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Abstract

A pandemic can arise without warning, and it is important
for those in charge ofmanaging the outbreak to understand
how diseases spread. Being able to simulate the spread of
a disease in varying environments can help the world be
more prepared when an outbreak occurs. The COVID-19
City Simulator allows the user to test the spread of the
virus under multiple different scenarios. Parallel comput-
ing can help to make these simulations more efficient by
allowing data to be gathered at a faster rate on a particle
simulation. This paper shows how OpenMP and MPI can
improve a pandemic simulation by cutting the runtime
from over 25 s to under 10 s when 4 threads and 4 boxes
are used. We also find that the speed of implementing a
lockdown largely impacts the amount of cases and deaths
in the city.

Keywords

Parallel computing · OpenMP · MPI · Hybrid model ·
COVID-19 · Pandemic · Simulation · disease spread ·
Particle simulation · Parameter tuning

24.1 Introduction

Many mathematical models exist to represent the spread
of infectious diseases in a population. These models vary
widely, but all models have large limitations when gener-
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alizing a population. However, they can still be helpful to
gain understanding of the biological and sociological factors
that contribute to the spread of disease [1]. This knowledge
can be used to advice public health policy so institutions can
deal with disease outbreaks in the best way possible. This
study is being conducted due to its modern relevance with
the COVID-19 pandemic.

Many countries have reacted differently to this pandemic,
but being able to accurately simulate the spread of a disease
can help the entire world handle outbreaks more effectively.
This simulation can display how different factors such as
population density and amount of public interaction will
affect the spread of a virus. We will be looking at lock-
downs orders, which include public policies that attempt
to reduce spread by reducing interactions in a city. Due to
the challenge of implementing lockdowns, some countries
have implemented them more strictly and more quickly than
others. This study attempts to investigate the extent to which
the speed at which a city locks down affects the public health
outcomes of the city.

The paper will also discuss how parallel computing can
make simulations more efficient, since making simulations
more efficient will allow for them to be more realistic and
useful for understanding the problem. Shared memory paral-
lelism involves using multiple threads that share a common
memory space to execute tasks in parallel. Message passing
parallelism involves executing tasks on different boxes that
don’t share memory, and require messages be sent to ex-
change information needed for processing. Both techniques
are powerful and can be used in tandem to maximize the
efficiency of computing resources on a simulation.

In Sect. 24.2, the background and relevant past research
are discussed. In Sect. 24.3, the detailed approach of the
simulation’s implementation is described. In Sect. 24.4, the
results of simulation trials are reported and analyzed. Finally,
Sect. 24.5 gives the conclusion of the paper’s work and
describes future work to expand knowledge on this topic.
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24.2 RelatedWorks

The simulation discussed in this paper is based on other
models used to simulate the spread of disease. The first
model used as inspiration is the SIR disease model. This
model splits a population into three compartments: suscep-
tible, infected, and recovered. This model was based on
Kermack-McKendrick theory from 1927 [2]. The SIR Dis-
ease model uses transition functions to move individuals of
the population between the three compartments. This system
of compartments and transitions is modeled with ordinary
differential equations (ODEs), and it is a deterministic model.
Another type of models that improve upon deterministic
models are stochastic disease models. They improve upon
standard compartmental models like SIR by adding some
elements of randomness [3]. These stochastic models can use
Continuous Time Markov Chains or Stochastic Differential
Equations to simulate the spread of disease.

Britton describes a special epidemic model with site con-
tamination [4]. This model divides a space into several dif-
ferent sites with a random number of particles in each site to
represent the individuals of a population. The particles can
move randomly between neighboring sites. When an infected
particle reaches a new site, all other particles currently at
that site become infected. Germann made a model that used
mitigation strategies for pandemic influenza in the United
States [5]. This was a complex simulation model used to
study influenza in the United States. The model used data
from the 2000 US Census and divided the population into
seven “mixing groups” that could contact one another. The
model considered various interventions such as vaccination
and social distancing to determine how different factors
would affect the spread of influenza.

For the simulation, multiple methods of computer par-
allelization of particle simulators were researched. We had
to decide which method of parallelization would be most
appropriate for the project. One source of research discussed
many different methods and platforms for parallel computing
[6]. From this paper as well as our former experiences,
we decided that MPI was the most appropriate method for
parallelizing the simulation. Our research into parallelization
methods also showed the difference in performance for a
program using pure MPI against a program using a hybrid
of MPI and OpenMP [7]. The hybrid uses of both MPI and
OpenMP was found to improve performance over using MPI
alone. The combination of these two sources lead us to test
the simulation using three different methods of paralleliza-
tion: OpenMP, MPI, and a hybrid model using both OpenMP
and MPI.

24.3 Approach

The city is represented by a particle simulation. The
particles exist in a finite 2D space where particles represent
people living in the city and the space represents the city. The
simulation moves forward at discrete time steps, where each
time step t represents transitioning an hour forward in real
time.

To create a simulated epidemic model of the city, various
properties are added to both the particles and the organization
of the city to help simulate how a real city would experience
an epidemic.

24.3.1 Particles with Disease States

Each particle in the simulation will always exist in a disease
state. The set of states, S, includes Susceptible (S), Infected
(I ), Recovered (R), and Deceased (D), based off the SIR
compartmental model (24.1).

S ∈ {S, I, R, D} (24.1)

We let Nt represent the number of total particles in the
simulation at a given time step. All living individuals will
be represented as particles in the simulation (24.2). Since
deceased individuals will be removed from the simulation,
N can decrease over time.

Nt = |St | + |It | + |Rt | − |Dt | (24.2)

The number of initial particles in the simulation,N0, is a vari-
able that will be examined as a parameter to determine how
larger population size (and thus higher population density)
affects the disease transmission statistics. The simulation
begins with all individuals except for 1 being susceptible
(24.3), 1 infected individual, and no recovered or deceased
individuals.

|S0| = N0 − 1 (24.3)

Susceptible individuals have the chance to transition to the
infected state at every time step. Infected individuals can
spread the disease to susceptible individuals. The chance of
infection from an infected individual to a susceptible one at
any given time step is given by the probability of infection
α. However, infectious particles can only affect susceptible
particles if they are within a certain radius of infection β

(24.4). Individuals must also be in the same area to infect
each other, which will be discussed more in section B on City
Organization.
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P(x infecting y) =
{

α dist (x, y) ≤ β

0 otherwise
(24.4)

Infected individuals can transition to either the recovered or
deceased state with probabilistic functions based on a recov-
ery factor γ and death factor δ, respectively (24.5), (24.6).
These functions are also based on the time since infection,
with a higher chance of either recovering or perishing the
longer they are infected. These probabilities are tested at each
time step.

P(recovery, i steps after infection) = max(γ i, 1) (24.5)

P(death, i steps after infection) = max(δi, 1) (24.6)

Recovered individuals are still part of the population but
cannot transition out of the recovered state. Deceased individ-
uals are fully removed from the population and simulation.
The simulation ends either when time step t reaches some
stopping point T or when there are no infected individuals
remaining in the population, whichever happens first.

24.3.2 City Organization

The total space of the city is partitioned into units we call
areas. Areas represent discrete regions where people stay, and
they are each represented as equal size, square regions. There
are both public and personal areas. Personal areas represent
homes, and every person will have exactly one personal area
that they visit. Public areas represent places that many people
visit, such as schools, workplaces, or stores.

The number of areas is proportional to the number of
particles in the simulation. For every 2 initial particles in the
simulation there will be 1 personal area, which is a proportion
that reflects housing to population data for United States
cities. For every 4 personal areas in the city, there will be
1 public area. Figure 24.1 shows an example of the box
distributions. The relative locations of areas do not matter in
this simulation.

At the beginning of the simulation, a set of areas are
assigned to each person. Personal areas are assigned such
that every person belongs to 1 personal area and every per-
sonal area has 2 people. Public areas are assigned with
more variability, with each being assigned to N0/10 random
people. These values are treated as constant controls as other
parameters are investigated for their effects.

Each area that a person has assigned to them will also
come with a probability p of transitioning there at any given
frame.

Fig. 24.1 Example 10 × 10 grid layout for a city with N0 = 160.
The shaded regions represent public areas and the unshaded represent
personal areas

24.3.3 SimulatingMovement of People

There are two types of movements that particles have in the
simulation: movement between areas and movement within
an area.

Movement between areas is considered an instantaneous
jump from one area to another. At each time step, every
person will have a chance p to jump to one of their assigned
areas (assuming they are not already in that area). A random
real value between 0 and 1 is uniformly drawn for every
person’s possible areas to jump to, and if the value is less than
the probability, the jump will occur. The particle’s position
will be randomly chosen in the new area.

It is worth noting that since these jump timings are ran-
dom, people do not have set “schedules” and can stay in areas
for short and long amounts of time. There is also no notion of
day and night. The values are chosen to best simulate people
on average dividing their time evenly between time in public
and their time at home.

An intervention policy that is tested to affect these proba-
bilities is the lockdown. With a lockdown, the goal is to limit
the number of jumps to public areas. This is accomplished by
reducing the probability that any particle will jump to a public
area. A parameter that will be tested to find the effect of this
is the time of intervention implementation, τ . Changing this
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Table 24.1 Parameters that will be investigated and tuned in the
simulations

Symbol Description

N0 The number of initial particles

α The probability of infection at a time step

β The radius of infection for 2 particles

γ The factor for recovery probability

δ The factor for death probability

p The probability of jumping to a new area

τ The time of lockdown intervention

will be used to determine the success of implementing the
lockdown early as to opposed to late.

Movement within an area occurs when a particle is not
jumping between areas. The movement occurs by randomly
picking an x and y value, each with a maximum magnitude.
This type of movement is used to simulate people coming in
proximity with one another to potentially spread the disease.

24.3.4 Parameter Estimation

To create a useful model, different parameters of the system
must be chosen that help to describe phenomena that occur
in real life. Table 24.1 shows a list of these parameters that
will need to be decided. They will be decided using both
logic and with respect to other parameters in the simulation.
For example, the probability of infection is to be chosen
by using the current knowledge that COVID-19 has a R0

(Reproduction Number) number of approximately 2.2. A
value for α will be decided so that the trend shows that around
2.2 particles are infected by a single infectious particle.

24.3.5 Parallelization Strategy

The simulation is implemented in C++ while utilizing the
OpenMP and MPI libraries for both shared memory and
message passing parallelization. Testing will be done on the
Bridges supercomputing environment where we will access
up to 16 nodes to test with at a time.

To distribute work evenly across the nodes used in the
simulation, every node will get the same number of public
and personal areas. Since the particles can jump to an area on
any node, the communication of jumping particles must be
done sequentially with each node having a chance to send its
jumping particles while all others must be ready to receive.

Since relative position between areas doesn’t matter, each
area can be viewed as its own 2D space, and the relative (x,
y) coordinate of each particle in the area, and the id of the
area where the particle exists is sufficient information for
processing.

24.3.6 Strategy for Measuring Success

Two approaches are used to measure the success of our
simulation. The first is to analyze the infections, recoveries,
and deaths that occur in the simulation. The second is to
measure the impact of parallelization on the simulation’s
performance.

For the first approach of analyzing disease metrics, graphs
of infections, recoveries, and deaths over time will be pro-
duced. Graphs will also be produced that measure the total
number of infections, recoveries, and deaths that are caused
by different values. This provides useful intervention insight
in the case of altering τ , since we can measure how many
lives can be potentially saved by how quickly the lockdown
is implemented following the disease onset.

The second approach is to analyze the speedup induced
by the parallelization of the simulation. Experiments for both
strong and weak scaling will be performed by changing the
number of total particles in the city to show that the hybrid
approach scales well compared to a sequential implementa-
tion.

24.4 Results

One of our goals when running the simulation was to de-
termine the effectiveness of parallelization using OpenMP,
MPI, and then a hybrid of the two. Having a simulation
run efficiently is important for its usefulness as a tool to
better understand the spread of disease. First, we tested the
application using only OpenMP for parallelization. We ran a
simulation of 100,000 people using 1, 2, 4, 8, and 16 threads.
We ran each of these simulations 10 times and used the
average run time to determine the speedup of the simulation
with OpenMP. Figure 24.2 shows the average time taken to
run the simulation for each number of threads. Figure 24.3
shows the speedup of the simulation with each number of
threads.

Next, we tested the simulation using only MPI for paral-
lelization. Similarly to the OpenMP tests, we tested the MPI
simulation with 100,000 people and 1, 2, and 4 processors.
Unfortunately, due to resource restrictions with the Bridges
supercomputer at the time of these tests, we were not able to
run the simulation with more than 4 processors. We ran each
of the simulations 10 times and used the average runtime to
determine the speedup, strong scaling efficiency, and weak
scaling efficiency. Figure 24.4 shows the average runtime
of the simulation with different numbers of processors. Fig-
ure 24.5 shows the speedup of the simulation with an increas-
ing number of processors.

We were able to see a much larger speedup when using
MPI than when using OpenMP. Even with 16 OpenMP
threads, the speedup was below 2.5 while 4 processors with
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Fig. 24.2 The average runtime
of the simulation tends to
decrease with additional
OpenMP threads

Fig. 24.3 The speedup of the
program tends to increase with
more OpenMP threads

Fig. 24.4 The average runtime
of the simulation decreases when
more processors are added with
MPI
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Fig. 24.5 The speedup of the
program increases when more
processors are added with MPI

Fig. 24.6 The runtime of the
simulation tends to decrease with
more threads and more
processors

MPI yielded a speedup of about 3.6. The strong scaling
efficiency with MPI also stayed above 85% while the strong
scaling efficiency of OpenMP dropped to about 42% with 4
threads and to about 15% with 16 threads.

The final test conducted on the efficiency of different par-
allelization methods was to use a hybrid model of OpenMP
and MPI. We ran these tests with 100,000 people in the sim-
ulation. We ran the tests with 1, 2, 4, 8, and 16 threads, and 1,
2 and 4 processors. Figure 24.6 shows the resulting runtimes
with various configurations of threads and processors. We
found the best speedup with 4 threads and 4 processors, but
overall, the runtime tended to decrease when more threads
and processors were used.

Besides running tests on the efficiency of the simulation,
we also ran tests to determine the effectiveness of a lockdown
during a disease outbreak. In the simulation, a lockdown
can be set to occur during a particular time step. After the
lockdown occurs, people will be much less likely to jump

to areas outside of their personal space. Figure 24.7 shows
the number of people susceptible, infected, recovered, and
deceased for each time tick when no lockdown was imple-
mented. Figure 24.8 shows the same statistics but in this
case, a lockdown was implemented about one quarter of the
way through the simulation. Figure 24.9 shows the results of
implementing a lockdown one tenth of the way through the
simulation.

We can see from Figs. 24.7, 24.8, and 24.9 how a
lockdown slows the spread of disease. With no lockdown,
about 91% of the simulation population became infected
at some time. Even when a lockdown occurred a quarter
of the way through the simulation, about 91% of the
population was infected with the disease. We saw the most
dramatic difference when a lockdown was implemented one
tenth of the way through the simulation. In this instance,
only 20% of the population became infected with the
disease.
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Fig. 24.7 State of the disease
over time when no lockdown is
implemented

Fig. 24.8 Spread of disease
when a lockdown is implemented
one quarter of the way into the
simulation

Fig. 24.9 Spread of the disease
when a lockdown is implemented
early in the simulation
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24.5 Conclusions and FutureWork

In conclusion, we found that a hybrid parallel model using
both OpenMP and MPI yielded the best performance when
running the simulation. We also found that using only MPI
produced a much better efficiency than using only OpenMP.
OpenMP however did improve the runtime over using the
base serial implementation.

In terms of improving the performance of the simulation,
futurework could include implementing different approaches
to parallelization. Other technologies such as CUDA could
be used to implement the simulation, and then the results
could be compared to our implementation. There are still
many methods and platforms for parallelization that could
be explored with this project [6]. This future work could
help to discover if using MPI and OpenMP was the most
appropriate way to implement the simulation. If allowed
more resources in the future, we would also like to be able to
test our simulation using more than 4 processors with MPI.
Wewould like to be able to see how using 8 and 16 processors
would improve the speedup of the simulation.

The results of the simulation showed just how important
early action is when a possible pandemic is at hand. Early
preventative measures proved to be very effective at reducing
the number of people to be infected by a disease. Our data
showed that waiting too long to try to stop the spread of
infection can allow the disease to reach many people.

In the future, more work could be done to make the
simulation a better representation of the world’s population
as our Coronavirus simulation was conducted on a homoge-
neous population. Possible future work into this simulation
could include introducing genetic differences such as age or
preexisting health conditions that would make a person more
or less likely to die after being infected. Immunities could
be introduced so that some people within the simulation are
unable to be infected. Areas of different population densities
could be introduced to see how the spread of a disease
differs in a large community versus a smaller one. Another
factor that could be added to the simulation is hospitalization.
Infected persons would be isolated to one location therefore

making them less likely to infect others and more likely to
recover. Another interesting addition to the simulation would
be to add the creation of a vaccine to the disease. This would
allow us to see how a vaccine would help to lessen the spread
of the disease as well as see how the lifetime of the disease
is shortened. There exists a lot of future work that could be
done to make this simulation a more accurate representation
of the world’s population.
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