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Chapter 5
Crop Scouting and Surrounding Awareness 
for Specialty Crops

Francisco Rovira-Más and Verónica Saiz-Rubio

5.1  �Introduction to Crop Scouting

At the beginning of the nineteenth century, farmers managed limited pieces of land 
from which one family could survive. Decisions were made according to the knowl-
edge accumulated after spending long days in small fields. The size of the fields 
allowed for a very precise management of the land. With the advent of mechaniza-
tion, the land that every farmer could manage grew exponentially, and decisions had 
to be made through sampling, which often led to unrealistic generalizations. With 
the introduction of precision agriculture, massive data acquisition provides a way to 
systematically scouting crops as a tool for enhancing decision-making at manage-
ment level. The successful application of precision agriculture principles to wine 
production, for example, leads to an optimized management of the vineyard, espe-
cially in everything related to grape harvesting. It is possible to make great wine by 
dumb luck or recipe, but not consistently; only by measuring key parameters can 
you make the best possible wine year after year (Cox 1999), using the variability 
inside the vineyard in your favor. However, methodical crop scouting to support key 
decisions on objective and precise field data is currently a dream for many produc-
ers due to the following main reasons:

•	 Monitoring cost: it is very expensive to pay operators for acquiring field data. 
Due to these high costs, it can only be done once per year at most, which impedes 
updating information and assesssing the evolution of crops along the entire 
growing season. The nitrogen content of the leaves, for example, continuously 
varies as fertilizer or water is applied.
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•	 Low sampling rate: since it is not feasible to sample data every meter, measure-
ments are realized once every 400 m2 (20 m × 20 m) for advanced management 
of high-value specialty crops, and usually at a much less resolution for the rest, 
if data is sampled at all. Hence, data sampling rate is so low that conclusions are 
often biased. For example, the weekly assessment of grape ripening status in 6 
weeks prior to harvesting is either biased (low-sampled) or unaffordable.

•	 Weight of current handheld devices: data sampling for hours with a handheld 
device that may easily weigh several kg becomes a torture for the operators, who 
in addition have typically to walk under the sun in the summer.

•	 Costs of service providers: although service providers offer data maps, airborne 
information tends to be of low resolution, and if several measurements are needed 
to check the evolution of the plants along the season, say every week or 2 weeks, 
the cost per season may become dissuasive.

The use of noninvasive monitoring devices for agriculture started with remote 
sensing, where optical sensors to perceive the vegetative activity of plants provided 
images that by recording the light reflected from the canopy, typically in the red and 
near-infrared spectra, allowed the calculation of certain vegetative indices such as 
the NDVI (normalized difference vegetative index). The acquisition of data from 
satellites, airplanes, or unmanned aerial vehicles presents a number of drawbacks 
that have discouraged their use in many practical applications in commercial 
orchards. Among them, it can be mentioned the need of a clear atmosphere for 
image taking, the low resolution when the aircrafts fly far away from the field, the 
unresolved legal problems in many countries caused by UAVs that require special 
licenses, the need for paying every image – something growers are not happy to 
do – and in general the lack of temporal flexibility to get vital information from the 
field that end users would like to have access to as soon and as many times as fields 
need. Aerial images have been convenient to assess vegetation differences – e.g., 
due to water stress or chlorophyll activity – over large areas of cropland, but result 
quite inappropriate for the precision needed in modern specialty crops, especially 
when the canopy is stretched along vertical structures. Due to these disadvantages, 
the use of proximal sensing has been growing in the last decade and is becoming the 
de facto management system of the future, through which precision agriculture may 
be successfully implemented in orchards.

There exist several parameters that have awaken interest among specialty crop 
producers, such as the nutritional content in the leaves or nitrogen uptake, water 
status and stress, maturity rate for fruits, disease and pest attack spatial distribution, 
and the estimation of yield at different periods of time before harvest. Yield estima-
tion, in particular, has been claimed by growers as key piece of information for the 
optimal management of orchards, groves, and vineyards, as it can significantly fluc-
tuate among seasons and also spatially within the same field and season. Although 
there are no commercial solutions yet, several approaches have produced promising 
results. Nuske et al. (2011) applied machine vision techniques to estimate yield in 
vineyards. The system uses a sideways-facing color camera of resolution 
3264 × 2448 (pixels) with halogen lamp lighting to detect and count the number of 
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berries per vine at 0.8 Hz, based on shape and texture, with a satisfactory detection 
rate, even for green grapes over green leaves. To reduce the presence of false posi-
tives (mistaken berries that were mostly isolated), as grape berries naturally grow in 
clusters, berries that do not have at least five other berries within their immediate 
neighborhood were eliminated. An average error of 10 % and a correlation coeffi-
cient of determination of 0.74 were reported when predicting the actual harvest 
weight with this experimental setting. As important as with vineyards is crop yield 
estimation for apple orchard management, mainly due to the fact that current man-
ual sampling-based yield estimation is time-consuming, labor-intensive, and quite 
inaccurate. Optimizing fruit thinning and harvesting efforts as well as packing 
house strategies can reduce operation costs. To face this challenge, Wang et  al. 
(2013) deployed a computer vision system that uses a stereoscopic camera with 
28 cm baseline between two lenses of 11 mm focal length and artificial lighting 
(ring flashes) for yield estimation (number of apples) during the night. The system 
works well with both red (Red Delicious) and green (Granny Smith) apples in a tall 
spindle planting structure in such a way that apples are approximately 2 m from the 
stereo rig. The implemented algorithm uses the color space HSV (hue-saturation-
value) to discriminate the apples from the background, even green apples from foli-
age, given the robustness of this model to decouple the light intensity from the color 
information in the image. For the red apple rows that received conventional fruit 
thinning, the computer was very close to ground truth, with errors around 3  %. 
However, apples were undercounted by 41 % for the trees without fruit thinning. 
Similarly, undercounts for the green apples, which have thicker foliage and more 
occlusions, reached 30 %. In order to account for occlusions, a finer calibration was 
added to the estimation model, lowering errors below 2 %. At the end, the orchard 
manager received a 2D yield map indicating the spatial distribution of red apples for 
the upcoming harvest.

It is no random coincidence the fact that both yield prediction cases exposed in 
Nuske et al. (2011) and Wang et al. (2013) together with the use case example for 
water stress monitoring of Sect. X require supporting structures that enhance can-
opy and fruit exposure. When tractors coexisted with animals to farm orchards, it 
soon became apparent that old orchards had been outlined for horses, and therefore, 
many tractors did not fit between rows, encountering serious problems to maneuver 
at the end of the rows in narrow headlands. As tractors eventually replaced animals, 
orchards were delineated with wider row spacing and larger headlands. This is an 
excellent example of how farming practices changed to better adapt to technology; 
it made no sense to design tractors with the size of horses to fit well in the traditional 
orchards. Several decades have passed and we are again facing a similar dilemma. 
Orchard automation, scouting, and site-specific approaches are not fully efficient 
with the way many fields are set today. Fruit exposure highly depends on the way 
trees are shaped. A critical barrier to yield prediction, and robotic harvesting of 
fruits in trees, has been the high percentage of fruits occluded by branches and 
leaves, which puts fruits out of reach of end-effectors commanded by computerized 
vision systems. However, new production structures are being incorporated for 
high-value specialty crops, some of them already implemented to facilitate 
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mechanized operations. Such is the case of vineyards for wine production. The tra-
ditional goblet or head-trained vines are steadily being replaced by more modern 
vertical shoot position (VSP) trellis, where most of the bunches are openly exposed 
in either side of the vine. The percentage of fruit exposure may be further enhanced 
by field operations such as canopy defoliation. Figure 5.1 illustrates the differences 
between these two production systems for wine grapes; Fig. 5.1a shows a traditional 
goblet vine, whereas Fig. 5.1b represents the trellis system used for VSP architec-
tures. As evidenced in the images, VSP is far more convenient for automation and 
data acquisition from a moving vehicle.

Although wine-producing vineyards were pioneers in the adoption of vertical 
and flat supporting structures for specialty crops, other crops have been gradually 
introducing trellises to convert spherical canopies into vegetation walls. This kind 
of high-exposure architectures is favorable to automation because they are simple, 
narrow, accessible, and productive (SNAP). Figure 5.2a depicts the case for apples, 
Fig. 5.2b provides a production alternative for cherries, Fig. 5.2c shows a vertical 
structure for almonds, and Fig. 5.2d brings the innovative high-density plantations 
proposed for olive trees. Unlike orchards, row crops and short plants are easier to 
automate and monitor, as agricultural equipment is not tightly constrained inside 
rigid structures and GPS signal is less prone to be blocked.

Given that proximal sensing requires keeping a limited distance between the 
measuring sensor and the target, typically between 1 and 3 meters, a ground vehicle 
is necessary to carry the data acquisition equipment and scan the field in a reason-
able time while assuring a sampling rate with statistical significance. This excludes 
manual sampling and therefore favors automation and the introduction of intelligent 
off-road equipment in the field. One possibility is represented by conventional 
equipment – tractors, harvesters, and sprayers – endowed with the necessary suite 
of sensors and computers to automatically save crop data. Another option is to 
deploy a scouting robot to autonomously register large amounts of data, as described 
in detail in Sect. 5.2. This alternative has been gaining momentum over the last 
years, as a consequence of the rapid expansion of robotics and big data applications. 

Fig. 5.1  Vineyard architectures: (a) head-trained vines or goblet (France); (b) vertical shoot posi-
tion or VSP (Portugal)
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The amount of data retrieved from commercial orchards is not massive and perva-
sive, generally speaking, and as a result, we are not into big data yet, but having 
access to a high-rate data-collecting machine will likely lead the way to it. A great 
number of financial publications coincide in forecasting a rapid growth of the ser-
vice robots market, with a significant role of agricultural applications for the next 
two decades. Figure 5.3 shows the expected growth of the US agricultural robots 
market by application for 2015 (USD million) (Verified Market Intelligence 2018). 
Although milking robots and dairy management will still dominate the deployment 

Fig. 5.2  Vertical supporting systems for specialty crops: (a) apples (USA); (b) cherries (USA); (c) 
almonds (Spain); (d) olive trees being harvested with a modified grape harvester. (Spain, courtesy 
of prof. Antonio Torregrosa)

Fig. 5.3  US agricultural robots market by application (Verified Market Intelligence 2018)
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of robotic solutions in the next decade, the introduction of digital farming through 
advanced management of soil and crops with precision agriculture techniques, in 
combination with a stronger presence of automation and intelligent systems in field 
farming, will result in the emergence of a growing group of first adopters who will 
manage their land at the same technological level reached by other industrial sec-
tors. This transformation for the twenty-first-century farmer from laborer to digital 
age manager may be instrumental to attract young generations to agricultural pro-
duction, counterweighting the risks of leaving such a high responsibility as feeding 
the world to an ever-aging population of farmers.

5.2  �Scouting Robots: Architecture and Design

There are two practical approaches to endow agricultural machinery with intelli-
gence and automation: (a) modify conventional equipment by introducing digital 
technology and automatic controls and (b) design a new vehicle that integrates a 
mechatronics design from scratch. At the dawn of digital technology, the former 
type was mostly represented by large vehicles powered by diesel engines, while the 
latter consisted of small- or medium-sized platforms run by electrical drives and 
traditional lead batteries. At present, however, solutions are not so clearly divided, 
and large equipment manufacturers are already offering big tractors with a good 
dose of electrification, whereas innovative farm robots may incorporate small com-
bustion engines to fulfill high-demand field tasks, such as blast spraying or mowing, 
in platforms propelled by lithium batteries, which have increased efficiency signifi-
cantly thanks to research conducted by the automotive industry. The convenient size 
of a farm vehicle endowed with certain degree of automation is still an unresolved 
question. Productivity and liability are antagonist concepts that need to be balanced 
until finding a reasonable and cost-effective trade-off. Large machines such as com-
bine harvesters are very efficient because they can harvest big amounts of product 
per day, but at the same time, they are hard to automate because of their size, weight, 
and power; if a navigation or control problem arises, it is very difficult to stop a 
machine of such magnitude. Small robots, or moderate-sized autonomous assis-
tance platforms, on the contrary, entail lighter risks when operating in the field, but, 
unfortunately, are limited in their capacity to produce work because of small operat-
ing widths and low power autonomy. Better batteries and safer architectures will 
probably lead to larger off-road vehicles propelled by electricity on one hand, and 
farm machinery more modest in size but with higher levels of automation on 
the other.

When conventional agricultural equipment is modified to adopt digital farming 
techniques, it retains a highly effective mechanical design inherited from many 
years of continuous evolution. However, when a new farm robot is developed, there 
is a risk of overlooking its mechanical design in favor of software, sensors, or elec-
tronics. A vehicle built to operate in off-road conditions must include a strong chas-
sis, a responsive suspension, and an effective steering mechanism; without them, its 
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behavior will likely become inconsistent and unpredictable with time. Figure 5.4a 
depicts the computer-based design of the entire chassis for a vineyard robot, 
Fig. 5.4b provides a close-up evaluation of highly stressed and highly strained joints 
in its chassis (wheel motor carriers), and Fig. 5.4c depicts the four-wheel indepen-
dent suspension constructed for the designed robot. We should evaluate the dynamic 
performance of agricultural robots as systematically as any conventional off-road 
vehicle, taking into consideration such crucial parameters as slippage, weight trans-
fer, and traction. The size and type of the wheels, or the potential need of ballast, 
may improve field performance significantly.

The dynamic performance of a farming robot, which mostly moves on off-road 
terrains, is crucial for the safety of the vehicle and the quality of the data collected 
on the fly. Its dimensions and weight distribution over the wheel axles are important 
design parameters, but the critical point for reaching a stable behavior is the optimal 
design of suspension and steering. The prototype of Fig.  5.4, for instance, was 
equipped with four custom-made coil springs with an elastic constant of 
15,675 N·m−1, with the purpose of improving the results of a previous prototype 
featuring commercial suspension springs with an elastic constant of 27,210 N·m−1. 
In order to compare the dynamic performance of both prototypes (Saiz-Rubio & 
Rovira-Más 2016), a three-axis accelerometer was mounted on the front right wheel 
of each prototype to record vertical accelerations at a frequency of 16  Hz. The 
robots were set to overcome two obstacles at approximately 1 km·h−1: first, a round 
curb of approximately 4 cm in height and 8 cm wide causing a sudden drop and, 
second, an office footrest forming a wedge of 45 cm in length and 16 cm in height 
(slope angle of 21°). Figure 5.5 shows the outcome of this comparison. As expected, 
the softer suspension of the second prototype (Fig. 5.4c) absorbs better the vertical 
accelerations provoked by the obstacles, especially with the curb.

The study of the most favorable suspension system for each particular robotic 
platform needs to be complemented by its corresponding design of the steering 
mechanism. When robots are endowed with autonomous navigation, this stage in 
the design process becomes fundamental. An advantageous steering system must 
provide crisp and accurate corrections when the robots advances in straight 

Fig. 5.4  Mechanical design in agricultural robots: (a) 3D model for robot chassis (courtesy of 
Andrés Cuenca); (b) high stress joints in motor carriers; (c) independent suspension in actual robot
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guidance between orchard or vineyard rows, but at the same time must allow sharp 
turns at the headlands to change rows with the minimum slippage. Figure 5.6 gives 
an overview of the key design components that form the steering mechanisms of 
scouting robots. In this particular case, as the robot is four-wheel-drive two-wheel-
steer, the electric motors powering the front wheels must turn with them as the robot 
steers, which complicates the outline of the steering linkages. The model of Fig. 5.6a 
shows an example of a tie rod assembly that facilitates wheel turns with electric 
motors attached to each wheel. The actual rotation of the wheels is accomplished by 
displacing a sliding bar actuated by the pinion-rack coupling of Fig. 5.6b. In gen-
eral, a significant change in the suspension system implies a reformulation of the 
steering linkage design. The steering system for the prototype of Fig. 5.4 was also 
improved by introducing slight caster and camber angles in the front wheels. A 
caster angle induces an inclination angle at maximum turns that facilitates the nego-
tiation of sharp turns in a similar way automobiles and tractors steer (Fig. 5.6c). The 

Fig. 5.5  Suspension test for two prototypes of agricultural robots

Fig. 5.6  Steering design in scouting robots: (a) tie-rod assembly; (b) pinion-rack actuation; (c) 
caster angle
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light positive camber angle helps the robot self-center, which is key for automatic 
steering along the rows.

The benefits of optimizing the steering system of a scouting robot must necessar-
ily translate to the actual field, where the modified robot will have to outperform the 
navigation aptitudes shown by the robot before the improvements. A comparison 
similar to that of Fig. 5.5, but focused on automated guidance, is plotted in Fig. 5.7. 
The robot of Figs. 5.4 and 5.6c was automatically guided in Spain, whereas a previ-
ous prototype with a simpler steering mechanism was tested in France. Both vine-
yards had a row spacing of 2 m, and the forward speed oscillated between 1 km·h−1 
and 1.8 km·h−1. The plot graphs the Ackerman angle registered by the robot’s cen-
tral computer and clearly reveals a superior behavior for the enhanced steering sys-
tem (blue line), which behaved more stable than the old prototype (red line), that 
additionally showed some asymmetry in the actuation of the wheels. Experience 
taught that slight deviations in the construction of the tie rod assembly had signifi-
cant consequences in the navigation performance of autonomous vehicles. But the 
opposite was true too; a committed design of the suspension and steering systems 
as a whole resulted in gratifying outcomes.

The deployment of automated systems, even in the case of low-level automation, 
always involves solving important technical difficulties. Out of all of them, the big-
gest barrier to commercialization has typically been reliability and safety. There is 
a long way between a working prototype and a product ready for the market. As a 
result, it takes years for a solution to hit the market and become accessible to aver-
age end users. A safe solution must be reliable in both hardware and software. The 
environmental conditions found in agriculture  – low temperatures in the winter, 
high humidity, strong sun radiation, application of chemicals, and potential knocks – 
are usually a threat to delicate off-the-shelf electronics, so a first step in making 
scouting machines stronger is by protecting sensors, electronic cards, and wires 

Fig. 5.7  Steering performance comparison between two robotic prototypes automatically guided
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from weather aggressions, in addition to using components with an IP rate of 65 or 
above. Once hardware is protected and secure, communication among sensors, 
actuators, and computers or processors has to be granted. Furthermore, this com-
munication must be permanent and take place at the necessary frequency to assure 
a stable and predictable performance. Even though each sensor requires a particular 
interface, we can enunciate some general rules. Serial data are usually transmitted 
through universal serial ports (USB) or RS-232. When both protocols are available, 
the latter is preferable for agricultural applications as it is stronger and can be tightly 
screwed, providing a sturdy link between sensors and computers. The fact that com-
puters permanently number serial ports is a guarantee of stability before device 
confusion. Typical sensors that use RS-232 communication are GPS receivers and 
lidar rangefinders. The increasing popularity of USB ports for video streaming has 
led to their dominance in imaging sensors over the traditional I2C and firewire 
(IEEE 1394). However, caution is necessary when using USB-connected devices; 
first, the connector itself has been designed for desktop computers and, as a result, 
is weak and easy to unhook under the vibration of off-road equipment; and second, 
the power supplied through USB ports is limited to 5 V up to 5 A, which many times 
requires the addition of extra power for power-avid devices.

The transmission between sensors and computers – or processors – must be set 
at a conservative sample rate, in such a way that if a few measurements are missed, 
information is still available in a timely manner. However, the control of actuators, 
especially in navigation and safeguarding, has to be as reliable as possible. For such 
cases, the commands sent by the processing units must arrive integral and at the 
right pace. This necessity immediately discards any kind of wireless communica-
tion between the central computer and the control of motors and electrohydraulic 
valves. The most accepted protocol in industry for serial data transmission is the 
controller area network (CAN) bus, developed by Bosch in the 1980s. It allows 
controllers, sensors, and actuators be connected on a common serial bus that behaves 
like a “data highway.” Based upon the CAN bus, the manufacturers of agricultural 
equipment are developing the ISO bus, a protocol to connect farm implements and 
tractors in a general, safe, and efficient way, with only one control console for all the 
implements regardless of the brand. This standard is still in progress but many man-
ufacturers already offer it.

There has been a considerable gap between technology development and user 
adoption with regard to digital farming, and a significant contribution to it comes 
from the lack of harmony between solutions offered and user needs. Some solutions 
tend to be very complex and not in tune with current demands made by growers. 
The average user is not an information technology (IT) expert with an engineering 
degree; rather, we expect to find practical workers in search of consistent solutions. 
Intelligent systems must be straightforward and intuitive, easy to use, and easy to 
explain. In this context, only indispensable sensors and functions should be used to 
keep complexity at reasonable levels. Adding extra sensors, even if they are low 
cost, will increase the failure rate of any system. To ease usability, human-machine 
interaction must be clear and easy, with well-defined graphic user interfaces (GUI) 
and ergonomic joysticks for manual operations. For autonomous operations, a 
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well-designed network of emergency stops is mandatory to stop the vehicle in case 
of unexpected behavior. Figure 5.8a shows the graphic user interface of the robot 
utilized in the use case of Sect. 5, and Fig. 5.8b illustrates its manual control with an 
ergonomic joystick. Overall, the skills required to operate these scouting vehicles 
should be similar to using a cell phone and not much more advanced.

5.3  �Surrounding Awareness for Scouting and Data Collection

The principal task of any scouting machine is the perception of its surroundings, and 
that will only be possible with a combination of sensors holding the capacity of 
measuring physical properties of what is enclosed in the machine’s vicinity. Not 
only the sensors must have the capacity of perceiving these physical properties in a 
quantitative or numerical format, but they also must facilitate their recording in a 
data-logging device for their further processing. Data may be processed in real time 
for immediate actuation, but the majority of scouting applications require onboard 
data storage. The development of sensors is in continuous growth, and we will see 
new devices hitting the market in the following years, but the implementation of 
some sensors over the last decade has resulted particularly attractive and effective 
for the complex scenario of agricultural environments, where open off-road terrains 
that require working outdoors pose challenging situations to the advanced manager 
willing to apply the principles of precision agriculture and digital farming. This sec-
tion reviews some of the most popular sensors onboard intelligent vehicles for crop 
scouting applications, providing a general overview of their workings to show their 
potential, but without getting into technical details.

Fig. 5.8  User-centered design in agricultural robots: (a) intuitive GUI; (b) manual control with 
ergonomic joystick
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5.3.1  �Visible Light Machine Vision

Machine vision is the computer version of the farmer’s sight; the eyes are repre-
sented by cameras and the brain by computers. The output of vision systems are 
digital images. A monocular camera yields digital images of a scene at a given rate 
(frames per second or fps), and a stereoscopic camera produces a depth image as a 
result of comparing two images taken simultaneously by two equal cameras 
mounted on a rigid rig. In this section, we will deal with cameras that perceive the 
environment in the visible range, which means that the cameras register the same 
scene seen by humans, filtering out other electromagnetic sources such as ultravio-
let or infrared. A digital image consists of little squares called pixels (picture ele-
ments), each of which carries information on its level of intensity. If the image is in 
black and white (technically called monochrome  image), the intensity level is in 
reality a gray level between a minimum value (0) and a maximum value (imax). The 
number of gray levels depends on the number of bits (binary digits) in which the 
image has been coded. Most of the images used in agriculture are 8 bits, which 
means that the image can distinguish 256 gray levels (28) and the maximum value is 
255 representing pure white. In practical terms, our eyes cannot distinguish so many 
levels, and 8 bits are many times more than enough. When digital images reproduce 
a scene in color, pixels carry information of intensity levels for three channels red, 
green, and blue, leading to RGB images, whose processing is more intricate than 
monochrome images and therefore falls outside the scope of this chapter.

Monocular cameras constitute the basic component of typical vision systems and 
retrieve powerful and useful information from plants, trees, and other objects of 
interest in agricultural fields. In addition to selecting the camera manufacturer and 
image type (monochrome or color), users must also choose important technical 
parameters such as the lens focal distance, the size of the sensor, and optical filters 
when there is a need to block determined spectral ranges (colors). Although the 
detailed description of these parameters would take too long for an overview like 
this, the focal distance (f) is related to the scope of scene that fits into the image, and 
as a result, the smaller value of f, the wider angle of view covered by the camera, 
and therefore a bigger portion of the targeted scene will be captured in the resulting 
image. Once images are taken, we have completed the first step of the vision pro-
cess – image acquisition – but the images still have to be properly interpreted to be 
meaningful, the image processing stage, which involves the delicate step or extract-
ing the useful information from the image, something that must be efficiently car-
ried out by computer algorithms tailored for each given application. Figure 5.9a 
shows a monocular monochrome camera used to capture zenithal scenes from a 
vineyard, and Fig. 5.9b reproduces the results of a color-based segmentation algo-
rithm to extract oranges from a citrus grove, application that uses the HSV color 
space in similar fashion to the apple detection algorithm of Wang et al. (2013).

Even though digital images reproduce scenes with great detail, this representa-
tion is flat, that is, in two dimensions, whereas the real scene is actually in three 
dimensions. What dimension is left then? The depth, or distance between the cam-
era and the scene. In the image shown in Fig. 5.9b, we can locate a given orange 
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with precision in the horizontal and vertical axis, but we cannot know how far it is. 
This information would be essential, for example, if we had to program a robotic 
arm to retrieve the orange, as it could be out of reach. Stereo cameras allow the 
acquisition of two (or more) images in a certain relative position to which the prin-
ciples of stereoscopy can be applied. These principles mimic how human vision 
works, as the images captured by our eyes in the retinas are slightly offset – as are 
our eyes – and this offset, known as disparity, is what allows the brain estimate the 
depth. In agriculture, stereovision is used for assisting in autonomous navigation 
(Rovira-Más et al. 2015) and for generating three-dimensional (3D) maps of crops 
(Rovira-Más et al. 2008), which allows the estimation of plant growth and canopy 
vigor. Figure 5.10a shows a compact stereo camera mounted on a rice harvester, and 
Figs. 5.10b, c and d, depict a commercial vineyard monitored with a stereo camera 
mounted at the front of a tractor, its depth image (c) where darker pixels indicate 
farther distances, and its 3D virtual representation (frontal view d) that depicts the 
canopy at both sides of the vehicle and the row spacing ahead showing that is free 
for navigation. Notice that stereo matching is a pixel-by-pixel operation that requires 
texture to identify the same objects in both images of the stereo pair. Therefore, 
image areas without enough texture (dark shadows under the canopy or uniformly 
lit patches of soil) produce (white) pixels with no information in the disparity image 
(c), eventually creating voids in the 3D representation of the scene. These voids are 
easily identifiable within the vineyard canopy of Fig. 5.10d.

5.3.2  �Biosensing for Crop Monitoring

With the development of non-invasive crop sensing tools that can operate on the fly, 
i. e., while a vehicle is moving in the field, the availability of crop information has 
grown significantly. The accessibility to massive field data is key to apply the prin-
ciples of precision agriculture, a modern approach to grant economical and 

Fig. 5.9  Monocular vision for scouting: (a) digital camera; (b) color image processed to 
detect oranges
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environmental sustainability in farms. Machine vision with cameras sensitive to 
non-visible spectral bands, infrared radiometers, and other optical devices can pro-
duce amounts of data that growers can fit into decision support models to make 
better choices. Among the crop parameters that have risen more interest in agricul-
ture, it is worth mentioning the canopy volume, the temperature of the leaves mea-
sured with infrared radiometers (Sect. 5.5) or, alternatively, with thermographic 
cameras yielding the CWSI (crop water stress index), and plant vigor assessed 
through the calculation of the NDVI (normalized difference vegetation index) or the 
NBI (nitrogen balance index). The use of vegetative indices, such as NDVI, NBI, 
and CWSI, provides objective and quantitative methods to evaluate the status of 
crops at any given moment of the productive cycle and, therefore, allows farmers 
reach a deeper understanding of how crops evolve with time. The fact that many 
intelligent farm vehicles include a GPS receiver facilitates the acquisition of crop 
information in map format, which is convenient to compare the spatial variability of 
key parameters and the generation of historical data series. At present, there exist 
several off-the-shelf devices to calculate the NDVI in real time and apply a variable 
rate of fertilizer according to the nutritional status of plants. The systematic record 
of plant physical properties at high resolution is known as plant phenotyping and is 

Fig. 5.10  Stereo vision: (a) binocular camera; (b) real scene; (c) depth or disparity image; (d) 3D 
frontal representation
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becoming instrumental to understand the relationship between the genetic makeup 
of a plant and its complex traits such as growth or water stress resistance. Figure 5.11a 
shows a multispectral camera that allows the calculation of NDVI and NBI, and 
Fig. 5.11b depicts an infrared radiometer that can estimate the canopy temperature 
of specialty crops.

5.3.3  �Nonvisual Range Perception

Ultrasonic rangefinders are devices that use sound to measure distances, and for that 
reason, they are also known as sonar sensors. The principle that lays behind sonars 
is the fact that the speed of sound is known (343 m·s−1 at 20 °C), and measuring the 
time that the wave needs to hit an obstacle and return – the echo – allows the estima-
tion of that distance. The speed of sound in the air depends on the ambient tempera-
ture, but this relationship is known and easy to apply. However, the use of sonar 
sensors in agricultural fields is subjected to some difficulties that can be detrimental 
for the accuracy and consistency of measurements. The sound wave sent by the sen-
sor has to hit an object and return to the sensor receiver that must capture it to mea-
sure the time used by the wave in its round trip. The physical properties of the target 
objects, especially their reflective nature, are essential to obtain reliable results. 
Sound waves do not behave as linear beams; instead, they propagate in irregular 
cones that expand in coverage with distance. As a result, when the target object is 
uneven (as canopies) and the cone is not narrow, the measurements may become too 
noisy. An important design feature to consider is the distance between adjacent 

Fig. 5.11  Sensors for crop monitoring: (a) multispectral camera; (b) infrared radiometer

5  Crop Scouting and Surrounding Awareness for Specialty Crops



126

ultrasonic sensors, as echo interference is a source of unstable behavior. Overall, 
sonar rangefinders are helpful sensors to estimate short distances, say up to 2 m, 
cost-efficiently, and when accuracy and reliability are not essential, for instance, 
when detecting the distance of a vigor-estimating sensor to the canopy for fine-
tuning measurements. Figure 5.12 shows a robust ultrasonic sensor to estimate the 
lateral distance of a robot to the canopy of grape vines (a) and a lower cost sonar to 
issue warnings when the robot moves backward and objects interfere in its trajec-
tory (b).

Lidar stands for light detection and ranging and is an optical device that provides 
distances to objects. Although different light sources can be used to estimate ranges, 
most of the lidars use laser pulses because the beam density and coherency make 
them very accurate. However, laser beams are very narrow and one static emitter 
cannot cover the amplitude of zones typically needed. As a result, off-the-shelf 
rangefinders come in two working modes: (1) a rotating head with an emitter that 
sweeps an area that can reach 270° and (2) a stationary head with several emitters 
equally spaced to cover an area, usually smaller than that spanned by rotating heads. 
Lidars are not affected by sunlight unless it hits the emitter directly and work excel-
lently at night when most vision systems provide poor perceptive capabilities. 
Machine vision and lidar are technologies that complement well each other to pro-
vide local perception to intelligent vehicles. Figure 5.13 shows a perception unit 
comprising a stereovision camera, two sonar sensors on the sides for lateral percep-
tion, and a frontal lidar rangefinder with a motionless head consisting of 11 emitters 
that cover an angle of 88°, with beams angularly spaced by 8.8°.

5.4  �Crop Monitoring and Mapping

Regardless of the level of intelligence embedded in a farm machine, field work has 
to be carried out in the most efficient way. In fact, automation and control is intro-
duced to enhance performance of machinery and therefore increase efficiency, 

Fig. 5.12  Ultrasonic sensors for estimating distances in agricultural vehicles
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safety, and comfort for the operators. In a general formulation of crop scouting, a 
vehicle operating in the field can be ground-based or airborne. In either case, it will 
have to cover an area in a given time, and this is actually a relevant parameter when 
comparing different options to do a given task, i.e., the number of ha·h−1 that the 
machine can cover. Let us put the example of a sprayer equipped with a multispec-
tral camera to monitor a vineyard NDVI with a row spacing of 2 m. The sprayer is 
supposed to pass along every row, with an average speed of 5 km·h−1. The time 
invested in headland turns for this example has been estimated in 20 % of the total 
operation. At that pace, the sprayer advances 1.4 m every second, and considering 
the regular row spacing of 2 m, the area covered is 2.8 m2·s−1, or 10,080 m2 per hour, 
which can be approximated to 1 ha·h−1. Taking into account that a working day is 
equivalent to 8 h, and 20 % of the time is lost in headland maneuvers, the final effi-
ciency will be approximately 6.4 ha·day−1. This is the working efficiency we need 
to compare among alternative solutions.

At present, there is a raising interest in electrical drives and actuators. The auto-
motive industry has pushed the development of high-performance batteries for 
hybrid or totally electric vehicles. Electric actuators facilitate vehicle control and 
provide a clean alternative to fossil fuels. This technological move is obviously 
affecting agricultural equipment, and major manufacturers are already developing 
innovative vehicles with an ever-growing presence of electrical components. 
However, performing demanding tasks in off-road conditions requires a consider-
able amount of energy, and it is critical  to estimate the autonomy of electrically 
powered vehicles. The efficiency of the example mentioned above will hardly be 
accomplished if the sprayer cannot run for at least 8 h per day. The pervasive advent 
of unmanned aerial vehicles for data acquisition is greatly dependent on battery 
performance and payload. The use of renewable sources of energy, while 

Fig. 5.13  Lidar rangefinder (black component) with 11 beams covering a horizontal field of 
view of 88°

5  Crop Scouting and Surrounding Awareness for Specialty Crops



128

recommendable, must always be compatible with the actual needs of power and 
workload encountered in the field to satisfy a minimum degree of efficiency.

Crops can be monitored by simple visual inspection or just by reading a sensor 
output in a display, but the large amount of data logged by most of current sensors, 
even if running at low frequencies, makes this approach inefficient. Some applica-
tions require a real-time processing of sensor data, for example, variable rate fertil-
izing with an NDVI-based nitrogen assessment, but the majority of monitoring 
applications require saving data for their later processing. The storage of data in 
numerical tables and oversized matrices is suitable for engineering work, but field 
managers and crop growers find it more intuitive when field data is conveyed in a 
map format. Therefore, the preferred method to deal with crop data is through two-
dimensional maps. The fact that GPS receivers are ubiquitous and easily accessible 
favors the coupling of crop information with global positioning. However, the stan-
dard geodetic coordinates coded in NMEA (National Marine Electronics 
Association) strings that all GNSS receivers get are not convenient for the precision 
and detail needed in proximal sensing applications, where the position of individual 
trees is often necessary. In addition, working in degrees, minutes, and seconds is not 
intuitive for the daily planning of field managers, who would rather use meters 
instead of degrees. The local tangent plane (LTP or NED) offers several advantages 
that make it the ideal coordinate frame for proximal sensing monitoring. It uses 
Cartesian coordinates north and east, which are by themselves intuitive for growers 
to orientate in the field, and also features a local origin chosen by the user in every 
field. This allows both, the use of Euclidean geometry for the calculation of dis-
tances and areas, and having convenient magnitudes for the coordinates, which will 
normally be expressed in meters. The flat coordinates NED (North-East-Down) pro-
vide global references for scouting vehicles and therefore for each crop measure-
ment carried out from them by simply translating each sensor location to the GPS 
antenna’s location.

Choosing an advantageous coordinate system for representing the spatial distri-
bution of field data is a necessary step, but the way crop information is displayed in 
the user map is crucial. Accurate maps of difficult interpretation are useless for the 
average field manager. Three features may ruin the usability of monitoring maps: 
(1) the measurement scale has so many intervals or classes that practical actuation 
is not easy to figure out; (2) measurements are not coinciding in space, and therefore 
multiple variables cannot be correlated; and (3) the parameter displayed in the map 
has no practical meaning or application for the daily operations of the farm, 
either because variability is too high or the parameter itself is more scientific than 
operational. The first two drawbacks are counterweighted by discretizing both the 
space and the measurements. A grid approach that maintains global references in 
LTP coordinates offers good guarantees for map usability (Rovira-Más 2012) and 
facilitates the comparison of data through the years. This approach lets users decide 
the cell size – map resolution – and the number of classes that are manageable for 
each specific situation, typically represented in a friendly color scale. The tempera-
ture maps of Fig. 5.19 are examples of grid representations in the LTP frame. Notice 
that a scouting robot recording a temperature measurement every second will gather 
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several data points for each cell of 4 m2 area, and without computing the average 
measurement of each cell, comparison and correlation between  zones is not 
practical.

The third drawback mentioned above requires a different sort of solution. A grid 
map that directly represents raw data acquired in the field will naturally present a lot 
of variability, mainly with cells of reduced area. It may be the case of having a crop 
map with the right spatial resolution and with a reasonable interval for the studied 
parameter, but still yielding a large dispersion among cell values. For such cases, 
and if no real-time decisions are to be made, geospatial techniques for data smooth-
ing and clustering become very practical to make crop maps operative. When field 
data is scarce, interpolation has been the typical technique used, but many times it 
has led to artificial mapping that has little to do with field reality. When massive data 
is available, however, smoothing and clustering are the most appropriate ways to 
treat data. In any case, geostatistics in precision agriculture must avoid the common 
plague of overfitting and overtransforming data (Schueller 2010). The ideal situa-
tion will be when a crop map has a few treatment zones for a parameter directly 
applicable with the equipment available in the farm. To reduce the number of treat-
ment zones, cells that fall within a “close” vicinity must be classified as equal dose. 
The problem is how to determine the radius – known as the range – around any 
given cell above which influence from other cells is negligible, following the 
accepted principle of Tobler stating that everything is related to everything else, but 
nearby objects are more related than distant objects (Tobler 1970). Clustering tech-
niques are usually optimal when data follow a Gaussian distribution. The estimation 
of the maximum distance of influence can be found through the plotting of semivar-
iograms, which consists of computing statistical variances (Y axis) for growing 
distances (X axis) until the variance remains close to a steady state called the sill. 
The geometrical locus of the variances is then fit to an equation whose intersection 
with the sill establishes the maximum range, the distance considered for clustering 
and smoothing data. Figure 5.14a shows the distribution of nitrogen (0 is poor; 1 is 
maximum) in leaves of a vineyard where 1062 measurements were made noninva-
sively (Saiz-Rubio et al. 2017). Note the closeness of the actual distribution of nitro-
gen values with a perfect Gaussian distribution. Figure 5.14b plots its corresponding 
semivariogram where the best fit was exponential and the maximum range found 
was 30 m.

Once the range has been set, a raw map plotting data directly retrieved from crop 
sensors can be further processed to indicate site-specific treatment zones. A multi-
tude of algorithms may be applied, taking into account the range as the radius of 
influence. A simple way of smoothing data would be by estimating the median in 
the surrounding cells considering two concentric rings, that is, by finding the median 
of each cell and its surrounding 24 cells (5 × 5 window) (Saiz-Rubio et al. 2017). 
Figure 5.15a shows a grid map of nitrogen in leaves directly plotted with sensor 
data, and Fig. 5.15b plots the result of applying the 25-cell smoothing filter based 
on the median. The filtered map facilitates decision-making based on zoning and 
allows a rational use of variable-rate equipment.
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Fig. 5.14  Normal distribution of foliar nitrogen (0–1) in a vineyard (a) and semivariogram (b)
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Fig. 5.15  Original grid-based nitrogen map (a) and results after applying smoothing techniques 
(b) (Data courtesy of Mª Paz Diago)

5.5  �Use Case: Vineyard Scouting with Ground Robots 
for Water Status Assessment

The Alto Douro Wine Region is a UNESCO World Heritage site centered on the 
Douro (or Duero) river, which is sheltered by mountains from the coastal influence 
of the Atlantic Ocean. This region is home of the most important wines elaborated 
in Portugal and includes both table wine – typically known as Douro wines – and 
the world-famous Porto wine. Producing wine in the Alto Douro is hard due to steep 
terrain and high temperatures, and even though wine makers are used to these con-
ditions, and grape vines, most of which indigenous local varieties, are acclimated to 
the region, the steadily rising temperatures of the last years have posed serious con-
cerns among growers, who need to keep the yield and reputation of their products 
before an uncertain availability of water for irrigation. An excess of water stress in 
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vines may lead to important economic losses and long-standing damage to renowned 
Porto brands. Figure 5.16a shows the effects of water stress (1 August 2018) in the 
canopy of Touriga Nacional vines, where plant coverage is too poor. A traditional 
method in the region to palliate the effect of extreme sun radiation has been to spray 
the vine canopy with lime to lower leaf temperature. Figure 5.16b depicts the depo-
sition of lime on the leaves.

The natural response of a stressed vine is to limit transpiration by closing the leaf 
stomata, with the purpose of preserving plant water as much as possible when soil 
water is not available. The predominant method so far to assess the degree of water 
stress in a plant tissue has been by estimating the water potential of leaves with a 
Scholander pressure chamber. These pressure bombs are field portable and easy to 
operate. However, while the measurements yielded are quite reliable, the actual 
operation is time-consuming and physically demanding. It requires transporting a 
nitrogen tank along the field to reach the sampled points of measurement. Single 
leaves must be introduced into the chamber, and for every test, an equilibrium must 
be reached: as the pressure increases, at some point the liquid contents of the sample 
will be forced out of the xylem and will be visible at the cut end of the stem or peti-
ole. In order to see the little drop coming out of the stem, a magnifying lens is typi-
cally used. In addition to the time needed for a single sample, measurements must 
be carried out either at midday or before dawn, which are not the best time for being 
in the field. All these inconveniencies have resulted in very few growers, even in 
large wineries, assessing water stress with the proper instrumentation, and there-
fore, there is an urgent claim to develop a new methodology using non-invasive 
technologies that allow getting more data, more often and less cumbersomely. 
Figure 5.17 shows the use of the Scholander pressure chamber in a commercial 
vineyard both at midday (center, right) and before dawn (left).

The effects of closing stomata result in an increase of leaf temperature; therefore, 
by tracking the thermal dynamics of vine canopies, we can define objective indica-
tors of how stressed plants are. Unfortunately, plant biology involves complex, not 
fully understood physiological phenomena, and additional parameters must be 

Fig. 5.16  Water stress in grape vines: (a) scanty canopy; (b) lime treatment to decrease leaf 
temperature
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taken into account to enrich plant monitoring. For example, the sun-exposed side of 
the rows will evolve differently from the shady side, and the vegetative vigor of each 
single plant will result in different resistance to stress. The EU-funded research 
project VineScout (2017-2020) aimed at understanding and estimating water status 
in vineyards by the massive measurement of canopy temperature and vine vigor. To 
do so, the robot of Fig. 5.18 was equipped with an infrared radiometer to measure 
temperature and a multispectral camera (Fig. 5.11a) to track vegetation indices. The 
onboard GPS receiver assigned a submeter precise location for each point sensed in 
the field.

Fig. 5.17  Sampling and measurement of plant water stress in a vineyard with the Scholander pres-
sure chamber (Courtesy of Symington Family Estates)

Fig. 5.18  Robot VineScout to assess vine water stress: (a) day mapping; (b) night mapping
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The output of a field monitoring session comes in the format of a map, where a 
text file stores the parameters measured in the field and their corresponding GPS 
location. One of the maps generated by the robot of Fig. 5.18 to assess water stress 
is the canopy temperature, which was measured with an infrared radiometer (Apogee 
Instruments, Logan, UT, USA) placed in the right side of the robot (Fig. 5.11b) fac-
ing the canopy central section at an approximate separation of 50 cm. This map was 
displayed in real time in the robot’s console (Fig. 5.8a) and also saved in a text file 
for its further processing. Figure  5.19 shows various canopy temperature maps 
recorded in the Portuguese vineyard of Fig. 5.16 in the summer, where the winery 
Symington Family Estates established an experimental irrigation scheduling  for 
research. Figure 5.19a is an aerial image of the studied field that highlights differ-
ences in vine vigor caused by uneven soil and terrain. Figure 5.19b plots the trajec-
tory of the robot during one of the mapping missions conducted in the vineyard in 
2018, when some of the highest temperatures of the summer were registered in the 
afternoon. The robot only mapped one side of the canopy and scanned every two 
rows. The temperature map in grid format recorded over the afternoon is shown in 
Fig. 5.19c. In contrast, Fig. 5.19d represents the temperature map for the same field 

Fig. 5.19  Crop monitoring maps: (a) aerial NDVI map of monitored field (Courtesy of Symington 
F. E.); (b) robot trajectory for building the grid map of afternoon temperature; (c) grid map of 
afternoon temperature; (d) grid map of dawn temperature
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the day before at dawn. The map of Fig. 5.19c covers 12 rows and sums up a total 
of 16,529 points (including the headland turns where no valid measurements were 
made) acquired in a time frame of 67 min. After removing the headland section 
where the temperature was not registered, the total number of points was 15,469. 
The map of Fig.  5.19d comprises 15 rows and 23,012 data points, which were 
reduced to 18,945 after removing the headlands.

According to Fuchs (1990), radiation, air temperature, humidity, and wind speed 
modify leaf temperature and may mask indications of water stress. Furthermore, the 
position, inclination, and orientation of leaves within the canopy also produce con-
siderable variation of leaf temperature. The intricacies behind the knowledge of 
how much stress a vine is actually supporting in a given period of time lead to com-
plex models and a multiplicity of influencing parameters. However, the majority of 
field data used so far has been taken remotely and occasionally. The opportunities 
brought by the automatic monitoring of crops at submeter distances, producing 
massive amounts of data at the grower request, open a new paradigm for under-
standing crop growth and fruit production. The temperature maps of Fig. 5.19 were 
taken in August and involve 34,414 measurements grabbed from dawn to evening. 
When comparing these figures with manual sampling, the resolution of robot-
generated maps reaches significantly higher orders of magnitude. Maps 5.19c and d 
involve an area of 4800 m2 (≈ 0.5 ha), considering an approximate row length of 
100 m, a row spacing of 2 m, and a mapping frequency of one pass every two rows. 
The resolution achieved is 3.2 measurements per m2. The same rationale can be 
applied to the map of Fig. 5.19d, yielding a similar sampling resolution. The data 
represented in the maps are the straight measurements carried out by the infrared 
radiometer, and no filtering has been introduced yet. However, some patterns and 
preliminary conclusions may be extracted from these results. The distribution of 
temperatures graphed in Fig. 5.19c reveals that many locations in the 15 rows sam-
pled reached temperatures above 40 °C, with an uneven distribution of temperatures 
that resembles the S shape of Fig. 5.19a (dark blue in Fig. 5.19a). The map recorded 
at dawn, from 5:27 am to 6:55 am, produced a more homogeneous result, and more 
data is required for a deeper understanding of thermal dynamics along the day. 
Fortunately, the specific measurements recorded by the robot at every location are 
available for the user, and can be easily plotted for the entire battery of  tests. 
Figure 5.20 shows the precise temperatures acquired for the maps of Fig. 5.19c and d.

Every row in the field of Fig. 5.19 has an approximate length of 100 m and pres-
ents a basin-like lower section toward the center of the row, where plants are more 
vigorous. The extremes of the rows (headlands) are higher and plant canopies sig-
nificantly thinner. The robot velocity oscillated between 1.2 km·h−1 and 1.7 km·h−1 
according to the motion being upslope or downslope. Overall, each run took between 
4 and 5 min. Figure 5.20 confirms that there is much higher dispersion for the tem-
peratures measured during the afternoon, but also reveals a pattern in the chilly 
temperatures at dawn; at the central part of each row, where vines have more foliage 
and the terrain profile forms a mild basin, registered temperatures were typically 
several degrees lower. As time progressed over the morning test, the average 
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temperature slowly increased, and after 1 h, the differences between headlands and 
row centers practically disappeared. The thermal behavior of the vineyard over time 
and location was transferred to the vineyard manager, who will add this information 
to other field data for a better decision-making in the management of this plot.

5.6  �Summary and Concluding Thoughts

Feeding an ever-growing population is becoming a big challenge for the agricultural 
engineers of the future. Fortunately, disruptive technologies tend to appear to face 
up such challenging scenarios, and digital farming has brought powerful tools to do 
so, such as precision agriculture and robotics. Making the right managerial deci-
sions is key for the sustainable production of specialty crops, and to make good 
decisions, reliable data is essential. This chapter has explained the basic conditions 
for crop scouting and the principles for designing monitoring vehicles, paying espe-
cial attention to the workings of fundamental sensors, and how to display their 
information in legible maps. However, although results are positive and technology 
is more accessible every day, systematic field monitoring is still scarce. Many high-
interest crop properties such as maturity and yield have no commercial device to 
monitor noninvasively from moving vehicles. In some cases, measuring sensors are 
available, but their practical implementation or the data that they generate are too 
cumbersome for regular applications at user level. Nevertheless, digital farming has 
come to stay and these difficulties will eventually be overcome with time. Agriculture 
is not a source of big data yet, but it is a question of time.

Fig. 5.20  Specific temperatures acquired by the robot in the maps of Fig. 5.19c and d 
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