different functional tools, which have become one of the 
basic standards to distinguish human social formations. Therefore, the evolution of 
labor tools reflects the evolution from Agriculture 1.0 to Agriculture 4.0 (De Clercq 
et al. 2018; Li 2018; Rose and Chilvers 2018). Agriculture 1.0 is a traditional agri-
culture using human labor and animal power as its main tools. Agriculture 2.0 is a 
mechanized agriculture using agricultural machinery as its production means. 
Agriculture 3.0 is a digital agriculture or precision agriculture using information as 
its production factors, and it is characterized by the application of the Internet, auto-
mation, and other information and communication technologies (ICT). Agriculture 
4.0, also called smart agriculture, applies Internet of Things (IoT), big data, cloud 
computing, and intelligent robot in agriculture to realize agricultural informatiza-
tion and intellectualization.

Agriculture 1.0 is a traditional agriculture using human and animal labor as its 
main resource, which belongs to the agricultural society (Huang and Han 2012; Li 
2018). In the long development of the agricultural society, the most important tools 
were all kinds of simple hand tools and animal power, which were used in develop-
ment of land resources. Those hand tools and animal power could relieve human 
physical labor to some extent, but they did not fundamentally liberate human pro-
duction activities from heavy physical labor. In the agricultural society, although the 
production tools had developed from the early stone tools and bronzes to the later 
iron tools, they were still primary and only a limited extension of the part functions 
of the human body.

As the invention and use of steam engines in 1765, human societies have made 
the revolutionary development of production tools. With the development of indus-
trial revolution, agricultural machines were emerging, which directly resulted in 

H. Li et al.
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Agriculture 2.0, featured by agricultural mechanization. Compared with the manual 
and animal labor tools of Agriculture 1.0, Agriculture 2.0 is a large-scale agriculture 
characterized by large-scale farms and mechanized production using advanced and 
applicable agricultural machinery to replace human and animal production tools. It 
transforms backward and inefficient traditional production mode into advanced and 
efficient large-scale production mode, which greatly improves labor productivity 
and agricultural productivity.

With the increasing application of computers, electronics, communication tech-
nology, and automation equipment in agriculture, agriculture has stepped into the 
3.0 era. Agriculture 3.0, namely, digital agriculture or precision agriculture, is char-
acterized by the application of modern ICT. Supported by ICT, it enables the effec-
tive integration of information technology and all aspects of agriculture and 
implements modern agricultural operations and management at the right position, 
the right time, and the right amount according to the spatial variation (Marucci et al. 
2017), so as to achieve the purpose of rational utilization of agricultural resources, 
reduction of production costs, improvement of ecological environments, and 
enhancement of crop products and quality.

With the wide application of modern information technology in agriculture, the 
fourth revolution of agriculture, Agriculture 4.0 (smart agriculture or precision agri-
culture V2.0), has come. It is characterized by the application of IoT, big data, cloud 
computing, and intelligent robots, which deeply integrates modern information 
technology with agriculture (O’Grady and O’Hare 2017; Ozdogan et  al. 2017; 
Wolfert et al. 2017; Adnan et al. 2018; Braun et al. 2018). Agriculture 4.0 uses the 
systematic method and standardization system to manage agricultural production in 
a unified way, with all processes controllable and efficient, to realize unmanned 
operation. Equal connection between agricultural service providers and agricultural 
producers is realized through agricultural standardization platform, so as to 
strengthen the interaction in the whole process.

1.2  Modern Agriculture Technologies

1.2.1  Precision Agriculture

The studies related to precision agriculture, or precision farming, originated in the 
United States in the 1980s (McKinion and Lemmon 1985; Schueller and Bae 1987; 
Searcy et al. 1989; Stafford and Hendrick 1988). It was proposed and started to be 
studied and practiced by agronomists in the United States who were engaged in crop 
cultivation, soil fertility, and crop disease and grass pest control. In the end of the 
1980s and early 1990s, the word “precision agriculture” or “precision farming” had 
not been popular, and there were several words to describe this new agronomic 
technology, such as farming by soil, spatially prescriptive farming, computer-aided 
farming, farming by satellite, site-specific farming, site-specific crop management 
(SSCM), and so on. Robert et  al. (1995) proposed the definition of SSCM as 
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follows: site-specific crop management is an information- and technology-based 
agricultural management system to identify, analyze, and manage site soil spatial 
and temporal variability within fields for optimum profitability, sustainability, and 
protection of the environment.

Since the late 1990s, the word “precision agriculture” or “precision farming” 
was accepted by the scientists in this field. With the development of agricultural 
engineering technology, agricultural information technology, geographic informa-
tion systems (GIS), continuous data acquisition sensors (CDS), remote sensing, 
variable rate technology (VRT), intelligent agricultural equipment, and decision 
support systems, the United States, the United Kingdom, Germany, the Netherlands, 
Italy, and other developed countries applied precision agriculture to automatic navi-
gation, automatic yield monitoring, fruit picking, farmland irrigation, field weeding, 
and other applications (Baker et al. 1996; Blackmore 2000; Stafford 2000).

The concept of precision agriculture is also evolving. The International Society 
of Precision Agriculture (ISPA, https://www.ispag.org/) adopted the following new 
definition of precision agriculture in 2019: “Precision agriculture is a management 
strategy that gathers, processes and analyzes temporal, spatial and individual data 
and combines it with other information to support management decisions according 
to estimated variability for improved resource use efficiency, productivity, quality, 
profitability and sustainability of agricultural production.”

In essence, precision agriculture is a management strategy for agricultural pro-
duction, which completely changes the technical system of extensive production 
mode. Its emphasis is to use modern information technology to greatly improve the 
level of production and management of traditional agriculture, so that all aspects of 
agricultural production are more rigorous and meticulous, in order to achieve the 
purpose of optimizing the utilization efficiency of various resources. In terms of 
technical equipment, the yield monitor assembled on the combine harvester can be 
used to generate yield map, and the soil sensors can be used to generate the map of 
soil parameters or fertilizer prescription map. Moreover, the variable fertilizer 
applicators, intelligent seeders, automatic mechanical weeding, automated steering 
tractor, etc., are used to perform VRT farming. In terms of management strategy, it 
adopts precise agricultural production technologies, such as variable input technol-
ogy, block-by-block differentiated management, tillage by soil, water-saving irriga-
tion, and personalized planting schemes.

1.2.2  Digital Agriculture

With the concept of digital earth that was put forward in 1998 in the United States, 
the concept of digital agriculture had also aroused great concern from that time 
(Gore 1998). The original meaning of digital agriculture refers to the intensive and 
informationized agricultural technology supported by geoscience space and infor-
mation technology. Specifically, digital agriculture combines remote sensing (RS); 
GIS; global positioning systems (GPS); computer technology; communication and 

H. Li et al.
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network technology; and automation technology with geography, agronomy, ecol-
ogy, plant physiology, soil science and other basic disciplines to achieve the pur-
poses of optimizing the use of agricultural resources, reducing production costs, 
improving the ecological environment, and improving the quality of crop products 
(Liang et al. 2002). As the development of mobile Internet and big data technology, 
the connotation of digital agriculture is gradually developing, and it extends to agri-
cultural research, agricultural management, agricultural product circulation, sales, 
security, and other aspects (Ozdogan et al. 2017).

Digital agriculture can be regarded as the upgrade and expansion of precision 
agriculture. First of all, in the application links, digital agriculture extends to the 
whole process of agricultural production, circulation, and sales, while precision 
agriculture is mainly concentrated in the agricultural production links. Second, in 
terms of technology and equipment, compared with precision agriculture, there are 
more types of digital agriculture, which rely more on integrated technologies such 
as remote communication, IoT. Third, precision agriculture is still the core of digital 
agriculture. All the technological progress should ultimately be reflected in the 
improvement of the quality and efficiency of agricultural production. The final 
result of digital agriculture should be embodied by precision agriculture.

The Food and Agriculture Organization (FAO) of the United Nations also 
attaches great importance to digital agriculture (Trendov et al. 2019). It indicates 
that the ubiquity, portability, and mobility of digital technologies are transforming 
agriculture and food production. Specifically, in the agriculture and food sector, the 
spread of mobile technologies, remote sensing services, and distributed computing 
are already improving smallholders’ access to information, inputs, and markets, 
increasing production and productivity, streamlining supply chains, and reducing 
operational costs.

1.2.3  Smart Agriculture

ICT technology promotes agriculture to a more advanced stage after precision agri-
culture and digital agriculture, which is smart agriculture or Agriculture 4.0. Smart 
agriculture is a new agricultural production mode formed by introducing the orga-
nization mode, management concept, and advanced technology of modern industry 
into agriculture. Through the application of the Internet, computer, modern com-
munication technology, IoT, modern agricultural machines, and other new technolo-
gies, the perception of agricultural production environmental conditions is enhanced, 
and the intelligent management of remote diagnosis, remote control, and disaster 
warning is performed (Brown 2018). Smart agriculture can realize more complete 
information-based support, more thorough agricultural information perception, 
more centralized data resources, more extensive connectivity, more in-depth intel-
ligent control, and more intimate public services. Smart agriculture can not only 
improve crop yield and land resource utilization efficiency but also reduce the dam-
age of agricultural production to the natural environment, which plays an important 
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role in the development of resource-intensive and environment-friendly green agri-
culture. In addition to accurate perception, control, and decision-making manage-
ment, smart agriculture also includes agricultural e-commerce, food traceability and 
anti-counterfeiting, agricultural leisure tourism, agricultural information services, 
agricultural industrial policy management, and other aspects.

At present, many countries in the world attach great importance to the promotion 
and application of smart agriculture (Zhao 2019). Smart agriculture is the general 
trend of global agriculture, and many countries have launched their smart agricul-
ture development plans. Japan launched the implementation of the “Cross- 
ministerial Strategic Innovation Promotion Program (SIP)” in 2014 and launched 
the “next generation of agricultural, forestry and aquaculture creation technology” 
based on the “intelligent machinery + modern information” technology in 2015, the 
goals of which were to develop a highly productive and labor-saving smart agricul-
ture model by innovative technologies such as robotics, IT, big data, and artificial 
intelligence (AI) and to add high value to agricultural and forest products by dif-
ferentiation focusing on functionality and developing new materials from unutilized 
resources (Noguchi 2017). The European Agricultural Machinery Industry 
Association (CEMA) held a summit of Farming 4.0 on October 12, 2017, and stated 
that under the background of information technology, the digital revolution in agri-
culture was coming and the future development direction of European agriculture 
was Farming 4.0, that is, smart agriculture (CEMA 2017). The National Centre for 
Precision Farming (NCPF), UK, supported by the European Union FP7 program, is 
implementing the Future Farm project, developing a weeding robot to carry out 
weeding operations, in order to replace the use of chemical pesticides (NCPF 2018). 
The Policy Horizons Canada published a report in 2014 named “Meta Scan 3: 
Emerging Technologies” (Policy Horizons Canada 2014). According to the report, 
technologies such as soil and crop sensors, livestock biometric technology, variable 
speed harvesting control, agricultural robots, mechanized farm network, closed eco-
systems, and vertical (factory) agriculture will enter into production application in 
the next 5–10 years to change traditional agriculture. The United States is moving 
toward smart agriculture after mechanization, chemistry, and biotechnology. It is 
predicted that IoT will be widely used in agriculture in the United States after 2020 
(Erickson and David 2015).

The Research and Market, an international consulting agency, has released a 
report on the smart agriculture market to 2025 (Research and Markets 2017). The 
report focuses on an in-depth segmentation of the market based on product type and 
application. The geographic segmentation of the report covers six major regions 
including North Americas, Europe, Asia-Pacific (APAC), Middle East and Africa 
(MEA), and South America (SA). The largest adopter of smart agriculture is APAC, 
followed by Europe, while the Middle East and Africa region with rising adoption 
of digital farming methods is anticipated to be one of the most promising regions in 
terms of the smart agriculture market. According to the report, it is predicted that by 
2025, the global smart agriculture market is expected to grow from US$ 11.30 bil-
lion in 2016 to US$ 30.01 billion by 2025 at a compound annual growth rate of 
11.5% from 2017 to 2025 in main fields such as precision agriculture, intelligent 
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animal husbandry, intelligent fishery, and intelligent greenhouse. The main tech-
nologies include remote sensing and sensor technology, agricultural big data and 
cloud computing service technology, intelligent agricultural equipment (such as 
UAV and robot), and so on.

1.3  New Challenges in Agriculture

1.3.1  IoT in Agriculture

In 2008, IBM (International Business Machines Corporation) proposed a new con-
cept of “Smarter Planet” in the United States, which emphasizes timeliness, real- 
time perception, and timely feedback (IBM 2008). After that, as a powerful tool of 
information perception, IoT has been developing rapidly in the world and is called 
the third wave of information technology development.

Agricultural IoT is a complex system, involving electronics, communications, 
computers, agronomy, and other disciplines and fields. According to the basic 
research content of informatics, that is, the acquisition, processing, transmission, 
and utilization of information, the key technologies of agricultural IoT can be 
divided into four levels, physical layer, transmission layer, processing layer, and 
application layer, focusing on solving the problems of agricultural individual iden-
tification, situational awareness, heterogeneous equipment networking, multisource 
heterogeneous data processing, knowledge discovery, and decision support (Khanna 
and Kaur 2019). In the agricultural IoT, different kinds of agricultural equipment 
and sensors break through the barrier of data sharing and share operation parame-
ters through machine-to-machine (M2M) communication technology and conduct 
the optimal automatic control of the whole agricultural process based on big data 
and AI. The agricultural IoT will create a production mode that is mainly based on 
machines and technology, which will greatly improve the transparency of agricul-
tural product quality and logistics, and comprehensively reduce the production and 
operation costs of agricultural products. Nowadays, agricultural IoT has been used 
in the fields of agricultural monitoring and control, controlled-environment agricul-
ture, open-field agriculture, livestock applications, food supply chain tracking, mid-
dleware and interoperability in agriculture, multilayer deployments, and commercial 
solutions (Tzounis et al. 2017).

With the continuous upgrading of information technology, the process of agri-
cultural modernization has entered a new information era. The upgrading process of 
traditional agriculture puts forward new requirements for the agricultural IoT. The 
IoT platforms have been built one after another, but they are still independent of 
each other, leading to the phenomenon of data island. Big data technology and cloud 
computing technology provide solutions for data management and analysis, and 
many well-known technology companies have begun to work on cloud computing 
infrastructure construction. They provide access platforms to farmers and, at the 
same time, get the spatial and temporal agricultural data to establish production and 
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practice models for farmers including plant monitoring information, environmental 
information, and nutrient information. For example, the use of historical environ-
mental information and plant growth information can be used to establish the early 
warning system for field or greenhouse crop disease, to guide farmers to take pre-
ventive measures in advance.

In addition, the characteristics of agricultural production environments and the 
technical needs of low power consumption sensors put forward higher requirements 
for data transmission of agricultural IoT. Due to the lack of standards and specifica-
tions, the standardized application of IoT in the field is restricted. Therefore, the 
agricultural IoT technology must be upgraded in an all-round way to further improve 
its universality, reliability, and intelligence level, while reducing costs and promot-
ing its wider application.

1.3.2  Big Data in Agriculture

With the continuous popularization of information technology and the rapid devel-
opment of computer storage technology, the amount of data has stepped into the ZB 
(1.024 × 1021 B) era. For example, the growing application of sensing techniques, 
such as RGB, thermal, near-infrared (NIR), multispectral, and hyperspectral imag-
ing, has resulted in large amounts of data, which have to be analyzed to derive value 
from the collective farm information. The efficient storage and analytic solutions 
need to be developed to handle those numerous data (Ip et  al. 2018). Since the 
amount of information to be processed exceeds the amount of memory that can be 
used by general computers when processing data, the big data analysis is needed, 
and the new distributed system architecture Hadoop and the computing model 
“MapReduce” have emerged. New technical conditions make the integration, clus-
tering, and regression of massive data feasible. The main characteristics of big data 
can be summarized as “4V” characteristics, that is, volume, velocity, variety, and 
veracity (Chen and Zhang 2014). The complexity of agricultural big data is deter-
mined by its volume and variety, and the quality is determined by its velocity and 
veracity.

Agricultural data is large in volume, complex in structure, changeable in mode, 
strong in real time, and highly correlated (Li and Yang 2018). The main way to solve 
the problem of high-dimensional and strong coupling of agricultural variables is to 
obtain value relationship from massive agricultural data through big data analysis 
technology. The essence of agricultural big data is to analyze the relationship 
between data variables and develop solutions based on large-scale agricultural data 
and processing methods for specific agricultural problems. With regard to what role 
big data plays in smart agriculture, Wolfert et al. (2017) indicated that the big data 
is changing the scope and organization of agriculture through a pull-push mecha-
nism, and the global issues such as food security and safety, sustainability, and as a 
result efficiency improvement are tried to be addressed by big data applications. It 
is also stated that the IoT development, wirelessly connecting all kinds of objects, 
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devices, sensors, and robots in farming and the supply chain, is producing many 
new data that can be real-time accessible, and these big amounts of data provide 
access to explicit information and decision-making capabilities at a level that was 
impossible before. Based on the agricultural big data technology, in-depth analysis 
of agricultural data and discovery of potential value are the research focus. The 
application of big data mainly focuses on the reliable decision support system for 
precision agriculture, the national rural comprehensive information service system, 
the agricultural data monitoring and early warning system, the agricultural produc-
tion environment monitoring and control system, etc.

Agricultural data is mainly an objective reflection of various agricultural objects, 
relationships, and behaviors. Agricultural big data technology is an abstract mathe-
matical description of multisource heterogeneous massive agricultural data. At 
present, there have been breakthroughs in agricultural knowledge models, agricul-
tural pattern recognition, agricultural knowledge representation, and machine learn-
ing of agricultural business models. On the other hand, some models and algorithms 
are not accurate enough to reflect the objective reality for use in precision agricul-
ture. The challenges are how to mine the valuable information of the whole chain, 
such as agricultural production, processing, sales, resources, environment, and pro-
cess, and how to quantify the agricultural objects, relationships, and behaviors 
through statistical methods, so that the big data can be transformed into intelligent 
data, which are easy to be accepted and used by farmers, and provide knowledge 
support for the research and implementation of precision agriculture and smart agri-
culture. In addition, with the maturity of big data technology and the continuous 
accumulation of massive basic data technology, the studies and applications of deep 
learning algorithms are thriving. Deep learning is a kind of machine learning based 
on the mathematical principle of artificial neural network, with multilayer parame-
ter learning systems as the structure and massive data as the training parameters. Its 
characteristic is that it can automatically extract the features contained in the data 
and express the relationship between high-dimensional and complex variables 
mathematically. How to apply deep learning to big data mining and establish crop 
physiological models and environmental models in agricultural production is also a 
challenge to be approached.

1.3.3  Cloud Computing in Agriculture

Cloud computing is a new network service mode. It transforms the traditional task 
processing with desktop as the core into the task with network as the core. It uses 
the Internet to transfer services and computing power and information to achieve 
on-demand computing and network collaboration. It is a high-performance parallel 
computing technology. Cloud computing technology has the advantages of super-
scale, virtualization, distributed storage, high reliability, and high performance. The 
characteristics of flexibility and expandability provide good technical support for 
solving the problems in rural agricultural information construction. In terms of 
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agricultural cloud services, there are different types of cloud computing applica-
tions worldwide in the recent years. In the field of agriculture, the Fujitsu Limited, 
Japan, launched the cloud computing service “F & AGRIPACK” to serve the devel-
opment of Japanese agricultural industry in 2010 (Fujitsu 2010). The National 
Engineering Research Center for Information Technology in Agriculture 
(NERCITA) of China has used the cloud storage for the management of massive 
agricultural knowledge resources and realized the effective management of 3.2 TB 
agricultural resources. In the aspect of information resource management of agri-
cultural cloud platform, extensive research has been carried out in the aspects of 
agricultural information resource representation, resource organization manage-
ment, agricultural intelligent system development platform, construction of agricul-
tural domain ontology database, and agricultural knowledge collaboration and 
service, and a large number of software and functional modules have been formed 
for the application characteristics of the field.

FAO proposed climate-smart agriculture (CSA) in 2013, which is an approach to 
help the people who manage agricultural systems respond effectively to climate 
change. The CSA approach pursues the triple objectives of sustainably increasing 
productivity and incomes, adapting to climate change, and reducing greenhouse gas 
emissions where possible (FAO 2013). CSA is a field which is highly benefited with 
the applications of cloud computing with regard to resource sharing, cost saving, 
and efficient agro system construction. Moreover, the integration of agricultural 
processes with cloud computing has given a significant impetus to production, mar-
keting, and sales of agricultural goods. The features provided in CSA through cloud 
computing technology include data acquisition and remote storage, low-cost access 
to ICT resources, online agriculture expert consultation, land record automation, 
and weather forecasting (Symeonaki et al. 2017).

Zamora-Izquierdo et  al. (2019) proposed a flexible platform which is able to 
cope with soilless culture needs in full recirculation greenhouses using moderately 
saline water. The platform was supported by a three-tier open-source software at 
local, edge, and cloud planes. The edge plane of the platform was in charge of moni-
toring and managing main PA tasks near the access network to increase system 
reliability against network access failures, while the cloud platform collected cur-
rent and past records and hosts data analytic modules.

In the aspect of agricultural cloud platform architecture research and develop-
ment, the emergence and development of grid technology promote the effective 
aggregation and full sharing of distributed and heterogeneous agricultural informa-
tion resources. However, in terms of transparent user services and on-demand 
access, it cannot meet the requirements of many agricultural users and significant 
demand differences. Cloud computing takes users as the center and provides users 
with transparent computing, storage, and information services in the way of resource 
pool. Cloud computing architecture, distributed storage, security management, 
cloud monitoring, resource scheduling, cloud computing programming model, and 
other key technologies have been widely studied. How to combine with domain 
application to realize resource aggregation and on-demand service has become an 
important trend in the development of cloud computing technology.
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1.4  Overview of Soil and Crop Sensing Technologies 
for Precision Crop Production

1.4.1  Information of Soil and Crop for Precision 
Crop Production

As described in 1.2.1 Precision Agriculture, ISPA suggested the new definition of 
precision agriculture in 2019 as “Precision agriculture is a management strategy 
that gathers, processes and analyzes temporal, spatial and individual data and com-
bines it with other information to support management decisions according to esti-
mated variability for improved resource use efficiency, productivity, quality, 
profitability and sustainability of agricultural production.” Information (or data) is 
the basis of precision agriculture.

The agricultural information in precision agriculture mainly includes six ele-
ments: geographical environment, soil environment, microclimate, water environ-
ment, information related to crop growth, and management information (Luo et al. 
2006). The information has the characteristics of large amount, multidimensional 
(various information), dynamic, uncertain (system noise or random noise), incom-
plete, sparse, strong spatiotemporal variability, and so on. As soil and crop are the 
most important elements in agricultural production, it is the priority of soil and crop 
information acquisition in precision agriculture.

Soil is the basis for human survival, and the fertility is the essential attribute of 
soil. Soil fertility indexes include various soil physical indexes, chemical and nutri-
ent indexes, and biological indexes (Zheng et  al. 2004). Soil physical indicators 
include soil moisture content, soil hardness (soil compaction), soil texture (the pro-
portion of clay, silt, and sand particles in the soil), topsoil layer thickness, bulk 
density, soil porosity, soil aggregate structure, and soil temperature. Soil water is the 
main source of water absorbed by plants, and it is indispensable for seed germina-
tion and soil nutrient absorption. Soil moisture content is the most important soil 
physical parameter. In different growth stages of crops, water requirements are dif-
ferent, so it is necessary to monitor soil moisture content frequently. Soil chemical 
and nutrient indicators include pH, CEC (cation exchange capacity), EC (electrical 
conductivity), total nitrogen, total phosphorus, total potassium, available nitrogen 
(ammonium nitrogen, nitrate nitrogen), available phosphorus, available potassium, 
and total amount and availability of micronutrients (Ca, Mg, S, Cu, Fe, Zn, Mn). 
These chemical and nutrient indicators are the key indexes to grasp soil fertility. 
Soil organic matter (SOM) is the most important biological index of soil, which 
plays a variety of roles in soil fertility, including water retention, fertilizer conserva-
tion, and buffering, providing crop nutrients, promoting the formation of aggregate 
structure, improving soil physical properties, and reducing or eliminating pesticide 
residues and heavy metal pollution in soil.

Precision crop management focuses on crop growth status and crop yield infor-
mation. Crop growth status can be described by individual and population charac-
teristics, that is, crop growth characteristic parameters (Clevers et  al. 1994). A 
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reasonable population composed of strong individuals is a good growing crop. Crop 
growth monitoring refers to the macroscopic monitoring of crop seedling situation, 
growing status, and its changes, which can be divided into temporal monitoring and 
spatial monitoring. Taking winter wheat as an example, the individual characteris-
tics of winter wheat can be described by the characteristics of stem, leaf, root, and 
spike, such as plant height, number of tillers, and number, shape, and color of leaves, 
and development of roots. Population characteristics can be described by population 
density, LAI (leaf area index), layout, and dynamics. The commonly used parame-
ters are population density and LAI. The data and information of crop diseases, 
insect pests, and weeds are also important information related to crop growth. It is 
necessary to record the damage degree and distribution of crop diseases, insect 
pests, and weeds. Especially, it will be more meaningful to detect the relevant infor-
mation and issue early warning in the early stage of damage.

Crop yield monitoring is divided into yield estimation based on growth season 
information and yield automatic measurement in harvest season. There are many 
methods for crop yield estimation, including three models: meteorological model, 
agronomic model, and remote sensing model (Doraiswamy et al. 2004). Due to the 
complex factors affecting crop yield, the precision of meteorological model and 
agronomic model fluctuates greatly in a large range of crop yield prediction. Remote 
sensing model is to estimate crop yield by establishing the relationship between 
crop information (spectral information) and yield measured by remote sensing, 
which has higher generality and prediction accuracy. The real-time measurement of 
crop yield is to use the sensor mounted on the combine harvester to measure the 
grain yield in real time and to generate the yield spatial distribution map with DGPS, 
which is used to guide the precision agricultural production in the coming year 
(Grisso et al. 2009).

Another hot topic of crop information acquisition is plant phenotyping (Walter 
et al. 2015; Zhou et al. 2018; Pieruschka and Schurr 2019). It generally refers to the 
observable morphological characteristics of an individual or group of organisms 
under specific conditions (such as various environments and growth stages). It is 
considered to be the result of complex interaction between genetic types and envi-
ronmental factors. Automatic and rapid acquisition of phenotypic parameters is of 
great significance for genetic breeding and crop precise management.

1.4.2  Soil and Crop Sensing Technologies for Precision 
Crop Production

Before the introduction of machine and electronic technology, farmers used their 
five senses to perceive the characteristics of soil and crops and used manual tools to 
measure some characteristic parameters of soil and crops. Since the development of 
precision agriculture requires accurate and rapid sensing and processing of farm-
land information, the optical, acoustic, electrical, and magnetic technologies are 
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used in the sensing of soil and crop parameters. With the development of informa-
tion and communication technology (ICT), wireless sensor network (WSN), mobile 
Internet technology, and UAV technology are introduced to further improve the 
ubiquitous and real-time performance of information acquisition (Wang et al. 2006; 
Jiang et al. 2020).

Visible light and near-infrared spectroscopy (NIRS) have become an important 
means to obtain the biological environment information of farmland due to their 
advantages of simplicity, rapidity, high precision, and nondestructive measurement 
and play an important role in the development of precision agriculture (Pasquini 
2003). Soil moisture content, soil organic matter content, and soil nutrient content 
can be analyzed by spectral analysis (Li et al. 2013). Based on the spectral charac-
teristics of crops, farmers can automatically analyze crop growth, diagnose crop 
nutritional status, monitor crop diseases and insect pests, estimate yield and quality, 
etc. According to the information obtained, farmers can evaluate the interaction 
between crop growth and environment, improve crop management level, and realize 
site-specific crop management and prescription farming.

Using satellite as the platform of spectral sensor, remote sensing provides a pow-
erful tool for soil and crop information acquisition. It can be used in monitoring and 
diagnosing of crop nutrient status, crop sown area, crop growth, crop yield, agricul-
tural disaster, agricultural climate, agricultural ecological environment, and agricul-
tural water. Among them, crop growth is closely related to the final quality and 
actual yield of crops. Crop growth detection based on remote sensing plays an 
important role in precision agriculture and mainly refers to the macro monitoring of 
crop seedlings, growth, and changes (Yang and Pei 1999; Wu et al. 2004). For dif-
ferent crops, their development period and growth trend are different, so they have 
different spectral reflectance. According to the characteristics of crop canopy reflec-
tance in different wavebands, scientists have designed a variety of crop spectral 
indexes (vegetation indexes), which have a strong linear relationship with crop 
growth parameters, such as LAI, leaf nitrogen content, leaf water content, and crop 
yield (Bannari et al. 1995; Tian and Min 1998). Using these vegetation indexes, the 
crop growth and nutrition parameters can be accurately obtained, so that the crop 
growth situation can be monitored and the yield can be estimated.

With the development of computer technologies, image processing and analysis 
technology has also been rapidly developed. Using computer image processing 
technology to monitor crop growth has the characteristics of nondestructive, fast, 
and real time. It can not only measure the geometric parameters of plant organs, 
such as the length, width, perimeter, area, and angle of root, stem, and leaf, but also 
measure the area, diameter, and shape factor of irregular leaves, which are difficult 
to be measured by conventional methods. Through the analysis of the images 
obtained in different periods of crops, the dynamics of crop growth can be reflected, 
such as leaf aging process, seedling growth rate, crop water shortage, and fertilizer 
shortage. Automatic identification and determination of diseases, insect pests, and 
weeds in crop growth are also the important application areas of image processing 
and analysis in crop production.
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Soil or crop detection based on ground spectra (also known as ground-based 
remote sensing) has high spectral resolution, but its detection range is small and its 
efficiency is low. Satellite remote sensing has a wide range and high efficiency, but 
its spatial resolution and spectral resolution are limited. UAV remote sensing has 
higher spectral resolution and spatial resolution and a wider range of optical mea-
surement area and efficiency. With the development and popularization of UAV 
technology, UAV remote sensing has been more and more widely used, and some 
multispectral and hyperspectral cameras for UAV remote sensing have been 
developed.

With the development of ICT technology, some modern spectral analysis tech-
nologies for farmland information perception have emerged, including fluorescence 
spectroscopy, terahertz spectral analysis, and laser-induced breakdown spectros-
copy (LIBS). There are also some sensing technologies based on dielectric proper-
ties of materials, biosensor technology, and so on. After widely using artificial 
neural network (ANN), wavelet analysis, and support vector machine (SVM), some 
new information processing technologies in the network era have been introduced 
such as big data technology and machine learning including deep learning. The 
application of modern information perception and processing technology provides 
a solid foundation for the development of precision agriculture.

1.5  Summary

From traditional agriculture to smart agriculture, information acquisition is indis-
pensable. Modern information acquisition technology will continue playing an 
increasingly important role. With the rapid development of sensor technology, 
modern communication technology, and IoT technology, modern information 
acquisition technology has made rapid progress. For example, in recent years, new 
sensors are characterized by miniaturization, digitization, intelligence, multifunc-
tion, and networking. In the aspect of communication, low-power wide area net-
works (LPWAN) such as LoRa and NBIoT, which are characterized by low power 
consumption, low operation cost, and large node capacity, are the main approaches 
for agricultural sensor networks to connect in the future. As the supplement of 
LPWAN transmission rate, 4G and 5G mobile communication technology will 
make the large file transmission represented by agricultural images and audio 
become reality and further expand the dimension of agricultural information. In the 
future, intelligent, convenient, accurate, and energy-saving information acquisition 
technology will continue to be one of the research hotspots in the field of smart 
agriculture.
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Chapter 2
Sensing Technology of Soil Physical 
Properties

Wei Yang, Yao Zhang, and Minzan Li

Abstract Soil physical properties mainly refer to various physical phenomena and 
processes produced in the three-phase system of soil solid, liquid, and gas. It mainly 
includes the color, texture, density, structure, porosity, moisture, compaction, heat 
(thermal property), air condition, and cation exchange capacity (CEC) of soil, as 
well as the mechanical and physical properties and electromagnetic properties of 
soil. Among these properties, texture, porosity, moisture, compaction, and CEC of 
soil are very important for crops and need to be quickly and accurately sensed and 
automatically controlled in precision agriculture. The laser diffraction (LD) method 
is used as a fast detection method of texture. Dielectric parameters, neutron meter, 
and near-infrared spectroscopy are used as a main detection method of soil mois-
ture. Frequency domain reflection (FDR), standing wave ratio (SWR), and time 
domain reflection (TDR) are effective methods based on dielectric parameters. 
Image processing is used on soil bulk density online detection. Penetrometers and 
on-the-go measurement are popular in the detection of soil compaction. Visible and 
near-infrared (vis-NIR) spectroscopy has become the most promising measurement 
technique to provide accurate and meaningful data on soil CEC for successful deci-
sion support on soil fertility management. The determination of soil physical prop-
erties provides the basis for soil studying, soil improvement, and soil scientific 
management. The rapid and accurate measurement of soil physical parameters can 
promote water-saving irrigation and precise fertilization and improve the yield and 
quality of crops.
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Soil is made up of weathered rock particles (mineral substance) and decayed plant 
and animal matter (organic matter), and it refers to the top layer material on the 
Earth’s surface and constitutes the outer most layer of the Earth’s crust. Soil has two 
main functions, storing nutrients and supplying water to crops and maintaining the 
healthy growth of crop roots. Soil physical properties mainly refer to various physi-
cal phenomena and processes produced in the three-phase system of soil solid, liq-
uid, and gas. It mainly includes the color, texture, density, structure, porosity, 
moisture, compaction, heat (thermal property), air condition, and cation exchange 
capacity (CEC) of soil, as well as the mechanical and physical properties and elec-
tromagnetic properties of soil. Among these properties, texture, porosity, moisture, 
compaction, and CEC of soil are very important for crops and need to be fast and 
accurately sensed and automatically controlled in precision agriculture.

2.1  Sensing Technology of Soil Texture

2.1.1  Introduction of Soil Texture

Soil texture is one of the physical properties of soil and specifically refers to the 
combination of mineral particles of different sizes and diameters in the soil. At the 
same time, some important indexes can be used to characterize soil texture, such as 
soil bulk density, soil roughness, soil porosity, and so on. Soil texture is closely 
related to soil aeration, fertilizer conservation, water conservation, and cultivation. 
It is an important basis for soil utilization, management, and improvement and 
reflects the soil type according to the particle composition of soil. Soil texture is 
very important to crop growth, which greatly affects the maturity and yield of crops 
in the field.

Soil texture is mainly divided into three types: sand, loam, and clay. Among 
them, sandy soil has poor water retention, fertilizer retention, and drought resis-
tance. Quick acting fertilizer is easy to be lost along with the rain and irrigation 
water flow. Therefore, it is necessary to increase the application of organic fertilizer, 
make timely topdressing, and master the principle of frequent thin application. 
Loam has good water conservation, fertilizer conservation, drought resistance, and 
rich organic matter. It is an ideal soil because of its good plowing ability. Clay soil 
is rich in nutrients and high in organic matter. Therefore, most of the soil nutrients 
are not easy to be leached by rainwater and irrigation water, so that the clay soil has 
good fertilizer retention performance. However, due to rain or irrigation, water is 
often difficult to infiltrate into the soil, resulting in drainage difficulties, affecting 
the growth of crop roots and hindering the absorption of soil nutrients by roots. For 
this kind of soil in production, it is necessary to pay attention to trenching and drain-
age in order to reduce the underground water level and avoid or reduce the waterlog-
ging damage. It is also necessary to select intensive cultivation under the appropriate 
soil water content conditions in order to improve the soil structure and arability, and 
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promote the release of soil nutrients. The acquisition of soil texture information is 
of great significance to land management, fertilization, and irrigation.

Although the properties and characteristics of soil texture are mainly determined 
by the type of parent material, which is relatively stable, the texture of the cultivated 
layer can still be adjusted through cultivation, fertilization, and other activities. The 
international soil texture grading standards are shown in Table 2.1.

2.1.2  Sensing Technology for Soil Texture and Particle Size

The determination technique of soil texture by pipette is simple and easy, and it has 
been used by many researchers (Miller and Miller 1987; Muller et al. 2009). But it 
also has some great disadvantages and takes a long time to obtain results. The set-
tling speed will become slow if the particle size is small. When the particle size is 
less than 1 μm, the settling time will be more than 30 h, and the relative error of the 
measured data is large, which limits its usage.

With the development of science and technology, the laser diffraction (LD) 
method, which uses laser to measure the distribution of soil particles, has been pro-
posed. The determination principle of the LD method is based on Fraunhofer dif-
fraction theory and Mie scattering theory (Konert and Vandenderghe 1997).

At present, there are also other many related studies on the analysis of soil tex-
ture information by means of electrical conductivity, spectral technology, and com-
pactness, but most of them have some problems such as single detection means, 
isolated target parameters, and limited information interpretation. Most of the stud-
ies on the determination of soil texture by the LD method focus on the comparative 
analysis between the LD method and the traditional pipette method as well as the 
relationship between the two methods (Taubner et al. 2009; Muller et al. 2009).

Table 2.1 International soil texture grading standards. (Wu and Zhao 2019)

Texture name
Sand (2~0.002 mm, 
%)

Silty sand (0.02~0.002 mm, 
%)

Clay particle 
(<0.002 mm, %)

1 Loamy sand 85~100 0~15 0~15
2 Sandy loam 55~85 0~45 0~15
3 Loam 40~55 30~45 0~15
4 Silty loam 0~55 45~100 0~15
5 Sandy clay 
loam

55~85 0~30 15~25

6 Clay loam 30~55 20~45 15~25
7 Silty clay 
loam

0~40 45~85 15~25

8 Sandy clay 55~75 0~20 25~45
9 Loam clay 10~55 0~45 25~45
10 Silty clay 0~30 45~75 25~45
11 Clay 0~55 0~55 45~65
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The principle of the LD method is laser dispersion. When it encounters particles 
in the process of propagation, it will interact with them, and some of them will devi-
ate from the original direction. This physical phenomenon is called light scattering 
(diffraction). When a beam of parallel light encounters an obstacle particle in the 
process of propagation, the light wave deflects, and the deflection angle is related to 
the particle size. The larger particle size will result in smaller deflection angle of 
light wave and vice versa. The principle structure of laser particle sizer is shown in 
Fig. 2.1. A certain wavelength (633 nm) laser emitted by He-Ne laser tube is trans-
formed into a single parallel beam through a filter. The scattering phenomenon 
occurs when the light beam irradiates the particle sample transmitted from the dis-
persion system. The angle of the scattering light is inversely proportional to the 
particle diameter. The scattering light intensity is logarithmically attenuated with 
the increase of the angle. After the Fourier lens, the image is formed on the focal 
plane with multiple detectors arranged. The energy distribution of the scattering 
light is directly related to the particle diameter distribution. The particle size distri-
bution characteristics can be obtained by receiving and measuring the energy distri-
bution of scattered light, and then the soil texture can be estimated.

In recent years, because of its advantages of simple operation, high resolution, 
high precision, and short detection time, laser particle sizer is gradually regarded as 
the standard instrument of soil particle size distribution. It can disperse the soil par-
ticles into the solution and then uses the refractive index and other optical properties 
of the measured particles and the dispersing medium, to reflect the particle size 
distribution data according to the scattering light intensity of different sizes of par-
ticles in different angles. After the measurement of soil samples, according to the 
needs of the measurement results, the “international soil texture classification stan-
dard” or “Katschinski soil texture classification standard” can be used to classify the 
texture of soil samples.

Mccave et al. (1986) first applied LD method to particle analysis and compared 
the two methods. Loizeau et al. (1994) and Konert and Vandenderghe (1997) began 
to study the application of LD method in soil particle analysis. After the twenty-first 
century, many scientific research institutes in China have introduced laser particle 
analyzer, and the research in this field has gradually increased (Chen et al. 2002, 

Fig. 2.1 Principle structure of the laser particle sizer
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2004). Yang’s group selected 265 soil samples from six major soil classes in China 
(Yang et al. 2009) and clay-rich iron soil with clay content more than 40% in Jinxian 
red soil (Yang et al. 2008) to measure particle size distribution (PSD), respectively, 
by LS230 laser particle analyzer. It was found that the clay content measured by LD 
method was lower than that measured by pipette method, while the silt content was 
higher than that measured by pipette method. There is a significant linear correla-
tion among clay, silt, and sand. In addition, the results of laser particle sizer can be 
used to classify soil texture after correction. Most researchers think that compared 
with pipette method, LD method underestimates the clay part and overestimates the 
powder part, and the sand part has little difference. In order to realize the wide appli-
cation of LD method, it is important to establish the correction relationship between 
the two results. In order to find the relationship between LD method and pipette 
method, two methods were used to analyze and compare the cinnamon soil. It was 
found that the data of <2 μm, 2–20 μm, and 20–50 μm grain size determined by the 
two methods had a good correlation and the correlation coefficient was greater than 
0.95. LD method can better reflect the particle composition of cinnamon soil by 
linear transformation (Liu and Gao 2012).

There are great differences between the results of LD and pipette methods. There 
are mainly two aspects: First, the principle is different. The pipette method follows 
Stoke law (ISO 13320-1:1999(E)). According to the research results of Stokes in 
1851, the settling rate of the spherical particles in still water is directly proportional 
to the square of the sphere radius and inversely proportional to the viscosity coeffi-
cient of the medium. Therefore, the equivalent particle size of the soil is measured, 
and the settling rate of the particles is reflected. As mentioned before, LD method is 
based on the optical principle and reflects the cross-sectional characteristics of par-
ticles (Pang et al. 2003; Eshel et al. 2004; Cheng et al. 2001). In the application of 
Stokes law, it is assumed that the soil particles are spherical; in fact, the soil parti-
cles are irregular objects with complex structures or flat, rectangular, and so on 
(Dixon and Weed 1977), which leads to a great difference between the results and 
the actual results (Gee and Bauder 1986). For LD method, the diameter of the cross 
section that the laser irradiates randomly is taken as the diameter of the particles, so 
there is a certain difference between the two methods for the nonspherical particles. 
Second, there are different shapes for soil particles. The soil particles themselves 
are irregular. When the pipette method is used to screen the soil, the large particles, 
such as the long particles passing through the sieve hole and the small end particles 
passing through the sieve hole, will cause the measurement value of the small par-
ticles to be larger. The settling speed of particles is also affected by the shape. When 
the maximum cross section of particles is 90° with the settling direction, the settling 
speed of the same particles is the slowest (Matthews 1991). For this reason, many 
studies have concluded that the sand content obtained by pipette method is lower 
than the true value, while the content of silt and clay is higher (Eshel et al. 2004).

Another reason is that the particle composition measured by the pipette method 
is the percentage of the total weight of soil particles at all levels, but different soil 
densities are different, and the density of soil particles with different particle sizes 
is also different. In the actual calculation, the density of soil is assumed to be 2.65 g 
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cm−3. The PSD (power spectral density) measured by LD method is independent. 
Because the laser can measure any cross section of the particles in the random 
operation of the particles, the diameter obtained is the average diameter, and the 
final calculation result is the spherical volume of the soil particles. However, due to 
various changes in the shape of the soil particles, the measured results may be larger 
or smaller. Because the kaolinite and montmorillonite of clay soil are mostly flat 
type, it is likely that small particles will be calculated in large particles (Jonasz 
1991), resulting in the low content of clay particles measured by LD method and the 
high content of silt and sand particles, just opposite to the situation of pipette 
method, so there is a significant difference between the two methods (Konert and 
Vandenderghe 1997).

At present, there are many reports about LD and pipette methods, and there is a 
great controversy on the feasibility of LD method used to determine soil particles. 
The determination of PSD and the determination of soil texture type are of great 
significance for the analysis of various physical and chemical properties of soil. The 
methods to determine the texture type are all based on the pipette method, that is, 
through the percentage division of grain quality. LD method is used to calculate the 
volume percentage of soil particles. The results measured by LD method are quite 
different from the data measured by pipette method, so it is impossible to directly 
determine the texture type of soil by traditional methods. It is necessary to establish 
a conversion model between the two to convert the LD data into the mass percent-
age content or establish the soil texture division method based on the volume per-
centage content according to LD method. The current research focuses on the 
former. Eshel et al. measured the PSD of 42 soil samples. Results showed that the 
conversion relationship of clay particles is good, but the data consistency of silt and 
sand particles is poor. One hundred fifty-eight soil samples were measured by 
Konert and Vandenderghe (1997). The conversion relationship between the two 
methods is y = 0.361x−0.232 (r = 0.95), where y is the volume percentage deter-
mined by LD method and x is the mass percentage determined by pipette method. 
Matthews (1991) proposed that the results of the two methods have reasonable con-
sistency. Liu and Gao (2012) studied the conversion relationship between clay par-
ticles as y = 0.85x + 11.54 (r = 0.99). Beuselinck et al. (1998) and others used laser 
method and pipette method to study the conversion relationship between clay par-
ticles as y = 2.74x−7.77 (r = 0.98). One of the important reasons for this result is soil 
density. The difference of density will inevitably lead to the failure to establish a 
good linear correlation between the two results. In addition, there are also other pos-
sible reasons such as soil types and types of measuring methods and instruments.

Compared with optical microscope, scanning electron microscopy(SEM)has the 
advantages of high resolution, wide magnification, large depth of field, and strong 
sense of three-dimensional and simple sample preparation, which can be observed 
and analyzed from multiple angles. It has been widely used in the fields of soil gen-
esis, soil investigation and mapping, soil fertility evaluation, and soil cultivation and 
improvement.
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The principle of SEM is shown in Fig. 2.2. The electron beam spot is emitted by 
electron gun cathode. Under the action of accelerating electric field, the electron 
beam is focused by electromagnetic lens and reaches the surface of the sample. 
Under the action of double deflection coil, the surface of the sample is scanned 
orderly by grating, and the secondary electrons, backscattered electron, and X-ray 
are generated by the interaction between the electron and the sample. These signals 
are amplified after being detected by the corresponding detector and output to the 
display system to form an image.

Soil belongs to a kind of heterogeneous porous media material. The small scan-
ning area selected in the observation may lead to the unrepresentative and universal 
results. It is recommended to select the scanning area where the distribution of soil 
particles and pores is relatively uniform. In order to reduce the analysis error, for the 
same soil, multiple samples and scanning points should be studied. When using 
SEM to analyze soil structure, a large magnification does not necessarily mean a 
good result. The selection of magnification should be determined according to the 
research purpose. For the conventional microstructure research of soil, the magnifi-
cation should be within 300–3000. The image of SEM is a two-dimensional gray- 
scale image with 256 levels of gray. The threshold reflects the proportion relationship 
between pores and particles on the surface of soil. Scientific and reasonable selec-
tion of appropriate threshold is an important step in the process of extracting soil 
microstructure information. The threshold selection should be adjusted according to 
the research objectives and objects, and the selection method should be combined 
with the average method, the median method, and the maximum variance method 
for comprehensive evaluation. Generally speaking, a relatively small threshold 
should be selected for the quantitative study of soil pore structure, and a relatively 
large threshold should be selected for the study of soil particle shape 
characteristics.

Secondary electron

detector

Electron Gun

Anode
Electron beam

Magnetic Len

Backscattered electron 

detector

Stage

Fig. 2.2 Principle of 
scanning electron 
microscopy(SEM)
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Scholars have made great achievements in the fields of soil formation, evolution, 
degradation, fertility, and land use. Hua et  al. (2012) used SEM and polarizing 
microscope to study the relationship between the formation of soil crust and 
response to soil erosion. It is observed that soil crust is composed of a layer of 
closely combined smooth surface and high-density particles. Its surface is smooth, 
with continuous pattern of spots or clusters, and the soil crust is thin. Its character-
istics are high density, high shear strength, small porosity, and low saturated hydrau-
lic conductivity. In addition, raindrop impact is the most important factor in the 
formation of soil crust. Aranda et al. (2011) studied the effect of soil type and man-
agement on its organic matter content. SEM technology was used to observe that 
soil samples collected from the river mud lime base have more pores and structural 
systems, showing more biological activities.

2.2  Sensing Technology of Soil Water Content

Soil is the foundation of land resources and the basic natural resources of agricul-
tural production. It can provide nutrients and water for plant. Soil water content 
(SWC), as one of the key components of the soil, is the basic premise and condition 
for all crops and an important factor to determine crop planting and production. 
SWC can have a greater impact on the regional soil temperature, heat balance, and 
agricultural moisture and can maintain regional ecological environment stability 
too. SWC is one of the most active factors of soil fertility. The lack of water is easy 
to restrict the dissolution and transfer of nutrients in soil and the activities of most 
microorganisms. In addition, SWC affects the physical properties of soil. It can 
affect the soil structure and arable property, control the soil respiration, and change 
the composition and distribution of soil gas, heat, and nutrients. Therefore, SWC is 
used as an important basis for agricultural production departments to provide farm-
ing measures and evaluate and judge soil fertility.

There are two parameters used to evaluate SWC level: soil volume water content 
and soil mass water content. Soil volume water content refers to the ratio of the 
volume of water in the soil to the total volume of the soil:

 �V W S� �V V/ %100  (2.1)

where θV is the soil volume water content, VW is the volume of water in the soil, and 
VS is the total volume of the soil.

There are two kinds of soil mass water content, dry base and wet base. Soil mass 
water content in dry base refers to the ratio of the mass of water in the soil to the 
mass of corresponding solid substances:

 
�M W Sdb� � � �M M/ %100

 
(2.2)
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where θM (db) is the soil mass water content in dry base, MW is the mass of water in 
the soil, and MS is the mass of corresponding solid substances. In some case, θM 
(db)>100%. Soil mass water content in wet base refers to the ratio of the mass of 
water in the soil to the mass of total substances including solid and liquid:

 
�M W Twb� � � �M M/ %100

 
(2.3)

where θM (wb) is the soil mass water content in wet base, MW is the mass of water 
in the soil, and MT is the mass of total substances. Usually θM (db) is used in agri-
culture and here it is abbreviated to θM.

In summary, soil physics, chemistry, mineralogy, mechanics, geology, hydrol-
ogy, and biology properties are largely determined by SWC. At present, a variety of 
SWC sensors have been developed based on different measuring principles. Several 
typical methods are neutron method, near-infrared spectroscopy method, and 
dielectric parameter-based method, including frequency domain reflection (FDR) 
method, standing wave ratio (SWR) method, and time domain reflection 
(TDR) method.

2.2.1  Measurement of Soil Water Content 
with Dielectric Parameters

The soil water content in soil has a significant effect on the dielectric properties of 
soil (Williams and Baker 1982). Based on this principle, the dielectric constant 
method uses the dielectric constant of soil to reflect its value. At present, the hand-
held SWC meter mostly measures the dielectric properties of water-bearing soil by 
sensing. When the soil moisture changes, the dielectric constant of the soil charac-
terization changes, resulting in the change of the electromagnetic properties of 
water-bearing soil. The change of soil water content can be inferred by detecting the 
change of electrical parameters in the circuit. This method is fast, accurate, and easy 
to integrate. It has gradually become the main method of soil moisture 
measurement.

 1. Frequency Domain Reflection (FDR) Method

In the three-phase media composition of soil, the dielectric constant of soil par-
ticles (εs = 3~4, 20 °C) and air (εa = 1, 20 °C) is very low, while the dielectric con-
stant of water (εw  =  80, 20  °C) is far greater than that of soil and air, which is 
dominant. Therefore, the dielectric constant of soil mainly depends on the content 
of water, so the SWC can be obtained indirectly according to the dielectric constant 
of soil. The principle of FDR SWC monitoring is shown in Fig. 2.3. The monitoring 
equipment uses the oscillation of LC circuit to measure the dielectric constant of the 
medium according to the change of the oscillation frequency of electromagnetic 
wave in different medium and then reversely displays the soil moisture status 
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Monitoring equipment

Probe

Fig. 2.3 Schematic diagram of the FDR soil moisture monitor

Fig. 2.4 Diagram of SWR measurement device

through a certain corresponding relationship. The frequency F of LC oscillation 
circuit is expressed as

 
F

LC
�

2�

 
(2.4)

where L is the inductance and C is the capacitance.
The frequency F of LC oscillation circuit is mainly affected by the change of 

inductance and capacitance, because the inductance value of SWC monitoring 
instrument is the same. The change of oscillation frequency only depends on the 
change of capacitance, while the change of capacitance depends on the influence of 
soil. When the dielectric properties of soil change, the capacitance of LC oscillation 
circuit changes. From Eq. (2.4), it can be seen that the frequency F of LC oscillation 
circuit changes with the capacitance change. Therefore, there is a certain relation-
ship between the oscillation frequency F and the SWC outside the pipe sleeve. By 
analyzing the frequency of LC oscillation circuit, the SWC can be reflected. The 
sensor of soil water content based on frequency domain reflection method is shown 
in Fig. 2.3.

 2. Standing Wave Ratio (SWR) Method

SWR (standing wave ratio) measuring instrument is mainly composed of signal 
generator, coaxial transmission line, and soil probe and precision detection circuit, 

W. Yang et al.



29

as shown in Fig. 2.4. The signal generated by the signal source is transmitted to the 
soil probe along the transmission line. Because the probe impedance does not match 
the transmission line impedance, part of the signal is reflected back along the trans-
mission line, and the other part continues to propagate along the probe. In the trans-
mission line, the incident wave and the reflected wave will be superposed to form 
standing wave, which will change the voltage value of each point on the transmis-
sion line, while the impedance of the soil probe depends on the dielectric property 
of the soil, and the dielectric constant of the soil mainly depends on the soil water 
content, so the soil water content can be obtained by measuring the voltage variation 
on the transmission line.

 3. Time Domain Reflection (TDR) Method

According to the physical phenomenon that the traveling speed of electromag-
netic wave will change when it propagates in the medium with different dielectric 
constants, the time domain reflectometry (TDR) method is proposed. TDR is a high- 
speed measurement technology in dielectric measurement. It is developed on the 
basis of the research on dielectric properties of many liquids (Fellner-Feldegg 1969) 
and originally used to locate defects in communication cables. TDR is a system 
similar to radar system, which has strong independence. Topp et al. (1980) intro-
duced them into the study of SWC measurement. SWC has a great influence on the 
dielectric properties of soil. Under the action of external electric field, the polariza-
tion degree of water is much greater than that of other substances. In the microwave 
frequency band, different wavelengths correspond to different dielectric constants 
of water. The dielectric constant of water is much larger than that of air, and the 
dielectric constant of soil water in soil matrix is absolutely dominant. A TDR sensor 
is composed of pulse signal generator, coaxial transmission line, and probe and 
high- frequency oscilloscope, as shown in Fig. 2.5.

Fig. 2.5 TDR organization chart
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2.2.2  Measurement of Soil Water Content with Neutron Meter

The neutron method uses radium as the radiation source. The neutrons with high 
energy (fast neutrons) are emitted into the soil. They collide with atoms in a series 
and lose enough energy, and this kind of slow neutron energy can be counted by the 
counter. When the neutron collides with the atom, the lighter the atomic weight is, 
the greater the energy loss is. The hydrogen atom in the soil mainly comes from the 
soil water. Therefore, when the SWC is high, there will be the more hydrogen atoms, 
and the more slow neutrons return to the counter. The density of slow neutrons has 
a certain relationship with SWC. Therefore, the SWC can be calculated by measur-
ing the slow neutron density reflected by the soil. The main types of neutron water 
meter for SWC measurement are embedded type, surface type, transmission type, 
and scattering type. The working process of the embedded neutron water meter is to 
embed the neutron source into the soil to be measured. The neutron source continu-
ously and stably emits fast neutrons, which enter the soil medium and collide with 
the nuclei of various atomic ions, so that the fast neutrons lose energy and slow it 
down. The SWC is determined by measuring the relationship between the density of 
slow neutron cloud and water molecules.

The neutron instrument system includes a neutron source probe and a counter for 
recording the number of slow neutrons. Both of them can be placed in one device or 
opened separately. When they are together, only one tube is needed to be driven into 
the soil. When they are separated, two tubes are needed. When the probe is placed 
at the depth of boron fluoride, the soil water content at different depths can be 
measured.

The advantage of neutron method is that it provides a rapid method to determine 
the soil water content. The soil sample is undisturbed and can be continuously 
observed at the same measuring point for many times. The disadvantage is that the 
precision of soil with more organic matter content is poor and the cost is high, so 
additional devices are needed for the determination of soil water in surface layer of 
soil (0.3 m).

To measure SWC with neutron meter, the operation procedure must be strictly 
standardized. During the operation, the following problems should be paid 
attention to:

 1. Before using the neutron SWC meter, the operators should have special training 
and operation training and should be familiar with the usage and maintenance 
methods, radiation protection methods, and national regulations on the use and 
storage of radioactive sources.

 2. In the representative area of the representative plot, the measuring points and 
depth shall be arranged according to the observation requirements, and the neu-
tron SWC meter tube shall be buried. Once the monitoring points are set, they 
shall not be changed at random to ensure the consistency of SWC.

 3. The material of neutron meter tube is aluminum alloy or hard plastic tube. When 
using plastic tube, PVC tube and plastic tube with high hydrogen content shall 
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be avoided. The tube should have certain strength and corrosion resistance to 
prevent the deformation and corrosion of the tube wall.

 4. During the installation of the pipe, the pipe shall not be squeezed excessively by 
the soil and external forces, and the poor contact between the pipe wall and the 
soil shall be prevented to form a channel for water to flow into the lower soil. The 
soil around the pipe wall near the surface shall be compacted to prevent the 
inflow of irrigation water and rainwater runoff. During the installation of the 
neutron SWC meter tube, the diameter of the borehole shall be the same as the 
outer diameter of the tube, so that the tube is in close contact with the soil. The 
outer diameter of the tube shall be the same as the diameter of the socket at the 
bottom of the neutron meter, and the top of the tube shall be 10cm higher than 
the ground.

 5. The lower end of the neutron meter tube is sealed with a cone to prevent the 
underground water from entering, and the upper end of the tube is sealed with a 
rubber plug to prevent the surface water from entering.

 6. After the installation of the pipeline, check whether the pipeline leaks or accu-
mulates water after water filling or dewatering. If there is any of the above phe-
nomena, the pipeline shall be reinstalled.

 7. If the neutron source of the instrument is replaced, the calibration shall be car-
ried out again.

 8. When observing the SWC in the field, the recording time of the counting or 
neutron SWC meter can be set according to the SWC level. When the SWC is 
large, the counting time can be longer. Generally, take the mean value of two 
close readings as the reading of this point. If the difference between the two 
readings is large, take the third count, and take the mean value of two close read-
ings as the reading.

As a whole, the neutron instrument can measure large volume soil samples. 
Relatively speaking, it is fast, accurate, and representative. However, it is expensive 
and radioactive, which limits the promotion of its use. The vertical resolution of 
neutron instrument is poor, so it is difficult to obtain surface moisture of soil.

2.2.3  Measurement of Soil Water Content 
with Near-Infrared Spectroscopy

It was observed that when the natural soil was wet, the spectral reflectance of the 
soil would decrease. The reason for this phenomenon is that the soil particles are 
covered with a water film and the total reflectance of the water film makes part of 
the energy reflected back to the soil particles, and part of it is absorbed. Bowers and 
Hanks (1965) and Planet (1970) conducted a series of soil spectra reflectance mea-
surement and the result showed that soil reflectance decreased with the increase of 
SWC. Stoner and Baumgardner (1981) confirmed that there was a phenomenon that 
soil spectral reflectance decreased with the increase of SWC. They pointed out that 
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the shape of soil spectral reflectance curve changed, especially in the brightly col-
ored soil and the short wave near-infrared region, which was more obvious because 
of the soil moisture absorption. Bedidi et al. (1992) also pointed out that the main 
reason why water had a great impact on soil spectral reflectance was that the spec-
tral reflectance of soil was determined by the band, the absorption intensity, and the 
absorption location of soil solid components. Therefore, the change of SWC has an 
effect on the spectral reflectance of the whole band, especially in the absorption 
band, which is most sensitive and violent to the change of SWC. Therefore, effec-
tive acquisition of soil moisture-sensitive spectral information is an important basis 
for accurate estimation of SWC.

After obtaining data of soil moisture-sensitive spectrum, the model is built based 
on the selected band or full band information of soil moisture-sensitive spectrum to 
predict SWC.  At present, two kinds of soil spectral modeling techniques, linear 
model and nonlinear model, are mainly used. At first, the stepwise multivariate lin-
ear regression (SMLR) model with high reliability under controllable conditions or 
the principal component regression analysis (PCA) method widely used in the sta-
tistical analysis and modeling of visible and near-infrared spectral data are used by 
most of the researches. Moreover, the partial least square (PLS) regression analysis 
method with reference to the common multiple regression, PCA, and typical cor-
relation analysis ideas with the development of data mining technology, support 
vector machine (SVM), artificial neural network (ANN), random forest (RF), and 
other nonlinear models are also used to estimate SWC.  These models are much 
more complex than linear model, but with the development and revolution of com-
puter technology, nonlinear model parameter estimation, nonlinear optimization, 
and other problems have been solved, which have become a research hotspot. 
According to the current research, both linear model and nonlinear model have their 
own advantages and disadvantages and applicable conditions. The hyperspectral 
estimation methods for SWC need to be further studied and compared to determine 
the more applicable modeling methods.

In order to quickly measure SWC, a portable SWC sensor was developed and 
consisted of two parts, optical part and control part, as shown in Fig. 2.6 (An 2013). 
The optical part included seven wavelengths of near-infrared light source, light 
source driving circuit, Y-type incident/reflected optical fiber, and probe and photo-
electric sensor. The used seven wavelengths are 940  nm, 1050  nm, 1100  nm, 
1200 nm, 1300 nm, 1450 nm, and 1550 nm, part of which (1050 nm and 1450 nm) 
are used to measure SWC and the other wavelengths are used to detect other soil 
parameters. The sensor was designed to penetrate into the soil to measure the rele-
vant parameters of the soil. The single band optical signal provided by near-infrared 
light source was transmitted to the underground soil through Y-type optical fiber for 
spectral reflectance measurement. InGaAs was used as the photoelectric material to 
convert the light signal into electric signal. The electric signal was amplified, fil-
tered, and A/D converted and finally sent to the microcomputer system. After the 
data were processed by the system, the detection results were displayed on LCD, 
and the data were easily transmitted with the upper computer or stored on the U-disk 
through the serial port.
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Fig. 2.6 Portable SWC sensor. (An 2013)

Table 2.2 Statistical table of data of soil sample

Parameter Range/% Average value/% Standard deviation/%

Modeling set 3.15~14.19 8.79 2.41
Validation set 4.54~12.09 8.03 2.09

The field experiment of the portable SWC sensor was conducted in a farmland. 
The soil was loam and belonged to the typical soil in the North China. The soil mass 
water content (dry base) data for calibration was obtained by drying in the labora-
tory. As shown in Table 2.2, 48 samples were divided into 2 groups, with 3/4 as the 
calibration set and 1/4 as the verification set; 3.15~14.19% covered most of the 
distribution range of soil, and the validation set distribution was 4.54~12.09%, the 
average value was 8.03%, and the standard deviation was 2.09%, which met the 
modeling requirements.

 1. Linear Model of SWC

Simple linear regression is the most basic and simple modeling method, which 
describes the linear correlation between an objective function and an independent 
variable. Because of its simple modeling method and reliable model, simple linear 
regression is widely used in near-infrared spectrum detection.

In the experiment, the soil absorbance data were measured by the portable soil 
sensor and the correlation coefficient between the absorbance value of soil at 
1450nm and the SWC was 0.89.

 2. Nonlinear Modeling of Soil Moisture

Since the soil reflectance was obtained in an open field, it cannot fully satisfy the 
Beer-Lambert law. A nonlinear SWC model based on BP neural network method 
was tried. Because the absorption coefficients of soil water were higher at 1450 nm 
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Fig. 2.7 Prediction model of soil moisture. (An 2013)

and 1050 nm, the absorbance values at 1050 nm and 1450 nm were used as input 
parameters.

In the process of BP neural network modeling, because the absorption of soil 
moisture is more obvious, the hidden layer factor and training times can choose a 
lower value to reduce the complexity of the model and improve the stability of the 
model. Forty-eight soil samples were divided into test set and verification set, 34 
samples were used as training modeling, and 14 samples were used for prediction 
verification.

The result of the program shows that the network can reach the target value after 
90 steps of learning training, and the fitting accuracy of the network is shown in 
Fig. 2.7. The correlation coefficient of training set is 0.99, and the correlation coef-
ficient of verification set is 0.94.

The matrix of weight for input layer, the matrix of weight for the middle layer, 
and the threshold vector of the network are recorded, which are saved as the net-
work technical data, so that the function of using the network model to predict soil 
moisture can be realized by programming these values.

2.3  Sensing Technology of Soil Porosity and Bulk Density

2.3.1  Introduction of Soil Porosity and Bulk Density

The spaces between the soil particles or aggregates and within the aggregates are 
called soil pores. Soil pore structure refers to the shape, size, quantity matching, and 
spatial distribution of soil pores, including the shape and quantity characteristics of 
porosity, pore number, pore radius, pore size distribution, and roundness rate as well 
as the spatial distribution characteristics of pores, such as the spatial distribution, 
interconnection, and correlation between pores. The pore structure of soil directly 
affects the way and mode of water migration on the surface and in the soil, which is 
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closely related to the runoff and permeability on the surface of soil, and also has 
many effects on soil fertility.

Soil’s specific gravity refers to the ratio of the weight of solid dry soil particles 
per unit volume to the weight of water in the same volume, excluding soil pores. 
The main factors determining the size of soil’s specific gravity are the content of soil 
organic matter and the composition of soil minerals. Correction Soil bulk density, 
also called “apparent specific gravity of soil”, is the ratio of the weight of a certain 
volume of soil (including soil particles and pores between particles) after drying to 
the weight of the same volume of water is the same as the unit weight of the dry soil 
of one cubic centimeter, including pores, expressed in grams. Generally, the propor-
tions of soil volume are between 1.4 and 1.7 for the soil with many minerals and 
poor structure (such as sandy soil) and between 1.1 and 1.4 for the soil with many 
organic materials and good structure (such as agricultural soil). The soil bulk den-
sity can be used to calculate the weight and porosity of a certain area of arable soil. 
It can also be used as one of the indicators of the degree of soil ripening. The soil 
bulk density with a higher degree of ripening is often smaller. Soil bulk density is 
determined by the number of soil pores and soil solids. The weight of any unit of 
soil can be calculated according to the soil bulk density. The formula is soil weight 
= volume ×soil bulk density. Through the measurement of soil bulk density, the 
organic matter content of soil, texture, and soil structure can be roughly estimated. 
The capacity of soil water permeability and water conservation can be evaluated by 
soil bulk density and soil porosity.

There are many methods to measure soil bulk density, among which the most 
classical method is the ring cutter method. When measuring soil bulk density with 
ring cutter, the expressions of soil water content and soil bulk density are as follows:
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where b represents soil bulk density (g/cm3), g represents the total weight of wet soil 
in ring cutter (g), v represents the volume of ring cutter (cm3), w represents the soil 
mass water content (%), and g represents the total weight of dry soil in ring cutter 
(g). Other methods to measure soil bulk density include wax seal method, mercury 
removal method, sand filling method, drainage method, soil bulk density prediction 
based on BP neural network, time domain reflectometer combined with soil drilling 
method, volume replacement method, gamma ray and visible near-infrared spec-
troscopy, and so on. The research of measurement method is mainly reflected on 
how to measure soil bulk density and soil water content quickly, accurately, and 
economically, which is of great significance to detect soil water status in time, so as 
to make scientific decisions or take reasonable measures in time.

The time domain reflectometer combined with the soil drill method is usually 
used to measure soil bulk density. It uses the metal probe to measure the soil dielec-
tric constant and converts it into the soil volume moisture content. This method 
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combined with the soil drilling method to determine the weight and water content 
of the soil can also obtain the ratio of the volume and mass water content of the soil 
which is the soil bulk density. Using time domain reflectometer to measure soil 
volume water content is almost not affected by soil type, soil density, soil tempera-
ture, and soil pore water conductivity. Generally, these factors are not calibrated in 
practical application, so a lot of additional work is saved and the reliability of mea-
surement results can be guaranteed. This method has the advantages of fast, accu-
rate, and continuous measurements. It does not damage the soil structure, can 
basically maintain the original soil, and is more suitable for long-term continuous 
monitoring.

The volume replacement method is based on the assumption of a certain density 
of soil particles. After a certain volume of standard sampling ring cutter is used to 
obtain the soil sample, the soil is saturated by adding water to the soil to be mea-
sured, and the air void in the soil is replaced by a certain volume of water until the 
soil sample reaches the saturation state. Then, the volume of the replaced air void is 
calculated, and then the soil mass moisture content and soil bulk density are calcu-
lated. The experimental equipment system mainly includes the ring cutter for soil 
sampling, stacked soil sample saturator, balance (accuracy is 0.1g, water content 
measurement accuracy is 1/1000), permeable rock, and filter paper. This measure-
ment operation is simple, but the time for saturation depends on the soil properties 
and generally takes 10 h, and the time for cohesive soil is slightly longer.

2.3.2  Sensing Instruments of Soil Porosity and Bulk Density

The traditional method of measuring soil bulk density has a long and tedious pro-
cess, which is difficult to be used in a wide range of different texture soil bulk den-
sity measurements. In order to estimate soil bulk density online in real time, a 
camera can be used to obtain the image features of soil surface and then predict soil 
bulk density combining the image processing analysis modeling (Liu 2019).

A Canon camera was used to take photo of soil surface and then image process-
ing was conducted. The gray level co-occurrence matrix (GLCM) was applied to 
extract 12 texture eigenvalues of soil surface images, namely, energy value, entropy 
value, uniformity, homogeneity, variance, sum average, sum variance, sum entropy, 
difference variance, difference average, difference entropy, and inertia moment, 
which were correlated with the soil bulk density obtained by the ring cutter method, 
respectively. Eighty-six samples of soil surface images were analyzed, and the cor-
relation analysis was made between the soil bulk density obtained by the ring cutter 
soil sampling experiment and each of the 12 texture eigenvalues of soil surface 
images. Finally, 12 correlation coefficients r were calculated between the soil bulk 
density and each of the 12 texture eigenvalues of soil surface images, which were 
0.8418, 0.8195, 0.5501, 0.8510, 0.5661, 0.6353, 0.5807, 0.3755, 0.5244, 0.6348, 
0.6165, and 0.8595. The results show that energy (0.8418), homogeneity (0.8195), 
entropy (0.8510), and moment of inertia (0.8595) had a high correlation with soil 
bulk density.
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Fig. 2.8 Prediction result of the soil bulk density by BP model. (Liu 2019)

Since four texture characteristic values of energy, homogeneity, entropy, and 
moment of inertia had higher correlation with the soil bulk density, using those 
texture characteristic values as input, a generalized neural network algorithm was 
used to predict soil bulk density. The advantage of this method was that the experi-
mental process was simple, it was an easy-to-follow-up analysis, and the measure-
ment accuracy was high. The coefficient of determination (R2) of the prediction 
model was 0.9420. The model result is shown in Fig. 2.8.

2.4  Sensing Technology of Soil Compaction

Soil compaction or soil compactness, also known as soil hardness, refers to the 
resistance of soil to tools inserted into the soil. It is one of the soil physical proper-
ties and a comprehensive performance of soil mechanical composition, porosity, 
bulk density, water content, and other characteristics. It has an important influence 
on plant growth and microbial activities, such as soil aeration and water permeabil-
ity, nutrient existing form, and transformation. Therefore, it is one of the necessary 
items in the agricultural and forestry production practice. In farmland ecosystem, 
soil compactness is mainly affected by rainwater, agricultural equipment, and plant-
ing methods. Rainwater often forms a layer of soil shell on the soil surface, which 
makes the topsoil hard. The parameters of agricultural machines (seeder, harvester, 
rotary cultivator, etc.), such as weight, area of contact between wheel and ground, 
material and shape of tire, and inflation condition, will have different effects on soil 
compaction. The heavier the machine, the smaller the contact area and the greater 
the soil compactness is. The increase of soil compactness is a process in which soil 
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particles rearrange to reduce soil porosity and increase bulk density. Soil compact-
ness is usually measured by bulk density and porosity. However, when using those 
indexes to measure soil compactness, the result will be affected by soil expansion 
and contraction. Therefore, it is necessary to point out the soil water content when 
describing soil compactness. Soil texture and organic matter content can also affect 
the size of soil bulk density, so the comparability of using soil bulk density to rep-
resent different types of soil compactness is poor.

Except for bulk density and porosity, the traditional methods of measuring soil 
compactness also include multichannel surface wave analysis and soil compactor. 
The multichannel surface wave analysis and measurement method need to bombard 
the soil with air gun source for many times, causing serious damage to the soil, 
which is time-consuming and labor-consuming. The measurement of soil compac-
tor is greatly affected by soil water content and human factors. The results of tradi-
tional soil compaction measurement method are relatively rough, and the repeated 
application is poor, which are not suitable to precision agriculture. At present, pen-
etrometer, ground-penetrating radar, and on-the-go measurement device are recom-
mended and utilized in agricultural practice, because they can measure soil 
compaction fast and accurately.

2.4.1  Measurement of Soil Compaction with Penetrometer

The improved measurement method of soil compaction is penetrometer based on 
cone index meter. The parameters measured by the penetrometer are cone index 
(CI), which is defined as the ratio of the resistance of the cone probe to the cross- 
sectional area of the upper end of the cone. According to ASAE S313.3 
FEB1999ED(R2013)standard, the soil cone index meter is used as the measuring 
device to characterize the soil compactness. The force required to press a 30° cone 
into the soil, in kilopascals, is the index of soil strength, known as the taper index. 
The manual soil cone indexer has a tapered and graduated drive shaft. The standard 
recommends the use of two tapered base sizes as follows. For soft soil, 323 mm2, the 
diameter of cone is 20.27 mm, and the shaft diameter is 15.88 mm. For hard soil, 
129  mm2, the diameter of cone is 12.83  mm, and the diameter of the shaft is 
9.53 mm.

AISI416 stainless steel is recommended by the American Iron and Steel 
Association to be produced into a tapered surface with a maximum smoothness of 
1.6 μm. If the length of the shaft does not exceed 457 mm, the cone with 129 mm2 
base is suitable for hard soil. In very hard soil, because the driving shaft is stronger, 
cone with 323 mm2 base driven by machinery is used. The scale on the drive shaft 
is 25.4mm apart to identify the depth of the hand device. In order to adapt to most 
agricultural soil conditions, the measuring device of manual operation unit shall 
have a cone index capacity of about 2MPa for 323 mm reference area penetrometer 
and not more than 5MPa for 129mm2. The taper index needs to be read directly. In 
some cases, smaller diameter shafts may be required. When the base diameter is 
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worn more than 3%, the spherical cone should be replaced; otherwise, the taper 
index will have 5% error. The 1.5 mm shoulder at the bottom of the cone provides 
longer cone life without seriously affecting the accuracy of readings. The most 
important thing is in order to eliminate the friction in the process, it is necessary to 
ensure that the cone rod penetrates into the soil at a constant speed of 30 mm/s.

At present, many products of handheld soil compactors have been sold on the 
market, for example, SC-900 digital soil compactor (Spectrum Enterprise, 
California, USA). When using handheld soil cone index meter, the operator keeps it 
perpendicular to the soil surface, inserts the tip part into the soil at the speed of 
30 mm/s, and reads the sensor value to calculate the soil cone index.

2.4.2  On-the-Go Measurement of Soil Compaction

The cone penetrometer has been the standard tool for quantifying soil compaction 
in situ by using cone index (CI). In order to automatically map the soil compaction 
fast and accurately, on-the-go measurement system of soil compaction is necessary. 
Various on-the-go soil sensor systems have been developed. Liu et  al. (1996) 
designed a multi-sensor device to continuously detect the soil mechanical resis-
tance. A vertical blade with multiple strain gages mounted on a tractor equipped 
with a GPS was developed. It can simultaneously measure soil mechanical resis-
tance continuously with several depths. The correlation coefficient between the 
measured value of the device and the standard cone measurement was 0.95 
(Adamchuk et al. 2001). Sirjacobs et al. (2002) designed a system that uses octago-
nal ring sensors as force-sensing elements to measure the horizontal force, vertical 
force, and bending moment of the soil tillage tool simultaneously. The correlation 
coefficient between the cone index and the three measured parameters is 0.81. An 
integrated soil physical properties mapping system (ISPPMS) was developed. It 
was comprised of an optical sensor, a capacitance sensor, and an instrumented 
blade. The system was used to determine parameters of a second-order polynomial 
model representing the change of soil mechanical resistance with depth. However, 
based on field evaluation, it was concluded that in most cases, the second-order 
coefficient was not significant. Therefore, the assumption of a linear relationship 
may be appropriate (Adamchuk and Christenson 2005).

An approach to quantify soil compaction is to measure soil strength, since soil 
strength is strongly associated with compactness and drainable porosity (Chung 
2004; Chung et al. 2008). Furthermore, since the soil strength can be calculated by 
measured soil resistance (Chung et al. 2006), several on-the-go measurement sys-
tems of soil compaction were developed (Chung and Sudduth, 2004; Chung 
et al. 2006).

 1. On-the-Go Soil Strength Profile Sensor (SSPS) (Chung et al. 2006)

The overall objective was to design an on-the-go soil strength profile sensor 
(SSPS) that could measure “CI-like” soil strength at multiple depths while traveling 
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across a field. The SSPS design concept enabled measurement of soil strength at 
multiple depths (Fig. 2.9). Each force-sensing tip interfaced with a load cell located 
inside a narrow soil-cutting blade and was extended in front of the blade edge. The 
main blade was mounted to a frame using a shear bolt mechanism, and the frame 
was attached to a tractor through the three-point hitch. Major design issues were (1) 
soil strength sensing, (2) data acquisition and calibration, (3) selection of materials 
for the main blade and sensing tip, and (4) tractor attachment and overload 
protection.

Maximum sensing depth, expected maximum soil strength, and sensing resolu-
tion were selected as 50 cm, 10 MPa, and 0.1 MPa, respectively, based on examina-
tion of CI profiles from a Missouri clay pan soil field. Higher loads due to dynamic 
operation of the sensor, along with a safety factor, were considered for appropriate 
load cell selection and sensor design. The desired maximum vertical sensing inter-
val was 10 cm, contingent on being able to obtain accurate strength data from tips 
on that spacing.

High-resolution and high-frequency data acquisition was needed to capture vari-
ability in soil strength. Assuming a 2  ms−1 normal operating speed, a minimum 
sampling frequency of 4 Hz was selected to detect repeating spatial patterns in CI 
(e.g., wheel traffic patterns). Faster data acquisition would be desirable for more 
reliable measurements and would allow application of filtering techniques such as a 
moving average.

Fig. 2.9 Operational concept of the on-the-go soil strength profile sensor. (Chung et al. 2006)
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A prismatic tip with a 60° cutting or apex angle was selected as the sensing tool 
to reduce soil disturbance and avoid extreme force measurements for most soils, 
based on modeling and simulation of soil failure mechanisms.

 2. Subsoiler-Based Measurement System of Soil Compaction

When a farm implement, for example, subsoiler, moves forward in the soil, it 
will be affected by the soil mechanical resistance, which is closely related to soil 
strength or soil compactness. Therefore, a subsoiler-based measurement system of 
soil compaction was developed (Zheng 2019). The measurement system included 
two parts of measurement units, the pressure sensor and three sets of strain gauges 
as shown in Fig. 2.10a. When the subsoiler shovel moves forward in the soil, the tip 
is the first part under the press. Then, the mechanical resistance makes the strain 
gauges sense the tiny deformation of the subsoiler shovel. Through the leverage of 
force, the soil mechanical resistance is transformed to the pressure sensor.

The system shown in Fig.  2.10a can be simplified as an equivalent diagram 
shown in Fig. 2.10b.

According to the equivalent diagram, soil surface mechanical resistance can be 
calculated as Eq. 2.7:

 
P f F u vs i0 � � �, , ,�

 
(2.7)

where P0 is the soil surface mechanical resistance (N), Fs is the force of the pressure 
sensor (N), εi (i = 1, 2, 3) is the ith depth force of the strain gauges (N), u is the 
distance between the frame and the soil surface (cm), and v is the forward 
speed (km/h).

Fig. 2.10 Subsoiler-based measurement system of soil compaction. (Zheng 2019)
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The field experiments were conducted to verify the feasibility of the system, and 
a linear model was established to estimate the soil mechanical resistance system. 
The result showed that the on-the-go soil mechanical resistance system could real-
ize the measurement accurately. The deviation is no more than ±5%.

2.5  Sensing Technology of Soil Cation Exchange Capacity

2.5.1  Introduction of Soil Cation Exchange Capacity

The soil cation exchange capacity (CEC) refers to the capacity of cation adsorbed 
and exchanged by the soil colloid (soil particles with a diameter of 1–1000 nm) 
under certain pH conditions. The CEC value is expressed as the amounts of various 
cations per kilogram of soil, that is, mol/kg.

Soil colloids can be divided into inorganic colloids, organic colloids, and organic- 
inorganic composite colloids. Inorganic colloids include hydrous silicon oxide, iron 
aluminum, and layered aluminum silicate. Organic colloids include humus, protein, 
and cellulose. In agricultural soil, organic colloids rarely exist alone, about 50–90% 
of which are combined with mineral colloids to form organic and inorganic com-
plex (also known as absorbent complex).

With its huge specific surface area and surface energy, soil colloids make the soil 
adsorbent. The adsorption and ion exchange properties of soil make it the main 
destination of heavy metal pollutants. It can regulate the concentration of soil solu-
tion and ensure the diversity of soil solution components, thereby ensuring the 
“physiological balance” of the soil solution, while also maintaining nutrients from 
being lost by rain.

Soil CEC is a very important soil characteristic in agriculture. It is closely related 
to the content of colloidal particles and organic matter, soil type (different clay min-
erals), soil pH value, soil texture, etc. For example, (1) when the content of colloidal 
particles is high and soil humus is rich, CEC value is also high. (2) For different 
types of clay minerals, the CEC value of the soil with 2:1 (montmorillonite) is 
greater than that of soil with 1:1 (kaolin). (3) When pH value is high, the variable 
negative charge of soil increases, resulting in the increase of CEC. (4) When the pH 
value and humus content of the soil are approximately equal, the CEC depends on 
the texture of the soil. Therefore, soil exchange performance is an indicator of soil 
characteristics. The determination of CEC can evaluate the soil water and fertilizer 
conservation capacity and can be used as an important basis for soil improvement 
and rational fertilization.

W. Yang et al.



43

2.5.2  Sensing Method of Soil Cation Exchange Capacity

In the laboratory measurement method, the determination of soil CEC is to use an 
exchange agent (also known as a saturator) to exchange the ions adsorbed on the 
soil colloidal particles and then carry out the determination. This exchange reaction 
is carried out with equal mass. A large number of different experimental methods 
have been proposed, and they could be summarized into four groups, namely, sum-
mation methods, direct displacement of the saturating salt, displacement of index 
cation after washing out excess salt, and radioactive tracer methods (Bache 1976). 
Whether the exchange is complete mainly depends on the selected exchange agent 
and exchange method. The exchange methods include multiple leaching (or cen-
trifugation) exchange methods and one-time equilibrium exchange method. Among 
them, multiple leaching (or centrifugation) exchange methods are used to rinse (or 
centrifuge) the soil multiple times according to the chemical equilibrium movement 
law to complete the exchange. This method is complete but time-consuming. The 
one-time equilibrium exchange method is to add the exchanger to the soil sample 
and filter after shaking. The exchange of this method is not complete, but it is simple 
and fast.

At present, the widely used measurement methods in laboratory of soil CEC 
mainly include neutral ammonium acetate method and barium chloride-sulfuric 
acid-forced exchange method. With the continuous development and application of 
new reagents and new instruments, many researchers are continuously exploring 
methods to improve efficiency and accuracy of soil CEC determination, such as 
ammonium fluoride exchange difference method, EDTA (ethylenediaminetetraace-
tic acid) ammonium salt rapid method, and ICP-AES (inductively coupled plasma 
optical emission spectroscopy) (Shen and Xing 2016).

The determination methods of soil CEC mentioned above all require sample 
preparation (drying, grinding, weighing, washing, and centrifugation) in laboratory, 
which is time-consuming and is destructive to the sample when it is examined. As 
such, CEC is not presently easily field determinable. Therefore, researchers have 
attempted to find alternative methods that are simple, fast, cost-effective, and even 
in situ.

In a review of the application of proximal soil sensing to assess soil properties, it 
is identified that visible and near-infrared (vis-NIR) spectroscopy has become the 
most promising measurement technique to supply accurate and meaningful data on 
soil CEC for successful decision support on soil fertility management. This is 
because vis-NIR spectra of soils contain large sets of spectral information repre-
senting broad bands of overtones and combinations of fundamental vibrations 
occurring in the range of the electromagnetic spectrum. Quantitative information on 
CEC can be extracted with suitable multivariate regression methods, which have an 
advantage over simple bivariate relationships and are suitable for peak intensity 
measurements. So far, the use of vis-NIR spectroscopy for the determination of soil 
CEC has achieved varying degrees of success, depending on the conditions, under 
which the evaluations are carried out (e.g., in the laboratory or online in the field). 
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Apart from the vis-NIR spectroscopy methods, the combination of optical soil sen-
sor and electrical conductivity (EC) sensing unit and portable X-ray fluorescence 
(PXRF) spectrometry are all used to estimate soil CEC and proved effective.

2.5.3  Sensing Technologies of Soil Cation Exchange Capacity

 1. In Situ Determination of Soil CEC with vis-NIR Spectroscopy

The in situ determination system of soil CEC with vis-NIR spectroscopy was 
developed based on the online soil sensor, which consisted of an optical sensor and 
a subsoiler as shown in Fig. 2.11 (Mouazen et al. 2005). The subsoiler with the opti-
cal probe, which was used as a soil-cutting tool, was installed on a frame, which had 
been manufactured by Mouazen’s group at Uludag University (Ulusoy et al. 2016). 
For field measurements, the online sensor was mounted on the three-point linkage 
of a tractor. An AgroSpec mobile, fiber-type vis-NIR spectrophotometer (Tec5 
Technology for Spectroscopy, Germany) with the spectral range of 350–2200 nm 
was used in this study (Quraishi and Mouazen 2013).

After preprocessing of the original spectral signals, the spectra within wave-
lengths of 421–1745 nm were selected for the calibration. Partial least square (PLS) 
regression analyses with full cross-validation were carried out to establish CEC 
models. Results of the CEC prediction using online measurement gave acceptable 
prediction results, with averaged R2 values around 0.7, root mean squared errors of 
prediction (RMSEP) around 3 cmol kg−1, and residual prediction deviations (RPD) 
around 1.5 (Ulusoy et al. 2016).

Spectrophotometer

Subsoiler chisel Lens holder

Detection fibre

Illumination fibre

Direction of travel

45°

Fig. 2.11 Illustration of the subsoiler and optical sensor. (Mouazen et al. 2005)
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 2. Soil CEC Sensing with On-the-Go Soil Electrical Conductivity and 
Optical Sensors

The Veris Technologies has developed a commercially available dual-wavelength 
on-the-go soil optical sensor (OpticMapperTM, Veris Technologies, Salina, KS, 
USA) for SOM and CEC measurements with high-density and full-field coverage at 
a relatively low cost. Soil electrical conductivity (EC) and optical data were col-
lected for the purpose of mapping with multiple soil sensors (Kweon et al. 2013). 
The sensor modules consist of six coulter electrodes for EC measurements, and a 
specially configured row unit for optical measurements, which were used to deter-
mine the soil CEC and SOM separately. The module is mounted between two disks, 
which are used to control sensing depth. Data were collected approximately 4 cm 
below the soil surface at a 1 Hz rate on 15–20 m transects with speed of 10–15 km/h.

With the sensor moving, the electrical current travels two feet into the rooting 
zone. These readings provide soil depth and water-holding capacity information, 
which has significant implications on CEC determination. Therefore, Veris soil 
CEC readings are gathered by measuring the EC of the soil.

To estimate soil CEC in fields, a calibration routine was programmed by the 
LabVIEW (National Instruments Corp., Austin, TX, USA). For the calibration, each 
red and NIR reflectance reading and optical reading ratio (NIR/red), shallow EC 
(EC_SH) and deep EC (EC_DP) values, and EC ratio (EC_DP/EC_SH), slope, cur-
vature, and elevation were used as independent variables. For calibration between 
sensed data and lab-analyzed values, a multivariate linear regression (MLR) with 
leave-one-out cross-validation was performed on fields with more than ten lab sam-
ples, and a single variable linear regression was performed on fields with less than 
ten samples. From the CEC calibration results, six of nine fields had good results 
with R2 of 0.86 or higher and RPD of 2.78 or greater.

 3. Portable X-Ray Fluorescence Spectrometer for Soil CEC Determination

Portable X-ray fluorescence (PXRF) spectrometry is a proximal sensing tech-
nique which provides elemental data in situ, in seconds (Sharma et  al. 2015). 
Recently, some scientists tried to examine the potential of using PXRF for soil CEC 
prediction. They employed ADP-6000 Delta Premium PXRF (Olympus, Waltham, 
MA, USA) featuring an Rh X-ray tube operated at 15–40 keV to scan the soil sam-
ples. Elemental quantification was accomplished using the integrated ultrahigh 
resolution (b165 eV) silicon drift detector. Prior to sample analysis, the PXRF was 
standardized using a stainless steel “316” alloy clip containing 16.130% Cr, 1.780% 
Mn, 68.760% Fe, 10.420 % Ni, 0.200% Cu, and 2.100% Mo tightly fitted over the 
aperture. The instrument was operated in a proprietary software configuration 
known as Soil Mode which offers quantitative analysis of the following elements: V, 
Cr, Fe, Co, Ni, Cu, Zn, Hg, As, Se, Pb, Rb, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ti, Mn, P, S, 
Cl, K, and Ca. Sequential scanning was conducted for 30s per beam (three-beam 
operation), such that total scanning time was 90s per sample. The PXRF was repo-
sitioned between each scan. The aperture of the instrument was cleaned by air blow-
ing to prevent soil or dust from contaminating the aperture window after each scan. 
Each sample was scanned in duplicate, with data subsequently averaged for analysis.

2 Sensing Technology of Soil Physical Properties



46

Subsequently, multiple linear regression was applied to a modeling dataset to 
establish the relationship between lab-determined CEC and PXRF elemental data. 
The model showed good performance with R2 of 0.908 and RMSE of 2.498 cmol 
kg−1. Therefore, PXRF was able to predict soil CEC accurately, which could mini-
mize the need for lab-based CEC data for many applications.
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Chapter 3
Theories and Methods for Soil Nutrient 
Sensing

Fei Liu, Xiantao He, and Yong He

Abstract Soil provides the essential nutrient elements for plant growth. Soil nutri-
ents include soil macronutrients such as nitrogen, phosphorus, and potassium, as 
well as soil micronutrients such as calcium, magnesium, sulfur, iron, and boron. 
Precision agriculture is a technology of applying precise and right amounts of inputs 
such as water, fertilizer, and pesticides at the right time to the crop for increasing the 
productivity and maximizing the yields. Therefore, it is necessary to obtain soil 
nutrient information quickly and accurately. Near-infrared spectroscopy (NIRS) 
with high-efficiency and nondestructive characteristics has great potential in soil 
nutrition detection. According to the NIR absorption of the hydrogen bonds, soil 
total nitrogen content and soil organic matter content can be estimated. Multiple 
linear regression, partial least square regression (PLSR), and principal component 
analysis (PCA) are commonly used to establish the estimation models of soil nutri-
ent contents based on NIRS. Moreover, the modern algorithms of wavelet algorithm 
(WA), genetic algorithm (GA), uninformative variable elimination (UVE), support 
vector machine (SVM), etc., are used to reduce the multicollinearity of the NIR 
spectra to improve estimation accuracy. Laser-induced breakdown spectroscopy 
(LIBS) is a promising spectral detection technology with high sensitivity, fast speed, 
and the ability to measure multiple elements simultaneously. It can also be used to 
detect both soil macronutrients and micronutrients. At present, scientists have 
developed various forms of soil testing instruments based on spectral technology, 
such as portable, vehicle-mounted, and remote sensing devices. Through these 
devices, it is convenient to implement comprehensive, full-range, all-weather, and 
real-time soil sensing for soil and crop precision management.
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Soil serves as a medium for nurturing plants, and its nutrients have a great influence 
on the healthy growth and yield improvement of crops. Precision agriculture is a 
technology to precisely input right amount of agricultural means of production such 
as water, fertilizer, and pesticides at the right time to the crop for increasing its pro-
ductivity and maximizing its yield. To achieve expected crop production, it is neces-
sary to obtain soil information quickly and accurately. Soil nutrients mainly include 
nitrogen, phosphorus, potassium, and organic matter content, and obtaining the 
information of those soil nutrients is beneficial to farmland management and 
decision- making, as well as prediction of crop yields.

Traditional soil sampling technology for acquiring soil information is costly, 
time-consuming, and poor in real time and is not suitable to large-scale farmland. 
Thus, it is necessary to detect the characteristic information of the soil rapidly and 
accurately in large-scale areas. In recent years, a lot of studies have been conducted 
on the method of rapid nondestructive detection of soil information, and great prog-
ress has been made.

3.1  Laboratory Measurement of Soil Nutrients

The traditional chemical analysis method of soil nutrients is to extract a specific 
element in a soil sample through a specific extraction solution, thereby realizing 
quantitative detection of the soil nutrient content. In this traditional analysis method, 
the complex procedures of soil sampling and nutrient extracting and measuring are 
the main reasons for cost reduction and speed improvement of soil nutrient detection.

3.1.1  Detection of Soil Nitrogen Content in Laboratory

Nitrogen is an important building block of proteins, nucleic acids, and other cellular 
constituents which are essential for all forms of life. Therefore, soil nitrogen is a key 
nutrient element for plants so that it warrants careful management. Soil nitrogen 
absorbed by plants is available nitrogen, which is easily hydrolyzed as a part of the 
soil solution or the cation exchange complex when applied to moist soils. Available 
nitrogen is mainly from most of the commonly applied inorganic sources, such as 
ammonia, ammonium nitrate, ammonium phosphate, ammonium sulfate, calcium 
nitrate, nitric phosphate, potassium nitrate, and sodium nitrate.

The commonly used method for the determination of soil available nitrogen con-
tent is the alkali-nitrogen hydrolysis method. The principle of this method is to use 
sodium hydroxide of 1 ~ 2 mol/L for hydrolyzing soil samples and to decompose 
the inorganic nitrogen and easily decomposed organic nitrogen in the soil into 
ammonia nitrogen, which is absorbed with boric acid and standard acid to titrate. 
The detailed operation process is as follows: weighing 2 g of soil sample into the 
outer chamber of the Conway diffusion dish firstly and then adding 2 mL of boric 
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acid solution to the inner chamber of the diffusion dish and 100 mL of 1 mol/L 
sodium hydroxide to the outer chamber and finally sealing it with Vaseline for 
48  hours and titrating it with standard concentration of sulfuric acid at 
0.005 mol/L. The end of the titration is when the solution turns purple. The formula 
for calculating nitrogen content is shown in Eq. 3.1:
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where N is the available nitrogen (mg/kg), c is the concentration of 0.005 mol/L (1/2 
H2SO4) standard solution (mol/L), v is the volume of the 0.005 mol/L (1/2 H2SO4) 
standard solution used for sample titration (mL), v0 is the volume of the 0.005 mol/L 
(1/2 H2SO4) standard solution used in the blank test titration (mL), 14.0 is the molar 
mass of the nitrogen atom (g/mol), m is the mass of the sample for testing (g), and 
103 is the conversion factor of mass units.

3.1.2  Detection of Soil Phosphorus Content in Laboratory

There are many methods for determining soil available phosphorus, and the results 
are inconsistent due to different extraction reagents used. The selection of extractant 
methods is mainly based on the properties of the soil to be tested. Neutral and cal-
careous soils are extracted by sodium bicarbonate reagent, while acid paddy soils 
are extracted by hydrochloric acid, and acid dry soils are extracted by hydrochloric 
acid-sodium fluoride method.

The hydrochloric acid extraction method for acid paddy soil is specifically intro-
duced here (Fig. 3.1). First, a 2.5 g soil sample is weighed into a 250 mL Erlenmeyer 
flask, and then a teaspoon of phosphorus-free activated carbon is added for decolor-
ization, and 0.1 mol/L hydrochloric acid is added to the 250 mL scale mark for 
extracting available phosphorus in soil. After shaking the Erlenmeyer flask for about 
30 minutes and then filtering the available phosphorus from the solution, 10 mL of 
filter solution is taken in a tube, and then 5 mL of molybdate-antimony-scandium 
color agent is added to maintain constant volume. After the solution stands for 
15 min, a colorimetry at 700 nm is used to obtain the absorbance value of the test 
solution, and then the concentration of available phosphorus is determined by the 
calibration curve of phosphorus solution, and the content of available phosphorus in 
soil is calculated by Eq. 3.2:
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where P is the available phosphorus (mg/kg), ρ is the concentration of available 
phosphorus (μg/mL), V is the volume of maintaining constant volume during color 
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Fig. 3.1 Hydrochloric acid extraction method for detecting phosphorus in soil

rendering (mL), Ts is the ratio of the total volume of the extract solution to the vol-
ume of the extract solution absorbed during color rendering, m is the mass value of 
air-dried soil (g), and k is the mass coefficient of air-dried soil converting into oven- 
dried soil.

The process of drawing the calibration curve is as follows: accurately take 5 μg/
mL phosphorus standard solution of 0, 1, 3, 7, and 10 ml into volumetric flasks, 
respectively, and add 5 ml molybdate-antimony-scandium color agent in each flask, 
and then slowly rotate the volumetric flask to shake well and add water to the flasks 
to obtain standard solutions with phosphorus contents of 0.0, 0.1, 0.3, 0.5, 0.7, and 
1.0 μg/mL, respectively. After standing for 30 min, perform colorimetric measure-
ment at a wavelength of 700 nm to obtain the absorbance of the standard solutions, 
and then draw the calibration curve of the standard phosphorus solution with the 
phosphorus concentration (μg/mL) as the abscissa and the absorbance (Abs) as the 
ordinate.

3.1.3  Detection of Soil Kalium Content in Laboratory

Along with nitrogen and phosphorus, kalium is also one of the essential nutrients 
for crop growth. The kalium in soil can be classified as mineral kalium (insoluble 
kalium), non-exchangeable kalium (slow-acting kalium), exchangeable kalium, and 
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water-soluble kalium (quick-acting kalium). The kalium that can be absorbed by 
plants is water-soluble and exchangeable kalium.

The method of chemical determination for available kalium in soil is similar to 
the method shown in Fig. 3.1. It uses the acetic acid as the extracting solution to 
extract the available kalium from the soil, and then the content of kalium is deter-
mined by flame photometer according to the characteristics of kalium element. The 
detailed processes are as follows: weighing 5  g of air-dried soil sample into a 
100 mL test tube, adding 50 mL of 1 mol/L neutral ammonium acetate solution, and 
then plugging the tube with a rubber stopper and shaking for 30 minutes, filtering 
the solution and measuring the filtrate directly on a flame photometer with a 
766.5 nm filter, and then recording the galvanometer reading and obtaining the con-
centration of test solution from a calibration curve of the standard kalium solution. 
The specific formula for calculating kalium content in soil is shown in Eq. 3.3:
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where K is the available kalium (mg/kg), v is the volume of acetic acid added, C is 
the concentration of test solution (μg/mL), and md is the mass value of oven-dried 
soil (g).

3.1.4  Detection of Soil Organic Matter Content in Laboratory

Soil organic matter, as a sign of fertility formation, is an important indicator for 
identifying soil fertility. The content and composition of organic matter will change 
regularly with the changes of the climate and biological conditions. Therefore, the 
detection of organic matter is also an important part in the detection of soil nutri-
ents. The potassium dichromate method is an important method for the determina-
tion of soil organic matter in laboratory. The testing principle is to use potassium 
dichromate-sulfuric acid solution to oxidize organic matter during heating process, 
and the remaining potassium dichromate is titrated with a standard solution of fer-
rous sulfate using o-phenanthroline as an indicator, and then the amount of potas-
sium dichromate consumed is used to calculate the carbon content.

The detailed process of detecting soil organic matter by the potassium dichro-
mate method is shown in Fig. 3.2: accurately weighing 0.5 g of soil sample into a 
250 mL flask, adding 5 mL of potassium dichromate standard solution and 5 mL of 
concentrated sulfuric acid into the flask with a pipette, and then carefully shaking 
the solution to uniform, heating a thermostatic oil bath to 185-degree Celsius, and 
then placing the flask in the constant temperature oil bath, boiling the solution in the 
flask for 5 minutes, moving the flask from the oil bath and cool the solution to room 
temperature, finally adding three drops of o-phenanthroline indicator to the flask, 
and then titrating it with a 0.1 mol/L standard ferrous sulfate solution. When the 
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Fig. 3.2 Method of chemical determination for soil organic matter content

color of the solution in the flask changes from orange yellow to green and then 
mutates to brown red, the titration will be stopped. For each batch of samples, quartz 
is used instead of soil sample for blank test. The calculation method of carbon con-
tent is shown in Eq. 3.4:
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where TC is the organic carbon content (%), c is the concentration of a standard 
solution of ferrous sulfate (mol/L), V0 is the volume of ferrous sulfate used in blank 
test (mL), V is the volume of sulfuric acid solution consumed during measurement 
(mL), 0.003 is the molar mass of 1/4 carbon atom (kg/mol), m is the sample mass 
used for testing (g), and D is the dilution ratio. There is a certain conversion rela-
tionship between the organic matter content in the soil and the organic carbon con-
tent. The content of organic matter in the soil can be obtained by multiplying the 
measured organic carbon content with a conversion factor of 1.724: organic matter 
(%) = TC(%) × 1.724.

3.2  Spectral Technology for Soil Nutrient Sensing

Using laboratory chemical analysis to obtain farmland soil nutrient information can 
accurately obtain soil nutrient information at a single point in the field, but it is 
cumbersome, time-consuming, labor-intensive, costly, and poor in real time. 
Meanwhile, the number of samples is too little to reflect objectively the distributed 
situation of actual soil nutrients in large areas of farmland. In addition, the method 
for determining soil nutrient in laboratory will produce chemical waste and cause 
secondary pollution to the environment. The spectral analysis methods for detecting 
soil fertility can shorten analysis time, reduce detection costs, and improve testing 
efficiency. Moreover, the in situ detection for soil fertility based on spectroscopy 
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will help achieve real-time measurement of soil fertility properties, which can facil-
itate the global application of the technology of on-demand fertilizer management.

3.2.1  Vis/NIR Spectral Sensing Technology for Soil Nutrients

Vis/NIR spectroscopy to sense soil nutrients is a mature technique for detecting soil 
moisture, organic matter, nitrogen, phosphorus, kalium, etc. Yu et al. (2002) mea-
sured total nitrogen, organic matter, and alkali-hydrolyzed nitrogen in soil by near- 
infrared spectroscopy. The NIR spectra of 2 mm and 0.15 mm air-dried soil were 
obtained, and a partial least square (PLS) method was used to establish a mathemat-
ical model for predicting soil nutrition content. The results showed that NIR spectra 
had a good correlation for detecting soil organic matter, total nitrogen, and alkali- 
hydrolyzed nitrogen. Zhu et  al. (2008) used near-infrared spectroscopy to detect 
organic matter in untreated soil. In the experiment, near-infrared spectra in the range 
of 4000~12,500 cm−1 was applied to detect organic matter in the soil that had not 
been pulverized and sieved, and the quantitative relationship between the spectral 
absorbance and the organic matter content was established by the methods of first- 
order differential pretreatment and PLS regression analysis. The experiment has 
obtained good results. The predicted correlation coefficient of organic matter is 
0.818, the standard deviation is 0.069, and the root mean square error is 0.085.

The team from China Agricultural University has been working on the spectro-
scopic detection methods of soil nutrients since the 2000s (Sun et  al. 2006; Sun 
et al. 2007). The research objects were mainly black soil in Northeast China and 
Chao (aquic cambisols) soil in North China. The spectral data of soil samples were 
collected without pretreatment, and then the correlation between soil parameters 
and spectral characteristics was analyzed and a predictive model for soil nutrient 
was established. Meanwhile, the effects of soil moisture content and particle size on 
soil spectrum by using wavelet transform were studied (An et al. 2013). The results 
showed that the change trend of the soil spectral curve was affected by the soil mois-
ture content, and the instantaneous fluctuation of the spectral curve was mainly 
caused by the soil particle size. A filtering process was performed to a certain extent, 
which eliminated high-frequency oscillation of the spectral curve caused by uneven 
particle size of soil (Li et al. 2013).

The principle of spectral detection of soil nutrition is the multiple frequency 
absorption of near-infrared spectrum to nutrients in the soil. The mass information 
of the spectral bands for different substances overlaps heavily, so that the full-band 
spectrum contains a lot of redundant information and noise data, which affects the 
prediction accuracy of the model. This is the main reason of low stability and accu-
racy of spectral measurements for soil nutrition in earlier studies. In order to reduce 
a large amount of useless information in the full-band spectral information, it is 
necessary to extract the truly effective bands from the full band to reduce the amount 
of calculation and increase the speed of detection. The main wavelength extraction 
methods are wavelet algorithm (WA), genetic algorithm (GA), uninformative 
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Fig. 3.3 Result of spectral feature selection (Zhang 2015) (a) Frequency of selections based on 
GA (b) GA + SPA selected variables

variable elimination (UVE), principal component analysis (PCA), successive pro-
jection algorithm (SPA), etc. The application of these methods to the spectral detec-
tion of soil nutrients combined with advanced modeling methods will greatly 
improve the speed of spectral determination of nutrients in soil. The result of spec-
tral feature selection for soil organic matter based on GA is shown in Fig.  3.3a 
(Zhang 2015). There are three horizontal lines in the figure, and the numbers of the 
wavelengths corresponding to the lines from top to bottom are 64, 102, and 169, 
with the accumulative contribution rate of 79.51%, 81.99%, and 81.97%, respec-
tively. Therefore, 102 was selected as the number of the wavelengths in the next 
analysis. A SPA algorithm was used to select 18 characteristic wavelengths from the 
102 wavelengths (Fig.  3.3b), and the prediction model was established using 
PLS. The prediction set achieved a determination coefficient (R2) of 0.83 and root 
mean square error (RMSE) of 0.20, while R2 and RMSE were 0.84 and 0.20, respec-
tively, when using 102 wavelengths for prediction model. It is observed that the 
prediction accuracy was almost not reduced when the number of wavelengths 
dropped to 18, indicating that the combination of GA and SPA can greatly simplify 
the prediction model.

3.2.2  Mid-infrared Spectral Sensing Technology 
for Soil Nutrients

The principle of sensing soil nutrients by mid-infrared (MIR) spectroscopy 
(2500 ~ 25,000 nm) is absorptions of fundamental frequency related to molecular 
structures of soil constituents. Different compounds have specific infrared absorp-
tion spectra, and the intensity, position, shape, and number of bands are related to 
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the type of compound and its state. Compared with near-infrared spectroscopy, mid- 
infrared spectroscopy has more specificity in detecting soil nutrients.

Jia et al. (2017) applied diffuse reflectance spectroscopy, including visible and 
near-infrared (VNIR) and MIR radiation, to rapidly estimate soil organic carbon 
(SOC). The absorbance spectra in the VNIR and MIR regions at different depths of 
soil profile of shrub meadow are shown in Fig. 3.4. The SOC concentrations usually 
decreased with depth, and the absorbance curves reduced overall with increasing 
soil depths. A comparison of the field-moist intact and air-dried ground spectra in 
the range of 400 ~ 2450 nm indicated that the soil moisture and structural integrity 
also affected the soil absorbance spectra. The strong absorptions near 1400 and 
1900 nm in the VNIR spectra were caused by the O–H functional group of free 
water, and the absorptions near 2200 nm were caused by the organic matter. In the 
MIR region, the spectra information mainly responded to mineral properties, such 
as quartz, kaolin, and montmorillonite. Preprocessed spectra were used to predict 
the SOC in the soil cores using partial least square regression (PLSR) and support 
vector machine (SVM) algorithm. The SVM models (average values of RMSEP and 
R2 of 8.31 g·kg−1 and 0.84, respectively) performed better in predicting the SOC 
concentration under different land cover types than the PLSR models (average val-
ues of RMSEP and R2 of 12.41 g·kg−1 and 0.70, respectively). The prediction of 
forest soil had the highest prediction accuracy, followed by the total dataset and 
finally the shrub meadow subset.

Janik et al. (2007) applied MIR spectroscopy and partial least square analysis to 
predict the concentration of soil organic carbon. The PLS calibrations were derived 
from a standard set of soils that had been analyzed for total organic carbon (TOC), 
particulate organic carbon (POC), and charcoal carbon (char-C) using physical and 
chemical means. PLS calibration models from this soil standard set allowed the 
prediction of TOC, POC, and char-C fractions with a coefficient of determination 
(R2) of measured and predicted data ranging between 0.97 and 0.73. For the POC 
fraction, the coefficient of determination could be improved (R2 = 0.94) by using 
local calibration sets. The capacity to estimate soil fractions such as char-C rapidly 

Fig. 3.4 Absorbance spectra at different depths with different contents in one soil core of shrub 
meadow in the VNIR and MIR regions. (Jia et al. 2017)
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and inexpensively makes this approach highly attractive for studies where large 
numbers of analyses are required. Inclusion of a set of soils from Kenya demon-
strated the robustness of the method for total organic carbon and charcoal carbon 
prediction. Baldock et  al. (2013) combined diffuse reflection MIR spectra with 
PLSR analysis to predict soil carbon content and composition. Total organic and 
inorganic carbon contents were determined with MIR spectra acquired for 20,495 
soil samples collected from 4526 locations from soil depths to 1 m within Australia’s 
agricultural regions. It was found that the degree of soil dryness and grinding of soil 
samples had a great impact on the test results. Therefore, the grinding time was 
standardized in the study, and prediction of total carbon, organic carbon, and inor-
ganic carbon was achieved. Compared with the traditional laboratory method, the 
MIR method provided a faster and more economical method for detecting the soil 
carbon and total nitrogen content in soil.

3.2.3  LIBS Sensing Technology for Soil Nutrients

 1. Working Principle of LIBS.

Laser-induced breakdown spectroscopy (LIBS) is a promising spectral detection 
technology with high sensitivity, fast speed, and the ability to measure multiple ele-
ments simultaneously. As early as 1994, scientists at the International Association 
for Remote Sensing Science announced that they had successfully detected As, Cd, 
Cr, Hg, Pb, Zn, and other metal elements in soil using LIBS technology (Alexander 
et al. 1994). In the soil nutrient detection, it can be used for the detection of metal 
nutrient elements, such as potassium, calcium, and cuprum. At present, in the pro-
cess of detecting heavy metals in the soil by LIBS, a single pulsed laser is generally 
used to excite soil samples to generate plasma, and the detection sensitivity obtained 
is generally tens of mg/kg, and some metals with high sensitivity can reach sev-
eral mg/kg.

The working principle of LIBS is to use high-energy laser pulses to directly hit 
the surface of the sample, forming a high-intensity laser spot (plasma) on the sur-
face of the analysis material and exciting the elements to be tested to a high-energy 
state. When outer electrons of the element atoms move into the ground state, their 
characteristic spectra will be emitted and then detected by a spectrometer. By com-
paring the detected spectrum to elemental spectrograms in the standard spectral 
library, the content of elements contained in the soil sample can be obtained.

In the calculation process, it is generally considered that the content of each ele-
ment in the plasma is the same as that in the sample before ablation. The intensity 
of the radiation spectrum when an atom transitions from the k-level to the i-level 
(Iki) is
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where h is the Planck constant, vki is the frequency of spectral lines, N is the number 
of excited particles, gk is the k-level statistical weight, Aki is the probability of atomic 
transition from k-level to i-level, Us(T) is the distribution function of elements at 
temperature T, Ek is the k-level potential energy, K is the Boltzmann’s constant, and 
T is the Calcination temperature. When the characteristic spectral line of the speci-
fied element is detected, the vki, gk, Aki, T, Us(T), Ek, and k have certain values, and 
the number of excited particles N is proportional to the content of the test element 
in the sample (C), so the above formula can be rewritten as

 I aCb=  (3.6)

where a is proportionality coefficient and b is self-absorption coefficient, which is 
related to the content of the element to be measured. According to this formula, the 
element content in the soil sample can be calculated by the intensity of the charac-
teristic line of the element, providing a theoretical basis for the quantitative detec-
tion of the element in soil.

 2. Theoretical Basis of Soil Nutrient Detection with LIBS.

A typical experimental platform system for LIBS is mainly composed of a laser, 
a spectral information acquisition system (a spectrometer and a detector), digital 
pulse delay generators, and accessory devices (sample stage, energy meter, com-
puter, etc.). Figure 3.5a shows the composition of a typical LIBS system (Yu 2016; 
Yu et al. 2019). The laser is the energy source of the LIBS system and can provide 
energy to excite the sample and generate plasma. The acquisition system consisting 
of a spectrometer and a detector is used to collect the radiation spectrum of laser- 
induced plasma and perform photoelectric conversion for digital analysis. The digi-
tal pulse delay generator is used to control the delay time of the spectrometer 
detector relative to the laser pulse, and the computer is applied to conduct the setup 
of working parameters and subsequent data processing of each component. Yu 
(2016) obtained that a spectral curve of soil added some heavy metals in the range 
of 270~850 nm by the experiments (Fig. 3.5b). It can be seen that the emission lines 
of most metal elements are distributed in the range of 270~450 nm. The emission 
spectrum of elements such as Fe, Mg, Si, Ca, Ti, Al, Pb, Cd, Na, Li, N, K, H, and O 
can be observed in the entire spectrum, and the wavelengths of the atomic spectrum 
and the ion spectrum correspond to specific elements, and the spectral signal inten-
sity has a certain quantitative relationship with the corresponding element content. 
Generally, the same element produces multiple emission lines with different wave-
length positions and different intensities. However, the quantitative prediction of an 
element is mainly based on data analysis in a single band in practical applications, 
that is, only the intensity data of a certain spectral line needs to be selected to predict 
the element content in the soil.

In addition, there are also O and N emission lines in the spectrum diagram, some 
of which are due to the breakdown of a large amount of O2 and N2 in the air and 
others are due to the presence of O and N in the soil. For the low content of ele-
ments, although characteristic spectral lines are detected under this test condition, 
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Fig. 3.5 Soil analysis based on LIBS analytical system (Yu 2016; Yu et al. 2019) (a) Representative 
LIBS analytical system for soil analysis (b) Spectral curve of soil added some heavy metals in 
270~850 nm

the signal is weak and unstable at low concentrations. Besides, some trace elements 
in the soil are below the detection limit of LIBS, and other elements are distributed 
outside the effective band of the spectrometer, so their stable characteristic lines 
cannot be detected under these experimental conditions.

 3. Applications of LIBS in Soil Sensing.

The common nutrition elements in the soil are C, N, P, K, Si, S, Ca, Mg, etc. 
These elements promote the healthy growth of plants and are also a basic guarantee 
for maintaining normal physiological activities of crops. Therefore, the content of 
these elements determines the level of soil fertility.
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 (i) Detection of C Content in Soil.

Carbon (C) element is one of the most basic constituent elements of the soil. Its 
content is directly related to the water-holding capacity of the soil and reflects the 
fertility and other characteristics of soil. As a fast and nondestructive method of 
spectrochemical analysis, LIBS technology has attracted the attention of many 
researchers, letting them use it to analyze and detect carbon in soil.

Cremers et al. (2001) first applied LIBS spectroscopy to measure soil organic 
carbon content. A 1064 nm laser wavelength was used to detect soil organic matter 
in some farms and woodlands in Colorado and New Mexico. The detection limit of 
LIBS is 300 mg·kg−1, and the precision is 4~5%. With further research, Martin et al. 
(2003, 2010) explored the effect of key detection parameters, including laser wave-
length and excitation energy, as well as univariate and multivariate methods on 
detection accuracy, in order to build a robust calibration model to predict soil 
organic carbon concentration. The carbon signal of LIBS at 247.8 nm measured on 
20 pellets from each homogenized soil sample was shown to be highly correlated 
(coefficient of determination, R2 = 0.962) with the organic carbon content measured 
by dry combustion using an elemental analyzer. Glumac et al. (2010) successfully 
explored a method to avoid the interference of neutral and single ionized Fe lines to 
the standard detection line of LIBS at 247.8 nm. A low-power Nd:YAG laser with a 
wavelength of 532 nm was used to optimize the high dispersion of the LIBS signal 
and time-gating strategy to minimize interference signals and maintain a high 
signal- to-noise ratio. Martin et  al. (2013) used LIBS technology combined with 
multivariate data analysis methods to distinguish total carbon (TC), inorganic car-
bon (IC), and organic carbon (OC) in 58 soil samples from 5 places. The results 
showed that the correlation coefficients of TC, IC, and OC contents predicted by 
LIBS are 0.91, 0.87, and 0.91, respectively. Izaurralde et al. (2013) used LIBS tech-
nology, diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS), and 
inelastic neutron scattering (INS) methods to determine the carbon content of field 
soil, and these three methods have achieved ideal measurement results.

 (ii) Detection of Kalium Content in Soil.

Kalium (K) is one of the important nutrients in the soil and plays a significant 
role in plant growth. The nutritional functions of K on plants include promoting the 
activation of various enzymes in plants; improving photosynthesis, sugar metabo-
lism, and protein synthesis; and enhancing the plant’s ability to resist drought, cold, 
and pests. Dong et al. (2013a, b) analyzed the farmland soil with K content between 
8.74 and 34.56 g·kg−1 by using the LIBS technique at 766.49 nm spectral line and 
established a quantitative model for predicting K content in soil. The correlation 
coefficient of the quantitative model is 0.935, and the predicted standard deviation 
is 9.26%. Meng et al. (2014) used a pulsed laser with a wavelength of 1046 nm as 
the excitation light source to study the spectral characteristics of potassium in soil. 
A spectral line of 769.9 nm was used as the analysis line of potassium. The optimal 
detection delay was 1 μs and the optimal gate width was 5.2 μs. The prediction 
curve of the soil K was obtained, and the relative error between the predicted value 
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and the true value was less than 5%. The results of this study provide a theoretical 
foundation for rapid and on-site quantitative detection of K element in soil.

In order to meet the urgent needs of online detection of soil K nutrients in the 
field, Zhang et al. (2014) designed a system for online detection of soil nutrients 
based on LIBS (Fig. 3.6) and carried out an experimental study of rapid determina-
tion of soil nutrients. The results showed that the characteristic absorption spectrum 
of soil potassium was at the wavelengths of 766.49 nm and 769.90 nm. The potas-
sium nutrient content was positively correlated with the intensity of the specific 
wavelength, but when the mass fraction of potassium was greater than 0.3%, there 
was a significant self-absorption, and the relationship between potassium content 
and spectral intensity became nonlinear. The determinate coefficient of the model 
was 0.9337, the root mean square error was only 0.2761, and the minimum detec-
tion limit of soil potassium nutrients was 212 μg/g, which met the requirements for 
online detection of soil potassium nutrients.

 (iii) Detection of Other Elements in Soil.

For other nutritional elements, such as N, P, and Ca, researchers have also 
obtained rich research findings using LIBS technology. Lu et al. (2013) used the 
calibration curve method to establish the relationship model between the intensity 
of LIBS spectrum and the contents of total nitrogen (TN) and total phosphorus (TP) 
in soil, indicating that there is a close correlation between them: the correlation 
coefficient of TN is 0.981, and the correlation coefficient of TP is 0.868. Dong et al. 
(2013a, b) studied the characteristics of N element with LIBS spectrum. The laser 
energy had an influence on the detection results, and the correlation coefficient 
between N content and the intensity of LIBS spectral lines is 0.996. Hussain et al. 
(2007) conducted a study on the distribution of nutrient elements in greenhouse 
soils using LIBS technology. Using the calibration curve method, the content of Ca, 

Fig. 3.6 Structure of soil nutrient detection system of LIBS. (Zhang et al. 2014)
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K, P, Mg, Fe, S, Ni, and Ba in the soil samples was measured as 12, 9, 7, 9, 7, 10, 8, 
and 12 mg·kg−1, respectively. Wang et al. (2017) used LIBS technology to quantita-
tively detect nutrients in soil. An Nd:YAG pulsed laser with an output wavelength of 
1064 nm and a pulse width of 5.82 ns was used as the light source. Based on the 
traditional LIBS system, a beam expander system and a real-time monitoring sys-
tem were added; as a result, a cage-type LIBS system was developed to optimize the 
laser focus position of the beam expander system in the cage structure, and an opti-
mal laser focus position of 0.2 cm was obtained. The contents of Cu, Mn, Mg, and 
K in the soil were quantitatively analyzed. Their detection limits were 0.42 × 10−6, 
13.2 × 10−6, 38.5 × 10−6, and 62 × 10−6, respectively, which was better than that of 
the traditional LIBS systems. The mass fractions of Cu, Mn, Mg, and K elements in 
the soil were predicted, and the average relative errors of their predicted values were 
9.2%, 9.6%, 8.5%, and 10.9%, respectively.

LIBS method has the advantages of short analysis time, acceptable detection 
limit and high accuracy, etc. However, the effects of different soil properties, such 
as texture, carbonate, total soil C, moisture, clay mineralogy, and silicon content on 
LIBS measurements, should be studied more extensively. In addition, the potential 
of field portable LIBS instruments to measure soil nutrients in situ and in complete 
soil profiles should be explored in future studies to expand the applicability of LIBS 
detection to soil nutrients.

3.2.4  Multispectral and Hyperspectral Imaging Sensing 
Technology for Soil Nutrients

Vis/NIR spectroscopy has been rapidly popularized to detect soil properties, because 
it can not only detect the organic components of the soil but also identify the min-
eral components and the texture of the soil; meanwhile, the detection speed is much 
faster than traditional methods. However, the spectral analysis technology can only 
obtain the point spectral information of the sample, and the spectral information 
acquired is not comprehensive. Hyperspectral imaging technology has the dual 
advantages of both spectral analysis and image analysis technologies and can obtain 
the spectral information, planar information, and spatial information of the detec-
tion object simultaneously. It can accurately collect information of each pixel at a 
minimum of nanometer level, and the information obtained is more comprehensive, 
specific, and accurate.

Sorenson et al. (2018) used a SisuROCK automated hyperspectral imaging sys-
tem in laboratory to detect soil organic carbon (SOC) and total nitrogen (TN) con-
tent in discrete, intact, and unground soil and evaluated the potential of spectral 
imaging technology to replace traditional chemical analysis for predicting spatial 
distributions of soil components. After completing the spectral detection, soil sam-
ples were analyzed for SOC and TN concentrations by dry combustion. Spatial 
variation of carbon and nitrogen was determined using Moran’s I and comparisons 
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of spatial variations among soil types. The TN in turn showed more aggregation for 
all soil types and horizons compared to SOC. In this study, imaging spectroscopy 
was successfully used to measure and characterize the spatial variability of SOC 
and TN at the soil aggregate scale.

Hyperspectral remote sensing technology has been applied to soil detection due 
to its extremely high spectral resolution. Qualitative and quantitative detection on 
soil nutrient using remote sensing technology began in the 1960s. Various compo-
nents in the soil have characteristic absorptions in the range of the solar reflection 
spectrum, so the relationship between soil components and absorption spectra can 
be used to predict the material composition in soil. The development of spectral 
remote sensing makes it possible to quickly and widely obtain soil physical and 
chemical information. Zhang et  al. (2019a, b) used remote sensing methods to 
determine spatial distribution of soil total nitrogen (STN). A random forest (RF) 
model was used to estimate the spatial distribution of STN content by combining 21 
prediction factors such as the original band (O), the normal spectral index (S), the 
red edge index (R), and the environmental variable (E). The results indicated that 
the best prediction performance can be obtained by combining the RF model with 
the original band, normal spectral index, red edge index, and environmental variable 
(O + S + E + R). The RF-based remote sensing method proposed in this research can 
accurately capture the change of STN, and the performance of the prediction model 
can be improved by providing appropriate prediction factors. Lu et al. (2018) evalu-
ated the detection method of organic matter (SOC) based on remote sensing imag-
ing from land satellites, and the spatial distribution and dynamic changes of organic 
matter were analyzed using random forest (RF) and geographic weighted regression 
(GWR). The results show that the root mean square error of RF was 4.6 g/kg in 2008 
and 4.4 g/kg in 2013, which is better than the GWR prediction model.

3.3  Instruments of Soil Nutrient Detection

Applying spectroscopic techniques to detect physical and chemical parameters of 
soil can not only reduce the time and cost of analysis but also realize the in situ and 
real-time detection of soil information, which is conducive to promote the applica-
tion of precision agriculture. At present, scientists engaged in the research of soil 
fertility management and agricultural information technology have developed vari-
ous forms of soil testing instruments based on spectral technology, such as portable, 
vehicle-mounted, and remote sensing devices. Through these devices, it is conve-
nient to implement comprehensive, full-range, all-weather, and real-time monitor-
ing of soils from three spatial dimensions of ground, air, and satellite, providing a 
prerequisite for intelligent on-demand variable operations and ensuring increased 
grain production and efficiency.
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3.3.1  Portable Instruments of Soil Nutrient Detection

Vis/NIR spectroscopy is efficient to detect the soil temperature, humidity, organic 
matter, nitrogen, phosphorus, potassium, and other components. Based on the spec-
troscopy, various portable soil devices have been extensively researched, which can 
realize an in situ and real-time detection of soil parameters. Sudduth and Hummel 
(1993) developed a portable real-time soil sensor, which was mainly used to mea-
sure the organic matter content in the soil surface. Figure 3.7 shows the structure 
diagram of the portable instrument, which is mainly composed of three parts: light 
source, beam splitting, and measurement unit. The light source consists of a light 
bulb and a focusing lens, where the light bulb is an iodine tungsten lamp and can 
stably provide light source of Vis/NIR. The main components of the beam splitting 
are an entrance slit, a focusing lens, a filter disk, an angle sensor, and an optical fiber 
entrance port. Among them, the key component is the filter disk, which can be 
rotated by a drive motor to continuously produce rays of 1650~2600 nm, and the 

Fig. 3.7 Portable soil sensor. (Sudduth and Hummel 1993)
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spectral resolution is below 55 nm. The measurement unit mainly includes an exit 
port of optical fiber, quartz plates, a sample box, and a photosensor. The photosen-
sor provides stable photoelectric response in a wide spectral range of visible and 
near infrared, which is used to obtain the soil reflective spectrum and then achieve the 
prediction of soil organic matter content.

Li et  al. (2010) developed a portable device for organic matter measurement, 
which could detect soil organic matter up to a depth of 30  cm. This measuring 
instrument was mainly composed of an optical module and an electronic module. 
The optical module included a light source, an optical signal transmission fiber, and 
a photoelectric conversion device. The electronic module included a driving circuit 
of light source, an amplifying circuit, an A/D conversion circuit, a liquid crystal 
display, a storage circuit of U disk, etc. (Fig. 3.8). The device used 850 nm LED as 
the light source. In order to minimize the energy consumption of incident and 
reflected light, a Y-type glass fiber was designed for input and output of the light 
source. When working, the probe was inserted into the soil to form a closed space, 
and then the rays from the light source was transmitted to the top of the probe and 
illuminated the soil around. The diffuse reflection rays from the soil were transmit-
ted to the photoelectric conversion device, and the generated current was sent to the 
circuit unit for amplification, filtering, and storage. Under the condition of natural 
soil samples (about 20% moisture content), the coefficient of determination between 
the spectral absorbance and the content of soil organic matter was 0.950, and as for 
dry soil samples, the coefficient of determination was 0.982.

Based on the measurement device of soil organic matter above, An et al. (2012) 
developed a portable soil analyzer to obtain nitrogen content. The number of wave-
lengths used was increased from 1 to 7 wavelengths: 1550, 1450, 1300, 1200, 1100, 
1050, and 940 nm. Its schematic diagram is shown in Fig. 3.9. When it is working, 
the probe is inserted into the soil and the code disk rotates sequentially to get the soil 

Fig. 3.8 Structure of soil detection device for organic matter. (Li et al. 2010)
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Fig. 3.9 Schematic diagram of portable tester for soil nitrogen content. (An et al. 2012)

Table 3.1 Measurement result using ASD and portable detection equipment. (Zhang 2015)

ASD instrument Method Wave 
number

Modeling set Prediction set

SPA-LS- 
SVM

5 R2 RMSEP R2 RMSEP RPD
0.80 0.0038 0.80 0.0031 2.26

Portable detection 
equipment

Method Wave 
number

Modeling set Prediction set

SPA-LS- 
SVM

15 R2 RMSEP R2 RMSEP RPD
0.63 0.0079 0.62 0.0080 1.57

reflectance at 7 wavelengths, and then the total soil nitrogen content was obtained 
according to the established prediction model of soil nitrogen. The experimental 
results showed that the correlation coefficients of calibration and prediction for soil 
total nitrogen were 0.81 and 0.80, respectively.

Zhang (2015) developed a set of portable detection equipment for soil nutrient 
using hyperspectral analysis of Vis/NIR.  The hardware part of the equipment is 
composed of the chassis shell, optical fiber, voltage conversion module, light source, 
drive circuit, integrated development board, power supply, touch screen, etc. The 
software part consists of the function loading module, spectrum acquisition module, 
data preservation module, display module, and parameter setting module. The core 
hardware component of the soil detection device is a USB4000 spectrometer. The 
optical fiber used for data collection is a Y-shaped optical fiber, which can also be 
replaced by two independent optical fibers (one for collecting data and one for 
receiving data). Then, a quantitative prediction model of near-infrared spectrum for 
soil total nitrogen (STN) content was established based on characteristic wave-
lengths. The results of portable instrument and ASD instrument to detect STN were 
shown in Table  3.1. The accuracy of portable instruments is inferior to ASD 
(350~2500 nm wavelength range) instruments, which is largely due to the size of 
the core component USB4000 which is only about a quarter of the ASD spectrom-
eter, and the noise of the spectral data collected by the USB4000 spectrum is signifi-
cantly greater than the spectral data obtained by the ASD.
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3.3.2  Airborne Equipment of Soil Nutrient Detection

The UAVs (unmanned aerial vehicles) combined with remote sensing technology 
can quickly obtain the spectral data of soil and plants and achieve a monitoring of 
soil nutrients or plant growth information in large scale. UAVs can be classified as 
multi-rotor drones, fixed-wing drones, and helicopters according to the types of the 
flying platform (Fig. 3.10a). Multi-rotor drones have the most applications in soil 
remote sensing due to their simple control, no need for special runways to take off 
and land, and capability of hovering in the air after takeoff. In the field of consumer 
drones, the companies such as DJI and Parrot already have mature flight control 
platforms of multi-rotor drones, which can be conveniently equipped with various 
airborne cameras for remote sensing of soil nutrients. In addition, the drones gather 
spectral data by push broom scanning or hovering. In the push broom scanning 
mode, the drone takes continuous images of the soil while flying. After the acquisi-
tion is completed, image stitching and correction are conducted to complete a 
remote sensing image. In this mode, the data collection efficiency is high, but the 
data processing is troublesome. Under the hovering mode, the drone hovering in the 
air obtains a whole spectral image of the soil directly and does not require complex 
splicing in subsequent research work. However, its image acquisition efficiency is 
relatively low compared to the drone of push broom scanning (Fig. 3.10b).

In the actual soil information detection, the corresponding airborne equipment 
should be selected for remote sensing tasks according to the target component of the 
soil. RGB camera can be used to detect soil texture, type, organic matter, and other 
components. Vis/NIR camera can detect soil nitrogen, phosphorus, potassium, cal-
cium, magnesium, aluminum, and other components. Thermal infrared camera can 
detect the surface temperature and humidity of soil, and Lidar can analyze the tex-
ture and terrain of the soil in three dimensions. Guo et  al. (2019) used Vis/NIR 
remote sensing technology combined with partial least square regression model to 
predict the soil organic matter composition and obtained high prediction accuracy. 

Fig. 3.10 Remote sensing based on UAVs for soil nutrient detection (a) Platforms and airborne 
equipment (b) Hovering method and airborne camera
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Quebrajo et al. (2018) applied drone thermal infrared remote sensing technology to 
detect the water content of the soil, demonstrating the technological feasibility for 
the intelligent irrigation of sugar beets.

3.3.3  Satellite-Based Equipment for Soil Nutrient Detection

A satellite remote sensing system usually consists of satellites in the space and 
ground stations and client applications in the ground. The satellites are used to col-
lect spectral information from Earth’s surface at large scale and send the data to the 
ground stations. After that, the data are transmitted to the users by the ground station 
and then are processed and analyzed for obtaining remote sensing images. Satellite- 
based equipment is a key instrument for sensing soil nutrients. There are many 
forms of equipment that can be mounted on satellites, such as visible, NIR, and MIR 
cameras, multispectral scanners, and microwave radiometers. At present, satellite- 
based sensors are developing in the direction of multi-spectrum, multi-polarization, 
miniaturization, and high resolution.

Countries around the world have launched their own remote sensing satellites. 
Typical satellites that can be used for agricultural remote sensing are shown in 
Table  3.2. These satellites are equipped with Vis/NIR bands that can be used to 
detect soil nutrients or other soil properties. The spatial resolution is 10~30 m, and 
the revisit period is 4~44 days, which meets the needs for a wide range of soil moni-
toring. Zhai (2019) used GF-1 and Landsat 8 satellites to detect the organic content 
of soil. The results show that the reflectance of remote sensing images in the visible 
and NIR bands is significantly related to soil organic matter, and remote sensing 
images from Landsat 8 and GF-1 have similar prediction capabilities for organic 
matter. However, considering that GF-1 has higher spatial resolution and shorter 
revisit periods, it can replace the commonly used Landsat 8 to detect soil organic 
matter content. Zhang et al. (2019a, b) applied five satellites to observe soil mois-
ture, which not only improved the spatial coverage of daily observations but also 
improved the accuracy of predicting soil moisture: the accuracy of soil moisture 
detection increased by 57.7% in Anhui Province, China, and 9.1% in Central 
Tibet, China.

Table 3.2 Parameters of main satellites

Model
Spatial 
resolution (m)

Waveband (nm) Revisit 
period 
(day) CountryBlue Green Red NIR

GF-1 16 450 ~ 520 520 ~ 590 630 ~ 690 770 ~ 890 4 China
Landsat 8 30 450 ~ 515 525 ~ 600 630 ~ 680 845 ~ 885 16 USA
SPOT-5 10 / 495 ~ 605 617 ~ 687 780 ~ 893 26 France
JERS-1 18 / 520 ~ 660 630 ~ 690 760 ~ 860 44 Japan
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Due to the influence of atmospheric conditions, data quality, and applicability of 
inversion models, it is difficult to achieve a prediction accuracy of more than 90% 
with only one satellite for the detection of soil parameters. Integrating multiple 
satellites to detect soil nutrients is one of the methods to improve the detection accu-
racy. In addition, in the study of satellite remote sensing for soil information, more 
research should be focused on parameter optimization and calibration methods of 
inversion models in order to further improve the sensing accuracy of soil by 
satellites.

3.3.4  Sensors in Internet of Things of Soil Nutrient Detection

Sensors, such as moisture, temperature, and nutrient sensors, are commonly used 
for monitoring soil characteristics in Internet of Things (IoT). The soil information 
monitored is transmitted to the cloud via wireless networks of Zigbee, Bluetooth, or 
WIFI, and then users can remotely retrieve soil data in cloud for obtaining the soil 
moisture and nutrient content to develop irrigation and fertilization strategies 
(Fig. 3.11).

In the detection of soil information, there is a requirement for monitoring soil 
moisture in real time and around the clock. Zhang et al. (2009) used Zigbee to con-
nect soil moisture sensors and meteorological sensors to the network and developed 
an automatic monitoring and irrigation system for soil management based on fuzzy 
control algorithm. The wireless sensor network system is shown in Fig. 3.12. The 
system obtains real-time humidity of the soil and meteorological information such 
as ambient light, temperature, and wind speed. The established mathematical model 
calculates the moisture evaporations of soil and farmland, and then the intelligent 

Fig. 3.11 Soil sensors of IoT
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Fig. 3.12 Information flowchart of wireless sensor network system. (Zhang et al. 2009)

decision-making system takes the two evaporation values as the input parameters of 
irrigation system to spray the crops on demand. Its saving effect of water is 
significant.

3.4  Summary

The detection method of Vis/NIR spectroscopy has achieved high accuracy for pre-
dicting soil nutrients such as nitrogen, phosphorus, potassium, and organic matter 
content. Therefore, developing portable soil detectors as well as airborne- and 
satellite- based sensors based on Vis/NIR spectroscopy for rapidly detecting soil 
nutrients will play an important role in the extension of precision fertilization by 
soil testing. LIBS has a strong ability of detecting heavy metals in soil and is there-
fore a promising technique for soil nutrient detection. Revealing the absorption 
characteristics of LIBS under different soil types, structures, and components is the 
research focus that needs to be carried out.
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Chapter 4
Application of Soil Sensing in Precision 
Agriculture

Sakae Shibusawa, Masakazu Kodaira, Eiji Morimoto, and Minzan Li

Abstract Soil mapping technologies are required to visualize spatial and temporal 
variability between fields or within field. Proximal and nondestructive soil sensing 
coupled with GPS using visible and near-infrared (Vis-NIR) spectroscopy or elec-
trical conductivity sensor (soil EC) is a promising approach. A series of tractor- 
mounted soil-analyzing systems based on Vis-NIR spectroscopy were developed. 
The structure of the systems is mainly composed of a connection unit (three-point 
hitch structure), a sensing unit, and a soil penetration part. In the sensing unit, a Vis- 
NIR spectrometer (NIR enhanced: 310–1100 nm, 3.1 nm/pixel interval), a halogen 
lamp, thermometers, and a personal computer are installed. The load cell provides 
cutting resistance measurement and automatic retreat function of the soil- penetrating 
part due to overloading. In the sensor probe box, a color microcamera head, a radia-
tion/light-concentrating fiber, a displacement meter, and an air blow head are 
equipped. Estimation models of 33 soil parameters, including moisture content, 
total carbon, total nitrogen, and soil organic matter, were established with the spec-
tral reflectance data obtained by the tractor-mounted soil-analyzing systems. The 
result shows the higher multiple calibration accuracy. A smart rice transplanter was 
developed, which could measure soil EC (apparent electrical conductivity) and top-
soil depth. The fertility of the soil varies due to uneven distribution of compost or 
soil conditioner, and these variations will result in crop lodging at harvest time. The 
smart rice transplanter developed solves this lodging problem with soil EC data and 
performs real-time variable fertilizer application.
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4.1  Tractor-Mounted Soil Analysis System Based 
on Vis-NIR Spectroscopy

4.1.1  Soil Sensing Instruments Based on Vis-NIR Spectroscopy

Precision agriculture (PA) aims to improve agricultural profitability and productiv-
ity (yield, quality, farming, etc.), as well as protecting environment. It has been 
enabled by the rapid development and spread of GNSS (Global Navigation Satellite 
System), GIS (Geographic Information System), and ICT (Information and 
Communications Technology).

To practice PA, the required technologies include field mapping technology to 
visualize spatial and temporal variability between fields or within field, variable- 
rate technology to perform farming work corresponding to the variability, and deci-
sion support system to solve complex problems and requirements. Especially, field 
mapping technology is the basis of PA. The technological feature of PA is to accu-
rately record the spatial and temporal variability of soil, crop, yield, etc., to realize 
site-specific field management at low cost using field maps.

In terms of soil analysis, soil samples are collected from the field and analyzed 
by official method. The problems are the cost, analysis period, and labor for a large 
number of soil samples with location information collected for analysis of multiple 
properties to support the PA practice, and few growers are willing to adopt soil 
analysis for each cropping. The analysis period has been shortened compared to the 
official method by the development of a simple soil analysis method, which contrib-
uted to the improvement of soil analysis business. However, when crops with a short 
period from harvesting to sowing were cultivated in same field, it was difficult to 
plan and distribute fertilizer based on the soil analysis result using soil samples col-
lected after harvest. The problems of labor and cost consuming on the grower side 
have not been improved.

To overcome these problems, development of soil sensing devices has been car-
ried out using electrical, electromagnetic, acoustic, pneumatic, and optical tech-
nologies. It has been reported that spectroscopic technology using visible (Vis), 
near-infrared (NIR), and infrared (IR) soil reflectance is nondestructive, rapid, and 
cost-effective, with high accuracy compared to other soil sensing technologies 
(Adamchuk et al. 2004). The purpose to introduce spectroscopic technology in soil 
analysis is to improve price-performance ratio, which has more rapid and higher 
efficiency than the official and simple soil analytical method. In addition, the pre-
dicted values are required to be absolute quantitative values, with the accuracy at a 
level equivalent to the official method. The mainstream of soil spectroscopic analy-
sis is to measure the soil diffuse reflectance spectra using a spectrophotometer 
installed in laboratory. As a result, the problems on the analysis business side have 
been improved. But the problems on the grower side, such as labor consuming in 
soil sampling with location information and sample drying and 2 mm sieving pre-
treatment work, have not yet been considered. The new problems are that the instru-
ment is expensive, and it is necessary to analyze regression coefficient for each soil 
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type and each soil property. The number of soil properties is limited, and accuracy 
is low for nitrogen, phosphorous, and potassium which are required for fertilization 
design (Dalal and Henry 1986; Matsunaga and Uwasawa 1992a, b, 1993; Chang 
et al. 2001; Viscarra Rossel et al. 2006).

In order to measure a large amount of soil diffuse reflectance spectra with posi-
tion information using a spectrophotometer without soil sample collection, field 
measurement-type (field-type hereinafter) spectrophotometers have been developed 
which can simultaneously measure the soil diffuse reflectance and position informa-
tion in a field. When measuring raw soil sample spectra, the difference in water 
content greatly influences the spectra in the infrared region. Therefore, the field- 
type spectrophotometers have been developed which equipped with spectroscopic 
sensors sensitive in Vis-NIR wavelength range that is less affected by soil moisture 
(Shibusawa et al. 2000a, b; Mouazen et al. 2007; Christy 2008). As a result, the 
problems on both grower and analysis business sides have been improved. However, 
as “new problems” to the laboratory spectrophotometer, the countermeasures for 
that the field-type spectrophotometer cannot be used in fields such as slope, orchards, 
and forest have not been considered. In field measurement, diffuse reflectance spec-
tra from other substances than soil, such as gravel and crop residues, may cause 
prediction errors. In addition, the soil diffuse reflectance spectra used to estimate the 
regression coefficient in previous studies were measured from dried and 2  mm 
sieved soil. The diffuse reflectance spectra of raw soil measured in a field have to be 
analyzed using a moisture correction coefficient (Christy 2008; Mouazen et  al. 
2014). In addition, the estimation errors of the regression coefficient and the mois-
ture correction coefficient have been the factors that reduced the prediction accuracy.

The field-type spectrophotometer is useful as the field soil mapping technology. 
But the mainstream is to use interpolation methods in commercially available soft-
ware such as GIS and Excel and the visualization method by grid-like soil mapping 
(Shibata 1999; Toriyama 2001; Umeda et  al. 2011; Kuang and Mouazen 2013). 
However, the software installation/maintenance is expensive, and data transfer, con-
version, and the setting process to display soil map are complicated. The variability 
status of multiple soil properties is difficult to confirm with growers immediately 
after the field observation, so it is lack in speed and convenience.

The soil property analyses for soil mapping are soil diagnostic properties (chem-
ical, physical, and biological) that are necessary for crop production. There are 
more than 20 chemical properties including general properties, trace elements, and 
nitrogen. In terms of physical properties, besides soil dry density which is important 
in fertilization design, soil textures (sand, silt, and clay) are indispensable for deter-
mining soil fertility. The biological properties have microorganisms and nematodes 
which are useful information. But types of them are countless, and the analytical 
method and cultivation guideline are not established. The microorganism in soil 
decompose organic component into nutrients that can be used by crops and prevent 
failures, improve physicochemical and biological properties of soil, improve crop 
productivity and quality, and purify the soil. Therefore, it is becoming an important 
farming decision information after the chemical fertilizer. In general, the purpose of 
soil analysis is to estimate the input of chemical fertilizer necessary for crop 
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production while reducing the environmental impact, and three properties, nitrogen, 
phosphorous, and potassium, are the target properties. The reason why multi- 
property soil analysis is recommended is due to the fact of “Dobeneck’s barrel” 
(Hans Arnold von Dobeneck) which proposed that crop growth is governed by the 
scarcest resource. Or the “Liebig’s law of the minimum” by Justus von Liebig, 
which suggests that crop growth rate and yield are dictated not by total nutrients 
available but only affected by the scarcest nutrient that provided to the crop (limit-
ing factor). In addition, the absorption of nutrients by crops is a synergistic effect 
promoted by other nutrients (when present in an appropriate amount), or when a 
certain nutrient is excessive, it may be an antagonist that suppresses or inhibits the 
absorption of other coexistence nutrients. These effects are also necessary to be 
considered. If it becomes possible to provide high-resolution soil maps rapidly with 
multiple properties, field management using right material with right amount at 
right time and location will be possible, which will be the basis for preventing 
excessive application of agricultural materials. Also, since various types of soil 
property maps are required according to the cultivation purposes of growers, the 
nondestructive prediction technology based on soil diffusion reflection spectra, 
which can provide multiple prediction values from a single measurement, is indis-
pensable in soil sensing device.

The results of soil sensing are not only used as field mapping technology for PA 
but also contribute to soil/field management in good agricultural practice (GAP) 
which established standards and procedures for food security and provide field 
information for integration/aggregation, consolidation of fields, and reuse of aban-
doned land. The 70% use of total freshwater in agriculture is an urgent need for 
improvement, and soil maps of moisture and physical property are used as consen-
sus building information to allocate freshwater resources efficiently and effectively 
(Hedley and Yule 2009; Mouazen et  al. 2014). This is a contribution to the 
Sustainable Development Goals (SDGs: 1, 2, 12, 13, and 15) to realize a sustainable 
world (Ministry of Foreign Affairs of Japan 2018). As one of the countermeasures 
against global warming, the carbon farming (Australian Government 2011) assesses 
the ability of soil carbon sequestration. The carbon credit trading conducted by the 
Chicago Climate Exchange based on Clean Development Mechanism (CDM) is 
expected to be a source of income of growers.

4.1.2  Tractor-Mounted Soil Analysis Systems

There are potable and tractor-/vehicle-mounted devices that can predict physio-
chemical soil properties from diffuse reflectance spectra measured in a field. It was 
USDA (US Department of Agriculture) (Sudduth and Hummel 1993) that made it 
possible to continuously measure diffuse reflectance spectra in a field by installing 
a spectrophotometer on a tractor or vehicle and after that the Tokyo University of 
Agriculture and Technology (TUAT, Japan) in 1999 (Shibusawa et al. 1999) and 
Catholic University of Leuven (CU of Leuven, Belgium) (Mouazen et al. 2005) in 
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2005. Veris Technologies (USA) in 2008 (Christy 2008), Poznan University in 2013 
(Poland) (Wojciechowski and Czechlowski 2013), Jacto (Brazil) in 2013, and 
University of Bonn (Germany) in 2015 (Rodionov et al. 2015) developed the test 
device, as shown in Table 4.1.

The measurement wavelength range of the USDA’s device was 1630–650 nm, 
the observation depth was 0.35–0.50 m, the observation speed was 0.65 m/s, and the 
method to estimate regression coefficients was partial least square regression 
(PLSR). The target soil properties were cation exchange capacity (CEC), organic 
matter (organic carbon), and soil water content. The prediction accuracy by labora-
tory measurement (using dry and moist soil) was R2 = 0.85–0.96. But the accuracy 

Table 4.1 Comparison of tractor-/vehicle-mounted spectrophotometer

Authors
Equipment 
(spectrometer)

Field measurement
Spectra data for 
calibration Multivariate 

analysis 
software

Soil depth Speed Measurement Soil
(m) (m/s) location condition

Sudduth and 
Hummel 
(1993), USDA

Prototype portable 
NIR 
spectrophotometer

0.035~0.05 0.65 Lab Dry The 
Unscrambler

Shibusawa 
et al. (1999, 
2000a, b) and 
Imade Anom 
et al. (2001), 
TUAT

RTSS-01
(MMS 1 and 
MMS)

0.15,
0.20~0.25

0.28
0.28

Field Fresh The S-Plus 
data analysis

Mouazen et al. 
(2005, 2007), 
CU of Leuven

Fiber-type NIR 
spectrophotometer
(Corona 45: MMS 
1 and MMS)

0.15 0.42 Lab Day The 
Unscrambler 
Ver.7.8

Christy (2008), 
Veris 
Technologies

On-the-go 
spectrophotometer
(NIR-128L-1.7- 
USB)

0.07 1.67 Lab Dry LabVIEW

Marín 
González et al. 
(2013)

Fiber-type NIR 
spectrophotometer
(AgroSpec: MMS 
1 and MMS)

0.15 0.83 Lab Dry The 
Unscrambler 
Ver.7.8

Wojciechowski 
and 
Czechlowski 
(2013), Poznan 
University

The combined soil 
measurement 
system
(AgroSpec: MMS 
1 and MMS)

– – Lab Dry The 
Unscrambler 
X

Jacto Jacto Soil Sensor
(Corona 45: MMS 
1 and MMS)

– – Field Fresh The 
Unscrambler 
Ver.9.8

Rodionov et al. 
(2015), 
University of 
Bonn

Mobile measuring 
chamber 
(AgroSpec)

0.05 0.83 Lab Dry ParLes 3.1
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extremely decreased when measured in a field while moving. It has been reported 
that the cause was due to the variations in the height of the observation surface and 
the sensor during the measurement. The purpose of raw soil diffuse reflectance 
spectra measurement is to obtain prediction values of soil physicochemical proper-
ties to create soil maps. However, there was no mechanism equipped to link the 
location information to the measured data, which did not lead to soil mapping.

The measurement wavelength range of the TUAT’s device was 400–1700 nm, 
the observation depth was 0.30 m, and the observation speed was 0.05 m/s. The soil 
at the spot where the soil diffuse reflectance spectra were measured in the field was 
collected, and the reflectance spectra of the raw soil were measured in laboratory 
using a spectrophotometer (Shimadzu, UV3100). The equivalence of the two mea-
surements was confirmed with correlation coefficient R = 0.98. The target properties 
were electric conductivity (EC), pH, nitrate nitrogen, soil water content, and soil 
organic matter. The method to estimate regression coefficient adopted single regres-
sion, and the accuracy from the spectra measured while moving was R = 0.44−0.93. 
Toward the problems of the USDA’s device, Shibusawa et al. (1999) combined the 
tip of a subsoiler, which could reduce soil resistance and stably operate even at high 
speeds, with a chisel which was superior in penetration and crushing even in hard 
field and equipped with a sensor head. The variation in the height of the observation 
surface and the sensor was suppressed, and stable diffuse reflectance spectra acqui-
sition was successfully conducted. In addition, RTK-GPS (Real-Time Kinematic- 
Global Positioning System) was installed to link “time and location” to “diffuse 
reflectance spectra.” This made it possible to link position information to the predic-
tion value calculated from the raw soil diffuse reflectance spectra. Since then, the 
developed devices have been equipped with DGPS (differential GPS) system in 
addition to the RTK-GPS system.

The measurement wavelength range of the CU of Leuven’s device was 
306.5–1710.9 nm, the observation depth was 0.15 m, the observation speed was 
0.33 m/s, and the regression coefficients were estimated by PLSR (Mouazen et al. 
2005, 2007). The target property was soil water content, with R = 0.98. For the 
regression coefficient estimation, a total of six types of soil diffuse reflection spectra 
were measured by adding water to dry soil from 0 to 0.25 kg/kg (0.05 kg/kg inter-
val). The soil diffuse reflection spectra measured from a field were not used in the 
estimation of regression coefficient.

The measurement wavelength range of the Veris Technologies’ device was 
950–1650 nm (Christy 2008), the observation depth was 0.07 m, the observation 
speed was 1.67  m/s, and the regression coefficients were estimated by principal 
component regression (PCR). The target soil properties were lime, organic carbon, 
exchangeable potassium, LBC (lime buffer capacity), soil water content, magne-
sium, manganese, available phosphorus, pH, and zinc. The soil diffuse reflectance 
spectra used in the regression coefficient estimation were based on dry soil spectra 
measured in laboratory. The highest prediction accuracy was organic carbon with 
R2 = 0.67. For the diffuse reflectance spectra measured in a field, they reduced the 
prediction error caused by moisture variation by previously analyzing a moisture 
correction model based on spectra difference between dry soil and moist soil.

S. Shibusawa et al.



81

The measurement wavelength range of the Poznan University’s device was 
400–1270 nm; the observation depth was 0.05 m; the observation speeds were 0.05, 
0.07, and 0.1  m/s; and the regression coefficient was estimated by PLSR 
(Wojciechowski and Czechlowski 2013). The target property was soil water con-
tent. The accuracies were R2 = 0.87–0.89 at constant and mixing speed.

The measurement wavelength range of the Jacto’s device was 400–700 nm, the 
observation depth was 0.06 m, the observation speed was 0.56 m/s, and the regres-
sion coefficients were estimated by PLSR. The target soil properties were pH, CEC, 
exchangeable potassium, exchangeable calcium, and available phosphorous.

The measurement range of the University of Bonn’s device was 410–2300 nm, 
the observation depth was 0.05  m, the observation speed was 0.83  m/s, and the 
regression coefficients were estimated by PLSR (Rodionov et al. 2015). The target 
soil properties were soil organic carbon and soil water content. The R2 were 0.84 
and 0.96, respectively. Although the observation speed was the highest, the moving 
was temporarily stopped when measuring the diffuse reflectance spectra.

The most used field spectrometers in the devices were MMS and MMS1 
(Table 4.1). The highest observation speed at the maximum observation depth of 
0.15 m was 0.83 m/s. The diffuse reflectance spectra used to estimate the regression 
coefficient were mostly based on dry soil in laboratory. The Unscrambler was used 
as the multivariate analysis software, and PLSR was used as the analysis method. 
The target soil properties in previous studies included nitrogen, phosphorus, and 
potassium. But the ranks of the regression coefficient were low, at C and D. The 
ranks were A and B only for soil water content, soil organic matter, and organic 
carbon (Table 4.2).

The commercialization of TUAT’s device was performed by the Shibuya 
Machinery Co., Ltd. (Shibuya Seiki Co., Ltd. at present). The measurement proper-
ties were soil water content, soil organic matter, total nitrogen, and EC. The general 
regression coefficient (which does not depend on the soil type and various compo-
nent concentrations) was not provided. The device commercialized by the Veris 
Technologies can perform soil mapping for soil organic matter and soil physical 
properties.

The problem is that it is necessary to analyze moisture correction equation when 
estimating regression coefficient using the diffuse reflectance spectra of dry soil. 
Moreover, high-accuracy, multi-property regression coefficient estimation has not 
been achieved.

4.1.3  Soil Analysis System (SAS) Series

The development of real-time subsoil optical sensor was started in 1997, and joint 
research was started in 1998 between the TUAT and Omron Corporation, Japan. 
The prototype was completed in 1999. A 01 model equipped with two spectrome-
ters of Vis-NIR range was developed in 2001, and 02 model of nine-wavelength 
spectroscopic types (552, 651, 738, 811, 926, 1003, 1303, 1457, 1650  nm) was 
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Table 4.2 Properties and prediction accuracy of tractor-/vehicle-mounted spectrophotometer

Items
Wavelength 
(nm)

Analysis 
method 
(F) N RMSE R2 RPD Rank Authors

pH 400–1700 SMLR 15 0.16 0.58 1.25 E Imade Anom et al. 
(2001)

306–1710 PLSR 
(12)

295 0.22 0.71 2.14 C Mouazen et al. 
(2007)

920–1718 PCR 106 0.44 0.62 1.64 D Christy (2008)
400–2100 PLSR 160 0.40 0.79 2.16 C Marín González 

et al. (2013)
Available 
phosphorus

920–1718 PCR 116 30.0 0.80 2.24 C Christy (2008)
306–1710 PLSR (9) 175 1.35 0.69 1.80 D Mouazen et al. 

(2007)
Exchangeable 
potassium

920–1718 PCR 106 107 0.60 1.54 D Christy (2008)

Exchangeable 
magnesium

920–1718 PCR 107 85.0 0.73 2.07 C Christy (2008)
400–2100 PLSR 160 0.38 0.69 2.44 C Marín González 

et al. (2013)
Exchangeable 
calcium

920–1718 PCR 105 750 0.82 2.32 C Christy (2008)
400–2100 PLSR 160 22.1 0.89 0.83 E Marín González 

et al. (2013)
Soluble zinc 920–1718 PCR 93 0.62 0.48 1.37 E Christy (2008)
Easily reducible 
manganese

920–1718 PCR 110 34.0 0.40 1.27 E Christy (2008)

Nitrate nitrogen 400–1700 SMLR 15 4.74 0.54 1.83 D Imade Anom et al. 
(2001)

Cation 
exchange 
capacity

1630–2650 PLSR 
(10)

30 3.91 0.85 – – Sudduth and 
Hummel (1993)

400–2100 PLSR 160 1.77 0.58 1.54 D Marín González 
et al. (2013)

Electrical 
conductivity

400–1700 SMLR 15 41.7 0.65 1.10 E Imade Anom et al. 
(2001)

Moisture 
content

1630–2650 PLSR 
(10)

30 1.69 0.96 – – Sudduth and 
Hummel (1993)

400–1700 SMLR 15 3.11 0.66 1.83 D Imade Anom et al. 
(2001)

306–1710 PLSR 348 0.02 0.89 3.00 B Mouazen et al. 
(2007)

920–1718 PCR 105 2.80 0.65 1.75 D Christy (2008)
400–2170 PLSR – 2.24 0.89 – – Wojciechowski 

and Czehlowski 
(2013)

410–2300 PLSR 120 1.99 0.96 5.03 A Rodionov et al. 
(2015)

(continued)
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Table 4.2 (continued)

Items
Wavelength 
(nm)

Analysis 
method 
(F) N RMSE R2 RPD Rank Authors

Soil organic 
matter

400–1700 SMLR 15 0.56 0.65 1.86 D Imade Anom et al. 
(2001)

920–1718 PCR 106 0.40 0.80 2.20 C Christy (2008)
Total carbon 306–1710 PLSR 173 0.27 0.73 1.92 D Mouazen et al. 

(2007)
Soil organic 
carbon

1630–2650 PLSR 
(10)

30 0.26 0.85 – – Sudduth and 
Hummel (1993)

410–2300 PLSR 120 0.73 0.84 2.53 B Rodionov et al. 
(2015)

N number of samples, PCR principal component regression, RMSE root mean square error, RPD 
residual prediction deviation (standard deviation/RMSE). Rank (Kuang et al. 2012): A (excellent), 
B (good), C (approximate quantitative prediction), D (distinguish between high and low), E 
(not usable)

developed in 2002 (Shibusawa et al. 2000a, b; Bodun et al. 2000; Imade Anom et al. 
2001; Kaho et al. 2004; Shibusawa et al. 2005; Roy et al. 2006). Patents associated 
with the device development (Japanese Patent Application No. Hei10-108862, 
No.2000-604663, No. 2001-322755, and No. 2002-169192) were transferred from 
the Omron Corporation to TUAT, and the license and technology were transferred 
to the Shibuya Machinery Corporation. In 2004, a promotion model of the tractor- 
mounted soil analysis system (SAS10001) (Fig.  4.1) was developed (Shibuya 
Machinery Co. Ltd. 2004; Shibusawa et  al. 2010; Kodaira and Shibusawa 2013, 
2016). SAS is custom-made systems, which have specification for large-scale field 
(SAS2000), specification for paddy field (SAS2500) (Fig.  4.2) (Kodaira and 
Shibusawa 2018), specification for woodlot (SAS2600), and specification with self- 
propelled lightweight (SAS3000) (Fig.  4.3). Since no regression coefficient was 
provided for soil property, the challenge is to secure human resources who can 
measure soil diffuse reflectance spectra and physicochemical properties and intro-
duce and operate software such as multivariate analysis and soil mapping.

 (1) SAS1000

SAS1000 (Fig. 4.1) is composed of a connection unit (three-point hitch struc-
ture), a sensing unit, and a soil penetration part (Fig. 4.1b), and the weight is 550 kg. 
In the sensing unit, Carl Zeiss’s Vis-NIR spectrometers (MMS1 NIR enhanced: 
310–1100  nm, 3.1  nm/pixel interval), a halogen lamp (Ushio Electric Co., Ltd., 
JCR15V150WBAL), thermometers (external air, spectrometer, control panel), and 
a personal computer (PC) are installed. The soil penetration part has vertical and 
horizontal cutting blades for soil cutting and removal and a chisel plow with a 

1 Disclaimer: Commercial products are referred to solely for the purpose of clarification and should 
not be construed as being endorsed by the authors or the institution with which the authors are 
affiliated.
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Fig. 4.1 Soil analysis system SAS1000 (a) SAS 1000 system, (b) Cross section of soil- penetrating 
part. (Shibusawa et al. 2010)
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Fig. 4.2 Soil analysis system SAS2500 (a) System SAS2500 (b) Cross section of soil- 
penetrating part
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Fig. 4.3 Soil analysis system SAS3000

sensor probe box. The load cell provides cutting resistance measurement and auto-
matic retreat function of the soil-penetrating part due to overloading. In the sensor 
probe box, a color microcamera head (Toshiba Corporation, IK-UM44H), a radia-
tion/light-concentrating fiber (Sumitomo Electric Industry Co., Ltd., GeO2, F-doped 
quartz system), a displacement meter (Omron Corporation, ZX LD 100), and an air 
blow head are equipped. Image of the observation surface, Vis-NIR diffuse reflec-
tance spectra, and distance to the observation surface can be obtained without con-
tact with the soil. The soil penetration part is driven by a hydraulic system and a 
remote controller using tractor PTO as the power source. For location information, 
it was equipped with a DGPS receiver (Trimble Navigation Limited, DSM132) with 
horizontal measurement accuracy of less than 1 m. An inverter generator dedicated 
to SAS (Honda Motor Co., Ltd.) is installed on the tractor body. The observation 
speed is 0.28–1.12 m/s, the observation depth is 0.15–0.30 m (0.05 m interval), and 
the measurement interval can be arbitrarily set at 3 s and over (Shibuya Machinery 
Co. Ltd 2004; Shibusawa et al. 2010).

 (2) SAS2500

SAS2500 (weight 660 kg) has been produced under the funding of a Japanese 
national grant program adopted in 2012 (Fig. 4.2). The different specifications from 
SAS1000 are that a radiation fiber with air blow head and a Y-branch light- 
concentrating fiber are used. The microcamera was changed to a video camera. The 
drive of the soil-penetrating part was changed to a hydraulic system (1 system, 3/8- 
inch coupler) (Fig. 4.2b), which can be operated by a switch in the tractor cab. The 
generator is mounted on the SAS body, because removability from the tractor is 
considered as important. The spectrometers were changed to C10083CAH 
(320–1100  nm, 0.3  nm/interval) and C9406GC (900–1700  nm, 1.6  nm/interval) 
produced by the Hamamatsu Photonics Co., Ltd. The halogen lamp was changed to 
JCR15V150W/AL produced by the Fuji Lamp Co., Ltd. The automatic retreat func-
tion of the soil penetration part was excluded, and it was changed to using a share 
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pin to prevent the soil penetration part from breakage. System updates and mainte-
nance can be performed remotely via a communication line.

 (3) SAS2600

SAS2600 (weight: 750 kg) was designed for a Japan’s research project entitled 
with Research and Development for Increased Woody Biomass Production through 
Genome Breeding and High Efficiency Forestry Operations which was adopted in 
2013 under the Development of Efficient Elemental Technologies for Biofuel 
Production funded by the New Energy and Industrial Technology Development 
Organization (NEDO). The prototype was produced with specification determined 
for Brazil’s woodlot.

The system configuration is the same as SAS2500, and improvements and 
changes were made to reinforce the frame strength to approximately 1.2 times in 
deflection amount of SAS2500 (steel thickness 4.5–6 mm) and were equipped with 
a beam knife, as a countermeasure for eucalyptus plant’s residual and hard soil. The 
DGPS receiver was changed to the model SPS351 (Nikon Trimble Co., Ltd.)

 (4) SAS3000

SAS3000 was produced under a research project entitled the special scheme 
project on regional developing strategy (project ID14526726 and 16781474) by the 
NARO Bio-oriented Technology Research Advancement Institution (Fig. 4.3). The 
system configuration is the same as SAS2500, and improvements and changes were 
made by permanently installing a touch panel in the tractor cab, which enables one 
operation for the SAS setting. The observation speed is 0.28–1.68  m/s, and the 
weight was reduced to 510 kg. The DGPS receiver was changed to model SPS351 
(Nikon Trimble Co., Ltd.).

4.1.4  Analysis of Calibration Model for Multiple 
Soil Properties

 (1) Absorption Wavelength and Regression Coefficient Estimation

The moisture content (MC), humic acid (total carbon (TC), total nitrogen (TN)), 
soil organic matter (SOM), clay (CL, 1:1 type and 1:2 type), available silicate (SiO), 
and free iron oxide (Fe) have the absorption wavelength in the analysis wavelength 
range. Therefore, the regression coefficients can be estimated, and the negative peak 
waveform of the regression coefficient matches the absorption wavelength for each 
property (in the case of second-order differential absorbance).

Soil properties with no absorption wavelength within the analytical wavelength 
range (available phosphorus (P-a), exchangeable potassium (K), exchangeable cal-
cium (Ca), exchangeable magnesium (Mg), exchangeable sodium (Na), ammonia 
nitrogen (N-a), nitrate nitrogen (N-n), hot-water-extractable nitrogen (N-h), hot 
water soluble boron (B), soluble zinc (Zn), soluble copper (Cu), easily reducible 
manganese (Mn), exchange acidity (y1), phosphate absorption coefficient (PAC), 
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pH, EC, CEC, 2:1-type minerals CL and sand (S), silt (SL), dry density (ρd), cal-
cium/magnesia ratio (Ca/Mg), magnesium/potassium ratio (Mg/K), base saturation 
percentage (BSP), calcium saturation percentage (CSP), sodium ratio (Na-r), and 
carbon-nitrogen (C/N) ratio) correlated with the analysis values of organic, inor-
ganic substances whose absorbance wavelength has been confirmed within the ana-
lytical wavelength range (Matsunaga and Uwasawa 1992b; Clark et  al. 1987; 
Umeda et  al. 2001; Zornoza et  al. 2008). In the case of raw soil, the regression 
coefficients can be estimated due to the spectra variation caused by the hydration 
phenomenon of inorganic ion component and binding with organic molecules. The 
negative peak waveform of the regression coefficient was consistent with the absorp-
tion wavelength of the correlated properties.

The possibility of regression coefficient estimation can be evaluated from the 
correlation between soil analysis values, which is based on the evaluation and clas-
sification using correlation coefficient (R). The classification methods include 
Pearson product-moment correlation (interval and ratio scale data) and Spearman’s 
rank correlation (rank scale data). In addition, Pearson product-moment correlation 
was adopted (Table 4.3).

To confirm the correlation and reliability of regression coefficients, it was con-
firmed that the obtained regression coefficient for each property used the absorption 
wavelength or absorption wavelength band, by confirming that the negative absorp-
tion peak of each regression coefficient for each property from 1 to selected F 
(PLSR factor) value was in agreement with the absorption wavelength or exists in 
the absorption wavelength band. When the fluctuation of the spectra is large due to 
the hydration phenomenon of the inorganic ion and binding with organic molecules, 
it may not completely match due to the wave number shift.

 (2) Evaluation/Classification Methods of Regression Coefficient and 
Prediction Values

The evaluation indexes of regression coefficient estimation accuracy of soil are 
R2, RPD, range error ratio (RER), and evaluation index (EI). There are several 
guidelines for the evaluation and classification based on R2 and RPD. Here, guide-
lines for evaluation/classification without over-/under-evaluation are presented.

Table 4.3 Evaluation and classification of the correlation between soil analysis values using 
correlation coefficient

Evaluation Classification

Full correlation |R| = 1
Highly correlated 0.7 < |R| < 1
Correlated 0.4 < |R| ≦ 0.7
Low correlation 0.2 < |R| ≦ 0.4
Almost no correlation 0 < |R| ≦ 0.2
No correlation 0 = |R|
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The possibility of estimation of regression coefficient for properties whose 
absorption wavelength is not confirmed in the analysis wavelength region is based 
on the correlation between soil analysis values. Therefore, in the correlation coef-
ficient classification method shown in Table 4.4, the R range from 0.7 to 1.0, which 
is “highly correlated,” is divided into four threshold values “0.95, 0.9, 0.8, and 0.7.” 
Squaring each of the value, R then becomes “0.90, 0.81, 0.64, and 0.49,” and R2 
threshold values are obtained. It has been decided to classify R2 using these thresh-
old values. This classification method is consistent with ranks “B, C, and D” of 
Malley et  al. (2004). Ranks “A and D” are consistent with Kuang et  al. (2012). 
Therefore, it is an intermediate classification between the two methods. The RPD 
used middle of Kuang et al. (2012), RER used Malley et al. (2004), and EI used 
Mizuno et al. (1987).

The evaluation and classification method using the combination of R2 and RPD 
is to evaluate the availability of the estimated regression coefficients and the predic-
tion values. Further, the combinations of R2 and RER and R2 and EI are to evaluate 
whether the estimated regression coefficients are composed of an enough range. In 
each combination, if they did not belong to the same rank, lower rank was selected.

 (3) An Example of Regression Coefficient Estimation (Paddy Field)

 (i) Test Fields

The test fields were agricultural production corporation Denpata (sandy clay 
loam, S = 64.6%, SL = 14.6%, CL = 20.8%) and Yokota farm (light clay, S = 52.8%, 
SL = 17.3). The test devices were SAS2500 and SAS3000. The sampling interval 
was 3 s. The observation speed was 0.28 m/s. The observation depth was 0.10 m 
determined by the grower. As the soil characteristics, the ratio of CL in Yokota farm 
was high, and the retainability of fertilizer was high. An overview of the analysis 
database is summarized in Table 4.5. The data collection for the test field was at 5 
times in 3 years, from 48 fields. The total number of the collected data was 552, but 
406 data for pH and EC, exchangeable sodium, and sodium ratio and 364 data for 
S, SL, CL, available silicate, and free iron oxide were used to estimate regression 
coefficient.

Table 4.4 Evaluation and classification methods using R2 with RPD, RER, and EI

Evaluation R2 RPD RER EI (%) Rank

Excellent 0.90< 3.0< 20< ≦12.4 A
Good 0.81-0.90 2.5-3.0 15-20 12.5-24.9 B
Approximate quantitative prediction 0.64-0.81 2.0-2.4 10-15 25.0-37.4 C
Distinguish between high and low 0.49-0.64 1.5-1.9 8-10 37.5-49.9 D
Not usable <0.49 <1.5 <8 50.0≦ E

※Rank is classified into A–E, as “regression coefficient, prediction value”: A, excellent; B, good; 
C, approximate quantitative prediction; D, distinguish between high and low; E, not usable
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Table 4.5 Database for analysis

Implementation 
date Location Test field Equipment

Number of 
test fields

Field 
size (ha)

Number of 
data

2013.12.06 Fukushima 
Prefecture

Denpata 
Farm

SAS2500 4 1.0 188
2014.09.23~24 SAS2500 4 1.2 118
2014.11.13~15 Ibaraki 

Prefecture
Yokota 
Farm

SAS2500 5 6.4 100
2015.10.25~27 SAS3000 10 10 120
2015.12.15~17 SAS3000 25 24 26
Total 48 42 552

 (ii) Determination of Validation Method

The requirements to divide the dataset into calibration set and prediction set are 
pluralities of the same data that exist, with an unbiased frequency distribution, while 
a rectangular-shape distribution is expected (Akitomo and Shimamura 1998). The 
obtained distribution in this study was close to normal distribution, and the shape 
with two peaks also existed. The requirements of dividing for calibration set and 
prediction set were not satisfied. Therefore, full cross-validation was applied.

 (iii) Correlation Between Analysis Values

For properties whose absorption wavelength was not confirmed in the analysis 
wavelength range, correlation coefficients between soil analysis values were 
obtained, and the correlations were summarized in Table 4.6 according to the clas-
sification in Table 4.3. Positive correlations are shown in black, and negative cor-
relations are shown in red. “Correlation” (gray highlight) or “high correlation” 
(yellow highlight) with properties that have absorption wavelength in the analysis 
wavelength range are counted as direct correlation. “Correlation” and “high correla-
tion” were counted as indirect correlation between the properties whose absorption 
wavelength has not been confirmed in the analysis wavelength range. Properties 
with many direct correlations have strong collinearity between analysis values of 
properties that have absorption wavelength in the analysis range, and the possibility 
to estimate regression coefficients is also high. Indirect correlations are less collin-
ear than direct correlations, and the possibility to estimate regression coefficient is 
less than the direction correlation. But the possibility varies depending on the total 
number of correlations and the concentration distribution of the analysis values.

Twenty-two properties whose absorption wavelength has not been confirmed in 
the analysis wavelength range had correlation with eight properties that have an 
absorption wavelength (blue font in Table 4.6). The properties that have no direct 
correlation were base saturation, lime saturation, sodium ratio, and soluble zinc. 
The property that has no indirect correlation was soluble zinc. Therefore, it was 33 
properties that could explain that the regression coefficients could be estimated by 
the correlation between the analysis values. The estimation of regression coefficient 
of soluble zinc could not be explained by the correlation with the analysis values.
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Table 4.6 Correlation coefficient between analysis values

aDirect correlation:Correlation with properties whose absorption wavelength exist in the 
analysis wavelength range, and the value is more than “correlated”
bIndirect correlation:Correlation with properties whose absorption wavelength do not exist in the 
analysis wavelength range, and the value is more than “correlated”
Grey highlight; |R|>0.4 「Correlated」, Yellow highlight; |R|>0.7 「Highly correlated」
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 (iv) PLSR Results

According to the absorbance in the analysis database (Fig.  4.4a), the spectra 
change is large at 350–400 nm, and it has a peak of positive waveform at 1400 nm 
and baseline shift. According to second-derivative absorbance of the S-G (Savitzky- 
Golay) method with smoothing point (SP) = 41 (Fig. 4.4b), which has the highest 
smoothing effect, four data were confirmed as outliers which had negative peaks at 
600–700 nm. But the absorption wavelength of humic acid is 620 nm. According to 
the frequency distribution of humic acid shown in Fig. 4.4c, since about 14% of the 
analysis values were higher than others, they were not excluded.

Table 4.7 and 4.8 summarizes the estimation results of regression coefficients 
obtained through repeatedly running PLSR algorithm by excluding data with the 
largest prediction residual (outlier) at each run. Table 4.7 shows the statistical values 
of each property, and Table 4.8 shows the accuracy, evaluation, and classification of 
each regression coefficient. The accuracy of each property satisfies the condition of 
R2>0.9 and F≦10. In addition, since the evaluation/classification of calibration was 
RankRPD = A, the reliability of regression coefficient was obtained. The RankRPD = C 
was obtained for exchangeable magnesia, S, and CL in evaluation/classification of 
validation. To improve the reliability of the prediction value to “RankRPD=B,” it is 
necessary to reanalyze by adding data.

To evaluate the range of database that constitutes the regression coefficient, the 
classification using RER and EI can be considered. Since RER is more strict evalu-
ation of the 34 properties, they were evaluated by RER.  The RER results were 
Rankcal=C for available phosphorus, exchangeable potassium, exchangeable 
sodium, free iron oxide, soluble zinc, easily reducible manganese, EC, CEC, lime/
magnesia ratio, magnesia/potassium ratio, soil organic matter, C/N, pH, exchange 
acidity, and ρd. It is necessary to add data in the range not possessed and 
re-analyze.

 (v) Soil Analysis and Regression Coefficient

To show the detail of the database that constitutes the regression coefficients for 
each estimated property, scatter plots of analysis values and prediction values and 
regression coefficients are summarized, and several examples are shown in Fig. 4.5. 
The reference range of soil analysis (Agricultural Product Chemical Research 
Laboratory 2001; Yamazaki 2008) was described (Table 4.9). However, the refer-
ence range differs according to location, crop, and variety (Ministry of Agriculture 
Forestry and Fisheries 2008b, 2016a). For exchangeable calcium, the analysis value 
corresponding to the lime saturation of 40–60% is within the appropriate range and 
can be calculated from Eq. (4.1):

 Calciumsaturation percentage Ca CECme� �/ 100  (4.1)

 Ca Came = / .28 04  

The reference range for CEC and humic acid differs with soil type. The reference 
range of phosphate absorption coefficient is for dry field farming in Hokkaido, and 
the estimated phosphate utilization rate for crops is less than 700 (20–30%), 
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Fig. 4.4 An example of PLS regression coefficient estimation (a) Absorbance of the analysis 
database (b) Second-derivative absorbance of the analysis database (c) Scatter plots of humus rate
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Table 4.7 Thirty-four properties’ regression coefficient estimation accuracy and evaluation/
classification results (statistics)

Property Unit NCal|N
Range

S.D.
SDP RMSE

Min Max MinCal MaxCal Cal Val Cal Val

N-a mg/100 g 349|552 0.26 8.30 0.30 2.99 0.47 0.148 0.182 0.148 0.182
N-h mg/100 g 287|552 2.18 14.7 2.18 6.91 0.74 0.234 0.250 0.234 0.250
N-n mg/100 g 292|552 0.00 3.85 0.00 0.93 0.19 0.059 0.062 0.059 0.062
N-t % 338|552 0.07 0.58 0.07 0.26 0.03 0.009 0.010 0.009 0.010
P-a mg/100 g 538|552 1.54 34.4 1.54 34.3 9.94 3.096 3.301 3.094 3.298
SiO mg/100 g 225|364 12.5 103 14.4 73.5 9.88 3.052 4.255 3.045 4.264
K mg/100 g 462|552 1.69 52.6 5.38 28.4 5.22 1.645 1.797 1.643 1.795
Ca mg/100 g 538|552 44.3 668 44.3 614 112 35.22 40.37 35.18 40.33
Mg mg/100 g 535|552 3.52 180 3.52 148.0 29.9 9.424 12.37 9.415 12.36
Na mg/100 g 270|364 0.58 26.3 0.58 15.0 3.79 1.192 1.275 1.189 1.273
Fe mg/100 g 320|364 0.04 3.10 0.22 2.68 0.68 0.215 0.244 0.215 0.244
Cu ppm 335|552 0.81 15.0 3.24 10.9 1.33 0.420 0.489 0.419 0.488
Zn ppm 272|552 2.56 62.5 3.01 5.56 0.57 0.179 0.211 0.178 0.211
B ppm 351|552 0.41 1.70 0.41 1.37 0.14 0.045 0.054 0.045 0.054
Mn ppm 526|552 3.59 266 3.59 218 63.6 20.07 22.71 20.05 22.69
EC mS/cm 363|406 0.01 0.09 0.01 0.06 0.02 0.005 0.006 0.005 0.006
CEC me/100 g 551|552 7.18 42.3 7.18 42.3 8.96 2.833 3.056 2.831 3.053
Ca/Mg E.R 459|552 1.91 9.05 1.91 6.45 1.24 0.391 0.408 0.391 0.407
Mg/K E.R 387|552 2.95 20.5 3.62 11.8 1.85 0.578 0.657 0.577 0.656
BSP % 358|552 19.9 114 43.1 102 9.37 2.960 3.322 2.956 3.318
CSP % 315|552 17.6 84.9 32.7 68.9 5.90 1.865 2.216 1.862 2.213
ESP % 212|364 0.18 5.38 0.45 2.41 0.35 0.119 0.137 0.110 0.128
HR % 505|552 1.02 13.6 1.02 8.82 1.46 0.459 0.570 0.459 0.570
SOM % 502|552 4.61 19.0 4.74 15.3 2.43 0.766 0.838 0.765 0.837
C-t % 485|552 0.59 7.88 0.59 4.78 0.77 0.237 0.287 0.237 0.286
C/N – 551|552 6.73 16.7 9.00 16.7 1.75 0.547 0.621 0.546 0.621
pH – 288|406 5.61 6.76 5.74 6.49 0.17 0.043 0.048 0.054 0.067
y1 – 277|552 0.06 2.50 0.19 1.00 0.18 0.058 0.065 0.057 0.065
PAC – 537|552 8.00 1518 8.00 1509 297 89.37 103.7 89.29 103.6
MC – 288|552 28.3 115 30.7 53.3 4.17 1.314 1.424 1.312 1.422
DD g/cm3 389|552 0.61 1.03 0.76 1.00 0.06 0.018 0.021 0.018 0.021
S % 250|364 18.4 75.5 29.5 72.2 7.78 2.586 3.659 2.047 3.014
SL % 240|364 5.68 47.8 8.44 30.5 3.84 1.201 1.551 1.198 1.548
CL % 290|364 13.2 51.1 18.2 43.2 4.96 1.562 2.259 1.529 2.144

E.R equivalence ratio

700–1500 (15–20%), and 1500–2000 (10%–15%) and more than 2000 (6–10%). 
The reliable range of the prediction values using the regression coefficients of 34 
properties is the range of the analysis values in the scatter plots. For hot water 
extractable nitrogen, the range was 2.2–6.9 mg/100 g, including the reference range. 
But it cannot be used in soil analysis for high concentration data because it is not 

S. Shibusawa et al.



95

Table 4.8 Thirty-four properties’ regression coefficient estimation accuracy and evaluation/
classification results (accuracy/evaluation/classification)

Property
R2 RPD RankRPD RER RankRER EI RankEI

SP F Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val

N-a 7 7 0.90 0.85 3.17 2.57 A B 18.2 14.7 B C 11.0 13.6 A B
N-h 17 6 0.90 0.89 3.17 2.97 A B 20.2 18.9 A B 9.9 10.6 A A
N-n 13 4 0.90 0.89 3.17 3.00 A B 15.8 14.9 B B 12.7 13.4 B B
N-t 7 6 0.90 0.87 3.18 2.76 A B 20.5 17.8 A B 9.8 11.3 A A
P-a 7 5 0.90 0.89 3.21 3.01 A B 10.6 9.93 C C 18.9 20.2 B B
SiO 7 8 0.90 0.82 3.25 2.32 A B 19.4 13.9 B C 10.3 14.4 A B
K 15 8 0.90 0.88 3.18 2.91 A B 14.0 12.8 C C 14.3 15.6 B B
Ca 17 9 0.90 0.87 3.18 2.77 A B 16.2 14.1 B C 12.4 14.2 A B
Mg 3 8 0.90 0.83 3.18 2.42 A C 15.4 11.7 B C 13.0 17.1 B B
Na 21 6 0.90 0.89 3.18 2.97 A B 12.2 11.4 C C 16.5 17.6 B B
Fe 9 5 0.90 0.87 3.18 2.81 A B 11.5 10.1 C C 17.5 19.8 B B
Cu 3 5 0.90 0.87 3.18 2.73 A B 18.2 15.7 B B 11.0 12.8 A B
Zn 15 9 0.90 0.86 3.19 2.70 A B 14.3 12.1 C C 14.1 16.6 B B
B 7 7 0.90 0.86 3.17 2.65 A B 21.4 17.9 A B 9.34 11.2 A A
Mn 7 5 0.90 0.87 3.17 2.80 A B 10.7 9.45 C C 18.7 21.2 B B
EC 7 5 0.90 0.88 3.17 2.85 A B 10.6 9.60 C D 18.8 20.9 B B
CEC 21 8 0.90 0.88 3.17 2.94 A B 12.4 11.5 C C 16.1 17.4 B B
Ca/Mg 15 6 0.90 0.89 3.17 3.04 A B 11.6 11.1 C C 17.2 18.0 B B
Mg/K 11 8 0.90 0.87 3.21 2.82 A B 14.1 12.4 C C 14.2 16.2 B B
BSP 15 9 0.90 0.88 3.17 2.83 A B 20.0 17.8 A B 10.0 11.2 A A
CSP 9 8 0.90 0.86 3.17 2.67 A B 19.5 16.4 B B 10.3 12.2 A A
ESP 15 7 0.90 0.87 3.18 2.74 A B 17.8 15.3 B B 12.1 14.0 A B
HR 7 8 0.90 0.85 3.18 2.56 A B 17.0 13.7 B C 11.8 14.6 A B
SOM 9 5 0.90 0.88 3.18 2.90 A B 13.9 12.7 C C 14.4 15.8 B B
C-t 7 7 0.91 0.86 3.25 2.69 A B 17.7 14.6 B C 11.3 13.7 A B
C/N 9 6 0.90 0.88 3.21 2.83 A B 14.1 12.4 C C 14.2 16.2 B B
pH 9 8 0.90 0.85 3.17 2.58 A B 13.9 11.3 C C 11.4 12.8 A B
y1 7 4 0.90 0.87 3.20 2.84 A B 14.1 12.5 C C 14.2 16.0 B B
PAC 15 10 0.91 0.88 3.32 2.86 A B 16.8 14.5 B C 11.9 13.8 A B
MC 9 4 0.90 0.88 3.17 2.93 A B 17.2 15.8 B B 11.7 12.6 A B
DD 7 6 0.90 0.87 3.18 2.76 A B 13.3 11.6 C C 15.0 17.3 B B
S 9 10 0.93 0.85 3.80 2.58 A B 20.9 14.2 A C 12.1 17.1 A B
SL 11 9 0.90 0.84 3.21 2.48 A B 18.4 14.2 B C 10.9 14.1 A B
CL 9 10 0.90 0.81 3.25 2.31 A C 16.3 11.7 B C 12.5 18.1 B B

included in the regression coefficient database. The available phosphorus database 
included the reference range of 10–30 mg/100 g, so it can be used in the soil analy-
sis. However, since data at 10–20 mg/100 g is missing, additional data and reanaly-
sis in this range are required. Exchangeable magnesia, exchangeable sodium, and 
C/N also need reanalysis with intermediate data added. The ideal database of 
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Fig. 4.5 Scatter plots of analysis and prediction values and regression coefficient
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Table 4.9 Reference value of soil analysis

Property Unit Reference value Property Unit Reference value
pH – 5.5 ~ 6.5 PAC – – ~ –

P-a mg/100 g 10 ~ 30 CEC me/100g 20 ~ 30
K mg/100 g 15 ~ 30 HR % 2 ~
Mg mg/100 g 25 ~ 45 EC mS/cm 0.4 ~ 0.6
Mg/K E.R. 2 ~ y1 – – ~ –
Ca/Mg E.R. ~ 6 SOM % 3 ~
Ca mg/100 g 200 ~ 300 C-t % – ~ –
CSP % 40 ~ 60 C/N – 15 ~ 30
BSP % 60 ~ 80 SiO mg/100g 15 ~ 30
Cu ppm 0.5 ~ 8.0 Fe % 0.8 ~ 4.0
Zn ppm 2 ~ 40 Na mg/100g ~ 15
Mn ppm 50 ~ 500 ESP % ~ 20
B ppm 0.5 ~ 1.0 MC % – ~ –
N-h mg/100 g 5 ~ 7 DD g/cm3 – ~ –
N-t % – ~ – S % – ~ –
N-n mg/100 g – ~ – SL % – ~ –
N-a mg/100 g – ~ – CL % – ~ –

analysis and prediction values for the purpose of soil analysis were CEC, exchange-
able calcium, base saturation, lime saturation, and free iron oxide.

 (vi) Regression Coefficient and Absorption Wavelength

As the regression coefficient of each property has been applied with second 
derivative, the negative coefficient is almost the same with the peak waveform of the 
absorption wavelength. In soil water content whose absorption wavelength exists in 
the analysis wavelength region, the negative peak matches the water’s absorption 
wavelength (1450 nm) (Fig. 4.5). In addition, the negative peak near 550 nm coin-
cides with the green wavelength band, which is the complementary color of red, and 
it is necessary to consider the analysis wavelength region because of the effect of 
soil color. Furthermore, the regression coefficient waveform of soil water content 
has almost the same shape with the second-derivative absorbance spectra. Moreover, 
the regression coefficients in 600–1350 nm, which are not directly related to the 
absorption wavelength, seem to eliminate the baseline noise of the second- derivative 
absorbance. The negative peaks of soil organic matter, humus rate, total carbon, and 
total nitrogen were consistent with the absorption wavelength of humic acid 
(570 nm, 620 nm, 1100–1600 nm). The negative peaks of available silicate coin-
cided with the absorption wavelength (930 nm, 1000 nm), and negative peaks were 
also confirmed at 570 nm and 620 nm because of its correlation with the organic 
content. Two negative peaks were observed in free iron oxide absorption band 
(1380–1410 nm), and a large negative peak was observed at 530 nm in the Fe3+ 
absorption band (500–800  nm). Although the absorption wavelength of CL is 
1400  nm, no negative peak was observed in the regression coefficient. This is 
because when transforming to absorbance, 1400  nm was the conversion point 
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between the positive and negative peaks before and after 1400 nm, that is, zero. 
Since CL is composed of elements such as silicon and iron, multiple negative peaks 
of the regression coefficient were confirmed in the absorption wavelength of silicic 
acid and free iron oxide. The correlations between the analysis values of CL and 
free iron oxide and available silicate were “high correlation” and “correlation.” As 
examples of regression coefficient estimation based on correlation with properties 
whose absorption wavelength exists, ammonia nitrogen has no correlation with the 
analysis value of total nitrogen, but its correlation with organic content was con-
firmed. Hot water extractable nitrogen was highly correlated with total carbon, total 
nitrogen, and humus rate. Nitrate nitrogen was correlated with total nitrogen, total 
carbon, and humus rate. Negative peaks were observed in the absorption wave-
length of humic acid in each property.

The obtained regression coefficient for each property is a local regression coef-
ficient corresponding to the database that consists of the analysis value range of the 
34 properties used in the regression coefficient estimation. Moreover, it cannot sat-
isfy all soil conditions as general purpose regression coefficient.

4.2  Application of Tractor-Mounted Soil Analysis System 
in Precision Agriculture

4.2.1  Site-Specific Soil Mapping and Interpretation 
of Agricultural Fields

 (1) Soil Observation Preparation/Data Collection/Analysis/Visualization Process

The items of SAS setting before soil observation are observation speed 
(0.28–1.68 m/s), sampling period of diffuse reflectance spectra (3–10 s, 1 s inter-
val), and observation depth (0.10–0.30 m, 0.05 m interval). The data acquisition 
interval in the direction of measurement is determined by observation speed and 
sampling period. But the data acquisition interval may not match the calculated 
value according to the soil conditions. If the observation speed is not constant, the 
measurement area of diffuse reflectance spectra and the soil sampling interval will 
be different. So, it will not be changed during the operation. By adjusting the gauge 
wheel to the track of the tractor’s rare wheel, extra pitching fluctuation was avoided. 
The observation depth is the distance from the contact surface of the gauge wheel to 
the soil measurement surface leveled with a flat plate. When changing the observing 
depth, the top link was adjusted to ensure the SAS body’s frame horizontal. Setting 
the observation depth deeply increases the traction resistance, so the tractor’s drive 
condition and the model selection are important. In order to avoid the influence of 
tractor pitching, the draft control and position control of the tractor’s three-point 
link hitch were not functioned, while a free suspension system was adopted.

The observation setting items before soil observation are the determination of 
number of observation lines and the endpoints of field where the shape of the field 
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can be easily understood. The number of observation lines and the interval between 
the observation lines are determined according to the grower’s purpose of use of the 
soil map. For example, in the case of using the soil map for pest control and fertil-
ization by a boom sprayer with one wing of 12 m, the first observation line was 
determined at 12 m from the field edge, and the second and later were determined 
at 24 m intervals. A glass pole was set at the field end in the traveling direction to 
improve the visibility of straight traveling. In the case of one-plot management, the 
field was firstly divided into three parts, and the observation lines were around the 
middle of each part. If there was no request from the grower, the least common 
multiple of the working width of the working machine owned by the grower was 
used. The settings of the observation line that have been requested in the past were 
the harvesting width of yield combined, the spray width of boom sprayer and broad-
caster, and the width of planting line of rice transplanter.

After the SAS’s power was turned on, it was waited about 15 min to stabilize the 
output of the halogen lamp. Before observing the first line of each plot, SRS40 was 
installed to the calibration jig set (Fig. 4.6b) in the soil penetration part to obtain 
white reference and dark reference data.

The position of soil samples, which were the objective variables for estimating 
the regression coefficient, was firstly confirmed by the alarm from the sensor when 
collecting spectra data and then marked on the soil surface by a half-split chopstick, 
while the data number was confirmed from the touch panel monitor simultaneously 
with the spectra data collection. The area was excavated by a shovel where the chop-
stick was placed at a wider area than the spectra measured area but did not disturb 
the observation surface of SAS. The residues and gravel were then removed. After 
that, using a stainless steel scoop, the soil at a depth with several centimeters from 
the observation surface with about 0.3 m in width and the surrounding soil with the 
same depth of the observation surface were collected and packed into a sealable 
plastic bag with a zip (Asahi Kasei Home Products Co. Ltd., Ziplock® Double zip-
per). About 1 kg was placed in the plastic bag, and it was closed by confirming that 
the zip did not bite the soil particles while the air was sufficiently pushed out. On 
the plastic bag, the symbol with field name, observation line number, and diffuse 
reflectance spectra number was recorded.

Two sets of soil samples were prepared at each sampling position, one set was 
analyzed at the Tokyo University of Agriculture and Technology (TUAT) and the 
other set was analyzed at the Agricultural Product Chemical Research Laboratory 

Fig. 4.6 Reference data acquisition method
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(APCRL: Federation of Tokachi Agricultural Cooperative Association, Hokkaido, 
Japan). The soil samples were transported in refrigerators (0–10  °C) to restrain 
chemical composition change due to microbial activity. The soil samples sent to 
TUAT were stored in a refrigerator at 5 °C. Properties that could not be analyzed in 
TUAT were requested to be analyzed by APCRL. Properties that could not be ana-
lyzed in APCRL were analyzed by the Sumika Chemical Analysis Service, (SCAS) 
Ltd., using surplus dry soil samples used by APCRL. The analyzed values were not 
rounded by significant digits, but the display values of the weighing meter and mea-
suring device and the total number of digits recorded on the recording medium of 
the device were used.

Once the soil analysis values were obtained, they were linked to the diffuse 
reflectance spectra, and a database for estimating the regression coefficients was 
constructed. The database was subjected to spectra preprocessing and PLSR analy-
sis using multivariate analysis software (the Unscrambler Ver.9.8, CAMO Analytics 
AS). The prediction values were linked with position information and were visual-
ized on a soil map. The visualization methods can be provided according to the 
grower’s request, including interpolation map using the application software 
ArcMap of ArcGIS (ESRI Japan Co., Ltd.). The grid map divides a plot of field into 
grids with the mean, maximum, and minimum values shown in each grid. The dot 
map shows only the measurement point with dot of any size. When regression coef-
ficient estimation is necessary, the black arrow and green arrow processes in Fig. 4.7 
are necessary. When regression coefficient estimation is not required, blue arrow 
and green arrow processes are used to determine soil maps immediately after field 
observation.

Fig. 4.7 Processes from field observation to soil mapping
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 (2) Soil Map

The soil map is defined as a spatial (or stratified) information at a certain date and 
time, with a high-resolution visualization of regional area, between fields or within 
field. Focusing on the plow layer, the soil map describes the information of soil 
physicochemical properties, biological properties, soil productivity (crop produc-
tivity such as yield), and soil fertility (conditions that support the root of crop and 
the ability of soil to supply the necessary amount of water and nutrients through the 
root according to the crop growth).

The purpose of creating a soil map is the management of local production area 
with group of crop cultivation fields or regional area and the soil management of 
grower-owned fields. In the management of local or regional area, the public infra-
structure and environment necessary for crop cultivation and management are effi-
ciently used, and profits are maximized by selecting crops and varieties. Higher 
efficiency in farm management requires the consolidation and accumulation of 
fields. The soil map is used as a source of information for decision-making and 
consensus building, such as improving workability by consolidating fields with 
similar fertility and reusing abandoned fields. The visualization method of one 
value per plot of field is the lowest resolution. The soil management of field owned 
by growers is based on the use of soil maps as a source of information on improving 
yield and quality as well as reducing production cost and environmental load 
through variable-rate work and crop or variety selection according to the variability 
between or within fields. The resolution of visualization varies according to the 
purpose of growers and their methods used in the farm management work.

The soil visualization information includes the terrain classification map, surface 
geological map, soil map, and groundwater map of the National Land Information 
Division, Ministry of Land, Infrastructure, Transport and Tourism, which were 
mainly used as sources of information for disaster countermeasures and building 
construction (Ministry of Land Infrastructure, Transport and Tourism 2018). 
Specialized for farmland use are soil profile map, fertility conservation soil map, 
and farmland soil map. The soil profile data is not used to directly control crop pro-
ductivity, but the soil layer sequence that appears in the soil profile is the history of 
soil layer differentiation and shows whether the soil layer is going to maturity in the 
future. Therefore, it is an important information for reclamation of farmland and 
continuous design support on agricultural management. The problem is how to con-
duct soil survey up to 1 m soil depth and how to collect soil sample (Ministry of 
Agriculture Forestry and Fisheries 2016b). For the purpose of land use and farming 
guidance at municipal level, there are fertility conservation soil map data (Japan 
Soil Association) and farmland soil map data (Japan Soil Inventory, National 
Agriculture and Food Research Organization: NARO), which were compiled into 
database with physicochemical properties of the plow layer that cover the whole 
country. The farmland soil map is developed based on the data from the Fertilization 
Improvement Survey Project of the Ministry of Agriculture, Forestry and Fisheries, 
Fundamental Soil Survey for Fertility Conservation, Fundamental Soil- 
Environmental Survey, and Soil-Functional Monitoring Survey (about one point in 

4 Application of Soil Sensing in Precision Agriculture



102

25 ha of soil profile survey in the farmland of Japan from 1953 to 2003) and the 
fertility conservation soil data. Seventeen properties were provided including thick-
ness of plow layer (first layer), soil hardness (all soil layers hereinafter), bulk den-
sity, three phases (gas, liquid, solid), pF, water content, pH, exchange acidity, EC, 
total carbon, total nitrogen, base exchange capacity, exchangeable base, available 
phosphorus, available nitrogen, and suppliable silicic acid. The mean, median, stan-
dard deviation, and number of samples of each property were recorded for each of 
60 soil groups. The scales of the farmland soil map are 1:200,000 and 1:50,000, and 
soil classification and soil temperature can also be viewed (Takada et al. 2013). The 
Agricultural Basic Law was enacted in 1961 which defined 0.3 ha as the standard 
plot (rice cultivation) in the field renovation project and was started in 1963 (Hirota 
1999). The farmland soil map is composed of 1 data point per 83 plots (25 ha/0.3 ha). 
In addition, the cultivated area per management body is 2.87 ha (2017) (Ministry of 
Agriculture Forestry and Fisheries 2017), and ten agricultural management entities 
are displayed with same soil classification. Therefore, it is difficult to use the soil 
map in the measured resolution for regional or local management, soil management 
of grower’s field, and land use and farming guidance at municipal level. Moreover, 
some growers bring soil from other places to improve the soil. Moreover, creating 
soil maps based on soil analysis for each plot of field becomes a subject.

The most popular visualization method is GIS software interpolation. The fea-
ture is that an arbitrary virtual data point is placed in the unmeasured area between 
measured data, and an estimated value calculated by interpolation methods, such as 
Kriging, natural neighbor, spline, and inverse distance weighting (IDW), is utilized 
to the virtual point, while a map drawn with smooth contour lines can be obtained. 
In past studies, Kriging and IDW have been often used, which are effective to grasp 
the variability.

IDW assumes that there are many sample points with regular arrangement, and 
the effect of variable decreases as the distance from the sample position increases. 
Then the effect of the sample data on the interpolation data is isotropic and inversely 
proportional to the distance.

Kriging (ordinary and universal) assumes that the distance or direction between 
sample points reflects a spatial correlation that can be used to explain variation in 
the surface. The Kriging tool fits a mathematical function to a specified number of 
points, or all points within a specified radius, to determine the output value for each 
location. It includes exploratory statistical analysis of the data, variogram modeling, 
creating the surface, and (optionally) exploring a variance surface. Kriging is 
selected when there is a spatially correlated distance or directional bias in the data.

Kriging is similar to IDW in that it weights the surrounding measured values to 
derive a prediction for an unmeasured location. The general formula for both inter-
polations is formed as a weighted sum of the data (Eq. 4.2):
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where
Z(si) is the measured value at the ith location.
λi is an unknown weight for the measured value at the ith location.
S0 is the prediction location.
N is the number of measured values.

In IDW, the weight λi depends solely on the distance to the prediction location. 
However, with the Kriging method, the weights are based not only on the distance 
between the measured points and the prediction location but also on the overall 
spatial arrangement of the measured points. To use the spatial arrangement in the 
weights, the spatial autocorrelation must be quantified. The weight λi depends on a 
fitted model to the measured points, the distance to the prediction location, and the 
spatial relationships among the measured values around the prediction location 
(ESRI Japan 2016; Shoji and Koike 2007).

The requirement for soil map, which is as important as understanding of vari-
ability, is providing information in a classification method capable of instantaneous 
decision-making. Although the interpolation method is effective for grasping vari-
ability, the interpolation methods must be determined according to the spatial 
arrangement of the measurement data. Also, it is hard to determine the farm work 
range and work amount. For the paid GIS software, the costs of introduction and 
maintenance are problems, and the operation procedures from converting measured 
data to GIS readable format for display are operational issues.

Soil mapping methods include GIS software interpolation map, gird map, and 
dot map. Each visualization method has its characteristics, and it is necessary to 
select the visualization method according to the purpose of use of the soil map. 
However, the purpose of use of soil map varies with growers and field managers, 
while some may not have a purpose of use. In addition, there are no growers who 
divide one plot into multiple parts and perform soil analysis and mapping according 
to the number of divisions. Moreover, agricultural support system for guidance and 
fertilization design based on high-resolution soil map has not been established.

The first use of high-resolution soil map in such situation is to grasp the variabil-
ity and record the grower’s awareness to facilitate the grower’s decision-making. It 
is necessary to provide field mapping technology to provide soil maps immediately 
after the field observation that enables the dialogue with grower and extension 
instructors. If the soil map can be provided on-site, and if it can share awareness of 
growers, provide advice from extension instructors, and create a database of grow-
er’s decision; it will be possible to serve as a part of decision support system. 
Therefore, a simple GIS display function (dot map) has been developed which 
shows the properties requested in the visualization methods and enabled soil map-
ping on-site.

 (3) IDW Interpolation Map

The interpolated soil map is characterized by the fact that the status of variability 
can be drawn with clear contour line according to the classification, so the feature 
can be understood immediately. But there are problems with the introduction and 
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maintenance cost of GIS software and the operability of the mapping procedures. 
ArcCatalog in ArcGIS (V10.2.2 ESRI Inc., USA), map layout software ArcMap, 
and extension products (Spatial Analyst et  al.) were used to create interpolation 
map. The feature of spatial data measured by SAS is that there are plenty of data 
collected from one plot and there are no scattered measurement positions or extreme 
inhomogeneities. Therefore, the effect on the interpolation point between the mea-
sured data is assumed to be smaller as the distance from the measured data point 
increases, and the influence of the data acquisition location on the interpolated value 
is isotropic. Therefore, IDW (ESRI Japan Co. Ltd 2002) is appropriate to be adopted 
due to its characteristics of that the influence of the data acquisition location on the 
interpolation result is inversely proportional to the distance. In IDW, the output cell 
size, power, and search radius can be set arbitrarily, but the automatic set values by 
the software were used. In the interpolation method, the inner area of a point with 
value and location information is visualized. In order to visualize the entire field 
inside the boundary, it is essential to record the field edge with values (analyzed and 
predicted values) and location information. Since no analysis value or spectra data 
were acquired at the field edge, soil maps were created by replacing the value with 
the data point closest to the field edge based on the characteristics of IDW. In addi-
tion, to distinguish among field end points and data points, data points were indi-
cated by “・,” and the field end points were indicated by “+” (Fig. 4.8a).

 (4) Grid Map

The grid map can facilitate efficient soil management when the purpose and 
method of use of the soil map are determined. For example, when variable-rate 
spraying is manually performed using a working machine such as a broadcaster or 
a boom sprayer, after determination of work width of the machine, the number of 
travel lines, the travel route, the start and stop positions of fertilizer application, and 
the number of grids in the travel direction, the center of the working width is mea-
sured with SAS. The average, minimum, and maximum values are shown for each 
grid, and the average value is used for classification. By showing the minimum and 
maximum values, it is possible to grasp the variability range and check for outlier 
(Fig. 4.8b).

For variable-rate work based on the grid map, a fertilization map can be created 
with manure increasing/decreasing zones determined based on cultivation calendar 
and cultivation guidelines.

 (5) Simple GIS display function (Dot map)

The simple GIS display function (Fig. 4.9) is a visualization method that classi-
fies and displays measurement points with color dots. Optional features include dot 
size, field outline, dot color, and threshold values of up to five divisions. When the 
pointer cursor is placed on the memorized reference value of each soil property, 
statistical value (average, maximum, minimum, and coefficient of variation), and 
acquired data points, the absorbance, second-derivative absorbance, and prediction 
value are displayed. In this way, it can be determined whether a sample for soil 
analysis needs to be collected and whether there is an abnormal spectrum. In 
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Fig. 4.8 Soil maps (a) IDW interpolation map (b) Grid map

addition, to display one plot of field or group of fields on the map, the map can dis-
play an arbitrary range by zooming. By registering the position information of the 
field edge and the entrance of working machine, it became easy to grasp the field 
direction when displaying complicated shapes or multiple fields. The title of the 
regression coefficient is composed of identification character, property, accuracy, 
and range of database, to prevent selection miss and grasp reliability of the predic-
tion value. By registering the regression coefficient for each property, it is possible 
to display the dot map immediately after field observation and reduce the cost of 
GIS software’s introduction, which makes it possible for the growers to understand 
their field and make decisions on-site. The simple GIS display function has been 
jointly developed with the Shibuya Seiki Co., Ltd.
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Fig. 4.9 Simple GIS display function (dot map)

4.2.2  Decision-Making for Crop Precision Farming

 (1) Variable-Rate Application

 (i) Test Fields, Device, and Methods

The test field was a rotation cropping field (4.43 ha, 303 m long side × 146 m 
short side) in Memuro-cho, Kasai-gun, Hokkaido, Japan. The test device was 
SAS1000, and the observation speed was 0.56  m/s, the observation depth was 
0.15 m, the sampling period was 4 s, and the data measurement interval was 2.24 m. 
The field observation line interval was 24 m, which was the same with the pest con-
trol line. Field observations of the same field and the same line were conducted in 
October 2007, November 2008, and November 2010, and pH soil maps (Fig. 4.10) 
were provided to growers.

 (ii) Make Decision by Growers

In the pH map after harvesting wheat in autumn 2007 and after harvesting sugar 
beet in 2008, a location with high pH value was confirmed on the south side 
(Fig. 4.10a, b). The grower decided to improve the soil condition before soybean 
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Fig. 4.10 Variable-rate application utilizing soil pH map

sowing in May 2009 and sprayed 360 kg/10a of sulfur powder by a broadcaster 
(Fig. 4.10c).

 (iii) Reasons, Background, and Results

The high pH on the south side was because of overflowing with a large amount 
of lime cake (processed residue from refined sugar beet). The grower’s rotation 
system was “wheat-sugar beet-soybean-potato-green manure,” which was five crops 
in five years. If the pH value exceeds 6.5, potato and sugar beet may suffer disease 
of common scab, so the solution has been considered. In the growing season, symp-
toms such as slow growth and withering were visually observed in the place with 
high pH, and in the surrounding area, the location can be identified until harvest 
(Fig. 4.10e). After the harvest, the trace disappeared, and no solution was taken.

When the location with high pH can be identified from location information 
recorded in SAS and the grid map for easy manual variable-rate application can also 
be created, the grid map as shown in Fig. 4.10f can be provided. The size of the grid 
was determined by checking the distance over which the grower could manually 
adjust the spray amount. As a result of sulfur powder spraying, the field observation 
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after potato harvest in November 2010 confirmed that the pH dropped to 5.5–6.0 
(Fig. 4.10d).

 (2) Plan for Agricultural Work

 (i) Test Fields, Device, and Methods

The test field was a taro rotation field (0.32 ha, 60 m long side × 54 m short side) 
in Aoyagi, Sayama City, Saitama Prefecture, Japan. The test device was SAS3000, 
and the observation speed was 0.28 m/s, the sampling period was 3 s, the observa-
tion depth was 0.15 m, and the data measurement interval was 0.84 m. For the pur-
pose of visualizing the inside of the field with high resolution, the observation line 
was set at 3 m interval, to ensure that the tractor’s wheel may not cover the observa-
tion line, because the interval between the taro planting rows was about 1 m and the 
width of the rare wheel of the tractor was 1.2 m. Field observation was conducted 
after taro harvest in February and December 2017. To estimate the regression coef-
ficient for each property, a database of 100 samples for the analysis was used, which 
were collected in February 2017 from 10 plots of fields of 3 taro farmers in the 
Sayama area. For soil mapping, the soil maps with the data range divided according 
to the reference value of soil analysis were first provided to the grower, and then 
three equal division soil maps were provided.

 (ii) Make Decision by Growers

The growers found that hot water extractable nitrogen and available phosphorus 
were below the reference value, and the exchangeable potassium was within the 
reference value in the divided interpolation methods (Fig.  4.11a) observed in 
February. It was considered that this was the topdressing effect of potassium fertil-
izer. From the soil map of the three equal division interpolation methods (Fig. 4.11b) 
observed in February, the grower changed the planting row direction from east-west 
to north-south.

 (iii) Reasons, Background, and Work Results

The grower used sulfated potassium fertilizer as additional fertilization of the 
taro cultivation. The residual amount of exchangeable potassium was higher than 
hot water extractable nitrogen and available phosphorus, which agreed with the 
work of adding additional fertilizer.

According to the growers, they remembered that red soil was added to the east 
half of the field in the past. Also, the western taro was found to be smaller overall. 
The growers changed the planting row direction from east-west to north-south in 
consideration of cultivation management from work efficiency and soil property 
distribution. As a result of field observation after changing the planting row direc-
tion and after harvesting taro in December, hot water extractable nitrogen and avail-
able phosphorus were higher in the east half, while exchangeable potassium had a 
lower content (Fig. 4.12).

 (3) Selection of Varieties Based on Differences Between Fields
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(a) Reference value division interpolation method observed in February 

(b) Three equal division interpolation method observed in February

Hot water extractable nitrogen Available Phosphate Exchangeable potassium

Exchangeable potassiumHot water extractable nitrogen Available Phosphate

N

N

Fig. 4.11 Soil maps with data range (a) Reference value division interpolation method observed 
in February (b) Three equal division interpolation method observed in February

Hot water extractable nitrogen Available Phosphate Exchangeable potassium N

Fig. 4.12 Three equal division interpolation methods observed in December

 (i) Test Fields, Device and Methods

The test fields were two plots of field (0.12 ha, 45 m long side × 30 m short side 
(trapezoid) and 0.16 ha, 55 m long side × 30 m short side (trapezoid)) in Aoyagi, 
Sayama City, Saitama Prefecture, Japan. The test device was SAS3000. The obser-
vation speed was 0.28 m/s, the sampling period was 3 s, the observation depth was 
0.15 m, and the data measurement interval is 0.84 m. The interval between observa-
tion lines was 3 m; the observation line direction coincided with the direction of 
leveling, in north-south that crosses the direction of planting. There were factories 
and buildings on the west and north sides, and the location information at the end of 
the upper left of the two plots could not be captured accurately. Field observation 
was conducted after soil leveling (December 2017). To estimate the regression 
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coefficient for each property, the database was used in which 100 samples were col-
lected in February 2017 at 10 plots from 3 taro farmers in the Sayama area. The soil 
map was confirmed with the grower after the field observation using dot maps based 
on the simple GIS display function of SAS3000 (Fig. 4.13).

 (ii) Make Decision by Growers

Fig. 4.13 Comparison between fields using dot map
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The growers planned to cultivate Dodare (taro variety) in No. 1 field and lotus 
leaf in No. 2 field. But they switched the two cultivation varieties after referring to 
the soil maps of hot water extractable nitrogen, available phosphorus, and exchange-
able potassium. So far, 2 tons of chicken manure compost has been put into the two 
plots of field, but it has been reduced to 1 ton.

 (iii) Reasons, Background and Results

According to the growers, when the Dodare variety is cultivated in soil that is 
rich in nitrogen, the plant height and leaves and the mother taro tubers grow dra-
matically, while the secondary taro tubers tend to be small. According to the hot 
water extractable nitrogen soil map (Fig. 4.13a), the residual amount of both plots 
was higher than the reference value range, and No. 1 was higher than that of No. 2. 
Therefore, No.1 was planted with lotus leaves which are less affected by nitrogen.

In addition to the hot water extractable nitrogen, the residual amount of exchange-
able potassium and available phosphorus in the two plots also exceeded the refer-
ence value range (Fig. 4.13b, c). Since the organic matter satisfied the condition of 
the standard level of 2 g per 100 g (2%) of dry soil (Ministry of Agriculture Forestry 
and Fisheries 2008a), the chicken manure compost input was reduced to half 1 ton.

4.3  Measurement and Application of Soil EC 
in Precision Agriculture

4.3.1  Soil EC Measurement: Theory and Method

Precision agriculture differentiates agriculture management based on the soil nutri-
ent status and crop growth conditions of different locations in the farmland and can 
increase yield with less input. Rapid and accurate access to soil parameters is one of 
the bases of precision agriculture. The most informative, simple, least expensive, 
and accurate map of soil variability across the field is made using measurements of 
soil electrical conductivity (EC). Soil is an electrical conductor and soil EC is an 
important soil parameter. It has a relationship with several soil properties such as 
soil moisture, soil salinity (the amount of salt in the soil), soil texture (the percent-
age of sand, silt, and clay), cation exchange capacity (CEC), and organic carbon 
content. The measurements of the soil EC can reflect the soil status and provide a 
basis for implementing precision agriculture.

Soil EC is the most common measure of soil salinity and many nutrients are 
salts—a source of salinity. It is helpful to farmers to use soil EC to evaluate soil 
nutrient level. On the other hand, the nutrient accumulation, poor drainage, salt 
water intrusion in coastal areas, and saline irrigation water can lead to the unwanted 
buildup of salinity in soil, which is typically not beneficial to crops, grasses, or the 
microbial community in the soil. Soil salinity also affects the soil hydrology. Plant 
diseases and pathogens, reduced crop yields, or even crop failures may occur from 
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excessive soil salinity; therefore, the proper monitoring of soil salinity will help 
ensure the health of crops. Soil EC can change dramatically with water content and 
can be affected by the quality of the irrigation water, fertilization, drainage, and 
other natural processes. Compaction, clay content, and organic matter can influence 
moisture holding trends over time, also affecting EC capacities in soil.

As we know, electrical conductivity (EC), as well as its inverse electrical resistiv-
ity, is a fundamental property of a material or an object that quantifies how strongly 
it conducts or resists electric current. Electrical resistance is often used in electrical 
engineering and has the following relationship with electrical resistivity if the shape 
of the object is regular (Eq. 4.3):
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where R is electrical resistance (Ω), L is the length of the object (m), S is the 
cross-sectional area of the object (m2), and ρ is the electrical resistivity (Ω·m).

Similarly, electrical conductance has the following relationship with electrical 
conductivity (Eq. 4.4):
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where G is electrical conductance (Siemens, S), S is the cross-sectional area of the 
object (m2), L is the length of the object (m), and σ is the electrical conductivity 
(S/m). It is obvious that G = (1/R) and σ = (1/ρ).

From Eqs. (4.3) and (4.4), it can be seen that if the cross-sectional area and 
length of the measured conductor are determined, the EC of the conductor can be 
easily obtained. However, the soil is a half-open and infinite measuring object and 
is just a complex measuring object with uncertain cross-sectional area and length 
for the measurement of the Earth conductivity. It is impossible to measure soil EC 
with Eqs. (4.3) and (4.4) directly.

Soil EC depends on the concentration of conductive ions in the soil. Therefore, it 
can be represented by measured ion concentration in soil solution, which has linear 
relationship with EC of soil solution. Pore water EC or soil water EC (ECw or σw) is 
the electrical conductivity of the water in the soil pores. In order to simply measure 
the EC of pore water in situ, the tiny sensors would have to be inserted into micro-
scopic water-filled pores. Obviously, it is impossible to measure the EC of water on 
that scale. In fact, it is feasible to extract a soil water sample and measure the EC of 
that sample.

Meanwhile, saturation extract EC (ECe or σe) is measured by taking a soil sam-
ple, making a saturated paste of soil and deionized water, extracting the water, and 
then measuring the EC of the extracted solution. However, it is not easy to measure 
soil ECw or soil ECe in a field. A soil solution method is recommended. The soil 
solution is prepared as following.
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The soil samples collected from a farmland are air-dried, smashed, and sieved 
(1 mm). Then, a certain weight of air-dried soil sample is weighed and added into a 
test tube or measuring cup, and five times of the weight of distilled water is added 
into the soil sample according to the water soil ratio of 5:1. After shaking the soil 
water solution on an oscillator for 30 min, and then standing for 30 min, the clear 
soil solution or the soil solution filtered by filter paper can be directly extracted for 
measurement of EC. The EC of the soil solution is usually measured by electrode 
method. The measured EC data of soil solution is called ECw, and the EC data mea-
sured by aforementioned method can be also called as EC1:5, which means that the 
soil solution is prepared by the water soil ratio of 5:1.

Soil EC1:5 is widely used to analyze soil salinity (He et al. 2012). Soil salinity or 
sodicity is thought a major impediment to sustainable agriculture, worldwide. The 
Songnen Plain is the second largest plain of China after and also one of the five larg-
est salt-affected soil regions in China. Therefore, soil EC1:5 was used to characterize 
the salinity and sodicity of the salt-affected soils in the Songnen Plain, China, and 
determine the relationships between salinity, sodicity, and cation concentrations of 
1:5 extracts (Chi and Wang 2010). One hundred and twenty-one soil samples were 
selected to determine chemical characteristics of soil using 1:5 extraction method. 
All samples were air-dried and passed through a 2 mm sieve, and then 4 g of soil 
was taken from each sample and put into a 100 ml bottle with 20 ml distilled water. 
After agitated and filtered, the EC1:5 value of the soil solution was determined by a 
DDS-307 conductivity meter (Shanghai Precision Scientific Instrument Co., Ltd., 
China). The cations Na+, K+, Ca2+, and Mg2+ were determined by using inductively 
coupled plasma mass spectroscopy (GBC, Scientific Equipment Pty Ltd., Australia). 
The TCC, total cation concentration (or total soluble salt concentration) (mmolc 
L−1), was calculated as

 TCC Na K Ca Mg� � � �� � � �2 2

 (4.5)

Another soil salinity parameter, sodium adsorption ratio (SAR) (mmolc L−1)1/2, 
was calculated as

 
SAR Na Ca Mg� �� ��/ /2 2 2

 
(4.6)

The analysis results showed that the coefficients of determination (R2) between 
EC1:5 and TCC and between EC1:5 and SAR were 0.99 and 0.87, respectively, and 
EC1:5 value had higher correlation with soil parameters, TCC and SAR, and could 
be used to well evaluate soil salinity and sodicity.

Although soil solution EC (ECw), including EC1:5 and EC1:1, can describe soil EC 
level to a certain extent, it cannot replace soil EC since soil in farmland is a porous 
medium and has three phases of solid, liquid, and gas. The EC in soil is more com-
plex than it is in soil solution. Therefore, the bulk soil electrical conductivity (ECb 
or σb) is proposed and applied, which is also called soil apparent electrical conduc-
tivity (ECa or σa). Soil ECa (afterward, soil EC is used instead of soil ECa) is the 
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electrical conductivity of the soil/water/air matrix combined and is measured by soil 
sensors from the undisturbed status.

The most popular measurement method of soil EC is four-electrode method. 
Figure 4.14 shows the typical pattern of the four-electrode method. Two electrodes 
(J and K) are connected with a constant electric current source, while the other two 
electrodes (M and N) are connected with a voltage meter. The constant electric cur-
rent is injected into soil from J and K, and then a voltage drop between M and N is 
detected. Using the voltage drop, the soil EC can be measured (Telford et al. 1976; 
Sun and Wang 2001).

Using the four-electrode method shown in Fig. 4.14, the soil EC can be calcu-
lated as the following:
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where σb is the soil EC; LJM, LJK, LKM, and LKN are the distances between J and M, J 
and K, K and M, and K and N respectively; I is the electric current between J and K; 
and ΔVMN is the voltage drop between M and N.

When LJM = LMN = LKN = a, the structure of soil EC measurement method shown 
in Fig. 4.14 is called Wenner array, and Eq. (4.8) can be simplified as
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When LJK = 2a and LMN = b, the structure of soil EC measurement method shown 
in Fig. 4.14 is called Schlumberger array, and Eq. (4.9) can be simplified as
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A portable soil EC detector was developed (Li et al. 2006; Li and Li 2011). The 
EC detector adopts a four-electrode method and consists of three parts: a probe with 
four electrodes, a control and display unit, and the data processing software. The 
probe injects a constant electrical current into soil and detects the voltage drop 

Voltmeter

Constant current source

J M N K 

Fig. 4.14 Structure of soil 
EC measurement method 
based on four-electrode 
method
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between two output electrodes. The voltage drop is then used to estimate the soil 
EC. The correlation analysis was performed between soil EC value and soil ammo-
nium content, and higher correlation result was obtained (R2 = 0.9297).

4.3.2  On-the-Go Measurement System of Soil EC

Soil EC, as an important parameter of soil characteristics, is of great significance to 
the precision management and fertilization in farmland. Precision agriculture is a 
differential management based on the temporal and spatial variation of agricultural 
parameters on the field scale. It needs modern agricultural machineries to perform 
the site-specific crop management. Therefore, as the one of the essential informa-
tion of precision agriculture, soil EC measurement needs to be conducted rapidly, 
accurately, and real time. Thus, it is necessary to use the vehicle-mounted (on-the-
 go) measurement system to achieve the requirements of efficiency and accuracy.

 (1) EM-38 Soil EC Mapping System Based on Electromagnetic Induction

The on-the-go measurement methods of the soil EC can be broadly classified 
into two categories, electromagnetic induction (EMI) method and aforementioned 
four-electrode method. EMI method is a noncontact type of method and the princi-
pal component is shown in Fig. 4.15. The instrument based on EMI method is com-
posed of a transmitter and a receiver, placed about 1 m apart. Inside the transmitter, 
an alternating current (A/C) is applied to a copper coil to induce an electromagnetic 
wave, known as the primary magnetic field (HT). When this magnetic field comes 
into contact with the conductive material such as soil, an eddy current in the soil 
matrix will be created. This new eddy current will generate a secondary magnetic 
field (HI). Both HT and HI are measured by the receiver as a reinforced magnetic 
field (HR). The measured response is a function of soil EC and is used to evaluate 
soil (Robinson et al. 2003).

Fig. 4.15 Principal component of the EMI method
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EM38 series of ground conductivity meter (Geonics Limited, Ontario, Canada)2 
is a typical soil EC measuring and mapping system. It can be used in handheld pat-
tern and also in on-the-go pattern (vehicle-mounted) when it is equipped with a 
vehicle or tractor. The standard EM 38 - MK 2 includes two receiver coils, separated 
by 1 m and 0.5 m from the transmitter, providing data from effective depth ranges 
of 1.5 m and 0.75 m, respectively, when positioned in the vertical dipole orientation, 
and 0.75 m and 0.375 m, respectively, when in the horizontal dipole orientation, 
while the EM38-MK2-1 model includes one receiver coil only, at 1 m from the 
transmitter. The operating frequency is 14.5  kHz and measuring range is 
0~1000  mS/m. External power sources can be connected to the instrument for 
extended field operations. When it is used in on-the-go pattern, a protective capsule, 
constructed of durable plastic materials, is available as an option.

A mobile data acquisition system for soil EC was developed using the Geonics 
EM38 sensor in order to investigate the correlation between topsoil depth and soil 
EC for precision agriculture (Sudduth et al. 2001). Topsoil depth is an important 
factor related to within-field productivity differences. The EM38 sensor was 
mounted on a wooden cart pulled behind a vehicle to form the mobile system with 
a GPS receiver and data collection computer. The test results showed that the soil 
EC provided the best estimates of topsoil depth and the relation between them fol-
lowed the power function as Eq. (4.10):
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where y is the topsoil depth (cm), σb is the soil EC (mS/m), and α and β are the con-
stants. The experiments were conducted in several farms and the model for each 
farm got high coefficient of determination (R2), R2 = 0.84~0.95. If α is taken as 1, 
the model will become easy to be applied but the accuracy will go down a little.

 (2) Veris Series of Soil EC Mapping System Based on Four-Electrode Method

One widely used device to measure soil EC in the field is the Veris 3100 (3105) 
Soil EC Mapping System (manufactured by the Veris Technologies in Salina, 
Kansas), which is manufactured based on four-electrode method. The Veris 3100 
EC unit (Fig.  4.16) has six disks mounted on a toolbar to act as electrodes and 
records soil EC readings from two different depths every second. One pair of disk 
electrodes induces current into the soil. The change in voltage is measured across 
the other two pairs of disk electrodes resulting in simultaneous EC measurements 
for the top 30 cm of soil (two center disk electrodes) and the top 90 cm of soil (two 
outside disk electrodes). A Global Positioning System (GPS) receiver is mounted on 

2 Disclaimer: Commercial products are referred to solely for the purpose of clarification and should 
not be construed as being endorsed by the authors or the institution with which the authors are 
affiliated.
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Fig. 4.16 Veris 3100 soil EC mapping system. (Disclaimer: Commercial products are referred to 
solely for the purpose of clarification and should not be construed as being endorsed by the authors 
or the institution with which the authors are affiliated)

the Veris unit to record the location of each soil EC measurement point in the field. 
All soil EC data and GPS data can be used to create a soil EC map of a field.

The differences between the soil EC zones in a field are caused by differences in 
the soil parameters, such as soil salinity, soil texture, soil organic matter (SOM) 
content, soil water content, and soil structure. It is shown that in most fields, zones 
with higher EC values have higher clay and organic matter content than lower EC 
zones. Farmers want to know the soil texture so that they can apply the correct 
amount of seeds, fertilizers, and irrigation to each section of their field. After under-
standing the pattern of soil composition across the field, farmers can make their soil 
and crop management decisions to fit the soil pattern rather than assuming that the 
whole field has a uniform composition. Soil EC maps have many economic and 
agronomic advantages to be used as a guide to make better management decisions. 
Examples of the most immediate uses of soil EC measurement and mapping are 
(Farahani et al. 2011) the following:

• Rapid identification of farm field variability
• Guidance to smart soil sampling as opposed to random- or grid-based soil 

sampling
• Logical placement and interpretation of on-farm tests
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• Development of potential “management zones” for variable-rate seeding and 
chemical application

• Identification of coarse-textured zones within the field that are susceptible to 
leaching

• Identification of coarse-textured zones within the field that have low water- 
holding capacity and thus susceptible to crop water stress

• Identification of crop productivity zones based on relative clay and organic mat-
ter contents

Precision agriculture (site-specific management) demands the identification of 
subfield regions with homogeneous characteristics (management zones). However, 
determining subfield areas is difficult because of complex correlations and the spa-
tial variability of soil properties and nutrient concentrations, responsible for varia-
tions in crop yields within the field. Soil EC is thought to be a potential estimator of 
soil properties and nutrients and a tool for the delimitation of homogeneous zones.

A Veris 3100 on-the-go soil sensing system was utilized to improve field man-
agement zone definition (Gunzenhauser et al. 2012). The Veris system with GPS is 
thought better to produce the dense mapping coverage needed to better define soil 
boundaries and improve the delineation of management zones.

Peralta and Costa (2013) also utilized a Veris 3100 on-the-go soil sensing system 
to delineate management zones with soil EC to improve nutrient management of 
crops in Argentina. The EC measurements to 0–90 cm are used because they are 
more stable over time than the EC measurements to 0–30 cm (Sudduth et al. 2003). 
The Veris 3100 sensor was pulled by a pickup truck, taking simultaneous and geo- 
referenced EC data in real time with a DGPS to take a satellite position once per 
second. Average travel speeds ranged between 7 and 11 kmh−1, corresponding to 
about 2–3 m spacing between measurements in the direction of travel. Meanwhile, 
soil properties and nutrients were analyzed by means of soil sampling, including 
SOM, CEC, pH, NO3

−-N content, P, Zn+2, Ca+2, Mg+2, Mn+2, Na+, K+, Fe+2, Cu+2, and 
SO4

−2. The result of PCA and ANOVA revealed that soil EC measurements success-
fully delimited two homogeneous soil zones associated with the spatial distribution 
of soil properties and some nutrients (Na+2, Mg+2, Mn+2, Cu+2, Ca+2, Zn+2, Fe+2). 
These results suggest that field-scale soil EC maps have the potential to design sam-
pling zones to implement site-specific management strategies.

Greater understanding of soil EC can offer useful information for crop manage-
ment decisions. A research team at Clemson University has identified the role of soil 
EC in production agriculture after several years of study (Wiatrak et al. 2009). Soil 
texture relates to factors that have a major impact on productivity. For example, 
irrigation scheduling is closely related to soil type and water-holding capacity of the 
soil. Yield potential of sandy soils generally is less than clay soils. Variations of soil 
texture within a field can also have an effect on tillage decisions and pest manage-
ment. Since nematode densities were highly correlated to soil texture as measured 
by soil EC, soil EC can be effectively used for variable-rate applications of nemati-
cides in production fields.
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It was reported that variable-depth tillage could be used to significantly reduce 
fuel requirements for tillage operations. Soil compaction management relies heavily 
on the use of annual deep tillage, usually to a uniform depth throughout the field. 
Soil EC data were good estimates of the topsoil thickness, and the predicted tillage 
depths were inversely correlated to the soil EC (Wiatrak et al. 2009).

4.3.3  Application of Soil EC in Precision Agriculture

 (1) Smart Rice Transplanter Based on Soil EC

Smart rice transplanter is the first agricultural machine in the world to analyze 
soil after puddling. The smart rice transplanter could measure soil EC (apparent 
electrical conductivity) and topsoil depth as measurement parameters. It is very 
important to determine the measurement method of soil EC, soil depth, and vari-
ability map of each parameter to the smart transplant. Figure 4.17 illustrates the 
smart rice transplanter. The prototype was applied in eight-row-type rice trans-
planter (NP80, Iseki).

On-the-go measurement of soil EC is also shown in Fig. 4.17. The soil EC sensor 
could measure bulk electrical conductivity during rice transplanting (Morimoto 
et al. 2013; Morimoto and Hayashi 2017). The soil EC sensor consisted of a pair of 
wheel-type electrode stainless steel sensors.

Since the two electrodes of the soil EC sensor are mounted on the front wheels, 
the distance between the electrodes is always the same at 1.1 m. Alternative current 

GNSS

Electrode Sensor

Topsoil Depth Sensor

Variable Rate 
Fertilizer Applicator

Mapping System

Fig. 4.17 Smart rice transplanter (Morimoto et al. 2013; Morimoto and Hayashi 2017)
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of 1 kHz frequency was flowing between front wheels. Soil EC was affected by the 
soil moisture content and soil temperature. Since the moisture content of soil was 
close to 100% and solid-liquid ratio is almost 1.0 due to puddling operation, it could 
be measured without being affected by moisture content. In order to compensate 
temperature, a platinum resistance thermometer (E52, Omron) was applied. This 
thermometer was installed under the float of the rice transplanter to measure soil 
surface temperature. The interval of measurement was 1 s and the EC value was 
compensated to 25 °C by using Eq. (4.11):
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where t is soil surface temperature (°C), λ25 is EC value at 25 °C (mS), and λt is 
measured electrical conductivity (mS).

Topsoil depth of paddy fields seems to be uniform, but the topsoil depth varies 
due to turning by agricultural machineries such as heading area. It is also known 
that the fertility of the soil varies due to uneven distribution of compost or soil con-
ditioner, and these variations will result in crop lodging at the harvest time. The 
smart rice transplanter introduced in this section solves this lodging problem with a 
soil sensor and performs real-time variable fertilizer application. Topsoil depth was 
measured by ultrasonic distance sensor (USS, Model E4PA-LS200-MI-N, Omron). 
A couple of USS set in front of the rice transplanter at a height of 850 mm from the 
ground was shown in Fig. 4.18. Topsoil depth was calculated from a fixed height 
(i.e., 850 mm) minus the average of two sensor data as given by Eq. (4.12):
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where TD is the topsoil depth and Dleft and Dright are the distance from left and right 
sensors to soil surface (mm), respectively. USS could be measured with 5 Hz inter-
val, provided average data per five datasets.

Fig. 4.18 Schematic diagram of topsoil depth sensing

S. Shibusawa et al.



121

Fig. 4.19 Variability maps of soil EC (Morimoto et al. 2013; Morimoto and Hayashi 2017)

Fig. 4.20 Autonomous measurements of the soil EC based on electromagnetic induction

Figure 4.19 shows the soil EC map collected by the smart rice transplanter. 
Sensing and variable fertilizer application can be performed at the same time while 
planting rice and can be confirmed on a map immediately after the work is done. 
Also, as mentioned earlier, the system measures the electrical conductivity between 
the front wheels, so it can scan the entire field of soil. In the case of a 100 ha-scale 
farmhouse, a database of 1,000,000 points can be built in one year, and the number 
of data will increase dramatically compared to the conventional soil sampling 
method. It is expected that it will become the standard specification of the field with 
information on rice cultivation in the near future.

 (2) Topsoil Mapper Based on Soil EC

A kind of precision agriculture equipment, Topsoil Mapper (Geoprospectors 
GmbH, Traiskirchen, Austria),3 has been developed and brought to market from 
2015 (http://www.geoprospectors.com/gb/). As a soil sensing product, the Topsoil 
Mapper (TSM) can conduct autonomous measurements of the soil EC based on 
electromagnetic induction as shown in Fig.  4.20. In precision agriculture, 

3 Disclaimer: Commercial products are referred to solely for the purpose of clarification and should 
not be construed as being endorsed by the authors or the institution with which the authors are 
affiliated.
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differences in soil as well as varying yield capacities within a field are taken into 
account during the cultivation process in order to use operating materials efficiently, 
conserve resources, and increase agricultural yields. Using TSM, the inhomogene-
ity in the soil for a large area and comprehensively map soil parameters, such as soil 
type, water saturation, and compaction, can be obtained from the measured soil EC 
data. These soil parameters can then be used in real time for variable machine 
control.

TSM can be installed on any towing vehicle and supply exact data about soil 
properties. It is made of robust, entirely nonconductive material. On any towing 
vehicle, the TSM can be used regardless of weather and vegetation.

TSM has two working modes, BASIC and PRO.

Basic: TSM is capable of recording the depth of compaction, relative water content, 
and soil type automatically by using a motor during agricultural operations. In 
the Basic version, the user uploads the collected data via storage medium to the 
Data Box (cloud solution). Three maps are then produced using the parameters 
listed above. The data is managed centrally on the server and is available to the 
user at any time.

Pro: With the Pro version, the measured data is sent in real time to the terminal in 
the driver’s cabin. In this way, the driver can immediately see, for example, the 
depth of compaction zones. The information is provided directly to the soil till-
ing machine in the form of a rule-based control. Working depth is set automati-
cally, such that interaction with the machine’s operator is not required. The 
advantages of this mode of operation are saving fuel and working time and 
reduce wear and tear due to optimized working depth.

TSM has three application possibilities, as shown in Fig. 4.20.

 (i) Contact-Free Analysis of Soil Parameters

In Basic mode, the system can be mounted on any towing vehicle to conduct 
autonomous measurements of the soil EC without contacting the soil. Maps with the 
soil parameters for compaction, type of soil, and water saturation can be determined 
from the measured data. The farmers then have the option of integrating this data 
with other data for their farm management system and generating application maps 
from the results. As a rule, farmers use these maps in combination with the site- 
specific control of their agricultural equipment, as well as for planning of further 
agricultural operations.

 (ii) Variable Control of Agricultural Machines in Real Time

As an alternative to asynchronous usage, the soil information can be used in Pro 
mode in combination with the appropriate agricultural equipment so that the latter 
can be controlled flexibly in real time. This allows two processes (acquisition and 
application) to be combined into one work step. When using the TSM for cultiva-
tion, the soil parameters determined by the system will be integrated into the calcu-
lation of the ideal depth of cultivation in real time. The parameters will be transferred 
as control parameters to the appropriate machine, while simultaneously 
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implementing data acquisition during the soil cultivation process. Depending on the 
cultivation strategy (shallow cultivation, subsoiling, or contour tracking), corre-
sponding settings can also be modified on the terminal software so that additional 
information about the field will be taken into consideration.

 (iii) Sensor-Supported Seed Control in Real Time

The application of sensor-supported real-time control, which can be realized 
with the TSM, also presents a huge potential for optimization in other areas, such as 
seed drilling. With this system, it is possible to adapt sowing to varying site condi-
tions (soil type, soil moisture) in real time.

The TSM system also includes a Topsoil Visualizer (TSV), a Topsoil Data Box 
(TSDB), and a Topsoil Data Analyzer (TSDA).

The role of the TSV is to automatically process the recorded soil data and to 
calculate certain soil parameters such as compaction or water saturation. The infor-
mation can then be passed directly to the implement, which automatically sets the 
tilling depth or controls the sowing quantity, allowing two steps to be performed 
simultaneously.

By the TSDB, the web portal of Geoprospectors GmbH (http://www.geopros-
pectors.com/gb/) allows field-related visualization of the soil parameters recorded, 
with the user being able to select different map displays. Output is also available as 
a geo-referenced dataset for further processing in the company’s internal geo- 
information system.

The TSDA is a desktop software, which can be used to transfer the collected data 
to the laptop immediately and then analyze them automatically. The raw data and 
the processed data are displayed as maps within a few seconds. Consequently, for 
example, soil samples can be taken immediately and directly based on the zone 
maps determined on-site.
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Chapter 5
Theories and Methods 
for Spectroscopy- Based Crop Nutrient 
Sensing

Yan Zhu, Jun Ni, and Lili Yao

Abstract The monitoring of crop growth can provide timely information for preci-
sion field management and the basis for early crop yield estimation. Spectral analy-
sis technology, remote sensing image technology, digital image processing 
technology, plant electrical signal detection, and other means can obtain crop growth 
information and analyze crop nutritional status without destructing plants. All of the 
above technologies have been widely used in crop growth monitoring, and the 
related fast acquisition sensing systems of crop nutrition have been developed. 
Chlorophyll and nitrogen concentrations of plants can be estimated with nonde-
structive remote sensing techniques. Based on canopy spectral characteristics of 
plants, several vegetation indices, such as ratio vegetation index (RVI), difference 
vegetation index (DVI), and normalized difference vegetation index (NDVI), were 
developed for detecting nutrient status of plants. Several specific spectral parame-
ters of plant canopy are effective in the diagnosis of crop nutrient status, which are 
nutrient balance parameter, nitrogen sufficiency index (NSI), nitrogen response 
index (NRI), nitrogen nutrition index (NNI), and indicator difference method. 
Ground-based, UAV (unmanned aerial vehicle)-borne, and satellite remote sensing 
can be used to obtain above vegetation indices and spectral parameters for diagnosis 
of crop nutrient status, which will play a more and more important role in precision 
crop nutrient management.
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Crop growth can be described by the characteristics of individual plants or group 
plants. The group composed of robust individual plants is called a good growing 
crop area. The monitoring of crop growth can provide timely information for preci-
sion field management and provide basis for crop early yield estimation. A variety 
of biological parameters closely related to crop growth are used to describe crop 
growth, including crop nutrition parameters (e.g., chlorophyll content, nitrogen 
content, and crop water content) and plant morphological parameters (e.g., leaf 
area, plant height, and coverage). It is the basis of precision agriculture to monitor 
the growth parameters of various crops.

The traditional monitoring methods of crop nutritional status mainly depend on 
the experience accumulated by farmers in the long-term agricultural life. According 
to the appearance changes of plant leaves and plant colors caused by the lack or 
excess of some nutrient elements, farmers can make their decision of fertilization. 
For example, when the crops are short of nitrogen, they will grow slowly and look 
light green, and the leaves are yellow or brown when they are dry. When the crops 
are short of potassium, the old leaves turn yellow along the edge. Especially when 
they are serious, the edges of the leaves look like being burnt, and the green among 
the veins is lost. When the crops are short of phosphorus, the leaves and plants 
become dark and gradually appear red or purple patches. In addition, when the 
crops are short of sulfur, magnesium, iron, and other elements, the leaves also rep-
resent different characteristics. However, because the growth of crops in the field is 
affected by many factors at the same time, the method of observation based on 
experience is limited by the difference of experience cognition and evaluation stan-
dard of the observer, which is prone to misjudgment or late judgment, affecting the 
field management decision-making.

The modern chemical experiment methods to analyze the leaves, leaf sheaths, 
stems, or the whole plant of the crops can extract the concentration of some nutri-
ents in the crops, so as to realize the determination of the level of abundance and 
deficiency of corresponding elements. Those methods are accurate and repeatable 
and become a routine detection method. However, because of the need of sampling 
and measurement, the operation of the test process is complex, and the consumption 
of reagents and time is large; thus, it cannot meet the needs of rapid, simple, and 
nondestructive field crop growth detection for precision agriculture.

With the development of computer technology and advanced sensor technology, 
it is possible to obtain crop growth information accurately and quickly. Spectral 
analysis, remote sensing technology, digital image processing, plant electrical sig-
nal detection, and other means can obtain crop growth information and analyze crop 
nutritional status without destructing plants. All of the above technologies have 
been widely used in crop growth monitoring research, and the related fast acquisi-
tion sensing systems of crop nutrition have been developed.
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5.1  Spectral Characteristics and Vegetation Indices 
of Crop Nutrients

5.1.1  Canopy Spectral Characteristics of Crop Nutrients

Nitrogen (N) in cereal crops is a main element for maintaining growth status and 
enhancing grain yield. Leaf N accumulation (LNA), as a product of leaf N content 
and leaf weight, reflects not only information on leaf N status but also vegetation 
coverage during crop growth. Therefore, quick, nondestructive, and accurate acqui-
sition of LNA becomes a key technique for population growth diagnosis and preci-
sion N management in modern crop production (Hansen and Schjoerring 2003), 
which is of significant importance for precision diagnosis, real-time fertilization, 
and productivity prediction. Research in the past decades has shown that remote 
sensing technology offers the only practical alternative to the complicated, slow, 
and expensive chemical methods for estimating foliar chemical concentrations over 
large geographic areas (Sahoo et al. 2015). The existing reports indicated that it is 
feasible to estimate N accumulation in plant by spectroscopic means. However, 
further investigations are needed to explore consistent feature bands and construct 
simpler spectral parameters and to develop more accurate monitoring models with 
wider applicability of crop N accumulation estimation based on hyperspectral sens-
ing information. Figure 5.1 shows the spectral reflectance of green plants.

In the visible waveband (400–700 nm), absorption by leaf pigments is the most 
important process leading to low reflectance and transmittance values. The main 
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light-absorbing pigments are chlorophylls a and b (Chl a and Chl b), carotenoids, 
xanthophylls, and polyphenols, and all pigments have overlapping absorption fea-
tures. Chl a displays maximum absorption in the 410–430  nm and 600–690  nm 
regions, whereas Chl b shows maximum absorption in the 450–470 nm range. These 
strong absorption bands induce a reflectance peak in the green domain at about 
550 nm. Carotenoids absorb most efficiently between 440 and 480 nm.

In the near-infrared (NIR) waveband (700–1300 nm), leaf pigments and cellu-
lose are almost transparent, so that absorption is very low and reflectance and trans-
mittance reach their maximum values. This is caused by internal scattering at the 
air-cell-water interfaces within the leaves. Scattering occurs mainly due to multiple 
refractions and reflections at the boundary between the hydrated cellular walls and 
air spaces.

In the middle-infrared waveband, also called shortwave-infrared waveband 
(SWIR: 1300–2500 nm), leaf optical properties are mainly affected by water and 
other foliar constituents. Water largely influences the overall reflectance in the 
SWIR band effectively trapping the radiation, resulting in absorption that exceeds 
scattering processes. Protein, cellulose, lignin, and starch also influence leaf reflec-
tance in the SWIR.

5.1.2  Vegetation Indices of Crop Nutrients

Plant nitrogen concentration can also be estimated with nondestructive remote sens-
ing techniques since chlorophyll content is closely linked to nitrogen status. Based 
on canopy spectral characteristics of plants, several vegetation indices, such as sim-
ple ratio and normalized difference indices, were developed for detecting nutrient 
status of the plants.

 1. Ratio Vegetation Index (RVI)
Ratio vegetation index (RVI), also known as greenness, is the ratio of two spec-

tral reflectance, which can better reflect the difference of vegetation coverage and 
growth status, especially suitable for vegetation monitoring with vigorous growth 
and high coverage. RVI can be calculated as Eq. (5.1):

 
RVI NIR� �

�R  
(5.1)

where ρNIR is the spectral reflectance of the crop canopy at NIR band and ρR is the 
spectral reflectance of the crop canopy at red band. RVI is a sensitive indicator 
parameter of green plants, which has a high correlation with leaf area index (LAI), 
biomass dry matter (DM), and chlorophyll content. The RVI of the area covered by 
green and healthy vegetation is far greater than 1, while the RVI of nonvegetation-
covered areas (bare soil, artificial buildings, water, dead vegetation, or serious insect 
pests) is near 1, and the RVI of vegetation is usually greater than 2. Vegetation 
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coverage affects RVI. When the vegetation coverage is high, RVI is very sensitive 
to vegetation. When the vegetation coverage is less than 50%, the sensitivity 
decreases significantly. The RVI is also affected by atmospheric conditions, which 
greatly reduces the sensitivity of vegetation detection, so atmospheric correction is 
needed before calculation.

 2. Difference Vegetation Index (DVI)
Difference vegetation index (DVI) is probably the simplest vegetation index. It 

can be calculated as Eq. (5.2):

 DVI NIR� �� �R  (5.2)

DVI can well reflect the change of vegetation coverage, but it is sensitive to the 
change of soil background. When the vegetation coverage is 15~25%, DVI increases 
with the increase of biomass, and when the vegetation coverage is more than 80%, 
the sensitivity of DVI to vegetation decreases.

 3. Normalized Difference Vegetation Index (NDVI)
The normalized difference vegetation index (NDVI) is used to detect vegetation 

growth state and vegetation coverage and eliminate some radiation errors. NDVI 
can be calculated as Eq. (5.3):

 

NDVI R

R

�
�� �
�� �

� �
� �

NIR

NIR  

(5.3)

The value range of NDVI is −1~1. A negative value indicates that the ground is 
covered with clouds, water, snow, etc., which highly reflects the visible light. A 
value close to 0 indicates that there is rock, bare soil, etc., and the reflectance data 
at NIR and R bands are approximately equal. A positive value indicates vegetation 
coverage and increases with the increase of coverage, and the range of general green 
vegetation area is 0.2~0.8.

NDVI is the most widely used one of more than 40 vegetation indexes (Bannari 
et al. 1995; Tian and Min 1998). Although NDVI is sensitive to the change of soil 
background, it can eliminate most of the changes of irradiance related to instrument 
calibration, solar angle, terrain, cloud shadow, and atmospheric conditions and 
enhance the response ability to vegetation.

The limitation of NDVI is that the contrast of NIR and R reflectance is enhanced 
by nonlinear stretching. For the same image, when calculating RVI and NDVI sepa-
rately, it can be found that the increasing speed of RVI value is higher than that of 
NDVI value, that is, NDVI has low sensitivity to high vegetation area. The treatment 
of atmospheric interference is insufficient, and atmospheric residual noise has a 
serious impact on NDVI index. It is easy to be disturbed by the soil background, 
especially in the middle vegetation coverage area. When the soil background 
becomes dark, NDVI index tends to increase.
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 4. Soil-Adjusted Vegetation Index (SAVI)
To overcome the limitations of NDVI, some new indexes were proposed to mod-

ify NDVI. Soil-adjusted vegetation index (SAVI) is one of those indexes and was 
designed to minimize soil brightness influences (Huete 1988). SAVI can be calcu-
lated as Eq. (5.4):

 

SAVI R

R
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�� �

� �� �
�� �

� �
� �

NIR

NIR L
L1

 

(5.4)

where L is a soil adjustment factor and the value range of L is 0~1. If the value of L 
is zero, the SAVI is equal to the NDVI. When L = 1, it means that the impact of soil 
background is zero and the vegetation coverage is very high. When L = 0.5, it per-
mits the best adjustment to minimize the secondary backscattering effect of canopy-
transmitted soil background reflected radiation.

Based on red edge bands, several simple ratio and normalized difference indices 
were developed for estimating Chl a concentration in plant leaves, for example, red 
edge ratio indices including Vogelmann index a (VOGa) (Vogelmann et al. 1993), 
GM-2 and simple ratio index (SR705, RI) (Gitelson and Merzlyak 1998), red edge 
normalized difference indices including Vogelmann indices b and c (VOGb and 
VOGc) (Zarco-Tejada et  al. 2001), normalized difference 705 index (ND705) 
(Gitelson and Merzlyak 1994), modified simple ratio 705 (mSR705), and modified 
normalized difference index (mND705) (Sims and Gamon 2002). Ratio and nor-
malized difference indices composed of red and NIR bands such as pigment-spe-
cific simple ratio (PSSR) and pigment-specific normalized difference (PSND) were 
also designed to assess Chl a and Chl b status in different deciduous tree leaves 
(Blackburn 1998).

5.2  Estimation of Leaf Nitrogen Accumulation in Wheat 
Based on Hyperspectral Sensing

5.2.1  Analysis of Canopy Spectral Characteristics

The studies focused on the hyperspectral sensing were conducted from five different 
N rates (0 kg N ha−1 (N0), 75 kg N ha−1 (N1), 150 kg N ha−1 (N2), 225 kg N ha−1 
(N3), and 300 kg N ha−1 (N4)) and six wheat cultivars in three consecutive growing 
seasons to develop a new methodology for systematic exploration of novel sensitive 
bands and simple spectral indices to estimate LNA in wheat (Yao et al. 2010). The 
data were used to test the derived model equations, and the estimated results were 
compared with the measurements to evaluate reliability and accuracy of the equa-
tion output under independent cultural conditions. Besides R2, the relative root mean 
square error (RRMSE) and slope were used to evaluate the fitness between the pre-
dicted and observed data, along with 1:1 plotting of the two sets of values. The 
RRMSE is calculated with the equation (Zhu et al. 2006).
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Fig. 5.2 Changes of canopy spectral reflectance with varied nitrogen rates and growth stages in 
Yumai 34 wheat (a) At booting stage (b) Under N3 of N rate

With the data from Yumai 34 in Exp. 1 as an example, Fig. 5.2 illustrates the 
dynamic change patterns of canopy hyperspectral reflectance with varied N rates at 
booting and with growth stages at N3. It can be seen that different N rates markedly 
influenced the characteristics of spectral reflectance of wheat canopy, with different 
spectral responses in the various waveband regions (Fig. 5.2a). With increasing N 
rates, the canopy spectral reflectance decreased in the range of visible bands and 
elevated in the NIR range with obvious differences among four N rates. This implied 
that these spectral regions are relatively sensitive to growth status of wheat under 
varied N levels. The similar spectral responses were observed at different growth 
stages and marked differences located in the visible and NIR regions (Fig. 5.2b). 
This is likely because wheat canopy structure and plant biochemical components 
experienced sharp changes at different growth stages and under varied N rates, thus 
influencing the properties of spectral reflectance. As a whole, under higher N rates 
and more vigorous growth stages, the canopy reflectance in the visible range was 
lower than under lower N rates and earlier growth stages, and the opposite pattern 
was seen in the NIR region.

With the observed data, the reduced sampling method was firstly adopted to 
analyze the functional relationships of LNA to NDSI(Rλ1, Rλ2)  =  (Rλ1  −  Rλ2)/
(Rλ1 + Rλ2) at 10 nm interval using a combination of two random bands (λ1 and λ2) 
from 350 to 2500 nm based on the original spectra and to identify the sensitive band 
ranges with greater R2 values. The regression analyses revealed that there were 
highly significant correlations between LNA and NDSI in two spectral ranges of 
visible bands and NIR bands, whether the function was linear or power or exponen-
tial form. The R2 values were largely greater than 0.80 with linear regression based 
on the NDSI of 710–730 nm and 930–1010 nm, greater than 0.90 with power regres-
sion based on NDSI of 700–730 nm and 820–960 nm, and greater than 0.90 with 
exponential regression based on NDSI of 500–580 nm and 830–1010 nm. Then, 
through precise sampling on those sensitive spectral ranges, more detailed results of 
R2 values between LNA and NDSI at 1 nm interval were obtained in three different 
functional forms.
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5.2.2  Spectral Monitoring Models for Crop Nutrients

According to R2 and standard error (SE), it can be seen that among the selected 
NDSI groups, for linear equation, the best performance was based on NDSI (R968, 
R720) (R2 of 0.81 and SE of 1.31) (Fig. 5.3a); for power equation, the best result was 
from NDSI (R860, R720) (R2 of 0.90 and SE of 1.33) (Fig. 5.3b); and for exponential 
equation, the best result was from NDSI (R940, R570) (R2 of 0.90 and SE of 1.20) 
(Fig. 5.3c). In particular, the power equation from NDSI (R860, R720) and the expo-
nential equation from NDSI (R940, R570) markedly enhanced the accuracy of LNA 
monitoring in wheat.

The above results indicated that the well-performed spectral indices and moni-
toring equations were all based on the sensitive bands from visible to NIR ranges, 
whether derived from linear or nonlinear equations. Among them, three NDSI mod-
els such as linear, power, and exponential functions exhibited exceptional predict-
ability (R2>0.81, SE<1.33).

With the well-performed spectral indices NDSI (R860, R720), the bandwidths were 
expanded from 1 to 100 nm gradually at the interval of 1 nm, and then the corre-
sponding LNA monitoring models with varied bandwidths were established based 
on the two spectral indices.

Comparing the values of R2 and SE of the calibration, it can be seen that NDSI 
(R860, R720) showed similar change patterns in validation. With the increased band-
widths, for NDSI (R860, R720), R2 ascended firstly and then descended after 37 nm, 
although SE increased gradually. Analyzing the bandwidth impaction on validation 
performance of NDSI (R860, R720), the results showed that R2 decreased but RRMSE 
increased gradually for NDSI (R860, R720). The result indicated that the monitoring 
model exhibited apparent difference after the bandwidth of NDSI (R860, R720) was 
over 33 nm.

The independent dataset was used to test the model for LNA estimation in wheat. 
Three statistics of R2, RRMSE, and slope between the observed and estimated val-
ues were considered comprehensively for evaluating the performance of established 

Fig. 5.3 Quantitative relationships of LNA to spectral indices in wheat (n = 402) (a) NDSI(R968, 
R720) (b) NDSI(R860, R720) (c) NDSI(R940, R570)
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Fig. 5.4 1:1 relationship between the predicted and observed LNA in wheat from two models 
based on NDSI (R860, R720) (n = 134)

models. It can be seen that the overall performance was excellent with all estimation 
models on LNA.

The monitoring models derived with NDSI (R860, R720) had good performance 
with R2 of 0.83, RRMSE of 0.25, and slope of 0.93, respectively. The 1:1 plotting 
with the observed and predicted values well exhibited the reliability and accuracy of 
the derived models, as shown in Fig. 5.4.

5.3  Real-Time Diagnosis of Crop Growth

5.3.1  Diagnosis of Crop Nutrient Status Based on Nutrient 
Balance Principle

The principle of fertilization application based on nutrient balance was first pro-
posed by the famous American soil chemist Truog E. at the Seventh International 
Soil Society in 1960 (Truog 1960) and then developed and applied to crop produc-
tion by Stanford (1973). The nutrient balance method is also called the target yield 
method. The target yield-based fertilization model is a typical representative of the 
soil test fertilization model. The core of the target yield method is to calculate the 
amount of fertilizer applied under the specific yield, ecological area, and cultivation 
conditions according to the balance of nutrient input and output. The target yield 
method is developed from the traditional nutrient balance method, which is one of 
the most commonly used methods all over the world (Du et al. 2012). The principle 
is that the nutrients absorbed by crops come from soil and fertilizer, and the differ-
ence between the total fertilizer requirement of the crop and the amount of fertilizer 
supplied by the soil is the amount of fertilizer to achieve the target yield (Eq. 5.5):
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Fig. 5.5 Precision topdressing nitrogen technology based on nutrient balance method
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The target yield is the planned yield, which is the fundamental basis for deter-
mining the amount of fertilization. The design of the target yield is the premise and 
basis for achieving quantitative crop management. The current target yield design in 
production mainly includes “determining yield by land,” “determining yield by 
water,” or setting the average yield in the past three years or revising the production 
potential of light and temperature as the target yield. The supply of a certain nutrient 
in the soil is obtained by converting the soil test value, and the correction coefficient 
of the effective soil nutrient is obtained through field experiments. The test shows 
that the correction coefficient is not a fixed value. It has a significant negative cor-
relation with the soil test value and has a great relationship with the soil type and 
texture. In the early 1980s, the Shanghai Research Institute of Chemical Industry 
introduced the “soil effective nutrient correction coefficient” from the Indian litera-
ture (Ramamoorthy 1967). The corrected soil nutrient measured values were used 
instead of field test to calculate soil supply, which promoted the nutrient balance 
method in the south of the Yangtze River Region. The National Engineering and 
Technology Center for Information Agriculture of Nanjing Agricultural University 
has constructed a crop growth diagnosis and regulation model based on the princi-
ple of nutrient balance method (Fig. 5.5; Zhang et al. 2020). The experiments show 
that when using the nutrient balance method to recommend fertilization, the coef-
ficients in the calculation (such as the effective nutrient correction factor for the soil, 
and the utilization rate of the fertilizer in the season) use general constants. Research 
shows that each parameter changes dynamically under different conditions. Only 
through scientific experiments to find the quantitative relationship between each 
subitem and the measured value of soil nutrients can we get the appropriate recom-
mended fertilization amount.
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5.3.2  Diagnosis of Crop Nutrient Status Based on Nitrogen 
Index Method

 1. Nitrogen Sufficiency Index
Nitrogen sufficiency index (NSI) is defined as the ratio of the chlorophyll meter 

reading of a field to the chlorophyll meter reading of the well-fertilized field. When 
the nitrogen sufficiency index is less than 0.95, it is considered that the crop nitro-
gen status is deficient, and then fertilizer should be added. When the index is greater 
than 0.95, it is considered that the crop nitrogen status is sufficient and no topdress-
ing nitrogen is required. This nitrogen nutrition diagnosis method based on NSI 
eliminates the influence caused by different varieties, growth and climatic condi-
tions, plant diseases, and other factors on chlorophyll meter readings through nor-
malization. However, there are still two problems that need to be further studied 
when applying the NSI concept to nitrogen nutrition diagnosis: for different crops 
in different regions or growth periods, when the NSI means nitrogen deficiency or 
surplus, as shown in Table 5.1, which lists the research results of some scholars on 
NSI. If a nitrogen deficiency has been determined, it is necessary to determine the 
amount of nitrogen fertilizer that is applied to achieve the maximum yield.

 2. Nitrogen Response Index
Johnson and Raun (2003) proposed the application of the nitrogen response 

index (NRI) to guide the management of nitrogen fertilizer. This index is essentially 
the reciprocal of the nitrogen sufficiency index (NSI). Therefore, to calculate this 
index, the well-fertilized plots are set as the reference fields. The results of the study 
suggest that if the response of crops to the nonnitrogen limitation plots is obvious 
compared to other plots, the NRI value should be relatively high. There is a greater 
chance of indicating a nitrogen response during the crop growing season, otherwise 
in contrast. Some studies have pointed out that it is not necessary to add any nitro-
gen fertilizer when NRI is 1, because this means that the target field has the same 
nitrogen nutrition status as the reference field. However, is a NRI value greater than 
1 signifies a nitrogen deficiency? For different crops in different regions or growth 
periods of the same crop, the threshold of nitrogen response index needs to be fur-
ther studied to better diagnose the nitrogen nutrition status during the crop grow-
ing season.

Table 5.1 Previous studies about nitrogen sufficiency index (NSI)

Crop Threshold Growth stages
Topdressing 
N/(kg/ha) Reference

Maize 0.95 V6-VT, one time a week 22 Peterson (1993)
0.97 V10-VT 30–100 Sawyer et al. (2011)

Rice 0.90 14 days after transplanting to 
flowering stage, one time a week

30 Hussain et al. (2000)
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 3. Nitrogen Nutrition Index
Plant nitrogen-based critical concentration index represents the minimum nitro-

gen concentration required to obtain the maximum aboveground biomass under 
specific time and soil types. More and more studies proved that plant nitrogen con-
centration decreases when there is an increase of aboveground biomass, and the 
relationship of these two indexes can be described by the dilution curve N = aW−b 
during the crop growth period. In this equation, W represents the aboveground bio-
mass of the plant (Mg/ha), N means the aboveground plant nitrogen concentration 
(%), a is the nitrogen concentration when the aboveground biomass is 1 Mg/ha, and 
b represents the dilution factor of this curve.

According to the correlation diagram between plant nitrogen and aboveground 
biomass, if the crop is short of nitrogen under a certain amount of biomass, the 
actual plant nitrogen concentration should be less than the critical nitrogen concen-
tration of plants and located below the critical nitrogen concentration dilution curve. 
On the contrary, the actual plant nitrogen concentration should be greater than the 
critical nitrogen concentration and located above the curve. Researchers developed 
the concept of the nitrogen nutrition index (NNI) based on this rule, which means 
the ratio of the actual plant nitrogen concentration to the critical one. When NNI is 
equal to 1, it means that nitrogen application is appropriate. When NNI is less than 
1, it means insufficient, and when NNI is greater than 1, it means excessive.

In recent years, NNI has been considered as the best indicator to diagnose the 
nitrogen nutrition status of plants (Lemaire et al. 2008; Tremblay et al. 2011), which 
can accurately diagnose the nitrogen nutrition status of crops. Nevertheless, since 
the determination of NNI needs to be obtained through destructive field sampling, it 
is not suitable for real-time nitrogen nutrition diagnosis. Many scholars estimate 
NNI accurately based on the nondestructive remote sensing technology (Mistele 
and Schmidhalter 2008), which has laid a solid foundation for nondestructive and 
real-time nitrogen nutrition diagnosis. However, the critical nitrogen concentration 
dilution curves of crops were variable for different regions (environment conditions 
such as climate) and even for different varieties of the same crop (Yao et al. 2014), 
which requires the establishment of critical nitrogen concentration dilution curve 
suitable for the local climate conditions and varieties before applying NNI as a 
nitrogen nutrition diagnosis. Otherwise, the diagnosis result based on the NNI will 
not accurately reflect the nitrogen nutrition status of the crop.

About the recommended fertilization algorithm based on NNI, the deficiency or 
the topdressing nitrogen amount is calculated by the correlation between NNI and 
the nitrogen application amount, and NNI also shows an upward trend with the 
increase of nitrogen application amount (Xue and Yang 2008). However, in this 
algorithm, the calculation of NNI is not determined by measuring the ratio of the 
actual plant nitrogen concentration to the critical one, but through the ratio between 
the NDVI values obtained from plots in need of topdressing and plots without nitro-
gen fertilizer restriction, which is consistent with the concept of the sufficient index 
described above. Xue and Yang (2008) analyzed the correlation at the stage of 
young panicle differentiation between the change amount of NNI and the nitrogen 
fertilizer variable (the amount of nitrogen fertilizer increased and decreased com-
pared with the standard nitrogen treatment), which showed that the relationship 
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conformed to the exponential growth model (Y = a × (1−bX)), and determination 
coefficient is as high as 0.92, based on which nitrogen fertilizer can be recom-
mended. However, the model is only based on one-year data in 2004 and needs to 
be refined over many years’ data.

Scientists all over the world have established the critical nitrogen concentration 
dilution curves of different crops in different regions; thus, the NNI of different 
crops can be calculated, and the remote sensing technologies of different scales 
have been applied directly or indirectly to estimate NNI (Cao et al. 2013); the next 
step is to develop nitrogen fertilizer recommendation algorithms based on NNI.

5.3.3  Diagnosis of Crop Nutrient Status Based on Indicator 
Difference Method

The index difference method is a method to diagnose the growth and nutritional 
status of crops after comparing the observed values of the indicators with the ideal 
values of the indicators (Fig. 5.6). When the degree of the difference exceeds a cer-
tain range, it is necessary to carry out corresponding management and regulation of 
crop growth through fertilization or irrigation.

5.3.3.1  Dynamic Changes of Leaf Area Index

Leaf area index (LAI) is an important parameter which is necessary for studying 
crop photosynthesis, transpiration, the relationship between photosynthesis and 
transpiration, water use, and forming the basis of productivity. During the whole 
growing period, the LAI dynamics gradually increased with the progress of the 
growing process, reached the maximum at the booting stage, and then slowly 
decreased. At different yield levels, as the yield increased, the LAI of wheat contin-
ued to increase. The suitable maximum LAI of typical varieties is different at differ-
ent ecological points and varies due to differences in various characteristics and 
climatic conditions. The dynamics of a suitable LAI of the same variety at the same 
ecological point increases with the increase of yield levels. Wood et  al. (2003) 
developed a management strategy for variable fertilization based on crop canopy 

Fig. 5.6 Crop growth diagnosis technology based on indicator difference method
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size, that is, the green area index (GAI), based on the experience of high-yield 
wheat cultivation in the UK. If the current crop GAI is greater than the target value, 
the fertilization amount is lower than the standard amount or no fertilization. If the 
current crop GAI is less than the target value, the fertilization amount is higher than 
the standard amount. The amount of dietary supplement is equal to the product of 
the amount of nitrogen required per unit of GAI, and the value of GAI increases or 
decreases. The specific calculation steps are as follows:

 1. Set the target value of the GAI, such as GAI = 6.5.
 2. Determine the current GAI of the crop, such as GAI = 2.5.
 3. Calculate the difference between the target value and the current value, such as 

6.5−2.5 = 4.0.
 4. Assume that for each unit of GAI produced, the crop canopy nitrogen require-

ment (CNR) is 30 kg N ha−1.
 5. Calculate the amount of nitrogen fertilizer required to reach the target GAI, 

which is 4.0 × 30 = 120 kg N ha−1.
 6. Determine the soil inorganic nitrogen supply (e.g., 75 kg N ha−1), and subtract 

the soil supply from the total nitrogen fertilizer requirement, which is 
120−75 = 45 kg N ha−1.

 7. Assuming that the average recovery rate of nitrogen fertilizer is 60%, in order for 
crops to absorb 45 kg N ha−1 nitrogen fertilizer, 90 kg N ha−1 nitrogen fertilizer 
is required.

Wood et al. (2003) showed that applying the abovementioned fertilization rec-
ommendation algorithm to variable fertilization instead of the traditional uniform 
fertilization can not only reduce the nitrogen surplus but also increase economic 
benefits. Xue and Yang (2008) further developed a rice nitrogen fertilizer recom-
mendation algorithm based on the LAI according to the GAI method. However, the 
application of the above algorithm needs to accurately estimate the GAI or LAI 
based on remote sensing technology. In addition, it is also critical to accurately 
estimate the amount of nitrogen fertilizer required for each unit of GAI or LAI 
produced.

5.3.3.2  Dynamic Changes of Spectral Index

With the growth process moving forward, the agronomy indicators that describe the 
growth of plants changed. The change of those indicators usually goes through a 
slow grow period, a relatively stable period, and then a slow decline period, and its 
dynamic change can be simulated by quadratic polynomial, ratio model, modified 
Gaussian model, lognormal model, beta equation, logistic equation, and modified 
logistic equation.

Spectral indices, which indicate the variability regulation of vegetation in some 
way, are the different waveband constitutions of linear or nonlinear combination or 
spatial transformation of satellite remote sensing and other multispectral data, like 
NDVI and RVI. Spectral indices can be used for quantitative monitoring of crop 
population size, growth status, nutritional status, etc., and change along with the 
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Fig. 5.7 Dynamic changes of nitrogen uptake vegetation index NDVI (807, 736) of wheat plants 
under different yield levels (a) Middle-yield (b) High-yield (c) Ultra-high yield. (Yao 2012)

Table 5.2 Model parameters of NDVI (807, 736) double logistic model under different yield levels

Yield levels ymax

kg /(m−2 °C−1 
d−1) (×10−3) tg/(°C d)

ks /(m−2 °C−1 d−1) 
(×10−3) ts (°C d) R2 RMSE

Middle yield 0.17 5.19 720.92 2.09 1841.95 0.989 0.0018
High yield 0.25 3.74 786.76 5.40 1786.92 0.937 0.0044
Ultrahigh yield 0.25 5.48 542.66 8.42 1706.41 0.981 0.0048

growth stage. Logistic model and Richard model function are used to fit the dynamic 
change of spectral indices in order to simulate the growth status of different crop 
groups and then provide theoretical guidance for subsequent growth diagnosis and 
fertilizer regulation.

Figure 5.7 shows the dynamic changes of nitrogen uptake-sensitive vegetation 
index NDVI (807, 736) of wheat plants under different yield levels (Yao 2012). As 
seen from the figure, with the increase of AGDD (accumulated growing degree 
day), the NDVI (807, 736) at various yield levels showed a change law of first 
increase and then decreased. At the same time, they are combined with the growth 
law of crops and dynamic changes based on dual logistic model fitting. Table 5.2 
shows the fitted NDVI (807, 736) double logistic model coefficients at different 
output levels (Yao 2012). It can be known from Table 5.2 that with the increase of 
the output level, the model parameter ymax shows an increasing trend and reaches a 
stable maximum under ultrahigh production. The maximum speed kg during crop 
growth also reached a maximum under ultrahigh yield, and the corresponding maxi-
mum speed ks during fading also appeared in the case of ultrahigh yield. After fur-
ther comparing the inflection point times tg and ts of NDVI (807, 736), the earliest 
time for growth and fading inflection points was found under ultrahigh yield, indi-
cating that the crop growth process is fastest under ultrahigh yield and the crop’s 
ultrahigh yield mainly depends on its faster growth rate. However, the growth inflec-
tion point of NDVI (807, 736) plants in mid-production was earlier than that of high 
yield, but the appearance of decline inflection point was later than that of high yield, 
which indicates that the longer growth process of high-yield fields makes their 
yields higher than normal midfield.
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At the same time, according to the statistical indicators of the fitted model, it can 
be known that the dual logistic model for fitting the change of nitrogen absorption 
index of the plant has high accuracy, and the R2 of the model is greater than 0.93, 
and the RMSE is less than 0.005 (Table 5.2).

The appropriate crop growth curve is a useful tool for scientific crop manage-
ment. Under the three divided yield levels, a suitable dynamic change model of the 
plant nitrogen uptake index NDVI (807, 736) was fitted by a dual logistic model, 
and the results showed that the model had higher fitting accuracy. Through the 
established model, the users can obtain the appropriate NDVI value at each time 
point in the crop growth process according to the different target yields, which can 
be compared with the actually measured vegetation index. Then the nitrogen fertil-
izer control measures can be taken. By using AGDD as a time axis to build a model, 
the effects of different years and ecological points on wheat growth can be elimi-
nated. At the same time, the model has fewer parameters and has practical biologi-
cal significance.

Some studies take rice as the research object and have established a high-yield 
rice population dynamic model based on NDVI value to achieve a real-time diagno-
sis of the dynamics of high-yield population indicators (Liu et  al. 2017). 
Figure 5.8a, b shows the dynamic changes of rice canopy NDVI under different 
nitrogen fertilizer treatments. The canopy NDVI value of rice varies similarly with 
variety and nitrogen levels. The NDVI value rises rapidly before reaching its peak 
and slowly rises as it approaches the summit. These values stabilize after reaching a 
peak and then gradually decrease. Both rice varieties reached the maximum NDVI 
value at the booting stage.

The relative NDVI (RNDVI) dynamic model of japonica and indica rice at dif-
ferent production levels was constructed using the double logistic method (Fig. 5.8c, 
d; Liu et al. 2017). The NDVI dynamic determination coefficients (R2) of the two 
types of rice were above 0.86. RNDVI dynamic models of indica and japonica rice 
at different yield levels showed similar trends. However, there are some differences 
in the simulation dynamics of NDVI. The more significant the output potential, the 
higher the rising rate before the NDVI peak, the longer the NDVI peak platform, 
and the lower the falling rate after the peak.

5.4  Ground-Based, UAV-Borne, and Satellite Remote 
Sensing for Crop Nutrient Management

5.4.1  Ground-Based Monitoring Systems for Crop 
Nutrient Management

Nanjing Agricultural University in Nanjing, China, developed a crop growth sensor 
based on crop spectral properties (Ni et al. 2018). The crop growth sensor uses sun-
light as a light source and is structurally divided into an upward light sensor and a 
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Fig. 5.8 Dynamic changes and simulation models of canopy NDVI under different nitrogen treat-
ments (a) Dynamic changes of Indica rice (b) Dynamic changes of Japonica rice (c) Simulation 
models of Indica rice (d) Simulation models of Japonica rice. (Liu et al. 2017)

downward light sensor. The upward light sensor is used to receive the radiation 
information of sunlight at 720 nm and 810 nm bands, and the downward light sensor 
is used to receive the reflected light radiation information of the crop canopy in the 
corresponding band. Then the information is converted into an electrical signal by a 
photodetector for processing to obtain the characteristics of the crop canopy spec-
tral reflectance. Based on canopy reflectance and coupled with a crop growth model, 
the crop growth information such as leaf nitrogen content, LNA, LAI, and leaf dry 
weight can be obtained (Ni et  al. 2013). The sensor device adopts an integrated 
design, which is convenient for integration and transplantation and suitable for field 
test environments. As shown in Fig. 5.9, the portable crop growth monitoring sensor 
consists of a multispectral sensor, a signal processing circuit, a processor system, a 
sensor support, a spirit level, a support rod, and other components.
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Fig. 5.9 Outlook of crop 
growth monitoring sensor. 
(Ni et al. 2018)

The key components of the crop growth monitoring sensor include two systems, 
signal conditioning system and signal processing system.

 1. Signal Conditioning System
The electric signals transmitted by the optical signal sensing system are con-

verted, amplified, filtered, etc., so that they can meet the requirements to be pro-
cessed by the subsequent microcontroller. By selecting the appropriate electronic 
components and designing suitable circuits based on the performance parameters of 
the photoelectric converter and the output signal characteristics of the multispectral 
sensor, the amplification and filtering of weak signals can be achieved.

 2. Signal Processing System
The signal transmitted by the first amplifier is processed to obtain the reflectance 

data. The realization of the final reflectance depends on the microprocessor, and the 
primary considerations in the selection are low power consumption, small size, and 
suitable for signal acquisition and processing.

The multispectral sensor is a critical part of the system. The narrowband interfer-
ence filter is used as the spectral filter. The material is optical glass, the center wave-
length is the characteristic wavelength ±2 nm, the center wavelength transmission is 
65–70%, the peak transmission is 65–70%, the bandwidth is 9 nm, and the cutoff 
rate is less than 0.00001%. It can not only dramatically inhibit the spectral informa-
tion of other bands from entering the detection lens and improve the measurement 
accuracy of the sensor but also ensure the consistency of sensor sensitivity. The 
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Fig. 5.10 Schematic diagram of the vehicle-mounted crop growth monitoring system

photodetector is a photodiode with a spectral response range of 400–1100 nm, a 
sensitivity of 0.55 A/W, and a maximum short-circuit current of 120 μA. The two 
photodetectors are packaged on the same base, which enhances the reliability of 
the system.

Compared to the portable sensors, the vehicle-mounted crop growth monitoring 
system has the advantages of full coverage, high throughput, and rapid information 
acquisition. It can acquire real-time crop growth information through the different 
sensors mounted on the vehicle. After calculation and calibration, the information 
will be used to support crop field management, such as fertilization and irrigation.

Figure 5.10 shows the overall structure of a vehicle-mounted crop growth moni-
toring system, which can work based on real-time online field sensing, data analy-
sis, and guidance variable fertilization requirements. The information sensing part 
includes crop growth sensors, speed sensors, and GPS. The data acquisition and 
processing part includes signal conditioning modules, data processing modules, 
data transmission modules, and the monitoring software system. The signal condi-
tioning module, data processing module, and data transmission module are inte-
grated into a sensing node. The measured object is converted into an electrical 
signal by the sensor. Various types of data are summarized to the data node for 
processing through the transmission network and finally sent to the upper layer 
software system for human-machine interaction. The data during the collection pro-
cess will be stored in a third-party database.

The vehicle-mounted system is equipped with a passive light source crop growth 
multispectral sensor. It obtains the crop canopy reflection information at two sensi-
tive bands, 730 nm and 815 nm. It uses the sensing hardware to perform photoelec-
tric conversion to generate an electrical signal that indirectly reflects the crop growth 
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information. It is necessary to extract and further optimize the signal content accord-
ing to the needs and obtain useful information. Through algorithmic calculations, 
various parameters that respond to crop growth, such as NDVI, can reflect the crop 
growth information directly.

Due to various equipment on the vehicle platform, electrical isolation between 
the instruments and equipment is needed to avoid the impact of agricultural machin-
ery vibration on the sensing signals. The acquisition and stable transmission of field 
crop growth information require multisensor parallel transmission and reception 
without interference from each other to ensure the information network. In response 
to these problems, the CAN (Controller Area Network) bus transmission scheme is 
used to design a vehicle-mounted information network, which has the advantages of 
high accuracy, good stability, low power consumption, low cost, long transmission 
distance, and fast speed.

Wireless sensor networks (WSN) are self-organized into a multi-hop monitoring 
network by wireless communication in a large number of inexpensive miniature 
sensor nodes deployed in the monitoring area. Based on the actual needs of farm-
land information collection, a fast and real-time, nondestructive, large-scale acqui-
sition system of crop growth information (leaf dry weight, LAI, leaf layer nitrogen 
content, and nitrogen accumulation) and environmental data (canopy temperature, 
canopy humidity, canopy carbon dioxide concentration, soil temperature, and soil 
water content) was developed (Pang 2014). It can collect environmental parameters 
that affect the growth of crops, as well as the growth parameters of the crops them-
selves so that more accurate plant diagnosis and regulation can be carried out to help 
farmers scientifically improve overall agricultural benefits.

Considering the wide area, openness, harsh environment, and inconvenient 
maintenance of farmland, the designed collection node must be able to communi-
cate wirelessly, and it must be less affected by the environment and low power 
consumption and can work stably for a long time. The hardware structure of the 
collection node is shown in Fig. 5.11a.

Fig. 5.11 Wireless crop growth information sensor node (a) Structure (b) Object. (Pang 2014)
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A SHT71 digital integrated temperature and humidity sensor is selected in the 
collection node. The SHT71 integrates functions such as humidity detection, tem-
perature detection, signal conditioning, 14-bit A/D, and heater on a single chip. It 
adopts unique industrial CMOS (complementary metal-oxide semiconductor) tech-
nology to ensure extremely high reliability and long-term stability. The soil mois-
ture sensor chooses HL-TR01, which is a high-precision, high sensitivity soil 
moisture sensor based on the principle of frequency domain reflection and manufac-
tured using high-frequency electronic technology. By measuring the dielectric con-
stant of the soil, it can directly and stably reflect the volume percentage of real 
moisture in different types of soils.

The soil temperature sensor is packaged by a single-wire digital temperature sen-
sor DS18B20 produced by the American DALLAS Semiconductor Company with 
an external 1.5-meter cable. DS18B20 can achieve temperature measurement in the 
range of −55–125 °C, and the error is within ±0.5 °C. The calculated value of the 
field temperature is transmitted through serial communication, which can fluctuate 
in the range of 3~5.5 V. The CO2 module uses the MH-Z14 nondispersive infrared 
sensor. It combines mature infrared absorption gas detection technology with pre-
cise optical path design and sophisticated circuit design to create a general-purpose 
infrared gas sensor. Using nondispersive infrared (NDIR) principle to detect CO2 in 
the air, it has good selectivity, no oxygen dependence, and long life. The assembled 
crop growth information sensor is shown in Fig. 5.11b.

5.4.2  UAV-Borne Monitoring System for Crop 
Nutrient Management

As a new remote sensing platform, the unmanned aerial vehicle (UAV) has its 
unique advantages in flexibility and resolution compared with traditional satellite 
and aviation remote sensing, and the data has higher accuracy. The application of 
UAV-borne technology in remote sensing meets the needs of information acquisi-
tion and application in modern agriculture, improves the spatial-temporal dimen-
sion of remote sensing technology, and provides technical support for various 
agricultural information acquisitions and decision-making.

A UAV-borne multispectral crop growth sensor is developed by Nanjing 
Agricultural University in China (Ni et al. 2017; Yao et al. 2019). After investigating 
the monitoring method of the UAV-borne sensor based on its spectral monitoring 
mechanism and structural design features, and analyzing the spatial distribution 
characteristics of the airflow field under the low-altitude hovering operation of the 
UAV, the UAV-borne crop growth monitoring system is built to achieve high-
throughput and real-time access to rice and wheat growth information.

The multispectral crop growth sensor is equipped with a dual-band detection 
lens, uses sunlight as the light source, and has a test field of view of 27°. It is pack-
aged in a nylon case and weighs 11.34 g. The crop canopy ratio vegetation index 
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Fig. 5.12 UAV-borne multispectral crop growth sensor (a) Multispectral crop growth sensor test 
(b) Ground velocity nephogram distribution. (Ni et al. 2017)

(RVI) can be an output in real time. The utility model utilizes a photosensitive ele-
ment to realize high-fidelity energy conversion of light energy to electric energy, 
and the structure can be divided into an upward light sensor and a downward light 
sensor. The upward light sensor is used to acquire radiation information of sunlight 
at wavelengths of 730 nm and 815 nm, and the downward light sensor is configured 
to receive crop canopy-reflected light radiation information of a corresponding 
wavelength. The test needs to be carried out in clear, windless, and cloudless 
weather. The test height needs to be maintained at 1.0~1.5 m above the crop canopy. 
The test field of view is aimed vertically downward, and the crop canopy remains 
relatively static. The test schematic is shown in Fig. 5.12a. The physical parameters 
such as the UAV flight area, rotor rotation speed, and rotor rotation direction were 
set by CFD (computational fluid dynamic) software, and the UAV hovering-opera-
tion-state simulation analysis was carried out. In the grid simulation area with a 
diameter of 1.2 m and a height of 1.85 m, the velocity of each grid node is composed 
of the transverse velocity component, the longitudinal velocity component, and the 
axial velocity component. The flying height of the UAV was set to 1 m from the 
ground, and the ground velocity nephogram distribution result was displayed by 
CFX’s own post-processing module, as shown in Fig. 5.12b.

The velocity intensity in Fig. 5.12b was analyzed. The results of the combined 
velocity nephogram distribution show that, due to the opposite rotation of the two 
pairs of rotors of the quadrotor UAV, the forward-rotating rotors generate a down-
wash flow, so the region with the highest wind speed is distributed directly below 
the two forward-rotating rotors, and the wind speed gradually decreases toward the 
periphery and is also distributed in an elliptical shape. The long semiaxis of the 
region is about 0.35 m, and the short semiaxis is about 0.3 m.

According to the CFD numerical simulation analysis and the actual test results of 
the three-dimensional airflow field, combined with the test field of view of the mul-
tispectral crop growth sensor, when the multispectral crop growth sensor was 
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deployed 60 cm away from the rotors of the UAV, the test area of the crop canopy 
retained Lambert characteristics, and measurement results were not affected by the 
airflow field, enabling normal testing. Therefore, a carbon fiber support with a 
length of 60 cm was designed; one end of the support was fixed to the UAV, and the 
other end was equipped with a sensor, and they were connected by a cantilever beam 
structure.

In order to avoid the vibration impact of the high-speed rotation of the rotors on 
the multispectral crop growth sensor and the support during the flight, a damping 
rod was designed to provide shock absorption in order to maintain the stable state of 
the support and the multispectral crop growth sensor. The support and the damping 
rod were fixed by a triangular structure to improve the overall stability and shock 
resistance. The angle between the support and the damping rod is very important for 
the stability of the structure and the balance performance of the aircraft. Therefore, 
the optimal value of the angle was calculated by static equation analysis.

Taking the sensor support as the research object, the analysis diagram of the 
force sustained by the support is shown in Fig. 5.13a, b. AB is the sensor support, 

Fig. 5.13 Analysis of the force sustained by UAV sensor support (a) Schematic diagram of the 
structure of support and damping rod (b) Analysis of the force sustained by each part of the support 
(c) UAV-borne spectroscopy sensor with the support rod. (Yao et al. 2019)
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CD is the support damping rod, points C and D are the fixed points of the sensor 
support and the damping rod at the end of the UAV, and the force sustained by the 
sensor support is analyzed by static equations:
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Simultaneous calculations were performed on Eqs. (5.6), (5.7), and (5.8) to 
obtain the following:
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In Eqs. (5.8, 5.9, 5.10, and 5.11), FD is the internal force of CD; FBx and FBy are 
the reaction forces in the horizontal and vertical directions of fixed point B, respec-
tively; α is the angle between AB and CD; h is the height difference between fixed 
points B and C; and l is the length of AB.

When the length of the UAV support is 60 cm, the value of α ranges from 9.5° to 
90°. Since a certain length of the support needs to be used for fixing the UAV and 
multispectral crop growth sensor, the actual value range of α is 13°–90°. From the 
derivation results of Eqs. (5.9, 5.10 and 5.11), it can be seen that FD and FBy decrease 
with the decrease of α, and the smaller the values of FD and FBy, the more stable the 
force sustained by the support structure. Therefore, the optimal angle between the 
sensor support and the damping rod is 13°. Figure 5.13c shows the field operation 
of the UAV-borne spectroscopy sensor.

5.4.3  Satellite-Based Remote Sensing Systems for Crop 
Nutrient Management

Since the twentieth century, satellite remote sensing technology has been widely 
used in many fields for practical applications. Agriculture is one of the most impor-
tant fields in the application of remote sensing technology. As China’s agricultural 
production shifts toward intensification, there is an urgent need for spatial 
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information, especially for dynamic, large-scale, fast, and timely remote sensing 
information during crop production. The application of agricultural remote sensing 
in China mainly involves the establishment of a remote sensing monitoring platform 
for agricultural conditions, the inversion of farmland radiation and remote sensing 
of agronomic parameters, crop remote sensing classification and identification, crop 
yield and quality prediction, agricultural remote sensing monitoring systems, model 
and application, and so on. With the development of space science and technology, 
agricultural remote sensing has gradually formed a development trend of combining 
low-level, medium-level, high-level, and multilevel and static and dynamic mecha-
nism and application and the widespread use of remote sensing and information 
technology. Promote the development of agricultural production management in the 
direction of quantification, precision, and intelligence, and the level of agricultural 
science and technology is gradually increasing.

With the development of space detection technology, the performance of optical 
sensors has been continuously improved, and satellite imaging systems with higher 
spatial resolution and faster return periods have been launched in succession. In 
recent years, satellites such as Sentinel-2 A/B, GF-1 A/B/C/D, and Planet have 
appeared. The temporal, spatial, and spectral resolutions of Earth observation satel-
lites have been improved to varying degrees to obtain crop growth. The ability of 
information is gradually strengthened, and there is a trend of free data. The number 
of high-scoring images has proliferated in a short period. The traditional crop 
growth monitoring model has been completely subverted, and crop growth monitor-
ing has begun to enter the era of big data. It is foreseeable that shortly satellite-based 
crop growth monitoring technology will certainly usher in new development 
opportunities.

Satellites are the most effective remote sensing platform for large-scale Earth 
observation. Since the launch of the first land resource satellite, Landsat-1, in 1972, 
the number of satellite images has a trend of explosive growth. The emergence of 
massive satellite image data has provided new development opportunities for large-
scale crop growth monitoring. Remote sensing image data obtained through differ-
ent satellite platforms have been widely used in crop identification, crop growth 
parameter estimation, and many other fields. The transformation of agricultural 
modernization has played a huge role. Land resource satellites have multiple clas-
sification methods. According to the imaging principle, the most commonly used 
land resource satellites currently include two types: optical and radar satellites. 
According to spatial resolution, land resource satellites mainly include three types 
of high spatial resolution, medium spatial resolution, and low spatial resolution 
(Mulla 2013; Onojeghuo et al. 2018).

Affected by the periodic growth of crops, the main factors hindering their wide-
spread application in agriculture are the spatial- temporal resolution and difficulty of 
acquiring terrestrial resources. Moreover, the challenge of acquiring satellite images 
is closely related to the level of their spatial-temporal resolution. High spatial reso-
lution satellite images (referred to as high-scoring images) have prominent spatial 
details, which can more realistically reflect the spatial distribution characteristics of 
farmland and is of great significance for crop growth monitoring in small and 
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broken fields. Unfortunately, most of the high-scoring satellites currently use com-
mercial operations. These methods have some common problems. For example, 
images must be acquired in a predetermined way through programming, the acquir-
ing period is not fixed, the time resolution is low, and the price is high. The problem 
is particularly serious in the acquisition of submeter high-scoring images such as 
WorldView-2/3 and Pleiades. However, with the enhancement of space observation 
capabilities, many problems in the acquisition of high-resolution images are greatly 
improved. The high-resolution images from high-resolution satellites, GF-1, GF-2, 
GF-6, and other meter/submeter satellites, can be quickly released in a short period 
with the Internet. We can use a variety of channels to restrict the acquisition of 
meter-level images in the target area. The cost of acquiring meter-level images has 
dropped significantly. The ground observation capabilities of such satellites have 
been revolutionarily improved, making these images grow in crops. The monitoring 
field shows great application potential (Chen et al. 2019). Although medium and 
low spatial resolution satellite images (referred to as low- and medium-resolution 
images) show many disadvantages in terms of space, such satellites have a short 
return period, a fixed imaging period, and more precious spectral information. The 
official websites of the US Geological Survey (USGS) and European Space Agency 
(ESA) and other sites have free access to low- and medium-resolution satellite 
images such as Landsat-8 and Sentinel-2. The advantages of data acquisition and 
spectral information overcome some of the disadvantages of spatial resolution. 
They are making such images widely used in crop identification, growth parameter 
monitoring, productivity estimation, and other fields, which provide reliable data 
support for the development and improvement of crop growth monitoring (Xu 
et al. 2018).

Remote sensing is a data acquisition process from surface information (multidi-
mensional, infinite real bodies) to remote sensing information (two-dimensional, 
limited, discrete analog information). Satellite remote sensing images are digital 
responses of features such as the spectrum of the ground and space. Quickly and 
effectively extracting satellite image information and accurately converting it into 
crop growth information is the purpose of crop growth monitoring using satellite 
images. The technology of satellite image information extraction mainly includes 
image preprocessing, spectral calculation, and feature transformation.

Satellite image preprocessing mainly includes radiation calibration, atmospheric 
correction, and image calibration. Using the calibration tools included in remote 
sensing image processing software such as ENVI, the head file information of the 
remote sensing image is automatically analyzed for radiation calibration, and the 
original digital value is converted into the radiation brightness value. Atmospheric 
correction tools such as FLAASH are used to eliminate the effects of the atmo-
sphere and other factors through the radiative transfer model. At the same time, the 
radiance value is converted to surface reflectance to improve the accuracy and con-
sistency of remote sensing images. Based on ground control points, different images 
are registered to eliminate geographic deviations, and finally a high-quality satellite 
image dataset is constructed (Deng 2010).
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The vegetation index is one of the most commonly used characteristic parame-
ters in the field of crop growth monitoring. It refers to a variety of parameters that 
have a certain indication of vegetation composed of a linear or nonlinear combina-
tion of spectral data. Spectral, texture, and spatial features are the three most com-
monly used features in satellite remote sensing images. Both single band reflectance 
and vegetation index belong to the category of spectral characteristics. The texture 
and spatial features can directly reflect the organizational structure of the image 
surface. The texture features can be extracted by statistical methods, signal process-
ing methods, model methods, and structural methods (Liu and Kuang 2009), and the 
spatial features can be analyzed by object-oriented image analysis. Technology for 
mining, texture, and spatial characteristics are important information in crop clas-
sification and crop growth monitoring, and they are of great significance to the 
improvement of crop identification and growth monitoring accuracy. The textures 
and spatial features obtained by different platforms and different algorithms can 
effectively mine the information in the satellite image, to provide the basis for the 
next step in crop identification or the construction of agronomic parameter models.

Using the extracted spectrum, texture, phenology, and other information from 
remote sensing data, you can quickly and efficiently monitor the planting area and 
spatial distribution of major crops and further extract crop nitrogen nutrition and 
other information. Real-time monitoring of crop nitrogen content can guide variable 
fertilization. Monitoring on-time series can analyze crop growth changes and even 
affect crop yield. The principle of remote sensing estimation of crop nitrogen con-
tent is that with a certain irradiation intensity, under the action of electromagnetic 
waves, the nitrogen bonds of the crop chemical constituent molecules generate 
vibration and forming differences in spectral absorption and reflection in certain 
bands, showing different reflectance. These special bands are crop nitrogen-sensi-
tive bands. By analyzing the correlation between the spectral reflectance of these 
sensitive bands and the crop nitrogen content, remote sensing monitoring and esti-
mation of crop nitrogen content can be achieved.

Current research on crop nitrogen nutrition index monitoring has achieved 
remarkable results. However, there are still some problems to be solved urgently:

 1. Improving the universality of satellite remote sensing inversion models. Among 
existing remote sensing estimation models, the inversion of indicators based on 
statistical models is relatively simple. Therefore, inversion models are often 
unstable and not universal. Models are often affected by crop types and local 
environments and need to be adjusted or even remodeled. On the one hand, the 
sensitive band analysis should start from the crop growth mechanism. On the 
other hand, the inversion method can be combined with the mechanical advan-
tages of the physical model. Because the physical model describes the radiative 
transmission mechanism of light in the vegetation-soil system, the universality is 
relatively high, but the model is complex (Cheng et al. 2018). How to combine 
the advantages of the two to construct a remote sensing inversion model with 
high universality needs further research.
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 2. The fusion of multisource remote sensing data. Different remote sensing data 
complement each other. Real-time obtaining remote sensing data of the crop 
during each growth period is conducive to timely grasp of crop growth status and 
provides a basis for formulating field management strategies (Wang et al. 2014).

Wang et al. (2012) used the SPOT-5 HRV on March 19, 2009, and the HJ-1B 
CCD remote sensing image on March 22, 2009, in Anyang County, Henan Province, 
in conjunction with the synchronous ground sampling test. The spectral response, 
the accuracy of the monitoring model, and the spatial distribution of leaf nitrogen 
content were analyzed in three aspects. The remote sensing image monitoring effect 
of nitrogen in winter wheat was analyzed and evaluated. The results show that the 
three bands of reflectance and vegetation index of the two types of remote sensing 
images are closely related to the nitrogen content of wheat leaves. Among them, the 
optimal model vegetation index for SPOT-5 images is green NDVI (GNDVI), and 
the optimal model vegetation index of the HJ-1B image is NDVI. SPOT-5 image is 
better than the HJ-1B image in monitoring accuracy, but the difference is not large. 
The spatial distribution chart (Fig. 5.14) shows that the nitrogen content of winter 
wheat leaves in Anyang County is low in the west and high in the east, which is 
consistent with the actual survey and the distribution of yield levels. From the com-
parison of the left and right figures, the nitrogen content of wheat leaves obtained by 
using SPOT-5 GNDVI is slightly higher than that obtained by using HJ-1B NDVI, 
and it is most obvious in the central and western parts of Anyang County. Decided 
by the degree of fragmentation, in the case of the same degree of fragmentation, the 
lower the spatial resolution of the remote sensing image is, the more pixels are 
mixed. However, on the whole, the spatial distribution of nitrogen content in wheat 
leaves retrieved from the HJ-1B image is consistent with the SPOT-5 image. The 
SPOT-5 image inversion distribution map results are closer to the ground measure-
ment results.

In conclusion, due to the limitation of satellite remote sensing technology, there 
is still a lack of remote sensing data with both high spatial resolution and high 

Fig. 5.14 Spatial distribution of nitrogen content in winter wheat leaves in Anyang County, Henan 
Province, based on SPOT-5 and HJ-1B satellite images (a) SPOT-5 (b) HJ-1B satellite images. 
(Wang et al. 2011)
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temporal resolution, and at the same time, it is necessary to meet the needs of field 
crop dynamic monitoring. On the one hand, due to complex geographical condi-
tions and the generally small scale of crop production, China has a large number of 
fragment fields, which makes it difficult for remote sensing images to identify dif-
ferent fields. Affected by the revisited period, the cloud and rain climate, high cost, 
etc., a limited number of effective high spatial resolution images can be obtained 
during the crop growth period, which makes it difficult to achieve continuous 
dynamic monitoring of crop growth. With the ever-increasing variety and number of 
ground observation platforms and remote sensing sensors, multiband, multi-polar-
ization, and multi-scale remote sensing data sources are continuously produced. 
How to achieve effective fusion between multisource remote sensing data, thereby 
increasing the value of data utilization, and digging new information from multi-
source fusion data, has become a hot issue in the field of remote sensing (Huang and 
Zhao 2017). Therefore, multisource remote sensing data fusion is needed and then 
applied to crop nitrogen nutrition monitoring.
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Chapter 6
Remote Sensing Technologies for Crop 
Disease and Pest Detection

Chenghai Yang

Abstract Remote sensing has long been used for the detection and management of 
crop plant diseases and insect pests. This chapter presents an overview of major 
remote sensing platforms and systems commonly used for crop disease and pest 
detection. Specifically, remote sensors mounted on satellites, manned aircraft, and 
unmanned aircraft systems (UAS) are discussed and applications on the use of these 
imaging sensors for detecting and mapping crop diseases and insect pests are 
reviewed. Cotton root rot is used as a practical example to illustrate how airborne 
and satellite imagery can be integrated with variable rate technology for crop dis-
ease detection, site-specific fungicide application, and performance evaluation. 
Some of the challenges and future directions are briefly discussed. The overview 
and methodologies presented in this chapter should provide researchers, extension 
personnel, growers, crop consultants, and farm equipment and chemical dealers 
with practical guidelines for remote detection and effective management of some 
crop diseases and insect pests.

Keywords Crop disease · Insect pest · Airborne imagery · Satellite imagery · 
Prescription map · Variable rate application

6.1  Introduction

Plant diseases and pests reduce crop yield, degrade product quality, and cause 
worldwide economic losses. It is estimated that yield losses at a global scale range 
from 10% to 40% for five major food crops (i.e., wheat, rice, maize, potato, and 
soybean) based on a survey from crop health experts in 67 countries (Savary et al. 
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2019). This study also identified 137 individual pathogens and pests and docu-
mented the losses to them associated with each of the five crops.

Timely detection of crop diseases and pests is critical to their control and man-
agement with appropriate crop protection measures. Traditionally, the identification 
and classification of common plant diseases and pests are based on field surveys and 
the knowledge of the grower or the crop consultant. However, for new and emerging 
pathogens and pests, the use of microscopic, serological, and DNA-based technolo-
gies in conjunction with the knowledge of experts is usually required (Oerke 2019). 
Because these techniques are expensive and time-consuming, these are only used 
for special purposes.

Farmers generally have the knowledge of the approximate time and extent of the 
incidences of common diseases and pests in their fields, even though these incidences 
are commonly heterogeneous in time and space. Some diseases and pests (e.g., soil-
borne) tend to be patchy and relatively stable, while others (e.g., airborne) can change 
in time and space within the growing season. In this regard, traditional uniform pes-
ticide application is probably adequate for most airborne diseases and pests, while 
variable rate technology or site-specific application is more appropriate for soilborne 
diseases and pests in order to reduce pesticide use and minimize the negative environ-
mental impact. However, in either case, information on the distribution and severity 
of any disease or pest in fields and across a farm or a region is needed for more effec-
tive control and management. The spatial and temporal incidence data acquired dur-
ing the growing season can be used not only for within- season management but also 
for the control of recurring diseases and pests in following seasons.

Direct detection of pathogens and pests over a large area is very difficult and may 
not be necessary in many practical applications. As a large majority of them can 
cause damage to crop plants and/or fruits, detection of their damage and effects to 
the plants may be more practical and effective. Any disease or pest that can cause 
enough morphological and physiological changes in crop plants is a good candidate 
for remote sensing. As an early example, a film-based camera mounted on an air-
plane was used to take aerial photographs of cotton fields infested by cotton root rot, 
a soilborne disease caused by the fungus Phymatotrichopsis omnivora (Taubenhaus 
et al. 1929). This work stimulated extensive experiments to examine spectral reflec-
tance characteristics of healthy and stressed plants and to use aerial photography for 
identifying various crop diseases (airborne, insect-borne, seed-borne, and soilborne) 
(Colwell 1956; Myers 1983; Ryerson et al. 1997). Although film-based aerial pho-
tography is no longer used today, it had been a primary remote sensing tool until 
early 2010s when satellite and airborne imagery completely replaced it.

Both airborne and satellite images have been successfully used to detect and map 
many crop diseases and pests, but early detection remains a challenge. In most 
cases, by the time remote sensing imagery can reveal any plant canopy symptoms, 
damage may have already been done to the crop. This delayed detection may be 
early enough to reduce further damage with certain measures for some crops; for 
others, it may be too late to stop the infection or infestation for the current growing 
season. For example, once the plant is infected with cotton root rot, it will die within 
a week or so. In fact, remote sensing has been commonly used to assess the extent 
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and severity of the damage caused by a disease or a pest. Moreover, imagery 
obtained in the present growing season can be used for the management of recurring 
diseases, such as cotton root rot, in future growing seasons.

Pesticides are widely used for disease and insect pest control to reduce crop yield 
loss and quality degradation. Uniform pesticide application has been commonly 
used since many diseases and pests tend to spread quickly across the field. However, 
site-specific and variable rate applications can be more effective for the manage-
ment of some diseases and pests that are stable either within the season or across 
different seasons. If a disease or pest tends to occur in similar areas within the field 
across different seasons, site-specific application can be made before the initiation 
of the disease or pest based on the infestation maps from previous years. Cotton root 
rot is one such disease that has affected the cotton industry for over a century. Yang 
et  al. (2016) started to collect airborne imagery to monitor the distribution and 
severity of cotton root rot in south Texas in 1999 and in central Texas in 2010. The 
time series images showed that this disease tends to occur in a similar area within 
fields across different years. The recurrent pattern of the disease provides a strong 
evidence to use historical imagery for creating prescription maps.

This chapter presents an overview of major remote sensing platforms and sys-
tems commonly used for the detection and management of crop plant diseases and 
insect pests. Specifically, remote sensors mounted on satellites, manned aircraft, 
and unmanned aircraft systems (UAS) are discussed and applications on the use of 
these imaging sensors for detecting and mapping crop diseases and insect pests are 
reviewed. Cotton root rot is used as a practical example to illustrate how airborne 
and satellite imagery can be integrated with variable rate technology for crop dis-
ease detection, site-specific fungicide application, and performance evaluation. 
Some of the challenges and future directions are briefly discussed. The overview 
and methodologies presented in this chapter should provide researchers, extension 
personnel, growers, crop consultants, and farm equipment and chemical dealers 
with practical guidelines for remote detection and effective management of some 
crop diseases and insect pests.

6.2  Remote Sensing Platforms and Systems for Disease 
and Pest Detection

Remote sensing employs a sensor to measure and record the reflected and emitted 
electromagnetic radiation from the target area in the field of view of the sensor. 
Sensors used in remote sensing, or simply called remote sensors, have two broad 
categories: non-imaging (e.g., spectroradiometers) and imaging (e.g., cameras). 
Imaging sensors are typically carried on earth-orbiting satellites and manned air-
craft, while non-imaging sensors can be handheld or mounted on ground-based 
vehicles. Recently, UAS have emerged as a popular remote sensing platform to fill 
the gap between manned and ground-based platforms due to their low cost and low- 
flying altitude for high spatial resolution imagery.
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Imaging sensors are designed to provide nadir views of a target area from vertical 
perspectives. Depending on the source of energy, imaging sensors can be grouped 
into passive and active sensors. Passive remote sensors, represented by electro- 
optical sensors and passive microwave, detect reflected sunlight or emitted thermal 
infrared and microwave energy from the surface. Active remote sensors, such as 
imaging radar (radio detecting and ranging), provide their own energy source to a 
target and record the reflected energy from the target. Passive sensors can be easily 
affected by the time of the day and weather conditions, while active sensors have the 
advantage to obtain measurements anytime, regardless of the time of day.

Electro-optical sensors as the main imaging sensors use detectors to convert the 
reflected and/or emitted radiation from a ground target to electrical signals propor-
tionally, which are then recorded on magnetic, optical, and/or solid-state media for 
viewing and processing on a computer. Based on remote sensing applications, 
detectors are designed with sensitivities for spectral regions across the electromag-
netic spectrum, including the near ultraviolet (UV, 0.3–0.4 μm), visible (0.4–0.7 μm), 
near-infrared (NIR, 0.7–1.0 μm), shortwave infrared (SWIR, 1–3 μm), mid-wave 
infrared (MWIR, 3–5  μm), and thermal infrared or longwave infrared (LWIR, 
7–14 μm). Although there are variations on the definitions of the spectral regions, 
these wavelength ranges are commonly used in most imaging sensors. The total 
span of the wavelengths that can be detected by electro-optical detectors extends 
from 0.3 to 15 μm and the reflective spectrum extends from about 0.38 to 3.0 μm 
(Campbell 2002). The sensors operating in the visible to SWIR region can only be 
used under sunlit conditions, while MWIR and LWIR sensors can be used during 
the day or night.

Remote sensors used on satellites, manned aircraft, and UAS are predominantly 
electro-optical sensors. In the following sections, the three different platforms and 
commonly used imaging sensors are discussed and the applications of these plat-
forms for disease and pest detection are briefly reviewed.

6.2.1  Satellite Sensors for Disease and Pest Detection

Traditional satellite sensors such as Landsat and SPOT have long been used for 
disease and pest detection over large geographic areas. Since 1972, eight Landsat 
satellites have been launched to provide uninterrupted images of the earth’s surface. 
Landsat 9 is scheduled to be launched in late 2020 to replace Landsat 7 in orbit that 
was launched in 1999. Landsat 8, launched in 2013, is currently providing image 
data and will continue to have some overlap with the new satellite. Landsat 8 
acquires about 740 scenes a day with a size of 185 km × 180 km and a repeat cycle 
of 16 days. It captures 12-bit image data in one panchromatic band at 15-m spatial 
resolution, eight spectral bands (coastal, blue, green, red, NIR, SWIR 1, SWIR 2, 
and Cirrus) at 30 m, and two thermal bands (LWIR 1 and LWIR 2) at 100 m. Landsat 
9 will provide data in the same spectral bands as Landsat 8 with an improved 14-bit 
radiometric resolution.
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Despite its coarse spatial resolution and relatively long revisit time, Landsat 
imagery has been successfully used to monitor crop disease and pest conditions and 
map severe infestations at regional scale. Chen et al. (2007) detected the take-all 
disease infestation in wheat using Landsat 5 Thematic Mapper (TM) imagery. Mirik 
et al. (2011) distinguished areas infested with wheat streak mosaic from noninfested 
areas using TM images in two counties of the Texas Panhandle over multiple crop 
years. Zhang et al. (2014) evaluated 30-m HJ-CCD satellite imagery for monitoring 
powdery mildew of winter wheat. It is always a challenge to discriminate diseases 
and pests co-occurring at the same time and space as they could cause similar symp-
toms during certain crop growth periods. Combined use of image data and crop 
phenological and environmental information can help improve the accuracy for dis-
criminating coexisting crop diseases and/or pests. Ma et al. (2019) discriminated 
winter wheat powdery mildew and aphid infestations during a co-epidemic out-
break of the disease and the insect pest in northeast China based on temporal Landsat 
8 imagery integrated with crop growth and environmental parameters.

Recent advances in high-resolution satellite sensors have significantly narrowed 
the gaps in spatial and temporal resolutions between traditional satellite sensors and 
airborne imaging sensors. Since IKONOS, the first commercial high-resolution sat-
ellite sensor, was successfully launched in 1999 to provide multispectral imagery at 
4-m spatial resolution, dozens of such satellite systems with spatial resolutions of 
10 m or finer have been launched. The short revisit time and fast data delivery com-
bined with their large ground coverage make high-resolution satellite imagery 
attractive for many applications, including disease and pest detection and other pre-
cision agriculture operations that require high-resolution image data.

Most high-resolution satellite sensors offer panchromatic imagery with submeter 
resolution and multispectral imagery in four spectral bands (blue, green, red, and 
NIR) with spatial resolutions of 1–4 m. Such sensors include IKONOS, QuickBird, 
GeoEye-1, Pléiades 1A and 1B, SkySat-1 and -2, Gaofen-2, TripleSat, Cartosat-2C 
and -2D, GaoJing-1, and WorldView-4. A few other satellite sensors offer more spec-
tral bands such as WorldView 2 and 3. WorldView 2 provides eight bands in the vis-
ible to NIR region at 1.24 m, while WorldView 3 offers a total of 28 bands, including 
the same eight spectral bands at 1.24 m, eight SWIR bands (1195–2365 nm) at 3.7 m, 
and 12 spectral bands (405–2245 nm) at 30 m. Other satellite sensors offer multispec-
tral imagery with 5- to 10-m spatial resolutions, such as RapidEye (6.5 m), SPOT 6 
and 7 (6 m), and Sentinel-2A and -2B (10 m). It is worth noting that Sentinel-2A  
and -2B imagery is freely available to users. Some of the earlier satellites such as 
IKONOS and QuickBird were deactivated or retired, but archived images from these 
satellites are still available. Yang (2018) provided a review of over two dozen high-
resolution satellite sensors and their applications for precision agriculture.

Satellite remote sensing is rapidly advancing with many countries and commer-
cial firms launching new satellite sensors every year. Planet Labs, Inc. (San 
Francisco, California, USA), currently operates three different Earth-imaging con-
stellations, PlanetScope, RapidEye, and SkySat. PlanetScope consists of over 120 
satellites to provide either RGB (red, green, blue) frame images or split-frame 
images with half RGB and half NIR at 3-m spatial resolution. RapidEye has five 
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satellites collecting multispectral imagery in five spectral bands (blue, green, red, 
red edge, and NIR) with 6.5-m nominal resolution, which is resampled to 5 m at 
delivery. SkySat with a constellation of 14 satellites captures submeter panchro-
matic imagery and 1-m multispectral imagery in four standard bands (blue, green, 
red, and NIR). The complete PlanetScope constellation of approximately 130 satel-
lites can image the entire land surface of the earth every day.

Due to the high spatial resolution and short revisit time, the new generation of 
satellite sensors has been increasingly used for precision agriculture applications, 
including crop disease and pest detection. Franke and Menz (2007) used QuickBird 
imagery for detecting powdery mildew and leaf rust in winter wheat and achieved 
high accuracies with severe infections at late growth stages. Santoso et al. (2011) 
also used QuickBird imagery to map and identify basal stem rot in oil palms. SPOT 
6 satellite imagery was used for mapping powdery mildew in winter wheat at mul-
tiple regions (Yuan et  al. 2016). Li et  al. (2015) examined the feasibility of 
WorldView 2 imagery for the detection of Huanglongbing, also known as citrus 
greening. Yang et al. (2018) used GeoEye-1 imagery to map cotton root rot and cre-
ate prescription maps for site-specific fungicide application for the management of 
the disease. Song et al. (2017) evaluated Sentinel-2 imagery and compared it with 
airborne imagery for mapping cotton root rot. Abdel-Rahman et al. (2017) explored 
the possibility of using RapidEye data to assess stem borer larva densities in maize 
fields and found that the densities could only be predicted during the middle grow-
ing season. The literature on the use of satellite imagery for disease and pest moni-
toring and detection will continue to expand as low-cost and no-cost satellite 
imagery is becoming more available.

6.2.2  Manned Aircraft-Based Imaging Systems for Disease 
and Pest Detection

Airborne imaging systems are commonly referred to as imaging systems carried on 
manned aircraft, so imagery obtained from manned aircraft is known as airborne or 
aerial imagery. Cameras or imaging systems used on manned aircraft are generally 
not restricted by their size and weight and they need to be operated or triggered by 
the pilot or a camera operator on the aircraft. A typical airborne multispectral or 
hyperspectral imaging system consists of one or more cameras and a computer with 
a monitor for data acquisition and real-time visualization.

Depending on the types of remote sensors being carried, a designated remote 
sensing aircraft is specially outfitted with camera holes or ports in the underside of 
the aircraft. However, cameras that are light, not sophisticated, and remotely trig-
gerable can be simply attached to the landing gear or hung out a door window of an 
aircraft using simple mounts. Most aircraft for remote sensing fly below altitudes of 
3000 m above mean sea level (MSL) where no oxygen mask or cabin pressurization 
is needed. Common fixed-wing, propeller-driven aircraft such as Cessna 206, 182, 
and 172 belong to this class, which is widely used throughout the world.
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Agricultural aircraft are a special class of manned aircraft used for aerial 
application. There are thousands of agricultural aircraft used to apply crop pro-
duction and protection materials in the United States alone. These aircraft can 
be equipped with one or multiple cameras to monitor crop growing conditions; 
detect and map infestations of crop weeds, diseases, and insect pests; and assess 
the performance and efficacy of ground and aerial application treatments. This 
additional imaging capability will also increase the utility of agricultural air-
craft and help aerial applicators generate additional revenue with remote sens-
ing services.

Light sport aircraft (LSA) are a fairly new category of small, lightweight aircraft 
that are simple to fly. Different countries have their own specifications and regula-
tions for LSA. In the United States, several distinct groups of aircraft may be flown 
as LSA. The US Federal Aviation Administration (FAA) defines a LSA as an air-
craft, other than a helicopter or powered lift, that meets certain requirements, includ-
ing a maximum gross takeoff weight of 600 kg, a maximum stall speed of 83 km/h, 
and a maximum speed in level flight of 220 km/h among others. LSA aircraft have 
great potential as a flexible and economical platform for aerial imaging. They are 
less expensive than other manned aircraft, but they do not have many of the restric-
tions UAS have.

6.2.2.1  Multispectral Imaging Systems Based on Industrial Cameras

Multispectral imaging systems typically employ two or more industrial cameras and 
spectral filters to obtain images in multiple bands. For example, a typical four-band 
imaging system consists of four identical cameras equipped with four different 
bandpass filters to obtain blue, green, red, and NIR band images. The composite 
image of red, green, and blue bands forms the normal color or RGB image, while 
the composite image of NIR, red, and green bands forms the color-infrared 
(CIR) image.

Among the advantages of airborne imaging systems are their relatively low cost, 
high spatial resolution, and real-time/near-real-time availability of imagery for 
visual assessment and their ability to obtain data in narrow spectral bands in the 
visible to LWIR region of the spectrum. Over the years, numerous commercial and 
custom-built multispectral imaging systems have been developed and used for 
diverse remote sensing applications, including disease and pest detection. Most air-
borne multispectral imaging systems can provide 8- to 16-bit image data with sub-
meter resolution at 3–12 narrow spectral bands in the visible to NIR region of the 
spectrum (Everitt et  al. 1998; Escobar et  al. 1998; Gorsevski and Gessler 2009; 
Yang 2012).

Monochrome charge-coupled device (CCD) sensors have been typically used in 
industrial cameras, though complementary metal oxide semiconductor (CMOS) 
sensors have been increasingly displacing CCD sensors in recent years because of 
their lower cost and less power consumption. Each camera in a multispectral system 
is usually equipped with a different bandpass filter. This approach allows each 
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camera to be individually adjusted for optimum settings, but it requires that the 
individual band images be properly aligned with each other even if the cameras are 
well aligned. Another approach is to use a beam splitting prism and multiple sensors 
built in one single camera to achieve multispectral imagery. One such system is the 
CS-MS1920 multispectral 3-CCD camera (Teledyne Optech, Inc., Vaughan, 
Ontario, Canada), which uses a beam splitting prism and three CCD sensors to 
acquire images in 3–5 spectral bands within the 400–1000 nm spectral range. The 
advantage of this approach is that the band images are optically and mechanically 
aligned.

The US Department of Agriculture-Agricultural Research Service’s (USDA- 
ARS) Aerial Application Technology Research Unit in College Station, Texas, 
has devoted considerable efforts to the development and evaluation of airborne 
imaging systems for agricultural applications. Figure 6.1 presents a four-camera 
multispectral imaging system (lower left) along with three other imaging sys-
tems developed/assembled at the ARS location. The four-camera imaging system 
consists of four monochrome CCD cameras and a ruggedized PC equipped with 
a frame grabber and image acquisition software (Yang 2012). The cameras are 
sensitive in the 400–1000  nm spectral range and provide 2048  ×  2048 active 

Fig. 6.1 A four-camera imaging system (lower left) mounted along with a hyperspectral camera 
(upper left), a thermal camera (upper right), and a multispectral imaging system based on two 
consumer-grade cameras (central to lower right) owned by the USDA-ARS at College Station, Texas
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pixels with 12-bit data depth. The four cameras are equipped with blue 
(430–470 nm), green (530–570 nm), red (630–670 nm), and NIR (810–850 nm) 
bandpass interference filters, respectively.

Many commercial companies offer different types of multispectral imaging sys-
tems. Airborne Data Systems, Inc. (Redwood Falls, Minnesota, USA), offers sev-
eral multispectral camera systems for airborne remote sensing.1 The SpectraView is 
an airborne multispectral camera system designed to accommodate up to eight dif-
ferent cameras. The cameras can vary in size, format, and wavelength from UV to 
LWIR. The system is designed with a fully integrated global positioning system/
inertia navigation system (GPS/INS) unit providing precise, automated geo- 
registration of the images.

Tetracam’s multispectral imaging systems come in two product families 
(Tetracam, Inc., Chatsworth, California, USA). Each system in the agricultural 
digital camera (ADC) family consists of a single camera equipped with fixed 
filters at green, red, and NIR wavelengths. Systems in the multiple-camera 
array (MCA) family contain 4, 6, or 12 registered and synchronized cameras to 
simultaneously capture user-specified band images in visible to NIR wave-
lengths. Tetracam’s Micro-MCA systems can also be configured with one or 
two FLIR TAU thermal sensors (FLIR Systems, Inc., Nashua, New Hampshire). 
FLIR’s thermal cameras come in many series with sensor arrays up to 
1280 × 1024 pixels in typical spectral ranges of 1–5 μm, 3–5 μm, and 7.5–13 μm. 
The thermal camera shown in Fig. 6.1 is a FLIR model SC640 thermal imaging 
camera sensitive in the 7.5–13 μm spectral range. It captures 14-bit thermal 
images with 640 × 480 pixels. ITRES Research Ltd. (Calgary, Alberta, Canada) 
offers the TABI-1800 thermal camera that captures 14-bit broadband images 
with a swath of 1800 pixels, the industry’s widest array in the 3.7–4.8 μm spec-
tral range.

Phase One Industrial (Copenhagen, Denmark) provides high-end aerial imaging 
products. The Phase One 150MP 4-Band aerial system consists of two synchronized 
150-megapixel (150-MP) iXM-RS150F cameras (RGB and achromatic) mounted 
side by side, a Somag CSM40 modular stabilizer, an Applanix GPS/inertial mea-
surement unit (IMU), an iX Controller computer, and the iX Capture software. Each 
camera has a pixel array of 14,204 × 10,652 pixels. The software performs pixel 
alignment between the RGB and NIR images. The other similar configuration is the 
Phase One 100MP 4-Band aerial system with two 100MP iXM-RS100F cameras. 
Phase One is also offering an advanced large-format 190MP 4-Band system with 
two RGB cameras and one NIR camera to allow faster and more efficient execution 
of aerial imaging projects.

1 Disclaimer: Commercial products are referred to solely for the purpose of clarification and should 
not be construed as being endorsed by the authors or the institution with which the authors are 
affiliated.
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6.2.2.2  Multispectral Imaging Systems Based 
on Consumer-Grade Cameras

Recently, consumer-grade digital cameras have been increasingly used as a remote 
sensing tool. The main advantage is that one single consumer-grade camera can 
capture RGB images directly. Moreover, it can be modified to capture images in one 
single NIR band or in a combination of two visible bands and one NIR band. 
However, image quality from modified cameras may not be as good as that from the 
individual industrial cameras.

A consumer-grade camera fitted with either a CCD or CMOS sensor employs a 
Bayer color filter mosaic to obtain true-color RGB images using one single sensor 
(Bayer 1976; Hirakawa and Wolfe 2008). A Bayer filter mosaic is a color filter array 
for arranging RGB color filters on the pixel array of the sensor. Since each pixel is 
filtered to record only one of the three primary colors, various demosaicing algo-
rithms are used to interpolate a set of complete red, green, and blue values for each 
pixel. Although pixel interpolation lowers the effective spatial resolution of the 
band images, the three band images are perfectly aligned. Consequently, consumer- 
grade digital color cameras have been increasingly used by researchers for agricul-
tural applications (Sakamoto et al. 2012; Akkaynak et al. 2014; Yang et al. 2014; 
Song et al. 2016).

Images with visible and NIR bands are commonly used in remote sensing. Many 
vegetation indices such as the normalized difference vegetation index (NDVI) 
require spectral information in NIR and red bands. Since most consumer-grade 
cameras only provide the three broad RGB bands, NIR filtering techniques can be 
used to convert an RGB color camera to a NIR camera. Two of the companies that 
offer infrared camera conversion services are Life Pixel Infrared (Mukilteo, 
Washington, USA) and LDP LLC (Carlstadt, New Jersey, USA). The NIR blocking 
filter is typically replaced by a 720-nm or 830-nm long-pass filter. Since the Bayer 
filter mosaic is fused to the sensor substrate, the transmission profiles of the Bayer 
color channels remain when using RGB cameras with the long-pass NIR filter. All 
three channels in the converted camera only record NIR radiation. Although any of 
the three channels can be used as the NIR channel, the red channel usually has the 
best sensitivity. Studies have been conducted on the use of NIR-converted digital 
cameras for monitoring plant conditions and results from these studies support their 
use as simple and affordable tools for plant stress detection and crop monitoring 
(Nijland et al. 2014; Rabatel et al. 2014; Zhang et al. 2016; Wu et al. 2017).

In the last few years, several single- and dual-camera imaging systems based on 
consumer-grade cameras have been developed for use on any traditional aircraft or 
agricultural aircraft at USDA-ARS, College Station, Texas (Yang et al. 2014; Yang 
and Hoffmann 2015). The original USDA-ARS single-camera imaging system con-
sisted of a Nikon D90 digital CMOS camera with a Nikon AF Nikkor 24 mm f/2.8D 
lens (Nikon Inc., Melville, New York, USA) to capture the color image with up to 
4288 × 2848 pixels, a Nikon GP-1A GPS receiver (Nikon Inc., Melville, New York, 
USA) to geotag the image, an AUVIO 7″ portable LCD video monitor (Ignition 
L.P., Dallas, Texas, USA) to view the live image, and a Vello FreeWave wireless 

C. Yang



169

remote shutter release (Gradus Group LLC, New York, New York, USA) to trigger 
the camera.

To assemble a dual-camera system, a second identical Nikon D90 camera was 
modified to a NIR camera. To trigger the two cameras simultaneously, one hahnel 
Giga T Pro II wireless timer remote receiver (hahnel Industries Ltd., Bandon, Co., 
Cork, Ireland) was attached to each camera and one single hahnel remote transmit-
ter was used to start and stop image acquisition. The remote control allows the user 
to take images automatically at set time intervals between consecutive shots. Since 
the NIR image has the same center GPS coordinates as the RGB image, only one 
GPS receiver is needed. The two cameras can be attached via a mount to an aircraft 
with minimal or no modification to the aircraft. Both the single- and dual-camera 
systems have been evaluated for crop disease and pest detection and crop-type iden-
tification (Yang and Hoffmann 2015; Zhang et al. 2016).

Two other systems with higher-end consumer-grade cameras were also devel-
oped at USDA-ARS, College Station, Texas. One system, as shown in Fig.  6.1, 
consisted of two Canon EOS 5D Mark III digital cameras with 5760 × 3840 pixels 
(Canon USA Inc., Lake Success, New York, USA). One camera captured normal 
RGB color images, while the other camera was equipped with an 830-nm long-pass 
filter to obtain NIR images. The other consisted of two Nikon D810 digital cameras 
with 7360 × 4912 pixels. Similarly, one camera captured RGB color images, while 
the other camera was equipped with an 830-nm long-pass filter to obtain NIR 
images. These two imaging systems have the same sensor size (36 mm × 24 mm) 
and focal length (20 mm). The dimension of the images from each system is 1.8 by 
1.2 times the flight height. At a flight height of 1000 m AGL, the image covers a 
ground area of 1800 m × 1200 m with a pixel size of 31 cm for the Canon system 
and 24 cm for the Nikon system. The two-camera systems have also been evaluated 
for crop disease and pest detection (Yang et al. 2014; Wu et al. 2017).

6.2.2.3  Hyperspectral Cameras

Hyperspectral imaging sensors or imaging spectrometers collect image data in tens 
to hundreds of very narrow, continuous spectral bands throughout the visible to 
thermal infrared region of the spectrum. Imagery from hyperspectral sensors con-
tains more spectral details than imagery from multispectral sensors and has the 
potential for better differentiation and estimation of biophysical attributes for 
remote sensing applications.

Many commercial airborne hyperspectral sensors have been developed and used 
for various remote sensing applications since the late 1980s. The Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) was the first hyperspectral imaging sensor 
that delivered calibrated images of upwelling spectral radiance in 224 contiguous 
spectral bands with wavelengths from 400 to 2500 nm. AVIRIS was developed by 
the Jet Propulsion Laboratory (JPL) (Pasadena, California, USA) and has been col-
lecting hyperspectral images for scientific research and applications since 1987 
(http://aviris.jpl.nasa.gov/). The pixel size and swath width of the AVIRIS data 
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depend on the altitude from which the data are collected. When collected at 20 km 
above sea level, imagery has a pixel size of 20 m and a ground swath of 11 km. 
When collected at 4 km above the ground, the pixel size is 4 m and the swath is 2 km 
wide. The AVIRIS system has been upgraded and improved in a continuous effort to 
meet the requirements of investigators using AVIRIS spectral images for scientific 
research and applications.

HyMap is an airborne hyperspectral imaging sensor developed and manufac-
tured by Integrated Spectronics Pty. Ltd. (Sydney, Australia). After the first sensor 
became operational in 1996, the HyMap series of airborne hyperspectral scanners 
have been deployed in many countries in North America, Europe, Africa, and 
Australasia. The initial HyMap sensor had 96 channels in the 550–2500 nm range 
and was designed primarily for mineral exploration (Cocks et al. 1998). The current 
HyMap sensor, operated by HyVista Corporation Pty. Ltd. (Sydney, Australia), pro-
vides 128 bands in the 450–2500 nm spectral range. The sensor can be configured 
to capture images with 512 pixels with a spatial resolution of 3–10 m for different 
environmental, agricultural, and urban applications (Dehaan and Taylor 2002; 
Galvao et al. 2004; Schiefer et al. 2006).

The Compact Airborne Spectrographic Imager (CASI) was first introduced in 
1989 by ITRES Research Ltd. (Calgary, Alberta, Canada). Currently, ITRES offers 
a suite of airborne hyperspectral sensors covering the visible to thermal spectral 
range. The CASI-1500H captures 14-bit hyperspectral images at up to 288 bands in 
the 380–1050 nm spectral range with 1500 across-track pixels. The SASI-1000A 
offers images with 1000 pixels at 200 bands in 950–2450 nm to allow continuous 
VNIR-SWIR coverage together with the CASI-1500H. The MASI-600 is the first 
commercially available MWIR airborne hyperspectral sensor with 600 pixels and 
64 bands in a spectral range of 3–5 μm. The TASI-600 is the airborne hyperspectral 
thermal sensor with 600 spatial pixels and 32 bands in a spectral range of 8–11.5 μm.

More commercial airborne hyperspectral imaging sensors have become available 
in recent years with improved spatial and spectral resolutions and high-performance 
GPS/INS units for increased position accuracy. The Specim’s AISA hyperspectral 
systems (Spectral Imaging Ltd., Oulu, Finland) cover VNIR (380–1000 nm), SWIR 
(1000–2500 nm), and thermal LWIR (7.7–12.3 μm) spectral ranges. The family of 
the airborne hyperspectral systems includes AisaKESTREL 10  in 400–1000 nm, 
AisaKESTREL 16  in 600–1640  nm, AisaFENIX and AisaFENIX 1K in 
380–2500 nm, and AisaOWL in 7.7–12.3 μm. The AisaFENIX sensor can capture 
images with a swath of 384 pixels at up to 348 VNIR bands and 274 SWIR bands, 
while the AisaFENIX 1K sensor can capture images with a swath of 1024 pixels at 
up to 348 VNIR bands and 256 SWIR bands. The AisaOWL can obtain images with 
a 384-pixel swath at 96 bands. All the sensors are equipped with a GPS/INS unit for 
monitoring the aircraft position and attitude.

Headwall Photonics, Inc. (Fitchburg, Massachusetts, USA), is another hyper-
spectral instrument manufacturer that currently offers a suite of hyperspectral sen-
sors covering the spectral range of 250–2500 nm. Separate hyperspectral imaging 
sensors are available for UV to visible (250–500 nm), VNIR (380–1000 nm), NIR 
(900–1700  nm), and SWIR (950–2500  nm) spectral ranges. It also offers a 
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co-registered VNIR-SWIR imaging sensor with full hyperspectral coverage from 
400 to 2500 nm. Headwall’s sensors can be configured to capture images with a 
swath of up to 1600 pixels at hundreds of bands. Similarly, a high-accuracy GPS/
INS unit is integrated into each hyperspectral sensor. As an example, the hyperspec-
tral imaging system at USDA-ARS in College Station, Texas, consists of a Headwall 
HyperSpec VNIR E-Series imaging spectrometer (upper left of Fig. 6.1), an inte-
grated Applanix APX-15 GPS/IMU, and a hyperspectral data processing unit. The 
spectrometer can capture 16-bit images with up to 923 spectral bands and a swath 
of 1600 pixels in the wavelength range of 380–1000 nm. At 1000 m AGL, the hyper-
spectral camera covers a swath of 615 m with a pixel size of 38 cm.

Airborne multispectral and hyperspectral imaging systems have been used for 
detecting and mapping crop insect pests and diseases for decades. Past research has 
shown that CIR aerial photography can be used to remotely detect sooty mold 
deposits on citrus foliage caused by the honeydew-producing insects, brown soft 
scale, and citrus blackfly (Hart and Myers 1968; Hart et  al. 1973; Everitt et  al. 
1994). Nuessly et al. (1987) evaluated CIR aerial photography for detecting sooty 
mold growing on honeydew secreted by sweetpotato whiteflies on cotton plants in 
the Imperial Valley of California. Everitt et al. (1996) described the application of 
airborne videography with GPS and GIS technologies for detecting and mapping 
silverleaf whitefly (also known as sweetpotato whitefly B-biotype) infestations in 
cotton in the Rio Grande Valley of Texas. Fletcher (2005) evaluated simulated 
QuickBird imagery derived from high-resolution airborne CIR imagery for detect-
ing sooty mold-affected citrus orchards in the Rio Grande Valley of Texas.

The feasibility of airborne CIR videography was demonstrated for detecting 
Phymatotrichum root rot in cotton (Nixon et al. 1987) and root-knot nematodes in 
kenaf (Cook et al. 1999). Airborne digital multispectral imagery was evaluated for 
detecting Phytophthora foot rot in citrus orchards (Fletcher et al. 2001), mapping 
late blight in tomato fields (Zhang et al. 2005), and mapping cotton root rot in cotton 
fields (Yang et al. 2005). Airborne hyperspectral imagery was evaluated for identi-
fying yellow rust in wheat (Huang et al. 2007), grapevine leafroll virus (MacDonald 
et al. 2016), and yellow leaf curl on tomatoes (Lu et al. 2018). Airborne multispec-
tral and hyperspectral imaging techniques were jointly used for detecting citrus 
greasy spot (Du et al. 2004), cotton root rot (Yang et al. 2010), and citrus greening 
(Kumar et al. 2012; Li et al. 2014).

6.2.3  Unmanned Aircraft-Based Imaging Systems for Disease 
and Pest Detection

UAS as an emerging remote sensing platform are gaining popularity in recent years. 
There are two major types of UAS used today, rotary and fixed-wing. A rotary UAS 
has the capability to take off and land vertically and hover in place, but it has a short 
flight time and slow speed. In contrast, a fixed-wing UAS can be hand-launched or 
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requires a launcher to take off and a runway to land, but it can fly at a longer time 
with faster speed. Small UAS are generally powered by batteries which typically 
have a flight time of 10–30 min. The flight range of a UAS also limits the radius that 
can be covered during each flight.

Most small UAS can only carry a small payload that restricts the type of cameras 
to be used. More importantly, the imaging systems used on UAS should have the 
capability to be triggered remotely or automatically by the control system on the 
UAS. Therefore, most of the imaging systems used for manned aircraft cannot be 
directly used for UAS imaging. Nevertheless, some systems such as the single- and 
dual-camera systems based on consumer-grade cameras can be directly mounted on 
UAS for aerial imaging. Moreover, many multispectral and hyperspectral camera 
manufacturers are providing cameras for UAS. MicaSense, Inc. (Seattle, Washington, 
USA), is a good example and has provided several lines of multispectral camera 
products, including the 5-band RedEdge 3, the 5-band RedEdge-MX, the 6-band 
Altum, and the 10-band dual-camera system. ITRES offers smaller versions of the 
hyperspectral sensors for use on UAS.  Specim’s AisaKESTREL 10 and 
AisaKESTREL 16 hyperspectral cameras can also fit to a UAS platform. Headwall’s 
VNIR and SWIR hyperspectral sensors or coaligned VNIR-SWIR sensors can be 
mounted on high-performance UAS with a choice of GPS/IMU.

UAS can capture images at very high spatial resolution, making it possible to 
assess crop disease and pest conditions at leaf and plant levels. In the last few years, 
UAS-based remote sensing has been increasingly used for crop phenotyping to esti-
mate plant growth parameters (Varela et al. 2017; Roth et al. 2018; Hassan et al. 
2019). Like airborne and satellite imagery, UAS imagery has become an important 
data source to assess crop diseases and insect pests. Garcia-Ruiz et al. (2013) com-
pared a UAS-based and a manned aircraft-based imaging platform for identification 
of Huanglongbing-infected citrus trees. Albetis et al. (2017) evaluated the feasibil-
ity of detecting the Flavescence dorée grapevine disease using UAS multispectral 
imagery. Cao et al. (2018) used UAS-based RGB and thermal imagery to detect a 
fungal disease on oilseed rape leaves. Mattupalli et al. (2018) used UAS-based RGB 
imagery to assess root rot infestations in alfalfa fields. Heim et al. (2019) evaluated 
a MicaSense RedEdge 3 multispectral camera mounted on a UAS for detection of 
myrtle rust on a lemon myrtle plantation. Vanegas et al. (2018) used UAV-based 
multispectral and hyperspectral data for detecting grape phylloxera infestation in 
vineyards.

Despite their widespread use and fast-growing popularity, UAS have many flight 
restrictions due to their safety threat to the air space. Each country has its own rules 
and regulations pertaining to UAS operations. The safety concerns of commercial 
pilots, especially aerial applicators and other pilots operating in low-level airspace, 
need to be addressed. In the United States, UAS pilots must follow the Part 107 
guidelines set up by the US FAA (https://www.faa.gov/uas/commercial_operators/). 
Some of the important operation restrictions include the following: (1) The 
unmanned aircraft with all payload must weigh less than 55 lbs. (25 kg), (2) the 
flight must be conducted within visual line of sight only, (3) the maximum allow-
able altitude is 400 ft (122 m) above ground level (AGL), (4) the maximum ground 
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speed is 100 mph (161 km/h), and (5) operations in Class B, C, D, and E airspace 
are allowed with the required air traffic control permission. The person operating a 
small UAS must either hold a remote pilot airman certificate or be under the direct 
supervision of a certified person. There are many other restrictions, though some of 
the restrictions can be waived if a certificate of waiver is granted.

Due to the current aviation regulations and their own limitations, UAS have been 
mainly used for image acquisition over research plots and relatively small crop 
areas. Until some of the UAS restrictions are changed for commercial applications, 
conventional manned aircraft remain to be an effective and versatile platform for 
airborne remote sensing. High-resolution satellite imagery is becoming more avail-
able at lower cost with large coverage and short revisit time. Farmers nowadays 
have more choices of image data than even before.

6.3  Practical Methodologies for Crop Disease Detection 
and Management

A variety of remote sensors mounted on different platforms have been successfully 
used to detect and map many crop diseases and pests. Depending on the specific 
disease or pest to be detected, the type of imagery and the type of platforms to be 
selected are different. As discussed previously, if the disease or pest is stable in the 
present season or recurs at similar areas in the following season, the imagery taken 
in the current season can be used for site-specific management either within the 
season or after the season. In this section, cotton root rot is used as an example to 
illustrate the practical procedures and methodologies for remote detection and site- 
specific management of the disease.

Cotton root rot is a destructive soilborne cotton disease that has plagued the cot-
ton industry for more than a century (Pammel 1888; Uppalapati et al. 2010). The 
fungus spreads from plant to plant either through root contact or by slow growth of 
mycelial strands through the soil (Smith et al. 1962). Infected plants turn yellow and 
then wilt and die within a week. Plants infected earlier in the season will die before 
bearing fruit, whereas later infection will reduce cotton yield and lower lint quality 
(Ezekiel and Taubenhaus 1934; Yang et al. 2005).

Despite decades of research efforts, effective practices for the control of this 
disease were lacking until Topguard® Terra fungicide (FMC Corporation, 
Philadelphia, Pennsylvania, USA) was registered by the US Environmental 
Protection Agency in 2015. Since the fungicide is not effective once the plant is 
infected, it is usually applied at planting or shortly before planting or after plant 
emergence. Thus, aerial imagery taken in the current season cannot be used for the 
management of this disease for the season. Historical airborne images have shown 
that this disease tends to occur in similar areas within fields across different years 
(Yang et  al. 2016). Therefore, site-specific fungicide application can be made at 
planting or before the initiation of the disease based on the infestation maps from 
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previous years. Three years of field experiments were conducted to demonstrate 
how to implement site-specific fungicide application using historical imagery and 
variable rate technology for the management of this disease (Yang et al. 2018).

In this section, the methodologies for image acquisition and processing, pre-
scription map creation, variable rate application, and performance evaluation will 
be discussed to demonstrate how remote sensing and variable rate technology can 
be used for the detection and management of cotton root rot. Hopefully, these pro-
cedures can be used or provide some guidance for similar crop diseases and pests.

6.3.1  Image Selection and Acquisition for Crop 
Disease Detection

Remote sensing is the most practical means for accurately detecting and mapping 
cotton root rot because of the large numbers of infested areas and their irregular 
shapes within fields. Both airborne and satellite images have been successfully used 
to map the extent of cotton root rot infestations near the end of the growing season 
when the damage is fully pronounced (Yang et al. 2005, 2010). Airborne imagery 
has fine spatial resolution, but its availability varies by location and year. Even if 
airborne imagery is available for your fields, it may not be very useful if taken early 
in the season. Satellite imagery provides an alternative data source because of its 
short repeat cycle and large ground coverage. The traditional Landsat imagery is 
freely available, but it may be only good to map severe infestations with large areas. 
High-resolution satellite sensors with spatial resolutions of 5  m or less, such as 
GeoEye-1, WorldView-3 and -4, and GaoJing-1, would be more appropriate. If such 
imagery is not available, imagery with resolutions of 5–10 m, such as RapidEye, 
SPOT 6 and 7, and Sentinel-2, can be used with the possibility that small infested 
areas may not be detected.

Several airborne imaging systems (i.e., three-, four-, and two-camera) and 
two satellite sensors (Geoeye-1 and Sentinel-2) had been used for image acqui-
sition for the cotton root rot project in the last two decades. The three-camera 
imaging consisted of three digital cameras, which were filtered for in the green 
(560 ± 5 nm), red (630 ± 5 nm), and NIR (851 ± 6 nm) bands, respectively, to 
obtain 8-bit images with 1024  ×  1024 pixels (Everitt et  al., 1998). The four-
camera imaging system used was the one shown in Fig. 6.1. Several versions of 
two-camera systems were used, including the Canon camera-based system 
shown in Fig.  6.1 and two others based on two different types of consumer-
grade Nikon cameras. One such system consisted of two identical Nikon D810 
cameras with 7360 × 4912 pixels. One camera was used to obtain RGB images, 
while the second camera was modified to capture NIR images with an 830-nm 
long-pass filter. A Cessna 206 aircraft equipped with two camera ports was used 
for image acquisition at altitudes of approximately 1525–3050 m (5000–10,000 ft) 
above ground level. All airborne images were taken between 1030 and 1500 h 
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Fig. 6.2 Airborne color-infrared images for a 97-ha cotton field infested with cotton root rot in 
south Texas in 2002 and 2012. (Yang et al. 2016)

under sunny weather conditions. Pixel size for images captured at 3050 m was 
1.3 m, 1.0 m, and 0.8 m for the three-, four-, and two- camera systems, respec-
tively. GeoEye-1 satellite imagery contained blue, green, red, and NIR bands 
with a spatial resolution of 2 m, while Sentinel-2 imagery had the four standard 
bands at 10-m resolution.

Figure 6.2 presents the airborne CIR images acquired from a 94-ha irrigated cot-
ton field in south Texas shortly before cotton harvest in 2002 and 2012. Areas with 
noninfected plants had pinkish or reddish color, while infested areas exhibited a 
greenish or light blue tone. The circular wheel tracks caused by the center-pivot 
system can be clearly seen on the images. Some differences in infestations existed 
between the 2 years, but the overall spatial patterns looked similar. Image classifica-
tion results showed that percentage infestation areas for the field were 11.7% in 
2002 and 8.7% in 2012. The smaller area in 2012 was because some of the infested 
areas in 2002 were not fully pronounced in 2012, even though there were a few 
newly infested areas. Nevertheless, cotton root rot occurred in the same general 
areas within the field and this recurrent pattern was also found in other infested cot-
ton fields.

6.3.2  Image Processing and Prescription Map Creation 
for Crop Disease Management

Satellite imagery is usually rectified to a known coordinate system at delivery, while 
airborne imagery needs to be preprocessed and georeferenced before further analy-
sis. The individual band images from any of the multicamera systems were aligned 
to each other using an image-to-image registration procedure and were then stacked 
as a multiband composite image. The aligned images were rectified to the Universal 
Transverse Mercator (UTM), World Geodetic System 1984 (WGS-84), coordinate 
system based on a set of ground control points. All procedures for image registra-
tion and rectification were performed using ERDAS Imagine (Intergraph 
Corporation, Madison, Alabama, USA) or ENVI (Research Systems, Inc., Boulder, 
Colorado, USA).
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If a large number of mages were collected over a whole farm or a large geo-
graphic region along multiple flight lines, Pix4DMapper (Pix4D SA, Lausanne, 
Switzerland) was used to automatically convert the band images or RGB/NIR 
images into 2D orthomosaics and 3D digital surface models (DSMs). The band 
images from different cameras were automatically aligned and georeferenced 
during the image mosaicking process with 10–20 ground control points. The 
individual band mosaics were then staked as a composite image for further 
analysis.

Most image processing software packages such as Erdas Imagine and ENVI 
can be used to classify the image and then create the prescription map for use 
by a variable rate control system. Moreover, other less expensive farm soft-
ware products such as Farmer Pro and Adviser Prime (Trimble Inc., Sunnyvale, 
California, USA) and SMS Advanced (AgLeader, Ames, Iowa, USA) can be 
used for this purpose. In addition, QGIS (https://qgis.org/en/site/) is a free 
software package that can perform image processing and create prescrip-
tion maps.

Numerous classification techniques have been evaluated to distinguish cotton 
root rot-infested areas from airborne multispectral imagery. Yang et  al. (2005) 
applied the Iterative Self-Organizing Data Analysis (ISODATA) unsupervised clas-
sification technique to CIR imagery to accurately detect and map root rot infesta-
tions within cotton fields in south Texas. Yang et  al. (2010) compared airborne 
multispectral and hyperspectral imagery for mapping root rot areas and their results 
showed that both types of imagery could accurately identify root rot-infested areas, 
even though hyperspectral imagery could be used to assess the severity level of the 
infestation. Yang et al. (2016) evaluated and compared two unsupervised methods 
(ISODATA applied to imagery or to NDVI) and six supervised classification meth-
ods, including minimum distance, Mahalanobis distance, maximum likelihood, 
spectral angle mapper (SAM), neural network, and support vector machine (SVM). 
They concluded that all these methods were almost equally accurate, but the unsu-
pervised methods could be easily implemented and therefore were recommended 
for cotton root rot classification. To consider the potential expansion of the disease 
and the size of the tractor-applicator system, a 3–10  m buffer should be added 
around the infested areas as part of the treatment zone in the prescription map (Yang 
et al. 2018).

Figure 6.3 shows an airborne CIR image, the unsupervised classification map 
from the NDVI image, and the prescription map with a 5-m buffer for an 11-ha cot-
ton field near San Angelo, Texas. The classification map effectively separated cotton 
root rot-infested areas within the field. About 37% of the field was infested based on 
the classification map, while 63% of the field needed to be treated based on the 
prescription map with the 5-m buffer. The polygons in the prescription map were 
assigned application rates of 0 for noninfested areas and 46.8 L ha−1 (5 gal ac−1) for 
infested areas. The prescription map was converted to a shapefile that a variable 
control system could accept.
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Fig. 6.3 Process of classifying an airborne CIR image and then creating a prescription map with 
a 5-m buffer for an 11-ha cotton field near San Angelo, Texas. The green areas in the prescription 
map were treated with Topguard fungicide with 46.8 L ha−1 of water. (Yang et al. 2018)

6.3.3  Site-Specific Fungicide Application for Crop 
Disease Management

Pesticides (i.e., fungicides and insecticides) are widely used to control crop diseases 
and insect pests to minimize yield loss and quality reduction in crop production. 
Traditional uniform pesticide application is effective for most diseases and pests, 
but variable rate application may be more appropriate and economical for the man-
agement of some stable infestations. Variable rate application does not change the 
basic functionality of existing applicators, but it does require the addition of a con-
trol system that can read a prescription map to adjust application rate automatically. 
Different control systems are available for variable rate application, but flow-based 
control systems are simple and commonly used to deliver the desired rate across the 
boom or swath with an electronic controller.

For Topguard Terra fungicide application, two flow-based control systems, a 
John Deere controller (Deere & Company, Moline, Illinois, USA) and a Trimble 
controller (Trimble Inc., Sunnyvale, California, USA), were selected. The John 
Deere control system consisted of a controller, a servo valve, a flowmeter, and a 
shutoff valve. The system was added to a John Deere tractor owned by a producer 
near Edroy, Texas. The Trimble system with similar components was adapted to a 
John Deere tractor owned by a producer in San Angelo, Texas. Both tractors were 
already equipped with the StarFire RTK GPS receiver. The John Deere system 
required a John Deere GreenStar display and the Trimble system required a Trimble 
FMX Display. Both displays were already integrated on the respective tractors for 
automatic guidance and other field operations. The prescription maps in shapefile 
format were uploaded to the displays and each system was calibrated for desired 
rates before fungicide application over multiple fields owned by the two producers 
in 2015–2017.
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6.3.4  Performance and Efficacy Evaluation for Crop 
Disease Management

The performance and efficacy of a variable rate application can be evaluated using 
as-applied maps and post-application aerial imagery along with ground observa-
tions. A series of small rectangular areas is recorded in an as-applied map during 
field application. The actual rate and the target rate for each rectangular area 
included in the as-applied map can be used for application accuracy assessment, 
while aerial imagery taken during the growing season can be used to detect any root 
rot infestation from the treated fields. Figure 6.4 shows a pretreatment CIR image 
taken in 2010, the as-applied map overlaid on the CIR image, and a posttreatment 
CIR image taken shortly before harvest in 2015 for the 11-ha cotton field. A close 
examination of the as-applied map revealed that the application system missed only 
a few small areas and did not turn on or off exactly when entering or exiting treat-
ment zones. Nevertheless, the control system generally accurately applied the prod-
uct to the prescribed areas. Spatial analysis showed that the actual treatment area 
was only 1.4% larger than the target treatment area, while the actual application rate 
was 1.5% lower than the desired rate for the field (Yang et al. 2018). Results from 
other test fields had similar results, indicating both types of the control systems 
performed well and could be used for implementing site-specific fungicide 
application.

By comparing the CIR image with natural infestation in 2010 and the CIR image 
taken after treatment in 2015, it was clear that the fungicide effectively controlled 
the disease in the treated areas, even though root rot occurred at a number of small 
areas shortly before harvest. This late infestation caused hardly any yield loss 
because most of the bolls were already fully developed by that time. The dullness of 

Fig. 6.4 Comparison of airborne image acquired in 2010 with natural infestation (left), as-applied 
map (center), and airborne image acquired in 2015 with site-specific treatment of Topguard Terra 
fungicide for an 11-ha cotton field near San Angelo, Texas. (Yang et al. 2018)
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the image in 2015, caused by small plant size and low canopy cover, made it a little 
difficult to see the late infestation in the treated areas. In fact, canopy cover for much 
of the field was less than 50–60% due to the dry weather and limited irrigation for 
the season.

For the control of cotton root rot, Topguard Terra fungicide is the only choice and 
it is very expensive. The cost at full application rate is $124 per hectare ($50 per 
acre). For example, if the whole 11-ha field (actual area was 11.3 ha) were treated 
uniformly at full rate, the fungicide cost for the field would have been $1401 
(11.3 ha × $124/ha). As only 63% of the field were treated, the savings on fungicide 
was about $518 or 37% over uniform treatment. Clearly, for large fields with the 
same percentage of infestations, the savings would be more significant. For exam-
ple, if only 20% of the 97-ha field shown in Fig. 6.2 needed treatment, the savings 
on fungicide use would amount to $9622 (97 ha × $124/ha × 80%) for the filed in 
one season alone. The cost to add a variable rate control system to the existing trac-
tor or planter was about $4000–$5000. This initial investment can be recouped if the 
treatment area is reduced by 32–40 ha in one single year. Our aerial surveys indicate 
that most fields with a history of cotton root rot infestations contain 20–40% infested 
areas, even though some fields could reach 75% (Yang et al. 2018). Therefore, there 
is a great potential for significant savings with site-specific fungicide application for 
the management of cotton root rot.

6.4  Challenges and Future Development

This chapter presented an overview of remote sensing technologies commonly used 
for the detection and management of crop diseases and insect pests. Specifically, 
ground-based sensors and remote sensors mounted on satellites, manned aircraft, 
and UAS were discussed. Practical examples were provided to illustrate how these 
sensors can be integrated with variable rate technology for crop disease detection 
and site-specific management. Diseases and pests that can cause distinctive plant 
symptoms (e.g., color change, defoliation, and sooty mold deposit) are good candi-
dates for remote sensing, but it can be very difficult to distinguish the damage by a 
certain disease or pest when multiple biotic and abiotic conditions coexist. However, 
in many cases, there is only one dominant disease or pest and remote sensing can be 
used to map and quantify the extent and severity of the infestation as demonstrated 
by many studies discussed above. Otherwise, advanced sensors and image analysis 
techniques (e.g., machine leaning and deep learning) should be evaluated to differ-
entiate the infestations with other confounding factors.

The availability of diverse remote sensing systems today presents both tremen-
dous opportunities and great challenges to remote sensing practitioners and end 
users. Some of the challenges include platform selection (i.e., UAS, manned air-
craft, and satellite), type of images to collect (e.g., multispectral, hyperspectral, and 
thermal), image acquisition timing, image conversion to information, and practical 
use of the image products. To select an appropriate platform and/or imaging system, 
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various factors (e.g., area size, image type and resolution requirements, and time 
and cost constraints) need to be considered for a specific application. In general, 
UAS will be more appropriate if very-high-resolution imagery is needed for a small 
area, while manned aircraft will be more effective for large fields or at a farm level. 
If manned aircraft is not available, satellite imagery will be a good choice as it can 
cover a large area with relatively fine spatial resolution.

For crop disease and pest detection, multispectral imagery with RGB and NIR 
bands is usually sufficient. Hyperspectral or thermal imagery is only needed when 
visible and NIR imagery cannot meet the requirement. The timing of image collec-
tion is critical for disease and pest detection to minimize or stop further crop dam-
age. It is necessary to identify the optimum image acquisition window for different 
diseases and pests. Converting imagery into useable maps and information for dis-
ease or pest control is not always easy, even though numerous image processing 
techniques are available to convert imagery into classification maps and vegetation 
index maps. More research is needed to develop operational procedures for trans-
forming image classification maps to applications maps. Each disease or pest has its 
own characteristics and requires different procedures for detection and manage-
ment, though the cotton root rot project presented in this chapter should provide 
some guidance. For diseases and pests that tend to recur year after year at similar 
areas, historical imagery can be used to document the spatial and temporal consis-
tency and variation of the infestation.

Variable rate application has great potential to reduce pesticide use and increase 
profitability as demonstrated by the cotton root rot project. Although the individual 
technologies required to implement site-specific pesticide application are available, 
it still presents a great challenge for many farmers to integrate all the technologies 
into a disease or pest management system. Not all diseases and pests are good can-
didates for variable rate application and traditional uniform application remains an 
effective approach. More research is needed to identify relevant diseases and pests 
for which site-specific management will be both technically feasible and economi-
cally profitable.

Disclaimer Mention of trade names or commercial products in this chapter is solely for the pur-
pose of providing specific information and does not imply recommendation or endorsement by the 
US Department of Agriculture. The USDA is an equal opportunity provider and employer.
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Chapter 7
Plant Phenotyping

Quan Qiu, Man Zhang, Ning Wang, Ruicheng Qiu, and Yanlong Miao

Abstract Breeding is thought to be one of the most effective ways to solve the 
problem of food crisis. However, traditional phenotyping in breeding is time con-
suming and laborious, and the database is insufficient to meet the requirements of 
plant breeders, hindering the development of breeding. Accordingly, innovations in 
phenotyping are urgent to solve this bottleneck. The morphometric and physiologi-
cal parameters of plants are particularly of interest to breeders. Numerous sensors 
have been employed and novel algorithms have been proposed to collect data on 
such parameters. These sensors and sensing techniques used in phenotyping include 
color digital cameras, Lidar or laser sensors, range cameras, spectral sensors and 
cameras, thermography, fluorescence sensors, and X-ray computed tomography 
(CT) techniques. In addition, remote-sensing technologies, three-dimensional (3D) 
imaging techniques, reverse engineering, and virtual plant techniques can also pro-
vide the basis for phenotyping. Some parameters that have been measured in pheno-
typing include plant height, leaf parameters, in-plant space, chlorophyll, water 
stress, biomass, and characteristics of plant roots. In plant phenotyping, different 
types of platforms are employed to meet the requirements of different plant pheno-
typing scenarios. Indoor phenotyping equipment, in-field sensor networks, ground 
mobile platforms, phenotyping towers, field-scan platforms, unmanned aerial vehi-
cles (UAVs), airplanes, and even satellites can all implement plant phenotyping. In 
order to extract features of plants and reveal corresponding traits of interests in plant 
phenotyping, different mathematical tools and algorithms are employed to process 
the data, including data preprocessing algorithms, traditional statistical tools, and 
machine learning algorithms.
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7.1  Introduction

Food security means that all people, at all times, have physical, social, and eco-
nomic access to sufficient, safe, and nutritious food that meets their food prefer-
ences and dietary needs for an active and healthy life. The rapid increase of the 
world population, alongside the decrease in cultivated land area, intensification of 
global climate change, and exacerbation of water resource shortage, is posing a 
tremendous challenge to the agricultural sector, which is facing the growing prob-
lem of food security (Großkinsky et al. 2015).

The most effective way to solve the food crisis is to increase grain yield. Plants 
are influenced by both self-genome and external environment conditions. For exam-
ple, plants are more frequently subjected to unprecedented extreme weather (e.g., 
gale, drought, and waterlogging). Thus, breeding new plant varieties capable of 
withstanding complex and varied environmental conditions is necessary.

In the past decades, significant progress has been made in the field of plant breed-
ing. Particularly, advances in plant functional genomics and gene technologies have 
deepened the understanding on plant genomes (Yang et al. 2013). Currently, geneti-
cally modified technologies have become an attractive subject and are regarded as 
the effective and expedient solution to increase grain yield. With the development of 
plant genotyping, breeders intend to research on the nature of the genotype through 
environment interactions. Phenotype, which is the external expression of plant 
genetics, results from the interaction of the genotype and environment. Consequently, 
understanding the relationship between genotype and phenotype and linking them 
to the physiology at the cellular and tissue levels are becoming more significant than 
ever (Großkinsky et al. 2015; Cobb et al. 2013). Breeders pay attention to both the 
final grain yield and the entire process of plant growth. As an organ develops, some 
plant traits and phenotypic parameters that vary in space and time need to be moni-
tored and measured for a considerable time to cultivate excellent varieties. However, 
this task is formidable because numerous parameters are measured manually and 
the methods employed are outdated, laborious, costly, and time consuming. As a 
result, current manual measurement approaches cannot be used in large-scale breed-
ing production to acquire phenotypic information (Yang et al. 2013). Owing to the 
lack of phenotypic data, phenotyping has superseded genotyping as the major oper-
ational bottleneck and funding constraint of genetic analyses and breeding research 
(Cobb et al. 2013). Thus, applying new techniques and methods to relieve this bot-
tleneck is both urgent and promising.

In recent years, innovations in electronics, computer science, and sensor tech-
nologies have promoted the development of phenotyping, and novel methods 
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specific to the measurement of phenotypic parameters have been put forward. Since 
2010, rapid high-throughput plant phenotyping methods, which exhibit great poten-
tial to enhance selection efficiency for plant breeding, have been discussed (Sankaran 
et al. 2015). All types of existing sensors and technologies have been implemented 
and integrated. Some precision agriculture technologies, which have been studied 
for many years, can also be implemented in phenotyping. In addition, sensor tech-
nologies, remote-sensing technologies, three-dimensional (3D) imaging techniques, 
reverse engineering, and virtual plant technique can provide the basis for phenotyp-
ing. Such measuring methods can be carried out in the field or the laboratory to 
collect massive data, thereby facilitating high-throughput phenotyping.

Therefore, phenotyping allows the measurement of the morphometric and physi-
ological parameters of plants in a rapid, nondestructive, accurate, and high- 
throughput manner. It can help breeders analyze and screen the salt resistance, 
drought resistance, and insect resistance of different varieties. Currently, the mea-
sured objects in plant phenotyping are conventional food and economic crops, such 
as wheat, maize, sorghum, barley, tomato, bean, and grape. These plants have sig-
nificant practical and economic values for agricultural development. Measurement 
usually focuses on some crop stand parameters. These parameters can be divided 
into morphometric and physiological parameters. The morphometric parameters, 
including plant height, stem diameter, leaf area or leaf area index, leaf angle, stalk 
length, and root traits, and the physiological parameters, such as chlorophyll, pho-
tosynthetic rate, water stress, biomass, salt resistance, and leaf water content, which 
can all influence or represent the growth of a plant.

The objectives of this chapter are to summarize and analyze the existing sensing 
methods and sensors according to the related morphometric and physiological 
parameters in high-throughput plant phenotyping and discuss the obstacles encoun-
tered in this field.

7.2  Sensing Instruments for Plant Phenotyping

7.2.1  Overview

The phenotypic parameters that must be measured are numerous, and thus various 
sensors and sensing techniques are used in phenotyping, including color digital 
cameras, Lidar or laser sensors, range cameras, spectral sensors and cameras, ther-
mography, fluorescence sensors, and X-ray computed tomography (CT) technique. 
Several typical sensors that have been extensively implemented in plant phenotyp-
ing are described in the following part, and related representative products are listed 
in Table 7.1.

Color digital cameras, which are mostly made up of charge-coupled device 
(CCD) silicon sensors or complementary metal oxide semiconductors, are the most 
conventional and simplest sensors in the machine vision field. They can collect the 
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Table 7.1 Typical devices in plant phenotyping measurementa

Sensor Sensor model Manufacturer

Color digital camera – Canon, Tokyo, Japan
Nikon, Tokyo, Japan

Lidar/laser sensor LMS series Sick AG, Waldkirch, Germany
VLP-16, HDL-32E Velodyne Acoustics, California, USA

Range camera CamCube 3.0 PMD, Germany
SR4000 MESA AG, Switzerland
Kinect 2.0 Microsoft, Washington, USA

Spectral sensor GreenSeeker RT 100, 200 Trimble, California, USA
Crop Circle ACS 210, 430, 470 Holland Scientific, Lincoln, USA
N-Sensor Yara International ASA, Oslo, Norway

Thermography FLIR T-series FLIR, Oregon, USA
Fluorescence sensor Multiples 2, 3 FORCE-A, Orsay, France

aDisclaimer: Commercial products are referred to solely for the purpose of clarification and should 
not be construed as being endorsed by the authors or the institution with which the authors are 
affiliated

visible-band radiation of an object and present its color and texture information with 
similar wavelengths to human eyes. Plant 3D structure can be reconstructed with 
many images captured by the stereo vision system. It consists of one or more color 
digital cameras, which make it possible for color digital cameras to measure more 
phenotypic parameters.

Lidar sensors, which emit infrared or visible wavelength pulses, have been 
extensively used in agricultural studies since the 1980s (Lee et al. 2010) and are 
mostly based on the time-of-flight (ToF) principle, interferometry, or triangula-
tion. Lidar sensors based on ToF are suitable to measure long ranges, while the 
others are used to measure short ranges (Dworak et al. 2011). Lidar sensors out-
put discrete point cloud data containing the distance information between the 
object and the sensors. Based on the structures, Lidar can be divided into two-
dimensional (2D) Lidars and 3D Lidars. Two-dimensional Lidars detect an object 
through sector scanning and generate point cloud data in a plane. Three-
dimensional Lidars can present the point cloud data of the object surface features 
with high accuracy and high resolution, as well as more easily acquire morpho-
logical and structural data (Gai et al. 2015). Besides the common Lidar sensor 
just for measuring distances, full- waveform (FWF) Lidar and hyperspectral 
Lidar were also implemented in plant phenotyping. FWF Lidar contains all the 
return information of a laser pulse in a unique waveform shape. FWF Lidar 
makes it easier to distinguish diverse objects (Lin 2015). Hyperspectral Lidar is 
able to add the spectral response characteristics of a plant to multiple wave-
lengths to point data, which help to diagnose the vigor of the plant.

Range cameras can provide real-time depth information and images simultane-
ously. These cameras are mostly based on the ToF principle, structured light and 
light coding, ordinarily return depth, amplitude, and intensity images. The depth 
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image contains the Z coordinate of the scene, and the amplitude image can evaluate 
the quality of depth information, and the intensity image is simply a grayscale 
image (Kazmi et  al. 2014). As a new kind of range cameras, RGB-D cameras 
equipped with RGB (red, green, and blue) cameras, depth sensors, and infrared 
emitters have been developed at low cost, which can simultaneously provide color 
information and depth information of an object. Kinect (Microsoft, WA, America) 
and Xtion (Asus, Taipei, Taiwan) are regarded as representatives of such cameras 
and are used extensively in numerous applications, including its primary application 
of plant measurement (Xia et al. 2015).

Spectral sensors usually detect the reflected information of a visible spectrum 
(400–700 nm) and a near-infrared (NIR) spectrum (700–1200 nm) and can be used 
to explore some specific characteristics of objects. Some commercial agricultural 
products, such as GreenSeeker (Trimble, California, USA), ASD FieldSpec 
(Analytical Spectral Devices, Boulder, USA), N-Sensor ALS (Yara International 
ASA, Oslo, Norway), and Crop Circle (Holland Scientific, Lincoln, USA), have 
been widely implemented by researchers.

These spectral devices usually measure crop or soil spectral reflectance at 
multiple wavelengths and provide classic vegetation indices. In addition, spec-
tral cameras, including multispectral and hyperspectral cameras, can acquire 
spectral images that record the reflections in a broad range of wavelengths of an 
object. Compared with spectral sensors, spectral cameras combine spectral 
information with every pixel and contribute to reducing the background inter-
ference and making spectral information more accurate (Shakoor et  al. 2017; 
Yang et al. 2017).

Thermography detects and visualizes the infrared radiation of an object in line 
with its temperature. The sensitive spectral band of thermography is 3–14 μm, and 
the most common wavelengths are 3–5  μm and 7–14  μm (Li et  al. 2014a). 
Thermography is able to detect early heat generation in stressed plants, especially 
leaves (Kwon et al. 2015). Thermal images can represent the surface temperature of 
a plant objectively.

Fluorescence sensors measure plants in a unique and active manner. In gen-
eral, the chlorophyll of a plant is the fluorescent part. External light is absorbed 
and utilized by the chlorophyll for photosynthesis, where a proportion of the 
absorbed light is converted into heat, while the other proportion is reflected back 
in the form of fluorescence. Numerous plant traits, particularly some parameters 
related to the photosynthesis of the plant, can be acquired by detecting the 
fluorescence.

Many other sensors, such as ultrasonic sensors, thermometers, and X-ray com-
puter tomography (CT), are also used in phenotype measurement.

Phenotype measurement can be conducted in an indoor or outdoor measurement 
environment. Measurement types mainly include handheld, vehicle-based, and 
unmanned aerial vehicle (UAV)-based measurements. The characteristics of the 
common sensors are listed in Table 7.2, and a detailed information about these sen-
sors are discussed in the following sections.
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Table 7.2 Advantages and disadvantages of common sensors implemented in phenotyping

Sensors Advantages Disadvantages

Stereo vision 
system

Low cost Heavy computation
High resolution Sensitive to ambient light
Suitable for UAV Subject to the uniform texture

Lidar/laser sensor Long measurement range High cost
Suitable for spatial classification Limited information on occlusions 

and shadowsSpectral information can be retrieved 
from reflection
Suitable for UAV

Range camera Provide depth images to process Low resolution
Sensitive to ambient light
Short measurement range

Spectral sensor Wide commercial applications and 
technology maturity

Small measurement region
Background interference

Spectral camera Abound spectral information High cost
Remove background interference Large image data and heavy 

computation
Suitable for UAV Sensitive to ambient conditions

Thermography Large measurement region Sensitive to ambient conditions
Remove background interference Require extensive calibration
Suitable for UAV

Fluorescence 
sensor

Sensitive to chlorophyll and water 
stress

Small field of view
Require intensive illumination

Ultrasonic sensor Low cost Short measurement range
High sampling rate Sensitive to surface
Process data easily

Thermometer Low cost Affected by ambient temperature
Impervious to sunlight Soil background interference

X-ray CT Visualize the interior of objects High cost
Provide 3D information with high 
resolution

Require complex instruments

7.2.2  Sensing Instrumentation for Plant Canopy

Several phenotypic parameters are closely related to the plant canopy, including 
plant height, leaf parameters, chlorophyll, and water stress.

7.2.2.1  Plant Height Measurement

Plant height is a vital morphological parameter that can be used to describe the 
architecture of the plant canopy. Plant height at the seedling growth stage can rep-
resent plant vigor, which is closely related to the final grain yield.
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Conventional measurement is performed manually with a meter stick and is thus 
subject to human error, especially when the plant is higher than the human measur-
ing it. Color digital cameras have been used to measure plant height. However, this 
method requires known objects as reference. It is difficult to realize high-throughput 
measurement rapidly through this method. An accurate and acceptable method that 
can determine plant height is the difference method, wherein the difference between 
the canopy height and the surface is calculated (Grenzdörffer 2014). Novel systems 
or sensors, such as stereo vision systems, Lidar or laser sensors, ultrasonic sensors, 
and range cameras, have also been utilized to measure plant height.

The current types of high-throughput measurement methods for plant height are 
vehicle-based and UAV-based (Grenzdörffer 2014; Gao et  al. 2015; Jiang et  al. 
2016; Sharma et al. 2016). Each measurement type has its pros and cons. Vehicle- 
based measurement can acquire relatively accurate raw data owing to its close-up 
sampling, making it possible to obtain individual plant height. Conversely, UAV- 
based measurement is performed at a distance from the canopy and is capable of 
measuring considerable plant height (Shi et al. 2016).

Plant Height Measurement Based on Stereo Vision Systems

With stereo vision systems, high-resolution images of a plant can be obtained 
and 3D models can be generated by fusing images of different perspectives to 
measure plant height. Typically, fused images are collected from several differ-
ent cameras or a moving camera (Fig. 7.1), and 3D models are established based 
on the relative positions of cameras. Chen et  al. (2011) adopted binocular 

Fig. 7.1 Plant height measurement. (a) Several different cameras (Nguyen et  al. 2015). (b) A 
moving camera
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stereovision to monitor maize in the fields and then reconstructed the images in 
3D to calculate plant height. Many algorithms were put forward to make it pos-
sible to measure plant height with a single camera. Jay et al. (2015) estimated 
plant height with a single-color camera and constructed a 3D model of the plant 
using the Structure-from-Motion (SFM) algorithm, and both color and 3D infor-
mation were used to derive plant height. A camera was also installed on a UAV 
to collect images from a large field of maize and sorghum (Shi et al. 2016), and 
the digital surface model was calculated with SFM to estimate plant height, but 
the results were not satisfactory, which may be caused by the insufficient images. 
High-resolution and considerable overlap images are of great importance. Santos 
and Rodrigues (2016) employed the patch-based multiple- view stereo algorithm 
(PMVS) to reconstruct the 3D point of maize and estimated plant height by com-
puting the distance between the farthest point and the fitting ground plane, and 
the measuring error was inferior to 1%. Nonetheless, the accuracy and speed of 
the processing algorithms for stereo vision systems need to be improved. 
Binocular stereo vision is positively correlated with measuring distances, and 
SFM is sensitive to wrong registration. Stereo vision systems are also not robust 
against natural illumination due to the limitations of color digital cameras, which 
restricts the outdoor applications of these systems.

Plant Height Measurement Based on Lidar Sensors

Lidar or laser sensors have been used to measure plant height because they 
present good adaptation to illumination and provide considerable data. Some 
studies have selected vehicle-based measurement and installed Lidar to mea-
sure plant height. Plant height can be derived from the point cloud data of 
Lidar, including distance information collected from the plant canopy or plant 
side. Chatzinikos et al. (2013) used a laser scanner to measure the properties 
of three plants. Saeys et  al. (2009) adopted 2D Lidar to measure wheat and 
used the histogram method to estimate plant density. Zhang and Grift (2012) 
used 2D Lidar to detect the stem height of Miscanthus giganteus. Given the 
measurement errors introduced by the inclination angles resulting from the 
installation of the sensor or the undulation of the ground, Zhang and Grift 
(2012) analyzed and developed a correction algorithm based on the difference 
between the maximum and minimum ordinates. However, both travel speed 
and natural wind affected the aforementioned studies, because high speed can 
diminish the data volume as a result of the 2D line scan nature. On the other 
hand, 2D Lidars are not robust in measuring the occlusion of plant organs, 
such as overlapping leaves and branches (Kazmi et al. 2014). Owing to their 
ability to handle this situation, 3D Lidars have been mounted at certain heights 
to observe plants in some studies (Hoffmeister et al. 2015; Weiss and Biber 
2011). Because the measurement error increases with the increase of the mea-
surement distance, the appropriate distance and installation position of the 3D 
laser radar should be determined. To address this issue, the related tests and 
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analysis were conducted by Ehlert and Heisig (2013). The results showed that 
plant surface generated based on point cloud becomes steeper with an increase 
in scan angle. The accuracy of the point cloud data was highest when 3D 
Lidars scanned small plants vertically, and the front angle represented the best 
angle for high plants. Different from 2D Lidars, 3D Lidars were unaffected by 
a wide speed range, and the velocity of a vehicle had a negligible effect on the 
measurement results (Selbeck et al. 2010).

Novel Lidars with preferable performances have also been introduced to 
measure plant height. A 3D Lidar with four layers was adopted to measure the 
height of wheat and maize (Selbeck et al. 2010; Ehlert et al. 2010). The Lidar 
emits a pulse, and four photodiodes at different heights receive the return sig-
nals. As a result, a pulse can acquire four echo signals, and the accuracy and 
data volume can be improved. Gao et al. (2015) likewise adopted an airborne 
FWF Lidar system to extract maize height through a UAV-based measurement. 
Unlike Lidar point clouds, which recorded limited strong peaks, a FWF con-
tained all the return signals of a laser pulse (Gao et al. 2015), and different sig-
nals could be combined and analyzed. UAV-based measurement can build a 
digital terrain model to improve measurement accuracy. Plant height can be 
acquired by taking the difference between the digital terrain model and the cur-
rent UAV surface model (Bendig et al. 2013, 2014, 2015), thus generating crop 
surface models.

Plant Height Measurement Based on Ultrasonic Sensors

The measuring principle of ultrasonic sensors is similar to that of Lidars. 
Although the spatial resolutions of ultrasonic sensors are lower than Lidars, the 
prices are relatively low. The ultrasonic sensors are also not influenced by natural 
conditions because of its wavelengths; therefore, they are extensively used for 
outdoor measurement. Plant height can be calculated by ultrasonic sensors using 
the difference method. Sui et al. (2012, 2013) utilized ultrasonic sensors for vehi-
cle-based measurement coupled with a global positioning system (GPS) to mea-
sure the height of cotton plants and generate the height distribution maps. Sharma 
et al. (2016) used ultrasonic sensors mounted on a two-wheel bicycle to measure 
maize height for yield estimation. However, ultrasonic sensors are likely to be 
divergent and damped. Their scanning accuracy is susceptible to the orientation 
and roughness of the sensing surface that data are easily lost. The sensors are 
usually installed perpendicular to the ground to ensure precision, but the move-
ment of upright leaves with wind will lead to different readings (Dworak et al. 
2011). All of these factors result in the fact that ultrasonic sensors are not suit-
able for long-range measurement. Recently, the acoustic spectrum in a wide fre-
quency range was applied, and the quality of the ultrasonic signals were 
significantly improved (Finkelshtain et al. 2016), which might promote its appli-
cation. To improve measurement accuracy, ultrasonic sensors can be also com-
bined with Lidars (Pittman et al. 2015).
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Plant Height Measurement Based on Range Cameras

Range cameras measure plant height based on its depth information. An autono-
mous field robot mounted with a depth camera from PMD technologies AG in 
Germany was developed, and the plant height was monitored by calculating the 
histogram of distances (Klose et al. 2012). However, the cameras are usually dis-
turbed by natural illuminations, and the pixels of the images are low (e.g., 204 × 204 
pixels for PMD CamCube).

Besides depth information, color information provided by RGB-D cameras 
makes it easier to remove background interference and identify plants. Azzari et al. 
(2013) used Kinect to characterize the vegetation structure, and the normalized 
root-mean-squared error of plant height ranged from 2.7% to 19.1%. Gai et  al. 
(2015) used Kinect to recognize plants and calculate their heights, and the measur-
ing error of maize was within 2 cm. Andújar et al. (2016) applied Kinect to estimate 
the height of cauliflower, and the deviation from the ground truth was less than 
2  cm. Kinect provides high-resolution images (e.g., 640  ×  480 pixels and up to 
1920 × 1080 pixels) even if its cost is lower than the aforementioned sensors. In 
addition, the latest Kinect is robust against natural illuminations, and its applica-
tions in plant phenotyping are promising.

Comparison and Analysis of Plant Height Measurements

Compared with other sensors, the measurement accuracy of Lidars is the highest 
because of the considerable amounts of data acquired (Shi 2009). However, the 
Lidars are costly. Although ultrasonic sensors have a price advantage, only few 
studies use these sensors because they generate huge amounts of invalid data. 
Stereo vision systems require image calibration, and range cameras possess low 
resolution, so that the data may be lost after data processing. Illumination also 
has an effect on the measurement accuracy of both stereo vision systems and 
range cameras. With the improved performance and algorithm, aside from its 
low cost and high accuracy, Kinect may be a good choice for plant height 
measurement.

7.2.2.2  Leaf Parameter Measurements

A leaf is one of the important parts of a plant canopy. It plays a significant role 
in plant growth because its growing status affects the efficiency of the direct 
solar energy utilization of the plant. Therefore, the leaf is a vital parameter in 
plant phenotyping. Numerous morphological parameters are associated with 
leaves, which are frequently measured in phenotyping and include leaf inclina-
tion angle (LIA) or leaf angle distribution (LAD), leaf area (LA), and leaf area 
index (LAI). LIA refers to the angle between the zenith and the leaf surface 
normal and determines the quality of plant light interception. LAD has an 
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influence on the LAI measurement and represents the water stress of a plant 
(Zou et al. 2014). LA refers to the area of a single leaf, and its estimation is 
significant to the biometrical observation (geometric features) of a plant. LAI 
indicates the ratio of the summation of plant LAs per unit ground area. LAI 
represents the vitality of a plant group and the canopy architecture, which results 
in photosynthesis and plant water use. The aforementioned parameters are rel-
evant to a plant in terms of biological and physical processes, such as photosyn-
thesis, respiration, transpiration, and water use, as well as to grain yield. LIA 
can be measured manually using a protractor. Compared with that of LIA, the 
measurement methods of LAI and LA are complicated and arduous. A leaf 
needs to be painted with paper in unit cells, and the number of cells can then be 
counted to obtain the area.

A few sensors and techniques for measuring leaves have been developed and 
implemented gradually for phenotyping to save time and minimize labor.

Leaf Parameter Measurement Using Color Digital Cameras and Stereo 
Vision System

A color digital camera is a low-cost imaging device and extensively used in various 
fields, including measuring plant leaves. Specifically, the color images of leaves are 
captured and processed with morphological operations, which can be used to calcu-
late the parameters of LIA, LA, and LAI.

Color digital cameras can be mounted on a UAV to measure plant canopy. 
Ribera et al. (2016) estimated traits of sorghum, and the images were mosaicked 
and segmented to verify plant center location and assess leaf numbers and 
LA. But the plant leaves that connected to each other led to the failure to evalu-
ate individual plants. It is a significant task to handle occlusion and intersec-
tion problems in color images and segment individual plants or leaves. Color 
images are able to estimate the green cover fraction, and previous studies have 
shown that there is a relationship between the plant coverage and LAI. Liu and 
Pattey (2010) used top-of-canopy color images over a plant to estimate LAI, 
and a model was built based on gap fraction, which was linearly related with 
LAI2000.

Stereo vision systems are also introduced to measure leaf features. Yeh et  al. 
(2014) developed a system which consisted of two off-the-shelf cameras with paral-
lel optical axes. Images were rectified and registered, and the corresponding pointes 
were detected and matched. Plants were segmented and LA was calculated by 
counting the pixels. Leemans et  al. (2012) used stereoscopic images to build a 
model with distance information, and LAI was segmented and calculated in the 
field. Multiple cameras can be used to construct a multi-view stereo vision system. 
Zhang et al. (2016) combined four images taken at different positions with the SFM 
algorithm to reconstruct paprika plant in 3D and accurately estimated leaf lengths 
and widths, which could be used to measure LA (Bazaza et  al. 2011; Oner 
et al. 2011).
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Fig. 7.2 Leaf parameter measurement by range cameras. (a) RGB image of maize. (b) Angles of 
leaves in the depth image

Leaf Parameter Measurement Using Range Cameras

Range cameras were tested to analyze the parameters of leaves, and the depth images 
of a leaf captured by PMD and SwissRanger SR4000 cameras were analyzed and 
compared under indoor (room) and outdoor (shadow and sunlight) conditions (Kazmi 
et al. 2014). The results showed that determining the best possible integration times 
for each condition was necessary. Depth information offered by range cameras was 
widely used to extract plants and leaves. Song et al. (2014) combined stereo and ToF 
images and conducted a localized search to find the boundary of leaves. Chéné et al. 
(2012) proposed a segmentation algorithm of depth images captured by Kinect to 
extract leaf and measured its azimuth and zenith angles for plant phenotyping, as 
shown in Fig. 7.2. Additionally, Andújar et al. (2016) separated crops from ground 
based on both the height difference and colors. Plant leaves were extracted and recon-
structed in 3D. Point cloud data were meshed and smoothed, and then LAD, LAI, and 
LA were successfully estimated (Song et al. 2014; Paulus et al. 2014a, b).

Leaf Parameter Measurement Using Spectral Sensors and Cameras

A few vegetation indices can generally be derived based on the spectral responses 
of the plant canopy. In particular, nondestructive methods can be used to invert some 
parameters and indirectly calculate LAI, and typically, the most common parameter 
used to invert LAI is the normalized difference vegetation index (NDVI) (Huete and 
Jackson 1988). New parameters were also presented in recent studies. Hasegawa 
et al. (2010) combined the hotspot-dark spot index and the NDVI, both of which are 
related closely with LAI, and proposed a normalized hotspot-signature vegetation 
index (NHVI) to build the relationship with LAI. The results showed that NHVI has 
better performance in estimating LAI than NDVI. In general, the spectral informa-
tion in the visible and NIR bands is used to build LAI models. Neinavaz et  al. 
(2016a, b) conducted some research in the thermal infrared region (TIR). 
Spectrometer was implemented to measure the spectral information of plants in the 
TIR. In the region, spectra mostly came from the emissivity of plants rather than 
their reflectance. Radiometric calibration was carried out to the measurement. They 
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found that the canopy emissivity spectra increased with rising LAI (Neinavaz et al. 
2016a). PLSR and ANN were applied to analyze the spectral data, and the results 
indicated that the spectrum in TIR was able to retrieve LAI, but it was necessary to 
conduct further study in field conditions (Neinavaz et al. 2016b). LAI also can be 
evaluated according to the plant coverage calculated from spectral images. Dammer 
et al. (2016) used a multispectral camera to collect the plant reflections of light at 
red and infrared wavelengths. Schirrmann et al. (2016) gathered images from the 
red and NIR wavelength range of plants, and then NDVI images based on red and 
NIR images were calculated. NDVI images were processed to extract plants and 
calculate the plant coverage, and then LAI was estimated according to the coverage.

Leaf Parameter Measurement Using Lidar/Laser Sensors

Special attention is increasingly given to Lidar to measure leaf features (Kempthorne 
et al. 2014). Lidar can rapidly acquire the point cloud data of a leaf surface by using 
sensors to scan the plant canopy and leaves. Plant architecture can thus be generated 
under indoor or field conditions.

Considerable research on plant 3D visualization and virtual plants has also been 
conducted for many years. The 3D point cloud data and growth rules (e.g., L sys-
tem) are applied to modeling, and some leaf parameters are calculated and extracted 
in this way. All the results provide the basis for the following Lidar measurement. 
For Lidar measurement, LIA, LA, and LAI can be obtained by surface computation. 
Multi-view or multi-frame Lidar data need to be registered and matched (Garrido 
et al. 2015) and then can be used to reconstruct leaves in 3D (Fig. 7.3). Hosoi et al. 

Fig. 7.3 Leaf parameter measurement by laser sensors. (a) Point cloud data of the maize plant. (b) 
3D reconstruction of each leaves
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(2011) used Lidar to scan tomato plants and extract corresponding points and then 
to estimate LA, LAI, and LIA. In terms of field measurement, Gebbers et al. (2011) 
designed vehicle-based Lidar sensors to analyze the relationship between LAI and 
plant height. Consequently, a regression model was built to estimate LAI rapidly.

Comparison and Analysis of Leaf Parameter Measurements

The abovementioned measurement methods can be divided into two types accord-
ing to the measurement principle of leaves. Color digital cameras, stereo vision 
systems, range cameras, and Lidar can measure or estimate leaf features by seg-
menting and reconstructing the leaf and calculating its actual values. Spectral sen-
sors and cameras can acquire leaf features through inferring on the basis of related 
parameters. Compared with the inference method, reconstruction is more compli-
cated and has costly computation operation. However, the measurement accuracy of 
reconstruction is generally higher than that of inference.

Several problems have been encountered in practice that cause the measurement 
methods of LIA, LA, and LAI to be incomplete. On the one hand, accomplishing 
the measurement of leaves according only to the single-perspective data is difficult. 
Multi-perspective measurement is needed to reduce deviations. On the other hand, 
leaves of the same plant or adjacent plants will block and overlap each other. Current 
methods have difficulty classifying all leaves and settling this situation. Consequently, 
measurement results usually tend to be underestimated. Potentially, it is possible to 
extract leaves using deep learning techniques.

7.2.2.3  Chlorophyll Measurements

Chlorophyll is the organic molecule of plant leaves and is regarded as one of the key 
components in plant photosynthesis. Plant leaf nitrogen cannot be synthesized with-
out chlorophyll. Some studies have found a high relationship between leaf nitrogen 
and chlorophyll because pigments determine most spectral features between 400 
and 700 nm in a spectrum (Ulissi et al. 2011). Moreover, reflection from this wave 
band primarily depends on the chlorophyll content of leaves and has a negative cor-
relation with leaf nitrogen content (Lamb et al. 2002). The nutritional and physio-
logical statuses of a plant can be effectively estimated based on chlorophyll content. 
Measuring chlorophyll is crucial for monitoring plant growth, promoting nitroge-
nous fertilizer usage, and guaranteeing high yield.

The Kjeldahl method has the highest accuracy among chlorophyll measurement 
methods and is deemed the most commonly used method to measure chlorophyll. 
However, it necessitates a complex and time-consuming chemical analysis. Leaves 
are also destroyed in the process of measurement, and the plant growth will be 
affected. Rapid, nondestructive, and cost-effective measurement methods are, there-
fore, necessary.
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As an alternative, spectral technology has been applied to analyze the chemical 
components of plants because of its rapid and nondestructive advantages. Various 
spectral sensors and cameras have been developed to measure plant chlorophyll. In 
addition, researchers have acknowledged that fluorescence technology can measure 
chlorophyll according to the response of leaves to light. Some Lidars or laser sen-
sors with specific wavelengths and the capability to measure chlorophyll have also 
been developed.

Chlorophyll Measurement Based on Spectral Sensors

The development of spectral technology has resulted in an increasing number of 
mature products being introduced in the market. Spectral sensors are the most fre-
quently used instruments to assess vegetation status with visible and NIR light. 
Many studies have also been carried out using some typical spectral sensors that are 
passive type or active type to measure chlorophyll. Conventionally, some spectral 
vegetation indices have also been calculated based on spectral information in sev-
eral different wavelengths to invert chlorophyll, which are revealed to be slightly 
superior to NDVI.

The passive-type sensors usually capture the reflectance spectrum of a plant to 
solar radiation, so these sensors are susceptible to ambient light and recommended 
to be used around noon under clear-sky conditions. Bai et al. (2016) mounted NDVI 
sensors and portable spectrometers on a field platform to measure chlorophyll. The 
sensors and spectrometers all consisted of an up-looking unit to measure solar radi-
ation and a downlooking unit to detect reflected spectrum. Uplooking values and 
downlooking values were integrated to calculate NDVI and then to estimate plant 
chlorophyll. As a representative of passive-type sensors, Yara N-Sensor is widely 
used in measuring chlorophyll, which provides multispectral reflection of a plant. 
There is also a sky pointing spectrometer to correct for the fluctuation in light inten-
sity. Raper and Varco (2015) analyzed the multispectral reflectance and provided a 
simplified canopy chlorophyll content index to detect cotton chlorophyll, which 
indicated that reflectance in the red edge region strongly related with the leaf nitro-
gen status. ASD FieldSpec is also a portable device, whose wavelength is in the 
domain of 350–2500 nm and is also capable of providing hyperspectral data. Based 
on the hyperspectral reflectance data obtained through ASD, He et al. (2016) esti-
mated the nitrogen status of wheat by proposing the multi-angle vegetation index 
and pointed out that taking the measuring angle into account is very important. 
Thorp et al. (2015) estimated leaf chlorophyll with the partial least squares regres-
sion (PLSR) approach, and the results showed that the performance was better than 
NDVI and the physiological reflectance index. Inoue et  al. (2016) compared the 
canopy chlorophyll of different plant types and regional scales and found that the 
ratio of the spectral index with the reflectance at 815 nm and 704 nm was robust to 
predict canopy chlorophyll content.
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Conversely, GreenSeeker, Crop Circle, and other devices equipped with active 
spectral sensors have been widely used in agriculture, because they can tolerate 
severe environments. The active sensors usually emit amber or red and NIR wave-
band light due to their link to chlorophyll (Samborski et al. 2015) and record the 
reflectance of several wavebands to calculate some vegetation indices to measure 
chlorophyll, primarily NDVI. Barker et  al. (2016) used GreenSeeker and Crop 
Circle mounted on field-based phenotyping platforms to measure plant chlorophyll, 
and the change in NDVI from night to the brightest noon was 0.046 for GreenSeeker 
and 0.0013 for Crop Circle, which indicated that they were all not significantly 
affected by ambient light. Kipp et al. (2014a) developed a method for measuring the 
early chlorophyll in winter wheat with the use of multispectral active sensors, 
including GreenSeeker and Crop Circle. They also used RGB image analysis as a 
reference method and proposed a novel index, the early plant vigor index (EPVI), 
using single wavelength values (670 nm, 750 nm, and 862 nm) to evaluate early 
plant vigor. Samborski et al. (2015) used the GreenSeeker Model 505 (red at 656 nm 
and NIR at 774 nm) and Crop Circle ACS-210 (amber at 590 nm and NIR at 880 nm) 
to collect red and amber canopy NDVI values of winter wheat at three growth stages 
and found that the genotype had an effect on both the red and amber NDVI values 
at Zadoks 37 to 39 growth stages and only on amber NDVI values at 55 to 71 growth 
stages. Taskos et al. (2015) compared Crop Circle ACS-210 and ACS-430 (red at 
630 nm, red edge at 730 nm, and NIR at 780 nm), and calculated and analyzed dif-
ferent NDVI values in each individual waveband. The results demonstrated that 
ACS-430 indices and red edge-based indices were more strongly correlated with 
leaf chlorophyll of vineyards. The new Crop Circle ACS-470 provided filters to 
select different wavelengths and vegetation indices were also highly related to plant 
nitrogen (Padilla et al. 2014), and the red edge-based indices performed better than 
the NDVI and ratio vegetation index (Taskos et al. 2015). But plant height, measur-
ing distance, temperature, and reflectance from soil or adjacent rows affect the per-
formance of active sensors. The optimal measuring distance should be adjusted 
depending on canopy architecture and the growth stage, and the distance of sensors 
beyond 40 cm from the canopy is appropriate (Li et al. 2014b; Kipp et al. 2014b; 
Raper et al. 2013; Stamatiadis et al. 2010). In addition, reflectance indices were less 
sensitive at the late growth stages of plants with the reduction in the NIR reflectance 
from the canopy (Samborski et al. 2015; Padilla et al. 2014).

Among all the active- and passive-type spectral sensors, GreenSeeker, Crop 
Circle, and N-Sensor are most commonly used for on-the-go real-time measure-
ment of plant chlorophyll, all of which could be mounted on a platform and suitable 
for high-throughput phenotyping. Raper et al. (2013) tested N-Sensor, GreenSeeker 
Model 505, and Crop Circle ACS-210 and found that N-Sensor and Crop Circle 
ACS-210 were less sensitive than GreenSeeker Model 505 at the early growth stage 
of pants when NDVI values were small, while N-Sensor and Crop Circle ACS-210 
had better performance than GreenSeeker Model 505 at the late growth stages when 
NDVI values were higher than 0.6.
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Chlorophyll Measurement Based on Spectral Cameras

Unlike common spectral sensors, multispectral or hyperspectral cameras can mea-
sure canopy spectral reflectance in wide wavebands with high spatial resolution 
images, making it possible to extract plant from background with image processing 
and derive numerous vegetation indices exactly. Based on these advantages, spectral 
cameras have been extensively applied to estimate and predict plant chlorophyll.

Spectral cameras can capture visible and NIR spectra and are suitable for vehicle- 
based, UAV-based, and satellite-based measurement. However, radiometric and 
geometric corrections, as well as atmospheric corrections, are needed. Similar to 
spectral sensors, NDVI is also the most frequently derived vegetation index to mea-
sure chlorophyll. Bourgeon et al. (2016) mounted a visible and NIR multispectral 
camera on a tractor to assess vineyard. Considering ambient light variation, a cali-
bration method was proposed for multispectral images to produce reflectance 
images. A color chart was used as a radiometric reference in RGB and NIR images, 
and red and NIR spectral channels were chosen to calculate NDVI values and gener-
ate NDVI images. Then the segmentation algorithm was applied to NDVI images in 
order to distinguish leaves from background. The average NDVI value of leaves was 
calculated as a spatial representation of the region. In recent years, more and more 
researchers apply multispectral cameras and hyperspectral cameras on UAV to cap-
ture canopy reflectance data to measure plant chlorophyll. Moreover, the radiomet-
ric correction was done firstly to convert the raw digital numbers to radiance values. 
Then, the atmospheric correction, namely, the Fast Line-of-Sight Atmosphere 
Analysis of Spectral Hypercubes (FLAASH), was carried out to remove the atmo-
spheric effects of absorption and scattering. Finally, the geometric correction was 
applied to correct the offset between the airborne data and ground spectra (Leblanc 
et al. 2014). The spatial resolution of images can achieve at decimeter level, and all 
of the images can be also mosaicked for a better understanding of the measured 
region (Elarab et al. 2015; Zaman-Allah et al. 2015). Elarab et al. (2015) calculated 
the vegetation indices, selected LAI, NDVI, and thermal and red bands as inputs of 
relevance vector machine algorithms to spatially estimate oat chlorophyll with a 
root-mean-squared error of 5.31 μg/cm2. Kalacska et al. (2015) developed a model 
that comprised a continuous wavelet transform with a neural network to predict 
chlorophyll with R2 value ranging from 0.8 to 0.9.

Satellite spectral imagers can provide spectral images that cover large-sized 
plots, but the spatial resolution is lower and the sample period is longer than vehicle- 
based and UAV-based measurements. Houborg et al. (2016) analyzed hyperspectral 
images from the Earth Observing-1 satellite with a 30-m ground resolution. Images 
were radiometrically and geometrically corrected, and atmospheric correction was 
also carried out with the FLAASH algorithm to retrieve water vapor and correct 
adjacency effects. Then vegetation indices were calculated for multiple-parameter 
regression to assess chlorophyll. Some indices, particularly in the red-edge bands, 
played an important role in improving the robustness of chlorophyll retrieval.
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Chlorophyll Measurement Based on Fluorescence Sensors

Chlorophyll fluorescence (ChlF) is emitted by chlorophyll shortly after plants 
absorb light. It mainly comes from photosystem II, which offers a promising method 
for measuring plant chlorophyll content. ChlF signals can be divided into the red 
fluorescence (RF) and the far-red fluorescence (FRF). The ChlF ratios of RF and 
FRF are usually used to estimate plant chlorophyll.

ChlF measurements contain active fluorescence-based measurement and passive 
reflectance-based measurement. Active fluorescence-based measurement takes the 
basis of the pulse-amplitude modulation or the laser-induced fluorescence (LIF) 
transient method, and the measuring range can reach up to several meters. Passive 
reflectance-based measurement derives ChlF with the use of the sun-induced fluo-
rescence (SIF) method (Cendrero-Mateo et  al. 2015). Active fluorescence-based 
measurement has advantage over passive reflectance-based measurement in tolerat-
ing ambient light; therefore, many researchers apply this measurement.

LIF is an active sensing technique wherein leaves are excited by laser sensors 
and then reemit fluorescence, which is widely used in measuring chlorophyll. Yang 
et al. (2015, 2016) used the ultraviolet (UV) laser to induce fluorescence and mea-
sured the intensity of fluorescence peaks at 685 m and 740 nm to estimate paddy 
rice nitrogen content with back-propagation neural network (BPNN) and support 
vector machine (SVM) models. They found that the intensity of fluorescence peaks 
was more sensitive and accurate than the fluorescence ratios in estimating nitrogen 
content. Agati et  al. (2013, 2015) and Longchamps and Khosla (2014) used the 
multiplex fluorescence sensors to measure the nitrogen status. The sensors provided 
the flavonol, chlorophyll, and nitrogen balance indices (NBI) that were calculated 
based on the ratio of the RF and FRF induced by UV, red, green, or blue light. One 
of the NBI was highly related to leaf nitrogen content and not affected by seasons 
(Agati et al. 2015). Longchamps and Khosla (2014) also conducted some tests to 
verify the fact that the fluorescence sensors could measure the variation of chloro-
phyll at the early stage of plant development. Soil has less impact on the measure-
ment if plant height is higher than 20 cm. In order to investigate the influence of 
light intensity and temperature, Thoren et al. (2010) tested LIF measurements under 
field and controlled laboratory conditions. Studies showed that the chlorophyll con-
tent of plant leaves was strongly related to the ratio of the two peaks of ChlF at 
690 nm and 730 nm, and the ratio decreased linearly with an increase in light inten-
sity up to 23 °C.

Chlorophyll Measurement Based on Lidar/Laser Sensors

Blue and red light are essential partners for plant photosynthesis, which are absorbed 
by chlorophyll and carotenoids, and most green light is reflected. Some research has 
proved that the reflectance of green light is sensitive to the variation in plant chloro-
phyll, and the canopy reflectance at 550  nm will increase with the reduction of 
chlorophyll (Daughtry et  al. 2000). Based on research, Eitel et  al. (2010, 2011, 
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2014a, b) conducted many studies on the use of a green (532 nm) laser sensor to 
measure leaf chlorophyll and nitrogen. The reflectance intensity values were 
recorded to calculate chlorophyll. However, there are many factors that influence 
the measurement accuracy. In order to improve the measurement accuracy, Eitel 
et al. (2011) proposed the following process. First, the laser reference intensity was 
normalized using a white reference panel to correct the drift of laser intensity. 
Second, the soil and edge returns were removed based on an intensity threshold. 
Third, the distance between the laser sensor and plant constant was kept. The results 
indicated that green laser intensity was strongly correlated with chlorophyll and 
nitrogen content. Furtherly, a multi-wavelength laser system was tested and the ratio 
of green and red laser return intensities was used to measure plant nitrogen. 
However, the results were not significantly improved compared with previous 
research, which might be caused by aggravating the leaf angle effects.

With the development of Lidars, the hyperspectral Lidar was introduced to mea-
sure plant chlorophyll or nitrogen. This kind of Lidar works based on wide- spectrum 
emission and is able to produce point cloud data with spectral information (Behmann 
et al. 2016). Sun et al. (2017) compared the performance of ASD FieldSpec, multi-
spectral Lidar, and hyperspectral Lidar, and the results demonstrated that hyper-
spectral Lidar had the best performance in estimating plant nitrogen. Nevalainen 
et al. (2014) used hyperspectral Lidar to estimate leaf-level chlorophyll. Points that 
had low NDVI values were filtered and vegetation indices were calculated for linear 
regression analysis to estimate chlorophyll. The results demonstrated that the modi-
fied chlorophyll absorption ratio index (MCARI), which was calculated by using 
reflectance at 750 nm and 705 nm, had the best performance in measuring needle- 
leaf chlorophyll. Du et al. (2016a) recorded the reflectance intensity of a hyperspec-
tral Lidar and selected characteristic wavelengths to estimate nitrogen contents with 
SVM regression. They proposed that considering more wavelengths as inputs in the 
regression can significantly improve measurement accuracy. Furthermore, they 
combined hyperspectral Lidar data and LIF data to detect nitrogen (Du et al. 2016b). 
With the use of SVM regression, PLSR, and two artificial neutral networks (ANNs), 
the determination coefficients were high. In addition, it was also found that the 
reflectance spectrum performed less well in predicting plant chlorophyll content 
when the leaf nitrogen content was high.

Recently, Ounis et al. (2016) described a new Lidar system combing LIF and 
SIF, which might help measure chlorophyll content in the future.

Comparison and Analysis of Chlorophyll Measurements

Chlorophyll measurement has always been the priority of considerable research, 
and the related spectral products and sensors have been widely implemented for 
such task. Spectral measurement is usually disturbed by ambient conditions, espe-
cially sun illumination, and the performance of active sensors is better than that of 
passive sensors. Previous studies have demonstrated that the reflected spectral infor-
mation from soil can affect the spectral determination of chlorophyll at the early 
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stages of plant growth because soil coverage is low at such an early development 
stage (Kipp et al. 2014a). Owing to the abundant spectral information, hyperspectral 
or multispectral sensors and cameras can probably eliminate background interfer-
ence by deducing some vegetation indices. Hyperspectral or multispectral cameras 
can be used on both ground vehicles and UAV or satellite, making it possible to 
realize large-scale measurement by mosaicking multi-frame images. Image pro-
cessing methods can be applied to extract vegetation and remove background inter-
ference. But the volume of data captured by spectral cameras is tremendously large 
due to the high data rate, especially in the UAV measurement, which needs labori-
ous offline processing. ChlF measurement is more sensitive to the variation of chlo-
rophyll than vegetation indices. Compared to spectral sensors like GreenSeeker or 
Crop Circle, the field of view of a multiplex fluorescence sensor is smaller. 
Reflectance almost comes from plant vegetation, which gives rise to the ChlF mea-
surement, independent of distance and soil. In addition, the intensities of fluores-
cence at about 690 nm and 740 nm are largely used to analyze and estimate plant 
chlorophyll.

The measurement accuracy of laser sensors mainly depends on the reflectance 
intensity that is affected by various factors, such as temperature, leaf edge, measur-
ing angle, and leaf roughness. Hyperspectral Lidar provides help for us to measure 
chlorophyll in spatial and temporal scales and broadens the potential application 
of Lidars.

7.2.2.4  Water Stress Measurements

Global warming and water resource shortage have resulted in the inevitable reduc-
tion of grain yield. In the increasingly crucial task of conducting research on the 
water use efficiency of plants, water stress is an important parameter for assessing 
plant water status. Stomatal conductance and leaf water potential (LWP) are vital 
indictors of plant water stress, and canopy temperature is a surrogate for stomatal 
conductance (Prashar and Jones, 2016). Crop water stress index (CWSI) is success-
fully related to LWP (Bellvert et al. 2015). Generally, water stress can be measured 
by two methods, one based on canopy or vegetation temperature and the other based 
on canopy or vegetation reflectance. Thermal infrared techniques are an effective 
method to investigate canopy temperature. Spectral techniques are widely used to 
measure canopy reflectance. Typically, thermometers, thermography, spectral sen-
sors, and cameras are implemented to evaluate water stress.

Water Stress Measurement Based on Thermometers

Thermometers can be mounted on some phenotyping platforms to monitor plant 
canopy temperature (Bai et al. 2016; Barker et al. 2016), whose measuring region is 
concentrated and small to reduce interference. Although ambient light does not 
affect thermometers due to their measured radiations in the long-infrared spectrum, 
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ambient temperature has a significant effect on thermometer reading. Tests con-
ducted by Barker et al. (2016) showed that thermometer reading was higher than the 
surface temperature when the ambient temperature was high, and the thermometer 
would underestimate the actual temperature when the ambient temperature was low. 
Therefore, they put forward a correction method based on the ground truth measure-
ment with the use of thermocouples to reduce the measurement error.

Vegetation temperature is usually lower than ambient temperature, but when the 
vegetation fraction is small, especially at the early stage of plant development, soil 
temperature is higher than ambient temperature during middays that disturbs the 
measurement. In order to reduce the influence of soil, Rischbeck et al. (2016) used 
two thermometers to measure canopy temperature with the opposed oblique views 
at an angle of 45° from the nadir. This measurement was capable of increasing the 
biomass proportion in the field of view. The actual, lowest, and highest canopy tem-
peratures were used to calculate CWSI. Besides, some researchers collected ambi-
ent temperature to correct thermometer values. Ni et al. (2015), Kim et al. (2015), 
and Bai et al. (2016) regarded the difference between canopy temperature and air 
temperature as an indicator of water stress to assess plant growth.

Water Stress Measurement Based on Thermography

Infrared thermography is considered a high-throughput tool for measuring plant 
temperature to estimate the plant water stress, which provides great help for us to 
evaluate the spatial and temporal water variability of plants.

Thermal images captured by thermography usually contain canopy temperature 
and background temperature, and it is a critical problem to eliminate the background 
noises of thermal images. Normally, one empirical method based on the tempera-
ture differences between canopy and background is used to separate canopy. 
Measuring time during the day should be taken into account due to the variable 
environment. In the morning, the temperature difference between soil and canopy is 
small, the leaf water potential is unstable, and the solar angle is not optimal. 
Conversely, LWP is more stable due to stomatal closure and most leaves are exposed 
to sunlight around midday, and the thermal images containing the highest tempera-
ture differences are suitable to assess the canopy water stress (Bellvert et al. 2014). 
The other method used to separate the canopy from the background is to simultane-
ously collect thermal and color images of the canopy (Cohen et al. 2015; Zia et al. 
2013; Grant et al. 2016). Thermal and color images are aligned, and then the canopy 
can be extracted based on segmentation algorithms of color image processing. The 
method is able to handle situations wherein it is difficult to identify the leaves and 
shaded soil just on the basis of temperature and improve the measuring efficiency of 
canopy temperature. In addition, thermal image resolution plays an important role 
in eliminating inaccurate temperatures, especially the temperatures correlated to the 
edge pixels that contain both canopy and background (Prashar and Jones 2016).

Infrared thermography can be applied on vehicle-based platforms (Cohen et al. 
2015), UAV (Bellvert et al. 2015; Gago et al. 2015), and greenhouse (Mangus et al. 
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2016). Thermal images of plant and environmental parameters were collected syn-
chronously, and thermal images needed to be calibrated with radiometric correction. 
After canopy temperatures were calculated, CWSI, LWP, vapor pressure deficit 
(VPD), and other parameters would be applied to evaluate plant water stress.

Water Stress Measurement Based on Spectral Sensors and Cameras

Buitrago et al. (2016) conducted research to investigate the changes in the thermal 
infrared spectra of plants caused by water or temperature stress and found that water 
stress and temperature stress created a similar spectral response, and the emissivity 
in the mid-infrared spectrum decreased with water loss. Further, many spectral sen-
sors were applied to measure the canopy temperature or water stress of plants. 
Elsayed et al. (2015) tested a hyperspectral passive sensor, a hyperspectral active 
sensor, an active flash sensor, a Crop Circle, and a GreenSeeker to assess the nor-
malized relative canopy temperature (NRCT) that was similar to the CWSI intro-
duced by Rischbeck et  al. (2016), and the spectral indices of all sensors were 
strongly correlated with NRCT.

Assessing the water stress of plants based on spectral indices is a principle 
method for spectral sensors and cameras, but the internal structure of the leaf affects 
the sensitivity of these indices. Taking advantage of the spectral reflectance at spe-
cific wavelengths collected by a spectrometer, Bandyopadhyay et al. (2014) pro-
posed and calculated different water stress indices to characterize the water stress of 
wheat. Winterhalter et al. (2011) evaluated a series of spectral indices to estimate 
the canopy water mass of maize and the global coefficients of determination of 
several indices were over 0.70. In addition, a hyperspectral camera was also used. 
Moshou et al. (2014) extracted spectral features from hyperspectral images to detect 
the water stress of wheat. They applied least squares SVM to analyze spectral data 
and selected six indices whose central wavelengths were at 503  nm, 545  nm, 
566 nm, 608 nm, 860 nm, and 881 nm, respectively. Rossini et al. (2013) acquired 
hyperspectral data from airborne imagery and verified that the photochemical 
reflectance index had good performance in measuring water stress.

Comparison and Analysis of Water Stress Measurements

The measuring region of thermometers is small and the measurement accuracy 
depends on the vegetation. Thermography is able to provide temperatures within a 
region, offering an opportunity to directly monitor the global variations, especially 
in the measurement of UAV. However, the thermography’s region of interest is often 
determined manually (Mangus et  al. 2016), and the sensor’s field of view also 
affects the measurement of the canopy temperature (Prashar and Jones 2014) and 
the thermal resolution needs to be improved. Although some spectral indices are 
closely related to water potential and stomatal conductance, canopy temperature 
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and relevant parameters are still recommended as the best indicators of water stress 
(Rossini et al. 2013; Zarco-Tejada et al. 2012).

The measurement of water stress still presents some problems that need to be 
solved. First, thermal measurement is easily affected by dynamic variations in envi-
ronmental factors, including solar radiation, cloud cover, wind speed, air tempera-
ture, humidity, and VPD (Tattaris et al. 2016), and the time of measurement also 
influences the results; all of these interferences should be taken into account. 
Second, canopy temperature changes vary with canopy architecture, plant height, 
soil coverage, leaf angle, and other factors, all of which need to be considered. 
Combining different sensors or parameters together to measure water stress is fea-
sible in order to improve the accuracy. Besides, fluorescence is also put forward to 
measure water stress, which is more sensitive to water stress (Rischbeck et al. 2016; 
Cerovic et al. 1996).

7.2.3  Sensing Instruments for Biomass

Plant biomass is defined as the total fresh or dry weight of plant, including the 
above-ground and below-ground parts. Plant biomass is an important ecological 
indicator for various aspects, such as plant architecture, photoabsorption, and car-
bon assimilation. Since measurement of the below-ground biomass is difficult, most 
studies focus on measuring the above-ground biomass. On the one hand, the above- 
ground biomass can demonstrate the nutritional status and nitrogen utilization of a 
plant. On the other hand, breeders generally regard the above-ground biomass as a 
reference to estimate the growth of plant root.

In general, the above-ground biomass can be estimated using destructive, non-
spectral, or spectral methods (Tucker 1980). Destructive methods need to harvest, 
prune, dry, and weigh plants. This process is complicated and time consuming, but 
the results are usually served as criteria for the latter two methods. Nonspectral and 
spectral methods mostly measure certain plant parameters and develop prediction 
models to estimate the above-ground biomass.

7.2.3.1  Biomass Measurement Using the Nonspectral Method

The nonspectral method focuses on measuring the plant height. Similar to the trunk 
in trees, the plant stem accounts for the majority of the entire plant weight (Silva 
et al. 2015; Andújar et al. 2015). Given that plant height is basically up to the stem 
height, the stem height is one of the significant parameters for an above-ground 
biomass prediction model in a few studies (Ehlert et al. 2008, 2009; Marshall and 
Thenkabail 2015; Tilly et al. 2015a). Lidar was adopted to measure the heights of 
rice, oilseed rape, winter rye, winter wheat, and grassland. Linear regressions were 
conducted, and the results demonstrated high coefficients of determination between 
above-ground biomass and plant height in the range of 0.60–0.99 (Ehlert et al. 2009; 
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Tilly et al. 2015a). Fricke et al. (2011) installed an ultrasonic sensor on a vehicle to 
measure sward height. The results were used as the input data to predict forage 
biomass, and the mean residuals ranged between 0.893 and 1.672. Notably, the 
accuracy was high if no mixture was present in the sward. Estimating biomass based 
on plant height is promising but further improvements are needed. Vegetation cover-
age should be considered (Marshall and Thenkabail 2015), especially at the early 
growth stage of plants. The Chinese Academy of Science (Li et al. 2015a, b) used 
airborne Lidar to derive the LAI and height of maize in northwest and north China, 
and then estimated biomass to improve measurement accuracy and efficiency.

7.2.3.2  Biomass Measurement Using the Spectral Method

Spectral methods mostly measure certain vegetation indices and nitrogen content of 
a plant using spectral sensors or cameras. Nitrogen status is a primary component of 
plants and plays a vital role in contributing to biomass. Biomass accumulation is 
strongly related to nitrogen application rates (Serrano et al. 2000). NIR spectral data 
are applied to measure nitrogen and estimate biomass. SPAD and ASD FieldSpec 
were widely used, and prediction models were developed based on the hyperspec-
tral reflectance of a plant canopy (Fricke and Wachendorf, 2013; Gao et al. 2013; 
Winterhalter et al. 2012). Gnyp et al. (2014a, b) proposed a vegetation index with 
the use of a multiband combination in the NIR and short-wave infrared domains to 
develop a biomass model, which could improve the estimation of above-ground 
biomass. Furthermore, Mistele and Schmidhalter (2008, 2010) conducted a few 
vehicle-based measurement studies by using spectral sensors. Erdle et al. (2011) 
compared a bidirectional passive radiometer and three active sensors (Crop Circle, 
GreenSeeker, and an active flash sensor) and calculated several vegetation indices. 
The results demonstrated that the active sensor was more flexible. Parameters 
related with nitrogen, such as NDVI and simple R780/R740 ratio (Mistele and 
Schmidhalter, 2008, 2010; Erdle et al. 2011), are strongly related to plant biomass. 
Considerable research also showed that the canopy architecture had an effect on the 
estimation of biomass, and the correlation coefficient between LAI and biomass 
was 0.96 (Erdle et al. 2011), and the vertical biomass distribution of maize was a 
bell shape. Hence, the canopy parameters are necessary to estimate plant biomass 
(Winterhalter et al. 2012).

7.2.3.3  Combined Method for Biomass Measurement

The potential of combining the nonspectral and spectral methods to estimate above- 
ground biomass is currently being explored. Plant height and several indices related 
with nitrogen content are being used to refine the prediction models and improve the 
estimation of above-ground biomass. At the early stage of maize, Montes et  al. 
(2011) employed light curtain and spectral reflectance sensor to estimate biomass 
with SVM regression from the V4 (collar of 4th leaf unfolded) to V8 (collar of 8th 
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leaf unfolded) stage. The results showed very high values of repeatability. Freeman 
et al. (2007) used GreenSeeker to collect NDVI and combined it with plant height 
to predict biomass during the V8 to V10 (collar of 10th leaf unfolded) stage of 
maize. Hyperspectral measurement with ASD FieldSpec can be used to calculate 
vegetation indices, such as NDVI, normalized reflectance index, renormalized dif-
ference vegetation index, and red edge inflection point. These indices fused with 
plant height derived from Lidar or ultrasonic sensors can be used to estimate bio-
mass (Fricke and Wachendorf 2013; Tilly et al. 2015b).

7.2.3.4  Comparison and Analysis of Biomass Measurements

Studies have shown that plant height is a significant parameter for estimating plant 
biomass. This parameter is also the measurement key of the nonspectral method. 
The water and nitrogen concentration of plants will affect the estimation of biomass. 
These two parameters can be measured by spectral methods, but the results will be 
disturbed by weather, vegetation coverage, and soil. Plant height and nitrogen and 
water concentrations are regarded as the fundamental parameters for estimating 
plant biomass. These parameters can be combined to estimate plant fresh weight 
and dry weight and thus to improve the accuracy and robustness of measurement.

7.2.4  Sensing Instrument for Plant Roots

The root is an essential plant organ below ground and directly influences the absorp-
tion and usage of nutrient and water, which provides the basics of plant growth natu-
rally. In general, plants represent different responses to ambient biotic and abiotic 
stresses based on their root system architecture (RSA), especially under drought 
stress; an appropriate RSA can greatly promote the adaptation of plants against vari-
ous extreme weather and the impact of climate change. There are four primary roots 
that consist of RSA, which are coarse or taproots (first root to emerge from the 
seed), lateral roots (any root branching from another root), shoot-borne roots (roots 
that arise from shoot tissues), and basal roots (develop from the hypocotyl), respec-
tively. The significant parameters of roots are total root lengths, primary root 
lengths, number of lateral roots, network width, root volume, root surface areas, and 
so on (Wasaya et al. 2018; Han and Yan 2018;  Lee 2016). Selecting plants based on 
the RSA is a significant option for breeders to cultivate new species. However, how 
to measure and evaluate RSA is a challenge. The tough fact is that most roots are 
hidden by soil and not visible. People have to shovel out plant roots and clear the 
incidental soil and then manually measure some morphologic parameters to evalu-
ate RSA (Trachsel et al. 2011). This method would interrupt the growth of plants 
and cannot realize dynamic measurement. More attention should be focused on 
evaluating RSA in a high-throughput and nondestructive way.
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Currently, root phenotyping is conducted under two conditions, controlled con-
ditions and field conditions. As an alternative, it is feasible to visualize RSA by 
changing the growth conditions of roots. In the controlled conditions, plants were 
usually cultivated using containers that were made of glasses, papers, gels, and oth-
ers, so almost completed roots could be monitored. It is incontestable that there are 
some small distinctions between the controlled roots and natural roots due to unex-
plained factors. After all, soil should be the growth medium for roots to develop. 
Therefore, many researchers seek to explore plant RSA under field conditions using 
sensors that are able to detect roots over time in soil.

Several sensors and techniques were applied for monitoring RSA, such as color 
digital cameras, X-ray CT, magnetic resonance imaging (MRI), and neutron- 
computed tomography (Adu et al. 2014; Adu, 2014). Specific to the controlled con-
ditions, color digital cameras are commonly used to obtain root images in various 
perspectives and extract root traits. In terms of the field conditions, X-ray CT was 
frequently applied to measure roots in root phenotyping.

7.2.4.1  Plant Root Measurement Based on Color Digital Cameras

Color digital cameras or scanners are able to measure plant roots at many growth 
stages and situations, especially under controlled conditions. They are widely 
implemented in conjunction with soil-free techniques, such as hydroponics, aero-
ponics, gel plates, and growth pouches (Atkinson et al. 2019).

Some researchers applied a color digital camera to evaluate the seminal roots of 
plant seeds. First, seeds were germinated using wet seed germination paper (Adu 
et al. 2015) or growth pouches (Richard et al. 2015). Then, seeds were placed on a 
clear flat and images of seeds were acquired. Finally, images were processed and the 
angle, number, and length of seminal roots were calculated. Slovak et al. (2014) also 
developed a scalable open-source pipeline, which could extract 16 traits of 
seed roots.

A lot of papers reported that plants were cultivated in cylinder tubes (Slota et al. 
2016; Nakini and DeSouza 2014) or square chambers under controlled conditions 
(Jia et al. 2019), and the roots were able to grow and spread with the support of gels 
or nutrient solutions. Moreover, plant roots were visible and root images can be 
captured.

Two tasks need to be finished when using color images to analyze RSA. One is a 
fundamental step to segment roots from the background, which is not difficult 
because most growth mediums are transparent to visible light. The other is classify-
ing the primary roots and numerous lateral roots, detecting their tips, and tracing 
root skeletons so as to extract more root traits. Region growing algorithms are 
widely applied to settle this issue. Notably, color images have been broadly used in 
root phenotyping, and many software packages are available to process root images 
and extract root traits, such as EZ-Rhizo, Smart Root, WinRhizo, ImageJ, IJ_Rhizo, 
Root System Analyzer, and Root Trace (Wasaya et al. 2018). Root length, tip angle, 
number of crown and lateral roots, surface area, and other root traits can be 
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calculated automatically using the software (Slota et al. 2016; Adu et al. 2014; Clark 
et al. 2013). Besides, researchers also developed many platforms or software for 
specific issues, for example, RhizoVision Crown aimed at evaluating root crown 
traits (Seethepalli et al. 2019), and MyROOT combined a bottom-up root tracking 
approach with a hypocotyl detection algorithm to obtain the root traits of wheat and 
barley (Betegón-Putze et al. 2019). Kumar et al. (2014) applied a statistical learning 
method to discriminate primary roots and lateral roots and detect their tips 
successfully.

Three-dimensional reconstruction of roots can be accomplished using several 2D 
side-view images that were obtained at various angles, and RSA can be analyzed in 
a novel way. Han et al. (2018) developed a 3D imaging system using simple space 
carving to quantify the RSA of rice. It is essential to segment root portions from the 
3D model of root and deep learning techniques (Wang et al. 2019a) or software. For 
example, RootReader 3D (Pineros et  al. 2016) and DynamicRoots (Jiang et  al. 
2018; Symonova et al. 2015) could be used to decompose the 3D root system into 
individual branches and then extracted root traits.

7.2.4.2  Plant Root Measurement Based on X-Ray CT

CT, as a radiation-based technique, enables the visualization of the interior of solid 
objects, and X-ray is widely selected as its energy source (Mooney et al. 2012). The 
application of CT in root phenotyping is a nondestructive measurement based on the 
principle of attenuations of roots and soil at an electromagnetic wave, and the 3D 
architecture of soil and roots can be generated with high resolution (Adu 2014). 
Using contrasts in X-ray attenuation between growth medium solids, air-filled 
pores, soil water, and plant material makes it possible to sense plant roots under 
field conditions (Mooney et al. 2012). Maenhout et al. (2019) tested a method to 
segment large mature maize roots from X-ray CT images. The method is able to 
remove the soil particles around plant roots and extract root volumes. In practice, 
the most frequently applied segmentation algorithm is still the region growing algo-
rithm, and the “top-down process” method is always used to track roots. Many 
software packages are available to process CT images, like RootViz, RooTrak, and 
VGstudio Max (Maenhout et al. 2019; Pfeifer et al. 2015; Zappala et al. 2013). In 
addition, Mairhofer et al. (2013) extended RooTrak, making it possible to extract 
plagiotropic roots.

However, there are several factors that impact the measurements when using CT 
images to assess plant roots. First, the medium plays a great important role in seg-
menting roots from CT images. X-ray attenuation values vary with soil type, soil 
moisture content, air-filled pores, root water status, root material, and age, which lead 
to the fact that roots cannot be extracted accurately just using threshold-based meth-
ods (Rogers et al. 2016; Mooney et al. 2012; Mairhofer et al. 2013). Second, there are 
some organic matters in soil that will be mixed with plant roots, and the attenuation 
values of the soil and roots overlap. More information or prior knowledge needs to be 
considered to develop novel approaches and improve the accuracy of segmentation.
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7.2.4.3  Plant Root Measurement Using Other Sensing Techniques

Similar to X-ray CT, MRI is an alternative option, which is able to visualize the 3D 
structure of plant roots under field conditions (Koch et al. 2019). Dusschoten et al. 
(2016) estimated the RSA of maize and quantified the growth of roots using 
MRI. Pflugfelder et al. (2017) tested and analyzed the affections of natural soil sub-
strates and soil moisture on MRI root image qualities, and the results showed that 
the two factors have no effect on image qualities in the range of 50%–80% water 
holding capacity.

Besides aforementioned techniques, novel techniques and approaches were 
explored and developed to measure RSA.  Kalogiros et  al. (2016) put forward a 
model based on the analysis of RSA traits, which can output elongation rate, branch-
ing rate, and gravitropic without measuring individual roots. Schlüter et al. (2018) 
proposed a root distance model to describe root growth throughout all stages and 
estimate the rhizosphere volumes. Those models can help us to estimate root 
growths, improve measure efficient, and provide references for breeding. Sometimes 
the color contrast between roots and soil is poor; Bodner et al. (2018) used a hyper-
spectral camera to scan the root system of Triticum durum and extracted feature 
wavelengths to segment roots from soil. In terms of 3D root measurement, Prince 
et al. (2018) directly installed a laser stripe, instead of a color camera, to scan plant 
roots grown in gel medium and captured 3D cloud point data of roots. In addition, 
Corona-Lopez et al. (2019) pointed out that electrical impedance tomography (EIT) 
could also help us to obtain 3D roots and had the potential to be used as a low-cost 
tool for root phenotyping, but the limited resolution of EIT needed to be improved.

Recently, Truong et al. (2018) introduced an ultra-wideband frequency system to 
nondestructive imaging RSA, and Wang et al. (2019a, b) used the microelectrode 
ion flux estimation method to assess the oxidative stress tolerance of barley roots. 
Both of them offered new prospects to estimate RSA, though more work should be 
done to improve their performances.

7.2.4.4  Comparison and Analysis of Plant Root Measurements

It is a challenging task to measure and assess RSA, due to the complicated, opaque, 
and heterogeneity growth environment of plant roots. Specific sensing techniques 
and approaches should be taken into consideration to promote root phenotyping. In 
controlled conditions, color digital cameras are able to capture root images and 
extract root traits with high resolution and low cost. But color cameras are incapable 
of monitoring RSA under field conditions, so that X-ray CT imaging is applied to 
solve the issue as a powerful tool. However, the costs of the facilities are usually 
high and the instruments are sophisticated, making it unable for CT imaging to be 
largely used in the field (Zhang and Zhang 2018). MRI has the same problems as 
X-ray. Novel sensing techniques have been explored and tested to evaluate RSA, but 
currently only primary roots can be measured, and in most cases, small roots are 
misclassified. Although those techniques cannot provide precise measurement 
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because of their low resolutions and interference noises, they provide an extension 
to root phenotyping.

7.3  Platforms for Plant Phenotyping

Breeding scientists use plant phenotyping to collect various plant and environment 
information, from shape to nutrient content, from a single plant to a large plant 
group(s), and from near-range observation to space observation. As a result, differ-
ent types of platforms are employed to meet the requirements of different plant 
phenotyping scenarios. Indoor phenotyping equipment, in-field sensor networks, 
ground mobile platforms, phenotyping tower, field-scan platforms, unmanned aerial 
vehicles (UAVs), airplanes, and even satellites can all implement plant phenotyping. 
Plant phenotyping platforms can be grouped into three categories: ground-based 
platforms, aerial platforms, and indoor platforms.

7.3.1  Ground-Based Platforms

In-field sensor networks, ground mobile platforms, phenotyping towers, and field- 
scan platforms are categorized as ground-based platforms.

7.3.1.1  In-Field Sensor Networks

Even though sensor networks can be wired or wireless, it is better to consider the 
in-field sensor networks as wireless sensor networks (WSNs) in precision agricul-
ture applications. With its features of low power consumption and low cost, WSNs 
have advantages in collecting environmental information at a large amount of in- 
field spots over a long time span. Environmental information and their changing 
trends are important components of plant phenotyping under generalized definition. 
Breeding scientists need both environmental information and plant information to 
conduct phenomic analysis to find traits to improve crop yield and environmental 
adaption (Reynolds et al. 2019).

Various environmental information can be collected by the in-field sensor net-
works (Aqeer-ur-Rehman et al. 2014; Ojha et al. 2015; Jawad et al. 2017), such as 
conditions of light, wind, air, and soil. For light information, solar radiation and 
light intensity are the main parameters. For wind conditions, wind speed and direc-
tion are the corresponding data of targets. Air humidity, temperature, atmospheric 
pressure, and rainfall are often collected and monitored. Soil moisture, temperature, 
dielectric permittivity, pH, conductivity, and salinity are collected to evaluate soil 
conditions. Meanwhile, plant information can also be collected by in-field sensor 
networks directly (Ojha et al. 2015; Jones et al. 2018). Sensors for photosynthesis, 
carbon dioxide (CO2) concentration, hydrogen, leaf wetness, leaf temperature, leaf 
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area index (LAI), canopy conductance, evaporation rate, and stem moisture have 
been used as stationary nodes of in-field sensor networks.

Although great efforts have been put on WSNs for in-field monitoring, there are 
still challenges on node deployment, energy saving, and routing protocol 
(Al-Turjman 2019). Different deployment strategies of sensor nodes can bring dif-
ferent network performances on connectivity, coverage, and reliability. Existing 2D 
deployment strategies cannot meet the requirements of plant phenotyping, which 
may cause time-variable 3D coverage problems. As a result, new 3D deployment 
strategies for wireless sensor nodes need to be developed. Meanwhile, the rules to 
determine the density and location of sensor nodes on a WSN should be developed 
with the expertise of agronomists and crop scientists. For plant phenotyping, the 
WSNs need to collect throughout-season or year-round data, thus requiring the 
strategies of energy-saving and uses of long-term sensors. To enhance sensor nodes’ 
energy efficiency, researchers are working on relevant topics, such as node sleep/
active mode switching strategy, distributed asynchronous medium access control 
(MAC) protocol, and end-to-end encryption and authentication. Routing is another 
factor that has a strong influence on the data collection performances of WSNs. The 
key point of routing is to search for the most stable and effective routine for every 
transmission, so that the sensing data can be collected correctly with minimum 
dropping rate. In plant phenotyping scenarios, the routing protocol should also be 
able to handle energy-hungry multimedia exchange over a long time span. Therefore, 
alternative optimal routines have to be chosen for new transmission tasks, avoiding 
repeated heavy energy cost on a single node.

7.3.1.2  Ground Mobile Platforms

A ground mobile platform is another branch of ground-based platforms as shown in 
Fig. 7.4, which is a very popular topic in plant phenotyping. Ground mobile plat-
forms employ signals from the global navigation satellite system (GNSS) to localize 
themselves and obtain plant phenotyping data together with corresponding localiza-
tion information. Compared with other platforms, a ground mobile platform has two 
distinguishing features: high mobility and high flexibility. These features endow it 
with the best data collection power among all outdoor platforms. With high mobil-
ity, the ground mobile platform can scout a large area and collect phenotyping data 
for a large plant group in a relatively short time duration. This makes it a hot research 
topic for high-throughput phenotyping (HTPP). Meanwhile, high flexibility lets 
ground mobile platforms move in-field smartly and carry various sensors to take 
close observation for crops. Close observation consists of both top-view and side- 
view observations for crops. Other than commonly used top-view observations 
among all platforms, close side-view observations on ground mobile platforms can 
get under-canopy sights. Under-canopy observation in the natural growing environ-
ment is very important for plant phenotyping, which can intensively reflect the crop 
responses to complex natural climatic, meteorological, and edaphological processes.
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Fig. 7.4 Ground mobile 
phenotyping platforms 
(Disclaimer: Commercial 
products are referred to 
solely for the purpose of 
clarification and should not 
be construed as being 
endorsed by the authors or 
the institution with which 
the authors are affiliated)

Based on different power sources and control patterns, ground mobile platforms 
have different variants, such as trolley cart-based platforms (Crain et  al. 2016), 
tractor- based platforms (Baker III et al. 2016), and mobile robot-based platforms 
(Cousins 2015; Mueller-Sim et al. 2017; Young et al. 2018; Bao et al. 2019). Trolley 
cart-based platforms are constructed on specially selected or designed trolley carts, 
whose widths are multiples of crop row spacing. Therefore, they can let the wheels 
move on the terrain between two adjacent crop lines and carry different sensors to 
collect plant phenotyping information. To be noted, trolley cart-based platforms are 
driven manually. As a result, their payload, endurance time, and coverage area will 
be much smaller than engine-driven platforms. Many researchers still choose trolley 
cart-based platforms, because they are easy to build and operate.

Tractor-based platforms are developed by adding different plant phenotyping 
sensors on engine-driven agricultural machinery. Since many agricultural machines 
usually do not have phenotyping sensors on board, specially designed brackets for 
different sensors need to be added on agricultural machinery for plant phenotyping. 
With powerful engine, tractor-based platforms can carry more sensor/battery pay-
loads and have longer endurance time and larger scouting coverage area. But they 
still need a driver behind the steering wheel, which makes their working time heav-
ily depend on the driver situations.

Mobile robot-based platforms employ mobile robots as sensor carriers (Cousins 
2015; Mueller-Sim et al. 2017; Young et al. 2018; Rouphael et al. 2018; Bao et al. 
2019). They do not require a driver and can scout the crop field autonomously or 
controlled remotely. There are different configurations for the mobile robots. Some 
small robots can run between two adjacent crop rows. Others may run over multiple 

7 Plant Phenotyping



216

crop rows. By cruising autonomously, mobile robot-based platforms can work day 
and night to collect plant phenotyping information. Even if their moving speed is 
not higher than tractor-based or aerial platforms, their longer working time can still 
guarantee a large coverage in a relatively short time duration. This feature makes 
mobile robot-based platform another hot topic for HTPP (Qiu et al. 2019).

The other forms of ground-based platforms for plant phenotyping include tripods 
(Friedli et al. 2016), field scan platforms (Virlet et al. 2017), and phenotyping tow-
ers (Naito et al. 2017).

On a tripod platform, the sensors are mounted on tripods to collect plant pheno-
typing information or meteorological information. As the structures of tripods are 
not sturdy enough, this type of platforms are not suitable for long-term observation. 
Meanwhile, big and heavy sensors cannot be mounted on tripods. Usually, tripods 
will be dispatched at different locations on the field manually. After finishing data 
collection tasks at one spot, they can be moved to another spot easily. Sometimes 
one tripod platform will be moved to different adjacent positions to generate 
multiple- view observations because of their lightweight feature. Researchers from 
Switzerland (Friedli et al. 2016) employed tripods to get crop height information 
using periodically terrestrial laser scanning. White spherical targets were dispatched 
at fixed locations to help calibrate and match scan data from different laser scans. 
Maize, soybean, and wheat were the crop targets. Plant architecture, height growth 
during the season, and short-term growth fluctuation were compared and analyzed.

Field scan platforms can be regarded as moving phenotyping towers. Some 
review papers categorize this type of platforms as mobile robotic platforms. But 
there is an obvious difference between field scan platforms and mobile robot plat-
forms: field scan platforms move on rails, so that the location and length of the rails 
limit the coverage of field scan platforms. The advantage of field scan platforms is 
controllable and stable moving speeds due to their movement on rails. This brings 
the possibility of collecting plant phenotyping information in an intensive scanning 
mode. Some field scan platforms have lift arms, which can carry plenty of sensors 
to obtain crop observations from different heights and viewpoints. Researchers 
from UK mounted a camera box on a field scan platform to conduct high- throughput 
phenotyping tasks (Virlet et  al. 2017). With a maximum payload of 500  kg, the 
camera box carried one chlorophyll fluorescence imager, two hyperspectral mirror 
scanners, one visible camera, one thermal infrared camera, two 3D laser scanners, 
one hyperspectral system, and NDVI sensor, which formed a big and heavy sensor 
array. This platform can take crop growth measurements, help to identify key growth 
stages of crops, and produce detailed descriptions of canopy development across the 
entire life cycle.

Phenotyping towers are tower-based platforms for carrying different plant phe-
notyping sensors. Compared with tripods, they have stronger structures and fixed 
locations. Strong structures endow them with powerful payloads/sensor-carrying 
capabilities. Multiple sources of sensor data can be collected during each trial or 
data collection circle. Strong structures also help to take long-term phenotyping 
observations, for example, multi-year-round observations. At the same time, strong 
structures determine that towers cannot move flexibly and have to stay at fixed 
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locations, which limits the coverage area of phenotyping towers. To solve this prob-
lem, researchers use multiple towers to obtain larger crop area coverage. Naito et al. 
(2017) used two phenotyping towers together and each tower carried two cameras 
and captured rice field images with different pitch and yaw angles over three years. 
Captured images were analyzed to obtain several vegetation indices (VIs), such as 
simple ratio (SR), NDVI, and transformed vegetation index (TVI). Then the correla-
tions between different VIs and grain yields were conducted and SR showed the 
best performance in estimating grain weight.

7.3.2  Aerial Platforms

Compared with ground-based platforms, aerial platforms have much stronger capa-
bilities on monitoring speed and area coverage. As a result, many researchers choose 
to collect plant phenotyping data with aerial platforms (Atkinson et al. 2018). There 
are different types of aerial platforms for plant phenotyping, including UAVs 
(Sankaran et al. 2015; Yang et al. 2017), blimps (Liebisch et al. 2015), manned air-
craft (Gonzalez-Dugo et al. 2015), and satellites (Lobell et al. 2015). Different types 
of aerial platforms have different features and advantages. UAVs can get high- 
resolution data, and manned aircraft have high scouting speeds. Satellites have large 
monitoring coverage, while blimps can conduct low-speed monitoring at higher 
altitudes. But they are all sensitive to weather conditions, such as strong wind, 
heavy cloud, and rainstorm. Furthermore, airspace regulations constrain the appli-
cation area of most aerial platforms.

7.3.2.1  Unmanned Aerial Vehicles (UAVs)

Among all aerial platforms, UAVs are the most popular platforms in the research 
area of plant phenotyping (Sankaran et al. 2015; Yang et al. 2017). They have dis-
tinguishing features, such as low cost, low flying altitude, easy deployment, timely 
data collection, and high data accuracy. Compared with other types of aerial plat-
forms, UAVs can obtain high-resolution plant trial images, 0.05–0.15 m2 per pixel 
(Atkinson et al. 2018). Multi-rotors (Fig. 7.5), helicopters, and fixed-wing UAVs are 
commonly used variants for plant phenotyping.

Now, multi-rotors or drones bring the most active research topic in aerial plat-
forms for plant phenotyping. With the rapid development of drones in recent years, 
the flight control system, configuration design, and component materials have all 
been greatly upgraded. They share all the advantages of aerial platforms and play to 
the extreme. The price of a commercial drone product can be less than 400 dollars. 
Most drones can fly stably at low altitudes under the help of on-board flying control 
systems. With the “ready-to-fly” function, a drone can take off, fly, and land by itself 
following the commands from a person without any drone flying experiences. The 
operators can even use their smart phone to control the drones. Due to the flexible 
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Fig. 7.5 Multi-rotor package for plant phenotyping (Yang et al. 2017): (a) an eight-rotor UAV, (b) 
flight control system, (c) remote controller, (d) gimbal, (e) user interface

access to the field, drones can timely collect plant phenotyping data with high scout-
ing frequency. Furthermore, drones can hover at a stable position and take specific 
observations for a selected field area, which perfectly fits the application scenarios 
in plant phenotyping. On the other hand, drones also have short points to be 
improved. First, battery is the key bottleneck problem for drones. The capacity of 
current batteries can only support a flying duration of less than 30 min. Second, 
small payload is another drawback of drones. Heavy and big sensors cannot be used 
on them. Third, the flying stability of drones drops down rapidly in strong wind and 
rainstorm weather, which leads to low quality of plant phenotyping monitoring data. 
Fourth, the high frequency and low-amplitude vibration caused by turning rotors 
introduce noise into sensor data, which requires the application of new anti-shake 
technologies to calibrate the collected data.

The helicopter is another variant of UAVs for plant phenotyping. The early appli-
cation of helicopters in agriculture is known as aerial spraying for crop protection. 
Helicopter spraying systems from Yamaha was employed to conduct aerial spraying 
in Japan since the 1990s. To be noted, aerial spraying and aerial scouting are similar 
tasks for helicopters. Researchers replace sprayers on helicopters with cameras and 
use them as platforms for plant phenotyping data collection (Chapman et al. 2014). 
Compared with multi-rotors, helicopters have two main different features: gas 
engine and main rotor. Helicopters use gas engines as the power sources of their 
rotors, while multi-rotors use batteries to drive their rotors. Gas engines endow 
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helicopters with a higher average payload capacity. As a result, heavier sensors such 
as Lidars can be mounted on helicopters, but rarely on multi-rotors. Meanwhile, gas 
engines lead to heavier shaking problem and louder noise, compared with electrical 
motors. To lift the helicopters, main rotors are big and powerful. The strong airflow 
caused by the main rotor will disturb the stable state of crops and bring trouble to 
the data collection task. Therefore, helicopters need to take observations at higher 
altitude than multi-rotors. The unstable dynamic pattern coming from the main rotor 
structure also increases the operation difficulty, which requires skilled operators or 
complex flight control strategies. For a safe and successful plant phenotyping trial, 
a skilled support team is recommended to stand by for helicopters, while multi- 
rotors seldom need it.

Besides multi-rotors and helicopters, fixed-wing UAVs are also common plant 
phenotyping platforms (Shi, et al. 2016). They are well known in the areas of model 
airplane competition and geographic survey, before showing their potential in plant 
phenotyping. Compared with rotors, they have a higher flying speed but lack hover 
capability (Sankaran et al. 2015; Han et al. 2018). High speed makes fixed-wing 
UAVs have larger scouting area. At the same time, high speed also results in blurred 
sample images. Lack of hover capability means that they cannot take close and 
intensive observations for specific areas. Poor weather conditions such as strong 
wind and rainstorm also limit the application of fixed-wing platforms. Another 
application barrier for fixed-wing UAVs is the complex takeoff operations and wild 
landing manner. There are two takeoff strategies: run-up and hand launching. 
Run-up takeoff requires a long and flat track, which is hard to find on farmland. As 
a result, hand launching is more popular for plant phenotyping applications, which 
needs skilled operators to increase the takeoff success rate and protect the on-board 
sensors from takeoff accidents. The only landing manner for fixed-wing platforms 
is to keep landing gesture and slow down. The impact during the landing process is 
inevitable especially on the uneven farmland. Therefore, sensors mounted on fixed- 
wing platforms should be equipped with anti-shock and secure brackets.

The limited payload and high phenotyping expectations claim critical require-
ments for the on-board sensors of UAV platforms: lightweight, high accuracy, com-
pact package, and low power consumption (Yang et  al. 2017). Based on these 
features, researchers select digital camera, multispectral/hyperspectral camera, 
infrared thermal imager, Lidar, 3D camera, and synthetic aperture radar (SAR) as 
the main on-board sensors. Researchers from Washington State University, Oregon 
State University, and USDA (Sankaran et al. 2015) conducted a comprehensive sur-
vey on the typical sensors of UAVs. Digital cameras are convenient to obtain and 
use and the grayscale or colored images coming from digital cameras on UAVs can 
be used to analyze visible phenotyping parameters, such as outer defects, greenness, 
and plant growth. Multispectral sensors can detect more visible light bands and the 
collected data can be employed to analyze the crop responses to nutrient deficiency, 
water stress, and diseases (Mahlein et  al. 2012). Hyperspectral sensors enjoy a 
higher band resolution than multispectral sensors and can also help to conduct prod-
uct quality control and yield estimation. Infrared thermal sensors can generate 
images with temperature information on each pixel. Under the help of temperature 
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information, researchers can induce stomatal conductance information and analyze 
plant responses to water stress and diseases. Lidar and 3D camera are both ranging 
sensors. A 3D camera can generate depth image with distance information for each 
pixel. With lower accuracy, they can obtain plant height and canopy density infor-
mation. Lidar has a higher measurement accuracy and can carry out precise estima-
tions for plant height and volume. SAR can obtain high-resolution radar images 
under low-visibility weather conditions, which are helpful for crop acreage moni-
toring, key crop trait estimation, and yield prediction.

7.3.2.2  Blimps

Blimps are widely used for advertising, by towing large flag banners. Researchers 
also use them as plant phenotyping platforms (Sankaran et al. 2015). They can fly at 
low speed and hover to obtain high-resolution images of field crops. Bigger and 
heavier sensors can be mounted on blimps. However, launching a blimp-based field 
trial is not an easy task. Because of its massive body shape, it is hard for blimps to 
move from one spot to another, and they cannot give good flight performances under 
windy weather conditions. The cost of using blimps is also much higher than that of 
UAVs. A good example for blimp-based plant phenotyping platforms is Zeppelin 
NT. The highest speed of a blimp is 20 km/h and it can work when the wind speed 
is under 25 m/s. It can obtain high-resolution thermal images (10 cm × 10 cm/pixel). 
Field tests proved that the Zeppelin platform is capable of monitoring crops through-
out the season, giving robust image segmentation and identifying individual plots. 
Equipped with three different cameras, canopy cover and NDVI value can be 
deduced for maize plants.

7.3.2.3  Manned Aerial Vehicles

Manned aerial vehicles are popular platforms for geographic survey and agricultural 
tasks. In the USA, thousands of manned aircraft are being used for crop protection. 
By carrying different kinds of sensors, manned aerial vehicles can be used to moni-
tor crop growing conditions, detect crop loss (weeds, diseases, and insect damage), 
and assess the performance of ground/aerial treatments (Yang 2016). As a result, 
researchers also employ manned aircraft as plant phenotyping platforms (Gonzalez-
Dugo et al. 2015). Manned aerial vehicles have much larger payload capacity than 
UAVs. Hence, a wide variety of sensors can be equipped on a manned aircraft, 
including multispectral imaging sensors, hyperspectral imaging sensors, thermal 
cameras, consumer-grade cameras, and Lidars. Manned aerial vehicles take obser-
vations at higher altitude than UAVs. Their flying altitude ranges from a hundred- 
meter level to a thousand-meter level (Yang 2016). Meanwhile, they have a much 
higher flying speed than UAVs and blimps. With these advantages, they can carry all 
needed sensors and collect large-area phenotyping data in one flight. But high speed 
and high altitude also result in lower resolution and blurred airborne images. The 
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resolution of aircraft-mounted sensors is around 1 m2/pixel, compared with 0.05 m2/
pixel to 0.15 m2/pixel for drones (Atkinson et al. 2018). Furthermore, the data col-
lection trials based on manned aerial vehicles are not easy to launch. Skilled pilots 
and nearby airports are two essential requirements that are often hard to meet.

7.3.2.4  Satellites

Satellites have been used for remote sensing imagery in agriculture since Landsat 1 
(Earth Resources Technology Satellite 1) was launched in 1972 (Mulla 2013). With 
the rapid development of sensing technologies in the last decade, the resolution and 
visit frequency of satellite remote sensing have been greatly improved. The pan-
chromatic and multispectral pixel sizes of high-resolution satellite sensors range 
from 0.31 to 1 m and 1.24 to 3.28 m, respectively. One-day revisit is also not an 
impossible mission for new satellites (Yang 2018). High sensing resolution and high 
visit frequency make satellites become good sensing platforms for precision agri-
culture. A large number of literature reported the applications of satellite remote 
sensing on crop growth and yield, irrigation, and crop losses (Karthikeyan et  al. 
2020). The images taken by satellites cover far more bigger areas than those taken 
by other aerial platforms. As platforms in space orbits, satellites have limited on- 
board sensor types and fixed sampling periods. Similar to other aerial platforms, 
satellite remote sensing is also sensitive to cloudy weather. Furthermore, satellite 
remote sensing can only obtain spectral indices rather than true plant phenotyping 
parameters. Because of these disadvantages, the plant phenotyping information col-
lected by satellites is limited and high-frequency data collection is also impossible. 
Some researchers think that satellites are not ideally suited for plant phenotyping 
(Atkinson et al. 2018), even if they are cheap data sources and have space resolution 
up to m2/pixel level. However, some other researchers think that satellite imagery 
has good potential in analyzing soil moisture and drought risk (Martínez-Fernández 
et al. 2016), predicting regional crop yield (Lobell et al. 2015), and detecting crop 
diseases (Yuan et al. 2017).

7.3.3  Indoor Platforms

Both ground-based and aerial platforms are designed for field-based plant pheno-
typing, which are mainly nondestructive and remote sensing solutions for crop 
groups. The information collected by field-based plant phenotyping can reflect the 
growth status of crops under natural environment conditions (climate, weather, and 
soil), but lack precise and microscopical details, which need close, multiview, and 
even destructive observations. These details are important to reveal the truth of crop 
growth and environmental stresses. In addition, field-based plant phenotyping has 
many uncontrollable environment parameters. As a result, determining the relation-
ships between environmental stresses and crop responses becomes a difficult task. 
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To tackle these issues, researchers also pay attention to indoor platforms (Zhao et al. 
2019). Indoor platforms have distinguished advantages in obtaining precise and 
intensive measurements. First, indoor platforms do not need to meet the require-
ments of in situ measurements, which are common requirements for field- based 
platforms. Therefore, operators have enough time to conduct sample preparations, 
such as surface cleaning and stem cutting. Meanwhile, operators have more avail-
able resources to improve measurement conditions, such as adjusting light condi-
tions and sample gestures and view angles. All these help to obtain more precise and 
detailed measurements. Second, indoor platforms are in a space with more control-
lable environment parameters. Thus, researchers can design specific environment 
stresses for crops and observe their responses with indoor platforms, which can 
reveal the relationships between stresses and crop responses directly.

According to the observation scales, indoor platforms can be categorized into 
three types: tissue-level platforms, organ-/single plant-level platforms, and group- 
level platforms.

7.3.3.1  Tissue-Level Platforms

Tissue-level platforms usually need measurement targets destructively prepared, 
by taking them apart from the whole plants. Thus, the targets can be placed onto or 
into the platforms where precise and intensive measurements are taken. With these 
phenotyping information from tissue-level platforms, 3D tissue structures can be 
rebuilt and tissue nutrition contents can be analyzed. A good example for tissue-
level platforms is the micro-CT platform. This platform is widely used for the 3D 
structure detection of small objects, including mechanical parts, animal organs, and 
plant tissues. Agricultural researchers employ it as a plant phenotyping platform. 
Researchers from Beijing Research Center for Information Technology in 
Agriculture use this platform to reconstruct the 3D anatomical models of maize 
organs (stem, root, and leaf). Based on the proposed “sample preparation protocol,” 
31 phenotypic traits for stem, 33 phenotypic traits for leaves, the volume and sur-
face area for roots can be extracted from micro-CT collected data (Zhang 
et al. 2018).

7.3.3.2  Organ-/Single Plant-Level Platforms

Organ-/single plant-level platforms can precisely extract the phenotypic traits with-
out destructive sampling. They usually have one single type of sensors, cameras, or 
laser scanners. Two-/three-dimensional models can be constructed based on sensing 
data. For 2D modeling, a sensor holder and a sample container are enough to set up 
a simple platform, such as a 2D root structure phenotyping solution from Georgia 
Institute of Technology and Pennsylvania State University (Bucksch et al. 2014). 
Three-dimensional models are constructed by merging multiview observations. 
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There are different solutions for multiview observation, among which the turning 
stand and flexible manipulator are the most popular ones. For a turning-stand-based 
platform, the target will be placed on a turning stand and one or more cameras will 
take pictures from different directions. The turning stand solutions can be used for 
all plant organs, including stems, leaves, and even roots. The root trait extraction is 
taken as an example, and the solution has three main components: a transparent 
container with rooted plant and nutrient solution inside, a turning stand under the 
container, and cameras (Clark et al. 2011). For a flexible-manipulator-based plat-
form, the sensor is mounted on the manipulator as an end effector. The manipulator 
will move around the plant, letting the sensor take multiview observations (Paulus 
et al. 2014a, b).

7.3.3.3  Group-Level Platforms

Tissue- and organ-/single plant-level platforms mainly focus on measurement accu-
racy, while measuring speed is also very important to plant phenotyping. With the 
growing demands for selecting traits with good resistances among massive quantity 
of samples, high-throughput phenotyping for advanced breeding is more and more 
popular. Group-level indoor platforms are good examples for high-throughput phe-
notyping. Although the crops growing indoor (in greenhouse in fact) cannot encoun-
ter the same natural challenges as those growing in an open field, and researchers 
can set specific microclimate conditions to observe the corresponding crop 
responses. Indoor group-level platforms can conduct high-throughput phenotyping 
without sacrificing measurement accuracy, because the sensor carriers for indoor 
group-level platforms are powerful enough to carry various sensors, which can take 
close and multiview observations.

There are two typical forms of group-level indoor platforms: assemble line and 
moving crane. The major difference between the two forms is the dynamic states of 
the sensors. For assemble line platforms, various sensors are mounted at static sens-
ing stations, such as RGB cameras, RGB-D cameras, infrared cameras, multispec-
tral cameras, hyperspectral cameras, chlorophyll fluorescent cameras, and laser 
range finders. All sensors are static and the crop samples will be transported to dif-
ferent sensing stations by a conveyor belt or similar mechanisms. “Conveyor 
Scanalyzer” from “LemnaTec” (Choudhury et al. 2018) and high-throughput rice 
phenotyping facility (HRPF) from China (Yang et al. 2014) are good examples for 
this type of platforms.

For moving crane platforms, all plants in greenhouse are static, while the moving 
cranes will carry various sensors to collect phenotyping information for different 
cultivation areas. As sensors are mounted on the cranes, this type of platforms 
mainly deliver top-view observations. There are several good examples for indoor 
moving crane, such as the “Canopy Scanalyzer” from “LemnaTec” (https://www.
lemnatec.com/products/canopy- scanalyzer/) and Crop 3D from China (Guo 
et al. 2016).
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7.4  Data Analytics for Plant Phenotyping

The aim of plant phenotyping is to collect features, parameters, and states of crops 
as many as possible. Therefore, various sensors are introduced into this research 
field and plenty of plant targets are observed under different conditions. Hence, 
plant phenotyping often encounters data diversity of formats, noise, errors, and 
physical characteristics. In addition, the volume of data grows rapidly with the 
development of new high-throughput phenotyping technologies. All the abovemen-
tioned reasons heavily increase the difficulty of data analysis, to extract features of 
plant and reveal corresponding traits of interests. As shown in Fig. 7.6, in order to 
tackle this problem, different mathematical tools and algorithms are employed to 
process the data, including data preprocessing algorithms, traditional statistical 
tools, and machine learning algorithms.

Fig. 7.6 Flowchart for data analytics in plant phenotyping
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7.4.1  Data Preprocessing

7.4.1.1  Overview

For most cases, plant phenotyping data are collected under natural crop growing 
conditions. The collected data suffers from multiple sources of noise and errors, 
such as changing lighting intensity, water mist, dust, self-occlusion of leaves/
branches, sensor vibrations, and incorrect sensing operations. As a result, the raw 
data need to be preprocessed in order to be ready for further analysis. According to 
the complexity of the preprocessing methods, data preprocessing operations for 
plant phenotyping can be grouped into simple preprocessing, image preprocessing, 
and point cloud preprocessing, respectively. Simple preprocessing includes general 
methods including normalization, labeling, and coordinate transformation. Image 
preprocessing algorithms consist of filters, registration algorithms, and image 
adjustment algorithms. Point cloud preprocessing algorithms consist of filters and 
registration algorithms.

Normalization adjusts data types of different scales into the same normal scale, 
for example, an interval of [0, 1]. After normalization, the dimensional data become 
dimensionless data and modeling errors coming from unbalanced scales are greatly 
reduced. Labeling is an important preprocessing step for machine learning algo-
rithms. The supervised learning algorithm needs labeled training and testing data to 
build and verify the learning models. Although there are automatic labeling algo-
rithms reported in literature, manual labeling assisted by labeling software is still 
the main labeling method. Coordinate transformation solves the data localization 
problem of inconsistent coordinate systems. Under many situations, data analysis 
needs position information as data identities or reflecting data relationships. 
Inconsistent coordinate systems lead to wrong localization and gesture priors, or 
unit priors. An example for coordinate transformation is transforming GPS data 
from (longitude, latitude) to local X–Y coordinates.

7.4.1.2  Image Preprocessing

There are plenty of image processing techniques, such as domain transform, encod-
ing and compression, enhancement and recovery, and segmentation. For the image 
preprocessing problems in plant phenotyping, image adjustment, image registra-
tion, and image filtering are widely used.

Images have different displaying solutions. Some plant phenotyping traits are 
obvious under specific displaying solutions. For these cases, image adjustment can 
help to find the proper displaying solutions for trait extraction. Color space transfor-
mations and histogram building are commonly used image adjustment techniques. 
RGB, CMY, HSV, HSI, Lab, and YUV are common color spaces. Each color space 
has its own features and advantages. Although RGB space is the most popular one 
for saving images on computers, it is not the favorite of scientists. RGB space 
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combines hue, intensity, and saturation together, which makes digital adjustments 
for image details a difficult mission. CMY space is widely used in printing industry. 
C, M, and Y stand for the color of corresponding ink cartridges. YUV space employs 
intensity and chromatic aberration to describe different colors. It is widely used for 
image encoding, such as JPEG (Joint Photographic Experts Group) and MPEG 
(Moving Picture Experts Group). HSV and HSI are similar spaces. They share two 
common components – hue and saturation – which are very important in plant organ 
detection. Lab space is good at describing human vision aesthesis. It can be used for 
color balancing according to the entry of “CIELAB color space” on Wikipedia. In 
plant phenotyping applications, researchers often transform RGB data to HSV, his, 
or Lab data, hoping to make phenotyping traits easy to detect. As fruit surfaces usu-
ally have a higher saturation level in images, HSV and HSI transforms can be 
employed to preprocess images for fruit detection tasks. Histograms are built from 
grayscale images. Histogram building is a preprocessing step for image segmenta-
tion algorithms, such as the well-known Otsu segmentation algorithm (Otsu 1979).

To obtain comprehensive plant phenotyping data, multiview image data collec-
tion is a popular strategy. Thus, image registration is essential for multiview match-
ing and fusion. There are two main categories for image registration: area-based 
registration and feature-based registration. Area-based registration registers images 
based on their overlapped windows. To achieve the best registration results, sliding 
windows are employed to search the overlapped windows. The similarity of over-
lapped windows is calculated based on pixel-level attributes. Area-based registra-
tion has obvious disadvantages in registering images with view rotations, which 
results in low registration accuracy for multiview registration problems. As a result, 
area-based registration is seldom found in plant phenotyping literature. On the other 
hand, feature-based registration is capable of registering images with view rotations 
and is widely used in plant phenotyping. Harris corner detector, features from accel-
erated segment test (FAST) corner detector, scale-invariant feature transform (SIFT) 
detector, and speeded up robust features (SURF) detector are typical feature-based 
registration algorithms in plant phenotyping. Harris corner detector uses low-level 
and local features to register images. It can generate a large amount of corner points 
and cause heavy computational loads. In addition, it suffers from ghost when obvi-
ous rotate transform exists. FAST corner detector employs local intensity discrep-
ancy to detect corner points. It is fast and suitable for real-time image processing 
applications. Threshold selection of FAST is the key point for good detection per-
formances. SIFT supplies a feature abstracting strategy that is invariant to scale and 
rotation transforms. Furthermore, the strategy enjoys high tolerance to lighting 
changing, viewpoint changing, affine transformation, and noise. It also suffers from 
high computational load. SURF is regarded as an upgraded version of SIFT. It is a 
detector based on interest point detection and descriptor. SURF inherits the long 
points of SIFT and greatly cuts down the computational load. There are a large 
quantity of literature about image registration in plant phenotyping, such as employ-
ing SIFT to detect legume leaf features (Larese and Granitto 2015) and using SURF 
to fuse UAV-based hyperspectral images (Habib et al. 2016).
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During the data collection process of plant phenotyping, cameras are sensitive to 
environmental conditions and plant self-occlusions, which may introduce different 
kinds of noise. As a result, getting rid of noise and outliers with image filtering 
techniques is a necessary step. There are plenty of image filtering techniques, 
including Gaussian filters, mean/median filters, and bilateral filters. Gaussian filter’s 
impulse response obeys a Gaussian function. With this feature, it can suppress noise 
and smooth images. An example of Gaussian filter is filtering the noise of hyper-
spectral images for maize seedlings (Yang et al. 2019b). Mean/median filters use 
mean or median pixel values of the smooth window to conduct the filtering opera-
tion. Mean filters are typical linear filters, which blur the image details while getting 
rid of noise. Median filters are nonlinear filters, which are good at filtering impulse 
noise and protecting sharp image edges. Fernandez-Gallego et al. (2018) employ a 
median filter to reduce the noise of RGB images for wheat ear counting. Bilateral 
filters are nonlinear filters. They replace the selected pixel value with the weighted 
average value of its surrounding pixels, and the weighted value is based on a 
Gaussian distribution. The most important feature of bilateral filters is that they take 
not only Euclidean distance, but also radiation difference under consideration. An 
example of bilateral filter is employing it to cut down the noise influences in RGB 
images of white chrysanthemums (Yang et al. 2019a).

7.4.1.3  Point Cloud Preprocessing

There are two main point cloud preprocessing techniques: point cloud registration 
and point cloud filtering.

 (1) Point Cloud Registration

Point cloud registration algorithms can be divided into two groups: exhaustive 
method-based registration and feature-based registration. Exhaustive method-based 
registration traverses the whole registration space to minimize the error function or 
maximize the number of matched point pairs. RANSAC (random sample consen-
sus) and 4PCS (4-point congruent set) are two good algorithms for exhaustive 
method-based registration. Feature-based registration searches for matched point 
pairs under the help of morphological features, for example, FPFH (Fast Point 
Feature Histograms) descriptor. SAC-IA (Sample Consensus Initial Alignment) and 
ICP (Iterative Closest Point) are two typical algorithms for feature-based registra-
tion. These four algorithms are representative ones in plant phenotyping.

RANSAC is an iterative registration algorithm, whose core ideas are randomness 
and hypothesis. Randomness is helpful to cut down computational loads, and 
hypothesis means regarding randomly selected points as inlier points and using 
them to compute other inliers. RANSAC assumes that models are formed by the 
inliers, and the outliers cannot fit the models. Thus, it can carry out model parameter 
estimation robustly. However, optimal models can only be obtained with infinite 
iterations. Furthermore, the setting of thresholds counts a lot to the registration 
accuracy. 4PCS is based on the RANSAC framework and speeds up the registration 
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process through building and matching congruent four-point pairs. With the help of 
affine invariance constrains and largest common point-set strategy, 4PCS can give 
the best registration for input point cloud pairs of arbitrary shapes. SAC-IA employs 
FPFH features to search the correspondence point pair between two point clouds. 
The optimal transformation matrix is determined through rigid transformation and 
calculation of distance error functions. SAC-IA suffers from heavy computational 
loads when registering large point clouds. Thus, downsampling is required for large 
point clouds, which will lose part of the feature points and lower the registration 
accuracy. ICP is a popular registration algorithm based on the least squares method. 
It employs an iterative strategy to find the optimal rotation matrix R and translation 
vector T for point cloud registration. Most of the ICP’s computational load comes 
from searching for the closest point pairs of two point clouds in each iteration. 
Although bad initial R and T settings will easily let the algorithm hit a local maxi-
mum, ICP is still widely used because of its strong noise tolerance capability. More 
and more researchers start to apply point cloud registration in plant phenotyping, 
such as plant detection and mapping with RANSAC (Weiss and Biber 2011), plant 
height and spacing abstraction for maize with SAC-IA and ICP as shown in Fig. 7.7 

Fig. 7.7 Parcel-level point cloud registration for maize with SAC-IA and ICP (Qiu et al. 2019). 
(a) Unregistered two clouds. (b) Magnified view of the blue rectangle area in (a). (c) Cutting off 
most plant points. (d) DBSCAN abstracted landmarks. (e) SAC-IA registered result. (f) ICP regis-
tered result. (g) Merged two clouds. (h) Magnified view of the blue rectangle area in (g)
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(Qiu et  al. 2019), and 3D reconstruction for maize plant with ICP (Garrido 
et al. 2015).

 (2) Point Cloud Filtering

Point cloud filtering is employed to get rid of noise and outliers. There are differ-
ent filters working for point clouds, including pass-through filters, conditional fil-
ters, radius filters, statistical filters, and voxel filters. Pass-through filters are simple 
filters and can get rid of the points that are not located in a preset region on a given 
dimension. They are often employed to crop expected point cloud subsets, for 
example, specific height pass filters for cropping plant point clouds above the terrain 
surface. Similar to pass-through filters, conditional filters also help to crop subsets. 
However, it can get rid of unexpected points depending on flexible conditions, 
which can be designed according to various features of the target point cloud. 
Radius filters employ a radius to filter out the points lying within low point density 
areas. If the nearby circle/sphere area of a point has less points than a preset thresh-
old, the point will be filtered. Radius filters run fast and retain the high point density 
area. But its performance heavily depends on the preset radius and threshold. Voxel 
filters divide the 3D space into bounding boxes called voxels. They can filter out 
noise and outliers according to the point density in voxels. On the other hand, they 
can also carry out downsampling tasks for high-density point clouds while preserv-
ing the geometrical information as much as possible. There are many application 
examples for point cloud filtering in plant phenotyping, such as filtering the 3D 
maize plant point cloud with a statistical filter (Lu et al. 2017), filtering the point 
cloud of clustered leaves with a radius filter (Li et al. 2019), and downsampling the 
grape point cloud with a voxel filter (Mack et al. 2017).

7.4.2  Traditional Statistical Analysis

Before the appearance of machine learning algorithms, plant phenotyping research-
ers employ traditional statistical analysis to handle the collected data and make 
conclusions. Even though machine learning is widely used for plant phenotyping 
data analysis nowadays, researchers still prefer statistical analysis for small data set 
analysis. Traditional statistical analysis belongs to multivariate statistical analysis. 
It is an important branch of mathematical statistical analysis and a common name 
for a group of comprehensive analysis methods. These methods can find the statisti-
cal laws among correlated multiple targets and parameters, which just hits the point 
of the data analysis tasks for plant phenotyping. The plant phenotyping data come 
from selected samples and can never cover the whole experimental crop group. This 
natural attribute determines that the plant phenotyping data have variability and 
randomness. Additionally, the measurement process also introduces noise and error. 
As a result, making conclusions depending on raw plant phenotyping data cannot 
work. Based on the data from a sample population, tradition statistical analysis can 
infer the attributes and traits of the whole sample population, help make conclusions 
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with high confidence and solid theoretical support, and offer precise plant pheno-
typing data for good trait screening during crop breeding. There are several com-
mon methods for traditional statistical analysis, including analysis of variance, 
regression analysis, discriminant analysis, cluster analysis, principal component 
analysis, and factor analysis.

 (1) Analysis of Variance

Analysis of variance is a common model in data analysis. Mean value, variance, 
and covariance are basic elements in analysis of variance. Mean value shows the 
middle position of a sample set. Variance shows the deviation of a random variable 
to its mean value. Covariance shows the distribution density of a sample set. For 
plant phenotyping applications, the mean value, variance and covariance will work 
together to carry out the multivariate analysis tasks. Through analyzing the contri-
butions of different variation sources on the total variation, analysis of variance can 
figure out the influence levels of definite and controllable factors on the results. In 
analysis of variance, factors are named with control variables, and results are named 
with observation variables. According to the number of control variables and their 
controllability, analysis of variance methods can be categorized into three groups, 
one-factor analysis of variance, multifactor analysis of variance, and analysis of 
covariance. For both one-factor and multifactor analysis, control variables are con-
trollable. As a result, the influence of one factor can be observed by keeping other 
factors constant. Meanwhile, multifactor analysis can also observe the correlation 
influences of two or more factors on observation variables. Taking the influences of 
different varieties and fertilizing quantities on crop yield as an example, varieties 
and fertilizing quantities can be taken as control variables, and yield can be taken as 
the observation variable. Either the best variety or the best fertilizing quantity for 
crop yield can be obtained, by keeping the other factor constant. Furthermore, the 
best combination of variety and fertilizing quantity can be determined through test-
ing the yield distribution under different combinations. For crop yield, there are also 
uncontrollable variables, such as weather and soil conditions. To solve this problem, 
weather and soil conditions are introduced as covariates. Thus, analysis of covari-
ance can be employed to evaluate the significant influences from controllable vari-
ables. An application example for analysis of variance on plant phenotyping is 
analyzing the relationship between different genotypes and nitrogen fertilizer 
demands (Kefauver et al. 2017).

 (2) Regression Analysis

Regression analysis is a collection of statistical methods for determining the 
quantitative relationships between two or more than two groups of variables. For big 
data analysis, it is a modeling technique for prediction, which mainly focuses on 
predicting the dependent variables with independent variables. The common regres-
sion analysis methods consist of linear regression, logistic regression, polynomial 
regression, stepwise regression, and ridge regression. Linear regression is one of the 
most well-known modeling tools. It builds prediction models based on linear func-
tions, by determining the coefficients with regression estimation. Logistic 
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regression is used to compute the probabilities of true or false for events. An obvi-
ous feature of logistic regression is the Boolean dependent values, yes or no, true or 
false, and 1 or 0. Logistic regression needs a large sample set to guarantee the esti-
mation accuracy. When the index of independent variables in the regression func-
tion is an integer larger than 1, the regression is called polynomial regression. 
Polynomial regression is capable of fitting polynomial functions. For the regression 
problems of functions with multiple independent variables, stepwise regression is 
also a good choice. It can build models by adding or deleting covariates according 
to specified standards, aiming to maximize the prediction power with minimum 
independent variables. Ridge regression is a biased estimation method for data sets 
suffering from multicollinearity. It adds a degree of bias to the least square regres-
sion estimates, in order to reduce the standard errors. Regression analysis can be 
used for different plant phenotyping applications, such as crop yield and quality 
prediction (Magney et  al. 2016) and disease-related genotype detection (Yu 
et al. 2018).

 (3) Discriminant Analysis

Discriminant analysis is a set of multivariable classification methods based on 
interval predictors or independent variables. The purpose of discriminant analysis is 
building the discriminant functions of a combination of feature values, which can 
discriminate instants from different categories. There are two main types of dis-
criminant functions, linear discriminant functions and canonical discriminant func-
tions. To conduct discriminant analysis, the discriminant variables are required to 
meet three assumptions. First, none of the discriminant variables is a combination 
of others. Second, the covariance matrices of instance groups are equal to each 
other. Third, the discriminant variables obey a multivariate normal distribution. In 
other words, each discriminant variable obeys a normal distribution when other 
discriminant variables are constant. There are four main variants for discriminant 
regression, including maximum likelihood estimation-based discriminant regres-
sion, distance-based discriminant regression, Fisher discriminant regression, and 
Bayes discriminant regression. Discriminant regression is also a common tool for 
plant phenotyping applications, such as seed classification (Elmasry et al. 2019) and 
nutrient absorption estimation (Kenobi et al. 2017).

 (4) Cluster Analysis

Cluster analysis is the process of categorizing the physical or abstracted objects 
into several groups, whose members are similar to each other. Cluster analysis 
employs two types of descriptors to reflect the correspondence or relational close-
ness between two instances or variables. The first type uses the proximity level of a 
pair of variables as the descriptor, for example, distance. The common distance defi-
nitions are Euclidean distance, Manhattan distance, Chebyshev distance, and chi-
squared distance. The second type uses the similarity level of a pair of variables as 
the descriptor, for example, the correlation coefficient. The most popular correlation 
coefficient is Pearson correlation coefficient. Researchers proposed a large variety 
of clustering algorithms, such as hierarchical clustering, K-means clustering, 
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density-based clustering, model-based clustering, and grid-based clustering. 
Hierarchical clustering categorizes objects on different layers. A tree graph will be 
built after hierarchical clustering. K-means clustering is the most well-known clus-
tering algorithm. It categorizes all samples into K groups according to the Euclidean 
distance between two sample points. Density-based clustering can search for the 
high-density areas segmented by low-density areas. It can find clusters of different 
shapes, while distance-based clustering can only find spherical clusters. Model- 
based clustering assumes all samples obey a series of implicit probability distribu-
tions. As a result, samples obeying the same distribution will go to the same cluster. 
Grid-based clustering divides the attribute space into finite grids, and samples are 
categorized according to their space locations. For plant phenotyping, cluster analy-
sis usually works together with other analysis methods. For example, cluster analy-
sis and discriminant analysis are employed to classify grape varieties based on their 
reflectance spectra (Rustioni et al. 2013).

 (5) Principal Component Analysis

Principal component analysis (PCA) transforms the original correlated variable 
set into an independent variable set. The new variables are linear combinations of 
original variables, and they are obtained with orthogonal transform. Theoretically, 
principal analysis can find infinite new components. However, only few of them 
contains valuable and dominant information of the original variable set. These com-
ponents are called principal components. PCA brings at least four benefits for data 
analysis. First, it carries out dimensionality reduction, which uses fewer principal 
components to hold the dominant information of the original variable set. Second, 
it brings a graphic expression for the data distribution. By taking each principal 
component as an axis, all samples can be located in an orthogonal coordinate sys-
tem, which clearly shows the standing of each sample and lets the outliers become 
explicit. Third, it helps to build regression models. Principal components can act as 
variables for the new regression models. Fourth, it helps to select dominant factors. 
PCA can sort the new components in a descending order according to their covari-
ance values. The selected principal components can be recognized as dominant fac-
tors for the sampled data set. Researchers often employ PCA to analyze the 
relationships between genotypes and plant phenotypes, such as selecting good gen-
otypes for black raspberry (Yazdanpour et al. 2018).

 (6) Factor Analysis

The idea of factor analysis is categorizing the variables into different groups 
based on their correlation status. After categorizing, variables in the same group 
have high correlation, while variables in different groups are independent or have 
low correlation. Factor analysis assumes that high-dimensional samples are gener-
ated with Gaussian distribution, linear transformation, and error disturbance. As a 
result, high-dimensional samples can be expressed by low-dimensional samples, 
and dimensional deduction can be achieved. Factor analysis is quite different from 
PCA. PCA abstracts principal components by building linear combinations of origi-
nal variables, while factor analysis finds factors by decomposing original variables 
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into several linear combinations. Factor analysis has advantages in determining the 
influences on plant phenotypes, coming from genotypes, fertilizers, or environmen-
tal conditions. Some researchers employ multifactor analysis to estimate and vali-
date the drought tolerance of maize (Dias et al. 2018).

7.4.3  Machine Learning and Deep Learning

7.4.3.1  Machine Learning

 (1) Overview

Statistical analysis is good at analyzing the data with obvious statistical and low- 
dimensional features. However, most plant phenotyping data are collected under 
complex agricultural scenarios. The features to be extracted might be strongly cou-
pled, heavily distorted, and high dimensional and hence are difficult to be modeled 
with traditional statistical tools or explicit equations. To solve this problem, 
researchers introduce machine learning (ML) algorithms. Machine learning algo-
rithms have advantages in building black-box models, which can infinitely approach 
the true models with more and more training. This idea avoids the tough modeling 
topic and finds the feature patterns approximately. Meanwhile, machine learning 
algorithms are capable of describing the implied relationships among multiple 
inputs and multiple outputs. This capability helps to extract the tightly related fea-
tures simultaneously (Singh et al. 2016).

Machine learning algorithms are a set of computerized mathematical solutions 
for feature extracting and modeling. They can search for patterns automatically 
from given data sets, instead of selecting the most fitted models manually with tra-
ditional statistical methods. The common modeling process for machine learning 
consists of three main parts: data preparation, model training, and model testing. 
Before model training starts, a data set will be given and divided into two sets, one 
for training and the other for testing. After data preparation is ready, the machine 
learning model will be trained with the training data. Then, testing data will be 
applied on the trained model to verify the training achievements. If the testing accu-
racy reaches a preset level, the trained model is ready for use. Otherwise, another 
training and testing loop should be launched with adjusted settings. The loops will 
not stop until the preset accuracy level is reached. To be noted, not all machine 
learning algorithms require labeled training and testing data. Based on the learning 
manners, machine learning algorithms can be roughly divided into four categories: 
supervised learning, unsupervised learning, semi-supervised learning, and rein-
forcement learning (Dey 2016). Only supervised learning strictly requires all train-
ing and testing data should be labeled.

 (2) Machine Learning Models

As a large number of machine learning algorithms have been proposed, it is dif-
ficult to give a comprehensive description for the whole research field. Categorizing 
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the algorithms into several groups can help to take a quick glance and select the 
right algorithms in application. Other than choosing proper machine learning tools 
based on learning manners, researchers prefer to select the suitable algorithms 
according to their model characteristics, which can imply their advantages in han-
dling specific data sets. There are several commonly used models, such as regression- 
based models, instance-based models, decision tree-based models, Bayesian-based 
models, clustering-based models, ensemble learning-based models, kernel-based 
models, and artificial neural network-based models (Liakos et al. 2018).

 (3) Regression-Based Models

Regression-based models mainly focus on revealing the relationships between 
variables, especially the influencing mechanisms of input variables on outputs. 
These groups of algorithms belong to the supervised learning category, meaning 
that they require all training and testing data labeled. In addition, they are sensitive 
to outliers. Linear regression and logistic regression are the most famous examples 
for regression-based models. There are also more powerful variants, such as ordi-
nary least squares regression, multivariate adaptive regression splines, and multiple 
linear regression. LemnaTec GmbH employed a prediction regression model to 
solve leaf-counting problems (Pape and Klukas 2015).

 (4) Instance-Based Models

K-nearest neighbor (KNN) is the most famous example for instance-based mod-
els. It combines training and testing steps together by adjusting the K value, dis-
tance definitions, and decision-making rules. For each new instance to be classified 
or predicted, K-nearest neighbor will calculate the distances between it and all train-
ing instances, find the K-nearest instance subset, and make decisions based on vot-
ing results of K-nearest instances. K-nearest neighbor has advantages on 
multiple-target classification problem. However, it is not capable of dealing with big 
data sets, because its computation load increases heavily if the data volume grows. 
For plant phenotyping, an example is grading the maturity of blueberry fruits (Tan 
et al. 2018).

 (5) Decision Tree-Based Models

A decision tree is a simple machine learning idea based on tree structures. It can 
give classification or regression decisions/labels at the leaf nodes by following a 
series of decision rules on a binary tree. The tree graph has three basic elements: 
root node, attribute node, and leaf node. The root node contains all the featured data, 
the attribute node contains the decision rules, and leaf nodes are the category labels. 
Under the help of the tree graph, decision tree-based models can achieve satisfying 
accuracy for big data problems after quick training and are capable for multi- 
classification problems. On the other hand, they are easily overfitted and often 
ignore the correlations among different attributes. Decision tree (DT) and classifica-
tion and regression trees (CART) are the most popular decision tree-based models. 
A plant phenotyping example for decision tree-based models is evaluating the can-
opy coverage ratio of paddy field (Guo et al. 2017).
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 (6) Bayesian-Based Models

These models are based on the Bayesian theorem, which assumes all character-
istics are independent. The assumption helps to build simple and effective models. 
In the learning process, Bayesian-based models are robust to missing data attributes 
and tolerant of small training data sets. Meanwhile, they are capable of handling 
multi-classification problems. However, the independence hypothesis is not valid in 
most practical applications and correlated attributes are prone to reduce the model 
performances. Bayesian-based models have different variants, including native 
Bayes, mixture of Gaussians, and Bayesian belief network. An instance for the 
application of Bayesian-based models on plant phenotyping is weed classification. 
A native Bayes-based classifier is built and trained to recognize two kinds of weeds 
(Ahmad et al. 2018).

 (7) Clustering-Based Models

The idea of clustering-based models is gathering the similar instances into cor-
responding clusters. They are typical unsupervised learning algorithms. In the clus-
tering process, the meaning or name for each cluster is not taken under consideration, 
which implies the training data are unlabeled. If the rules for similarity calculation 
are ready, the clustering-based models are ready to work. K-means algorithm is a 
classic example of clustering-based models. It can group N instances into K clus-
ters. The selection of K value is important to the performances of the algorithm. 
K-means algorithm is also sensitive to noise and isolated instances. Researchers 
from Iowa State University employ the K-means algorithm to detect single plants 
among 3D point clouds obtained in a growth chamber (Bao et al. 2018).

 (8) Ensemble Learning-Based Models

In fact, ensemble learning-based models do not have unique mathematical mod-
els. The idea of ensemble learning is combining weak learning models to form 
powerful learning strategies. Each selected weak model will be trained indepen-
dently. In the prediction step, the results from weak models are fused to give more 
accurate and robust performances. The key point of these strategies is how to select 
the proper weak models and fuse their results. Common ensemble learning-based 
models are Boosting, AdaBoost, and Random Forest (RF). Some researchers use 
RF to detect Septoria tritici blotch, a disease in wheat (Odilbekov et al. 2018).

 (9) Kernel-Based Models

Kernel-based models have distinguishing advantages in solving nonlinear clas-
sification and prediction problems. Kernel functions can project the models from 
low-dimension spaces to high-dimension spaces. Thus, some linear indivisible 
problems can be transformed to linear separability problems in high-dimension 
spaces, and instances from two different categories can be easily recognized. 
Support vector machine (SVM) is the most famous kernel-based learning algorithm. 
It is good at handling nonlinear and high-dimensional problems. As its optimizing 
target is minimizing the structured risks, SVM has a strong generalization power 
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and can reach satisfying accuracy with a small training data set. This feature makes 
it popular in agriculture applications, because it is difficult to obtain a large quantity 
of training data for most agricultural cases (high data collection cost and critical 
data collection conditions). SVM is widely used for plant phenotyping, such as 
plant growth prediction (Qiu et al. 2017), disease detection (Nagasubramanian et al. 
2018), and canopy coverage estimation (Yu et al. 2017).

 (10) Artificial Neural Network-Based Models

Artificial neural networks (ANNs) are inspired by the structure and working mech-
anism of the human brain. With hundreds of variants, ANNs are the most active branch 
in machine learning. A typical ANN has three layers of neurons: input layer, middle/
hidden layer, and output layer. The numbers of neurons for input and output layers are 
fixed according to the numbers of input/output parameters. The number of neurons for 
the hidden layer can be selected freely. Each neuron in the hidden layer and output 
layer is connected to all neurons in the last layer by weighted connections, which will 
be calibrated during the training process. A sum operation is embedded in every neu-
ron of hidden and output layers to fuse all the information from the last layer. For the 
hidden layer, each neuron also has an active function to handle the sum result. ANN is 
capable of modeling nonlinear and complex systems, and this feature makes it a good 
choice for plant phenotyping applications. An example for the application of ANN in 
plant phenotyping is recognizing different tobacco variants with hyperspectral plant 
leaf images (Seiffert et al. 2010). There are different topology structures for different 
ANNs, such as feedforward network, feedback network, self-organizing map neural 
network, and convolutional neural network. A convolutional neural network (CNN) is 
the most famous network for deep learning, which is the most popular machine-learn-
ing topic in recent years. An introduction especially about deep learning in plant phe-
notyping will be given in the following part.

7.4.3.2  Deep Learning

The most popular basic network for deep learning is CNN (LeCun et al. 1989). The 
first successful application of CNN was the recognition of handwritten numbers 
(LeCun et al. 1998). In this application, the pooling layer was introduced and the 
structure of modern CNN was established. The hidden layers of CNN are divided 
into three categories: convolutional layer, pooling layer, and fully connected layer. 
Convolutional layers and pooling layers are placed alternatively and appear in pairs. 
They play different roles in the feature extracting process: convolutional layers 
abstract the local features, while pooling layers help to get rid of the redundant fea-
tures and endow the algorithm with translation invariance. With different 
convolutional- pooling layer pairs, CNN can abstract features of different dimen-
sions. A fully connected layer is used to combine all the abstracted features and 
fulfill the learning purposes. In 2012, Hinton and his students greatly improved the 
image classification accuracy in the ImageNet challenge (Krizhevky et  al. 2012) 
with a new proposed CNN variant, AlexNet. AlexNet is regarded as the milestone 
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for the new rapid development period of deep learning. A large number of deep 
learning (DL) algorithms were presented after that, including R-CNN, SPP-NET, 
Fast R-CNN, Faster R-CNN, SSD, and R-FCN.  Now, deep learning algorithms 
become powerful tools in the field of image processing and natural language pro-
cessing. With these advantages, deep learning is drawing more and more attention 
of plant phenotyping researchers. A number of successful deep learning algorithms 
for image processing are employed to extract plant phenotyping traits. Researchers 
from Iowa State University conducted a survey about the published papers of 
ML-based and DL-based plant phenotyping (Singh et al. 2018). It shows that the 
portion of DL-based plant phenotyping solutions in ML-based ones grows rapidly 
since 2017, from 1/10 in 2017 to 5/6 in 2018. The plant phenotyping applications of 
deep learning cover a variety of topics, such as plant recognition (Šulc and Matas 
2017), leaf counting (Ubbens et al. 2018), plant stalk counting and width estimating 
(Baweja 2018), bloom detection (Xu et al. 2018), disease detection (Toda and Okura 
2019), and stress identification (Ghosal et al. 2018).

7.5  Summary

More recently, special attention were focused on plant phenotyping, measuring 
morphologic and physiological parameters of various plants, and fewer attention 
were drawn to sensing soil and environment conditions. It is significant to monitor 
the ambient growth conditions of plants, such as soil nutrient, ambient temperature 
and humidity, and solar radiation.

Plant growth is susceptible to numerous factors, and plant phenotype is the specific 
characteristics that are deemed to the results from the interaction of its genetic proper-
ties and external environment conditions (Uchiyama et al. 2014). A plant acquires 
primary water and nutrition from soil resources and collects light, carbon dioxide, 
oxygen, and others to finish assimilation and catabolism. Phenotyping is a dynamic 
measurement process and changing along with plant growth. Simultaneously, soil and 
ambient environmental conditions also vary with time. Nitrogen, light, humidity, and 
other factors at different levels will contribute to variations in measurement results 
(Uchiyama et al. 2014; York and Lynch 2015). Therefore, it is necessary and essential 
to sense soil and environment over a long time, build a corresponding database for 
analyzing the relationship between phenotype and genotype of plants, further provide 
more information for breeders to assess species, and identify ideotypes.
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Chapter 8
Crop Sensing in Precision Agriculture

Hong Sun, Minzan Li, and Qin Zhang

Abstract Precision agriculture or precision farming is a scientific management 
strategy based on the spatial and temporal variability of soil, crops, and the environ-
ment, and crop sensing is an effective technology to understand the variability. In 
the past decades, a number of crop sensors or instruments based on spectroscopy 
have been developed and applied to satisfy the requirements and solve detecting 
problems in the field. These instruments can be used in multiple types, such as 
handheld detection, vehicle-mounted diagnosis, and remote sensing by UAV or sat-
ellites. Typical sensors and specific applications are summarized to explain the 
application fundamental and potential of crop sensing. These spectral sensors 
include hyper-spectrometers, multiband sensors for vegetation indices, and imagery 
instruments using visible or extended spectral bands. Frontier research areas in sen-
sor development are also introduced involving wireless sensor networks, integrated 
sensors for data fusion, and different methods for spectral imaging collection. In 
addition, applications of different sensors are reviewed including the recognition of 
crops and weeds, estimation of nutrients and growth status, and identification of 
disease and pests. A variable-rate fertilizer system controlled by crop sensors is also 
demonstrated to show how crop sensing technology could help precision manage-
ment in the field. Crop sensing sensors and instruments will promote reliable pre-
dictions and operations in agriculture.
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8.1  Introduction

Precision agriculture (PA) or precision farming contributes to improving agronomic 
performance, saving resources, and protecting the environment. It is established as 
a management strategy that employs detailed, site-specific information to precisely 
manage production inputs based on variability to replace average inputs in the field. 
Besides 3S technology including the Global Navigation Satellite System (GNSS), 
Geographic Information Systems (GIS), and remote sensing (RS), many other tech-
nologies such as proximal imaging, spectroscopy, and wireless sensor network 
(WSN) are applied in PA (Jawad et al. 2017). They provide more efficient ways in 
crop management including real-time detection of crop growth, targeted analysis 
and decision-making of precision operation, and manual labor liberation by opti-
mized tools.

In general, there are three main steps in precision crop management includ-
ing soil and crop sensing, decision-making, and variable-rate application. One 
of the critical issues in precision agriculture is how to measure crop growth data 
noninvasively and efficiently. In the past decades, significant progress on optical 
instruments has been made in crop monitoring (Pallottino et al. 2019). A num-
ber of crop sensors and instruments have been developed and used to meet the 
requirements of PA and solve detecting problems in the field as shown in 
Fig. 8.1. They include RGB (red, green, blue) cameras, multispectral image sen-
sors, hyper-spectrometers, unmanned aerial vehicles (UAVs), satellite remote 
sensors, thermographic imagers, and light detection and ranging (LiDAR). Most 
of them are developed based on the combination of spectroscopy, optical 

Remote sensing

RGB / Multispectral / 

Hyperspectral Imagery

SPAD-502plus

GreenSeeker

LiDAR sensor

Spectrometer

Field Crop

Thermograph  

LAI Sensor

Fig. 8.1 Crop sensing instruments in precision agriculture (Disclaimer: Commercial products are 
referred to solely for the purpose of clarification and should not be construed as being endorsed by 
the authors or the institution with which the authors are affiliated)
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principles, and photodetectors to measure the reflected electromagnetic energy. 
In a typical way, data are represented with energy intensity by line plots and 
two-dimensional (2D) and three-dimensional (3D) images and even presented 
as a data cube.

In most cases, crop information is captured by instruments through line scanning 
or digital photography. Then the data are analyzed using various specialized soft-
ware applications, such as spectroscopy analysis and digital image processing. 
Spectroscopy uses the interaction of electromagnetic waves with an object to per-
form an analysis related to crop nutrient or biomass. Digital imaging is a set of 
computational techniques for analyzing, enhancing, compressing, processing, and 
reconstructing crop images. Both methods are widely used in crop recognition and 
parameter estimation.

Researchers have developed some new instruments and extended their applica-
tions in many scenarios, including handheld detection, vehicle-mounted diagnosis, 
and remote sensing by UAVs or satellites, to build reliable prediction models of 
complex and uncertain phenomena in agriculture. In order to explain the application 
fundamental and potential of crop sensing instruments in precision agriculture, sen-
sors and the specific models from spectral and image sensing technologies are 
examined. Applications of crop sensing involve the recognition of crops and weeds, 
estimation of nutrient and growth status, identification of disease and pests, and 
detection of special crop fruits.

8.2  Spectroscopy-Based Sensing Instruments 
for Crop Monitoring

8.2.1  Foundation of Spectral Sensing and Vegetation Indices 
in Crop Sensing

According to the range of electromagnetic radiation at specific nanometer (nm) 
wavelength, crop sensing is generally referred to as ultraviolet (UV, 200–400 nm), 
visible (Vis, 400–760 nm), near-infrared and shortwave infrared (NIR and SWIR, 
760–2500  nm) (Toth and Joźkow 2016). The green plant typically displays low 
reflectance in the visible region, especially in the red band close to 650 nm due to 
strong absorbance by photosynthetic and accessory plant pigments. By contrast, the 
reflectance is usually high from the red-edge (680–760 nm) to the NIR (780–2500 nm) 
region because there is very little absorbance by subcellular particles or pigments 
and considerable scattering at mesophyll cell wall interfaces.

Since the changes in leaf pigments and biochemical components caused by nutri-
ent stress or bio-infringement can influence the spectral characteristics of leaves, the 
spectral analysis can be used to monitor growing crops (Narvaez et al. 2017). Zhang 
et  al. (2019a) reviewed that the spectral features used in plant monitoring was 
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Table 8.1 Spectral features for monitoring plant diseases and pests

Category Feature type Characteristics Reference

VIS-NIR 
features

Original 
reflectance

Capture spectral variations 
caused by disease infection or 
pest infestation. The spectral 
features are capable of describing 
either variation of band 
reflectance intensity or changes 
in shape of spectral curves.

Sankaran et al. (2010), 
Huang et al. (2012), 
Xu et al. (2007), 
Zhang et al. (2012), 
Luo et al. (2013) and 
Zhang et al. (2014)

Vegetation indices
Derivative spectral 
features
Continuous removal 
spectral features
Wavelet features

Fluorescence 
and thermal 
parameters

Parameters derived 
from laser-induced 
fluorescence 
spectra, e.g., F686/
F740

Presymptomatic indicators of 
plant diseases and pests. The 
fluorescence parameters measure 
changes in photosynthesis due to 
plant diseases and pests. The 
thermal parameters indicate 
changes in plant transpiration 
intensity.

Tartachnyk et al. 
(2006), Kuckenberg 
et al. (2009), 
Bauriegel et al. 
(2014), Stoll et al. 
(2008) and Calderón 
et al. (2013)

Parameters 
associated with the 
saturation pulse 
method, e.g., Fv/
Fm, NPQ, ΦPSII, 
and Fv′/Fm′
Absolute/relative 
temperature, e.g., 
Tleaf−Tair

Note: The table is modified from Table 8.2 (Zhang et al. 2019a)

particularly affected by disease and pests. As shown in Table 8.1, spectral features 
of infected or damaged plants are highlighted including VIS-NIR spectral reflec-
tance, fluorescence, and thermal features. Among those spectral features, band 
reflectance is the simplest form and can be transformed in different ways, such as 
spectral derivative, continuous removal transformation, and continuous wavelet 
transformation.

Spectral characteristics of vegetation can be analyzed based on sensitive reflec-
tance and the vegetation index (VI). Sensitive wavelengths related to crop parame-
ters are selected from the hyper-spectra to evaluate the vegetation vigor. A VI is a 
spectral transformation of two or more wavebands designed to enhance the contri-
bution of vegetation properties and allows reliable spatial and temporal intercom-
parisons of terrestrial photosynthetic activity and canopy structural variations. Some 
VIs measured by specific bands are listed in Table 8.2, in which Ri is the reflectance 
at i nm or i band such as green, red, red edge, or NIR.  Among these VIs, the 
Normalized Difference Vegetation Index (NDVI) is the most commonly used in 
crop monitoring. Large amounts of literature indicate that quantization parameters 
of spectra and vegetation indices are common methods in vegetation recognition, 
crop classification, and biomass estimation. Therefore, some sensors have been 
developed to measure VIs based on spectroscopy due to huge potentials of field 
applications.
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Table 8.2 Vegetation indices measured by spectral reflectance

Name Acronym Formula Application Reference

Difference 
vegetation index

DVI RNIR − Rred Disease (soybean 
rust)

Cui et al. (2009)

Ratio vegetation 
index

RVI RNIR/Rred Disease (soybean 
rust), LAI (apple), 
yield (wheat), 
nitrogen (wheat)

Cui et al. (2009), 
Han et al. (2016), 
Zhang et al. (2019b) 
and Cao et al. (2012)

Normalized 
difference 
vegetation index

NDVI (RNIR − Rred)/
(RNIR + Rred)

Water (corn, 
soybeans), LAI 
(apple, potato), 
nitrogen (wheat)

Dejonge et al. 
(2016), Chen et al. 
(2005), Han et al. 
(2016) and Cao et al. 
(2013)

Normalized 
difference red 
edge

NDRE (RNIR − Rred edge)/
(RNIR + Rred edge)

Nitrogen (wheat, 
rice), chlorophyll 
(sorghum)

Cao et al. (2013) and 
Potgieter et al. 
(2017)

Green 
normalized 
difference 
vegetation index

GNDVI (Rnir - Rgreen)/ 
(Rnir + Rgreen)

Powdery mildew 
(wheat), aphid 
(wheat), 
leafhopper 
(cotton), water 
(corn, apple, 
potato)

Zhang et al. (2012), 
Luo et al. (2013), 
Prabhakar et al. 
(2011), Dejonge 
et al. (2016), Han 
et al. (2016) and Ray 
et al. (2006)

Green ratio 
vegetation index

GRVI (RNIR/Rgreen) − 1 LAI (apple) Han et al. (2016)

Photochemical 
reflectance index

PRI (R531 − R570)/
(R531 + R570)

Disease (grape 
leafroll), LAI 
(potato)

Naidu et al. (2009) 
and Ray et al. (2006)

Red-edge 
vegetation stress 
index

RVSI (R714 + R752)/(2 − R733) Disease (grape 
leaf)

Naidu et al. (2009)

Soil-adjusted 
vegetation index

SAVI (RNIR − Rred)(1 + L)/
(RNIR + Rred + L)

LAI (potato) Ray et al. (2006)

Optimized 
soil-adjusted 
vegetation index

OSAVI 1.16(R800 − R670)/
(R800 + R670 + 0.16)

Water (corn) Dejonge et al. 
(2016)

Normalized 
difference water 
index

NDWI (R858 − R1640)/
(R858 + R1640)

Water (corn and 
soybeans)

Chen et al. (2005)

8.2.2  Spectral Sensing in Crop Monitoring

Spectral instruments with optical sensors are the fundamental tools to assess vegeta-
tion status. Three kinds of spectral instruments have been used including continuous 
spectrometers, vegetation index sensors, and imaging spectrometers. In general, 
spectrometers are used to measure continuous spectral reflectance of light over a 
specific portion of the electromagnetic spectrum, and vegetation index sensors mea-
sured by dual or multispectral bands. There are many commercially available 
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products of portable sensors for crop monitoring. They are generally defined as a 
passive type or an active type according to lighting strategies during the measure-
ments. For example, the Soil Plant Analysis Development (SPAD) meter is a com-
pact device with active lighting and transmittance measurement to determine the 
amount of chlorophyll in plant leaves at 650 and 940 nm. The GreenSeeker (Trimble 
Agriculture, Sunnyvale, CA, USA) gets NDVI with the active lighting module. 
Some applications of hyperspectral sensing and vegetation index sensing in crop 
monitoring are listed in Table 8.3, which include detections of chlorophyll content, 
nitrogen content, and sugar content and estimations of growth stages and yields, 
even weed identification.

Table 8.3 Spectral sensing applications in crop monitoring

Type Describe Application Reference

Hyperspectral 
sensing

Vis-NIR, 350–1075 nm or 
350–2500 nm, handheld or 
vehicle mounted

Chlorophyll 
content (maize), 
growth stages 
(potato), weeds

Liu et al. (2018a, b), Sun 
et al. (2019a, b) and 
Shirzadifar et al. (2018)

Vis-NIR,190–900 nm, lab 
used

Sugar content 
(apple)

Zhang et al. (2015)

Vis-NIR, 350–820 nm, 
portable

Chlorophyll 
(wheat)

Cheng et al. (2017)

Vegetation 
index sensing

Active light, 650 and 940 nm, 
transmittance, handheld

Chlorophyll, 
nitrogen (wheat, 
corn, coffee)

Uddling et al. (2007), 
Netto et al. (2005), Zhao 
et al. (2007) and 
Gholizadeh et al. (2017)

Active light, 660 and 780 nm, 
handheld or vehicle mounted

Nitrogen (corn, 
wheat), yield 
(wheat), growth 
stages (corn)

Cao et al. (2012, 2017), 
Zhang et al. (2019b), 
Taskos et al. (2015), 
Singh et al. (2015) and 
Tremblay et al. (2009)

Vis-NIR six bands (450, 550, 
650, 670, 730, 760 nm), and 
three of these bands can be 
used at one time, handheld or 
vehicle mounted

Nitrogen (wheat), 
chlorophyll (grape)

Cao et al. (2013, 2017) 
and Taskos et al. (2015)

550, 670, 700, 740, 780 nm, 
vehicle mounted

Nitrogen (wheat), 
growth stages 
(corn)

Singh et al. (2015), 
Tremblay et al. (2009)

Active light, 670, 730 and 
760 nm, handheld or vehicle 
mounted

Yield (grasses/
legumes)

Serrano et al. (2016)

Active light, 730 and 808 nm, 
vehicle mounted

Growth stages 
(winter wheat)

Sharabian et al. (2013)

Active light, 653 and 931 nm, 
transmittance, handheld

Nitrogen (grape) Taskos et al. (2015)
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8.2.2.1  Hyper-Spectrometers for Crop Sensing

Hyper-spectrometers are the most frequently used instruments especially during 
theoretical or mechanism analysis in crop sensing. Most of the instruments used in 
chemical detection are designed based on UV spectroscopy, which work under the 
principle of Beer Lambert’s law. Zhang et al. (2015) used a UV-2450 spectrograph 
to measure the visible and NIR spectral reflectance of apple leaf samples within the 
300–900 nm band, and such spectral information of apple tree leaves in different 
phenological phases could be used to predict fruit sugar content. According to the 
result of the two-dimensional correlation spectroscopic analysis on apple leaf reflec-
tance with fruit sugar content as perturbation, it was observed that the autocorrela-
tion peaks all appeared at the 530–570  nm and 700–720  nm wavebands in the 
synchronization spectrogram. The contribution proportion to fruit sugar content in 
different growth periods was investigated and then the support vector machine 
(SVM) model was established. The determination coefficient of the calibration 
model (Rc

2) of the SVM model reached 0.89, and the determination coefficient of 
validation (Rv

2) reached 0.88.
Compared with laboratory instruments, portable sensors are more flexible in the 

field. The devices could be selected by spectral range, resolution, usage require-
ments, and so on. For example, ASD FieldSpecHH1 is a 512-element photodiode 
array spectroradiometer with a 325–1075 nm wavelength range. It uses a fixed con-
cave holographic reflective grating that disperses the light onto a fixed photodiode 
array that has 512 individual detection points or “elements” in a line. Associated 
with each of these elements is a distinct signal whose magnitude is determined by 
the total integrated amount of light energy falling on that element. Then, each ele-
ment is assigned to a position within 512 points. In this way, the analog signal is 
converted into digital signal. The instruments could be set to view traceable wave-
length references such as emission source, reflectance standards, and the output of 
a triple monochromator. The output results are data points with known element- 
position and wavelength-channel coordinates.

Many of the current studies on crop monitoring involve portable spectrometers. 
The operation flow generally involves the control parameter setting, storage direc-
tory setting, dark noise measuring, reference calibration, sample detection, spec-
trum calculation, and display. The measured data are used to analyze and establish 
a specific model for crop monitoring purposes. Liu et al. (2018a, b) measured the 
spectral reflectance of maize canopy by using ASD FieldSpecHH to estimate the 
chlorophyll content. The data were processed following wavelet denoising and mul-
tivariate scatter correction (MSC) to reduce the noise influence. Then three spectral 
ranges were extracted by interval partial least squares (IPLS), including 525–549 nm, 
675–749  nm, and 850–874  nm. The chlorophyll content estimation model was 
developed by using support vector regression (SVR). The calibration Rc

2 of the 

1 Disclaimer: Commercial products are referred to solely for the purpose of clarification and should 
not be construed as being endorsed by the authors or the institution with which the authors are 
affiliated.
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model was 0.831, the RMSEC was 1.3852 mg/L, the validation Rv
2 was 0.809, and 

the RMSEP was 0.8664  mg/L.  Using the same spectrometer, Sun et  al. (2019a) 
explored the optimizing spectral features to identify the growth stages of potato 
plants. In general, the canopy spectral reflectance varied with the growth stages in 
the bands of 400–500 nm, 530–640 nm, 740–880 nm, and 910–960 nm. The clas-
sification accuracies of SVM models were 100% in the training set and 94.59% in 
the testing set, respectively.

8.2.2.2  Portable Sensors Used in Crop Monitoring

According to the specific features and VIs used in crop monitoring, some sensors 
are designed as portable with only several sensitive bands to reduce redundant spec-
tra. These specific sensors are generally developed based on the red and NIR bands. 
Besides red and NIR bands, a red-edge band located in the range of 700–760 nm is 
also included in the instruments to increase the variables in detecting models. An 
instrument can be designed to measure the transmitted or reflected light from leaves 
and crop canopy. The light source in the measurement can be natural light (sunlight) 
or artificial light source (lamp) defined as a passive or active lighting. The instru-
ment with active lighting is more robust in field application to improve the perfor-
mances under the limitation of weather or time windows. A few portable (handheld) 
instruments could be used to evaluate the content of chlorophyll or nitrogen, LAI, 
and yield using the calculated VIs. Farmers can use them in precision agriculture 
according to the application cases, leaf, or canopy measurement.

Portable Sensors for Leaf Measurement

Portable or handheld instruments for leaf measurement have advantages of compact 
size and lightweight. Most of them are designed based on the transmittance with the 
active light source. One of the widely used leaf chlorophyll meter is probably the 
Soil and Plant Analyzer Development (SPAD) chlorophyll meter, such as SPAD-502 
Plus (Konica Minolta Inc., Japan).

Uddling et al. (2007) reported that the readings from the SPAD-502 Plus could 
not only provide the measurement of chlorophyll content, but also provide the infor-
mation for estimating nitrogen status as well as photosynthetic pigment content. 
Schepers et al. (1992) compared the corn leaf disk N concentrations and SPAD 502 
chlorophyll meter readings from N rate studies at the silking stage for a variety of 
hybrids. Data indicated that chlorophyll meter readings correlated well with leaf N 
concentrations for a given hybrid and location. Netto et al. (2005) established a cor-
relation between the photosynthetic pigment content extracted in dimethylsulfox-
ide, the total nitrogen content, and the chlorophyll fluorescence variables with the 
SPAD-502 readings in Coffea canephora Pierre leaves. If the SPAD-502 readings 
were lower than 40, it showed impairment in the photosynthetic process. In the 
study, total N concentration increased linearly with SPAD-502 readings. Meanwhile, 
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the relationship between the values obtained by the SPAD-502 and the chlorophyll 
fluorescence variables (F0, Fm, and Fv/Fm) proved that the maximum quantum effi-
ciency of the photosystem II, indicated by the Fv/Fm ratio, started to fall at around 40.

The measured values by SPAD meters have also been used in the fertilization 
guiding. Zhao et  al. (2007) proposed a study on the relationship between SPAD 
chlorophyll meter readings and nitrogen content in leaves in order to determine the 
amount of nitrogen fertilization. Field experiments were conducted in three wheat 
growth duration stages from 2003 to 2006. Grain yields and soil NO3-N contents 
were measured in all plots. The results indicated that the fertilizer application guided 
by the meter values reduced the spatial variability of wheat yield and had benefits of 
low soil residual NO3-N content and NO3-N leaching potential.

Gholizadeh et al. (2017) focused on the relationship between SPAD chlorophyll 
meter readings and N content in leaves during different growth stages. The research 
introduced the most suitable stage for the assessment of crop N and prediction of 
rice yield. Results implied that there was a better relationship between rice leaf N 
content (R2 = 0.93) and yield (R2 = 0.81), with SPAD readings at the panicle forma-
tion stage. Therefore, the SPAD-based evaluation of N status and prediction of rice 
yield is more reliable on this stage rather than at the booting stage.

Although SPAD readings have been widely used in the measurement of chloro-
phyll content, Xiong et al. (2015) indicated the relationship between chlorophyll 
content and leaf N content per leaf area, and the relationship between SPAD read-
ings and leaf N content per leaf area varied widely among the species groups. A 
significant impact of light-dependent chloroplast movement on SPAD readings was 
observed under low leaf N supplementation in both rice and soybean but not under 
high N supplementation. Furthermore, the allocation of leaf N to chlorophyll was 
strongly influenced by short-term changes in growth light. It demonstrates that the 
relationship between SPAD readings and leaf N content per leaf area is profoundly 
affected by environmental factors and leaf features of crop species, which should be 
accounted for when using a chlorophyll meter to guide N management in agricul-
tural systems.

Portable Sensors for Canopy Measurement

Instruments for canopy monitoring are generally designed to measure the reflected 
light related to typical VIs. Portable instruments, such as GreenSeeker, Crop Circle, 
and N-Sensor, are commonly used to get the NDVI in the field. For on-the-go appli-
cations, these sensors can also be mounted to vehicles to remotely sense plants 
while driving through a field.

According to the concept of the active crop canopy monitoring, an instrument 
emits a brief burst of red and infrared light and then measures the amount of each 
type of light that is reflected back from the plant. GreenSeeker sensors (Trimble 
Navigation Limited, Sunnyvale, CA, USA) are designed based on modulated red 
(650–670 nm) and NIR (755–785 nm) LEDs (light-emitting diode). Crop Circle 
devices (Holland Scientific Inc., Lincoln, Nebraska, USA) are equipped with 
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multispectral active sensors. The Crop Circle ACS-430 incorporates three optical 
measure channels, so that the sensor simultaneously measures crop/soil reflectance 
at 670, 730, and 780 nm. Moreover, the Crop Circle ACS-470 has six bands (450, 
550, 650, 670, 730, 760 nm) and three of these bands can be used at one time to 
measure the radiative transfer and biophysical characteristics of plant canopies. 
Yara N-Sensor (Yara International ASA, Germany) is different from the active opti-
cal sensors mentioned above. It has a xenon flashlamp, which provides high- 
intensity multispectral light, so that it can measure and record the crop light 
reflectance in a waveband between 450 and 900 nm (Munoz-Huerta et al. 2013).

Several studies were conducted to detect crops based on portable sensors men-
tioned above. Cao et al. (2012) found that GreenSeeker-NDVI was exponentially 
related to N uptake in winter wheat, whereas the correlation between N uptake and 
RVI was linear. Zhang et  al. (2019b) intended to expand the applicability of 
GreenSeeker in monitoring the growth status and predicting the grain yield of win-
ter wheat (Triticum aestivum L.). Four field experiments with multiple wheat culti-
vars and N treatments were conducted during 2013–2015 to obtain NDVI and RVI 
synchronized with four agronomic parameters: LAI, leaf dry matter (LDM), leaf 
nitrogen concentration (LNC), and leaf nitrogen accumulation (LNA). Duration 
models indicated that NDVI and RVI explained 80%, 68–70%, 10–12%, and 
67–73% of the variability in LAI, LDM, LNC, and LNA, respectively. Considering 
the variation among different wheat cultivars, the newly normalized VIs rNDVI 
(NDVI vs. the NDVI for the highest N rate) and rRVI (RVI vs. the RVI for the high-
est N rate) were calculated to predict the relative grain yield (RY, the yield vs. the 
yield for the highest N rate). rNDVI and rRVI explained 77–85% of the variabil-
ity in RY.

In order to determine which VIs calculated from the Crop Circle sensor can per-
form the best estimation of rice N status, Cao et al. (2013) compared six VIs based 
on the green (550 ± 20 nm), red-edge (730 ± 10 nm), and NIR (>760 nm) bands. The 
results indicated that using the Normalized Difference Red Edge (NDRE) to predict 
plant N uptake had the highest coefficient of determination (R2, 0.76) and the lowest 
root mean square error (RMSE, 17.00 kg N/ha). The second best-performing vege-
tation index was the Red-Edge Chlorophyll Index (CIRE), which performed simi-
larly to NDRE. Crop Circle ACS-210 and ACS-430 (red at 630 nm, red edge at 
730 nm, and NIR at 780 nm) were compared and different NDVI values were ana-
lyzed in each individual waveband (Taskos et al. 2015). The results demonstrated 
that ACS-430 and red-edge-based indices were more strongly correlated with leaf 
chlorophyll of vineyards.

Regarding the Yara N-Sensor (Yara International ASA, Germany), Singh et al. 
(2015) investigated the tractor-mounted N-Sensor to predict nitrogen (N) content 
for wheat crop under different nitrogen levels. It was observed that there was a 
strong correlation among sensor attributes (sensor value and sensor NDVI) and dif-
ferent N-levels. The Yara N-Sensor/FieldScan (Yara International ASA, Germany) 
was used to assess the status of N in spring wheat and corn (Zea mays L.) at specific 
growth stages (Tremblay et al. 2009). It was found that the Yara N-Sensor/FieldScan 
should be used before growth stage V5 in corn during the season if NDVI was used 
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to derive crop N requirements. Yara N-Sensor/FieldScan can also record spectral 
information from wavebands other than red and NIR, and more VIs can be derived 
that might relate better to the nitrogen status than NDVI.

Besides the instruments introduced above, there are similar systems such as 
OptRx Crop meter (Holland Scientific, USA), CropSpec sensor (Topcon Positioning 
Systems, USA), and CCM-200 and CCM 300 (Edaphic Scientific, Australia). They 
are also widely used in nitrogen and chlorophyll measurements (Serrano et al. 2016; 
Sharabian et al. 2013). Published reports indicate that each sensor has its own sen-
sitivity characteristics, and the wavelengths around 550, 650, 766, and 850 nm are 
mostly selected according to different applications (Tremblay et al. 2009; Cao et al. 
2017; Taskos et al. 2015). Meanwhile, the algorithms should be proposed to estab-
lish estimation models, so that the modeling results could indicate the operation in 
the field management.

8.2.3  Development of Spectroscopy-Based Systems 
for Crop Detection

The current trend in crop sensing is to integrate compact sensors and detecting mod-
els. In this sense, certain studies have been conducted to develop new systems to 
provide support in field management.

8.2.3.1  Development of Hyperspectral Sensors for Crop Monitoring

In order to predict the nutrient content of winter wheat nondestructively in the field, 
an integrated system was developed based on an STS-VIS sensor (Cheng et  al. 
2017). The STS-VIS sensor from Ocean Optics Inc., USA, is a compact sensor for 
portable application. It is a grating-based device with an advanced CMOS (comple-
mentary metal-oxide-semiconductor) 1024-element detector array to measure 
wavelengths in 350–850 nm. The USB output makes secondary development pos-
sible to satisfy online detection, typically by the software integration of established 
models. As shown in Fig. 8.2, the hardware of the integrated spectrometer consists 
of three parts of the optical system, the data storage module, and the controller. The 
optical sensor with a fiber is used to measure the reflected light from the leaf or 
canopy of the field crop. The controller could be connected to the sensor through 
USB2.0 or a wireless network. The supporting software installed on the PC or 
mobile controller helps to control the signal communication and processing. The 
setting parameters include the integration time, sampling frequency, and average 
number due to the effects of the ambient light intensity and the sampling 
requirements.

A software program was also developed to collect the spectral reflectance of 
winter wheat canopy in 350–820 nm. The calibration experiment was carried out to 
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Fig. 8.2 Mechanical structure of the integrated spectrometer. (Cheng et al. 2017)

test the performance of the sensor by a gray calibration board with four different 
gray levels. The correlation coefficient between the sensor and ASD (Field Spec 
HandHeld2) showed that the average correlation coefficient was 0.94. Eight wave-
lengths, including 514, 527, 562, 572, 605, 705, 719, and 795 nm, were selected to 
detect the chlorophyll content using the random frog (RF) algorithm after spectral 
curve smoothing. The determination coefficient of the partial least squares (PLS) 
regression model was 0.69.

8.2.3.2  WSN-Based Sensors for Crop Monitoring

With the development of wireless sensor networks (WSNs), a novel system which 
contained one control unit and several optical sensor nodes for crop growth detec-
tion was developed by China Agricultural University (Zhong et al. 2014). Sensors, 
organized by ZigBee WSN, were designed to collect, amplify, and transmit the opti-
cal signals. A CS350 (Cilico Microelectronics Corp., Ltd., Xi’an, China) type of 
PDA (personal digital assistant) was selected as the coordinator of the whole wire-
less network to receive, display, and store all the data sent from different sensor 
nodes. Since wireless communication was applied, the PDA could be easily used, 
installed in the cab of the tractor, or hand-held by the operator.

Each sensor node was designed with four optical channels at the wavebands of 
550, 650, 766, and 850 nm, respectively. Since the detection system used sunlight 
as the light source, besides the reflected light from crop canopy, the sunlight inten-
sity was also measured as a reference as shown in Fig. 8.3. A full-function sensor 
node had to contain eight optical channels, the upward four for the sunlight mea-
surement and the downward four for the reflected light measurement. A silicon pho-
todiode was used to convert the light signal to current signal in each optical channel. 
A 4:1 time-sharing analog multiplex chip was applied to share the amplification unit 
and an OPA333 amplifier was chosen which had the properties of high precision, 
low quiescent current, and low power consumption. The weak signals were then 

H. Sun et al.



263

MCU

Light channels

Analog 

switch

Fig. 8.3 Structure of the WSN-based sensor for crop monitoring. (Zhong et al. 2014)

amplified and transformed to voltage signals and subsequently read through A/D 
convertors in the microcontroller unit (MCU), which was a JN5139 wireless module 
(Jennic Co, UK). The measured data were wirelessly transmitted to the coordinator 
via an antenna.

Therefore, once started, the sensor was initialized and the data were collected 
automatically with a certain sampling frequency. By setting the address of analog 
switch, the data of each channel were repeated for ten times and then averaged. 
Sensors had different identification numbers, and the sampling frequency was 
adjustable according to different requirements.

In the field experiments, the optical sensors measured the spectral reflectance of 
the crop canopy with four channels at 550, 650, 766, and 850 nm separately. The 
transmission quality of the sensor nodes was evaluated at distances of 20, 40, 60, 80, 
and 100 m and the signals could be transmitted precisely without packet loss in all 
tests. Calibration experiments showed that the accuracy of the optical components 
was high enough for application. The results of the stationary field experiments 
showed that the detection system was capable of monitoring the spectral character-
istics of the crop canopy. The correlation between chlorophyll content and NDVI 
was at an acceptable level, with R2 of 0.681–0.718. The system provides a support 
for crop growth detection and a theoretical basis for further research on chlorophyll 
content prediction in the field.

8.2.3.3  An Integrated Sensor Based on Spectroscopy and Imagery

Furthermore, in order to monitor crop information more efficiently, a multi-fusion 
sensor was developed based on the combination of spectroscopy and imagery tech-
nology, as shown in Fig. 8.4 (Long 2020). The sensor was designed to collect the 
spectral reflectance and images of the crop canopy. It consists of three parts includ-
ing sensors, a data processing unit, and a data transmission port. The spectral 
reflectance collected by an AS7263 sensor (ams AG, Premstaetten, Austria) 
involved six bands in the red and NIR ranges (610, 680, 730, 760, 810, and 860 nm), 
each of which had 20 nm of full-width half-max detection. The RGB image was 
captured to estimate the canopy coverage to help determine the location during 
field measurement. The data could be sent to a mobile phone remotely through a 
Wi-Fi module.
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Fig. 8.4 Structure of the integrated sensor based on spectroscopy and imagery

The sensor application experiments were performed. The fusion data of spectral 
reflectance and images from the sensor were used to analyze the growth status of 
field corn with different levels of fertilizer. The adaptive boosting algorithms were 
used to model the chlorophyll content. The determination coefficient of the model 
was 0.859, which was higher than that just based on spectral data (0.829). The 
fusion of spectral reflectance and image data could improve the prediction accuracy 
of crop chlorophyll content. It provides a new tool for crop monitoring in the field.

8.3  Image Sensing for Crop Detection

8.3.1  Foundation of Crop Imaging and Feature Extraction

Optical imaging is one of the noninvasive methods for crop sensing. Similar to 
spectrometers, optical imaging uses the special properties of light and electromag-
netic waves to obtain detailed images of leaves and plants, as well as canopy and 
even ecosystems. In a typical way, the data are represented with energy intensity in 
a line plot or 2D images. Recently, image sensing has resulted in many develop-
ments in agricultural information acquisition. A variety of imaging instruments are 
available such as monochrome and color digital cameras (RGB), depth and time-of- 
flight (ToF) cameras, multispectral and hyperspectral cameras, thermography, fluo-
rescence sensors, and others (Yang et al. 2017; Li et al. 2014a, b).

New data sources and processing methods of 2D and 3D images and spectral 
data cubes significantly boom the research on crop recognition, plant positioning, 
and phenotype measurement. Lots of features can be extracted from images as 
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shown in Table 8.4, including color features, texture presentation, shape and spatial 
description, Vis-NIR spectral features, fluorescence, and thermal parameters 
(Mavridou et al. 2019; Ali et al. 2017).

In the last two decades, extensive research has been reported for image feature 
extraction and objective analysis. High-level image visuals are represented in the 
form of feature vectors that consist of numerical values. Research shows that there 
is a significant gap between image feature representation and human visual under-
standing (Latif et al. 2019). Thus, the feature selection in imaging systems is depen-
dent on the requirements of crop monitoring; meanwhile, feature representation is 
another task in research.

Table 8.4 Image features in crop monitoring

Category Feature type Characteristics Reference

Color Morphological, gray 
level

Features are capable of describing 
greenness and color changes in 
leaves, plants, or canopy. They are 
used in crop and weed recognition, 
disease and pest identification, 
biomass and yield estimation, 
nutrient and growth status 
monitoring, etc.

Knoll et al. (2018), 
Jiang et al. (2018), 
Garcia et al. (2017), 
Liu et al. (2017), 
Ferreira et al. (2019) 
and Ali et al. (2017)

RGB color space
HSV or HSI color 
space
CMY, YUV, etc.

Texture Local binary pattern 
(LBP)

Provides information in the spatial 
arrangement of colors or intensities. 
It indicates biomass, weeds, and 
structure changes

Waldchen et al. 
(2017) and Lowe 
(2004)Grey-level 

co-occurrence matrix 
(GLCM)
Wavelet texture

Shape and 
spatial

Geometry, size, area, 
length, width

Features refer to appearance and 
help to measure phenotype, 
recognize objects, identify diseases 
or pests, and discriminate weeds

Barbedo (2016), 
Oppenheim et al. 
(2017), Priyankara 
and Withanage 
(2015) and Kebapci 
et al. (2011)

Haar-like feature
Speeded up robust 
features (SURF)
Histogram of oriented 
gradients (HOG), 
scale-invariant feature 
transform (SIFT)

VIS-NIR 
spectral 
features

Original reflectance The spectral features are capable of 
describing either the variation of 
band reflectance intensity or 
changes in the shape of spectral 
curves used in nutrient estimation, 
disease detection, etc.

Liu et al. (2018a, b), 
Potgieter et al. 
(2017), Shirzadifar 
et al. (2018) and Cao 
et al. (2012, 2013, 
2017)

Vegetation indices
Derivative spectral 
features
Continuous removal 
spectral features
Wavelet features

Thermal 
parameters

Absolute/relative 
temperature, e.g., 
Tleaf−Tair

The thermal parameters indicate 
transpiration intensity

Neinavaz et al. 
(2016)
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Advances in automated and high-throughput imaging technologies have resulted 
in a deluge of high-resolution images and sensor data of plants. However, extracting 
patterns and features from this large amount of data requires the use of machine 
learning (ML) tools to enable data assimilation and feature identification for stress 
phenotyping (Waldchen and Mader 2018). ML approaches can be deployed in iden-
tification, classification, and prediction, such as SVM, neural networks (NNs), ker-
nel methods, and instance-based approaches (Singh et  al. 2016). Recently, deep 
learning (DL), a subset of ML approaches, has emerged as a versatile tool to assimi-
late large amounts of heterogeneous data and provide reliable predictions of com-
plex and uncertain phenomena (Liu et al. 2017). These tools are increasingly being 
used in extracting crop features and identifying symptoms of crop growth status 
(Singh et al. 2018).

8.3.2  Imaging Technologies Used in Crop Detection

Imaging technologies play an important role in crop sensing. The great majority of 
the sensors are designed based on either solid-state technology, such as CCD 
(charge-coupled device) and CMOS (complementary metal-oxide-semiconductor) 
chips used in optical imagers, or avalanche photodiodes, like InGaAs (indium gal-
lium arsenide) and single-photon avalanche diode (Toth and Joźkow 2016). An 
appropriate equipment should be examined in order to satisfy the needs of each 
application. In general, the most important factors that need to be considered are the 
sensor resolution, frame rate, and price (Pajares et al. 2016).

Considering the diverse cameras that are available in the market, several images 
used are listed in Table 8.5. Imaging technologies used in near-ground crop detec-
tion can be divided into four types which are digital color imaging to capture RGB 
images, 3D imaging to measure depths or spatial distribution, and spectral and ther-
mal imaging. A color image is simple and affordable, so that RGB images are exten-
sively used in crop sensing tasks of recognizing weeds, measuring plants, and 
detecting diseases and pests in the field (Garcia et al. 2017; Yang et al. 2014; Jiang 
et al. 2018; Ferreira et al. 2019; Zong et al. 2019; Knoll et al. 2019).

Although a stereovision system could measure 3D data, the imaging methods by 
ToF are popular due to the robust environmental influences, such as LiDAR and 
photonic mixer devices (PMD) (Knoll et al. 2016a). A typical LiDAR sensor emits 
pulsed light waves into the surrounding environment. These pulses bounce off sur-
rounding objects and return to the sensor and then the time for each pulse to return 
to the sensor is measured. The sensor uses the time to calculate the distance between 
the sensor and the object. Repeating this process millions of times per second cre-
ates a precise, real-time 3D map of the environment. The LiDAR sensors are used 
in phenotype measurement such as height and biomass (Tilly et al. 2015). Moreover, 
some low-cost 3D cameras are also applied in crop sensing such as Kinect 
(Microsoft, USA) and Real Sense (Intel., USA). They provide flexible tools in weed 
identification and fruit recognition (Sa et al. 2016; Kang and Chen 2020).
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Table 8.5 Several images used in near-ground crop detection

Type Describe Application Reference

Color images RGB, handheld, 1280 × 720, 
1920 × 1080, and 2048 × 1536

Pest distribution Garcia et al. (2017)

RGB, UAV, 7360 × 4912 Chlorophyll content 
(corn)

Qiao et al. (2019)

RGB, handheld, 6000 × 4000 Classify carrot crop 
and weeds

Knoll et al. (2016b)

RGB, handheld, 4608 × 3456 Weed recognition Jiang et al. (2018)
UAV, RGB, 4000 × 3000 Weed recognition Ferreira et al. 

(2019)
RGB, handheld, 2592 × 2048 Plant measurement 

(corn)
Zong et al. (2019)

RGB, handheld, 3648 × 2736 Blueberry 
identification

Li et al. (2014a, b)

3D images RGB, 1920 × 1080; depth, 
512 × 424, 0.5–4.5 m

Weeds, fruit 
detection

Knoll et al. (2016b) 
and Sa et al. (2016)

RGB, 1920 × 1080; depth, 
1280 × 720, 0.105–10 m

Fruit detection Kang and Chen 
(2020)

Depth: 204 × 204, vehicle 
mounted

Weed detection Knoll et al. (2016a),

ToF LIDAR 16 lines, 100 m Height and biomass 
(rice)

Tilly et al. (2015)

Multispectral 
images

470, 515, 550, 610, 656, 710, 760, 
800, 830, 860, 900, and 950 nm, 
12 bands, 1280 × 1024, UAV

Crop classification Wang et al. (2019)

RGB-NIR four bands,1296 × 964, 
vehicle mounted

Chlorophyll 
detection (corn), 
weed classification

Zhang et al. (2018) 
and Knoll et al. 
(2016b)

Five bands, 475, 560, 668, 717, 
and 840 nm, 1280 × 960, UAV

LAI, nitrogen, 
chlorophyll content 
(sorghum)

Potgieter et al. 
(2017)

Hyperspectral 
images

900–1700 nm, 3.5 nm Nitrogen detection 
(oilseed rape)

Zhu et al. (2019)

369–988 nm, 1.2 nm Chlorophyll and 
nitrogen detection 
(longan)

Yue et al. (2018)

369–1042 nm,10 nm Fruit recognition Okamoto and Lee 
(2009)

400–1000 nm, 4 nm, lab Disease (rice), water 
content (maize)

Huang et al. (2017) 
and Liu et al. 
(2018a, b)

Thermal 
images

750–1350 nm, 640 × 512 pixels, 
UAV

Yield estimation 
(soybean)

Maimaitijiang et al. 
(2020)

640 × 480 pixels, −40 °C to 
150 °C, ±2%

Fruit detection Gan et al. (2018)
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Imaging spectrometers collect images as well as spectra from the observed crop. 
Nowadays, a wide range of imaging spectrometers have been used on different plat-
forms including stationary or handheld near-ground platforms and unmanned aerial 
vehicle (UAV) platforms. Imaging spectral instruments have been widely used in 
crop detecting with crop classification, disease identification, nutrient estimation 
(chlorophyll, water, nitrogen content), and so on (Zhu et al. 2019; Yue et al. 2018; 
Huang et al. 2017; Liu et al. 2018a, b; Zheng et al. 2018). In addition, thermal sen-
sors are also used in drought estimation because of close relationships among the 
temperature, water stress, and environment (Maimaitijiang et al. 2020).

8.3.3  Development of Imaging Systems for Crop Detection

The results of previous research studies have provided basic principles for the 
development of optical sensing to acquire the spectral information in the field. 
Spectroscopy analysis and image processing are applied as rapid, convenient, and 
nondestructive techniques for crop growth monitoring. The Research Center for 
Precision Agriculture at China Agricultural University (CAU) has developed three 
kinds of multispectral imagery systems for crop monitoring (Wu et al. 2015; Sun 
et al. 2019b; Liu et al. 2020). In general, each system includes a multispectral cam-
era device and controlling software. The multispectral camera is designed with the 
capability to measure multispectral images of crop canopy in three visible bands 
(red [R], green [G], and blue [B]) and a NIR band. The software is developed to 
control the camera system. Furthermore, the estimating models of crop parameters 
should be embedded in the system. This way, it could provide an online device and 
method for crop sensing.

8.3.3.1  A Two-CCD-Based Imaging System for Crop Measurement

A two-CCD-based imaging system was designed for crop measurement, which 
included a multispectral image acquisition device, a communication protocol con-
verter, and a controlling platform (Wu et  al. 2015). A multispectral two-channel 
CCD camera (JAI Ltd., Denmark) was used, which included a splitter prism with 
two reflecting mirrors to split input light into visible and NIR bands. Two CCD sen-
sors could obtain four images in three visible bands (400–700 nm, R, G, and B) and 
one NIR band (760–1000 nm) at the same time. The camera link communication 
protocol standard was adapted to output RGB and NIR images with 1024(h) × 768(v) 
active pixels per channel. The communication between the camera and computer 
was conducted by a QuadMVCL2GE converter (Beijing Microview Science and 
Technology Co., Ltd., China) to convert the output image from the camera link into 
the GigE Vision standard. The highest output bandwidth was 960 Mbps. In the 
research, a panel industrial control computer (PPC-3708, Beijing Weidatong Co., 
China) was used as the system platform. The main functions included a 
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Fig. 8.5 Multispectral images of tomato canopy (Sun et al. 2013). (a) Original RGB image (b) 
Original NIR image (c) Segmented RGB image (d) Segmented NIR image

multispectral camera control module, an image acquisition module, and a multi-
spectral image processing module. When the system was connected, it could work 
following image acquisition, data conversion, and image display and storage. The 
multispectral image could be displayed and stored in RAW, BMP, and JPG format.

An image processing model was developed with three main functions: image 
enhancement, image segmentation, and parameter calculation (Sun et al. 2013). The 
developed system was applied in the chlorophyll content estimation of tomato. 
Multispectral images were collected and the SPAD values of tomato leaves were 
measured. More than 80 pairs of RGB and NIR images were acquired in the experi-
ment. They were first processed by the median filtering algorithm to eliminate the 
noise and then segmented from the background. Figure 8.5a, b shows a pair of RGB 
and NIR images, and the segmented results are shown in Fig. 8.5c, d, respectively. 
The average gray values of each image were calculated to get the VIs of tomato 
canopy. The correlation analysis results indicated that the highest correlation coef-
ficient was 0.7514 between RVI and SPAD values.

8.3.3.2  A Portable Binocular Sensor for Crop Monitoring

The NDVI calculated based on spectral reflectance is proved as one of the important 
parameters to estimate crop growth parameters quickly and nondestructively. Thus, 
the measurement of the NDVI distribution is one of important research directions 
for sensor development (Sun et  al. 2019b). Unlike the two-CCD-based imaging 
system which could acquire the RGB and NIR images synchronously, some low- 
cost binocular vision systems could also be used in the collection of RGB and NIR 
images. The biggest challenge in using these kinds of binocular vision systems is 
image matching, so that the NDVI distribution and dynamics of crops could be 
monitored with high accuracy.

In order to develop a portable multispectral imaging system for crop monitoring, 
an FM830-5  M device (Shanghai Percipio Information Technology Co., Ltd., 
China), which had an RGB camera and two NIR cameras, was used to acquire RGB 
and NIR images of corn. The RGB and one of the NIR cameras were used to develop 
a binocular sensor for crop monitoring. Images of RGB and NIR were processed 
following preprocessing, image matching, segmentation, and image reflectance cor-
rection. The flowchart is shown in Fig. 8.6.
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Fig. 8.6 Development of crop sensor using binocular stereo vision systems

The acquired images were calibrated and preprocessed. Firstly, the RGB image 
was preprocessed. The edge and texture of the RGB image were enhanced by 
Laplace transform. The light saturation removal (LSR) algorithm was used to 
improve the image quality. Secondly, the median filter was used to eliminate the salt 
and pepper noise of images.

In order to compare the performances of different image matching methods, 51 
maize plants were collected synchronously by the binocular vision system at 90°, 
54°, and 35°, respectively. Three algorithms, namely, SURF (Speeded-Up Robust 
Features), SIFT (Scale-Invariant Feature Transform), and ORB (Oriented Brief), 
were applied and discussed for RGB-NIR image matching. The optimal matching 
method was SURF, which was determined by matching time, PSNR (peak signal to 
noise ratio), MI (mutual information), and SSIM (structural similarity index).

The crops were segmented from the background by using the ExG (Extra Green) 
algorithm and maximum interclass variance algorithm (OTSU). The R, G, B, and 
NIR components of the segmented RGB images were extracted. Then, the NDVI of 
each pixel in the image was calculated, and the spatial distribution map of the crop 
VI was drawn. The SPAD values at pixel level were calculated. The regression 
model of SPAD values and NDVI showed that the determination coefficient was 
0.619. The demonstration of the sensor application and results are shown in Fig. 8.7.

8.3.3.3  A Portable Multispectral Sensor for Crop Measurement

A 25-wavelength spectral imaging sensor (mode: XIMEAI-5 × 5-CMOS, Shanghai 
Branch of IMEC Microelectronics Co., Ltd., China) was used to develop a multi-
spectral system for crop measurement, as shown in Fig. 8.8a (Liu et al. 2020). The 
filter of this sensor was processed on the wafer of a commercial application CMOS 
image capture chip that has a mosaic layout. There was a specific spectral filter on 
each pixel, and 25 wavelengths were placed on the COMSIS-CMV2000 sensor with 
two million pixels. This sensor was able to obtain spectral information of the 
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Fig. 8.7 Demonstration of the sensor application and results (Sun et al. 2019b). (a) Image match-
ing (b) NDVI mapping

Fig. 8.8 Spectral sensor and control software of the detection system (Liu et al. 2020). (a) Spectral 
sensor  (b) Control software interface

following 25 wavelengths: 666, 681, 706, 720, 732, 746, 759, 772, 784, 796, 816, 
827, 837, 849, 859, 869, 887, 888, 902, 910, 920, 926, 935, 940, and 945 nm. The 
sensor had a field of view (FOV) of 50°. The image size of each wavelength was 409 
pixels × 217 pixels, and the grayscale resolution was 10 bits.

In order to realize the real-time detection of SPAD values of potato plants in the 
field, a control software program was developed based on the Qt Creator 4.9.1 plat-
form under a Windows operating environment. The user interface shown in Fig. 8.8b 
was designed based on the Qt Widgets application. The image processing functions 
were realized by calling the OpenCV libraries. The main functions of the software 
included the following: spectral image collection, exposure time adjustment, spec-
tral image correction, SPAD value pseudo-color expression, SPAD value statistics, 
and image saving.

The spectral sensor and control software comprised the SPAD value real-time 
detection system. The reflectance of potato plants was extracted by the segmented 
mask images. The partial least squares (PLS) regression was employed to establish 
the SPAD value detection model based on sensitive variables selected using the 
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uninformative variable elimination (UVE) algorithm. So the visualization distribu-
tion map of SPAD values was drawn by pseudo-color processing technology.

8.4  Remote Sensing Platforms for Crop Monitoring

8.4.1  Remote Sensing Instruments Used in Crop Monitoring

Unlike spectral sensors introduced above, remote sensing spectrometers usually 
operate in Earth observation, capturing images as well as spectra from the observed 
materials. Images in wavebands make it possible to locate and extract plants from 
the background by image processing and derive numerous VIs. Great efforts have 
been made over the past decades to produce high-quality data in remote sensing by 
developing a wide range of imaging spectrometers placed on aerial/satellite plat-
forms (Paoletti et al. 2019). Compared with near-ground platforms such as UAVs 
and stationary or handheld near-ground devices, which focus on specific fields or 
plants in small areas (Wang et al. 2019; Han et al. 2019), aerial and satellite remote 
sensing related to Earth observation is suitable for large farmland and ecosystem 
monitoring.

Efforts have been made over the past decades to produce high-quality data. These 
instruments could be classified into multispectral or hyperspectral devices accord-
ing to the numbers of bands. A multispectral image contains from several to about a 
dozen bands, while a hyperspectral image (HSI) contains hundreds to thousands of 
contiguous wavelengths (Mishra et al. 2017). Several systems, shown in Table 8.6, 
are mostly used in aerial and satellite remote sensing. Similar to the spectral images 
mentioned before, the features extracted from remote sensing data include color 
features, texture presentation, shape and spatial description, and Vis-NIR spectral 
features.

8.4.2  Application of Multispectral Remote Sensing

Traditional satellite sensors such as SPOT and Landsat have long been used in crop 
sensing. The SPOT Vegetation sensor was carried aboard SPOT 4 and 5 which were 
launched in 1998 and 2002, respectively. It had the capability of imaging the entire 
Earth each day with IFOV (1.15  km) (https://eos.com/landsat- 5- tm/). SPOT 
Vegetation collected data in four spectral bands in 0.43–0.47 μm, 0.61–0.68 μm, 
0.78–0.89 μm, and 1.58–1.75 μm (Cayrol et al. 2000).

Landsat Thematic Mapper (TM) was a multispectral scanning radiometer that 
was carried on board Landsat 4 and 5. The TM sensors had provided nearly continu-
ous coverage from July 1982 to June 2013. A TM scene had an instantaneous field 
of view (IFOV) of 30 m × 30 m in bands of visible (0.45–0.52 μm, 0.52–0.60 μm, 
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Table 8.6 Spectral imaging used in remote sensing

Type Describe Application Reference

Multispectral 
remote sensing

SPOT 4 and 5, 0.40–
0.89 μm, VIS/NIR/SWIR 
four bands

Yield (maize), 
grassland

Zhao et al. (2015) and 
Cayrol et al. (2000)

Landsat 4 and 5, 0.45–
2.35 μm, VIS/NIR/SWIR/
thermal seven bands,

Yield (maize), Zhao et al. (2015)

Landsat 7, 0.45–2.35 μm, 
VIS/NIR/SWIR/thermal/
PAN, eight bands

Yield (maize), crop 
classification

Zhao et al. (2015) and 
Zhong et al. (2019)

Landsat 8, 0.43–2.29 μm, 
VIS/NIR/SWIR/thermal/
PAN, nine bands

Crop classification, 
disease (wheat)

Zhong et al. (2019) and 
Ma et al. (2019)

0.4–14.4 μm, 36 bands Yield (wheat),
Drought monitoring

Zhou et al. (2019) and 
Shen et al. (2019).

Hyper-spectral 
remote sensing

360–2450 nm, 224 bands, 
10 nm

Disease (soybean) Nagasubramanian et al. 
(2017)

380–2510 nm, 430 bands, 
5-nm interval

Crop classification Salas et al. (2020)

350–1050 nm, 288 bands N stress (corn) Goel et al. (2003)
450–2500 nm, 125 bands Nitrogen, disease 

(wheat)
Huang et al. (2004) and 
Mewes et al. (2011)

0.63–0.69 μm), NIR (0.76–0.90 μm), and SWIR (2.08–2.35 μm), while the band of 
10.41–12.5 μm has an IFOV of 120 m × 120 m on the ground. The Landsat Enhanced 
Thematic Mapper Plus (ETM+) was introduced with Landsat 7 (https://eos.com/
landsat- 7/) and was built by Raytheon SBRS (Santa Barbara Remote Sensing), 
Goleta, CA. Except the visible and NIR bands of TM data, ETM also scans the 
bands of SWIR (1.57–1.75 μm, 2.09–2.35 μm), thermal infrared (10.40–12.50 μm), 
and a panchromatic (PAN) (0.52–0.90 μm).

The Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are 
instruments onboard the Landsat 8 satellite (https://eos.com/landsat- 8/), in which 
OLI, built by the Ball Aerospace & Technologies Corporation, measures in the vis-
ible, NIR, and SWIR infrared portions of the spectrum. Therefore, Landsat 8 
Instruments have nine spectral bands at 30-m spatial resolution including a PAN 
band: visible (0.43–0.45 μm, 0.450–0.51 μm, 0.53–0.59 μm), red (0.64–0.67 μm), 
NIR (0.85–0.88 μm), SWIR (1.57–1.65 μm, 2.11–2.29 μm), panchromatic (PAN) 
(0.50–0.68 μm), and cirrus (1.36–1.38 μm). It also has two thermal infrared sensors 
with bands of 10.6–11.19 μm and 11.5–12.51 μm at 100-m spatial resolution.

Using satellite remote sensing to understand maize yield gaps in the North China 
Plain with Quzhou County as an example, Zhao et al. (2015) used Landsat 5 TM, 
Landsat 7 ETM+, and SPOT 4 satellite data during the summer maize growing sea-
son from 2007 to 2013 with the exceptions of 2008 and 2011 when there was a lack 
of high-quality cloud-free images. In order to solve the spatial differences between 
SPOT 4 and Landsat data, Landsat images were resampled to 20-m resolution using 

8 Crop Sensing in Precision Agriculture

https://eos.com/landsat-7/
https://eos.com/landsat-7/
https://eos.com/landsat-8/


274

the nearest neighbor method. Results indicate that remote sensing can provide rea-
sonably reliable estimates of maize yields in this region. In addition, the majority of 
yield gap is dominated by transient factors, and shrinking this gap may require high- 
quality forecasts to make informed optimal management decisions.

Satellite remote sensing also has been used in crop classification and disease 
monitoring. Zhong et al. (2019) used data from Landsat 7 ETM+ and Landsat 8 OLI 
at 3- m resolution to classify summer crops. Two types of deep learning models 
were designed using Landsat Enhanced Vegetation Index (EVI) time series. Three 
widely used classifiers were also tested for comparison, including a gradient boost-
ing machine called XGBoost, Random Forest, and SVM. Among non-deep- learning 
classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score 
of 0.69. The model employs EVI time series by examining shapes at various scales 
in a hierarchical manner. Ma et al. (2019) discriminated winter wheat powdery mil-
dew and aphid infestations during a co-epidemic outbreak of the disease and the 
insect pest in northeast China based on temporal Landsat 8 imagery integrated with 
crop growth and environmental parameters.

Using satellite monitoring, the system notifies its users of critical changes in 
vegetation, sends real-time weather risk alerts, and automates the prioritization pro-
cess within field work planning tasks. As a result, all of the abovementioned capa-
bilities make it possible not to miss important points in the treatment of fields and 
to respond in a timely manner to any changes. So far, researchers have implemented 
agricultural projects for monitoring fields, classifying crops, identifying growth and 
stress status, and forecasting crop yields (Zhou et al. 2019; Shen et al. 2019).

8.4.3  Application of Hyperspectral Remote Sensing

Advances in sensing and computer technologies have achieved great improvement 
in hyperspectral image data acquisition. A number of HSI data missions for Earth 
Observation have been launched and provide new tools for satellite remote sensing, 
such as the NASA Hyperspectral Infrared Imager (HyspIRI), the Environmental 
Mapping and Analysis Program (EnMAP), and the Precursore IperSpettrale della 
Missione Applicativa (PRISMA) program (Paoletti et al. 2019). Meanwhile, several 
instruments are used in capturing great volumes of HSI data based on airborne 
remote sensing. As shown in Table 8.3, some of best-known spectrometers are avail-
able for crop sensing.

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), developed by 
the Jet Propulsion Laboratory (JPL) (Pasadena, California, USA), was a hyperspec-
tral imaging sensor that delivered calibrated images of upwelling spectral radiance 
in 224 contiguous spectral bands with wavelengths from 400 to 2500 nm (http://
aviris.jpl.nasa.gov/). Moreover, the Airborne Visible Infrared Imaging Spectrometer-
Next Generation (AVIRIS-NG) sensor samples 430 contiguous bands between 
380 nm and 2510 nm at approximately 5-nm spectral resolution.
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Nagasubramanian et al. (2017) identified the disease named charcoal rot in soy-
bean crops using AVIRIS hyperspectral data. In the range of 383–1032 nm, they 
developed a 3D convolutional neural network (CNN) model for soybean charcoal 
rot disease identification. The classification accuracy was 95.73% and the infected 
class F1 score was 0.87. Salas et  al. (2020) derived a set of narrow−/broadband 
indices from the AVIRIS-NG imagery to represent spectral variations and identify 
target classes and their distribution patterns. The results showed that the maximum 
entropy (MaxEnt) and generalized linear model (GLM) had strong discriminatory 
image classification abilities with area under the curve (AUC) values ranging 
between 0.75 and 0.93 for MaxEnt and between 0.73 and 0.92 for GLM. It was also 
found that the Photochemical Reflectance Index (PRI) and Moment Distance Ratio 
Right/Left (MDRRL) were important predictors for target classes such as wheat, 
legumes, and eggplant.

The Compact Airborne Spectrographic Imager 1500 (CASI 1500), designed by 
ITRES Research Ltd. (Calgary, Alberta, Canada), is a system that acquires data in 
380–1050 nm and splits light into 288 discrete bands. It was used to obtain images 
over a field that had been set up to study the effects of various nitrogen application 
rates and weed control on corn (Goel et al. 2003). The results indicated that the 
reflectance of corn was significantly influenced (α = 0.05) at certain wavelengths by 
the presence of weeds, the nitrogen rates, and their interaction. Differences in 
response due to nitrogen stress were most evident at 498  nm and in the band 
at 671 nm.

In addition, the HyMap scanner, built by Integrated Spectronics Pty Ltd. of 
Sydney, Australia, has four spectrometers in the interval of 450–2450 nm exclud-
ing the two major atmospheric water absorption windows. The research was con-
ducted on estimating foliage nitrogen concentration from HyMap data using 
continuum- removal analysis (Huang et al. 2004). It identified the known nitrogen 
absorption features. The coefficient of determination increased from 0.65, using 
the standard derivative analysis, to 0.85 with the continuum-removal analysis. 
Mewes et al. (2011) indicted the potential to detect wheat disease induced by a 
pathogen infection. With the original spectral resolution of HyMap, the highest 
classification accuracy could be obtained by using 13 spectral bands with a Kappa 
coefficient of 0.59.

In summary, imaging spectrometers are of increasing importance for agricultural 
applications, particularly for the support of crop sensing that increases the produc-
tivity of crop stands (Zhou et al. 2019; Shen et al. 2019). However, to define an 
optimal sensor-based system or a data product designed for crop detection, it is 
necessary to know which spectral wavelengths are representative and which spectral 
resolution is needed. The methods of data processing also face the challenges from 
different instruments and requirements. Hence, research may involve data fusion 
and modelling supported by machine learning and even deep learning.

8 Crop Sensing in Precision Agriculture



276

8.5  Precision Crop Management Based 
on Sensing Instruments

Spectroscopy and imaging sensors have been widely used to support precision agri-
culture by providing information for crop management (Zhang et al. 2018). It pres-
ents an automated solution of object recognition and detection in crop production, 
combined with technologies of machine vision and machine learning algorithms as 
well as deep learning systems (Gomes and Leta 2012; Kamilaris and Prenafeta- 
Boldú 2018). More and more agricultural robots have been developed based on crop 
sensing instruments and processing methods. They have been used in specific tasks 
that are traditionally performed manually in which manual methods have the disad-
vantages of being tedious and error-prone. Some recent advancements of crop sen-
sors are applied in precision management in the field including variable sprayers for 
fertilizers and weed control and field-based crop phenotyping (Patricio and 
Rieder 2018).

8.5.1  Applications of Spectroscopy-Based Crop Sensors

8.5.1.1  Classification of Weeds and Damage Caused by Disease and Pests

Since reflectance of crops, weeds, and soil differs in the visual and NIR wave-
lengths, there is potential to distinguish them by spectral reflectance at different 
wavelengths. Vrindts et  al. (2002) measured canopy reflectance of sugar beet, 
maize, and weeds with a line spectrograph (480–820 nm). Four wavelengths were 
selected to separate the sugar beet and weed plants including 572.7, 676.1, 801.4, 
and 814.6 nm. The overall classification accuracy was over 90%, while it had not 
shown good capability to classify maize and weeds with only 15% accuracy. 
Shirzadifar et al. (2018) selected bands around 1078, 1435, 1490, and 1615 nm to 
identify weeds of kochia, water hemp, and lamb’s-quarters.

In order to design an optical weed sensor, sensitive wavelengths within the visi-
ble and NIR bands (496, 546, 614, 676, and 752 nm) were selected based on the 
spectral differences between stems and leaves of various crops and weeds (Wang 
et al. 2001). The partial least-squares (PLS) calibration model was established by 
the combination of these wavelengths and their VIs. The designed instrument with 
the embedded model could identify wheat, bare soil, and weeds with classification 
rates of 100%, 100%, and 71.6%, respectively, for the training data set when the 
weed density was above 0.02 plants/cm2. Sui et al. (2008) developed a ground-based 
weed mapping system to measure weed intensity and distribution in a cotton field. 
It was used to directly output the canopy coverage and intensity ratio by connecting 
with a WeedSeeker sensor. The changes in leaf pigments and biochemical compo-
nents caused by fungi infection or pest damage can influence the spectral character-
istics of leaves, so that the spectral differences between healthy and damaged leaves 
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can be used to identify the plant health status. Various VIs are used in monitoring 
plant disease and pests such as NDVI, GNDVI, and OSAVI (Zhang et  al. 2012, 
2019a). Based on the fluorescence spectra, some studies applied the ratio of fluores-
cence (e.g., F686/F740) amplitude at fluorescence peaks to achieve presymptomatic 
detection for some pathogens (Bürling et al. 2012). Parameters associated with the 
saturation pulse method could be used to evaluate the changes of affected pigments, 
such as the maximum quantum efficiency of photosystem II (PSII) primary photo-
chemistry (Fv/Fm), the maximum efficiency of PSII photochemistry in light- 
adapted material (Fv’/Fm′), and non-photochemical quenching (NPQ). Besides 
VIS-NIR and fluorescence spectroscopy, thermal observation provides an indicator 
to find the temperature changes of stressed symptoms from plant canopy.

The sensitive features are important for detection of diseases or pests. Naidu 
et al. (2009) discussed the spectral characteristics of grape infected by grapevine 
leafroll disease (GLD). The spectral differences between healthy and infected leaves 
are located around the green (near 550 nm), shortwave NIR (near 900 nm), and NIR 
(near 1600 and 2200 nm) bands. The classification models were built based on the 
sensitive wavelengths (531, 570, 752 nm, etc.) and VIs (NDVI, RVSI, PRI, etc.). 
Moreover, the results showed that compared with the linear regression result of 0.72 
from RVSI, the accuracy increased to 0.78 when RVSI was combined with the 
reflectance in the blue band (470–490 nm) and 526 nm. In the same study, the clas-
sification accuracy was 0.75 by the variables that combined PRI with bands of 
765–830, 970, and 684 nm.

Similarly, Annamalai and Lee (2004) investigated the spectral signatures of 
immature green citrus fruit and leaves for the purpose of developing a spectrally 
based fruit identification and early yield mapping system. Diffuse reflectance of 
fruit and leaf samples were measured in the range of 400–2500 nm, and two impor-
tant wavelengths at 815 and 1190 nm were selected. A ratio of these two wave-
lengths was used to distinguish immature green fruit from leaves. Other researchers 
studying leaf miner damage, bacterial spots, and yellow rust of crop leaves had 
examined the sensitivity of spectral responses and characteristics and established 
identification models by partial least squares (PLS) regression, stepwise multiple 
linear regression (SMLR), support SVM, and so on (Moshou et al. 2014). Recently, 
more and more statistical analysis and machine learning modeling methods are 
applied. Deep learning, a part of machine learning, has also been applied to select 
the features or to build an end-to-end architecture for discriminant analysis.

8.5.1.2  Monitoring of Nutrient Content and Biomass Status

Crop growth status is generally evaluated by the nutrient content and biomass level, 
in which the contents of chlorophyll, nitrogen, and water are related to the nutrient 
level, and the biomass is generally estimated by the leaf area index (LAI) referred 
to a unit area or volume of habitat. The estimation of crop growth parameters using 
spectroscopy helps to guide the management of fertilizer and irrigation and predict 
the yield in the field.
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The chlorophyll measurement has always been the priority of considerable 
research because chlorophyll is the organic molecule of plant leaves for photosyn-
thesis and highly relates with leaf nitrogen in the 400–700 nm spectral range (Ulissi 
et al. 2011). Using the same spectral features shown in Table 8.1, a large number of 
researchers estimate the chlorophyll content by sensitive wavelengths, VIs, red- 
edge location, and others. Ciganda et al. (2009) constructed a red-edge chlorophyll 
index with red-edge (720–730  nm) and NIR (770–800  nm) spectral reflectance. 
Chen et al. (2010) proposed a new spectral indicator named Double-peak Canopy 
Nitrogen Index (DCNI) which was used for maize nitrogen estimation. Schlemmer 
et  al. (2013) indicated that the chlorophyll content could be accurately retrieved 
using green and red-edge chlorophyll indices by the bands located in the NIR 
(780–800 nm) and either the green (540–560 nm) or red edge (730–750 nm). Rossini 
et al. (2012) estimated chlorophyll using a suite of VIs and found a high correlation 
of over 0.8 between leaf chlorophyll content and narrowband spectral indices. 
Sonobe et al. (2018) showed that shading treatment for a crop made the reflectance 
lower near the wavelengths of 550 and 740 nm. Two methods, machine learning 
algorithms and the inversion of a radiative transfer model, were evaluated using 
measurements from tea leaves. Overall, the kernel-based extreme learning machine 
had the highest performance with a root mean square error (RMSE) of 
3.04 ± 0.52 μg cm−2 and the ratios of performance to deviation (RPD) from 3.38 to 
5.92 for the test set.

The molecular absorption of hydrogen-containing groups (O-H, N-H, C-H) pro-
vides a potential to measure the moisture content nondestructively (Cheng et  al. 
2011). Although water absorption has been explored in the infrared region with 
spectral centers at 970, 1200, 1440, and 1950 nm (Palmer and Williams 1974), a 
series of researchers proposed different wavelengths due to the influences of spe-
cies, phenology, environment stress, and so on. Dejonge et al. (2016) established a 
diagnosis model of corn water content to guide the field irrigation using the NDVI, 
OSAVI, and GNDVI. Among these VIs, the NDVI showed the best performance 
with highest R2, slope almost equal to 1. So the vegetation ratios of water-stressed 
and non-stressed NDVI was set as an irrigation trigger with the threshold value 
of 0.93.

In addition, spectroscopy methods can be used to invert some biomass parame-
ters and indirectly calculate LAI. Except the NDVI, other spectral indices have also 
been presented in recent research. Ray et al. (2006) found that VIs, NDVI, and SAVI 
(Soil-Adjusted Vegetation Index), calculated in the bands of 780–680 nm, produced 
the highest correlation coefficients with LAI. Han et  al. (2016) built a model to 
predict the LAI of apple tree canopy by comparing SVM and random forest (RF) 
algorithms. Some VIs used in the RF regression model were in accordance with LAI 
in the full fruit period including GNDVI, NDIVI, RVI, and GRVI. Besides the VIS 
and NIR regions, Neinavaz et al. (2016) conducted some research in the thermal 
infrared region (TIR) and found that the canopy emissivity spectra increased with 
rising LAI.
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In particular, the value of LAI could also be measured by an optical sensor, 
named LAI-2000 Plant Canopy Analyzer (LI-COR Biosciences, USA). It works by 
digital photography to show how canopy gap fraction measurements can be overes-
timated if measurements are taken when foliage is brightly lit (Han et al. 2016).

According to the studies mentioned above, the main methods include data pre-
processing, sensitive parameter selection, and estimation modelling. The capabili-
ties and performances of spectroscopy were explored for crop sensing. However, 
the methods used in data processing and the results were different, indicating that 
the sensors and algorithms used might influence the application significantly. 
Researchers will face further challenges on sensor integration and data fusion.

8.5.2  Applications of Imaging-Based Crop Sensors

8.5.2.1  Application of Ground-Based Imaging Instruments

Classification of Crops and Weeds

Focusing on the recognition of field weeds by different imaging sensors, Knoll et al. 
(2016a), used a time-of-flight (TOF) sensor, CamCube 3, to create depth images 
with a resolution of 204 × 204 pixels. In addition, more sensors were equipped on a 
field robot named Bonirob, including a Bispectral JAI camera, a Nikon D5300 cam-
era, a Kinect II, and a laser scanner (Knoll et al. 2016b, c). The Bispectral JAI cam-
era (JAI Ltd., Denmark) uses one lens for two cameras (RGB camera and IR camera) 
with 1296 × 966 pixels. The Nikon D5300 captures RGB images with a resolution 
of 6000 × 4000 pixels. Moreover, the Kinect II records a color image with the size 
of 1920 × 1080 pixels and an infrared image of 512 × 424 pixels. Meanwhile, the 
ToF technology allows a depth image of 512 × 424 pixels. In the research, the best 
performances were provided by the JAI camera and the Nikon camera. As a result, 
two VI determination methods based on RGB images were proposed by extracting 
color features of RGB and HSV (hue, saturation, value) (Knoll et al. 2016b).

However, the disturbances of results are the influences of, for example, weather, 
the various stages of growth, the large number of different weeds, and the different 
soil conditions. In order to eliminate these influences, a self-learning convolutional 
neural network was used for weed recognition in the field. This deep-learning 
approach achieved accuracy of over 98% (Knoll et al. 2018). Similarly, a classifica-
tion model of weeds in organic carrot was proposed by using a convolutional neural 
network (CNN) to help in weed management (Knoll et al. 2019). Several proposed 
methods also indicated that deep learning could help to extract high-level features 
from images to improve the classification accuracy (Asad and Bais 2019; Peng 
et al. 2019).
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Identification of Specialty Fruits

Harvesting of specialty fruits such as apples, citrus, cherries, and pears is highly 
labor intensive and is becoming less sustainable with increasing cost and decreasing 
availability of a skilled labor force (Gongal et al. 2015).

In order to help harvesting and yield prediction of specialty fruits, a digital SLR 
camera (EOS Rebel T2i, Canon Inc., Japan) with an 18–55 mm lens was used to 
collect the RGB images of field blueberry with 3648 × 2736 pixels. Li et al. (2014a, 
b) selected three color components, red (R), blue (B), and hue (H), to separate fruits 
of four maturity stages from background through different classifiers. The perfor-
mances were discussed among the results of the K-nearest neighbor (KNN), naïve 
Bayesian classification (NBC), and supervised K-means clustering classifier 
(SK-means). In this work, the KNN classifier yielded the highest classification 
accuracy (85–98%) from the validation set.

In the immature green citrus fruit detection, Gan et al. (2018) built an imaging 
system to provide valuable information for yield estimation at earlier stages. The 
system consisted of two color cameras (USB 3.0, The Imaging Source, Charlotte, 
NC, USA) and a thermal camera (A655sc, FLIR, Wilsonville, OR, USA). Images 
from all three cameras had the same spatial resolution, 640 × 480 pixels, and very 
similar diagonal field of views of about 30°. A new Color-Thermal Combined 
Probability (CTCP) algorithm was created to effectively fuse information from the 
color and thermal images to classify potential image regions into fruit and non-fruit 
classes. The results present that the fusion of the color and thermal images effec-
tively improved the accuracy of immature green citrus fruit detection. For the same 
aim, Okamoto and Lee (2009) used a hyperspectral camera of 369–1042  nm to 
acquire hyperspectral images of green fruits of three different citrus varieties (tan-
gelo, Valencia, and Hamlin). Spatial image processing steps (noise reduction filter-
ing, labeling, and area thresholding) were applied. The results of pixel identification 
tests showed that the detection success rates were 70–85%, depending on citrus 
varieties.

Measurement of Crop Growth Status

Three-dimensional cameras have been used to obtain the depth or position informa-
tion. The Kinect camera has a normal webcam and a depth sensor which can pro-
vide RGB-D image. The depth sensor consisted of an infrared laser projector 
combined with a monochrome CMOS sensor that could detect the range of 
0.8–4.0 m. Sa et al. (2016) used a Kinect camera to capture RGB and NIR images. 
A Faster Region-based CNN (Faster R-CNN) model was established to detect sweet 
peppers, which took into account both precision and recall performances improving 
from 0.807 to 0.838. Kang and Chen (2020) used a RealSense D-435 camera to col-
lect RGB and depth images for apple detection in the orchard. From the experiment 
results, DaSNet-v2 with ResNet-101 achieved 0.868, 0.88, and 0.873 on recall and 
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precision of detection and accuracy of instance segmentation on fruits, respectively. 
In addition, it reached 0.794 on the accuracy of branch segmentation.

Although the measurement of plants is traditionally based on RGB images, the 
information of plant appearance is more accurately presented in 3D space, espe-
cially for geometry and topology. So the 3D imaging instruments are increasingly 
used in the crop phenotyping. LiDAR or laser sensors have been used to measure 
plant height and biomass because they present good adaptation to illumination and 
provide considerable data. LiDAR was adopted to measure the height and biomass 
of rice, oilseed rape, winter rye, winter wheat, and grassland (Tilly et al.,2015).

In order to estimate the nutrient content, an AD-130 GE bispectral camera (JAI 
Ltd., Denmark) was also used to capture multispectral images of RGB and 
NIR. Fifteen image parameters were extracted including the average gray values of 
images, the VIs (NDVI, NDGI, RVI, DVI), and image texture parameters (energy, 
moment of inertia, correlation, entropy, etc.). An SVM model was estimated to pro-
vide support for corn nutritional diagnosis and fertilization management decisions.

In order to evaluate the nitrogen content in oilseed rape (Brassica napus L.), Zhu 
et al. (2019) collected spectral images in 900–1700 nm wavebands using a hyper-
spectral camera, ImSpectorN17E (Spectral Imaging Ltd., Oulu, Finland). A fast 
nitrogen content grade classification method for oilseed rape canopy was estab-
lished by employing a deep learning algorithm named stacked auto-encoders 
(SAEs). In this study, the SAE algorithm was introduced for the data dimensional 
reduction and feature extraction from hyperspectral images, and then the multiple 
classification models were applied for the feature testing and validation within the 
feature data under different camera angles with different feature units. Results 
showed that the best accuracy was presented by data captured under the 25° angle.

Hyper SIS (Zolix Instruments Co., Ltd., Beijing, China) is a hyperspectral cam-
era to measure in the 369–988 nm band with a spectral resolution of 1.2 nm. It was 
used to detect the nitrogen detection of longan plants (Yue et al. 2018). The initial 
features were extracted using the principle component analysis (PCA) to identity a 
number of potential characteristic wavelengths (483, 518, 625, 631, 642, and 
675 nm). Then the texture based on the gray-level co-occurrence matrix (GLCM) 
was extracted from those images. Combined with the state-of-the-art deep learning 
technology, a distribution model of chlorophyll content for longan leaves based on 
convolution neural networks (CNNs) and deep neural networks (DNNs) was pro-
posed. As a result, the R2 of the calibration and validation set were 0.84 and 0.82, 
respectively.

In the detection of rice panicle blast disease, Huang et  al. (2017) measured 
images in the band of 400–1000 nm by using a Gaia Field-F-V10 (Spectral Imaging 
Ltd., Finland) spectrometer. A deep convolutional neural network model, Google 
Net, was used to learn the representation of hyperspectral image data. The proposed 
method achieved a classification accuracy of 92.0%. The same hyperspectral cam-
era has also been used in the nutrient monitoring of water or chlorophyll content 
(Liu et al. 2018a, b; Zheng et al. 2018).
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8.5.2.2  Application of UAV-Based Imaging Instruments

With the development of remote sensing technology, the advantages of UAVs 
acquiring farmland images are fast and convenient. Furthermore, the scope of acqui-
sition is gradually becoming an important means and research hotspot for farmland 
information acquisition (Yang et al. 2014, 2017).

Different types of spectroscopic and image sensors for UAV have been devel-
oped, such as digital color sensors and multispectral/hyperspectral imaging sensors, 
further extending UAV-based remote sensing to various applications (Lu et al. 2019).

Crop Classification

Based on digital color cameras, Yang et al. (2014) designed a multispectral imaging 
system based on two identical consumer-grade cameras for agricultural remote 
sensing. The cameras are equipped with a full-frame CMOS sensor with 5616 × 3744 
pixels. One camera captures normal color images, while the other is modified to 
obtain NIR images. Images are stored in 14-bit RAW and 8-bit JPEG files in 
CompactFlash cards. The system has been practically applied in estimating crop 
canopy cover, detecting cotton root rot, and mapping henbit and giant reed 
infestations.

In order to classify different crops, Ferreira et al. (2019) used a Phantom DJI 3 
Professional drone (DJI Technology Co. Ltd., China) to collect RGB images with 
4000 × 3000 pixels to train a model and achieved 97% accuracy in the discrimina-
tion of grass and broadleaf. Based on this goal, Wang et al. (2019) equipped a mul-
tispectral camera on a composite wing UAV to collect images of cotton, corn, and 
squash. A Micro MCA12 Snap (Tetracam, CA, USA) obtained images at 12 bands 
of 470, 515, 550, 610, 656, 710, 760, 800, 830, 860, 900, and 950  nm, with 
1280 × 1024 pixels in each band. A CNN network was designed to extract features 
and classify crops. Compared with the SVM based on radial basis kernel function 
and the backpropagation neural network, the optimized CNN had the best effect and 
the highest classification accuracy of 97.75%.

Crop Detection

Due to the requirement of nutrient estimation, Qiao et al. (2019) estimated the chlo-
rophyll content of maize. RGB images with a resolution of 7360 × 4912 pixels were 
collected by using ILCE-7R (Sony Corporation, Japan) equipped on a DJI M600 
UAV platform. The parameters related to the color and texture features in the images 
were extracted after the canopy segmentation to reduce influences from the back-
ground. The established model had a determination coefficient of 0.76. The distri-
bution map of chlorophyll content in field maize canopy was drawn based on a 
pseudo-color technique. It provided a tool to visually distinguish the field road and 
canopy area, showing the difference in chlorophyll distribution of the plot.
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Potgieter et al. (2017) conducted the assessment of seasonal leaf area dynamics 
of sorghum breeding lines by using multispectral imaging from an UAV.  A 
RedEdge™ narrowband multispectral camera (MicaSense Inc., USA) capturing 
five bands at specific nanometer (nm) wavelength peaks was fitted to the UAV plat-
form. The bands captured were blue (B: 475 nm center wavelength, 20 nm band-
width), green (G: 560 nm, 20 nm), red (R: 668 nm, 10 nm), red edge (RE: 717 nm, 
10 nm), and near-infrared (NIR: 840 nm, 40 nm). The horizontal field of view was 
47.2 degrees with a 5.5-mm focal length producing an image resolution of 
1280 × 960 pixels. It was found that the good correlations between each VI (NDVI 
and EVI) and each growth parameter, such as plant number per plot, canopy cover, 
and LAI both during the vegetative growth phase (pre-anthesis) and at maximum 
canopy cover shortly after anthesis. The NDRE, which is used to estimate leaf chlo-
rophyll content, was also the most useful in characterizing the leaf area dynamics/
senescence patterns of contrasting genotypes.

Cen et al. (2019) discussed the use of a lightweight UAV with dual image-frame 
snapshot cameras to estimate aboveground biomass (AGB) and panicle biomass 
(PB) of rice at different growth stages with different nitrogen (N) treatments. An 
RGB camera (NEX-7 camera, Sony Corporation, Japan) with a spatial resolution of 
6000 × 4000 pixels and a snapshot multispectral camera (CMV2 K CMOS, IMEC, 
Chatsworth, Leuven, Belgium) with a spatial resolution of 409 × 216 pixels coupled 
with a three-axis gimbal were mounted on the UAV. The multispectral camera con-
tains 25 wavelengths in the spectral region of 600–1000 nm (679, 693, 719, 732, 
745, 758, 771, 784, 796, 808, 827, 839, 84, 860, 871, 880, 889, 898, 915, 922, 931, 
937, 944, 951, and 956 nm). It was found that the canopy height extracted from the 
crop surface model exhibited a high correlation with the ground-measured canopy 
height, and several VIs were highly correlated with AGB.

These applications show that imaging instruments are being widely used on- 
board UAVs for collecting spectral and spatial information that allows the genera-
tion of maps to indicate the aspects of the plant state. Due to the availability of NIR 
wavelengths in multispectral images, spectral images have also become an indis-
pensable tool for evaluating the physiological- and biochemical-related parameters 
of plants, such as LAI, vegetation fraction, nitrogen (N) and chlorophyll status, net 
photosynthesis, and biomass.

8.5.3  Variable-Rate Fertilizer Management Based 
on Crop Sensors

8.5.3.1  Variable-Rate Fertilizer Mapping Based on Imaging Instruments

In order to further extend the functions of the crop growth detector, a WSN-based 
detection system was proposed to measure crop spectral characteristics on the go 
and in real time as shown in Fig. 8.9. The controller was an industrial personal com-
puter (IPC) with an attached ZigBee wireless communication module (JN5139 
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Fig. 8.9 Structure of the vehicle-mounted crop detection system

module). As the coordinator of the whole wireless network, it was used to establish 
the wireless network, waiting for sensor nodes to join in, and receiving, displaying, 
and storing all the data from different sensor nodes.

The measuring unit consisted of several optical sensors, and each optical sensor 
was used as a sensor node in this WSN. Each sensor node consisted of an optical 
part and a circuit part. The optical part contained eight optical channels at four 
wavebands. Since the detection system used sunlight as a light source, besides the 
reflected light from crop canopy, the sunlight intensity should also be measured as 
a reference. Therefore, two solutions were put forward:

 1. A full-function sensor node had to contain eight optical channels, upward four 
for the sunlight and downward four for the reflected light.

 2. As shown in Fig. 8.9, one sensor node was selected to measure the sunlight as the 
type I sensor, and other sensor nodes were used to measure the reflected light as 
the type II sensors.

As discussed above, the independence of the sensor (type I) was selected to measure 
the sunlight, and then the whole network shared the sunlight data. Under the prem-
ise of measurement precision, this type of design greatly reduced the cost of the 
system. Thus, sensors and the controller can set up a communication network in 
many ways. The networking mode between handheld and vehicle-mounted systems 
can be transformed into each other. The transmission distances can be up to hun-
dreds of meters, which realized the real-time, continuous measurements of crops in 
the field. Furthermore, it increased the flexibility of the detector installation.

The new system increased the optical channels and was realized to measure the 
crop spectral characteristics on the go and in real time after being installed on an 
on-board mechanical structure (Zhong et  al. 2014). Referring to the field test in 
Shaanxi Province, China, the distribution of the chlorophyll content of wheat 
detected by the new system is shown in Fig. 8.10a (Sun et al. 2015). In this way, it 
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Fig. 8.10 Variable-rate fertilizer mapping based on imaging instruments (a) Distribution of chlo-
rophyll content of wheat (Sun et al. 2015). (b) Fertilizer recommendation mapping

provides the automatic mapping of comprehensive growth status in the field. 
Combined with the fertilizer decision strategy such as the yield prediction method, 
the fertilizer recommendation map could also be used as an output as shown in 
Fig. 8.10b.
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8.5.3.2  Variable-Rate Fertilizer Control Based on Crop Sensing

Variable-rate fertilization technology improves the operational efficiency and utili-
zation rate of a fertilizer and accelerates the sustainable development of modern 
agriculture to promote high-yield, superior-quality production while ensuring suf-
ficient environmental protection. The crop sensors discussed in this chapter show 
the great potential to control the fertilizer rate in the field. Therefore, lots of variable- 
rate fertilizer applicators or sprayers are developed based on those sensors.

Commercial products, such as GreenSeeker products (Trimble Navigation 
Limited, Sunnyvale, CA, USA), Crop Circle devices (Holland Scientific Inc., 
Lincoln, Nebraska, USA) and Yara N-Sensors (Yara International ASA, Germany), 
promote solutions for variable-rate fertilization. However, the models of crop esti-
mation and fertilizer decision are fixed in such systems. Hence, it might limit the 
applications of specific requirements such as crop diversities or regions.

In order to provide a more flexible system for precision fertilization, the multi- 
fusion sensor which was developed based on the combination of spectroscopy and 
imagery technology was applied in a fertilizer sprayer by China Agricultural University 
(Sun et al. 2018). The sensor was designed to measure the spectral reflectance in the 
red and NIR ranges, such as 610, 680, 730, 760, 810, and 860 nm, each with 20 nm of 
full-width half-max detection. More than ten kinds of VIs could be calculated by these 
data for crop monitoring. It means that the sensor could provide more flexible and 
modifiable models for different requirements of crop estimation. The RGB image was 
captured to estimate the canopy coverage so as to help determine the location during 
field measurement. The transmission method had been modified from the Wi-Fi to the 
CAN-bus, which has the advantages of long data- transmitting distance, fast speed, 
reliable transmit, and low cost. The sensing system is shown in Fig. 8.11a. A GPS 
model helps to record the detecting location, one of the sensors is used to calibrate the 
changes of sunlight, and crop sensors transmit data to the IPC by CAN-bus.

Generally, as shown in Fig.  8.11b during the fertilization process, the NDVI 
values of the crop canopy are acquired in real time by crop sensors. These values are 
transmitted to the vehicle-mounted IPC terminal through the CAN-bus cable. A 
variable-rate fertilization expert decision system preset into the IPC is run based on 
the model to generate optimal fertilizer rate in real time.

In this chapter, sensing principles and applied sensors based on spectroscopy and 
imagery are reviewed. Some developed sensors have been introduced and demon-
strated to show the frontier research in this area. Numerous researchers in the cited 
literature have documented the practical applications of these sensors in many sce-
narios, including handheld detection, vehicle-mounted diagnosis, and remote sens-
ing by UAVs or satellites, to build reliable prediction models of complex and 
uncertain phenomena in agriculture. With the integration of variable-rate technol-
ogy, more and more precision management measures can be taken based on crop 
sensing methods. Recently, more and more new sensors and machine learning meth-
ods are applied in crop monitoring. These applications show the new trends for crop 
sensing. Smart crop sensors with artificial intelligence (AI) processors or deep 
learning models should emerge soon to improve the sensing accuracy or broaden the 
applications in the future.
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Fig. 8.11 Variable-rate fertilizer control based on crop sensing (a) Sensing system used in a fertil-
izer sprayer (b) Variable-fertilizer sprayer
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Chapter 9
Perspectives of Soil and Crop Sensing 
in Smart Agriculture

Liping Chen, Daming Dong, and Guijun Yang

Abstract Sensors, especially soil and crop sensors, play an important role in the 
development of smart agriculture. There are both opportunities and challenges in 
soil and crop sensor technologies. A typical problem faced is that most soil and crop 
sensors currently used in agriculture are industrial sensors, which cannot meet the 
requirements of agricultural production and agricultural environments. Many 
important parameters of soil and crops cannot be measured using current sensors. 
There is an urgent need to improve the accuracy, precision, and intelligence level for 
crop and soil sensors. Herein, the problems and challenges of modern soil and crop 
sensors are firstly proposed, and the indicators perceived in the future smart agricul-
ture are analyzed. Then some advanced sensor techniques are introduced, which 
may inspire the novel sensor techniques for crop and soil sensing. These advanced 
sensors include most popular soil and crop sensors, from soil nutrient sensors to 
heavy metal sensors and from sensors used in crop phenotyping to hormone sensors 
for crops, electrochemical sensors, and optical sensors. A special type of satellite-
based sensors for crops and soils is also discussed, which shares a similar principle 
with ground-based sensors, which work in quite different ways. Finally, the per-
spectives for further research and development of soil and crop sensors are proposed.
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Sensors are very important in smart agriculture. The sensing of soil and crop infor-
mation determines the process of fertilization, application of agricultural materials, 
field management, and decision-making for smart agriculture. Therefore, the devel-
opment level of smart agriculture depends on the level of accuracy, precision, and 
intelligence of sensing technology for crops and soil. In the past 30 years, although 
the sensing technologies for crops and soil have made great progress, they still face 
several problems. A typical problem is that most soil and crop sensors currently 
used in agriculture are industrial sensors, rather than sensors specially designed for 
agriculture, and they cannot well meet the requirements of agriculture. This restricts 
the development of sensing technology for crops and soil. There are many difficul-
ties and challenges in the field of crop and soil sensing, such as the complexity of 
the soil matrix and detection of many trace elements. On the other hand, the devel-
opment of sensing technology is also an opportunity. The considerable progress of 
sensing technology for crops and soil will advance the development of smart agri-
culture. Thus, it is necessary to analyze the bottlenecks and problems of sensing 
technology for crops and soil in smart agriculture. The possible development of 
sensing technology for crops and soil in the future will be discussed through the 
review of sensing technology in the past 30 years.

9.1  Opportunities and Challenges of Sensing Technology 
for Crops and Soil

9.1.1  Limitations of Sensing Technology for Crops and Soil 
at Present

At the current stage, important progress has been made on comprehensive soil sens-
ing under the development of transducing and measuring technology and the prog-
ress of physics, chemistry, biology, material science, and other technologies. In 
particular, significant accomplishments have been achieved using current technol-
ogy to detect some specific soil and crop indicators. In terms of soil measurement, 
previous soil sensors mostly relied on simple physical principles. For example, soil 
moisture was detected by measuring the soil capacitance (Kojima et al. 2016) and 
soil temperature was detected by measuring the soil thermocouples (Qiu et  al. 
1998). Now, neutron scattering can be also used to measure moisture (Franz et al. 
2016). The soil pollutants can be detected by a variety of different principles, includ-
ing physical, chemical, and biological methods (Teng et al. 2014). In terms of crop 
sensing, many indicators can be measured using on-site and fast handheld sensors, 
which could not be measured by sensors before (Onwude et al. 2016). For example, 
chlorophyll was measured using spectrophotometry after grinding and extraction in 
the past (Onwude et al. 2016). But now, the content of various components of the 
leaves, including moisture, nitrogen, and chlorophyll, can be determined using the 
reflectivity of crop and laser-induced fluorescence (Onwude et  al. 2016; Padilla 
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et al. 2018). The development of these technologies has promoted the advancement 
of modern agricultural technology. Compared with two or three decades ago, sev-
eral indicators of crops and soil, whether beneficial or harmful, can be measured by 
sensors.

However, significant limitations of sensing technologies for crops and soil still 
exist at present (Tripodi et al. 2018). There are two main reasons for these limita-
tions. One is the disconnection of professional skills between professionals of sens-
ing technology and professionals of agronomy. The other is the gap in the 
development of technology itself.

The first limitation is that the measurement indicators of current sensors still 
need to be further improved. Many concerned indicators in crops and soil still 
cannot be obtained by sensors. For example, there are no commercial sensors on 
the market to rapidly measure crop hormones, and some soil nutrients cannot be 
measured by sensors at present. In fact, in these areas, some sensing technologies 
have potential. With the advancement of science and technology and the further 
integration of sensing technology and agriculture, a number of potential technolo-
gies will be applied to the measurement of crop and soil properties. The applica-
tion of these technologies will broaden the sensing range and make it possible to 
sense an increasing number of precision indicators of crops and soil. Thereby the 
development of precision agriculture and smart agriculture will be further 
promoted.

The second significant limitation is that the precision of crop and soil sensors 
need to be further improved due to the unstructured nature of agriculture. For exam-
ple, when measuring soil moisture using time domain reflectometry, the high- 
precision measurement result of soil moisture can be obtained under the condition 
of a very uniform soil structure, which has been proved in laboratory experiments 
(Stangl et al. 2009; Cristi et al. 2016). However, in actual measurement, the sensor 
needs to be recalibrated before each measurement due to the influence of soil par-
ticle size, compactness, type, texture, and other factors. In addition, most of the 
sensors currently used in agriculture are industrial sensors, which cannot meet the 
needs of agriculture in terms of measurement range, sensitivity, vegetation photo-
synthetic physiology probing and gross primary productivity (GPP) estimation. The 
sensitivity and measurement range of the sensor are contradictory. A lower detec-
tion limit often corresponds to a small range, while a large range will lead to 
decreased sensitivity. Therefore, the mature industrial sensors in market are not suit-
able for agricultural measurement. The sensitivity, measurement range, and other 
technical indicators of the sensor also need to be considered and weighed.

The third significant limitation is the poor environmental adaptability and reli-
ability of the sensor. Although the high reliability of sensors is required in many 
industrial applications, the reliability of industrial sensors cannot meet the require-
ments of agricultural applications in the open field environment. It is difficult for 
sensors to work stably for a long time due to the many extreme sensor supplica-
tion conditions in agriculture (Lindblom et al. 2017). For example, in crop mea-
surement, especially in the application of crop sensors in the greenhouse 
environment, sensors often face the effects of high temperature, high humidity, 
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Fig. 9.1 Complex application scenarios for agricultural environmental monitoring (high tempera-
ture, high humidity, strong radiation, dust pollution, and corrosion)

and high dew point, as shown in Fig.  9.1. The temperature sensors commonly 
used in industry can often be damaged within days due to the high-humidity envi-
ronment when applied to facility agriculture. Therefore, how to develop sensors 
with high reliability and high environmental adaptability is still a technical prob-
lem to agricultural sensors.

9.1.2  Indicators Perceived in Smart Agriculture

With the development of various sensing technologies and the application of these 
sensing technologies in industrial, medical, environmental, and other fields, it is 
inevitable that several indicators can be monitored and sensed quickly in real time. 
Therefore, there will be an increasing number of sophisticated and diverse indica-
tors to be detected and sensed in the future smart agriculture. Furthermore, crop 
sensing and soil sensing are some of its most important parts (Lindblom et al. 2017).

First, in the application of soil sensors, a number of physical parameters need to 
be detected, such as soil moisture profile and soil compactness. With the develop-
ment of smart agriculture, the monitoring accuracy of these sensors needs to be 
further improved, such as the measurement of soil moisture. At present, most 
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Fig. 9.2 Principles and applications of neutron soil moisture meter

sensors rely on the calibration to improve the accuracy. Although the neutron sensor 
has problems of radiation (Fig. 9.2), it is still more precise. With the development of 
technologies, the optics and electromagnetism will measure a number of soil indexes 
in a distributed, imaging manner. They can satisfy the sensing of soil moisture infor-
mation at both a certain point and different points of a section and thus more elabo-
rately guide agricultural production (Franz et al. 2016; Steven and Evett 2009).

The other important indexes are soil chemical parameters, especially soil nutri-
ent parameters. The diagnosis of nutrient information will be the premise of the 
development of precision agriculture. Therefore, there will be a number of new 
technologies, such as infrared spectroscopy, laser spectroscopy, and nuclear mag-
netic resonance spectroscopy, for the measurement of soil nitrogen, phosphorus, 
and potassium, as well as other effective nutrients and trace elements. These sensors 
will further improve the efficiency of smart agriculture (Sinfield et  al. 2010; 
Mukherjee and Laskar 2019). Another factor is the pollutant content in soil, includ-
ing heavy metals and some persistent pollutants. Especially for persistent pollut-
ants, there is no particularly suitable sensing method at present, but with the 
development of chemical sensing technology and biosensor technology, it will 
become possible to monitor persistent pollutants continuously and in real time 
(Baydarashvili et al. 2017; Meng et al. 2017). Due to the continuous integration of 
industry and agriculture, persistent pollutants will be a major crisis facing agricul-
ture, so real-time and rapid monitoring of persistent pollutants is of great signifi-
cance for agricultural development.

The sensing of biological substances in soil is a new challenge. In the past, few 
sensors were able to collect information in the soil such as microorganisms and 
humus. With the development of agriculture in the future, the content of 
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Table 9.1 Summary of indicators in soil

Indicator type Soil parameters

Physical 
indicators

Color, texture, structure, porosity, compactness, permeability, bulk density, 
water content, field water capacity, volume capacity, temperature, infiltration, 
porosity

Chemical 
indicators

pH, electrical conductivity (EC), salinity, total N, available K, available P, total 
organic carbon (TOC), heavy metals, POPs, PAHs, fluoride, cation exchange 
capacity (CEC)

Biological 
indicators

Microbial biomass, enzyme activity, biochar to organic char ratio, soil 
respiration

Bünemann et al. (2018)

microorganisms and other biological substances will also be an indispensable part 
of soil sensing, because the contribution of microorganisms and other bioinformat-
ics to the soil is considerable. Some advanced sensing methods, such as fluores-
cence spectroscopy, can reflect the content of microorganisms in soil (Stockdale and 
Brookes 2006). The indicators of soil properties and corresponding soil parameters 
are summarized in Table 9.1.

In recent years, most studies on crop sensing methods are focused on detecting 
some high-content information of crops, such as crop moisture, leaf canopy tem-
perature, chlorophyll content, and nitrogen content (Onwude et  al. 2016; Padilla 
et  al. 2018). The development trend of crop sensors in the future will be higher 
precision and more flexibility in sensing high-content material information, such as 
using handheld or ground fixed-point observation, to quickly obtain these indicators 
whose accuracy needs to be further improved (Virlet et al. 2017). The other aspect 
is the measurement of some trace substances. A typical factor is hormones, the con-
tent of which in crops is very low. Hormone are a manifestation of the response of 
the crop to environmental stress. The standard process of enzyme-linked immuno-
sorbent assay (ELISA) for hormone detection is shown in Fig. 9.3, which is compli-
cated and time-consuming. Therefore, if some hormones can be accurately measured 
by a handheld sensor, they can easily reflect the ability of organisms to adapt to the 
environment and the response to environmental stress, so as to guide the process of 
fertilization and pesticide application (Tsai et al. 2015). On the other hand, the mea-
surement of some substances related to crops and food safety will also be gradually 
realized by handheld sensors, such as the content of heavy metals and pesticide resi-
due, as well as some gluten protein, fat, etc.

Phenotyping is more meaningful for crops, and so many indicators of phenotyp-
ing rely on the further development of sensor technology (Table 9.2). For example, 
information on plant height, leaf inclination, and 1000-grain weight are detected by 
sensors as the morphological information of crops. In terms of some internal com-
ponents, leaf nitrogen, chlorophyll, and hormone content are also included in the 
scope of crop phenotypic studies. Hence, the development of sensors will further 
provide the tool support for the accurate measurement of crop phenotypes, so as to 
promote the in-depth integration of phenotyping and genomics, which will also be 
the forefront trend of the development of smart agriculture (Zhao et al. 2019).
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Fig. 9.3 Standard process of enzyme-linked immunosorbent assay(ELISA)for hormone detection

Table 9.2 Indicators of plant phenotype extraction

Types Parameters

Indicators of high- 
throughput plant 
phenotyping platforms 
(HTPPs) in controllable 
environment

Plant morphology, color, and texture, multiple chlorophyll 
fluorescence, LAI, surface temperature, stomatal conductance, 
transpiration phenotype, canopy and leaf water status, seed 
composition, plant or organ morphology, morphology 
parameters, three-dimensional structure

Indicators of high- 
throughput plant 
phenotyping platforms 
(HTPPs) in filed 
environment

Ground cover, canopy height, plant geometry, growth and 
biomass, counting features, growth stages, vegetation indices, 
chlorophyll fluorescence parameters, leaf coverage, leaf 
inclination, light penetration depth, leaf N concentration

Plant micro-phenotypic 
indicators

Variation in cell size, number of cell files in the radial direction, 
percentage of aerenchyma, cell wall thickness, amount of 
cytoplasm and vacuole size, stalk diameter

Zhao et al. (2019)

9.1.3  From Field to Satellite Observation

Remote sensing makes observation take a giant leap from point to regional scale. It 
can monitor a regional area instantaneously or in a few seconds. We can find many 
new patterns we could not find before, such as spatial distribution and spatial and 
temporal variations. This new means surpass the cognitive limitations of humans, 
changes the conventional way of cognizing our earth, and provides a new vision for 
human and agriculture. Therefore, it has triggered the new application of sensors in 
the field plot scale or regional scale.
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Table 9.3 Typical crop and soil parameters from remote sensing technology

Object Level Structural/physical Physiological/chemical

Crop Canopy Green area index/leaf area 
index, canopy cover fraction, 
plant/canopy height, plant 
density, lodging, fPAR, albedo

CCC, CNC, WC, DM, biomass, yield, grain 
protein content, temperature

Leaf Leaf orientation, leaf area, leaf 
area density, leaf angle density

LCC, LNC, carotenoids, anthocyanin, WC, 
DM, phosphorus, color, soluble sugar and 
starch, etc.

Soil Soil Surface roughness, soil residue 
cover, electrical conductivity

Soil moisture, organic matter, soil nutrients 
(N, P, K, Ca, etc.), texture (clay, silt, and 
sand percentages), organic carbon content, 
pH, salinity, heavy metals, temperature, ET

Note: CCC canopy chlorophyll content, CNC canopy nitrogen content, LCC leaf chlorophyll con-
tent, LNC leaf nitrogen content, DM dry matter, SSC soluble solid content, MC moisture content, 
TTA titratable acidity, TSS total soluble solid, WC water content

Most remote sensing sensors rely on optical theories and convert electromag-
netic radiation in different spectral wavelengths to electrical signal. Currently, vari-
ous sensors are used in agriculture, including visual sensor (RGB), multispectral 
sensor, hyperspectral sensor, thermal infrared sensor, LiDAR, synthetic aperture 
radar (SAR), and fluorescence sensor (Weiss et al. 2019).

After 30–40 years of development, satellite remote sensing has made great prog-
ress in crop and soil monitoring. A large number of satellites, especially designed 
for vegetation and even agriculture, were launched, and many crop and soil param-
eters can be obtained from satellite remote sensing, as shown in Table 9.3.

However, remote sensing uses noncontact imaging sensors and has some inherent 
limitations, such as instantaneous rather than process observation (limited revisit time 
by satellite orbital constraints), poor penetration ability and just capturing top- surface 
information, easily affected by bad weather, and viewing from up to down. In addition, 
although many sensors work well when using proximal sensing in the lab or field, their 
accuracy drops when they are used in remote sensing. In contrast to field sensors, 
remote sensing faces more challenges. Since advances in proximal sensing have 
evolved much faster than in remote sensing, the technology gap still has to be bridged.

 1. Atmosphere effect: The sensor will take an image at an altitude of hundreds of 
kilometers from space. The signal will be affected by the complex atmospheric 
environment. Especially, the land surface illumination from the sunlight is quite 
not stable. Radiometric calibration is needed to overcome these problems, also 
considering directional reflectance and topographic distortions.

 2. Geometric location: Most remote sensing sensors are on mobile platform. And 
each pixel is expected to have accurate information about its geo-location. 
Typically, costly high-precision global navigation satellite system (GNSS) 
devices in combination with an inertial measurement unit (IMU) are required to 
obtain sensor location and orientation in most systems. For instance, the geomet-
ric position accuracy will be constrained by the GNSS, and the accuracy of point 
cloud will be constrained by the IMU.
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 3. Scale problem: Due to the spatial resolution of remote sensing, there are increased 
mixed pixels (mixed spectral), including shade, soil, crop, and other objects in 
one pixel. Different satellites with different spatial scales will make the situation 
more complex.

 4. More professional interpretation: In most cases, the measurement result of the 
sensor is not the information we need directly. The original obtainment of the 
sensor is just the DN (digital number) value rather than agronomical variables, 
not even spectral reflection, scattering coefficient, or brightness temperature. 
Professional analysis or knowledge is required to interpret the imagery, such as 
a physical model for quantitative inversion and an image processing method.

9.2  Inspiration of Advanced Technology for Crop 
and Soil Sensing

9.2.1  Electrochemical Sensors

Electrochemical sensors are widely used in the fields of environmental protection, 
food processing, and industrial and agricultural production due to its low cost, high 
sensitivity, and convenient online measurement. Electrochemical sensors have the 
ability to detect numerous indicators, including most free ions, most inorganic mol-
ecules, and a large number of organic molecules (Hoekstra et al. 2018). Therefore, 
electrochemical sensors have good application prospects in detecting the chemical 
properties and composition in crops and soil. The electrochemical sensing technol-
ogy is developing rapidly and showing many advantages, such as several detection 
indicators, lower limit of detection, and more convenient and efficient measurement 
methods. Especially in recent years, several new technologies in electrochemical 
sensing are developed, which will greatly expand the application in agriculture, 
especially in the fields of crop and soil detection (Ali et al. 2020).

First of all, a large number of advanced materials and process technologies are 
applied in the research and development of electrochemical sensors. For example, 
nanocomposite technology can improve the sensitivity and selectivity of electro-
chemical sensors and achieve multiobjective simultaneous measurement, which 
makes it possible to quantitatively measure some previously undetectable indexes, 
or greatly reduces the detection limit of some indexes (Lawal 2018). With its excel-
lent electrochemical performance, graphene has been widely used as an electrode 
modifier to realize the sensing of analytes, which has become a research hotspot in 
recent years. Graphene-modified electrochemical sensors can detect extremely low- 
level cytochrome, organophosphorus, and antibiotics (Lawal 2018). Furthermore, 
graphene can be combined with various biomolecules to build electrochemical bio-
sensors. For example, the immobilization of glucose oxidase in graphene and gold 
nanocomposites can realize the detection of glucose, and graphene and its deriva-
tives can be combined with DNA or RNA to form a DNA biosensor, which can 
realize the detection of specific bacteria (Saidur et al. 2017). These new methods 
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have certain enlightenment significance for the rapid acquisition of the crop physi-
ological state and soil physicochemical properties and components.

Miniaturization and on-chip technology is another development trend in electro-
chemical sensors. As a large number of microsensors have appeared at present, the 
consumption of samples and reagents can be greatly reduced, and ppb- or even ppt- 
level measurement can be achieved (Maduraiveeran et al. 2018). The stable, reli-
able, and shapeable sensor arrays can be cheaper and more productive as the 
sensitive electrodes and processing circuits are integrated on circuit boards of min-
iature sensors by using technologies such as etching, lithography, or printing gener-
ally. Since electrochemical microsensors can be integrated easily, a large number of 
different types of miniature sensors can be fixed on the surface of the chip to build 
a microsensing analysis system. This technology is called laboratory-on-a-chip, 
which can realize the analysis of inorganic ions, organic molecules, and others 
accurately and quickly (Economou et al. 2018). There is a wide range of applica-
tions of laboratory-on-a-chip in the biomedical and pharmaceutical fields. Combined 
with microfluidic technology, the detection and analysis of nucleic acids, proteins, 
and cells can be realized. The measurement of crop components and soil colony 
composition can be applied with the improvement and development of the 
laboratory- on-a-chip technology.

Wearable sensors have become another very obvious trend with the development 
of miniaturization and convenience of electrochemical sensors (Maduraiveeran 
et al. 2018). Generally, such sensors are designed based on flexible and stretchable 
electronic materials or integrated in electrochemical sensors in wearable devices 
such as smart watches and wristbands (Bandodkar and Wang 2014). For example, 
Electrozyme LLC (Boston, Massachusetts, United States) had developed a wrist-
band product with a built-in biosensor, which can provide real-time monitoring of 
the content of various specific molecules (electrolyte, Na2+, K+, lactic acid, etc.) in 
sweat, so that users can view their physical conditions in real time (Economou et al. 
2018). A type of biosensor gloves using extensible printed electrodes is developed 
by the University of California, San Diego, which rapidly detects organophosphorus 
pesticide residues on food surfaces (Amit et al. 2019). Wearable electrochemical 
sensors have very obvious advantages to monitor the biomass in the measured 
object in real time. After improvement and application, these technologies will have 
better application prospects in monitoring the biological reaction processes of crop 
growth or fruit ripening.

9.2.2  Optical Sensors

In recent years, optical sensors have gained unprecedented attention in many fields, 
due to the rapid development of related optical devices, such as photosensitive 
materials, lenses, refracting devices, and detectors. The development of optical sen-
sors has also provided corresponding enlightenment for soil and crop perception.
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First of all, the development of optical range sensors has been very rapid, which 
is mainly driven by market promotion. LiDAR is a good example and has been 
increasingly used in long-distance ranging. LiDAR sensors use the triangulation 
range imaging method, which has become the standard configuration in many auto-
motive electronic systems. In the market, the number of manufacturers producing 
LiDAR with imaging-based ranging principles continues to expand, and the ranging 
precision has been improved but the cost is getting lower and lower. This method 
will also promote the development of LiDAR ranging technology in the agricultural 
field, especially for plant height measurement and other applications (Jimenez- 
Berni et al. 2018). When using lasers to measure micro-distances, laser sensors have 
very obvious advantages. The interference imaging of two lasers is used to measure 
small deformations, which is also very important in crop measurement. For exam-
ple, using two laser beams to form a speckle displacement can measure some mor-
phological changes on the crop surface (Ansari et al. 2018), which has more obvious 
advantages and potentials compared with current measurement methods.

Fluorescence sensing is the most likely technology for practical application in 
crop sensing. A schematic diagram of fluorescence, the electronic states of a fluoro-
phore and the transitions between them, is shown in Fig.  9.4. Many studies are 
focusing on fluorescence spectrum sensing methods and its application in crop com-
ponent measurement, especially in terms of chlorophyll measurement of leaves. 
Some fluorescent sensors can judge the chlorophyll and nitrogen contents of crops 
at short distance, while some sensors can achieve long-distance measurement of 
crops (Padilla et al. 2016). The load on some satellites can obtain the fluorescence 
induced by sunlight from crops through specific channels, and the analysis of fluo-
rescence can be used for crop yield estimation food safety, air pollution, agricultural 
source gas emissions, water quality testing, and so on. Because crop components 
contain a large number of fluorophores, including chlorophyll a, chlorophyll b, and 
carotenoids, fluorescence sensors will be widely used in crop sensing. In soil mea-
surement, the application of fluorescence sensors is relatively more difficult. 
However, with the continuous development of fluorescence sensing methods, such 

Fig. 9.4 Schematic diagram of fluorescence – the electronic states of a fluorophore and the transi-
tions between them
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as the development of time-resolved and three-dimensional fluorescence, fluores-
cence sensors are bound to play a more important role in crop and soil applications.

Optical scattering is a rapidly developing sensing method in recent years. There 
are two types of optical scattering sensors, elastic scattering without changing the 
laser wavelength and Raman scattering. Elastic scattering has been improved in 
recent years and is increasingly used in biomedicine. The scattering formed by 
some molecular clusters can also be used to measure trace components in crops, 
such as some hormones (Guerraf et al. 2019). On the other hand, elastic scattering 
has still not been used for crop component measurement, but it has potential in this 
field. Raman scattering has been used in medicine, biology, analytical chemistry, 
and other occasions in recent years because it can achieve molecular measurement. 
Figure 9.5 shows a Raman detector based on MEMS (M1S, CloudOptek Co., Ltd. 
Beijing, China.), which can detect various chemicals and medicines. Especially 
Raman scattering shows a great potential in tracing material and human metabolite 
analysis. However, applying Raman spectroscopy to crop measurement will first 
face a lot of fluorescence interferences; therefore, how to eliminate these fluores-
cence interferences and obtain Raman scattering signals of specific molecules in 
crop components is the main problem in the detection of crop component with 
Raman sensors.

Another kind of sensor with significant implications for the measurement of soil 
and crop components is the optical absorption sensor, which has increasing applica-
tions in several fields, including environmental security, food safety, air pollution, 
agricultural source gas emissions, water quality testing and so on. The absorption 
capacity, measuring methods, detector level, signal-to-noise ratio, and spectroscopic 
methods of optical sensors have been greatly developed with the development of 
these devices. Therefore, optical absorption sensors have great potential in soil and 
crop measurement. It should be noted that although near-infrared (NIR) and 

Fig. 9.5 Raman detector based on MEMS (M1S, CloudOptek Co., Ltd.) (Disclaimer: Commercial 
products are referred to solely for the purpose of clarification and should not be construed as being 
endorsed by the authors or the institution with which the authors are affiliated.)
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infrared optical absorption sensors are widely used in the measurement of soil com-
ponent at present, many problems have still not been solved. The serious interfer-
ence of soil organic matter leads to the bad specificity of absorption, and the 
transmissibility of many models is poor. But these problems will be gradually 
improved with the development of hardware and software technology. In terms of 
hardware, the absorption measurement of specific optical signals in different wave-
bands, including the development of tunable narrowband lasers, will gradually 
solve the matrix interference problems. Further, in terms of software, the ability and 
level of spectral processing will become increasingly intelligent due to the increas-
ing applications of machine learning in spectral processing, which also can improve 
the detection ability of the model to some extent.

Furthermore, in addition to the enlightenment from the above optical sensing 
principles, we should also note another phenomenon, the implications of miniatur-
ization of optical sensors. With the miniaturization of optical devices and the on- 
chip and integrated development of electronic devices, many optical systems can be 
made smaller and smarter. For example, the Raman spectrometer used to be a bulky 
system equipped with a laser, laser refrigeration system, grating spectrometer, and 
other modules. Thus, the volume was large and it was difficult to be applied in situ. 
But now the Raman spectrometer can be turned into a handheld device or even into 
a smart phone, which also provides the possibility for further application of optical 
sensing technology in the agricultural field. Many scattering and absorption sensors 
even can be put into the interior of the plant or the soil to achieve unprecedented 
simplified measurements due to the smaller and smaller volume and the on-chip 
characteristics of detectors. Figure 9.6 shows an example of a portable NIR module 
and structure (DLP NIRscan Nano EVM, Texas Instruments Incorporated, Dallas, 
Texas, USA). The supported wavelengths are from 900 to 1700 nm and the optical 
resolution is 10 nm, and the size is only 62 mm (length) × 58 mm (width) × 36 mm 
(height). It is because of the development of miniaturization of detectors that the 

Fig. 9.6 Portable NIR module and structure (DLP NIRscan Nano EVM, Texas Instruments 
Incorporated, Dallas, Texas, USA) (Disclaimer: Commercial products are referred to solely for the 
purpose of clarification and should not be construed as being endorsed by the authors or the institu-
tion with which the authors are affiliated)
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cost of sensing technology including optical scattering, fluorescence, absorption 
spectrum, and other principles will gradually decrease.

9.2.3  Other Advanced Sensors

In addition to electrochemical and optical sensors, other sensor technologies have 
important implications for agriculture, especially in soil and crop sensing. For 
example, the dielectric spectrum sensor can reflect the energy change and energy 
distribution between two electrodes by using the dielectric effect of materials. In the 
past, dielectric spectrum sensors have been widely used in biochemistry fields, as 
well as in the measurement of soil and rock in mountains (Cheng et al. 2014). It is 
of scientific significance to apply dielectric spectrum technology to soil and crop 
measurement. In recent years, some scientists and research institutions are trying to 
apply the dielectric spectrum sensor in agriculture, such as using the dielectric spec-
trum sensor to measure crop biomass and soil moisture (Fig. 9.7), but the current 
application is relatively rare. The application of the dielectric spectrum is not only 
limited to the measurement of the change of physical properties between two elec-
trodes, but also to the detection of some chemical substances through the surface 
modification of electrode materials. It is believed that in the future, the dielectric 
spectrum sensors will also play an important role in the field of crop and soil sensing.

Other sensors based on electromagnetics will also have a very important applica-
tion value in crop and soil measurement. For example, the nuclear magnetic spec-
trometer can measure the information of different substances and imaging 
information in the object, so it has produced very important applications in biology, 
medicine, flaw detection, petroleum, and other industries. However, the application 
of nuclear magnetic spectrometers in agriculture is still in its infancy, which is 
mainly determined by the irregularity of agricultural objects. In recent years, the 
development of nuclear magnetic spectrometers has been very rapid, especially in 
the measurement while drilling, which has gradually shown advantages. The 

Fig. 9.7 Principle of a dielectric spectrum sensor for soil monitoring
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technology is becoming increasingly advanced, and the cost has become decreas-
ing. Therefore, it has great potential in crop water measurement and soil structure 
measurement. For example, the volume of nuclear magnetic resonance spectrome-
ters is gradually decreasing, which can detect soil and crops in the field 
(Forouzangohar et  al. 2015). It is believed that with the gradual development of 
magnet technology and the progress of image processing technology, nuclear mag-
netic spectrometers will have wider application in agriculture.

With the rapid development of sensor technology, sensors with different princi-
ples and different ways are developing very fast. It is hard to list them all in this 
section. It is necessary to pay attention to the development of new technologies at 
all times and apply some potential technologies for its transition to agriculture.

9.2.4  Lessons from Other Platforms and Missions

 1. Advanced Satellite and Ground Vehicle Platform

Nanosatellites or CubeSats will become a trend due to their low cost and high 
revisit ability. A CubeSat consists of very small and lightweight units that can be 
joined together to form one satellite (Maes and Steppe 2019). In addition, it will be 
easy to establish a satellite constellation using multiple small satellites. For exam-
ple, the SkySat constellation operated by Planet Labs is the very-high-resolution 
component of Planet’s satellites. It has provided nearly daily multispectral imagery 
with 3-m resolution since 2016. In the future, small satellites and constellation will 
play an irreplaceable role in smart agriculture. In addition, UAVs and UGVs 
(unmanned ground vehicles) will be a promising platform (Kim et  al. 2019). In 
recent years, UAVs show unlimited potential in agriculture, due to their low cost and 
high flexibility. Ground vehicles, such as tractor and robotics, as a platform of both 
observation and operation (spraying, harvest, etc.), will also be a promising platform.

 2. Future Satellite Mission for Earth

The Earth Explorer-Fluorescence Explorer (FLEX) mission, a European Space 
Agency (ESA) future mission, will map vegetation fluorescence to quantify photo-
synthetic activity. The information from FLEX will lead to better insight into crop 
health and stress. In addition, GF and Sentinel series satellites will be improved to 
provide more available data. Soil Moisture Active Passive (SMAP), Soil Moisture 
and Ocean Salinity (SMOS), and other future satellite missions for global change 
monitoring, i.e., water and carbon cycle, will be launched in the future (Mohanty 
et al. 2017).
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9.3  Prospects for Crop Sensor Technologies 
in Smart Agriculture

9.3.1  Crop Phenomics Sensor Technologies

As mentioned above, crop phenomics is one of the main trends in the development 
of modern agriculture. Thereby, new sensor technologies will play an increasingly 
important role in this field. Crop phenomics will step into the phase of multilevel 
observation (Zhao et  al. 2019). New sensors can observe variables in-field from 
organ level to plant level and from group level to area level. Besides, the observation 
will be more comprehensive, more precise, and more accurate, which will be com-
bined with metabonomics and genomics to improve the level of crop breeding in 
modernization and precision.

The application of new sensor technologies in crop phenomics is an important 
direction. There will be a rise in new sensors applied to the observation of crop 
phenomics, such as optical sensors and electrochemical sensors. An example is 
shown in Fig.  9.8 (Yuan et  al. 2018). A ground-based multi-sensor phenotyping 
system equipped with ultrasonic sensors and light detection and ranging (LiDAR) 
was developed. Canopy heights of 100 wheat plots were estimated five times during 
a season by the ground phenotyping system and an unmanned aircraft system 
(UAS). The experimental results showed that the LiDAR provided the best results.

With these new sensors, the imperceptible variables before will become percep-
tible now, or the variables that could only be observed in the laboratory before can 
be observed in-field now, and the imprecise results before will become accurate 
now. For instance, it was difficult to observe the root systems decades ago. With the 
emergence of such sensors as ground-penetrating radar (GPR), the root systems can 
be detected accurately to meet the demands of simultaneous observation about over-
ground and underground variables (Alani and Lantini 2020). Another example is 
plant hormones and diseases. In the past, detecting plant hormones and disease was 
difficult by sensors and usually was carried out in the laboratory. Now, some 
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Fig. 9.8 Plant phenotypic information monitoring during the growth cycle. (Yuan et al. 2018)
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spectroscopic methods and electrochemical methods will make it possible to 
observe them in-field. Thus, the new sensory models will be a great boost to crop 
phenomics.

Another important trend of crop phenotypic parameter field measurement is the 
study of noise reduction and elimination methods. Currently the crop phenotype 
measurement often depends on more diverse platforms. In the past, crop phenotypic 
measurement was often carried out indoors, using the pipeline method. With the 
development of technology, it becomes possible that the crop phenotypic measure-
ment can be carried out in the field, such as through handheld sensors or mobile 
robots, to achieve rapid measurement, as shown in Fig. 9.9 (Zhao et al. 2016). This 
approach is an increasingly important trend. On the other hand, even if it is not 
obtained by moving and only by fixed-point observation, it is still subject to many 
noises in the field, such as the shelter of some leaves and the influence of light. 
Many important parameters can be measured in the laboratory without any problem, 
but in the field, the noise is very obvious. For example, for simple plant height and 
leaf inclination, the deviation of machine vision will be very small when measured 
in the laboratory by pipeline. However, since the outdoor environment is complex, 

Fig. 9.9 Multiple elements of the three-dimensional distribution measurement using field robot 
and laser-induced plasma spectroscopy. (Zhao et al. 2016)
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whether through fixed-point observation or moving observation, the visual error 
will cause the distortion of the phenotypic parameters, which makes it difficult for 
the measurement accuracy to meet the actual needs. Therefore, with the develop-
ment of technology, it is very important to realize the field measurement of the crop 
phenotype in mobile environments. This is also an important technology develop-
ment trend in the future.

9.3.2  Sensing for Crop Nutritional Status

The nutritional status of crops during growth is one of the important directions and 
trends of crop nutrition sensors. These nutritional statuses are mainly used to regu-
late precision agricultural operations, especially to guide irrigation and fertilization 
operations. The content of water and concentrations of nitrogen, phosphorus, and 
potassium are typical indicators. In the past, agricultural production was usually 
managed by fertilization and irrigation according to the instructions on the indicator 
map. For example, irrigation was carried out when soil moisture was relatively low 
and corresponding fertilizers were applied when soil nutrients were relatively defi-
cient. However, farmers need to monitor the soil nutrition and understand the nutri-
tion level of crops when they need to carry out fertilizing and irrigation in the ideal 
static working environment, so that the production will be more economical. 
Therefore, it is an important trend to realize the online fast perception of crop nutri-
tional status. The existing sensing methods cannot fully and accurately realize the 
online fast perception of crop nutritional status. However, with the development of 
sensing technology, there will be an increase in the number of sensing methods 
applied to the exploration of crop nutritional status. For example, the diffuse reflec-
tance spectrum of the crop canopy can be used to measure the content of chloro-
phyll and nitrogen in crop leaves (Wu et al. 2004). It is worth mentioning that the 
crop nutritional status must be distinguished from conventional elements. It is nec-
essary to distinguish the status between all elemental forms and effective elemental 
forms when measuring the crop nutritional elements. For example, some specific 
nitrogen nutrients like nitrate nitrogen are usually more sensitive to the crop and 
they can reflect the crop nutritional status when measuring nitrogen levels. The 
meaning of total nitrogen is different from nitrate nitrogen. In the future develop-
ment, it is necessary to consider the issue of effective nutrients when the sensory 
technology is applied to the measurement of crop nutritional elements.

With the development of modern agriculture and food science, the real-time per-
ception of crop nutritional status is indispensable. With the improvement of people’s 
living standard, the requirement of food quality will be higher and higher. Therefore, 
the nutrition of crops is not only to guide agricultural production, but also to be 
related to the quality of crops after harvest. Consumers have much higher concerns 
on the quality, safety, and nutrition of the crops after harvest.  Therefore, sensors for 
online real-time measurement of nutrients in the production process are an 
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important trend in the future, and the detected indicators include selenium content, 
starch content, protein content, calories, etc.

9.3.3  Sensing for Crop Pests

Real-time measurement of crop diseases and pests in the field with sensors are 
extremely difficult. Although quite a few methods have been developed for the field 
observation of pests and diseases, most of them do not have market prospects. A 
more typical example is the use of images to achieve real-time measurement of crop 
pests and diseases. As shown in Fig. 9.10, the surface area and image characteristics 
of disease spots can be used to distinguish whether crops are suffering from diseases 
and what kind of diseases they are (Zhang et al. 2020). However, since the disease 
and pest images of many crops are very similar, it is difficult to use these machine 
vision methods to a large-scale area. Therefore, some methods use the biological 
effects of pathogens to achieve rapid measurement of crop pests and diseases 
through biosensors. However, at present these methods have not been directly 
applied in the field and often require plant sampling for culture in the laboratory 
before measurement, which is time-consuming and cannot be considered as online 
or in situ detection methods.

With the development of physical sensors, chemical sensors, and biosensors, 
these sensors will be further applied in the farm field. For example, the rapid pre-
treatment of pathogens or the processing of some specific optical signals can be 

Fig. 9.10 Plant stress phenotyping isolation using the deep machine vision framework coupled 
with the DCNN. (Zhang et al. 2020)
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used to realize the exact measurement and classification of diseases and pests in the 
field. This will be a huge challenge for sensor technology, and it will also have a 
very broad market application space.

9.3.4  Remote Sensing for Crops

For crop sensing in the future, remote sensing will inevitably step to the deeper 
interaction with agronomy. Many variables retrieved from remote sensing cannot 
directly serve or support the crop diagnosis and operation decisions. For instance, 
the amount of foliar chlorophyll content does not determine the definite diagnosis 
of nutritional stress because it is necessary to know the normal reference first. The 
decrease of soil moisture or foliar water content does not necessarily indicate the 
occurrence of agricultural drought or even water stress. Since crop is a living life, it 
can self-regulate to adapt to the environment and change quickly during its entire 
life cycle. Therefore, the water and nutrition status of crops are different based on 
different components (i.e., leaf position, canopy layer) at different growing stages. 
Particularly, many issues in smart agriculture, such as early diagnosis of nutrient/
water stress, early warning of diseases and pests, distinguishing different stresses, 
early prediction of crop yield and quality, and quantitative assessment of agricul-
tural disaster loss, cannot be addressed just by remote sensing. Only when inte-
grated with agronomy knowledge, remote sensing can transfer from data to 
information and further to agronomical decisions. One of the potential solutions is 
the integration of remote sensing observation into the crop growth model. It expands 
the agronomy knowledge from site to regions and also expands the remote sensing 
observation from instantaneous monitoring to dynamical monitoring, which will 
help the early prediction of yield/quality and crop stress diagnosis.

Another trend will be expected from the improvement of remote sensing technol-
ogy itself as described below.

 1. Integration of multi-platforms and multi-sensors. Increasing observation dimen-
sion will help to improve the accuracy of estimated agronomical variables. And 
different physiological parameters are required to support crop stress diagnosis. 
It should be focused to exploit the complementarity of different platforms and 
different sensors. Satellites are the most stable and efficient platform, while UAV 
is the most flexible platform. Ground platforms (e.g., vehicle, tractor, or robot-
ics) provide data with the highest resolution and accuracy, while sensor networks 
provide the best continuity in time. Hyperspectral sensors or multispectral sen-
sors have the advantage in sensing pigment content, while thermal sensors are 
sensitive to water, and LiDAR can easily obtain the 3D structure information of 
crops. Future studies will therefore focus on the improved sensing integration 
from hybrid platforms using scaling-based approaches in order to increase the 
data accessibility and make optimal use of all available data sources (Latif 2018).
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 2. Universally applicable models. Extensive empirical models were developed in 
the past years. However, the models developed from one region may not be 
available in another region. It is important to develop universally applicable crop 
models. Physically based models, such as radiative transfer models, will help to 
improve the understanding of the interaction mechanism between electromag-
netic wave at different spectral bands and nutritional pigment (or water content) 
in the leaf scale, together with physiological/structural parameters in the canopy 
scale. In addition, prior knowledge in this field or contextual information should 
be explored to constrain the estimated results.

 3. Translating scientific results into common practice. The current requirement of 
practical and technical expertise for data processing hampers the routine applica-
tion of remote sensing in smart agriculture. There is a clear need to standardize 
and harmonize the processing pipeline and to include this in commercial sensors 
and processing software.

 4. Cutting-edge sensing technologies. Some new sensors have emerged in recent 
years, such as chlorophyll fluorescence, multispectral or hyperspectral LiDAR, 
miniSAR, and terahertz imaging. They are promising but problems of miniatur-
ization and cost need to be addressed before they can be used in more remote 
sensing platforms.

9.4  Prospects for Soil Sensing Technology 
in Smart Agriculture

9.4.1  Soil Nutrient Sensors

Nutrient information in farmland soil is an important factor affecting crop growth. 
It is very important to master the distribution of nutrient information in soil (such as 
total nitrogen and organic matter) to guide agricultural production (Sinfield et al. 
2010). Laboratory methods are often used to measure soil nutrients of farmland in 
the past, which have a long measuring period and complex process. Although the 
accuracy is high, it cannot meet the requirements of fast and real-time information 
in precision agriculture. Most of the measurement results by rapid detection meth-
ods have deviations compared with measurement in the laboratory. Besides, most of 
the rapid detection methods can only realize fixed-point measurement and have 
some disadvantages, such as time-consuming and costly, which hinders their wide-
spread application (Mukherjee and Laskar 2019). Therefore, how to obtain and ana-
lyze nutrient information accurately in real time is the first problem to be solved in 
the research of smart agriculture.

Although many promising technologies have been applied to soil nutrient sens-
ing so far, the problem of in situ soil nutrient measurement has not been solved. 
Therefore, soil nutrient sensing is still one of the key directions for the development 
of agricultural sensing technology in the next decade or even two. Many methods, 
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such as NIR spectroscopy, mid-infrared (MIR) spectroscopy, and ion-selective elec-
trodes (ISE), have been applied to soil sensing, but none of them have been widely 
used in agricultural practice (Wang et al. 2018). Very low soil nutrient content and 
overly complex soil collectives are the main reasons that make soil nutrient sensing 
difficult. For example, the concentration of nitrate nitrogen is only about 10 ppm. 
However, a lot of irrelevant elements, such as soil moisture, have spatial-temporal 
changes that interfere with the very small amounts of nutrient information. 
Therefore, it is difficult for the sensor to measure the soil nutrient in situ in the field.

Further, some new technologies such as laser-induced breakdown spectroscopy 
(LIBS) have gradually attracted people’s attention. For example, on a Mars explora-
tion vehicle, NASA and European Space Agency use intense lasers to ablate Martian 
soil and rocks to generate plasma and then use plasma emission spectroscopy to 
measure different elements in soil and rocks, as shown in Fig. 9.11. Based on this 
work, researchers in the agricultural field use LIBS to detect elements in the soil. 
But there are still many issues that need to be solved. In addition, some new tech-
nologies such as nanotechnology, new electrochemical technology, and new nano- 
modified electrochemical materials are gradually being used to solve the rapid 
measurement of soil nutrients from different perspectives. Therefore, the rapid mea-
surement of soil nutrients will get new development opportunities, and a number of 
new technologies will be integrated to produce revolutionary results.

It can be predicted that with the development of these methods, the rapid mea-
surement of farmland soil will usher in rapid progress. Soil nutrient measurement 
will gradually develop from the laboratory to the field, from single measurement to 
compound measurement, from human measurement to machine measurement, and 

Fig. 9.11 Composition investigating the rock surface using a LIBS instrument installed on 
Chemistry and Camera. (https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA14760)
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from single-point measurement to area array measurement. These developments 
will promote the progress of precision agriculture and smart agriculture.

9.4.2  Soil Heavy Metal Sensors

In addition to soil nutrient information, heavy metal information is also important, 
and sensors of heavy metals in soil have a very important market prospect. Because 
of the rapid development of agriculture in the world, the pollution of heavy metals 
from industrial sources to agricultural sources is becoming increasingly serious, 
which has seriously threatened the safety level of agricultural products. It is of great 
significance to carry out rapid and on-site measurement of heavy metals in soil. The 
traditional method of soil heavy metal detection, with a series of chemical means 
and then a detection of large analytical instruments, is time-consuming, laborious, 
and expensive, which seriously restrict the development of large-scale farmland 
environmental monitoring.

X-ray fluorescence, as shown in Fig.  9.12, is a feasible method for the rapid 
measurement of soil heavy metals in recent years, but the detection limit of X-ray 
fluorescence still cannot meet the demands and can only be used as a qualitative 
measurement. With the development of new technologies, the fluorescence inten-
sity, safety, and detection ability of X-ray fluorescence will be further developed, 

Fig. 9.12 Handheld X-ray 
fluorescence (XRF) for soil 
heavy metal detection. 
(James Hutton Institute, 
https://www.hutton.ac.uk/
research/groups/
environmental- and- 
biochemical- sciences/
analysis- equipment/
chemical) (Disclaimer: 
Commercial products are 
referred to solely for the 
purpose of clarification and 
should not be construed as 
being endorsed by the 
authors or the institution 
with which the authors are 
affiliated)
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which will promote the application of X-ray fluorescence in the rapid field detection 
of soil heavy metals (Singh et  al. 2017). Furthermore, other new technologies 
including electrochemistry and nanometer materials will also propose new methods 
for detecting soil heavy metals. In any case, the detection limit is still the most 
important issue in soil heavy metal detection. Because the content of various heavy 
metals in the soil is very low, even at very low doses, it still poses a serious hazard 
to agricultural products. Therefore, how to quickly detect very low content of heavy 
metals will be the main bottleneck, and new technologies in the future will continue 
to work in this direction.

For physical methods such as X-ray fluorescence and laser-induced breakdown 
spectroscopy, the main method to improve the detection ability lies in the improve-
ment of the physical mechanism. For example, the enhancement of the spectral 
signal through the confocal action of two lasers, improvement of the sensitivity, and 
reduction of the detection limit will make it possible to measure the heavy metals 
with low dose in soil. For electrochemistry and other methods, it is actually the 
measurement of heavy metals in the dissolved soil. Although the detection ability is 
sufficient, it is still needed to measure the untreated soil directly in the field. 
Therefore, besides the sensitivity, electrochemical sensors have to deal with the 
problem of how to extract the ion quickly, especially when ions exchange at very 
low water content. With the rapid development of new material technology, these 
ideas will no longer be impossible.

9.4.3  Soil Physical Parameter Sensors

Soil physical properties are also important information, including moisture, tem-
perature, compactness, and granularity. That information represents the absorbable 
nutrition level and the arability level of the soil. With the development of precision 
agriculture and smart agriculture, in-field and fast measurement of soil physical 
properties is also required.

Measurement of soil physical properties should rely on the physical theories and 
physical characteristics, such as electrical properties, the absorption of microwave, 
and the reflection of an electrical signal. However, the methods become diverse and 
are not limited in the ordinary theories with the emergence of the new techniques. 
GPR is a simple example in soil detection (Wijewardana and Galagedara 2010). The 
sensitivity and spatial resolution of the radar is improved due to the progress in the 
electromagnetic field. GPR was only used in detection of the very strong root sys-
tems in the past, while it can measure root systems for density, granularity, and other 
properties more precisely now. Plane detection is the main difference in sensory 
mechanisms between GPR and conventional radar which can measure soil in large 
areas and multilayers in real time harmlessly. Hereby, it has obvious advantage over 
conventional methods. Meanwhile, other sensory mechanisms and methods, such as 
microwave and nuclear magnetic resonance (NMR), also measure many soil physi-
cal properties. But those methods are still limited in volume, accuracy, price, and 
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other aspects. Those methods will be improved and merged with the requisition of 
precision agriculture and the increase of additional value on farm products.

9.4.4  Prospective of Soil Sensing by Remote Sensing

In the future, remote sensing will mainly play a role in soil moisture and soil 
nutrition.

 1. Soil moisture: Due to its poor penetration depth, remote sensing can only “see” 
the top surface of the soil or some millimeters in depth, which leads to an incom-
plete picture of the soil moisture profile. The potential solution may be integra-
tion with hydrological models. The surface soil moisture will be extended to the 
deeper soil, even the soil vertical profile in the root zones. Another obstacle is 
that, for most cases, agricultural soil fields are under crop cover. It is necessary 
to remove the vegetation effect when using remote sensing. Microwave or SAR 
sensors will be a promising choice. Microwave sensors are sensitive to moisture 
and have high penetration ability. In addition, soil moisture is a highly temporal 
variable and spatially heterogeneous, with varying land use having very signifi-
cant differences in behavior. Ground network sensors or meteorological data 
should be combined since sub-daily or hourly records are needed for an accurate 
application of soil moisture.

 2. Soil nutrition: Currently, soil nutrition is frequently investigated using spectral 
remote sensing by different researchers, include nitrogen, phosphorus, organic 
matter, texture (clay, silt, and sand percentage), and even heavy metals (Ladoni 
et al. 2010). However, it is a global challenge for real-time in situ soil measure-
ment, even if using proximal sensing. There is a long way to really serve smart 
agriculture. Here some perspectives are provided. (a) Since the accurate soil 
mapping cannot be achieved without exhaustive soil sample collection, remote 
sensing will be used to guide sampling rather than predict soil properties. Remote 
sensing will be the auxiliary means, working together with other tools, i.e., geo-
statistics method. (b) Crop status will be a proxy indicator for detecting soil 
nutrition stress. (c) Remote sensing should be integrated with pedology and 
other information, such as fertilizer management, to predict soil nutrition varia-
tion (Mulder et al. 2011).

 3. Universal models: One of the common issues in detecting soil nutrition and 
water by remote sensing is the model’s accuracy and robustness. Apparently, the 
biggest obstacle is inconsistency of models obtained from different studies at 
different locations. Using local or regional correlation approaches may not scale 
for operational use over vast areas, since large variations exist among soil spectra 
due to soil genesis and soil formation. One possible solution to this problem is to 
collect an exhaustive number of soil samples from around the world, establish a 
global soil spectral library, and develop a universal model (Ge et al. 2011).
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 4. New cutting-edge sensing technology: In addition to SAR, gamma-ray spectrom-
etry is another technology suitable to exploring soil texture, water, and fertiliz-
ers. Gamma-ray spectrometry can provide information down to 1 m in peaty 
soils and 30–60 cm in mineral soils. Airborne gamma-ray spectrometry (airplane 
or UAV) can provide valuable data sets (Mohanty et al. 2017). Moreover, GPS 
receivers can sense soil moisture fluctuations over an area of 1000 m2 and thus 
are a potential source of soil moisture in regions (Chew et al. 2016).
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